

 [image: Third Edition.]

[image: O'Reilly Strata Conference]

SQL in a Nutshell

Kevin Kline

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

Since its first incarnation in the 1970s, the Structured Query Language (SQL) has been developed hand in hand with the information boom, and as a result, it is the most widely used database manipulation language in business and industry. A number of different software companies and program developers, including those in the open source movement (http://www.opensource.org), have concurrently developed their own SQL dialects in response to specific professional needs. All the while, standards bodies have developed a growing list of common features.
SQL in a Nutshell, Third Edition, describes the latest ANSI standard, SQL2003 (SQL3) version of each SQL command, and then documents each platform's implementation of that command. In this book, you will find a concise explanation of the relational database management system (RDBMS) model, a clear-cut explanation of foundational RDBMS concepts, and thorough coverage of SQL syntax and commands.
Most importantly, at least if you're a programmer or developer, SQL in a Nutshell, Third Edition, provides a concise guide both to the most popular commercial database packages on the market (Microsoft SQL Server and Oracle). It is also the guide for two of the best-known open source database products (MySQL and PostgreSQL). The attention this book pays to open source SQL platforms recognizes the growing importance of the open source movement within the computing community.
The SQL syntax covered in this book includes:
	ANSI SQL2003 (also known as SQL3) standard syntax

	MySQL version 5.1

	Oracle Database 11g

	PostgreSQL version 8.2.1

	Microsoft SQL Server 2008

Why This Book?

The primary source of information for relational databases is the documentation and help files provided by the vendors themselves. While each vendor's documentation is an indispensable resource that most database programmers and database administrators turn to first, this documentation has a number of limitations:
	It describes the vendor's implementation of SQL without giving you any context as to how well that implementation meets the ANSI standard for SQL.

	It covers only a single, specific vendor's product. There is no coverage of translation, migration, or integration issues.

	It typically describes programming methods in a multitude of small, disconnected documents or help files.

	It covers individual commands, often in confusing detail, obscuring the simple and direct uses of commands that programmers and administrators use every day.

In other words, the documentation included with a vendor's database provides an exhaustive explanation of every aspect of that particular vendor's platform. This is only natural; after all, help texts are geared toward delivering the main facts about a product. They'll tell you a command's specific syntax (and all its obscure variants) and, in general terms, how to implement it. However, if you move between RDBMSs and you need to be productive very quickly, you will rarely use those obscure command variations; instead, you'll utilize the capabilities most common in real-life situations.
This book begins where the vendor documentation ends by distilling the experiences of professional database administrators and developers who have used these SQL variants day in and day out to support complex enterprise applications. It offers you the benefit of their experience in a compact and easily usable format. Whether SQL is new to you or you have been using SQL since its earliest days, there are always new tips and techniques to learn. And when you're moving between different implementations, it's always important to find out about the issues that can bite you if you're not careful and informed.

Who Should Read This Book?

SQL in a Nutshell, Third Edition, benefits several groups of users. It will be useful for programmers who require a concise and handy SQL reference tool; for developers who need to migrate from one SQL dialect to another; and for database administrators (DBAs) who need to both execute a myriad of SQL statements to keep their enterprise databases up and running, and create and manage objects such as tables, indexes, and views.
This book is a reference work, not a tutorial. The writing is not expository. For example, we won't explain the concept of an elementary loop. Experienced developers already know such things—you want the meat. So we will explain, for example, the detailed workings of an ANSI standard cursor, how it works on each of the database platforms we cover, the special capabilities of cursors on each database platform, and the various pitfalls of cursors and how to get around them.
While we don't intend for SQL in a Nutshell, Third Edition, to be a tutorial on SQL or a handbook for database design, we do provide some brief coverage of introductory topics, and we hope you'll find that helpful. Chapter 1 and Chapter 2 provide a concise introduction to SQL, covering the general origins, essential structure, and basic operation of the language. If you're new to SQL, these chapters will help you get started.

How This Book Is Organized

SQL in a Nutshell, Third Edition, is divided into four chapters and one appendix:
	Chapter 1
	Discusses the relational database model, describes the current and previous SQL standards, and introduces the SQL implementations covered in this book.

	Chapter 2
	Describes the fundamental concepts necessary for understanding relational databases and SQL commands.

	Chapter 3
	Provides an alphabetical command reference to SQL statements. This chapter details the latest ANSI standard (SQL3) for each command, as well as the implementation of each command by MySQL, Oracle, PostgreSQL, and SQL Server.

	Chapter 4
	Provides an alphabetical reference of the ANSI SQL3 functions, describing vendor implementations of all SQL3 functions. In addition, this chapter includes coverage of all platform-specific functions that are unique to each implementation.

	Appendix A
	Provides a table of keywords declared in SQL3 and by the different database platforms. You can use this table to look for words that you should not use for object or variable names.

How to Use This Book

SQL in a Nutshell, Third Edition, is primarily a command reference. As a consequence, you'll probably use it to look up a variety of SQL commands and functions. However, with documentation for the ANSI standard itself plus four database platforms, the description for each command has the potential to get very large.
In order to reduce the verbiage describing each command, we compare each platform's implementation to the SQL3 standard. If the platform supports a clause described in the SQL3 discussion, we won't repeat that clause again.
Generic and transportable examples are provided within the body of each SQL3 command description. Since the SQL3 standard is ahead of most database platforms, examples aren't provided for elements of the SQL3 commands that are not supported by any platform discussed in this book. In addition, more examples are provided for each database platform that highlight unique extensions and enhancements, of which there are many.
We recognize that our approach may necessitate jumping from a description of a platform's implementation of a command back to the corresponding SQL3 command description. However, we felt that this was better than packing the book with hundreds of pages of redundant content.

Resources

The following websites provide additional information about the various platforms covered in this book:
	MySQL
	The corporate resource for MySQL is http://www.mysql.com, and another good site is http://dev.mysql.com/doc/refman/5.1/en/. A great developer resource with lots of useful tips is Devshed.com. See http://www.devshed.com/c/b/MySQL/ for MySQL-specific information.

	PostgreSQL
	The home for this open source database is located at http://www.postgresql.org. In addition to making a great deal of useful information available for download, this site also maintains mailing lists for PostgreSQL users. Another PostgreSQL site worth investigating is http://www.pgsql.com, which offers support for commercial customers.

	Oracle
	Oracle's cyberspace home is http://www.oracle.com. A great resource for hardcore Oracle users is http://www.oracle.com/technology/. You can also find all Oracle documentation at http://www.oracle.com/technology/documentation/index.html. For useful independent information about Oracle, be sure to check out the Independent Oracle User Group at http://www.ioug.org.

	SQL Server
	The official Microsoft SQL Server website is http://www.microsoft.com/sql/. Another good resource is found at the home of the Professional Association for SQL Server (PASS) at http://www.sqlpass.org.

Changes in the Third Edition

One of the biggest reasons to release a new edition of a technology book is because the technology has progressed. Since the second edition of this book was published, the ANSI standard has released one new version and all of the database platforms it covers have delivered at least one major release. Consequently, our readers want fresh content on the latest versions of SQL in the marketplace today.
Here are more details about changes in this third edition:
	Reduced footprint
	The readership of SQL in a Nutshell, Second Edition, loved its expansive coverage of all major database platforms. However, maintaining such a huge amount of content proved to be too difficult for the return on the investment. Therefore, based upon the results of a large readership survey, we decided to remove the two least popular database platforms from this edition: Sybase Adaptive Server and IBM's DB2 UDB.

	Improved organization
	The second edition did a great job of presenting everything readers could want to know about all of the commands and functions available in SQL and the major database platforms, but that didn't mean the content was always easy to find or navigate. We've added better indexes, tables of content, and page headers and footers so you can navigate much more quickly and effectively.

	More examples
	It's impossible to have too many examples. We've added to our already large set of basic examples, including more sample code that highlights the unique and powerful capabilities of the SQL standard and the extensions offered by each database platform.

Conventions Used in This Book

This book uses the following typographical conventions:
	Constant width
	Used to indicate programming syntax, code fragments, and examples.

	Constant width italic
	Used to indicate variables in code that should be replaced with user-supplied values.

	Constant width bold
	Used in code sections to highlight portions of the code.

	Italic
	Used to introduce new terms, for emphasis, to indicate commands or user-specified file and directory names, and to indicate variables within text.

	Bold
	Used to display the names of database objects, such as tables, columns, and stored procedures.

	UPPERCASE ITALIC
	Used to indicate SQL keywords when they appear in the text.

Tip
Indicates a tip, suggestion, or general note.

Warning
Indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from this book does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product's documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: "SQL in a Nutshell, Third Edition, by Kevin E. Kline with Daniel Kline and Brand Hunt. Copyright 2009 O'Reilly Media, Inc., 978-0-596-51884-4."
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that features have changed (or even that we have made mistakes!). We want to hear from you, especially with information that will make this book better. Please let us know about any errors you find, as well as your suggestions for future editions, by writing to:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the U.S. or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

We have a website for this book, where we'll list any examples, errata, or plans for future editions. You can access this page at:
	http://www.oreilly.com/catalog/9780596518844

Please help us out by pointing out any typos or syntactical errors that you encounter. (You can imagine how hard it is to proofread a book covering the ANSI standard and four separate products.) You may also ask technical questions or comment on the book by sending an email to:
	bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see the O'Reilly website:
	http://www.oreilly.com

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the book is available online through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

We'd like to take a moment to thank a few special individuals at O'Reilly Media. First, we owe a huge debt of gratitude to Julie Steele, the editor of this third edition. Julie helped keep our noses to the grindstone and ensured that we finished what we started. With her helpful and relaxed work style, Julie was always a pleasure to work with. Thank you for all you've done for us!
We also owe a debt to our fine technical reviewers. To Peter Gulutzan (SQL Standard, from the second edition), Thomas Lockhart (PostgreSQL), Ronald Bradford (Oracle/MySQL), and Richard Sonnen (Oracle): we owe you a hearty thanks! Your contributions have greatly improved the accuracy, readability, and value of this book. Without you, our sections on each of the language extensions would have been on shaky ground. In addition, we'd like to tip our hat to Peter Gulutzan and Trudy Pelzer for their book SQL-99 Complete, Really! (R&D), which helped us understand the ANSI SQL3 standards.

Kevin E. Kline's Acknowledgments

Many people helped deliver the big, thick book you hold in your hands. This note expresses our appreciation to those who helped make this book a reality.
First of all, a big thanks to my two awesome coauthors, Dan and Brand. You guys are amazing and a pleasure to work with. Next, Julie Steele, our editor at O'Reilly Media, gets a big hug for all of her help. You helped keep us on task and on track. Thank you!
To all of my colleagues at Quest Software go very big thanks for your support and encouragement. Christian Hasker, Andy Grant, Heather Eichman, David Gugick, Billy Bosworth, Douglas Chrystall, David Swanson, Jason Hall, Ariel Weil, and my many other friends at Quest Software: thank you for making these last six years with Quest Software such a blast.
Here's a dedication to my loved ones, Dylan, Emily, Anna, and Katie. You were my hope and breath and light when it seemed that no hope or breath or light remained anywhere in the world. Thank you for loving me so completely and so selflessly. And finally, to Rachel, more precious than jewels and more valuable than rubies, your love has restored my heart and my faith.

Daniel Kline's Acknowledgments

I'd like to thank my brother, Kevin, for his continued willingness to work with me; my colleagues at the University of Alaska Anchorage for their suggestions; and the users of the first two editions of SQL in a Nutshell for their honest feedback and useful critiques. We've also received some terrific feedback from the different translators of the first two editions, and I'd like to thank them for their help as well.

Brand Hunt's Acknowledgments

To my wife, Michelle: without your continued support and love, I wouldn't be a part of this project. I'm appreciative of every moment we've shared and of your forgiveness for my keeping you awake at night with the "tappity-tap-taps" emanating from the computer.
Thanks also to my parents, Rex and Jackie, the two biggest influences in everything I've ever done correctly—especially those things that frequently take multiple attempts (like writing!).
A huge thanks to my teammates, Kevin, Daniel, and Jonathan for letting me participate in this project and exercising so much patience in tutoring a first-time O'Reilly author. Your professionalism, work ethic, and ability to make the most tedious tasks fun is so admirable I plan to steal it and adopt it as my own!
Mad props to my friends and colleagues at Rogue Wave Software, ProWorks, NewCode Technology, and Systems Research and Development, for providing the ultimate sandbox for refining skills in SQL, databases, business, software development, writing, and friendship: Gus Waters, Greg Koerper, Marc Manley, Wendi Minne, Erin Foley, Elaine Cull, Randall Robinson, Dave Ritter, Edin Zulic, David Noor, Jim Shur, Chris Mosbrucker, Dan Robin, Mike Faux, Jason Prothero, Tim Romanowski, Andy Mosbrucker, Jeff Jonas, Jeff Butcher, Charlie Barbour, Steve Dunham, Brian Macy, and Ze'ev Mehler.

Chapter 1. SQL History and Implementations

In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd led to the development of a relational data model product called SEQUEL, or Structured English Query Language. SEQUEL ultimately became SQL, or Structured Query Language.
IBM, along with other relational database vendors, wanted a standardized method for accessing and manipulating data in a relational database. Although IBM was the first to develop relational database theory, Oracle was first to market the technology. Over time, SQL proved popular enough in the marketplace to attract the attention of the American National Standards Institute (ANSI), which released standards for SQL in 1986, 1989, 1992, 1999, 2003, and 2006. This text covers the ANSI 2003 standard because the 2006 standard deals with elements of SQL outside the scope of the commands described in this book. (In essence, the SQL2006 standard describes how XML would be used in SQL.)
Since 1986, various competing languages have allowed programmers and developers to access and manipulate relational data. However, few were as easy to learn or as universally accepted as SQL. Programmers and administrators now have the benefit of being able to learn a single language that, with minor adjustments, is applicable to a wide variety of database platforms, applications, and products.
SQL in a Nutshell, Third Edition, provides the syntax for five common implementations of SQL2003 (SQL3):
	The ANSI SQL standard

	MySQL version 5.1

	Oracle Database 11g

	PostgreSQL version 8.3

	Microsoft's SQL Server 2008

The Relational Model and ANSI SQL

Relational database management systems (RDBMSs) such as those covered in this book are the primary engines of information systems worldwide, and particularly of web applications and distributed client/server computing systems. They enable a multitude of users to quickly and simultaneously access, create, edit, and manipulate data without impacting other users. They also allow developers to write useful applications to access their resources and provide administrators with the capabilities they need to maintain, secure, and optimize organizational data resources.
An RDBMS is defined as a system whose users view data as a collection of tables related to each other through common data values. Data is stored in tables, which are composed of rows and columns. Tables of independent data can be linked (or related) to one another if they each have unique, identifying columns of data (called keys) that represent data values held in common. E. F. Codd first described relational database theory in his landmark paper "A Relational Model of Data for Large Shared Data Banks," published in the Communications of the ACM (Association for Computing Machinery) in June, 1970. Under Codd's new relational data model, data was structured (into tables of rows and columns); manageable using operations such as selections, projections, and joins; and consistent as the result of integrity rules such as keys and referential integrity. Codd also articulated rules that governed how a relational database should be designed. The processfor applying these rules is now known as normalization.

Codd's Rules for Relational Database Systems

Codd applied rigorous mathematical theories (primarily set theory) to the management of data, and he compiled a list of criteria a database must meet to be considered relational. At its core, the relational database concept centers around storing data in tables. This concept is now so common as to seem trivial; however, not long ago the goal of designing a system capable of sustaining the relational model was considered a long shot with limited usefulness.
Following are Codd's Twelve Principles of Relational Databases:
	Information is represented logically in tables.

	Data must be logically accessible by table, primary key, and column.

	Null values must be uniformly treated as "missing information," not as empty strings, blanks, or zeros.

	Metadata (data about the database) must be stored in the database just as regular data is.

	A single language must be able to define data, views, integrity constraints, authorization, transactions, and data manipulation.

	Views must show the updates of their base tables and vice versa.

	A single operation must be available to do each of the following operations: retrieve data, insert data, update data, or delete data.

	Batch and end-user operations are logically separate from physical storage and access methods.

	Batch and end-user operations can change the database schema without having to recreate it or the applications built upon it.

	Integrity constraints must be available and stored in the metadata, not in an application program.

	The data manipulation language of the relational system should not care where or how the physical data is distributed and should not require alteration if the physical data is centralized or distributed.

	Any row processing done in the system must obey the same integrity rules and constraints that set-processing operations do.

These principles continue to be the litmus test used to validate the "relational" characteristics of a database platform; a database that does not meet all of these rules is not fully relational. While these rules do not apply to applications development, they do determine whether the database engine itself can be considered truly "relational." Currently, most commercial RDBMS products pass Codd's test. Among the platforms discussed in SQL in a Nutshell, Third Edition, only MySQL failed to support all of these requirements, and only then in releases prior to the one covered in this book.
Understanding Codd's principles assists programmers and developers in the proper development and design of relational databases (RDBs). The following sections detail how some of these requirements are met within SQL using RDBs.
Data structures (rules 1, 2, and 8)

Codd's rules 1 and 2 state that "information is represented logically in tables" and that "data must be logically accessible by table, primary key, and column." So, the process of defining a table for a relational database does not require that programs instruct the database how to interact with the underlying physical data structures. Furthermore, SQL logically isolates the processes of accessing data and physically maintaining that data, as required by rule 8: "batch and end-user operations are logically separate from physical storage and access methods."
In the relational model, data is shown logically as a two-dimensional table that describes a single entity (for example, business expenses). Academics refer to tables as entities and to columns as attributes. Tables are composed of rows, or records (academics call them tuples), and columns (called attributes, since each column of a table describes a specific attribute of the entity). The intersection of a record and a column provides a single value. The column or columns whose values uniquely identify each record can act as a primary key. These days this representation seems elementary, but it was actually quite innovative when it was first proposed.
SQL3 defines a whole data structure hierarchy beyond simple tables, though tables are the core data structure. Relational design handles data on a table-by-table basis, not on a record-by-record basis. This table-centric orientation is the heart of set programming. Consequently, almost all SQL commands operate much more efficiently against sets of data within or across tables than against individual records. Said another way, effective SQL programming requires that you think in terms of sets of data, rather than of individual rows.
Figure 1-1 is a description of the SQL3 terminology used to describe the hierarchical data structures used by a relational database: clusters contain sets of catalogs; catalogs contain sets of schemas; schemas contain sets of objects, such as tables and views; and tables are composed of sets of columns and records.
[image: SQL3 dataset hierarchy]

Figure 1-1. SQL3 dataset hierarchy

For example, in a Business_Expense table, a column called Expense_Date might show when an expense was incurred. Each record in the table describes a specific entity; in this case, everything that makes up a business expense (when it happened, how much it cost, who incurred the expense, what it was for, and so on).
Each attribute of an expense—in other words, each column—is supposed to be atomic; that is, each column is supposed to contain one, and only one, value. If a table is constructed in which the intersection of a row and column can contain more than one distinct value, one of SQL's primary design guidelines has been violated. (Some of the database platforms discussed in this book do allow you to place more than one value into a column, via the VARRAY or TABLE datatypes.)
Rules of behavior are specified for column values. Foremost is that column values must share a common domain, better known as a datatype. For example, if the Expense_Date field is defined as having a DATE datatype, the value ELMER should not be placed into that field because it is a string, not a date, and the Expense_Date field can contain only dates. In addition, SQL3 allows further control of column values through the application of constraints (discussed in detail in Chapter 2) and assertions. A SQL constraint might, for instance, limit Expense_Date to expenses less than a year old. Additionally, data access for all individuals and computer processes is controlled at the schema level by an AuthorizationID or user. Permissions to access or modify specific sets of data may be granted or restricted on a per-user basis.
SQL databases also employ character sets and collations. Character sets are the "symbols" or "alphabets" used by the "language" of the data. For example, the American English character set does not contain the special character for ñ in the Spanish character set. Collations are sets of sorting rules that operate on a character set. A collation defines how a given data manipulation operation sorts data. For example, an American English character set might be sorted either by character-order, case-insensitive, or by character-order, case-sensitive.
Tip
The ANSI standard does not say how sorts should be done, only that platforms must provide common collations found in a particular language.

It is important to know what collation you are using when writing SQL code against a database platform, as it can have a direct impact on how queries behave, and particularly on the behavior of the WHERE and ORDER BY clauses of SELECT statements. For example, a query that sorts data using a binary collation will return data in a very different order than one that sorts data using, say, an American English collation.

NULLs (rule 3)

Most databases allow any of their supported datatypes to store NULL values. Inexperienced SQL programmers and developers tend to think of NULL as zero or blank. In fact, NULL is neither of these. In SQL3, NULL literally means that the value is unknown or indeterminate. (This question alone—whether NULL should be considered unknown or indeterminate—is the subject of much academic debate.) This differentiation enables a database designer to distinguish between those entries that represent a deliberately placed zero, for example, and those where either the data is not recorded in the system or a NULL has been explicitly entered. As an illustration of this semantic difference, consider a system that tracks payments. If a product has a NULL price, that does not mean the product is free; instead, a NULL price indicates that the amount is not known or perhaps has not yet been determined.
Tip
There is a good deal of differentiation between the database platforms in terms of how they handle NULL values. This leads to some major porting issues between those platforms relating to NULLs. For example, an empty string (i.e., a NULL string) is inserted as a NULL value on Oracle. All the other databases covered in this book permit the insertion of an empty string into VARCHAR and CHAR columns.

One side effect of the indeterminate nature of a NULL value is that it cannot be used in a calculation or a comparison. Here are a few brief but very important rules, from the ANSI standard, to remember about the behavior of NULL values when dealing with NULLs in SQL statements:
	A NULL value cannot be inserted into a column defined as NOT NULL.

	NULL values are not equal to each other. It is a frequent mistake to compare two columns that contain NULL and expect the NULL values to match. (The proper way to identify a NULL value in a WHERE clause or in a Boolean expression is to use phrases such as "value IS NULL" and "value IS NOT NULL".)

	A column containing a NULL value is ignored in the calculation of aggregate values such as AVG, SUM, or MAX COUNT.

	When columns that contain NULL values are listed in the GROUP BY clause of a query, the query output contains a single row for NULL values. In essence, the ANSI standard considers all NULLs found to be in a single group.

	DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL values as indistinguishable from each other. With the ORDER BY clause, the vendor is free to choose whether NULL values sort high (first in the result set) or sort low (last in the result set) by default.

Metadata (rules 4 and 10)

Codd's fourth rule for relational databases states that data about the database must be stored in standard tables, just as all other data is. Data that describes the database itself is called metadata. For example, every time you create a new table or view in a database, records are created and stored that describe the new table. Additional records are needed to store any columns, keys, or constraints on the table. This technique is implemented in most commercial and open source SQL database products. For example, SQL Server uses what it calls "system tables" to track all the information about the databases, tables, and database objects in any given database. It also has "system databases" that keep track of information about the server on which the database is installed and configured.

The language (rules 5 and 11)

Codd's rules do not require SQL to be used with a relational database. His rules, particularly rules 5 and 11, only specify how the language should behave when coupled with a relational database. At one time SQL competed with other languages (such as Digital's RDO and Fox/PRO) that might have fit the relational bill, but SQL won out, for three reasons. First, SQL is a relatively simple, intuitive, English-like language that handles most aspects of data manipulation. Second, SQL is satisfyingly high-level. A programmer or database administrator (DBA) does not have to spend time ensuring that data is stored in the proper memory registers or that data is cached to disk; the database management system (DBMS) handles that task automatically. Finally, because no single vendor owns SQL, it was adopted across a number of platforms.

Views (rule 6)

A view is a virtual table that does not exist as a physical repository of data, but is instead constructed on the fly from a SELECT statement whenever that view is queried. Views enable you to construct different representations of the same source data for a variety of audiences without having to alter the way in which the data is stored.
Tip
Some vendors support database objects called materialized views. Don't let the similarity of terms confuse you; materialized views are not governed by the same rules as ANSI standard views.

Set operations (rules 7 and 12)

Other database manipulation languages, such as the venerable Xbase, perform their data operations quite differently from SQL. These languages require you to tell the program exactly how to treat the data, one record at a time. Since the program cycles down through a list of records, performing its logic on one record after another, this style of programming is frequently called row, processing or procedural programming.
In contrast, SQL programs operate on logical sets of data. Set theory is applied in almost all SQL statements, including SELECT, INSERT, UPDATE, and DELETE statements. In effect, data is selected from a set called a "table." Unlike the row-processing style, set processing allows a programmer to tell the database simply what is required, not how each individual piece of data should be handled. Sometimes set processing is referred to as declarative processing, since a programmer declares only what data is wanted (as in, "Give me all employees in the southern region who earn more than $70,000 per year") rather than describing the exact procedure to be used to retrieve or manipulate the data.
Tip
Set theory was the brainchild of mathematician Georg Cantor, who developed it at the end of the nineteenth century. At the time, set theory (and Cantor's theory of the infinite) was quite controversial. Today, set theory is such a common part of life that it is learned in elementary school. Things like card catalogs, the Dewey Decimal System, and alphabetized phone books are all simple and common examples of applied set theory.

Examples of set theory in conjunction with relational databases are detailed in the following section.

Codd's Rules in Action: Simple SELECT Examples

Up to this point, this chapter has focused on the individual aspects of a relational database platform as defined by Codd and implemented under ANSI SQL. This section presents a high-level overview of the most important SQL statement, SELECT, and some of its most salient points—namely, the relational opera ions known as projections, selections, and joins:
	Projection
	Retrieves specific columns of data

	Selection
	Retrieves specific rows of data

	Join
	Returns columns and rows from two or more tables in a single result set

Although at first glance it might appear as though the SELECT statement deals only with the relational selection operation, in actuality, SELECT deals with all three operations.
The following statement embodies the projection operation by selecting the first and last names of an author, plus his home state, from the authors table:
SELECT au_fname, au_lname, state
FROM authors
The results from any such SELECT statement are presented as another table of data:
au_fname au_lname state
---------------- ---------------------------- ----------------
Johnson White CA
Marjorie Green CA
Cheryl Carson CA
Michael O'Leary CA
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI
The resulting data is sometimes called a result set, work table, or derived table, differentiating it from the base table in the database that is the target of the SELECT statement.
It is important to note that the relational operation of projection, not selection, is specified using the SELECT clause (that is, the keyword SELECT followed by a list of expressions to be retrieved) of a SELECT statement. Selection—the operation of retrieving specific rows of data—is specified using the WHERE clause in a SELECT statement. WHERE filters out unwanted rows of data and retrieves only the requested rows. Continuing with the previous example, the following statement selects authors from states other than California:
SELECT au_fname, au_lname, state
FROM authors
WHERE state <> 'CA'
Whereas the first query retrieved all authors, the result of this second query is a much smaller subset of records:
au_fname au_lname state
---------------- ----------------------------------- -------------
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI
By combining the capabilities of projection and selection in a single query, you can use SQL to retrieve only the columns and records that you need at any given time.
Joins are the next, and last, relational operation we're going to talk about in this section. A join relates one table to another in order to return a result set consisting of related data from both tables.
Tip
Different vendors allow you to join varying numbers of tables in a single join operation. For example, Oracle places no limit on the number of tables in a join, while Microsoft SQL Server allows up to 256 tables in a join operation.

The ANSI standard method of performing joins is to use the JOIN clause in a SELECT statement. An older method, know as a theta join, performs the join analysis in the WHERE clause. The following example shows both approaches. Each statement retrieves employee information from the employee base table as well as job descriptions from the jobs base table. The first SELECT uses the newer, ANSI JOIN clause, while the second SELECT uses a theta join:
-- ANSI style
SELECT a.au_fname, a.au_lname, t.title_id
FROM authors AS a
JOIN titleauthor AS t ON a.au_id = t.au_id
WHERE a.state <> 'CA'

-- Theta style
SELECT a.au_fname, a.au_lname, t.title_id
FROM authors AS a,
 titleauthor AS t
WHERE a.au_id = t.au_id
 AND a.state <> 'CA'
For more information about joins, see the "JOIN Subclause" section in Chapter 3.

History of the SQL Standard

In response to the proliferation of SQL dialects, ANSI published its first SQL standard in 1986 to bring about greater conformity among vendors. This was followed by a second, widely adopted standard in 1989. The International Standards Organization (ISO) also approved the SQL standard. ANSI released one update in 1992, known as SQL92 or SQL2, and another in 1999, termed SQL99 or SQL3. The next update, made in 2003, is also referred to as SQL3 (or SQL2003). When we use that term in this book, we are referring to the 2003 revision of the standard.
Each time it revises the SQL standard, ANSI adds new features and incorporates new commands and capabilities into the language. For example, the SQL99 standard added a group of capabilities that handled object-oriented datatype extensions.

What's New in SQL2006

The ANSI standards body that regulates SQL issued a new standard in 2006, in which the important major improvements of SQL3 were retained and augmented. The ANSI SQL2006 release was evolutionary over the SQL3 release, but it did not include any significant changes to the SQL3 commands and functions that were described in the second edition of this book. Instead, SQL2006 described an entirely new functional area of behavior for the SQL standard. Briefly, SQL2006 describes how SQL and XML (the eXtensible Markup Language) interact. For example, the SQL2006 standard describes how to import and store XML data in a SQL database, manipulate that data, and then publish the data both in native XML form and as conventional SQL data wrapped in XML form. The SQL2006 standard provides a means of integrating SQL application code with XQuery, the XML Query Language standardized by the World Wide Web Consortium (W3C). Because XML and XQuery are disciplines in their own right, they are considered beyond the scope of this book and are not covered here.

What's New in SQL2003 (SQL3)

SQL99 had two main parts, Foundation:1999 and Bindings:1999. The SQL3 Foundation section includes all of the Foundation and Bindings standards from SQL99, as well as a new section called Schemata.
The Core requirements of SQL3 did not change from Core SQL99, so the database platforms that conformed to Core SQL99 automatically conform to SQL3. Although the Core of SQL3 has no additions (except for a few new reserved words), a number of individual statements and behaviors have been updated or modified. Because these updates are reflected in the individual syntax descriptions of each statement in Chapter 3, we won't spend time on them here.
A few elements of the Core in SQL99 were deleted in SQL3, including:
	The BIT and BIT VARYING datatypes

	The UNION JOIN clause

	The UPDATE . . . SET ROW statement

A number of other features, most of which were or are rather obscure, have also been added, deleted, or renamed. Many of the new features of the SQL3 standard are currently interesting mostly from an academic standpoint, because none of the database platforms support them yet. However, a few new features hold more than passing interest:
	Elementary OLAP functions
	SQL3 adds an Online Analytical Processing (OLAP) amendment, including a number of windowing functions to support widely used calculations such as moving averages and cumulative sums. Windowing functions are aggregates computed over a window of data: ROW_NUMBER, RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST. OLAP functions are fully described in T611 of the standard. Some database platforms are starting to support the OLAP functions. Refer to Chapter 4 for details.

	Sampling
	SQL3 adds the TABLESAMPLE clause to the FROM clause. This is useful for statistical queries on large databases, such as a data warehouse.

	Enhanced numeric functions
	SQL3 adds a large number of numeric functions. In this case, the standard was mostly catching up with the trend in the industry, since one or more database platforms already supported the new functions. Refer to Chapter 4 for details.

Levels of Conformance

SQL99 is built upon SQL92's levels of conformance. SQL92 first introduced levels of conformance by defining three categories: Entry, Intermediate, and Full. Vendors had to achieve at least Entry-level conformance to claim ANSI SQL compliance. The U.S. National Institute of Standards and Technology (NIST) later added the Transitional level between the Entry and Intermediate levels, so NIST's levels of conformance were Entry, Transitional, Intermediate, and Full, while ANSI's were only Entry, Intermediate, and Full. Each higher level of the standard was a superset of the subordinate level, meaning that each higher level included all the features of the lower levels of conformance.
Later, SQL99 altered the base levels of conformance, doing away with the Entry, Intermediate, and Full levels. With SQL99, vendors must implement all the features of the lowest level of conformance, Core SQL99, in order to claim (and publish) that they are SQL99 ready. Core SQL99 includes the old Entry SQL92 feature set, features from other SQL92 levels, and some brand new features. A vendor may also choose to implement additional feature packages described in the SQL99 standard.

Supplemental Features Packages in the SQL3 Standard

The SQL3 standard represents the ideal, but very few vendors currently meet or exceed the Core SQL3 requirements. The Core standard is like the interstate speed limit: some drivers go above it and others go below it, but few go exactly the speed limit. Similarly, vendor implementations can vary greatly.
Two committees—one within ANSI, the other within ISO, and both composed of representatives from virtually every RDBMS vendor—drafted the supplemental feature definitions described in this section. In this collaborative and somewhat political environment, vendors compromised on exactly which proposed features and implementations would be incorporated into the new standard.
New features in the ANSI standard often are derived from an existing product or are the outgrowth of new research and development in the academic community. Consequently, vendor adoption of specific ANSI standards can be spotty. A relatively new addition to the SQL3 standard is SQL/XML (greatly expanded in SQL2006.) The other parts of the SQL99 standard remain in SQL3, though their names may have changed and they may have been slightly rearranged.
The nine supplemental features packages, representing different subsets of commands, are platform-optional. Some features might show up in multiple packages, while others do not appear in any of the packages. These packages and their features are described in the following list:
	Part 1, SQL/Framework
	Includes common definitions and concepts used throughout the standard. Defines the way the standard is structured and how the various parts relate to one another, and describes the conformance requirements set out by the standards committee.

	Part 2, SQL/Foundation
	Includes the Core, an augmentation of the SQL99 Core. This is the largest and most important part of the standard.

	Part 3, SQL/CLI (Call-Level Interface)
	Defines the call-level interface for dynamically invoking SQL statements from external application programs. Also includes over 60 routine specifications to facilitate the development of truly portable shrink-wrapped software.

	Part 4, SQL/PSM (Persistent Stored Modules)
	Standardizes procedural language constructs similar to those found in database platform-specific SQL dialects such as PL/SQL and Transact-SQL.

	Part 9, SQL/MED (Management of External Data)
	Defines the management of data located outside of the database platform using datalinks and a wrapper interface.

	Part 10, SQL/OBJ (Object Language Binding)
	Describes how to embed SQL statements in Java programs. It is closely related to JDBC, but offers a few advantages. It is also very different from the traditional host language binding possible in early versions of the standard.

	Part 11, SQL/Schemata
	Defines over 85 views (three more than in SQL99) used to describe the metadata of each database and stored in a special schema called INFORMATION_SCHEMA. Updates a number of views that existed in SQL99.

	Part 12, SQL/JRT (Java Routines and Types)
	Defines a number of SQL routines and types using the Java programming language. Several features of Java, such as Java static methods and classes, are now supported.

	Part 14, SQL/XML
	Adds a new type called XML, four new operators (XMLPARSE, XMLSERIALIZE, XMLROOT, and XMLCONCAT), several new functions (described in Chapter 4), and the new IS DOCUMENT predicate. Also includes rules for mapping SQL-related elements (like identifiers, schemas, and objects) to XML-related elements.

Note that parts 5, 6, 7, and 8 do not exist by design.
Be aware that an RDBMS platform may claim SQL3 compliance by meeting Core SQL99 standards, so read the vendor's fine print for a full description of its ANSI conformity features. By understanding what features comprise the nine packages, users can gain a clear idea both of the capabilities of a particular RDBMS and of how the various features behave when SQL code is transported to other database products.
The ANSI standards—which cover retrieval, manipulation, and management of data in commands such as SELECT, JOIN, ALTER TABLE, and DROP—formalize many SQL behaviors and syntax structures across a variety of platforms. These standards have become even more important as open source database products, such as MySQL and PostgreSQL, have grown in popularity and begun being developed by virtual teams rather than large corporations.
SQL in a Nutshell, Third Edition explains the SQL implementation of four popular RDBMSs. These vendors do not meet all the SQL3 standards; in fact, all RDBMS platforms play a constant game of tag with the standards bodies. Often, as soon as vendors close in on the standard, the standards bodies update, refine, or otherwise change the benchmark. Conversely, the vendors often implement new features that are not yet a part of the standard but that boost the effectiveness of their users.

SQL3 Statement Classes

Comparing statement classes further delineates SQL3 from SQL92. However, the older terms are still used, so readers need to know them. SQL92 grouped statements into three broad categories:
	Data Manipulation Language (DML)
	Provides specific data-manipulation commands such as SELECT, INSERT, UPDATE, and DELETE

	Data Definition Language (DDL)
	Contains commands that handle the accessibility and manipulation of database objects, including CREATE and DROP

	Data Control Language (DCL)
	Contains the permission-related commands GRANT and REVOKE

In contrast, SQL3 supplies seven core categories, now called classes, that provide a general framework for the types of commands available in SQL. These statement "classes" are slightly different from the SQL92 statement categories, because they attempt to identify the statements within each class more accurately and logically and they provide for the development of new features and statement classes. Additionally, the new statement classes now allow some "orphaned" statements that did not fit well into any of the old categories to be properly classified.
Table 1-1 identifies the SQL3 statement classes and lists some of the commands in each class, each of which is fully discussed later. At this point, the key is to remember the statement class titles.
Table 1-1. SQL3 statement classes
	Class
	Description
	Example commands

	SQL connection statements
	Start and end a client connection
	CONNECT, DISCONNECT

	SQL control statements
	Control the execution of a set of SQL statements
	CALL, RETURN

	SQL data statements
	May have a persistent and enduring effect upon data
	SELECT, INSERT, UPDATE, DELETE

	SQL diagnostic statements
	Provide diagnostic information and raise exceptions and errors
	GET DIAGNOSTICS

	SQL schema statements
	May have a persistent and enduring effect on a database schema and objects within that schema
	ALTER, CREATE, DROP

	SQL session statements
	Control default behavior and other parameters for a session
	SET statements like SET CONSTRAINT

	SQL transaction statements
	Set the starting and ending point of a transaction
	COMMIT, ROLLBACK

Those who work with SQL regularly should become familiar with both the old (SQL92) and the new (SQL3) statement classes, since both nomenclatures are still used to refer to SQL features and statements.

SQL Dialects

The constantly evolving nature of the SQL standard has given rise to a number of SQL dialects among the various vendors and platforms. These dialects commonly evolve because a given database vendor's user community requires capabilities in the database before the ANSI committee creates an applicable standard. Occasionally, though, the academic or research communities introduce a new feature in response to pressures from competing technologies. For example, many database vendors are augmenting their current programmatic offerings with either Java (as is the case with DB2, Oracle, and Sybase) or VBScript (as is the case with Microsoft). In the future, programmers and developers will use these programming languages in concert with SQL to build SQL programs.
Many of these dialects include conditional processing capabilities (such as that controlled through IF . . . THEN statements), control-of-flow functions (such as WHILE loops), variables, and error-handling capabilities. Because ANSI had not yet developed a standard for these important features at the time users began to demand them, RDBMS developers and vendors created their own commands and syntax. In fact, some of the earliest vendors from the 1980s have variances in the most elementary commands, such as SELECT, because their implementations predate the standards. ANSI is now refining standards that address these inconsistencies.
Some of these dialects introduced procedural commands to support the functionality of a more complete programming language. For example, these procedural implementations contain error-handling commands, control-of-flow language, conditional commands, variable-handling commands, support for arrays, and many other extensions. Although these are technically divergent procedural implementations, they are called dialects here. The SQL/PSM (Persistent Stored Module) package provides many features associated with programming stored procedures and incorporates many of the extensions offered by these dialects.
Some popular dialects of SQL include:
	PL/SQL
	Found in Oracle. PL/SQL stands for Procedural Language/SQL and contains many similarities to the language Ada.

	Transact-SQL
	Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and Sybase have moved away from the common platform they shared early in the 1990s, their implementations of Transact-SQL have also diverged.

	PL/pgSQL
	SQL dialect and extensions implemented in PostgreSQL. The acronym stands for Procedural Language/PostgreSQL.

Users who plan to work extensively with a single database system should learn the intricacies of their preferred SQL dialect or platform.

Chapter 2. Foundational Concepts

SQL provides an easy, intuitive way to interact with a database. While the SQL2003 (SQL3) standard does not define the concept of a "database," it does define all the functions and concepts needed for a user to create, retrieve, update, and delete data. It is important to know the types of syntax in the SQL2003 standard and the particular platform-specific syntax guidelines. This chapter will provide you with a grounding in those areas.

Database Platforms Described in This Book

SQL in a Nutshell, Third Edition describes the SQL standard and the platform-specific implementations of several leading RDBMSs:
	MySQL
	MySQL is a popular open source DBMS that is known for its blistering performance. It runs on numerous operating systems, including most Linux variants. To improve performance, it has a slimmer feature set than many other DBMSs. This book covers MySQL 5.1.

	Oracle
	Oracle is a leading RDBMS in the commercial sector. It runs on a multitude of operating systems and hardware platforms. Its scalable, reliable architecture has made it the platform of choice for many users. In this edition, we cover Oracle Database 11g.

	PostgreSQL
	PostgreSQL is the most feature-rich open source database platform available. Whereas MySQL is best known for its high-speed performance, PostgreSQL is best known for its excellent support for ANSI standards and robust transaction processing capabilities, as well as its rich datatype and database object support. In addition to its full set of features, PostgreSQL runs on a wide variety of operating systems and hardware platforms. This book covers PostgreSQL 8.2.1.

	SQL Server
	Microsoft SQL Server is a popular RDBMS that runs only on the Windows platform. Its features include ease of use, an all-inclusive feature set, low cost, and high performance. This book covers Microsoft SQL Server 2008.

Categories of Syntax

To begin to use SQL, readers should understand how statements are written. SQL syntax falls into four main categories. Each category is introduced in the following list and then explained in further detail in the sections that follow:
	Identifiers
	Describe a user- or system-supplied name for a database object, such as a database, a table, a constraint on a table, a column in a table, a view, etc.

	Literals
	Describe a user- or system-supplied string or value that is not otherwise an identifier or a keyword. Literals may be strings like "hello", numbers like 1234, dates like "Jan 01, 2002", or Boolean values like TRUE.

	Operators
	Are symbols specifying an action to be performed on one or more expressions, most often in DELETE, INSERT, SELECT, or UPDATE statements. Operators are also used frequently in the creation of database objects.

	Reserved words and keywords
	Have special meaning to the database SQL parser. Keywords such as SELECT, GRANT, DELETE, or CREATE are words that cannot be used as identifiers within the database platform. These are usually commands or SQL statements. Reserved words are words that may become reserved some time in the future. Elsewhere in the book, we use the term keyword to describe both concepts. You can circumvent the restriction on using reserved words and keywords as identifiers by using quoted identifiers, which will be described in a moment. However, this is not recommended!

Identifiers

Keep in mind that RDBMSs are built upon set theory. In ANSI terms, clusters contain sets of catalogs, catalogs contain sets of schemas, schemas contain sets of objects, and so on. Most database platforms use corollary terms: instances contain one or more databases; databases contain one or more schemas; and schemas contain one or more tables, views, or stored procedures, and the privileges associated with each object. At each level of this structure, items require unique names (that is, identifiers) so that they can be referenced by programs and system processes. This means that each object (whether a database, table, view, column, index, key, trigger, stored procedure, or constraint) in an RDBMS must be identified. When issuing the command that creates a database object, you must specify an identifier (i.e., a name) for that new object.
There are two important categories of rules that experienced programmers keep in mind when choosing an identifier for a given item:
	Naming conventions
	Logical rules of thumb that govern how database designers name objects. Consistently following these rules ultimately creates better database structures and enables improved data tracking. These are not so much SQL requirements as the distilled experience of practiced programmers.

	Identifier rules
	Naming rules set by the SQL standard and implemented by the platforms. These rules govern characteristics such as how long a name may be. These identifier conventions are covered for each vendor later in this chapter.

Naming conventions

Naming conventions establish a standard baseline for choosing object identifiers. In this section, we present a list of naming conventions (rules for picking your identifiers) that are based on long years of experience. The SQL standard has no comment on naming conventions outside of the uniqueness of an identifier, its length, and the characters that are valid within the identifier. However, here are some conventions that you should follow:
	Select a name that is meaningful, relevant, and descriptive
	Do not name a table XP03; instead, name it Expenses_2005, showing that it stores expenses for the year 2005. Remember that other people will likely be using the table or database too, perhaps long after you have gone, and the names you use should make sense at a glance. Each database vendor has limits on object name size, but names generally can be long enough to make sense to anyone reading them.

	Choose and apply the same case throughout
	Use either all uppercase or all lowercase for all objects throughout the database. Some database servers are case-sensitive, so using mixed-case identifiers might cause problems later.

	Use abbreviations consistently
	Once you've chosen an abbreviation, use it consistently throughout the database. For example, if you use EMP as an abbreviation for EMPLOYEE, you should use EMP throughout the database; do not use EMP in some places and EMPLOYEE in others.

	Use complete, descriptive, meaningful names with underscores for reading clarity
	A column name like UPPERCASEWITHUNDERSCORES is not as easy to read as UPPERCASE_WITH_UNDERSCORES.

	Do not put company or product names in database object names
	Companies get acquired, and products change names. These elements are too transitory to be included in database object names.

	Do not use overly obvious prefixes or suffixes
	For example, don't use DB_ as a prefix for a database, and don't prefix every view with V_. Simple queries to the system table of the database can tell the DBA or database programmer what type of object an identifier represents.

	Do not fill up all available space for the object name
	If the database platform allows a 32-character table name, try to leave at least a few free characters at the end. Some database platforms append prefixes or suffixes to table names when manipulating temporary copies of the tables.

	Do not use quoted identifiers
	Quoted identifiers are object names stored within double quotation marks. (The ANSI standard calls these delimited identifiers.) Quoted identifiers are also case-sensitive. Encapsulating an identifier within double quotes allows creation of names that may be difficult to use and may cause problems later. For example, users could embed spaces, special characters, mixed-case characters, or even escape sequences within a quoted identifier, but some third-party tools (and even vendor-supplied tools) cannot handle special characters in names. Therefore, quoted identifiers should not be used.
Tip
Some platforms allow delimiting symbols other than double quotes. For example, SQL Server uses brackets ([]) to designate quoted identifiers.

There are several benefits to following these naming conventions. First, your SQL code becomes, in a sense, self-documenting, because the chosen names are meaningful and understandable to other users. Second, your SQL code and database objects are easier to maintain—especially for other users who come later—because the objects are consistently named. Finally, maintaining consistency increases database functionality. If the database ever has to be transferred or migrated to another RDBMS, consistent and descriptive naming saves both time and energy. Giving a few minutes of thought to naming SQL objects in the beginning can prevent problems later.

Identifier rules

Identifier rules are rules for identifying objects within the database that are rigidly enforced by the database platforms. These rules apply to normal identifiers, not quoted identifiers. Rules specified by the SQL2003 standard generally differ somewhat from those of specific database vendors. Table 2-1 contrasts the SQL2003 rules with those of the RDBMS platforms covered in this book.
Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted identifiers)
	Characteristic
	Platform
	Specification

	Identifier size
	 	
	 	SQL3
	128 characters.

	 	MySQL
	64 characters; aliases may be 255 characters.

	 	Oracle
	30 bytes (number of characters depends on the character set); database names are limited to 8 bytes; database links are limited to 128 bytes.

	 	PostgreSQL
	63 characters (NAMEDATALEN property minus 1).

	 	SQL Server
	128 characters; temp tables are limited to 116 characters.

	Identifier may contain
	 	
	 	SQL3
	Any number or character, and the underscore (_) symbol.

	 	MySQL
	Any number, character, or symbol. Cannot be composed entirely of numbers.

	 	Oracle
	Any number or character, and the underscore (_), pound sign (#), and dollar sign ($) symbols (though the last two are discouraged). Database links may also contain a period (.).

	 	PostgreSQL
	Any number or character, and the underscore (_) symbol.

	 	SQL Server
	Any number or character, and the underscore (_), at sign (@), pound sign (#), and dollar sign ($) symbols.

	Identifier must begin with
	 	
	 	SQL3
	A letter.

	 	MySQL
	A letter or number. Cannot be composed entirely of numbers.

	 	Oracle
	A letter.

	 	PostgreSQL
	A letter or underscore (_).

	 	SQL Server
	A letter, underscore (_), at sign (@), or pound sign (#).

	Identifier cannot contain
	 	
	 	SQL3
	Spaces or special characters.

	 	MySQL
	Period (.), slash (/), or any ASCII(0) or ASCII(255) character. Single quotes ('') and double quotes (" ") are allowed only in quoted identifiers. Identifiers should not end with space characters.

	 	Oracle
	Spaces, double quotes (" "), or special characters.

	 	PostgreSQL
	Double quotes (" ").

	 	SQL Server
	Spaces or special characters.

	Allows quoted identifiers
	 	
	 	SQL3
	Yes.

	 	MySQL
	Yes.

