

A Tour of Data Science

Chapman & Hall/CRC Big Data Series

Series Editor: Sanjay Ranka

A Tour of Data Science
Learn R and Python in Parallel
Nailong Zhang

Big Data Computing
A Guide for Business and Technology Managers
Vivek Kale

Big Data Management and Processing
Kuan-Ching Li, Hai Jiang, Albert Y. Zomaya

Frontiers in Data Science
Matthias Dehmer, Frank Emmert-Streib

High Performance Computing for Big Data
Methodologies and Applications
Chao Wang

Big Data Analytics
Tools and Technology for Effective Planning
Arun K. Somani, Ganesh Chandra Deka

Smart Data
State-of-the-Art Perspectives in Computing and Applications
Kuan-Ching Li, Qingchen Zhang, Laurence T. Yang, Beniamino Di Martino

Internet of Things and Secure Smart Environments
Successes and Pitfalls
Uttam Ghosh, Danda B. Rawat, Raja Datta, Al-Sakib Khan Pathan

For more information on this series please visit: https://www.crcpress.com/Chapman--HallCRC-Big-Data-
Series/book-series/CRCBIGDATSER

https://www.crcpress.com/Chapman--HallCRC-Big-Data-Series/book-series/CRCBIGDATSER
https://www.crcpress.com/Chapman--HallCRC-Big-Data-Series/book-series/CRCBIGDATSER

A Tour of Data Science

Learn R and Python in Parallel

Nailong Zhang

First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as­
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho­
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www. copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Zhang, Nailong, author.

Title: A tour of data science : learn R and Python in parallel / Nailong Zhang.

Description: First edition. | Abingdon, Oxon ; Boca Raton, FL : CRC Press,

2021. | Series: Chapman & Hall/CRC data science series | Includes

bibliographical references and index.

Identifiers: LCCN 2020025166 | ISBN 9780367895860 (paperback) | ISBN

9780367897062 (hardback) | ISBN 9781003020646 (ebook)

Subjects: LCSH: Data mining. | R (Computer program language) | Python

(Computer programlanguage)

Classification: LCC QA76.9.D343 Z458 2021 | DDC 006.3/12--dc23

LC record available at https://lccn.loc.gov/2020025166

ISBN: 9780367895860 (hbk)

Typeset in Computer Modern font
by Cenveo Publisher Services

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov

To my parents

https://taylorandfrancis.com

vii

Contents

Preface

0.1

0.2

Chapter

ASSUMPTIONS ABOUT THE READER’S BACKGROUND

BOOK OVERVIEW

1 • Introduction to R/Python Programming

ix

ix

ix

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Chapter

CALCULATOR

VARIABLE AND TYPE

FUNCTIONS

CONTROL FLOWS

SOME BUILT-IN DATA STRUCTURES

REVISIT OF VARIABLES

OBJECT-ORIENTED PROGRAMMING (OOP)

MISCELLANEOUS

2 • More on R/Python Programming

IN R/PYTHON

1

3

4

6

9

21

30

35

37

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Chapter

WORK WITH R/PYTHON SCRIPTS

DEBUGGING IN R/PYTHON

BENCHMARKING

VECTORIZATION

EMBARRASSINGLY PARALLELISM IN R/PYTHON

EVALUATION STRATEGY

SPEED UP WITH C/C++ IN R/PYTHON

A FIRST IMPRESSION OF FUNCTIONAL PROGRAMMING

MISCELLANEOUS

3 • data.table and pandas

37

40

47

49

57

61

63

65

69

71

3.1

3.2

SQL

GET STARTED WITH DATA.TABLE AND PANDAS

71

74

viii • Contents

3.3

3.4

3.5

3.6

Chapter

INDEXING & SELECTING DATA

ADD/REMOVE/UPDATE

GROUP BY

JOIN

4 • Random Variables, Distributions & Linear Regression

76

86

91

93

99

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Chapter

A REFRESHER ON DISTRIBUTIONS

INVERSION SAMPLING & REJECTION

JOINT DISTRIBUTION & COPULA

FIT A DISTRIBUTION

CONFIDENCE INTERVAL

HYPOTHESIS TESTING

BASICS OF LINEAR REGRESSION

RIDGE REGRESSION

5 • Optimization in Practice

SAMPLING

99

102

106

110

111

114

122

127

133

5.1

5.2

5.3

5.4

5.5

5.6

Chapter

CONVEXITY

GRADIENT DESCENT

ROOT-FINDING

GENERAL PURPOSE MINIMIZATION TOOLS IN

LINEAR PROGRAMMING

MISCELLANEOUS

6 • Machine Learning - A gentle introduction

R/PYTHON

133

134

141

143

149

153

161

6.1 SUPERVISED LEARNING

6.2 GRADIENT BOOSTING MACHINE

6.3 UNSUPERVISED LEARNING

6.4 REINFORCEMENT LEARNING

6.5 DEEP Q-NETWORKS

6.6 COMPUTATIONAL DIFFERENTIATION

6.7 MISCELLANEOUS

Bibliography

Index

161

169

188

195

197

200

202

203

205

Preface

0.1 ASSUMPTIONS ABOUT THE READER’S BACKGROUND

It is hard to give a clear definition of data science because it is not clear where the bor­
der is. Actually, many data scientists are working in different industries with different
skill sets. Generally speaking, data science requires broad knowledge in statistics, ma­
chine learning, optimization and programming. It is impossible to cover even one of
these four areas in depth in a short book, and it is also beyond the scope of this book.
However, I think it might be useful to have a book that talks about data science with
a broad range of topics and a moderate amount of technical detail. And that is one of
the motivations for writing this book. I chose to make the book short with minimum
mathematical theories introduced, and hope reading through the book could help the
readers get a sense of what data science is about.

I assume the readers have basic knowledge in statistics and linear algebra, and
calculus, such as normal distribution, sample size, gradient, matrix inversion, etc.
Previous programming knowledge is not required. However, as the title of the book
says, we will learn R and Python in parallel, if you’re already familiar with either R
or Python it would help learning the other based on side-by-side comparison.

Besides the comparison of the two popular languages used in data science, this
book also focuses on the translation from mathematical models to codes. In the
book, the audience could find applications/implementations of some important al­
gorithms from scratch, such as maximum likelihood estimation, inversion sampling,
copula simulation, simulated annealing, bootstrapping, linear regression (lasso/ridge
regression), logistic regression, gradient boosting trees, etc.

0.2 BOOK OVERVIEW

The book consists of six chapters designed to introduce core ideas in data science.
Chapter 1: Introduction to R/Python Programming - R and Python are

the two most popular programming languages used in data science. In this chapter,
we go through the basics of R and Python programming in parallel with examples.
Specifically, the topics of this chapter include variable, type, function, control flow,
data structures, and object-oriented programming. The chapter is designed for both
beginners and intermediate audience.

Chapter 2: More on R/Python Programming - Following the first chapter,
the topics of this chapter include debugging, vectorization, parallelism, working with
C++ in R/Python, and functional programming. These topics are chosen to help
the audience to get familiar with some intermediate/advanced topics in R/Python

ix

x • Preface

programming. Mastering these topics will greatly help with coding skills. Like the first
chapter, in this chapter, I try to emphasize the differences between R and Python
with coding examples.

Chapter 3: data.table and pandas - In the first two chapters, we focus on
general-purpose programming techniques. In this chapter, we introduce the very ba­
sics of data science, i.e., data manipulation. For the audience with little experience
in data science, we start from a brief introduction to SQL. The major part of this
chapter focuses on the two widely used data.frame packages, i.e., data.table in R and
pandas in Python. Side-by-side examples using the two packages not only enables the
audience to learn basic usages of these tools but also can be used as a quick reference
manual.

Chapter 4: Random Variables, Distributions & Linear Regression - In
this chapter, we focus on statistics and linear regression, which is the foundation of
data science. To better follow this chapter, I recommend any introductory level statis­
tics course as a prerequisite. The topics of this chapter include random variable sam­
pling methods, distribution fitting, joint distribution/copula simulation, confidence
interval calculation, and hypothesis testing. In later sections, we also talk about lin­
ear regression models from scratch. Many textbooks introduce the theories behind
linear regressions but still don’t help much on the implementation. We will see how
the linear regression is implemented as a toy example in both R and Python with the
help of linear algebra. I will also show how the basic linear regression model can be
used for L2 penalized linear regression, i.e., ridge regression.

Chapter 5: Optimization in Practice - Most machine learning models rely
on optimization algorithms. In this chapter, we give a brief introduction to optimiza­
tion. Specifically, we will talk about convexity, gradient descent, general-purpose op­
timization tools in R and Python, linear programming and metaheuristic algorithms,
etc. Based on these techniques, we will see coding examples about maximum likeli­
hood estimation, linear regression, logistic regression, portfolio construction, traveling
salesman problem.

Chapter 6: Machine Learning – A gentle introduction - Machine learning
is a huge topic. In this chapter, I try to give a very short and gentle introduction to
machine learning. It starts with a brief introduction of supervised learning, unsuper­
vised learning and reinforcement learning, respectively. For supervised learning, we
will see the gradient boosting regression with a pure Python implementation from
scratch, from which the audience could learn the translation from the mathematical
models to object-oriented programs. For unsupervised learning, the finite Gaussian
mixture model and PCA are discussed. And for reinforcement learning, we will also
use a simple game as an example to show the usage of deep Q-networks. The goal
of this chapter is two-fold. First, I would like to give the audience an impression of
what machine learning looks like. Second, reading the code snippets in this chapter
could help the audience review/recap the topics in previous chapters.

In this chapter, I will give an introduction to general R and Python programming
in a parallel fashion.

1.1 CALCULATOR

R and Python are general-purpose programming languages that can be used for
writing softwares in a variety of domains. But for now, let us start with using them
as basic calculators. The first thing is to have them installed. R1 and Python2 can be
downloaded from their official website. In this book, I will be using R 3.5 and Python
3.7.

To use R/Python as basic calculators, let’s get familiar with the interactive mode.
After the installation, we can type R or Python (it is case insensitive so we can also
type r/python) to invoke the interactive mode. Since Python 2 is installed by default
on many machines, in order to avoid invoking Python 2 we type python3.7 instead.

R

1

2 ~ $R
3

4 R version 3.5.1 (2018− 07− 02) −− "Feather Sp\footnoteray"
5 Copyright (C) 2018 The R Foundation for Statistical Computing
6 Platform: x86_64−apple−darwin15.6.0 (64− bit)
7

8 R is free software and comes with ABSOLUTELY NO WARRANTY.
9 You are welcome to redistribute it under certain conditions.

10 Type ’license()’ or ’licence()’ for distribution details.
11

1https://www.r-project.org
2https://www.python.org

1

C H A P T E R 1

Introduction to R/Python
Programming

https://www.r-project.org
https://www.python.org

2 • A Tour of Data Science: Learn R and Python in Parallel

12 Natural language support but running in an English locale
13

14 R is a collaborative project with many contributors.
15 Type ’contributors()’ for more information and
16 ’citation()’ on how to cite R or R packages in publications.
17

18 Type ’demo()’ for some demos, ’help()’ for on−line help, or
19 ’help.start()’ for an HTML browser interface to help.
20 Type ’q()’ to quit R.
21

22 >

Python

1 ~ $python3.7
2 Python 3.7.1 (default, Nov 6 2018, 18:45:35)
3 [Clang 10.0.0 (clang−1000.11.45.5)] on darwin
4 Type "help", "copyright", "credits" or "license" for more

information.
5 >>>

The messages displayed by invoking the interactive mode depend on both the
version of R/Python installed and the machine. Thus, you may see different messages
on your local machine. As the messages said, to quit R we can type q(). There are 3
options prompted by asking the user if the workspace should be saved or not. Since
we just want to use R as a basic calculator, we quit without saving workspace.

To quit Python, we can simply type exit().

R

1 > q()
2 Save workspace image? [y/n/c]: n
3 ~ $

Once we are inside the interactive mode, we can use R/Python as a calculator.

R

1 > 1+1
2 [1] 2
3 > 2∗3+5
4 [1] 11
5 > log(2)

Introduction to R/Python Programming • 3

6 [1] 0.6931472
7 > exp(0)
8 [1] 1

Python

1 >>> 1+1
2 2
3 >>> 2∗3+5
4 11
5 >>> log(2)
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 NameError: name ’log’ is not defined
9 >>> exp(0)

10 Traceback (most recent call last):
11 File "<stdin>", line 1, in <module>
12 NameError: name ’exp’ is not defined

From the code snippet above, R is working as a calculator perfectly. However,
errors are raised when we call log(2) and exp(2) in Python. The error messages are
self-explanatory - log function and exp function don’t exist in the current Python
environment. In fact, log function and exp function are defined in the math module in
Python. A module3 is a file consisting of Python code. When we invoke the interactive
mode of Python, a few built-in modules are loaded into the current environment by
default. But the math module is not included in these built-in modules. That explains
why we got the NameError when we try to use the functions defined in the math
module. To resolve the issue, we should first load the functions to use by using the
import statement as follows.

Python

1 >>> from math import log, exp
2 >>> log(2)
3 0.6931471805599453
4 >>> exp(0)
5 1.0

1.2 VARIABLE AND TYPE

In the previous section we have seen how to use R/Python as calculators. Now, let’s
see how to write real programs. First, let’s define some variables.

3https://docs.python.org/3/tutorial/modules.html

https://www.docs.python.org

4 • A Tour of Data Science: Learn R and Python in Parallel

R Python

1 > a=2 1 >>> a=2
2 > b=5.0 2 >>> b=5.0
3 > x=’hello world’ 3 >>> x=’hello world’
4 > a 4 >>> a
5 [1] 2 5 2
6 > b 6 >>> b
7 [1] 5 7 5.0
8 > x 8 >>> x
9 [1] "hello world" 9 ’hello world’

10 > e=a

∗2+b 10 >>> e=a∗2+b
11 > e 11 >>> e
12 [1] 9 12 9.0

Here, we defined 4 different variables a, b, x, e. To get the type of each variable,
we can utilize the function typeof() in R and type() in Python, respectively.

R Python

1 > typeof(x) 1 >>> type(x)
2 [1] "character" 2 <class ’str’>
3 > typeof(e) 3 >>> type(e)
4 [1] "double" 4 <class ’float’>

The type of x in R is called character, and in Python is called str.

1.3 FUNCTIONS

We have seen two functions log and exp when we use R/Python as calculators.
A function is a block of code which performs a specific task. A major purpose of
wrapping a block of code into a function is to reuse the code.

It is simple to define functions in R/Python.

R Python

1 > fun1=function(x){return(x 1 >>> def fun1(x):
∗x)} 2 ... return x ote

2
∗x # n the

> fun1 indentation
3 function(x){return(x∗ x)} 3 ...

4 > fun1(2) 4 >>> fun1(2)

5 [1] 4 5 4

Here, we defined a function fun1 in R/Python. This function takes x as input and
returns the square of x. When we call a function, we simply type the function name

Introduction to R/Python Programming • 5

followed by the input argument inside a pair of parentheses. It is worth noting that
input or output are not required to define a function. For example, we can define a
function fun2 to print Hello World! without input and output.

One major difference between R and Python codes is that Python codes are
structured with indentation. Each logical line of R/Python code belongs to a certain
group. In R, we use {} to determine the grouping of statements. However, in Python
we use leading whitespace (spaces and tabs) at the beginning of a logical line to
compute the indentation level of the line, which is used to determine the statements’
grouping. Let’s see what happens if we remove the leading whitespace in the Python
function above.

Python

1 >>> def fun1(x):
2 ... return x∗x # note the indentation
3 File "<stdin>", line 2
4 return x

∗x # note the indentation
5 ^
6 IndentationError: expected an indented block

We got an IndentationError because of missing indentation.

R Python

1 > fun2=function(){print(’ 1 >>> def fun2(): print(’Hello
Hello World!’)} World!’)

2 > fun2() 2 ...
3 [1] "Hello World!" 3 >>> fun2()

4 Hello World!

Let’s go back to fun1 and have a closer look at the return. In Python, if we
want to return something we have to use the keyword return explicitly. return in
R is a function but it is not a function in Python and that is why no parenthesis
follows return in Python. In R, return is not required even though we need to return
something from the function. Instead, we can just put the variables to return in the
last line of the function defined in R. That being said, we can define fun1 as follows.

R

1 > fun1=function(x){x∗x}

Sometimes we want to give a default value to an argument for a function, and
both R and Python allow functions to have default values.

R Python

6 • A Tour of Data Science: Learn R and Python in Parallel

1 > log_fun = 1 >>> def log_fun(x, base=2):
function(x, base=2){ 2 ...

2 + return(log(x, base)) return math.log(x, base)
3 + } 3 ...
4 > log_fun(5, base=2) 4 >>> log_fun(5,2)
5 [1] 2.321928 5 2.321928094887362
6 > log_fun(5, 2) 6 >>> log_fun(5, base=2)
7 [1] 2.321928 7 2.321928094887362
8 > log_fun(base=2, 5) 8 >>> log_fun(base=2, 5)
9 [1] 2.321928 9 File "<stdin>", line 1

10 > 10 SyntaxError: positional
argument follows keyword
argument

In Python we have to put the arguments with default values at the end, which
is not required in R. However, from a readability perspective, it is always better to
put them at the end. You may have noticed the error message above about positional
argument. In Python there are two types of arguments, i.e., positional arguments
and keyword arguments. Simply speaking, a keyword argument must be preceded
by an identifier, e.g., base in the example above. And positional arguments refer to
non-keyword arguments.

1.4 CONTROL FLOWS

To implement a complex logic in R/Python, we may need control flows.

1.4.1 If/else

Let’s define a function to return the absolute value of input.

R Python

1 > fun3=function(x){ 1 >>> def fun3(x):
2 + if (x>=0){ 2 ... if x>=0:
3 + return(x)} 3 ... return x
4 + else{ 4 ... else:
5 + return(x)}
6

− 5 ... return x
+ } 6

−
...

7 > fun3(2.5) 7 >>> fun3(2.5)
8 [1] 2.5 8 2.5
9 > fun3(−2.5) 9 >>> fun3(

10

−2.5)
[1] 2.5 10 2.5

The code snippet above shows how to use if/else in R/Python. The subtle

Introduction to R/Python Programming • 7

difference between R and Python is that the condition after if must be embraced by
parenthesis in R but it is optional in Python.

We can also put if after else. But in Python, we use elif as a shortcut.

R Python

1 > fun4=function(x){
 1 >>> def fun4(x):
2 + if (x==0){
 2 ... if x==0:
3 + print(’zero’)}
 3 ... print(’zero’)
4 + else if (x>0){
 4 ... elif x>0:
5 + print(’positive’)}
 5 ... print(’positive’)
6 + else{
 6 ... else:
7 + print(’negative’)}
 7 ... print(’negative’)
8 + }
 8 ...
9 > fun4(0)
 9 >>> fun4(0)

10 [1] "zero"
 10 zero
11 > fun4(1)
 11 >>> fun4(1)
12 [1] "positive"
 12 positive
13 > fun4(−1)
 13 >>> fun4(
14

−1)
[1] "negative"
 14 negative

1.4.2 For loop

Similar to the usage of if in R, we also have to use parenthesis after the keyword for
in R. But in Python there should be no parenthesis after for.

R Python

1 > for (i in 1:3){print(i)} 1 >>> for i in
 range(1,4):print(i)2 [1] 1

2
3 [1] 2 ...

3 1
4 [1] 3

4 2
5 3

There is something more interesting than the for loop itself in the snippets above.
In the R code, the expression 1:3 creates a vector with elements 1, 2 and 3. In the
Python code, we use the range() function for the first time. Let’s have a look at
them.

R Python

1 > typeof(1:3) 1 >>> type(range(1,4))
2 [1] "integer" 2 <class ’range’>

range() function returns a range type object, which represents an immutable

8 • A Tour of Data Science: Learn R and Python in Parallel

sequence of numbers. range() function can take three arguments, i.e., range(start,
stop, step). However, start and step are both optional. It’s critical to keep in mind
that the stop argument that defines the upper limit of the sequence is exclusive. And
that is why in order to loop through 1 to 3 we have to pass 4 as the stop argument
to range() function. The step argument specifies how much to increase from one
number to the next. The default values of start and step are 0 and 1, respectively.

1.4.3 While loop

R Python

1 > i=1 1 >>> i=1
2 > while (i<=3){ 2 >>> while i<=3:
3 + print(i) 3 ... print(i)
4 + i=i+1 4 ... i+=1
5 + } 5 ...
6 [1] 1 6 1
7 [1] 2 7 2
8 [1] 3 8 3

You may have noticed that in Python we can do i+=1 to add 1 to i, which is not
feasible in R by default. Both for loop and while loop can be nested.

1.4.4 Break/continue

Break/continue helps if we want to break the for/while loop earlier, or to skip a
specific iteration. In R, the keyword for continue is called next, in contrast to continue
in Python. The difference between break and continue is that calling break would
exit the innermost loop (when there are nested loops, only the innermost loop is
affected); while calling continue would just skip the current iteration and continue
the loop if not finished.

R Python

1 > for (i in 1:3){ 1 >>> for i in range(1,4):
2 + print(i) 2 ... print(i)
3 + if (i==1) break 3 ... if i==1: break
4 + } 4 ...
5 [1] 1 5 1
6 > for (i in 1:3){ 6 >>> for i in range(1,4):
7 + if (i==2){next} 7 ... if i==2: continue
8 + print(i) 8 ... print(i)
9 + } 9 ...

10 [1] 1 10 1
11 [1] 3 11 3

Introduction to R/Python Programming • 9

1.5 SOME BUILT-IN DATA STRUCTURES

In the previous sections, we haven’t seen much difference between R and Python.
However, regarding the built-in data structures, there are some significant differences
we will see in this section.

1.5.1 Vector in R and list in Python

In R, we can use function c() to create a vector; A vector is a sequence of elements
with the same type. In Python, we can use [] to create a list, which is also a sequence
of elements. But the elements in a list don’t need to have the same type. To get the
number of elements in a vector in R, we use the function length(); and to get the
number of elements in a list in Python, we use the function len().

R Python

1 > x=c(1,2,5,6) 1 >>> x=[1,2,5,6]
2 > y=c(’hello’,’world’,’!’) 2 >>> y=[’hello’,’world’,’!’]
3 > x 3 >>> x
4 [1] 1 2 5 6 4 [1, 2, 5, 6]
5 > y 5 >>> y
6 [1] "hello" "world" "!" 6 [’hello’, ’world’, ’!’]
7 > length(x) 7 >>> len(x)
8 [1] 4 8 4
9 > z=c(1,’hello’) 9 >>> z=[1,’hello’]

10 > z 10 >>> z
11 [1] "1" "hello" 11 [1, ’hello’]

In the code snippet above, the first element in the variable z in R is coerced from
1 (numeric) to "1" (character) since the elements must have the same type.

To access a specific element from a vector or list, we could use []. In R, sequence
types are indexed beginning with the one subscript. In contrast, sequence types in
Python are indexed beginning with the zero subscript.

R Python

1 > x=c(1,2,5,6)
 1 >>> x=[1,2,5,6]

2 > x[1]
 2 >>> x[1]

3 [1] 1
 3 2

4 >>> x[0]

5 1

What if the index to access is out of boundary?

10 • A Tour of Data Science: Learn R and Python in Parallel

R Python

1 > x=c(1,2,5,6) 1 >>> x=[1,2,5,6]
2 > x[−1] 2 >>> x[−1]
3 [1] 2 5 6 3 6
4 > x[0] 4 >>> x[len(x)+1]
5 numeric(0) 5 Traceback (most recent call
6 > x[length(x)+1] last):
7 [1] NA 6 File "<stdin>", line 1,

in <module> 8 > length(numeric(0))
7 IndexError:

9 [1] 0 list index out of range
10 > length(NA)
11 [1] 1

In Python, negative index number means indexing from the end of the list. Thus,
x[−1] points to the last element and x[−2] points to the second-last element of
the list. But R doesn’t support indexing with negative numbers in the same way as
Python. Specifically, in R x[−index] returns a new vector with x[index] excluded.

When we try to access with an index out of boundary, Python would throw an
IndexError. The behavior of R when indexing out of boundary is more interesting.
First, when we try to access x[0] in R we get a numeric(0) whose length is also
0. Since its length is 0, numeric(0) can be interpreted as an empty numeric vector.
When we try to access x[length(x)+1] we get an NA. In R, there are also NaN and
NULL.
NaN means "Not A Number" and it can be verified by checking its type - "double".

0/0 would result in an NaN in R. NA in R generally represents missing values. And
NULL represents a NULL (empty) object. To check if a value is NA, NaN or NULL, we
can use is.na(), is.nan() or is.null, respectively.

R Python

1 > typeof(NA) 1 >>> type(None)
2 [1] "logical" 2 <class ’NoneType’>
3 > typeof(NaN) 3 >>> None is None
4 [1] "double" 4 True
5 > typeof(NULL) 5 >>> 1 == None
6 [1] "NULL" 6 False
7 > is.na(NA)
8 [1] TRUE
9 > is.null(NULL)

10 [1] TRUE
11 > is.nan(NaN)

In Python, there is no built-in NA or NaN. The counterpart of NULL in Python is

Introduction to R/Python Programming • 11

None. In Python, we can use the is keyword or == to check if a value is equal to
None.

From the code snippet above, we also notice that in R the boolean type value
is written as "TRUE/FALSE", compared with "True/False" in Python. Although in
R "TRUE/FALSE" can also be abbreviated as "T/F", I don’t recommend using the
abbreviation.

There is one interesting fact that we can’t add a NULL to a vector in R, but it is
feasible to add a None to a list in Python.

R Python

1 > x=c(1,NA,NaN,NULL) 1 >>> x=[1,None]
2 > x 2 >>> x
3 [1] 1 NA NaN 3 [1, None]
4 > length(x) 4 >>> len(x)
5 [1] 3 5 2

Sometimes we want to create a vector/list with replicated elements, for example,

a vector/list with all elements equal to 0.

R Python

1 > x=rep(0, 10) 1 >>> x=[0]
2

∗10
> x 2 >>> x

3 [1] 0 0 0 0 0 0 0 0 0 0 3 [0, 0, 0, 0, 0, 0, 0, 0, 0,
4 > y=rep(c(0,1), 5) 0]
5 > y 4 >>> y=[0, 1]∗5
6 [1] 0 1 0 1 0 1 0 1 0 1 5 >>> y

6 [0, 1, 0, 1, 0, 1, 0, 1, 0,
1]

When we use the ∗ operator to make replicates of a list, there is one caveat - if
the element inside the list is mutable then the replicated elements point to the same
memory address. As a consequence, if one element is mutated other elements are also
affected.

Python

1 >>> x=[0] # x is a list which is mutable
2 >>> y=[x]∗5 # each element in y points to x
3 >>> y
4 [[0], [0], [0], [0], [0]]
5 >>> y[2]=2 # we point y[2] to 2 but x is not mutated
6 >>> y
7 [[0], [0], 2, [0], [0]]
8 >>> y[1][0]=−1 # we mutate x by changing y[1][0] from 0 to −1

12 • A Tour of Data Science: Learn R and Python in Parallel

9 >>> y
10 [[−1], [−1], 2, [−1], [−1]]
11 >>> x
12 [−1]

How to get a list with replicated elements but pointing to different memory ad­
dresses?

Python

1 >>> x=[0]

2 >>> y=[x[:] for _ in range(5)] # [:] makes a copy of the list x;

another solution is [list(x) for _ in range(5)]
3 >>> y
4 [[0], [0], [0], [0], [0]]
5 >>> y[0][0]=2
6 >>> y
7 [[2], [0], [0], [0], [0]]

Besides accessing a specific element from a vector/list, we may also need to do
slicing, i.e., to select a subset of the vector/list. There are two basic approaches of
slicing:

• Integer-based

R

1 > x=c(1,2,3,4,5,6)
2 > x[2:4]
3 [1] 2 3 4
4 > x[c(1,2,5)] # a vector of indices
5 [1] 1 2 5
6 > x[seq(1,5,2)] # seq creates a vector to be used as

indices
7 [1] 1 3 5

Python

1 >>> x=[1,2,3,4,5,6]
2 >>> x[1:4] # x[start:end] start is inclusive but end is

exclusive
3 [2, 3, 4]
4 >>> x[0:5:2] # x[start:end:step]
5 [1, 3, 5]

Introduction to R/Python Programming • 13

The code snippet above uses hash character # for comments in both R and
Python. Everything after # on the same line would be treated as comment (not
executable). In the R code, we also used the function seq() to create a vector.
When I see a function that I haven’t seen before, I might either google it or
use the built-in helper mechanism. Specifically, in R use ? and in Python use
help().

R Python

1 > ?seq 1 >>> help(print)

• Condition-based

Condition-based slicing means to select a subset of the elements which satisfy
certain conditions. In R, it is quite straightforward by using a boolean vector
whose length is the same as the vector to be sliced.

R

1 > x=c(1,2,5,5,6,6)
2 > x[x %% 2==1] # %% is the modulo operator in R; we select

the odd elements
3 [1] 1 5 5
4 > x %% 2==1 # results in a boolean vector with the same

length as x
5 [1] TRUE FALSE TRUE TRUE FALSE FALSE

The condition-based slicing in Python is quite different from that in R. The
prerequisite is list comprehension which provides a concise way to create new
lists in Python. For example, let’s create a list of squares of another list.

Python

1 >>> x=[1,2,5,5,6,6]
2 >>> [e∗∗2 for e in x] # ∗∗ is the exponent operator , i.e.,

x∗∗y means x to the power of y
3 [1, 4, 25, 25, 36, 36]

We can also use if statement with list comprehension to filter a list to achieve
list slicing.

Python

14 • A Tour of Data Science: Learn R and Python in Parallel

1 >>> x=[1,2,5,5,6,6]
2 >>> [e for e in x if e%2==1] # % is the modulo operator in

Python
3 [1, 5, 5]

It is also common to use if/else with list comprehension to achieve more
complex operations. For example, given a list x, let’s create a new list y so
that the non-negative elements in x are squared and the negative elements are
replaced by 0s.

Python

1 >>> x=[1,−1,0,2,5,−3]
2 >>> [e∗∗2 if e>=0 else 0 for e in x]
3 [1, 0, 0, 4, 25, 0]

The example above shows the power of list comprehension. To use if with list
comprehension, the if statement should be placed in the end after the for loop
statement; but to use if/else with list comprehension, the if/else statement
should be placed before the for loop statement.

We can also modify the value of an element in a vector/list variable.

R Python

1 > x=c(1,2,3) 1 >>> x=[1,2,3]
2 > x[1]= 1 2 >>> x[0]= 1
3

− −
> x 3 >>> x

4 [1] −1 2 3 4 [−1, 2, 3]

Two or multiple vectors/lists can be concatenated easily.

R Python

1 > x=c(1,2) 1 >>> x=[1,2]

2 > y=c(3,4) 2 >>> y=[3,4]

3 > z=c(5,6,7,8) 3 >>> z=[5,6,7,8]

4 > c(x,y,z) 4 >>> x+y+z

5 [1] 1 2 3 4 5 6 7 8 5 [1, 2, 3, 4, 5, 6, 7, 8]

As the list structure in Python is mutable, there are many things we can do with
list.

Introduction to R/Python Programming • 15

Python

1 >>> x=[1,2,3]
2 >>> x.append(4) # append a single value to the list x
3 >>> x
4 [1, 2, 3, 4]
5 >>> y=[5,6]
6 >>> x.extend(y) # extend list y to x
7 >>> x
8 [1, 2, 3, 4, 5, 6]
9 >>> last=x.pop() # pop the last element from x

10 >>> last
11 6
12 >>> x
13 [1, 2, 3, 4, 5]

I like the list structure in Python much more than the vector structure in R. list
in Python has a lot more useful features which can be found from the python official
documentation4.

1.5.2 Array

Array is one of the most important data structures in scientific programming. In R,
there is also an object type "matrix", but according to my own experience, we can
almost ignore its existence and use array instead. We can definitely use list as array
in Python, but lots of linear algebra operations are not supported for the list type.
Fortunately, there is a Python package numpy off the shelf.

R

1 > x=1:12
2 > array1=array(x, c(4,3)) # convert vector x to a 4 rows ∗ 3

cols array
3 > array1

4 [,1] [,2] [,3]

5 [1,] 1 5 9

6 [2,] 2 6 10

7 [3,] 3 7 11

8 [4,] 4 8 12

9 > y=1:6

10 > array2=array(y, c(3,2)) # convert vector y to a 3 rows ∗ 2
cols array

11 > array2
12 [,1] [,2]

4https://docs.python.org/3/tutorial/datastructures.html

https://www.docs.python.org

16 • A Tour of Data Science: Learn R and Python in Parallel

13 [1,] 1 4
14 [2,] 2 5
15 [3,] 3 6
16 > array3 = array1 %∗% array2 # %∗% is the matrix multiplication

operator
17 > array3
18 [,1] [,2]
19 [1,] 38 83
20 [2,] 44 98
21 [3,] 50 113
22 [4,] 56 128
23 > dim(array3) # get the dimension of array3
24 [1] 4 2

Python

1 >>> import numpy as np # we import the numpy module and alias it
as np

2 >>> array1=np.reshape(list(range(1,13)),(4,3)) # convert a list
to a 2d np.array

3 >>> array1

4 array([[1, 2, 3],

5 [4, 5, 6],

6 [7, 8, 9],

7 [10, 11, 12]])

8 >>> type(array1)

9 <class ’numpy.ndarray’>

10 >>> array2=np.reshape(list(range(1,7)),(3,2))
11 >>> array2
12 array([[1, 2],
13 [3, 4],
14 [5, 6]])
15 >>> array3=np.dot(array1, array2) # matrix multiplication using

np.dot()
16 >>> array3
17 array([[22, 28],
18 [49, 64],
19 [76, 100],
20 [103, 136]])
21 >>> array3.shape # get the shape(dimension) of array3
22 (4, 2)

You may have noticed that the results of the R code snippet and Python code
snippet are different. The reason is that in R the conversion from a vector to an array

Introduction to R/Python Programming • 17

is by-column; but in numpy the reshape from a list to a 2D numpy.array is by-row.
There are two ways to reshape a list to a 2D numpy.array by column.

Python

1 >>> array1=np.reshape(list(range(1,13)),(4,3),order=’F’) # use
order=’F’

2 >>> array1

3 array([[1, 5, 9],

4 [2, 6, 10],

5 [3, 7, 11],

6 [4, 8, 12]])

7 >>> array2=np.reshape(list(range(1,7)),(2,3)).T # use .T t o

transpose an array
8 >>> array2
9 array([[1, 4],

10 [2, 5],
11 [3, 6]])
12 >>> np.dot(array1, array2) # now we get the same result as using

R
13 array([[38, 83],
14 [44, 98],
15 [50, 113],
16 [56, 128]])

To learn more about numpy, the official website5 has great documentation/tutori­
als.

The term broadcasting describes how arrays with different shapes are handled
during arithmetic operations. A simple example of broadcasting is given below.

R Python

1 > x = c(1, 2, 3) 1 >>> import numpy as np

2 > x+1 2 >>> x = np.array([1, 2, 3])

3 [1] 2 3 4 3 >>> x + 1

4 array([2, 3, 4])

However, the broadcasting rules in R and Python are not exactly the same.

R Python

1 > x = array(c(1:6), c(3,2)) 1 >>> import numpy as np
2 > y = c(1, 2, 3) 2 >>> x = np.array([[1, 2],
3 > z = c(1, 2) [3, 4], [5, 6]])

5http://www.numpy.org

https://www.numpy.org

18 • A Tour of Data Science: Learn R and Python in Parallel

4 # point−wise multiplication 3 >>> y = np.array([1, 2, 3])

5 > x ∗ y 4 >>> z = np.array([1, 2])

6 [,1] [,2] 5 >>> # point−wise

multiplication

 7 [1,] 1 4
6 >>> x y

8 [2,] 4

10
7

∗
Traceback (most recent call

9 [3,] 9 18
last):

10 > x∗z
8 File "<stdin>", line 1,

11 [,1] [,2] in <module>
12 [1,] 1 8 9 ValueError: operands could
13 not[2,] 4 5 be broadcast together

with shapes (3,2) (3,)
14 [3,] 3 12

10 >>> x ∗ z
11 array([[1, 4],
12 [3, 8],
13 [5, 12]])

From the R code, we see the broadcasting in R is like recycling along with the
column. In Python, when the two arrays have different dimensions, the one with fewer
dimensions is padded with ones on its leading side. According to this rule, when we
do x ∗ y, the dimension of x is (3, 2) but the dimension of y is 3. Thus, the dimension
of y is padded to (1, 3), which explains what happens when x ∗ y.

1.5.3 List in R and dictionary in Python

Yes, in R there is also an object type called list. The major difference between a
vector and a list in R is that a list could contain different types of elements. list in R
supports integer-based accessing using [[]] (compared to [] for vector).

R

1 > x=list(1,’hello world!’)

2 > x

3 [[1]]

4 [1] 1

5

6 [[2]]

7 [1] "hello world!"

8

9 > x[[1]]

10 [1] 1

11 > x[[2]]
12 [1] "hello world!"
13 > length(x)
14 [1] 2

Introduction to R/Python Programming • 19

list in R could be named and support accessing by name via either [[]] or $
operator. But vector in R can also be named and support accessing by name.

R

1 > x=c(’a’=1,’b’=2)

2 > names(x)

3 [1] "a" "b"

4 > x[’b’]

5 b

6 2

7 > l=list(’a’=1,’b’=2)

8 > l[[’b’]]

9 [1] 2

10 > l$b
11 [1] 2
12 > names(l)
13 [1] "a" "b"

However, elements in list in Python can’t be named as R. If we need the feature
of accessing by name in Python, we can use the dictionary structure. If you used
Java before, you may consider dictionary in Python as the counterpart of HashMap
in Java. Essentially, a dictionary in Python is a collection of key:value pairs.

Python

1 >>> x={’a’:1,’b’:2} # {key:value} pairs

2 >>> x

3 {’a’: 1, ’b’: 2}

4 >>> x[’a’]

5 1

6 >>> x[’b’]

7 2

8 >>> len(x) # number of key:value pairs

9 2

10 >>> x.pop(’a’) # remove the key ’a’ and we get its value 1
11 1
12 >>> x
13 {’b’: 2}

Unlike dictionary in Python, list in R doesn’t support the pop() operation. Thus,
in order to modify a list in R, a new one must be created explicitly or implicitly.

20 • A Tour of Data Science: Learn R and Python in Parallel

1.5.4 data.frame, data.table and pandas

data.frame is a built-in type in R for data manipulation. In Python, there is no
such built-in data structure since Python is a more general-purpose programming
language. The solution for data.frame in Python is the pandas6 module.

Before we dive into data.frame, you may be curious as to why we need it. In other
words, why can’t we just use vector, list, array/matrix and dictionary for all data
manipulation tasks? I would say yes - data.frame is not a must-have feature for most
of ETL (extraction, transformation and Load) operations. But data.frame provides a
very intuitive way for us to understand the structured dataset. A data.frame is usually
flat with 2 dimensions, i.e., row and column. The row dimension is across multiple
observations and the column dimension is across multiple attributes/features. If you
are familiar with relational database, a data.frame can be viewed as a table.

Let’s see an example of using data.frame to represent employees’ information in
a company.

R

1 > employee_df = data.
frame(name=c("A", "B", "C
"),department=c("
Engineering","Operations
","Sales"))

2 > employee_df
3 name department
4 1 A Engineering
5 2 B Operations
6 3 C Sales

Python

1 >>> import pandas as pd
2 >>> employee_df=pd.DataFrame

({’name’:[’A’,’B’,’C’],’
department’:["Engineering
","Operations","Sales"]})

3 >>> employee_df
4 name department
5 0 A Engineering
6 1 B Operations
7 2 C Sales

There are quite a few ways to create data.frame. The most commonly used one
is to create data.frame object from array/matrix. We may also need to convert a
numeric data.frame to an array/matrix.

R

1 > x=array(rnorm(12), c(3,4))
2 > x
3 [,1] [,2] [,3] [,4]
4 [1,] −0.8101246 −0.8594136 −2.260810 0.5727590
5 [2,] −0.9175476 0.1345982 1.067628 −0.7643533
6 [3,] 0.7865971 −1.9046711 −0.154928 −0.6807527
7 > random_df=as.data.frame(x)
8 > random_df
9 V1 V2 V3 V4

10 1 −0.8101246 −0.8594136 −2.260810 0.5727590
6https://pandas.pydata.org/

https://www.pandas.pydata.org

Introduction to R/Python Programming • 21

11 2 −0.9175476 0.1345982 1.067628 −0.7643533
12 3 0.7865971 −1.9046711 −0.154928 −0.6807527
13 > data.matrix(random_df)
14 V1 V2 V3 V4
15 [1,] −0.8101246 −0.8594136 −2.260810 0.5727590
16 [2,]

−0.9175476 0.1345982 1.067628 −0.7643533
17 [3,] 0.7865971 −1.9046711 −0.154928 −0.6807527

Python

1 >>> import numpy as np
2 >>> import pandas as pd
3 >>> x=np.random.normal(size=(3,4))
4 >>> x
5 array([[−0.54164878, −0.14285267, −0.39835535, −0.81522719],
6 [0.01540508, 0.63556266, 0.16800583, 0.17594448],
7 [−1.21598262, 0.52860817, −0.61757696, 0.18445057]])
8 >>> random_df = pd.DataFrame(x)
9 >>> random_df

10 0 1 2 3
11 0 −0.541649 −0.142853 −0.398355

−0.815227
12 1 0.015405 0.635563 0.168006 0.175944
13 2 −1.215983 0.528608 −0.617577 0.184451
14 >>> np.asarray(random_df)
15 array([[−0.54164878, −0.14285267, −0.39835535,

−0.81522719],
16 [0.01540508, 0.63556266, 0.16800583, 0.17594448],
17 [−1.21598262, 0.52860817, −0.61757696, 0.18445057]])

In general, operations on an array/matrix are much faster than those on a data
frame. In R, we may use the built-in function data.matrix to convert a data.frame
to an array/matrix. In Python, we could use the function asarray in numpy module.

Although data.frame is a built-in type, it is not quite efficient for many operations.
I would suggest using data.table7 whenever possible. 8 dplyr is also a very popular
package in R for data manipulation. Many good resources are available online to
learn data.table and pandas.

1.6 REVISIT OF VARIABLES

We have talked about variables and functions so far. When a function has a name,
its name is also a valid variable. After all, what is a variable?

In mathematics, a variable is a symbol that represents an element, and we do

7https://cran.r-project.org/web/packages/data.table/index.html

8https://dplyr.tidyverse.org/

https://www.cran.r-project.org
https://www.dplyr.tidyverse.org

22 • A Tour of Data Science: Learn R and Python in Parallel

not care whether we conceptualize a variable in our mind, or write it down on paper.
However, in programming a variable is not only a symbol. We have to understand
that a variable is a name given to a memory location in computer systems. When we
run x = 2 in R or Python, somewhere in memory has the value 2, and the variable
(name) points to this memory address. If we further run y = x, the variable y points
to the same memory location pointed to by (x). What if we run x=3? It doesn’t
modify the memory which stores the value 2. Instead, somewhere in the memory now
has the value 3 and this memory location has a name x. And the variable y is not
affected at all, as well as the memory location it points to.

1.6.1 Mutability

Almost everything in R or Python is an object, including these data structures we
introduced in previous sections. Mutability is a property of objects, not variables,
because a variable is just a name.

A list in Python is mutable, meaning that we could change the elements stored in
the list object without copying the list object from one memory location to another.
We can use the id function in Python to check the memory location for a variable.
In the code below, we modified the first element of the list object with name x. And
since Python list is mutable, the memory address of the list doesn’t change.

Python

1 >>> x=list(range(1,1001)) # list() convert a range object to a
list

2 >>> hex(id(x)) # print the memory address of x

3 ’0x10592d908’

4 >>> x[0]=1.0 # from integer to float

5 >>> hex(id(x))

6 ’0x10592d908’

Is there any immutable data structure in Python? Yes, for example tuple is im­
mutable, which contains a sequence of elements. The element accessing and subset
slicing of tuple follows the same rules as list in Python.

