CREATING DATA-DRIVEN WEBSITES
CREATING DATA-DRIVEN WEBSITES
AN INTRODUCTION TO HTML, CSS, PHP, AND MYSQL
BOB TERRELL
Creating Data-Driven Websites: An Introduction to HTML, CSS, PHP, and MySQL
Copyright © Momentum Press®, LLC, 2019.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other—except for brief quotations, not to exceed 250 words, without the prior permission of the publisher.
First published by Momentum Press®, LLC
222 East 46th Street, New York, NY 10017
ISBN-13: 978-1-94664-604-0 (print)
ISBN-13: 978-1-94664-605-7 (e-book)
Momentum Press Computer Science Collection
Cover and interior design by S4Carlisle Publishing Services Private Ltd., Chennai, India
10 9 8 7 6 5 4 3 2 1
Printed in the United States of America
ABSTRACT
Today’s modern world is heavily dependent on the World Wide Web. It affects the way we communicate, how we shop, and how we learn about the world. Every website, every page, consists of four fundamental elements: the structure, the style, the programming, and the data. These correspond to four different “languages,” respectively: HTML, CSS, PHP, and MySQL.
The purpose of this book is to provide an introduction to this set of technologies to teach a new programmer how to get started creating data-driven websites and to provide a jumping-off point for the reader to expand his or her skills. After learning the necessary components, users will have the understanding required to use the above technologies to create a working website. This book is aimed at the programmer or student who understands the basic building blocks of programming such as statements and control structures but lacks knowledge of the syntax and application of the above-mentioned technologies.
Keywords
HTML; PHP; website; MAMP; LAMP; databases; CSS; structured query language; SQL; MySQL
CONTENTS
Fundamentals
Tags and Elements
Attributes and Properties
Block Elements
Inline Elements
Form Elements
Entities
Comments
Project
Further Reading
CHAPTER 2 Cascading Style Sheets (CSS)
CSS Syntax
Selectors
The Cascade
Importance
Specificity
Code Order
Properties
Colors
Length Units
Property List
The Box Model
Comments
Working with Difficult Browsers
Project
Further Reading
Why MySQL?
phpMyAdmin
The Structure of MySQL
Data (Field) Types
Numeric Data Types
String Data Types
Date Data Types
The Special Value NULL
MySQL Statements
Indexes
Operators and Functions
Project
Further Reading
Why PHP?
Getting into PHP: Basic Syntax
Variables in PHP
A Note about Strings
Operators
Language Constructs
Functions
Add Your Own Functions
MySQLi
mysqli
mysqli_result
SQL Injection and mysqli_stmt
The Final Piece: $_POST and $_GET
And One More Thing: $_SESSION
Project
Further Reading
ACKNOWLEDGMENTS
I would like to thank my wife for her patience and understanding and for occupying the time of three children long enough to write this book; Lisa MacLean, for being my favorite professor; my parents, for always seeing the potential in me and wanting the best for me; and fate, for life has given me many blessings and opportunities arising from circumstances that reach far beyond my own actions.
INTRODUCTION
The purpose of this book is to teach you, the reader, the basics of web development. Web development is made up of many different parts and uses many different languages. The languages that this book uses are HTML, CSS, PHP, and MySQL. These languages, and the software to interpret them, are freely available and can run on Windows, macOS, and Linux, making them a natural choice for the beginner.
PROJECT
As an example, through the course of this book, we will create a fully functioning project: a style guide. When multiple programmers work on a project together, it’s common for them to have learned multiple different customs when coding. It isn’t generally important whether a line is indented with four spaces or a tab, but it is important that the same method be used consistently throughout code. In a more general sense, this can be thought of as a suggestion box. Users (in this case, our hypothetical fellow coders) make suggestions regarding the style to be used a collaborative project, and the group as a whole votes on them. Those suggestions that receive majority approval are considered to be part of the guide.
When designing a site, it helps to think about the various tasks it will need to perform. Generally speaking, each task will be a separate script (or page). Just from our description, we have a short list of tasks that the site must perform:
This, however, is overly general. Each of these involves several smaller tasks. We also need an index (landing) page, something to show users who first visit the site. A more detailed, structured list would look as follows:
We may find as we proceed that even this isn’t quite detailed enough, but it will be sufficient for now.
BEFORE WE BEGIN…
As part of the project in this book, you will need a host with PHP, MySQL, and your choice of web server software. Apache is common on Mac and Linux; Windows users may use IIS (Internet Information Services). The host need not be from a web services provider; your personal computer is sufficient to run all of these. If you do not have a host set up for you, search for a guide to help you install these software packages on your machine.
CHAPTER 1
HTML
HTML is not, strictly, a programming language. HTML stands for hypertext markup language. It is a way of marking text, so that a web browser knows how to display it. It can be considered the most basic “building block” of a web page, and as such, it is where we begin.
It is customary when teaching a new language to begin with a simple program that simply outputs Hello, world! With HTML, it couldn’t be simpler. Open a new document in your editor and type in “Hello, world!”, as seen below (Figure 1.1).
Figure 1.1. Desc: “Hello, world!” in a text editor window
Save the file to your web root with the name hi.html (Figure 1.2).
Figure 1.2. Desc: file “hi.html” visible in a folder
View the results in your web browser of choice. Enter in the URL for your web root, and add hi.html to the end (Figure 1.3).
Figure 1.3. Desc: “Hello, world!” displayed in a web browser
You’re done!
FUNDAMENTALS
So what’s really going on here? The short answer is it is the browser’s job to make as much sense of an HTML file as it can. We can see what it has done by inspecting the web page. In Chrome: View -> Developer -> Developer Tools. In the window or pane that opens, select the Elements tab. We see that the browser has taken our file, which the web server has told it is an HTML file (thanks to the.html extension) and added to it. We should see something like the following (Figure 1.4):
Figure 1.4. Developer Tools window in Chrome
The document is located on the left. We see our Hello, world! text on the left. What’s the rest of that?
An HTML file is rendered by the browser into a document with elements. Note the three elements in document: the <html> element, which encompasses the entire document; the <head> element, which is currently empty and provides information about the document; and the <body> element, which contains the part of the document that the web browser is intended to render. Because our file contained only plain text, the browser created enough elements for our document to make sense. It put the contents of our file into the <body> element.
Revisit the document in the text editor and add in some of the elements the browser filled in on its own. Change the document to be as such:
Save the file and refresh the browser window. It should look pretty much the same! Only this time, the browser is reading our file and parsing (making sense of) it.
TAGS AND ELEMENTS
An html file is made up of markup contained in tags. An HTML tag consists of an open angle bracket (less than sign), certain characters to denote the type of tag, and a closing angle bracket (greater than sign). Tags may not have a space between the opening angle bracket and the letters. In the file above, note that we have three tags: <html>, <head>, and <body>. These correspond to the html, head, and body elements that the browser renders in its document.
HTML tags usually come in sets. There is an opening tag, as described above, and there is a closing tag, telling the browser when the element in question should end. A closing tag is an angle bracket, followed by a slash, followed by the same characters used in the opening tag. In the file above, every opening tag has a corresponding closing tag. A more correct description of our file would be that there are three opening tags: <html>, <head>, and <body>; and three closing tags: </head>, </body>, and </html>.
Also note that HTML is hierarchical: Elements can contain other elements when tags of another element are found in between the opening and closing tags. The head and body elements are contained within the html element because the <head> and <body> tags appear between the opening <html> and closing </html> tags.
While it’s possible to not close tags—if our file above was missing the closing tags, the browser would still render it correctly—some tags must be closed, and the browser will always try to render a document as if it were well-formed. It’s also possible to close tags not in reverse order: For example, the following would most likely render correctly:
but it is not well-formed. The following is well-formed:
Note the differences. The </u> closing tag closes the <u> element, which was the last one opened, followed by to end the opening tag. We also properly closed the <p> tag with the closing </p> tag. Don’t worry if you aren’t familiar with what these tags do! They’ll be explained soon enough. For now, simply note what it means to have well-formed HTML: that tags are closed in reverse order that they are opened.
BEST PRACTICE
Although web browsers give their best effort to make sense of an HTML file, throughout this book we will endeavor to generate well-formed documents. A well-formed document is one which always closes HTML tags and closes them in the reverse of the order opened. HTML documents that follow this guideline are easier for humans to read and understand, and following this practice makes it harder to make a mistake in which the web browser becomes legitimately confused.
ATTRIBUTES AND PROPERTIES
The HTML tags covered so far are tags at their most basic. They open an element, and they close an element. Tags, however, can also have attributes, which define an element’s properties. (Sometimes, properties can be changed on an HTML document. To be more precise, attributes define an element’s initial properties.) The attributes that can be used in a tag vary depending upon the tag type, but nearly every html tag can contain the attributes id and class. Consider the following:
In the code above, we’ve added the id attribute, with the value myId, and the class attribute, with the value myClass. These become properties of the rendered p element. The id and class attributes don’t do anything on their own, but we’ll be revisiting them later.
BLOCK ELEMENTS
HTML elements are considered either block elements or inline elements. Block elements begin a new line, and they usually try to be as wide as possible. The following is a list of the most common block-level elements:
Let’s take a moment to practice using these elements. Put the following in a document.
How does the HTML above appear in your browser?
INLINE ELEMENTS
Unlike block elements, inline elements do not create a new line. They exist within the flow of the content around them. Inline elements should not contain block elements, but may contain other inline elements. Most inline elements make use of their attributes to help define their behavior. The following are the most common inline elements:
FORM ELEMENTS
In the earliest days of the Internet, websites were simply pages up for display. You read them, you clicked around, and you went on your merry way. That’s hardly the case nowadays, and HTML forms are a big reason why. Forms allow data to be sent to the server to be processed. Forms can be used for search fields, or for registering at a site. Any time a site submits user-provided data back to the server, it’s likely to be using a form. On to the form elements:
ENTITIES
One last topic of note in the world of HTML is entities. Recall that HTML tags are the < symbol, followed by a tag name, and any attributes are part of the tag until the closing > character. This seems pretty straightforward, but what if we need a web page to say the following?
At first glance, the problem may not be apparent, but put that in a document and view it in a browser. All we see is if a. What happened? Well, the <b and everything after it was treated as a tag. That’s not what we wanted! Thankfully, HTML provides us with a way to output special HTML characters without having them treated as tags: entities. The six most common entities are listed in the table below:
Character | Description | Entity |
< | Less than | < |
> | Greater than | > |
" | Quotation mark | " |
’ | Apostrophe (or single quote) | ' |
& | Ampersand | & |
nonbreaking space | |
The non-breaking space is exactly what it sounds like: A space between two words that doesn’t allow a line break. It’s not necessary to use an entity absolutely everywhere; for example, in normal text, a quotation mark won’t be confused as anything else. However, if you must include a quotation mark inside a quoted attribute value, an entity would be required. Below are some examples:
It’s also possible to encode a reserved HTML character (and in fact, any character) as an entity using the character’s decimal ASCII (or even Unicode) character number. &, for example, has a character code of 38 and can therefore be replaced by either & or &. Likewise, it is possible—though pointless—to use A instead of the letter A. Although using named entities is generally preferred, as it’s clearer what the character will be, the numeric version is also allowed.
COMMENTS
Comments may be used inside HTML. A comment begins with the string <!-- and ends with -->. It may span multiple lines if necessary. HTML comments are sent to the browser, but the browser ignores their contents. However, because they are sent to the browser, they aren’t used very often; comments are for you, not for the users of your site. Nevertheless, if there’s a “secret” message you want to send to your users, an HTML comment would be a fun place to put it.
The above would appear when a user viewed the source of your web page, but it wouldn’t appear on the page when the browser renders it.
PROJECT
As much of our project involves dynamically generated content, there isn’t much we can accomplish yet. There are, however, a couple of tasks we can at least begin. We can create pages for the form to input a new user and the form to add a suggestion. We can also create an index page to link to these forms. As that describes three tasks, we will be creating three files.
Let’s begin with adding users. Each piece of information we want to store should be its own field. About our users, we need to store a username and password, so they can log in. We might also want to store their first name, last name, and job title within our fictional company. Put the below HTML into a file named user-new.html:
Next, make the input form for a suggestion. A suggestion will be a large block of text. It will also belong to a particular section of the style guide. The section options will be limited to General, HTML, CSS, PHP, and SQL. The below code should be put in suggestion-new.html.
And finally, the index page. Our hypothetical management has decided that our page should have our company logo and name. They have provided us with a logo file to use: a white pen on a transparent background. Prominently displayed should be the hypothetical company name: Pendity Software. Put the following into a file named index.html:
Obviously, the index page is incomplete. We’ll get back to that. For now, let’s see how it looks.
First, the index (Figure 1.5):
Figure 1.5. “index.html” displayed in a web browser
Wow. That looks terrible. At least the links are there. Click through to each of those pages. (You will need to use the browser’s Back button to return to the index page. What happens if you try to submit either form?) It’s time to move on to the next chapter.
FURTHER READING
This section encompasses only a very small subset of the complete HTML spec. It contains the most basic explanation of the most common HTML elements and ideas.