	 	Oracle
	Yes.

	 	PostgreSQL
	Yes.

	 	SQL Server
	Yes.

	Quoted identifier symbol
	 	
	 	SQL3
	Double quotes (" ").

	 	MySQL
	Single quotes ('') or double quotes (" ") in ANSI compatibility mode.

	 	Oracle
	Double-quotes (" ").

	 	PostgreSQL
	Double-quotes (" ").

	 	SQL Server
	Double quotes (" ") or brackets ([]); brackets are preferred.

	Identifier may be reserved
	 	
	 	SQL3
	No, unless as a quoted identifier.

	 	MySQL
	No, unless as a quoted identifier.

	 	Oracle
	No, unless as a quoted identifier.

	 	PostgreSQL
	No, unless as a quoted identifier.

	 	SQL Server
	No, unless as a quoted identifier.

	Schema addressing
	 	
	 	SQL3
	Catalog.schema.object

	 	MySQL
	Database.object.

	 	Oracle
	Schema.object.

	 	PostgreSQL
	Database.schema.object.

	 	SQL Server
	Server.database.schema.object.

	Identifier must be unique
	 	
	 	SQL3
	Yes.

	 	MySQL
	Yes.

	 	Oracle
	Yes.

	 	PostgreSQL
	Yes.

	 	SQL Server
	Yes.

	Case Sensitivity
	 	
	 	SQL3
	No.

	 	MySQL
	Only if underlying filesystem is case sensitive (e.g., Mac OS or Unix). Triggers, logfile groups, and tablespaces are always case sensitive.

	 	Oracle
	No by default, but can be changed.

	 	PostgreSQL
	No.

	 	SQL Server
	No by default, but can be changed.

	Other rules
	 	
	 	SQL3
	None.

	 	MySQL
	May not contain numbers only.

	 	Oracle
	Database links are limited to 128 bytes and may not be quoted identifiers.

	 	PostgreSQL
	None.

	 	SQL Server
	Microsoft commonly uses brackets rather than double quotes for quoted identifiers.

Identifiers must be unique within their scope. Thus, given our earlier discussion of the hierarchy of database objects, database names must be unique on a particular instance of a database server, while the names of tables, views, functions, triggers, and stored procedures must be unique within a particular schema. On the other hand, a table and a stored procedure can have the same name, since they are different types of object. The names of columns, keys, and indexes must be unique on a single table or view, and so forth. Check your database platform's documentation for more information—some platforms require unique identifiers where others may not. For example, Oracle requires that all index identifiers be unique throughout the database, while others (such as SQL Server) require that the index identifier be unique only for the table on which it depends.
Remember, quoted identifiers (object names encapsulated within a special delimiter, usually double quotes) may be used to break some of the identifier rules specified earlier. One example is that quoted identifiers are case sensitive—that is, "foo" does not equal "FOO". Furthermore, quoted identifiers may be used to bestow a reserved word as a name, or to allow normally unusable characters and symbols within a name. For instance, you normally can't use the percent sign (%) in a table name. However, you can, if you must, use that symbol in a table name so long as you always enclose that table name within double quotes. That is, to name a table expense%%ratios, you would specify the name in quotes: "expense%%ratios". Again, remember that in SQL3 such names are sometimes known as "delimited identifiers."
Tip
Once you have created an object name as a quoted identifier, we recommend that users always reference it using its special delimiter.

Literals

SQL defines a literal value as any explicit numeric value, character string, temporal value (e.g., date or time), or Boolean value that is not an identifier or a keyword. SQL databases allow a variety of literal values in a SQL program. Literal values are allowed for most of the numeric, character, Boolean, and date datatypes. For example, SQL Server numeric datatypes include (among others) INTEGER, REAL, and MONEY. Thus, numeric literals can look like:
30
−117
+883.3338
−6.66
$70000
2E5
7E-3
As these examples illustrate, SQL Server allows signed and unsigned numerals, in scientific or normal notation. And since SQL Server has a money datatype, even a dollar sign can be included. SQL Server does not allow other symbols in numeric literals (besides 0 1 2 3 4 5 6 7 8 9 + - $. E e), however, so do not include commas (or periods, in European countries where a comma is used in place of a period in decimal or monetary values). Most databases interpret a comma in a numeric literal as a list item separator. Thus, the literal value 3,000 would likely be interpreted as two values: 3 and, separately, 000.
Boolean, character string, and date literals look like:
TRUE
'Hello world!'
'OCT-28-1966 22:14:30:00'
Character string literals should always be enclosed in single quotation marks (''). This is the standard delimiter for all character string literals. Character string literals are not restricted just to the letters of the alphabet. In fact, any character in the character set can be represented as a string literal. All of the following are string literals:
'1998'
'70,000 + 14000'
'There once was a man from Nantucket,'
'Oct 28, 1966'
and are compatible with the CHARACTER datatype. Remember not to confuse the string literal '1998' with the numeric literal 1998. Once string literals are associated with a character datatype, it is poor practice to use them in arithmetic operations without explicitly converting them to a numeric datatype. Some database products will perform automatic conversion of string literals containing numbers when comparing them against any DATE or NUMBER datatype values, but not all.
By doubling the delimiter, you can effectively represent a single quotation mark in a literal string, if necessary. That is, you can use two quotation marks each time a single quotation mark is part of the value. This example, taken from SQL Server, illustrates the idea:
SELECT 'So he said ''Who''s Le Petomaine?'''
This statement gives the following result:

So he said 'Who's Le Petomaine?'

Operators

An operator is a symbol specifying an action to be performed on one or more expressions. Operators are used most often in DELETE, INSERT, SELECT, and UPDATE statements, but they are also used frequently in the creation of database objects such as stored procedures, functions, triggers, and views.
Operators typically fall into these categories:
	Arithmetic operators
	Supported by all databases

	Assignment operators
	Supported by all databases

	Bitwise operators
	Supported by MySQL and SQL Server

	Comparison operators
	Supported by all databases

	Logical operators
	Supported by all databases

	Unary operators
	Supported by MySQL, Oracle, and SQL Server

Arithmetic operators

Arithmetic operators perform mathematical operations on two expressions of any datatype in the numeric datatype category. See Table 2-2 for a listing of the arithmetic operators.
Table 2-2. Arithmetic operators
	Arithmetic operator
	Meaning

	+
	Addition

	−
	Subtraction

	*
	Multiplication

	/
	Division

	%
	Modula (SQL Server only); returns the remainder of a division operation as an integer value

Tip
In MySQL, Oracle, and SQL Server, the + and − operators can be used to perform arithmetic operations on date values.
The various platforms also offer their own unique methods for performing arithmetic operations on date values.

Assignment operators

Except in Oracle, which uses :=, the assignment operator (=) assigns a value to a variable or the alias of a column heading. In all of the database platforms covered in this text, the keyword AS may serve as an operator for assigning table- or column-heading aliases.

Bitwise operators

Both Microsoft SQL Server and MySQL provide bitwise operators (see Table 2-3) as a shortcut to perform bit manipulations between two-integer expressions. Valid datatypes that are accessible to bitwise operators include BINARY, BIT, INT, SMALLINT, TINYINT, and VARBINARY. PostgreSQL supports the BIT and BIT VARYING datatypes; it also supports the bitwise operators AND, OR, XOR, concatenation, NOT, and shifts left and right.
Table 2-3. Bitwise operators
	Bitwise operator
	Meaning

	&
	Bitwise AND (two operands)

	|
	Bitwise OR (two operands)

	^
	Bitwise exclusive OR (two operands)

Comparison operators

Comparison operators test whether two expressions are equal or unequal. The result of a comparison operation is a Boolean value: TRUE, FALSE, or UNKNOWN. Also, note that the ANSI standard behavior for a comparison operation where one or more of the expressions is NULL is to return NULL. For example, the expression 23 + NULL returns NULL, as does the expression Feb 23, 2002 + NULL. See Table 2-4 for a list of the comparison operators.
Table 2-4. Comparison operators
	Comparison operator
	Meaning

	=
	Equal to

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal to

	<=
	Less than or equal to

	<>
	Not equal to

	!=
	Not equal to (not ANSI standard)

	!<
	Not less than (not ANSI standard)

	!>
	Not greater than (not ANSI standard)

Boolean comparison operators are used most frequently in a WHERE clause to filter the rows that qualify for the search conditions. The following example uses the greater than or equal to comparison operation:
SELECT *
 FROM Products
 WHERE ProductID >= 347

Logical operators

Logical operators are commonly used in a WHERE clause to test for the truth of some condition. They return a Boolean value of either TRUE or FALSE. Table 2-5 shows a list of logical operators. Note that not all database systems support all operators.
Table 2-5. Logical operators
	Logical operator
	Meaning

	ALL
	TRUE if all of a set of comparisons are TRUE

	AND
	TRUE if both Boolean expressions are TRUE

	ANY
	TRUE if any one of a set of comparisons is TRUE

	BETWEEN
	TRUE if the operand is within a range

	EXISTS
	TRUE if a subquery contains any rows

	IN
	TRUE if the operand is equal to one of a list of expressions or one or more rows returned by a subquery

	LIKE
	TRUE if the operand matches a pattern

	NOT
	Reverses the value of any other Boolean operator

	OR
	TRUE if either Boolean expression is TRUE

	SOME
	TRUE if some of a set of comparisons are TRUE

Unary operators

Unary operators perform an operation on only one expression of any of the datatypes in the numeric datatype category. Unary operators may be used on any numeric datatype, though the bitwise operator (~) may be used only on integer datatypes (see Table 2-6).
Table 2-6. Unary operators
	Unary operator
	Meaning

	+
	Numeric value is positive

	−
	Numeric value is negative

	~
	A bitwise NOT; returns the complement of the number (not in Oracle)

Operator precedence

Sometimes operator expressions become rather complex. When an expression has multiple operators, operator precedence determines the sequence in which the operations are performed. The order of execution can significantly affect the resulting value.
Operators have different precedence levels. An operator on a higher level is evaluated before an operator on a lower level. The following listing shows the operators' precedence levels, from highest to lowest:
	() (parenthetical expressions)

	+, −, ~ (unary operators)

	*, /, % (mathematical operators)

	+, − (arithmetic operators)

	=, >, <, >=, <=, <>, !=, !>, !< (comparison operators)

	^ (bitwise exclusive OR), & (bitwise AND), | (bitwise OR)

	NOT

	AND

	ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

	= (variable assignment)

Operators are evaluated from left to right when they are of equal precedence. However, parentheses are used to override the default precedence of the operators in an expression. Expressions within a set of parentheses are evaluated first, while operations outside the parentheses are evaluated next.
For example, the following expressions in an Oracle query return very different results:
SELECT 2 * 4 + 5 FROM dual
-- Evaluates to 8 + 5, which yields an expression result of 13.

SELECT 2 * (4 + 5) FROM dual
-- Evaluates to 2 * 9, which yields an expression result of 18.
In expressions with nested parentheses, the most deeply nested expression is evaluated first.
This next example contains nested parentheses, with the expression 5 - 3 in the most deeply nested set of parentheses. This expression yields a value of 2. Then the addition operator (+) adds this result to 4, which yields a value of 6. Finally, the 6 is multiplied by 2 to yield an expression result of 12:
SELECT 2 * (4 + (5 - 3)) FROM dual
-- Evaluates to 2 * (4 + 2), which further evaluates to 2 * 6,
-- and yields an expression result of 12.
RETURN
Tip
We recommend using parentheses to clarify precedence in all complex queries.

System delimiters and operators

String delimiters mark the boundaries of a string of alphanumeric characters. System delimiters are those symbols within the character set that have special significance to your database server. Delimiters are symbols that are used to judge the order or hierarchy of processes and list items. Operators are those delimiters used to judge values in comparison operations, including symbols commonly used for arithmetic or mathematical operations. Table 2-7 lists the system delimiters and operators allowed by SQL.
Table 2-7. SQL delimiters and operators
	Symbol
	Usage
	Example

	+
	Addition operator; in SQL Server, also serves as a concatenation operator
	On all database platforms:

SELECT MAX(emp_id) + 1
 FROM employee

	-
	Subtraction operator; also serves as a range indicator in CHECK constraints
	As a subtraction operator:

SELECT MIN(emp_id) - 1
 FROM employee

	 	 	As a range operator, in a CHECK constraint:

ALTER TABLE authors
 ADD CONSTRAINT authors_zip_num
 CHECK (zip LIKE '%[0-9]%')

	*
	Multiplication operator
	
SELECT salary * 0.05 AS 'bonus'
 FROM employee;

	/
	Division operator
	
SELECT salary / 12 AS 'monthly'
 FROM employee;

	=
	Equality operator
	
SELECT *
 FROM employee
 WHERE lname = 'Fudd'

	<, >
	Inequality operators (!= is a nonstandard equivalent on several platforms)
	On all platforms:

SELECT *
 FROM employee
 WHERE lname <> 'Fudd'

	<

<=
	Less than operator

Less than or equal to operator
	
SELECT lname, emp_id,
 (salary * 0.05) AS bonus
 FROM employee
 WHERE (salary * 0.05) <= 10000
 AND exempt_status < 3

	>

>=
	Greater than operator

Greater than or equal to operator
	
SELECT lname, emp_id,
 (salary * 0.025) AS bonus
 FROM employee
 WHERE (salary * 0.025) > 10000
 AND exempt_status >= 4

	()
	Used in expressions and function calls, to specify order of operations, and as a subquery delimiter
	Expression:

SELECT (salary / 12) AS monthly
 FROM employee
 WHERE exempt_status >= 4

Function call:

SELECT SUM(travel_expenses)
 FROM "expense%%ratios"

Order of operations:

SELECT (salary / 12) AS monthly,
 ((salary / 12) / 2) AS biweekly
 FROM employee
 WHERE exempt_status >= 4

Subquery:

SELECT *
 FROM stores
 WHERE stor_id IN
 (SELECT stor_id FROM sales
 WHERE ord_date > '01-JAN-2004')

	%
	Wildcard attribute indicator
	
SELECT *
 FROM employee
 WHERE lname LIKE 'Fud%'

	,
	List item separator
	
SELECT lname,
 fname,
 ssn,
 hire_date
 FROM employee
 WHERE lname = 'Fudd'

	.
	Identifier qualifier separator
	
SELECT *
 FROM scott.employee
 WHERE lname LIKE 'Fud%'

	'
	Character string indicators
	
SELECT *
 FROM employee
 WHERE lname LIKE 'FUD%'
 OR fname = 'ELMER'

	"
	Quoted identifier indicators
	
SELECT expense_date,
 SUM(travel_expense)
 FROM "expense%%ratios"
 WHERE expense_date
 BETWEEN '01-JAN-2004'
 AND '01-APR-2004'

	--
	Single-line comment delimiter (two dashes followed by a space)
	
-- Finds all employees like Fudd, Fudge,
and Fudston
SELECT *
 FROM employee
 WHERE lname LIKE 'Fud%'

	/*

*/
	Beginning multiline comment delimiter

Ending multiline comment indicator
	
/* Finds all employees like Fudd, Fudge,
and Fudston */
SELECT *
 FROM employee
 WHERE lname LIKE 'Fud%'

Keywords and Reserved Words

Just as certain symbols have special meaning and functionality within SQL, certain words and phrases have special significance. SQL keywords are words whose meanings are so closely tied to the operation of the RDBMS that they should not be used for any other purpose; generally, they are words used in SQL statements. Reserved words, on the other hand, do not have special significance now, but they probably will in a future release. Note that these words can be used as identifiers on most platforms, but they shouldn't be. For example, the word "SELECT" is a keyword and should not be used as a table name. To emphasize the fact that keywords should not be used as identifiers but nevertheless could be, the SQL standard calls them "nonreserved keywords."
Tip
It is generally a good idea to avoid naming columns or tables after a keyword that occurs in any major platform, because database applications are frequently converted from one platform to another.

Reserved words and keywords are not always words used in SQL statements; they may also be words commonly associated with database technology. For example, CASCADE is used to describe data manipulations that allow their actions, such as a delete or update operation, to "flow down," or cascade, to any subordinate tables. Reserved words and keywords are widely published so that programmers will not use them as identifiers that will, either now or at some later revision, cause a problem.
SQL3 specifies its own list of reserved words and keywords, as do the database platforms, because they each have their own extensions to the SQL command set. The SQL standard keywords, as well as the keywords in the different vendor implementations, are listed in the Appendix.

SQL2003 and Platform-Specific Datatypes

A table can contain one or many columns. Each column must be defined with a datatype that provides a general classification of the data that the column will store. In real-world applications, datatypes improve efficiency and provide some control over how tables are defined and how the data is stored within a table. Using specific datatypes enables better, more understandable queries and helps control the integrity of the data.
The tricky thing about SQL2003 datatypes is that they do not always map directly to identical implementations in different platforms. Although the various platforms specify "datatypes" that correspond to the SQL2003 datatypes, these are not always true SQL2003 datatypes: for example, MySQL's implementation of a BIT datatype is actually identical to a CHAR(1) datatype value. Nonetheless, each of the platform-specific datatypes is close enough to the standard to be both easily understandable and job-ready.
The official SQL2003 datatypes (as opposed to platform-specific datatypes) fall into the general categories described in Table 2-8. Note that the SQL2003 standard contains a few rarely used datatypes (ARRAY, MULTISET, REF, and ROW) that are shown only in Table 2-8 and not discussed elsewhere in the book.
Table 2-8. SQL2003 categories and datatypes
	Category
	Example datatypes and abbreviations
	Description

	BINARY
	BINARY LARGE OBJECT (BLOB)
	This datatype stores binary string values in hexadecimal format. Binary string values are stored without reference to any character set and without any length limit.

	BOOLEAN
	BOOLEAN
	This datatype stores truth values (either TRUE or FALSE).

	CHARACTER string types
	CHAR

CHARACTER VARYING (VARCHAR)
	These datatypes can store any combination of characters from the applicable character set. The varying datatypes allow variable lengths, while the other datatypes allow only fixed lengths. Also, the variable-length datatypes automatically trim trailing spaces, while the other datatypes pad all open space.

	 	NATIONAL CHARACTER (NCHAR)

NATIONAL CHARACTER VARYING (NCHAR VARYING)
	The national character datatypes are designed to support a particular implementation-defined character set.

	 	CHARACTER LARGE OBJECT (CLOB)
	CHARACTER LARGE OBJECT and BINARY LARGE OBJECT are collectively referred to as large object string types.

	 	NATIONAL CHARACTER LARGE OBJECT (NCLOB)
	Same as CHARACTER LARGE OBJECT, but supports a particular implementation-defined character set.

	DATALINK
	DATALINK
	Defines a reference to a file or other external data source that is not part of the SQL environment.

	INTERVAL
	INTERVAL
	Specifies a set of time values or span of time.

	COLLECTION
	ARRAY

MULTISET
	ARRAY was offered in SQL99, and MULTISET was added in SQL2003. Whereas an ARRAY is a set-length, ordered collection of elements, MULTISET is a variable-length, unordered collection of elements. The elements in an ARRAY and a MULTISET must be of a predefined datatype.

	NUMERIC
	INTEGER (INT)

SMALLINT

BIGINT

NUMERIC(p,s)

DEC[IMAL](p,s)

FLOAT(p,s)

REAL

DOUBLE PRECISION
	These datatypes store exact numeric values (integers or decimals) or approximate (floating-point) values. INT, BIGINT, and SMALLINT store exact numeric values with a predefined precision and a scale of zero. NUMERIC and DEC store exact numeric values with a definable precision and a definable scale. FLOAT stores approximate numeric values with a definable precision, while REAL and DOUBLE PRECISION have predefined precisions. You may define a precision (p) and scale (s) for a DECIMAL, FLOAT, or NUMERIC datatype to indicate the total number of allowed digits and the number of decimal places, respectively.

INT, SMALLINT, and DEC are sometimes referred to as exact numeric types, while FLOAT, REAL, and DOUBLE PRECISION are sometimes called approximate numeric types.

	TEMPORAL
	DATE

TIME

TIME WITH TIME ZONE

TIMESTAMP

TIMESTAMP WITH TIME ZONE
	These datatypes handle values related to time. DATE and TIME are self-explanatory. Datatypes with the WITH TIME ZONE suffix also include a time zone offset. The TIMESTAMP datatypes are used to store a value that represents a precise moment in time. Temporal types are also known as datetime types.

	XML
	XML
	Stores XML data and can be used wherever a SQL datatype is allowed (e.g., for a column of a table, a field in a row, etc.). Operations on the values of an XML type assume a tree-based internal data structure. The internal data structure is based on the XML Information Set Recommendation (Infoset), using a new document information item called the XML root information item.

Not every database platform supports every ANSI SQL datatype. Table 2-9 compares datatypes across the five platforms. The table is organized by datatype name. Be careful to look for footnotes when reading this table, because some platforms support a datatype of a given name but implement it in a different way than the ANSI standard and/or other vendors.
Warning
While the different platforms may support similarly named datatypes, the details of their implementations may vary. The sections that follow this table list the specific requirements of each platform's datatypes.

Table 2-9. Comparison of platform-specific datatypes
	Vendor datatype
	MySQL
	Oracle
	PostgreSQL
	SQL Server
	SQL2003 datatype

	[a]

	[b]

	[c]

	[d]

	[e]

	[f]

	[g]

	[h]

	BFILE
	 	Y
	 	 	None

	BIGINT
	Y
	 	Y
	Y
	BIGINT

	BINARY
	Y
	 	 	Y
	BLOB

	BINARY_FLOAT
	 	Y
	 	 	FLOAT

	BINARY_DOUBLE
	 	Y
	 	 	DOUBLE PRECISION

	BIT
	Y
	 	Y
	Y
	None

	BIT VARYING, VARBIT
	 	 	Y
	 	None

	BLOB
	Y
	Y
	 	 	BLOB

	BOOL, BOOLEAN
	Y
	 	Y
	 	BOOLEAN

	BOX
	 	 	Y
	 	None

	BYTEA
	 	 	Y
	 	BLOB

	CHAR, CHARACTER
	Y
	Y
	Y
	Y
	CHARACTER

	CHAR FOR BIT DATA
	 	 	 	 	None

	CIDR
	 	 	Y
	 	None

	CIRCLE
	 	 	Y
	 	None

	CLOB
	 	Y
	 	 	CLOB

	CURSOR
	 	 	 	Y
	None

	DATALINK
	 	 	 	 	DATALINK

	DATE
	Y
	Y
	Y
	Y
	DATE

	DATETIME
	Y
	 	 	Y
	TIMESTAMP

	DATETIMEOFFSET
	 	 	 	Y
	TIMESTAMP

	DATETIME2
	 	 	 	Y
	TIMESTAMP WITH TIME ZONE

	DBCLOB
	 	 	 	 	NCLOB

	DEC, DECIMAL
	Y
	Y
	Y
	Y
	DECIMAL

	DOUBLE, DOUBLE PRECISION
	Y
	Y
	Y[a]
	Y
	FLOAT

	ENUM
	Y
	 	Y
	 	None

	FLOAT
	Y
	Y
	Y
	Y
	DOUBLE PRECISION

	FLOAT4
	 	 	Y[b]
	 	FLOAT(p)

	FLOAT8
	 	 	Y[c]
	 	FLOAT(p)

	GRAPHIC
	 	 	 	 	BLOB

	GEOGRAPHY
	 	 	 	Y
	None

	GEOMETRY
	 	 	 	Y
	None

	HIERARCHYID
	 	 	 	Y
	None

	IMAGE
	 	 	 	Y
	None

	INET
	 	 	Y
	 	None

	INT, INTEGER
	Y
	Y
	Y
	Y
	INTEGER

	INT2
	 	 	Y
	 	SMALLINT

	INT4
	 	 	Y
	 	INT, INTEGER

	INTERVAL
	 	 	Y
	 	INTERVAL

	INTERVAL DAY TO SECOND
	 	Y
	Y
	 	INTERVAL DAY TO SECOND

	INTERVAL YEAR TO MONTH
	 	Y
	Y
	 	INTERVAL YEAR TO MONTH

	LINE
	 	 	Y
	 	None

	LONG
	 	Y
	 	 	None

	LONG VARCHAR
	 	 	 	 	None

	LONGBLOB
	Y
	 	 	 	BLOB

	LONG RAW
	 	Y
	 	 	BLOB

	LONG VARGRAPHIC
	 	 	 	 	None

	LONGTEXT
	Y
	 	 	 	None

	LSEG
	 	 	Y
	 	None

	MACADDR
	 	 	Y
	 	None

	MEDIUMBLOB
	Y
	 	 	 	None

	MEDIUMINT
	Y
	 	 	 	INT

	MEDIUMTEXT
	Y
	 	 	 	None

	MONEY
	 	 	Y[d]
	Y
	None

	NATIONAL CHARACTER VARYING, NATIONAL CHAR VARYING, NCHAR VARYING, NVARCHAR
	Y
	Y
	Y
	Y
	NATIONAL CHARACTER VARYING

	NCHAR, NATIONAL CHAR, NATIONAL CHARACTER
	Y
	Y
	Y
	Y
	NATIONAL CHARACTER

	NCLOB
	 	Y
	 	 	NCLOB

	NTEXT, NATIONAL TEXT
	 	 	 	Y
	NCLOB

	NVARCHAR2(n)
	 	Y
	 	 	None

	NUMBER
	Y
	Y
	Y[e]
	Y
	None

	NUMERIC
	 	 	 	Y
	NUMERIC

	OID
	 	 	Y
	 	None

	PATH
	 	 	Y
	 	None

	POINT
	 	 	Y
	 	None

	POLYGON
	 	 	Y
	 	None

	RAW
	 	Y
	 	 	None

	REAL
	Y
	Y
	Y
	Y
	REAL

	ROWID
	 	Y
	 	 	None

	ROWVERSION
	 	 	 	Y
	None

	SERIAL, SERIAL4
	Y[f]
	 	Y
	 	None

	SERIAL8, BIGSERIAL
	 	 	Y
	 	None

	SET
	Y
	 	 	 	None

	SMALLDATETIME
	 	 	 	Y
	None

	SMALLINT
	Y
	Y
	Y
	Y
	SMALLINT

	SMALLMONEY
	 	 	 	Y
	None

	SQL_VARIANT
	 	 	 	Y
	None

	TABLE
	 	 	 	Y
	None

	TEXT
	Y
	 	Y
	Y
	None

	TIME
	Y
	 	Y
	Y
	TIME

	TIMESPAN
	 	 	 	 	INTERVAL

	TIMESTAMP
	Y
	Y
	Y
	Y[g]
	TIMESTAMP

	TIMESTAMP WITH TIME ZONE, TIMESTAMPTZ
	 	 	Y
	 	TIMESTAMP WITH TIME ZONE

	TIMETZ
	 	 	Y
	 	TIME WITH TIME ZONE

	TINYBLOB
	Y
	 	 	Y
	None

	TINYINT
	Y
	 	 	Y
	None

	TINYTEXT
	Y
	 	 	 	None

	UNIQUEIDENTIFIER
	 	 	 	Y
	None

	UROWID
	 	Y
	 	 	None

	VARBINARY
	Y
	 	 	Y
	BLOB

	VARCHAR, CHAR VARYING,

CHARACTER VARYING
	Y
	Y[h]
	Y
	Y
	CHARACTER VARYING(n)

	VARCHAR2
	 	Y
	 	 	CHARACTER VARYING

	VARCHAR FOR BIT DATA
	 	 	 	 	BIT VARYING

	VARGRAPHIC
	 	 	 	 	NCHAR VARYING

	YEAR
	Y
	 	 	 	TINYINT

	XML
	 	 	Y
	Y
	XML

	XMLTYPE
	 	Y
	 	 	XML

	[a] Synonym for FLOAT.

[b] Synonym for REAL.

[c] Synonym for DOUBLE PRECISION.

[d] Synonym for DECIMAL(9,2).

[e] Synonym for DECIMAL.

[f] Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

[g] Implemented as a non-date datatype.

[h] Oracle vastly prefers VARCHAR2.

The following sections list platform-specific datatypes, their SQL2003 datatype categories (if any), and pertinent details. Descriptions are provided for non-SQL2003 datatypes.

MySQL Datatypes

MySQL version 5.1 has support for spatial data, but not as datatypes. Spatial data is handled in a variety of classes provided in the OpenGIS Geometry Model, which is supported by the MyISAM, InnoDB, NDB, and ARCHIVE database engines. Only MyISAM supports both spatial and non-spatial indexes; the other database engines only support non-spatial indexes.
MySQL numeric datatypes support the following optional attributes:
	UNSIGNED
	The numeric value is assumed to be non-negative (positive or zero). For fixed-point datatypes such as DECIMAL and NUMERIC, the space normally used to show a positive or negative condition of the numeric value can be used as part of the value, providing a little extra numeric range in the column for these types. (There is no SIGNED optional attribute.)

	ZEROFILL
	Used for display formatting, this attribute tells MySQL that the numeric value is padded to its full size with zeros rather than spaces. ZEROFILL automatically forces the UNSIGNED attribute as well.

MySQL also enforces a maximum display size for columns of up to 255 characters. Columns longer than 255 characters are stored properly, but only 255 characters are displayed. Floating-point numeric datatypes may have a maximum of 30 digits after the decimal point.
The following list enumerates the datatypes MySQL supports. These include most of the SQL2003 datatypes, plus several additional datatypes used to contain lists of values, as well as datatypes used for binary large objects (BLOBs). Datatypes that extend the ANSI standard include TEXT, ENUM, SET, and MEDIUMINT. Special datatype attributes that go beyond the ANSI standard include AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL. The datatypes supported by MySQL are:
	BIGINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 datatype: BIGINT)
	Stores signed or unsigned integers. The signed range is −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. The unsigned range is 0 to 18,446,744,073,709,551,615. BIGINT may perform imprecise calculations with very large numbers (63 bits), due to rounding issues.

	BINARY[(n)] (SQL2003 datatype: BLOB)
	Stores binary byte strings of optional length n. Otherwise, similar to the CHAR datatype.

	BIT, BOOL (SQL2003 datatype: none)
	Synonyms for TINYINT.

	BLOB (SQL2003 datatype: BLOB)
	Stores up to 65,535 characters of data. Support for indexing BLOB columns is found only in MySQL version 3.23.2 or greater (this feature is not found in any other platform covered in this book). In MySQL, BLOBs are functionally equivalent to the MySQL datatype VARCHAR BINARY (discussed later) with the default upper limit. BLOBs always require case-sensitive comparisons. BLOB columns differ from MySQL VARCHAR BINARY columns by not allowing DEFAULT values. You cannot perform a GROUP BY or ORDER BY on BLOB columns. Depending on the storage engine being used, BLOBs also are sometimes stored separately from their tables, whereas all other datatypes in MySQL (with the exception of TEXT) are stored in the table file structure itself.

	CHAR(n) [BINARY], CHARACTER(n) [BINARY] (SQL2003 datatype: CHARACTER(n))
	Contains a fixed-length character string of 1 to 255 characters. CHAR pads with blank spaces when it stores values but trims spaces upon retrieval, just as ANSI SQL2003 VARCHAR does. The BINARY option allows binary searches rather than dictionary-order, case-insensitive searches.

	DATE (SQL2003 datatype: DATE)
	Stores a date within the range of 1000-01-01 to 9999-12-31 (delimited by quotes). MySQL displays these values by default in the format YYYY-MM-DD, though the user may specify some other display format.

	DATETIME (SQL2003 datatype: TIMESTAMP)
	Stores date and time values within the range of 1000-01-01 00:00:00 to 9999-12-31 23:59:59.

	DECIMAL[(p[,s])] [ZEROFILL] (SQL2003 datatype: DECIMAL(PRECISION, SCALE))
	Stores exact numeric values as if they were strings, using a single character for each digit. Precision is 10 if omitted, and scale is 0 if omitted.

	DOUBLE[(p,s)] [ZEROFILL], DOUBLE PRECISION[(p,s)] [ZEROFILL] (SQL2003 datatype: DOUBLE PRECISION)
	Holds double-precision numeric values and is otherwise identical to the double-precision FLOAT datatype, except for the fact that its allowable range is −1.7976931348623157E+308 to −2.2250738585072014E-308, 0, and 2.2250738585072014E-308 to 1.7976931348623157E+308.

	ENUM("val1," "val2," . . . n) [CHARACTER SET cs_name] [COLLATE collation_name] (SQL2003 datatype: none)
	Holds a list of allowable values (expressed as strings but stored as integers). Other possible values for the datatype are NULL, or an empty string ("") as an error value. Up to 65,535 distinct values are allowed.

	FLOAT[(p[,s])] [ZEROFILL] (SQL2003 datatype: FLOAT(P))
	Stores floating-point numbers in the range −3.402823466E+38 to −1.175494351E-38 and 1.175494351E-38 to 3.402823466E+38. FLOAT without a precision, or with a precision of <= 24, is single-precision. Otherwise, FLOAT is double-precision. When specified alone, the precision can range from 0 to 53. When you specify both precision and scale, the precision may be as high as 255 and the scale may be as high as 253. All FLOAT calculations in MySQL are done with double precision and may, since FLOAT is an approximate datatype, encounter rounding errors.

	INT[EGER][(n)] [UNSIGNED] [ZEROFILL] [AUTO_INCREMENT] (SQL2003 datatype: INTEGER)
	Stores signed or unsigned integers. For ISAM tables, the signed range is from −2,147,483,648 to 2,147,483,647 and the unsigned range is from 0 to 4,294,967,295. The range of values varies slightly for other types of tables. AUTO_INCREMENT is available to all of the INT variants; it creates a unique row identity for all new rows added to the table. (Refer to the section "CREATE/ALTER DATABASE Statement" in Chapter 3 for more information on AUTO_INCREMENT.)

	LONGBLOB (SQL2003 datatype: BLOB)
	Stores BLOB data up to 4,294,967,295 characters in length. Note that this might be too much information for some client/server protocols to support.

	LONGTEXT [CHARACTER SET cs_name] [COLLATE collation_name] (SQL2003 datatype: CLOB)
	Stores TEXT data up to 4,294,967,295 characters in length (less if the characters are multibyte). Note that this might be too much data for some client/server protocols to support.

	MEDIUMBLOB (SQL2003 datatype: none)
	Stores BLOB data up to 16,777,215 bytes in length. The first three bytes are consumed by a prefix indicating the total number of bytes in thevalue.

	MEDIUMINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 datatype: none)
	Stores signed or unsigned integers. The signed range is from 8,388,608 to −8,388,608, and the unsigned range is 0 to 16,777,215.

	MEDIUMTEXT [CHARACTER SET cs_name] [COLLATE collation_name] (SQL2003 datatype: none)
	Stores TEXT data up to 16,777,215 characters in length (less if the characters are multibyte). The first three bytes are consumed by a prefixindicating the total number of bytes in the value.

	NCHAR(n) [BINARY], [NATIONAL] CHAR(n) [BINARY] (SQL2003 datatype: NCHAR(n))
	Synonyms for CHAR. The NCHAR datatypes provide UNICODE support beginning in MySQL v4.1.

	NUMERIC(p,s) (SQL2003 datatype: DECIMAL(p,s))
	Synonym for DECIMAL.

	NVARCHAR(n) [BINARY], [NATIONAL] VARCHAR(n) [BINARY], NATIONAL CHARACTER VARYING(n) [BINARY] (SQL2003 datatype: NCHAR VARYING)
	Synonyms for VARYING [BINARY]. Hold variable-length character strings up to 255 characters in length. Values are stored and compared in a case-insensitive fashion unless the BINARY keyword is used.

	REAL(p,s) (SQL2003 datatype: REAL)
	Synonym for DOUBLE PRECISION.

	SERIAL
	Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

	SET("val1," "val2," . . . n) [CHARACTER SET cs_name] [COLLATE collation_name] (SQL2003 datatype: none)
	A CHAR datatype whose value must be equal to zero or more values specified in the list of values. Up to 64 items are allowed in the list of values.

	SMALLINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 datatype: SMALLINT)
	Stores signed or unsigned integers. The signed range is from −32,768 to 32,767, and the unsigned range is from 0 to 65,535.

	TEXT (SQL2003 datatype: none)
	Stores up to 65,535 characters of data. TEXT datatypes are sometimes stored separately from their tables, depending on the storage engine used, whereas all other datatypes (with the exception of BLOB) are stored in their respective table file structures. TEXT is functionally equivalent to VARCHAR with no specific upper limit (besides the maximum size of the column), and it requires case-insensitive comparisons. TEXT differs from a standard VARCHAR column by not allowing DEFAULT values. TEXT columns cannot be used in GROUP BY or ORDER BY clauses. In addition, support for indexing TEXT columns is provided only in MySQL version 3.23.2 and greater.

	TIME (SQL2003 datatype: none)
	Stores time values in the range of '−838:59:59' to '838:59:59', in the format 'HH:MM:SS'. The values may be assigned as strings or numbers.

	TIMESTAMP (SQL2003 datatype: TIMESTAMP)
	Stores date values in the range of '1970-01-01 00:00:01' to partway through the year 2038. The values are expressed as the number of seconds since '1970-01-01 00:00:01'. Timestamp values are always displayed in the format 'YYYY-MM-DD HH:MM:SS'.

	TINYBLOB (SQL2003 datatype: BLOB)
	Stores BLOB values of up to 255 bytes, the first byte being consumed by a prefix indicating the total number of bytes in the value.

	TINYTEXT (SQL2003 datatype: none)
	Stores TEXT values of up to 255 characters (less if they are multibyte characters). The first byte is consumed by a prefix indicating the total number of bytes in the value.

	VARBINARY(n) (SQL2003 datatype: BLOB)
	Stores variable-length binary byte strings of length n. Otherwise, similar to the VARCHAR datatype.

	YEAR (SQL2003 datatype: none)
	Stores the year in a two- or four-digit (the default) format. Two-digit years allow values of '70' to '69', meaning 1970 to 2069, while four-digit years allow values of '1901' to '2155', plus '0000'. YEAR values are always displayed in 'YYYY' format but may be assigned as strings or numbers.

Oracle Datatypes

As you'll see in this section, Oracle supports a rich variety of datatypes, including most of the SQL3 datatypes and some special datatypes. The special datatypes, however, often require optional components to be installed. For example, Oracle supports spatial datatypes, but only if you have installed the Oracle Spatial add-on. The Oracle Spatial datatypes, including SDO_GEOMETRY, SDO_TOPO_GEOMETRY, and SDO_GEORASTER, are beyond the scope of this book. Refer to the Oracle Spatial documentation for further details on these types.
Oracle Multimedia datatypes use object types, similar to Java or C++ classes for multimedia data. Oracle Multimedia datatypes include ORDAudio, ORDImage, ORDVideo, ORDDoc, ORDDicom, SI_Stillimage, SI_Color, SI_AverageColor, SI_ColorHistogram, SI_PositionalColor, SI_Texture, SI_FeatureList, and ORDImageSignature.
Oracle also supports "Any Types" datatypes. These highly flexible datatypes are intended for use as procedure parameters and as table columns where the actual type is unknown. The Any Type datatypes are ANYTYPE, ANYDATA, and ANYDATASET.
A complete listing of the Oracle datatypes follows:
	BFILE (SQL2003 datatype: DATALINK)
	Holds a pointer to a BLOB stored outside the database, but present on the local server, of up to 4 GB in size. The database streams input (but not output) access to the external BLOB. If you delete a row containing a BFILE value, only the pointer value is deleted; the actual file structure is not deleted.

	BINARY_DOUBLE (SQL2003 datatype: FLOAT)
	Holds a 64-bit floating-point number.

	BINARY_FLOAT (SQL2003 datatype: FLOAT)
	Holds a 32-bit floating-point number.

	BLOB (SQL2003 datatype: BLOB)
	Holds a binary large object (BLOB) value of between 8 and 128 terabytes in size, depending on the database block size. In Oracle, large binary objects (BLOBs, CLOBs, and NCLOBs) have the following restrictions:
	They cannot be selected remotely.

	They cannot be stored in clusters.

	They cannot compose a varray.

	They cannot be a component of an ORDER BY or GROUP BY clause in a query.

	They cannot be used by an aggregate function in a query.

	They cannot be referenced in queries using DISTINCT, UNIQUE, or joins.

	They cannot be referenced in ANALYZE . . . COMPUTE or ANALYZE . . . ESTIMATE statements.

	They cannot be part of a primary key or index key.

	They cannot be used in the UPDATE OF clause in an UPDATE trigger.

	CHAR(n) [BYTE | CHAR], CHARACTER(n) [BYTE | CHAR] (SQL2003 datatype: CHARACTER(n))
	Holds fixed-length character data of up to 2,000 bytes in length. BYTE tells Oracle to use bytes for the size measurement. CHAR tells Oracle to use characters for the size measurement.

	CLOB (SQL2003 datatype: CLOB)
	Stores a character large object (CLOB) value of between 8 and 128 terabytes in size, depending on the database block size. See the description of the BLOB datatype for a list of restrictions on the use of the CLOB type.

	DATE (SQL2003 datatype: DATE)
	Stores a valid date and time within the range of 4712BC-01-01 00:00:00 to 9999AD-12-31 23:59:59.

	DECIMAL(p,s) (SQL2003 datatype: DECIMAL(p,s))
	A synonym for NUMBER that accepts precision and scale arguments.

	DOUBLE PRECISION (SQL2003 datatype: DOUBLE PRECISION)
	Stores floating-point values with double precision, the same as FLOAT(126).

	FLOAT(n) (SQL2003 datatype: FLOAT(n))
	Stores floating-point numeric values with a binary precision of up to 126.

	INTEGER(n) (SQL2003 datatype: INTEGER)
	Stores signed and unsigned integer values with a precision of up to 38. INTEGER is treated as a synonym for NUMBER.

	INTERVAL DAY(n) TO SECOND(x) (SQL2003 datatype: INTERVAL)
	Stores a time span in days, hours, minutes, and seconds, where n is the number of digits in the day field (values from 0 to 9 are acceptable, and 2 is the default) and x is the number of digits used for fractional seconds in the seconds field (values from 0 to 9 are acceptable, and 6 is the default).

	INTERVAL YEAR(n) TO MONTH (SQL2003 datatype: INTERVAL)
	Stores a time span in years and months, where n is the number of digits in the year field. The value of n can range from0 to 9, with a default of 2.

	LONG (SQL2003 datatype: none)
	Stores variable-length character data of up to 2 gigabytes in size. Note, however, that LONG is not scheduled for long-term support by Oracle. Use another datatype, such as CLOB, instead of LONG whenever possible.

	LONG RAW (SQL2003 datatype: none)
	Stores raw variable-length binary data of up to 2 gigabytes in size. LONG RAW and RAW are typically used to store graphics, sounds, documents, and other large data structures. BLOB is preferred over LONG RAW in Oracle, because there are fewer restrictions on its use. LONG RAW is deprecated.

	NATIONAL CHARACTER VARYING(n), NATIONAL CHAR VARYING(n), NCHAR VARYING(n) (SQL2003 datatype: NCHAR VARYING (n))
	Synonyms for NVARCHAR2.

	NCHAR(n), NATIONAL CHARACTER(n), NATIONAL CHAR(n) (SQL2003 datatype: NATIONAL CHARACTER)
	Holds UNICODE character data of 1 to 2,000 bytes in length. Default size is 1 byte.

	NCLOB (SQL2003 datatype: NCLOB)
	Represents a CLOB that supports multibyte and UNICODE values of between 8 and 128 terabytes in size, depending on the database block size. See the description of the BLOB datatype for a list of restrictions on the use of the NCLOB type.

	NUMBER(p,s), NUMERIC(p,s) (SQL2003 datatype: NUMERIC(p,s))
	Stores a number with a precision of 1 to 38 and a scale of −84 to 127.

	NVARCHAR2(n) (SQL2003 datatype: none)
	Represents Oracle's preferred UNICODE variable-length character datatype. Can hold data of 1 to 4,000 bytes in size.

	RAW(n) (SQL2003 datatype: none)
	Stores raw, variable-length binary data of up to 2,000 bytes in size. The value n is the specified size of the datatype. RAW is also deprecated in Oracle 11g. (See LONG RAW.)

	REAL (SQL2003 datatype: REAL)
	Stores floating-point values as single-precision. Same as FLOAT(63).

	ROWID (SQL2003 datatype: none)
	Represents a unique, base-64 identifier for each row in a table, often used in conjunction with the ROWID pseudocolumn.

	SMALLINT (SQL2003 datatype: SMALLINT)
	Synonym for INTEGER.

	TIMESTAMP(n) {[WITH TIME ZONE] | [WITH LOCAL TIME ZONE]} (SQL2003 datatype: TIMESTAMP[WITH TIME ZONE])
	Stores a full date and time value, where n is the number of digits (values from 0 to 9 are acceptable, and 6 is the default) in the fractional part of the seconds field. WITH TIME ZONE stores whatever time zone you pass to it (the default is your session time zone) and returns a time value in that same time zone. WITH LOCAL TIME ZONE stores data in the time zone of the current session and returns data in the time zone of the user's session.

	UROWID[(n)] (SQL2003 datatype: none)
	Stores a base-64 value showing the logical address of the row in its table. Defaults to 4,000 bytes in size, but you may optionally specify a size of anywhere up to 4,000 bytes.

	VARCHAR(n), CHARACTER VARYING(n), CHAR VARYING(n) (SQL2003 datatype: CHARACTER VARYING(n))
	Holds variable-length character data of 1 to 4,000 bytes in size.
Warning
Oracle does not recommend using VARCHAR and has for many years instead encouraged the use of VARCHAR2.

	VARCHAR2(n [BYTE | CHAR]) (SQL2003 datatype: CHARACTER VARYING(n))
	Holds variable-length character data of up to 4,000 bytes in length, as defined by n. BYTE tells Oracle to use bytes forthe size measurement. CHAR tells Oracle to use characters for the size measurement. If you use CHAR, Oracle internally must still transform that into some number of bytes, which is then subject to the 4,000-byte upper limit.

	XMLTYPE (SQL2003 datatype: XML)
	Stores XML data within the Oracle database. The XML data is accessed using XPath expressions as well as a number of built-in XPath functions, SQL functions, and PL/SQL packages. The XMLTYPE datatype is a system-defined type, so it is usable as an argument in functions, or as the datatype of a column in a table or view. When used in a table, the data can be stored in a CLOB column or object-relationally.

PostgreSQL Datatypes

The PostgreSQL database supports most SQL2003 datatypes, plus an extremely rich set of datatypes that store spatial and geometric data. PostgreSQL sports a rich set of operators and functions especially for the geometric datatypes, including capabilities such as rotation, finding intersections, and scaling. It also supports additional versions of existing datatypes that are smaller and take up less disk space than their corresponding primary datatypes. For example, PostgreSQL offers several variations on INTEGER to accommodate small or large numbers and thereby consume proportionally less or more space. Here's a list of the datatypes it supports:
	BIGINT, INT8 (SQL2003 datatype: none)
	Stores signed or unsigned 8-byte integers within the range of −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

	BIGSERIAL
	See SERIALS.

	BIT (SQL2003 datatype: BIT)
	Stores a fixed-length bit string.

	BIT VARYING(n), VARBIT(n) (SQL2003 datatype: BIT VARYING)
	Stores a variable-length bit string whose length is denoted by n.

	BOOL, BOOLEAN (SQL2003 datatype: BOOLEAN)
	Stores a logical Boolean (true/false/unknown) value. The keywords TRUE and FALSE are preferred, but PostgreSQL supports the following valid literal values for the "true" state: TRUE, t, true, y, yes, and 1. Valid "false" values are: FALSE, f, false, n, no, and 0.

	BOX((x1, y1), (x2, y2)) (SQL2003 datatype: none)
	Stores the values of a rectangular box in a 2D plane. Values are stored in 32 bytes and are represented as ((x1, y1), (x2, y2)), signifying the opposite corners of the box (upper-right and lower-left corners, respectively). The outer parentheses are optional.

	BYTEA (SQL2003 datatype: BINARY LARGE OBJECT)
	Holds raw, binary data; typically used to store graphics, sounds, or documents. For storage, this datatype requires 4 bytes plus the actual size of the binary string.

	CHAR(n), CHARACTER(n) (SQL2003 datatype: CHARACTER(n))
	Contains a fixed-length character string padded with spaces up to a length of n. Attempting to insert a value longer than n results in an error (unless the extra length is composed of spaces, which are then truncated such that the result fits in n characters).

	CIDR(x.x.x.x/y) (SQL2003 datatype: none)
	Describes an IP version 4 (IPv4) network or host address in a 12-byte storage space. The range is any valid IPv4 network address. Data in CIDR datatypes is represented as x.x.x.x/y, where the xs are the IP address and y is the number of bits in the netmask. CIDR does not accept nonzero bits to the right of a zero bit in the netmask.