Python

1 >>> x=(1,2,3,) # use () to create a tuple in Python, it is
better to always put a comma in the end

2 >>> type(x)

3 <class ’tuple’>

4 >>> len(x)

5 3

6 >>> x[0]

7 1

8 >>> x[0]=−1

Introduction to R/Python Programming • 23

9 Traceback (most recent call last):
10 File "<stdin>", line 1, in <module>
11 TypeError: ’tuple’ object does not support item assignment

If we have two Python variables pointed to the same memory, when we modify
the memory via one variable the other is also affected as we expect (see the example
below).

Python

1 >>> x=[1,2,3]
2 >>> id(x)
3 4535423616
4 >>> x[0]=0
5 >>> x=[1,2,3]
6 >>> y=x
7 >>> id(x)
8 4535459104
9 >>> id(y)

10 4535459104
11 >>> x[0]=0
12 >>> id(x)
13 4535459104
14 >>> id(y)
15 4535459104
16 >>> x
17 [0, 2, 3]
18 >>> y
19 [0, 2, 3]

In contrast, the mutability of vector in R is more complex and sometimes con­
fusing. First, let’s see the behavior when there is a single name given to the vector
object stored in memory.

R

1 > a=c(1,2,3)

2 > .Internal(inspect(a))

3 @7fe94408f3c8 14 REALSXP g0c3 [NAM(1)] (len=3, tl=0) 1,2,3

4 > a[1]=0

5 > .Internal(inspect(a))

6 @7fe94408f3c8 14 REALSXP g0c3 [NAM(1)] (len=3, tl=0) 0,2,3

It is clear in this case the vector object is mutable since the memory address

24 • A Tour of Data Science: Learn R and Python in Parallel

doesn’t change after the modification. What if there is an additional name given to
the memory?

R

1 > a=c(1,2,3)
2 > b=a
3 > .Internal(inspect(a))
4 @7fe94408f238 14 REALSXP g0c3 [NAM(2)] (len=3, tl=0) 1,2,3
5 > .Internal(inspect(b))
6 @7fe94408f238 14 REALSXP g0c3 [NAM(2)] (len=3, tl=0) 1,2,3
7 > a[1]=0
8 > .Internal(inspect(a))
9 @7fe94408f0a8 14 REALSXP g0c3 [NAM(1)] (len=3, tl=0) 0,2,3

10 > .Internal(inspect(b))
11 @7fe94408f238 14 REALSXP g0c3 [NAM(2)] (len=3, tl=0) 1,2,3
12 > a
13 [1] 0 2 3
14 > b
15 [1] 1 2 3

Before the modification, both variable a and b point to the same vector object in
the memory. But surprisingly, after the modification the memory address of variable
a also changed, which is called "copy on modify" in R. And because of this unique
behavior, the modification of a doesn’t affect the object stored in the old memory
and thus the vector object is immutable in this case. The mutability of R list is
similar to that of R vector.

1.6.2 Variable as function argument

Most functions/methods in R and Python take some variables as argument. What
happens when we pass the variables into a function?

In Python, the variable, i.e., the name of the object, is passed into a function. If
the variable points to an immutable object, any modification to the variable, i.e., the
name, doesn’t persist. However, when the variable points to a mutable object, the
modification of the object stored in memory persists. Let’s see the examples below.

Python Python

1 >>> def g(x): 1 >>> def f(x):
2 ... print(id(x)) 2 ... id(x)
3 ... x−=1 3 ... x[0] =1

−
4 ... print(id(x)) 4 ... id(x)
5 ... print(x) 5 >>> a=[1,2,3]
6 >>> a=1 6 >>> id(a)
7 >>> id(a) 7 4535423616

Introduction to R/Python Programming • 25

8 4531658512 8 >>> f(a)
9 >>> g(a) 9 4535423616

10 4531658512 10 4535423616
11 4531658480 11 >>> a
12 0 12 [0, 2, 3]
13 >>> a
14 1

We see that the object is passed into function by its name. If the object is im­
mutable, a new copy is created in memory when any modification is made to the
original object. When the object is immutable, no new copy is made and thus the
change persists out of the function.

In R, the passed object is always copied on a modification inside the function,
and thus no modification can be made to the original object in memory.

R

1 > f=function(x){

2 + print(.Internal(inspect(x)))

3 + x[1]=x[1] 1

4

−
+ print(.Internal(inspect(x)))

5 + print(x)

6 + }

7 >

8 > a=c(1,2,3)

9 > .Internal(inspect(a))

10 @7fe945538688 14 REALSXP g0c3 [NAM(1)] (len=3, tl=0) 1,2,3
11 > f(a)
12 @7fe945538688 14 REALSXP g0c3 [NAM(3)] (len=3, tl=0) 1,2,3
13 [1] 1 2 3
14 @7fe945538598 14 REALSXP g0c3 [NAM(1)] (len=3, tl=0) 0,2,3
15 [1] 0 2 3
16 [1] 0 2 3
17 > a
18 [1] 1 2 3

People may argue that R functions are not as flexible as Python functions. How­
ever, it makes more sense to do functional programming in R since we usually can’t
modify objects passed into a function.

1.6.3 Scope of variables

What is the scope of a variable and why does it matter? Let’s first have a look at the
code snippets below.

26 • A Tour of Data Science: Learn R and Python in Parallel

R Python

1 > x=1 1 >>> x=1
2 > var_func_1 = 2 >>>

function(){print(x)} def var_func_1():print(x)
3 > var_func_1() 3 >>> var_func_1()
4 [1] 1 4 1
5 > var_func_2 = function(){x= 5 >>> def var_func_2():x+=1

x+1; print(x)} 6 ...
6 > var_func_2() 7 >>> var_func_2()
7 [1] 2 8 Traceback (most recent call
8 > x last):
9 [1] 1 9 File "<stdin>", line 1,

in <module>
10 File "<stdin>", line 1,

in var_func_2
11 UnboundLocalError: local

variable ’x
’ referenced before
assignment

The results of the code above seem strange before knowing the concept of variable
scope. Inside a function, a variable may refer to a function argument/parameter or
it could be formally declared inside the function which is called a local variable. But
in the code above, x is neither a function argument nor a local variable. How does
the print() function know what the identifier x points to?

The scope of a variable determines where the variable is available/accessible (can
be referenced). Both R and Python apply lexical/static scoping for variables, which
set the scope of a variable based on the structure of the program. In static scoping,
when an ’unknown’ variable is referenced, the function will try to find it from the
most closely enclosing block. That explains how the print() function could find the
variable x.

In the R code above, x=x+1 the first x is a local variable created by the = operator;
the second x is referenced inside the function so the static scoping rule applies. As
a result, a local variable x which is equal to 2 is created, which is independent with
the x outside of the function var_func_2(). However, in Python when a variable is
assigned a value in a statement, the variable would be treated as a local variable and
that explains the UnboundLocalError.

Is it possible to change a variable inside a function which is declared outside the
function without passing it as an argument? Based on the static scoping rule only,
it’s impossible. But there are workarounds in both R/Python. In R, we need the help
of environment; and in Python we can use the keyword global.

So what is an environment in R? An environment is a place where objects are
stored. When we invoke the interactive R session, an environment named .GlobalEnv
is created automatically. We can also use the function environment() to get the

Introduction to R/Python Programming • 27

present environment. The ls() function can take an environment as the argument to
list all objects inside the environment.

R

1 $r

2 > typeof(.GlobalEnv)

3 [1] "environment"

4 > environment()

5 <environment: R_GlobalEnv >

6 > x=1

7 > ls(environment())

8 [1] "x"

9 > env_func_1=function(x){

10 + y=x+1
11 + print(environment())
12 + ls(environment())
13 + }
14 > env_func_1(2)
15 <environment: 0x7fc59d165a20 >
16 [1] "x" "y"
17 > env_func_2=function(){print(environment())}
18 > env_func_2()
19 <environment: 0x7fc59d16f520 >

The above code shows that each function has its own environment containing
all function arguments and local variables declared inside the function. In order to
change a variable declared outside of a function, we need the access of the environment
enclosing the variable to change. There is a function parent_env(e) that returns the
parent environment of the given environment e in R. Using this function, we are
able to change the value of x declared in .GlobalEnv inside a function which is also
declared in .GlobalEnv. The global keyword in Python works in a totally different
way, which is simple but less flexible.

R Python

1 > x=1 1 >>> def env_func_3():
2 > env_func_3=function(){ 2 ... global x
3 + cur_env=environment() 3 ... x = 2
4 + par_env= 4 ...

parent.env(cur_env) 5 >>> x=1
5 + par_env$x=2

6 >>> env_func_3()
6 + }

7 >>> x
7 > env_func_3()

8 2
8 > x
9 [1] 2

28 • A Tour of Data Science: Learn R and Python in Parallel

I seldom use the global keyword in Python, if ever. But the environment in R
could be very handy on some occasions. In R, environment could be used as a purely
mutable version of the list data structure. Let’s use the R function tracemem to trace
the copy of an object. It is worth nothing that tracemem can’t trace R functions.

R R

1 # list is not purely mutable
 1 # environment is purely
2 > x=list(1)
 mutable

2 > x=new.env()
3 > tracemem(x)

3 > x
4 [1] "<0x7f829183f6f8 >"

4 <environment: 0x7f8290aee7e8
5 > x$a=2

>
6 > tracemem(x)

5 > x$a=2
7 [1] "<0x7f828f4d05c8 >"

6 > x
7 <environment: 0x7f8290aee7e8

>

Actually, the object of an R6 class type is also an environment.

R

1 > # load the Complex class that we defined in chapter 1

2 > x = Complex$new(1,2)

3 > typeof(x)

4 [1] "environment"

In Python, we can assign values to multiple variables in one line.

Python Python

1 >>> x,y = 1,2 1 >>> x,y=(1,2)
2 >>> x 2 >>> print(x,y)
3 1 3 1 2
4 >>> y 4 >>> (x,y)=(1,2)
5 2 5 >>> print(x,y)

6 1 2
7 >>> [x,y]=(1,2)
8 >>> print(x,y)
9 1 2

Even though in the left snippet above there aren’t parentheses embracing 1, 2
after the = operator, a tuple is created first and then the tuple is unpacked and
assigned to x, y. Such a mechanism doesn’t exist in R, but we can define our own
multiple assignment operator with the help of environment.

Introduction to R/Python Programming • 29

R chapter1/multi_assignment.R

1 ‘%=%‘ = function(left, right) {

2 # we require the RHS to be a list strictly

3 stopifnot(is.list(right))

4 # dest_env is the desitination environment enclosing the

variables on LHS
5 dest_env = parent.env(environment())

6 left = substitute(left)

7

8 recursive_assign = function(left, right, dest_env) {

9 if (length(left) == 1) {

10 assign(x = deparse(left),
11 value = right,
12 envir = dest_env)
13 return()
14 }
15 if (length(left) != length(right) + 1) {
16 stop("LHS and RHS must have the same shapes")
17 }
18

19 for (i in 2:length(left)) {
20 recursive_assign(left[[i]], right[[i − 1]], dest_env)
21 }
22 }
23

24 recursive_assign(left, right, dest_env)
25 }

Before going more deeply into the script, first let’s see the usage of the multiple
assignment operator we defined.

R

1 > source(’multi_assignment.R’)
2 > c(x,y,z) %=% list(1,"Hello World!",c(2,3))
3 > x
4 [1] 1
5 > y
6 [1] "Hello World!"
7 > z
8 [1] 2 3
9 > list(a,b) %=% list(1,as.Date(’2019−01−01’))

10 > a
11 [1] 1
12 > b

30 • A Tour of Data Science: Learn R and Python in Parallel

13 [1] "2019−01−01"

In the %=% operator defined above, we used two functions substitute, deparse
which are very powerful but less known by R novices. To better understand these
functions as well as some other less known R functions, the Rchaeology9 tutorial is
worth reading.

It is also interesting to see that we defined the function recursive_assign inside
the %=% function. Both R and Python support the concept of first class functions.
More specifically, a function in R/Python is an object, which can be

1. stored as a variable;

2. passed as a function argument;

3. returned from a function.

The essential idea behind the recursive_assign function is a depth-first search
(DFS), which is a fundamental graph traversing algorithm10. In the context of the
recursive_assign function, we use DFS to traverse the parse tree of the left argu­
ment created by calling substitute(left).

1.7 OBJECT-ORIENTED PROGRAMMING (OOP) IN R/PYTHON

All the codes we wrote above follow the procedural programming paradigm11. We
can also do functional programming (FP) and OOP in R/Python. In this section,
let’s focus on OOP in R/Python.

Class is the key concept in OOP. In R there are two commonly used built-in
systems to define classes, i.e., S3 and S4. In addition, there is an external package
R612 which defines R6 classes. S3 is a light-weight system but its style is quite different
from OOP in many other programming languages. S4 system follows the principles
of modern object-oriented programming much better than S3. However, the usage of
S4 classes is quite tedious. I would ignore S3/S4 and introduce R6, which is closer to
the class in Python.

Let’s build a class in R/Python to represent complex numbers.

R

1 > library(R6) # load the R6 package
2 >
3 > Complex = R6Class("Complex",
4 + public = list(# only elements declared in this list are

accessible by the object of this class

9https://cran.r-project.org/web/packages/rockchalk/vignettes/Rchaeology.pdf
10https://en.wikipedia.org/wiki/Depth-first_search
11https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms
12https://cran.r-project.org/web/packages/R6/index.html

https://www.cran.r-project.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.cran.r-project.org

Introduction to R/Python Programming • 31

5 + real = NULL,
6 + imag = NULL,
7 + # the initialize function would be called automatically when

we create an object of the class
8 + initialize = function(real, imag){
9 + # call functions to change real and imag values

10 + self$set_real(real)
11 + self$set_imag(imag)
12 + },
13 + # define a function to change the real value
14 + set_real = function(real){
15 + self$real=real
16 + },
17 + # define a function to change the imag value
18 + set_imag = function(imag){
19 + self$imag = imag
20 + },
21 + # override print function
22 + print = function(){
23 + cat(paste0(as.character(self$real),’+’,as.character(self$

imag),’j’),’\n’)
24 + }
25 +)
26 +)
27 > # let’s create a complex number object based on the Complex

class we defined above using the new function
28 > x = Complex$new(1,2)
29 > x
30 1+2j
31 > x$real # the public attributes of x could be accessed by $

operator
32 [1] 1

Python

1 >>> class Complex:
2 ... # the __init__ function would be called automatically when

we create an object of the class
3 ... def __init__(self, real, imag):
4 ... self.real = real
5 ... self.imag = imag
6

7 ... def __repr__(self):
8 ... return "{0}+{1}j".format(self.real, self.imag)

32 • A Tour of Data Science: Learn R and Python in Parallel

9 ...
10 >>> x = Complex(1,2)
11 >>> x
12 1+2j
13 >>> x.real # different from the $ operator in R, here we use .

to access the attribute of an object
14 1

By overriding the print function in the R6 class, we can have the object printed
in the format of real+imag j. To achieve the same effect in Python, we override the
method __repr__. In Python, we refer to the functions defined in classes as methods.
And overriding a method means changing the implementation of a method provided
by one of its ancestors. To understand the concept of ancestors in OOP, one needs
to understand the concept of inheritance13.

You may be curious about the double underscore surrounding the methods, such
as __init__ and __repr__. These methods are well-known as special methods14. In
the definition of the special method __repr__ in the Python code, the format method
of str object15 is used.

Special methods can be very handy if we use them in suitable cases. For example,
we can use the special method __add__ to implement the + operator for the Complex
class we defined above.

Python

1 >>> class Complex:

2 ... def __init__(self, real, imag):

3 ... self.real = real

4 ... self.imag = imag

5 ... def __repr__(self):

6 ... return "{0}+{1}j".format(self.real, self.imag)

7 ... def __add__(self, another):

8 ... return Complex(self.real + another.real, self.imag +

another.imag)
9 ...

10 >>> x = Complex(1,2)
11 >>> y = Complex(2,4)
12 >>> x+y # + operator works now
13 3+6j

We can also implement the + operator for Complex class in R as we have done for
Python.

13https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

14https://docs.python.org/3/reference/datamodel.html#specialnames

15https://docs.python.org/3.7/library/string.html

https://www.en.wikipedia.org
https://www.docs.python.org
https://www.docs.python.org

Introduction to R/Python Programming • 33

R

1 > ‘+.Complex‘ = function(x, y){

2 + Complex$new(x$real+y$real, x$imag+y$imag)

3 + }

4 > x=Complex$new(1,2)

5 > y=Complex$new(2,4)

6 > x+y

7 3+6j

The most interesting part of the code above is ‘+.Complex‘. First, why do we use
‘‘ to quote the function name? Before getting into this question, let’s have a look at
the Python 3’s variable naming rules16.

1 Within the ASCII range (U+0001..U+007F), the valid characters
for identifiers (also referred to as names) are the same as
in Python 2.x: the uppercase and lowercase letters A through
Z, the underscore _ and, except for the first character ,
the digits 0 through 9.

According to the rule, we can’t declare a variable with name 2x. Compared
with Python, in R we can also use . in the variable names17. However, there is a
workaround to use invalid variable names in R with the help of ‘‘.

R

1 > 2x = 5
2 Error: unexpected symbol in

"2x"
3 > .x = 3
4 > .x
5 [1] 3
6 > ‘+2x%‘ = 0
7 > ‘+2x%‘
8 [1] 0

Python

1 >>> 2x = 5
2 File "<stdin>", line 1
3 2x = 5
4 ^
5 SyntaxError: invalid syntax
6 >>> .x = 3
7 File "<stdin>", line 1
8 .x = 3
9 ^

10 SyntaxError: invalid syntax

Now it is clear the usage of ‘‘ in ‘+.Complex‘ is to define a function with invalid
name. Placing .Complex after + is related to S3 method dispatching, which will not
be discussed here.

16https://docs.python.org/3.3/reference/lexical_analysis.html

17https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Identifiers

https://www.docs.python.org
https://www.cran.r-project.org

34 • A Tour of Data Science: Learn R and Python in Parallel

1.7.1 Member accessibility in Python

In some programming languages the members (variable or methods) of a class can be
declared with access modifiers which specify the accessibility or scope of a member.
In Python, class members don’t have explicit access modifiers, but it is still possible
to specify the accessibility. By default, the class member can be accessed inside or
outside the class definition. If the name of the member starts with a single underscore,
the member should not be accessed outside the class definition by convention, but
it is not enforced. If the name of the member starts with double underscore, the
member name is mangled and thus the member can’t be accessed by its original
member outside the class definition. But inside the class definition these variables
can always be accessed. Let’s see the example below.

Python

1 >>> class ProtectedMemberClass:

2 ... """

3 ... _x and _func1 are protected and are recommended not to

be accessed out of the class definition , but not enforced.

4 ... __y and __func2 are private and the names would be

mangled

5 ... """

6 ... def __init__(self, val1, val2):

7 ... self._x = val1

8 ... self.__y = val2

9 ... def _func1(self):

10 ... print("protected _func1 called")
11 ... def __func2(self):
12 ... print("private __func2 called")
13 ... def func3(self):
14 ... # inside the class definition , we can access all

these members
15 ... print("self._x is {0} and self.__y is{1}".format(
16 ... self._x, self.__y))
17 ... self._func1()
18 ... self.__func2()
19 ...
20 >>> p = ProtectedMemberClass(0, 1)
21 >>> p._x
22 0
23 >>> p.__y
24 Traceback (most recent call last):
25 File "<stdin>", line 1, in <module>
26 AttributeError: ’ProtectedMemberClass’ object has no attribute ’

__y’
27 >>> p._func1()

Introduction to R/Python Programming • 35

28 protected _func1 called
29 >>> p.__func2()
30 Traceback (most recent call last):
31 File "<stdin>", line 1, in <module>
32 AttributeError: ’ProtectedMemberClass’ object has no attribute ’

__func2’
33 >>> p.func3()
34 self._x is 0 and self.__y is1
35 protected _func1 called
36 private __func2 called

In this example, an error is thrown when we try to access __y or __func2 outside
the class definition. But they are reachable within the class definition and these fields
are usually called private fields.

1.8 MISCELLANEOUS

There are some items that I haven’t discussed so far, which are also important in
order to master R/Python.

1.8.1 Package/module installation

• Use install.packages() function in R

• Use R IDE to install packages

• Use 18 pip to install modules in Python

1.8.2 Virtual environment

Virtual environment is a tool to manage dependencies in Python. There are different
ways to create virtual environments in Python. I suggest using the venv module
shipped with Python 3. Unfortunately, there is nothing like a real virtual environment
in R as far as I know although there are quite a few management tools/packages.

1.8.3 <- vs. =

If you have known R before, you probably have heard of the advice19 to use <− to
rather than = for value assignment. Let’s see an example when <− makes a difference
when we do value assignment.

R R

1 > x=1 1 > x=1
2 > a=list(x <− 2) 2 > a=list(x = 2)

18https://packaging.python.org/tutorials/installing-packages/
19https://google.github.io/styleguide/Rguide.xml

https://www.packaging.python.org
https://www.google.github.io

36 • A Tour of Data Science: Learn R and Python in Parallel

3 > a 3 > a
4 [[1]] 4 $x
5 [1] 2 5 [1] 2
6 6

7 > x 7 > x
8 [1] 2 8 [1] 1

We learned quite a few of the basics of R/Python programming in the previous
chapter. I hope this chapter can be used as an intermediate level R/Python

programming tutorial. There are a few topics to cover, including debugging, vector­
ization and some other useful features of R/Python.

2.1 WORK WITH R/PYTHON SCRIPTS

In Chapter 1 we were coding within the interactive mode of R/Python. When we are
working on real-world projects, using an integrated development environment (IDE)
is a more pragmatic choice. There are not many choices for R IDE, and among them
RStudio1 is the best one I have used so far. As for Python, I would recommend either
Visual Studio Code2 or PyCharm3. But of course, you could use any text editor to
write R/Python scripts.

Let’s write a simple script to print Hello World! in R/Python. I have made a
directory chapter2 on my disk, the R script is created with a text editor and then
saved as hello_world.R and the Python script is created and saved as hello_world.
py, inside the directory.

R chapter2/hello_world.R Python chapter2/hello_world.py

1 print("Hello World!") 1 print("Hello World!")

There are a few ways to run an R script. For example, we can run the script from
the console with the r −f filename command. We can also use the Rscript filename
command from the console. If we use r −f filename to run a script, the content of
the script is also printed. With Rscript filename, the script content would not be

1https://www.rstudio.com/products/rstudio/

2https://code.visualstudio.com

3https://www.jetbrains.com/pycharm/

37

C H A P T E R 2

More on R/Python
Programming

https://www.rstudio.com
https://www.jetbrains.com
https://code.visualstudio.com

38 • A Tour of Data Science: Learn R and Python in Parallel

printed. Also, we can open the R interactive session and use the source() function.
As for the Python script, we can run it from the console.

R Python

1 chapter2 $ls 1 chapter2 $ls
2 hello_world.R hello_world.py 2 hello_world.R hello_world.py
3 chapter2 $r −f hello_world.R 3

4 > print("Hello World!") 4 chapter2 $python3.7
5 [1] "Hello World!" hello_world.py
6 5 Hello World!
7 chapter2 $r
8 > source(’hello_world.R’)
9 [1] "Hello World!"

Below is another example of scripts, in which we first create a function to print a
triangle and then call the function for printing.

R chapter2/print_triangle.R Python chapter2/print_triangle.py

1 # define a function to print 1 # define a function to print
triangle triangle

2 print_triangle = 2 def print_triangle(n):

function(n){ 3 for i in range(n+1):

3 for (i in 1:n){
4 print(" " i)

4 print(strrep("∗",i))

∗ ∗
5 # now we call the function

5 }
6 print_triangle(5)

6 }
7 # call the function for

printing
8 print_triangle(5)

Let’s run these two scripts to see the results.

R Python

1 chapter2 1 chapter2 $python
$Rscript print_triangle.R print_triangle.py

2 [1] "∗"
2

3 [1] "∗∗"
3

4 [1] "∗∗∗" ∗
4

5 [1] "∗∗∗∗" ∗∗
5

6 [1] "∗∗∗∗∗" ∗∗∗
6 ∗∗∗∗

7 ∗∗∗∗∗

The major reason for using scripts is that we don’t want to limit ourselves by using

More on R/Python Programming • 39

R/Python as basic calculators. In a script, we can put as many lines of R/Python
code as we need. In Python, a script is also referred to as module. It is common to
see a project consisting of multiple scripts to better organize the code structure. For
example, in a data science project, data loading/cleaning functions could be organized
inside one script, and model building functions could be organized in another script.
Model testing/validation can also have its own script. It is also valid to put different
scripts into directories. For example, below is the directory structure of a toy project.

toy_project/
|-- src
| |-- data_processing
| | |-- data_clean.R
| | |__ data_clean.py
| |-- model_building
| | |-- linear_model.R
| | |-- linear_model.py
| | |-- tree_model.R
| | |__ tree_model.py
| |__ model_validation
|__ test

We could put scripts into these directories accordingly. Please note that the toy
project is just for illustration and your projects don’t need to follow this toy project
structure.

An immediate problem of putting functions into different scripts is working out
how R/Python could find/use a function defined in another script. For example, in
the linear_model.R script we need to call a function impute defined in data_clean
.R. The solution is the source function in R and import statement in Python. In
R, sourcing a file is straightforward by using the file path. However, there are some
caveats using source in Python, which are out of this book’s scope.

When we use an IDE (RStudio or Visual Studio Code), not only can we work on
scripts, but also we can work on projects. But a project has nothing to do with the
programming language itself. A project is IDE-specific. For example, with RStudio we
can create an RStudio project to organize the scripts as well as some configurations4.
To work with an IDE-specific project, the IDE should be installed. But running the
scripts doesn’t require any IDE since we can even run the scripts with a command
line interface.

4https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects

https://www.support.rstudio.com

In R, there is a function browser() which interrupts the execution and allows the
inspection of the current environment. Similarly, there is a module pdb in Python that
provides more debugging features. We will only focus on the basic usages of browser
() and the set_trace() function in pdb module. The essential difference between
debugging using print() and browser() and set_trace() is that the latter function
allows us to debug in an interactive mode.

Let’s write a function which takes a sorted vector/list v and a target value x as
input and returns the leftmost index pos of the sorted vector/list so that v[pos]>=x.
Since v is already sorted, we may simply loop through it from left to right to find
pos.

R chapter2/find_pos.R Python chapter2/find_pos.py

1 find_pos=function(v,x){ 1 def find_pos(v,x):
2 for (i in 1:length(v)){ 2 for i in range(len(v)):
3 if (v[i]>=x){ 3 if v[i]>=x:
4 return(i) 4 return i
5 } 5

6 } 6 v=[1,2,5,10]
7 } 7 print(find_pos(v,

8

−1))
8 print(find_pos(v,4))

9 v=c(1,2,5,10) 9 print(find_pos(v,11))

10 print(find_pos(v,

−1))
11 print(find_pos(v,4))
12 print(find_pos(v,11))

5https://docs.python.org/3/library/logging.html

40 • A Tour of Data Science: Learn R and Python in Parallel

2.2 DEBUGGING IN R/PYTHON

Debugging is one of the most important aspects of programming. What is debugging
in programming? The programs we write might include errors/bugs and debugging is
a step-by-step process to find and remove the errors/bugs in order to get the desired
results.

If you are smart enough or the bugs are evident enough then you can debug the
program on your mind without using a computer at all. But in general we need some
tools/techniques to help us with debugging.

2.2.1 Print

Most programming languages provide the functionality of printing, which is a natural
way of debugging. By trying to place print statements at different positions we may
finally catch the bugs. When I use print to debug, it’s feeling like playing the game
of Minesweeper. In Python, there is a module called logging5 which could be used
for debugging like the print function, but in a more elegant fashion.

2.2.2 Browser in R and pdb in Python

https://www.docs.python.org

More on R/Python Programming • 41

Now let’s run these two scripts.

R Python

1 chapter2 $r 1 chapter2 $python3.7 find_pos
2 > source(’find_pos.R’) .py
3 [1] 1 2 0
4 [1] 3 3 2
5 NULL 4 None

When x=11, the function returns NULL in R and None in Python because there is no
such element in v larger than x. The implementation above is trivial, but not efficient.
If you have some background in data structures and algorithms, you probably know
this question can be solved by binary search. The essential idea of binary search
comes from the concept of divide-and-conquer6. Since v is already sorted, we may
divide it into two partitions by cutting it from the middle, and then we get the left
partition and the right partition. v is sorted implying that both the left partition and
the right partition are also sorted. If the target value x is larger than the rightmost
element in the left partition, we can just discard the left partition and search x within
the right partition. Otherwise, we can discard the right partition and search x within
the left partition. Once we have determined which partition to search, we may apply
the idea recursively so that in each step we reduce the size of v by half. If the length
of v is denoted as n, in terms of big 7O notation , the run time complexity of binary
search is O(log n), compared with O(n) of the for-loop implementation.

The code below implements the binary search solution to our question. (It is more
intuitive to do it with recursion but here I write it with iteration since tail recursion
optimization8 in R/Python is not supported.)

R chapter2/find_binary_search_buggy.R

1 binary_search_buggy=function(v, x){

2 start = 1

3 end = length(v)

4 while (start<end){

5 mid = (start+end) %/% 2 # %/% is the floor division operator

6 if (v[mid]>=x){

7 end = mid

8 }else{

9 start = mid+1

10 }
11 }

6https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

7https://en.wikipedia.org/wiki/Big_O_notation

8https://en.wikipedia.org/wiki/Tail_call

https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org

42 • A Tour of Data Science: Learn R and Python in Parallel

12 return(start)
13 }
14 v=c(1,2,5,10)
15 print(binary_search_buggy(v,−1))
16 print(binary_search_buggy(v,5))
17 print(binary_search_buggy(v,11))

Python chapter2/find_binary_search_buggy.py

1 def binary_search_buggy(v, x):
2 start, end = 0, len(v)−1
3 while start<end:
4 mid = (start+end)//2 # // is the floor division operator
5 if v[mid]>=x:
6 end = mid
7 else:
8 start = mid+1
9 return start

10

11 v=[1,2,5,10]
12 print(binary_search_buggy(v,−1))
13 print(binary_search_buggy(v,5))
14 print(binary_search_buggy(v,11))

Now let’s run these two binary_search scripts.

R Python

1 chapter2 $r 1 chapter2 $python3.7
2 > source(’ binary_search_buggy.py

binary_search_buggy.R’) 2 0
3 [1] 1

3 2
4 [1] 3

4 3
5 [1] 4

The binary search solutions don’t work as expected when x=11. We write two new
scripts.

R chapter2/find_binary_search_buggy_debug.R

1 binary_search_buggy=function(v, x){

2 browser()

3 start = 1

4 end = length(v)

5 while (start<end){

More on R/Python Programming • 43

6 mid = (start+end)
7 if (v[mid]>=x){
8 end = mid
9 }else{

10 start = mid+1
11 }
12 }
13 return(start)
14 }
15 v=c(1,2,5,10)
16 print(binary_search_buggy(v, 11))

Python chapter2/find_binary_search_buggy_debug.py

1 from pdb import set_trace

2 def binary_search_buggy(v, x):

3 set_trace()

4 start, end = 0, len(v)−1

5 while start<end:

6 mid = (start+end)//2

7 if v[mid]>=x:

8 end = mid

9 else:

10 start = mid+1
11 return start
12

13 v=[1,2,5,10]
14 print(binary_search_buggy(v,11))

Let’s try to debug the programs with the help of browser() and set_trace().

R

1 > source(’binary_search_buggy_debug.R’)

2 Called from: binary_search_buggy(v, 11)

3 Browse[1]> ls()

4 [1] "v" "x"

5 Browse[1]> n

6 debug at binary_search_buggy_debug.R#3: start = 1

7 Browse[2]> n

8 debug at binary_search_buggy_debug.R#4: end = length(v)

9 Browse[2]> n

10 debug at binary_search_buggy_debug.R#5: while (start < end) {
11 mid = (start + end)%/%2

44 • A Tour of Data Science: Learn R and Python in Parallel

12 if (v[mid] >= x) {
13 end = mid
14 }
15 else {
16 start = mid + 1
17 }
18 }
19 Browse[2]> n
20 debug at binary_search_buggy_debug.R#6: mid = (start + end)%/%2
21 Browse[2]> n
22 debug at binary_search_buggy_debug.R#7: if (v[mid] >= x) {
23 end = mid
24 } else {
25 start = mid + 1
26 }
27 Browse[2]> n
28 debug at binary_search_buggy_debug.R#10: start = mid + 1
29 Browse[2]> n
30 debug at binary_search_buggy_debug.R#5: (while) start < end
31 Browse[2]> n
32 debug at binary_search_buggy_debug.R#6: mid = (start + end)%/%2
33 Browse[2]> n
34 debug at binary_search_buggy_debug.R#7: if (v[mid] >= x) {
35 end = mid
36 } else {
37 start = mid + 1
38 }
39 Browse[2]> n
40 debug at binary_search_buggy_debug.R#10: start = mid + 1
41 Browse[2]> n
42 debug at binary_search_buggy_debug.R#5: (while) start < end
43 Browse[2]> start
44 [1] 4
45 Browse[2]> n
46 debug at binary_search_buggy_debug.R#13: return(start)
47 Browse[2]> n
48 [1] 4

In the R code snippet above, we placed the browser() function on the top of
the function binary_search_buggy. Then when we call the function we enter into the
debugging environment. By calling ls() we see all variables in the current debugging
scope, i.e., v, x. Typing n will evaluate the next statement. After typing n a few
times, we finally exit from the while loop because start = 4 suc h that start < end

More on R/Python Programming • 45

is FALSE. As a result, the function just returns the value of start, i.e., 4. To exit from
the debugging environment, we can type Q; to continue the execution we can type c.

The root cause is that we didn’t deal with the corner case when the target value
x is larger than the last/largest element in v correctly.

Let’s debug the Python function using pdb module.

Python

1 chapter2 $python3.7 binary_search_buggy_debug.py
2 > chapter2/binary_search_buggy_debug.py(4)binary_search_buggy()
3 −> start,end = 0,len(v)−1
4 (Pdb) n
5 > chapter2/binary_search_buggy_debug.py(5)binary_search_buggy()
6 −> while start<end:
7 (Pdb) l
8 1 from pdb import set_trace
9 2 def binary_search_buggy(v,x):

10 3 set_trace()
11 4 start,end = 0,len(v)−1
12 5

−> while start<end:
13 6 mid = (start+end)//2
14 7 if v[mid]>=x:
15 8 end = mid
16 9 else:
17 10 start = mid+1
18 11 return start
19 (Pdb) b 7
20 Breakpoint 1 at chapter2/binary_search_buggy_debug.py:7
21 (Pdb) c
22 > chapter2/binary_search_buggy_debug.py(7)binary_search_buggy()
23 −> if v[mid]>=x:
24 (Pdb) c
25 > chapter2/binary_search_buggy_debug.py(7)binary_search_buggy()
26 −> if v[mid]>=x:
27 (Pdb) mid
28 2
29 (Pdb) n
30 > chapter2/binary_search_buggy_debug.py(10)binary_search_buggy()
31 −> start = mid+1
32 (Pdb) n
33 > chapter2/binary_search_buggy_debug.py(5)binary_search_buggy()
34 −> while start<end:
35 (Pdb) start
36 3
37 (Pdb) n

46 • A Tour of Data Science: Learn R and Python in Parallel

38 > chapter2/binary_search_buggy_debug.py(11)binary_search_buggy()
39 −> return start

Similar to R, command n would evaluate the next statement in pdb. Typing com­
mand l would show the current line of current execution. Command b line_number
would set the corresponding line as a break point; and c would continue the execution
until the next breakpoint (if it exists).

In R, besides the browser() function there are a pair of functions debug()and
undebug() which are also very handy when we try to debug a function; especially
when the function is wrapped in a package. More specifically, the debug function will
invoke the debugging environment whenever we call the function to debug. See the
example below which explains how we invoke the debugging environment for the sd
function (standard deviation calculation).

R

1 > x=c(1,1,2)

2 > debug(sd)

3 > sd(x)

4 debugging in: sd(x)

5 debug: sqrt(var(if (is.vector(x) || is.factor(x)) x else as.

double(x),

6 na.rm = na.rm))

7 Browse[2]> ls()

8 [1] "na.rm" "x"

9 Browse[2]> Q

10 > undebug(sd)
11 > sd(x)
12 [1] 0.5773503

The binary_search solutions are fixed below.

R chapter2/find_binary_search.R

1 binary_search=function(v,x){

2 if (x>v[length(v)]){return(NULL)}

3 start = 1

4 end = length(v)

5 while (start<end){

6 mid = (start+end)

7 if (v[mid]>=x){

8 end = mid

9 }else{

10 start = mid+1
11 }

More on R/Python Programming • 47

12 }
13 return(start)
14 }

Python chapter2/find_binary_search.py

1 def binary_search(v, x):
2 if x>v[

−1]: return
3 start, end = 0, len(v)−1
4 while start<end:
5 mid = (start+end)//2
6 if v[mid]>=x:
7 end = mid
8 else:
9 start = mid+1

10 return start

2.3 BENCHMARKING

By benchmarking, I mean measuring the entire operation time of a piece of program.
There is another term called profiling which is related to benchmarking. But profiling
is more complex since it commonly aims at understanding the behavior of the program
and optimizing the program in terms of time elapsed during the operation.

In R, I like using the microbenchmark package. And in Python, timeit module is
a good tool to use when we want to benchmark small bits of Python code.

As mentioned before, the run time complexity of binary search is better than that
of a for-loop search. We can do benchmarking to compare the two algorithms.

R chapter2/benchmark.R

1 library(microbenchmark)
2 source(’binary_search.R’)
3 source(’find_pos.R’)
4

5 v=1:10000
6

7 # call each function 1000 times;
8 # each time we randomly select an integer as the target value
9

10 # for−loop solution
11 set.seed(2019)
12 print(microbenchmark(find_pos(v, sample(10000,1)),times=1000))
13 # binary−search solution

48 • A Tour of Data Science: Learn R and Python in Parallel

14 set.seed(2019)
15 print(microbenchmark(binary_search(v, sample(10000,1)),times

=1000))

In the R code above, times=1000 means we want to call the function 1000 times
in the benchmarking process. The sample() function is used to draw samples from
a set of elements. Specifically, we pass the argument 1 to sample() to draw a single
element. It’s the first time we use set.seed() function in this book. In R/Python,
we draw random numbers based on the pseudorandom number generator (PRNG)
algorithm9. The sequence of numbers generated by PRNG is completed determined
by an initial value, i.e., the seed. Whenever a program involves the usage of PRNG,
it is better to set the seed in order to get replicable results (see the example below).

R R

1 > set.seed(2019) 1

2 > rnorm(1) 2 > set.seed(2019)
3 [1] 0.7385227 3 > rnorm(1)
4 > set.seed(2019) 4 [1] 0.7385227
5 > rnorm(1) 5 > rnorm(1)
6 [1] 0.7385227 6 [1] −0.5147605

Now let’s run the R script to see the benchmarking result.

R

1 > source(’benchmark.R’)
2 Unit: microseconds
3 expr min lq mean median

uq max
4 find_pos(v, sample(10000, 1)) 3.96 109.5385 207.6627 207.5565

307.8875 536.171
5 neval
6 1000
7 Unit: microseconds
8 expr min lq mean median

uq max
9 binary_search(v, sample(10000, 1)) 5.898 6.3325 14.2159 6.6115

7.3635 6435.57
10 neval
11 1000

9https://en.wikipedia.org/wiki/Pseudorandom_number_generator

https://www.en.wikipedia.org

More on R/Python Programming • 49

The binary_search solution is much more efficient based on the benchmarking
result. Doing the same benchmarking in Python is a bit complicated.

Python chapter2/benchmark.py

1 from binary_search import binary_search
2 from find_pos import find_pos
3 import timeit
4 import random
5

6 v=list(range(1,10001))
7

8 def test_for_loop(n):
9 random.seed(2019)

10 for _ in range(n):
11 find_pos(v, random.randint(1,10000))
12

13 def test_bs(n):
14 random.seed(2019)
15 for _ in range(n):
16 binary_search(v, random.randint(1,10000))
17

18 # for−loop solution
19 print(timeit.timeit(’test_for_loop(1000)’,setup=’from __main__

import test_for_loop’,number=1))
20 # binary_search solution
21 print(timeit.timeit(’test_bs(1000)’,setup=’from __main__ import

test_bs’,number=1))

The most interesting part of the Python code above is from __main__ import.
Let’s ignore it for now; we will revisit it later.

Below is the benchmarking result in Python (the unit is second).

Python

1 chapter2 $python3 benchmark.py
2 0.284618441
3 0.00396658900000002

2.4 VECTORIZATION

In parallel computing, automatic vectorization10 means a program in a scalar imple­
mentation is converted to a vector implementation which processes multiple pairs of

10https://en.wikipedia.org/wiki/Automatic_vectorization

https://www.en.wikipedia.org

50 • A Tour of Data Science: Learn R and Python in Parallel

operands simultaneously by compilers that feature auto-vectorization. For example,
let’s calculate the element-wise sum of two arrays x and y of the same length in C
programming language.

1 int x[4] = {1,2,3,4};

2 int y[4] = {0,1,2,3};

3 int z[4];

4 for (int i=0;i<4;i++){

5 z[i]=x[i]+y[i];

6 }

The C code above might be vectorized by the compiler so that the actual number
of iterations performed could be less than 4. If 4 pairs of operands are processed
at once, there would be only 1 iteration. Automatic vectorization may make the
program run much faster in some languages like C. However, when we talk about
vectorization in R/Python, it is different from automatic vectorization. Vectorization
in R/Python usually refers to the human effort paid to avoid for-loops. First, let’s
see some examples of how for-loops may slow your programs in R/Python.

R

chapter2/vectorization_1.R

1 library(microbenchmark)
2

3 # generate n standard normal r.v
4 rnorm_loop = function(n){
5 x=rep(0,n)
6 for (i in 1:n) {x[i]=rnorm(1)}
7 }
8

9 rnorm_vec = function(n){
10 x=rnorm(n)
11 }
12

13 n=100
14 # for loop
15 print(microbenchmark(rnorm_loop(n),times=1000))
16 # vectorize
17 print(microbenchmark(rnorm_vec(n),times=1000))

Running the R code produces the following result on my local machine.

R

1 > source(’vectorization_1.R’)

More on R/Python Programming • 51

2 Unit: microseconds
3 expr min lq mean median uq max

neval
4 rnorm_loop(n) 131.622 142.699 248.7603 145.3995 270.212 16355.6

1000
5 Unit: microseconds
6 expr min lq mean median uq max neval
7 rnorm_vec(n) 6.696 7.128 10.87463 7.515 8.291 2422.338 1000

Python

1 import timeit

2 import numpy as np

3

4 def rnorm_for_loop(n):

5 x=[0]∗n # create a list with n 0s

6 np.random.seed(2019)

7 for _ in range(n):

8 np.random.normal(0,1,1)

9

10 def rnorm_vec(n):
11 np.random.seed(2019)
12 x = np.random.normal(0,1,n)
13

14 print("for loop")
15 print(f’{timeit.timeit("rnorm_for_loop(100)",setup="from

__main__ import rnorm_for_loop",number=1000):.6f} seconds’)
16 print("vectorized")
17 print(f’{timeit.timeit("rnorm_vec(100)",setup="from __main__

import rnorm_vec",number=1000):.6f} seconds’)

Please note that in this Python example we are using the random submodule of
numpy module instead of the built-in random module since random module doesn’t
provide the vectorized version of random number generation function. Running the
Python code results in the following on my local machine.

Python

1 chapter2 $python3.7 vectorization_1.py
2 for loop
3 0.258466 seconds
4 vectorized
5 0.008213 seconds

52 • A Tour of Data Science: Learn R and Python in Parallel

Also, the timeit.timeit measures the total time to run the main statements
number times, but not the average time per run.

In either R or Python, the vectorized version of random normal random variable
(r.v.) is significantly faster than the scalar version. It is worth noting the usage of
the print(f’’) statement in the Python code, which is different from the way that
we print the object of Complex class in Chapter 1. In the code above, we use the

11f− string which is a literal string prefaced with ’f’ containing expressions inside
{} which would be replaced with their values. f−string is a feature introduced since
Python 3.6.

It’s also worth noting that lots of built-in functions in R are already vectorized,
such as the basic arithmetic operators, comparison operators, ifelse(), element-wise
logical operators &,|. But the logical operators &&, || are not vectorized.