The full HTML 5 specification can be found here:
The Mozilla Development Network has many tutorials and references for HTML:
https://developer.mozilla.org/en-US/docs/Web/HTML
CHAPTER 2
CASCADING STYLE SHEETS
(CSS)
Originally, both content and presentation were part of HTML. However, as websites grew in size and complexity, it became clear the two needed to be separated. Consider the following overly simple web page:
Websites used to be written like this, but it proved to be quite problematic for two overarching reasons. First, it creates a lot of duplication. Every time we want to change the color of the font (or text), it requires another tag. In fact, it requires another opening tag and another closing tag, lest our chosen font color go on forever. It’s clear from our sample that paragraphs should be green and links should be red. While it’s not too troublesome for one page and two paragraphs, imagine doing that for a website with hundreds of pages. Second, imagine the day that our boss comes in, realizes that green text with red links looks terrible, and wants it changed. How many font tags would we need to change? How many instances of “green” would we find and replace?
And so Cascading Style Sheets (CSS) was developed. CSS, which separates the style or presentation of a website from its content, offers two major advantages: It allows the same style to be applied to many elements, and it allows a given style to be easily changed. It does so by using selectors to match style declarations to elements, assigning the properties of the matched elements the corresponding values in the declaration block. Our page above could be rewritten as follows:
Already it looks much cleaner. However, if this style were to apply to all pages, we would split it out into a separate file.
In a file called style.css:
And then, in our HTML file above, we would replace the <head> tag with:
Including that <link> element in every page in our website causes its style to apply to every page. And that, in a nutshell, is why CSS exists.
CSS SYNTAX
As seen in the introduction, a CSS declaration consists of two parts: The selector and the declaration block. The selector specifies what elements the declaration block should apply to, and the declaration block consists of one or more declarations, separated by semicolons. Each declaration is comprised of a property, followed by a colon, then the value for that property. For example, to revisit the link style above, consider the following declaration:
In this example, a is the selector. It indicates the style should apply to all instances of the <a> tag. The braces denote the declaration block, which contains two declarations: first, that the color of the content should be red; and second, that the text should not be decorated (that is, there should be no underline). CSS declarations override the default browser behavior, so to both change the default color of a link, and to remove the underline most browsers put in by default, both the color and text-decoration properties are set.
As with HTML, a browser will try to make as much sense of a CSS declaration as possible. If it comes across a property it does not understand, it will ignore it. If it can’t parse a declaration block, other CSS declaration blocks will still be parsed.
SELECTORS
A selector is not limited to applying to whole swaths of elements. The selector syntax in CSS is powerful and allows for endlessly specific declarations. The table below provides a list of the most common CSS selectors. They can be categorized into element selectors, attribute selectors, and pseudo-classes. Note that despite this distinction, it is always an HTML element that the declaration applies to.
You are not limited to one selector; they can be combined. Consider, for example, the following CSS:
Take a moment to create a file. Put the above CSS in the <head> of the file. In the <body>, create a table, assign it the class “checkerboard”, and create eight rows containing eight cells each (Figure 2.1). View it in your browser. (The class name gives away what it looks like, doesn’t it!)
Figure 2.1. “Checkerboard.html in a web browser”
There is a wealth of information in the image above, where we have inspected the seventh cell of the first row. On the left is the actual web page showing the selected element (a <td>) and its size (a width of 40 pixels and a height of 40 pixels). The middle pane shows how the selected element appears in the document. Note that the triangles can be clicked to expand or collapse elements. The right shows all of the properties the browser considers when deciding how to display the element. The most interesting interaction is in the two declarations below “element.style”. The element in question is indeed in an odd-numbered cell (7) in an odd-numbered row (1), so the background-color is black. Below it, the cell has a height and width of 40 pixels because all <td>s of checkerboard tables have those dimensions. There are also other declarations we didn’t put there, labeled as coming from the “user agent stylesheet”. Hmm…
THE CASCADE
Take a step back. In the screenshot above, some properties are crossed out and replaced with others. How does the browser know how to do this? Which ones win? The answer leads us to the core of CSS: the cascade, from which CSS takes its name.
The cascade is comprised of three parts: importance, specificity, and source order. These are evaluated in this order, and only if two conflicting declarations for the same property have the same value for a given part does the cascade use the next part to determine the style to apply.
IMPORTANCE
Importance in CSS is a mixture of two things: where the declaration comes from, and whether or not the declaration has “!important” after it. There are three types of style sheets: user agent style sheets, user style sheets, and author style sheets.
User agent style sheets are the browser’s default behavior. Each browser styles elements as they see fit, but some behaviors are common. Text is usually black. Links are usually blue. Paragraphs have some space above and below them. Tables have slightly separated cells.
User style sheets are style sheets that the user creates. Google Chrome dropped support for these in early 2014, but Chrome extensions enable the same functionality. Other browsers, such as Apple Safari or Firefox, allow users to use a style sheet to override user agent defaults.
Author style sheets are the site-specific style sheets the web developer creates that are included in or with the HTML.
A declaration with !important takes precedence over any of these, but in reverse order, therefore, in order from most to least important:
For example, if you absolutely wanted every <p> tag on a page to have purple text, regardless of the paragraph’s id, class, or other characteristics, p {color: purple !important} would do that.
In practice, very rarely will anything override an author style sheet declaration. Users do not typically use a custom style sheet, and !important is not generally used. Using !important causes confusion, as a very specific style is ignored in favor of an “important” one.
SPECIFICITY
Given that !important is not generally used, and that as authors, our style sheet overrides the user’s and user agent’s, it is usually whichever declaration is the most specific that is applied. The exact rules used to determine which declaration is most specific are quite complicated, but they can be summed up with a few guidelines.
CODE ORDER
Code order simply states that if we declare the same thing twice, all other things being equal, the one that appears last wins. For example, if our CSS contains this:
then paragraphs would be red. They have the same importance and the same specificity, but the red declaration comes last.
PROPERTIES
Some of the more obvious properties have already been used in the examples illustrating how selectors work, but CSS offers so much more. You should by now be familiar with the idea that within a declaration block there are one or more property–value pairs. Before examining more CSS properties, however, some types of values are worth mentioning. Two types of values are used to specify many properties in CSS: color values and length values.
COLORS
CSS supports the following kinds of color values:
LENGTH UNITS
Length values are the other common CSS property value. As with colors, they can be expressed in a variety of ways. All length values take a number and a unit, with no space in between. When the number is 0, the unit may be omitted.
PROPERTY LIST
Properties, as we’ve seen, define specific behaviors for the visual presentation of our content. Below is a list of the most common properties used, arranged by type. When a property uses a color value, as defined above, it is shortened as <color> below. Likewise, length values are shortened as <length>. Most properties also take the special values initial, which sets the property to its default value, and inherit, which explicitly says to use the value of the parent element. For brevity, these values are not listed individually below.
Color Properties
color: Sets the color of the text in the element.
Allowed Values: <color>
Default: Not specified. Generally, user agents style text as black, links as blue, and visited links as purple.
background-color: Sets the background color of the element, which will paint the background of the element (including the padding spacing, see below) with the <color> specified.
Allowed Values: <color>, including transparent
Default: transparent, allowing the background of parent elements to show through.
Font (Text) Properties
font-family: The font or family of fonts text should be displayed in.
Allowed Values: Either a specific font family name, such as Times or Courier, or a generic family name, such as serif, sans-serif, or monospace. If a font name has spaces, it must be quoted, such as “Times New Roman”.
Default: Varies, depending on the user agent.
The font-family property allows for multiple fonts to be declared at the same time. The user agent will use the first one it understands. Because of this behavior, if using a specific font, it is best to follow the declaration with a generic family name. If the specific font is not available, the browser will use a font available to it in the generic family. For example:
In the declaration above, the browser will use the Times New Roman font if it is available to it. If not, it will attempt to use the Times font. If neither font is available, it will use any serif font it can find.
font-size: The size of the font to use.
Allowed Values: <length>, though usually expressed in points, pixels, or % of parent’s size. Fonts can also be set to any of the following keywords, though they are not often used: xx-small, x-small, small, medium, large, x-large, xx-large.
Default: medium. Generally, this is about 12 points.
font-weight: The thickness of the text.
Allowed Values: Any of the following: normal, bold, bolder, lighter, or a multiple of 100 between 100 and 900. A value of 400 is equal to normal, and 700 is equal to bold.
Default: normal (400)
This is usually either normal or bold, so it may be thought of as toggling the font’s boldness on.
font-style: Whether the font is italicized.
Allowed Values: Any of the following: normal, italic, oblique
Default: normal
In theory, oblique and italic may be different. A font can have a specific typeface for each value. In practice, they are generally the same, and oblique is almost never used.
text-decoration: Whether to add a line to the text.
Allowed Values: none, underline, overline, line-through
Default: none
Generally used to underline text (such as in links), the text-decoration property can also be used to draw a line through the text so it appears crossed out using line-through. The overline value is not common.
text-align: How to horizontally align the text.
Allowed values: left, right, center, justify
Default: Left (unless the language reads right to left)
Recall that a block element spans the full width allotted to it. To center text within such a block element, text-align would be set to center. User agents typically do this for header tags (<h1>, <h2>, etc.). A value of justify stretches the text to line up on both sides, as in books or in newspapers.
vertical-align: How to vertically align the text.
Allowed Values: baseline, <length>, sub, super, top, middle, bottom
Default: baseline, but user agents usually change table cells to middle.
The vertical-align is most often used to align text within tall table cells. Most browsers align text in table cells to the middle of the cell, but this can be changed with either top or bottom. Elements that occur inside text align to the text’s baseline, but a span of text can be set to act as subscript or superscript with sub or super, respectively. An element (such as a span) can use a <length> value with the vertical-align property to move the text up by the length specified. (Negative values move the element down.) While this can be used to align an image with text, the image only takes up one line of text; another property (float, below) is usually used instead.
white-space: How to treat whitespace such as space, tabs, and newlines (returns).
Allowed Values: normal, nowrap, pre, pre-wrap, pre-line
Default: normal
When normal, all consecutive whitespace is treated as a single space. If your content contains a newline, a tab character, and seven spaces next to each other, it renders as a space. (Recall that a
 element is typically used to create a new line in content.) A value of nowrap acts much like normal, except text will never wrap unless a
 is found. Using pre makes the element act like a <pre> tag in HTML, except the font does not change; spaces are left intact and lines do not wrap unless a newline character is encountered. Setting this to pre-wrap preserves whitespace but allows the text to wrap to fit the element’s box. Finally, pre-line acts like normal, but text will wrap on newline characters.
Size Properties
height: The height of an element.
Allowed Values: auto, <length> (non-negative)
Default: auto
When the height of an element is auto, the browser calculates the minimum height needed to display an element and its contents and uses that as the element’s height.
width: The width of an element.
Allowed Values: auto, <length> (non-negative)
Default: auto
For inline elements, auto is the minimum width needed to display an element’s contents. For block elements, auto is usually equal to 100 percent of the width of its parent. Note that tables, while described in the HTML chapter as a block element, actually have their own display definition and will use only as much width as necessary to display the contents inside.
max-height, max-width: The maximum height and width of an element.
Allowed Values: none, <length> (non-negative)
Default: none
With max-height and max-width, elements can be restricted in the amount of space they can consume. If an element does not need the full space, it does not use it, but it is not allowed to exceed the dimension specified.
min-height, min-width: The minimum height and width of an object.
Allowed Values: <length> (non-negative)
Default: 0
Elements can also be given minimum dimensions that they must adhere to.
Box Model Properties
The box model is explained in detail later in this chapter.
margin: The margin to leave around the border of the element.
Allowed Values: One to four <length>s.
Default: 0, although many browsers specify defaults for different elements.
The margin property takes one to four values. If provided one value, all four margins are set equal to it. If given two values, the top and bottom margins are set to the first value, and the left and right margins are set to the second. For three values, the bottom margin becomes the third value. With four values, the fourth value specifies the right margin. An easy way to remember this rule is to start at the top of a box and work clockwise, bouncing back and forth across the value list. If an element has the declaration margin: 2em 1em 3em; the top margin is 2em, the right is 1em, the bottom is 3em, and for the left margin, we bounce back to the 1em value.
The property margin is actually shorthand for setting each margin property individually. Margins can also be set using margin-top, margin-right, margin-bottom, and margin-left. Individual properties may be handy when only changing or overriding one side.
border-width: The width of the border around an element.
Allowed Values: One to four values of <length>, thin, medium, thick
Default: medium
The border-width property is one of three properties that define the look of a border. As with margin, above, it accepts one to four values, corresponding to the same sides as in the margin property.
The border width can also be set for each side independently using border-top-width, border-right-width, border-bottom-width, and border-left-width.
border-style: The style of the border around an element.
Allowed Values: none, hidden, dotted, dashed, solid, double, groove, ridge, inset, outset
Default: none, although some browsers override this for <table> elements.