	CIRCLE(x, y, r) (SQL2003 datatype: none)
	Describes a circle in a 2D plane. Values are stored in 24 bytes of storage space and are represented as (x, y, r). The x, y value represents the coordinates of the center of the circle, while r represents the length of the radius. Parentheses or arrow brackets may optionally delimit the values for x, y, and r.

	DATE (SQL2003 datatype: DATE)
	Holds a calendar date (year, day, and month) without the time of day in a4-byte storage space. Dates must be between 4713 BC and 32767 AD. DATE's lowest resolution, naturally, is to the day.

	DECIMAL[(p,s)], NUMERIC[(p,s)] (SQL2003 datatype: DECIMAL(p,s), NUMERIC(p,s))
	Stores exact numeric values with a precision (p) in the range of 0 to 9 and a scale (s) of 0, with no upper limit.

	FLOAT4, REAL (SQL2003 datatype: FLOAT(p))
	Stores floating-point numbers with a precision of 0 to 8 and 6 decimal places.

	FLOAT8, DOUBLE PRECISION (SQL2003 datatype: FLOAT(p), 7 <= p < 16)
	Stores floating-point numbers with a precision of 0 to 16 and 15 decimal places.

	INET(x.x.x.x/y) (SQL2003 datatype: none)
	Stores an IP version 4 network or host address in a 12-byte storage space. The range is any valid IPv4 network address. The xs represent the IP address, and y is the number of bits in the netmask. The netmask defaults to 32. Unlike CIDR, INET accepts nonzero bits to the right of the netmask.

	INTEGER, INT, INT4 (SQL2003 datatype: INTEGER)
	Stores signed or unsigned 4-byte integers within the range of −2,147,483,648 to 2,147,483,647.

	INTERVAL(p) (SQL2003 datatype: none)
	Holds general-use time-span values within the range of −178,000,000 to 178,000,000 years in a 12-byte storage space. INTERVAL's lowest resolution is to the microsecond. This is a different datatype than the ANSI standard, which requires an interval qualifier such as INTERVAL YEAR TO MONTH.

	LINE((x1, y1), (x2, y2)) (SQL2003 datatype: none)
	Holds line data, without endpoints, in 2D plane values. Values are stored in 32 bytes and are represented as ((x1, y1), (x2, y2)), indicating the start and end points of a line. The enclosing parentheses are optional for line syntax.

	LSEG((x1, y1), (x2, y2)) (SQL2003 datatype: none)
	Holds line segment (LSEG) data, with endpoints, in a 2D plane. Values are stored in 32 bytes and are represented as ((x1, y1), (x2, y2)). The outer parentheses are optional for LSEG syntax. For those who are interested, the "line segment" is what most people traditionally think of as a line. For example, the lines on a playing field are actually line segments.
Tip
In true geometric nomenclature, a line stretches to infinity, having no terminus at either end, while a line segment has end points. PostgreSQL has datatypes for both, but they are functionally equivalent.

	MACADDR (SQL2003 datatype: none)
	Holds a value for the MAC address of a computer's network interface card in a 6-byte storage space. MACADDR accepts a number of industry standard representations, such as:
	08002B:010203
	08002B-010203
	0800.2B01.0203
	08-00-2B-01-02-03
	08:00:2B:01:02:03

	MONEY, DECIMAL(9,2) (SQL2003 datatype: none)
	Stores U.S.-style currency values in the range of −21,474,836.48 to 21,474,836.47.

	NUMERIC[(p,s)], DECIMAL[(p,s)](SQL2003 datatype: none)
	Stores exact numeric values with a precision (p) and scale (s).

	OID (SQL2003 datatype: none)
	Stores unique object identifiers.

	PATH((x1, y1), . . . n), PATH[(x1, y1), . . . n] (SQL2003 datatype: none)
	Describes an open and closed geometric path in a 2D plane. Values are represented as [(x1, y1), . . . n] and consume 4 + 32n bytes of storage space. Each (x, y) value represents a point on the path. Paths are either open, where the first and last points do not intersect, or closed, where the first and last points do intersect. Parentheses are used to encapsulate closed paths, while brackets encapsulate open paths.

	POINT(x, y) (SQL2003 datatype: none)
	Stores values for a geometric point in a 2D plane in a 16-byte storage space. Values are represented as (x, y). The point is the basis for all other two-dimensional spatial datatypes supported in PostgreSQL. Parentheses are optional for point syntax.

	POLYGON((x1, y1), . . . n) (SQL2003 datatype: none)
	Stores values for a closed geometric path in a 2D plane using 4 + 32n bytes of storage. Values are represented as ((x1,y1), . . . n); the enclosing parentheses are optional. POLYGON is essentially a closed-path datatype.

	SERIAL, SERIAL4 (SQL2003 datatype: none)
	Stores an autoincrementing, unique integer ID for indexing and cross-referencing. Can contain up to 4 bytes of data (a range of numbers from 1 to 2,147,483,647). Tables defined with this datatype cannot be directly dropped: you must first issue the DROP SEQUENCE command, then follow up with the DROP TABLE command.

	SERIAL8, BIGSERIAL (SQL2003 datatype: none)
	Stores an autoincrementing, unique integer ID for indexing and cross-referencing. Can contain up to 8 bytes of data (a range of numbers from 1 to 9,223,372,036,854,775,807). Tables defined with this datatype cannot be directly dropped: you must first issue the DROP SEQUENCE command, then follow up with the DROP TABLE command.

	SMALLINT (SQL2003 datatype: SMALLINT)
	Stores signed or unsigned 2-byte integers within the range of −32,768 to 32,767. INT2 is a synonym.

	TEXT (SQL2003 datatype: CLOB)
	Stores large, variable-length character-string data of up to 1 gigabyte. PostgreSQL automatically compresses TEXT strings, so the disk size may be less than the string size.

	TIME[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 datatype: TIME)
	Holds the time of day and stores either no time zone (using 8 bytes of storage space) or the time zone of the database server (using 12 bytes of storage space). The allowable range is from 00:00:00.00 to 23:59:59.99. The lowest granularity is 1 microsecond. Note that time zone information on most Unix systems is available only for the years 1902 through 2038.

	TIMESTAMP[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 datatype: TIMESTAMP [WITH TIME ZONE | WITHOUT TIME ZONE])
	Holds the date and time and stores either no time zone or the time zone of the database server. The range of values is from 4713 BC to 1465001 AD. TIMESTAMP uses 8 bytes of storage space per value. The lowest granularity is 1 microsecond. Note that time zone information on most Unix systems is available only for the years 1902 through 2038.

	TIMETZ (SQL2003 datatype: TIME WITH TIME ZONE)
	Holds the time of day, including the time zone.

	VARCHAR(n), CHARACTER VARYING(n) (SQL2003 datatype: CHARACTER VARYING(n))
	Stores variable-length character strings of up to a length of n. Trailing spaces are not stored.

SQL Server Datatypes

Microsoft SQL Server supports most SQL2003 datatypes, as well as some additional datatypes used to uniquely identify rows of data within a table and across multiple servers, such as UNIQUEIDENTIFIER. These datatypes are included in support of Microsoft's hardware philosophy of "scale-out" (that is, deploying on many Intel-based servers) rather than "scale-up" (deploying on a single huge, high-end Unix server or a Windows Data Center Server).
Tip
Here's an interesting side note about SQL Server dates: SQL Server supports dates starting at the year 1753, and you can't store dates prior to that year using any of SQL Server's date datatypes. Why not? The rationale is that the English-speaking world started using the Gregorian calendar in 1753 (the Julian calendar was used prior to September, 1753), and converting dates prior to Julian to the Gregorian calendar can be quite challenging.

The datatypes SQL Server supports are:
	BIGINT (SQL2003 datatype: BIGINT)
	Stores signed and unsigned integers in the range of −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, using 8 bytes of storage space. See INT for IDENTITY property rules that also apply to BIGINT.

	BINARY[(n)] (SQL2003 datatype: BLOB)
	Stores a fixed-length binary value of 1 to 8,000 bytes in size. BINARY datatypes consume n + 4 bytes of storage space.

	BIT (SQL2003 datatype: BOOLEAN)
	Stores a value of 1, 0, or NULL (to indicate "unknown"). Up to eight BIT columns on a single table will be stored in a single byte. An additional eight BIT columns consume one more byte of storage space. BIT columns cannot be indexed.

	CHAR[(n)], CHARACTER[(n)] (SQL2003 datatype: CHARACTER(n))
	Holds fixed-length character data of 1 to 8,000 characters in length. Any unused space is, by default, padded with spaces. (You can disable the automatic padding.) Storage size is n bytes.

	CURSOR (SQL2003 datatype: none)
	A special datatype used to describe a cursor as a variable or stored procedure OUTPUT parameter. It cannot be used in a CREATE TABLE statement. The CURSOR datatype is always nullable.

	DATE (SQL2003 datatype: DATE)
	Holds a date in the range of January 1, 0001 AD to December 31, 9999 AD.

	DATETIME (SQL2003 datatype: TIMESTAMP)
	Holds a date and time within the range of 1753-01-01 00:00:00 through 9999-12-31 23:59:59. Values are stored in an 8-byte storage space.

	DATETIME2 (SQL2003 datatype: TIMESTAMP)
	Holds a date and time within the range of January 1, 0001 AD to December 31, 9999 AD, to an accuracy of 100 nanoseconds.

	DATETIMEOFFSET (SQL2003 datatype: TIMESTAMP)
	Holds a date and time within the range of January 1, 0001 AD to December 31, 9999 AD, to an accuracy of 100 nanoseconds. Also includes time zone information. Values are stored in a 10-byte storage space.

	DECIMAL(p,s), DEC(p,s), NUMERIC(p,s) (SQL2003 datatype: DECIMAL(p,s), NUMERIC(p,s))
	Stores decimal values up to 38 digits long. The values p and s define the precision and scale, respectively. The default value for the scale is 0. The precision of the datatype determines how much storage space it will consume:
	Precision 1-9 uses 5 bytes
	Precision 10-19 uses 9 bytes
	Precision 20-28 uses 13 bytes
	Precision 29-39 uses 17 bytes

See INT for IDENTITY property rules that also apply to DECIMAL

	DOUBLE PRECISION (SQL2003 datatype: none)
	Synonym for FLOAT(53).

	FLOAT[(n)] (SQL2003 datatype: FLOAT, FLOAT(n))
	Holds floating-point numbers in the range of −1.79E+308 through 1.79E+308. The precision, represented by n, may be in the range of 1 to 53. The storage size is 4 bytes for 7 digits, where n is in the range of 1 to 24. Anything larger requires 8 bytes of storage.

	HIERARCHYID (SQL2003 datatype: none)
	Represents a hierarchy or tree structure within the relational data. Although it may consume more space, HIERARCHYID will usually consume 5 bytes or less. Refer to the vendor documentation for more information on this special datatype.

	IMAGE (SQL2003 datatype: BLOB)
	Stores a variable-length binary value of up to 2,147,483,647 bytes in length. This datatype is commonly used to store graphics, sounds, and files such as MS-Word documents and MS-Excel spreadsheets. IMAGE cannot be freely manipulated; both IMAGE and TEXT columns have a lot of constraints on how they can be used. See TEXT for a list of the commands and functions that work on an IMAGE datatype.

	INT [IDENTITY [(seed, increment)] (SQL2003 datatype: INTEGER)
	Stores signed or unsigned integers within the range of −2,147,483,648 to 2,147,483,647 in 4 bytes of storage space. All integer datatypes, as well as the decimal type, support the IDENTITY property. An identity is an automatically incrementing row identifier. Refer to the section "CREATE/ALTER DATABASE Statement" in Chapter 3 for more information.

	MONEY (SQL2003 datatype: none)
	Stores monetary values within the range of −922,337,203,685,477.5808 to 922,337,203,685,477.5807, in an 8-byte storage space.

	NCHAR(n), NATIONAL CHAR(n), NATIONAL CHARACTER(n) (SQL2003 datatype: NATIONAL CHARACTER(n))
	Holds fixed-length UNICODE data of up to 4,000 characters in length. The storage space consumed is double the character length inserted into the field (2 * n).

	NTEXT, NATIONAL TEXT (SQL2003 datatype: NCLOB)
	Holds UNICODE text passages of up to 1,073,741,823 characters in length. See TEXT for rules about the commands and functions available for NTEXT.

	NUMERIC(p,s) (SQL2003 datatype: DECIMAL(p,s))
	Synonym for DECIMAL. See INT for rules about the IDENTITY property that also apply to this type.

	NVARCHAR(n), NATIONAL CHAR VARYING(n), NATIONAL CHARACTER VARYING(n) (SQL2003 datatype: NATIONAL CHARACTER VARYING(n))
	Holds variable-length UNICODE data of up to 4,000 characters in length. The storage space consumed is double the character length inserted into the field (2 * n). The system setting SET ANSI_PADDING is always enabled (ON) for NCHAR and NVARCHAR fields in SQL Server.

	REAL, FLOAT(24) (SQL2003 datatype: REAL)
	Holds floating-point numbers in the range of −3.40E+38 through 3.40E+38 in a 4-byte storage space. REAL is functionally equivalent to FLOAT(24).

	ROWVERSION (SQL2003 datatype: none)
	Stores a number that is unique within the database whenever a row in the table is updated. Called TIMESTAMP in earlier versions.

	SMALLDATETIME (SQL2003 datatype: none)
	Holds a date and time within the range of '1900-01-01 00:00' through '2079-06-06 23:59', accurate to the nearest minute. (Minutes are rounded down when seconds are 29.998 or less; otherwise, they are rounded up.) Values are stored in 4 bytes.

	SMALLINT (SQL2003 datatype: SMALLINT)
	Stores signed or unsigned integers in the range of −32,768 and 32,767, in 2 bytes of storage space. See INT for rules about the IDENTITY property that also apply to this type.

	SMALLMONEY (SQL2003 datatype: none)
	Stores monetary values within the range of −214,748.3648 to 214,748.3647, in 4 bytes of storage space.

	SQL_VARIANT (SQL2003 datatype: none)
	Stores values of other SQL Server-supported datatypes, except TEXT, NTEXT, ROWVERSION, and other SQL_VARIANT commands. Can store up to 8,016 bytes of data and supports NULL and DEFAULT values. SQL_VARIANT is used in columns, parameters, variables, and return values of functions and stored procedures.

	TABLE (SQL2003 datatype: none)
	Special datatype that stores a result set for a later process. Used solely in procedural processing, and cannot be used in a CREATE TABLE statement. This datatype alleviates the need for temporary tables in many applications. It can reduce the need for stored procedure recompiles, thus speeding execution of stored procedures and user-defined functions.

	TEXT (SQL2003 datatype: CLOB)
	Stores very large passages of text (up to 2,147,483,647 characters in length). TEXT and IMAGE values are often more difficult to manipulate than, say, VARCHAR values. For example, you cannot place an index on a TEXT or IMAGE column. TEXT values valuescan can be manipulated using the functions DATALENGTH, PATINDEX, SUBSTRING, TEXTPTR, and TEXTVALID as well as the commands READTEXT, SET TEXTSIZE, UPDATETEXT, and WRITETEXT.

	TIME (SQL2003 datatype: TIME)
	Stores an automatically generated binary number that guarantees uniqueness in the current database and is therefore different from the ANSI TIMESTAMP datatype. TIME s consume 8 bytes of storage space. ROWVERSION is now preferred over TIME to uniquely track each row.

	TIMESTAMP (SQL2003 datatype: TIMESTAMP)
	Stores the time of day based on a 24-hour clock without time zone awareness, to an accuracy of 100 nanoseconds, in a 5-byte storage space.

	TINYINT (SQL2003 datatype: none)
	Stores unsigned integers within the range 0 to 255 in 1 byte of storage space. See INT for rules about the IDENTITY property that also apply to this type.

	UNIQUEIDENTIFIER (SQL2003 datatype: none)
	Represents a value that is globally unique across all databases and all servers. Values are represented as xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where each x is a hexadecimal digit in the range 0 to 9 or a to f. The only operations allowed against UNIQUEIDENTIFIER s are comparisons and NULL checks. Column constraints and properties are allowed on UNIQUEIDENTIFIER columns, with the exception of the IDENTITY property.

	VARBINARY[(n)] (SQL2003 datatype: BLOB)
	Describes a variable-length binary value of up to 8,000 bytes in size. The storage space consumed is equivalent to the size of the data inserted, plus 4 bytes.

	VARCHAR[(n)], CHAR VARYING[(n)], CHARACTER VARYING[(n)] (SQL2003 datatype: CHARACTER VARYING(n))
	Holds fixed-length character data of 1 to 8,000 characters in length. The amount of storage space required is determined by the actual size of the value entered in bytes, not the value of n.

	XML (SQL2003 datatype: XML)
	Stores XML data in a column or a variable of variable size in storage space up to but not exceeding 2 gigabytes in size.

Constraints

Constraints allow you to automatically enforce the integrity of data and to filter the data that is placed in a database. In a sense, constraints are rules that define which data values are valid during INSERT, UPDATE, and DELETE operations. When a data-modification transaction breaks the rules of a constraint, the transaction is rejected.
In the ANSI standard, there are four constraint types: CHECK, PRIMARY KEY, UNIQUE, and FOREIGN KEY. (The RDBMS platforms may allow more; refer to Chapter 3 for details.)

Scope

Constraints may be applied at the column level or the table level:
	Column-level constraints
	Are declared as part of a column definition and apply only to that column.

	Table-level constraints
	Are declared independently from any column definitions (traditionally, at the end of a CREATE TABLE statement) and may apply to one or more columns in the table. A table constraint is required when you wish to define a constraint that applies to more than one column.

Syntax

Constraints are defined when you create or alter a table. The general syntax for constraints is shown here:
CONSTRAINT [constraint_name] constraint_type [(column [, ...])]
[predicate] [constraint_deferment] [deferment_timing]
The syntax elements are as follows:
	CONSTRAINT [constraint_name]
	Begins a constraint definition and, optionally, provides a name for the constraint. When you omit constraint_name, the system will create a name for you automatically. On some platforms, you may omit the CONSTRAINT keyword as well.
Tip
System-generated names are often incomprehensible. It is good practice to specify human-readable, sensible names for constraints.

	constraint_type
	Declares the constraint as one of the allowable types: CHECK, PRIMARY KEY, UNIQUE, or FOREIGN KEY. More information about each type of constraint appears later in this section.

	column [, . . .]
	Associates one or more columns with the constraint. Specify the columns in a comma-delimited list, enclosed in parentheses. The column list should be omitted for column-level constraints. Columns are not used in every constraint. For example, CHECK constraints do not generally use column references.

	predicate
	Defines a predicate for CHECK constraints.

	constraint_deferment
	Declares a constraint as DEFERRABLE or NOT DEFERRABLE. When a constraint is deferrable, you can specify that it be checked for a rules violation at the end of a transaction. When a constraint is not deferrable, it is checked for a rules violation at the conclusion of every SQL statement.

	deferment_timing
	Declares a deferrable constraint as INITIALLY DEFERRED or INITIALLY IMMEDIATE. When set to INITIALLY DEFERRED, the constraint check time will be deferred until the end of a transaction, even if the transaction is composed of many SQL statements. In this case, the constraint must also be DEFERRABLE. When set to INITIALLY IMMEDIATE, the constraint is checked at the end of every SQL statement. In this case, the constraint may be either DEFERRABLE or NOT DEFERRABLE. The default is INITIALLY IMMEDIATE.

Note that this syntax may vary among the different vendor platforms. Check the individual platform sections in Chapter 3 for more details.

PRIMARY KEY Constraints

A PRIMARY KEY constraint declares one or more columns whose values uniquely identify each record in the table. It is considered a special case of the UNIQUE constraint. Here are some rules about primary keys:
	Only one primary key may exist on a table at a time.

	Columns in the primary key cannot have datatypes of BLOB, CLOB, NCLOB, or ARRAY.

	Primary keys may be defined at the column level for a single column key or at the table level if multiple columns make up the primary key.

	Values in the primary key column(s) must be unique and not NULL.

	In a multicolumn primary key, called a concatenated key, the combination of values in all of the key columns must be unique and not NULL.

	Foreign keys can be declared that reference the primary key of a table to establish direct relationships between tables (or possibly, though rarely, within a single table).

The following ANSI standard code includes the options for creating both a table- and column-level primary key constraint on a table called distributors. The first example shows a column-level primary-key constraint, while the second shows a table-level constraint:
-- Creating a column-level constraint
CREATE TABLE distributors
(dist_id CHAR(4) NOT NULL PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT);

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id));
In the example showing a table-level primary key, we could easily have created a concatenated key by listing several columns separated by commas.

FOREIGN KEY Constraints

A FOREIGN KEY constraint defines one or more columns in a table as referencing columns in a unique or primary key in another table. (A foreign key can reference a unique or primary key in the same table as the foreign key itself, but such foreign keys are rare.) Foreign keys can then prevent the entry of data into a table when there is no matching value in the related table. They are the primary means of identifying the relationships between tables in a relational database. Here are some rules about foreign keys:
	Many foreign keys may exist on a table at a time.

	A foreign key can be declared to reference either the primary key or a unique key of another table to establish a direct relationship between the two tables.

The full SQL2003 syntax for foreign keys is more elaborate than the general syntax for constraints shown earlier, and it's dependent on whether you are making a table-level or column-level declaration:
-- Table-level foreign key
[CONSTRAINT [constraint_name]]
FOREIGN KEY (local_column[, ...])
REFERENCES referenced_table [(referenced_column[, ...])]
[MATCH {FULL | PARTIAL | SIMPLE}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[constraint_deferment] [deferment_timing]

-- Column-level foreign key
[CONSTRAINT [constraint_name]]
REFERENCES referenced_table [(referenced_column[, ...])]
[MATCH {FULL | PARTIAL | SIMPLE}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[constraint_deferment] [deferment_timing]
The keywords common to a standard constraint declaration were described earlier, in the "Syntax" section. Keywords specific to foreign keys are described in the following list:
	FOREIGN KEY (local_column [, . . .])
	Declares one or more columns of the table being created or altered that are subject to the foreign key constraint. This syntax is used only in table-level declarations and is excluded from column-level declarations. We recommend that the ordinal positions and datatypes of the columns in the local_column list match the ordinal positions and datatypes of the columns in the referenced_column list.

	REFERENCES referenced_table [(referenced_column [, . . .])]
	Names the table and, where appropriate, the column(s) that hold the valid list of values for the foreign key. A referenced_column must already be named in a NOT DEFERRABLE PRIMARY KEY or NOT DEFERRABLE UNIQUE KEY statement. The table types must also match; for example, if one is a local temporary table, both must be local temporary tables.

	MATCH {FULL | PARTIAL | SIMPLE}
	Defines the degree of matching required between the local and referenced columns in foreign-key constraints when NULLs are present:
	FULL
	Declares that a match is acceptable when: 1) none of the referencing columns are NULL and match all of the values of the referenced column, or 2) all of the referencing columns are NULL. In general, you should either use MATCH FULL or ensure that all columns involved have NOT NULL constraints.

	PARTIAL
	Declares that a match is acceptable when at least one of the referenced columns is NULL and the others match the corresponding referenced columns.

	SIMPLE
	Declares that a match is acceptable when any of the values of the referencing column is NULL or a match. This is the default.

	ON UPDATE
	Specifies that, when an UPDATE operation affects one or more referenced columns of the primary or unique key on the referenced table, a corresponding action should be taken to ensure that the foreign key does not lose data integrity. ON UPDATE may be declared independently of or together with the ON DELETE clause. When omitted, the default for the ANSI standard is ON UPDATE NO ACTION.

	ON DELETE
	Specifies that, when a DELETE operation affects one or more referenced columns of the primary or unique key on the referenced table, a corresponding action should be taken to ensure that the foreign key does not lose data integrity. ON DELETE may be declared independently of or together with the ON UPDATE clause. When omitted, the default for the ANSI standard is ON DELETE NO ACTION.

	NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT
	Defines the action the database takes to maintain the data integrity of the foreign key when a referenced primary or unique key constraint value is changed or deleted:
	NO ACTION
	Tells the database to do nothing when a primary key or unique key value referenced by a foreign key is changed or deleted.

	CASCADE
	Tells the database to perform the same action (i.e., DELETE or UPDATE) on the matching foreign key when a primary key or unique key value is changed or deleted.

	RESTRICT
	Tells the database to prevent changes to the primary key or unique key value referenced by the foreign key.

	SET NULL
	Tells the database to set the value in the foreign key to NULL when a primary key or unique key value is changed or deleted.

	SET DEFAULT
	Tells the database to set the value in the foreign key to the default (using default values you specify for each column) when a primary key or unique key value is changed or deleted.

As with the code example for primary keys, you can adapt this generic syntax to both column-level and table-level foreign key constraints. Note that column-level and table-level constraints perform their function in exactly the same way; they are merely defined at different levels of the CREATE TABLE command. In the following example, we create a single-column foreign key on the salesrep column referencing the empid column of the employee table. We create the foreign key two different ways, the first time at the column level and the second time at the table level:
-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
sales_rep INT NOT

NULL REFERENCES employee(empid));

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
CONSTRAINT fk_empid
FOREIGN KEY (sales_rep)
REFERENCES employee(empid));

UNIQUE Constraints

A UNIQUE constraint, sometimes called a candidate key, declares that the values in one column, or the combination of values in more than one column, must be unique. Rules concerning unique constraints include:
	Columns in a unique key cannot have datatypes of BLOB, CLOB, NCLOB, or ARRAY.

	The column or columns in a unique key may not be identical to those in any other unique keys, or to any columns in the primary key of the table.

	A single NULL value, if the unique key allows NULL values, is allowed.

	SQL2003 allows you to substitute the column list shown in the general syntax diagram for constraints with the keyword (VALUE). UNIQUE (VALUE) indicates that all columns in the table are part of the unique key. The VALUE keyword also disallows any other unique or primary keys on the table.

In the following example, we limit the number of distributors we do business with to only one distributor per zip code. We also allow one (and only one) "catch-all" distributor with a NULL zip code. This functionality can be implemented easily using a UNIQUE constraint, either at the column or the table level:
-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
zip CHAR(5) UNIQUE,
 phone CHAR(12) ,
 sales_rep INT NOT NULL
 REFERENCES employee(empid));

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
CONSTRAINT fk_emp_id FOREIGN KEY (sales_rep)
 REFERENCES employee(empid),
CONSTRAINT unq_zip UNIQUE (zip));

CHECK Constraints

CHECK constraints allow you to perform comparison operations to ensure that values match specific conditions that you set out. The syntax for a check constraint is very similar to the general syntax for constraints:
[CONSTRAINT] [constraint_name] CHECK (search_conditions)
[constraint_deferment] [deferment_timing]
Most of the elements of the check constraint were introduced earlier in this section. The following element is unique to this constraint:
	search_conditions
	Specifies one or more search conditions that constrain the values inserted into the column or table, using one or more expressions and a predicate. Multiple search conditions may be applied to a column in a single check constraint using the AND and OR operators (think of a WHERE clause).

A check constraint is considered matched when the search conditions evaluate to TRUE or UNKNOWN. Check constraints are limited to Boolean operations (e.g., =, >=, <=, or <>), though they may include any SQL2003 predicate, such as IN or LIKE. Check constraints may be appended to one another (when checking a single column) using the AND and OR operators. Here are some other rules about check constraints:
	A column or table may have one or more check constraints.

	A search condition cannot contain aggregate functions, except in a subquery.

	A search condition cannot use nondeterministic functions or subqueries.

	A check constraint can only reference like objects. That is, if a check constraint is declared on a global temporary table, it cannot then reference a permanent table.

	A search condition cannot reference these ANSI functions: CURRENT_USER, SESSION_USER, SYSTEM_USER, USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP.

The following example adds a check constraint to the dist_id and zip columns. (This example uses generic code run on SQL Server.) The zip code must fall into the normal ranges for postal zip codes, while the dist_id values are allowed to contain either four alphabetic characters or two alphabetic and two numeric characters:
-- Creating column-level CHECK constraints
CREATE TABLE distributors
(dist_id CHAR(4)
CONSTRAINT pk_dist_id PRIMARY KEY
CONSTRAINT ck_dist_id CHECK
(dist_id LIKE '[A-Z][A-Z][A-Z][A-Z]' OR
dist_id LIKE '[A-Z][A-Z][0-9][0-9]'),
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2)
 CONSTRAINT def_st DEFAULT ("CA"),
zip CHAR(5)
CONSTRAINT unq_dist_zip UNIQUE
 CONSTRAINT ck_dist_zip CHECK
(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12),
 sales_rep INT
 NOT NULL DEFAULT USER REFERENCES employee(emp_id))

Chapter 3. SQL Statement Command Reference

This chapter is the heart of the book. It consists of an alphabetical listing of SQL commands, with detailed explanations and examples. Each command and function is identified in Table 3-1 as being "supported," "supported with variations," "supported with limitations," or "not supported," for each of the four SQL dialects covered in this book: MySQL 5.1, Oracle Database 11g, PostgreSQL 8.2.1, and Microsoft's SQL Server 2008. After a brief description of the SQL2003 standard, each vendor application is discussed briefly but thoroughly, with supporting examples. If a specific platform does not support a particular command, that fact will be noted in the table that heads the command, and that command will not be listed for that platform. Similarly, although this book is not a comprehensive review of the SQL2003 standard, each command has been validated against that standard.

How to Use This Chapter

When researching a command in this chapter:
	Read "SQL Platform Support."

	Check the platform support table.

	Read the section on the SQL2003 syntax and description, even if you are looking for a specific platform implementation.

	Finally, read the specific platform implementation information.

Any common features between the platform implementations of a command are discussed and compared against the SQL2003 section. Thus, the subsection on a platform's implementation of a particular command may not describe every aspect of that command, since some of its details may be covered in the SQL2003 section. Please note that if there is a keyword that appears in a command's syntax but not in its keyword description, this is because we chose not to repeat descriptions that appear under the ANSI entry.

SQL Platform Support

Table 3-1 provides a listing of the SQL statements, the platforms that support them, and the degree to which they support them. The following list offers useful tips for reading Table 3-1, as well as an explanation of what each abbreviation stands for:
	The first column contains the SQL commands, in alphabetical order.

	The SQL statement class for each command is indicated in the second column.

	The subsequent columns list the level of support for each vendor:
	Supported (S)
	The platform supports the SQL2003 standard for the particular command.

	Supported, with variations (SWV)
	The platform supports the SQL2003 standard for the particular command, using vendoor-specific code or syntax.

	Supported, with limitations (SWL)
	The platform supports some but not all of the functions specified by the SQL2003 standard for the particular command.

	Not supported (NS)
	The platform does not support the particular command according to the SQL2003 standard.

The sections that follow the table describe the commands in detail. Related CREATE and ALTER commands (e.g., CREATE DATABASE and ALTER DATABASE) are discussed together (e.g., in a section titled "CREATE/ALTER DATABASE Statement").
Remember that even if a specific SQL2003 command is listed in the table as "Not supported," the platform usually has alternative coding or syntax to enact the same command or function. Therefore, be sure to read the discussion and examples for each command later in this chapter. Likewise, a few of the commands in Table 3-1 are not found in the SQL2003 standard; these have been indicated with the term "Non-ANSI" under the heading "SQL2003 class" in the table.
There are also a few ANSI commands in the table (such as CREATE DOMAIN and ALTER DOMAIN) that are not currently supported by any of the database platforms covered in this text. Since this book focuses on the implementation of the SQL language, unsupported ANSI commands are shown in Table 3-1 but are not documented elsewhere in the book.
Table 3-1. Alphabetical quick SQL command reference
	SQL2003 command
	SQL2003 class
	MySQL v5.1
	Oracle v11g
	PostgreSQL v8.2.1
	SQL Server 2008

	ALL/ANY/SOME
	SQL-data
	S
	S
	S
	S

	BETWEEN
	SQL-data
	S
	S
	S
	S

	ALTER DATABASE
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	ALTER FUNCTION
	SQL-schema
	SWL
	SWV
	SWL
	SWV

	ALTER INDEX
	Non-ANSI
	SWV
	SWV
	SWV
	SWV

	ALTER METHOD
	SQL-schema
	NS
	NS
	NS
	NS

	ALTER PROCEDURE
	SQL-schema
	SWV
	SWV
	NS
	SWV

	ALTER ROLE
	SQL-schema
	NS
	SWV
	SWV
	SWL

	ALTER SCHEMA
	SQL-schema
	SWL
	NS
	SWL
	SWL

	ALTER TABLE
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	ALTER TRIGGER
	Non-ANSI
	NS
	SWV
	SWV
	SWV

	ALTER TYPE
	SQL-schema
	NS
	SWV
	NS
	NS

	ALTER VIEW
	Non-ANSI
	SWV
	SWV
	SWV
	SWV

	CALL
	SQL-control
	S
	SWV
	NS
	NS

	CLOSE CURSOR
	SQL-data
	NS
	S
	S
	SWV

	COMMIT
	SQL-transaction
	SWV
	SWV
	SWV
	SWV

	CONNECT
	SQL-connection
	NS
	S
	NS
	SWV

	CREATE DATABASE
	Non-ANSI
	SWV
	SWV
	SWV
	SWV

	CREATE FUNCTION
	SQL-schema
	SWL
	SWV
	SWL
	SWV

	CREATE INDEX
	Non-ANSI
	SWV
	SWV
	SWV
	SWV

	CREATE METHOD
	SQL-schema
	NS
	NS
	NS
	NS

	CREATE PROCEDURE
	SQL-schema
	SWV
	SWV
	NS
	SWV

	CREATE ROLE
	SQL-schema
	NS
	SWV
	SWV
	SWL

	CREATE SCHEMA
	SQL-schema
	SWL
	SWV
	SWL
	SWL

	CREATE TABLE
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	CREATE TRIGGER
	SQL-schema
	SWL
	SWV
	SWV
	SWV

	CREATE TYPE
	SQL-schema
	NS
	SWL
	SWV
	SWV

	CREATE VIEW
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	DECLARE CURSOR
	SQL-data
	SWL
	SWL
	SWL
	SWL

	DELETE
	SQL-data
	SWV
	SWV
	SWV
	SWV

	DISCONNECT
	SQL-connection
	NS
	SWL
	NS
	SWL

	DROP DATABASE
	Non-ANSI
	SWV
	S
	SWV
	SWV

	DROP DOMAIN
	SQL-schema
	NS
	NS
	S
	NS

	DROP FUNCTION
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	DROP INDEX
	Non-ANSI
	SWV
	SWV
	SWV
	SWV

	DROP METHOD
	SQL-schema
	NS
	SWV
	NS
	NS

	DROP

PROCEDURE
	SQL-schema
	SWV
	S
	NS
	S

	DROP ROLE
	SQL-schema
	NS
	SWV
	SWV
	SWV

	DROP SCHEMA
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	DROP TABLE
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	DROP TRIGGER
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	DROP TYPE
	SQL-schema
	NS
	S
	S
	NS

	DROP VIEW
	SQL-schema
	SWV
	S
	S
	S

	EXCEPT
	SQL-data
	NS
	SWL
	SWL
	SWL

	EXISTS
	SQL-data
	S
	S
	S
	S

	FETCH
	SQL-data
	SWL
	SWL
	SWV
	SWV

	GRANT
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	IN
	SQL-data
	S
	S
	S
	S

	INSERT
	SQL-data
	SWV
	SWV
	SWV
	SWV

	INTERSECT
	SQL-data
	NS
	SWL
	SWL
	SWL

	IS
	SQL-data
	S
	S
	S
	S

	JOIN
	SQL-data
	SWV
	S
	SWV
	SWL

	LIKE
	SQL-data
	S
	S
	SWV
	S

	MERGE
	SQL-data
	NS
	SWV
	NS
	SWV

	OPEN
	SQL-data
	S
	S
	NS
	S

	ORDER BY
	SQL-data
	SWL
	SWV
	SWV
	SWL

	RELEASE SAVEPOINT
	SQL-transaction
	S
	NS
	S
	NS

	RETURN
	SQL-control
	S
	S
	S
	S

	REVOKE
	SQL-schema
	SWV
	SWV
	SWV
	SWV

	ROLLBACK
	SQL-transaction
	SWL
	SWV
	SWV
	SWV

	SAVEPOINT
	SQL-transaction
	S
	S
	S
	SWL

	SELECT
	SQL-data
	SWV
	SWV
	SWV
	SWV

	SET
	SQL-session
	S
	NS
	S
	S

	SET CONNECTION
	SQL-connection
	NS
	NS
	NS
	SWL

	SET CONSTRAINT
	SQL-connection
	NS
	SWV
	SWV
	NS

	SET PATH
	SQL-session
	NS
	NS
	NS
	NS

	SET ROLE
	SQL-session
	NS
	SWV
	NS
	NS

	SET SCHEMA
	SQL-session
	NS
	NS
	NS
	NS

	SET SESSION AUTHORIZATION
	SQL-session
	NS
	NS
	S
	NS

	SET TIME ZONE
	SQL-session
	NS
	SWV
	SWL
	NS

	SET TRANSACTION
	SQL-session
	SWV
	SWL
	S
	SWV

	START TRANSACTION
	SQL-transaction
	SWL
	NS
	NS
	NS

	SUBQUERY
	SQL-data
	SWL
	S
	S
	S

	TRUNCATE TABLE
	In the SQL-data style (not an official SQL3 statement)
	S
	S
	S
	S

	UNION
	SQL-data
	NS
	SWL
	SWL
	SWL

	UPDATE
	SQL-data
	SWV
	SWV
	SWV
	SWV

	WHERE
	SQL-data
	S
	S
	S
	S

SQL Command Reference

Name
ALL/ANY/SOME Operators

The ALL operator performs a Boolean test of a subquery for the existence of a value in all rows. The ANY operator and its synonym SOME perform a Boolean test of a subquery for the existence of a value in any of the rows tested.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
SELECT ...
WHERE expression comparison {ALL | ANY | SOME} (subquery)

Keywords
	WHERE expression
	Tests a scalar expression (such as a column) against every value in the subquery for ALL, and against every value until a match is found for ANY and SOME. All rows must match the expression to return a Boolean TRUE value for the ALL operator, while one or more rows must match the expression to return a Boolean TRUE value for the ANY and SOME operators.

	comparison
	Compares the expression to the subquery. The comparison must be a standard comparison operator like =, <>, !=, >, >=, <, or <=.

Rules at a Glance
The ALL operator returns a Boolean TRUE value when one of two things happens: either the subquery returns an empty set (i.e., no records), or every record in the set meets the comparison. ALL returns FALSE when any record in the set does not match the value comparison. The ANY and SOME operators return a Boolean TRUE when at least one record in the subquery matches the comparison operation, and FALSE when no record matches the comparison operation (or when a subquery returns an empty result set). If even one return value of the subquery is NULL, the operation evaluates as NULL, not as TRUE.
Tip
Do not include special clauses like ORDER BY, GROUP BY, CUBE, ROLLUP, WITH, etc. in your subquery.

For example, this query returns authors who currently have no titles:
SELECT au_id
FROM authors
WHERE au_id <> ALL(SELECT au_id FROM titleauthor)
You can use ANY or SOME to perform filtering checks of different kinds. For example, the following query will retrieve from the employees table any records that exist in the employees_archive table where the employee has the same job_lvl as any employee working in Anchorage, Alaska:
SELECT *
FROM employees
WHERE job_lvl = ANY(SELECT job_lvl FROM employees_archive
 WHERE city = 'Anchorage')

Programming Tips and Gotchas
The ALL and ANY/SOME operators are somewhat difficult to get used to. Most developers find it easier to use similar functions like IN and EXISTS.
Tip
EXISTS is semantically equivalent to the ANY/SOME operator.

MySQL
MySQL supports ALL and ANY/SOME in the manner described above, with the exception of versions of MySQL prior to 4.0. On pre-v4.0 MySQL platforms, consider using the IN operator instead of EXISTS for ANY/SOME.

Oracle
Oracle supports the ANSI standard versions of ALL and ANY/SOME with one minor variation, which is that you can supply a list of values instead of a subquery. For example, to find all employees who have a job_lvl value equal to 9 or 14:
SELECT * FROM employee
WHERE job_lvl = ALL(9, 14);

PostgreSQL
PostgreSQL supports ALL and ANY/SOME in the manner described above.

SQL Server
SQL Server supports the ANSI standard versions of ALL and ANY/SOME. It also supports some additional comparison operators: not greater than (!>) and not less than (!<).

See Also
	BETWEEN
	EXISTS
	SELECT
	WHERE

Name
BETWEEN Operator

The BETWEEN operator performs a Boolean test of a value against a range of values. It returns TRUE when the value is included in the range and FALSE when the value falls outside of the range. The results are NULL (unknown) if any of the range values are NULL.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
SELECT ...
WHERE expression [NOT] BETWEEN lower_range AND upper_range

Keywords
	WHERE expression
	Compares a scalar expression, such as a column, to the range of values bounded by upper_range and lower_range.

	[NOT] BETWEEN lower_range AND upper_range
	Compares the expression to the lower_range and upper_range. The comparison is inclusive, meaning that it is equivalent to saying "where expression is [not] greater than or equal to lower_range and less than or equal to upper_range."

Rules at a Glance
The BETWEEN operator is used to test an expression against a range of values. The BETWEEN operator may be used with any datatype except BLOB, CLOB, NCLOB, REF, and ARRAY.
For example, this query returns title_ids that have year-to-date sales of between 10,000 and 20,000:
SELECT title_id
FROM titles
WHERE ytd_sales BETWEEN 10000 AND 20000
BETWEEN is inclusive of the range of values listed, so it includes the values 10,000 and 20,000 in the search. If you want an exclusive search, you must use the greater than (>) and less than (<) symbols:
SELECT title_id
FROM titles
WHERE ytd_sales > 10000
 AND ytd_sales < 20000
The NOT operator allows you to search for values outside of the BETWEEN range. For example, you can find all the title_ids that were not published during 2003:
SELECT title_id
FROM titles
WHERE pub_date NOT BETWEEN '01-JAN-2003'
 AND '31-DEC-2003'

Programming Tips and Gotchas
Some coders are very particular about how the keyword AND is used in WHERE clauses. To prevent a casual reviewer from thinking that the AND used in a BETWEEN operation is a logical AND operator, you might want to use parentheses to encapsulate the entire BETWEEN clause:
SELECT title_id
FROM titles
WHERE (ytd_sales BETWEEN 10000 AND 20000)
 AND pubdate >= '1991-06-12 00:00:00.000'

Platform Differences
All of the platforms support BETWEEN in the manner described above.

See Also
	ALL/ANY/SOME
	EXISTS
	SELECT
	WHERE

Name
CALL Statement

The CALL statement invokes a stored procedure.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported, with variations

	PostgreSQL
	Not supported

	SQL Server
	Not supported

SQL2003 Syntax
CALL procedure_name([parameter[, ...]])

Keywords
	CALL procedure_name
	Specifies the stored procedure that you want to invoke. It must be a previously defined stored procedure that is available in the current user context (instance, database, schema, etc.).

	([parameter[, . . .]])
	Provides values for each input parameter required by the stored procedure. Each parameter listed is required by the stored procedure in the same ordinal position; thus, the fifth parameter listed will provide the value for the fifth argument required by the stored procedure. The parameters must be enclosed in parentheses and separated by commas. Note that the parentheses are required even if there are no parameter values (e.g., if there are no parameter values, you must still use CALL())). Strings should be enclosed in single quotes. If the stored procedure has only OUT parameters, place host variables or parameter markers within the parentheses.

Rules at a Glance
The CALL statement makes it easy to invoke a stored procedure. Simply provide the name of the stored procedure and include any parameters used by the stored procedure, enclosing them within parentheses.
This Oracle example creates a simple stored procedure, and then calls it:
CREATE PROCEDURE update_employee_salary
 (emp_id NUMBER, updated_salary NUMBER)
IS
BEGIN
 UPDATE employee SET salary = updated_salary
WHERE employee_id =emp_id;
END;
CALL update_employee_salary(1517, 95000);

Programming Tips and Gotchas
The return status of a called stored procedure can be found, typically, by using GET DIAGNOSTIC. GET DIAGNOSTIC is not widely supported among the various database platforms, so check the platform documentation for more details.
Many platforms also support an alternative command called EXECUTE to perform the same functionality. In some cases you may prefer EXECUTE to CALL, since the former can be used to execute any kind of prepared SQL, including methods, functions, or batches of SQL code.

MySQL
MySQL supports the ANSI-standard form of the CALL statement.

Oracle
Oracle allows the CALL statement to invoke standalone stored procedures, functions, and methods, as well as stored procedures and functions contained within a type or package. Following is the Oracle syntax:
CALL [schema.][{type_name | package_name}.]procedure_name@dblink
[(parameter[, ...])]
[INTO :variable_name [[INDICATOR] :indicator_name]]
where:
	CALL [schema.][{type_name | package_name}.]procedure_name@dblink
	Calls the named object. You may fully enumerate the object name, including the schema, type, etc., or allow Oracle to assume the current schema and database instance. If the procedure or function resides in another database, simply specify the database via a database link name, shown as dblink in the syntax. dblink must refer to a previously created database link.

	INTO :variable_name
	Specifies the name of a previously declared variable that will store the value returned when you call a function. INTO is required, and only usable, when calling a function.

	INDICATOR :indicator_name
	Retains the condition of the host variable (for example, whether the return value is NULL) for functions precompiled in a Pro*C/C++ routine.

The parameters used in an Oracle CALL statement may not include pseudocolumns or the VALUE or REF functions. You must use a host variable for any parameter that corresponds to an OUT or IN OUT argument of the called stored procedure.

PostgreSQL
Not supported.

SQL Server
Not supported. Instead, use the non-ANSI EXECUTE statement.

See Also
	CREATE/ALTER PROCEDURE

Name
CLOSE CURSOR Statement

The CLOSE CURSOR statement closes a server-side cursor previously created with a DECLARE CURSOR statement.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported, with variations

SQL2003 Syntax
CLOSE cursor_name

Keywords
	cursor_name
	Names a cursor previously created with the DECLARE CURSOR statement.

Rules at a Glance
The CLOSE statement closes a cursor and destroys the cursor result set. All the database platforms release any locks that were held by the cursor, though this is not specified in the ANSI standard. For example:
CLOSE author_names_cursor;

Programming Tips and Gotchas
You can also close a cursor implicitly using a COMMIT statement or, for cursors defined with WITH HOLD, using a ROLLBACK statement.

MySQL
MySQL supports the ANSI-standard form of the statement.

Oracle
Oracle supports the ANSI-standard form of the statement.

PostgreSQL
PostgreSQL supports the ANSI-standard syntax. PostgreSQL issues an implicit CLOSE statement for every open cursor when a transaction is ended with a COMMIT or ROLLBACK statement.

SQL Server
Microsoft SQL Server supports the ANSI-standard syntax, and an additional GLOBAL keyword:
CLOSE [GLOBAL] cursor_name
where:
	GLOBAL
	Identifies the previously defined cursor as a global cursor.

In the ANSI-standard behavior, closing a cursor destroys the cursor result set. Locking is a physical feature of each database platform and thus not a part of the ANSI SQL definition. However, all the database platforms covered here drop the locks taken up by the cursor. Another physical implementation detail is that SQL Server does not automatically reallocate memory structures consumed by a cursor to the memory pool. To accomplish such reallocation, you must issue a DEALLOCATE cursor_name command.
This example from Microsoft SQL Server opens a cursor and fetches a result set of all employees who have a last name starting with "K":
DECLARE employee_cursor CURSOR FOR
 SELECT lname, fname
 FROM pubs.dbo.employee
 WHERE lname LIKE 'K%'
OPEN employee_cursor
FETCH NEXT FROM employee_cursor
WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM employee_cursor
END
CLOSE employee_cursor
DEALLOCATE employee_cursor
GO

See Also
	DECLARE CURSOR
	FETCH
	OPEN

Name
COMMIT Statement

The COMMIT statement explicitly ends an open transaction and makes the changes permanent in the database. Transactions can be opened implicitly as part of an INSERT, UPDATE, or DELETE statement, or opened explicitly with a START statement. In either case, an explicitly issued COMMIT statement will end the open transaction.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
COMMIT [WORK] [AND [NO] CHAIN]

Keywords
	COMMIT [WORK]
	Ends the current, open transaction and writes any data manipulated by the transaction to the database. The optional keyword WORK is noise and has no effect.

	AND [NO] CHAIN
	AND CHAIN tells the DBMS to treat the next transaction as if it were a part of the preceding transaction. In effect, the two transactions are separate units of work, but they share a common transaction environment (such as transaction isolation level). Including the optional NO keyword tells the DMBS to explicitly use the ANSI default behavior. The COMMIT keyword by itself is functionally equivalent to the statement COMMIT WORK AND NO CHAIN.