In addition to vectorization, there are also some built-in functions which may help
to avoid the usages of for-loops. For example, in R we might be able to use the apply
family of functions to replace for-loops; and in Python the map() function can also
be useful. In the Python pandas module, there are also many usages of map/apply
methods. But in general the usage of apply/map functions has little or nothing to
do with performance improvement. However, appropriate usages of such functions
may help with the readability of the program. Compared with the apply family of
functions in R, I think the do.call() function is more useful in practice. We will
spend some time in do.call() later.

Application - Biham–Middleton–Levine (BML) traffic model
Considering the importance of vectorization in scientific programming, let’s try to get more

familiar with vectorization thorough 12 the Biham–Middleton–Levine (BML) traffic model . The

BML model is very important in modern studies of traffic flow since it exhibits a sharp phase

transition from free flowing status to a fully jammed status. A simplified BML model could be

characterized as follows:

•	 Initialized on a 2-D lattice, each site of which is either empty or occupied by a colored particle (blue
or red);

•	 Particles are distributed randomly through the initialization according to a uniform distribution; the
two colors of particles are equally distributed.

•	 On even time steps, all blue particles attempt to move one site up and an attempt fails if the site to
occupy is not empty;

•	 On Odd time steps, all red particles attempt to move one site right and an attempt fails if the site to
occupy is not empty;

•	 The lattice is assumed periodic which means when a particle moves out of the lattice, it will move
into the lattice from the opposite side.

11https://www.python.org/dev/peps/pep-0498/
12https://en.wikipedia.org/wiki/Biham-Middleton-Levine_traffic_model

https://www.python.org
https://www.en.wikipedia.org

More on R/Python Programming • 53

The BML model specified above is implemented in both R/Python as follows to
illustrate the usage of vectorization.

R chapter2/BML.R

1 library(R6)

2 BML = R6Class(

3 "BML",

4 public = list(

5 # alpha is the parameter of the uniform distribution to

control particle distribution ’s density

6 # m∗n is the dimension of the lattice

7 alpha = NULL,

8 m = NULL,

9 n = NULL,

10 lattice = NULL,
11 initialize = function(alpha, m, n) {
12 self$alpha = alpha
13 self$m = m
14 self$n = n
15 self$initialize_lattice()
16 },
17 initialize_lattice = function() {
18 # 0 − > empty site
19 # 1 − > blue particle
20 # 2 − > red particle
21 u = runif(self$m ∗ self$n)
22 # the usage of L is to make sure the elements in particles

are of type integer;
23 # otherwise they would be created as double
24 particles = rep(0L, self$m ∗ self$n)
25 # doing inverse transform sampling
26 particles[(u > self$alpha) &
27 (u <= (self$alpha + 1.0) / 2)] = 1L
28 particles[u > (self$alpha + 1.0) / 2] = 2L
29 self$lattice = array(particles , c(self$m, self$n))
30 },
31 odd_step = function() {
32 blue.index = which(self$lattice == 1L, arr.ind = TRUE)
33 # make a copy of the index
34 blue.up.index = blue.index
35 # blue particles move 1 site up
36 blue.up.index[, 1] = blue.index[, 1] − 1L
37 # periodic boundary condition
38 blue.up.index[blue.up.index[, 1] == 0L, 1] = self$m

54 • A Tour of Data Science: Learn R and Python in Parallel

39 # find which moves are feasible
40 blue.movable = self$lattice[blue.up.index] == 0L
41 # move blue particles one site up
42 # drop=FALSE prevents the 2D array degenerates to 1D array
43 self$lattice[blue.up.index[blue.movable, , drop = FALSE]]

= 1L
44 self$lattice[blue.index[blue.movable, , drop = FALSE]] = 0

L
45 },
46 even_step = function() {
47 red.index = which(self$lattice == 2L, arr.ind = TRUE)
48 # make a copy of the index
49 red.right.index = red.index
50 # red particles move 1 site right
51 red.right.index[, 2] = red.index[, 2] + 1L
52 # periodic boundary condition
53 red.right.index[red.right.index[, 2] == (self$n + 1L), 2]

= 1
54 # find which moves are feasible
55 red.movable = self$lattice[red.right.index] == 0L
56 # move red particles one site right
57 self$lattice[red.right.index[red.movable, , drop = FALSE]]

= 2L
58 self$lattice[red.index[red.movable, , drop = FALSE]] = 0L
59 }
60)
61)

Now we can create a simple BML system on a 5 × 5 lattice using the R code
above.

R

1 > source(’BML.R’)

2 > set.seed(2019)

3 > bml=BML$new(0.4,5,5)

4 > bml$lattice

5 [,1] [,2] [,3] [,4] [,5]

6 [1,] 2 0 2 1 1
7 [2,] 2 2 1 0 1
8 [3,] 0 0 0 2 2
9 [4,] 1 0 0 0 0

10 [5,] 0 1 1 1 0
11 > bml$odd_step()
12 > bml$lattice

More on R/Python Programming • 55

13 [,1] [,2] [,3] [,4] [,5]
14 [1,] 2 0 2 1 0
15 [2,] 2 2 1 0 1
16 [3,] 1 0 0 2 2
17 [4,] 0 1 1 1 0
18 [5,] 0 0 0 0 1
19 > bml$even_step()
20 > bml$lattice
21 [,1] [,2] [,3] [,4] [,5]
22 [1,] 0 2 2 1 0
23 [2,] 2 2 1 0 1
24 [3,] 1 0 0 2 2
25 [4,] 0 1 1 1 0
26 [5,] 0 0 0 0 1

In the initialization step, we used the inversion sampling approach13 to generate
the status of each site. Inversion sampling method is a basic but powerful approach
to generate r.v. from any probability distribution given its cumulative distribution
function (CDF). We will talk more about sampling technique in Chapter 4.

Python

1 import numpy as np

2

3 class BML:

4 def __init__(self, alpha, m, n):

5 self.alpha = alpha

6 self.shape = (m, n)

7 self.initialize_lattice()

8

9 def initialize_lattice(self):

10 u = np.random.uniform(0.0, 1.0, self.shape)
11 # instead of using default list, we use np.array to

create the lattice
12 self.lattice = np.zeros_like(u, dtype=int)
13 # the parentheses below can’t be ignored
14 self.lattice[(u > self.alpha) & (u <= (1.0+self.alpha)

/2.0)] = 1
15 self.lattice[u > (self.alpha+1.0)/2.0] = 2
16

17 def odd_step(self):
18 # please note that np.where returns a tuple which is

immutable

13https://en.wikipedia.org/wiki/Inverse_transform_sampling

https://www.en.wikipedia.org

56 • A Tour of Data Science: Learn R and Python in Parallel

19 blue_index = np.where(self.lattice == 1)
20 blue_index_i = blue_index[0] − 1
21 blue_index_i[blue_index_i < 0] = self.shape[0]−1
22 blue_movable = self.lattice[(blue_index_i , blue_index

[1])] == 0
23 self.lattice[(blue_index_i[blue_movable],
24 blue_index[1][blue_movable])] = 1
25 self.lattice[(blue_index[0][blue_movable],
26 blue_index[1][blue_movable])] = 0
27

28 def even_step(self):
29 red_index = np.where(self.lattice == 2)
30 red_index_j = red_index[1] + 1
31 red_index_j[red_index_j == self.shape[1]] = 0
32 red_movable = self.lattice[(red_index[0], red_index_j)]

== 0
33 self.lattice[(red_index[0][red_movable],
34 red_index_j[red_movable])] = 2
35 self.lattice[(red_index[0][red_movable],
36 red_index[1][red_movable])] = 0

The Python implementation is also given.

R

1 >>> import numpy as np
2 >>> np.random.seed(2019)
3 >>> from BML import BML
4 >>> bml=BML(0.4,5,5)
5 >>> bml.lattice
6 array([[2, 0, 1, 1, 2],
7 [0, 2, 2, 2, 1],
8 [1, 0, 0, 2, 0],
9 [2, 0, 1, 0, 2],

10 [1, 1, 0, 2, 1]])
11 >>> bml.odd_step()
12 >>> bml.lattice
13 array([[2, 0, 0, 1, 2],
14 [1, 2, 2, 2, 1],
15 [0, 0, 1, 2, 0],
16 [2, 1, 0, 0, 2],
17 [1, 0, 1, 2, 1]])
18 >>> bml.even_step()
19 >>> bml.lattice
20 array([[0, 2, 0, 1, 2],

More on R/Python Programming • 57

21 [1, 2, 2, 2, 1],
22 [0, 0, 1, 0, 2],
23 [2, 1, 0, 0, 2],
24 [1, 0, 1, 2, 1]])

Please note that although we have imported numpy in BML.py, we import it again
in the code above in order to set the random seed. If we change the line to from
BML import ∗, we don’t need to import numpy again. But it is not recommended to
import ∗ from a module.

2.5 EMBARRASSINGLY PARALLELISM IN R/PYTHON

According to the explanation in wikipedia14, single-threading is the processing of one
command at a time, and its opposite is multithreading. A process is the instance of a
computer program executed by one or many threads15. Multithreading is not the same
as parallelism. In a single processor environment, the processor can switch execution
between threads, which results in concurrent execution. However, it is possible a
process with multithreads runs on a multiprocessor environment and each of the
threads on a separate processor, which results in parallel execution.

Both R and Python are single-threaded. In Python, there is a threading pack­
age16, which supports multithreading on a single core. It may suit some specific tasks.
For example, in web scraping multithreading on a single core may be able to speed
up the program if the download time is in excess of the CPU processing time.

Now let’s talk about embarrassingly parallelism by multiprocessing. An embar­
rassingly parallel problem is one where little or no effort is needed to separate the
problem into a number of parallel tasks17. In R there are various packages sup­
porting multiprocessing on multiple CPU cores, for example, the parallel package,
which is my favorite one. In Python, there are also some available modules, such as
multiprocessing, joblib and concurrent.futures.

Let’s see an application of embarrassingly parallelism to calculate π using Monte
Carlo simulation18.

Application - Monte Carlo simulation to estimate π via parallelization
Monte Carlo simulation provides a simple and straightforward way to estimate π. We know
the area of a circle with radius 1 is just π. Thus, we can convert the original problem of π
calculation to a new problem, i.e., how to calculate the area of a circle with radius 1. We
also know the area of a square with side length 2 is equal to 4. Thus, π can be calculated
as 4rc/s where rc/s denotes the ratio of areas of a circle with radius 1 and a square with
side length 2. Now the problem is how to calculate the ratio rc/s? When we randomly throw

14https://en.wikipedia.org/wiki/Thread_(computing)
15https://en.wikipedia.org/wiki/Process_(computing)
16https://docs.python.org/3.7/library/threading.html
17https://en.wikipedia.org/wiki/Embarrassingly_parallel
18https://en.wikipedia.org/wiki/Monte_Carlo_method

https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.docs.python.org

58 • A Tour of Data Science: Learn R and Python in Parallel

Figure 2.1: Generate points within a square and count how many times these points
fall into the inscribed circle

n points into the square and m of these points fall into the inscribed circle (see Figure 2.1),
then we can estimate the ratio as m/n. As a result, a natural estimate of π is 4m/n. This
problem is an embarrassingly parallel problem by its nature. Let’s see how we implement the
idea in R/Python.

R chapter2/pi.R

1 library(parallel)

2 count_inside_point = function(n){

3 m = 0

4 for (i in 1:n){

5 p_x = runif(1, −1, 1)

6 p_y = runif(1, −1, 1)

7 if (p_x^2 + p_y^2 <=1){

8 m = m+1

9 }

10 }
11 m
12 }
13

14 # now let’s use the mcapply for parallelization
15 generate_points_parallel = function(n){
16 # detectCores() returns the number of cores available
17 # we assign the task to each core
18 unlist(mclapply(X = rep(n %/% detectCores(), detectCores()),

FUN=count_inside_point))
19 }
20

21 # now let’s use vectorization
22 generate_points_vectorized = function(n){

More on R/Python Programming • 59

23 p = array(runif(n∗2,−1,1), c(n,2))
24 sum((p[,1]^2+p[,2]^2) <=1)
25 }
26

27 pi_naive = function(n) cat(’naive: pi −’, 4∗count_inside_point(n
)/n, ’\n’)

28

29 pi_parallel = function(n) cat(’parallel: pi −’, 4∗sum(
generate_points_parallel(n))/n, ’\n’)

30

31 pi_vectorized = function(n) cat(’vectorized: pi −’, 4∗sum(
generate_points_vectorized(n))/n, ’\n’)

In the above R code snippet, we use the function mclapply which is not currently
available on some operation systems19. When it is not available, we may consider
using parLapply instead.

Python chapter2/pi.py

1 # now let’s try the parallel approach

2 # each process uses the same seed, which is not desired

3 def generate_points_parallel(n):

4 pool = mp.Pool()

5 # we ask each process to generate n//mp.cpu_count() points

6 return pool.map(count_inside_point , [n//mp.cpu_count()]∗mp.

cpu_count())
7

8 # set seed for each process

9 # first, let’s define a helper function

10 def helper(args):
11 n, s = args
12 seed(s)
13 return count_inside_point(n)
14

15 def generate_points_parallel_set_seed(n):
16 pool = mp.Pool() # we can also specify the number of

processes by Pool(number)
17 # we ask each process to generate n//mp.cpu_count() points
18 return pool.map(helper, list(zip([n//mp.cpu_count()]∗mp.

cpu_count(),range(mp.cpu_count()))))
19

20 # another optimization via vectorization
21 def generate_points_vectorized(n):

19https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

https://www.stat.ethz.ch

60 • A Tour of Data Science: Learn R and Python in Parallel

22 p = uniform(−1, 1, size=(n,2))
23 return np.sum(np.linalg.norm(p, axis=1) <= 1)
24

25 def pi_naive(n):
26 print(f’pi: {count_inside_point(n)/n∗4:.6f}’)
27

28 def pi_parallel(n):
29 print(f’pi: {sum(generate_points_parallel_set_seed(n))/n

∗4:.6f}’)
30

31 def pi_vectorized(n):
32 print(f’pi: {generate_points_vectorized(n)/n∗4:.6f}’)

In the above Python code snippet, we defined a function generate_points_parallel
which returns a list containing the numbers of inside points. But the problem with
this function is that each process in the pool shares the same random state. As a re­
sult, we will obtain a list of duplicated numbers by calling this function. To overcome
the issue, we defined another function generate_points_parallel_set_seed. Let’s see
the results of our estimation for π running on a laptop.

R

1 > source(’pi.R’)

2 > system.time(pi_naive(1e6))

3 naive: pi − 3.144592

4 user system elapsed

5 8.073 1.180 9.333

6 > system.time(pi_parallel(1e6))

7 parallel: pi − 3.1415

8 user system elapsed

9 4.107 0.560 4.833

10 > system.time(pi_vectorized(1e6))
11 vectorized: pi − 3.141224
12 user system elapsed
13 0.180 0.031 0.214

Python

1 >>> import timeit
2 >>> from pi import pi_naive, pi_parallel , pi_vectorized
3 >>> print(f’naive − {timeit.timeit("pi_naive(1000000)",setup="

from __main__ import pi_naive",number=1):.6f} seconds’)
4 pi: 3.141056
5 naive − 4.363822 seconds

More on R/Python Programming • 61

6 >>> print(f’parallel − {timeit.timeit("pi_parallel(1000000)",
setup="from __main__ import pi_parallel",number=1):.6f}
seconds’)

7 pi: 3.141032
8 parallel − 2.204697 seconds
9 >>> print(f’vectorized − {timeit.timeit("pi_vectorized(1000000)

",setup="from __main__ import pi_vectorized",number=1):.6f}
seconds’)

10 pi: 3.139936
11 vectorized − 0.148950 seconds

We see the winner in this example is vectorization, and the parallel solution is
better than the naive solution. However, when the problem cannot be vectorized we
may use parallelization to achieve better performance.

2.6 EVALUATION STRATEGY

R is a lazy programming language since it uses lazy evaluation by default [13]. Lazy
evaluation strategy delays the evaluation of an expression until its value is needed.
When an expression in R is evaluated, it follows an outermost reduction order in gen­
eral. But Python is not a lazy programming language and the expression in Python
follows an innermost reduction order. The code snippets below illustrate the inner­
most reduction vs. outermost reduction.

R Python

1 > divide = function(x, y){ 1 >>> def divide(x, y):
stopifnot(y!=0);return(x return x/y
/y)} 2 >>> def power(x, p):

12 > power = return if p==0function(x, p){
else x p

if (p==0) 1 else x^p}
3 >>> power(

∗∗
divide(1,0),0)

3 > power(divide(1,0),2)
4 Traceback (most recent call

4 Error in divide(1, 0) : y !
= 0 last):is not TRUE

5 > power(divide(1,0),0) 5 File "<stdin>", line 1,
6 [1] 1 in <module>

6 File "<stdin>", line 1,
in divide

7 ZeroDivisionError: division
by zero

Because of the outermost reduction order, the R code snippet evaluates the func­
tion power first and since if the second argument is 0 the first argument is not required
to evaluate. Thus, the function call returns 1. But the Python code snippet first eval­
uates the function call of divide and an exception is raised because of division by
zero.

Although Python is an eager language, it is possible to simulate the lazy eval­

62 • A Tour of Data Science: Learn R and Python in Parallel

uation behavior. For example, the code inside a generator20 is evaluated when the
generator is consumed but not evaluated when it is created. We can create a sequence
of Fibonacci numbers with the help of generator.

Python

1 >>> def fib():

2 ... ’’’

3 ... a generator to create Fibonacci numbers less than 10

4 ... ’’’

5 ... a, b = 0, 1

6 ... while a<10:

7 ... a, b = b, a+b

8 ... yield a

9 ...

10 >>> f = fib()
11 >>> print(f)
12 <generator object fib at 0x116dfc570 >
13 >>> for e in f: print(e)
14 ...
15 1
16 1
17 2
18 3
19 5
20 8
21 13
22 >>>

In the code snippet above, we create a generator which generates the sequence of
Fibonacci numbers less than 10. When the generator is created, the sequence is not
generated immediately. When we consume the generator in a loop, each element is
then generated as needed. It is also common to consume the generator with the next
function.

Python

1 >>> f = fib()
2 >>> next(f)
3 1
4 >>> next(f)
5 1
6 >>> next(f)
7 2

20https://www.python.org/dev/peps/pep-0255

https://www.python.org

The purpose of this section is not to teach C/C++. If you know how to write C/C++
then it may help to improve the performance of R/Python program.

It is recommended to use vectorization technique to speed up your program when­
ever possible. But what if it’s infeasible to vectorize the algorithm? One potential
option is to use C/C++ in the R/Python code. According to my limited experience,
it is much easier to use C/C++ in R with the help of Rcpp package than in Python.
In Python, more options are available but not as straightforward as the solution of
Rcpp. In this section, let’s use 21Cython .

Actually, Cython itself is a programming language written in Python and C. In
Rcpp we can write C++ code directly and use it in native R code. With the help of
Cython, we can write python-like code which is able to be compiled to C or C++
and automatically wrapped into python-importable modules. Cython could also wrap
independent C or C++ code into python-importable modules.

Let’s see how to calculate Fibonacci numbers with these tools. The first step is
to install Rcpp package in R and the Cython module (use pip) in Python. Once they
are installed, we can write the code in C++ directly for R. As for Cython, we write
the python-like code which will be compiled to C/C++ later.

R chapter2/Fibonacci.cpp Python chapter2/Fibonacci.pyx

1 #include <Rcpp.h> 1 #!python
2 using namespace Rcpp; 2 #cython: language_level=3
3 3

4 // [[Rcpp::export]] 4 cdef int Fibonacci_c(int n):
5 int Fibonacci(int n) { 5 if n==1 or n==2:
6 if (n==1 or n==2){ 6 return 1
7 return 1; 7 return Fibonacci_c(n−1)
8 } + Fibonacci_c(n
9

−2)
return Fibonacci(n−1)+ 8

Fibonacci(n

−2); 9 def Fibonacci_static(n):
10 } 10 return Fibonacci_c(n)

11

12 def Fibonacci(n):
13 if n==1 or n==2:
14 return 1

21https://en.wikipedia.org/wiki/Cython

More on R/Python Programming • 63

8 >>> next(f)
9 3

10 >>> next(f)
11 5

2.7 SPEED UP WITH C/C++ IN R/PYTHON

https://www.en.wikipedia.org

64 • A Tour of Data Science: Learn R and Python in Parallel

15 return Fibonacci(n−1) +
Fibonacci(n−2)

It’s worth noting the extension of the Cython file above is pyx, not py. And in
Fibonacci.pyx, the function we defined follows the native Python syntax. But in
Cython we can add static typing declarations which are often helpful to improve the
performance, although not it’s mandatory. The keyword cdef makes the function
Fibonacci_c invisible to Python and thus we have to define the Fibonacci_static
function as a wrapper which can be imported into Python. The function Fibonacci
is not static typed for benchmarking.

Let’s also implement the same functions in native R/Python for benchmarking
purposes.

R chapter2/Fibonacci.R Python chapter2/Fibonacci.py

1 Fibonacci_native = 1 def Fibonacci_native(n):
function(n){ 2 if n==1 or n==2:

2 if (n==1 || n==2){
3 return 1

3 1
4 return Fibonacci_native(

4 }else {
n

1)
−1) +

5 Fibonacci_native(n− +
Fibonacci_native(n 2)

Fibonacci_native(n
−−2)

6 }
7 }

Now let’s compare the performance of different implementations.

R

1 > library(microbenchmark)

2 > library(Rcpp)

3 > source(’Fibonacci_native}.R’)

4 > sourceCpp(’Fibonacci.cpp’)

5 > # the native implementation in R

6 > microbenchmark(Fibonacci_native(20), times=1000)

7 Unit: milliseconds

8 expr min lq mean median

uq max
9 Fibonacci_native(20) 3.917138 4.056468 4.456824 4.190078

4.462815 26.30846
10 neval
11 1000
12 > the C++ implementation
13 > microbenchmark(Fibonacci(20), times=1000)
14 Unit: microseconds

More on R/Python Programming • 65

15 expr min lq mean median uq max
neval

16 Fibonacci(20) 14.251 14.482 15.81708 14.582 14.731 775.095
1000

The native implementation in R is much slower than the C++ implementation
(see the difference of units).

Python

1 >>> import pyximport
2 >>> pyximport.install()
3 (None, <pyximport.pyximport.PyxImporter object at 0x1056f9f98 >)
4 >>> from Fibonacci import Fibonacci_static , Fibonacci
5 >>> from Fibonacci_native import Fibonacci_native
6 >>> import timeit
7 >>> print(f’{timeit.timeit("Fibonacci_native(20)",setup="from

__main__ import Fibonacci_native",number=1000):.6f} seconds’
)

8 1.927359 seconds
9 >>> print(f’{timeit.timeit("Fibonacci(20)",setup="from __main__

import Fibonacci",number=1000):.6f} seconds’)
10 0.316726 seconds
11 >>> print(f’{timeit.timeit("Fibonacci_static(20)",setup="from

__main__ import Fibonacci_static",number=1000):.6f} seconds’
)

12 0.012741 seconds

The results show the static typed implementation is the fastest, and the native
implementation in pure Python is the slowest. Again the time measured by timeit.
timeit is the total time to run the main statement 1000 times. The average time per
run of Fibonacci_static function is close to the average time per run of Fibonacci
in R.

2.8 A FIRST IMPRESSION OF FUNCTIONAL PROGRAMMING

Functional (programming) languages define programs as mathematical functions and
treat them as first-class22. In pure functional programming, a function takes input and
returns output without making any side effect. A side effect means a state variable
outside the function is modified. For example, printing the value of a variable inside
a function is a side effect.

Both R and Python are not purely functional languages per se, although R be­
haves more functionally than Python [5]. If you wonder why the return function

22https://en.wikipedia.org/wiki/List_of_programming_languages_by_type#Functional_languages

https://www.en.wikipedia.org

66 • A Tour of Data Science: Learn R and Python in Parallel

could be ignored to return a value in an R function, now you get the explanation —
a function should return the output automatically from an FP perspective.

I don’t think it makes any sense to debate whether we should choose OOP or
FP using R/Python. And both languages support multiple programming paradigms
(FP, OOP, etc.). If you want to do purist FP, neither R nor Python would be the
best choice. For example, purist FP should avoid loop because loop always involves
an iteration counter whose value changes over iterations, which is obviously a side
effect. Thus, recursion is very important in FP. But tail recursion optimization is not
supported in R and Python although it can be implemented via trampoline23.

Let’s introduce a few tools that could help to get a first impression of FP in R
and Python.

2.8.1 Anonymous function

We have seen anonymous functions before. Anonymous functions don’t have names
given to them. They are commonly used in FP. To recap, let’s see how to define a
useless anonymous function.

R Python

1 > function(x) x x
2

∗ 1 >>> lambda x: x∗∗2
function(x) x∗x 2 <function <

lambda> at 0x1033d5510 >

Usually, we define anonymous functions because we want to pass them to other
functions. And thus, the functions defined above are useless as they are not passed to
any other function and after the definition they are deleted automatically from the
memory.

Of course, we can assign names to the anonymous functions — but what is the
point to naming anonymous functions?

R Python

1 > f1 = function(x) x∗x 1 >>> f1 = lambda x: x 2

2

∗∗
> f1 2 >>> f1(2)

3 function(x) x∗x 3 4

2.8.2 Map

Map could be used to avoid loops. The first argument to map is a function.
In R, we use Map which is shipped with base R; and in Python we use map which

is also a built-in function.

23https://en.wikipedia.org/wiki/Tail_call#Through_trampolining

https://www.en.wikipedia.org

More on R/Python Programming • 67

R Python

1 > Map(function(x) x x,
 1 >>> map(
c(1:3))

∗
lambda e: e∗∗2, [1,2,3])

2 [[1]]
 2 <map object at 0x1033e3160 >
3 [1] 1
 3 >>> list(map(

24 lambda x: x , [1,2,3]))
4 [1, 4, 9]

∗∗
5 [[2]]

5 >>> list(map(lambda x, y: x
6 [1] 4
 ∗

y, [1,2,3], [4,5,6]))
7

6 [4, 10, 18]
8 [[3]]
9 [1] 9

10 > Map(function(x, y) x y,
c(1:3), c(4:6))

∗
11 [[1]]
12 [1] 4
13

14 [[2]]
15 [1] 10
16

17 [[3]]
18 [1] 18

There are a few things to note from the code snippets above. First, the returned
value from Map in R is a list rather than a vector. That is because Map is just a wrapper
of mapply function in R, and the SIMPLIFY argument is set to FALSE. If we want to
get a vector value returned, just use mapply instead.

R

1 > mapply(function(x, y) x

∗y, c(1:3), c(4:6), SIMPLIFY=TRUE)
2 [1] 4 10 18

The returned value from map in Python is a map object which is an iterator. The
generator function we have seen before is also an iterator. To use an iterator, we
could convert it to a list, or get the next value using the next function, or just use a
for loop.

Python

1 >>> # use next on an iterator

2 >>> o=map(lambda x, y: x∗y, [1,2,3], [4,5,6])

3 >>> next(o)

4 4

5 >>> next(o)

6 10

68 • A Tour of Data Science: Learn R and Python in Parallel

7 >>> o=map(lambda x, y: x∗y, [1,2,3], [4,5,6])

8 >>> # use for loop on an iterator

9 >>> for e in o:print(e)

10 ...
11 4
12 10
13 18
14 >>> # convert an iterator to a list
15 >>> o=map(lambda x, y: x∗y, [1,2,3], [4,5,6])
16 >>> list(o)
17 [4, 10, 18]

2.8.3 Filter

Similar to map, the first argument to Filter in R and filter in Python is also a
function. This function is used to get the elements which satisfy a certain condition
specified in the first argument. For example, we can use it to get the even numbers.

R Python

1 > Filter(function(x) x 1 >>> list(filter(
%%2==0, c(0:10)) lambda e: e%2==0,

range(11))) 2 [1] 0 2 4 6 8 10
2 [0, 2, 4, 6, 8, 10]

2.8.4 Reduce

Reduce behaves a bit differently from Map and Filter. The first argument is a function
with exactly two arguments. The second argument is a sequence, on each element of
which the first function argument will be applied from left to right. And there is one
optional argument called initializer. When the initializer is provided, it will be used
as the first argument of the function argument of Reduce. The examples below depict
how it works.

R

1 > Reduce(function(x, y) x+2
∗y, c(1,2,3))

2 [1] 11
3 > Reduce(function(x, y) x+2

∗y, c(1,2,3), 1)
4 [1] 13

Python

1 >>> from functools import
reduce

2 >>> reduce(lambda x, y:x+2∗y
, [1,2,3])

3 11
4 >>> reduce(

lambda x, y:x+2∗y,
range(1,4), 1)

5 13

Please note that in order to use reduce in Python, we have to import it from the
functools module.

More on R/Python Programming • 69

Utilizing these functions flexibly may help to make the code more concise, at the
cost of readability.

2.9 MISCELLANEOUS

We have introduced the basics of R/Python programming so far. There is much more
to learn in becoming an advanced user of R/Python. For example, the appropriate
usages of iterator, generator, decorator could improve both the conciseness and
readability of your Python code. The generator24 is commonly seen in machine learn­
ing programs to prepare training/testing samples. decorator is a kind of syntactic
sugar to allow the modification of a function’s behavior in a simple way. In R there
are no built-in iterator, generator, decorator, but you may find some third-party
libraries to mimic these features; or you may try to implement your own.

One advantage of Python over R is that there are some built-in modules con­
taining high-performance data structures or commonly used algorithms implemented
efficiently. For example, I enjoy using the deque structure in the Python collections
module25, but there is no built-in counterpart in R. We have written our own binary
search algorithm earlier in this chapter, which can also be replaced by the functions
in the built-in module bisect26 in Python.

Another important aspect of programming is testing. Unit testing is a typical
software testing method that is commonly adopted in practice. In R there are two
third-party packages testthat and RUnit. In Python, the built-in unittest is quite
powerful. Also, the third-party module pytest27 is very popular.

24https://docs.python.org/3/howto/functional.html
25https://docs.python.org/3/library/collections.html
26https://docs.python.org/3.7/library/bisect.html
27https://docs.pytest.org/en/latest/

https://www.docs.python.org
https://www.docs.python.org
https://www.docs.python.org
https://www.docs.pytest.org

https://taylorandfrancis.com

Upon receiving feedback and requests from readers on the first few chap­
ters, I decided to devote a whole chapter to the introduction of data

.table and pandas. Of course, there are many other great data analysis tools in both
R and Python. For example, many R users like using dplyr to build up data analysis
pipelines. The performance of data.table is superior and that is the main reason I
feel there is no need to use other tools for the same tasks in R. But if you are a big fan
of the pipe operator %>% you may use data.table and dplyr together. Regarding the
big data ecosystem, Apache Spark has API in both R and Python. Recently, there
are also some emerging projects aiming at better usability and performance, such as

1Apache Arrow , 2Modin .

3.1 SQL

Similar to the previous chapters, I will introduce the tools side by side. However,
I feel before diving into the world of data.table and pandas, it is better to talk a
little bit about 3SQL . SQL is a Query language designed for managing data in relational
database management system (RDBMS). Some of the most popular RDBMSs include
MS SQL Server, MySQL, PostgreSQL, etc. Different RDBMSs may use SQL languages
with major or subtle differences.

If you have never used RDBMS you may wonder why we need it.

•	 first, we need a system to store the data;

•	 second, we also need a system that allows us to easily access, manage and
update the data.

In this chapter, we will use the public mtcars dataset as an example. This dataset
was available in R4 and originally it was reported in [11].

Let’s assume there is a table mtcars in a database (I’m using sqlite3 in this book)
and see some simple tasks we can do with SQL queries.

1https://arrow.apache.org

2https://github.com/modin-project/modin

3https://en.wikipedia.org/wiki/SQL

4https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html

C H A P T E R 3

data.table and pandas

71

https://www.arrow.apache.org
https://www.github.com
https://www.stat.ethz.ch
https://www.en.wikipedia.org

72 • A Tour of Data Science: Learn R and Python in Parallel

Table 3.1: Partial mtcars data loaded from R 3.5.1

name mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.00 6.00 160.00 110.00 3.90 2.62 16.46 0.00 1.00 4.00 4.00
Datsun 710 22.80 4.00 108.00 93.00 3.85 2.32 18.61 1.00 1.00 4.00 1.00
Valiant 18.10 6.00 225.00 105.00 2.76 3.46 20.22 1.00 0.00 3.00 1.00
Duster 360 14.30 8.00 360.00 245.00 3.21 3.57 15.84 0.00 0.00 3.00 4.00
Merc 240D 24.40 4.00 146.70 62.00 3.69 3.19 20.00 1.00 0.00 4.00 2.00
Merc 230 22.80 4.00 140.80 95.00 3.92 3.15 22.90 1.00 0.00 4.00 2.00
Merc 280 19.20 6.00 167.60 123.00 3.92 3.44 18.30 1.00 0.00 4.00 4.00
Merc 280C 17.80 6.00 167.60 123.00 3.92 3.44 18.90 1.00 0.00 4.00 4.00
Merc 450SE 16.40 8.00 275.80 180.00 3.07 4.07 17.40 0.00 0.00 3.00 3.00

SQL

1 sqlite> select ∗ from mtcars limit 2;
2 name,mpg,cyl,disp,hp,drat,wt,qsec,vs,am,gear,carb
3 "Mazda RX4",21,6,160,110,3.9,2.62,16.46,0,1,4,4
4 "Mazda RX4 Wag",21,6,160,110,3.9,2.875,17.02,0,1,4,4

In the example above, I select two rows from the table using the syntax select
from. The keyword limit in sqlite specifies the number of rows to return. In other
RDBMSs, we may need to use top instead. It is straightforward to select on conditions
with the where keyword.

SQL

1 sqlite> select mpg,cyl from mtcars where name = ’Mazda RX4 Wag’;
2 mpg,cyl
3 21,6

We can definitely use more conditions with the where clause.

SQL

1 sqlite> .mode column −− make the output aligned; and yes we use
’−−’ to start comment in many SQL languages

2 sqlite> select name, mpg, cyl,vs,am from mtcars where vs=1 and
am=1;

3 name mpg cyl vs am
4 −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−
5 Datsun 710 22.8 4 1 1
6 Fiat 128 32.4 4 1 1
7 Honda Civi 30.4 4 1 1
8 Toyota Cor 33.9 4 1 1
9 Fiat X1−9 27.3 4 1 1

data.table and pandas • 73

10 Lotus Euro 30.4 4 1 1
11 Volvo 142E 21.4 4 1 1

We are just accessing specific rows and columns from the table in database with
select from where. We can also do something a bit more fancy, for example, to get
the maximum, the minimum and the average of mpg for all vehicles grouped by the
number of cylinders.

SQL

1 sqlite> select cyl, max(mpg) as max, min(mpg) as min, avg(mpg)
as avg from mtcars group by cyl order by cyl;

2 cyl max min avg
3 −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−
4 4 33.9 21.4 26.6636363636364
5 6 21.4 17.8 19.7428571428571
6 8 19.2 10.4 15.1

In the above example, there are a few things worth noting. We use as to create an
alias for a variable; we group the original rows by the number of cylinders with the
keyword group by; and we sort the output rows with the keyword order by. max, min
and avg are all built-in functions that we can use directly.

It is also possible to have user-defined functions in SQL as what we usually do in
other programming languages.

SQL queries could be very complex and long. Usually a long query might con­
tain subqueries or Common Table Expressions (CTE). First, let’s see an example of
subquery to get the average mpg for cars with 6 cylinders as below.

SQL

1 sqlite> select am, avg(mpg) avg_mpg from (select ∗ from mtcars
where cyl==6) group by am;

2 am avg_mpg
3 −−−−−−−−−−

−−−−−−−−−−
4 0 19.125
5 1 20.5666666

The subquery in the parentheses specifies the fact that we are only interested in
the rows with cyl==6. The same results could be obtained by CTE as below.

SQL

1 sqlite> with temp_table as (select ∗ from mtcars where cyl==6)
select am, avg(mpg) avg_mpg from temp_table group by am;

2 am avg_mpg

74 • A Tour of Data Science: Learn R and Python in Parallel

3 −−−−−−−−−− −−−−−−−−−−
4 0 19.125
5 1 20.5666666

Basically, a CTE can be thought of as a temporary result set which can be ref­
erenced multiple times in one query. Multiple CTEs can be used in the same query.
Using CTE improves the readability of the query with similar performance to sub-
query in complex queries. In some cases, CTE could be a bottleneck in performance
and you may consider using temporary table which will not be discussed in this
chapter.

3.2 GET STARTED WITH DATA.TABLE AND PANDAS

SQL is a very powerful tool for data analysis, but it works on RDBMS and generally we
can’t apply R or Python functions to the database tables directly. Many practitioners
in data science have to work with database at times but more often they need to work
in a programming languages such as R or Python. We have introduced the data.frame
in both R and Python in previous chapters. A data.frame is just like a database table
that you may operate within the corresponding language. Usually a data.frame is
stored in memory, but of course it can also be deserialized for storage in hard disks.

With the data.frame-like objects, we could build up a better data processing
pipeline by only reading the original data from the database and storing the final
output to the database if necessary. Most of works we can do with data.frame-like
objects may also be done in RDBMS with SQL. But they may require intense inter­
actions with a database, which is not preferred if it can be avoided.

Now, let’s get started with data.table and pandas. In this book, I will use data.
table 1.12.0 and pandas 0.24.0.

R

1 > library(data.table)
2 data.table 1.12.0 Latest

news: r− datatable.com
3 }

Python

1 >>> import pandas as pd
2 >>> pd.__version__
3 ’0.24.2’

I have saved the mtcars data to a csv5 file (code/chapter3/mtcars.csv), which
is loaded from R 3.5.1. Although the mtcars data is loaded into R environment by
default, let’s load the data by reading the raw csv file for learning purposes.

R

1 > mtcars_dt=fread(’mtcars.csv’)
2 > head(mtcars_dt)

5https://en.wikipedia.org/wiki/Comma-separated_values

https://www.en.wikipedia.org

data.table and pandas • 75

3 name mpg cyl disp hp drat wt qsec vs am
gear carb

4 1: Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1
4 4

5 2: Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
4 4

6 3: Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1
4 1

7 4: Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0
3 1

8 5: Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
3 2

9 6: Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0
3 1

Python

1 >>> import pandas as pd
2 >>> mtcars_df=pd.read_csv(’mtcars.csv’)
3 >>> mtcars_df.head(5)
4 name mpg cyl disp hp ... qsec vs am

gear carb
5 0 Mazda RX4 21.0 6 160.0 110 ... 16.46 0 1

4 4
6 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 17.02 0 1

4 4
7 2 Datsun 710 22.8 4 108.0 93 ... 18.61 1 1

4 1
8 3 Hornet 4 Drive 21.4 6 258.0 110 ... 19.44 1 0

3 1
9 4 Hornet Sportabout 18.7 8 360.0 175 ... 17.02 0 0

3 2
10

11 [5 rows x 12 columns]

The type of mtcars_dt is data.table, not data.frame. Here we use the fread
function from data.table to read a file and the output type is a data.table directly.
Regarding reading csv in R, a very good package is readr for very large files, but the
output has a data.frame type. In practice, it is very common to convert a data.frame
to data.table with the function as.data.table.

76 • A Tour of Data Science: Learn R and Python in Parallel

3.3 INDEXING & SELECTING DATA

Before introducing the indexing rules in data.table and pandas, it’s better to under­
stand the key in data.table and the index in pandas.

What is the key in a data.table? We have talked about RDBMS and SQL in the
previous section. With select from where we can easily access specific rows satisfying
certain conditions. When the database table is too large, a database index is used to
improve the performance of data retrieval operations. Essentially, a database index
is a data structure, and to maintain the data structure, additional cost (for example,
space) may be required. The reason to use key in data.table and index in pandas is
very similar. Now let’s see how to set key and index.

R

1 > setkey(mtcars_dt ,name)

2 > key(mtcars_dt)

3 [1] "name"

4 > head(mtcars_dt ,5)

5 name mpg cyl disp hp drat wt qsec vs am

gear carb
6	 1: AMC Javelin 15.2 8 304 150 3.15 3.435 17.30 0 0

3 2
7	 2: Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0

3 4
8	 3: Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0

3 4
9	 4: Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0

3 4
10	 5: Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1

4 1

Python

1 >>> mtcars_df.set_index(’name’,inplace=True)
2 >>> mtcars_df.index.name
3 ’name’
4 >>> mtcars_df.head(5)
5 mpg cyl disp hp drat ... qsec vs

am gear carb
6 name ...
7 Mazda RX4 21.0 6 160.0 110 3.90 ... 16.46 0

1 4 4
8 Mazda RX4 Wag 21.0 6 160.0 110 3.90 ... 17.02 0

1 4 4
9 Datsun 710 22.8 4 108.0 93 3.85 ... 18.61 1

1 4 1

data.table and pandas • 77

10 Hornet 4 Drive 21.4 6 258.0 110 3.08 ... 19.44 1
0 3 1

11 Hornet Sportabout 18.7 8 360.0 175 3.15 ... 17.02 0
0 3 2

There are quite a few things worth noting from the above code snippets. When
we use the setkey function the quotes for the column name is optional. So setkey(
mtcars_dt, name) is equivalent to setkey(mtcars_dt, ’name’). But in pandas, quotes
are required. The effect of setkey is in place, which means no copies of the data are
made at all. But in pandas, by default set_index set the index on a copy of the data
and the modified copy is returned. Thus, in order to make the effect in place, we have
set the argument inplace=True explicitly. Another difference is that setkey would
sort the original data in place automatically but set_index does not. It’s also worth
noting every pandas data.frame has an index; and by default it is numpy.arange(n)
where n is the number of rows. But there is no default key in a data.table.

In the above example, we only use a single column as the key/index. It is possible
to use multiple columns as well.

R Python

1 > setkeyv(mtcars_dt ,c(’cyl’, 1 >>> mtcars_df.set_index([’
’gear’)) cyl’,’gear’],inplace=

 True)2 > key(mtcars_dt)
2

3 [1]
 >>> mtcars_df.index.names

"cyl" "gear"
3 FrozenList([’cyl’, ’gear’])

To use multiple columns as the key in data.table, we use the function setkeyv. It
is also interesting that we have to use index.names rather than index.name to get the
multiple column names of the index (which is called MultiIndex) in pandas. There
are duplicated combinations of (cyl, gear) in the data, which implies key or index
could be duplicated.

Once the key/index set, we can access rows with given indices fast.

R

1 > mtcars_dt[’Merc 230’]

2 name mpg cyl disp hp drat wt qsec vs am gear carb

3 1: Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2
4 > mtcars_dt[c(’Merc 230’,’Camaro Z28’)] # multiple values of a

single index
5 name mpg cyl disp hp drat wt qsec vs am gear carb
6 1: Merc 230 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4 2
7 2: Camaro Z28 13.3 8 350.0 245 3.73 3.84 15.41 0 0 3 4

8 > setkeyv(mtcars_dt ,c(’cyl’,’gear’))

9 > mtcars_dt[.(6,4)] # work with key vector using .()

78 •	 A Tour of Data Science: Learn R and Python in Parallel

10 name mpg cyl disp hp drat wt qsec vs am gear
carb

11	 1: Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4
4

12	 2: Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4
4

13	 3: Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4
4

14 4: Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4
4

15 > mtcars_dt[.(c(6,8),c(4,3))] # key vector with multiple values
16 name mpg cyl disp hp drat wt qsec vs

am gear	 carb
17	 1: Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0

1 4 4
18	 2: Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0

1 4 4
19	 3: Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1

0 4 4
20	 4: Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1

0 4 4
21	 5: AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0

0 3 2
22	 6: Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0

0 3 4
23	 7: Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0

0 3 4
24	 8: Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0

0 3 4
25	 9: Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0

0 3 2
26 10: Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0

0 3 4
27 11: Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0

0 3 2
28 12: Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0

0 3 4
29 13: Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0

0 3 3
30 14: Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0

0 3 3
31 15: Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0

0 3 3
32	 16: Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0

0 3 2

data.table and pandas • 79

Here is a bit of explanation for the code above. We can simply use [] to access the
rows with the specified key values if the key has a character type. But if the key has a
numeric type, list() is required to enclose the key values. In data.table, .() is just
an alias of list(), which means we would get the same results with mtcars_dt[list
(6,4)]. Of course, we can use also do mtcars_dt[.(’Merc 230’)] which is equivalent
to mtcars_dt[.(’Merc 230’)].