Although many values are allowed for the border style, only three are typically used in practice: none, solid, and hidden. The others are visually distracting. A value of solid is simply a solid line; none means no border; hidden, like none, means no border, but unlike none, if a border is hidden, it means it’s more important than another border declaration. Consider the following snippet:
If we came across this table, the table would be drawn with the browser default border. The row would be drawn with a solid border, which would trump the table border, as we specified it. The first cell would have no border on the right side, as the solid style of the table row “wins” on the top, bottom, and left. The second cell would have no border on any side because hidden takes precedence over other border styles. The third cell would have no border on the left side but would on the top, bottom, and right.
As width border-width, border-style may be specified individually using border-top-style, border-right-style, border-bottom-style, and border-left-style.
border-color: The color of an element’s border.
Allowed Values: One to four <color> values, including transparent
Default: The color of the element’s text, as defined with color.
As with the width and style, the color may have one to four values corresponding to the same sides, and as with the width and style, may be specified individually using border-top-color, border-right-color, border-bottom-color, and border-left-color.
border: Shorthand property to define a full border.
Allowed Values: Requires the properties for a border width, style, and color, as defined above.
Default: The defaults are the same values as the individual properties above.
Unlike the individual properties, the border property only accepts one set of values. Therefore, a style set with border applies to all four borders. However, this shorthand property can be defined for individual sides using border-top, border-right, border-bottom, and border-left.
border-collapse: Whether table cells should have space between them.
Allowed Values: separate, collapse
Default: separate
With the default value of separate, browsers will leave space between table cells, and borders for table rows will not be drawn. With the value of collapse, no space is left between table cells, or between table cells and the edge of the table itself, and borders (and other properties such as background-color!) for table rows are honored.
padding: The space between border of an element and the content inside it.
Allowed Values: One to four <length> values (non-negative)
Default: 0, although user agent style sheets have defaults for many elements.
As with margin, padding allows for one to four values and follows the same method when applying them to each side. Sides may be specified individually with padding-top, padding-right, padding-bottom, and padding-left.
box-sizing: How to measure the height and width of an element
Allowed Values: content-box, border-box
Default: content-box
By default, when specifying that an element should have a width of 500px, this defines the amount of space that the element’s content will be given. The space used by the element’s padding and border are in addition to that value. If this property is set to border-box, any width or height specified instead refer to the total of the content, padding, and border. The content width is then calculated by subtracting the border and padding from the given width.
Display and Visibility Properties
display: Whether (and how) to render an element.
Allowed Values: block, inline, inline-block, table, table-row, table-cell, none
Default: inline, although user agent style sheets have defaults for many elements.
The display property allows elements to be rendered like a different element.
Both block and inline should be familiar by now.
inline-block acts like an inline element but permits setting height and width, which are otherwise only able to be set for block elements.
The none value hides an element completely; it does not show to the user and takes no space in the page layout.
The table, table-row, and table-cell values act like <table>, <tr>, and <td> elements, respectively, and are the preferred method for creating a table layout that is not semantically tabular data. As with true tables, an element with display: table-cell should be the child of an element with display: table-row, which in turn should be the child of an element with display: table.
visibility: Whether an element is visible.
Allowed Values: visible, hidden
Default: visible
Whereas the visibility of an element would seem self-explanatory, this raises the question: why does visibility: hidden exist if display: none exists as well? The answer is that unlike setting an element’s display property to none, when setting the visibility property to hidden, the element still takes up space in the page layout. That is, it’s still there; the user just can’t see it.
overflow: What to do if an element’s content exceeds its dimensions.
Allowed Values: visible, hidden, scroll, auto
Default: visible
If an element has a specified height and width, and its content exceeds those dimensions, this property determines what happens to the content.
If this property is visible, the content overflows the element’s box, essentially ignoring the element’s dimensions.
If hidden, the overflowing content is simply invisible.
If set to scroll, scrollbars are added to the element to allow the user to scroll.
If set to auto, scrollbars are only added if scrolling is necessary to see the entire content.
text-overflow: How to signal the content overflowed the element.
Allowed Values: clip, ellipsis, <provided string>
Default: clip
The default, clip, means that no indication is given to the user when text overflows an element.
A value of ellipsis will shorten the text as necessary to allow an ellipsis to be added.
Alternatively, the page author may provide a custom string to use.
Positioning Properties
position: Where on the page to put the element
Allowed Values: static, relative, absolute, fixed
Default: static
The default, static, simply means to position the element as normal, according to its position in the document, and is the method all examples to this point have used.
Its cousin, relative, acts much like static, except after positioning the element according to normal flow, the position of the element is adjusted.
A value of absolute changes the element to be positioned relative to its first ancestor not set to static or to the entire document if no such ancestor exists. (An element may be set to relative simply to not be a static element.)
Finally, fixed positions an element relative to the browser window. Unlike any other value, fixed elements do not scroll with the rest of the page.
This property is used in tandem with the following properties.
top, left, bottom, right: Used with position to move and place elements.
Allowed Values: auto, <length>
Default: auto
Each of these properties specifies a length from an edge at which to place the element’s edge. The behavior is slightly different depending on the value of position. Keep in mind that for each of these, the default value of auto means to let the browser figure out on its own what the best value is, which will usually depend on the content inside the element.
If the position is static, these properties are ignored.
For a position of relative, these properties “push” the element inward from the direction of the property. For example, an element with position: relative; left: 20px would be laid out as normal, but the element would be “pushed” from the left (i.e., to the right) by 20 pixels.
If the position is absolute, these properties specify how far away from the edge of its non-static ancestor the edge of this element should be.
If the position is fixed, these properties specify how far away from the edges of the browser window this element should be.
Examples of absolute and fixed can be found in the project at the end of this chapter.
THE BOX MODEL
As far as CSS is concerned, every element is a box. The browser window (or paper, when printing) is a box (Figure 2.2). Block elements are boxes that take up the entire width of their containing element, and inline elements are boxes that exist within the flow of the document. Place the following in a file to examine how the box model works:
Figure 2.2. Desc: “The box model in a web browser”
Open it in a browser and inspect the <p> tag.
The diagram on the right side, underneath the style declarations, is how the browser interpreted the element according to the CSS box model. Note that all sizes are in pixels, and the diagram is clearly not to scale. For the <p> element, we specified 400 pixels by 200 pixels, which defines the size of the content area. A padding of 1.5em translates to 24 pixels. The border is 3 pixels wide, the top and bottom margins are 1em, or 16 pixels, as defined by the user agent, and the left margin is 3em, or 48 pixels, as specified in the document. The right margin was calculated automatically from the amount of space inside the <div>. Note that when mousing over the <p> tag and the containing <div>, the orange area of the <p> tag (the area including the margins) matches the blue area of the <div> (the area specifying the content).
Likewise, the <div> was given a set width, and by default is left justified, so its extra margin is on its right side as well. Mouse over the <body> tag in the middle panel to see why the border of the <div> doesn’t reach any edge of the page: Chrome defines the body tag with an 8-pixel margin on all sides.
Inspect the element, which has a blue border, and another box appears. The positioning box informs us that because the element has position: relative, the top of the element was pushed 16 pixels (1em) down from the top (and the bottom of the element was pushed −16 pixels up from the bottom, i.e., 16 pixels down as well).
The absolutely positioned <div>, with the red border, also has a positioning box in its diagram. Its position is relative to its closest non-static ancestor, the <html> element. (The <body> tag, although it is its parent, is using static positioning, so the 8-pixel margins are ignored.) In the screen shot, the web page is displayed in an area 635 pixels wide by 955 pixels tall. Chrome rendered the text inside at 18 pixels high, and a content width of 200 pixels was specified, and there is a 1-pixel border on all sides. The element was placed 200 pixels away from the top and left of the <html> element, and the right and bottom positioning was calculated from these values. 635 − 200 − 1 − 200 − 1 results in 233 pixels on the right side; 955 − 200 − 1 − 18 − 1 leaves 735 pixels on the bottom. When looking at this example in a window of a different size, some of the numbers will be different, but the calculations for the box model will remain the same.
So, to reiterate, unless it is static (automatically positioned), first the element is positioned. Then, the margin is the space added outside the border. The padding is the space added inside the border, and the content is the area available to text or other elements inside the padding.
COMMENTS
CSS also allows for the use of comments. In CSS, comments start with /* and end with */ and may span multiple lines. Note that while this is the same block comment style found in other languages, there is no single line comment in CSS. You must use /* and */ for all comments, even those on a single line.
WORKING WITH DIFFICULT BROWSERS
CSS seems like a fantastic method for laying out your page. And by and large, it is. There’s just one problem. Browsers vary in their support for the standard. Internet Explorer (IE), for example, does not understand the initial keyword at all.
In such a case, the easiest answer is to declare the same property multiple times. For example, if most of the links on a website are internal links and colored red, we might have a declaration as such:
However, in a few specific places, there are links to an external site that should use the browser’s default color. In most browsers, color: initial would work, but IE wouldn’t understand that. However, because browsers ignore declarations they don’t understand, both can be specified:
With this styling, most links will be red. If a link is given the class external, it is set to blue. Then, it is set to initial in any browser that understands that value. Links are usually blue anyway, but if a visitor has a user style sheet, or if the browser’s default isn’t quite “blue”, those values are used instead.
Now let’s revisit the previous pages of the project to make them more attractive.
PROJECT
Our index page is ugly and completely nonfunctional. Some CSS will fix that. First, the index page must be updated to add some ids to the div elements. Change the index page to look like it does below. We’re adding some id attributes to the div elements and linking to an as yet non-existent style sheet in the header.
What we next want to do is lay out each section and apply some color and text styling. The below CSS will accomplish this. Save the below in a file called style.css and place it in the same directory as the index file.
Take some time to inspect the resulting page. See if you can answer the following questions:
Overall, this is a pretty good style sheet. There’s just one little hiccup that seems a little wrong. When you resize the browser window, you see bits of red near the edge of the window. The reason is that there’s a bit of a delay between the operating system redrawing the window and the CSS recalculating the size of div#main. It’s not much, but it’s enough that the red background shows up before the div paints it white. Is there another way to get this look?
Several, actually. The first and easiest answer is that we don’t really want a specific height on each div. Rather, we want it to go to the edge. Remove the height and width properties for any element that has the calc() function in them, and replace them with right and bottom declarations. Also, move the background-color declaration from the body to each individual element that should be this color, that is, #icon, #header, and #links.
The net result should be this:
This accomplishes the same result as our original style. It does mean that changing the size of the window draws white where we would really like red, but that’s less noticeable than the other way around. It does, however, eliminate the need for calc and hopefully makes the layout clearer to us as we read it.
Finally, one more example to illustrate how the same look can be achieved multiple ways. Take a look at the style below:
Note that in this version, all the elements start in the top left corner. They overlap. They use the padding directive to place the content, whereas the previous versions split them into their own divs. (Inspect the elements in a browser and see how they interact, or rather, don’t interact.) The most noticeable difference with this version is that “Pendity Software” now appears in the center of the entire page rather than the center of the area above the main content. We could, of course, achieve that with another layout. We could separate the top banner into its own div with elements inside it and put the rest of the page, both #links and #main, in its own container div. That would require slightly changing the HTML.
But enough of achieving the same thing in many different ways. CSS is supposed to be about reuse and achieving multiple looks without changing the document, right? That makes it easier to update the look of the document.
The style above was popular in the early days of the web. A banner along the top, and a list of links on the left side. Today, those links are more often given a menu-like appearance just underneath the banner. We can achieve that look—again, without changing anything in the HTML file itself—with the below styles. Note that the below should replace everything including and below the #links block in the style sheet above.
And just like that, we have a centered list of links along a bar, with the Admin label separating the Admin link from the rest. We could add more links here simply by putting them inside the links div, and they would expand to take the space needed. We’ve added a maximum width to the body and centered it to make it easier to read. Perhaps we’ll need more space later, but for now, this is a good baseline.
We will eventually want to apply this header and navigation to all our pages. That will be easier to do in the last chapter using PHP. For now, we need somewhere to store the information that users enter.
FURTHER READING
The latest all-in-one version of the CSS specification is available here:
Starting with CSS3, the specifications have been split out into multiple specifications:
https://www.w3.org/Style/CSS/specs.en.html
Mozilla again has a very detailed and somewhat technical explanation of CSS:
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
W3Schools offers a more beginner-friendly and easier to navigate version:
Reference: https://www.w3schools.com/cssref/default.asp
Tutorial: https://www.w3schools.com/css/default.asp
For checking browser support, visit:
An important aspect of modern web design not covered here is responsive web design, used to make your page attractive and accessible from a variety of devices:
https://www.w3schools.com/css/css_rwd_viewport.asp
CSS flexbox can be an easy way to solve page layout problems but lacks support in older versions of IE:
https://www.w3schools.com/css/css3_flexbox.asp
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_ayout/Basic_Concepts_of_Flexbox
Perhaps even better than flexbox, CSS grid layout provides another method for page layout, but again, support is lacking in IE:
https://css-tricks.com/snippets/css/complete-guide-grid/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://www.w3schools.com/css/css_grid.asp
CHAPTER 3
MYSQL
MySQL is a database. It provides a place to store data. When a user visits a web page, whether they enter data in a form or simply look around the site, from the server’s point of view, the user asks for a page, and they receive the page, and then its job is done. There is no persistence inherent in HTML.