Rules at a Glance
For simple operations, you will execute transactions (that is, SQL code that manipulates or changes data and objects in a database) without explicitly declaring a transaction. However, all transactions are best managed by explicitly closing them with a COMMIT statement. Because records and even entire tables can be locked for the duration of a transaction, it is extremely important that transactions are completed as quickly as possible. Thus, manually issuing a COMMIT statement with a transaction can help control user concurrency issues and locking problems on the database.

Programming Tips and Gotchas
The most important gotcha to consider is that some database platforms perform automatic and implicit transactions, while others require explicit transactions. If you assume a platform uses one method of transactions over the other, you may get bitten. Thus, when moving between database platforms you should follow a standard, preset way of addressing transactions. We recommend always using explicit transactions with START TRAN, on database platforms that support it, to begin a transaction, and COMMIT or ROLLBACK to end a transaction.
In addition to finalizing a single or group of data-manipulation operation(s), COMMIT has some interesting effects on other aspects of a transaction. First, it closes any associated open cursors. Second, any temporary table(s) specified with ON COMMIT DELETE ROWS (an optional clause of the CREATE TABLE statement) are cleared of data. Third, all deferred constraints are checked. If any deferred constraints are violated, the transaction is rolled back. Finally, all locks opened by the transaction are released. Please note that SQL2003 dictates that transactions are implicitly opened when one of the following statements is executed:
	ALTER

	CLOSE

	COMMIT AND CHAIN

	CREATE

	DELETE

	DROP

	FETCH

	FREE LOCATOR

	GRANT

	HOLD LOCATOR

	INSERT

	OPEN

	RETURN

	REVOKE

	ROLLBACK AND CHAIN

	SELECT

	START TRANSACTION

	UPDATE

If you did not explicitly open a transaction when you started one of the commands listed above, the standard dictates that the DBMS platform open a transaction for you.

MySQL
MySQL supports COMMIT and transactions two transaction-safe engines, InnoDB and NDB Cluster, using this syntax:
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
The RELEASE keyword tells MySQL to disconnect the current client connection once the current transaction is complete. The NO keyword, for either CHAIN or RELEASE, tells MySQL to override the default behavior or explicitly disallows chaining or auto-releasing transactions.

Oracle
Oracle supports the standard, but not the AND [NO] CHAIN clause. In addition, Oracle has a couple of extensions to the standard clause:
COMMIT [WORK] [{COMMENT 'text ' | FORCE 'text '[, int]}];
where:
	COMMENT 'text'
	Associates a comment with the current transaction where 'text' is a literal string up to 255 characters long. The text string is stored in the Oracle data dictionary view DBA_2PC_PENDING with the transaction ID, in case the transaction rolls back.

	FORCE 'text'[, int]
	Allows an in-doubt distributed transaction to be manually committed, where 'text' is a literal string that identifies the local or global transaction ID. Transactions can be identified by querying the Oracle data dictionary view DBA_2PC_PENDING. The optional int parameter is an integer that explicitly assigns a system change number (SCN) to the transaction. Without int, the transaction commits using the current SCN.
Issuing a COMMIT statement with the FORCE clause will commit only the transaction explicitly identified in the FORCE clause. It will not affect the current transaction unless it is explicitly identified. The FORCE clause is not usable in PL/SQL statements.
The following example commits a transaction while associating a comment with the transaction:
COMMIT WORK COMMENT 'In-doubt transaction, Call (949) 555-1234';

PostgreSQL
PostgreSQL implements the following syntax:
COMMIT [WORK | TRANSACTION];
In PostgreSQL, both the WORK and TRANSACTION keywords are optional. When you issue a COMMIT, all open transactions are written to disk and the results of those transactions then become visible to other users. For example:
INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,
 'Net 60','BU7832');
COMMIT WORK;

SQL Server
SQL Server does support the AND [NO] CHAIN clause. SQL Server supports the keyword TRANSACTION as an equivalent to WORK, as in the following syntax:
COMMIT { [TRAN[SACTION] [transaction_name]] | [WORK] }
Microsoft SQL Server allows the creation of a specific, named transaction using the START TRAN statement. The COMMIT TRANSACTION syntax allows you to specify an explicit, named transaction to close or to store a transaction name in a variable. Curiously, SQL Server still commits only the most recently opened transaction, despite the name of the transaction that is specified.
When you issue COMMIT WORK, SQL Server terminates all open transactions and writes their changes to the database. You may not specify a transaction name when using COMMIT WORK.

See Also
	ROLLBACK
	START TRANSACTION

Name
CONNECT Statement

The CONNECT statement establishes a connection to the DBMS and to a specific database within the DBMS.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported

	PostgreSQL
	Not supported

	SQL Server
	Supported, with variations

SQL2003 Syntax
CONNECT TO {DEFAULT | {[server_name] [AS connection_name]
 [USER user_name]}

Keywords
	DEFAULT
	Initiates a default session with the server where the user authorization is the default and the current database is the default. The standard specifies that CONNECT TO DEFAULT is issued implicitly if you start a SQL session without first issuing a CONNECT statement.

	server_name
	Establishes a connection to a named server. The server_name may be a string literal enclosed in single quotes, or a host variable.

	AS connection_name
	Establishes a connection with the name connection_name shown in single quotes. The optional connection_name may be a string literal enclosed in single quotes or a host variable. It is optional only for the first connection attached to a server. All subsequent sessions must include the AS clause. This is useful for telling user connections apart when many users (or perhaps even a single user) have many open sessions on a given server_name.

	USER user_name
	Establishes a connection to the named server under the user_name specified.

Rules at a Glance
Issue the CONNECT statement to open an interactive SQL session with a DBMS. The period between issuing the CONNECT and DISCONNECT statements is commonly called a session. Typically, you will complete all work on a DBMS during an explicitly invoked session.
If you do not specify the server name, the connection name, or the username, the DBMS will provide default values for you. The defaults vary from platform to platform.
To connect to the houston server under a specific user ID, you might issue the command:
CONNECT TO houston USER pubs_admin
If the DBMS requires named connections, you might use the following, alternative syntax:
CONNECT TO houston USER pubs_admin
 AS pubs_administrative_session;
Or, if you want just a simple, short-term connection, you might use the default:
CONNECT TO DEFAULT;

Programming Tips and Gotchas
If the CONNECT statement is invoked before the previous session has been explicitly disconnected, the old session becomes dormant and the new session becomes active. You can then switch between connections using the SET CONNECTION statement.
Tip
The Oracle tool SQL*Plus uses the CONNECT command somewhat differently: to connect a user to a specific schema.

MySQL
Not supported.

Oracle
The CONNECT clause allows a database connection under a specific username. Alternately, a connection can be established for special privileges with AS SYSOPER or AS SYSDBA. The Oracle syntax is:
CONN[ECT] [[username/password] [AS {SYSOPER | SYSDBA}]]
where:
	CONN[ECT] [username/password]
	Establishes a connection to the database instance.

	AS {SYSOPER | SYSDBA}
	Establishes the connection as one of the two optional system roles.
If another connection is already open, CONNECT commits any open transactions, closes the current session, and opens the new one.
Oracle also allows the CONNECT statement in its SQL*Plus and iSQL*Plus tools.

PostgreSQL
PostgreSQL does not explicitly support the CONNECT statement. However, it does support the statement SPI_CONNECT under the Server Programming Interface (SPI) and PG_CONNECT under the PG/TCL programming package.

SQL Server
SQL Server supports the basic elements of the CONNECT statement within Embedded SQL (inside of C++ or Visual Basic programs), as in the following:
CONNECT TO [server_name.]database_name [AS connection_name]
USER {login_name[.password] | $integrated}
where:
	CONNECT TO [server_name.]database_name
	Specifies the server and database to which you want to connect. You may leave off the server_name if you wish to default to the local server.

	AS connection_name
	Names the connection with an alphanumeric string of up to 30 characters in length. Symbols are allowed, except for hyphens (-), but the first character must be a letter. CURRENT and ALL are reserved and may not be used for a connection_name. You need only define connection names when making more than one connection.

	USER {login_name[.password] | $integrated}
	Connects the session under the login_name specified using either the password provided or Windows integrated security. The password is optional when supplying a login name.

For example, we can connect to the server named new_york as the Windows login pubs_admin:
CONNECT TO new_york.pubs USER pubs_admin
To issue the same command under SQL Server standard security:
EXEC SQL CONNECT TO new_york.pubs USER pubs_admin
To issue the same command under Windows integrated security:
EXEC SQL CONNECT TO new_york.pubs USER $integrated
To switch to a different connection, use the SET CONNECTION statement.

See Also
	SET CONNECTION

Name
CREATE/ALTER DATABASE Statement

The ANSI standard does not actually contain a CREATE DATABASE statement. However, since it is nearly impossible to operate a SQL database without this command, we've added CREATE DATABASE here. Almost all database platforms support some version of this command.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

Rules at a Glance
This command creates a new, empty database with a specific name. Most DBMS platforms require the user to possess administrator privileges in order to create a new database. Once the new database is created, you can populate it with database objects (such as tables, views, triggers, and so on) and populate the tables with data.
Depending on the platform, CREATE DATABASE may also create corresponding files on the filesystem that contain the data and metadata of the database.

Programming Tips and Gotchas
Since CREATE DATABASE is not an ANSI command, it is prone to rather extreme variation in syntax between platforms.

MySQL
In MySQL, CREATE DATABASE essentially creates a new directory that holds the database objects:
CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] database_name
 [[DEFAULT] CHARACTER SET character_set]
 [[DEFAULT] COLLATE collation_set]
The following is the syntax for MySQL's implementation of the ALTER DATABASE statement:
ALTER { DATABASE | SCHEMA } database_name
{ [[DEFAULT] CHARACTER SET character_set]
 [[DEFAULT] COLLATE collation_set] |
 UPGRADE DATA DIRECTORY NAME }
where:
	{CREATE | ALTER} { DATABASE | SCHEMA } database_name
	Creates a database and directory of database_name. The database directory appears under the MySQL data directory. Tables in MySQL then appear as files in the database directory. The SCHEMA keyword is synonymous with DATABASE.

	IF NOT EXISTS
	Avoids an error if the database already exists.

	[DEFAULT] CHARACTER SET character_set
	Optionally defines the default character set used by the database. Refer to the MySQL documentation for a full listing of the available character sets.

	[DEFAULT] COLLATE collation_set
	Optionally defines the database collation used by the database. Refer to the MySQL documentation for a full listing of the available collations.

	UPGRADE DATA DIRECTORY NAME
	Updates the name of the directory associated with the database to use the encoding implemented in MySQL v5.1 and later for mapping database names to database directories.
For example, we could create a database called sales_archive on a MySQL server. If the database already exists, we want to abort the command without causing an error:
CREATE DATABASE IF NOT EXISTS sales_archive
Any tables that we create in the sales_archive database will now appear as files within the sales_archive directory.

Oracle
Oracle provides an extraordinary level of control over database file structures, far beyond merely naming the database and specifying a path for the database files. CREATE and ALTER DATABASE are very powerful commands in Oracle, and some of the more sophisticated clauses are best used only by experienced DBAs. These commands can be very large and complex—ALTER DATABASE alone consumes over 50 pages in the Oracle vendor documentation!
Novices should be aware that CREATE DATABASE, when run, erases all data that is already in existence in the specified datafiles. Similarly, all the data in an existing database will be lost.
Following is the syntax to create a new database in Oracle:
CREATE DATABASE [database_name]
{[USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password]}
[CONTROLFILE REUSE]
{[LOGFILE definition[, ...]] [MAXLOGFILES int] [[MAXLOGMEMBERS] int]
 [[MAXLOGHISTORY] int] [{ARCHIVELOG | NOARCHIVELOG}] [FORCE LOGGING]}
[MAXDATAFILES int]
[MAXINSTANCES int]
[CHARACTER SET charset]
[NATIONAL CHARACTER SET charset]
[EXTENT MANAGEMENT {DICTIONARY | LOCAL
 [{AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}]}]
[DATAFILE definition[, ...]]
[SYSAUX DATAFILE definition[, ...]]
[DEFAULT TABLESPACE tablespace_name
 [DATAFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] DEFAULT TEMPORARY TABLESPACE tablespace_name
 [TEMPFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] UNDO TABLESPACE tablespace_name
 [DATAFILE temp_datafile_definition]]
[SET TIME_ZONE = '{ {+ | -} hh:mi| time_zone_region }']
[SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE]
Following is the syntax to alter an existing database:
ALTER DATABASE [database_name]
[ARCHIVELOG | NOARCHIVELOG] |
 {MOUNT [{STANDBY | CLONE} DATABASE] | OPEN [READ ONLY | READ WRITE]
 [RESETLOGS | NORESETLOGS] | [UPGRADE | DOWNGRADE]} |
 {ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY]
 [SKIP [STANDBY LOGFILE]] |
 SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |
 PERFORMANCE} |
 REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
 [FOR logminer_session_name] |
 {COMMIT | PREPARE} TO SWITCHOVER TO
 {{[PHYSICAL | LOGICAL] PRIMARY | STANDBY} [WITH[OUT]
 SESSION SHUTDOWN] [WAIT | NOWAIT]} |
 CANCEL} |
 START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]
 [{INITIAL int | NEW PRIMARY dblink_name | {FINISH |
 SKIP FAILED TRANSACTION}}] |
 {STOP | ABORT} LOGICAL STANDBY APPLY |
 [CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY] |
{RENAME GLOBAL_NAME TO database[.domain[.domain ...]] |
 CHARACTER SET character_set |
 NATIONAL CHARACTER SET character_set |
 DEFAULT TABLESPACE tablespace_name |
 DEFAULT TEMPORARY TABLESPACE {GROUP int | tablespace_name} |
 {DISABLE BLOCK CHANGE TRACKING | ENABLE BLOCK CHANGE TRACKING [USING
 FILE 'file'] [REUSE]} |
 FLASHBACK {ON | OFF} |
 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region }' |
 SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE} |
{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name' } |
{GUARD {ALL | STANDBY | NONE}} |
{CREATE DATAFILE 'file'[, ...] [AS {NEW | file_definition[, ...]}] |
 {DATAFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE [FOR DROP | RESIZE int [K | M]] |
 END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE
 [UNLIMITED | int [K | M]]] |
 {TEMPFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE | DROP [INCLUDING DATAFILES] |
 RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT int [K | M]]}
 [MAXSIZE [UNLIMITED | int [K | M]]] |
 RENAME FILE 'file'[, ...] TO 'new_file_name'[, ...]} |
{[[NO] FORCE LOGGING] | [[NO]ARCHIVELOG [MANUAL]] |
 [ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |
 FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, ...]] COLUMNS |
 [ADD | DROP] [STANDBY] LOGFILE
 {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int |
 logfile_name[, ...]]} [SIZE int [K | M]] | [REUSE] |
 [MEMBER] 'file' [REUSE][, ...] TO logfile_name[, ...]} |
 ADD LOGFILE MEMBER 'file' [REUSE][, ...] TO {[GROUP int |
 logfile_name[, ...]]} |
 DROP [STANDBY] LOGFILE {MEMBER 'file' | {[GROUP int |
 logfile_name [, ...]]}}
 CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, ...]]}[, ...]
 [UNRECOVERABLE DATAFILE]} |
{CREATE [LOGICAL | PHYSICAL] STANDBY CONTROLFILE AS 'file' [REUSE] |
 BACKUP CONTROLFILE TO
 {'file' [REUSE] | TRACE [AS 'file' [REUSE]]} [{RESETLOGS |
 NORESETLOGS}]} |
{RECOVER
 {[AUTOMATIC [FROM 'location']] |
 {[STANDBY] DATABASE
 {[UNTIL {CANCEL | TIME date | CHANGE int}] |
 USING BACKUP CONTROLFILE} |
 {{[STANDBY] {TABLESPACE tablespace_name[, ...] | DATAFILE
 'file'[, ...]} [UNTIL [CONSISTENT WITH] CONTROLFILE]} |
 TABLESPACE tablespace_name[, ...] | DATAFILE 'file'[, ...]} |
 LOGFILE filename[, ...]} [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL
 int}]} |
 CONTINUE [DEFAULT] |
 CANCEL}
 {MANAGED STANDBY DATABASE
 {[USING CURRENT LOGFILE]
 [DISCONNECT [FROM SESSION]]
 [NODELAY]
 [UNTIL CHANGE int]
 [FINISH]
 [CANCEL]} |
 TO LOGICAL STANDBY {database_name | KEEP IDENTITY}}
{{BEGIN | END} BACKUP}
The syntax elements in Oracle are as follows. First, for CREATE DATABASE:
	{CREATE | ALTER} DATABASE [database_name]
	Creates or alters a database with the name database_name. The database name can be up to 8 bytes in length and may not contain European or Asian characters. You can omit the database name and allow Oracle to create the name for you, but beware that the names Oracle creates can be counterintuitive.

	USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password
	Specifies passwords for the SYS and SYSTEM users. You may specify neither or both of these clauses, but not just one of them.

	CONTROLFILE REUSE
	Causes existing control files to be reused, enabling you to specify existing files in the CONTROL_FILES parameter in INIT.ORA. Oracle will then overwrite any information those files may contain. This clause is normally used when recreating a database. Consequently, you probably don't want to use this clause in conjunction with MAXLOGFILES, MAXLOGMEMBER, MAXLOGHISTORY, MAXDATAFILES, or MAXINSTANCES.

	LOGFILE definition
	Specifies one or more logfiles for the database. You may define multiple files all with the same size and characteristics, using the file parameter, or you may define multiple files each with its own size and characteristics. The entire logfile definition syntax is rather ponderous, but it offers a great deal of control:
LOGFILE { ('file'[, ...]) [SIZE int [K | M]]
[GROUP int] [REUSE] }[, ...]
	LOGFILE ('file'[, . . .])
	Defines one or more files that will act as redo logfiles; file is both the filename and the path. Any files defined in the CREATE DATABASE statement are assigned to redo log thread number 1. When specifying multiple redo logfiles, each filename should be enclosed in single quotes and separated from the other names by commas. The entire list should be enclosed in parentheses.

	SIZE int [K | M]
	Specifies the size of the redo logfile in bytes as an integer value, int. Alternately, you may define the redo logfile in larger units than bytes by appending a K (for kilobytes) or an M (for megabytes).

	GROUP int
	Defines the integer ID, int, of the redo logfile group. The value may be from 1 to the value of the MAXLOGFILES clause. An Oracle database must have at least two redo logfile groups. Oracle will create a redo logfile group for you, with a default size of 100 MB, if you omit this group ID.

	REUSE
	Reuses an existing redo logfile.

	MAXLOGFILES int
	Sets the maximum number of logfiles, int, available to the database being created. The minimum, maximum, and default values for this clause are OS-dependent.

	MAXLOGMEMBERS int
	Sets the maximum number of members (i.e., copies) for a redo logfile group. The minimum value is 1, while the maximum and default values for this clause are OS-dependent.

	MAXLOGHISTORY int
	Sets the maximum number of archived redo logfiles available to a Real Application Cluster (RAC). You can use the MAXLOGHISTORY clause only when Oracle is in ARCHIVELOG mode on a RAC. The minimum value is 0, while the maximum and default values for this clause are OS-dependent.

	ARCHIVELOG | NOARCHIVELOG
	Defines how redo logs operate. When used with ALTER DATABASE, specifying one of these allows the current setting to be changed. ARCHIVELOG saves data stored in the redo log(s) to an archiving file, providing for media recoverability. Conversely, NOARCHIVELOG allows a redo log to be reused without archiving the contents. Both options provide recoverability, although NOARCHIVELOG (the default) does not provide media recovery.

	FORCE LOGGING
	Places all instances of the database into FORCE LOGGING mode, in which all changes to the database are logged, except for changes to temporary tablespaces and segments. This setting takes precedence over any tablespace- or object-level settings.

	MAXDATAFILES int
	Sets the initial number of datafiles, int, available to the database being created. Note that the INIT.ORA setting, DB_FILES, also limits the number of datafiles accessible to the database instance.

	MAXINSTANCES int
	Sets the maximum number of instances, int, that may mount and open the database being created. The minimum value is 1, while the maximum and default values for this clause are OS-dependent.

	CHARACTER SET charset
	Controls the language character set in which the data is stored. The value for charset cannot be AL16UTF16. The default value is OS-dependent.

	NATIONAL CHARACTER SET charset
	Controls the national language character set for data stored in NCHAR, NCLOB, and NVARCHAR2 columns. The value for charset must be either AL16UTF16 (the default) or UTF8.

	EXTENT MANAGEMENT {DICTIONARY | LOCAL}
	Creates a locally managed SYSTEM tablespace (otherwise, the SYSTEM tablespace will be dictionary-managed). This clause requires a default temporary tablespace. If you omit the DATAFILE clause you can also omit the default temporary tablespace, because Oracle will create them both for you.

	DATAFILE definition
	Specifies one or more datafiles for the database. (All these datafiles become part of the SYSTEM tablespace.) You may repeat filenames to define multiple files with the same size and characteristics. Alternately, you may repeat the entire DATAFILE clause, with each occurrence defining one or more files with the same size and characteristics. The entire datafile definition syntax is rather large, but it offers a great deal of control:
DATAFILE { ('file1'[, ...]) [GROUP int] [SIZE int [K | M]] [REUSE]
[AUTOEXTEND {OFF | ON [NEXT int [K | M]]}]
[MAXSIZE [UNLIMITED | int [K | M]]] } [,...]
	DATAFILE ('file1'[, . . .])
	Defines one or more files that will act as the datafile(s), where file1 is both the filename and the path. For multiple files, each filename should be enclosed in single quotes and separated from the others by a comma. The entire list should be enclosed in parentheses.

	GROUP int
	Defines the integer ID, int, of the datafile group. The value may be from 1 to the value of the MAXLOGFILES clause. An Oracle database must have at least two datafile groups. Oracle will create them for you, at 100 MB each, if you omit this clause.

	SIZE int [K | M]
	Specifies the size of the datafile in bytes as an integer value, int. Alternately, you may define the datafile in large units by appending a K (for kilobytes) or an M (for megabytes).

	REUSE
	Reuses an existing datafile.

	AUTOEXTEND {OFF | ON [NEXT int [K | M]]}
	Enables (ON) the automatic extension of new or existing datafiles or tempfiles (but does not redo logfiles). NEXT specifies the next increment of space allocated to the file in bytes, kilobytes (K), or megabytes (M) when more space is needed.

	MAXSIZE [UNLIMITED | int [K | M]]
	Specifies the maximum disk space allowed for automatic extension of the file. UNLIMITED allows the file to grow without an upper limit (except, of course, the total capacity of the drive). Otherwise, you may define the maximum size limit as an integer, int, in bytes (the default), kilobytes with the keyword K, or megabytes with the keyword M.

	SYSAUX DATAFILE definition
	Specifies one or more datafiles for the SYSAUX tablespace. By default, Oracle creates and manages the SYSTEM and SYSAUX tablespaces automatically. You must use this clause if you have specified a datafile for the SYSTEM tablespace. If you omit the SYSAUX clause when using Oracle-managed files, Oracle will create the SYSAUX tablespace as an online, permanent, locally managed tablespace with a single datafile of 100 MB, using automatic segment-space management and logging.

	BIGFILE | SMALLFILE
	Specifies the default file type of a subsequently created tablespace. BIGFILE indicates that the tablespace will contain a single datafile or tempfile of up to 8 exabytes (8 million terabytes) in size, while SMALLFILE indicates the tablespace is a traditional Oracle tablespace. The default, when omitted, is SMALLFILE.

	DEFAULT TABLESPACE tablespace_name
	Specifies a default permanent tablespace for the database for all non-SYSTEM users. When this clause is omitted, the SYSTEM tablespace is the default permanent tablespace for non-SYSTEM users.

	DEFAULT TEMPORARY TABLESPACE tablespace_name [TEMPFILE file_definition]
	Defines the name and location of the default temporary tablespace for the database. Users who are not explicitly assigned to a temporary tablespace will operate in this one. If you don't create a default temporary tablespace, Oracle uses the SYSTEM tablespace. Under ALTER DATABASE, this clause allows you to change the default temporary tablespace.
	TEMPFILE file_definition
	The tempfile definition is optional when the DB_CREATE_FILE_DEST INIT.ORA parameter is set. Otherwise, you'll have to define the tempfile yourself. The TEMPFILE definition syntax is identical to the DATAFILE definition syntax described earlier in this section.

	EXTENT MANAGEMENT {DICTIONARY | LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}
	Defines the way in which the SYSTEM tablespace is managed. When this clause is omitted, the SYSTEM tablespace is dictionary-managed. Once created as a locally managed tablespace, it cannot be converted back to a dictionary-managed tablespace, nor can any new dictionary-managed tablespaces be created in the database.
	DICTIONARY
	Specifies that the Oracle data dictionary manages the tablespace. This is the default. The AUTOALLOCATE and UNIFORM subclauses are not used with this clause.

	LOCAL
	Declares that the tablespace is locally managed. This clause is optional, since all temporary tablespaces have locally managed extents by default. Use of this clause requires a default temporary tablespace. If you do not manually create one, Oracle will automatically create one called TEMP, of 10 MB in size, with AUTOEXTEND disabled.

	AUTOALLOCATE
	Specifies that new extents will be allocated as needed by the locally managed tablespace.

	UNIFORM [SIZE int [K | M]]
	Specifies that all extents of the tablespace are the same size (UNIFORM), in bytes, as int. The SIZE clause allows you to configure the size of the extents to your liking in bytes (the default), in kilobytes using the keyword K, or in megabytes using the keyword M. The default is 1M.

	UNDO TABLESPACE tablespace_name [DATAFILE temp_datafile_definition]
	Defines the name and location for undo data, creating a tablespace named tablespace_name, but only if you have set the UNDO_MANAGEMENT INIT.ORA parameter to AUTO. If you don't use this clause, Oracle manages undo space via rollback segments. (You may also set the INIT.ORA parameter to UNDO_TABLESPACE. If you do so, the value of the parameter and the tablespace_name used here must be identical.)
	DATAFILE temp_datafile_definition
	Creates and assigns the datafile, as you have defined it, to the undo tablespace. Refer to the earlier description of DATAFILE for the full syntax of this clause. This clause is required if you have not specified a value for the INIT.ORA parameter DB_CREATE_FILE_DEST.

	SET TIME_ZONE = ' { {+ | -} hh:mi | time_zone_region }'
	Sets the time zone for the database, either by specifying a delta from Greenwich Mean Time (now called Coordinated Universal Time) or by specifying a time zone region. (For a list of time zone regions, query the tzname column of the v$timezone_names view.) If you do not use this clause, Oracle defaults to the operating-system time zone.

	SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE
	Sets all tablespaces created by the current CREATE DATABASE or ALTER DATABASE statement as either BIGFILE or SMALLFILE. When creating databases, this clause also applies to the SYSTEM and SYSAUX tablespaces.

And for ALTER DATABASE:
	MOUNT [{STANDBY | CLONE}] DATABASE]
	Mounts a database for users to access. The STANDBY keyword mounts a physical standby database, enabling it to receive archived redo logs from the primary instance. The CLONE keyword mounts a clone database. This clause cannot be used with OPEN.

	OPEN [READ WRITE | READ ONLY] [RESETLOGS | NORESETLOGS] [UPGRADE | DOWNGRADE]
	Opens the database separately from the mounting process. (Mount the database first.) READ WRITE opens the database in read/write mode, allowing users to generate redo logs. READ ONLY allows reads of but disallows changes to redo logs. RESETLOGS discards all redo information not applied during recovery and sets the log sequence number to 1. NORESETLOGS retains the logs in their present condition. The optional UPGRADE and DOWNGRADE clauses tell Oracle to dynamically modify the system parameters as required for database upgrade or downgrade, respectively. The default is OPEN READWRITE NORESETLOGS.

	ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY] [SKIP [STANDBY LOGFILE]]
	Promotes a standby database to the primary database. You can optionally specify a PHYSICAL standby, the default, or a LOGICAL standby. FINISH APPLY initiates the application of the remaining redo log, bringing the logical standby database to the same state as the primary database. When it's finished, the database completes the switchover from the logical standby to the primary database. Use the SKIP clause to immediately promote a physical standby and discard any data still unapplied by the RECOVER MANAGED STANDBY DATABASE FINISH statement. The clause STANDBY LOGFILE is noise.

	SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}
	Sets the level of protection for data in the primary database. The old terms PROTECTED and UNPROTECTED equate to MAXIMIZE PROTECTION and MAXIMIZE PERFORMANCE, respectively.
	PROTECTION
	Provides the highest level of data protection, but has the greater overhead and negatively impacts availability. This setting commits transactions only after all data necessary for recovery has been physically written in at least one physical standby database that uses the SYNC log transport mode.

	AVAILABILITY
	Provides the second highest level of data protection, but the highest level of availability. This setting commits transactions only after all data necessary for recovery has been physically written in at least one physical or logical standby database that uses the SYNC log transport mode.

	PERFORMANCE
	Provides the highest level of performance, but compromises data protection and availability. This setting commits transactions before all data necessary for recovery has been physically written to a standby database.

	REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
	Manually registers redo logfiles from a failed primary server when issued from a standby server. The logfile may optionally be declared as PHYSICAL or LOGICAL. The OR REPLACE clause allows updates to details of an existing archivelog entry.

	FOR logminer_session_name
	Registers the logfile with a single, specific LogMiner session in an Oracle Streams environment.

	{COMMIT | PREPARE} TO SWITCHOVER TO {[PHYSICAL | LOGICAL] PRIMARY | STANDBY}
	Performs a graceful switchover, moving the current primary database to standby status and promoting a standby database to primary. (In a RAC environment, all instances other than the current instance have to be shut down.) To gracefully switch over, you should issue the command twice (the first time to prepare the primary and standby databases to begin exchanging logfiles in advance of the switchover) using PREPARE TO SWITCHOVER. To demote the primary database and switch over to the standby, use COMMIT TO SWITCHOVER. The PHYSICAL clause puts the primary database into physical standby mode. The LOGICAL clause puts the primary database into logical standby mode. However, you must then issue an ALTER DATABASE START LOGICAL STANDBY APPLY statement.

	[WITH[OUT] SESSION SHUTDOWN] [WAIT | NOWAIT]
	WITH SESSION SHUTDOWN closes any open application sessions and rolls back any uncommitted transactions during a switchover of physical databases (but not logical ones). WITHOUT SESSION SHUTDOWN, the default, causes the COMMIT TO SWITCHOVER statement to fail if it encounters any open application sessions. WAIT returns control to the console after completion of the SWITCHOVER command, while NOWAIT returns control before the command completes.

	START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY] [{INITIAL int | NEW PRIMARY dblink_name} | {FINISH | SKIP FAILED TRANSACTION}]
	Starts to apply redo logs to the logical standby database. IMMEDIATE tells the Oracle LogMiner to read the redo data in the standby redo logfiles. NODELAY tells Oracle to ignore a delay for the apply, such as when the primary database is unavailable or disabled. INITIAL is used the first time you apply logs to the standby database. NEW PRIMARY is required after a switchover has completed or after a standby database has processed all redo logs and another standby is promoted to primary. Use SKIP FAILED TRANSACTION to skip the last transaction and to restart the apply. Use FINISH to apply the data in the redo logs if the primary database is disabled.

	[STOP | ABORT] LOGICAL STANDBY APPLY
	Stops the application of redo logs to a logical standby server. STOP performs an orderly stop, while ABORT performs an immediate stop.

	CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY
	Converts a primary database or snapshot standby database into a physical standby database (for PHYSICAL), or converts a physical standby database into a snapshot standby database (for SNAPSHOT).

	RENAME GLOBAL_NAME TO database[.domain[.domain . . .]]
	Changes the global name of the database, where database is the new name of up to 8 bytes in length. The optional domain specifications identify the database's location in the network. This does not propagate database name changes to any dependent objects like synonyms, stored procedures, etc.

	{DISABLE | ENABLE} BLOCK CHANGE TRACKING [USING FILE 'file'] [REUSE]
	Tells Oracle to stop or start tracking the physical locations of all database updates, respectively, and maintain the information in a special file called the block change tracking file. Oracle will automatically create the file as defined by the DB_CREATE_FILE_DEST parameter, unless you add the USING FILE 'file' clause, where 'file' is the path and name of the file. REUSE tells Oracle to overwrite an existing block change tracking file of the same name as 'file'. The USING and REUSE subclauses are allowed only with the ENABLE BLOCK clause.

	FLASHBACK {ON | OFF}
	Places the database into or out of FLASHBACK mode, respectively. When in flashback mode, an Oracle database automatically creates and maintains flashback database logs in the flash recovery area. When OFF, the flashback database logs are deleted and unavailable.

	SET TIME ZONE
	Specifies the time zone for the server. Refer to the description of the SET TIME ZONE statement in the discussion of the CREATE TABLE syntax for more information.

	{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name'}
	In RAC environments, you can ENABLE or DISABLE a redo log thread by number (int). You may optionally specify an instance_name to enable or disable a thread mapped to a specific database instance of an Oracle RAC environment. The instance_name may be up to 80 characters long. The PUBLIC keyword makes the thread available to any instance. When omitted, the thread is available only when explicitly requested. To enable a thread, the thread must have at least two redo logfile groups. To disable a thread, the database must be open but not mounted by an instance using the thread.

	GUARD {ALL | STANDBY | NONE}
	Protects the data in a database from changes. ALL prevents users other than SYS from making any changes. STANDBY prevents all users other than SYS from making changes in a logical standby. NONE provides normal security for the database.

	CREATE DATAFILE 'file'[, . . .] [AS {NEW | file_definition}]
	Creates a new, empty datafile, replacing an existing one. The value 'file' identifies a file (either by filename or file number) that was lost or damaged without a backup. AS NEW creates a new file in the default filesystem using an Oracle-supplied name. AS file_definition allows you to specify a filename and sizing details, as defined under "TEMPFILE file_definition" section in the preceding list.

	DATAFILE 'file' | TEMPFILE 'file'}[, . . .] {ONLINE | OFFLINE [FOR DROP] | RESIZE int [K | M]] | END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE [UNLIMITED | int [K | M]]]
	Changes the attributes, such as the size, of one or more existing datafiles or tempfiles. You may alter one or more files in a comma-delimited list, identified in the value 'file' by filename or file number. Do not mix datafile and tempfile declarations; only one or the other should appear in this clause at a time.
	ONLINE
	Sets the file online.

	OFFLINE [FOR DROP]
	Sets the file offline, allowing media recovery. FOR DROP is required to take a file offline in NOARCHIVELOG mode, but it does not actually destroy the file. It is ignored in ARCHIVELOG mode.

	RESIZE int [K | M]
	Sets a new size for an existing datafile or tempfile.

	END BACKUP
	Described later in the main list, under END BACKUP. Used only with the DATAFILE clause.

	AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE [UNLIMITED | int [K | M]]]
	Described in the preceding list, under the DATAFILE definition.

	DROP [INCLUDING DATAFILES]
	Drops not only the tempfile, but all datafiles on the filesystem associated with the tempfile. Oracle also adds an entry to the alert log for each file that is erased. Used only with the TEMPFILE clause.

	RENAME FILE 'file'[, . . .] TO 'new_file_name'[, . . .]
	Renames a datafile, tempfile, or redo logfile member from the old name, file, to the new_file_name. You can rename multiple files at once by specifying multiple old and new filenames, separated by commas. This command does not rename files at the operating-system level. Rather, it specifies new names that Oracle will use to open the files. You need to rename at the operating-system level yourself.

	[NO] FORCE LOGGING
	Puts the database into force logging mode (FORCE LOGGING) or takes it out of force logging mode (NO FORCE LOGGING). In the former, Oracle logs all changes to the database except in temporary tablespaces or segments. This database-level FORCE LOGGING setting supersedes all tablespace-level declarations regarding force logging mode.

	[NO]ARCHIVELOG [MANUAL]
	Tells Oracle to create redo logfiles, but that the user will handle the archiving of the redo logfiles explicitly. This is used only with the ALTER DATABASE statement and only for backward compatibility for users with older tape backup systems. When this clause is omitted, Oracle defaults the redo logfile destination to the LOG_ARCHIVE_DEST_n initialization parameter.

	[ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, . . .] COLUMNS
	ADD places additional column data into the log stream whenever an update is executed. It also enables minimal supplemental logging, which ensures that LogMiner can support chained rows and special storage arrangements such as clustered tables. Supplemental logging is disabled by default. You can add the clauses PRIMARY KEY COLUMNS, UNIQUE KEY COLUMNS, FOREIGN KEY COLUMNS, or ALL (to get all three options) if you need to enable full referential integrity via foreign keys in another database, such as a logical standby, or FOR PROCEDURAL REPLICATION for logging PL/SQL calls. In either case, Oracle places either the primary key columns, the unique key columns (or, if none exist, a combination of columns that uniquely identify each row), the foreign key columns, or all three into the log. DROP tells Oracle to suspend supplemental logging.

	[ADD | DROP] [STANDBY] LOGFILE {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int | logfile_name[, . . .]]} [SIZE int [K | M]] | [REUSE] | [MEMBER] 'file' [REUSE][, . . .]
	ADD includes one or more primary or standby redo logfile groups to the specified instance. THREAD assigns the added files to a specific thread number (int) on a RAC. When omitted, the default is the thread assigned to the current instance. GROUP assigns the redo logfile groups to a specific group within the thread. MEMBER adds the specified 'file' (or files in a comma-delimited list) to an existing redo logfile group. REUSE is needed if the file already exists. DROP LOGFILE MEMBER drops one or more redo logfile members, after issuing an ALTER SYSTEM SWITCH LOGFILE statement.

	CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, . . .]]}[, . . .] [UNRECOVERABLE DATAFILE]
	Reinitializes one or more (in a comma-delimited list) specified online redo logs. UNRECOVERABLE DATAFILE is required when any datafile is offline and the database is in ARCHIVELOG mode.

	CREATE {LOGICAL | PHYSICAL} STANDBY CONTROLFILE AS 'file' [REUSE]}
	Creates a control file that maintains a logical or physical standby database. REUSE is needed if the file already exists.

	BACKUP CONTROLFILE TO {'file' [REUSE] | TRACE [AS 'file' [REUSE]] [{RESETLOGS | NORESETLOGS}]
	Backs up the current control file of an open or mounted database. TO 'file' identifies a full path and filename for the control file. TO TRACE writes SQL statements to recreate the control file to a trace file. TO TRACE AS 'file' writes all the SQL statements to a standard file rather than a trace file. REUSE is needed if the file already exists. RESETLOGS initializes the trace file with the statement ALTER DATABASE OPEN RESETLOGS and is valid only when online logs are unavailable. NORESETLOGS initializes the trace file with the statement ALTER DATABASE OPEN NORESETLOGS and is valid only when online logs are available.

	RECOVER
	Controls media recovery for the database, standby database, tablespace, or file. In Oracle, the ALTER TABLE command is one of the primary means of recovering a damaged or disabled database, file, or tablespace. Use RECOVER when the database is mounted (in exclusive mode), the files and tablespaces involved are not in use (offline), and the database is in either an open or closed state. The entire database can be recovered only when it is closed, but specific files or tablespaces can be recovered in a database that is open.

	AUTOMATIC [FROM 'location']
	Tells Oracle to automatically generate the name of the next archived redo logfile necessary for continued operation during recovery. Oracle will prompt you if it cannot find the next file. The FROM 'location' clause tells Oracle where to find the archived redo logfile group. The following subclauses may be applied to an automatically recovered database.
	STANDBY
	Specifies that the database or tablespace to recover is a standby type.

	DATABASE {[UNTIL {CANCEL | TIME date | CHANGE int}] | USING BACKUP CONTROLFILE}
	Tells Oracle to recover the entire database. The UNTIL keyword tells Oracle to continue recovery until ALTER DATABASE . . . RECOVER CANCEL (CANCEL) is issued, until a specified time in the format YYYY-MM-DD:HH24:MI:SS is reached (TIME), or until a specific system change number is reached (CHANGE int, where int is the number). The clause USING BACKUP CONTROLFILE enables use of the backup, rather than current, control file.

	[STANDBY] [TABLESPACE tablespace_name[, . . .] | DATAFILE 'file'[, . . .]]
	Recovers one or more specific tablespaces or datafiles, respectively. You may specify more than one tablespace or datafile using a comma-delimited list. You may also recover a datafile by datafile number, rather than by name. The tablespace may be in normal or standby mode. The standby tablespace or datafile is reconstructed using archived redo logfiles copied from the primary database and a control file.

	UNTIL [CONSISTENT WITH] CONTROLFILE
	Tells Oracle to recover an older standby tablespace or datafile by using the current standby control file. CONSISTENT WITH are noise words.

	LOGFILE filename[, . . .]
	Continues media recovery by applying one or more redo logfiles that you specify in a comma-delimited list.

	TEST | ALLOW int CORRUPTION | [NO]PARALLEL int
	TEST performs a trial recovery, allowing you to foresee any problems. ALLOW int CORRUPTION tells how many corrupt blocks (int) to tolerate before causing recovery to abort. int must be 1 for a real recovery, but may be any number you choose when paired with TEST. [NO]PARALLEL determines whether parallel recovery of media is used. NOPARALLEL is the default and enforces serial reading of the media. PARALLEL with no int value tells Oracle to choose the degree of parallelism to apply. Specifying int declares the degree of parallelism to apply.

	CONTINUE [DEFAULT]
	Determines whether multi-instance recovery continues after interruption. CONTINUE DEFAULT is the same as RECOVER AUTOMATIC, but it does not result in a prompt for a filename.

	CANCEL
	Cancels a managed recovery operation at the next archived log boundary, if it was started with the USING CANCEL clause.

	MANAGED STANDBY DATABASE
	Specifies managed physical standby recovery mode on an active component of a standby database. This command is used for media recovery only and not to construct a new database, using the following parameters:
	USING CURRENT LOGFILE
	Invokes real time apply, which allows recovery of redos from standby online logs as they are being filled, without first requiring that they be archived by the standby database.

	DISCONNECT [FROM SESSION]
	Causes the managed redo process to occur in the background, leaving the current process available for other tasks. FROM SESSION are noise words. DISCONNECT is incompatible with TIMEOUT.

	NODELAY
	Overrides the DELAY attribute LOG_ARCHIVE_DEST_n parameter on the primary database. When omitted, Oracle delays the application of the archived redo log according to the attribute.

	UNTIL CHANGE int
	Conducts a managed recovery up to (but not including) the specified system change number int.

	FINISH
	Recovers all available online redo log files immediately in preparation of the standby assuming the primary database role. The FINISH clause is known as a terminal recovery and should be used only in the event of a failure of the primary database.

	CANCEL
	Stops application of redo applies immediately and returns control as soon as the redo apply stops.

	TO LOGICAL STANDBY {database_name | KEEP IDENTITY}
	Converts the physical standby database into a logical standby database. The database_name identifies the new logical standby database. The KEEP IDENTITY subclause tells Oracle that the logical standby is used for a rolling upgrade and is not usable as a general-purpose logical standby database.

	{BEGIN | END} BACKUP
	Controls the online backup mode for any datafiles. BEGIN places all datafiles into online backup mode. The database must be mounted and open, in archivelog mode with media recovery enabled. (Note that while the database is in online backup mode the instance cannot be shut down and individual tablespaces cannot be backed up, taken offline, or made read-only.) END takes all datafiles currently in online backup mode out of that mode. The database must be mounted but need not be open.

After that long discussion of specific syntax, it's important to establish some Oracle basics.
Oracle allows the use of primary and standby databases. A primary database is a mounted and open database accessible to users. The primary database regularly and frequently ships its redo logs to a standby database where they are recovered, thus making the standby database a very up-to-date copy of the primary.
Unique to the Oracle environment is the INIT.ORA file, which specifies the database name and a variety of other options that you can use when creating and starting up the database. You should always define startup parameters, such as the name of any control files, in the INIT.ORA file to identify the control files; otherwise, the database will not start. Starting in Oracle 9.1, you can use binary parameter files rather than INIT.ORA files.
When a group of logfiles is listed, they are usually shown in parentheses. The parentheses aren't needed when creating a group with only one member, but this is seldom done. Here's an example using a parenthetical list of logfiles:
CREATE DATABASE publications
LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M
DATAFILE;
That example creates a database called publications with an explicitly defined logfile clause and an automatically created datafile. The following example of an Oracle CREATE DATABASE command is much more sophisticated:
CREATE DATABASE sales_reporting
CONTROLFILE REUSE
LOGFILE
 GROUP 1 ('diskE:log01.log', 'diskF:log01.log') SIZE 15M,
 GROUP 2 ('diskE:log02.log', 'diskF:log02.log') SIZE 15M
MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE
 'diskE:sales_rpt1.dbf' AUTOEXTEND ON,
 'diskF:sales_rpt2.dbf' AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_tblspc
UNDO TABLESPACE undo_tblspc
SET TIME_ZONE = '-08:00';
This example defines logfiles and datafiles, as well as all appropriate character sets. We also define a few characteristics for the database, such as the use of ARCHIVELOG mode and CONTROLFILE REUSE mode, the time zone, the maximum number of instances and datafiles, etc. This example also assumes that the INIT.ORA parameter for DB_CREATE_FILE_DEST has already been set. Thus, we don't have to define file definitions for the DEFAULT TEMPORARY TABLESPACE and UNDO TABLESPACE clauses.
When issued by a user with SYSDBA privileges, this statement creates a database and makes it available to users in either exclusive or parallel mode, as defined by the value of the CLUSTER_DATABASE initialization parameter. Any data that exists in predefined datafiles is erased. You will usually want to create tablespaces and rollback segments for the database. (Refer to the vendor documentation for details on the platform-specific commands CREATE TABLESPACE and CREATE ROLLBACK SEGMENT.)
Oracle has tightened up security around default database user accounts. Many default database user accounts are now locked and expired during initial installation. Only SYS, SYSTEM, SCOTT, DBSNMP, OUTLN, AURORAJISUTILITY$, AURORA$ORB$UNAUTHENTICATED, and OSE$HTTP$ADMIN are the same in 11g as they were in earlier versions. You must manually unlock and assign a new password to all locked accounts, as well as assign a password to SYS and SYSTEM, during the initial installation.
In the next example, we add more logfiles to the current database, and then add a datafile:
ALTER DATABASE ADD LOGFILE GROUP 3
 ('diskf: log3.sales_arch_log','diskg:log3.sales_arch_log')
SIZE 50M;
ALTER DATABASE sales_archive
CREATE DATAFILE 'diskF:sales_rpt4.dbf'
AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED;
We can set a new default temporary tablespace, as shown in the next example:
ALTER DATABASE DEFAULT TEMPORARY TABLESPACE sales_tbl_spc_2;
Next, we'll perform a simple full database recovery:
ALTER DATABASE sales_archive RECOVER AUTOMATIC DATABASE;
In the next example, we perform a more elaborate partial database recovery:
ALTER DATABASE RECOVER STANDBY DATAFILE 'diskF:sales_rpt4.dbf'
UNTIL CONTROLFILE;
Now, we'll perform a simple recovery of a standby database in managed standby recovery mode:
ALTER DATABASE RECOVER sales_archive MANAGED STANDBY DATABASE;
In the following example, we gracefully switch over from a primary database to a logical standby, and promote the logical standby to primary:
-- Demotes the current primary to logical standby database.
ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;
-- Applies changes to the new standby.
ALTER DATABASE START LOGICAL STANDBY APPLY;
-- Promotes the current standby to primary database.
ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

PostgreSQL
PostgreSQL's implementation of the CREATE DATABASE command creates a database and a file location for the datafiles:
CREATE DATABASE database_name [WITH]
 [OWNER [=] database_owner]
 [TEMPLATE [=] tmp_name]
 [ENCODING [=] enc_value]
 [TABLESPACE [=] tablespace_name]
 [CONNECTION LIMIT [=] int]
PostgreSQL's syntax for ALTER DATABASE is:
ALTER DATABASE database_name [WITH]
 [CONNECTION LIMIT int]
 [OWNER TO new_database_owner]
 [RENAME TO new_database_name]
 [RESET parameter]
 [SET parameter {TO | =} {value | DEFAULT}]
where:
	WITH
	Is an optional keyword to further define the details of the database.

	OWNER [=] database_owner
	Specifies the name of the database owner if it is different from the name of the user executing the statement.

	TEMPLATE [=] tmp_name
	Names a template to use for creating the new database. You can omit this clause to accept the default template describing the location of the database files (or use the clause TEMPLATE = DEFAULT). The default is to copy the standard system database template1. You can get a pristine database (one that contains only required database objects) by specifying TEMPLATE = template0.

	ENCODING [=] enc_value
	Specifies the multibyte encoding method to use in the new database using either a string literal (such as 'SQL_ASCII'), an integer encoding number, or DEFAULT for the default encoding.

	TABLESPACE [=] tablespace_name
	Specifies the name of the tablespace associated with the database.