Python

1 >>> mtcars_df.loc[’Merc 230’]

2 mpg 22.80

3 cyl 4.00

4 disp 140.80

5 hp 95.00

6 drat 3.92

7 wt 3.15

8 qsec 22.90

9 vs 1.00

10 am 0.00
11 gear 4.00
12 carb 2.00
13 Name: Merc 230, dtype: float64
14 >>> mtcars_df.loc[[’Merc 230’,’Camaro Z28’]] # multiple values

of a single index
15 mpg cyl disp hp drat wt qsec vs am

gear carb
16 name
17 Merc 230 22.8 4 140.8 95 3.92 3.15 22.90 1 0

4 2
18 Camaro Z28 13.3 8 350.0 245 3.73 3.84 15.41 0 0

3 4
19

20 mtcars_df.set_index([’cyl’,’gear’],inplace=True)
21 >>> mtcars_df.loc[(6,4)] # work with MultiIndex using ()
22 mpg disp hp drat wt qsec vs am carb
23 cyl gear
24 6 4 21.0 160.0 110 3.90 2.620 16.46 0 1 4
25 4 21.0 160.0 110 3.90 2.875 17.02 0 1 4
26 4 19.2 167.6 123 3.92 3.440 18.30 1 0 4
27 4 17.8 167.6 123 3.92 3.440 18.90 1 0 4
28 >>> # you may notice that the name column disappeared; that

would be explained later

80 • A Tour of Data Science: Learn R and Python in Parallel

29 >>> mtcars_df.loc[[(6,4) ,(8,3)]] # MultiIndex with multiple
values

30 mpg disp hp drat wt qsec vs am carb
31 cyl gear
32 6 4 21.0 160.0 110 3.90 2.620 16.46 0 1 4
33 4 21.0 160.0 110 3.90 2.875 17.02 0 1 4
34 4 19.2 167.6 123 3.92 3.440 18.30 1 0 4
35 4 17.8 167.6 123 3.92 3.440 18.90 1 0 4
36 8 3 18.7 360.0 175 3.15 3.440 17.02 0 0 2
37 3 14.3 360.0 245 3.21 3.570 15.84 0 0 4
38 3 16.4 275.8 180 3.07 4.070 17.40 0 0 3
39 3 17.3 275.8 180 3.07 3.730 17.60 0 0 3
40 3 15.2 275.8 180 3.07 3.780 18.00 0 0 3
41 3 10.4 472.0 205 2.93 5.250 17.98 0 0 4
42 3 10.4 460.0 215 3.00 5.424 17.82 0 0 4
43 3 14.7 440.0 230 3.23 5.345 17.42 0 0 4
44 3 15.5 318.0 150 2.76 3.520 16.87 0 0 2
45 3 15.2 304.0 150 3.15 3.435 17.30 0 0 2
46 3 13.3 350.0 245 3.73 3.840 15.41 0 0 4
47 3 19.2 400.0 175 3.08 3.845 17.05 0 0 2

Compared to data.table, we need to use the loc method when accessing rows
based on index. The loc method also takes boolean conditions.

Python

1 >>> mtcars_df.loc[mtcars_df.mpg>30] # select the vehicles with
mpg>30

2 mpg disp hp drat wt qsec vs am carb
3 cyl gear
4 4 4 32.4 78.7 66 4.08 2.200 19.47 1 1 1
5 4 30.4 75.7 52 4.93 1.615 18.52 1 1 2
6 4 33.9 71.1 65 4.22 1.835 19.90 1 1 1
7 5 30.4 95.1 113 3.77 1.513 16.90 1 1 2

When using boolean conditions, loc could be ignored for convenience.

Python

1 >>> mtcars_df[mtcars_df.mpg>30] # ignore loc with boolean
conditions

2 mpg disp hp drat wt qsec vs am carb
3 cyl gear
4 4 4 32.4 78.7 66 4.08 2.200 19.47 1 1 1
5 4 30.4 75.7 52 4.93 1.615 18.52 1 1 2

data.table and pandas • 81

6 4 33.9 71.1 65 4.22 1.835 19.90 1 1 1
7 5 30.4 95.1 113 3.77 1.513 16.90 1 1 2

If the key/index is not needed, we can remove the key or reset the index. For
data.table we can set a new key to override the existing one which then becomes
a column. But in pandas, set_index method removes the existing index which also
disappears from the data.frame.

R

1 > key(mtcars_dt)

2 [1] "cyl" "gear"

3 > setkey(mtcars_dt , NULL) # remove the existing key

4 > key(mtcars_dt)

5 NULL

6 > setkey(mtcars_dt , ’gear’)

7 > key(mtcars_dt)

8 [1] "gear"

9 > setkey(mtcars_dt , ’name’) # override the existing key

10 > key(mtcars_dt)
11 [1] "name"

Python

1 >>> mtcars_df.index.names

2 FrozenList([’cyl’, ’gear’])

3 >>> mtcars_df.reset_index(inplace=True) # remove the existing

index
4 >>> mtcars_df.index.names

5 FrozenList([None])

6 >>> mtcars_df.set_index([’gear’], inplace=True)

7 >>> mtcars_df.index.name

8 ’gear’

9 >>> mtcars_df.columns # list all columns

10 Index([’cyl’, ’name’, ’mpg’, ’disp’, ’hp’, ’drat’, ’wt’, ’qsec’,
’vs’, ’am’,

11 ’carb’],
12 dtype=’object’)
13 >>> mtcars_df.set_index(’name’, inplace=True)
14 >>> mtcars_df.columns # the name column disappears
15 Index([’cyl’, ’mpg’, ’disp’, ’hp’, ’drat’, ’wt’, ’qsec’, ’vs’, ’

am’, ’carb’], dtype=’object’)
16 >>>

82 • A Tour of Data Science: Learn R and Python in Parallel

In Chapter 1, we introduced integer-based indexing for list/vector. It is also ap­
plicable to data frame and data.table.

R

1 > mtcars_dt=fread(’mtcars.csv’)
2 > mtcars_dt[c(1,2,6),]
3 name mpg cyl disp hp drat wt qsec vs am gear

carb
4 1: Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4

4
5 2: Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4

4
6 3: Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3

1

Python

1 >>> mtcars_df=pd.read_csv(’mtcars.csv’)
2 >>> mtcars_df.iloc[[0,1,5]] # again, indices in python are zero−

based.
3 name mpg cyl disp hp ... qsec vs am

gear carb
4 0 Mazda RX4 21.0 6 160.0 110 ... 16.46 0 1

4 4
5 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 17.02 0 1

4 4
6 5 Valiant 18.1 6 225.0 105 ... 20.22 1 0

3 1

So far we have seen how to access specific rows. What about columns? Accessing
columns in data.table and pandas is quite straightforward. For data.table, we can
use $ sign to access a single column or a vector to specify multiple columns inside [].
For data.frame in pandas, we can use . to access a single column or a list to specify
multiple columns inside [].

R Python

1 > head(mtcars_dt$mpg,5) # 1 >>> mtcars_df.iloc[0:5].mpg.
access a single column values

2 [1] 21.0 21.0 22.8 21.4
2 array([21. , 21. , 22.8,

18.7}
21.4, 18.7])

3 > mtcars_dt[1:5,c(’mpg’,’
3 Name: mpg, dtype: float64 gear’)]

4 mpg gear 4 >>> mtcars_df[[’mpg’,’gear
’]].head(5)

data.table and pandas • 83

5 1: 21.0 4 5 mpg gear
6 2: 21.0 4 6 0 21.0 4
7 3: 22.8 4 7 1 21.0 4
8 4: 21.4 3 8 2 22.8 4
9 5: 18.7 3 9 3 21.4 3

10 4 18.7 3

In addition to passing a vector to access multiple columns in data.table, we can
also use the .(variable_1,variable_2,...).

R

1 > mtcars_dt[1:5,.(mpg,cyl,hp)] # without quotes for variables
2 mpg cyl hp
3 1: 21.5 4 97
4 2: 22.8 4 93
5 3: 24.4 4 62
6 4: 22.8 4 95
7 5: 32.4 4 66

It is also possible to do integer-based columns slicing.

R Python

1 > mtcars_dt[1:5,c(2,5,6)] # 1 >>> mtcars_df.iloc
the 2nd, the 5th and the [0:5,[1,4,5]] # the 2 nd,
6th column

the 5th and the 6th 2 mpg hp drat column
3 1: 21.0 110 3.90 2 mpg hp drat

4 21.0 110 3.90 3 2: 0 21.0 110 3.90

5 3: 22.8 93 3.85 4 1 21.0 110 3.90

6 4: 21.4 110 3.08 5 2 22.8 93 3.85

7 5: 18.7 175 3.15 6 3 21.4 110 3.08
7 4 18.7 175 3.15

To access specific rows and specific columns, there are two strategies:

1. select rows and then select columns in a chain;

2. select rows and columns simultaneously.

Let’s see some examples.

R

1 > mtcars_dt=fread(’mtcars.csv’)
2 > setkey(mtcars_dt ,’gear’)

84 • A Tour of Data Science: Learn R and Python in Parallel

3 > mtcars_dt[.(6),c(’mpg’,’cyl’,’hp’)] # use strategy 2;

4 mpg cyl hp

5 1: 21.4 6 110
6 2: 18.1 6 105
7 3: 21.0 6 110
8 4: 21.0 6 110
9 5: 19.2 6 123

10 6: 17.8 6 123
11 7: 19.7 6 175
12 > mtcars_dt[.(6)][,c(’mpg’,’cyl’,’hp’)] # use strategy 1;
13 mpg cyl hp
14 1: 21.4 6 110
15 2: 18.1 6 105
16 3: 21.0 6 110
17 4: 21.0 6 110
18 5: 19.2 6 123
19 6: 17.8 6 123
20 7: 19.7 6 175

Python

1 >>> mtcars_df=pd.read_csv(’mtcars.csv’)

2 >>> mtcars_df.set_index(’cyl’, inplace=True)

3 >>> mtcars_df.loc[6,[’mpg’,’hp’]] # use strategy 2; we can’t

list the index as a normal column; while a key in data.table
is still a normal column

4 mpg hp
5 cyl
6 6 21.0 110
7 6 21.0 110
8 6 21.4 110
9 6 18.1 105

10 6 19.2 123
11 6 17.8 123
12 6 19.7 175
13 >>> mtcars_df.loc[6][[’mpg’,’hp’]] # us strategy 1
14 mpg hp
15 cyl
16 6 21.0 110
17 6 21.0 110
18 6 21.4 110
19 6 18.1 105
20 6 19.2 123
21 6 17.8 123

data.table and pandas • 85

22 6 19.7 175

As we have seen, using the setkey function for data.table sorts the data.table
automatically. However, sorting is not always desired. In data.table, there is another
function setindex/setindexv which has similar effects to setkey/setkeyv but doesn’t
sort the data.table. In addition, one data.table could have multiple indices, but it
cannot have multiple keys.

R

1 > setindex(mtcars_dt ,’cyl’)
2 > head(mtcars_dt ,5) # not sorted by the index
3 name mpg cyl disp hp drat wt qsec vs am

gear carb

4	 1: Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1

4 4

5	 2: Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1

4 4

6	 3: Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1

4 1

7	 4: Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0

3 1

8	 5: Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0

3 2
9 > mtcars_dt[.(6), on=’cyl’] # we use on to specify the index

10 name mpg cyl disp hp drat wt qsec vs am gear
carb

11	 1: Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4
4

12	 2: Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4
4

13	 3: Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3
1

14	 4: Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3
1

15	 5: Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4
4

16	 6: Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4
4

17	 7: Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5
6

18 > setindexv(mtcars_dt ,c(’cyl’,’gear’))
19 > mtcars_dt[.(6,3),on=c(’cyl’,’gear’)]
20 name mpg cyl disp hp drat wt qsec vs am gear

carb

86 • A Tour of Data Science: Learn R and Python in Parallel

21	 1: Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3
1

22	 2: Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3
1

23

24 > mtcars_dt[.(4),on=’cyl’] # the index ’cyl’ still works after
set c(’cyl’,’gear’) as indexv

25 name mpg cyl disp hp drat wt qsec vs am
gear carb

26	 1: Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1
4 1

27	 2: Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0
4 2

28	 3: Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0
4 2

29	 4: Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1
4 1

30	 5: Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1
4 2

31	 6: Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1
4 1

32	 7: Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0
3 1

33	 8: Fiat X1−9 27.3 4 79.0 66 4.08 1.935 18.90 1 1
4 1

34	 9: Porsche 914−2 26.0 4 120.3 91 4.43 2.140 16.70 0 1
5 2

35 10: Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1
5 2

36	 11: Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1
4 2

3.4 ADD/REMOVE/UPDATE

First, let’s see how to delete a single column.

R Python

1 > mtcars_dt=fread(’mtcars. 1 >>> mtcars_df=pd.read_csv(’
csv’) mtcars.csv’)

2 > ’cyl’ %in% 2 >>> ’cyl’
colnames(mtcars_dt) in mtcars_df.columns

3 [1] TRUE 3 True

4 > mtcars_dt$cyl=NULL # 4 >>> mtcars_df.drop(columns=[
method 1 ’cyl’],inplace=True)

data.table and pandas • 87

5 > ’cyl’ %in% 5 >>> ’cyl’
colnames(mtcars_dt) in mtcars_df.columns

6 [1] FALSE 6 False

7 > mtcars_dt=fread(’mtcars.
csv’)

8 > mtcars_dt[,cyl:=NULL] #
method 2

9 > ’cyl’ %in%
colnames(mtcars_dt)

10 [1] FALSE

The := operator in data.table can be used to add/remove/update columns, by
reference. Thus, when we use := no copies of the data are created. Getting familiar
with this operator is critical to mastering data.table. Next, let’s see how to delete
multiple columns at the same time.

R Python

1 > mtcars_dt=fread(’mtcars. 1 >>> mtcars_df=pd.read_csv(’
csv’) mtcars.csv’)

2 > mtcars_dt[,c(’cyl’,’hp’):= 2 >>> mtcars_df.drop(columns=[
NULL] ’cyl’,’hp’],inplace=True)

3 > c(’cyl’,’hp’) %in% 3 >>> [e in mtcars_df.columns
colnames(mtcars_dt) for e in [’cyl’,’hp’]]

4 [1] FALSE FALSE 4 [False, False]

The interesting fact of the code above is that in R the %in% function is vectorized,
but the in function in Python is not.

Adding a single column to an existing data.table or DataFrame is as straightfor­
ward as removing.

R

1 > mtcars_dt$new_col=1 # method 1
2 > head(mtcars_dt , 2)
3 name mpg disp drat wt qsec vs am gear carb

new_col
4 1: Mazda RX4 21.0 160 3.90 2.620 16.46 0 1 4 4

1
5 2: Mazda RX4 Wag 21.0 160 3.90 2.875 17.02 0 1 4 4

1
6 > mtcars_dt$new_col=NULL
7 > mtcars_dt[, new_col:=1] # method 2
8 > head(mtcars_dt , 2)
9 name mpg disp drat wt qsec vs am gear carb

new_col
10 1: Mazda RX4 21 160 3.9 2.620 16.46 0 1 4 4

1

88 • A Tour of Data Science: Learn R and Python in Parallel

11	 2: Mazda RX4 Wag 21 160 3.9 2.875 17.02 0 1 4 4
1

Python

1 >>> mtcars_df[’new_col’]=1
2 >>> mtcars_df.head(2)
3 name mpg disp drat wt qsec vs am gear

carb new_col
4 0 Mazda RX4 21.0 160.0 3.9 2.620 16.46 0 1 4

4 1
5 1 Mazda RX4 Wag 21.0 160.0 3.9 2.875 17.02 0 1 4

4 1

Adding multiple columns is a bit tricky compared with adding a single column.

R

1 > mtcars_dt=fread(’mtcars.csv’)
2 > mtcars_dt[, ‘:=‘(nc1=1,nc2=2)]
3 > head(mtcars_dt , 2)
4 name mpg cyl disp hp drat wt qsec vs am gear

carb nc1 nc2
5	 1: Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4

4 1 2
6	 2: Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4

4 1 2

Python

1 >>> mtcars_df=mtcars_df.assign(∗∗{’nc1’:1, ’nc2’:2})
2 >>> mtcars_df.head(2)
3 name mpg cyl disp hp ... am gear carb

nc1 nc2
4 0 Mazda RX4 21.0 6 160.0 110 ... 1 4 4

1 2
5 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 1 4 4

1 2
6

7 [2 rows x	 14 columns]

In the R code, we use ‘:=‘ to create multiple columns. In the Python code, we
put the new columns into a dictionary and use the assign function with the dictionary

data.table and pandas • 89

unpacking operator ∗∗. To learn the dictionary unpacking operator, please refer to
official document6. The assign method of a DataFrame doesn’t have inplace argument
so we need to assign the modified DataFrame to the original one explicitly.

Now let’s see how to update values. We can update the entire column or just the
column on specific rows.

R

1 > mtcars_dt=fread(’mtcars.csv’)

2 > mtcars_dt[, ‘:=‘(nc1=1, nc2=2)]

3 > mtcars_dt[, nc1:=10] # update the entire column c1

4 > head(mtcars_dt ,2)

5 name mpg cyl disp hp drat wt qsec vs am gear

carb nc1	 nc2
6	 1: Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4

4 10 2

7 2: Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4

4 10 	 2
8 > mtcars_dt[cyl==6, nc1:=3] # update the nc1 for rows with cyl=6
9 > head(mtcars_dt ,2)

10	 name mpg cyl disp hp drat wt qsec vs am gear
carb nc1 nc2

11	 1: Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4
4 3 2

12	 2: Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4
4 3 2

Python

1 >>> mtcars_df=pd.read_csv(’mtcars.csv’)

2 >>> mtcars_df=mtcars_df.assign(∗∗{’nc1’:1,’nc2’:2})

3 >>> mtcars_df[’nc1’]=10

4 >>> mtcars_df.head(2)

5 name mpg cyl disp hp ... am gear carb

nc1 nc2
6 0 Mazda RX4 21.0 6 160.0 110 ... 1 4 4

10 2
7 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 1 4 4

10 2
8

9 [2 rows x 14 columns]
10 >>> mtcars_df.loc[mtcars_df.cyl==6,’nc1’]=3
11 >>> mtcars_df.head(2)

6https://www.python.org/dev/peps/pep-0448

https://www.python.org

90 • A Tour of Data Science: Learn R and Python in Parallel

12 name mpg cyl disp hp ... am gear carb
nc1 nc2

13 0 Mazda RX4 21.0 6 160.0 110 ... 1 4 4
3 2

14 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 1 4 4
3 2

15

16 [2 rows x 14 columns]

We can also combine the technique of rows indexing with column update.

R

1 > mtcars_dt=fread(’mtcars.csv’)
2 > setkey(mtcars_dt ,’cyl’)
3 > mtcars_dt[,‘:=‘(nc1=1,nc2=2)]
4 > mtcars_dt[.(4),nc2:=4] # change nc2 for rows with cyl=4
5 > head(mtcars_dt ,2)
6 name mpg cyl disp hp drat wt qsec vs am gear carb

nc1 nc2
7	 1: Datsun 710 22.8 4 108.0 93 3.85 2.32 18.61 1 1 4 1

1 4
8	 2: Merc 240D 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2

1 4

Python

1 >>> mtcars_df=pd.read_csv(’mtcars.csv’)
2 >>> mtcars_df.set_index(’cyl’, inplace=True)
3 >>> mtcars_df=mtcars_df.assign(∗∗{’nc1’:1,’nc2’:2})
4 >>> mtcars_df.loc[4, ’nc2’]=4 # change nc2 for rows with cyl=4
5 >>> mtcars_df.loc[4].head(2)
6 name mpg disp hp drat ... am gear carb nc1

nc2
7 cyl	 ...
8 4 Datsun 710 22.8 108.0 93 3.85 ... 1 4 1 1

4
9 4 Merc 240D 24.4 146.7 62 3.69 ... 0 4 2 1

4

In addition to :=, we can also use set function to modify values in a data.table.
When used properly, the performance gain could be significant. Let’s use a fictional
case.

data.table and pandas • 91

R

1 > arr=array(0, c(1000,1000)) # create a big array
2 > dt=data.table(arr) # create a data.table based on the array
3 > system.time(for (i in 1:nrow(arr)) arr[i,1L] = i) # modify the

array
4 user system elapsed
5 0.003 0.000 0.003

6 > system.time(for (i in 1:nrow(arr)) dt[i,V1:=i]) # use := for

data.table
7 user system elapsed
8 1.499 0.017 0.383

9 > system.time(for (i in 1:nrow(arr)) set(dt,i,2L,i)) # use set

for data.table
10 user system elapsed
11 0.003 0.000 0.003

We see that updating the values with the set function in this example is as fast
as updating the values in an array.

3.5 GROUP BY

At the beginning of this chapter, we saw an example with group by in SQL query.
group by is a very powerful operation, and it is also available in data.table and
pandas. Let’s try to get the average mpg grouped by cyl.

R Python

1 > mtcars_dt[, mean(mpg), 1 >>> mtcars_df.groupby(’cyl
by=cyl] ’).mpg.mean()

2 cyl V1 2 cyl
3 1: 6 19.74286 3 4 26.663636
4 2: 4 26.66364 4 6 19.742857
5 3: 8 15.10000 5 8 15.100000
6 > # it works well but it’s 6 Name: mpg, dtype: float64

better to give it a name 7 >>> mtcars_df.groupby(’cyl
7 > mtcars_dt[, .(mean_mpg= ’).mpg.mean().reset_index

mean(mpg)), by=cyl] # ().rename(columns={’mpg’:
with the .() or list()

’mean_mpg’})
8 cyl mean_mpg

8 cyl mean_mpg
9 1: 6 19.74286

9 0 4 26.663636
10 2: 4 26.66364

10 1 6 19.742857
11 3: 8 15.10000

11 2 8 15.100000

Group by also works on multiple columns.

92 • A Tour of Data Science: Learn R and Python in Parallel

R Python

1 > mtcars_dt[,.(mean_mpg= 1 >>> mtcars_df.groupby([’cyl
mean(mpg)), ’, ’gear’]).mpg.mean().
by=.(cyl, gear)] # by=c(’ reset_index().rename(
cyl’, ’gear’) also works

columns={’mpg’:’mean_mpg 2 cyl gear mean_mpg
’})

3 1: 6 4 19.750
2 cyl gear mean_mpg

4 2: 4 4 26.925
3 0 4 3 21.500

5 3: 6 3 19.750
4 1 4 4 26.925

6 4: 8 3 15.050
5 2 4 5 28.200

7 5: 4 3 21.500
6 3 6 3 19.750

8 6: 4 5 28.200
7 4 6 4 19.750

9 7: 8 5 15.400
8 5 6 5 19.700

10 8: 6 5 19.700
9 6 8 3 15.050

10 7 8 5 15.400

We can also create multiple columns with group by. My feeling is data.table is
more expressive.

R

1 > mtcars_dt[,.(mean_mpg=mean(mpg), max_hp=max(hp)), by=.(cyl,
gear)]

2 cyl gear mean_mpg max_hp
3 1: 6 4 19.750 123
4 2: 4 4 26.925 109
5 3: 6 3 19.750 110
6 4: 8 3 15.050 245
7 5: 4 3 21.500 97
8 6: 4 5 28.200 113
9 7: 8 5 15.400 335

10 8: 6 5 19.700 175

Python

1 >>> mtcars_df.groupby([’cyl’,’gear’]).apply(lambda e:pd.Series({
’mean_mpg’:e.mpg.mean(), ’max_hp’:e.hp.max()}))

2 mean_mpg max_hp
3 cyl gear
4 4 3 21.500 97.0
5 4 26.925 109.0
6 5 28.200 113.0
7 6 3 19.750 110.0
8 4 19.750 123.0

data.table and pandas • 93

9 5 19.700 175.0
10 8 3 15.050 245.0
11 5 15.400 335.0

In data.table, there is also a keyword called keyby which enables group by and
sort operations together.

R

1 > mtcars_dt[,.(mean_mpg=mean(mpg),max_hp=max(hp)), keyby=.(cyl,
gear)]

2 cyl gear mean_mpg max_hp
3 1: 4 3 21.500 97
4 2: 4 4 26.925 109
5 3: 4 5 28.200 113
6 4: 6 3 19.750 110
7 5: 6 4 19.750 123
8 6: 6 5 19.700 175
9 7: 8 3 15.050 245

10 8: 8 5 15.400 335

It is even possible to add expressions after the by keyword.

R

1 > mtcars_dt[,.(mean_mpg=mean(mpg),max_hp=max(hp)), by=.(cyl==8,
gear==4)]

2 cyl gear mean_mpg max_hp
3 1: FALSE TRUE 24.53333 123
4 2: FALSE FALSE 22.85000 175
5 3: TRUE FALSE 15.10000 335

3.6 JOIN

7 Join combines columns from one or more tables for RDBMSs. We also have the Join
operation available in data.table and pandas. We only talk about three different types
of joins here, i.e., inner join, left join, and right join. Left join and right join are also
referred to as outer join.

Let’s make two tables to join.

R

7https://en.wikipedia.org/wiki/Join_(SQL)

https://www.en.wikipedia.org

94 • A Tour of Data Science: Learn R and Python in Parallel

Figure 3.1: Inner join, left (outer) join and right (outer) join

1 > department_dt=data.table(department_id=c(1, 2, 3),
department_name=c("Engineering","Operations","Sales"))

2 > department_dt
3 department_id department_name
4 1: 1 Engineering
5 2: 2 Operations
6 3: 3 Sales
7 > employee_dt=data.table(employee_id=c(1,2,3,4,5,6),

department_id=c(1,2,2,3,1,4))
8 > employee_dt
9 employee_id department_id

10 1: 1 1
11 2: 2 2
12 3: 3 2
13 4: 4 3
14 5: 5 1
15 6: 6 4

Python

1 >>> department_df=pd.DataFrame({’department_id’:[1,2,3],’
department_name’:["Engineering","Operations","Sales"]})

2 >>> department_df
3 department_id department_name
4 0 1 Engineering
5 1 2 Operations
6 2 3 Sales
7 >>> employee_df=pd.DataFrame({’employee_id’:[1,2,3,4,5,6],’

department_id’:[1,2,2,3,1,4]})

8 >>> employee_df

9 employee_id department_id

10 0 1 1
11 1 2 2
12 2 3 2

data.table and pandas • 95

13 3 4 3
14 4 5 1
15 5 6 4

We can join tables with or without the help of index/key. In general, joining on
index/key is more fast. Thus, I recommend always to set key/index for join operations.

R

1 > setkey(employee_dt , ’department_id’)

2 > setkey(department_dt , ’department_id’)

3 > department_dt[employee_dt] # employee_dt left join

department_dt
4 department_id department_name employee_id
5 1:	 1 Engineering 1
6 2:	 1 Engineering 5
7 3:	 2 Operations 2
8 4:	 2 Operations 3
9 5:	 3 Sales 4

10 6:	 4 <NA> 6
11	 > department_dt[employee_dt , nomatch=0] # employee_dt left join

department_dt
12	 department_id department_name employee_id
13 1:	 1 Engineering 1
14 2:	 1 Engineering 5
15 3:	 2 Operations 2
16 4:	 2 Operations 3
17 5:	 3 Sales 4
18	 > employee_dt[department_dt] # employee_dt right join

department_dt
19	 employee_id department_id department_name
20 1: 1	 1 Engineering
21 2: 5	 1 Engineering
22 3: 2	 2 Operations
23 4: 3	 2 Operations
24 5: 4	 3 Sales

To join data.table A and B, the syntax A[B] and B[A] only work when the keys of
A and B are set. The function merge from data.table package works with or without
key.

R

1 > # merge function works with keys

96 • A Tour of Data Science: Learn R and Python in Parallel

2 > merge(employee_dt ,department_dt , all.x=FALSE, all.y=FALSE) #
inner join

3 department_id employee_id department_name
4 1: 1 1 Engineering
5 2: 1 5 Engineering
6 3: 2 2 Operations
7 4: 2 3 Operations
8 5: 3 4 Sales
9 > merge(employee_dt , department_dt , all.x=TRUE, all.y=FALSE) #

employee_dt left join department_dt
10 department_id employee_id department_name
11 1: 1 1 Engineering
12 2: 1 5 Engineering
13 3: 2 2 Operations
14 4: 2 3 Operations
15 5: 3 4 Sales
16 6: 4 6 <NA>
17 > merge(employee_dt , department_dt , all.x=FALSE, all.y=TRUE) #

employee_dt right join department_dt
18 department_id employee_id department_name
19 1: 1 1 Engineering
20 2: 1 5 Engineering
21 3: 2 2 Operations
22 4: 2 3 Operations
23 5: 3 4 Sales
24 > # merge function works without keys
25 > setkey(employee_dt , NULL)
26 > setkey(department_dt , NULL)
27 > department_dt[employee_dt]
28 Error in ‘[.data.table‘(department_dt , employee_dt) :
29 When i is a data.table (or character vector), the columns to

join by must be specified either using ’on=’ argument (see
?data.table) or by keying x (i.e. sorted, and, marked as
sorted, see ?setkey). Keyed joins might have further speed
benefits on very large data due to x being sorted in RAM.

30

31 > merge(employee_dt , department_dt , all.x=FALSE, all.y=FALSE, by
.x=’department_id’, by.y=’department_id’)

32 department_id employee_id department_name
33 1: 1 1 Engineering
34 2: 1 5 Engineering
35 3: 2 2 Operations
36 4: 2 3 Operations
37 5: 3 4 Sales
38 >

data.table and pandas • 97

Table 3.2: Syntax of join in data.table

type syntax 1 syntax 2
A inner join B A[B, nomatch=0] or

B[A, nomatch=0]
merge(A, B, all.x=FALSE, all.y=FALSE)

A left join B B[A] merge(A, B, all.x=TRUE, all.y=FALSE)
B right join A A[B] merge(A, B, all.x=FALSE, all.y=TRUE)

The join operations for data.table are summarized in Table 3.2.
In pandas, there are also different ways to join DataFrame. Let’s just focus on

the basic method with the merge function (other methods may also be based on this
function).

Python

1 >>> department_df.set_index(’department_id’, inplace=True)
2 >>> employee_df.set_index(’department_id’, inplace=True)
3 >>> pd.merge(employee_df , department_df , how=’inner’, left_index

=True, right_index=True) # inner join on index

4 employee_id department_name

5 department_id

6 1 1 Engineering

7 1 5 Engineering

8 2 2 Operations

9 2 3 Operations

10 3 4 Sales
11 >>> pd.merge(employee_df , department_df , how=’left’, left_index=

True, right_index=True) # left join on index
12 employee_id department_name
13 department_id
14 1 1 Engineering
15 1 5 Engineering
16 2 2 Operations
17 2 3 Operations
18 3 4 Sales
19 4 6 NaN
20 >>> pd.merge(employee_df , department_df , how=’right’, left_index

=True, right_index=True) # right join on index
21 employee_id department_name
22 department_id
23 1 1 Engineering
24 1 5 Engineering
25 2 2 Operations

98 • A Tour of Data Science: Learn R and Python in Parallel

26 2 3 Operations

27 3 4 Sales

28 >>> employee_df.reset_index()

29 >>> department_df.reset_index()

30 >>> pd.merge(employee_df , department_df , how=’inner’, left_on=’

department_id’, right_on=’department_id’) # join with
columns directly (not on index)

31 employee_id department_name
32 department_id
33 1 1 Engineering
34 1 5 Engineering
35 2 2 Operations
36 2 3 Operations
37 3 4 Sales

We have learned the very basics of data.table and pandas. In fact, there are
lots of other useful features in both tools which are not covered in this chapter. For
example, the .I/.N symbol in data.table, and the stack/unstack method in pandas.

C H A P T E R 4

Random Variables,
Distributions & Linear
Regression

We will see a few topics related to random variables (r.v.) and distributions
in this chapter. Based on the concepts of random variables, we will further

introduce linear regression models.

4.1 A REFRESHER ON DISTRIBUTIONS

Distributions describe the random phenomenon in terms of probabilities. Distribu­
tions are connected to random variables. A random variable is specified by its dis­
tribution. We know an r.v. can be either discrete or continuous. The number of calls
received by a call center is an example of discrete r.v., and the amount of time taken
to read this book is a continuous random variable.

There are infinite numbers of distributions. Many important distributions fall
into some distribution families (i.e., a parametric set of probability distributions
of a certain form). For example, the multivariate normal distribution belongs to
exponential distribution family1.

Cumulative distribution function (CDF) specifies how a real-valued random vari­
able X is distributed, i.e.,

FX (x) = P (X ≤ x). (4.1)

It is worth noting that CDF is always monotonic.
When the derivative of CDF exists, we call the derivative of F the probability

density function (PDF) which is denoted by the lower case fX . PDF is associated
with continuous random variables. For discrete random variables, the counterpart of
PDF is called probability mass function (PMF). PMF gives the probability that a

1https://en.wikipedia.org/wiki/Exponential_family

99

https://www.en.wikipedia.org

100 • A Tour of Data Science: Learn R and Python in Parallel

random variable is equal to some value, but PDF does not represent probabilities
directly.

The quantile function is the inverse of CDF, i.e.,

QX (p) = inf {x ∈ R : p ≤ FX (x)}. (4.2)

PDF, CDF and quantile functions are all heavily used in quantitative analysis.
In R and Python, we can find a number of functions to evaluate these functions. The
best known distribution should be univariate normal/Gaussian distribution. Let’s use
Gaussian random variables for illustration.

R

1 > # for reproducibility

2 > set.seed(42)

3 > # draw samples

4 > x = rnorm(10, mean=0, sd=2)

5 > print(x)

6 [1] 2.7419169 −1.1293963 0.7262568 1.2657252 0.8085366

7 [6] −0.2122490 3.0230440 −0.1893181 4.0368474 −0.1254282

8 > print(mean(x))

9 [1] 1.094594

10 > print(sd(x))
11 [1] 1.670898
12 > # evaluate PDF
13 > d = dnorm(x, mean=0, sd=2)
14 > print(d)
15 [1] 0.07793741 0.17007297 0.18674395 0.16327110 0.18381928
16 [6] 0.19835103 0.06364496 0.19857948 0.02601446 0.19907926
17 > # evalute CDF
18 > p = pnorm(x, mean=0, sd=2)
19 > print(p)
20 [1] 0.9148060 0.2861395 0.6417455 0.7365883 0.6569923 0.4577418
21 [7] 0.9346722 0.4622928 0.9782264 0.4749971
22 > # evaluate quantile
23 > q = qnorm(p, mean=0, sd=2)
24 > print(q)
25 [1] 2.7419169 −1.1293963 0.7262568 1.2657252 0.8085366
26 [6] −0.2122490 3.0230440 −0.1893181 4.0368474 −0.1254282

We see that qnorm(pnorm(x)) = x. In Python, we use the functions in numpy and
scipy.stats for the same purpose.

Python

Random Variables, Distributions & Linear Regression • 101

1 >>> import scipy.stats
2 >>> import numpy as np
3 >>> import scipy.stats
4 >>> np.random.seed(42)
5 >>> x = np.random.normal(loc=0.0, scale=2.0, size=10)
6 >>> print(x)
7 [0.99342831 −0.2765286 1.29537708 3.04605971 −0.46830675

−0.46827391
8 3.15842563 1.53486946 −0.93894877 1.08512009]
9 >>> norm = scipy.stats.norm(loc=0.0, scale=2.0)

10 >>> d = norm.pdf(x)
11 >>> print(d)
12 [0.17632116 0.19757358 0.16172856 0.06254333 0.19407713

0.19407788
13 0.05732363 0.1485901 0.17865677 0.17217026]
14 >>> p = norm.cdf(x)
15 >>> print(p)
16 [0.69030468 0.44501577 0.74140679 0.93612438 0.40743296

0.40743933
17 0.94285637 0.77858846 0.31936529 0.70628362]
18 >>> q = norm.ppf(p) # ppf is the quantile function
19 >>> print(q)
20 [0.99342831 −0.2765286 1.29537708 3.04605971 −0.46830675

−0.46827391
21 3.15842563 1.53486946 −0.93894877 1.08512009]

A random variable could also be multivariate. In fact, the univariate normal
distribution is a special case of multivariate normal distribution whose PDF is given
in

1 1
p(x; μ, Σ) = exp(− (1x − μ)T Σ− (x − μ

(2) 2 Σ 1/2
))

π m/ 2 , (4.3)| |
where μ is the mean and Σ is the covariance matrix of the random variable x.

Sampling from distributions are involved in many algorithms, such as Monte
Carlo simulation. First, let’s see a simple example in which we draw samples from a
3-dimensional normal distribution.

R Python

1 > library(mvtnorm) 1 >>> from scipy.stats import
2 > mu = c (1, 2) multivariate_normal

array mvn= (as3 > cov
2 >>> mu = np.array([1,2]) c(1.0, 0.5, 0.5, 2.0),

c(2, 2))

102 • A Tour of Data Science: Learn R and Python in Parallel

4 > set.seed(42) 3 >>> cov = np.array([[1,
5 > x = rmvnorm(n = 1, 0.5],[0.5, 2]])

mean = mu, sigma = cov) 4 >>> mvn.random_state.seed
6 > print(x)

(42)
7 [,1] [,2]

5 >>> dist = mvn(mean = mu,
8 [1,] 2.221431 1.498778

cov = cov)
9 > d = dmvnorm(x,

6 >>> x = dist.rvs(size=1)
mean = mu, sigma = cov)

 7 >>> print(x) 10 > print(d)
[1.16865045 2.72887797]11

 [1] 0.04007949 8

9 >>> − d = dist.pdf(x)12
 > p = pmvnorm(lower= Inf,

upper = x[1,], 10 >>> print(d)
mean = mu, sigma = cov)

11 0.10533537790438291
13 > print(p)

12 >>> p = dist.cdf(x)
14 [1] 0.344201

13 >>> print(p)
15 attr(,"error")

14 0.44523665187828293
16 [1] 1e 15
17

−
attr(,"msg")

18 [1] "Normal Completion"

Please note in the example above, we do not calculate the quantiles. For multi-
variable distributions, the quantiles are not necessarily fixed points.

4.2 INVERSION SAMPLING & REJECTION SAMPLING

4.2.1 Inversion sampling

Sampling from the Gaussian or other famous distributions could be as simple as just
calling a function. What if we want to draw samples from any distribution with its
CDF? Inversion sampling is a generic solution. The key idea of inversion sampling
is that FX (x) always follows a uniform distribution between 0 and 1. There are two
steps in drawing a sample with the inversion sampling approach.

1. draw independent and identical (i.i.d.) distribution random variables u1, ..., un

which are uniformly distributed from 0 to 1;

2. calculate the quantiles q1, ..., qn for u1, ..., un based on the CDF, and return
q1, ..., qn as the desired samples to draw.

Let’s see how to use the inversion sampling technique to sample from exponential
distribution with CDF f −λx

X (x; λ) = 1 − e .

R Python

1 > n=1000 1 >>> import numpy as np
2 > set.seed(42) 2 >>> np.random.seed(42)
3 > # step 1, draw from 3 >>> n=1000

uniform dist

Random Variables, Distributions & Linear Regression • 103

4 > u = runif(n=n, min=0, 4 >>> # step 1, generate from
max=1) uniform(0,1)

5 > # step 2, calculate the 5 ... u = np.random.uniform(
quantiles low=0, high=1, size=n)

6 > lambda = 2.0
6 >>> # step 2, calculate the

7 > x = qexp(u, rate = lambda) quantile
8 > # the mean is close to 1/ 7 ... lamb = 2.0

lambda 8 >>> q = u)/lamb
9 > mean(x)

9

−np.log(1−
>>> np.mean(q)

10 [1] 0.4818323
10 0.4862529739826122

In the above R implementation, we used the built-in quantile function in step
2; however, for many distributions there are no built-in quantile functions available
and thus we need to specify the quantile function ourselves (illustrated in the Python
implementation).

4.2.2 Rejection sampling

Rejection sampling is also a basic algorithm to draw samples for a random variable X
given its PDF fX . The basic idea of rejection sampling is to draw samples for a random
variable Y with PDF fY and accept the samples with probability fX (x)/(MfY (x)).
M is selected such that fX (x)/(MfY (x)) ≤ 1. If the sample generated is rejected,
the sampling procedure is repeated until an acceptance. More theoretical details
of rejection sampling can be found from wikipedia2. The distribution fY is called
proposal distribution.

Let’s try to draw samples from an exponential distribution truncated between 0
and b. The PDF of this random variable is specified by fX (x; λ, b) = λe −λx/(1−e−λb).

A naive approach is to sample from the untruncated exponential distribution and
only accept samples smaller than b, which is implemented as follows.

R Python

1 n=1000
 1 import numpy as np

2 set.seed(42)
 2 np.random.seed(42)

3 lambda = 1.0
 3 lamb, b = 1.0, 2.0

4 b = 2.0
 4 n=1000

5 x = rep(0, n)
 5 x = []

6 i = 0
 6 i = 0

7 while (i<n){
 7 while i<n:

8 y = rexp(n = 1, rate =
 8 y = np.random.exponential(

lambda) scale = lamb, size = 1)
9 if (y<=b) { 9 if y<=b:

10 i=i+1 10 x.append(y[0])
11 x[i] = y 11 i+=1
12 }

2https://en.wikipedia.org/wiki/Rejection_sampling

https://www.en.wikipedia.org

104 • A Tour of Data Science: Learn R and Python in Parallel

13 }

After running the code snippets above, we have the samples stored in x from the
truncated exponential distribution.

Now let’s use the rejection sampling technique for this task. Since we want to
sample the random variable between 0 and b, one natural choice of the proposal
distribution fY is a uniform distribution between 0 and b and we choose M = bλ/(1−

−λxe−λb). As a result, the acceptance probability fX (x)/(MfY (x)) becomes e .

R

1 n=1000

2 set.seed(42)

3 lambda = 1.0

4 b = 2.0

5 x = rep(0, n)

6 i = 0
7 while (i<n){
8 # sample from the proposal

distribution
9 y = runif(1, min = 0,

max = b)

10 # calculate the acceptance

probability
11 p = exp(−lambda∗y)
12 if (runif(1)<=p) {
13 i=i+1
14 x[i] = y

15 }

16 }

Python

1 import numpy as np

2 np.random.seed(42)

3 lamb, b = 1.0, 2.0

4 n = 1000

5 x = []

6 i = 0
7 while i < n:
8 # sample from the

proposal distribution
9 y = np.random.uniform(

low=0, high=b)

10 # calculate the

acceptance
probability

11 p = np.exp(−lamb∗y)
12 if p >= np.random.

uniform():
13 x.append(y)
14 i += 1

We have seen the basic examples on how to draw samples with inversion samples
and truncated samples. Now let’s work on a more challenging problem.

Application - Draw samples from a sphere
Without loss of generality, let’s consider a unit sphere, i.e., the radius r = 1. We want to
draw i.i.d. points from a unit sphere.

Random Variables, Distributions & Linear Regression • 105

y

z

P

φ

θ

x

The problem appears simple at first glance - we could utilize the spherical coordinates sys­

tem and draw samples for φ and θ. Now the question is how to sample for φ and θ. A
straightforward idea is to draw independent and uniform samples φ from 0 to 2π and θ from
0 to π, respectively. However, this idea is incorrect which will be analyzed below.
Let’s use fP (φ, θ) to denote the PDF of the joint distribution of (φ, θ). We integrate this PDF,
then

1 =
 2π π 2π π

fP (φ, θ)dφdθ = fΦ(φ)fΘ|Φ(θ|φ)dφdθ. (4.4)
0 0 0 0

If we enforce Φ has a uniform distribution between 0 and 2π, then fΦ(φ) = 1/2π, and π

1 = fΘ|Φ(θ|φ)dθ. (4.5)
0

One solution to (4.5) is fΘ|Φ(θ|φ) = sin(θ)/2.

Thus, we could generate the samples of Φ from the uniform distribution and the samples of

Θ from the distribution whose PDF is sin(φ)/2. Sampling for Φ is trivial, but how about Θ?

We could use the inversion sampling technique. The CDF of Θ is (1−cos(θ))/2; 0 ≤ θ ≤ π,

and the quantile function is QΘ(p) = arccos(1 − 2p).

The implementation of sampling from unit sphere is implemented below.

R Python

1 n=2000
 1 import numpy as np
2 set.seed(42)
 2 np.random.seed(42)
3 # sample phi
 3 n = 2000
4 phi = runif(n, min = 0,
 4 # sample phi

max = 2∗pi) 5 phi = np.random.uniform(low
5 # sample theta by inversion

=0, high=2 np pi, size=n)
cdf

∗ .