In the early days of the web, before websites were heavily data-driven, you might see something like a visitor counter on even the most amateur of pages. Behind the scenes, these hit counters were often simply a text file that the web page would read, display, and increment. While that works fine for a single piece of data, such as how many times the page has been accessed, running a simple e-commerce website using text files would be a nightmare, and a data-intensive site such as eBay or Amazon would be outright impossible.
A relational database provides two major benefits: first, it allows for the data to be logically organized; and second, it provides a way to access only the data needed, rather than all of the data in its entirety. If Amazon needed to load all the information about every item in its inventory whenever you visited it, it would simply collapse upon itself.
WHY MYSQL?
MySQL is often used in all but the most commercial of websites for a simple reason: It’s free. Although it offers many other benefits, such as built-in or third-party support in many typical web languages, an extensive feature set that has greatly improved since its early days as well as a couple MySQL-specific extensions or functions that make life for a developer much easier (GROUP_CONCAT comes to mind), MySQL is often the first database many developers start with simply because the barrier to entry is so low.
This isn’t to say that MySQL isn’t suited for enterprise-grade commercial development. MySQL also offers a paid version with paid support for commercial clients, but that’s outside the scope of this book and a beginning developer. However, even small-scale commercial apps might find the free version of MySQL sufficient for their needs.
PHPMYADMIN
Because the free version of MySQL is decidedly light on its visual administration, a community tool called phpMyAdmin is the de facto MySQL administration tool. It can be downloaded from www.phpmyadmin.net using the top link in the upper right of the page.
Installation is straightforward: Add it to a web-accessible directory, remove the “.sample” part of the config.sample.inc.php file, open the file, and add a 32-character random string where it asks for a value for $cfg[‘blowfish_secret’]. Put any 32 characters (except a single quote) in between the two single quotes. The rest of the configuration should work as is. Be sure to delete the setup folder.
Alternatively, once the phpMyAdmin folder has been added somewhere you can access it, you can go to the setup folder within the phpMyAdmin folder from within a web browser to complete setup in the browser.
Once set up, go to the main phpMyAdmin folder in a web browser. You can log in with any MySQL username and password. Once logged in, you will likely see a message at the bottom that some extended features have been disabled. Click the “Find out why” link and allow phpMyAdmin to create a database for itself.
MySQL also offers a command-line tool that may be used instead. For ease of use, we’ll stick with phpMyAdmin.
THE STRUCTURE OF MYSQL
MySQL, as with other database software, is structured into four layers. At the top level is the server. The server is the machine on which our MySQL installation runs. (Clusters, collections of servers, are outside the scope of this book.) Each server may contain multiple databases. Each database may contain multiple tables, which in turn contain multiple rows (sets) of fields. A field is a single piece of data, such as a number, string, or date.
Or to describe that in reverse: In MySQL, a field is a single piece of data. A collection of fields (columns) creates a single row. Multiple rows (instances of a collection of fields) together create a table. Multiple tables together create a database. Multiple databases are housed on a server.
Note that the word database can be used to describe several things: It may refer to the database software itself; in our case, MySQL. It may refer to an actual database as MySQL (or other software) thinks of it: a collection of related tables. Colloquially, it may refer to what is actually a collection of databases; when referring to the “MySQL database,” we might mean multiple actual databases running in MySQL.
A given server may run multiple applications on it, each of them needing to use MySQL. In our example project, we’re building a style guide. The same server might host a ticketing system, a list of clients, or any number of other projects. Each project is a logical division of scope designed to fulfill a specific purpose. The correlation in MySQL is a database. There is nothing explicitly stopping us from creating a single database for all our projects and using a very long list of tables; it is, however, bad practice. For example, if our database software installation is used by an issue-tracking system, a style guide, and a client-accessible support forum, we would need a list of users for each of those. It makes much more sense to have three separate databases, each with their own users table, than to have a single database with forum_users, styleguide_users, and issue_users, or even worse, to try to shoehorn them all into the same table!
To reiterate: A database is a collection of tables that should correspond to a single application.
A table, meanwhile, will often refer to a specific thing within an application. A users table, for example, will contain all (or most) of the information about a user. In forum software, a boards table would contain all the information specific to the board as a whole. A posts table would contain all the information about a specific post, including which board it belongs to and which user made the post. Each table is logically structured like a table in HTML. A field, or column, is a piece of particular data of a certain type, and each row is an instance of that data. For example, a users table might contain a user ID, a login, a password, and the user’s first and last name. For each user in our application, there would exist one row in the table containing all of their information.
For example, a users table might look like this (Figure 3.1):
Figure 3.1. Desc: A users table
And it might have the following structure (Figure 3.2):
Figure 3.2. Desc: Structure of the users table
Before we go any further, we should note that there are some serious issues with that users table. First among them is that passwords are stored in plain text. Passwords should never be stored in plain text, regardless of the size and scope of the project, if only because people have a tendency to reuse the same password in multiple places. We will address this and the other issues later. For now, however, we’re simply using this as an example of a table in general.
The above table contains two rows, one for each of our users. It contains five fields: id, login, password, firstname, and lastname. MySQL offers many different field types, and it’s time to look at them in depth.
DATA (FIELD) TYPES
Data types in MySQL denote the type of data stored in a field and can be grouped into one of three categories: numeric, string, and date/time. (There are also spatial and JSON data types, which are not discussed here.)
NUMERIC DATA TYPES
Numeric data types, as the name implies, are used to store a number of some sort. Numeric data may either be an integer, a fixed-point value, a floating point value, or a bit value. Different field types offer different ranges of values but require different number of bytes to store. It is best to use the smallest possible range that will store the values needed.
Numeric data types may have an optional property, UNSIGNED. This property may be used to force numeric data types to be positive. When used on an integer, it also extends the range of the integer. For example, a TINYINT field normally holds a value between −128 and 127. Changing the field to TINYINT UNSIGNED changes the range to between 0 and 255. This can be useful when dealing with numbers guaranteed to be positive (such as row IDs) if the extra positive numbers prevent the use of a larger data type. However, UNSIGNED comes with a downside: If MySQL performs subtraction with at least one UNSIGNED operand, it will throw an error if the result would be negative.
MySQL supports the following integer types. Note that the minimum unsigned value for each is zero. When dealing with numbers with no fractional component, one of the integer types should be used.
In each table, one integer field may have the optional property AUTO_INCREMENT. When used, this provides a primary key for the table. This property may only be used on an integer, and only once per table. It allows rows to be uniquely identified.
MySQL supports two floating point types: FLOAT and DOUBLE. These are stored as an approximate value; because of the nature of floating point numbers, they do not represent a number exactly. There is limited use for values that are not exact; as such, they warrant little more than a passing mention here.
MySQL supports an exact-value fixed-point type: DECIMAL. When using a DECIMAL type, the number of digits before and after the decimal point are explicitly stated. A DECIMAL column is declared with two parameters, such as DECIMAL(4,2). The first number indicates the total number of digits the column may use, and the second number indicates how many of those digits belong after the decimal point. Because the DECIMAL data type is stored exactly, it is suitable for use with currency. For example, in a table storing information about different tax rates, we might declare the column as DECIMAL(3,2), as Tennessee has the highest tax rate at 9.45 percent, for which we would need three digits, two of them after the decimal point. (Or if we expect that to increase, we might declare it as DECIMAL(4,2), in the event that the rate jumped above 10 percent.) Or if using very large numbers, such as storing the yearly revenue of Walmart, we might use DECIMAL(14,2) to store 485873914829.15, which on output we would format as $485,873,914,289.15. The DECIMAL type can store a maximum of 65 digits.
STRING DATA TYPES
MySQL offers myriad data types for storing strings. Each offers different advantages and changes the way string data is stored and retrieved. String types can be used for storing both textual data and binary data.
CHAR
CHAR is used to store textual data, ideally of a fixed length. A column would be declared as CHAR(5), which indicates a field five characters long. CHAR always stores the data using the same number of bytes, even if the data is shorter. When storing a value, CHAR pads with spaces on the right; trailing spaces are removed when retrieving the value.
VARCHAR
VARCHAR is also used to store textual data, with two important differences. First, trailing spaces are preserved when data is stored and retrieved. Second, it uses a variable amount of space equal to the length of the string plus one byte. As most text is of variable length, especially when entered by a user, VARCHAR is most often the appropriate text column to use. When defining a column as VARCHAR, the maximum number of characters is specified. A column declared as VARCHAR(250), for example, can store up to 250 characters and use at most 251 bytes per row (but will use less for shorter strings).
BINARY and VARBINARY
BINARY and VARBINARY act much like CHAR and VARCHAR, except that they are treated as strings of bytes, rather than strings of characters. BINARY fields are padded with null characters, not spaces. “A” and “a” are different values because the underlying byte values are different; whereas in CHAR and VARCHAR, they are equal. Sizes specified for BINARY and VARBINARY specify the size in bytes, not characters. These fields are most appropriate for storing binary file data.
BLOB and TEXT
The BLOB and TEXT types are used to store large amounts of binary and textual data, respectively. While a standard MySQL row has a maximum size of 64KB, these types of fields are stored differently, allowing the limit to be circumvented. They are each available in four sizes: TINYTEXT stores text with a maximum length of 256 (2^8). TEXT stores up to 65,536 (2^16) characters. MEDIUMTEXT stores 2^24 characters (about 16.7 million), and LONGTEXT stores 2^32 characters (over 4.3 billion). TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB have the same limitations, but act as binary strings. As these field types are stored differently, there is a performance hit when using them, so they should be avoided if there is a more suitable field type.
ENUM
An ENUM field is an enumerated list. This field type should be used for columns in which there are a set number of textual values. ENUM is a little special, for the following reasons:
An example of an ENUM column might be storing the full names of states in a table containing a list of all zip codes in the United States. The zip code would be stored as CHAR(5). The city would be defined as a VARCHAR of however long the longest city name we can find is. The state abbreviation would be CHAR(2), and the full state name could be stored on the table as an ENUM field. (It could also be stored separately as a lookup table, but it may be more performant to store it on the same table.)
SET
A SET field acts like an ENUM field that can contain multiple values. These values, when stored and retrieved, are separated by commas, so the values themselves should not contain commas. They cannot contain more than 64 values in the field definition.
DATE DATA TYPES
MySQL offers several different date and time formats, each with their own advantages. These types, obviously, are appropriate for storing dates, times, and durations.
DATE
The DATE type should be used to denote a day. No time is stored in a DATE field. Dates may be in the range from 1000-01-01 to 9999-12-31. A special “zero” value of 0000-00-00 is also allowed. DATE permits partial dates as well; 2018-04-00 may be used to denote April 2018.
DATETIME
The DATETIME field specifies both a date and a time in the same field. Generally, it should be used instead of separate DATE and TIME fields. It covers the same span of time as DATE: 1000-01-01 00:00:00 to 9999-12-31 23:59:59. As with DATE, the month and day, and additionally any part of the time value, may be zero or a valid value for the date as a whole. DATETIME is generally the most appropriate for field type to store a date and time value.
TIMESTAMP
The TIMESTAMP column stores dates in a manner similar to a traditional UNIX timestamp, as the number of seconds since the start of the UNIX Epoch. As such, TIMESTAMP only has a valid range from 1970-01-01 00:00:01 to 2038-01-19 03:14:07, when the number of seconds exceeds what can be stored in a 32-bit integer. However, storing a value in a TIMESTAMP column may be easier when working with many users across different time zones; the desired time zone may be specified in the connection, and MySQL will automatically convert values stored and retrieved as needed (which does not happen with DATETIME values). Although TIMESTAMP values can be stored and retrieved in standard date and time formats, this conversion may be bypassed by using FROM_UNIXTIME() to insert and UNIX_TIMESTAMP() to retrieve values without performing conversion.
TIME
The TIME type stores a time only, without regard for a date. Because of this, it is most suited to storing a duration, rather than a moment in time. It can store a range of time between “-838:59:59” and “838:59:59”; that is, one second less than 839 hours in either direction. An appropriate use of the TIME type would be to store how fast runners complete a race.
THE SPECIAL VALUE NULL
Note: In this section, we refer to both NULL and NULL. NULL (without italics) is used to indicate a property of a field. NULL (with italics) is used to indicate the value.
There is a value in MySQL unlike any other: NULL. Any field may be defined as either NULL or NOT NULL, and when defined as NOT NULL, this value is not allowed. It is important to understand what NULL is and is not and how to use it.
NULL represents “no data.” Specifically, it represents a lack of data. In a numeric column defined as NULL, a value of 0 is allowed. This is different from NULL. In a VARCHAR column, an empty string (’’) is allowed. This is different from NULL.
NULL is a value that is not equal to anything, including itself. Comparing NULL to any value will result in the expression evaluating to NULL, and NULL is not true. To test if a value is null, “IS NULL” is used instead.
In a phpMyAdmin window, try running the following query:
You should see the following results (Figure 3.3):
Figure 3.3. Desc: Comparisons involving NULL
See what MySQL returns for various comparisons. Does 1 equal 1? Yes, so the first column contains a 1, which MySQL uses to represent true. Does 1 = 0? No, so the second column contains a 0, used to represent false. Does 1 = NULL? The answer is NULL. This isn’t quite the same as a false answer, as shown in the next column, when we ask if 0 = NULL. See also that NULL is not equal to the empty string, it is not equal to itself, and it is not not equal to itself. However, it is true that NULL is NULL.