	CONNECTION LIMIT [=] int
	Specifies how many concurrent connections to the database are allowed. A value of −1 means no limit.

	RENAME TO new_database_name
	Assigns a new name to the database.

	RESET parameter | SET parameter {TO | =} {value | DEFAULT}
	Assigns (using SET) or reassigns (using RESET) a value for a parameter defining the database.
For example, to create the database sales_revenue in the /home/teddy/private_db directory:
CREATE DATABASE sales_revenue
WITH LOCATION = '/home/teddy/private_db';
Warning
Be careful using absolute file and pathnames, since they impact security and data integrity issues.

PostgreSQL advises that databases used as templates be treated as read-only. Template databases should not be used for general-purpose "copy database" functionality.
Tip
PostgreSQL does not support the ALTER DATABASE command.

SQL Server
SQL Server offers a lot of control over the OS filesystem structures that hold the database and its objects. SQL Server's CREATE DATABASE statement syntax looks like this:
CREATE DATABASE database_name
[ON file_definition[, ...]]
[, FILEGROUP filegroup_name file_definition[, ...]]
[LOG ON file_definition[, ...]]
[COLLATE collation_name]
[FOR { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER | ERROR_BROKER_CONVERSATIONS}] |
 ATTACH_REBUILD_LOG }
[WITH [DB_CHAINING {ON | OFF}][, TRUSTWORTHY {ON | OFF}]]]
[AS SNAPSHOT OF source]
Following is the syntax for ALTER DATABASE:
ALTER DATABASE database_name
{ADD FILE file_definition[, ...] [TO FILEGROUP filegroup_name]
| ADD LOG FILE file_definition[, ...]
| REMOVE FILE file_name
| ADD FILEGROUP filegroup_name
| REMOVE FILEGROUP filegroup_name
| MODIFY FILE file_definition
| MODIFY NAME = new_database_name
| MODIFY FILEGROUP filegroup_name
 {NAME = new_filegroup_name | filegroup_property
 {READONLY | READWRITE | DEFAULT}}
| SET {state_option | cursor_option
| auto_option | sql_option | recovery_option}
 [, ...] [WITH termination_option]
| COLLATE collation_name}
Parameter descriptions are as follows:
	{CREATE | ALTER} DATABASE database_name
	Creates a database (or alters an existing database) with the name database_name. The name cannot be longer than 128 characters. You should limit the database name to 123 characters when no logical filename is supplied, since SQL Server will create a logical filename by appending a suffix to the database name.

	{ON | ADD} file_definition[, . . .]
	Defines the disk file(s) that store(s) the data components of the database for CREATE DATABASE, or adds disk file(s) for ALTER DATABASE. ON is required for CREATE DATABASE only if you wish to provide one or more file definitions. The syntax for file_definition is:
{[PRIMARY] ([NEW][NAME = file_name]
[, FILENAME = {'os_file_name' | 'filestream_name'}]
[, SIZE = int [KB | MD | GB | TB]][, MAXSIZE = { int |
UNLIMITED }][, FILEGROWTH = int][, OFFLINE])}[, ...]
where:
	PRIMARY
	Defines the file_definition as the primary file. Only one primary file is allowed per database. (If you don't define a primary file, SQL Server defaults primary status to the file that it autocreates, in the absence of any user-defined file, or to the first file that you define.) The primary file or group of files (also called a filegroup) contains the logical start of the database, all the database system tables, and all other objects not contained in user filegroups.

	[NEW]NAME = file_name
	Provides the logical name of the file defined by the file_definition for CREATE DATABASE. Use NEWNAME for ALTER DATABASE to define a new logical name for the file. In either case, the logical name must be unique within the database. This clause is optional when using FOR ATTACH.

	FILENAME = {'os_file_name'| 'filestream_name'}
	Specifies the operating system path and filename for the file defined by file_definition. The file must be in a noncompressed directory on the filesystem. For raw partitions, specify only the drive letter of the raw partition.

	SIZE = int [KB | MB | GB | TB]
	Sets the size of the file defined by the file_definition. This clause is optional, but it defaults to the file size for the primary file of the model database, which is usually very small. Logfiles and secondary datafiles default to a size of 1 MB. The value of int defaults to megabytes; however, you can explicitly define the size of the file using the suffixes for kilobyte (KB), megabyte (MB), gigabyte (GB), and terabyte (TB). The size cannot be smaller than 512 KB or the size of the primary file of the model database.

	MAXSIZE = { int | UNLIMITED }
	Defines the maximum size to which the file may grow. Suffixes, as described under the entry for SIZE, are allowed. The default, UNLIMITED, allows the file to grow until all available disk space is consumed. Not required for files on raw partitions.

	FILEGROWTH = int
	Defines the growth increment for the file each time it grows. Suffixes, as described under the entry for SIZE, are allowed. You may also use the percentage (%) suffix to indicate that the file should grow by a percentage of the total disk space currently consumed. If you omit the FILEGROWTH clause, the file will grow in 10% increments, but never less than 64 KB. Not required for files on raw partitions.

	OFFLINE
	Sets the file offline, making all objects in the filegroup inaccessible. This option should only be used when the file is corrupted.

	[ADD] LOG {ON | FILE} file_definition
	Defines the disk file(s) that store(s) the log component of the database for CREATE DATABASE, or adds disk file(s) for ALTER DATABASE. You can provide one or more file_definitions for the transaction logs in a comma-delimited list. Refer to the earlier section under the keyword ON for the full syntax of file_definition.

	REMOVE FILE file_name
	Removes a file from the database and deletes the physical file. The file must be emptied of all content first.

	[ADD] FILEGROUP filegroup_name [file_definition]
	Defines any user filegroups used by the database, and their file definitions. All databases have at least one primary filegroup (though many databases only use the primary filegroup that comes with SQL Server by default). Adding filegroups and then moving files to those filegroups can allow you greater control over disk I/O. (However, we recommend that you do not add filegroups without careful analysis and testing.)

	REMOVE FILEGROUP filegroup_name
	Removes a filegroup from the database and deletes all the files in the filegroup. The files and the filegroup must be empty first.

	MODIFY FILE file_definition
	Changes the definition of a file. This clause is very similar to the [ADD] LOG {ON | FILE} clause. For example: MODIFY FILE (NAME = file_name, NEWNAME = new_file_name, SIZE = . . .).

	MODIFY NAME = new_database_name
	Changes the database's name from its current name to new_database_name.

	MODIFY FILEGROUP filegroup_name {NAME = new_filegroup_name | filegroup_property}
	Used with ALTER DATABASE, this clause has two forms. One form allows you to change a filegroup's name, as in MODIFY FILEGROUP filegroup_name NAME = new_filegroup_name. The other form allows you to specify a filegroup_property for the filegroup, which must be one of the following:
	READONLY
	Sets the filegroup to read-only and disallows updates to all objects within the filegroup. READONLY can only be enabled by users with exclusive database access and cannot be applied to the primary filegroup. You may also use READ_ONLY.

	READWRITE
	Disables the READONLY property and allows updates to objects within the filegroup. READWRITE can only be enabled by users with exclusive database access. You may also use READ_WRITE.

	DEFAULT
	Sets the filegroup as the default filegroup for the database. All new tables and indexes are assigned to the default filegroup unless explicitly assigned elsewhere. Only one default filegroup is allowed per database. (By default, the CREATE DATABASE statement sets the primary filegroup as the default filegroup.)

	SET {state_option | cursor_option | auto_option | sql_option | recovery_option}[, . . .]
	Controls a wide variety of behaviors for the database. These are discussed in the rules and information later in this section.

	WITH termination_option
	Used after the SET clause, WITH sets the rollback behavior for incomplete transactions whenever the database is in transition. When this clause is omitted, transactions must commit or roll back on their own with the database state changes. There are two termination_option settings:
	ROLLBACK AFTER int [SECONDS] | ROLLBACK IMMEDIATE
	Causes the database to roll back in int number of seconds, or immediately. SECONDS is a noise word and does not change the behavior of the ROLLBACK AFTER clause.

	NO_WAIT
	Causes database state or option changes to fail if a change cannot be completed immediately, without waiting for the current transaction to independently commit or roll back.

	COLLATE collation_name
	Defines or alters the default collation used by the database. collation_name can be either a SQL Server collation name or a Windows collation name. By default, all new databases receive the collation of the SQL Server instance. (You can execute the query SELECT * FROM ::fn_helpcollations() to see all the collation names available.) To change the collation of a database, you must be the only user in the database, no schema-bound objects that depend on the current collation may exist in the database, and the collation change must not result in the duplication of any object names in the database.

	FOR { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER | ERROR_BROKER_CONVERSATIONS}] | ATTACH_REBUILD_LOG }
	Places the database in special startup mode. FOR ATTACH creates the database from a set of pre-existing operating system files (almost always database files created previously). Because of this, the new database must have the same code page and sort order as the previous database. You only need the file_definition of the first primary file or those files that have a different path from the last time the database was attached. The FOR ATTACH_REBUILD_LOG clause specifies that the database is created by attaching an existing set of OS files, rebuilding the log in the process in case any logfiles are missing. In general, you should use the sp_attach_db system stored procedure instead of the CREATE DATABASE FOR ATTACH statement unless you need to specify more than 16 file_definitions.
Service Broker options may be specified when using the FOR ATTACH clause:
	ENABLE_BROKER
	Specifies that Service Broker is enabled for the database.

	NEW_BROKER
	Creates a new service_broker_guid and ends all conversation endpoints with a cleanup.

	ERROR_BROKER_CONVERSATIONS
	Terminates all Service Broker conversations with an error indicating that a database has been attached or restored. The broker is disable during the operation and then re-enabled afterward.

	WITH [DB_CHAINING {ON | OFF}][, TRUSTWORTHY {ON | OFF}]
	Specifies that the database can be involved in a cross-database ownership chain (with DB_CHAINING ON). When omitted, the default is OFF, which disallows cross-database ownership chains. Setting TRUSTWORTHY ON specifies that database routines (such as views, functions, or procedures) that use an impersonation context can access resources outside of the database. When omitted, the default is OFF, which disallows accessing external resources from within a routine running in an impersonation context. TRUSTWORTHY is set OFF whenever a database is attached. DB_CHAINING and TRUSTWORTHY cannot be set ON for master, model, or tempdb databases.

	AS SNAPSHOT OF source
	Declares that the database being created is a snapshot of the source database. Both source and snapshot must exist on the same instance of SQL Server.

The CREATE DATABASE command should be issued from the master system database. You can, in fact, issue the command CREATE DATABASE database_name, with no other clauses, to get a very small, default database.
SQL Server uses files, formerly called devices, to act as a repository for databases. Files are grouped into one or more filegroups, with at least a PRIMARY filegroup assigned to each database. A file is a predefined block of space created on the disk structure. A database may be stored on one or more files or filegroups. SQL Server also allows the transaction log to be placed in a separate location from the database using the LOG ON clause. These functions allow sophisticated file planning for optimal control of disk I/O. For example, we can create a database called sales_report with a data and transaction logfile:
USE master
GO
CREATE DATABASE sales_report
ON
(NAME = sales_rpt_data, FILENAME =
 'c:\mssql\data\salerptdata.mdf',
 SIZE = 100, MAXSIZE = 500, FILEGROWTH = 25)
LOG ON
(NAME = 'sales_rpt_log',
 FILENAME = 'c:\mssql\log\salesrptlog.ldf',
 SIZE = 25MB, MAXSIZE = 50MB,
 FILEGROWTH = 5MB)
GO
When a database is created, all objects in the model database are copied into the new database. All of the empty space within the file or files defined for the database is then initialized (i.e., emptied out), which means that creating a new and very large database can take a while, especially on a slow disk.
A database always has at least a primary datafile and a transaction logfile, but it may also have secondary files for both the data and log components of the database. SQL Server uses default filename extensions: .mdf for primary datafiles, .ndf for secondary files, and .ldf for transaction logfiles. The following example creates a database called sales_archive with several very large files that are grouped into a couple of filegroups:
USE master
GO
CREATE DATABASE sales_archive
ON
PRIMARY (NAME = sales_arch1, FILENAME = 'c:\mssql\data\archdata1.mdf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch2,
 FILENAME = 'c:\mssql\data\archdata2.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch3,
 FILENAME = 'c:\mssql\data\archdat3.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB)
FILEGROUP sale_rpt_grp1
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi1dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi2dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
FILEGROUP sale_rpt_grp2
(NAME = sale_rpt_grp2_1_data, FILENAME = 'c:\mssql\data\SRG21dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp2_2_data, FILENAME = 'c:\mssql\data\SRG22dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
LOG ON
 (NAME = sales_archlog1,
 FILENAME = 'd:\mssql\log\archlog1.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%),
 (NAME = sales_archlog2,
 FILENAME = 'd:\ mssql\log\archlog2.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%)
GO
The FOR ATTACH clause is commonly used for situations like a salesperson traveling with a database on a CD. This clause tells SQL Server that the database is attached from an existing operating system file structure, such as a DVD-ROM, CD-ROM, or portable hard drive. When using FOR ATTACH, the new database inherits all the objects and data of the parent database, not the model database.
The following examples show how to change the name of a database, file, or filegroup:
-- Rename a database
ALTER DATABASE sales_archive MODIFY NAME = sales_history
GO
-- Rename a file
ALTER DATABASE sales_archive MODIFY FILE
NAME = sales_arch1,
NEWNAME = sales_hist1
GO
-- Rename a filegroup
ALTER DATABASE sales_archive MODIFY FILEGROUP
sale_rpt_grp1
NAME = sales_hist_grp1
GO
There may be times when you want to add new free space to a database, especially if you have not enabled it to auto-grow:
USE master
GO
ALTER DATABASE sales_report ADD FILE
(NAME = sales_rpt_added01, FILENAME = 'c:\mssql\data\salerptadded01.mdf',
 SIZE = 50MB, MAXSIZE = 250MB, FILEGROWTH = 25MB)
GO
When you alter a database, you can set many behavior options on the database. State options (shown as state_option in the earlier syntax diagram) control how users access the database. Following is a list of valid state options:
	SINGLE_USER | RESTRICTED_USER | MULTI_USER
	Sets the number and type of users with access to the database. SINGLE_USER mode allows only one user to access the database at a time. RESTRICTED_USER mode allows access only to members of the system roles db_owner, dbcreator, or sysadmin . MULTI_USER, the default, allows concurrent database access from all users who have permission.

	OFFLINE | ONLINE
	Sets the database to offline (unavailable) or online (available).

	READ_ONLY | READ_WRITE
	Sets the database to READ_ONLY mode, where no modifications are allowed, or to READ_WRITE mode, where data modifications are allowed. READ_ONLY databases can be very fast for query-intensive operations, since almost no locking is needed.

Cursor options control default behavior for cursors in the database. In the ALTER DATABASE syntax shown earlier, you can replace cursor_option with any of the following:
	CURSOR_CLOSE_ON_COMMIT { ON | OFF }
	When set to ON, any open cursors are closed when a transaction commits or rolls back. When set to OFF, any open cursors remain open when transactions are committed and close when a transaction rolls, back unless the cursor is INSENSITIVE or STATIC.

	CURSOR_DEFAULT { LOCAL | GLOBAL }
	Sets the default scope of all cursors in the database to either LOCAL or GLOBAL. (See later in this chapter for more details.)

In the SET clause, auto_option controls the automatic file-handling behaviors of the database. The following are valid replacements for auto_option:
	AUTO_CLOSE { ON | OFF }
	When set to ON, the database automatically shuts down cleanly and frees all resources when the last user exits. When set to OFF, the database remains open when the last user exits. The default is OFF.

	AUTO_CREATE_STATISTICS { ON | OFF }
	When set to ON, statistics are automatically created when SQL Server notices they are missing during query optimization. When set to OFF, statistics are not created during optimization. The default is ON.

	AUTO_SHRINK { ON | OFF }
	When set to ON, the database files may automatically shrink (the database periodically looks for an opportunity to shrink files, though the time is not always predictable). When set to OFF, files will shrink only when you explicitly and manually shrink them. The default is OFF.

	AUTO_UPDATE_STATISTICS { ON | OFF }
	When set to ON, out-of-date statistics are reassessed during query optimization. When set to OFF, statistics are reassessed only by explicitly and manually recompiling them using the SQL Server command UPDATE STATISTICS.

The sql_options clause controls the ANSI compatibility of the database. You can use the standalone SQL Server command SET ANSI_DEFAULTS ON to enable all the ANSI SQL92 behaviors at one time, rather than using the individual statements below. In the SET clause, you can replace sql_option with any of the following:
	ANSI_NULL_DEFAULT { ON | OFF }
	When set to ON, the CREATE TABLE statement causes columns with no nullability setting to default to NULL. When set to OFF, the nullability of a column defaults to NOT NULL. The default is OFF.

	ANSI_NULLS { ON | OFF }
	When set to ON, comparisons to NULL yield UNKNOWN. When set to OFF, comparisons to NULL yield NULL if both non-UNICODE values are NULL. The default is OFF.

	ANSI_PADDING { ON | OFF }
	When set to ON, strings are padded to the same length for insert or comparison operations on VARCHAR and VARBINARY columns. When set to OFF, strings are not padded. The default is ON. (We recommend that you do not change this!)

	ANSI_WARNINGS { ON | OFF }
	When set to ON, the database warns when problems like "divide by zero" or "NULL in aggregates" occur. When set to OFF, these warnings are not raised. The default is OFF.

	ARITHABORT { ON | OFF }
	When set to ON, divide-by-zero and overflow errors cause a query or Transact-SQL batch to terminate and roll back any open transactions. When set to OFF, a warning is raised but processing continues. The default is ON. (We recommend that you do not change this!)

	CONCAT_NULL_YIELDS_NULL { ON | OFF }
	When set to ON, returns a NULL when a NULL is concatenated to a string. When set to OFF, NULLs are treated as empty strings when concatenated to a string. The default is OFF.

	NUMERIC_ROUNDABORT { ON | OFF }
	When set to ON, an error is raised when a numeric expression loses precision. When set to OFF, losses of precision result in rounding of the result from the numeric expression. The default is OFF.

	QUOTED_IDENTIFIER { ON | OFF }
	When set to ON, double quotation marks identify an object identifier that contains special characters or is a reserved word (e.g., a table named SELECT). When set to OFF, identifiers may not contain special characters or reserved words, and all occurrences of double quotation marks signify a literal string value. The default is OFF.

	RECURSIVE_TRIGGERS { ON | OFF }
	When set to ON, triggers can fire recursively. That is, the actions taken by one trigger may cause another trigger to fire, and so on. When set to OFF, triggers cannot cause other triggers to fire. The default is OFF.

Recovery options control the recovery model used by the database. Use any of the following in place of recovery_option in the ALTER DATABASE syntax:
	RECOVERY { FULL | BULK_LOGGED | SIMPLE }
	When set to FULL, database backups and transaction logs provide full recoverability even for bulk operations like SELECT . . . INTO, CREATE INDEX, etc. FULL is the default for SQL Server 2000 Standard Edition and Enterprise Edition. FULL provides the most recoverability, even from a catastrophic media failure, but uses more space. When set to BULK_LOGGED, logging for bulk operations is minimized. Space is saved and fewer I/O operations are incurred, but risk of data loss is greater than under FULL. When set to SIMPLE, the database can only be recovered to the last full or differential backup. SIMPLE is the default for SQL Server 2000 Desktop Edition and Personal Edition.

	TORN_PAGE_DETECTION { ON | OFF }
	When set to ON, SQL Server can detect incomplete I/O operations at the disk level by checking each 512-byte sector per 8K database page. (Torn pages are usually detected in recovery.) The default is ON.

For example, we may want to change some behavior settings for the sales_report database without actually changing the underlying file structure:
ALTER DATABASE sales_report SET ONLINE, READ_ONLY,
AUTO_CREATE_STATISTICS ON
GO
This statement puts the database online and in read-only mode. It also sets the AUTO_CREATE_STATISTICS behavior to ON.

See Also
	CREATE SCHEMA
	DROP

Name
CREATE/ALTER FUNCTION/PROCEDURE Statements

The CREATE FUNCTION and CREATE PROCEDURE statements are very similar in syntax and coding (as are the respective ALTER statements).
The CREATE PROCEDURE statement creates a stored procedure, which takes input arguments and performs conditional processing against various objects in the database. According to the ANSI standard, a stored procedure returns no result set (though it may return a value in an OUTPUT parameter). For example, you might use a stored procedure to perform all the processes that close an accounting cycle.
The CREATE FUNCTION statement creates a user-defined function (UDF), which takes input arguments and returns a single value output in the same way as a system-supplied function like CAST() or UPPER(). These functions, once created, can be called in queries and data-manipulation operations, such as INSERT, UPDATE, and the WHERE clause of DELETE statements. Refer to Chapter 4 for descriptions of built-in SQL functions and their individual vendor implementations.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with variations

SQL2003 Syntax
Use the following syntax to create a stored procedure or function:
CREATE {PROCEDURE | FUNCTION} object_name
 ([{[IN | OUT | INOUT] [parameter_name] datatype [AS LOCATOR] [RESULT]}
 [, ...]])

 [RETURNS datatype [AS LOCATOR]
 [CAST FROM datatype [AS LOCATOR]]]
[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SQL | GENERAL}]
[SPECIFIC specific_name]
[DETERMINISTIC | NOT DETERMINISTIC]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]
[DYNAMIC RESULT SETS int]
[STATIC DISPATCH] code_block
Use the following syntax to alter a pre-existing UDF or stored procedure:
ALTER {PROCEDURE | FUNCTION} object_name
 [({parameter_name datatype }[, ...])]
[NAME new_object_name]
[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SQL | GENERAL}]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]
[DYNAMIC RESULT SETS int]
[CASCADE | RESTRICT]

Keywords
	CREATE {PROCEDURE | FUNCTION} object_name
	Creates a new stored procedure or user-defined function with the name object_name. A user-defined function returns a value, whereas a stored procedure (in ANSI SQL) does not.

	([{[IN | OUT | INOUT] [parameter_name] datatype [AS LOCATOR] [RESULT]} [, . . .]])
	Declares one or more parameters to be passed into a stored procedure in a comma-delimited list enclosed in parentheses. Parameters used with a procedure may pass a value IN, OUT, or both in and out via INOUT.
The syntax for the parameter declaration is:
[{IN | OUT | INOUT}] parameter_name1 datatype,
[{IN | OUT | INOUT}] parameter_name2 datatype,[...]
When providing the optional parameter_name, make sure the name is unique within the stored procedure. The optional AS LOCATOR subclause is used to validate an external routine with a RETURNS parameter that is a BLOB, CLOB, NCLOB, ARRAY, or user-defined type. If you need to change the datatype of a RETURNS parameter on the fly, use the CAST clause (refer to the section on the function CAST in Chapter 4): for example, RETURNS VARCHAR(12) CAST FROM DATE. When used with ALTER, this clause adds parameters to a pre-existing stored procedure. Refer to Chapter 2 for details on datatypes.

	RETURNS datatype [AS LOCATOR] [CAST FROM datatype [AS LOCATOR]]
	Declares the datatype of the result returned by a function. (This clause is used only in the CREATE FUNCTION statement and is not used in stored procedures.) The key purpose of a user-defined function is to return a value.

	LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}
	Declares the language in which the function is written. Most database platforms do not support all of these languages and may support several not mentioned, such as Java. When omitted, the default is SQL. When used with ALTER, this clause changes the existing LANGUAGE value to the value that you declare.

	PARAMETER STYLE {SQL | GENERAL}
	Indicates, for external routines only, whether certain implicit and automatic parameters are passed explicitly, with the options (SQL) or not (GENERAL). (The difference between SQL style and GENERAL style is that SQL style automatically passes SQL parameters, such as indicators, while GENERAL style does not automatically pass parameters.) The default is PARAMETER STYLE SQL. When used with ALTER, this clause changes the existing PARAMETER STYLE value to the value that you declare.

	SPECIFIC specific_name
	Uniquely identifies the function. Generally used with user-defined types.

	DETERMINISTIC | NOT DETERMINISTIC
	States the nature of values returned by a function. (This clause is used only in CREATE and ALTER FUNCTION statements.) DETERMINISTIC functions always return the same value when given the same parameter values. NOT DETERMINISTIC functions may return variable results when given the same parameter values. For example, CURRENT_TIME is not deterministic because it returns a constantly advancing value corresponding to the time.

	NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA
	Specifies, in conjunction with the LANGUAGE setting, the type of SQL contained in the user-defined function. When used with ALTER, this clause changes the existing SQL style value to the value that you declare.
	NO SQL
	Indicates that no SQL statements of any type are in the function. Used with a non-SQL LANGUAGE setting such as LANGUAGE ADA . . . CONTAINS NO SQL.

	CONTAINS SQL
	Indicates that SQL statements other than read or modify statements are in the function. This is the default.

	READS SQL DATA
	Indicates that the function contains SELECT or FETCH statements.

	MODIFIES SQL DATA
	Indicates that the function contains INSERT, UPDATE, or DELETE statements.

	RETURN NULL ON NULL INPUT | CALL ON NULL INPUT
	These options are for use with a host LANGUAGE that cannot support NULLs. The RETURNS NULL ON NULL INPUT setting causes the function to immediately return a NULL value if it is passed a NULL value. The CALL ON NULL INPUT setting causes the function to handle NULLs according to standard rules: for example, returning UNKNOWN when a comparison of two NULL values occurs. (This clause is used in the CREATE and ALTER PROCEDURE and FUNCTION statements.) When used with ALTER, this clause changes the existing NULL-style value to the value that you declare.

	DYNAMIC RESULT SETS int
	Declares that a certain number of cursors (int) can be opened by the stored procedure and that those cursors are visible after returning from the procedure. When omitted, the default is DYNAMIC RESULT SETS 0. (This clause is not used in CREATE FUNCTION statements.) When used with ALTER, this clause changes the existing DYNAMIC RESULT SETS value to the value that you declare.

	STATIC DISPATCH
	Returns the static values of a user-defined type or ARRAY datatype. Required for non-SQL functions that contain parameters that use user-defined types or ARRAYs. (This clause is not used in CREATE PROCEDURE statements.) This clause must be the last clause in the function or procedure declaration before the code_block.

	code_block
	Declares the procedural statements that handle all processing within the user-defined function or stored procedure. This is the most important, and usually largest, part of a function or procedure. We assume you're interested in a user-defined function of LANGUAGE SQL, so note that the code_block may not contain SQL-Schema statements, SQL-Transaction statements, or SQL-Connection statements.
While we assume that you're interested in SQL-based UDFs and stored procedures (this is a SQL book, after all), you can declare that the code block is derived externally. The syntax for external code_blocks is:
EXTERNAL [NAME external_routine_name] [PARAMETER STYLE
 {SQL | GENERAL}] [TRANSFORM GROUP group_name]
where:
	EXTERNAL [NAME external_routine_name]
	Defines an external routine and assigns a name to it. When omitted, the unqualified routine name is used.

	PARAMETER STYLE {SQL | GENERAL}
	Same as for CREATE PROCEDURE.

	TRANSFORM GROUP group_name
	Transforms values between user-defined types and host variables in a user-defined function or a stored procedure. When omitted, the default is TRANSFORM GROUP DEFAULT.

	NAME new_object_name
	Declares the new name to use for a previously defined UDF or stored procedure. This clause is used only with ALTER FUNCTION and ALTER PROCEDURE statements.

	CASCADE | RESTRICT
	Allows you to cause changes to CASCADE down to all dependent UDFs or stored procedures, or to RESTRICT a change from happening if there are dependent objects. We strongly recommend that you do not issue an ALTER statement against UDFs or stored procedures that have dependent objects. This clause is used only with ALTER FUNCTION and ALTER PROCEDURE statements.

Rules at a Glance
With a user-defined function, you declare the input arguments and the single output argument that the function passes back out. You can then call the user-defined function just as you would any other function: for example, in SELECT statements, INSERT statements, or the WHERE clauses of DELETE statements.
Tip
User-defined functions and stored procedures, when referred to generically, are called routines.

With a stored procedure, you declare the input arguments that go into the stored procedure and the output arguments that come out from it. You invoke a stored procedure using the CALL statement.
The content of the code_block must conform to the rules of whatever procedural language the database platform supports. Some platforms do not have their own internal procedural languages, requiring you to use EXTERNAL code_block constructs.
For example, you might want to build a user-defined function on Microsoft SQL Server that returns the first and last name of a person as a single string:
CREATE FUNCTION formatted_name (@fname VARCHAR(30),
@lname VARCHAR(30))
RETURNS VARCHAR(60)
AS
BEGIN
 DECLARE @full_name VARCHAR(60)
 SET @full_name = @fname + ' ' + @lname
 RETURN @full_name
END
You could then use this user-defined function just as you would any other function:
SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id
FROM authors
The SELECT statement in this example will return a result set with the two columns name and id.
Tip
The ANSI statement CREATE METHOD is supported only by IBM's UDB DB2 platform at this time. A method is essentially a special-purpose user-defined function and follows the same syntax as that outlined here.

Stored procedures behave similarly. The Microsoft SQL Server stored procedure in the following example generates a unique 22-digit value (based on elements of the system date and time) and returns it to the calling process:
-- A Microsoft SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000
SELECT @next_nbr =
 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS
 CHAR(6), 6) +
 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)
END
GO
In this next (and final) ANSI SQL2003 example, we change the name of an existing stored procedure:
ALTER PROCEDURE get_next_nbr
NAME 'get_next_ID'
RESTRICT;

Programming Tips and Gotchas
A key advantage of a stored procedure or function is the fact that it is precompiled, meaning that once it's been created, its query plans are already stored in the database. Precompiled routines can often (though not always) be cached in database memory to provide an additional boost in performance. A stored procedure or user-defined function can perform many statements with a single communication to the server, thus reducing network traffic.
Implementations of user-defined functions and stored procedures vary widely by platform. Some database platforms do not support internal code_block content. On these platforms, you can only write an external code_block. The following sections outline the variations and the capabilities of each platform.
If you execute an ALTER PROCEDURE or FUNCTION statement, dependent objects may become invalid after a change to an object on which they depend. Be careful to check all dependencies when altering UDFs or stored procedures on which other UDFs or stored procedures may depend.

MySQL
MySQL supports both the ALTER and CREATE FUNCTION statements, as well as the ALTER and CREATE PROCEDURE statements.
The CREATE syntax for functions and procedures follows:
CREATE
[DEFINER = {user | CURRENT_USER}]
{ FUNCTION | PROCEDURE } [database_name.]routine_name
 ([{IN | OUT | INOUT}] [parameter[, ...])
[RETURNS type]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[COMMENT 'string']
routine_body;
where:
	CREATE { FUNCTION | PROCEDURE } [database_name.]routine_name
	Creates an external function or procedure with a routine_name of not more than 64 characters. The module is stored in the proctable in the MySQL database.

	DEFINER
	Assigns a user, in the format 'user_name@host_name', as the owner of the routine. When omitted, the current_user is the default.

	([{IN | OUT | INOUT}] parameter[, . . .])
	Defines one or more parameters for the routine. All function parameters must be IN parameters, but procedure parameters may be any of the three types. When this clause is omitted on a procedure, parameters are IN by default.

	RETURNS type
	Returns a value called type of any valid MySQL datatype. Only for use with CREATE or ALTER FUNCTION, where it is mandatory.

	COMMENT 'my_string'
	Adds a comment to the routine. The comment(s) may be displayed using the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

	routine_body
	Contains one or more valid SQL statements. Multiple SQL statements should be nested within BEGIN and END. The routine_body can also contain procedural language such as declarations, loops, and other control structures.

Procedures and functions may contain DDL statements such as CREATE, ALTER, or DROP. Procedures, but not functions, may contain transaction control statements such as COMMIT and ROLLBACK. Functions may not use statements that perform explicit or implicit rollbacks or commits, nor may functions contain statements that return uncontrolled result sets, such as a SELECT statement without the INTO clause. Neither procedures nor functions may contain the command LOAD DATA INFILE.
Once implemented, a MySQL function may be called just like any built-in function, such as ABS() or SOUNDEX(). Procedures, on the other hand, are invoked using the CALL statement.
The implementation of CREATE FUNCTION in MySQL has long supported user-defined functions through an implementation that depends on external procedural code in C/C++ under an operating system that supports dynamic loading. The C/C++ program is named in the shared_program_library_name option. The function may be compiled either directly into the MySQL server, making it permanently available, or as a dynamically callable program. For example, the code behind the UDF created in the following statement might be found on a Unix server:
CREATE FUNCTION find_radius RETURNS INT SONAME "radius.so";

Oracle
Oracle supports ALTER and CREATE for both the FUNCTION and PROCEDURE object types. (You may also wish to learn about Oracle packages, which can also be used to create UDFs and stored procedures. Check Oracle's documentation.) Oracle's CREATE PROCEDURE syntax is as follows:
CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name
[(parameter1 [IN | OUT | IN OUT] [NOCOPY] datatype[, ...])]
RETURN datatype
[DETERMINISTIC] [AUTHID {CURRENT_USER | DEFINER}] [IS | AS] [EXTERNAL]
[PARALLEL_ENABLE [(PARTITION prtn_name BY {ANY | {HASH | RANGE}
 (column[, ...])}) [{ORDER | CLUSTER} BY (column[, ...])]]]
{ {PIPELINED | AGGREGATE} [USING [schema.]implementation_type] |
 [PIPELINED] {IS | AS} }
{code_block | LANGUAGE {JAVA NAME external_program_name |
 C [NAME external_program_name]}
 LIBRARY lib_name [AGENT IN (argument[, ...])] [WITH CONTEXT]
 [PARAMETERS (params[, ...])]};
The ALTER FUNCTION/PROCEDURE statement shown next is used to recompile invalid UDFs or stored procedures:
ALTER {FUNCTION | PROCEDURE} [schema.]object_name COMPILE [DEBUG]
 [compiler_param = value [...]] [REUSE SETTINGS]
Following are the parameter descriptions:
	CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name
	Creates a new UDF or stored procedure. Use OR REPLACE to replace an existing procedure or UDF without first dropping it and then having to reassign all permissions to it.
Certain clauses are only used with user-defined functions, including the RETURN clause, the DETERMINISTIC clause, and the entirety of the USING clause.

	IN | OUT | IN OUT
	Specifies whether a parameter is an input to the function, an output from the function, or both.

	NOCOPY
	Speeds up performance when an OUT or IN OUT argument is very large, as with a VARRAY or RECORD datatype.

	AUTHID {CURRENT_USER | DEFINER}
	Forces the routine to run in the permission context of either the current user or the person who owns the function, using AUTHID CURRENT_USER or AUTHID DEFINER, respectively.

	AS EXTERNAL
	Alternatively declares a C method. Oracle prefers the AS LANGUAGE C syntax except when PL/SQL datatypes need to be mapped to parameters.

	PARALLEL_ENABLE
	Enables the routine to be executed by a parallel query operation on a symmetric multi-processor (SMP) or parallel-processor server. This clause is used only for UDFs. (Do not use session state or package variables, because they can't be expected to be shared among parallel-execution servers.) Define the behavior of the PARALLEL_ENABLE query operation using these subclauses:
	PARTITION prtn_name BY {ANY | {HASH | RANGE} (column[, . . .])}
	Defines partitioning of inputs on functions with REF CURSOR arguments. This may benefit table functions. ANY allows random partitioning. You can restrict partitioning to a specific RANGE or HASH partition on a comma-delimited column list.

	{ORDER | CLUSTER} BY (column[, . . .])
	Orders or clusters parallel processing based on a comma-delimited column list. ORDER BY causes the rows to be locally ordered on the parallel-execution server according to the column list. CLUSTER BY restricts the rows on the parallel-execution server to the key values identified in the column list.

	{PIPELINED | AGGREGATE} [USING [schema.]implementation_type]
	PIPELINED iteratively returns the results of a table function, instead of the normal serial return of the VARRAY or nested table result set. This clause is used only for UDFs. The clause PIPELINED USING implementation_type is for an external UDF that uses a language such as C++ or Java. The AGGREGATE USING implementation_type clause defines a UDF as an aggregate function (a function that evaluates many rows but returns a single value).

	IS | AS
	Oracle treats IS and AS equally. Use either one to introduce the code_block.

	code_block
	Oracle allows a PL/SQL code block for user-defined functions and stored procedures. Alternately, you may use the LANGUAGE clause for stored procedures written in Java or C.

	LANGUAGE {JAVA NAME external_program_name | C [NAME external_program_name] LIBRARY lib_name [AGENT IN (argument[, ...])] [WITH CONTEXT] [PARAMETERS (params[, ...])] }
	Defines the Java or C implementation of the external program. The parameters and semantics of each declaration are specific to Java and C, not SQL.

	ALTER {FUNCTION | PROCEDURE} [schema.]object_name
	Recompiles an invalid standalone stored routine. Use CREATE . . . OR REPLACE to change the arguments, declarations, or definition of an existing routine.

	COMPILE [DEBUG] [REUSE SETTINGS]
	Recompiles the routine. Note that COMPILE is required. (You can see compile errors with the SQL*Plus command SHOW ERRORS.) The routine is marked valid if no compiler errors are encountered. The following optional subclauses may also be included with the COMPILE clause:
	DEBUG
	Generates and stores code used by the PL/SQL debugger.

	compiler_param = value [. . .]
	Specifies a PL/SQL compiler parameter. Allowable parameters include PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. Refer to Oracle's documentation on the PL/SQL compiler for more details.

	REUSE SETTINGS
	Maintains the existing compiler switch settings and reuses them for recompilation. Normally, Oracle drops and reacquires compiler switch settings.

In Oracle, UDFs and stored procedures are very similar in composition and structure. The primary difference is that a stored procedure cannot return a value to the invoking process, while a function may return a single value to the invoking process.
For example, you can pass in the name of a construction project to the following function to obtain the project's profit:
CREATE OR REPLACE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0)) -
 SUM(DECODE(action,'STARTED',amount,0)) +
 SUM(DECODE(action,'PAYMENT',amount,0))
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;
In this example, the UDF accepts the project name as an argument. Then it processes the project revenue, behind the scenes, by subtracting the starting costs from the completion payment and adding any other payments into the amount. The RETURN (proj_rev); line returns the amount to the invoking process.
In Oracle, UDFs cannot be used in the following situations:
	In a CHECK constraint or DEFAULT constraint of a CREATE TABLE or ALTER TABLE statement.

	In a SELECT, INSERT, UPDATE, or DELETE, the UDF cannot, either directly or indirectly (if invoked by another routine):
	Have an OUT or IN OUT parameter. (Indirect calls may take OUT and IN OUT parameters.)

	Terminate the transaction with COMMIT, ROLLBACK, SAVEPOINT, or a CREATE, ALTER, or DROP statement that implicitly issues a COMMIT or ROLLBACK.

	Use session control (SET ROLE) or system control (the Oracle-specific statement ALTER SYSTEM) statements.

	Write to a database (when a component of a SELECT statement or a parallelized INSERT, UPDATE, or DELETE statement).

	Write to the same table that is modified by the statement that calls the UDF.

When you recompile a routine with the ALTER statement, it is marked valid if no compiler errors are encountered. If any errors are encountered, it is marked invalid. However, perhaps more importantly, any objects that depend upon the recompiled routine are marked invalid regardless of whether or not an error occurs. You can either recompile those dependent objects yourself, or allow Oracle to take some additional time to recompile them at runtime.
By way of example, the following statement recompiles the project_revenue function and maintains any compiler information for the PL/SQL debugger:
ALTER FUNCTION project_revenue COMPILE DEBUG;

PostgreSQL
PostgreSQL supports the ALTER and CREATE FUNCTION statements, but not CREATE PROCEDURE or ALTER PROCEDURE. This is because PostgreSQL's powerful functions can be used to simulate the processing performed by a procedure. The syntax to use to create a function is:
CREATE [OR REPLACE] FUNCTION routine_name
 ([parameter [{IN | OUT | INOUT}][, ...]])
[RETURNS datatype]
AS {code_block | object_file, link_symbol}
 [LANGUAGE {C | SQL | internal} | {IMMUTABLE | STABLE | VOLATILE} |
 {CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT} |
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER]
[WITH {[ISCACHABLE][,] [ISSTRICT]}]
The syntax for ALTER FUNCTION follows:
ALTER FUNCTION routine_name
 ([parameter [{IN | OUT | INOUT}][, ...]])
[RESTRICT]
[RENAME TO new_routine_name]
[OWNER TO new_owner_name]
[SET SCHEMA new_schema_name]
The parameters are:
	CREATE [OR REPLACE] FUNCTION routine_name
	Creates a new function of the name you provide, or replaces an existing function. OR REPLACE does not enable you to change the name, input parameters, or output results of an existing function; you must drop and recreate a function to change any of those settings.

	RETURNS datatype
	Specifies the type of data required by the function. Not used with a procedure.

	code_block | object_file, link_symbol
	Defines the composition of the user-defined function. The code_block can be a string defining the function (dependent on the LANGUAGE setting), such as an internal function name, the path and name of an object file, a SQL query, or the text of a procedural language. The definition also can be an object file and link symbol for a C-language function.

	LANGUAGE {C | SQL | internal}
	Defines a call to an external program or an internal SQL routine. Since all of the language options except SQL are programs compiled in other languages, they are beyond the scope of this book. However, the LANGUAGE SQL clause should be used when writing SQL user-defined functions.
Tip
You can add a new language not installed by default on PostgreSQL by using the CREATE LANGUAGE statement.

	IMMUTABLE | STABLE | VOLATILE
	Describes the behavior of a function. IMMUTABLE describes a deterministic function that does not modify or access data stored within the database (i.e., no SELECT statements). STABLE describes a deterministic function that may modify or access data stored within the database (i.e., a SELECT statement that always returns the same data given the same inputs). When all of these descriptors are omitted, PostgreSQL assumes VOLATILE. VOLATILE indicates that the function is not deterministic (i.e., may give different results even when the inputs are always the same).

	CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
	STRICT is a synonym for RETURNS NULL ON NULL INPUT. Both RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT are part of the ANSI standard and are described in that section.

	[EXTERNAL] SECURITY {INVOKER | DEFINER}
	INVOKER tells PostgreSQL to execute using the privileges of the user that called the routine, while DEFINER tells PostgreSQL to execute using the privileges of the user that created the routine. EXTERNAL is a noise word and is included only for ANSI compliance.

	[WITH {[ISCACHABLE][,] [ISSTRICT]}]
	Optimizes PostgreSQL performance by indicating that the function always returns the same value when provided with the same parameter values. WITH ISCACHABLE is similar to the ANSI setting DETERMINISTIC, except that this setting then allows the optimizer to pre-evaluate the call of the function. WITH ISSTRICT is similar to the ANSI setting RETURNS NULL ON NULL INPUT. When omitted, the default behavior is similar to CALLED ON NULL INPUT. Note that you may include both keywords in a single function declaration.

	[RESTRICT] [RENAME TO new_routine_name] [OWNER TO new_owner_name] [SET SCHEMA new_schema_name]
	Assigns a new name, owner, or schema to the routine. The RESTRICT keyword is noise.

PostgreSQL also allows function overloading, where the same function name is allowed for different functions, as long as they accept distinct input parameters.
Tip
Whenever you drop an existing function, all dependent objects are invalidated and must be recompiled.

Here's an example of a simple SQL function in PostgreSQL:
CREATE FUNCTION max_project_nbr
RETURNS int4
AS "SELECT MAX(title_ID) FROM titles AS RESULT"
LANGUAGE 'sql';
In this example, we created a UDF that returns the maximum title_ID from the titles table.
PostgreSQL uses CREATE FUNCTION as a substitute for CREATE PROCEDURE, as well as to define actions for CREATE TRIGGER.

SQL Server
SQL Server supports CREATE and ALTER for both types of routines. By default, SQL Server stored procedures can return result sets and SQL Server UDFs can return single or multirow result sets using the TABLE datatype on RETURNS arguments, contrary to the ANSI standard. However, this makes SQL Server routines more flexible and powerful. Use the following syntax to create a user-defined function or stored procedure:
CREATE {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]
([{@parameter datatype [VARYING] [=default] [OUTPUT]} [READONLY][, ...]])
[RETURNS {datatype | TABLE]]
[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE | RECOMPILE, ENCRYPTION |
 RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT |
 EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}}]
[FOR REPLICATION]
[AS]
 code_block
Use the following syntax to alter an existing user-defined function or stored procedure:
ALTER {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]
([{@parameter datatype [VARYING] [=default] [OUTPUT]}[, ...]])
[RETURNS {datatype | TABLE}]
[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE | RECOMPILE, ENCRYPTION |
 RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT |
 EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}}]
[FOR REPLICATION]
[AS]
 code_block
Following are the parameter descriptions:
	CREATE {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]
	Creates a new UDF or stored procedure in the current database. For SQL Server stored procedures, you may optionally specify a version number in the format procedure_name;1, where 1 is an integer indicating the version number. This facility allows you to have multiple versions of a single stored procedure.

	{@parameter datatype [VARYING] [=default] [OUTPUT]} [READONLY][, . . .]
	Defines one or more input arguments for a UDF or stored procedure. SQL Server parameters are always declared with an at sign (@) as the first character.
	VARYING
	Used in stored procedures with a CURSOR datatype parameter. Indicates that the procedure constructs the result set dynamically.

	=default
	Assigns a default value to the parameter. The default value is used whenever the stored procedure or UDF is invoked without a value being supplied for the parameter.

	OUTPUT
	Used for stored procedures, OUTPUT is functionally equivalent to the ANSI OUT clause in the CREATE FUNCTION statement. The value stored in the return parameter is passed back to the calling procedure through the return variables of the SQL Server EXEC[UTE] command. Output parameters can be any datatype except TEXT and IMAGE.

	READONLY
	Used in functions to indicate that the parameter cannot be updated or modified within the routine code body. This is especially useful for user-defined TABLE types.

	RETURNS {datatype | TABLE}
	Allows SQL Server UDFs to return a single datatype value or to return multiple values via the TABLE datatype. The TABLE datatype is considered inline if it has no accompanying column list and is defined with a single SELECT statement. If the RETURNS clause returns multiple values via the TABLE datatype, and if the TABLE has defined columns and datatypes, the function is considered a multistatement, table-valued function.

	WITH
	Allows the assignment of additional characteristics to a SQL Server UDF or stored procedure.
	ENCRYPTION
	Tells SQL Server to encrypt the column in the system table that stores the text of the function, thus preventing unwarranted review of the function code. Usable by both UDFs and stored procedures.

	SCHEMABINDING
	Specifies that the function is bound to a specific database object, such as a table or view. That database object cannot be altered or dropped as long as the function exists (or maintains the SCHEMABINDING option). Usable only by UDFs.

	RECOMPILE
	Tells SQL Server not to store a cache plan for the stored procedure, but instead to recompile the cache plan each time the stored procedure is executed. This is useful when using atypical or temporary values in the procedure, but it can cause serious degradation in performance. Usable only by stored procedures. Note that RECOMPILE and ENCRYPTION can be invoked together.

	EXEC[UTE] AS {CALLER | SELF| OWNER | 'user_name'}
	Optional clause, for both procedures and functions, to specify the privileges under which the routine will execute. CALLER indicates the routine will run with the privileges of the user invoking the routine. When this clause is omitted, SQL Server assumes CALLER. SELF indicates the routine will run with the privileges of the creator of the routine. OWNER indicates the routine will run with the privileges of the current owner of the routine. 'user_name' indicates the routine will run with the privileges of the named, pre-existing user.

	FOR REPLICATION
	Disables execution of the stored procedure on a subscribing server. This clause is used primarily to create a filtering stored procedure that is executed only by SQL Server's built-in replication engine. It is incompatible with WITH RECOMPILE.

Like tables (see CREATE TABLE), local and global temporary stored procedures may be declared by prefixing a pound symbol (#) or double pound symbol (##) to the name of the procedure, respectively. Temporary procedures exist only for the duration of the user or process session that created them. When that session ends, the temporary procedures automatically delete themselves.
A SQL Server stored procedure or UDF may have as many as 1,024 input parameters, specified by the at sign (@). Parameters are defined using SQL Server datatypes. (Parameters of the CURSOR datatype must be defined with both VARYING and OUTPUT.) The user or calling process must supply values for any input parameters. However, a default value can be supplied for any input parameter to allow the procedure to execute without a user- or process-supplied value. The default must be a constant or NULL, but it may contain wildcard characters.
SQL Server requires that one or more user-supplied parameters be declared for a given user-defined function. All SQL Server datatypes are supported as parameters, except TIMESTAMP. Values returned by the function can be any datatype except TIMESTAMP, TEXT, NTEXT, or IMAGE. If an inline table value is required, the TABLE option without an accompanying column list may be used.
Tip
The ALTER FUNCTION and ALTER PROCEDURE statements support the full syntax provided by the corresponding CREATE statements. You can use the ALTER statements to change any of the attributes of an existing routine without changing permissions or affecting any dependent objects.