6 u = runif(n, min = 0, 6 # sample theta by inversion
max = 1) cdf

77 theta = acos(1−2∗u) u = np.random.uniform(low=0,
high=1, size=n)

106 • A Tour of Data Science: Learn R and Python in Parallel

Figure 4.1: Uniform samples from a unit sphere

8 # now we calculate the 8 theta = np.arccos(1−2∗u)
Cartesian coordinates 9 # we calculate the Cartesian

9 x = sin(theta)∗cos(phi) coordinates
10 y = sin(theta)∗sin(phi) 10 x = np.sin(theta)∗np.cos(phi

11 z = cos(theta))
11 y = np.sin(theta)∗np.sin(phi

)
12 z = np.cos(theta)

There are also other solutions to this problem, which won’t be discussed in this
book. A related problem is to draw samples inside a sphere. We could solve the inside
sphere sampling problem with a similar approach, or by using the rejection sampling
approach, i.e., sampling from a cube with acceptance ratio π/6.

4.3 JOINT DISTRIBUTION & COPULA

We are not trying to introduce these concepts from scratch. This section is more like
a recap.

In the previous section, we saw the PDF for multivariate normal distribution

Random Variables, Distributions & Linear Regression • 107

in (4.3). A multivariate distribution is also called joint distribution, since the mul­
tivariate random variable can be viewed as a joint of multiple univariate random
variables. Joint PDF gives the probability density of a set of random variables. Some­
times we may only be interested in the probability distribution of a single random
variable from a set. And that distribution is called marginal distribution. The PDF
of a marginal distribution can be obtained by integrating the joint PDF over all
the other random variables. For example, the integral of (4.3) gives the PDF of a
univariate normal distribution.

The joint distribution is the distribution about the whole population. In the con­
text of a bivariate Gaussian random variable (X1, X2), the joint PDF fX1,X2 (x1, x2)
specifies the probability density for all pairs of (X1, X2) in the 2-dimension plane.
The marginal distribution of X1 is still about the whole population because we are
not ruling out any points from the support of the distribution function. Sometimes
we are interested in a subpopulation only, for example, the subset of (X1, X2) where
X2 = 2 or X2 > 5. We can use conditional distribution to describe the probability
distribution of a subpopulation. To denote conditional distribution, the symbol | is fre­
quently used. We use fX1|X2=0(x1|x2) to represent the distribution of X1 conditional
on X2 = 0. By the rule of conditional probability P (A|B) = P (A, B)/P (B), the cal­
culation fX1|X2 (x1|x2) is straightforward, i.e., fX1|X2 (x1|x2) = fX1,X2 (x1, x2)/fX2 (x2).

The most well-known joint distribution is the multivariate Gaussian distribution.
Multivariate Gaussian distribution has many important and useful properties. For
example, given the observation of (X1, ..., Xk) from (X1, ..., Xm), (Xk + 1, ..., Xm) is
still following a multivariate Gaussian distribution, which is essential to Gaussian
process regression3.

We have seen the extension from univariate Gaussian distribution to multivari­
ate Gaussian distribution, but how about other distributions? For example, what
is the joint distribution for two univariate exponential distribution? We could use
copula4 for such a purpose. For the random variable (X1, ..., Xm), let (U1, ..., Um) =
(FX1 (X1), ..., FXm (Xm)) where FXk is the CDF of Xk. We know Uk is following a
uniform distribution. Let C(U1, ..., Um) denote the joint CDF of (U1, ..., Um) and the
CDF is called copula.

There are different copula functions, and one commonly used is the Gaussian
copula. The standard Gaussian copula is specified as below.

1 1CGauss
Σ (u1, ..., um) = ΦΣ(Φ− (u1), ..., Φ− (um)), (4.6)

where Φ denotes the CDF of the standard Gaussian distribution, and ΦΣ denotes the
CDF of a multivariate Gaussian distribution with mean 0 and correlation matrix Σ.

Let’s see an example to draw samples from a bivariate exponential distribution
constructed via Gaussian copula. The basic idea of sampling multivariate random
variables via copula is to sample U1, ..., Um first and then transform it to the desired
random variables.

3http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

4https://en.wikipedia.org/wiki/Copula_(probability_theory)

https://www.gaussianprocess.org
https://www.en.wikipedia.org

108 • A Tour of Data Science: Learn R and Python in Parallel

R

1 > library(mvtnorm)

2 > n = 10000

3 > set.seed(42)

4 > rates = c(1.0, 2.0)

5 > mu = c (0, 0)

6 > rho = 0.6

7 > correlation = array(c(1, rho, rho, 1), c(2, 2))

8 > # sample R from multivariate Gaussian

9 > r = rmvnorm(n = n, mean = mu, sigma = correlation)

10 > # generate U
11 > u = pnorm(r)
12 > # calculate the quantile for X
13 > x1 = qexp(u[, 1], rate = rates[1])
14 > x2 = qexp(u[, 2], rate = rates[2])
15 > x = cbind(x1, x2)
16 > cor(x)
17 x1 x2
18 x1 1.0000000 0.5476137
19 x2 0.5476137 1.0000000
20 > apply(x, mean, MARGIN = 2)
21 x1 x2
22 0.9934398 0.4990758

Python

1 >>> import numpy as np
2 >>> from scipy.stats import multivariate_normal as mvn
3 >>> from scipy.stats import norm
4 >>> mu = np.array([0, 0])
5 >>> r ho = 0.6
6 >>> cov = np.array([[1, rho],[rho, 1]])
7 >>> mvn.random_state.seed(42)
8 >>> n = 10000
9 >>> uvn = norm(loc=0.0, scale=1.0)

10 >>> dist = mvn(mean = mu, cov = cov)
11 >>> rates = [1.0, 2.0]
12 >>> # sample R from multivariate Gaussian
13 ... r = dist.rvs(size=n)
14 >>> # generate U
15 ... u = uvn.cdf(r)
16 >>> # calculate the quantile for X
17 ... def qexp(u, rate): return −np.log(1−u)/rate
18 ...

Random Variables, Distributions & Linear Regression • 109

Figure 4.2: Samples from a bivariate exponential distribution constructed via Gaus­
sian copula

19 >>> x1 = qexp(u[:, 0], rate = rates[0])

20 >>> x2 = qexp(u[:, 1], rate = rates[1])

21 >>> x = np.column_stack((x1, x2))

22 >>> np.corrcoef(x.T)

23 array([[1. , 0.57359023],

24 [0.57359023, 1.]])

25 >>> np.mean(x, axis=0)

26 array([0.99768825, 0.50319692])

We plot 2000 samples generated from the bivariate exponential distribution con­
structed via copula in Figure 4.2.

With the help of copula, we can even construct joint distribution with marginals
from different distributions. For example, let’s make a joint distribution of a uniform
distributed random variable and an exponential distributed random variable.

R

1 > library(mvtnorm)

2 > n = 10000

3 > set.seed(42)

4 > mu = c(0, 0)

5 > rho = 0.6

6 > correlation = array(c(1, rho, rho, 1), c(2, 2))

7 > # sample R from multivariate Gaussian

8 > r = rmvnorm(n = n, mean = mu, sigma = correlation)

9 > # generate U

10 > u = pnorm(r)

110 • A Tour of Data Science: Learn R and Python in Parallel

Figure 4.3: Samples from a joint distribution of a uniform marginal and an exponential
marginal

11 > # calculate the quantile for X

12 > # X1 ~ exp(1.0); X2 ~ unif(0, 2)

13 > x1 = qexp(u[, 1], rate = 1.0)

14 > x2 = qunif(u[, 2], min = 0, max = 2)

15 > cor(x1, x2)

16 [1] 0.5220363

4.4 FIT A DISTRIBUTION

Statistics is used to solved real-world problems with data. In many cases we may have
a collection of observations for a random variable and want to know the distribution
which the observations follow. In fact, there are two questions involved in the process
of fitting a distribution. First, which distribution to fit? And second, given the distri­
bution, how to estimate the parameters. These two questions are essentially the same
questions that we have to answer in supervised learning. In supervised learning, we
need to choose a model and estimate the parameters (if the model has parameters).
We can also refer to these two questions as model selection and model fitting. Usually,
model selection is done based on the model fitting.

Two widely-used methods in distribution fitting are method of moments and the
maximum likelihood method. In this section we will see the method of moments. The
maximum likelihood method will be introduced in Chapter 6. The kth moment of
a random variable is defined as μk = E(xk). If there are m parameters, usually we
derive the first m theoretical moments in terms of the parameters, and by equating n kthese theoretical moments to the sample moments μ̂k = 1/n 1 xi we will get the
estimate.

Let’s take the univariate Gaussian distribution as an example. We want to esti­

Random Variables, Distributions & Linear Regression • 111

mate the mean μ and variance 2σ . The first and second theoretical moments are μ and
2 2μ + σ . Thus, the estimate and 2μ̂ 2 2σ̂ are 1/n n n n

1 xi and 1/n 1 xi − (1/n 1 xi) =
1/n

 n
1 (xi − μ̂)2. The code snippets below sho

w the implemen

tation.

R Python

1 > set.seed(42)
 1 >>> import numpy as np

2 > n = 1000
 2 >>> np.random.seed(42)

3 > mu = 2.5
 3 >>> n = 1000

4 > var = 1.6
 4 >>> mu, var = 2.5, 1.6

5 > x = rnorm(n, mu,
 5 >>> x = np.random.normal

sqrt(var)) (2.5, 1.6 0.5, size=n)
6 > mu_est = mean(x)

∗∗
6 >>> mu_est = np.mean(x)

7 > var_est =
7 >>> var_est = np.mean((x

mean((x mu_est)^2)
−

8 > mu_est) 2)print(mu_est
−

) ∗∗

9 >>> print(mu_est)[1] 2.467334 8

10 > print(var_est) 9 2.524453331300827

 10 >>> print(var_est)11 [1] 1.60647

11 1.5326479835704276

We could also fit another distribution to the data generated from a normal distri­
bution. But which one is better? One answer is to compare the likelihood functions
evaluated at the fitted parameters and choose the one that gives the larger likelihood
value.

Please note that different methods to fit a distribution may lead to different
parameter estimates. For example, the estimate of population variance using the
maximum likelihood method is different from that using the moments method. Ac­
tually, the estimator for population mean is biased using the methods method but
the estimator using the maximum likelihood method is unbiased.

4.5 CONFIDENCE INTERVAL

In the previous section we have seen the parameter estimation of a distribution. How­
ever, the parameter estimates from either the method of moments or the maximum
likelihood estimation are not the exact values of the unknown parameters. There are
uncertainties associated with distribution fitting because the data to which the dis­
tribution is fit usually is just a random sample rather than a population. Suppose
we could repeat the distribution fitting process m times and each time we collect
a random sample of size n (i.e., a collection of n observations for the random vari­
able of interest), then we will get n estimates of the distribution parameters. Which
estimate is the best to use? In fact, all these n estimates are observations of the esti­
mator random variable. Estimator is a function of the random sample, and itself is a
random variable. For example, eq1 is an estimator for the μ parameter in a Gaussian
distribution.

112 • A Tour of Data Science: Learn R and Python in Parallel

4.5.1 Central limit theorem

Now we know when we fit a distribution, the parameter estimates are not the exact
values of the unknown parameters. The question is how to quantify the uncertainties?
To answer this question, we better know the distribution of the estimator. In the
example of the Gaussian distribution, what distribution does the estimator μ̂ follow?
It is straightforward to see that the estimator is still following a Gaussian distribution
since each Xi is following a Gaussian distribution (sum of independent Gaussian
random variables still follows a Gaussian distribution). But what if Xi is from an
arbitrary distribution? We may still derive an exact distribution of the sample mean μ̂
for an arbitrary distribution, but sometimes the derivation may not be easy. A simple
idea is to use the central limit theorem (CLT), which states that the distribution of
the mean of a random sample from a population with finite variance is approximately √
normally distributed when the sample size is large enough. More specifically, n(X ¯ −

d
μ)/σ −→ N(0, 1) where μ and σ are the population mean and standard deviation,
respectively. Sometimes we do not have the actual value of the population standard √
deviation and the sample standard deviation S can be used instead and thus n(X ¯ −

d
μ)/S −→ N(0, 1).

We know if Z is a Gaussian random variable, P (−Z(1+α)/2 < Z ≤ Z(1+α)/2) = α √
where Zu denotes the quantile of u. By CLT, P (−Z(1+α)/2 ≤ n(X ¯ − μ)/S ≤ √
Z(1+α)/2) = α, which further leads to P (X ¯ − Z(1+α)/2S/ n ≤ μ ≤ X ¯ + √ √¯ Z(1+α)/2S/ n) = α. The interval X ± Z(1+α)/2S/ n is called an α confidence in­
terval (CI) for the population mean μ. For example, since Z(1+0.95)/2 = 1.96 the 95% √¯CI is constructed as X√± 1.96S/ n. Of course, if we know the exact value of σ, we
could use X ¯ ± 1.96σ/ n instead.

We show an example for the confidence interval calculation of population mean
in normal distribution.

R

1 > set.seed(42)

2 > n = 1000

3 > mu = 2.5

4 > var = 1.6

5 > x = rnorm(n, mu, sqrt(var))

6 > mu_est = mean(x)

7 > # we can also calculate S with sd(x) in R

8 > S = sqrt(sum((x − mu_est) ^ 2) / (n − 1))

9 > alpha = 0.95

10 > Z_alpha = qnorm((1 + alpha) / 2)

11 > CI = c(mu_est − Z_alpha ∗ S / sqrt(n), mu_est + Z_alpha ∗ S /

sqrt(n))
12 > print(CI)
13 [1] 2.388738 2.545931

Random Variables, Distributions & Linear Regression • 113

Python

1 >>> import numpy as np

2 >>> import scipy

3 >>> np.random.seed(42)

4 >>> n = 1000

5 >>> mu, var = 2.5, 1.6

6 >>> norm = scipy.stats.norm(loc=0, scale=1)

7 >>> x = np.random.normal(mu, var∗∗0.5, size=n)

8 >>> mu_est = np.mean(x)

9 >>> S = np.sqrt(np.sum((x mu_est) 2)/(n 1))

10

− ∗∗ −
>>> alpha = 0.95

11 >>> Z_alpha = norm.ppf((1+alpha)/2)
12 >>> CI = [mu_est − Z_alpha∗S/np.sqrt(n), mu_est + Z_alpha∗S/np.

sqrt(n)]
13 >>> print(CI)
14 [2.4476842124240363, 2.6012224501776178]

The interpretation of CI is tricky. A 95% CI does not mean the probability that
the constructed CI contains the true population mean is 0.95. Actually, a constructed
CI again is a random variable because the CI is created based on each random
sample collected. Following the classic explanation from textbooks, when we repeat
the procedures to create CI multiple times, the probability that the true parameter
falls into the CI is equal to α. Let’s do an example to see that point.

R

1 > set.seed(42)

2 > B = 1000

3 > n = 1000

4 > mu = 2.5

5 > var = 1.6

6 > alpha = 0.95

7 > Z_alpha = qnorm((1 + alpha) / 2)

8 > coverage = rep(0, B)

9 > for (i in 1:B) {

10 + x = rnorm(n, mu, sqrt(var))
11 + mu_est = mean(x)
12 + S = sqrt(sum((x − mu_est) ^ 2) / (n − 1))
13 + C I = c (mu_est − Z_alpha ∗ S / sqrt(n), mu_est + Z_alpha ∗ S

/ sqrt(n))
14 + coverage[i] = (mu >= CI[1]) && (mu <= CI[2])
15 + }
16 > # the coverage probability should be close to alpha
17 > print(mean(coverage))
18 [1] 0.941

114 • A Tour of Data Science: Learn R and Python in Parallel

4.5.2 Bootstrap

So far we have seen how to create the CI for sample mean. What if we are inter­
ested in quantifying the uncertainty of other parameters, for example, the variance
of a random variable? If we estimate these parameters with the maximum likelihood
method, we can still construct the CI in a similar approach with the large sample
theory. However, we will not discuss it in this book. Alternatively, we could use the
bootstrap technique.

Bootstrap is simple yet powerful. It is a simulation-based technique. If we want
to estimate a quantity θ, first we write the estimator for θ as a function of a random
sample i.e., θ̂ = g(X1, ..., Xn). Next, we just draw a random sample and calculate
ˆ θ(1) θ̂(B)θ and repeat this process B times to get a collection of θ̂ denoted as ˆ , ..., .
From these simulated θ̂, we could simply use the percentile θ̂(1−α)/2 and θ̂(1+α)/2 to
construct the α CI. There are also other variants of the bootstrapping method with
similar ideas.

Let’s try to use bootstrap to construct a 95% CI for the population variance of a
Gaussian distributed random variable.

R

1 > set.seed(42)

2 > B = 1000

3 > n = 1000

4 > mu = 2.5

5 > var = 1.6

6 > alpha = 0.95

7 > Z_alpha = qnorm((1 + alpha) / 2)

8 > var_sample = rep(0, B)

9 > for (i in 1:B) {

10 + x = rnorm(n, mu, sqrt(var))
11 + var_sample[i] = sum((x−mean(x))^2)/(n−1)
12 + }
13 > quantile(var_sample , c((1−alpha)/2, (1+alpha)/2))
14 2.5% 97.5%
15 1.466778 1.738675

4.6 HYPOTHESIS TESTING

We have talked about confidence interval, which is used to quantify the uncertainty
in parameter estimation. The root cause of uncertainty in parameter estimation is
that we do the inference based on random samples. Hypothesis testing is another
technique related to confidence interval calculation.

Random Variables, Distributions & Linear Regression • 115

A hypothesis test is an assertion about populations based on random samples.
The assertion could be for a single population or multiple populations. When we
collect a random sample, we may try to use the random sample as evidence to judge
the hypothesis. Usually a hypothesis testing consists of two hypotheses.

• H0: the null hypothesis;

• H1: the alternative hypothesis.

When we perform a hypothesis testing, there are two possible outcomes, i.e., a)
reject H0 if the evidence is likely to support the alternative hypothesis, and b) do
not reject H0 because of insufficient evidence.

The key point to understand in hypothesis testing is the significant level, which is
usually denoted as α. When the null hypothesis is true, the rejection of null hypothesis
is called type I error. And the significance level is the probability of committing a type
I error. When the alternative hypothesis is true, the acceptance of null hypothesis is
called type II error. And the probability of committing a type II error is denoted as
β. 1 − β is called the power of a test.

To conduct a hypothesis testing, there are a few steps to follow. First we have
to specify the null and alternative hypotheses, and the significance level. Next, we
calculate the test statistic based on the data collected. Finally, we calculate the p-
value. If the p-value is smaller than the significance level, we reject the null hypothesis;
otherwise we accept it. Some books may describe a procedure to compare the test
statistic with a critic region, which is essentially the same as the p-value approach.
The real challenge to conduct a hypothesis testing is to calculate the p-value, whose
calculation depends on which hypothesis test to use. Please note that the p-value
itself is a random variable since it is calculated from the random sample. And when
the null hypothesis is true, the distribution of p-value is uniform from 0 to 1.

p-value is also a conditional probability. A major misinterpretation about p-value
is that it is the conditional probability that given the observed data the null hy­
pothesis is true. Actually, p-value is the probability of the observation given the null
hypothesis is true.

For many reasons, we will not go in-depth into the calculation of p-values in this
book. But the basic idea is to figure out the statistical distribution of the test statistic.
Let’s skip all the theories behind and go to the tools in R/Python.

4.6.1 One-sample t test

Probably one-sample t test is the most basic and useful hypothesis tests. It can
determine if the sample mean is statistically different from a hypothesized population
mean for continuous random variables. To use one-sample t test some assumptions
are usually required. For example, the observations should be independent. Another
assumption is the normality, i.e., the population should be normal distributed or
approximately normal distributed. The normality assumption is controversial but it
is beyond the scope of this book.

In one-sample t test, the alternative hypothesis could be two-sided, or one-sided.

116 • A Tour of Data Science: Learn R and Python in Parallel

A two-sided H1 does not specify if the population mean is greater or smaller than the
hypothesized population mean. In contrast, a one-sided H1 specifies the direction.

Now let’s see how to perform one-sample t test in R/Python.

R

1 > set.seed(42)

2 > n = 50

3 > mu = 2.5

4 > sigma = 1.0

5 > # set the significance level

6 > alpha = 0.05

7 > # sample 50 independent observations from a normal

distribution
8 > x = rnorm(n, mu, sigma)
9 > mu_test = 2.5

10 >
11 > # first, let’s do two−sided t test
12 > # H0: the population mean is equal to mu_test
13 > # H1: the population mean is not equal to mu_test
14 > t1 = t.test(x, alternative = "two.sided", mu = mu_test)
15 > print(t1)
16

17 One Sample t−test
18

19 data: x
20 t = −0.21906, df = 49, p−value = 0.8275
21 alternative hypothesis: true mean is not equal to 2.5
22 95 percent confidence interval:
23 2.137082 2.791574
24 sample estimates:
25 mean of x
26 2.464328
27

28 > # based on the p−value (> alpha), we accept the null
hypothesis stated above

29 > t1$value
30 NULL
31 >
32 > # next, let’s do a one−sided t test
33 > # H0: the population mean is equal to mu_test
34 > # H1: the population mean is greater than mu_test
35 > t2 = t.test(x, alternative = "greater", mu = mu_test)
36 > print(t2)
37

Random Variables, Distributions & Linear Regression • 117

38 One Sample t−test
39

40 data: x
41 t = −0.21906, df = 49, p−value = 0.5862
42 alternative hypothesis: true mean is greater than 2.5
43 95 percent confidence interval:
44 2.191313 Inf
45 sample estimates:
46 mean of x
47 2.464328
48

49 > # based on the p−value (> alpha), we accept the null
hypothesis stated above

50 > t2$p.value
51 [1] 0.5862418
52 >
53 > # let’s change mu_test and perform a one−sided test again
54 > mu_tes_new = 2.0
55 > t3 = t.test(x, alternative = "greater", mu = mu_tes_new)
56 > print(t3)
57

58 One Sample t−test
59

60 data: x
61 t = 2.8514, df = 49, p−value = 0.003177
62 alternative hypothesis: true mean is greater than 2
63 95 percent confidence interval:
64 2.191313 Inf
65 sample estimates:
66 mean of x
67 2.464328
68

69 > # based on the p−value (< alpha), we reject the null
hypothesis stated above, i.e., we conclude the population
mean is greater than 2.

70 > t3$p.value
71 [1] 0.003177329

Python

1 >>> import numpy as np
2 >>> from scipy.stats import ttest_1samp
3 >>> np.random.seed(42)
4 >>> n = 50

118 • A Tour of Data Science: Learn R and Python in Parallel

5 >>> mu, sigma = 2.5, 1.0
6 >>> # generate 50 independent samples from a normal distribution
7 ... x = np.random.normal(mu, sigma, size=n)
8 >>> alpha = 0.05
9 >>> mu_test = 2.5

10 >>> # H0: population mean equals mu_test
11 ... # H1: population mean does not equal to mu_test
12 ... # perform a two−sided t test
13 ... t1 = ttest_1samp(x, mu_test)
14 >>> # based on the p−value (> alpha), we accept the null

hypothesis stated aboveprint(t1.pvalue)
15 ... print(t1.pvalue)
16 0.09403837414922567

In the R code snippet we show both one-sided and two-sided one-sample t tests.
However, we only show a two-sided test in the Python program. It is feasible to
perform a one-sided test in an indirect manner with the same function, but I don’t
think it’s worth discussing here. For hypothesis testing, it seems R is a better choice
than Python.

4.6.2 Two-sample t test

Two-sample t test is a bit more complex than one-sample t test. There are two types
of t tests commonly used in practice, i.e., paired t test and unpaired t test. In paired t
test, the samples are paired together. For example, we may want to know if there is a
significant difference in human blood pressures in morning and in evening. Hypothesis
testing may help. To do so, we may conduct an experiment and collect the blood
pressures in morning and in evening from a number of participants, respectively. Let
Xi denote the morning blood pressure and Yi denote the evening blood pressure of
participant i. We should pair Xi and Yi since the pair is measured from the same
person. Then the paired t test can be used to compare the population means. The
null hypothesis usually states that the difference of two population means is equal
to a hypothesized value. Just like the one-sample t test, we could do a one-sided or
two-sided paired t test.

Now let’s see how to do paired t test in R/Python.

R

1 > library(mvtnorm)

2 > set.seed(42)

3 > n = 50

4 > # we sample from a bivariate normal distribution

5 > mu = c(2.0, 1.0)

6 > sigma = diag(c(1.0, 1.5))

7 > # significance level

Random Variables, Distributions & Linear Regression • 119

8 > alpha = 0.95

9 > # sample 50 independent observations from the normal

distribution

10 > mu_diff = 1.2
11 > x = rmvnorm(n, mu, sigma)
12 >
13 > # first, let’s do a two−sided t test
14 > # H0: the population means’ difference is equal to mu_diff
15 > # H1: the population means’ difference is not equal to mu_diff
16 > t.test(x=x[,1], y=x[,2], mu=mu_diff, paired = TRUE,

alternative = "two.sided")
17

18 Paired t−test
19

20 data: x[, 1] and x[, 2]
21 t = −0.86424, df = 49, p −value = 0.3917
22 alternative hypothesis: true difference in means is not equal to

1.2
23 95 percent confidence interval:
24 0.5417625 1.4623353
25 sample estimates:
26 mean of the differences
27 1.002049
28

29 > # we can’t reject H0 based on the fact p value>alpha
30

−
>

31 > # next, let’s do an one−sided t test
32 > # H0: the population means’ difference is equal to mu_diff
33 > # H1: the population means’ difference is less than mu_diff
34 > t.test(x=x[,1], y=x[,2], mu=mu_diff, paired = TRUE,

alternative = "less")
35

36 Paired t−test
37

38 data: x[, 1] and x[, 2]
39 t = −0.86424, df = 49, p −value = 0.1958
40 alternative hypothesis: true difference in means is less than

1.2
41 95 percent confidence interval:
42 −Inf 1.386057
43 sample estimates:
44 mean of the differences
45 1.002049
46

47 > # we can’t reject H0 based on the fact p−value>alpha

120 • A Tour of Data Science: Learn R and Python in Parallel

Paired t test can also be done in Python, but we will not show the examples.
Unpaired t test is also about two population means’ difference, but the samples

are not paired. For example, we may want to study if the average blood pressure of
men is higher than that of women. In the unpaired t test, we also have to specify if
we assume the two populations have equal variance or not.

R

1 > set.seed(42)

2 > n = 50

3 > alpha = 0.05

4 > mu1 = 2.0

5 > mu2 = 1.0

6 > sigma1 = 1.0

7 > sigma2 = 1.5

8 > # generate two samples independently

9 > x1 = rnorm(n, mu1, sigma1)

10 > x2 = rnorm(n, mu2, sigma2)
11 > # first, let’s do a two sided t test
12

−
> # assume equal variance for the two populations

13 > mu_diff = 0.5
14 > # H0: the population means’ difference is equal to mu_diff
15 > # H1: the population means’ difference is not equal to mu_diff
16 > t.test(x1, x2, alternative = "two.sided", mu = mu_diff, paired

= FALSE, var.equal = TRUE)
17

18 Two Sample t−test
19

20 data: x 1 a nd x2
21 t = 1.2286, df = 98, p −value = 0.2222
22 alternative hypothesis: true difference in means is not equal to

0.5
23 95 percent confidence interval:
24 0.3072577 1.3192945
25 sample estimates:
26 mean of x mean of y
27 1.964328 1.151052
28

29 > # we accept the null hypothesis since p−value>alpha
30 >
31 > # now, we don’t assume the equal variance
32 > t.test(x1, x2, alternative = "two.sided", mu = mu_diff, paired

= FALSE, var.equal = FALSE)

Random Variables, Distributions & Linear Regression • 121

33

34 Welch Two Sample t−test
35

36 data: x 1 a nd x2
37 t = 1.2286, df = 94.78, p−value = 0.2223
38 alternative hypothesis: true difference in means is not equal to

0.5
39 95 percent confidence interval:
40 0.3070428 1.3195094
41 sample estimates:
42 mean of x mean of y
43 1.964328 1.151052
44

45 > # there is no big change for p−value, we also accept the null
hypothesis since p−value>alpha

46 >
47 > # let’s try a one sided test without equal variance
48 > # H0: the population means’ difference is equal to mu_diff
49 > # H1: the population means’ difference larger than mu_diff
50 > t.test(x1, x2, alternative = "less", mu = mu_diff, paired =

FALSE, var.equal = FALSE)
51

52 Welch Two Sample t test
53

−

54 data: x 1 a nd x2
55 t = 1.2286, df = 94.78, p−value = 0.8889
56 alternative hypothesis: true difference in means is less than

0.5
57 95 percent confidence interval:
58 −Inf 1.236837
59 sample estimates:
60 mean of x mean of y
61 1.964328 1.151052
62

63 > # we accept the null hypothesis since p−value>alpha

There are many other important hypothesis tests, such as the chi-squared test5,
likelihood-ratio test6.

5https://en.wikipedia.org/wiki/Chi-squared_test

6https://en.wikipedia.org/wiki/Likelihood-ratio_test

https://www.en.wikipedia.org
https://www.en.wikipedia.org

122 • A Tour of Data Science: Learn R and Python in Parallel

4.7 BASICS OF LINEAR REGRESSION

There are numerous books available on the theory of linear regression, for example,
[9] and [10]. So what is the purpose in writing a few sections about these models
in another book on data science? Many audiences would be interested in how to
implement their own regression models rather than using the off-the-shelf software
packages. By the end of this chapter, we will build up our own linear regression models
in R/Python. We will also see how to reuse some functions in different regressions,
such as linear regression, and those regressions with L2 penalties.

We start from the matrix form of linear regression.

y = Xβ + E, (4.7)

where the column vector y contains n observations on the dependent variable, X is a
n× (p+1) matrix (n > p) of independent variables with constant vector 1 in the first
column, β is a column vector of unknown population parameters to estimate based
on the data, and E is the error term (or noise). For the sake of illustration, (4.7) can
be extended as in

 ⎡
y1

⎤
1 X11 X21 Xp1 β0 E1

· · ·

 ⎢⎢y2
⎥

 1 X X X ⎥ 12 22 2 β1 E2
 . =

⎡
⎢⎢ · · ·

.
p

⎤⎡ ⎤ ⎡
 +

⎤
 ⎢

 .
⎥ ⎢

 . . (4.8)
 ⎢ . ⎥ ⎢

yn 1 X1n X2n Xpn

⎥⎥⎥⎢⎢⎥⎢⎢
 ..
⎥⎥ ⎢

 ..

⎥

· · · βp

⎥ ⎢⎢ ⎥⎥⎥ ⎢
En

⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
We apply the ordinary least squares (OLS)7 approach to estimate the model pa­

rameter β since it requires fewer assumptions than other estimation methods such as
maximum likelihood estimation8. Suppose the estimated model parameter is denoted
as β̂; we define the residual vector of the system as e = y ˆ

ˆ
− Xβ. The idea of OLS is

to find β which can minimize the sum of squared residuals (SSR), i.e.,

min e1e (4.9)
β̂

Now the question is how to solve the optimization problem (4.8). First, let’s
expand the SSR.

e1e = (y − Xβ̂)1(y ˆ− Xβ)
(4.10)

= y1y − 2β̂1X 1y + β̂1X 1X β̂

The first- and second-order derivatives are calculated as follows
 ⎧
 ∂e e

ˆ =⎨ ˆ−2X 1y + 2X 1Xβ
∂β

 2∂ e e
(4.11)

= 2Xˆ
1X.

∂β∂β̂
⎩

7https://en.wikipedia.org/wiki/Ordinary_least_squares

8https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

https://www.en.wikipedia.org
https://www.en.wikipedia.org

Random Variables, Distributions & Linear Regression • 123

We see that the second-order derivative is positive semidefinite which implies the
SSR in OLS is a convex function (see Section 3.1.4 in [3]) and for an unconstrained
convex optimization problem, the necessary as well as sufficient condition for optimal­
ity is that the first-order derivative equals 0 (see Section 4.2.3 in [3]). Optimization
of convex function is very important in machine learning. Actually, the parameter
estimations of many machine learning models are convex optimization problems.

Based on the analysis above, the solution of (4.9) is given in (4.12).

1β̂ = (X 1X)− X 1 y (4.12)

Now it seems we are ready to write our own linear regression model in R/Python.
The solution in (4.12) involves matrix transportation, multiplication and inversion,
all of which are supported in both R and Python. In Python, we can use the numpy
module for the matrix operations.

However, in practice we don’t solve linear regression with (4.12) directly. Why?
Let’s see an example with

1e + 6 −1
x = . −1 1e − 6

R

1 > x=array(
c(10^6,−1,−1,10^−6),
c(2,2))

2 > # solve() would return the
inverse matrix

3 > solve(t(x) %∗% x)
4 Error in solve.default(

t(x) %∗% x) :
5 system is computationally

singular: reciprocal
condition number =
2.22044e−28

Python

1 >>> import numpy as np
2 >>> x=np.array([[1e6

,−1],[−1,1e−6]])
3 >>> np.linalg.inv(np.dot(x.

transpose(),x))
4 array([[4.50359963e+03,

4.50359963e+09],
5 [4.50359963e+09,

4.50359963e+15]])

The R code above throws an error because of the singularity of X 1X. It’s in­
teresting that the corresponding Python code doesn’t behave in the same way as R,
which has been reported as an issue on github9.

When the matrix X 1X is singular, how to solve the OLS problem? In this book,
we will focus on the QR decomposition based solution. Singular value decomposition
(SVD) can also be used to solve OLS, which will not be covered in this book.

In linear algebra, a QR decomposition10 of matrix X would factorize X into a
product, i.e., X = QR where Q are orthogonal matrices and R is an upper triangular
matrix. Since the matrix Q is orthogonal (Q1 = Q−1), we have

9https://github.com/numpy/numpy/issues/10471

10https://en.wikipedia.org/wiki/QR_decomposition

https://www.en.wikipedia.org
https://www.github.com

124 • A Tour of Data Science: Learn R and Python in Parallel

ˆ 1β = (X 1X)− X 1 y

= (R1Q1 1QR)− R1Q1 y
(4.13)

= (R1R)−1 R1Q1y

= R−1Q1 y

Now we are ready to write our simple R/Python functions for linear regression
with the help of QR decomposition according to (4.13).

R chapter4/qr_solver.R Python chapter4/qr_solver.py

1 qr_solver=function(x,y){
 1 import numpy as np
2 qr.coef(qr(x),y)
 2

3 }
 3 def qr_solver(x,y):
4 q,r=np.linalg.qr(x)
5 p = np.dot(q.T,y)
6 return np.dot(np.linalg.

inv(r),p)

Of course, we don’t need to implement our own OLS solvers in a production
environment; but if you do, still you may find some well-written and well-tested
functions such as np.linalg.lstsq to save time and effort from doing it from scratch.

Ok, now we have finished the training part of a linear regression model in both R
and Python. After we train a model we want to use it, i.e., to make predictions based
on the model. For most machine learning models, training is much more complex than
prediction (exceptions include Lazy-learning models such as KNN). Let’s continue
developing our own linear regression model by including the prediction function and
enclose everything in an object.

R chapter4/linear_regression.R

1

2 library(R6)

3 LR = R6Class(

4 "LR",

5 public = list(

6 coef = NULL,

7 initialize = function() {

8

9 },

10 fit = function(x, y) {
11 self$qr_solver(cbind(1, x), y)
12 },
13 qr_solver = function(x, y) {

Random Variables, Distributions & Linear Regression • 125

14 self$coef = qr.coef(qr(x), y)
15 },
16 predict = function(new_x) {
17 cbind(1, new_x) %∗% self$coef
18 }
19)
20)

Python chapter4/linear_regression.py

1 import numpy as np

2

3 class LR:

4 def __init__(self):

5 self.coef = None

6

7 def qr_solver(self, x, y):

8 q, r = np.linalg.qr(x)

9 p = np.dot(q.T, y)

10 return np.dot(np.linalg.inv(r), p)

11

12 def fit(self, x, y):

13 self.coef = self.qr_solver(np.hstack((np.ones((x.shape

[0], 1)), x)), y)
14

15 def predict(self, x):

16 return np.dot(np.hstack((np.ones((x.shape[0], 1)), x)),

self.coef)

Now let’s try to use our linear regression model to solve a real regression problem
with the Boston dataset11, and check the results.

R

1 > source(’linear_regression.R’)

2 >

3 > library(MASS) # load Boston data from this package

4 >

5 > lr = LR$new()

6 > # −i means excluding the ith column from the data.frame

7 > lr$fit(data.matrix(Boston[,−ncol(Boston)]),Boston$medv)

8 > print(lr$coef)

11https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html

https://www.cs.toronto.edu

126 • A Tour of Data Science: Learn R and Python in Parallel

9 crim zn indus
chas

10 3.645949e+01 −1.080114e−01 4.642046e−02 2.055863e−02
2.686734e+00

11 nox rm age dis
rad

12 −1.776661e+01 3.809865e+00 6.922246e−04 −1.475567e+00
3.060495e−01

13 tax ptratio black lstat
14 −1.233459e−02 −9.527472e−01 9.311683e−03 −5.247584e−01
15 > # let’s make prediction on the same data
16 > pred=lr$predict(data.matrix(Boston[,−ncol(Boston)]))
17 > print(pred[1:5])
18 [1] 30.00384 25.02556 30.56760 28.60704 27.94352
19 >
20 > # compare it with the R built−in linear regression model
21 > rlm = lm(medv ~ ., data=Boston)
22 > print(rlm$coef)
23 (Intercept) crim zn indus

chas
24 3.645949e+01 −1.080114e−01 4.642046e−02 2.055863e−02

2.686734e+00
25 nox rm age dis

rad
26 −1.776661e+01 3.809865e+00 6.922246e−04 −1.475567e+00

3.060495e 01
27

−
tax ptratio black lstat

28 −1.233459e−02

−9.527472e−01 9.311683e−03 −5.247584e−01
29 > print(rlm$fitted[1:5])
30 1 2 3 4 5
31 30.00384 25.02556 30.56760 28.60704 27.94352

Python

1 >>> from sklearn.datasets import load_boston
2 >>> from linear_regression import LR
3 >>> boston = load_boston()
4 >>> X, y = boston.data, boston.target
5 >>> # first, let’s run our own linear regression
6 ... lr = LR()
7 >>> lr.fit(X, y)
8 >>> print(lr.coef)
9 [3.64594884e+01

10

−1.08011358e−01 4.64204584e−02 2.05586264e−02
2.68673382e+00 −1.77666112e+01 3.80986521e+00 6.92224640e−04

Random Variables, Distributions & Linear Regression • 127

11 −1.47556685e+00 3.06049479e−01 −1.23345939e−02 −9.52747232e−01

12 9.31168327e−03 −5.24758378e−01]

13 >>> print(lr.predict(X)[:5])

14 [30.00384338 25.02556238 30.56759672 28.60703649 27.94352423]

15 >>>

16 >>> # now, use sklearn’s linear regression model

17 ... from sklearn.linear_model import LinearRegression

18 >>> reg = LinearRegression().fit(X, y)

19 >>> print(reg.coef_)

20 [−1.08011358e−01 4.64204584e−02 2.05586264e−02 2.68673382e+00

21 −1.77666112e+01 3.80986521e+00 6.92224640e−04 −1.47556685e+00

22 3.06049479e−01 −1.23345939e−02 −9.52747232e−01 9.31168327e−03

23 −5.24758378e−01]

24 >>> print(reg.predict(X)[:5])

25 [30.00384338 25.02556238 30.56759672 28.60703649 27.94352423]

The results from our own linear regression models are almost identical to the
results from lm() function or the sklearn.linear_model module, which means we
have done a great job so far.

4.8 RIDGE REGRESSION

What is the problem of solving linear regression model specified by (4.9)? There is
nothing wrong at all with that approach. But I would like to cite my favorite quote —
"Essentially, all models are wrong, but some are useful"12. (4.9) provides one solution
to model (4.7). There are some alternative solutions, such as lasso regression and
ridge regression. In this section, let’s focus on ridge regression.

What is ridge regression? Ridge regression doesn’t change the model itself. In­
stead, it changes the way to estimate model parameters. By naive OLS, we minimize
the SSR directly. In ridge regression, we change the objective function (which is
commonly called loss function in machine learning models) by adding an additional
penalty

1min e e + λβ1β. (4.14)
β̂

The optimization problem (4.14) is still an unconstrained optimization problem
and it is convex. It can also be formulated as a constrained convex optimization
problem as

min e1e
β̂ (4.15)

subject to β1β ≤ t.

12https://en.wikipedia.org/wiki/All_models_are_wrong

https://www.en.wikipedia.org

128 • A Tour of Data Science: Learn R and Python in Parallel

The theory behind ridge regression can be found from The Elements of Statistical
Learning [9]. Let’s turn our attention to the implementation of ridge regression. The
solution to (4.15) can be obtained in the same way as the solution to (4.9), i.e.,

ˆ 1 β = (X 1X + λI)− X 1y. (4.16)
Again, in practice we don’t use (4.16) to implement ridge regression for the same

reasons that we don’t use (4.12) to solve linear regression without penalty.
Actually, we don’t need new techniques to solve (4.14). Let’s make some trans­

formation on the objective function in (4.14):

n p 1 2 2e e +

 λβ1β = (yi
i

− x1
iβ) +

√
(0 − λβi) (4.17)

=1 i=1

, where xi = [1, X1i, X2i, ..., Xpi]1.
Let’s define an augmented dataset:

 ⎡ 1 X11 X21 Xp1 y1

· · ·
 ⎢

 1 X12 X22 · · · Xp2

⎤ ⎡
y2 ⎢

⎤
⎢

 ⎢ .. ⎢

⎥ ⎢
 1 X1n X2n · · · X

⎥ ⎥

 pn

⎥ ⎢⎢ ⎥⎥

 Xλ =

⎢⎢√
λ 0 0 · · · 0

⎥ ⎢ ⎥

√

λ

⎥⎥⎥ y
⎢⎢⎢ n

, yλ =

⎥⎥
 ⎢⎢ ⎢

 0⎥⎥
⎥

 . (4.18)⎢ ⎥⎥ ⎢
0 0 0 ⎢

· · · 0⎢

 0 0

√ ⎢⎢ λ
 . . .

· · · 0

⎥ ⎢
 0

⎥
 ⎢

 . . .

⎥⎥⎥ ⎢⎢⎢ ⎥

⎥ ⎢⎢ ⎥ ⎢⎢
. . . .

⎥
 ..

⎥⎥

 0 0
√

0 λ 0

⎥⎥

0

⎥⎣ ⎦ ⎣
If we regress yλ on Xλ, the OLS solution is just what we are looking

⎦
 for. However,

usually the penalty is not applied on the intercept. Thus, we modify yλ and Xλ to

 ⎡
1 X11 X21 · · · Xp1

1 X12 X22 · · · X

⎤ ⎡
y1

 ⎢⎢
.

p2 y2
. .

⎥⎥ ⎢⎢
 .

⎤
⎢

1 X1n X2n Xpn

⎥ ⎢
yn

⎥⎥⎥

 Xλ =
⎢⎢⎢ ⎢

 · · ·√ = (4.19)0

⎥⎥

⎢ ⎥⎥⎥ ⎢⎢ ⎥⎢⎢0 ,
λ 0 y

 λ .

· · · 0

√⎢⎢0 0 λ · · · 0

⎥⎥ ⎢ ⎥

⎥⎥ ⎢⎢

 0

⎥⎥
 ⎢

.
 .⎢⎢

⎥ ⎢⎢

 .

⎥⎥

0 0 0 0
√

λ

⎥⎥ ⎢⎢ ⎥⎥ ⎢
0

⎥⎥⎣
Now we are ready to implement our own ridge

⎦
 regression

⎣
 mo

⎦
del based on the

description above. It is also common to normalize13 the independent variables before
applying ridge regression to make different variables in the same order of magnitude.