So why does such a value exist? It makes it easier to work with certain sets and types of data. NULL values are ignored when working with aggregate functions. There will be more on these later, but for now, consider a table in which is stored the annual salary of survey respondents, rounded to the nearest $1000, and stored in a numeric column named salary. If a respondent chooses not to answer the question, NULL is stored, not zero. Then it is possible to determine the minimum salary using MIN(salary), the maximum salary using MAX(salary), and the average salary using AVG(salary). Each of these calculations ignores the NULL values stored when users chose not to answer the question, whereas a value of zero would affect both the minimum and average calculations.
MySQL STATEMENTS
The basic “unit of operation” of MySQL is the statement. A statement, also called a query, is a specially formatted command that tells MySQL to perform a particular operation. Statements can be logically grouped into different categories. Data definition statements define or change the structure of tables, databases, and other aspects of the MySQL setup. To save space, this book largely skips discussion of these statements. Their functions are performed via phpMyAdmin in the project section. This book also skips discussion of statements relating to transactions, replication, and database administration because these are a higher level than the target audience.
This book instead focuses on the bread and butter of MySQL statements: data manipulation statements. And even then, only the four most useful: INSERT, SELECT, UPDATE, and DELETE.
To start, create an example table. The “test” database may already exist on your system. If it does not, create it, then create a table as shown below. The table name used here is employees (Figure 3.4).
Figure 3.4. Desc: Creating the employees table
In our sample employees table, we have an id field, a MEDIUMINT with the AUTO_INCREMENT attribute set (A_I), defined as the primary key. fname and lname are varchar(15) columns for first and last name. The date of hire is stored as a DATE field named hire_date. The salary is DECIMAL(8,2), which allows values up to 999,999.99. Apparently, nobody will make $1 million per year. job is an ENUM which can be one of the values “Grunt”, “Manager”, or “CEO”, with a default of “Grunt”. Thanks to the order, we have defined that CEO > Manager > Grunt. Finally, a last_modified column of type DATETIME exists, with a default value of CURRENT_TIMESTAMP and the attribute ON UPDATE CURRENT_TIMESTAMP specified, so whenever a row is created or edited, this field is set to when it occurred. There are additional fields to the right of the ones displayed, but they are not used in this example and are beyond the scope of this book.
INSERT
The INSERT statement is used to add rows to a table. It has two main forms:
Which version you use is up to you. Add some rows to the table using the SQL tab and the INSERT statement. Multiple statements can be run at the same time by separating them with a semicolon, as follows:
After running the above queries, click the Browse tab in phpMyAdmin to see the data saved. Note that we did not specify the id for any row, as is typical for an auto-increment column, so the rows are numbered sequentially. MySQL also accepted dates as either a string, such as ‘2018-01-15’, or a numeric value, as in Peter’s 20170630. Every row received the same default value for last_modified, the time the query ran, and when the job was not specified, it used the default value of ‘Grunt’. MySQL also understood both a numeric value and a string value for salary, and converted it appropriately.
While INSERT statements only operate on a single table at once, other statements can use multiple tables. Before moving on, create another table called phone_numbers, and give it the following four fields: id, a MEDIUMINT field with AUTO_INCREMENT set as the PRIMARY KEY; employee, another MEDIUMINT field; type, an ENUM field with the options Cell, Home, and Work; and number, a CHAR(10) field. This can also be done with the following query, run on the test database.
Then, insert the following values. Either run the below query or use phpMyAdmin.
Now that there are two tables, let’s examine the other types of queries.
SELECT
The SELECT statement is the most common type of query run against a database. It is used to retrieve stored values. You have likely already seen it in phpMyAdmin in its simplest form; for example, SELECT * FROM employees retrieves all values from the employees table. The most complicated select query—that we’ll be looking at, anyway—looks like this:
Well now. Time to break that down a little.
The SELECT clause specifies what is to be selected. It is a list of fields from the list of tables. As a shortcut, an asterisk (*) can be used to specify all fields. If a field is not ambiguous, the field name may be used alone. If more than one field has the same name, use the table name as well to specify which field to select. Any field may be aliased using the AS keyword. If tables table1 and table2 both contain a field called date, then they could both be selected using SELECT t1.date AS date1, t2.date AS date2. If the query would result in multiple identical rows, using SELECT DISTINCT can filter out duplicates.
The FROM clause specifies which tables to select from. These too can be aliased. Multiple tables are joined together in one of four ways: A CROSS JOIN includes all rows from all tables in every combination, an INNER JOIN only includes rows when both tables match a specified condition, a LEFT JOIN includes all rows from the table on the left and any matching rows from the table on the right, and a RIGHT JOIN includes all rows from the table on the right and any matching rows from the table on the left. For CROSS, LEFT, and RIGHT JOINs, if a table has no matching rows, its fields in the result set are filled with NULLs. Each of these, except the CROSS JOIN, specifies how the tables are to be joined using an ON clause. Try each of the following queries below to see the results. (Run them separately.) Note that in MySQL, testing whether something is equal uses a single equals sign. This is standard for SQL languages, but it’s different from other languages in which it may not be clear from context whether the operation is testing equality or assigning a value.
Of the four queries, the cross join is least useful in actual use. The inner join would be useful if we needed a list of phone numbers for employees. The left join would be used if we needed a list of employees, with or without phone numbers. The right join would help us find phone numbers for which there is no matching employee.
Joins are not limited to matching on equality. SELECT * FROM employees INNER JOIN phone_numbers ON employees.id > phone_numbers.employee is a perfectly valid MySQL query, even if the result makes no sense.
There is also another way to specify how to join the tables: with USING. When joining two tables, if the tables are to be joined such that two identically named fields are equal, USING may be used instead. For example, SELECT * FROM employees INNER JOIN phone_numbers USING (id) would join the employee table with the phone_numbers table wherever the id columns are equal. In this case, that would not be useful, but if both the employee.id and phone_numbers.employee fields were named employee_id, then the query could be written as SELECT * FROM employees INNER JOIN phone_numbers USING (employee_id). This may be something to keep in mind when deciding field names for your database.
The WHERE clause is used to filter the rows of the tables used. It’s not often that the entirety of a table is needed all at once. Say, for example, a list of all managers’ phone numbers is needed. Using the tables above, SELECT * FROM employees AS e INNER JOIN phone_numbers AS pn ON e.id=pn.employee WHERE e.job=‘Manager’ would return rows where the employee’s job is “Manager.”
The WHERE clause can also be used with LEFT or RIGHT JOINs to find data in one table that is missing in another table. SELECT * FROM employees AS e INNER JOIN phone_numbers AS pn ON e.id=pn.employee WHERE pn.number IS NULL will select all employees who do not have any phone numbers stored. (Recall that IS NULL must be used to test whether something is null. WHERE pn.number = NULL will not work.) Because there is no matching row selected from phone_numbers, any field could be used in the WHERE clause. WHERE pn.id IS NULL would work just as well.
The GROUP BY clause is used along with aggregate functions. (More on those coming up.) One common aggregate function is COUNT(). COUNT() simply counts the number of non-NULL values of a field. It does not count the number of distinct values unless specified. Try the queries below, one at a time:
The first query counts all rows with a non-NULL value. That’s all five of them. The second counts the number of different value, which is three. The third query groups the rows by the id field in the employee table and counts the non-NULL values for each group. In Peter’s case, that number is zero.
It’s important to mention in the example above that the query groups by e.id, but it selects fields (e.fname and e.lname) that are not part of the GROUP BY. This is not allowed in other flavors of SQL, but MySQL tolerates it. However, when doing this, there is no guarantee which field that is not part of the GROUP BY is returned. In this particular case, this doesn’t matter; fname and lname are from the same row as id in the employees table. However, SELECT type, number FROM phone_numbers GROUP BY type is perfectly valid MySQL, and the number returned for each type (or, at least with this data, the “Work” type) is not guaranteed to be any particular value. Note that MySQL can be configured so that any field in the SELECT clause must either be an aggregate function or part of the GROUP BY; if the last query in the block failed, try GROUP BY fname, lname instead.
The HAVING clause functions much like the WHERE clause does, but it acts on the result set after any GROUP BY operations. Take a look at the following two queries and try to figure out what they accomplish before running them:
The first query returns a list of all employees who do not have any nonwork phone numbers. The second query returns a list of employees who have more than one work phone number.
The ORDER BY clause specifies how to order the result set. When records are inserted into tables, MySQL generally returns them in the order inserted. However, after deleting records and adding new ones, this is no longer the case, and it’s likely that the result should be sorted based on something other than the order the rows were inserted. Below, the first query shows a list of employees, sorted by last name, then first name. The second query shows a list of our newest employees first. If multiple employees had the same hire date, the name would break the tie. Note that by default, values sort in ascending order. DESC may be specified after each field, which should sort in descending order instead.
Finally, the LIMIT clause, as expected, limits the result to the number of rows given. The LIMIT clause is applied after all other clauses, including GROUP BY and ORDER BY. This query would determine the last hired employee.
As tables grow, LIMIT becomes more important when dealing with results that may have an excessively large number of rows, and the results might be displayed on multiple pages. LIMIT can be used to specify a starting row, as well, with the first row starting at zero. A comma separates the starting row from the desired row count in the result. Therefore, LIMIT 1 is equivalent to LIMIT 0, 1 . A typical LIMIT clause might contain 50 results, such that a second page of results would have LIMIT 50, 50 at the end, but our employees table has only four rows. SELECT * FROM employees ORDER BY hire_date DESC LIMIT 3,1 would select the third most recently hired employee.
UPDATE
The UPDATE statement is used to change existing rows in a table. It can affect either a single table or multiple tables.
Note that ORDER BY and LIMIT are only allowed when working with a single table. Using UPDATE is fairly straightforward compared to SELECT. For example, in the example employees table, we can change Peter Holmes to a Manager as follows:
And to update John Parker’s work number, this would work:
This example, of course, is rather contrived. It would be easier to use the id of John’s record in the employees table and simply update the phone_numbers table WHERE employee = 2.
DELETE
Rounding out the pack is the DELETE statement. The DELETE statement is used to remove rows from a table. It also has a single table syntax and a multiple table syntax.
Single table:
As with UPDATE, the ORDER BY and LIMIT clauses are only available in the single table syntax. ORDER BY is only useful when LIMIT is also specified because DELETE will delete all matching rows. In the example phone_numbers table, we might decide we no longer want to store cell phone numbers:
or
It turns out John Parker isn’t a very good manager, and so we fired him from the company. Both his phone numbers and his employee record are getting deleted.
is equivalent to
It is not necessary to delete the rows from all tables examined. For example, the following query could be used to delete the phone numbers of all Grunts:
INDEXES
When a table is small, it’s fast. MySQL can very quickly determine whether a table has a row where a field has a certain value when the table only has four rows (and therefore, only four values to check). Tables in MySQL, however, can become very, very large. As a table grows, checking a field for a particular value increases, so while a table with four rows is always fast, a table with four million rows might not be. And worse, if that four-million-row table needs to be joined to itself, well, come back tomorrow to see if the query has finished running. Even when a table has four million rows, however, odds are not all of them are interesting. Perhaps only four—or more likely, one—of the four million are relevant to our interests. Here is where indexes help.
An index can be created on one or more fields in a table. It keeps track of the values for the field and the rows in the table that correspond to those values in such a way that it drastically increases the speed of a query that uses it. MySQL offers three types of indexes that are covered here:
An index of type INDEX is simply that: An index is created of the values in the field and the rows they point to, allowing for fast look up of table rows.
A UNIQUE index requires that no value in the index is equal to another; that is, two rows cannot be equal in the fields that are part of a UNIQUE index. Note carefully the wording here! Recall that NULL is not equal to NULL; therefore, it is perfectly acceptable to have two NULL values in a “UNIQUE” index! When a UNIQUE index exists, attempting to add another row with the same values as a row already in the index will cause the query to fail.
A PRIMARY index requires that all values (or for multiple fields, sets of values) are distinct, and additionally, all columns in a PRIMARY key must be NOT NULL. Primary keys are often an AUTO INCREMENT column; neither can be NULL, and both must be unique. However, while an AUTO INCREMENT column must be part of an index, it need not be a PRIMARY index; likewise, a PRIMARY index may exist on a table with no AUTO INCREMENT column.
While indexes do an excellent job of increasing the speed of queries, they do have two downsides. One, additional space is needed beyond what is required for the table data. It is possible for an index to use more space than the table itself, especially if the table has few fields. Two, whenever a row is inserted, performance suffers (very) slightly, as the row must be added to the index. In practice, however, a table of substantial size which is read from (not only written to) will require one or more indexes.
As a rule, you should create an index for one of two reasons: either to enforce unique values on a field or set of fields, or whenever a field is often used to find rows. At first thought, it might seem that creating an index to enforce unique values is unnecessary. After all, it’s easy enough to check whether an existing row has those values before trying to insert a row. There are two issues with that approach, however. First, another user or connection could insert a row with those values between the time you check and the time you insert (unless you do it all in one query, which is possible). Second, if it’s necessary to look up a row by a field or set of fields, well . . . that’s what an index helps with anyway.