For UDFs, the code_block is either a single SELECT statement for an inline function, in the format RETURN (SELECT . . .), or a series of Transact-SQL statements following the AS clause for a multistatement operation. When using RETURN (SELECT), the AS clause is optional. Here are some other rules for SQL Server UDFs:
	When using the AS clause, the code_body should be enclosed in BEGIN . . . END delimiters.

	UDFs cannot make any permanent changes to data or cause other lasting side effects. A number of other restrictions exist as a result. For example, INSERT, UPDATE, and DELETE statements may modify only TABLE variables local to a function.

	When returning a scalar value, a SQL Server UDF must contain the clause RETURN datatype, where datatype is the same as that identified in the RETURNS clause.

	The last statement of the code_block must be an unconditional RETURN that returns a single datatype value or TABLE value.

	The code_block may not contain any global variables that return a perpetually changing value, such as @@CONNECTIONS or GETDATE. However, it may contain variables that return a single, unchanging value, such as @@SERVERNAME.

The following is an example of a scalar function that returns a single value. Once created, the scalar UDF can then be utilized in a query just like a system-supplied function:
CREATE FUNCTION metric_volume -- Input dimensions in centimeters.
 (@length decimal(4,1),
 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic centimeters.
AS BEGIN
 RETURN (@length * @width * @height)
 END
GO
SELECT project_name,
 metric_volume(construction_height,
 construction_length,
 construction_width)
FROM housing_construction
WHERE metric_volume(construction_height,
 construction_length,
 construction_width) >= 300000
GO
An inline table-valued UDF supplies values via a single SELECT statement using an AS RETURN clause. For example, we can supply a store ID and find all of that store's titles:
CREATE FUNCTION stores_titles(@stor_id varchar(30))
RETURNS TABLE
AS
RETURN (SELECT title, qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = @storeid)
Now, let's alter the UDF just a bit by changing the input argument datatype length and adding another condition to the WHERE clause (changes indicated in boldface):
ALTER FUNCTION stores_titles(@stor_id VARCHAR(4))
RETURNS TABLE
AS
RETURN (SELECT title, qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = @storeid
 AND s.city = 'New York')
User-defined functions that return TABLE values are often selected as result set values or are used in the FROM clause of a SELECT statement, just as a regular table is used. These multi-statement, table-valued functions can have very elaborate code bodies since the code_block is composed of many Transact-SQL statements that populate a TABLE return variable.
Here is an example invoking a multistatement, table-valued function in a FROM clause. Notice that a table alias is assigned, just as for a regular table:
SELECT co.order_id, co.order_price
FROM construction_orders AS co,
 fn_construction_projects('Cancelled') AS fcp
WHERE co.construction_id = fcp.construction_id
ORDER BY co.order_id
GO
For stored procedures, the code_block clause contains one or more Transact-SQL commands, up to a maximum size of 128 MB, delimited by BEGIN and END clauses. Some rules about Microsoft SQL Server stored procedures include:
	The code_block allows most valid Transact-SQL statements, but SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL are prohibited.

	Some other commands have restricted usages within stored procedures, including ALTER TABLE, CREATE INDEX, CREATE TABLE, all DBCC statements, DROP TABLE, DROP INDEX, TRUNCATE TABLE, and UPDATE STATISTICS.

	SQL Server allows deferred name resolution, meaning that a stored procedure compiles without an error even though it references an object that has not yet been created. SQL Server creates the execution plan and fails only when the object is actually invoked (for instance, in a stored procedure), if the object still doesn't exist.

	Stored procedures can be nested easily in SQL Server. Whenever a stored procedure invokes another stored procedure, the system variable @@NESTLEVEL is incremented by 1. It is decreased by 1 when the called procedure completes. Use SELECT @@NESTLEVEL inside a procedure or from an ad hoc query session to find the current nesting depth.

In the following example, a SQL Server stored procedure generates a unique 22-digit value (based on elements of the system date and time) and returns it to the calling process:
-- A Microsoft SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000
SELECT @next_nbr =
 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))
 AS CHAR(6), 6) +
 RIGHT('0000' + CAST(DATEPART (yy, GETDATE())
 AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE())
 AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE())
 AS CHAR(3)), 3)
END
GO
SQL Server supports functions and procedures written in Microsoft .NET Framework common language runtime (CLR) methods that can take and return user-supplied parameters. These routines have similar CREATE and ALTER declarations to regular SQL routines and functions; however, the code bodies are external assemblies. Refer to the SQL Server documentation if you want to learn more about programming routines using the CLR.

See Also
	CALL
	RETURN

Name
CREATE/ALTER INDEX Statement

Indexes are special objects built on top of tables that speed many data-manipulation operations, such as SELECT, UPDATE, and DELETE statements. The selectivity of a given WHERE clause and the available query plans the database query optimizer can choose from are usually based upon the quality of the indexes that have been placed on the table in a given database.
The CREATE INDEX command is not a part of the ANSI SQL standard, and thus its syntax varies greatly among vendors.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

Common Vendor Syntax
CREATE [UNIQUE] INDEX index_name ON table_name
(column_name[, ...])

Keywords
	CREATE [UNIQUE] INDEX index_name
	Creates a new index named index_name in the current database and schema context. Since indexes are associated with specific tables (or sometimes views), the index_name need only be unique to the table it is dependent on. The UNIQUE keyword defines the index as a unique constraint for the table and disallows any duplicate values into the indexed column or columns of the table. (Refer to "Constraints.")

	table_name
	Declares the pre-existing table with which the index is associated. The index is dependent upon the table: if the table is dropped, so is the index.

	column_name[, . . .])
	Defines one or more columns in the table that are indexed. The pointers derived from the indexed column or columns enable the database query optimizer to greatly speed up data-manipulation operations such as SELECT and DELETE statements. All major vendors support composite indexes, also known as concatenated indexes, which are used when two or more columns are best searched as a unit (for example, last_name and first_name columns).

Rules at a Glance
Indexes are created on tables to speed data-manipulation operations against those tables, such as those in a WHERE or JOIN clause. Indexes may also speed other operations, including:
	Identifying a MIN() or MAX() value in an indexed column.

	Sorting or grouping columns of a table.

	Searching based on IS NULL or IS NOT NULL.

	Fetching data quickly when the indexed data is all that is requested. A SELECT statement that retrieves data from an index and not directly from the table itself is called a covering query . An index that answers a query in this way is a covering index.

After creating a table, you can create indexes on columns within the table. It is a good idea to create indexes on columns that are frequently part of the WHERE clauses or JOIN clauses of the queries made against a table. For example, the following statement creates an index on a column in the sales table that is frequently used in the WHERE clauses of queries against that table:
CREATE INDEX ndx_ord_date ON sales(ord_date);
In another case, we want to set up the pub_name and country as a unique index on the publishers table:
CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country);
Since the index is unique, any new record entered into the publishers table must have a unique combination of publisher name and country.
Tip
Some vendor platforms allow you to create indexes on views as well as tables.

Programming Tips and Gotchas
Concatenated indexes are most useful when queries address the columns of the index starting from the left. If you omit left-side columns in a query against a concatenated key, the query may not perform as well. For example, assume that we have a concatenated index on (last_name, first_name). If we query only by first_name, the concatenated index that starts with last_name and includes first_name may not be any good to us. That said, some of the vendor platforms have now advanced their query engines to the point where this is much less of a problem than it used to be.
Tip
Creating an index on a table may cause that table to take up as much as 1.2 to 1.5 times more space than the table currently occupies. Make sure you have enough room! Most of that space is released after the index has been created.

You should be aware that there are situations in which too many indexes can actually slow down system performance. In general, indexes greatly speed lookup operations against a table or view, especially in SELECT statements. However, every index you create adds overhead whenever you perform an UPDATE, DELETE, or INSERT operation, because the database must update all dependent indexes with the values that have changed in the table. As a rule of thumb, 6 to 12 indexes are about the most you'll want to create on a single table.
In addition, indexes take up extra space within the database. The more columns there are in an index, the more space it consumes. This is not usually a problem, but it sometimes catches the novices off guard when they're developing a new database.
Most databases use indexes to create statistical samplings (usually just called statistics), so the query engine can quickly determine which, if any, index or combination of indexes will be most useful for a query. These indexes are always fresh and useful when the index is first created, but they may become stale and less useful over time as records in the table are deleted, updated, and inserted. Consequently, indexes, like day-old bread, are not guaranteed to be useful as they age. You need to be sure to refresh, rebuild, and maintain your databases regularly to keep index statistics fresh.

MySQL
MySQL supports a form of the CREATE INDEX statement, but not the ALTER INDEX statement. The types of indexes you can create in MySQL are determined by the engine type, and the indexes are not necessarily stored in B-tree structures on the filesystem. Strings within an index are automatically prefix- and end-space-compressed. MySQL's CREATE INDEX syntax is:
CREATE [ONLINE | OFFLINE] [UNIQUE | FULLTEXT] INDEX index_name
 [USING {BTREE | HASH | RTREE}]
 ON table_name (column_name(length)[, ...])
[KEY BLOCK SIZE int]
[WITH PARSER parser_name]
where:
	FULLTEXT
	Creates a full-text search index against a column. Full-text indexes are only supported on MyISAM table types and CHAR, VARCHAR, or TEXT datatypes. They do not support the (length) clause.

	ONLINE | OFFLINE
	ONLINE indicates that creating the index does not require the subject table to be copied first. OFFLINE copies the table before creating the index.

	USING {BTREE | HASH | RTREE}
	Specifies a specific type of index to use. RTREE indexes may be used only for SPATIAL indexes. Use this hint sparingly, since different storage engines allow different indextypes: MyISAM allows BTREE and RTREE, InnoDB allows only BTREE, NDB allows only HASH (and allows the USING clause only for unique keys and primary keys), and MEMORY/HEAP allows HASH and BTREE. This clause deprecates the TYPE type_name clause found in MySQL 5.1.10 and earlier.

	KEY BLOCK SIZE int
	Provides a hint to the storage engine about the size to use for index key blocks, where int is the value in kilobytes to use. A value of 0 means that the default for the storage engine should be used.

	WITH PARSER parser_name
	Used only with FULLTEXT indexes, this clause associates a parser plug-in with the index. Plug-ins are fully documented in the MySQL documentation.

MySQL supports the basic industry standard syntax for the CREATE INDEX statement. Interestingly, MySQL also lets you build an index on the first length characters of a CHAR or VARCHAR column. MySQL requires the length clause for BLOB and TEXT columns. Specifying a length can be useful when selectivity is sufficient in the first, say, 10 characters of a column, and in those situations where saving disk space is very important. This example indexes only the first 25 characters of the pub_name column and the first 10 characters of the country column:
CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name(25),
 country(10))
As a general rule, MySQL allows at least 16 keys per table, with a total maximum length of at least 256 bytes. This can vary by storage engine, however.

Oracle
Oracle allows the creation of indexes on tables, partitioned tables, clusters, and index-organized tables, as well as on scalar type object attributes of a typed table or cluster, and on nested table columns using the CREATE INDEX statement. Oracle also allows several types of indexes, including normal B-tree indexes, BITMAP indexes (useful for columns that have each value repeated 100 or more times), partitioned indexes, function-based indexes (based on an expression rather than a column value), and domain indexes.
Tip
Oracle index names must be unique within a schema, not just to the table to which they are assigned.

Oracle also supports the ALTER INDEX statement, which is used to change or rebuild an existing index without forcing the user to drop and recreate the index. Oracle's CREATE INDEX syntax is:
CREATE [UNIQUE | BITMAP] INDEX index_name
{ON
 {table_name ({column | expression} [ASC | DESC][, ...])
 [{INDEXTYPE IS index_type [PARALLEL [int] | NOPARALLEL]
 [PARAMETERS ('values')] }] |
 CLUSTER cluster_name |
 FROM table_name WHERE condition [LOCAL partitioning]}
[{LOCAL partitioning | GLOBAL partitioning}]
[physical_attributes_clause] [{LOGGING | NOLOGGING}] [ONLINE]
[COMPUTE STATISTICS] [{TABLESPACE tablespace_name | DEFAULT}]
[{COMPRESS int | NOCOMPRESS}] [{NOSORT | SORT}] [REVERSE]
[{VISIBLE | INVISIBLE}] [{PARALLEL [int] | NOPARALLEL}] }
and the syntax for ALTER INDEX is:
ALTER INDEX index_name
{ {ENABLE | DISABLE} | UNUSABLE | {VISIBLE | INVISIBLE} |
 RENAME TO new_index_name | COALESCE |
 [NO]MONITORING USAGE | UPDATE BLOCK REFERENCES |
 PARAMETERS ('ODCI_params') | alter_index_partitioning_clause |
 rebuild_clause |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']
 [INSTANCE int])]
 [SHRINK SPACE [COMPACT] [CASCADE]]
 [{PARALLEL [int] | NOPARALLEL}]
 [{LOGGING | NOLOGGING}]
 [physical_attributes_clause] }
where the non-ANSI clauses are:
	BITMAP
	Creates an index bitmap for each index value, rather than indexing each individual row. Bitmaps are best for low-concurrency tables (e.g., read-intensive tables). BITMAP indexes are incompatible with global partitioned indexes, the INDEXTYPE clause, and index-organized tables without a mapping table association.

	ASC | DESC
	Specifies that the values in the index be kept in either ascending (ASC) or descending (DESC) order. When ASC or DESC is omitted, ASC is used by default. However, be aware that Oracle treats DESC indexes as function-based indexes, so there is some difference in functionality between ASC and DESC indexes. You may not use ASC or DESC when you are using the INDEXTYPE clause. DESC is ignored on BITMAP indexes.

	INDEXTYPE IS index_type [PARAMETERS ('values')]
	Creates an index on a user-defined type of index_type. Domain indexes require that the user-defined type already exists. If the user-defined type requires arguments, pass them in using the optional PARAMETERS clause. You may also optionally parallelize the creation of the type index using the PARALLEL clause (explained in more detail later in this list).

	CLUSTER cluster_name
	Declares a clustering index based on the specified pre-existing cluster_name. On Oracle, a clustering index physically co-locates two tables that are frequently queried on the same columns, usually a primary key and a foreign key. (Clusters are created with the Oracle-specific command CREATE CLUSTER.) You do not declare a table or columns on a CLUSTER index, since both the tables involved and the columns indexed are already declared with the previously issued CREATE CLUSTER statement.

	GLOBAL partitioning
	Includes the full syntax:
GLOBAL PARTITION BY
 {RANGE (column_list) (PARTITION [partition_name] VALUE LESS THAN
 (value_list) [physical_attributes_clause]
 [TABLESPACE tablespace_name] [LOGGING | NOLOGGING][, ...])} |
 {HASH (column_list) (PARTITION [partition_name])
 {[TABLESPACE tablespace_name] [[OVERFLOW] TABLESPACE
 tablespace_name] [VARRAY varray_name STORE AS LOB
 lob_segment_name] [LOB (lob_name) STORE AS [lob_segment_name]]
 [TABLESPACE tablespace_name]} |
 [STORE IN (tablespace_name[, ...])] [OVERFLOW STORE IN
 (tablespace_name [,...])]}[, ...]
The GLOBAL PARTITION clause declares that the global index is manually partitioned via either range or hash partitioning onto partition_name. (The default is to partition the index equally in the same way the underlying table is partitioned, if at all.) You can specify a maximum of 32 columns, though none may be ROWID. You may also apply the [NO]LOGGING clause, the TABLESPACE clause, and the physical_attributes_clause (defined earlier) to a specific partition. You cannot partition on ROWID. You may include one or more partitions, along with any attributes, in a comma-delimited list, according to the following:
	RANGE
	Creates a range-partitioned global index based on the range of values from the table columns listed in the column_list.

	VALUE LESS THAN (value_list)
	Sets an upper bound for the current partition of the global index. The values in the value_list correspond to the columns in the column_list, both of which are comma-delimited lists of columns. Both lists are prefix-dependent, meaning that for a table with columns a, b, and c, you could define partitioning on (a, b) or (a, b, c), but not (b, c). The last value in the list should always be the keyword MAXVALUE.

	HASH
	Creates hash-partitioned global index, assigning rows in the index to each partition based on a hash function of the values of the columns in the column_list. You may specify the exact tablespace to store special database objects such as VARRAYs and LOBs, and for any OVERFLOW of the specified (or default) tablespaces.

	LOCAL partitioning
	Supports local index partitioning on range-partitioned indexes, list-partitioned indexes, hash-partitioned indexes, and composite-partitioned indexes. You may include zero or more partitions, along with any attributes, in a comma-delimited list. When this clause is omitted, Oracle generates one or more partitions consistent with those of the table partition. Index partitioning is done in one of three ways:
	Range- and list-partitioned indexes
	Applied to regular or equipartitioned tables. Range- and list-partitioned indexes (synonyms for the same thing) follow the syntax:
LOCAL [(PARTITION [partition_name]
 { [physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS] }[, ...])]
All of the options are the same as for GLOBAL PARTITION (see earlier), except that the scope is for a local index.

	Hash-partitioned indexes
	Applied to hash-partitioned tables. Hash-partitioned indexes allow you to choose between the earlier syntax and the following optional syntax:
LOCAL {STORE IN (tablespace_name[, ...]) |
 (PARTITION [partition_name] [TABLESPACE tablespace_name])}
to store the index partition on a specific tablespace. When you supply more tablespace names than index partitions, Oracle will cycle through the tablespaces when it partitions the data.

	Composite-partitioned indexes
	Applied on composite-partitioned tables, using the following syntax:
LOCAL [STORE IN (tablespace_name[, ...])]
PARTITION [partition_name]
 {[physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS]}
 [{STORE IN (tablespace_name[, ...]) |
 (SUBPARTITION [subpartition_name] [TABLESPACE tablespace_name])}]
You may use the LOCAL STORE clause shown under the hash-partitioned indexes entry, or the LOCAL clause shown under the range- and list-partitioned indexes entry. (When using the LOCAL clause, substitute the keyword SUBPARTITION for PARTITION.)

	physical_attributes_clause
	Establishes values for one or more of the following settings: PCTFREE int, PCTUSED int, and INITRANS int. When this clause is omitted, Oracle defaults to PCTFREE 10, PCTUSED 40, and INITRANS 2.
	PCTFREE int
	Designates the percentage of free space to leave on each block of the index as it is created. This speeds up new entries and updates on the table. However, PCTFREE is applied only when the index is created. It is not maintained over time. Therefore, the amount of free space can erode over time as records are inserted, updated, and deleted from the index. This clause is not allowed on index-organized tables.

	PCTUSED int
	Designates the minimum percentage of used space to be maintained on each data block. A block becomes available to row insertions when its used space falls below the value specified for PCTUSED. The default is 40. The sum of PCTFREE and PCTUSED must be equal to or less than 100.

	INITRANS int
	Designates the initial number of concurrent transactions allocated to each data block of the database. The value may range from 1 to 255.
Tip
In versions prior to 11g the MAXTRANS parameter was used to define the maximum allowed number of concurrent transactions on a data block, but this parameter has now been deprecated. Oracle 11g automatically sets MAXTRANS to 255, silently overriding any other value that you specify for this parameter (although existing objects retain their established MAXTRANS settings).

	LOGGING | NOLOGGING
	Tells Oracle to log the creation of the index on the redo logfile (LOGGING), or not to log it (NOLOGGING). This clause also sets the default behavior for subsequent bulk loads using Oracle SQL*Loader. For partitioned indexes, this clause establishes the default values of all partitions and segments associated with the partitions, and the defaults used on any partitions or subpartitions added later with an ALTER TABLE . . . ADD PARTITION statement. (When using NOLOGGING, we recommend that you take a full backup after the index has been loaded in case the index has to be rebuilt due to a failure.)

	ONLINE
	Allows data manipulation on the table while the index is being created. Even with ONLINE, there is a very small window at the end of the index creation operation where the table will be locked while the operation completes. Any changes made to the base table at that time will then be reflected in the newly created index. ONLINE is incompatible with bitmap, cluster, or parallel clauses. It also cannot be used on indexes on a UROWID column or on index-organized tables with more than 32 columns in their primary keys.

	COMPUTE [STATISTICS]
	Collects statistics while the index is being created, when it can be done with relatively little cost. Otherwise, you will have to collect statistics after the index is created.

	TABLESPACE {tablespace_name | DEFAULT}
	Assigns the index to a specific tablespace. When omitted, the index is placed in the default tablespace. Use the DEFAULT keyword to explicitly place an index into the default tablespace. (When local partitioned indexes are placed in TABLESPACE DEFAULT, the index partition (or subpartition) is placed in the corresponding tablespace of the base table partition (or subpartition).

	COMPRESS [int] | NOCOMPRESS
	Enables or disables key compression, respectively. Compression eliminates repeated occurrences of key column values, yielding a substantial space savings at the cost of speed. The integer value, int, defines the number of prefix keys to compress. The value can range from 1 to the number of columns in the index for nonunique indexes, and from 1 to n−1 columns for unique indexes. The default is NOCOMPRESS, but if you specify COMPRESS without an int value, the default is COMPRESS n (for nonunique indexes) or COMPRESS n-1 (for unique indexes), where n is the number of columns in the index. COMPRESS can only be used on nonpartitioned and nonbitmapped indexes.

	NOSORT | REVERSE
	NOSORT allows an index to be created quickly for a column that is already sorted in ascending order. If the values of the column are not in perfect ascending order, the operation aborts, allowing a retry without the NOSORT option. REVERSE, by contrast, places the index blocks in storage by reverse order (excluding ROWID). REVERSE is mutually exclusive of NOSORT and cannot be used on a bitmap index or an index-organized table. NOSORT is most useful for creating indexes immediately after a base table is loaded with data in presorted order.

	VISIBLE | INVISIBLE
	Declares whether the index is visible or invisible to the optimizer. Invisible indexes are maintained by DML operations but are not normally used by the optimizer for query performance. This is very useful when you cannot alter an index to disable it, but you really need Oracle to ignore the index.

	PARALLEL [int] | NOPARALLEL
	Allows the parallel creation of the index using multiple server process, each operating on a distinct subset of the index, to speed up the operation. An optional integer value, int, may be supplied to define the exact number of parallel threads used in the operation. When omitted, Oracle calculates the number of parallel threads to use. NOPARALLEL, the default, causes the index to be created serially.

	ENABLE | DISABLE
	Enables or disables a pre-existing function-based index, respectively. You cannot specify any other clauses of the ALTER INDEX statement with ENABLE or DISABLE.

	UNUSABLE
	Marks the index (or index partition or subpartition) as unusable. When UNUSABLE, an index (or index partition or subpartition) may only be rebuilt or dropped and recreated before it can be used.

	RENAME TO new_index_name
	Renames the index from index_name to new_index_name.

	COALESCE
	Merges the contents of index blocks used to maintain the index-organized table so that the blocks can be reused. COALESCE is similar to SHRINK, though COALESCE compacts the segments less densely than SHRINK and does not release unused space.

	[NO]MONITORING USAGE
	Declares that Oracle should clear existing information on index usage and monitor the index, posting information in the V$OBJECT_USAGE dynamic performance view, until ALTER INDEX . . . NOMONITORING USAGE is executed. The NOMONITORING USAGE clause explicity disables this behavior.

	UPDATE BLOCK REFERENCES
	Updates all stale guess data block addresses stored as part of the index row on normal or domain indexes of an index-organized table. The guess data blocks contain the correct database addresses for the corresponding blocks identified by the primary key. This clause cannot be used with other clauses of the ALTER INDEX statement.

	PARAMETERS ('ODCI_params')
	Specifies a parameter string passed, without interpretation, to the ODCI indextype routine of a domain index. The parameter string, called 'ODCI_params', may be up to 1,000 characters long. Refer to the vendor documentation for more information on ODCI parameter strings.

	alter_index_partitioning_clause
	Refer to in the section "Oracle partitioned and subpartitioned tables" under "Oracle" in the section on CREATE/ALTER TABLE for more details.

	rebuild_clause
	Rebuilds the index, or a specific partition (or subpartition) of the index. A successful rebuild marks an UNUSABLE index as USABLE. The syntax for the rebuild_clause is:
REBUILD {[NO]REVERSE | [SUB]PARTITION partn_name}
 [{PARALLEL [int] | NOPARALLEL}] [TABLESPACE tablespace_name]
 [PARAMETERS ('ODCI_params')] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS int | NOCOMPRESS] [[NO]LOGGING]
 [physical_attributes_clause]
where:
	[NO]REVERSE
	Stores the bytes of the index block in reverse order and excludes rows when the index is rebuilt (REVERSE), or stores the bytes of the index blocks in regular order (NOREVERSE).

	DEALLOCATE UNUSED [KEEP int [K | M | G | T]]
	Deallocates unused space at the end of the index (or at the end of each range or hash partition of a partitioned index) and frees the space for other segments in the tablespace. The optional KEEP keyword defines how many bytes (int) above the high-water mark the index will keep after deallocation. You can append a suffix to the int value to indicate that the value is expressed in kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). When the KEEP clause is omitted, all unused space is freed.

	ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename'] [INSTANCE int])
	Explicitly allocates a new extent for the index using the specified parameters. You may mix and match any of the parameters. SIZE specifies the size of the next extent, in bytes (no suffix), kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). DATAFILE allocates an entirely new datafile to the index extent. INSTANCE, used only on Oracle RACs, makes a new extent available to a freelist group associated with the specified instance.

	SHRINK SPACE [COMPACT] [CASCADE]
	Shrinks the index segments, though only segments in tablespaces with automatic segment management may be shrunk. Shrinking a segment moves rows in the table, so make sure ENABLE ROW MOVEMENT is also used in the ALTER TABLE . . . SHRINK statement. Oracle compacts the segment, releases the emptied space, and adjusts the high-water mark, unless the optional keywords COMPACT and/or CASCADE are applied. The COMPACT keyword only defragments the segment space and compacts the index; it does not readjust the high-water mark or empty the space immediately. The CASCADE keyword performs the same shrinking operation (with some restrictions and exceptions) on all dependent objects of the index. The statement ALTER INDEX . . . SHRINK SPACE COMPACT is functionally equivalent to ALTER INDEX . . . COALESCE.

By default, Oracle indexes are non-unique. It is also important to know that Oracle's regular B-tree indexes do not include records that have a NULL key value.
Oracle does not support indexes on columns with the following datatypes: LONG, LONG RAW, REF (with the SCOPE attribute), or any user-defined datatype. You may create indexes on functions and expressions, but they cannot allow NULL values or aggregate functions. When you create an index on a function, if it has no parameters the function should show an empty set (for example, function_name()). If the function is a UDF, it must be DETERMINISTIC.
Oracle supports a special index structure called an index-organized table (IOT) that combines the table data and primary key index on a single physical structure, instead of having separate structures for the table and the index. IOTs are created using the CREATE TABLE . . . ORGANIZATION INDEX statement. Refer to the section on the CREATE/ALTER TABLE statement for more information on making an IOT.
Oracle automatically creates any additional indexes on an index-organized table as secondary indexes. Secondary indexes do not support the REVERSE clause.
Oracle allows the creation of partitioned indexes and tables with the PARTITION clause. Consequently, Oracle's indexes also support partitioned tables. The LOCAL clause tells Oracle to create separate indexes for each partition of a table. The GLOBAL clause tells Oracle to create a common index for all the partitions.
Note that any time an object name is referenced in the syntax diagram, you may optionally supply the schema. This applies to indexes, tables, etc., but not to tablespaces. You must have the explicitly declared privilege to create an index in a schema other than the current one.
As an example, you can use a statement such as the following to create an Oracle index that is compressed and created in parallel, with compiled statistics, but without logging the creation:
CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
COMPRESS 1 PARALLEL NOLOGGING COMPUTE STATISTICS;
As with other Oracle object creation statements, you can control how much space the index consumes and in what increments it grows. The following example constructs an index in Oracle on a specific tablespace with specific instructions for how the data is to be stored:
CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)
TABLESPACE publishers;
For example, when you create the housing_construction table as a partitioned table on an Oracle server, you should also create a partitioned index with its own index partitions:
CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
GLOBAL PARTITION BY RANGE (project_id)
 (PARTITION part1 VALUES LESS THAN ('H')
 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 VALUES LESS THAN ('P')
 TABLESPACE construction_part2_ndx_ts,
 PARTITION part3 VALUES LESS THAN (MAXVALUE)
 TABLESPACE construction_part3_ndx_ts);
If in fact the housing_construction table used a composite partition, we could accommodate that here:
CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
STORAGE (INITIAL 10M MAXEXTENTS UNLIMITED)
LOCAL (PARTITION part1 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 TABLESPACE construction_part2_ndx_ts
 (SUBPARTITION subpart10, SUBPARTITION subpart20,
 SUBPARTITION subpart30, SUBPARTITION subpart40,
 SUBPARTITION subpart50, SUBPARTITION subpart60),
 PARTITION part3 TABLESPACE construction_part3_ndx_ts);
In the following example, we rebuild the project_id_ind index that was created earlier by using parallel execution processes to scan the old index and build the new index in reverse order:
ALTER INDEX project_id_ind
REBUILD REVERSE PARALLEL;
Similarly, we can split out an additional partition on project_id_ind:
ALTER INDEX project_id_ind
SPLIT PARTITION part3 AT ('S')
INTO (PARTITION part3_a TABLESPACE constr_p3_a LOGGING,
 PARTITION part3_b TABLESPACE constr_p3_b);

PostgreSQL
PostgreSQL allows the creation of ascending-order indexes, as well as UNIQUE indexes. Its implementation also includes a performance enhancement under the USING clause. PostgreSQL's CREATE INDEX syntax is:
CREATE [UNIQUE] INDEX [CONCURRENTLY] index_name ON table_name
[USING {BTREE | RTREE | HASH | GIST}]
{function_name | (column_name[, ...])}
[WITH FILLFACTOR = int]
[TABLESPACE tablespace_name]
[WHERE condition]
and the syntax for ALTER INDEX is:
ALTER INDEX index_name
[RENAME TO new_index_name]
[SET TABLESPACE new_tablespace_name]
[SET FILLFACTOR = int]
[RESET FILLFACTOR = int]
where:
	CONCURRENTLY
	Builds the index without acquiring any locks that would prevent concurrent inserts, updates, or deletes on the table. Normally, PostgreSQL locks the table to writes (but not reads) until the operation completes. Building an index concurrently is not recommended unless you can be sure that the table is not being used for write activity.

	USING {BTREE | RTREE | HASH | GIST}
	Specifies one of three dynamic access methods to optimize performance. Of particular importance is the fact that the indexes are fully dynamic and do not require periodic refreshes of their statistics. The USING options are as follows:
	BTREE
	Uses Lehman-Yao's high-concurrency B-tree structures to optimize the index. This is the default method when no other is specified. B-tree indexes can be invoked for comparisons using =, <, <=, >, and >=. B-tree indexes can be multicolumn.

	RTREE
	Uses Guttman's quadratic-split algorithm R-tree structures to optimize the index. R-tree indexes can be invoked for comparison using <<, &<, &>, >>, @, ~=, and &&. R-tree indexes must be single-column indexes. This keyword is deprecated and has been removed from the latest version of PostgreSQL. If this value is declared, PostgreSQL will interprete it as USING GIST.

	HASH
	Uses Litwin's linear hashing algorithm to optimize the index. Hash indexes can be invoked for comparisons using =. Hash indexes must be single-column indexes.

	GIST
	Uses Generalized Index Search Trees (GISTs) to optimize the index. GIST indexes may be multicolumn.

	function_name
	Defines a user-defined function, rather than a column from the base table, as the basis of the index values. A function-based index is mutually exclusive of a regular column-based index.

	WITH FILLFACTOR = int
	Defines a percentage for PostgreSQL to fill each index page during the creation process. For B-tree indexes, this is during the initial index creation process and when extending the index. The default is 90. PostgreSQL does not maintain the fillfactor over time, so it is advisable to rebuild the index at regular intervals to avoid excessive fragmentation and page splits.

	TABLESPACE tablespace_name
	Defines the tablespace where the index is created.

	WHERE condition
	Defines a WHERE clause search condition, which is then used to generate a partial index. A partial index contains entries for a select set of records in the table, not all records. You can get some interesting effects from this clause. For example, you can pair UNIQUE and WHERE to enforce uniqueness for a subset of the table rather than for the whole table. The WHERE clause must:
	Reference columns in the base table (though they need not be columns of the index itself).

	Not make use of aggregate functions.

	Not use subqueries.

	[RENAME TO new_index_name] [SET TABLESPACE new_tablespace_name] [SET FILLFACTOR = int] [RESET FILLFACTOR]
	Allows you to alter the properties of an existing index, for example to rename the index, specify a new tablespace for the index, specify a new fillfactor for the index, or reset the fillfactor to its default value. Note that for SET FILLFACTOR and RESET FILLFACTOR, we recommend that you rebuild the index with the REINDEX command because changes do not immediately take effect.

In PostgreSQL, a column may have an associated operator class based on the datatype of the column. An operator class specifies the operators for a particular index. Although users are free to define any valid operator class for a given column, the default operator class is the appropriate operator class for that column type.
In the following example, we create an index using the GIST indextype and make sure that uniqueness is enforced only for publishers outside of the USA:
CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
USING GIST
WHERE country <> 'USA';

SQL Server
SQL Server's CREATE INDEX syntax is:
CREATE [UNIQUE] [[NON]CLUSTERED] INDEX index_name
ON {table_name | view_name} (column [ASC | DESC][, ...])
[INCLUDE (column [ASC | DESC][, ...])]
[WITH [PAD_INDEX = {ON | OFF}] [FILLFACTOR = int] [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}] [DROP_EXISTING = {ON | OFF}]
 [ONLINE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int][, ...]]
[ON {filegroup | prtn (column) | DEFAULT}]
[FILESTREAM_ON {filestream_filegroup_name | prtn | "NULL"}]
and the syntax for ALTER INDEX is:
ALTER INDEX {index_name | ALL} ON {object_name}
{ DISABLE |
 REBUILD [PARTITION = prtn_nbr] [WITH
 ([SORT_IN_TEMPDB = {ON | OFF}][MAXDOP = int][, ...])]
 [WITH [PAD_INDEX = {ON | OFF}][FILLFACTOR = int]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int][, ...]] |
 REORGANIZE [PARTITION = prtn_nbr] [WITH (LOB_COMPACTION = {ON | OFF})] |
 SET [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}][, ...] }
where:
	[NON]CLUSTERED
	Controls the physical ordering of data for the table using either a CLUSTERED or a NONCLUSTERED index. The columns of a CLUSTERED index determine the order in which the records of the table are physically written. Thus, if you create an ascending clustered index on column A of table Foo, the records will be written to disk in ascending alphabetical order. The NONCLUSTERED clause (the default when a value is omitted) creates a secondary index containing only pointers and has no impact on how the actual rows of the table are written to disk.

	ASC | DESC
	Specifies that the values in the index be kept in either ascending (ASC) or descending (DESC) order. When ASC or DESC is omitted, ASC is used by default.

	WITH
	Allows the specification of one or more optional attributes for the index.
	PAD_INDEX = {ON | OFF}
	Specifies that space should be left open on each 8K index page, according to the value established by the FILLFACTOR setting.

	FILLFACTOR = int
	Declares a percentage value, int, from 1 to 100 that tells SQL Server how much of each 8K data page should be filled at the time the index is created. This is useful to reduce I/O contention and page splits when a data page fills up. Creating a clustered index with an explicitly defined fillfactor can increase the size of the index, but it can also speed up processing in certain circumstances.

	IGNORE_DUP_KEY = {ON | OFF}
	Controls what happens when a duplicate record is placed into a unique index through an insert or update operation. If this value is set for a column, only the duplicate row is excluded from the operation. If this value is not set, all records in the operation (even nonduplicate records) are rejected as duplicates.

	DROP_EXISTING = {ON | OFF}
	Drops any pre-existing indexes on the table and rebuilds the specified index.

	STATISTICS_NORECOMPUTE = {ON | OFF}
	Stops SQL Server from recomputing index statistics. This can speed up the CREATE INDEX operation, but it may mean that the index is less effective.

	ONLINE = {ON | OFF}
	Specifies whether underlying tables and associated indexes are available for queries and data-manipulation statements during the index operation. The default is OFF. When set to ON, long-term write locks are not held, only shared locks.

	SORT_IN_TEMPDB = {ON | OFF}
	Stores any intermediate results used to build the index in the system database, TEMPDB. This increases the space needed to create the index, but it can speed processing if TEMPDB is on a different disk than the table and index.

	ALLOW_ROW_LOCKS = {ON | OFF}
	Specifies whether row locks are allowed. When omitted, the default is ON.

	ALLOW_PAGE_LOCKS = {ON | OFF}
	Specifies whether page locks are allowed. When omitted, the default is ON.

	MAXDOP = int
	Specifies the maximum degrees of parallelism for the duration of the indexing operation. 1 suppresses parallelism. A value greater than 1 restricts the operation to the number of processors specified. 0, the default, allows SQL Server to choose up to the actual number of processors on the system.

	ON filegroup
	Creates the index on a given pre-existing filegroup. This enables the placing of indexes on a specific hard disk or RAID device. Issuing a CREATE CLUSTERED INDEX . . . ON FILEGROUP statement effectively moves a table to the new filegroup, since the leaf level of the clustered index is the same as the actual data pages of the table.

	DISABLE
	Disables the index, making it unavailable for use in query execution plans. Disabled nonclustered indexes do not retain underlying data in the index pages. Disabling a clustered index makes the underlying table unavailable to user access. You can re-enable an index with ALTER INDEX REBUILD or CREATE INDEX WITH DROP_EXISTING.

	REBUILD [PARTITION = prtn_nbr]
	Rebuilds an index using the pre-existing properties, including columns in the index, indextype, uniqueness attributes, and sort order. You may optionally specify a new partition. This clause will not automatically rebuild associated nonclustered indexes unless you include the keyword ALL. When using this clause to rebuild an XML or spatial index, you may not also use the ONLINE = ON or IGNORE_DUP_KEY = ON clauses. Equivalent to DBCC DBREINDEX.

	REORGANIZE [PARTITION = prtn_nbr]
	Performs an online reorganization of the leaf level of the index (i.e., no long-term blocking table locks are held and queries and updates to the underlying table can continue). You may optionally specify a new partition. Not allowed with ALLOW_PAGE_LOCKS=OFF. Equivalent to DBCC INDEXDEFRAG.

	WITH (LOB_COMPACTION = {ON | OFF})
	Compacts all pages containing LOB datatypes, including IMAGE, TEXT, NTEXT, VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX), and XML. When omitted, the default is ON. The clause is ignored if no LOB columns are present. When ALL is specified, all indexes associated with the table or view are reorganized.

	SET
	Specifies index options without rebuilding or reorganizing the index. SET cannot be used on a disabled index.

SQL Server allows the creation of a unique clustered index on a view, effectively materializing the view. This can greatly speed up data-retrieval operations against the view. Once a view has a unique clustered index, nonclustered indexes can be added to the view. Note that the view also must be created using the SCHEMABINDING option. Indexed views are allowed only in SQL Server 2000 Enterprise Edition, unless you add a NOEXPAND hint to the view. Indexed views support data retrieval, but not data modification.
SQL Server allows up to 249 nonclustered indexes (unique or non-unique) on a table, as well as one primary key index. Index columns may not be of the datatypes NTEXT, TEXT, or IMAGE.
SQL Server automatically parallelizes the creation of the index according to the configuration option max degree of parallelism.
It is often necessary to build indexes that span several columns—i.e., a concatenated key . Concatenated keys may contain up to 16 columns and/or a total of 900 bytes across all fixed-length columns. Here is an example:
CREATE UNIQUE INDEX project2_ind
ON housing_construction(project_name, project_date)
WITH PAD_INDEX, FILLFACTOR = 80
ON FILEGROUP housing_fg
GO
Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells SQL Server to leave the index and data pages 80% full, rather than 100% full. This example also tells SQL Server to create the index on the housing_fg filegroup, rather than the default filegroup.

See Also
	CREATE/ALTER TABLE
	DROP

Name
CREATE/ALTER METHOD Statement

The CREATE/ALTER METHOD statements allow the creation of a new database method or the alteration of an already existing database method. An easy (but loose) way to think of a method is that it is a user-defined function associated with a user-defined type. For example, a method called Office, of type Address, can accept a VARCHAR input parameter and passes out a result Address.
An implicitly defined method is created every time a structured type is created. Using a combination of the CREATE TYPE statement and the CREATE METHOD statement creates user-defined methods.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Not supported

	PostgreSQL
	Not supported

	SQL Server
	Not supported

SQL2003 Syntax
{CREATE | ALTER} [INSTANT | STATIC] METHOD method_name
 ([{IN | OUT | INOUT}] param datatype [AS LOCATOR] [RESULT][, ...])
RETURNS datatype
FOR udt_name
[SPECIFIC specific_name] code_body

Keywords
	{CREATE | ALTER} [INSTANT | STATIC] method_name
	Creates a new method or alters an existing method and, optionally, specifies it as an INSTANT or STATIC method.

	([{IN | OUT | INOUT}] param datatype[, . . .])
	Declares one or more parameters to be passed into the method in a comma-delimited list enclosed in parentheses. Parameters used with a method may pass a value IN, OUT, or both in and out via INOUT. The syntax for the parameter declaration is:
[{IN | OUT | INOUT}] parameter_name1 datatype,
[{IN | OUT | INOUT}] parameter_name2 datatype,[...]
Make sure the name is unique within the method. When used with ALTER, this clause adds parameters to a pre-existing method. Refer to Chapter 2 for details on datatypes.

	AS LOCATOR
	The optional AS LOCATOR clause is used to validate an external routine with a RETURNS parameter that is a BLOB, CLOB, NCLOB, ARRAY, or user-defined type. In other words, the locator (i.e., a pointer) for the LOB is returned, but not the entire value of the LOB.

	RESULT
	Designates a user-defined type. Not needed for standard datatypes.

	RETURNS datatype
	Declares the datatype of the results returned by a method. The key purpose of a user-defined method is to return a value. If you need to change the datatype of a RETURNS parameter on the fly, use the CAST clause (refer to the function CAST); for example, RETURNS VARCHAR(12) CAST FROM DATE.

	FOR udt_name
	Associates the method with a specific, pre-existing user-defined type, created using CREATE TYPE.

	SPECIFIC specific_name
	Uniquely identifies the function; generally used with user-defined types.

Rules at a Glance
User-defined methods are essentially a different approach to obtaining the same output provided by user-defined functions. For example, consider the following two pieces of code:
CREATE FUNCTION my_fcn (order_udt)
RETURNS INT;
CREATE METHOD my_mthd ()
RETURNS INT
FOR order_udt;
Although the code sections for the function and method are different, they do exactly the same thing.
The rules for use and invocation of methods are otherwise the same as for functions.

Programming Tips and Gotchas
The main difficulty with CREATE METHOD statements is that they are an object-oriented approach to the same sort of functionality provided by user-defined functions. Since they accomplish the same work using a different approach, it can be hard to decide which approach to use.

MySQL
Not supported.

Oracle
Not supported.

PostgreSQL
Not supported.

SQL Server
Not supported.

See Also
	CREATE/ALTER TYPE

Name
CREATE ROLE Statement

CREATE ROLE allows the creation of a named set of privileges that may be assigned to users of a database. When a role is granted to a user, that user gets all the privileges and permissions of that role. Roles are generally accepted as one of the best means for maintaining security and controlling privileges within a database.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

Keywords
	CREATE ROLE role_name
	Creates a new role and differentiates that role from a host DBMS user and other roles. A role can be assigned any permission that a user can be assigned. The important difference is that a role can then be assigned to one or more users, thus giving them all the permissions of that role.

	WITH ADMIN {CURRENT_USER | CURRENT_ROLE}
	Assigns a role immediately to the currently active user or currently active role along with the privilege to pass the use of the role on to other users. By default, the statement defaults to WITH ADMIN CURRENT_USER.

Rules at a Glance
Using roles for database security can greatly ease administration and user maintenance. The general steps for using roles in database security are:
	Assess the needs for roles and pick the role names (e.g., administrator, manager, data_entry, report_writer, etc.).

	Assign permissions to each role as if it were a standard database user, using the GRANT statement. For example, the manager role might have permission to read from and write to all user tables in a database, while the report_writer role might only have permission to execute read-only reports against certain reporting tables in the database.

	Use the GRANT statement to grant roles to users of the system according to the types of work they will perform.

Permissions can be disabled using the REVOKE command.

Programming Tips and Gotchas
The main problem with roles is that occasionally a database administrator will provide redundant permissions to a role and separately to a user. If you ever need to prevent a user's access to a resource in situations like this, you usually will need to REVOKE the permissions twice: the role must be revoked from the user, and then the specific user-level privilege must also be revoked from the user.

MySQL
Not supported.

Oracle
Although it is not currently supported by the ANSI standard, Oracle also offers an ALTER ROLE statement. Oracle supports the concept of roles, though its implementation of the commands is very different from the ANSI SQL standard:
{CREATE | ALTER} ROLE role_name
 [NOT IDENTIFIED |
 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY |
 USING package_name}]
where:
	{CREATE | ALTER} ROLE role_name
	Identifies the name of the new role being created or the pre-existing role being modified.

	NOT IDENTIFIED
	Declares that no password is needed for the role to receive authorization to the database. This is the default.

	IDENTIFIED
	Declares that the users of the role must authenticate themselves by the method indicated before the role is enabled via the SET ROLE command, where:
	BY password
	Creates a local role authenticated by the string value of password. Only single-byte characters are allowed in the password, even when using a multibyte character set.

	EXTERNALLY
	Creates an external role that is authenticated by the operating system or a third-party provider. In either case, the external authentication service will likely require a password.

	GLOBALLY
	Creates a global role that is authenticated by an enterprise directory service, such as an LDAP directory.

	USING package_name
	Creates an application role that enables a role only through an application that uses a PL/SQL package of package_name. If you omit the schema, Oracle assumes that the package is in your schema.

In Oracle, the role is created first, then granted privileges and permissions as if it is a user via the GRANT command. When users want to get access to the permissions of a role protected by a password, they use the SET ROLE command. If a password is placed on the role, any user wishing to access it must provide the password with the SET ROLE command.
Oracle ships with several preconfigured roles. CONNECT, DBA, and RESOURCE are available in all versions of Oracle. EXP_FULL_DATABASE and IMP_FULL_DATABASE are newer roles used for import and export operations. The GRANT statement reference has a more detailed discussion of all of the preconfigured roles available in Oracle.
The following example uses CREATE to specify a new role in Oracle, GRANTs it privileges, assigns it a password with ALTER ROLE, and GRANTs the new role to a couple of users:
CREATE ROLE boss;
GRANT ALL ON employee TO boss;
GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;
ALTER ROLE boss IDENTIFIED BY le_grand_fromage;
GRANT boss TO emily, jake;

PostgreSQL
PostgreSQL supports both the ALTER and CREATE ROLE statements, and it offers a nearly identical extension of its own called ALTER/CREATE GROUP. The syntax for CREATE ROLE follows:
{CREATE | ALTER} ROLE name
[[WITH] [[NO]SUPERUSER] [[NO]CREATEDB] [[NO]CREATEUSER] [[NO]INHERIT]
[[NO]LOGIN]
 [CONNECTION LIMIT int] [{ENCRYPTED | UNENCRYPTED} PASSWORD 'password']
 [VALID UNTIL 'date_and_time'] [IN ROLE rolename[, ...]]
 [IN GROUP groupname[, ...]] [ROLE rolename[, ...]]
 [ADMIN rolename[, ...]] [USER rolename[, ...]] [SYSID int][...]]
[RENAME TO new_name]
[SET parameter {TO | =} {value | DEFAULT}]
[RESET parameter]
where:
	{CREATE | ALTER} ROLE name
	Specifies the new role to create or the existing role to modify, where name is the name of the role to create or modify.

	[NO]SUPERUSER
	Specifies whether the role is a superuser or not. The superuser may override all access restrictions within the database. NOSUPERUSER is the default.

	[NO]CREATEDB
	Specifies whether the role may create databases or not. NOCREATEDB is the default.

	[NO]CREATEROLE
	Specifies whether the role may create new roles and alter or drop other roles. NOCREATEROLE is the default.

	[NO]CREATEUSER
	Specifies whether the role may create a superuser. This clause is deprecated in favor of [NO]SUPERUSER.

	[NO]INHERIT
	Specifies whether the role inherits the privileges of the roles of which it is a member. A role with INHERIT automatically may use the privileges that are granted to the roles that of which it is (directly or indirectly) a member. INHERIT is the default.

	[NO]LOGIN
	Specifies whether the role may log in. With LOGIN, a role is essentially a user. With NOLOGIN, a role provides mapping to specific database privileges but is not an actual user. The default is NOLOGIN.