R chapter4/linear_regression_ridge.R

13https://en.wikipedia.org/wiki/Normalization_(statistics)

https://www.en.wikipedia.org

Random Variables, Distributions & Linear Regression • 129

1 library(R6)
2 LR_Ridge = R6Class(
3 "LR_Ridge",
4 public = list(
5 coef = NULL,
6 mu = NULL,
7 sd = NULL,
8 lambda = NULL,
9 initialize = function(lambda) {

10 self$lambda = lambda
11 },
12 scale = function(x) {
13 self$mu = apply(x, 2, mean)
14 self$sd = apply(x, 2, function(e) {
15 sqrt((length(e) − 1) / length(e)) ∗ sd(e)
16 })
17 },
18 transform = function(x) {
19 return(t((t(x) − self$mu) / self$sd))
20 },
21 fit = function(x, y) {
22 self$scale(x)
23 x_transformed = self$transform(x)
24 x_lambda = rbind(x_transformed , diag(rep(sqrt(self$lambda)

, ncol(x))))
25 y_lambda = c(y, rep(0, ncol(x)))
26 self$qr_solver(cbind(c(rep(1, nrow(
27 x
28)), rep(0, ncol(
29 x
30))), x_lambda), y_lambda)
31 },
32 qr_solver = function(x, y) {
33 self$coef = qr.coef(qr(x), y)
34 },
35 predict = function(new_x) {
36 new_x_transformed = self$transform(new_x)
37 cbind(rep(1, nrow(new_x)), new_x_transformed) %∗% self$

coef
38 }
39)
40)

130 • A Tour of Data Science: Learn R and Python in Parallel

Python chapter4/linear_regression_ridge.py

1 import numpy as np

2 from sklearn.preprocessing import StandardScaler

3

4

5 class LR_Ridge:

6 def __init__(self, l):

7 self.l = l

8 self.coef = None

9 self.scaler = StandardScaler()

10

11 def qr_solver(self, x, y):
12 q, r = np.linalg.qr(x)
13 p = np.dot(q.T, y)
14 return np.dot(np.linalg.inv(r), p)
15

16 def fit(self, x, y):
17 x_transformed = self.scaler.fit_transform(x)
18 x_lambda = np.vstack(
19 (x_transformed , np.diag([self.l∗∗0.5]∗x.shape[1])))
20 x_lambda = np.hstack(
21 (np.vstack((np.ones((x.shape[0], 1)), np.zeros((x.

shape[1], 1)))), x_lambda))
22 y_lambda = np.hstack((y, np.zeros((x.shape[1],))))
23 self.coef = self.qr_solver(x_lambda , y_lambda)
24

25 def predict(self, x):
26 new_x_transformed = self.scaler.transform(x)
27 new_x_transformed = np.hstack(
28 (np.ones((x.shape[0],1)), new_x_transformed)
29)
30 return np.dot(new_x_transformed , self.coef)

In R, we implement our own scaler; but in the Python implementation, we use
StandardScaler from sklearn.preprocessing module, which is very handy. Please
pay attention to how we calculate the standard deviation14 in R - we are using the
formula of population standard deviation rather than the formula of sample standard
deviation. Actually it doesn’t matter which formula we use to calculate the standard
deviation. I made the choice to use population standard deviation formula in order
to generate consistent result of the StandardScaler since StandardScaler uses the
formula of population standard deviation.

The selection of best λ requires solving the OLS problem repeatedly with different
14https://en.wikipedia.org/wiki/Standard_deviation

https://www.en.wikipedia.org

Random Variables, Distributions & Linear Regression • 131

values of λ, which implies the QR decomposition procedure would be called multiple
times. Using SVD decomposition could be more efficient in terms of selection of best
λ. But it won’t be covered in the current version of this book.

We are ready to run our own ridge regression on the Boston dataset.

R

1 > source(’linear_regression_ridge.R’)

2 >

3 > library(MASS) # load Boston data from this package

4 >

5 > # let’s try lmabda = 0.5

6 > ridge = LR_Ridge$new(0.5)

7 > ridge$fit(data.matrix(Boston[,−ncol(Boston)]),Boston$medv)

8 > print(ridge$coef)

9 crim zn indus chas

nox
10 22.53280632 −0.92396151 1.07393055 0.12895159 0.68346136

−2.04275750
11 rm age dis rad tax

ptratio
12 2.67854971 0.01627328 −3.09063352 2.62636926 −2.04312573

−2.05646414
13 black lstat
14 0.84905910 −3.73711409
15 > # let’s make prediction on the same data
16 > pred=ridge$predict(data.matrix(Boston[,−ncol(Boston)]))
17 > print(pred[1:5])
18 [1] 30.01652 25.02429 30.56839 28.61521 27.95385

Python

1 >>> from sklearn.datasets import load_boston

2 >>> from linear_regression_ridge import LR_Ridge

3 >>>

4 >>> boston = load_boston()

5 >>> X, y = boston.data, boston.target

6 >>> # first, let’s run our own linear regression

7 ...

8 >>> ridge = LR_Ridge(0.5)

9 >>> ridge.fit(X, y)

10 >>> print(ridge.coef)
11 [2.25328063e+01 −9.23961511e−01 1.07393055e+00 1.28951591e−01
12 6.83461360e−01 −2.04275750e+00 2.67854971e+00 1.62732755e−02
13 −3.09063352e+00 2.62636926e+00 −2.04312573e+00 −2.05646414e+00

132 • A Tour of Data Science: Learn R and Python in Parallel

14 8.49059103e−01 −3.73711409e+00]

15 >>> print(ridge.predict(X)[:5])

16 [30.01652397 25.02429359 30.56839459 28.61520864 27.95385422]

It’s exciting to see the outputs from R and Python are quite consistent.
Linear regression is not as simple as it seems. To learn more about it, I recommend

reading [10].

C H A P T E R 5

Optimization in Practice

We talk about mathematical optimization in this chapter. Mathematical op­
timization is the selection of a best element from some set of available

alternatives. Why do we talk about optimization in this book on data science? Data
science is used to help make better decisions, and so is optimization. Operations re­
search, with optimization at its core, is a discipline that deals with the application
of advanced analytical methods to make better decisions1. I always feel data science
and operations research are greatly intertwined. The training of a variety of (super­
vised) machine learning models is to minimize the loss functions, which is essentially
an optimization problem. In optimization, the loss functions are usually referred as
objective functions.

Mathematical optimization is a very broad field and we ignore its theories in this
book and only touch some of the simplest applications. Actually, in Chapter 4 we
have seen one of its important applications in linear regression.

5.1 CONVEXITY

The importance of convexity cannot be overestimated. A convex optimization prob­
lem [3] has the following form

max f0(x)
x (5.1)

subject to fi(x) ≤ bi; i = 1, ..., m,

where the vector x ∈ Rn represents the decision variable; fi; i = 1, ..., m are convex
functions (Rn → R). A function fi is convex if

fi(αx + (1 − α)y) ≤ αfi(x) + (1 − α)fi(y), (5.2)

for all x, y ∈ Rn, and all α ∈ R with 0 ≤ α ≤ 1. (5.1) implies that a convex
optimization problem requires both the objective function and the set of feasible
solutions to be convex. Why do we care about the convexity? Because a convex
optimization problem has a very nice property - a local minimum (which is minimal

1https://en.wikipedia.org/wiki/Operations_research

133

https://www.en.wikipedia.org

134 • A Tour of Data Science: Learn R and Python in Parallel

Figure 5.1: A non-convex function f . Its local optimum f(x2) is a global optimum,
but the local optimum f(x1) is not

Figure 5.2: Apply gradient descent step by step for minimization

among a neighboring set of candidate solutions) is also a global minimum (which
is the minimal solution among all feasible solutions). Thus, if we can find a local
minimum we get the global minimum for convex optimization problems.

Many methods/tools we will introduce in the following sections won’t throw an
error if you feed them a non-convex objective function; but the solution returned by
these numerical optimization methods is not necessary to be a global optimum. For
example, the algorithm may get trapped in a local optimum.

5.2 GRADIENT DESCENT

What is the most commonly used optimization algorithm in machine learning? Prob­
ably the answer is gradient descent (and its variants). The gradient descent is also
an iterative method, and in step i the update of x follows

(k+1) (k) − γ∇f((x k)x = x), (5.3)

where f is the objective function and γ is called the step size or learning rate. Start
(0)),from an initial value x0 and follow (5.3); we will have a monotonic sequence f(x

f(x(1)), ..., f(x(n)) in the sense that f(x(k)) >= f(x(k+1)). When the problem is
convex, f(x(i)) converges to the global minimum (see Figure 5.2).

Many machine learning models can be solved by the gradient descent algorithm,
for example, the linear regression (with or without penalty) introduced in Chapter

Optimization in Practice • 135

4. Let’s see how to use the vanilla (standard) gradient descent method in the linear
regression that we introduced in Chapter 4.

According to the gradient derived in (4.11), the update for the parameters be­
comes:

β̂(k+1) ˆ β(k)).= β(k) + 2γX 1(y − X ˆ (5.4)

R chapter5/linear_regression_gradient_descent.R

1 library(R6)

2 LR_GD = R6Class(

3 "LR_GD",

4 public = list(

5 coef = NULL,

6 learning_rate = NULL,

7 x = NULL,

8 y = NULL,

9 seed = NULL,

10 initialize = function(x, y, learning_rate = 0.001, seed =
42) {

11 # we add 1s to x
12 self$x = cbind(1, x)
13 self$y = y
14 self$seed = seed
15 set.seed(self$seed)
16 # we use a fixed learning rate here, but it can also be

adaptive
17 self$learning_rate = learning_rate
18 # let’s initialize the coef
19 self$coef = runif(ncol(self$x))
20 },
21 fit = function(max_iteration = 1000) {
22 for (i in 1:max_iteration) {
23 self$update()
24 }
25 },
26 gradient = function() {
27 y_hat = self$predict(self$x)
28 # we normalize the gradient by the sample size
29 − 2 ∗ (t(self$x) %∗% (self$y − y_hat)) / nrow(self$x)
30 },
31 update = function() {
32 self$coef = self$coef − self$learning_rate ∗ self$gradient

()
33 },

136 • A Tour of Data Science: Learn R and Python in Parallel

34 predict = function(new_x) {

35 new_x %∗% self$coef

36 }

37)

38)

Accordingly, we have the Python implementation as follows.

Python chapter5/linear_regression_gradient_descent.py

1 class LR_GD:

2 """

3 linear regression with vanilla gradient descent

4 """

5

6 def __init__(self, x, y, learning_rate=0.005, seed=42):

7 # we put 1s in the first column of x

8 self.x = np.hstack((np.ones((x.shape[0], 1)), x))

9 self.y = y[:, None]

10 self.seed = seed
11 np.random.seed(self.seed)
12 self.coef = np.random.uniform(size=(self.x.shape[1], 1))
13 self.learning_rate = learning_rate
14

15 def predict(self, new_x):
16 # let’s use @ for matrix multiplication
17 return new_x @ self.coef
18

19 def gradient(self):
20 y_hat = self.predict(self.x)
21 return −2.0∗self.x.T @ (self.y−y_hat)/self.x.shape[0]
22

23 def update(self):
24 self.coef −= self.learning_rate∗self.gradient()
25

26 def fit(self, max_iteration=1000):
27 for _ in range(max_iteration):
28 self.update()

Let’s use simulated dataset to test our algorithm.

R Python

1 > source(’gradient_descent.R 1 >>> from gradient_descent
’) import LR_GD

Optimization in Practice • 137

2 > n = 1000 2 >>> import numpy as np
3 > set.seed(42) 3 >>> n = 1000
4 > x = cbind(rnorm(n), 4 >>> np.random.seed(42)

runif(n)) 5 >>> x = np.column_stack((np.
5 > b = 6 # intercept

random.normal(size=n), np
6 > coef = c(2, 3)

.random.uniform(size=n)))
7 > err = runif(n, 0, 0.2)

6 >>> b = 6 # intercept
8 > y = x % ∗% coef + b + err

7 >>> coef = np.array([2, 3])
9 > lr_gd = LR_GD

8 >>> err = np.random.uniform(
$new(x = x, y = y,

 size=n, low=0, high=0.2)learning_rate = 0.05)

 9 >>> y = x @ coef + b +10 > lr_gd err$fit(1000)
,> >>> lr_gd = LR_GD(x=x y=y,11 lr_gd$coef 10

 learning_rate=0.05)12 [,1]

13 [1,] it6.106233 11 >>> lr_gd.f (1000)

rint(lr_gd.coef)14 2,] >>> p[2.001042 12

15 [3,] 2.992593 13 [[6.09887817]
14 [2.00028507]
15 [2.99996673]]

The results show that our implementation of gradient descent update works well
on the simulated dataset for linear regression.

However, when the loss function is non-differentiable, the vanilla gradient descent
algorithm (4.11) cannot be used. In Chapter 5, we added the 2L norm (also referred
to as Euclidean norm2) of β to the loss function to get the ridge regression. What if
we change the 2L norm to 1L norm in (4.14)?

p
min e1e + λ

|βi|, (5.5)

β̂ i=1

where λ > 0.
Solving the optimization problem specified in (5.5), we will get the Lasso solution

of linear regression. Lasso is not a specific type of machine learning model. Actually,
Lasso refers to least absolute shrinkage and selection operator. It is a method that
performs both variable selection and regularization. What does variable selection
mean? When we build up a machine learning model, we may collect as many data
points (also called features, or independent variables) as possible. However, if only a
subset of these data points are relevant for the task, we may need to select the subset
explicitly for some reasons. First, it’s possible to reduce the cost (time or money)
to collect/process these irrelevant variables. Second, adding irrelevant variables into
some machine learning models may impact the model performance. But why? Let’s
take linear regression as an example. Including an irrelevant variable into a linear
regression model is usually referred to as model misspecification. (Of course, omitting
a relevant variable also results in a misspecified model.) In theory, the estimator of

2https://en.wikipedia.org/wiki/Norm_(mathematics)

https://www.en.wikipedia.org

138 • A Tour of Data Science: Learn R and Python in Parallel

coefficients is still unbiased (θ̂ is an unbiased estimator of θ if E(θ̂) = θ) when
an irrelevant variable is included. But in practice, when the irrelevant variable has
non-zero sample correlation coefficient with these relevant variables or the response
variable y, the estimate of coefficient may get changed. In addition, the estimator of
coefficients is inefficient3. Thus, it’s better to select the relevant variables for a linear
regression.

The Lasso solution is very important in machine learning because of its sparsity,
which results in the automated variable selection. As for why the Lasso solution is
sparse, the theoretical explanation could be found from [9]. Let’s focus on how to solve
it. Apparently, gradient descent algorithm cannot be applied directly to solve (5.5)
although it is still a convex optimization problem since the regularized loss function
is non-differentiable because of ||.

Proximal gradient is one of the algorithms that can be used to solve (5.5) is
called proximal gradient descent [14]. Let’s skip the theory of proximal methods and
the tedious linear algebra, and jump to the solution directly. By proximal gradient
descent, the update is given as follows in each iteration

(k+1) = β Sλγ ((β i) − 2γ∇(e1e)))
(5.6)

= Sλγ ((β i) + 2γX 1(y − (Xβ i))),

where Sθ(·) is called soft-thresholding operator given by

 zi − θ zi > θ;

[Sθ(z)]i =

⎧⎪⎨
0 |zi| ≤ θ ; (5.7)

 zi + θ zi < −θ.
⎪⎩

Now we are ready to implement the Lasso solution of linear regression via (5.7).
Similar to ridge regression, we don’t want to put penalty on the intercept, and a
natural estimate of the intercept is the mean of response, i.e., ȳ. The learning rate γ in
each update could be fixed or adapted (change over iterations). In the implementation
below, we use the largest eigenvalue of X 1X as the fixed learning rate.

R chapter5/lasso.R

1 library(R6)

2

3 # soft−thresholding operator

4 sto = function(z, theta){

5 sign(z)∗pmax(abs(z)−rep(theta,length(z)), 0.0)

6 }

7

8 Lasso = R6Class(

9 "LassoLinearRegression",

10 public = list(

3https://en.wikipedia.org/wiki/Efficient_estimator

https://www.en.wikipedia.org

Optimization in Practice • 139

11 intercept = 0,
12 beta = NULL,
13 lambda = NULL,
14 mu = NULL,
15 sd = NULL,
16 initialize = function(lambda) {
17 self$lambda = lambda
18 },
19 scale = function(x) {
20 self$mu = apply(x, 2, mean)
21 self$sd = apply(x, 2, function(e) {
22 sqrt((length(e)−1) / length(e))∗sd(e)
23 })
24 },
25 transform = function(x) t((t(x)

− self$mu) / self$sd),
26 fit = function(x, y, max_iter=100) {
27 if (!is.matrix(x)) x = data.matrix(x)
28 self$scale(x)
29 x_transformed = self$transform(x)
30 self$intercept = mean(y)
31 y_centered = y − self$intercept
32 gamma = 1/(eigen(t(x_transformed) %∗% x_transformed , only.

values=TRUE)$values[1])
33 beta = rep(0, ncol(x))
34 for (i in 1:max_iter){
35 nabla = − t(x_transformed) %∗% (y_centered −

x_transformed %∗% beta)
36 z = beta − 2∗gamma∗nabla
37 print(z)
38 beta = sto(z, self$lambda∗gamma)
39 }
40 self$beta = beta
41 },
42 predict = function(new_x) {
43 if (!is.matrix(new_x)) new_x = data.matrix(new_x)
44 self$transform(new_x) %∗% self$beta + self$intercept
45 }
46)
47)

Python chapter5/lasso.py

1

2 import numpy as np

140 • A Tour of Data Science: Learn R and Python in Parallel

3 from sklearn.preprocessing import StandardScaler

4

5 def sto(z, theta):

6 return np.sign(z)∗np.maximum(np.abs(z)−np.full(len(z),theta)

, 0.0)
7

8 class Lasso:

9 def __init__(self, l):

10 self.l = l # l is lambda
11 self.intercept = 0.0
12 self.beta = None
13 self.scaler = StandardScaler()
14

15 def fit(self, x, y, max_iter=100):
16 self.intercept = np.mean(y)
17 y_centered = y−self.intercept
18 x_transformed = self.scaler.fit_transform(x)
19 gamma = 1.0/np.linalg.eig(x_transformed.T.dot(

x_transformed))[0].max()
20 beta = np.zeros(x_transformed.shape[1])
21 for _ in range(max_iter):
22 nabla = − np.dot(x_transformed.T, y_centered−np.dot(

x_transformed , beta))
23 z = beta − 2∗gamma∗nabla
24 beta = sto(z, self.l∗gamma)
25 print(z)
26 self.beta = beta
27

28 def predict(self, new_x):
29 new_x_transformed = self.scaler.transform(new_x)
30 return np.dot(new_x_transformed , self.beta) + self.

intercept

Now, let’s see the application of our own Lasso solution of linear regression on
the Boston house-prices dataset.

R

1 > source(’lasso.R’)

2 > library(MASS)

3 > lr = Lasso$new(200)

4 > lr$fit(data.matrix(Boston[,−ncol(Boston)]), Boston$medv, 100)

5 > print(lr$beta)

6 [,1]

7 crim −0.34604592

Optimization in Practice • 141

8 zn 0.38537301
9 indus −0.03155016

10 chas 0.61871441
11 nox −1.08927715
12 rm 2.96073304
13 age 0.00000000
14 dis −1.74602943
15 rad 0.02111245
16 tax 0.00000000
17 ptratio −1.77697602
18 black 0.67323937
19 lstat −3.71677103

Python

1 >>> from lasso import Lasso
2 >>> from sklearn.datasets import load_boston
3 >>> boston = load_boston()
4 >>> X, y = boston.data, boston.target
5 >>> lr = Lasso(200.0)
6 >>> lr.fit(X, y, max_iter=100)
7 >>> lr.beta
8 array([−0.34604592, 0.38537301, −0.03155016, 0.61871441,

9

−1.08927715,
2.96073304, −0. , −1.74602943, 0.02111245, −0.

,
10 −1.77697602, 0.67323937, −3.71677103])

In the example above, we set the λ = 200.0 arbitrarily. The results show that the
coefficients of age and tax are zero. In practice, the selection of λ is usually done by
cross-validation which will be introduced later in this book. If you have used the off-
the-shelf Lasso solvers in R/Python you may wonder why the λ used in this example
is so big. One major reason is that in our implementation the first item in the loss
function, i.e., e1e is not scaled by the number of observations.

In practice, one challenge to apply Lasso regression is the selection of parameter
λ. We will talk about that in Chapter 6 in more detail. The basic idea is to select
the best λ to minimize the prediction error on the unseen data.

5.3 ROOT-FINDING

There is a close relation between optimization and root-finding. To find the roots of
f(x) = 0, we may try to minimize 2f (x) alternatively. Under specific conditions, to
minimize f(x) we may try to solve the root-finding problem of f 1(x) = 0 (e.g., see

142 • A Tour of Data Science: Learn R and Python in Parallel

linear regression in Chapter 5). Various root-finding methods are available in both R
and Python.

Let’s see an application of root-finding in finance.

Application - Internal rate of return
Internal rate of return(IRR) is a measure to estimate an investment’s potential profitability.
In fact, it is a discount rate which makes the net present value (NPV) of all future cashflows
(positive for inflow and negative for outflow) equal to zero. Given the discount rate r, NPV is
calculated as

T
 Ci/(1 + r)t, (5.8)

t=0

where Ci denotes the cashflow and t denotes the duration from time 0. Thus, we can solve
the IRR by finding the root of NPV.

Let’s try to solve IRR in R/Python.

R chapter5/xirr.R

1 NPV = function(cashflow_dates , cashflow_amounts , discount_rate){
2 stopifnot(length(cashflow_dates)==length(cashflow_amounts))
3 days_in_year = 365 # we assume there are 365 days in each year
4 times= as.numeric(difftime(cashflow_dates , cashflow_dates[1],

units="days"))/days_in_year
5 sum(cashflow_amounts/(1.0+discount_rate)^times)
6 }
7 # we name this function as ’xirr’ to follow the convention of MS

Excel
8 xirr = function(cashflow_dates , cashflow_amounts){
9 # we use uniroot function in R for root−finding

10 uniroot(f=function(x) NPV(cashflow_dates ,cashflow_amounts ,x),
interval= c(−1,100))$root

11 }

Python chapter5/xirr.py

1 from datetime import datetime

2 from scipy.optimize import root

3 def NPV(cashflow_dates , cashflow_amounts , discount_rate):

4 assert len(cashflow_dates)==len(cashflow_amounts), "

inconsistent lengths of cashflows dates and amounts"
5 days_in_year=365.0

Optimization in Practice • 143

6 times = [(e−cashflow_dates[0]).days/days_in_year for e in
cashflow_dates]

7 return sum(cashflow_amounts[i]/(1.0+discount_rate)∗∗e for i,e
in enumerate(times))

8 def xirr(cashflow_dates , cashflow_amounts):
9 # we use the scipy.optimize.root function to find the root

10 return root(fun=lambda x:NPV(cashflow_dates ,cashflow_amounts ,x
),x0=[0.0]).x

R Python

1 > source(’xirr.R’) 1 >>> from xirr import xirr
2 > cashflow_dates = c(2 >>> from datetime

as.Date(’2010−01−01’), import datetime
as.Date(’2010 06 01’), 3 >>> cashflow_dates=[datetime
as.Date(’2012

−
01

−− −01’))
(2010,1,1), datetime

3 > cashflow_amounts =
c(−1000, 200, 1000) (2010,6,1), datetime

4 > xirr(cashflow_dates , (2012,1,1)]
cashflow_amounts) 4 >>> cashflow_amounts=[1000,

5 [1] 0.1120706
−

200, 1000]
5 >>> xirr(cashflow_dates ,

cashflow_amounts)
6 array([0.1120734])

Please note the R function uniroot works on one-dimensional functions only,
while scipy.optimize.root function also works on multi-dimensional functions. scipy
.optimize.root requires an initial guess for the solution, but uniroot does not. To
find roots of multi-dimensional functions in R, the optim function introduced in the
next section can also be used. Also, the package rootSolve could be useful. There are
other useful features from both functions; for example, we can control the tolerance
for termination.

5.4 GENERAL PURPOSE MINIMIZATION TOOLS IN R/PYTHON

Implementing our own algorithms from scratch could be fun and may help us better
understand how the algorithms work, but they may not be always efficient and stable.
There are established packages ready to use for many algorithms. For general pur­
pose minimization problems, we can use the optim function in R and scipy.optimize
.minimize function in Python as a black box. Various optimization algorithms have
been implemented as the workhorse of these two functions. Some of these optimiza­
tion algorithms (e.g., Quasi-Newton methods4) require the gradients, and some are
derivate-free (e.g., Nelder–Mead method5). First, let’s see a simple example.

4https://en.wikipedia.org/wiki/Quasi-Newton_method

5https://en.wikipedia.org/wiki/Nelder-Mead_method

https://www.en.wikipedia.org
https://www.en.wikipedia.org

144 • A Tour of Data Science: Learn R and Python in Parallel

Application - Maximum likelihood estimation of normal distribution
Maximum likelihood 6 estimation (MLE) is a very important topic in statistics. I will give a

very brief introduction of what MLE is. To understand MLE, first we need to understand

the likelihood function. Simply speaking, the likelihood function L(θ|x) is a function of the

unknown parameters θ to describe the probability or odds of obtaining the observed data x

(x is a realization of random variable X). For example, when the random variable X follows a

continuous probability distribution with probability density function (pdf) fθ , L(θ|x) = fθ (x).

It’s common to observe a random sample consisting of multiple independent observations

rather than a single observation. In that case, the likelihood function is

n

L(θ|x) =

fθ(xi). (5.9)
i=1

Given the observed data and a model on which the data are generated, we may minimize the

corresponding likelihood function to estimate the model parameters. There are some nice

properties of MLE, such as its consistency and efficiency. To better understand MLE and its

properties, I recommend reading [4].

In practice, it’s common to minimize the logarithm of the likelihood function, i.e.,
the log-likelihood function. When X ∼ N (μ, 2σ), the pdf of X is given as below

1 ()2 2 2
f(2x|(μ, σ)) = √ e− x−μ / σ . (5.10)

σ 2π

Taking the logarithm, the log-likelihood function is equal to

nn 1 L(2θ|x) = − log(2π) 2 − n log σ − (2

xi − μ)
 . 2 (5.11)

σ
i=1

Since the first item in (5.11) is a constant, we can simply set the log-likelihood
function to

1 n

L(2 θ|x) = − n log σ −

(xi − μ) . 2 (5.12)2σ
i=1

It’s worth noting (5.12) is convex. Let’s implement the MLE for normal distribu­
tion in R/Python.

R chapter5/normal_mle.R

1 log_lik = function(theta, x){
2 mu = theta[1]
3 sigma = theta[2]

6https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

https://www.en.wikipedia.org

Optimization in Practice • 145

4 # we return the negative log−likelihood since optim is for
minimization

5 −(−length(x)∗log(sigma) − 0.5/sigma^2∗sum((x−mu)^2))
6 }
7

8 normal_mle = function(x){
9 # par=c(0,1) as the initial values

10 # lower=c(−Inf, 1e−6) for the lower bounds
11 optim(par=c(0, 1), fn=log_lik, x=x, lower=c(−Inf, 1e−6),

method="L

−BFGS−B")$par
12 }

Python chapter5/normal_mle.py

1 from scipy.optimize import minimize
2 from numpy.random import normal
3 from math import log
4

5 def log_lik(theta, x):
6 mu = theta[0]
7 sigma = theta[1]
8 # return the negative log−likelihood for minimization
9 return −(−len(x)∗log(sigma) − 0.5/sigma∗∗2∗sum((e−mu)∗∗2 for e

in x))
10

11 def normal_mle(x):
12 return minimize(fun=lambda e:log_lik(e,x),x0=[0,1],method=’L−

BFGS−B’,bounds=((None,None),(1e−6,None))).x

There is no bound set for the mean parameter μ, while we need to set the lower
bound for the standard deviation σ. We chose ’L-BFGS-B’ as the optimization algo­
rithm in this example, which requires the gradient of the objective function. When the
gradient function is not provided, the gradient is estimated in the numeric approach.
In general, providing the gradient function may speed up the work. ’L-BFGS-B’ is
a quasi-Newton method. Newton method requires the Hessian matrix for optimiza­
tion, but the calculation of Hessian matrix may be expensive or even unavailable
in some cases. The quasi-Newton methods approximate the Hessian matrix of the
objective function instead of calculation. Now let’s use these functions to estimate
the parameters of normal distribution.

R Python

1 > source(’normal_mle.R’) 1 >>> from numpy.random
import seed, normal

146 • A Tour of Data Science: Learn R and Python in Parallel

2 > n=100 # generate a random 2 >>> from normal_mle
sample with size = 100 import normal_mle.R

3 > set.seed(42) 3 >>> seed(42)

4 > x=rnorm(n, mean=1.5, 4 >>> n=100
sd=0.8) 5 >>> x=normal(1.5, 0.8, n)

5 > normal_mle(x)
6 >>> normal_mle(x)

6 [1] 1.5260111 0.8289101
7 array([1.41692178,

0.72289325])

Let’s see another application of the general purpose minimization - logistic re­
gression.

Application - Logistic regression
We have seen how linear regression works in Chapter 4. Logistic regression works similarly
to linear regression. The major difference is that logistic regression is used in a classification
problem. Classification means to identify to which of a set of categories a new observation
belongs. Among classification problems, if each observation belongs to one of two disjoint
categories, it is a binary classification problem. Binary classification has lots of real-world
applications, such as spam email filter, loan default prediction, and sentiment analysis.
In logistic regression, the prediction output of an observation is the probability that the ob­

servation falls into a specific category. Let X represent a n × (p + 1) matrix (n > p) of
independent variables (predictor) with constant vector 1 in the first column, and y repre­

sent a column vector of the response variable (target). Please note y is a binary vector, i.e.,
yi ∈ {0, 1}. Formally, a logistic regression is specified as

1
P r(yi = 1|xi, β) = ,

x
(5.13)

1 + − i
 e β

where xi = [1, X1i, X2i, ..., Xpi] , and β denotes the parameter of the logistic model.
What does (5.13) mean? It implies the response variable yi given xi and β follows a
Bernoulli distribution. More specifically, yi ∼ Bern(1/(1 + exp(−xi

 β))). Based on the
assumption that the observations are independent, the log-likelihood function is

n

(1L β|X, y) = log
 (

P r(y
i = 1|xi, β)yi P r(y y

i = 0|xi, β) − i

i=1

n

)

=
 (

yi log P r(yi = 1|xi, β) + (1 − yi) log P r(yi = 0|xi, β)
)

(5.14)
i=1

n

=

yixi
 β x

 − log(1 + e βi) .
i=1

()

Given the log-likelihood function, we can get the maximum likelihood estimate
of logistic regression by minimizing (5.14) which is also convex. The minimization
can be done similarly to linear regression via the iteratively re-weighted least square
method (IRLS) [9]. However, in this section we will not use the IRLS method and

Optimization in Practice • 147

instead let’s use the optim function and scipy.optimize.minimize function in R and
Python, respectively.

R chapter5/logistic_regression.R

1 library(R6)

2

3 LogisticRegression = R6Class(

4 "LogisticRegression",

5 public = list(

6 coef = NULL,

7 initialize = function() {

8 },

9 sigmoid = function(x) {

10 1.0/(1.0 + exp(−x))
11 },
12 log_lik = function(beta, x , y) {
13 linear = x %∗% beta
14 ll = sum(linear ∗ y) − sum(log(1 + exp(linear)))
15 return(

−ll) # return negative log−likelihood
16 },
17 fit = function(x, y) {
18 if (!is.matrix(x)) x = data.matrix(x)
19 self$coef = optim(par=rep(0, 1+ncol(x)), fn=self$log_lik,

x=cbind(1, x), y=y, method="L−BFGS−B")$par
20 },
21 predict = function(new_x) {
22 if (!is.matrix(new_x)) new_x = data.matrix(new_x)
23 linear = cbind(1, new_x) %∗% self$coef
24 self$sigmoid(linear)
25 }
26)
27)

Python chapter5/logistic_regression.py

1 import numpy as np
2 from scipy.optimize import minimize
3

4 class LogisticRegression:
5 def __init__(self):
6 self.coef = None
7

8 # we use ’_’ as the prefix of the method name to indicate
the method is private

148 • A Tour of Data Science: Learn R and Python in Parallel

9 def _sigmoid(self, x):
10 return 1.0/(1 + np.exp(−x))
11

12 def _log_lik(self, beta, x, y):
13 linear = np.dot(x, beta)
14 ll = np.sum(linear.dot(y)) − np.sum(np.log(1.0+np.exp(

linear)))
15 return −ll
16

17 def fit(self, x, y):
18 self.coef = minimize(fun=self._log_lik , args=(np.insert(

x, 0, 1.0, axis=1),y), method=’L−BFGS−B’, x0=np.
zeros(1+x.shape[1])).x

19

20 def predict(self, new_x):
21 linear = np.insert(new_x, 0, 1.0, axis=1) # add 1 t o

new_x
22 return self._sigmoid(linear)

Now let’s see how to use our own logistic regression. We use the banknote dataset7

in this example. In the banknote dataset, there are four different predictors extracted
from the image of a banknote, which are used to predict if a banknote is genuine or
forged.

R

1 > library(Metrics)
2 > banknote_data = read.csv(’data_banknote_authentication.txt’,

header = FALSE)
3 > colnames(banknote_data) = c(’variance’, ’skewness’, ’curtosis’

, ’entropy’, ’class’)
4 >
5 > lr=LogisticRegression$new()
6 > lr$fit(banknote_data[,1:4], banknote_data$class)
7 > print(lr$coef)
8 [1] 7.3216635 −7.8590497 −4.1907866 −5.2872185 −0.6052346
9 > print(lr$predict(banknote_data[,1:4])[1:5]) # see the first 5

predictions
10 [1] 4.071505e−19 6.741755e 22 2.187781e 10 1.604733e 16
11

− − −
[5] 4.579230e−01

Python

7https://archive.ics.uci.edu/ml/datasets/banknote+authentication

https://www.archive.ics.uci.edu

Optimization in Practice • 149

1 >>> from sklearn.metrics import log_loss
2 >>> from logistic_regression import LogisticRegression
3 >>> banknote_data=pd.read_csv(’data_banknote_authentication.txt’

,header=None)
4 >>> from logistic_regression import LogisticRegression
5 >>> lr=LogisticRegression()
6 >>> lr.fit(banknote_data.iloc[:,0:4].values,banknote_data.iloc

[:,4])
7 >>> print(lr.coef)
8 [7.32157876 −7.8591774 −4.19090781 −5.28734934 −0.60536929]
9 >>> lr.predict(banknote_data.iloc[:,0:4].values)[:5] # predict

the probabilities of y=1
10 array([4.06674238e−19, 6.73409431e−22, 2.18663270e−10,

1.60365564e

−16,
11 4.57910123e−01])

The above implementation of logistic regression works well. But it is only a ped­
agogical toy to illustrate what a logistic regression is and how it can be solved with
general purpose optimization tool. In practice, there are fast and stable off-the-shelf
software tools to choose. It’s also worth noting most of the iterative optimization
algorithms allow to specify the max number of iterations as well as the tolerance.
Sometimes it’s helpful to tune these parameters.

In practice, the penalized (1 2L , L) versions of logistic regression are more com­
monly used than the vanilla logistic regression we introduced above.

5.5 LINEAR PROGRAMMING

In linear programming (LP)8 both the objective function and the constraints are
linear. LP can be expressed as follows,

max c1x
x (5.15)

subject to Ax ≤ b,

where the vector x represents the decision variable; A is a matrix, b and c are vectors.
We can do minimization instead of maximization in practice. Also, it’s completely
valid to have equality constraints for LP problems. All LP problems can be con­
verted into the form of (5.15). For example, the equality constraint Cx = d can be
transformed to inequality constraints Cx ≤ d and −Cx ≤ −d.

Every LP problem falls into three categories:

1. infeasible - no solution that satisfies all constraints exists;
8https://en.wikipedia.org/wiki/Linear_programming

https://www.en.wikipedia.org

150 • A Tour of Data Science: Learn R and Python in Parallel

Table 5.1: Available investment opportunities

investment vintage maturity rate of return (annualized)
A year 1 year 2 0.08
B year 2 year 5 0.12
C year 3 year 5 0.16
D year 1 year 4 0.14

2. unbounded - for every feasible solution, there exists another feasible solution
that improves the objective function;

3. having an optimal solution - a unique maximum (or minimum) value of the
objective function exists.

When an LP problem has an optimal solution, there might be different sets of
decision variables that lead to the same optimal value of the objective function. LP
problems are also convex problems [3]. The algorithms to solve LP problems have
been well-studied. The basic and popular algorithm is Dantzig’s simplex method
which was invented in 1947 [7]. More recent interior point methods have better worst-
case complexity than the simplex method. In R/Python, we can find packages that
implement both algorithms.

LP has been extensively used in business, economics, and some engineering prob­
lems. First, let’s see a simple application of LP in regression analysis.

Application - Portfolio construction
Let’s assume there are 4 different investment opportunities, A, B, C, and D, listed in Table ??.

There is no intermediate payment between the vintage year and the maturity year. Payments

received on maturity can be reinvested. We also assume the risk-free rate is 0. The goal is

to construct a portfolio using these investment opportunities with $10,000 at year 1 so that

the net asset value at year 5 is maximized.

Let x1, x2, x3 and x4 denote the amount to invest in each investment opportunity; and let

x0 denote the cash not invested in year 1. The problem can be formulated as

max + (1 + 0 08) + (1 + 0 12)3 + (1 + 0 16)2 + (1 + 0 14)3 x0 x1 . − x2 − x3 x2 . x3 . x4 .
x

subject to x0 + x1 + x4 = 10000; (5.16)
x0 + x1(1 + 0.08) ≥ x2 + x3;
xi ≥ 0; i = 0, ..., 4.

In Python, there are quite a few tools that can be used to solve LP, such as

Optimization in Practice • 151

9ortools , 10scipy.optimize.linprog , and 11CVXPY . We will show the solution using
12 in Python and ortools lpSolve in R.

R chapter5/portfolio_construction.R

1 library(lpSolve)

2

3 total = 10000.0

4 rate_of_return = c(0, 0.08, 0.12, 0.16, 0.14)

5 # define the objective function

6 f.obj = c(1, 1+rate_of_return[2], −1+(1+rate_of_return[3])^3,

−1+(1+rate_of_return[4])^2, (1+rate_of_return[5])^3)
7 # define the constraints
8 f.con = t(array(c(1, 1, 0, 0, 1, 1, 1+rate_of_return[2], −1, −1,

0), c(5, 2)))
9 # define the direction in the constraints

10 f.dir = c("=", ">=")
11 # define the right hand side of the constraints
12 f.rhs = c(total, 0)
13

14 solution = lp("max", f.obj, f.con, f.dir, f.rhs)
15 cat(’x:’, solution$solution, ’\n’)
16 cat(’obj:’, solution$objval, ’\n’)

Python chapter5/portfolio_construction.py

1 from ortools.linear_solver import pywraplp
2

3 total = 10000.0
4 rate_of_return = [0.0, 0.08, 0.12, 0.16, 0.14]
5 solver=pywraplp.Solver(’PortfolioConstruction’,pywraplp.Solver.

GLOP_LINEAR_PROGRAMMING)
6

7 # create the variables

8 x=[None]∗5

9 for i in range(5):

10 x[i]=solver.NumVar(0.0, solver.infinity(), ’x’+str(i))
11

12 # create the constraints
13 constraints = [None]∗2
14 # set the equality constraint

9https://developers.google.com/optimization/

10https://scipy.org/

11https://www.cvxpy.org/

12https://cran.r-project.org/web/packages/lpSolve/lpSolve.pdf

https://www.cvxpy.org
https://www.developers.google.com
https://www.cran.r-project.org
https://www.scipy.org

152 • A Tour of Data Science: Learn R and Python in Parallel

15 constraints[0] = solver.Constraint(total, total)
16 constraints[0].SetCoefficient(x[0], 1.0)
17 constraints[0].SetCoefficient(x[1], 1.0)
18 constraints[0].SetCoefficient(x[4], 1.0)
19 # set the inequality constraint
20 constraints[1] = solver.Constraint(0.0, solver.infinity())
21 constraints[1].SetCoefficient(x[0], 1.0)
22 constraints[1].SetCoefficient(x[1], 1.0+rate_of_return[1])
23 constraints[1].SetCoefficient(x[2], −1.0)
24 constraints[1].SetCoefficient(x[3],

−1.0)
25

26 # set objective function
27 objective = solver.Objective()
28 objective.SetCoefficient(x[0], 1.0)
29 objective.SetCoefficient(x[1], 1.0+rate_of_return[1])
30 objective.SetCoefficient(x[2], −1.0+(1+rate_of_return[2])∗∗3)
31 objective.SetCoefficient(x[3], −1.0+(1+rate_of_return[3])

∗∗2)
32 objective.SetCoefficient(x[4], (1+rate_of_return[4]) 3)
33

∗∗
we want to maximize the objective function

34 objective.SetMaximization()
35 status = solver.Solve()
36 if status == solver.OPTIMAL:
37 sol = [e.solution_value() for e in x]
38 print("x: {0}".format(sol))
39 print("objective: {0}".format(objective.Value()))

Now let’s run our code to get the results.

R Python

1 > source(’ 1 chapter5 $python3.7
portfolio_construction.R portfolio_construction.py
’)

2 x: [0.0, 10800.0,x: 0 10000.0,10000 10800 0 0 2
 0.0,3 obj: 15173.22 0.0]

3 objective:
15173.222400000004

We see that the optimal portfolio allocation results in a net asset value of 15173.22
in year 5. You may notice that the Python solution is lengthy compared to the R
solution. That is because the ortools interface in Python is in an OOP fashion and
we add the constraint one by one. But for lpSolve, we utilize the compact matrix
form (5.15) to specify an LP problem. In ortools, we specify the bounds of a decision
variable during its declaration. In lpSolve, all decisions are non-negative by default.

LP also has applications in machine learning; for example, least absolute devia­

Optimization in Practice • 153

tions (LAD) regression13 can be solved by LP. LAD regression is just another type
of linear regression. The major difference between LAD regression and the linear re­
gression we introduced in Chapter 4 is that the loss function to minimize in LAD is
the sum of the absolute values of the residuals rather than the SSR loss.

5.6 MISCELLANEOUS

5.6.1 Stochasticity

The update schedule of gradient descent is straightforward. But what to do if the
dataset is too big to fit into memory? That is a valid question, especially in the era
of big data. There is a naive and brilliant solution - we can take a random sample
from all the observations and only evaluate the loss function on the random sample in
each iteration. Actually, this variant of gradient descent algorithm is called stochastic
gradient descent.

5.6.2 Coordinate descent

You may wonder that if we can randomly take a subset from all the observations,
can we also just take a subset of the variables x? Yes, and sometimes it is quite
useful. For example, in coordinate descent, in each iteration we can update a single
coordinate xj rather than the entire x. Coordinate descent has been widely applied
for the Lasso solution of the generalized linear models [8].

5.6.3 Newton method

Newton method looks similar to gradient descent, but it requires the Hessian matrix
of the objective function (see (5.17)). In theory, the convergence of Newton method
is faster than the gradient descent algorithm. But not all differentiable objective
functions have second-order derivatives; and the evaluation of Hessian matrix may
also be computationally expensive.

(k+1) 	 x = (x k) (k))−1
 γH(x f((x k))	 (5.17) − ∇

We have seen the proximal gradient descent method for Lasso. Actually, the
second-order derivatives can also be incorporated into the proximal gradient descent
method, which leads to the proximal Newton method.

5.6.4 Constrained optimization

In general, constrained optimization has the following form.

max f(x)
x

subject to	 gi(x) ≤ bi; i = 1, ..., m, (5.18)
hi(x) = c j ; j = 1, ..., k,

13https://en.wikipedia.org/wiki/Least_absolute_deviations

https://www.en.wikipedia.org

154 • A Tour of Data Science: Learn R and Python in Parallel

where gi is the inequality constraint and hi is the equality constraint, both of which
could be linear or nonlinear. A constrained optimization problem may or may not
be convex. Although there are some tools existing in R/Python for constrained op­
timization, they may fail if you just throw the problem into the tools. It is better
to understand the very basic theories for constrained optimization problems, such as
the Lagrangian, and the Karush-Kuhn-Tucker (KKT) conditions [3].