Let’s take a closer look at the second reason: MySQL uses an index to find rows in a table. This encompasses several different cases. If the phone_numbers table from the previous section had an index on the employee field, not only would the index be used for a SELECT statement, such as SELECT * FROM phone_numbers WHERE employee = 3 , it would also be used in UPDATE or DELETE statements, such as UPDATE phone_numbers SET number=‘9485551304’ WHERE employee = 3 AND type=‘Work’ or DELETE FROM phone_numbers WHERE employee = 3 . It would also use it on a table join, such as SELECT * FROM employees INNER JOIN phone_numbers ON employees.id = phone_numbers.employee . MySQL, however, has some limitations on when it will use an index:
OPERATORS AND FUNCTIONS
Most of MySQL’s operators function similarly to other SQL variants, though this is different from their behavior in most programming languages. Therefore, a brief rundown is in order:
MySQL also has a wealth of functions. As with most languages, parentheses surround the argument list of a function. Unlike most languages, there cannot be a space between the function name and the open parenthesis. SELECT COUNT(*) FROM table returns the number of rows in a table; SELECT COUNT (*) FROM table will result in a syntax error. Many functions can take an arbitrary number of arguments; when this is the case, it is possible to use field names to perform the function on a field with many rows in a table. The function reference takes up no small part of the MySQL documentation, but some of the most commonly used functions are highlighted here.
Common string functions:
Common date functions:
Common aggregate functions:
PROJECT
While most of the queries will come in the last section as we manipulate the data, we can lay out the structure of the database now. Keep in mind that a table is needed for each “thing” in our application. Users are a thing and will need a table. Style suggestions are a thing. Comments are another thing, as is user votes. That would seem to be everything. In total, our database will have four tables.
Create a new database name styleguide in phpMyAdmin.
The users table will have five fields for an ID, the username, password, first name, last name, and an admin flag. As we expect fewer than 256 users, TINYINT UNSIGNED is sufficient for the ID field, which will be the primary key. The password field should be CHAR(60), with a collation of latin1_general_cs, because the value stored there will be case sensitive and will not use any characters outside of the latin1 character set. The admin field need only be a BIT(1), and its default can be 0. The other three fields will be allotted 25 characters, with a UNIQUE index on the username. Create this in phpMyAdmin on your own or run the following SQL from within the styleguide database:
Next, we need a table for style suggestions. The table will store an ID, a category, a summary of the suggestion, a detailed description, its current status (‘Proposed’, ‘Accepted’, or ‘Rejected’), the user who proposed it, the date and time it was proposed, and the date and time it was accepted or rejected. You can name these fields as you wish. One possibility is in the SQL below:
Note that we have created separate indexes on the category and status fields. These are the only two fields that a search for suggestions is likely to be based upon. In practice, no indexes may be necessary, because our style guide may never exceed more than a couple hundred suggestions, and a couple hundred rows may well be fast enough; they are included here as an example of best practice. Note that if we were to design a user profile, including all suggestions made by a user, we might consider indexing the uid field as well. date_proposed defaults to CURRENT_TIMESTAMP, so we don’t need to include it in INSERT queries. And date_voted, used to indicate when the suggestion was approved or rejected via vote, can be NULL, as before a suggestion is voted on, no such date exists.
Next, we need a table for comments. Comments belong to a suggestion, so they will contain the suggestion ID. We also need to know who wrote them, what they said, and when they said it, so we know how to order the comments when they are displayed. We’ll give the comments their own ID, as well. Maybe we won’t use it now, but if we allow users to edit or delete comments, they would need a way to uniquely identify them.
This follows a familiar pattern. By now, you should be able to identify and understand the limitations this table entails. Also note that there is an index on the suggestion ID field, sid, as comments will be looked up per suggestion.
The last table required will store user votes. Obviously, both the user and the suggestion will need to be stored. As for the vote, there are several ways to store it. We could store a vote up and a vote down in separate fields. That would have the advantage of being able to get both scores in a simple, single query. Or we could store a Yes vote, or a No vote, or a nonvote as an ENUM. We can actually do both by using only a BIT. A Yes vote can be represented by a 1, a No vote by a 0, and a nonvote by the row simply not being there. We’ll use a little bit of magic later to figure out if the suggestion has reached a 50 percent threshold.
Note that, in our project, the tables with ID fields conveniently begin with different letters, and we only have three of them. This makes it easy to remember what each ID is for. In a larger project, or if there are several tables starting with the same letter, we would do something more typical, such as user_id, userID, userId, IDuser, or something similar. Take your pick. Also note that other conventions for field or table names, such as userVotes, UserVotes, or if you don’t mind using backticks, `user votes` are also valid. Just be sure to stick to a convention. A single style, if you will. You might even design a guide to help you keep track of it all!
That wraps up table creation. In the next chapter, we’ll put our tables to use and write the queries to interact with them.
FURTHER READING
The MySQL documentation has versions for MySQL 5.5, 5.6, 5.7, and the recently released 8.0 (Versions 6 and 7 were skipped) under the MySQL Server heading:
Entity Relationship Diagrams are a handy tool to plan the data your application will store and to map it to SQL tables.
https://www.lucidchart.com/pages/er-diagrams
https://en.wikipedia.org/wiki/Entity–relationship_model
CHAPTER 4
PHP
The fourth and final chapter of this book deals with a true programming language: PHP. PHP originally stood for personal home page, which was its original function, but it was later changed to the recursive acronym PHP: Hypertext Preprocessor. PHP’s role in building in web page is to process input and generate output. The input it receives is very often passed to a database—MySQL in our case—for permanent storage. While PHP can be used to produce many kinds of output, from text files to CSVs to PDFs and even images, when used in a web server context, its most common output is HTML, which is then sent to the user’s browser.
WHY PHP?
More than any other chapter of the book, this one may be the most controversial. No doubt there’s someone who has found this book, scanned the table of contents, and flipped directly to this section. PHP has endured some (justified) critique: The language is at times inconsistent and counterintuitive. Its built-in functions reflect the language’s originally ad hoc growth. Very old string functions look like they have C-style names such as strpos, stripos, or nl2br. Newer functions may have names that are exceedingly long, such as array_reverse or get_html_translation_table. And don’t try to chain the ternary operator ?:.
That said, the language does have its advantages. Variables are easily identifiable. Implicit type casting comes in handy when nearly everything starts as a string. PHP is available on nearly every hosting provider. It works well with Apache and MySQL. It has built-in (or compilable) support for everything from dates to being an SSH client to SNMP to dynamically generating images. And, of course, it’s free. Perhaps even more importantly, it’s easy to pick up and learn, which makes it ideal for our purposes.
GETTING INTO PHP: BASIC SYNTAX
Begin by changing the file extension of the existing index.html file to .php, thereby making the file name index.php. Now open the file in a web browser. It looks exactly the same! What’s the point? Well, there isn’t any PHP code in the file. There aren’t any PHP tags in the file, and therefore, everything in the file is simply output to the browser.
In order to tell the web server that we want to run PHP code, we enclose it in tags. To begin a PHP code block, use the open tag <?php. To end the PHP code and return to treating the file as output, end the code with ?>. Note that if the file ends while we are “in” PHP, the end tag is optional; in fact, its use is discouraged by the PHP manual. Therefore, we could rewrite our Hello World! page from the HTML chapter as follows:
PHP tags and code can be placed anywhere inside a file. They can be at the start of the file. They can be between elements. They can be in the middle of an HTML element. Because the file is processed by PHP before it is sent to the browser, it can even be in the middle of an HTML string (e.g., <input value="<?php echo 1; ?>"/> is equivalent to <input value="1"/>).
Once inside PHP code, white space is not significant, and statements are delineated with a semicolon. Therefore, to slightly expand our Hello, world! example:
The \n in the string represents a newline. Keep in mind that, if you view this from a web browser, the newline character becomes a space, as the web browser treats it as HTML, and in HTML, newlines are simply condensed into spaces.
VARIABLES IN PHP
Variables in PHP are easy to identify; they are always preceded by a dollar sign. In PHP, variables do not need to be declared; you can use them without declaring them. If you use them without declaring them, they are assigned a default value based on context (more on that shortly). Variables come in four types: scalar, array, object, and resource. A variable name starts with a letter or underscore and may contain any number of letters, underscores, or numbers. The special variable $this is reserved. Aside from $this, any function or language construct word can be used; thanks to the dollar sign, PHP knows the difference between the variable $function and the keyword function. Resources are special variables returned by certain functions and used in other functions; they will not be used in our project, and nothing more need be said about them here. Let’s examine the other types.
SCALAR
A scalar is a solitary value. It may be a string, or an integer, a floating point (decimal) number, a boolean, or null. After using a variable for a particular type of value, it may be reused as another type of value, including changing the variable from a scalar to an array or object. It is up to the programmer to keep track of the contents of a variable. Because of this, the following are all valid, even next to each other in the same script:
ARRAY
An array contains a set of values. Arrays can be either numerically indexed or key-indexed, even in the same array. Array elements may be any type of variable including other arrays, objects, or resources. Arrays may therefore be multidimensional and of mixed types. Arrays may be declared with either square brackets [] or with the array() construct. We use the construct here to follow the example of the documentation. The following is a valid array.
Try putting that line into a file, then call print_r($arr); to get a printable version of the array. There are a few things to notice here. First, see that the first three elements have numeric indexes beginning with 0. Then, the fourth element is given an explicit value, 8, which does not fill in 3 through 7. The fifth element has 'ten' as its key and 10 as its value. The sixth element has a numeric key of 9 because the last used numeric key was 8, and a value of false (which is not printed with print_r()), and the last element is itself an array with the string key odds. (You may also use var_dump($arr) to get a “dump” of the variable, which will print the value false along with the true types of the values as they are internally stored.)
Individual elements of the array are accessed with square bracket notation. $arr[0] returns the value 2, $arr['ten'] returns 10, and $arr[’odds’][4] returns the string 'nine'.
Arrays are not a fixed size. Elements can be added to an array, either with an explicit key ($arr[5] = ’banana’ or $arr['banana'] = 5;) or by letting PHP use the next numeric key automatically: $arr[] = 'next'; . Note that when adding elements to an existing array, the element is always added at the end, even if this results in the numeric keys becoming out of order.
Note that the above array is provided as an example of what’s possible with PHP’s array syntax. However, for your sanity, you should avoid using arrays of mixed types until you fully understand them. Arrays using only numeric keys or only string keys are easier to understand.
OBJECT
Objects are instantiations of classes. They can combine both properties (values) and functions into a single variable. User-defined classes and objects are not needed in our simple project and therefore are outside the scope of this book, although we will be using the built-in class mysqli to access MySQL. Accessing properties and functions of an object is done with the single-arrow operator -> or a hyphen followed by a greater than sign.
A NOTE ABOUT STRINGS
Strings in PHP, as with many languages, can be delineated with either single quotes or double quotes. Unlike other languages, single and double quotes behave differently. When using double quotes, PHP performs variable interpolation on strings and escape sequences. When using single quotes, it does not. So in a block of code such as this:
$s1 will be set to I have 4 bananas. with a newline at the end. $s2 will be set to I have $num $fruit.\n, exactly as it appears.
If including an element of an array with a named key, omit the quotes around the key in this instance: echo "I have $totals[bananas] bananas."; . Alternatively, put braces around the entire expression: echo "I have {$totals[’bananas’]} bananas.";
OPERATORS
As explained above, PHP is a loosely typed language. A variable can be any given type at any given time, whether that is an array, a number, a string, or a boolean. PHP converts variables as needed to evaluate an expression in a process known as type juggling. Operators may best be understood based on the types of expressions they juggle to and result in.
ARITHMETIC
The arithmetic operators are +, −, *, /, %, and **, for addition, subtraction (and negation), multiplication, division, modulo, and exponentiation. They juggle their operands to integers or floats (except the modulo operator, which only uses integers) and result in either an integer or float. Note that divided integers may result in a float. 5/2 is 2.5, not 2.
STRING
The only string operator is the concatenation operator, a period (.). This operator juggles its operands to strings, so $x = 99; $y = 'balloons'; $z = $x. ' '. $y; would set $z equal to “99 balloons”. This is one instance in which whitespace acts a little strange. $x = 5.2 will cause $x to be the floating point value 5.2, whereas $x = 5 . 2 will cause $x to be the string "52". $x = 5. 2 is simply a syntax error.
INCREMENT
PHP supports ++ and --. They work entirely as expected with integers, returning integers. They also work with strings. $x = ’A’; $x++ results in $x set to 'B'. Upon reaching Z, the value increments to AA, much like columns in a spreadsheet.
ASSIGNMENT
A simple equals sign = is used to assign a value to a variable, as we have seen so far. $x = 4 sets $x to the integer value 4. Combination assignment operators are also allowed, so +=, -=, *=, /=, %=, and .= will add, subtract, multiply, divide, modulo, and concatenate the two operands and assign the result to the operand on the left side. $x = 4; $x + = 3; results in $x set to 7.