	CONNECTION LIMIT int
	Specifies how many concurrent connections a role can make, if it has LOGIN privileges. The default is −1; that is, unlimited.

	{ENCRYPTED | UNENCRYPTED} PASSWORD 'password'
	Sets a password for the role, if it has LOGIN privileges. The password may be stored in plain text (UNENCRYPTED) or encrypted in MD5-format in the system catalogs (ENCRYPTED). Older clients may not support MD5 authentication, so be careful.

	VALID UNTIL 'date_and_time'
	Sets a date and time when the role's password will expire, if it has LOGIN privileges. When omitted, the default is no time limit.

	IN ROLE, IN GROUP
	Specifies one or more existing roles (or groups, though this clause is deprecated) of which the role is a member.

	ROLE, GROUP
	Specifies one or more existing roles (or groups, though this clause is deprecated) that are automatically added as members of the new or modified role.

	ADMIN rolename
	Similar to the ROLE clause, except new roles are added WITH ADMIN OPTION, giving them the right to grant membership in this role to others.

	SYSID int, USER username
	Deprecated clauses that are still accepted for backward compatibility. USER is equivalent to the ROLE clause and SYSID is equivalent to the GROUP clause.

	[RENAME TO new_name] [SET parameter {TO | =} {value | DEFAULT}] [RESET parameter]
	Renames an existing role to a new name, sets a configuration parameter, or resets a configuration parameter to the default value. Configuration parameters are fully detailed within PostgreSQL's documentation.

Use the DROP ROLE clause to drop a role you no longer want.

SQL Server
Microsoft SQL Server supports the ALTER and CREATE ROLE statements, as well as equivalent capabilities via the system stored procedure sp_add_role. SQL Server's syntax follows:
CREATE ROLE role_name [AUTHORIZATION owner_name]
 [WITH NAME = new_role_name]
where:
	AUTHORIZATION owner_name
	Specifies the database user or role that owns the new role. When omitted, the role is owned by the user that created it. Only used with CREATE ROLE.

	WITH NAME = new_role_name
	Specifies the new name of the role. Only used with ALTER ROLE.

See Also
	GRANT
	REVOKE

Name
CREATE SCHEMA Statement

This statement creates a schema—i.e., a named group of related objects. A schema is a collection of tables, views, and permissions granted to specific users or roles. According to the ANSI standard, specific object permissions are not schema objects in themselves and do not belong to a specific schema. However, roles are sets of privileges that do belong to a schema.
	Platform
	Command

	MySQL
	Supported (as CREATE DATABASE)

	Oracle
	Supported, with variations

	PostgreSQL
	Not supported

	SQL Server
	Supported, with limitations

SQL2003 Syntax
CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]
[DEFAULT CHARACTER SET char_set_name]
[PATH schema_name[, ...]]
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]

Keywords
	CREATE SCHEMA [schema_name]
	Creates a schema called schema_name. When omitted, the database will create a schema name for you using the name of the user who owns the schema.

	AUTHORIZATION owner_name
	Specifies the user who will be the owner of the schema. When this clause is omitted, the current user is set as the owner. The ANSI standard allows you to omit either the schema_name or the AUTHORIZATION clause, or to use them both together.

	DEFAULT CHARACTER SET char_set_name
	Declares a default character set of char_set_name for all objects created within the schema.

	PATH schema_name[, . . .]
	Optionally declares a file path and filename for any unqualified routines (i.e., stored procedures, user-defined functions, user-defined methods) in the schema.

	ANSI CREATE statements [. . .]
	Contains one or more CREATE statements. No commas are used between the CREATE statements.

	ANSI GRANT statements [. . .]
	Contains one or more GRANT statements that apply to previously defined objects. Usually, the objects were created earlier in the same CREATE SCHEMA statement, but they may be pre-existing objects. No commas are used between the GRANT statements.

Rules at a Glance
The CREATE SCHEMA statement is a container that can hold many other CREATE and GRANT statements. The most common way to think of a schema is as all of the objects that a specific user owns. For example, the user jake may own several tables and views in his own schema, including a table called publishers. Meanwhile, the user dylan may own several other tables and views in his schema, but may also own his own separate copy of the publishers table.
The ANSI standard requires that all CREATE statements are allowed in a CREATE SCHEMA statement. In practice, however, most implementations of CREATE SCHEMA allow only three subordinate statements: CREATE TABLE, CREATE VIEW, and GRANT. The order of the commands is not important, meaning that (although it is not recommended) you can grant privileges on tables or views whose CREATE statements appear later in the CREATE SCHEMA statement.

Programming Tips and Gotchas
It is not required, but it is considered a best practice to arrange the objects and grants within a CREATE SCHEMA statement in an order that will execute naturally. In other words, CREATE VIEW statements should follow the CREATE TABLE statements that they depend on, and the GRANT statements should come last.
If your database system uses schemas, we recommend that you always reference your objects by schema and then object name (as in jake.publishers). If you do not include a schema qualifier, the database platform will typically assume the default schema for the current user connection.
Some database platforms do not explicitly support the CREATE SCHEMA command. However, they implicitly create a schema when a user creates database objects. For example, Oracle creates a schema whenever a user is created. The CREATE SCHEMA command is simply a single-step method of creating all the tables, views, and other database objects along with their permissions.

MySQL
MySQL supports the CREATE SCHEMA statement as a synonym of the CREATE DATABASE statement. Refer to that section for more information on MySQL's implementation.

Oracle
In Oracle, the CREATE SCHEMA statement does not actually create a schema; only the CREATE USER statement does that. What CREATE SCHEMA does is allow a user to perform multiple CREATEs and GRANTs in a previously created schema in one SQL statement:
CREATE SCHEMA AUTHORIZATION schema_name
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]
Note that Oracle only allows ANSI-standard CREATE TABLE, CREATE VIEW, and GRANT statements within a CREATE SCHEMA statement. You should not use any of Oracle's extensions to these commands when using the CREATE SCHEMA statement.
The following Oracle example places the permissions before the objects within the CREATE SCHEMA statement:
CREATE SCHEMA AUTHORIZATION emily
 GRANT SELECT, INSERT ON view_1 TO sarah
 GRANT ALL ON table_1 TO sarah
 CREATE VIEW view_1 AS
 SELECT column_1, column_2
 FROM table_1
 ORDER BY column_2
 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));
As this example shows, the order of the statements within the CREATE SCHEMA statement is unimportant; Oracle commits the CREATE SCHEMA statement only if all CREATE and GRANT statements in the statement complete successfully.

PostgreSQL
PostgreSQL supports both ALTER and CREATE SCHEMA statements without support for the PATH and DEFAULT CHARACTER SET clauses. The CREATE SCHEMA syntax follows:
CREATE SCHEMA { schema_name [AUTHORIZATION user_name] | AUTHORIZATION user_name }
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]
When the schema_name is omitted, the user_name is used to name the schema. Currently, PostgreSQL supports only the following CREATE statements within a CREATE SCHEMA statement: CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, and CREATE TRIGGER. Other CREATE statements must be handled separately from the CREATE SCHEMA statement.
The ALTER SCHEMA syntax follows:
ALTER SCHEMA schema_name [RENAME TO new_schema_name] [OWNER TO new_user_name]
The ALTER SCHEMA statement allows you to rename a schema or to specify a new owner, who must be a pre-existing user on the database.

SQL Server
SQL Server supports the basic CREATE SCHEMA statement, without support for the PATH clause or the DEFAULT CHARACTER SET clause:
CREATE SCHEMA AUTHORIZATION owner_name
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]
If any statement fails within the CREATE SCHEMA statement, the entire statement fails.
SQL Server does not require that the CREATE or GRANT statements be in any particular order, except that nested views must be declared in their logical order. That is, if view_100 references view_10, view_10 must appear in the CREATE SCHEMA statement before view_100.
For example:
CREATE SCHEMA AUTHORIZATION katie
 GRANT SELECT ON view_10 TO public
 CREATE VIEW view_10(col1) AS SELECT col1 FROM foo
 CREATE TABLE foo(col1 INT)
 CREATE TABLE foo
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo2(col1))
 CREATE TABLE foo2
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo(col1));
The syntax for ALTER ROLE follows:
ALTER ROLE owner_name WITH NAME = new_owner_name;
The ALTER ROLE statement merely allows the assignment of a new owner to an existing schema.

See Also
	CREATE/ALTER TABLE
	CREATE/ALTER VIEW
	GRANT

Name
CREATE/ALTER TABLE Statement

Manipulating tables is one of the most common activities that database administrators and programmers perform when working with database objects. This section details how to create and modify tables.
The ANSI standard represents a sort of least common denominator among the vendors. Although not all vendors offer every option of the ANSI-standard version of CREATE TABLE and ALTER TABLE, the ANSI standard does represent the basic form that can be used across all of the platforms. Conversely, the vendor platforms offer a variety of extensions and additions to the ANSI standards for CREATE and ALTER TABLE.
Tip
Typically, a great deal of consideration goes into the design and creation of a table. This discipline is known as database design. The discipline of analyzing the relationship of a table to its own data and to other tables within the database is known as normalization. We recommend that database programmers and administrators alike study both database design and normalization principles thoroughly before issuing CREATE TABLE commands.

	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
The SQL2003 statement CREATE TABLE creates a permanent or temporary table within the database where the command is issued. The syntax is as follows:
CREATE [{LOCAL TEMPORARY| GLOBAL TEMPORARY}] TABLE table_name
 (column_name datatype attributes[, ...]) |
 [column_name WITH OPTIONS options] |
 [LIKE table_name] |
 [REF IS column_name
 {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [CONSTRAINT constraint_type [constraint_name][, ...]]
[OF type_name [UNDER super_table] [table_definition]]
[ON COMMIT {PRESERVE ROWS | DELETE ROWS}
The SQL2003 statement ALTER TABLE allows many useful modifications to be made to an existing table without dropping any existing indexes, triggers, or permissions assigned to it. Following is the ALTER TABLE syntax:
ALTER TABLE table_name
[ADD [COLUMN] column_name datatype attributes]
| [ALTER [COLUMN] column_name SET DEFAULT default_value]
| [ALTER [COLUMN] column_name DROP DEFAULT]
| [ALTER [COLUMN] column_name ADD SCOPE table_name]
| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]
| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]
| [ADD table_constraint]
| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

Keywords
	CREATE [{LOCAL TEMPORARY | GLOBAL TEMPORARY}] TABLE
	Declares a permanent table or a TEMPORARY table of LOCAL or GLOBAL scope. Local temporary tables are accessible only to the session that created them and are automatically dropped when that session terminates. Global temporary tables are accessible by all active sessions but are also automatically dropped when the session that created them terminates. Do not qualify a temporary table with a schema name.

	(column_name datatype attributes[, . . .])
	Defines a comma-delimited list of one or more columns, their datatypes, and any additional attributes (such as nullability). Every table declaration must contain at least one column, which may include:
	column_name
	Specifies a name for a column. The name must be a valid identifier according to the rules of the specific DBMS. Make sure the name makes sense!

	datatype
	Associates a specific datatype with the column identified by column_name. An optional length may be specified for datatypes that allow user-defined lengths, for example VARCHAR(255). It must be a valid datatype on the specific DBMS. Refer to Chapter 2 for a full discussion of acceptable datatypes and vendor variations.

	attributes
	Associates specific constraint attributes with the column_name. Many attributes may be applied to a single column_name, no commas required. Typical ANSI attributes include:

	NOT NULL
	Tells the column to reject NULL values or, when omitted, to accept them. Any INSERT or UPDATE statement that attempts to place a NULL value in a NOT NULL column will fail and roll back.

	DEFAULT expression
	Tells the column to use the value of expression when no value is supplied by an INSERT or UPDATE statement. The expression must be acceptable according to the datatype of the column; for example, no alphabetic characters may be used in an INTEGER column. expression may be a string or numeric literal, but you may also define a user-defined function or system function. SQL2003 allows these system functions in a DEFAULT expression: NULL, USER, CURRENT_USER, SESSION_USER, SYSTEM_USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, LOCALTIME, CURRENT_TIMESTAMP, LOCALTIMESTAMP, ARRAY, or ARRAY[].

	COLLATE collation_name
	Defines a specific collation, or sort order, for the column to which it is assigned. The name of the collation is platform-dependent. If you do not define a collation, the columns of the table default to the collation of the character set used for the column.

	REFERENCES ARE [NOT] CHECKED [ON DELETE {RESTRICT | SET NULL}]
	Indicates whether references are to be checked on a REF column defined with a scope clause. The optional ON DELETE clause tells whether any values in records referenced by a deleted record should set to NULL, or whether the operation should be restricted.

	CONSTRAINT constraint_name [constraint_type [constraint]]
	Assigns a constraint and, optionally a constraint name, to the specific column. Constraint types are discussed in Chapter 2. Because the constraint is associated with a specific column, the constraint declaration assumes that the column is the only one in the constraint. After the table is created, the constraint is treated as a table-level constraint.

	column_name [WITH OPTIONS options]
	Defines a column with special options, such as a scope clause, a default clause, a column-level constraint, or a COLLATE clause. For many implementations, the WITH OPTIONS clause is restricted to the creation of typed tables.

	LIKE table_name
	Creates a new table with the same column definitions as the pre-existing table named table_name.

	REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}
	Defines the object identifier column (OID) for a typed table. An OID is necessary for the root table of a table hierarchy. Based on the option specified, the REF might be automatically generated by the system (SYSTEM GENERATED), manually provided by the user when inserting the row (USER GENERATED), or derived from another REF (DERIVED). Requires the inclusion of a REFERENCES column attribute for column_name.

	CONSTRAINT constraint_type [constraint_name][, . . .]
	Assigns one or more constraints to the table. This option is noticeably different from the CONSTRAINT option at the column level, because column-level constraints are assumed to apply only to the column with which they are associated. Table-level constraints, however, give the option of associating multiple columns with a constraint. For example, in a sales table you might wish to declare a unique constraint on a concatenated key of store_id, order_id, and order_date. This can only be done using a table-level constraint. Refer to Chapter 2 for a full discussion of constraints.

	OF type_name [UNDER super_table] [table_definition]
	Declares that the table is based upon a pre-existing user-defined type. In this situation, the table may have only a single column for each attribute of the structured type, plus an additional column, as defined in the REF IS clause. This clause is incompatible with the LIKE table_name clause.
	[UNDER super_table] [table_definition]
	Declares the direct supertable of the currently declared table within the same schema, if any exists. The table being created is thus a direct subtable of the supertable. You may optionally provide a complete table_definition of the new subtable, complete with columns, constraints, etc.

	ON COMMIT {PRESERVE ROWS | DELETE ROWS}
	ON COMMIT PRESERVE ROWS preserves data rows in a temporary table on issuance of a COMMIT statement. ON COMMIT DELETE ROWS deletes all data rows in a temporary table on COMMIT.

	ADD [COLUMN] column_name datatype attributes
	Adds a column to a table, along with the appropriate datatype and attributes.

	ALTER [COLUMN] column_name SET DEFAULT default_value
	Adds a default value to the column if none exists, and resets the default value if a previous one exists.

	ALTER [COLUMN] column_name DROP DEFAULT
	Completely removes a default from the named column.

	ALTER [COLUMN] column_name ADD SCOPE table_name
	Adds a scope to the named column. A scope is a reference to a user-defined datatype.

	ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}
	Drops a scope from the named column. The RESTRICT and CASCADE clauses are defined at the end of this list.

	DROP COLUMN column_name {RESTRICT | CASCADE}
	Drops the named column from the table.

	ADD table_constraint
	Adds a table constraint of the specified name and characteristics to the table.

	DROP CONSTRAINT constraint_name {RESTRICT | CASCADE}
	Drops a previously defined constraint from the table.

	RESTRICT
	Tells the DBMS to abort the command if it finds any other objects in the database that depend on the object.

	CASCADE
	Tells the DBMS to drop any other objects that depend on the object.

Rules at a Glance
The typical CREATE TABLE statement is very simple. Generally, it names the table and any columns contained in the table. Many table definitions also include a nullability constraint for most of the columns, as in this SQL Server example:
CREATE TABLE housing_construction
 (project_number INT NOT NULL,
 project_date DATE NOT NULL,
 project_name VARCHAR(50) NOT NULL,
 construction_color NCHAR(20) ,
 construction_height DECIMAL(4,1),
 construction_length DECIMAL(4,1),
 construction_width DECIMAL(4,1),
 construction_volume INT)
This example adds a foreign key to the example table:
-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) ,
 subcategory VARCHAR(40) ,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT fk_categories FOREIGN KEY (category)
 REFERENCES category(cat_name));
The foreign key on the categories column relates it to the cat_name table in the category table. All the vendors discussed in this book support this syntax.
Tip
Examples for creating a table with each constraint type are shown in Chapter 2.

Similarly, the foreign key could be added after the fact as a multicolumn key including both the category and subcategory columns:
ALTER TABLE favorite_books ADD CONSTRAINT fk_categories
 FOREIGN KEY (category, subcategory)
 REFERENCES category(cat_name, subcat_name);
Now, we can use an ALTER TABLE statement to drop the constraint altogether:
ALTER TABLE favorite_books DROP CONSTRAINT fk_categories RESTRICT;
Listed here are more full examples from pubs, the sample database that ships with Microsoft SQL Server and Sybase Adaptive Server:
-- For a Microsoft SQL Server database
CREATE TABLE jobs
 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,
 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',
 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),
 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))
-- For a MySQL database
CREATE TABLE employee
 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,
 fname VARCHAR(20) NOT NULL,
 minit CHAR(1) NULL,
 lname VARCHAR(30) NOT NULL,
 job_id SMALLINT NOT NULL DEFAULT 1
 REFERENCES jobs(job_id),
 job_lvl TINYINT DEFAULT 10,
 pub_id CHAR(4) NOT NULL DEFAULT ('9952')
 REFERENCES publishers(pub_id),
 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());
CREATE TABLE publishers
 (pub_id char(4) NOT NULL
 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED
 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]'),
 pub_name varchar(40) NULL,
 city varchar(20) NULL,
 state char(2) NULL,
 country varchar(30) NULL DEFAULT('USA'))
Once you get into the vendor extensions, the CREATE TABLE command is no longer portable between database platforms. The following is an example of an Oracle CREATE TABLE statement with many storage properties:
CREATE TABLE classical_music_cds
 (music_id INT,
 composition VARCHAR2(50),
 composer VARCHAR2(50),
 performer VARCHAR2(50),
 performance_date DATE DEFAULT SYSDATE,
 duration INT,
 cd_name VARCHAR2(100),
CONSTRAINT pk_class_cds PRIMARY KEY (music_id)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K),
CONSTRAINT uq_class_cds UNIQUE
 (composition, performer, performance_date)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K))
TABLESPACE tabledata_ts;
When issuing a CREATE or ALTER statement, we recommend that it be the only statement in your transaction. For example, do not attempt to create a table and select from it in the same batch. Instead, first create the table, then verify the operation, issue a COMMIT, and finally perform any subsequent operations against the table.
table_name is the name of a new or existing table. New table names should start with an alphabetic character and in general should contain no other special symbol besides the underscore (_). Rules for the length of the name and its exact composition differ according to the vendor.
When creating or altering a table, the list of column definitions is always encapsulated within parentheses, and the individual column definitions are separated by commas.

Programming Tips and Gotchas
The user issuing the CREATE TABLE command must have the appropriate permissions. Similarly, any user wishing to ALTER or DROP a table should own the table within his own schema or have adequate permissions to alter or drop the table. Since the ANSI standard does not specify the privileges required, expect some variation between vendors.
You can encapsulate a CREATE TABLE or ALTER TABLE statement within a transaction, using a COMMIT or ROLLBACK statement to explicitly conclude the transaction. We recommend that the CREATE/ALTER TABLE statement be the only command in the transaction.
Extensions to the ANSI standard can give you a great deal of control over the way that the records of a table are physically written to disk. SQL Server uses a technique called clustered indexes to control the way that records are written to disk. Oracle uses a technique that is functionally similar, called an index-organized table.
Some databases will lock a table that is being modified by an ALTER TABLE statement. It is therefore wise to issue this command only on tables that are not in use on a production database.
Furthermore, some databases will lock the target and source tables when using the CREATE TABLE . . . LIKE statement.

MySQL
The MySQL syntax for CREATE TABLE creates a permanent or local temporary table within the database in which the command is issued:
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name
{(column_name datatype attributes
 constraint_type constraint_name[, ...])
 [constraint_type [constraint_name][, ...]]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON {DELETE | UPDATE} {RESTRICT | CASCADE | SET NULL | NO ACTION}]
LIKE other_table_name}
 {[TABLESPACE tablespace_name STORAGE DISK] |
 [ENGINE = {ISAM | MyISAM | HEAP | BDB | InnoDB | MERGE | MRG_MyISAM}] |
 [AUTO_INCREMENT = int] |
 [AVG_ROW_LENGTH = int] |
 [[DEFAULT] CHARACTER SET charset_name] |
 [CHECKSUM = {0 | 1}] |
 [[DEFAULT] COLLATE collation_name] |
 [COMMENT = "string"] |
 [CONNECTIOIN = 'connection_string'] |
 [DATA DIRECTORY = "path_to_directory"] |
 [DELAY_KEY_WRITE = {0 | 1}] |
 [INDEX DIRECTORY = "path_to_directory"] |
 [INSERT_METHOD = {NO | FIRST | LAST}] |
 [KEY_BLOCK_SIZE = int] |
 [MAX_ROWS = int] |
 [MIN_ROWS = int] |
 [PACK_KEYS = {0 | 1}] |
 [PASSWORD = "string"] |
 [ROW_FORMAT= { DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT }]
 [...]}
[partition_definition[, ...]]
[[IGNORE | REPLACE] select_statement]
In most cases, MySQL alters a table by creating a temporary work copy of the table, manipulating it, deleting the original, and finally renaming the copy. The MySQL syntax for ALTER TABLE allows modifications to a table or even renaming of a table:
ALTER [IGNORE] TABLE table_name
{ [ADD [COLUMN] (column_name datatype attributes)
 [FIRST | AFTER column_name][, ...]]
| [ADD [CONSTRAINT] [UNIQUE | FOREIGN KEY | FULLTEXT | PRIMARY KEY | SPATIAL]
 [INDEX | KEY] [index_name](index_col_name[, ...])]
| [ALTER [COLUMN] column_name {SET DEFAULT literal | DROP DEFAULT}]
| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name column_definition
 [FIRST | AFTER column_name]
| [DROP [COLUMN | FOREIGN KEY | PRIMARY KEY | INDEX | KEY] [object_name]]
| [{ENABLE | DISABLE} KEYS]
| [RENAME [TO] new_tbl_name]
| [ORDER BY column_name[, ...]]
| [CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]]
| [{DISCARD | IMPORT} TABLESPACE]
| [{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE | REBUILD |
REPAIR}
 PARTITION]
| [REORGANIZE PARTITION prtn_name INTO (partition_definition)]
| [REMOVE PARTITIONING]
| [table_options] }[, ...]
Keywords and parameters are as follows:
	TEMPORARY
	Creates a table that persists for the duration of the connection under which it was created. Once that connection closes, the temporary table is automatically deleted.

	IF NOT EXISTS
	Prevents an error if the table already exists. A schema specification is not required.

	constraint_type
	Allows standard ANSI SQL constraints to be assigned at the column or table level. MySQL fully supports the following constraints: primary key, unique, and default (must be a constant). MySQL provides syntax support for check, foreign key, and references constraints, but they are not functional except on InnoDB tables. MySQL also has six specialty constraints:
	FULLTEXT [{INDEX | KEY}]
	Creates a fulltext-search index to facilitate rapid searches of large blocks of text. Note that only MyISAM tables support FULLTEXT indexes, and that they can only be made on CHAR, VARCHAR, and TEXT columns.

	SPATIAL [{INDEX | KEY}]
	Creates a spatial index or key on the column. Only MyISAM supports SPATIAL indexes.

	AUTO_INCREMENT
	Sets up an integer column so that it automatically increases its value by 1 (starting with a value of 1). MySQL only allows one AUTO_INCREMENT column per table. When all records are deleted (using DELETE or TRUNCATE), the values may start over. This option is allowed on MyISAM, MEMORY, ARCHIVE, and InnoDB tables.

	[UNIQUE] INDEX
	When an INDEX characteristic is assigned to a column, a name for the index can also be included. (A MySQL synonym for INDEX is KEY.) If a name is not assigned to the primary key, MySQL assigns a name of column_name plus a numeric suffix (_2, _3, . . .) to make it unique. All table types except ISAM support indexes on NULL columns, or on BLOB or TEXT columns. Note that UNIQUE without INDEX is valid syntax on MySQL.

	COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}
	Specifies a data storage format for individual columns in NDB tables. FIXED specifies fixed-width storage; DYNAMIC specifies variable-width storage; and DEFAULT specifies that either FIXED or DYNAMIC be used, according to the datatype for the column. This clause is not available in versions before 5.1.19-ndb.

	STORAGE {DISK | MEMORY}
	Specifies whether to store the column in an NDB table on the DISK or in MEMORY (the default). Not available in versions before 5.1.19-ndb.

	ENGINE
	Describes how the data should be physically stored. You can convert tables between types using the ALTER TABLE statement. Only InnoDB and BDB tables offer recoverability with the COMMIT or ROLLBACK statements. All other table types will result in the loss of data if the database crashes, but are much faster and take up less space. The default is MyISAM. Following is the list of MySQL table types:
	ARCHIVE
	Utilizes the ARCHIVE storage engine, which is good for storing large amounts of data without indexes in a small footprint. When creating an ARCHIVE table, the filename is the table's name with an .FRM extension. Data and metadata tables have the table name as the filename and extensions of .ARX and .ARM, respectively. A file with an .ARN extension may appear occasionally during optimizations.

	CSV
	Stores rows in comma-separated values (CSV) format. When creating a CSV table, the filename is the table name with an .FRM extension. Data is stored in a file with the table name as the filename and an extension of .CSV. The data is stored in plain text, so be careful with security on these tables.

	EXAMPLE
	EXAMPLE is a stub engine that does nothing. No data can be stored in an EXAMPLE table.

	FEDERATED
	Stores data in such a way that it is accessible from other remote MySQL databases without using replication or clustering technology. No data is stored in the local tables.

	HEAP
	Creates a memory-resident table that uses hashed indexes. Synonymous with MEMORY. Since they are memory-resident, these tables are not transaction-safe. Any data they contain will be lost if the server crashes. Think of HEAP tables as an alternative to temporary tables. If you use HEAP tables, always specify the MAX_ROWS option so that you do not use all available memory. HEAP tables also do not support BLOB columns, TEXT columns, AUTO_INCREMENT constraints, ORDER BY clauses, or the variable-length record format.

	InnoDB
	Creates a transaction-safe table with row-level locking. It also provides an independently managed tablespace, checkpoints, non-locking reads, and fast reads from large datafiles for heightened concurrency and performance. Requires the innodb_data_file_path startup parameter. InnoDB supports all ANSI constraints, including CHECK and FOREIGN KEY. Well-known developer websites like Slashdot.org run on MySQL with InnoDB because of its excellent performance. InnoDB tables and indexes are stored together in their own tablespace (unlike other table formats, such as MyISAM, which store tables in separate files).

	ISAM
	Creates a table in the older ISAM style. ISAM has been deprecated and is obsolete and unavailable in MySQL v5.1. When upgrading, convert ISAM tables to MyISAM before performing the upgrade.

	MEMORY
	Creates a memory-resident table that uses hashed indexes. Synonymous with HEAP. Since they are memory-resident, the indexes are not transaction-safe; any data they contain will be lost if the server crashes. MEMORY tables can have up to 32 indexes per table and 16 columns per index, for a maximum index length of 500 bytes. Think of MEMORY tables as an alternative to temporary tables; like temporary tables, they are shared by all clients. If you use MEMORY tables, always specify the MAX_ROWS option so that you do not use all available memory. MEMORY tables do not support BLOB or TEXT columns, ORDER BY clauses, or the variable-length record format, and there are many additional rules concerning MEMORY tables. Be sure to read the vendor documentation before implementing MEMORY tables.

	MERGE
	Collects several identically structured MyISAM tables for use as one table, providing some of the performance benefits of a partitioned table. SELECT, DELETE, and UPDATE statements operate against the collection of tables as if they were one table. Think of a merge table as the collection, but not as the table(s) containing the data. Dropping a merge table only removes it from the collection; it does not erase the table or its data from the database. Specify a MERGE table by using the statement UNION=(table1, table2, . . .). The two keywords MERGE and MRG_MyISAM are synonyms.

	MyISAM
	Stores data in .MYD files and indexes in .MYI files. MyISAM is based on ISAM code, with several extensions. MyISAM is a binary storage structure that is more portable than ISAM. MyISAM supports AUTO_INCREMENT columns, compressed tables (with the myisampack utility), and large table sizes. Under MyISAM, BLOB and TEXT columns can be indexes, and up to 64 indexes are allowed per table, with up to 16 columns per index and a maximum key length of 1,000 bytes.

	NDBCLUSTER
	Creates clustered, fault-tolerant, memory-based tables called NDBs. This is MySQL's special high-availability table format. Refer to the vendor documentation for additional information on implementing NDBs.

	UNION
	Refer to MERGE.

	TABLESPACE...STORAGE DISK
	Assigns the table to a Cluster Disk Data tablespace when using NDB Cluster tables. The tablespace named in the clause must already have been created using CREATE TABLESPACE.

	AUTO_INCREMENT = int
	Sets the auto-increment value (int) for the table (MyISAM only).

	AVG_ROW_LENGTH = int
	Sets an approximate average row length for tables with variable-size records. MySQL uses AVG_ROW_LENGTH * MAX_ROWS to determine how big a table may be.

	[DEFAULT] CHARACTER SET
	Specifies the CHARACTER SET (or CHARSET) for the table, or for specific columns.

	CHECKSUM = {0 | 1}
	When set to 1, maintains a checksum for all rows in the table (MyISAM only). This makes processing slower but leaves your data less prone to corruption.

	[DEFAULT] COLLATE
	Specifies the collation set for the table, or for specific columns.

	COMMENT = "string"
	Allows a comment of up to 60 characters.

	CONNECTION = 'connection_string'
	The connection string required to connect to a FEDERATED table. Otherwise, this is a noise word. Older versions of MySQL used the COMMENT option for the connection string.

	DATA DIRECTORY = "path_to_directory"
	Overrides the default path and directory that MySQL should use for MyISAM table storage.

	DELAY_KEY_WRITE = {0 | 1}
	When set to 1, delays key table updates until the table is closed (MyISAM only).

	INDEX DIRECTORY = "path_to_directory"
	Overrides the default path and directory that MySQL should use for MyISAM index storage.

	INSERT_METHOD = {NO | FIRST | LAST}
	Required for MERGE tables. If no setting is specified for a MERGE table or the value is NO, INSERTs are disallowed. FIRST inserts all records to the first table in the collection, while LAST inserts them all into the last table of the collection

	KEY_BLOCK_SIZE = int
	Allows the storage engine to change the value used for the index key block size. 0 tells MySQL to use the default.

	MAX_ROWS = int
	Sets a maximum number of rows to store in the table. The default maximum is 4 GB of space.

	MIN_ROWS = int
	Sets a minimum number of rows to store in the table.

	PACK_KEYS = {0 | 1}
	When set to 1, compacts the indexes of the table, making reads faster but updates slower (MyISAM and ISAM only). By default, only strings are packed. When set to 1, both strings and numeric values are packed.

	PASSWORD = "string"
	Encrypts the .FRM file (but not the table itself) with a password, "string".

	ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT }
	Determines how future rows should be stored in a MySQL table. DEFAULT varies by storage engine. DYNAMIC allows the rows to be of variable sizes (i.e., using VARCHAR), while FIXED expects fixed-size columns (i.e., CHAR, INT, etc.). REDUNDANT is used only on InnoDB tables and maximizes the value of an index, even if some redundant data is stored. COMPRESSED tables are read-only and compresses the data by about 20% compared to the REDUNDANT format. COMPRESSED is also allowed only on InnoDB.

	partition_definition
	Specifies a partition or subpartition for a MySQL table. Refer to the section below for more details on partitioning and subpartitioning MySQL tables. Note that all of the definition options are usable for subpartitions, with the exception of the VALUE subclause.

	[IGNORE | REPLACE] select_statement
	Creates a table with columns based upon the elements listed in the SELECT statement. The new table will be populated with the results of the SELECT statement if the statement returns a result set.

	ALTER [IGNORE]
	The altered table will include all duplicate records unless the IGNORE keyword is used. If it is not used, the statement will fail if a duplicate row is encountered and if the table has a unique index or primary key.

	{ADD | COLUMN} [FIRST | AFTER column_name]
	Adds or moves a column, index, or key to the table. When adding or moving columns, the new column appears as the last column in the table unless it is placed AFTER another named column.

	ALTER COLUMN
	Allows the definition or resetting of a default value for a column. If you reset a default, MySQL will assign a new default value to the column.

	CHANGE
	Renames a column, or changes its datatype.

	MODIFY
	Changes a column's datatype or attributes such as NOT NULL. Existing data in the column is automatically converted to the new datatype.

	DROP
	Drops the column, key, index, or tablespace. A dropped column is also removed from any indexes in which it participated. When dropping a primary key, MySQL will drop the first unique key if no primary key is present.

	{ENABLE | DISABLE} KEYS
	Enables or disables all non-unique keys on a MyISAM table simultaneously. This can be useful for bulk loads where you want to temporarily disable constraints until after the load is finished. It also speeds performance by finishing all index block flushing at the end of the operation.

	RENAME [TO] new_tbl_name
	Renames a table.

	ORDER BY column_name[, . . .]
	Orders the rows in the specified order.

	CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
	Converts the table to a character set (and optionally a collation) that you specify.

	DISCARD | IMPORT TABLESPACE
	Deletes the current .IDB file (using DISCARD), or makes a tablespace available after restoring from a backup (using IMPORT).

	{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE | REBUILD | REPAIR} PARTITION
	Adds or drops a partition on a table. Other options perform preventative maintenance behaviors analogous to those available for MySQL tables (i.e., CHECK TABLE and REPAIR TABLE). Only COALESCE PARTITION has a unique behavior, in which MySQL reduces the number of KEY or HASH partitions to the number specified by int.

	REORGANIZE PARTITION prtn_name INTO (partition_definition)
	Alters the definition of an existing partition according to the new partition_definition specified.

	REMOVE PARTITIONING
	Removes a table's partitioning without otherwise affecting the table or its data.

For example:
CREATE TABLE test_example
 (column_a INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY(column_a),
 INDEX(column_b))
 TYPE=HEAP
IGNORE
SELECT column_b,column_c FROM samples;
Tip
In MySQL v5.1 and later, only the MyISAM, INNoDB, and MEMORY storage engines support indexes on columns that contain NULL values. For all other indexed columns, the column must be declared NOT NULL. Spatial types are supported only on MyISAM and, when indexed, must be declared as NOT NULL. Note that MySQL v5.1 is limited to 4,096 columns per table, but it may not even be able to store that many due to space constraints.

This creates a heap table with three columns: column_a, column_b, and column_c. Later, we could change this table to the MyISAM type:
ALTER TABLE example TYPE=MyISAM;
Three operating-system files are created when MySQL creates a MyISAM table: a table definition file with the extension .FRM, a datafile with the extension .MYD, and an index file with the extension .MYI. The .FRM datafile is used for all other tables.
The following example creates two base MyISAM tables and then creates a MERGE table from them:
CREATE TABLE message1
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE message2
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE all_messages
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20))
 TYPE=MERGE UNION=(message1, message2) INSERT_METHOD=LAST;
Partitioned tables
MySQL allows partitioning of tables for greater control of I/O and space management. The syntax for the partitioning clause is:
PARTITION BY function
[[SUB]PARTITION prtn_name
 [VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_path']
 [INDEX DIRECTORY [=] 'index_path']
 [MAX_ROWS [=] max_rows]
 [MIN_ROWS [=] min_rows]
 [TABLESPACE [=] (tablespace_name)]
 [NODEGROUP [=] node_group_id]
 [(subprtn[, subprtn] ...)][, ...]]
where (values not described below are redundant to the list of table options and are presented in the earlier listing):
	function
	Specifies the function used to create the partition. Allowable values include: HASH(expr), where expr is a hash of one or more columns in an allowable SQL format (including function calls that return any single integer value); LINEAR KEY(column_list), where MySQL's hashing function more evenly distributes data; RANGE(expr), where expr is one or more columns in an allowable SQL format with the VALUES clause telling exactly which partition holds which values; and LIST(expr), where expr is one or more columns in an allowable SQL format with the VALUES clause telling exactly which partition holds which values.

	[SUB]PARTITION prtn_name
	Names the partition or subpartition.

	VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}
	Specifies which values are assigned to which partitions.

	NODEGROUP [=] node_group_id
	Makes the partition or subpartition act as part of a node group identified by node_group_id. Only applicable for NDB tables.

Note that partitions and subpartitions must all use the same storage engine.
The following example creates three tables, each with a different partitioning function:
CREATE TABLE employee (emp_id INT, emp_fname VARCHAR(30), emp_lname VARCHAR(50))
 PARTITION BY HASH(emp_id);

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code CHAR(5))
 PARTITION BY KEY(location_code)
 PARTITIONS 4;
CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code CHAR(5))
 PARTITION BY LINEAR KEY(location_code)
 PARTITIONS 5;
The following two examples show somewhat more elaborate examples of partitioning using RANGE partitioning and LIST partitioning:
CREATE TABLE employee (emp_id INT,
 emp_fname VARCHAR(30),
 emp_lname VARCHAR(50),
 hire_date DATE)
PARTITION BY RANGE(hire_date)
 (PARTITION prtn1 VALUES LESS THAN ('01-JAN-2004'),
 PARTITION prtn2 VALUES LESS THAN ('01-JAN-2006'),
 PARTITION prtn3 VALUES LESS THAN ('01-JAN-2008'),
 PARTITION prtn4 VALUES LESS THAN MAXVALUE);

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code CHAR(5))
PARTITION BY LIST(prod_id)
 (PARTITION prtn0 VALUES IN (10, 50, 90, 130, 170, 210),
 PARTITION prtn1 VALUES IN (20, 60, 100, 140, 180, 220),
 PARTITION prtn2 VALUES IN (30, 70, 110, 150, 190, 230),
 PARTITION prtn3 VALUES IN (40, 80, 120, 160, 200, 240));
The following example renames both a table and a column:
ALTER TABLE employee RENAME AS emp;
ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;
Since MySQL allows the creation of indexes on a portion of a column (for example, on the first 10 characters of a column), you can also build short indexes on very large columns.
MySQL can redefine the datatype of an existing column, but to avoid losing any data, the values contained in the column must be compatible with the new datatype. For example, a date column could be redefined to a character datatype, but a character datatype could not be redefined to an integer. Here's an example:
ALTER TABLE mytable MODIFY mycolumn LONGTEXT
MySQL offers some additional flexibility in the ALTER TABLE statement by allowing users to issue multiple ADD, ALTER, DROP, and CHANGE clauses in a comma-delimited list in a single ALTER TABLE statement. However, be aware that the CHANGE column_name and DROP INDEX clauses are MySQL extensions not found in SQL2003. MySQL supports the clause MODIFY column_name to mimic the same feature found in Oracle.

Oracle
The Oracle syntax for CREATE TABLE creates a relational table either by declaring the structure or by referencing an existing table. You can modify a table after it is created using the ALTER TABLE statement. Oracle also allows the creation of a relational table that uses user-defined types for column definitions, an object table that is explicitly defined to hold a specific UDT (usually a VARRAY or NESTED TABLE type), or an XMLType table.
The standard ANSI-style CREATE TABLE statement is supported, but Oracle has added many sophisticated extensions to the command. For example, Oracle allows significant control over the storage and performance parameters of a table. In both the CREATE TABLE and ALTER TABLE statements, you'll see a great deal of nesting and reusable clauses. To make this somewhat easier to read, we have broken Oracle's CREATE TABLE statement into three distinct variations (relational table, object table, and XML table) so that you can more easily follow the syntax.
The CREATE TABLE syntax for a standard relational table, which has no object or XML properties, is as follows:
CREATE [GLOBAL] [TEMPORARY] TABLE table_name
[({column | virtual_column | attribute} [SORT] [DEFAULT expression]
[{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[table_constraint_clause]
{ [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING] |
 [CLUSTER (column[, ...])] |
 {[ORGANIZATION
 {HEAP [physical_attributes_clause][TABLESPACE
 tablespace_name] [storage_clause]
 [COMPRESS | NOCOMPRESS] [[NO]LOGGING] |
 INDEX [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause]
 [PCTTHRESHOLD int] [COMPRESS [int] | NOCOMPRESS]
 [MAPPING TABLE | NOMAPPING][...] [[NO]LOGGING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING]}] |
 EXTERNAL ([TYPE driver_type]) DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [REJECT LIMIT {int | UNLIMITED}]} }
[{ENABLE | DISABLE} ROW MOVEMENT]
[[NO]CACHE] [[NO]MONITORING] [[NO]ROWDEPENDENCIES] [[NO]FLASHBACK ARCHIVE]
[PARALLEL int | NOPARALLEL] [NOSORT] [[NO]LOGGING]]
[COMPRESS [int] | NOCOMPRESS]
[{ENABLE | DISABLE} [[NO]VALIDATE]
 {UNIQUE (column[, ...]) | PRIMARY KEY | CONSTRAINT constraint_name}]
 [USING INDEX {index_name | CREATE_INDEX_statement}] [EXCEPTIONS INTO]
 [CASCADE] [{KEEP | DROP} INDEX]] |
[partition_clause]
[AS subquery]
The relational table syntax contains a large number of optional clauses. However, the table definition must contain, at a minimum, either column names and datatypes specifications or the AS subquery clause.
The Oracle syntax for an object table follows:
CREATE [GLOBAL] [TEMPORARY] TABLE table_name
AS object_type [[NOT] SUBSTITUTABLE AT ALL LEVELS]
[({column | attribute} [DEFAULT expression] [{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
[OIDINDEX [index_name] ([physical_attributes_clause] [storage_clause])]
[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]
Oracle allows you to create, and later alter, XMLType tables. XMLType tables may have regular columns or virtual columns. The Oracle syntax for an XMLType table follows:
CREATE [GLOBAL] [TEMPORARY] TABLE table_name
OF XMLTYPE
[({column | attribute} [DEFAULT expression] [{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] |
 [{SECUREFILE | BASICFILE}]
 [{CLOB | BINARY XML} [lob_segname] [lob_params]}] [xml_schema_spec]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
[OIDINDEX index_name ([physical_attributes_clause] [storage_clause])]
[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]
The Oracle syntax for ALTER TABLE changes the table or column properties, storage characteristics, LOB or VARRAY properties, partitioning characteristics, and integrity constraints associated with a table and/or its columns. The statement can also do other things, like move an existing table into a different tablespace, free recuperated space, compact the table segment, and adjust the "high-water mark."
The ANSI SQL standard uses the ALTER keyword to modify existing elements of a table, while Oracle uses MODIFY for the same purpose. Since they are essentially the same thing, please consider the behavior of otherwise identical clauses (for example, ANSI's ALTER TABLE . . . ALTER COLUMN and Oracle's ALTER TABLE . . . MODIFY COLUMN) to be functionally equivalent.
Oracle's ALTER TABLE syntax is:
ALTER TABLE table_name
-- Alter table characteristics
 [physical_attributes_clause] [storage_clause]
 [{READ ONLY | READ WRITE}]
 [[NO]LOGGING] [[NO]CACHE] [[NO]MONITORING] [[NO]COMPRESS]
 [[NO]FLASHBACK ARCHIVE] [SHRINK SPACE [COMPACT] [CASCADE]]
 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]
 [[NO]MINIMIZE RECORDS_PER_BLOCK]
 [PARALLEL int | NOPARALLEL]
 [{ENABLE | DISABLE} ROW MOVEMENT]
 [{ADD | DROP} SUPPLEMENTAL LOG
 {GROUP log_group [(column_name [NO LOG][, ...]) [ALWAYS]] |
 DATA ({ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY}[, ...]) COLUMNS}]
 [ALLOCATE EXTENT
 [([SIZE int [K | M | G | T]] [DATAFILE 'filename'] [INSTANCE int])]
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ORGANIZATION INDEX ...
 [COALESCE] [MAPPING TABLE | NOMAPPING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS]
 [{ ADD OVERFLOW [TABLESPACE tablespace_name] [[NO]LOGGING]
 [physical_attributes_clause] } |
 OVERFLOW { [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE
 'filename'] [INSTANCE int]) |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]] }]]]
 [RENAME TO new_table_name]
-- Alter column characteristics
 [ADD (column_name datatype attributes[, ...])]
 [DROP { {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT int] |
 {COLUMN column_name | (column_name[, ...])} [CHECKPOINT int]
 [{CASCADE CONSTRAINTS | INVALIDATE}] }]
 [SET UNUSED {COLUMN column_name | (column_name[, ...])}
 [{CASCADE CONSTRAINTS | INVALIDATE}]]
 [MODIFY { (column_name datatype attributes[, ...]) |
 COLUMN column_name [NOT] SUBSTITUTABLE AT ALL LEVELS [FORCE] }]
 [RENAME COLUMN old_column_name TO new_column_name]
 [MODIFY {NESTED TABLE | VARRAY} collection_item [RETURN AS {LOCATOR |
 VALUE}]]
-- Alter constraint characteristics
 [ADD CONSTRAINT constraint_name table_constrain_clause]
 [MODIFY CONSTRAINT constraint_name constraint_state_clause]
 [RENAME CONSTRAINT old_constraint_name TO new_constraint_name]
 [DROP { { PRIMARY KEY | UNIQUE (column[, ...]) } [CASCADE]
 [{KEEP | DROP} INDEX] |
 CONSTRAINT constraint_name [CASCADE] }]
-- Alter table partition characteristics
 [alter partition clauses]
-- Alter external table characteristics
 DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [ADD (column_name ...)][DROP column_name ...][MODIFY (column_name ...)]
 [PARALLEL int | NOPARALLEL]
 [REJECT LIMIT {int | UNLIMITED}]
 [PROJECT COLUMN {ALL | REFERENCED}]
-- Move table clauses
 [MOVE [ONLINE] [physical_attributes_clause]
 [TABLESPACE tablespace_name] [[NO]LOGGING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS] [MAPPING TABLE | NOMAPPING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [[NO]LOGGING]]
 [LOB ...] [VARRAY ...] [PARALLEL int | NOPARALLEL]]
-- Enable/disable attributes and constraints
 [{ {ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, ...]) |
 PRIMARY KEY | CONSTRAINT constraint_name}
 [USING INDEX {index_name | CREATE_INDEX_statement |
 [TABLESPACE tablespace_name] [physical_attributes_clause]
 [storage_clause]
 [NOSORT] [[NO]LOGGING] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS | NOCOMPRESS] [REVERSE]
 [{LOCAL | GLOBAL} partition_clause]
 [EXCEPTIONS INTO table_name] [CASCADE] [{KEEP | DROP} INDEX]]} |
 [{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}] }]
The parameters are as follows:
	virtual_column
	Allows the creation or alteration of a virtual column (i.e., a column whose value is derived from a calculation rather than directly from a physical storage location). For example, a virtual column income might be derived by summing the salary, bonus, and commission columns.

	column_constraint
	Specifies a column constraint using the syntax described later.

	GROUP log_group (column [NO LOG][, . . .]) [ALWAYS] | DATA (constraints[, . . .]) COLUMNS
	Specifies a log group rather than a single logfile for the table.

	ON COMMIT {DELETE | PRESERVE} ROWS
	Declares whether a declared temporary table should keep the data in the table active for the entire session (PRESERVE) or only for the duration of the transaction in which the temporary table is created (DELETE).

	table_constraint_clause
	Specifies a table constraint using the syntax described later.

	physical_attributes_clause
	Specifies the physical attributes of the table using the syntax described later.

	TABLESPACE tablespace_name
	Specifies the name of the tablespace where the table you are creating will be stored. If omitted, the default tablespace for the schema owner will be used. See below for specifics. See the Oracle Concepts manual to learn about tablespaces and their use.

	storage_clause
	Specifies physical storage characteristics of the table using the syntax described later.

	[NO]LOGGING
	Specifies whether redo log records will be written during object creation (LOGGING) or not (NOLOGGING). LOGGING is the default. NOLOGGING can speed the creation of database objects. However, in case of database failure under the NOLOGGING option, the operation cannot be recovered by applying logfiles, and the object must be recreated. The LOGGING clause replaces the older RECOVERABLE clause, which is deprecated.

	CLUSTER(column[, . . .])
	Declares that the table is part of a clustered index. The column list should correspond, one to one, with the columns in a previously declared clustered index. Because it uses the clustered index's space allocation, the CLUSTER clause is compatible with the physical_attributes_clause, storage_clause, or TABLESPACE clause. Tables containing LOBs are incompatible with the CLUSTER clause.