5.6.5 Quadratic programming

Quadratic programming (QP)14 is also commonly seen in machine learning. For ex­
ample, the optimization problems in vanilla linear regression, ridge linear regression
and Lasso solution of linear regression all fall into the QP category. To see why the
Lasso solution of linear regression is also QP, let’s convert the optimization problem
from the unconstrained form (5.5) to the constrained form (5.19) similar to the ridge
regression.

min e1e
β̂

p (5.19)
subject to λ

|βi| ≤ t.

i=1

The || operator in the constraint in (5.19) can be eliminated by expanding the
constraint to 2p linear constraints.

min e1e
β̂

subject to

λβ1 + λβ2 + ...+λβn ≤ t (5.20)
−λβ1 + λβ2 + ...+λβn ≤ t

...

λβ1 λβ2 ... λβn t. − − − − ≤

It is clear the problem specified in (5.20) is a QP problem. The optimization of
support vector machine (SVM) can also be formulated as a QP problem.

In R and Python, there are solvers15 designed specifically for QP problems, which
can be used as a black box.

5.6.6 Metaheuristic optimization

Some optimization algorithms are specific to problems. For example, simplex method
is mostly used for linear programming problems. In contrast, metaheuristic opti­
mization algorithms are not problem-specific. Actually, metaheuristic algorithms are

14https://en.wikipedia.org/wiki/Quadratic_programming

15https://cran.r-project.org/web/views/Optimization.html, https://cvxopt.org

https://www.cvxopt.org
https://www.en.wikipedia.org
https://www.cran.r-project.org

Optimization in Practice • 155

strategies to guide the search process for the solutions. There is a wide variety of meta­
heuristic algorithms in the literature, and one of my favorites is simulated annealing
(SA) [16]. SA algorithm can be used for both continuous and discrete optimization
problems (or hybrid, such as mixed integer programming16). The optim function in R
has the SA algorithm implemented (set method = ’SANN’) for general purpose min­
imization with continuous variables. For discrete optimization problems, it usually
requires customized implementation. The pseudocode of SA is given as follows.

• define the cooling schedule Tk, an energy function E, and initial solution s0

• for k = 1, ..., m

– pick a random neighbor sk based on sk−1

–	 calculate the energy change δ = E(sk) − E(sk−1)

– calculate the acceptance probability P = e−δ/Tk

– if P < random(0, 1), sk = sk−1

• return sm.

Let’s see how we can apply SA for the famous traveling salesman problem.

Application - Traveling salesman problem
Given a list of cities, what is the shortest route that visits each city once and returns to
the original city? This combinatorial optimization problem is the traveling salesman problem
(TSP). When there are K cities, the number of feasible solutions is equal to (K − 1)!/2. It
is difficult to enumerate and evaluate all solutions for a large number of cities. SA algorithm
fits this problem quite well.
Let’s consider a problem with only 10 cities. To apply the SA algorithm, we need to determine
a cooling schedule. For simplicity, we chose Tk = T0αk. As for the energy function, the
length of the route is a natural choice. For many problems, the challenge to apply SA is how
to generate new solutions from the incumbent. And most of the time there are various ways
to do that, but some may not be efficient. In this TSP problem, we adopt a simple strategy,
i.e., randomly select two different cities from the current route and switch them. If the switch
results in a shorter route we would accept the switch; if the new route is longer, we still could
accept the switch with the acceptance probability.

The implementation of SA with this simple strategy is implemented in both
R/Python as follows.

R chapter5/TSP.R

1 library(R6)
2

3 TSP = R6Class(

16https://en.wikipedia.org/wiki/Integer_programming

https://www.en.wikipedia.org

156 • A Tour of Data Science: Learn R and Python in Parallel

Figure 5.3: TSP with 10 cities represented by blue dots

4 "TSP",
5 public = list(
6 cities = NULL,
7 distance = NULL,
8 initialize = function(cities, seed = 42) {
9 set.seed(seed)

10 self$cities = cities
11 self$distance = as.matrix(dist(cities))
12 },
13 calculate_length = function(path) {
14 l = 0.0
15 for (i in 2:length(path)) l = l+self$distance[path[i−1],

path[i]]
16 l + self$distance[path[1],path[length(path)]]
17 },
18 accept = function(T_k, energy_old , energy_new) {
19 delta = energy_new − energy_old
20 p = exp(−delta/T_k)
21 p>=runif(1)
22 },
23 solve = function(T_0, alpha, max_iter) {
24 T_k = T_0
25 # create the initial solution s0
26 s = sample(nrow(self$distance), nrow(self$distance),

replace=FALSE)
27 length_old = self$calculate_length(s)
28 for (i in 1:max_iter){

Optimization in Practice • 157

29 T_k = T_k∗alpha
30 # we randomly exchange 2 cities in the route
31 candidates = sample(nrow(self$distance), 2, replace=

FALSE)
32 temp = s[candidates[1]]
33 s[candidates[1]] = s[candidates[2]]
34 s[candidates[2]] = temp
35 length_new = self$calculate_length(s)
36 # check if we accept or reject the exchange
37 if (self$accept(T_k, length_old , length_new)){
38 # accept
39 length_old = length_new
40 }else{
41 # reject
42 s[candidates[2]] = s[candidates[1]]
43 s[candidates[1]] = temp
44 }
45 }
46 if (s[1]==1) return(list(’s’=s,’length’=length_old))
47 start = which(s==1)
48 s_reordered = c(s[start:length(s)], s[1:start−1])
49 list(’s’=s_reordered ,’length’=length_old)
50 }
51)
52)

Python chapter5/TSP.py

1 import numpy as np

2 from scipy.spatial.distance import cdist

3

4 class TSP:

5 def __init__(self, cities, seed=42):

6 np.random.seed(seed)

7 self.cities = cities

8 # let’s calculate the pairwise distance

9 self.distance = cdist(cities, cities)

10

11 def calculate_length(self, path):

12 l = 0.0

13 for i in range(1, len(path)):

14 l += self.distance[path[i

−1], path[i]]

15 return l + self.distance[path[−1], path[0]]

16

158 • A Tour of Data Science: Learn R and Python in Parallel

17 def accept(self, T_k, energy_old , energy_new):
18 delta = energy_new − energy_old
19 p = np.exp(

−delta/T_k)
20 return p >= np.random.uniform(low=0.0, high=1.0, size=1)

[0]
21

22 def solve(self, T_0, alpha, max_iter):
23 T_k = T_0
24 # let’s create an initial solution s0
25 s = np.random.permutation(len(self.cities))
26 length_old = self.calculate_length(s)
27 for i in range(max_iter):
28 T_k ∗= alpha
29 # we randomly choose 2 cities and exchange their

positions in the route
30 pos_1, pos_2 = np.random.choice(len(s), 2, replace=

False)
31 s[pos_1], s[pos_2] = s[pos_2], s[pos_1]
32 length_new = self.calculate_length(s)
33 # check if we want to accept the new solution or not
34 if self.accept(T_k, length_old , length_new):
35 # we accept the solution and update the old

energy
36 length_old = length_new
37 else:
38 # we reject the solution and reverse the switch
39 s[pos_1], s[pos_2] = s[pos_2], s[pos_1]
40 # let’s reorder the result
41 if s[0] == 0:
42 return s, length_old
43 start = np.argwhere(s == 0)[0, 0]
44 return np.hstack((s[start:], s[:start])), length_old

Let’s run our TSP solver to see the results.

R Python

1 > cities = read.csv(’ 1 >>> from TSP import TSP
chapter5/cities.csv’) 2 >>> cities = pd.read_csv(’

2 > cities = cities[,c(’x’,’y chapter5/cities.csv’)
’)] 3 >>> cities = list(

3 > tsp = TSP$new(cities) zip(cities.x, cities.y))
4 > tsp$solve(2000,0.99,2000) 4 >>> tsp = TSP(cities)
5 $s 5 >>> tsp.solve(2000, 0.99,
6 [1] 1 3 2 10 5 6 9 4 2000)

7 8 6 (array([1, 2, 0, 7, 6, 3, 8,

Optimization in Practice • 159

Figure 5.4: Route found by our TSP solver

7 5, 4, 9]),
8 $length 47.372551972154646)
9 [1] 47.37255

In the implementation above, we set the initial temperature to 2000, the cooling
rate α to 0.99. After 2000 iterations, we get the same routes from both implementa­
tions. In practice, it’s common to see metaheuristic algorithms get trapped in local
optimums.

https://taylorandfrancis.com

C H A P T E R 6

Machine Learning - A gentle
introduction

Machine learning is such a huge topic that we will only touch on it
a bit in this book. There are different learning paradigms.

Basically, supervised learning refers to the learning task in which we have input
data and output data and the purpose is to learn a functional map from the input data
to the output data. In contrast to supervised learning, there is unsupervised learning
in which only the input data is available. In addition to supervised/unsupervised
learning, there are also other learning paradigms, such as reinforcement learning1

and transfer learning2.
There is no strict distinction between different learning paradigms. For exam­

ple, semi-supervised learning3 falls between supervised learning and unsupervised
learning, and supervised learning paradigms can also be found inside some modern
reinforcement learning algorithms.

6.1 SUPERVISED LEARNING

In this book, we have talked about quite a few supervised learning models, such as
linear regression and its variants, logistic regression. We will also spend some effort
in tree-based models in this chapter. There are many other interesting supervised
learning models that we don’t cover in this book, such as support vector machine4,
linear discriminant analysis5. Almost all well-known supervised learning models’ im­
plementations can be found online and I recommend learning from reading the source
code. As for the usage, there is an abundance of off-the-shelf options in both R and
Python. Algorithm-wise, my favorite supervised learning models include linear mod­
els, gradient boosting trees, and (deep) neural network models. Linear models are
simple with great interpretability; and it is rare if gradient boosting tree models or

1https://en.wikipedia.org/wiki/Reinforcement_learning

2https://en.wikipedia.org/wiki/Transfer_learning

3https://en.wikipedia.org/wiki/Semi-supervised_learning

4https://en.wikipedia.org/wiki/Support-vector_machine

5https://en.wikipedia.org/wiki/Linear_discriminant_analysis

161

https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.en.wikipedia.org

162 • A Tour of Data Science: Learn R and Python in Parallel

deep neural network models cannot match the prediction accuracy of other models
for a specific problem.

6.1.1 Population & random sample

A population is a complete set of elements of interest for a specific problem. It is
usually defined by the researcher of the problem. A population can be either finite
or infinite. For example, if we define the set of real numbers as our population, it is
infinite. But if we are only interested in the integers between 1 and 100, then we get
a finite population.

A random sample is a set of elements selected from a population. The size of a
random sample could be larger than the population since an element can be taken
multiple times. Why do we care about random samples? Because we are interested
in the population from which the random sample is taken, and the random sample
could help to make inference on the population.

In supervised learning, each element in the population has a set of attributes
which are usually called features or covariates, as well as a label. For example, a
bank may use the mortgage applicant’s personal information (FICO score, years of
employment, debt to income ratio, etc.) as the covariates, and the status of the
mortgage (default, or paid off) as the label. A model can be used to predict the final
status of the mortgage for a new applicant, and such kinds of models are classification
models. When a mortgage is in default status, the applicant may have already made
payments partially. Thus, a model to predict the amount of loss for the bank is also
useful, and such kinds of models are regression models.

But why do we need supervised learning? If we know the labels of the entire
population, nothing is needed to learn. All we need is a database table or a dictionary
(HashMap) for lookup. The issue is that many problems in the real world don’t allow
us to have the labels of the entire population. And thus, we need to learn or infer
based on the random sample collected from the unknown population.

6.1.2 Universal approximation

The universal approximation theorem says that a single hidden layer neural network
can approximate any continuous functions (Rn → R) with sufficient number of
neurons under mild assumptions on the activation function (for example, the sigmoid
activation function) [1]. There are also other universal approximators, such as the
decision trees.

Not all machine learning models can approximate universally, for example, the
linear regression without polynomial items. If we have the data from the entire pop­
ulation, we may fit the population with a universal approximator. But as we have
discussed earlier, when the entire population is available there is no need to fit a
machine learning model for prediction. But if only a random sample is available, is a
universal approximator still the best choice? It depends.

Machine Learning - A gentle introduction • 163

Figure 6.1: A random sample from a population follows a linear model (the dashed
line) is overfit by the solid curve

Figure 6.2: k fold cross-validation

6.1.3 Overfitting & cross-validation

One of the risks of fitting a random sample with a predictive model is overfitting (see
Figure 6.1). Using universal approximators as the predictive model may even amplify
such risk.

To mediate the risk of overfitting, we usually use cross-validation to assess how
accurately a predictive model is able to predict for unseen data. The following steps
specify how to perform a cross-validation.

• divide the training data into k partitions randomly

• for i = 1, ..., k

– train a model using all partitions except partition i

– record the prediction accuracy of the trained model on partition i

• calculate the average prediction accuracy.

Cross-validation can also be considered as a metaheuristic algorithm since it is
not problem-specific because it doesn’t matter what type of predictive models we use.

There are some ready-to-use tools in R and Python modules for cross-validation.

164 • A Tour of Data Science: Learn R and Python in Parallel

But for pedagogical purposes, let’s do it step by step. We do the cross validation
using the Lasso regression we built in a previous chapter on the Boston dataset.

R

1 source(’../chapter5/lasso.R’)
2

3 library(caret)
4 library(MASS)
5 library(Metrics) # we use the rmse function from this package
6 k = 5
7

8 set.seed(42)
9 # if we set returnTrain = TRUE, we get the indices for train

partition
10 test_indices = createFolds(Boston$medv, k = k, list = TRUE,

returnTrain = FALSE)
11 scores = rep(NA, k)
12

13 for (i in 1:k){
14 lr = Lasso$new(200)
15 # we exclude the indices for test partition and train the

model
16 lr$fit(data.matrix(Boston[−test_indices[[i]], −ncol(Boston)]),

Boston$medv[−test_indices[[i]]], 100)
17 y_hat = lr$predict(data.matrix(Boston[test_indices[[i]], −ncol

(Boston)]))
18 scores[i] = rmse(Boston$medv[test_indices[[i]]], y_hat)
19 }
20 print(mean(scores))

Python

1 import sys
2 sys.path.append("..")
3

4 from sklearn.metrics import mean_squared_error
5 from sklearn.datasets import load_boston
6 from sklearn.model_selection import KFold
7 from chapter5.lasso import Lasso
8

9

10 boston = load_boston()
11 X, y = boston.data, boston.target
12

Machine Learning - A gentle introduction • 165

13 # create the partitions with k=5
14 k = 5
15 kf = KFold(n_splits=k)
16 # create a placeholder for the rmse on each test partition
17 scores = []
18

19 for train_index , test_index in kf.split(X):
20 X_train, X_test = X[train_index], X[test_index]
21 y_train, y_test = y[train_index], y[test_index]
22 # let’s train the model on the train partitions
23 lr = Lasso(200.0)
24 lr.fit(X_train, y_train, max_iter=100)
25 # now test on the test partition
26 y_hat = lr.predict(X_test)
27 # we calculate the root of mean squared error (rmse)
28 rmse = mean_squared_error(y_test, y_hat) ∗∗ 0.5
29 scores.append(rmse)
30

31 # average rmse from 5−fold cross−validation
32 print(sum(scores)/k)

Run the code snippets; we have the 5-fold cross-validation accuracy as follows.

R Python

1 chapter6 $r −f cv.R 1 chapter6 $python3.7 cv.py
2 [1] 4.978324 2 5.702339699398128

We add the line sys.path.append("..") in the Python code, otherwise it would
throw an error because of the import mechanism6.

6.1.4 Evaluation metrics

In the example above, we measure the root of mean squared error (RMSE) as the
accuracy of the linear regression model. There are various metrics to evaluate the
accuracy of predictive models.

•	 Metrics for regression

For regression models, RMSE, mean absolute error (MAE)7 and mean absolute
percentage error (MAPE)8 are some of the commonly-used evaluation metrics.
You may have heard of the coefficient of determination (2R or adjusted 2R) in
statistics. But from a predictive modelling perspective, 2R is not a metric that

6https://docs.python.org/3/reference/import.html
7https://en.wikipedia.org/wiki/Mean_absolute_error
8https://en.wikipedia.org/wiki/Mean_absolute_percentage_error

https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.docs.python.org

166 • A Tour of Data Science: Learn R and Python in Parallel

Table 6.1: Some metrics for regression models

metric formula

RMSE
n

i=1
(ŷi−yi)2

n

MAE
n

i=1
|ŷi−yi|
n

MAPE 1
n

n
i=1
 ŷi−yi

yi

evaluates the predictive power of the model since its calculation is based on the
training data. But what we are actually interested in is the model performance
on the unseen data. In statistics, goodness of fit is a term to describe how good
a model fits the observations, and R2 is one of these measures for goodness of
fit. In predictive modelling, we care more about the error of the model on the
unseen data, which is called generalization error. But of course, it is possible
to calculate the counterpart of R2 on testing data.

•	 Metrics for classification

The most intuitive metric for classification models is the accuracy, which is the
percentage of corrected classified instances. To calculate the accuracy, we need
to label each instance to classify. Recall the logistic regression we introduced
in Chapter 5, the direct output of a logistic regression are probabilities rather
than labels. In that case, we need to convert the probability output to the label
for accuracy calculation. For example, let’s consider a classification problem
where the possible labels of each instance are 0, 1, 2 and 3. If the predictive
probabilities of each label are 0.2, 0.25, 0.5, 0.05 for label 0, 1, 2 and 3, respec­
tively, then the predictive label is 2 since its corresponding probability is the

largest.

But actually we don’t always care about the labels of an instance. For example,

a classification model for mortgage default built in a bank may only be used to

calculate the expected monetary loss. Another example is the recommendation

system that predicts the probabilities which are used for ranking of items. In

that case, the model performance could be evaluated by logloss, AUC, etc., using

the output probabilities directly. We have seen in Chapter 5 the loss function

of logistic regression is the log-likelihood function.

Actually, logloss is just the average evaluated log-likelihood on the testing

data, and thus it can also be used for classification models with more than 2

classes (labels) because likelihood function is not restricted to Bernoulli dis­
tribution (extended Bernoulli distribution is called categorical distribution9).

Another name for logloss is cross−entropy loss.

In practice, AUC (Area Under the ROC Curve) is a very popular evaluation
metric for binary-class classification problems. AUC is bounded between 0 and
1. A perfect model leads to an AUC equal to 1. If a model’s predictions are

9https://en.wikipedia.org/wiki/Categorical_distribution

https://www.en.wikipedia.org

Machine Learning - A gentle introduction • 167

100% wrong, the resulting AUC is equal to 0. But if we know a binary-class
classification model always results in 100% wrong predictions, we can instead
use 1 − ŷ as the corrected prediction and as a result we will get a perfect model
and the AUC based on the corrected prediction becomes 1. Actually, a model
using a completely random guess as the prediction leads to an AUC equal to
0.5. Thus, in practice the evaluated AUC is usually between 0.5 and 1.
There are also many other metrics, such as recalls, precisions, and F1 score10.

The selection of evaluation metrics in predictive modelling is important but also
subjective. Sometimes we may also need to define a customized evaluation metric.

Many evaluation metrics can be found from the R package Metrics and the
Python module sklearn.metrics.

R Python

1 > set.seed(42)
 1 >>> import numpy as np
2 > # regression metrics
 2 >>> from sklearn.metrics

import mean_squared_error
3 > y = rnorm(n = 10,

, mean_absolute_error , mean = 10, sd = 2)
4 > y log_loss , roc_auc_score

5 [1] 12.741917 3 8.870604 >>> np.random.seed(42)

10.726257 11.265725 4 >>> # regression metrics

10.808537 9.787751 5 ...

6 [7] 13.023044 9.810682 6 >>> y = np.random.normal(10,

14.036847 9.874572 2, 10)

7 > # we use random numbers as 7 >>> y_hat = np.random.normal
the predictions (10.5, 2.2, 10)

8 > y_hat = rnorm(n = 10, 8 >>> mean_squared_error(y,
mean = 10.5, sd = 2.2)

y_hat) 0.5 #
9 > y_hat rmse

∗∗
10 [1] 13.370713 15.530620 9 3.0668667318485165

7.444506 9.886665 10 >>> mean_absolute_error(y,
10.206693 11.899091 y_hat) #

mae
11 [7] 9.874644 4.655798

11 2.1355703394788237
5.130973 13.404249

12 >>> # let’s define mape
12 > since it’s not available
13 > rmse(actual = y, predicted 13 ...

= y_hat) 14 >>> def mape(y, y_hat):
return np.mean(np.

14 [1] 4.364646 abs(y y_hat)/y_hat)
15 > mae(actual = y, predicted 15 ...

−
= y_hat) 16 >>> mape(y, y_hat)

16 [1] 3.540164 17 0.292059554974094
17 > mape(actual = y, predicted 18 >>> # classification metrics

= y_hat) 19 >>> y = np.random.binomial
18 [1] 0.3259014 (1, 0.25, 10)

10https://en.wikipedia.org/wiki/Precision_and_recall

https://www.en.wikipedia.org

168 • A Tour of Data Science: Learn R and Python in Parallel

19 > # classification metrics 20 >>> y_hat = np.random.
20 > y = rbinom(n = 10, size = uniform(0, 1, 10)

1, prob=0.25) 21 >>> log_loss(y, y_hat)
21 > y 22 0.47071363776285635
22 [1] 0 0 0 1 0 1 1 0 1 0 23 >>> roc_auc_score(y, y_hat)

 y_hat = runif(10, # auc23 > 0, 1)
24 0.8095238095238095

24 > logLoss(y, y_hat)
25 [1] 0.4553994
26 > auc(y, y_hat)
27 [1] 0.8333333

6.1.5 Feature engineering & embedding

According to the explanation of feature engineering11 on wikipedia, feature engineer­
ing is the process to use domain knowledge to create new features based on existing
features. In reality, it is not rare to see feature engineering leads to better prediction
accuracy. And sometimes I use feature engineering too. But I think feature engi­
neering will be less and less useful in the future as the machine learning algorithms
become more and more intelligent.

Let’s consider three features x1, x2 and x3 and assume the actual model is spec­
ified as y = f(x1, g(x2, x3)). After all, y is still a function of x1, x2 and x3, and
we can write it as y = h(x1, x2, x3). Thus, even without creating the new feature
x4 = g(x2, x3) explicitly, a universal approximator should be able to learn (i.e., ap­
proximate) the function h from the data ideally. This idea is also supported by the
Kolmogorov–Arnold representation theorem12 which says any continuous real-valued
multivariate functions can be written as a finite composition of continuous functions
of a single variable.

2m m

) =

f(x1, ..., xm Φq

q=0 p

φq,p(xp) . (6.1)

=1

()

As of today, since the machine learning algorithms are not that intelligent, it is
worth trying feature engineering especially when domain knowledge is available.

If you are familiar with dimension reduction, embedding can be considered as
something similar. Dimension reduction aims at reducing the dimension of X. It
sounds interesting and promising if we can transform the high-dimensional dataset
into a low-dimensional dataset and feed the dataset in a low dimension space to the
machine learning model. However, this may not be a good idea in general. For exam­
ple, in supervised learning it is not guaranteed that the low-dimensional predictors
will keep all the information related to the response variable. Actually, many machine
learning models are capable of handling the high-dimensional predictors directly.

Embedding transforms the features into a new space, which usually has a lower
11https://en.wikipedia.org/wiki/Feature_engineering

12https://en.wikipedia.org/wiki/Kolmogorov-Arnold_representation_theorem

https://www.en.wikipedia.org
https://www.en.wikipedia.org

Machine Learning - A gentle introduction • 169

dimension. But generally embedding is not done by the traditional dimension re­
duction techniques (for example, principal component analysis). In natural language
processing, a word can be embedded into a vector space by word2vec [12] (or other
techniques). When an instance is associated with an image, we may consider using
the penultimate layer’s output from a (deep) neural network-based image classifica­
tion model to encode/embed the image into a space with lower dimension. It is also
popular to use embedding layers for embedding.

6.1.6 Collinearity

Collinearity is one of the cliches in machine learning. For non-linear models, collinear­
ity is usually not a problem. For linear models, I recommend reading this discussion13

to see when it is not a problem.

6.1.7 Feature selection & parameter tuning

We have seen how the Lasso solutions of linear models can be used for feature se­
lection in Chapter 6. What about non-linear models? There are some model-specific
techniques for feature selection. Also, there is a metaheuristic approach to select
features - cross-validation. Specifically, we can try different combinations of the fea­
tures and use cross-validation to select the set of features which results in the best
cross-validation evaluation metric. However, the major problem of this approach is
its efficiency. When the number of features is too large, it is impossible to try all the
different combinations with limited computational resources. Thus, it is better to use
the model-specific feature selection techniques in practice.

To tune model parameters, such as the λ in Lasso, we can also use cross-validation.
But again, the efficiency is our major concern.

Can we have feature selection and parameter tuning done automatically? Actually,
automated machine learning14 has been a hot research topic in both academia and
industry. With the advance of machine learning theories, more intelligent algorithms
will be available which require less and less work on feature engineering and parameter
tuning (or neural network architecture searching).

6.2 GRADIENT BOOSTING MACHINE

In this section we will talk about one of the greatest supervised learning models ­
gradient boosting machine.

6.2.1 Decision tree

A decision tree consists of a bunch of nodes. In a decision tree there is a node with
no parent nodes, which is called root node. The node without any children is called
leaf node.

The length (number of nodes) of the longest path from the root node to a leaf
13https://statisticalhorizons.com/multicollinearity

14https://en.wikipedia.org/wiki/Automated_machine_learning

https://www.en.wikipedia.org
https://www.statisticalhorizons.com

170 • A Tour of Data Science: Learn R and Python in Parallel

node 0

node 1

node 3 node 4

node 2

node 5

node 7 node 8

node 6

Figure 6.3: A single decision tree

node is called the depth of the tree. For example, the depth of the tree above is 4.
Each leaf node has a label. In regression tasks, the label is a real number, and in
classification tasks the label could be a real number which is used to get the class
indirectly (for example, fed into a sigmoid function to get the probability), or an
integer representing the predicted class directly.

Each node except the leaves in a decision tree is associated with a splitting rule.
These splitting rules determine to which leaf an instance belongs. A rule is just a
function taking a feature as input and returns true or false as output. For example, a
rule on the root could be x1 < 0 and if it is true, we go to the left node; otherwise we
go to the right node. Once we arrive at a leaf, we can get the predicted value based
on the label of the leaf.

To get a closer look, let’s try to implement a binary tree structure for regression
tasks in R/Python from scratch.

Let’s implement the binary tree as a recursive data structure, which is composed
partially of similar instances of the same data structure. More specifically, a binary
tree can be decomposed into three components, i.e., its root node, the left subtree
under the root, and the right subtree of the root. To define a binary (decision) tree, we
only need to define these three components. And to define the left and right subtrees,
this decomposition is applied recursively until the leaves.

Now we have the big picture on how to define a binary tree. However, to make the
binary tree a decision tree, we also need to define the splitting rules. For simplicity,
we assume there is no missing value in our data and all variables are numeric. Then
a splitting rule of a node is composed of two components, i.e., the variable to split
on, and the corresponding breakpoint for splitting.

There is one more component we need to define in a decision tree; that is, the
prediction method which takes an instance as input and returns the prediction.

Now we are ready to define our binary decision tree.

R chapter6/tree.R

1 library(R6)
2 Tree = R6Class(

Machine Learning - A gentle introduction • 171

3 "Tree",
4 public = list(
5 left = NULL,
6 right = NULL,
7 variable_id = NULL,
8 break_point = NULL,
9 val = NULL,

10 initialize = function(left, right, variable_id , break_point ,
val) {

11 self$left = left
12 self$right = right
13 self$variable_id = variable_id
14 self$break_point = break_point
15 self$val = val
16 },
17 is_leaf = function() {
18 is.null(self$left) && is.null(self$right)
19 },
20 depth = function() {
21 if (self$is_leaf()) {
22 1
23 } else if (is.null(self$left)) {
24 1 + self$right$depth()
25 } else if (is.null(self$right)) {
26 1 + self$left$depth()
27 } else{
28 1 + max(self$left$depth(), self$right$depth())
29 }
30 },
31 predict_single = function(x) {
32 # if x is a vector
33 if (self$is_leaf()) {
34 self$val
35 } else{
36 if (x[self$variable_id] < self$break_point) {
37 self$left$predict_single(x)
38 } else{
39 self$right$predict_single(x)
40 }
41 }
42 },
43 predict = function(x) {
44 # if x is an array
45 preds = rep(0.0, nrow(x))
46 for (i in 1:nrow(x)) {

172 • A Tour of Data Science: Learn R and Python in Parallel

47 preds[i] = self$predict_single(x[i,])
48 }
49 preds
50 },
51 print = function() {
52 # we can call print(tree), similar to the special method

in Python
53 cat("variable_id:", self$variable_id , "\n")
54 cat("break at:", self$break_point , "\n")
55 cat("is_leaf:", self$is_leaf(), "\n")
56 cat("val:", self$val, "\n")
57 cat("depth:", self$depth(), "\n")
58 invisible(self)
59 }
60)
61)

Python chapter6/tree.py

1 class Tree:

2 def __init__(self, left, right, variable_id , break_point ,

val):

3 self.left = left

4 self.right = right

5 self.variable_id = variable_id

6 self.break_point = break_point

7 self.val = val

8

9 @property

10 def is_leaf(self):
11 return self.left is None and self.right is None
12

13 def _predict_single(self, x):
14 if self.is_leaf:
15 return self.val
16 if x[self.variable_id] < self.break_point:
17 return self.left._predict_single(x)
18 else:
19 return self.right._predict_single(x)
20

21 def predict(self, x):
22 return [self._predict_single(e) for e in x]
23

24 @property

Machine Learning - A gentle introduction • 173

25 def depth(self):
26 if self.is_leaf:
27 return 1
28 elif self.left is None:
29 return 1 + self.right.depth
30 elif self.right is None:
31 return 1 + self.left.depth
32 return 1 + max(self.left.depth, self.right.depth)
33

34 def __repr__(self):
35 return "variable_id: {0}\nbreak_at: {1}\nval: {2}\

nis_leaf: {3}\nheight: {4}".format(
36 self.variable_id , self.break_point , self.val, self.

is_leaf, self.depth)

You may have noticed the usage @property in our Python implementation. It
is one of the built-in decorators in Python. We won’t talk too much of decorators.
Basically, adding this decorator makes the method depth behave like a property, in
the sense that we can call self.depth instead of self.depth() to get the depth.

In the R implementation, the invisible(self) is returned in the print method
which seems strange. It is an issue of R6 class due to the S3 dispatch mechanism which
is not introduced in this book15.

The above implementation doesn’t involve the training or fitting of the decision
tree. In this book, we won’t talk about how to fit a traditional decision tree model
due to its limited usage in the context of modern machine learning. Let’s see how to
use the decision tree structures we defined above by creating a pseudo decision tree
illustrated below.

node 0 splitting rule if x2 < 3.2 -> left otherwise -> right

node 1 splitting rule if x1 < 10.5 -> left otherwise -> right node 2

node 3 with value = 2.4 node 4 with value = 4.5

R Python

1 > source(’tree.R’) 1 >>> from tree import Tree
2 > node_2 = Tree$new(NULL, 2 >>> node_2 = Tree(None, None

NULL, NULL, NULL, 0.6) , None, None, 0.6)
3 > node_3 = Tree$new(NULL,

NULL, NULL, NULL, 2.4)

15https://github.com/r-lib/R6/issues/140

https://www.github.com

174 • A Tour of Data Science: Learn R and Python in Parallel

4 > node_4 = Tree$new(NULL, 3 >>> node_3 = Tree(None, None
NULL, NULL, NULL, 4.5) , None, None, 2.4)

5 > node_1 = Tree$new(node_3,
4 >>> node_4 = Tree(None, None

node_4, 1, 10.5,
, None, None, 4.5)

NULL)
 > node_0 = Tree$new(node_1, 56 >>> node_1 = Tree(node_3,

node_2, 2, node_4,)3. 0, 10.5,2, None
NULL) 6 >>> node_0 = Tree(node_1,

7 > print(node_0) node_2, 1, 3.2, None)
8 variable_id: 2 7 >>>
9 break at: 3.2 8 >>> print(node_0)

10 is_leaf: FALSE 9 variable_id: 1
11 val: 10 break_at: 3.2
12 depth: 3 11 val: None
13 > print(node_4) 12 is_leaf: False
14 variable_id: 13 depth: 3
15 break at: 14 >>> print(node_4)
16 is_leaf: TRUE 15 variable_id: None
17 val: 4.5 16 break_at: None
18 depth: 1 17 val: 4.5
19 > x = array(c(10, 0.5), 18 is_leaf: True

c(1, 2))
19

20 > node_0$predict(x) depth: 1
20 >>> x = [[10, 0.5]]

21 [1] 2.4
21 >>> node_0.predict(x)
22 [2.4]

It’s worth noting decision trees can approximate universally.

6.2.2 Tree growing in gradient boosting machine

What is a gradient boosting machine (GBM) (or gradient boosting regression)? Es­
sentially, a GBM is just a forest of decision trees. If you have heard of random forest
(RF), you may know that a random forest is also a bunch of trees. What is the
difference between a GBM and RF?

Looking at the fitted trees from RF and GBM, there is no way to tell if the trees
are fitted by an RF or a GBM. The major difference is how these trees are trained,
rather than the trees themselves. A minor difference is how these trees are used for
prediction. In many RF implementations, the prediction for an instance is the average
prediction of each tree within the forest. If it is a classification task, there are two
ways to get the final prediction — (a) predict the class with majority voting directly,
i.e., the predicted class is the one with highest frequency among the predicted classes
of all trees; (b) predict the probability based on the frequencies, for example, if among
five trees there are three trees output class 1 then the predicted probability of class 1
is equal to 3/5. In many GBM implementations, the prediction (for regression tasks)
is the sum of the predictions of individual trees.

GBM fits trees sequentially, but RF fits trees independently. The obvious advan­

Machine Learning - A gentle introduction • 175

tage of fitting trees independently is that it can be done in parallel. But accuracy-wise,
GBM usually performs better according to my limited experience.

We have seen the structure of a single decision tree in GBM. Now it’s time to see
how to get these trees fitted in GBM. Let’s start from the first tree.

To grow a tree, we start from its root node. In GBM fitting, usually we pre­
determine a maximum depth d for each tree to grow. And the final tree’s depth may
be equal to or less than the maximum depth d. At a high level, the tree is grown in
a recursive fashion. Specifically, first we attempt to split the current node and if the
splitting improves the performance we grow the left subtree and the right subtree
under the root node. When we grow the left subtree, its maximum depth is d − 1,
and the same applies to the right subtree. We can define a tree grow function for such
purpose which takes a root node Noderoot (it is also a leaf) as input. The pseudo code
of a tree grow function is illustrated below.

• if d > 1:

– call split function on Noderoot

– if true is returned:
∗ call grow function on the empty Nodeleft with d − 1 maximum depth

∗ call grow function on the empty Noderight with d− 1 maximum depth

• return

In fact, the algorithm of tree growing is just a DFS algorithm.
To complete the pseudo algorithm above, we need to have a split function which

takes a leaf node as input and returns a boolean value as output. If true is returned,
we will do the splitting, i.e., to grow the left/right subtree. So now the challenge is
how to define the split function, which requires the understanding of the theories
behind GBM.

6.2.3 Optimization of GBM

Similar to other regression models we have seen so far, GBM with K trees has a loss
function which is defined below.

n

L = (yi − ŷi)2 , (6.2)
i=1

where

K

ŷi = ft(xi). (6.3)
t=1

ft denotes the prediction of tth tree in the forest. As we mentioned previously, the
fitting is done sequentially. When we fit the tth tree, all the previous t − 1 trees are
fixed. And the loss function for fitting the tth tree is given below.

176 • A Tour of Data Science: Learn R and Python in Parallel

n t 1

L(t)
−

=

(

i) − ft(2 yi − fl(x xi)) (6.4)
i=1 l=1

In practice, a regularized loss function (6.5) is used instead of (6.3) to reduce
overfitting.

n t 1

L(t)
−

=

(yi −

fl(xi) − ft(xi))2 + Φ(ft). (6.5)
i=1 l=1

Let’s follow the paper [6] and use the number of leaves as well as the L2 penalty
of the values (also called weights) of the leaves for regularization. The loss function
then becomes

n t 1 T

L(t)
− 1

i

 = (yi
=1

− fl(xi)
l=1

− 2 f (2
t xi)) + γT + λ

 ωj , (6.6) 2

j=1

where ωj is the value associated with the jth leaf of the current tree.
Again, we get an optimization problem, i.e., to minimize the loss function (6.6).

The minimization problem can also be viewed as a quadratic programming problem.
However, it seems different from the other optimization problems we have seen before,
in the sense that the decision tree ft is a non-parametric model. A model is non-
parametric if the model structure is learned from the data rather than pre-determined.

A common approach used in GBM is the second-order approximation. By second-
order approximation, the loss function becomes

n t 1 n T

L(t)
− 1 1≈

 (

yi −

fl(xi))2 + ((x) + 2 gift i 2hift(xi)2) + γT + 2λ

ωj , (6.7)

i=1 l=1 i=1 j=1

where
 t−1gi = 2(ft(xi)+ l=1 fl(xi) − yi) and hi = 2 are the first- and the second-order

derivatives of the function (
 t−1 yi − l=1 fl(xi) − ft(xi))2 with respect to the function

ft(xi).
Let’s implement the function to calculate g and h and put them into util.py.

Python chapter6/util.py

1 import numpy as np
2

3 def gh_lm(actual, pred):
4 ’’’
5 gradient and hessian for linear regression loss
6 ’’’
7 return 2∗(pred−actual), 2.0

Since the first item is a constant, let’s ignore it.

Machine Learning - A gentle introduction • 177

n	
t 1 1 T

L() ≈

(gift(xi) + hift(2x)) + γT + 2 2
 2

i λ ωj . (6.8)
i=1	 j=1

Let’s think of the prediction of an instance of the current tree. The training data,
i.e., instances fall under the leaves of a tree. Thus, the prediction of an instance is the
value ω associated with the corresponding leaf that the instance belongs to. Based
on this fact, the loss function can be further rewritten as follows.

T
 1 L(t) ≈ (ωj

gi + 2 2ωj
 (

hi + λ)) + γT. (6.9)

j=1 i∈Ij i∈Ij

When the structure of the tree is fixed the loss function (6.9) is a quadratic convex
function of ωj , and the optimal solution can be obtained by setting the derivative to
zero.

ωj = −

i g∈Ij i	 (6.10)

i Ij
h∈ i + λ

Plugging (6.10) into the loss function results in the minimal loss of the current
tree structure

1 T (−

 2 i∈Ij

gi) +
i hi +

γT.	 (6.11)2 λ
j=1 ∈Ij

Now let’s go back to the split function

 required in the tree grow function discussed

previously. How to determine if we need a splitting on a leaf? (6.11) gives the solution
— we can calculate the loss reduction by splitting which is given below

1 	 (
 2 2

i Ileft
gi) (2 ∈ +	

i∈Iright

gi) (− i I g∈ i)
 λ λ

− γ. (6.12)2 i h + λ h + h + ∈Ileft i i∈Iright i

i∈I i

If the loss reduction is positive,

the split function returns

 true; otherwise it returns

false.
So far, we have a few ingredients ready to implement our own GBM, which are

listed below:

•	 the structure of a single decision tree in the forest, i.e., the Tree class defined;

•	 the node splitting mechanism, i.e., (6.12);

•	 the tree growing mechanism, i.e., the pseudo algorithm with the leaf value
calculation (6.10).

However, there are a few additional items we need to go through before the
implementation.

In Chapter 6, we have seen how stochasticity works in iterative optimization al­
gorithms. The stochasticity technique is very important in the optimization of GBM.

178 • A Tour of Data Science: Learn R and Python in Parallel

More specifically, we apply the stochasticity both instance-wise and feature-wise.
Instance-wise, when we fit a new tree, we randomly get a subsample from the train­
ing sample. And feature-wise, we randomly select a few features/variables when we fit
a new tree. The stochasticity technique could help to reduce overfitting. The extent
of the stochasticity can be controlled by arguments.

Like the gradient decent algorithm, in GBM there is also a learning rate parameter
which scales the values of the leaves after a tree is fitted.

In practice, we may also not want to have too few instances under a leaf, to reduce
potential overfitting. When there are two few instances under a leaf, we may just stop
the splitting process.

Now we have almost all the ingredients to make a working GBM. Let’s define the
split_node function in the code snippet below.

Python chapter6/grow.py

1 from tree import Tree

2 import numpy as np

3 import pdb

4

5

6 def split_node(f_in_tree , x_in_node , x_val_sorted ,
x_index_sorted , g_tilde, h_tilde, lam, gamma, min_instances)
:

7 ’’’
8 f_in_tree: a list of booleans indicating which variable/

feature is selected in the tree
9 x_in_ndoe: a list of booleans indicating which instance is

used in the tree
10 x_val_sorted: a nested list, x_val_sorted[feature index] is

a list of instance values
11 x_index_sorted: a nested list, x_index_sorted[feature index]

is a list of instance indexes
12 g_tilde: first order derivative
13 h_tilde: second order derivative
14 lam: lambda for regularization
15 gamma: gamma for regularization
16 min_instances: the minimal number of instances under a leaf
17 at the beginning we assume all instances are on the right
18 ’’’
19 if sum(x_in_node) < min_instances:
20 return False, None, None, None, None, None, None
21 best_break = 0.0
22 best_feature , best_location = 0, 0
23 ncol, nrow = len(f_in_tree), len(x_in_node)
24 g, h = 0.0, 0.0

Machine Learning - A gentle introduction • 179

25 for i, e in enumerate(x_in_node):
26 if e:
27 g += g_tilde[i]
28 h += h_tilde[i]
29 base_score = g∗g/(h+lam)
30 score_reduction = np.inf
31

−
best_w_left , best_w_right = None, None

32 for k in range(ncol):
33 if f_in_tree[k]:
34 # if the feature is selected for this tree
35 best_n_left_k = 0
36 n_left_k = 0
37 # feature is in the current tree
38 g_left, h_left = 0.0, 0.0
39 g_right, h_right = g−g_left, h−h_left
40 # score reduction for current feature k
41 score_reduction_k = −np.inf
42 for i in range(nrow):
43 # for each in sample, we try to split on it
44 index = x_index_sorted[k][i]
45 if x_in_node[index]:
46 n_left_k += 1
47 best_n_left_k += 1
48 g_left += g_tilde[index]
49 g_right = g−g_left
50 h_left += h_tilde[index]
51 h_right = h−h_left
52 # new score reduction
53 score_reduction_k_i = g_left∗g_left/(h_left+

lam) + \
54 (g_right∗g_right)/(h_right+lam)−

base_score
55 if score_reduction_k <= score_reduction_k_i:
56 best_n_left_k = n_left_k
57 best_break_k = x_val_sorted[k][i]
58 best_location_k = i
59 score_reduction_k = score_reduction_k_i
60 w_left_k = −g_left/(h_left+lam)
61 w_right_k = −g_right/(h_right+lam)
62

63 # if the score reduction on feature k is a better
candidate

64 if score_reduction_k >= score_reduction:
65 score_reduction = score_reduction_k
66 best_feature = k

180 • A Tour of Data Science: Learn R and Python in Parallel

67 best_break = best_break_k

68 best_location = best_location_k

69 best_w_left = w_left_k

70 best_w_right = w_right_k

71 return 0.5∗ score_reduction >= gamma, best_feature ,

best_break , best_location , best_w_left , best_w_right ,
score_reduction

72

73

74 def grow_tree(current_tree , f_in_tree , x_in_node , max_depth ,
x_val_sorted , x_index_sorted , y, g_tilde, h_tilde, eta, lam,
gamma, min_instances):

75 ’’’

76 current_tree: the current tree to grow, i.e., a node

77 f_in_tree , x_in_node , x_val_sorted , x_index_sorted: see

split_node function

78 max_depth: maximinum depth to grow

79 eta: learning rate

80 y: the response variable

81 ’’’

82 nrow = len(y)

83 if max_depth == 0:

84 return

85 # check if we need a split

86 do_split , best_feature , best_break , best_location , w_left,

w_right, _ = split_node(

87 f_in_tree , x_in_node , x_val_sorted , x_index_sorted ,

g_tilde, h_tilde, lam, gamma, min_instances)

88

89 if do_split:

90 # update the value/weight with the learning rate eta

91 w_left_scaled = w_left∗eta

92 w_right_scaled = w_right∗eta

93 current_tree.variable_id = best_feature

94 current_tree.break_point = best_break

95 current_tree.val = None

96

97 # initialize the left subtree

98 current_tree.left = Tree(None, None, None, None,

w_left_scaled)
99 # initialize the right subtree

100 current_tree.right = Tree(None, None, None, None,
w_right_scaled)

101 # update if an instance is in left or right
102 x_in_left_node = [False]∗len(x_in_node)

Machine Learning - A gentle introduction • 181

103 x_in_right_node = [False]∗len(x_in_node)
104 for i in range(nrow):
105 index = x_index_sorted[best_feature][i]
106 if x_in_node[index]:
107 if i <= best_location:
108 x_in_left_node[index] = True
109 else:
110 x_in_right_node[index] = True
111 # recursively grow its left subtree
112 grow_tree(current_tree.left, f_in_tree , x_in_left_node ,

max_depth−1,
113 x_val_sorted , x_index_sorted , y, g_tilde,

h_tilde, eta, lam, gamma, min_instances)
114 # recursively grow its right subtree
115 grow_tree(current_tree.right, f_in_tree , x_in_right_node

, max_depth−1,
116 x_val_sorted , x_index_sorted , y, g_tilde,

h_tilde, eta, lam, gamma, min_instances)
117 else:
118 # current node is a leaf, so we update the value/weight

of the leaf
119 g, h = 0.0, 0.0
120 for i, e in enumerate(x_in_node):
121 if e:
122 g += g_tilde[i]
123 h += h_tilde[i]
124 w_left_scaled = −g/(h+lam)∗eta
125 current_tree.val = w_left_scaled

And the implementation of the GBM class is given below.