COMPARISON
The operators ==, !=, <>, <, >, <=, and >= are all supported for comparison, representing equal, not equal, not equal (again), less than, greater than, less than or equal to, and greater than or equal to. Keep in mind that because of type juggling, you can end up with some interesting results. For example, 0 == 'string' and 10 == ’10 bananas’ are true because the strings are converted to a numbers.
Because of this, PHP also provides the identity comparison operators === and !== for identical and not identical. The two operands are identical if they are equal and of the same type. They are not identical if either the value or the type is not the same. So while 0 == '0' , 0 == false, ’0’ == false, and 0 == null are all true, replacing any of those with an identity comparison operator, such as 0 === '0' , would result in a false expression.
LOGICAL
Logical operators juggle to booleans with the following rules:
The logical operators are ||, &&, !, and the words and, or, and xor. || and && are logical OR and logical AND, and ! is logical NOT. The words and, or, and xor are a much lower precedence than the symbols, allowing for some flexibility. Also, PHP’s logical operators are short-circuit, meaning that operands are only evaluated as needed to determine the value of the entire expression. Consider the following code:
In line 1, some_function() is evaluated. If it returns a truthy value, the or doesn’t evaluate the print statement, as the entire expression will be true because the left side is true. If some_function() returns false, then the right side must be evaluated to see if it’s true (print always returns 1, so it will always be true). An exclamation mark is printed. In line 2, the value of some_function() is assigned to $x. If that value is truthy, then the print statement does not execute. If it is falsey, the print executes. This is because the or operator has a lower precedence than assignment. In line 3, some_function() is evaluated, and if false, ! is printed. However, because || has a higher precedence than the assignment, $x will end up with the value true, either because some_function() evaluates to a truthy value, or because print will because it returns 1. Line 3 is logically equivalent to line 4, which uses parentheses to explicitly show the order in which the expressions execute.
In practice, the syntax in line 2 is commonly seen. Care must be taken not to use || when or is intended, as line 3 (and line 4) is logically different from line 2.
LANGUAGE CONSTRUCTS
Many of the language constructs in PHP are similar to other languages and should be recognizable to even the beginning programmer. As such, this chapter spends little time describing them, as their use is self-evident. The following examples are assumed to take place inside a PHP code block (between <?php and ?>).
echo
echo is used to output a value or set of values.
print is also used to output a value. Unlike echo, it cannot output multiple values separated by commas. However, print technically returns a value, so it can be used in instances such as this:
if, else if, else
while, do … while
In a do… while loop, the conditional is at the end, so the loop always runs at least once.
for, foreach
While for is familiar, foreach may not be. foreach simply takes an array and iterates over it.
switch (and case)
In PHP, the switch expression matches the case if the two are loosely equal. That is, if they are ==, not necessarily ===. Furthermore, as in C, you can “fall through” from one case to the next. There is not an implicit break between cases; it must be specified. A default clause is also permitted.
include, include_once, require, require_once
These four language constructs take a file’s contents and treat them as if they were part of the current file at the location it occurs. Generally, these are used at the beginning of a file to include functions common to many scripts. By default, included files act like output; if the included files are to be executed as PHP code, they must have their own PHP tags inside them.
include is used to include a file if it exists. If it does not, a warning is thrown, and script execution continues.
require forces a file to be included. If it cannot, script execution halts.
include_once and require_once act like include and require, but if the file in question has already been included, it is ignored. Generally, function declarations will use one of these _once constructs so as not to declare a function multiple times, which would result in an error.
FUNCTIONS
PHP has an enormous number of functions, far too many to completely cover in this book. Instead, this book will focus on the number of functions needed for the project: six. These functions, along with the mysqli extension discussed soon, are enough to understand the scripts that will finish up the project at the end of this chapter.
bool empty(var $var)
empty takes a variable that may or may not be declared. If the variable is falsey—if it is undefined, null, 0, ’’, ’0’, false, or an array with no elements—it returns true . If the variable is defined and has some other value, empty returns false .
bool isset(var $var)
isset() checks to see if a variable exists and is not null, returning true if that is the case, otherwise returning false .
string htmlspecialchars(string $string)
Takes a string as a parameter and returns the string with special characters encoded as HTML entities such as < becoming <.
string nl2br(string $string)
Takes a string as a parameter and returns the string with all newline characters ("\n") replaced with
 tags. As we’ll see later, this is used to keep newline characters in HTML output. Recall that a newline in HTML output condenses to a space. A generic version of this function can be found in str_replace().
string implode(string $glue, array $array)
Takes an array ($array) and returns a string with the string $glue inserted between each element of the array. For example, implode('::', array(1, 2, 3)) returns 1::2::3 . There exists a corresponding function explode which does the opposite.
header(string $string)
Sends an HTML header. If this is used, it must be used before anything is output. For our project, we will use it to redirect the browser using relative paths, using the format header("Location: filename.php"); . When performing such a redirection, the script should nearly always terminate; therefore, exit() should be called after the call to header() .
string password_hash(string $string, int $algo)
This takes a string and an algorithm (in the form of a constant) and returns a hash (currently 60 characters) that can be checked with password_verify . According to the PHP documentation, using PASSWORD_DEFAULT as the second argument ($algo) is highly recommended.
bool password_verify(string $password, string $hash)
Given a $password and a $hash created by password_hash(), this returns true if the password is correct and false if the password is incorrect.
ADD YOUR OWN FUNCTIONS
To declare your own function in PHP, use the keyword function , give it a name, specify the parameters, and provide the function body.
Note that we set $x to the value 10 , then pass it to the function as an argument. In the declaration, $step = 1 means that it’s an optional argument. If it’s passed, the passed value is used. If it’s not provided, it defaults to the value 1 . Also note that the variable $x contained inside the function is a different variable than the $x at global scope. In PHP, all variables are local to the function they are inside of unless the global keyword is used.
This contrived example illustrates the behavior of global . Without that line, $y is undefined, and it would simply print a newline.
By default, PHP passes arguments by value. A copy is made of any parameters, and the function operates on the copy. It’s also possible to pass by reference, in which the function operates on the original, by putting & before the parameter name:
The above would print:
MY SQLi
PHP has a built-in extension for talking to MySQL: the MySQLi extension. (Well, it usually has it. If it doesn’t, you may need to build your own or talk to your hosting provider.) The MySQLi extension has three primary classes: the mysqli class represents a connection to a MySQL server, the mysqli_result class represents the result of a query, and the mysqli_stmt class represents a prepared statement.
MYSQLi
While the mysqli class contains a wealth of functions and properties. Here are the most commonly used:
Constructor
Create a new mysqli object by instantiating the class. Pass it the host, MySQL username, password, and database name.
Query()
Perform an SQL query. Once you have a connection, you can query the database. This function returns a mysqli_result object, or FALSE if the query fails. Because it returns false on failure, this is commonly paired with something to handle the case where it fails. Continuing from our $mysql variable created above, this would look like so:
Error
If there is an error in your query, it will be stored as a string in this property.
Affected_Rows
If the query is an INSERT, UPDATE, or DELETE query, this contains the number of rows affected by it.
MYSQLi_RESULT
After performing a SELECT query, mysqli->query() returns a mysqli_result object. The object does not contain the data itself but provides methods to retrieve it and some properties about it.
$num_rows
This contains the number of rows in the result set. Using the $mysql variable from above:
fetch_row(), fetch_assoc(), and fetch_array()
Rows are fetched from the result using one of these methods. fetch_array() can take a parameter that allows it to act as either of the other two, but it’s simpler just to use the other functions. fetch_row returns a row as a numbered array. fetch_assoc returns a row as a named array. fetch_array returns a row as both. If there are no more rows in the result set, these functions return NULL (which in PHP is a false value).
In the example above, only one of the methods would work without including $result->data_seek(0); to reset the result pointer. These methods are not usually mixed. The result of each of these is shown above, if they were run separately. If they were run together without resetting the result pointer, $row would have the value above, and both $assoc and $array would be null . Because these functions return null when there are no more rows, they are commonly used in a loop:
SQL INJECTION AND MYSQLi_STMT
Consider for a moment the following code.
A username is something that is provided by the user and supplied to your query. Seems straightforward, right? What if the user enters the value ’ OR ’1’ = ’1? When inserted into the query, it becomes SELECT * FROM users WHERE username = ’’ OR ’1’ = ’1’ . Because ’1’ is always equal to ’1’ , this would always return every user. It might even do something more malicious; what if it were a DELETE query?
For this reason, all data provided by a user must be sanitized. Sanitizing user input simply means it is made safe to be part of a query. There are several ways to do this.
If the query will be used many times, it’s best to use a prepared statement.
MYSQLi_STMT
The mysqli extension allows the use of prepared statements. Follow these steps:
When preparing a statement, parameters are represented by unquoted question marks, and when calling bind_param(), the first parameter is a string containing the letters i, d, or s, depending on whether the variable is an integer, double, or string. In practice, it looks like this:
The mysqli_stmt class, like the mysqli_result class, also has properties such as $affected_rows and $num_rows. Note that to use $num_rows, you must first call store_result() so that the result is saved (see guide.php in the project at the end of this chapter).
THE FINAL PIECE: $_POST AND $_GET
At this point, you should know how to output HTML from PHP: simply echo or print it, or drop out of PHP using an end tag: ?> . You should know how to get data into and out of MySQL. There’s just one piece left. How does data get from HTML to PHP?
Recall back in the HTML chapter of this book that HTML pages could have forms. Those forms were submitted using either a post or get method, and they could have input elements. Those input elements could have names. When the form is submitted, all the form information is stored in one of two variables: $_POST for forms submitted via the post method and $_GET for forms submitted via the get method. (In fact, anything after a question mark in the URL is submitted via get , it’s possible for both variables to contain information!) $_POST and $_GET are arrays, and they’re two of PHP’s superglobals. A superglobal is a variable that is automatically global everywhere; therefore, it is available in all scopes including inside functions and included files. When the form is submitted, input elements are added to the array as array elements, as if they were being executed, as follows:
Consider the following HTML form:
When the form is submitted, the information will be put in the variable $_POST because the form uses the post method. $_POST will contain (at most) two elements: one has the key title and contains whatever the user entered into the text string. The other, if it exists at all, is a numeric array named categories . If the user didn’t check either box, neither control was active, and therefore the array doesn’t exist. If the user checked at least one, then $_POST[’categories’] is a numeric array containing the values checked. (Note that the values are specified on the checkbox elements.) If the user were to type "Orange" into the text box and check both boxes above, then performing print_r($_POST) in save.php would result in this:
AND ONE MORE THING: $_SESSION
Up until this point, everything that has existed in a PHP script has disappeared at the end of a page. Every connection to the database, every variable, all of it is lost when the script ends. (PHP does garbage collection on these. Don’t worry about leaving database connections open.) However, once a user logs in, we need some way to track them.
PHP provides the superglobal variable $_SESSION to handle this. To use it, call session_start() in a script before any output is sent to the browser. Variables, such as a user’s ID, can then be saved in the $_SESSION variable. They will be automatically available to other scripts as long as those scripts also call session_start() before sending any output. The user is given a PHP session ID, which is stored in their cookies. No data stored in $_SESSION is ever sent to the user using this method, and it lasts until the user closes their browser windows.
PROJECT
It’s time to finish up the project using the existing styles and tables from the previous chapter. Start by opening index.php and change the links. One should read Guide, pointing to guide.php ; one for Suggestion Box, pointing to suggestions.php ; one to Sign In, taking the user to login.php ; and in the admin section, one for User List, which goes to users.php . Then, move everything from the top of the file to the <div id="main"> tag to its own file, named header.php. We might not have any PHP code in it just yet, but we may change our minds.
Take the final three tags and move them to a new file named footer.php.
The index file can then be changed to:
This allows us to use the same header and footer on every page. It saves typing, and it allows one file to be changed to change every page. Another task we will want to do often will be connecting to the database. When attempting the connection, we’ll suppress any built-in warnings and simply exit with a generic message if anything goes wrong. In a more complicated system, we might log the error or provide more information, but this is simply an internal tool. In the script below, replace YOUR_MYSQL_USER and YOUR_MYSQL_PASSWORD with what they describe.
Our sign-in page will double as a sign-in and sign-up page, containing two forms that are handled by different scripts:
Next, the script to handle user sign-ups. After including connect.php, we can use the $db variable to access the MySQL connection. Simply escape the data, save it, store it in the session to automatically log the user in, and redirect the user back to the index page.
At this point, you should be able to create a user for yourself, then use phpMyAdmin to change the admin flag to 1, indicating you are an admin. Next let’s handle signing in with an existing account. Using the username provided, we retrieve the information. If the query fails, we give a generic error. If no row matches, the error is there is no user with that username. If the password fails, we say the password is incorrect. These error messages are more specific than you would normally find on a website open to the general public (generally, you would just say that the login attempt failed, not which part), but as an internal site, we take some liberties. Plus, we’re not asking for an e-mail to allow the user to reset their information. Finally, if the password passes verification, we store the information in the $_SESSION array and redirect.