Python chapter6/gbm.py

1 from tree import Tree

2 from grow import grow_tree , split_node

3 from utils import gh_lm, rmse

4 import numpy as np

5

6

7 class GBM:

8 def __init__(self, x_train, y_train, depth, eta, lam, gamma,

sub_sample , sub_feature , min_instances=2):
9 ’’’

10 x_train, y_train: training data
11 depth: maximum depth of each tree

182 • A Tour of Data Science: Learn R and Python in Parallel

12 eta: learning rate
13 lam and gamma: regularization parameters
14 sub_sample: control the instance−wise stochasticity
15 sub_feature: control the feature

−wise stochasticity
16 min_instances: control the mimimum number of instances

under a leaf
17 ’’’
18 self.n = len(x_train)
19 self.m = len(x_train[0])
20 self.x_train = x_train
21 self.y_train = y_train
22 self.x_test, self.y_test = None, None
23 self.depth = depth
24 self.eta = eta
25 self.lam = lam
26 self.gamma = gamma
27 self.sub_sample = sub_sample
28 self.sub_feature = sub_feature
29 self.min_instances = min_instances
30

31 self.y_tilde = [0]∗len(y_train)
32 self.g_tilde, self.h_tilde = [0] ∗ \
33 len(self.y_tilde), [0] len(self.y_tilde)
34

∗
for i in range(len(self.y_tilde)):

35 self.g_tilde[i], self.h_tilde[i] = gh_lm(
36 y_train[i], self.y_tilde[i])
37 x_columns = x_train.transpose()
38 self.nf = min(self.m, max(1, int(sub_feature∗self.m)))
39 self.x_val_sorted = np.sort(x_columns)
40 self.x_index_sorted = np.argsort(x_columns)
41 self.forest = []
42

43 def set_test_data(self, x_test, y_test):
44 self.x_test = x_test
45 self.y_test = y_test
46

47 def predict(self, x_new):
48 y_hat = np.array([0.0]∗len(x_new))
49 for tree in self.forest:
50 y_hat += np.array(tree.predict(x_new))
51 return y_hat
52

53 def fit(self, max_tree, seed=42):
54 np.random.seed(seed)
55 self.forest = []

Machine Learning - A gentle introduction • 183

56 i = 0
57 while i < max_tree:
58 # let’s fit tree i
59 # instance−wise stochasticity
60 x_in_node = np.random.choice([True, False], self.n,

p=[
61 self.sub_sample , 1−self

.sub_sample])
62 # feature

−wise stochasticity
63 f_in_tree_ = np.random.choice(
64 range(self.m), self.nf, replace=False)
65 f_in_tree = np.array([False]∗self.m)
66 for e in f_in_tree_:
67 f_in_tree[e] = True
68 del f_in_tree_
69 # initialize the root of this tree
70 root = Tree(None, None, None, None, None)
71 # grow the tree from root
72 grow_tree(root, f_in_tree , x_in_node , self.depth−1,

self.x_val_sorted ,
73 self.x_index_sorted , self.y_train, self.

g_tilde, self.h_tilde, self.eta, self.
lam, self.gamma, self.min_instances)

74 if root is not None:
75 i += 1
76 self.forest.append(root)
77 else:
78 next
79 for j in range(self.n):
80 self.y_tilde[j] += self.forest[−1].

_predict_single(
81 self.x_train[j])
82 self.g_tilde[j], self.h_tilde[j] = gh_lm(
83 self.y_train[j], self.y_tilde[j])
84 if self.x_test is not None:
85 # test on the testing instances
86 y_hat = self.predict(self.x_test)
87 print("iter: {0:>4} rmse: {1:1.6f}".format(
88 i, rmse(self.y_test, y_hat)))

Now let’s see the performance of our GBM implemented from scratch.

Python chapter6/test_gbm.py

1 from gbm import GBM

184 • A Tour of Data Science: Learn R and Python in Parallel

2 import numpy as np
3 from sklearn import datasets
4 from sklearn.utils import shuffle
5

6

7 def get_boston_data(seed=42):
8 boston = datasets.load_boston()
9 X, y = shuffle(boston.data, boston.target, random_state=seed

)
10 X = X.astype(np.float32)
11 offset = int(X.shape[0] ∗ 0.8)
12 X_train, y_train = X[:offset], y[:offset]
13 X_test, y_test = X[offset:], y[offset:]
14 return X_train, y_train, X_test, y_test
15

16 if __name__ == "__main__":
17 X_train, y_train, X_test, y_test = get_boston_data(42)
18 gbm = GBM(X_train, y_train, depth=6, eta=0.05, lam=1.0,
19 gamma=1, sub_sample=0.5, sub_feature=0.7)
20 gbm.set_test_data(X_test, y_test)
21 gbm.fit(max_tree=200)

Running the code above, we have output as below.

Python

1 chapter6 $python3.7 test_gbm.py
2 iter: 1 rmse: 23.063019
3 iter: 2 rmse: 21.997972
4 iter: 3 rmse: 21.026602
5 iter: 4 rmse: 20.043397
6 iter: 5 rmse: 19.210746
7 ...
8 iter: 196 rmse: 2.560747
9 iter: 197 rmse: 2.544847

10 iter: 198 rmse: 2.541102
11 iter: 199 rmse: 2.537366
12 iter: 200 rmse: 2.535143

We don’t implement the model in R, but it is not difficult to do based on the
Python implementation above.

GBM can be used with various loss functions, and the major difference is the
implementation of the first-/second-order derivatives, i.e., g and h.

Regardless of the performance, there are two major missing features in our im­
plementation: a) cross-validation and b) early stopping. We have talked about cross­

Machine Learning - A gentle introduction • 185

validation, but what is early stopping? It is a very useful technique in GBM. Usually,
the cross-validated loss decreases when we add new trees at the beginning and at
a certain point, the loss may increase when more trees are fitted (due to overfit­
ting). Thus, we may select the best number of trees based on the cross-validated loss.
Specifically, stop the fitting process when the cross-validated loss doesn’t decrease.
In practice, we don’t want to stop the fitting immediately when the cross-validated
loss starts increasing. Instead, we specify a number of trees, e.g., 50, as a buffer, after
which the fitting process should stop if cross-validated loss doesn’t decrease.

Early stopping is also used in other machine learning models, for example, neural
network. Ideally, we would like to have early stopping based on the cross-validated
loss. But when the training process is time-consuming, it’s fine to use the loss on a
testing dateset16.

The commonly used GBM packages include XGBoost17, LightGBM18 and CatBoost
19. Let’s see how to use XGBoost for the same regression task on the Boston dataset.

R chapter6/xgb.R

1 library(xgboost)

2 library(MASS)

3 library(Metrics)

4 set.seed(42)

5 train_index = sample(nrow(Boston), floor(0.8 ∗ nrow(Boston)),

replace = FALSE)

6 Boston = data.matrix(Boston)

7 target_col = which(colnames(Boston) == ’medv’)

8 X_train = Boston[train_index , −target_col]

9 y_train = Boston[train_index , target_col]

10 X_test = Boston[−train_index , −target_col]
11 y_test = Boston[−train_index , target_col]
12 # prepare the data for training and testing
13 dTrain = xgb.DMatrix(X_train, label = y_train)
14 dTest = xgb.DMatrix(X_test)
15 params = list(
16 "booster" = "gbtree",
17 "objective" = "reg:linear",
18 "eta" = 0.1,
19 "max_depth" = 5,
20 "subsample" = 0.6,
21 "colsample_bytree" = 0.8,
22 "min_child_weight" = 2
23)

16https://en.wikipedia.org/wiki/Early_stopping

17https://github.com/dmlc/xgboost

18https://github.com/microsoft/LightGBM

19https://github.com/catboost/catboost

https://www.en.wikipedia.org
https://www.github.com
https://www.github.com
https://www.github.com

186 • A Tour of Data Science: Learn R and Python in Parallel

24 # run the cross−validation
25 hist = xgb.cv(
26 params = params,
27 data = dTrain,
28 nrounds = 500,
29 early_stopping_rounds = 50,
30 metrics = ’rmse’,
31 nfold = 5,
32 verbose = FALSE
33)
34 # since we have the best number of trees from cv, let’s train

the model with this number of trees
35 model = xgb.train(params, nrounds = hist$best_iteration , data =

dTrain)
36 pred = predict(model, dTest)
37

38 cat(
39 "rmse on testing instances is",
40 rmse(y_test, pred),
41 "with",
42 hist$best_iteration ,
43 "trees"
44)

Python chapter6/xgb.py

1 import xgboost as xgb

2 from sklearn import datasets

3 from sklearn.utils import shuffle

4 from sklearn.metrics import mean_squared_error

5 import numpy as np

6

7 seed = 42

8 boston = datasets.load_boston()

9 X, y = shuffle(boston.data, boston.target, random_state=seed)

10 X = X.astype(np.float32)
11 offset = int(X.shape[0] ∗ 0.8)
12 X_train, y_train = X[:offset], y[:offset]
13 X_test, y_test = X[offset:], y[offset:]
14

15 params = {’booster’: ’gbtree’, ’objective’: ’reg:linear’, ’
learning_rate’: 0.1,

16 ’max_depth’: 5, ’subsample’: 0.6, ’colsample_bytree’:
0.8, ’min_child_weight’: 2}

Machine Learning - A gentle introduction • 187

17

18 # prepare the data for training and testing
19 dtrain = xgb.DMatrix(data=X_train, label=y_train, missing=None)
20 dtest = xgb.DMatrix(X_test)
21

22 # run 5−fold cross−validation with maximum 1000 trees, and try
to minimize the metric rmse

23 # early stopping 50 trees
24 hist = xgb.cv(params, dtrain=dtrain, nfold=5,
25 metrics=[’rmse’], num_boost_round=1000, maximize=

False, early_stopping_rounds=50)
26

27 # find the best number of trees from the cross−validation
history

28 best_number_trees = hist[’test−rmse−mean’].idxmin()
29

30 # since we have the best number of trees from cv, let’s train
the model with this number of trees

31 model = xgb.train(params, dtrain, num_boost_round=
best_number_trees)

32 pred = model.predict(dtest)
33 print(
34 f"rmse on testing instances is {mean_squared_error(pred,

y_test)∗∗0.5:.6f} with {best_number_trees} trees")

The parameters subsample and colsample_bytree control the stochasticity, within
the range of [0, 1]. If we set these two parameters to 1, then all instances and all
features are selected for fitting every tree.

The two code snippets illustrate a minimal workflow of fitting a GBM model.
First, we conduct (hyper) parameter tuning (such as learning rate, number of trees,
regularization parameters, stochasticity parameters) with cross-validation, and next
we train the model with the tuned parameters.

Running the code snippets, we have the following results.

R Python

1 > source(’xgb.R’) 1 chapter6 $python3.7 xgb.py
2 rmse on testing instances 2 rmse on testing instances is

is 2.632298 with 83 trees 2.736038 with 179 trees

In XGBoost, we could also use linear regression models as the booster (or base
learner) instead of decision trees. However, when ’booster’:’gblinear’ is used, the
sum of the prediction from all boosters in the model is equivalent to the prediction

188 • A Tour of Data Science: Learn R and Python in Parallel

from a single (combined) linear model. In that sense, what we get is just a Lasso
solution of a linear regression model.

GBM can be used in different tasks, such as classification, ranking, survival anal­
ysis, etc. When we use GBM for predictive modelling, missing value imputation is not
required, which is one big advantage over linear models. But in our own implementa­
tion we don’t consider missing values for simplicity. In GBM, if a feature is categorical
we could do label-encoding20, i.e., mapping the feature to integers directly without
creating dummy variables (such as one-hot encoding). Of course one-hot encoding21

can also be used. But when there are too many new columns created by one-hot
encoding, the probability that the original categorical feature is selected is higher
than these numerical variables. In other words, we are assigning a prior weight to the
categorical feature regarding the feature-wise stochasticity.

For quite a few real-world prediction problems, the monotonic constraints are
desired. Monotonic constraints are either increasing or decreasing. The increas­
ing constraint for feature xk refers to the relationship that f(x1, ..., xk, ..., xm) ≤
f(x1, ..., xk

1 , ..., xm) if xk ≤ x1
k. For example, an increasing constraint for the number

of bedrooms in a house price prediction model makes lots of sense. Using gradi­
ent boosting tree regression models we can enforce such monotonic constraints in a
straightforward manner. Simply, after we get the best split for the current node, we
may check if the monotonic constraint is violated by the split. The split won’t be
adopted if the constraint is broken.

6.3 UNSUPERVISED LEARNING

For many supervised learning tasks, we could formulate the problem as an optimiza­
tion problem by writing down the loss function as a function of training input and
output. In unsupervised learning problems there are no label/output. It is more dif­
ficult to formulate unsupervised learning problems in a unified approach. Still, some
unsupervised learning problems can still be formulated as an optimization problem.
Let’s see a few examples briefly.

6.3.1 Principal component analysis (PCA)

PCA is a very popular technique in many engineering disciplines. As you may know,
PCA is a technique for dimension reduction. More specifically, let x denote an n ∗ m
matrix, and each row of x denoted as x
1 i represents a point in Rm. Sometimes the
dimension m could be relatively large and we don’t like that. In order to represent
the data in a more compact way, we want to transform the raw data points into a
new coordinate system in Rp where p < m. The kth; k = 1, ..., p coordinate of xi in
the new coordinate system can be written w
1 kxi. However, there are infinite wk

the transformation and we have to make a guidance for such transformation. The
key to our guidance is to make the data points projected onto the first transformed

20https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
21https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

for

https://www.scikit-learn.org
https://www.scikit-learn.org

�

Machine Learning - A gentle introduction • 189

Figure 6.4: Original vs. transformed data points via PCA

1coordinate have the largest variance, and w1xi is called the first principal component.
And we can find the remaining transformations and principal components iteratively.

So now we see how the PCA is formulated as an optimization problem. However,
under the above setting, there are infinite solutions for wk. We usually add a con­
straint on wk in PCA, i.e., |wk| = 1. The solution to this optimization problem is
surprisingly elegant - the optimal wk is the eigenvectors of the covariance matrix of
x. Now let’s try to conduct a PCA with eigen decomposition (it can also be done
with other decompositions).

R

1 > set.seed(42)

2 > n = 1000

3 > # we simulate some data points on a 2d plane

4 > x1 = rexp(n)

5 > x2 = x1∗3 + rnorm(n, 12, 2)

6 > x = cbind(x1, x2)

7 > # total marginal variance

8 > sum(diag(cov(x)))

9 [1] 15.54203

10 > pca_vectors = eigen(cov(x))$vectors
11 > # find the projection on the new coordinate system
12 > z = x %∗% pca_vectors
13 > # total marginal variance after transformation
14 > sum(diag(cov(z)))
15 [1] 15.54203

In fact, it does not matter if the raw data points are centered or not if the eigen
decomposition is on the covariance matrix. If you prefer to decompose x x directly,

190 • A Tour of Data Science: Learn R and Python in Parallel

centering is a necessary step. Many times, we don’t want to perform PCA in this way
since there are a lot of functions/packages available in both R and Python.

6.3.2 Mixture model

In previous chapters we have seen how to fit a distribution to data. What if the
data points actually come from multiple distributions, for example, a mixture of two
Gaussian distributions. If we know from which distribution each observed data point
comes from it is not difficult to estimate the parameters. But in some situations it is
impossible to tell the actual distribution a point is sampled from. Usually, a mixture
of multiple distributions can be estimated by the maximum likelihood method. We
can derive the likelihood function of the observed data points and then we have an
optimization problem.

Suppose we have a random size with sample size n, and each sample xi; i =
1, ..., n is from one of the K multivariate Gaussian distributions. The kth distribution
is denoted as Nk(μk, Σk). We want to estimate the parameters in these Gaussian
distributions.

As we discussed in Chapter 4, there are two commonly used approaches for distri­
bution fitting, i.e., method of moments and maximum likelihood estimation. In this
case, we use the maximum likelihood estimation because the likelihood function can
be easily derived as below.

n K

P = πkf(xi|μk, Σk), (6.13)
i=1 k=1

where πk represents the probability that a randomly selected data point belongs to
distribution k. And thus, the log-likelihood function becomes:

n K

L = log(πkf(xi|μk, Σk)). (6.14)
i=1 k=1

Let’s try to implement the above idea in R with the optim function.

R

1 > library(mvtnorm)

2 > set.seed(42)

3 > n = 1000

4 > # 60% samples are from distribution 1 and the remainings are

from distribution 2
5 > p = 0.6

6 > n1 = n ∗ p

7 > n2 = n − n1

8 > mu1 = c(−1, −1)

9 > mu2 = c(1, 1)

10 > sigma1 = array(c(1, 0.5, 0.5, 1), c(2, 2))
11 > sigma2 = array(c(1, −0.2, −0.2, 1), c(2, 2))

Machine Learning - A gentle introduction • 191

12 > x1 = rmvnorm(n = n1, mean = mu1, sigma = sigma1)
13 > x2 = rmvnorm(n = n2, mean = mu2, sigma = sigma2)
14 > x = rbind(x1, x2)
15 > # let’s permute x
16 > x_permuted = x[sample(n),]
17 >
18 >
19 > log_lik = function(theta, x) {
20 + # theta is a vector of length 9
21 + # first let’s reparametrize the parameters
22 + mu1 = theta[1:2]
23 + mu2 = theta[3:4]
24 + sigma1 = array(c(theta[5], theta[6], theta[6], theta[5]), c

(2, 2))
25 + sigma2 = array(c(theta[7], theta[8], theta[8], theta[7]), c

(2, 2))
26 + pi_1 = theta[9]
27 + pi_2 = 1 − pi_1
28 + # we return the negative log−likelihood
29 + − sum(log(pi_1 ∗ dmvnorm(x, mu1, sigma1) + pi_2 ∗ dmvnorm(x,

mu2, sigma2)))
30 + }
31 >
32 > gaussian_mixture_mle = function(x) {
33 + # par as the initial values
34 + optim(
35 + par = c(0, 0, 0, 0, 1, 0, 1, 0, 0.5),
36 + fn = log_lik,
37 + x = x,
38 + method = "L−BFGS−B",
39 + control = list(trace = 1, maxit = 1000)
40 +)$par
41 + }
42 > res = gaussian_mixture_mle(x_permuted)
43 iter 10 value 3299.463920
44 final value 3299.463917
45 converged
46 > mu1_hat = res[1:2]
47 > mu2_hat = res[3:4]
48 > sigma1_hat = array(c(res[5], res[6], res[6], res[5]), c(2, 2))
49 > sigma2_hat = array(c(res[7], res[8], res[8], res[7]), c(2, 2))
50 > pi = res[9]
51 > print(mu1_hat)
52 [1] −0.2221727 −0.2171368
53 > print(mu2_hat)

192 • A Tour of Data Science: Learn R and Python in Parallel

54 [1] −0.2221727 −0.2171368
55 > print(sigma1_hat)
56 [,1] [,2]
57 [1,] 1.986965 1.196158
58 [2,] 1.196158 1.986965
59 > print(sigma2_hat)
60 [,1] [,2]
61 [1,] 1.986965 1.196158
62 [2,] 1.196158 1.986965
63 > print(pi)
64 [1] 0.5

The estimates of parameters are not satisfactory, why? Remember we have empha­
sized the importance of convexity in Chapter 6. Actually, the log-likelihood function
given in (6.14) is not convex. For non-convex problems, the optim function may not
converge. In practice, EM algorithm22 is frequently applied for mixture model.

The theory of EM algorithm is out of the scope of this book. Let’s have a look
at the implementation for this specific problem. Basically, there are two steps, i.e.,
E-step and M-step which run in an iterative fashion. In the tth E-step, we update
the membership probability wi,k that represents the probability that xi belongs to
distribution k, based on the current parameter estimates as follows.

(t) ((t) Σ(t)
(t) αk f xi|μk , k)wi,k = . K (t) ((Σ(| t) t) (6.15)

k=1 αk f xi μk , k)

And in the tth M-step, for each k we update the parameters as follows.

n (t)
(t+1) =

i=1 wi,k

αk
n

(t+1)
μk =

 n (t)
i=1 wi,kxi

(6.16) n (t)
i=1 wi,k

(t+1)

 n (t) (t) (t)
i=1 wi,k(xi − μk)(xi − μk)1 Σk =

The Python code below implements the

 n (t)
i=1 wi,k

 above EM update schedule for a Gaussian
mixture model.

Python chapter6/gmm.py

1 import numpy as np
2

3 class GaussianMixture:

22https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

https://www.en.wikipedia.org

Machine Learning - A gentle introduction • 193

4 """
5 X − n∗m array
6 K − the number of distributions/clusters
7 seed − random seed for reproducibility
8 """
9

10 def __init__(self, X, K):
11 self.X = X
12 self.K = K
13 self.n, self.p = X.shape
14 self.mu_list = [np.random.uniform(−1, 1, self.p)
15 for _ in range(self.K)]
16 self.sigma_list = [np.diag([1.0]∗self.p) for _ in range(

self.K)]
17 self.alphas = np.ones(self.K)/self.K
18

19 def E_step(self):
20 # first, we update the membership weight for each data

point, i.e., which distribution x_i belongs to
21 # we compute the pdf for each data point and each

distribution , stored in w(i,j)
22 pdf_list = np.zeros((self.n, self.K))
23 c = (2∗np.pi)∗∗(self.p/2)
24 for i in range(self.K):
25 x_centered = self.X − self.mu_list[i]
26 sigma_inversed = np.linalg.inv(self.sigma_list[i])
27 sigma_det = np.sqrt(np.linalg.det(self.sigma_list[i

]))
28 for j in range(self.n):
29 pdf_list[j, i] = 1.0/(c∗sigma_det)∗
30 np.exp(−0.5 ∗ x_centered[j, :][None, :] @

sigma_inversed @ x_centered[j, :][:,
None])

31 # we calculate the posterior probability
32 posterior_prob = pdf_list∗self.alphas
33 # now let’s update the memembership probability
34 w = posterior_prob/np.sum(posterior_prob , axis=1)[:,

None]
35 return w
36

37 def M_step(self, w):
38 # we update the mu and sigma based on the updated weight

from the E step
39 for i in range(self.K):
40 self.alphas[i] = np.mean(w[:, i])

194 • A Tour of Data Science: Learn R and Python in Parallel

41 self.mu_list[i] = np.sum(
42 self.X∗w[:, i][:, None], axis=0)/np.sum(w[:, i])
43 x_centered = self.X − self.mu_list[i]
44 self.sigma_list[i] = x_centered.transpose() @ (
45 x_centered∗w[:, i][:, None])/np.sum(w[:, i])
46

47 def fit(self, maxit=100, verbose=False):
48 for _ in range(maxit):
49 w = self.E_step()
50 self.M_step(w)
51 if verbose:
52 print("mu: {}".format(self.mu_list))
53 print("sigma: {}".format(self.sigma_list))
54

55 def __repr__(self):
56 return "mu: {}\n, sigma: {}\n, alpha: {}\n".format(self.

mu_list, self.sigma_list , self.alphas)

For space-saving, we use a third-party package in R rather than implementing
from scratch.

R

1 > library(mixtools)
2 > fit = mvnormalmixEM(x_permuted , maxit = 1000, k = 2)
3 number of iterations= 278
4 > summary(fit)
5 summary of mvnormalmixEM object:
6 comp 1 comp 2
7 lambda 0.669674 0.330326
8 mu1 −0.893166 −0.859121
9 mu2 1.137988 1.084453

10 loglik at estimate:

−3211.291
11 > print(fit$sigma)
12 [[1]]
13 [,1] [,2]
14 [1,] 1.1086853 0.6670415
15 [2,] 0.6670415 1.2275707
16

17 [[2]]
18 [,1] [,2]
19 [1,] 0.9821523

−0.3748227
20 [2,] −0.3748227 1.0194300
21

22 # let’s also infer the distribution for each data point

Machine Learning - A gentle introduction • 195

Figure 6.5: Data points clustered by a Gaussian mixture model

23 z = as.integer(
24 fit$lambda[1] ∗ dmvnorm(x_permuted , fit$mu[[1]], fit$sigma

[[1]]) > fit$lambda[2] ∗
25 dmvnorm(x_permuted , fit$mu[[2]], fit$sigma[[2]])
26) + 1

In the above code, zi represents the membership probability. We plot the data
points with their clusters in Figure 6.5.

6.3.3 Clustering

Clustering is the task of grouping similar objects together. Actually in the example
above we have used the Gaussian mixture model for clustering. There are many
clustering algorithms and one of the most famous clustering algorithms might be

23K-means .

6.4 REINFORCEMENT LEARNING

Different from supervised/unsupervised learning, reinforcement learning (RL) is try­
ing to learn a strategy which is used for decision-making. AlphaGo24 and OpenAI
Five25 are two of the most famous use cases in the real world. There are many good

23https://en.wikipedia.org/wiki/K-means_clustering

24https://deepmind.com/research/case-studies/alphago-the-story-so-far

25https://openai.com/projects/five

https://www.en.wikipedia.org
https://www.deepmind.com
https://www.openai.com

196 • A Tour of Data Science: Learn R and Python in Parallel

resources for learning RL (for example, see [15]), and it is impossible to give an in-
depth introduction on RL in this short section. But we could learn from a specific
example for a first impression.

Application - A simple game
Let’s play a hypothetical game, in which the player is asked to make a sequence of decisions.
Each time, the decision is to choose one number from 1 and 2. If number 1 is chosen, the
next decision-making time would be 1 time unit later and number 2 is chosen, the next
decision-making time would be 2 time units later. No matter which number is chosen, the
player always get $1 as the reward immediately. The game would end in 100 time units, and
the goal is to collect as many rewards as possible.

The game seems very simple and the best strategy is to choose number 1 in
each step. This problem cannot be solved by supervised or unsupervised learning
techniques. And one obvious distinction in this problem is that we don’t have any
training data to learn from. This problem falls into the agent-environment interaction
paradigm.

agent

environment

In step t, the agent takes an action and the action a(t) in turn would have an effect
(t+1)on the environment. As a result, the state of the environment goes from s(t) to s

and returns a reward r(t+1) to the agent. Usually, the goal in RL is to pick up actions so
mthat the cumulative reward t=0 r

(t+1) is maximized. When m → ∞, the cumulative
reward may not be bounded. In that case, the future reward can be discounted by

∞λ ∈ [0, 1] and we want to maximize t=0 λ
tr(t+1). And in the following step, the agent

would pick up the next action a(t+1) based on the information collected. In general,
the environment state and reward at step t are random variables. If the probability
distribution of the next state and reward only depends on the current environment
state and the action picked up, the Markov property holds which results in a Markov
decision process (MDP). A majority of RL studies focus on Markov decision process
MDP.

With the advance of deep learning, deep learning-based RL has made signifi­
cant progress recently. Many DRL algorithms have been developed, such as deep
Q-networks (DQN) algorithm which we will discuss in more detail in the next sec­
tion.

As we mentioned, usually there are no data to learn in RL. Both supervised and
unsupervised learning need data to perform optimization on some objective functions.
So does RL, in a different approach. RL can also be viewed as a simulation-based
optimization approach, because RL runs simulations for the agent-environment in­
teraction.

Machine Learning - A gentle introduction • 197

There are many RL algorithms available online. In the next section we will have
a look at the DQN algorithm.

6.5 DEEP Q-NETWORKS

To introduce DQN we first define an action-value function Qπ(s, a) and the optimal
action-value function Q∗ (s, a). The action-value function is defined as π

Qπ(s, a) = E[R|s, a, π], (6.17)

where R denotes the random cumulative (discounted) rewards to obtain if the agents
start from state s and take the action a and then always follow the policy (strategy)
π.

Based on the definition of the action-value function, the optimal action-value
function is defined as

Q ∗ (s, a) = Qπ(s, a). (6.18)π

The optimal action-value function represents the optimal expected cumulative
(discounted) rewards to obtain if the agent starts from state s, action a. If we know the
exact optimal action-value function, it is easy to derive the optimal policy π - we can
just choose the action that maximizes Q∗ (s, a). But how to get the optimal action­π

value function is the key problem. And DQN aims at approximating the optimal
action-value function by (deep) neural networks. Let Q(s, a; θ) denote the neural
networks parameterized by θ.

Compared with the vanilla DQN, double DQN is more commonly used due to its
advantages. The training of these neural networks is still done in a supervised man­
ner, i.e., specify a loss function and update the parameters based on gradient-based
methods. An important idea to improve the performance of DQN is the experience
replay which is a brilliant idea and worth learning, but we will not cover it here.

Let’s see how to do RL in practice. Although there are some RL tools in R, I
recommend using Python because there are many mature tools in the deep learning
ecosystem. To find the optimal strategy of the game we discussed in the previous sec­
tion, we will use two packages, i.e., gym26 and stable_baselines27. The gym package
helps us define the environment and the stable_baselines package contains func­
tionalities for building the DQN agent.

In gym there is a class Env based on which we can define our own environment
class. More specifically, our environment class has to have three methods customized
to fit the problem, i.e., the __init__ method, the reset method and the step method.
The reset method specifies how to reset the environment before we start the learning.
The step method specifies how the environment reacts to the action and it should
return the next state and the reward. Also, step method should return if the current
game is finished or not. Regarding our game, the state that the agent observes in
each step could be the current time in the game, and the reward is always 1. If the

26https://gym.openai.com

27https://stable-baselines.readthedocs.io/en/master

https://www.gym.openai.com
https://www.stable-baselines.readthedocs.io

198 • A Tour of Data Science: Learn R and Python in Parallel

current environment time is greater than the time horizon, the game is finished. We
could define the environment class in the following code snippet.

Python chapter6/game_env.py

1 import numpy as np

2 from gym import Env, spaces

3

4 class GameEnv(Env):

5 """

6 H: the finite horizon of the game to specify

7 """

8 def __init__(self, H):

9 self.H = H

10 # there are two actions available − 0 and 1, thus we use
a discrete(2) space

11 self.action_space = spaces.Discrete(2)
12 # the observation/state has a single dimension to

reflect the current environment time
13 self.observation_space = spaces.Box(low=np.array([0]),

high=np.array([self.H]))
14 self.current_time = 0.0
15

16 def reset(self):
17 self.current_time = 0.0
18 return np.array([self.current_time])
19

20 def step(self, action):
21 if action == 0:
22 self.current_time += 1.0
23 elif action == 1:
24 self.current_time += 2.0
25 done = self.current_time >= self.H
26 reward = 1
27 info = {}
28 return np.array([self.current_time]), reward, done, info

And the code below shows how to use a DQN agent to play the game with the
help of the stable_baselines package.

Python chapter6/game_env_run.py

1 import numpy as np
2 from game_env_run import GameEnv
3 from stable_baselines import DQN
4 from stable_baselines.common.vec_env import DummyVecEnv

Machine Learning - A gentle introduction • 199

5 from stable_baselines.deepq.policies import MlpPolicy
6

7 if __name__ == "__main__":
8 # the horizon of the game is 100 time units
9 H = 100

10 # create the instance of our game environment
11 env = GameEnv(H)
12 env.reset()
13 # create the DQN agent with MlpPolicy which is a predefined

neural network and our env instance
14 model = DQN(MlpPolicy , env, gamma=1.0, verbose=0)
15 # let’s train the model with 20000 timesteps
16 model.learn(total_timesteps=20000)
17

18 # now let’s test our agent with 1000 games
19 n = 1000
20 env.reset()
21 r, a = [], []
22 for _ in range(n):
23 current_r = 0.0
24 obs = env.reset()
25 done = False
26 while not done:
27 action, _ = model.predict(obs)
28 obs, rewards, done, _ = env.step(action)
29 current_r += rewards
30 a.append(action)
31 r.append(current_r)
32 print("the average cumulative rewards from {0} games is {1}"

.format(
33 n, np.mean(r)))

By running the code above, we have the following output.

Python

1 chapter6 $python3.7 game_env_run.py
2 the average cumulative rewards from 1000 games is 100.0

In the game we discussed above, the environment does not have stochasticity
and the optimal policy does not depend on the environment’s state at all as it is
a simplified example to illustrate the usage of the tools. The real-world problems
are usually much more complicated than the example, but we could follow the same
procedure, i.e., define the environment for the problem and then build the agent for
learning.

200 • A Tour of Data Science: Learn R and Python in Parallel

6.6 COMPUTATIONAL DIFFERENTIATION

In Chapter 6 we talked about the gradient-based optimization algorithms, such as the
vanilla gradient descent. We implemented the gradient descent method for linear re­
gression. If you have used modern machine learning frameworks such as TensorFlow28

and PyTorch29, you may remember in TensorFlow there is no need to define the gradi­
ent update step manually and instead the framework handled the update magically.
That is because these frameworks have automatic differentiation implemented.

It is worth distinguishing numerical differentiation, symbolic differentiation and
automatic differentiation. Symbolic differentiation30 aims at finding the derivative
of a given formula with respect to a specified variable. It takes a symbolic formula
as input and also returns a symbolic formula. For example, by using symbolic dif­
ferentiation we could simplify ∂(x2 + y2)/∂x to 2x. Numerical differentiation is of­
ten used when the expression/formula of the function is unknown (or in a black
box, for example, a computer program). Compared with symbolic differentiation,
numerical differentiation and automatic differentiation try to evaluate the deriva­
tive of a function at a fixed point. For example, we may want to know the value of
∂f(x, y)/∂x when x = x0; y = y0. The most basic formula for numerical differentiation
is limh→0(f(x + h)) − f(x))/h. In implementation, this limit could be approximated
by setting h to a very small value, for example 1e − 6. Automatic differentiation also
aims at finding the numerical values of derivatives, in a more efficient approach based
on chain rule. However, unlike the numerical differentiation, automatic differentia­
tion requires the exact function formula/structure. Also, automatic differentiation
does not need the approximation for the limit which is done in numerical differenti­
ation. At the lowest level, it evaluates the derivatives based on symbolic rules. Thus
automatic differentiation is partly symbolic and partly numerical [2].

Let’s see an example of how to do symbolic differentiation in R and Python.

R

1 > D(expression(x^2 + y^2), "
x")

2 2 ∗ x

Python

1 >>> import sympy
2 >>> x = sym.Symbol(’x’)
3 >>> y = sym.Symbol(’y’)
4 >>> f = x∗∗2 + y∗∗2
5 >>> sym.diff(f, x)
6 2∗x

It’s worth noting there are many other symbolic operations we could do in
R/Python, for example, symbolic integration.

Automatic differentiation is extremely important in modern machine learning.
Many deep learning models can be viewed as function compositions. Let’s take a
two-hidden layer neural network illustrated below as an example. Let x denote the

28https://www.tensorflow.org/

29https://pytorch.org/

30https://www.cs.utexas.edu/users/novak/asg-symdif.html

https://www.tensorflow.org
https://www.cs.utexas.edu
https://www.pytorch.org

Machine Learning - A gentle introduction • 201

Figure 6.6: A neural network with two hidden layers f and g

input and fu, gv denote the first and second hidden layer, respectively. The output
y is written as y = gv(fu(x)). The learning task is to estimate the parameters u, v
in these hidden layers (see, Figure 6.6). If we use the gradient descent approach for
the parameter estimation, the evaluation of gradients for both u and v should be
calculated. However, there might be overlapped operations if we simply perform two
numerical differentiation operations independently. By utilizing automatic differenti­
ation technique, it is possible to reduce the computational complexity.

Let’s see how we could utilize the automatic differentiation to simplify our linear
regression implementation.

Python chapter6/linear_regression_ad.py

1 from autograd import grad
2 import autograd.numpy as np
3

4 class LR_AD:
5 """
6 linear regression using automatic differentiation from

autograd
7 """
8 def __init__(self, x, y, learning_rate=0.005, seed=42):
9 self.seed = seed

10 self.learning_rate = learning_rate
11 self.x = np.hstack((np.ones((x.shape[0], 1)), x))
12 self.y = y
13 self.coef = None
14

15 def loss(self):
16 def loss_with_coef(coef):
17 y_hat = self.x @ coef
18 err = self.y − y_hat
19 return err @ err.T / self.x.shape[0]
20 # return the loss function with respect to the coef
21 return loss_with_coef

202 • A Tour of Data Science: Learn R and Python in Parallel

22

23 def fit(self, max_iteration=1000):
24 # create the gradient function with the help of

automatic differentiation
25 grad_func = grad(self.loss())
26 coef = np.random.uniform(size=(self.x.shape[1]))
27 for _ in range(max_iteration):
28 coef −= self.learning_rate∗grad_func(coef)
29 self.coef = coef

In the implementation above, we use autograd.numpy to replace the ordinary numpy
package in order to perform automatic differentiation on the functions of interest.
In the loss method, we return a function loss_with_coef which captures the data
required for the computation. This type of function is also called closure31.

6.7 MISCELLANEOUS

In this chapter, we have talked about machine learning in a superficial manner. We
have seen some implementation of machine learning algorithms from scratch through
out this book, which is mainly for teaching and illustration purposes. When we work
on real-world data science projects we usually prefer to use the robust off-the-shelf
machine learning libraries unless there is a need to customize the existing models or
even to invent new models. In both R and Python, there are many such tools ready
to use. Particularly, the CRAN task view32 provides an up-to-date review of machine
learning tools in R.

Many popular machine learning tools have API available in both languages. There
also exist some tools for interoperability between Python and R. These tools allow
us to use R in Python and vice versa, for example, the 33 reticulate library in R.

It is worth noting that machine learning is not only about the learning theories.
It is also an engineering problem indeed.

31https://en.wikipedia.org/wiki/Closure_(computer_programming)
32https://cran.r-project.org/web/views/MachineLearning.html
33https://rstudio.github.io/reticulate

https://www.en.wikipedia.org
https://www.cran.r-project.org
https://www.rstudio.github.io

Bibliography

[1] Andrew R Barron.	 Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–945,
1993.

[2] Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.
The Journal of Machine Learning Research, 18(1):5595–5637, 2017.

[3] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Uni­
versity Press, 2004.

[4] George Casella and Roger L Berger.	 Statistical inference, volume 2. Duxbury
Pacific Grove, CA, 2002.

[5] John M Chambers et al. Object-oriented programming, functional programming
and r. Statistical Science, 29(2):167–180, 2014.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016.

[7] George Dantzig.	 Linear programming and extensions. Princeton University
Press, 2016.

[8] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. glmnet: Lasso and elastic-
net regularized generalized linear models. R package version, 1(4), 2009.

[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statis­
tical learning. Springer series in statistics New York, NY, USA:, second edition,
2009.

[10] William H Greene. Econometric analysis. Pearson Education India, 2003.

[11] Harold V Henderson and Paul F Velleman. Building multiple regression models
interactively. Biometrics, pages 391–411, 1981.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[13] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek.	 Evaluating the
design of the r language. In European Conference on Object-Oriented Program­
ming, pages 104–131. Springer, 2012.

203

204 • Bibliography

[14] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends
in Optimization, 1(3):127–239, 2014.

[15] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 2018.

[16] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated
annealing: Theory and applications, pages 7–15. Springer, 1987.

Index

t test, 118

anonymous function, 66

Array, 15

AUC, 166

automatic differentiation, 200

benchmark, 47

binary search, 41

BML traffic model, 52

bootstrap, 114

broadcasting, 17

browser(), 40

CDF, 99

central limit theorem, 112

closure, 202

clustering, 195

collinearity, 169

confidence interval, 111

control flow, 6

convexity, 133

coordinate descent, 153

copula, 106

cross-validation, 163

Cython, 64

data.frame, 20

data.table, 74

debug, 40

decision tree, 169

Deep Q-Networks, 197

distribution fitting, 110

EM algorithm, 192

evaluation strategy, 61

feature engineering, 169

feature selection, 169

functional programming, 65

functions, 4

Gaussian mixture model, 190

gradient boosting machine, 169

gradient descent, 134

group by, 91

hypothesis testing, 114

indexing, 76

internal rate of return, 142

inversion sampling, 102

join, 93

lasso regression, 137

linear programming, 149

list, 18

logistic regression, 146

logloss, 166

MAE, 165

map, 66

MAPE, 165

Maximum likelihood estimation, 144

member accessibility, 34

method of moments, 110

Monte Carlo simulation, 57

mutability of object, 22

NA, 10

NaN, 10

Newton method, 153

None, 11

NULL, 10

numerical differentiation, 200

numpy, 15

object-oriented programming, 30

overfitting, 163

pandas, 74

parallelism, 57

205

206 • Index

parameter tuning, 169

PCA, 188

pdb, 40

PDF, 99

portfolio construction, 150

QR decomposition, 123

quantile, 100

random sample, 162

Rcpp, 63

reduce, 68

reinforcement learning, 195

rejection sampling, 103

ridge regression, 127

RMSE, 165

root-finding, 141

sample from sphere, 104

scope of variable, 25

script, 37

simulated annealing, 155

slicing, 12

soft-thresholding operator, 138

SQL, 71

stochasticity, 153

supervised learning, 161

symbolic differentiation, 200

timeit, 49

traveling salesman problem, 155

type, 3

universal approximation, 162

variable, 3, 21

vector, 9

vectorization, 49

XGBoost, 185

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	0.1 Assumptions About the Reader’s Background
	0.2 Book Overview

	Chapter 1 Introduction to R/Python Programming
	1.1 Calculator
	1.2 Variable and Type
	1.3 Functions
	1.4 Control Flows
	1.5 Some Built-In Data Structures
	1.6 Revisit of Variables
	1.7 Object-Oriented Programming (OOP) In R/Python
	1.8 Miscellaneous

	Chapter 2 More on R/Python Programming
	2.1 Work with R/Python Scripts
	2.2 Debugging in R/Python
	2.3 Benchmarking
	2.4 Vectorization
	2.5 Embarrassingly Parallelism in R/Python
	2.6 Evaluation Strategy
	2.7 Speed Up With C/C++ in R/Python
	2.8 A First Impression of Functional Programming
	2.9 Miscellaneous

	Chapter 3 data. table and pandas
	3.1 SQL
	3.2 Get Started with data.table and Pandas
	3.3 Indexing & Selecting Data
	3.4 Add/Remove/Update
	3.5 Group by
	3.6 Join

	Chapter 4 Random Variables, Distributions & Linear Regression
	4.1 A Refresher on Distributions
	4.2 Inversion Sampling & Rejection Sampling
	4.3 Joint Distribution & Copula
	4.4 Fit a Distribution
	4.5 Confidence Interval
	4.6 Hypothesis Testing
	4.7 Basics of Linear Regression
	4.8 Ridge Regression

	Chapter 5 Optimization in Practice
	5.1 Convexity
	5.2 Gradient Descent
	5.3 Root-Finding
	5.4 General Purpose Minimization Tools in R/Python
	5.5 Linear Programming
	5.6 Miscellaneous

	Chapter 6 Machine Learning - A gentle introduction
	6.1 Supervised Learning
	6.2 Gradient Boosting Machine
	6.3 Unsupervised Learning
	6.4 Reinforcement Learning
	6.5 Deep Q-Networks
	6.6 Computational Differentiation
	6.7 Miscellaneous

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d002800630029002000320030003100300020005400610079006c006f0072002000260020004600720061006e0063006900730020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