Next, we want to make the user list. As part of this, we want to be sure the user is actually an administrator and allowed to see it. We might want to be able to check this elsewhere, too, so this is a good time for a function. We’ll call it isAdmin() , and we’ll pass it a user ID (called $uid in the function) to check. It will return true if the ID belongs to an admin, false otherwise.
Now, we can use that and the user ID stored in our $_SESSION variable to find out if the current user is an admin. Note that if the user isn’t even logged in, then $_SESSION[’userid’] will be null , which the isAdmin() function turns into 0 when it casts it to an integer, and because there’s no user with an ID of 0, it will return false anyway, which is what we want! The main point of the user list is to be able to delete users, so we provide a mechanism to do that via links.
Now for the delete script. We again make sure we’re an admin, and then we delete the user with the user id found in the $_GET variable, as it was passed in as part of the URL. Just to be extra safe, we make sure we’re not trying to delete ourselves. The exit() at the end of the file is superfluous, but it follows our rule of including it after a redirect via header() .
Now that we have sessions and users working, we can revisit the header file to customize some of the links. If a user is signed in, there’s no need to make them sign in again, so the "sign in" link can be changed to a "Welcome, <user>" link that isn’t clickable. We also have a function to test whether someone is an admin, so we only need to show the admin section if they are. We can change header.php to what is shown below.
Next, it’s time to work on the suggestion box. The suggestion box will contain a link to make a new suggestion and will list any existing suggestions that are open for votes. The dates below use a concise format; you may choose another if you wish. We do want to be sure that only logged in users can make suggestions; we check $_SESSION[’userid’] for this.
Next, from much earlier, we have a file called suggestion-new.html. It’s time to flesh that out just a little bit, including adding the header and adding a field for a summary of the suggestion. After adding the header, the description (which needs to be renamed) seems a little tall; we’ve trimmed it to 30 rows below:
There are many ways to handle the Cancel button. We could check to see if it was pressed and redirect early. We could make the button not part of the form and take the user somewhere else directly. In the script below, we’ve opted to make sure the user pressed the Save button before saving, so pressing the Cancel button simply skips to the redirect. The summary and description fields are escaped, but we’ve forced the section to be one of the allowed values. Although there is a set list of options to choose from, it’s possible to edit a form from using developer tools in the browser to send any data someone wants, and since we’re building this for developers, perhaps there’s someone on the team who thinks they’re funny. Although switch performs a loose comparison, all data received via the form is string data, so we don’t need to worry about comparing integer 0 with text strings.
Next, we need the detail page. This should show all information about the suggestion. We’ll probably also link to this same page from the style guide itself so people can see the details of each suggestion. This page can be planned to work in both cases. If the suggestion is still only proposed, there should be a way to vote on it and to show the votes. If the suggestion has been approved or rejected, we need only show the date that occurred. It should also show all comments, and if still in proposed state, allow additional comments. One possible way to accomplish all of this is in the script below. It references two images: up.png and down.png. These are simply up and down arrows in PNG format. Feel free to make your own.
Three new styles were used in the script above. Add them to style.css:
Now we need to handle the action that happens on this page. Clicking the arrows leads to vote.php. Adding a comment leads to comment-save.php. We’ll handle the latter first.
And now to handle the voting. Recall that 1 is a vote up, 0 is a vote down, and that if more than half the users vote a particular way, the suggestion is accepted or rejected.
And lastly, the guide. List the accepted suggestions by category. Because this page runs nearly the same query five times, it uses a prepared statement to do so. Note the call to $stmt->store_result so that it’s able to use $stmt->num_rows before iterating through the result set.
And that’s it! We have a working site! Users can sign up, make suggestions, leave comments, vote, and browse the guide! If they’re not logged in, they can’t make suggestions, leave comments, or vote.
FURTHER READING
The PHP manual can be found online at http://php.net/manual/en/index.php. It contains a full function reference, language reference, and information about many PHP extensions. It is further enhanced with the addition of user notes, though pay attention to the score they receive.
Of particular interest should be functions that handle strings (http://php.net/manual/en/book.strings.php), functions that deal with arrays (http://php.net/manual/en/ref.array.php), the time zone-aware DateTime class (http://php.net/manual/en/class.datetime.php), and the mysqli extension (http://php.net/manual/en/book.mysqli.php).
https://stackoverflow.com is a useful site for coders of all stripes to ask questions about problems that trip them up.
For a book that spends nearly 800 pages purely on PHP, PHP Cookbook covers a much more extensive array of topics in much greater depth (www.amazon.com/dp/144936375X).
EXTENDING THE STYLE GUIDE
The project presented in this book contained only a small amount of functionality, just enough to illustrate key points and how the different pieces work together. As you learn more about them, consider revisiting the project and implementing the following:
About the Author
Bob Terrell has completed a Bachelor of Science degree at Wentworth Institute of Technology. While there, he completed a class project to automate the gift drive of a popular nonprofit organization in the Boston area. The website resulting from that project is still in use today and has helped find gifts for over 16,000 children. He was also invited to teach HTML and PHP as a guest teacher to a younger class as part of a database course to help expand the school’s community involvement.
He currently works as a software developer at a small company north of Boston that creates DOT-compliant truck tracking and fleet management software for trucking and line haul companies, using the technologies outlined in this book. He has 14 years of experience in HTML, CSS, PHP, and MySQL languages.
INDEX
Amazon, 49
Apache, xii
Arithmetic operators, 81
Array, 79–80
Assignment operators, 82
Attribute selectors, 18
Attributes, 5–6
Author style sheets, 21
AUTO_INCREMENT, 53
AVG(), 58
BETWEEN keyword, 70
BIGINT, 53
BINARY, 54
bind_param(), 92–93
BLOB, 55
Block elements, 6–7
<body> element, 3–4
border, 31
border-collapse, 31
border-color, 30–31
border-style, 30
border-width, 29–30
box-sizing, 31
Cascading Style Sheets (CSS)
box model, 29–31, 34–36
code order, 23
comments (/*, */), 37
importance, 21–22
project, 38–46
properties
color, 23–26
display, 32
font, 26–28
length values, 25
overflow, 32
position, 33–34
size, 28–29
text-overflow, 33
visibility, 32
selectors, 16–21
specificity, 22
syntax, 17
working with difficult browsers, 37–38
CHAR, 54
CHAR_LENGTH(), 70
Class/id selectors, 18
Closing tag, 4
Code order, 23
Color, CSS, 23–26
Comments
in CSS (/*, */), 37
in HTML (<!--, -->), 11
Comparison operators, 82
CONCAT(), 70
CROSS JOIN, 62
CSS. See Cascading Style Sheets
Data types, in MySQL
BINARY, 54
BLOB, 55
CHAR, 54
DATE, 56
DATETIME, 56
ENUM, 55
NULL, 57–58
numeric, 52–54
SET, 56
string, 54
TEXT, 55
TIME, 57
TIMESTAMP, 56–57
VARBINARY, 54
VARCHAR, 54
Database, 49–51. See also MySQL
DATE, 56
DATE_FORMAT(), 71
DATETIME, 56
DECIMAL, 53–54
Declaration block, 17
DELETE statement, 66–67
Display property, 32
DISTINCT, 72
<div> element, 6
DOUBLE, 53
eBay, 49
echo, 84
Element selectors, 18
Elements, HTML, 3–5
empty(), 86
Entities, HTML, 9–11
ENUM, 55
Equals sign (=), 69
fetch_array(), 90–91
fetch_assoc(), 90–91
fetch_row(), 90–91
Field, MySQL, 50–51
FLOAT, 53
font-family, 26–27
font-size, 27
font-style, 27
font-weight, 27
for, foreach, 85
form element, 8–9
FROM clause, 62
function keyword, 87–88
Functions
MySQL
aggregate, 71–72
date, 71
string, 70–71
PHP
empty(), 86
header(), 87
htmlspecialchars(), 86
implode(), 87
isset(), 86
nl2br(), 86
password_hash(), 87
password_verify(), 87
$_GET, 93–94
global keyword, 88
GROUP BY clause, 63–64
GROUP_CONCAT(), 72
HAVING clause, 64
<head> element, 3
header(), 87
Header elements, 6
Horizontal rule, 6
HTML. See Hypertext markup language
<html> element, 3
htmlspecialchars(), 86
Hypertext markup language (HTML), 1–2
attributes, 5–6
comments (<!--, -->), 11
elements, 4–5
block, 6–7
inline, 7–8
form, 8–9
entities, 9–11
fundamentals, 3–4
project, 11–14
properties, 5–6
tags, 4–5
Hypertext Preprocessor (PHP), 77
declaring own functions in, 87–89
functions. See Functions, PHP
$_GET, 93–94
language constructs, 84–86
mysqli, 89–90
mysqli_result, 90–91
mysqli_stmt, 92–93
operators. See Operators
$_POST, 93–94
project, 95–115
reasons for, 77
$_SESSION, 95
strings, 81
syntax, 78
variables, 78–79
array, 79–80
objects, 80
scalar, 79
if, else if, else, 84
implode(), 87
!important, 21–22
IN keyword, 70
include, 86
include_once, 86
Increment operators, 82
Index, 67–69
PRIMARY, 68
UNIQUE, 68
initial keyword, 37–38
Inline elements, 7–8
INNER JOIN, 62–63
<input> element, 9
INSERT statement, 59–61
INT, 53
Integer types, 53
Internet Explorer (IE), 37
Internet Information Services (IIS), xii
isset(), 86
Languages, xi. See also CSS; HTML; MySQL; PHP
LEFT JOIN, 62–63
Length values, CSS, 25
LIKE keyword, 70
LIMIT clause, 65
<link> element, 16–17
Linux, xi
List items, 6–7
LOCATE(), 71
Logical operators, 83
LPAD(), 71
macOS, xi
max-height, 29
max-width, 29
MEDIUMINT, 53
min-height, 29
min-width, 29
MySQL, 49
data types. See Data types, in MySQL
functions. See Functions
indexes, 67–69
operators, 69–72
phpMyAdmin, 50
project, 72–75
reasons for, 49–50
statements
DELETE, 66–67
INSERT, 59–61
SELECT, 61–65
UPDATE, 65–66
structure of, 50–52
mysqli_result object, 90–91
mysqli_stmt class, 92–93
nl2br(), 86
NOT NULL, 57
NOW(), 71
NULL, 57
NULL value, 57–58
Numeric data types, 52–54
$num_rows, 90
Objects, 80
Opening tag, 4
Operators
arithmetic, 81
assignment, 82
comparison, 82
increment, 82
logical, 83
string, 80
Ordered list, 6–7
Overflow, 32
padding, 31
Paragraph, 6–7
password_hash(), 87
password_verify(), 87
Passwords, 51
PHP. See Hypertext Preprocessor
phpMyAdmin, 50
Positioning properties, 33–34
$_POST, 93–94
Preformatted text, 6
PRIMARY index, 68
print, 84
print_r(), 80
Properties, HTML, 5–6
Pseudo-classes, 19
Relational database, 49
REPLACE(), 71
require, 86
require_once, 86
RIGHT JOIN, 62–63
Rows, 50–51
Sanitizing, 92
Scalar, 79
<select> element, 9
SELECT statement, 61–65
Selectors, 16–21
SEPARATOR, 72
Server, 50–51
$_SESSION, 95
session_start(), 95
SET, 56
Size properties, 28–29
SMALLINT, 53
Specificity, 22
Strings
in MySQL, 54
in PHP, 81–82
SUBSTRING(), 71
Superglobal, 93–94
switch (and case), 85
<table> element, 6–7
Tables, 50–52
Tags, 4–5
TEXT, 55
text-align, 27
text-decoration, 27
text-overflow, 33
<textarea> element, 9
TIME, 57
TIMESTAMP, 56–57
TINYINT, 53
Type juggling, 81
UNIQUE index, 68
Unordered list, 6–7
UNSIGNED, 52–53
UPDATE statement, 65–66
User agent style sheets, 21
User style sheets, 21
VARBINARY, 54
vertical-align, 27–28
Visibility property, 32
Web development, xi
Well-formed document, 5
WHERE clause, 63–64
while, do … while, 84–85
white-space, 28
Windows, xi
OTHER TITLES FROM OUR
COMPUTER SCIENCE COLLECTION
Lisa MacLean, Editor
Momentum Press is one of the leading book publishers in the field of engineering, mathematics, health, and applied sciences. Momentum Press offers over 30 collections, including Aerospace, Biomedical, Civil, Environmental, Nanomaterials, Geotechnical, and many others.
Momentum Press is actively seeking collection editors as well as authors. For more information about becoming an MP author or collection editor, please visit http://www.momentumpress.net/contact
Announcing Digital Content Crafted by Librarians
Concise e-books business students need for classroom and research
Momentum Press offers digital content as authoritative treatments of advanced engineering topics by leaders in their field. Hosted on ebrary, MP provides practitioners, researchers, faculty, and students in engineering, science, and industry with innovative electronic content in sensors and controls engineering, advanced energy engineering, manufacturing, and materials science.
Momentum Press offers library-friendly terms:
The Momentum Press digital library is very affordable, with no obligation to buy in future years.
For more information, please visit www.momentumpress.net/library or to set up a trial in the
US, please contact mpsales@globalepress.com.