	ORGANIZATION HEAP
	Declares how the data of the table should be recorded to disk. HEAP, the default for an Oracle table, declares that no order should be associated with the storage of rows of data (i.e., the physical order in which records are written to disk) for this table. The ORGANIZATION HEAP clause allows several optional clauses, described in detail elsewhere in this list, that control storage, logging, and compression for the table.

	ORGANIZATION INDEX
	Declares how the data of the table should be recorded to disk. INDEX declares that the records of the table should be physically written to disk in the sort order defined by the primary key of the table. Oracle calls this an index-organized table. A primary key is required. Note that the physical_attributes_clause, the TABLESPACE clause, and the storage_clause (all described in greater detail elsewhere in this section) and the [NO]LOGGING keyword may all be associated with the new INDEX segment as you create it. In addition, the following subclauses may also be associated with an ORGANIZATION INDEX clause:
	PCTTHRESHOLD int
	Declares the percentage (int) of space in each index block to be preserved for data. On a record-by-record basis, data that cannot fit in this space will be placed in the overflow segment.

	INCLUDING column
	Declares the point at which a record will split between index and overflow portions. All columns that follow the specified column will be stored in the overflow segment. The column cannot be a primary key column.

	MAPPING TABLE | NOMAPPING
	Tells the database to create a mapping of local to physical ROWIDs. This mapping is required to create a bitmap index on an IOT. Mappings are also partitioned identically if the table is partitioned. NOMAPPING tells the database not to create the ROWID map.

	[INCLUDING column] OVERFLOW
	Declares that a record that exceeds the PCTTHRESHOLD value be placed in a segment described in this clause. The physical_attributes_clause, the TABLESPACE clause, the storage_clause (all described elsewhere in the list in greater detail) and the [NO]LOGGING keyword may all be associated with a specific OVERFLOW segment when you create it. The optional INCLUDING column clause defines a column at which to divide an IOT row into index and overflow portions. Primary key columns are always stored in the index. However, all non-primary key columns that follow column are stored in the overflow data segment.

	ORGANIZATION EXTERNAL
	Declares how the data of the table should be recorded to disk. EXTERNAL declares that the table stores its data outside of the database and is usually read-only (its metadata is stored in the database, but its data is stored outside of the database). There are some restrictions on external tables: they cannot be temporary; they cannot have constraints; they can only have column, datatype, and attribute column-descriptors; and LOB and LONG datatypes are disallowed. No other ORGANIZATION clauses are allowed with EXTERNAL. The following subclauses may be used with the ORGANIZATION EXTERNAL clause:
	TYPE driver_type
	Defines the access driver API for the external table. The default is ORACLE_LOADER.

	DEFAULT DIRECTORY directory_name
	Defines the default directory on the filesystem where the external table resides.

	ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}
	Assigns and passes specific parameters to the access driver. Oracle does not interpret this information. USING CLOB subquery tells Oracle to derive the parameters and their values from a subquery that returns a single row with a single column of the datatype CLOB. The subquery cannot contain an ORDER BY, UNION, INTERSECT, or MINUS/EXCEPT clause. The opaque_format clause allows you to list parameters and their values, as described in the ORACLE LOADER section of the "Oracle9i Database Utilities" guide.

	LOCATION (directory_name:'location_spec'[, . . .])
	Defines one or more external data sources, usually as files. Oracle does not interpret this information.

	REJECT LIMIT {int | UNLIMITED}
	Defines the number of conversion errors (int) that are allowed during the query to the external data source before Oracle aborts the query and returns an error. UNLIMITED tells Oracle to continue with the query no matter how many errors are encountered. The default is 0.

	{ENABLE | DISABLE} ROW MOVEMENT
	Specifies that a row may be moved to a different partition or subpartition if required due to an update of the key (ENABLE), or not (DISABLE). The DISABLE keyword also specifies that Oracle return an error if an update to a key would require a move.

	[NO]CACHE
	Buffers a table for rapid reads (CACHE), or turns off this behavior (NOCACHE). Index-organized tables offer CACHE behavior.

	[NO]MONITORING
	Specifies whether modification statistics can be collected for this table (MONITORING) or not (NOMONITORING). NOMONITORING is the default.

	[NO]ROWDEPENDENCIES
	Specifies whether a table will use row-level dependency tracking, a feature that applies a system change number (SCN) greater than or equal to the time of the last transaction affecting the row. The SCN adds 6 extra bytes of space to each record. Row-level dependency tracking is most useful in replicated environments with parallel data propagation. NOROWDEPENDENCIES is the default.

	[NO]FLASHBACK ARCHIVE
	Enables or disables historical tracking for the table, if a flashback archive for the table already exists. NO FLASHBACK ARCHIVE is the default.

	PARALLEL [int] | NOPARALLEL
	The PARALLEL clause allows for the parallel creation of the table by distinct CPUs to speed the operation. It also enables parallelism for queries and other data-manipulation operations against the table after its creation. An optional integer value may be supplied to define the exact number of parallel threads used to create the table in parallel, as well as the number of parallel threads allowed to service the table in the future. (Oracle calculates the best number of threads to use in a given parallel operation, so the int argument is optional.) NOPARALLEL, the default, creates the table serially and disallows future parallel queries and data-manipulation operations.

	COMPRESS [int] | NOCOMPRESS
	Specifies whether the table should be compressed or not. On index-organized tables, only the key is compressed; on heap-organized tables, the entire table is compressed. This can greatly reduce the amount of space consumed by the table. NOCOMPRESS is the default. In index-organized tables, you can specify the number of prefix columns (int) to compress. The default value for int is the number of keys in the primary key minus one. You need not specify an int value for other clauses, such as ORGANIZATION. When you omit the int value, Oracle will apply compression to the entire table.

	{ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, . . .]) | PRIMARY KEY | CONSTRAINT constraint_name}
	Declares whether the named key or constraint applies to all of the data in the new table or not. ENABLE specifies that the key or constraint applies to all new data in the table while DISABLE specifies that the key or constraint is disabled for the new table, with the following options:
	[NO]VALIDATE
	VALIDATE verifies that all existing data in the table complies with the key or constraint. When NOVALIDATE is specified with ENABLE, Oracle does not verify that existing data in the table complies with the key or constraint, but ensures that new data added to the table does comply with the constraint.

	UNIQUE (column[, . . .]) | PRIMARY KEY | CONSTRAINT constraint_name
	Declares the unique constraint, primary key, or constraint that is enabled or disabled.

	USING INDEX index_name | CREATE_INDEX_statement
	Declares the name (index_name) of a pre-existing index (and its characteristics) used to enforce the key or constraint, or creates a new index (CREATE_INDEX_statement). If neither clause is declared, Oracle creates a new index.

	EXCEPTIONS INTO table_name
	Specifies the name of a table into which Oracle places information about rows violating the constraint. Run the utlexpt1.sql script before using this keyword to explicitly create this table.

	CASCADE
	Cascades the disablement/enablement to any integrity constraints that depend on the constraint named in the clause. Usable only with the DISABLE clause.

	{KEEP | DROP} INDEX
	Lets you keep (KEEP) or drop (DROP) an index used to enforce a unique or primary key. You can drop the key only when disabling it.

	partition_clause
	Declares partitioning and subpartitioning of a table. Partitioning syntax can be quite complex; refer to the material later in this section under "Oracle partitioned and subpartitioned tables" for the full syntax and examples.

	AS subquery
	Declares a subquery that inserts rows into the table upon creation. The column names and datatypes used in the subquery can act as substitutes for column name and attribute declarations for the table.

	AS object_type
	Declares that the table is based on a pre-existing object type.

	[NOT] SUBSTITUTABLE AT ALL LEVELS
	Declares whether row objects corresponding to subtypes can be inserted into the type table or not. When this clause is omitted, the default is SUBSTITUTABLE AT ALL LEVELS.

	inline_ref_constraint and table_ref_constraint
	Declares a reference constraint used by an object-type table or XMLType table. These clauses are described in greater detail later in this section.

	OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}
	Declares whether the object ID (OID) of the object-type table is SYSTEM GENERATED or based on the PRIMARY KEY. When omitted, the default is SYSTEM GENERATED.

	OIDINDEX [index_name]
	Declares an index, and possibly a name for the index, if the OID is system-generated. You may optionally apply a physical_attributes_clause and a storage_clause to the OIDINDEX. If the OID is based on the primary key, this clause is unnecessary.

	OF XMLTYPE
	Declares that the table is based on Oracle's XMLTYPE datatype.

	XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] | [{SECUREFILE | BASICFILE}] [{CLOB | BINARY XML} [lob_segname] [lob_params]]
	Declares how the underlying data of the XMLTYPE is stored: either in LOB, object-relational, or binary XML format. OBJECT RELATIONAL stores the data in object-relational columns and allows indexing for better performance. This subclause requires an xml_schema_spec and a schema that has been preregistered using the DBMS_XMLSCHEMA package. CLOB specifies that the XMLTYPE data will be stored in a LOB column for faster retrieval. You may optionally specify the LOB segment name and/or the LOB storage parameters, but you cannot specify LOB details and XMLSchema specifications in the same statement. BINARY XML stores the data in a compact binary XML format, with any LOB parameters applied to the underlying BLOB column.

	xml_schema_spec
	Allows you to specify the URL of one or more registered XML schemas, and an XML element name. The element name is required, but the URL is optional. Multiple schemas are allowed only when using the BINARY XML storage format. You may further specify ALLOW ANYSCHEMA to store any schema-based document in the XMLType column, ALLOW NONSCHEMA to store non-schema-based documents, or DISALLOW NONSCHEMA to prevent storage of non-schema-based documents.

	READ ONLY | READ WRITE
	Places the table in read-only mode, which disallows all DML operations including SELECT...FOR UPDATE. Regular SELECT statements are allowed, as are operations on indexes associated with a read-only table. READ WRITE re-enables normal DML operations.

	ADD . . .
	Adds a new column, virtual column, constraint, overflow segment, or supplemental log group to an existing table. You may also alter an XMLType table by adding (or removing) one or more XMLSchemas.

	MODIFY . . .
	Changes an existing column, constraint, or supplemental log group on an existing table.

	DROP . . .
	Drops an existing column, constraint, or supplemental log group from an existing table. You can explicitly drop columns marked as unused from a table with DROP UNUSED COLUMNS; however, Oracle will also drop all unused columns when any other column is dropped. The INVALIDATE keyword causes any object that depends on the dropped object, such as a view or stored procedure, to become invalid and unusable until the dependent object is recompiled or reused. The COLUMNS CONTINUE clause is used only when a DROP COLUMN statement failed with an error and you wish to continue where it left off.

	RENAME . . .
	Renames an existing table, column, or constraint on an existing table.

	SET UNUSED . . .
	Declares a column or columns to be unused. Those columns are no longer accessible from SELECT statements, though they still count toward the maximum number of columns allowed per table (1,000). SET UNUSED is the fastest way to render a column unusable within a table, but it is not the best way. Only use SET UNUSED as a shortcut until you can actually use ALTER TABLE . . . DROP to drop the column.

	COALESCE
	Merges the contents of index blocks used to maintain the index-organized table so that the blocks can be reused. COALESCE is similar to SHRINK, though COALESCE compacts the segments less densely than SHRINK and does not release unused space.

	ALLOCATE EXTENT
	Explicitly allocates a new extent for the table using the SIZE, DATAFILE, and INSTANCE parameters. You may mix and match any of these parameters. The size of the extent may be specified in bytes (no suffix), kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T).

	DEALLOCATE UNUSED [KEEP int [K | M | G | T]]
	Deallocates unused space at the end of the table, LOB segment, partition, or subpartition. The deallocated space is then usable by other objects in the database. The KEEP keyword indicates how much space you want to have left over after deallocation is complete.

	SHRINK SPACE [COMPACT] [CASCADE]
	Shrinks the table, index-organized table, index, partition, subpartition, materialized view, or materialized log view, though only segments in tablespaces with automatic segment management may be shrunk. Shrinking a segment moves rows in the table, so make sure ENABLE ROW MOVEMENT is also used in the ALTER TABLE . . . SHRINK statement. Oracle compacts the segment, releases the emptied space, and adjusts the high-water mark unless the optional keywords COMPACT and/or CASCADE are applied. The COMPACT keyword only defragments the segment space and compacts the table row for subsequent release; it does not readjust the high-water mark or empty the space immediately. The CASCADE keyword performs the same shrinking operation (with some restrictions and exceptions) on all dependent objects of the table, including secondary indexes on index-organized tables. Used only with ALTER TABLE.

	UPGRADE [NOT] INCLUDING DATA
	Converts the metadata of object tables and relational tables with object columns to the latest version for each referenced type. The INCLUDING DATA clause will either convert the data to the latest type format (INCLUDING DATA) or leave it unchanged (NOT INCLUDING DATA).

	MOVE . . .
	Moves the tablespace, index-organized table, partition, or subpartition to a new location on the filesystem.

	[NO]MINIMIZE RECORDS_PER_BLOCK
	Tells Oracle to restrict or leave open the number of records allowed per block. The MINIMIZE keyword tells Oracle to calculate the maximum number of records per block and set the limit at that number. (Best to do this when a representative amount of data is already in the table.) This clause is incompatible with nested tables and index-organized tables. NOMINIMIZE is the default.

	PROJECT COLUMN {REFERENCE | ALL}
	Determines how the driver for the external data source validates the rows of the external table in subsequent queries. REFERENCE processes only those columns in the select item list. ALL processes the values in all columns, even those not in the select item list, and validates rows with full and valid column entries. Under ALL, rows are rejected when errors occur, even on columns that are not selected. ALL returns consistent results, while REFERENCE returns varying numbers of rows depending on the columns referenced.

	{ENABLE | DISABLE} {TABLE LOCK | ALL TRIGGERS}
	Enables or disables table-level locks and all triggers on the table, respectively. ENABLE TABLE LOCK is required if you wish to change the structure against an existing table, but it is not required when changing or reading the data of the table.

A global temporary table is available to all user sessions, but the data stored within a global temporary table is visible only to the session that inserted it. The ON COMMIT clause, which is allowed only when creating temporary tables, tells Oracle either to truncate the table after each commit against the table (DELETE ROWS) or to truncate the table when the session terminates (PRESERVE ROWS). For example:
CREATE GLOBAL TEMPORARY TABLE shipping_schedule
 (ship_date DATE,
 receipt_date DATE,
 received_by VARCHAR2(30),
 amt NUMBER)
ON COMMIT PRESERVE ROWS;
This CREATE TABLE statement creates a global temporary table, shipping_schedule, which retains inserted rows across multiple transactions.
The Oracle physical_attributes_clause
The physical_attributes_clause (shown in the following code block) defines storage characteristics for an entire local table, or, if the table is partitioned, for a specific partition (discussed later). To declare the physical attributes of a new table or change the attributes on an existing table, simply declare the new values:
-- physical_attributes_clause
[{PCTFREE int | PCTUSED int | INITRANS int |
 storage_clause}]
where:
	PCTFREE int
	Defines the percentage of free space reserved for each data block in the table. For example, a value of 10 reserves 10% of the data space for new rows to be inserted.

	PCTUSED int
	Defines the minimum percentage of space allowed in a block before it can receive new rows. For example, a value of 90 means new rows are inserted in the data block when the space used falls below 90%. The sum of PCTFREE and PCTUSED cannot exceed 100.

	INITRANS int
	Rarely tinkered with; defines the allocation of from 1 to 255 initial transactions to a data block.
Tip
In versions prior to 11g the MAXTRANS parameter was used to define the maximum allowed number of concurrent transactions on a data block, but this parameter has now been deprecated. Oracle 11g automatically sets MAXTRANS to 255, silently overriding any other value that you specify for this parameter (although existing objects retain their established MAXTRANS settings).

The Oracle storage_clause and LOBs
The storage_clause controls a number of attributes governing the physical storage of data:
-- storage_clause
STORAGE ([{INITIAL int [K | M | G | T]
 | NEXT int [K | M]
 | MINEXTENTS int
 | MAXEXTENTS {int | UNLIMITED}
 | PCTINCREASE int
 | FREELISTS int
 | FREELIST GROUPS int
 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}}] [...])
When delineating the storage clause attributes, enclose them in parentheses and separate them with spaces—for example, (INITIAL 32M NEXT8M). The attributes are as follows:
	INITIAL int [K | M | G | T]
	Sets the initial extent size of the table in bytes, kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T).

	NEXT int [K | M]
	Tells how much additional space to allocate after INITIAL is filled.

	MINEXTENTS int
	Tells Oracle to create a minimum number of extents. By default, only one is created, but more can be created when the object is initialized.

	MAXEXTENTS int | UNLIMITED
	Tells Oracle the maximum number of extents allowed. This value may be set to UNLIMITED. (Note that UNLIMITED should be used with caution, since a table could grow until it consumes all free space on a disk.)

	PCTINCREASE int
	Controls the growth rate of the object after the first growth. The initial extent gets allocated as specified, the second extent is the size specified by NEXT, the third extent is NEXT + (NEXT * PCTINCREASE), and so on. When PCTINCREASE is set to 0, NEXT is always used. Otherwise, each added extent of storage space is PCTINCREASE larger than the previous extent.

	FREELISTS int
	Establishes the number of freelists for each group, defaulting to 1.

	FREELIST GROUPS int
	Sets the number of groups of freelists, defaulting to 1.

	BUFFER_POOL {KEEP | RECYCLE | DEFAULT}
	Specifies a default buffer pool or cache for any non-cluster table where all object blocks are stored. Index-organized tables may have a separate buffer pool for the index and overflow segments. Partitioned tables inherit the buffer pool from the table definition unless they are specifically assigned a separate buffer pool.
	KEEP
	Puts object blocks into the KEEP buffer pool; that is, directly into memory. This enhances performance by reducing I/O operations on the table. KEEP takes precedence over the NOCACHE clause.

	RECYCLE
	Puts object blocks into the RECYCLE buffer pool.

	DEFAULT
	Puts object blocks into the DEFAULT buffer pool. When this clause is omitted, DEFAULT is the default buffer pool behavior.

For example, the table books_sales is defined on the sales tablespace as consuming an initial 8 MB of space, to grow by no less than 8 MB when the first extent is full. The table has no less than 1 and no more than 8 extents, limiting its maximum size to 64 MB:
CREATE TABLE book_sales
 (qty NUMBER,
 period_end_date DATE,
 period_nbr NUMBER)
TABLESPACE sales
STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);
An example of a LOB table called large_objects with special handling for text and image storage might look like this:
CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING);
The exact syntax used to define a LOB, CLOB, or NCLOB column is defined by the lob_parameter_clause. LOBs can appear at many different levels within an Oracle table. For instance, separate LOB definitions could exist in a single table in a partition definition, in a subpartition definition, and at the top table-level definition. The syntax of lob_parameter_clause follows:
{TABLESPACE tablespace_name] [{SECUREFILE | BASICFILE}]
 [{ENABLE | DISABLE} STORAGE IN ROW]
 [storage_clause] [CHUNK int] [PCTVERSION int]
 [RETENTION [{MAX | MIN int | AUTO | NONE}]]
 [{DEDUPLICATE | KEEP_DUPLICATES}]
 [{NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]}]
 [FREEPOOLS int]
[{CACHE | {NOCACHE | CACHE READS} [{LOGGING | NOLOGGING}]}]
In the lob_parameter_clause, each parameter is identical to those of the wider CREATE TABLE LOB-object level. However, the following parameters are unique to LOBs:
	SECUREFILE | BASICFILE
	Specifies use of either the high-performance LOB storage (SECUREFILE) or the traditional LOB storage (BASICFILE, the default). When using SECUREFILE, you get access to other new features such as LOB compression, encryption, and deduplication.

	{ENABLE | DISABLE} STORAGE IN ROW
	Defines whether the LOB value is stored inline with the other columns of the row and the LOB locator (ENABLE), when it is smaller than approximately 4,000 bytes or less, or outside of the row (DISABLE). This setting cannot be changed once it is set.

	CHUNK int
	Allocates int number of bytes for LOB manipulation. int should be a multiple of the database block size; otherwise, Oracle will round up. int should also be less than or equal to the value of NEXT, from the storage_clause, or an error will be raised. When omitted, the default chunk size is one block. This setting cannot be changed once it is set.

	PCTVERSION int
	Defines the maximum percentage (int) of the overall LOB storage dedicated to maintaining old versions of the LOB. When omitted, the default is 10%.

	RETENTION [{MAX | MIN int | AUTO | NONE}]
	Used in place of PCTVERSION on databases in automatic undo mode. RETENTION tells Oracle to retain old versions of the LOB. When using SECUREFILE, you may specify additional options. MAX tells Oracle to allow the undo file to grow until the LOB segment has reached its maximum size, as defined by the MAXSIZE value of the storage_clause. MIN limits undo to int seconds if the database is in flashback mode. AUTO, the default, maintains enough undo for consistent reads. NONE specifies that the undo is not required.

	DEDUPLICATE | KEEP_DUPLICATES
	Specifies whether to keep duplicate LOB values within an entire LOB segment (KEEP_DUPLICATES) or to eliminate duplicate copies (DEDUPLICATE, the default). Only usable with SECUREFILE LOBs.

	NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]
	NOCOMPRESS, the default, disables server-side compression of LOBs in the SECUREFILE format. Alternately, you may tell Oracle to compress LOBs using either a MEDIUM (the default when a value is omitted) or HIGH degree of compression (HIGH compression incurs more overhead).

The following example shows our large_objects LOB table with added parameters to control inline storage and retention of old LOBs:
CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING
 ENABLE STORAGE IN ROW
 RETENTION);
The earlier example added parameter values for STORAGE IN ROW and RETENTION, but since we did not set one for CHUNK, that value is set to the Oracle default for the LOB.

Oracle nested tables
Oracle allows the declaration of a NESTED TABLE, in which a table is virtually stored within a column of another table. The STORE AS clause enables a proxy name for the table within a table, but the nested table must be created initially as a user-defined datatype. This capability is valuable for sparse arrays of values, but we don't recommend it for day-to-day tasks. This example creates a table called proposal_types along with a nested table called props_nt, which is stored as props_nt_table:
CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;
CREATE TABLE proposal_types
 (proposal_category VARCHAR2(50),
 proposals PROPS_NT)
NESTED TABLE props_nt STORE AS props_nt_table;

Oracle compressed tables
Starting at Oracle 9i Release 2, Oracle allows compression of both keys and entire tables. (Oracle 9i Release 1 allowed only key compression.) Although compression adds a tiny bit of overhead, it significantly reduces the amount of disk space consumed by a table. This is especially useful for databases pushing the envelope in terms of size. Key compression is handled in the ORGANIZE INDEX clause, while table compression is handled in the ORGANIZE HEAP clause.

Oracle partitioned and subpartitioned tables
Oracle allows tables to be partitioned and subpartitioned. You can also break out LOBs onto their own partition(s). A partitioned table may be broken into distinct parts, possibly placed on separate disk subsystems to improve I/O performance (based on four strategies: range, hash, list, or a composite of the first three), or on a system partition. Partitioning syntax is quite elaborate:
{ PARTITION BY RANGE (column[, ...])
 [INTERVAL (expression) [STORE IN (tablespace[, ...])]]
 (PARTITION [partition_name]
 VALUES LESS THAN ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY HASH (column[, ...])
 {(PARTITION [partition_name] [partitioning_storage_clause][, ...]) |
 PARTITIONS hash_partition_qty [STORE IN (tablespace[, ...])]
 [OVERFLOW STORE IN (tablespace[, ...])]} |
 PARTITION BY LIST (column[, ...]) (PARTITION [partition_name]
 VALUES ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY RANGE (column[, ...])
 {subpartition_by_list | subpartition_by_hash}
 (PARTITION [partition_name] VALUES LESS THAN
 ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY SYSTEM [int] |
 PARTITION BY REFERENCE (constraint)
 [(PARTITION [partition_name] [table_partition_description][, ...])] }
The following example code shows the orders table partitioned by range:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE));
This example creates three partitions on the orders table—one for the orders taken before the year 2000 (pre_yr_2000), one for the orders taken before the year 2004 (pre_yr_2004), and another for the orders taken after the year 2004 (post_yr_2004)—all based on the range of dates that appear in the order_date column.
The INTERVAL clause further facilitates range partitioning on numeric or datetime values by automatically creating new partitions when the current range boundaries are exceeded. The interval expression defines a valid number for the range boundary. Use the STORE IN subclause to tell Oracle which tablespace(s) will store the interval partition data. You cannot use interval partitioning on index-organized tables, with domain indexes, or at a subpartition level.
The next example creates the orders table based on a hash value in the cust_shp_id column:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY HASH (cust_shp_id)
 (PARTITION shp_id1 TABLESPACE tblspc01,
 PARTITION shp_id2 TABLESPACE tblspc02,
 PARTITION shp_id3 TABLESPACE tblspc03)
ENABLE ROW MOVEMENT;
The big difference in how the records are divided among partitions between the hash partition example and the range partition example is that the range partition code explicitly defines where each record goes, while the hash partition example allows Oracle to decide (by applying a hash algorithm) which partition to place the record in. (Note that we also enabled row movement for the table).
In addition to breaking tables apart into partitions (for easier backup, recovery, or performance reasons), you may further break them apart into subpartitions. The subpartition_by_list clause syntax follows:
SUBPARTITION BY LIST (column)
[SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name
 [VALUES {DEFAULT | {val | NULL}[, ...]}]
 [partitioning_storage_clause]) |
 hash_subpartition_qty }]
As an example, we'll recreate the orders table once again, this time using a range-hash composite partition. In a range-hash composite partition, the partitions are broken apart by range values, while the subpartitions are broken apart by hashed values. List partitions and subpartitions are broken apart by a short list of specific values. Because you must list out all the values by which the table is partitioned, the partition value is best taken from a small list of values. In this example, we've added a column (shp_region_id) that allows four possible regions:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20))
PARTITION BY RANGE(order_date)
SUBPARTITION BY LIST(shp_region)
 SUBPARTITION TEMPLATE(
 (SUBPARTITION shp_region_north
 VALUES ('north','northeast','northwest'),
 SUBPARTITION shp_region_south
 VALUES ('south','southeast','southwest'),
 SUBPARTITION shp_region_central
 VALUES ('midwest'),
 SUBPARTITION shp_region_other
 VALUES ('alaska','hawaii','canada')
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE))
ENABLE ROW MOVEMENT;
This code example sends the records of the table to one of three partitions based on the order_date, and further partitions the records into one of four subpartitions based on the region where the order is being shipped and on the value of the shp_region column. By using the SUBPARTITION TEMPLATE clause, you apply the same set of subpartitions to each partition. You can manually override this behavior by specifying subpartitions for each partition.
You may also subpartition using a hashing algorithm. The subpartition_by_hash clause syntax follows:
SUBPARTITION BY HASH (column[, ...])
 {SUBPARTITIONS qty [STORE IN (tablespace_name[, ...])] |
 SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}
 [, ...]}] [partitioning_storage_clause]) |
 hash_subpartition_qty }}
The table_partition_description clause referenced in the partitioning syntax is, in itself, very flexible and supports precise handling of LOB and VARRAY data:
[segment_attr_clause] [[NO] COMPRESS [int]] [OVERFLOW segment_attr_clause]
[partition_level_subpartition_clause]
[{ LOB { (lob_item[, ...]) STORE AS lob_param_clause |
 (lob_item) STORE AS {lob_segname (log_param_clause) |
 log_segname | (log_param_clause)} } |
 VARRAY varray_item [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] STORE AS LOB { log_segname |
 [log_segname] (log_param_clause) } |
 [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] }]
The partition_level_subpartition_clause syntax follows:
{SUBPARTITIONS hash_subpartition_qty [STORE IN (tablespace_name[, ...])] |
 SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}[, ...]]
 [partitioning_storage_clause] }
The partition_storage_clause, like the table-level storage_clause defined earlier, defines how elements of a partition (or subpartition) are stored. The syntax follows:
[[TABLESPACE tablespace_name] | [OVERFLOW TABLESPACE tablespace_name] |
 VARRAY varray_item STORE AS LOB log_segname |
 LOB (lob_item) STORE AS { (TABLESPACE tablespace_name) |
 Log_segname [(TABLESPACE tablespace_name)] }]
SYSTEM partitioning is simple because it does not require partitioning key columns or range or list boundaries. Instead, SYSTEM partitions are equipartitioned subordinate tables, like nested tables or domain index storage tables, whose parent table is partitioned. If you leave off the int variable, Oracle will create one partition called SYS_Pint. Otherwise, it will create int number of partitions, up to a limit of 1,024K - 1. System partitioned tables are similar to other partitioned or subpartitioned tables, but they do not support the OVERFLOW clause within the table_partition_description clause.
REFERENCE partitioning is allowable only when the table is created. It enables equipartitioning of a table based on a referential-integrity constraint found in an existing partitioned parent table. All maintenance on the subordinate table with REFERENCE partitioning occurs automatically, because operations on the parent partition automatically cascade to the subordinate table.
In this final partitioning example, we'll again recreate the orders table using a composite range-hash partition, this time with LOB (actually, an NCLOB column) and storage elements:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB)
PARTITION BY RANGE(order_date)
SUBPARTITION BY HASH(cust_shp_id)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY') TABLESPACE tblspc01
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a01
 STORAGE (INITIAL 10M NEXT 20M))
 SUBPARTITIONS subpartn_a,
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY') TABLESPACE tblspc02
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a02
 STORAGE (INITIAL 25M NEXT 50M))
 SUBPARTITIONS subpartn_b TABLESPACE tblspc_x07,
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE (SUBPARTITION subpartn_1,
 SUBPARTITION subpartn_2,
 SUBPARTITION subpartn_3
 SUBPARTITION subpartn_4))
ENABLE ROW MOVEMENT;
In this somewhat more complex example, we define the orders table with the added NCLOB table called order_desc. In the pre_yr_2000 and pre_yr_2004 partitions, we specify that all of the non-LOB data goes to tablespaces tblspc01 and tblspc02, respectively. However, the NCLOB values of the order_desc column will be stored in the tblespc_a01 and tblspc_a02 partitions, respectively, with their own unique storage characteristics. Note that the subpartition subpartn_b under the partition pre_yr_2004 is also stored in its own tablespace, tblspc_x07. Finally, the last partition (post_yr_2004) and its subpartitions are stored in the default tablespace for the orders table, because no partition- or subpartition-level TABLESPACE clause overrides the default.

Altering partitioned and subpartition tables
Anything about partitions and subpartitions that is explicitly set by the CREATE TABLE statement may be altered after the table is created. Many of the clauses shown here (for example, the SUBPARTITION TEMPLATE and MAPPING TABLE clauses) are merely repetitions of clauses that were described in the earlier section about creating partitioned tables; consequently, descriptions of these clauses will not be repeated. Altering the partitions and/or subpartitions of an Oracle table is governed by this syntax:
ALTER TABLE table_name
 [MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
 [physical_attributes_clause] [storage_clause] [PCTTHRESHOLD int]
 [{ADD OVERFLOW ... | OVERFLOW ...}] [[NO]COMPRESS]
 [{LOB (lob_name) | VARRAY varray_name} [(lob_parameter_clause)]]
 [COMPRESS int | NOCOMPRESS]]
 [SET SUBPARTITION TEMPLATE {hash_subpartn_quantity |
 (SUBPARTITION subpartn_name [partn_list] [storage_clause])}]
 [{ SET INTERVAL (expression) |
 SET SET STORE IN (tablespace[, ...]) }]
 [MODIFY PARTITION partn_name
 { [table_partition_description] |
 [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }
 [MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |
 list_subpartn_attributes}]
 [MOVE {PARTITION | SUBPARTITION} partn_name
 [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]
 [update_index_clause]]
 [ADD PARTITION [partn_name] [table_partition_description]
 [[NO]PARALLEL] [update_index_clause]]
 [COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]]
 [DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]
 [update_index_clause]]
 [RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name]
 [TRUNCATE {PARTITION | SUBPARTITION} partn_name
 [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]]
 [SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES}
 (value[, ...])
 [INTO (PARTITION [partn_name1]
 [table_partition_description],
 PARTITION [partn_name2]
 [table_partition_description])]
 [[NO]PARALLEL] [update_index_clause]]
 [MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2
 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]
 [update_index_clause]]
 [EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name
 [{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION]
 [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]]
where:
	MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
	Modifies a wide variety of attributes for the current partition or a specific partition of partn_name. Refer to the earlier section "Oracle partitioned and subpartitioned tables" for all the details on partition attributes.

	SET SUBPARTITION TEMPLATE {hash_subpartn_quantity | (SUBPARTITION subpartn_name [partn_list] [storage_clause])}
	Sets a new subpartition template for the table.

	SET INTERVAL (expression | SET SET STORE IN (tablespace[, . . .])
	Converts a range-partitioned table to an interval-partitioned table or, using SET STORE IN, changes the tablespace storage of an existing interval-partitioned table. You can change an interval-partitioned table back to a range-partitioned table using the syntax SET INTERVAL ().

	MODIFY PARTITION partn_name
	Changes a wide variety of physical and storage characteristics, including the storage properties of LOB and VARRAY columns, of a pre-existing partition or subpartition called partn_name. Additional syntax may be appended to the MODIFY PARTITION partn_name clause:
{ [table_partition_description] | [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
 { [{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name (
 {index_partn | index_subpartn}))[, ...]] }] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }
where:
	table_partition_description
	Described in the earlier section "Oracle partitioned and subpartitioned tables." This clause may be used on any partitioned table.

	[REBUILD] UNUSABLE LOCAL INDEXES
	Marks the local index partition as UNUSABLE. Adding the optional REBUILD keyword tells Oracle to rebuild the unusable local index partition as part of the operation performed by the MODIFY PARTITION statement. This clause may not be used with any other subclause of the MODIFY PARTITION statement, nor may it be used on tables with subpartitions. This clause may be used on any partitioned table.

	ADD [subpartn specification]
	Adds a hash or list subpartition specification, as described in the earlier section "Oracle partitioned and subpartitioned tables," to an existing range partition. This clause may be used to define range-hash or range-list composite partitions only. Oracle populates the new subpartition with rows from other subpartitions using either the hash function or the list values you specify. We recommend the total number of subpartitions be set to a power of 2 for optimal load balancing. You may add range-list subpartitions only if the table does not already have a DEFAULT subpartition. When adding range-list subpartitions, the list value clause is required, but it cannot duplicate values found in any other subpartition of the current partition. The only storage or physical attribute you may couple with this clause for both range-hash and range-list subpartitions is the TABLESPACE clause. Adding the clause DEPENDENT TABLES (table_name (partn_specification[, . . .])[, . . .]) [{UPDATE | INVALIDATE} [GLOBAL] INDEXES (index_name (index_partn)[, . . .]))] instructs Oracle to cascade partition maintenance and alteration operations on a table to any reference-partitioned child tables (and/or indexes) that may exist.

	COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
	Coalesces the subpartition of a range-hash composite partitioned table. This clause tells Oracle to distribute the contents of the last hash subpartition to one or more remaining subpartitions in the set, and then drop the last hash subpartition. Oracle also drops local index subpartitions corresponding to the subpartition you are coalescing. The update_index_clause is described later in this list. Global indexes may be updated or invalidated using the syntax {UPDATE | INVALIDATE} GLOBAL INDEXES. In addition, local indexes, index partitions, or index subpartitions may be updated using the syntax UPDATE INDEXES (index_name ({index_partn | index_subpartn})).

	{ADD | DROP} VALUES (partn_value[, . . .])
	Adds a new value (or values) or drops existing values on an existing list-partitioned table, respectively. Local and global indexes are not affected by this clause. Values cannot be added to or dropped from a DEFAULT list partition.

	MAPPING TABLE {ALLOCATE EXTENT . . . | DEALLOCATE UNUSED . . . }
	Defines a mapping table for a partitioned table that is an IOT. The ALLOCATE EXTENT and DEALLOCATE UNUSED clauses were described earlier, in the syntax description list for the CREATE TABLE statement. This clause may be used on any type of partitioned table, as long as the table is an index-organized table.

	MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes | list_subpartn_attributes}
	Modifies a specific hash or list subpartition according to the subpartition attributes described in the earlier section "Oracle partitioned and subpartitioned tables."

	MOVE {PARTITION | SUBPARTITION} partn_name [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL] [update_index_clause]
	Moves a specified partition (or subpartition) of partn_name to another partition (or subpartition) described in the table_partition_description clause. Moving a partition is I/O-intensive, so the optional PARALLEL clause may be used to parallelize the operation. When it's omitted, NOPARALLEL is the default. In addition, you may optionally update or invalidate the local and global index, as described in the update_index_clause discussed later in this list.

	ADD PARTITION [partn_name] [table_partition_description] [[NO]PARALLEL] [update_index_clause]
	Adds a new partition (or subpartition) of partn_name to the table. The ADD PARTITION clause supports all aspects of creating a new partition or subpartition, via the table_partition_description clause. Adding a partition may be I/O-intensive, so the optional PARALLEL clause may be used to parallelize the operation. When it's omitted, NOPARALLEL is the default. In addition, you may optionally update or invalidate local and global indexes on the table using the update_index_clause.

	update_index_clause
	Controls the status assigned to indexes once the partitions and/or subpartitions of a table are altered. By default, Oracle invalidates the entire index(es) of a table, not just those portions of the index on the partition and/or subpartition being altered. You may update or invalidate global indexes on the table or update one or more specific index(es) on the table, respectively, using this syntax:
[{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name ({index_partn|index_subpartn}))[, ...]]

	COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]
	Takes the contents of the last partition of a set of hash partitions and rehashes the contents to one or more of the other partitions in the set. The last partition is then dropped. Obviously, this clause is only for use with hash partitions. The update_index_clause may be applied to update or invalidate the local and/or global indexes of the table being coalesced.

	DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL] [update_index_clause]
	Drops an existing range or list partition or subpartition of partn_name from the table. The data within the partition is also dropped. If you want to keep the data, use the MERGE PARTITION clause. If you want to get rid of a hash partition or subpartition, use the COALESCE PARTITION clause. Tables with only a single partition are not affected by the ALTER TABLE . . . DROP PARTITION statement; instead, use the DROP TABLE statement.

	RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name
	Renames an existing partition or subpartition of old_partn_name to a new name of new_partn_name.

	TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]
	Removes all of the rows of a partition or subpartition of partn_name. If you truncate a composite partition, all the rows of the subpartition(s) are also dropped. On IOTs, mapping table partitions and overflow partitions are also truncated. LOB data and index segments, if the table has any LOB columns, are also truncated. Finally, disable any existing referential integrity constraints on the data, or else delete the rows from the table first, then truncate the partition or subpartition. The optional DROP and REUSE STORAGE subclauses define whether the space freed by the truncated data is made available for other objects in the tablespace or remains allocated to the original partition or subpartition.

	SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES} (value[, . . .]) [INTO (PARTITION [partn_name1] [table_partition_description]), (PARTITION [partn_name2] [table_partition_description])] [[NO]PARALLEL] [update_index_clause]
	Creates from the current partition (or subpartition) identified by partn_name two new partitions (or subpartitions) called partn_name1 and partn_name2. These new partitions may have their own complete specification, as defined by the table_partition_description clause. When such a specification is omitted, the new partitions inherit all physical characteristics of the current partition. When splitting a DEFAULT partition, all of the split values go to partn_name1, while all of the default values go to partn_name2. For IOTs, Oracle splits any mapping table partition in a manner corresponding to the split. Oracle also splits LOB and OVERFLOW segments, but you may specify your own LOB and OVERFLOW storage characteristics, as described in the earlier section on LOBs.
	{AT | VALUES} (value[, . . .])
	Splits range partitions (using AT) or list partitions (using VALUES) according to the value(s) you specify. The AT (value[, . . .]) clause defines the new noninclusive upper range for the first of the two new partitions. The new value should be less than the partition boundary of the current partition, but greater than the partition boundary of the next lowest partition (if one exists). The VALUES (value1[, . . .]) clause defines the values to go into the first of the two new list partitions. The first new list partition is built from value1, and the second is built from the remaining partition values in the current partition of partn_name. The value list must include values that already exist in the current partition, but it cannot contain all of the values of the current partition.

	INTO (PARTITION [partn_name1] [table_partition_description]), (PARTITION [partn_name2] [table_partition_description])
	Defines the two new partitions that result from the split. At a minimum, the two PARTITION keywords, in parentheses, are required. Any characteristics not explicitly declared for the new partitions are inherited from the current partition of partn_name, including any subpartitioning. There are a few restrictions to note. When subpartitioning range-hash composite partitioned tables, only the TABLESPACE value is allowed for the subpartitions. Subpartitioning is not allowed at all when splitting range-list composite partitioned tables. Any indexes on heap-organized tables are invalidated by default when the table is split. You must use the update_index_clause to update their status.

	MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL] [update_index_clause]
	Merges the contents of two or more partitions or subpartitions of a table into a single new partition. Oracle then drops the two original partitions. Merged range partitions must be adjacent and are then bound by the higher boundary of the original two partitions when merged. Merged list partitions need not be adjacent and result in a single new partition with a union of the two sets of partition values. If one of the list partitions was the DEFAULT partition, the new partition will be the DEFAULT. Merged range-list composite partitions are allowed but may not have a new subpartition template. Oracle creates a subpartition template from the existing one(s) or, if none exist, creates a new DEFAULT subpartition. Physical attributes not defined explicitly are inherited from the table-level settings. By default, Oracle makes all local index partitions and global indexes UNUSABLE unless you override this behavior using the update_index_clause. (The exception to this rule is with IOTs, which, being index-based, will remain USABLE throughout the merge operation.) Merge operations are not allowed on hash-partitioned tables; use the COALESCE PARTITION clause instead.

	EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name [{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION] [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]
	Exchanges the data and index segments of a nonpartitioned table with those of a partitioned table, or the data and index segments of a partitioned table of one type with those of a partitioned table of another type. The structure of the tables in the exchange must be identical, including the same primary key. All segment attributes (e.g., tablespaces, logging, and statistics) of the current partitioned table, called partn_name, and the table it is being exchanged with, called table_name, are exchanged. Tables containing LOB columns will also exchange LOB data and index segments. Additional syntax details that have not previously been defined elsewhere in this list follow:
	WITH TABLE table_name
	Defines the table that will exchange segments with the current partition or subpartition.

	{INCLUDING | EXCLUDING} INDEXES
	Exchanges local index partitions or subpartitions with the table index (on nonpartitioned tables) or the local index (on hash-partitioned tables), using the INCLUDING INDEXES clause. Alternately, marks all index partitions and subpartitions as well as regular indexes and partitioned indexes of the exchanged table with the UNUSABLE status, using the EXLCUDING INDEXES clause.

	{WITH | WITHOUT} VALIDATION
	Returns errors when any rows in the current table fail to map into a partition or subpartition of the exchanged table, using the WITH VALIDATION clause. Otherwise, the WITHOUT VALIDATION clause may be included to skip checking of row mapping between the tables.

	EXCEPTIONS INTO table_name
	Places the ROWIDs of all rows violating a UNIQUE constraint (in DISABLE VALIDATE state) on the partitioned table. When this clause is omitted, Oracle assumes there is a table in the current schema called EXCEPTIONS. The EXCEPTIONS table is defined in the utlexcpt.sql and utlexpt1.sql scripts that ship with Oracle. Refer to the Oracle documentation if you need these scripts.

There are a couple of caveats to remember about altering a partitioned table. First, altering a partition on a table that serves as the source for one or more materialized views requires that the materialized views be refreshed. Second, bitmap join indexes defined on the partitioned table being altered will be marked UNUSABLE. Third, several restrictions apply if the partitions (or subpartitions) are ever spread across tablespaces that use different block sizes. Refer to the Oracle documentation when attempting these sorts of alterations to a partitioned table.
In the next few examples, assume we are using the orders table, partitioned as shown here:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE)) ;
The following statement will mark all of the local index partitions as UNUSABLE in the orders table for the post_yr_2004 partition:
ALTER TABLE orders MODIFY PARTITION post_yr_2004
 UNUSABLE LOCAL INDEXES;
However, say we've decided to now split the orders table partition post_yr_2004 into two new partitions, pre_yr_2008 and post_yr_2008. Values that are now less than MAXVALUE will be stored in the post_yr_2008 partition, while values less than '01-JAN-2008' will be stored in pre_yr_2008:
ALTER TABLE orders SPLIT PARITION post_yr_2004
 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))
 INTO (PARTITION pre_yr_2008, PARTITION post_yr_2008);
Assuming that the orders table contained a LOB or a VARRAY column, we could further refine the alteration by including additional details for handling these columns, while also updating the global indexes as the operation completes:
ALTER TABLE orders SPLIT PARITION post_yr_2004
 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))
 INTO
 (PARTITION pre_yr_2008
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1),
 PARTITION post_yr_2008)
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1))
 UPDATE GLOBAL INDEXES;
Now, assuming the orders table has been grown at the upper end, let's merge together the partitions at the lower end:
ALTER TABLE orders
 MERGE PARTITIONS pre_yr_2000, pre_yr_2004
 INTO PARTITION yrs_2004_and_earlier;
After a few more years have passed, we might want to get rid of the oldest partition, or at least give it a better name:
ALTER TABLE orders DROP PARTITION yrs_2004_and_earlier;
ALTER TABLE orders RENAME PARTITION yrs_2004_and_earlier TO pre_yr_2004;
Finally, let's truncate a table partition, delete all of its data, and return the empty space for use by other objects in the tablespace:
ALTER TABLE orders
 TRUNCATE PARTITION pre_yr_2004
 DROP STORAGE;
As these examples illustrate, anything related to partitioning and subpartitioning that can be created with the Oracle CREATE TABLE statement can later be changed, augmented, or cut down using the Oracle ALTER TABLE statement.

Organized tables: heaps, IOTs, and external tables
Oracle 11g offers powerful means of controlling the physical storage behavior of tables.
The most useful aspect of the ORGANIZATION HEAP clause is that you can now compress an entire table within Oracle. This is extremely useful for reducing disk storage costs in database environments with multiterabyte tables. The following example creates the orders table in a compressed and logged heap, along with a primary key constraint and storage details:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 COMPRESS LOGGING
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;
To define the same table using an index-organized table based on the order_date column, we would use this syntax:
CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 INCLUDING order_date
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;
Finally, we'll create an external table that stores our customer shipping information, called cust_shipping_external. The code shown in bold is the opaque_format_spec:
CREATE TABLE cust_shipping_external
 (external_cust_nbr NUMBER(6),
 cust_shp_id NUMBER,
 shipping_company VARCHAR2(25))
ORGANIZATION EXTERNAL
 (TYPE oracle_loader
 DEFAULT DIRECTORY dataloader
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY newline
 BADFILE 'upload_shipping.bad'
 DISCARDFILE 'upload_shipping.dis'
 LOGFILE 'upload_shipping.log'
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
 (client_id INTEGER EXTERNAL(6),
 shp_id CHAR(20),
 shipper CHAR(25)))
 LOCATION ('upload_shipping.ctl'))
REJECT LIMIT UNLIMITED;
In this example, the external table type is ORACLE_LOADER and the default directory is DATALOADER. This example illustrates the fact that you define the metadata of the table within Oracle and then describe how that metadata references a data source outside of the Oracle database server itself.

Oracle XMLType and object-type tables
When an Oracle XMLType table is created, Oracle automatically stores the data in a CLOB column, unless you create an XML schema-based table. (For details on Oracle's XML support, see Oracle's XMLDB Developer's Guide.) The following code example first creates an XMLType table, distributors, with the implicit CLOB data storage, then creates a second such table, suppliers, with a more sophisticated XML-schema definition:
CREATE TABLE distributors OF XMLTYPE;
CREATE TABLE suppliers OF XMLTYPE
XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
ELEMENT "vendors";
A key advantage of tables based on XML schemas is that you can create B-tree indexes on them. In the following example, we create an index on suppliercity:
CREATE INDEX suppliercity-index
ON suppliers
(S."XMLDATA"."ADDRESS"."CITY");
You may similarly create tables using a mix of standard and XMLTYPE columns. In this case, the XMLTYPE column may store its data as a CLOB, or it may store its data in an object-relational column of a structure determined by your specification. For example, we'll recreate the distributors table (this time with some added storage specifications) and the suppliers table with both standard and XMLTYPE columns:
CREATE TABLE distributors
 (distributor_id NUMBER,
 distributor_spec XMLTYPE)
XMLTYPE distributor_spec
STORE AS CLOB
 (TABLESPACE tblspc_dist
 STORAGE (INITIAL 10M NEXT 5M)
 CHUNK 4000
 NOCACHE
 LOGGING);
CREATE TABLE suppliers
 (supplier_id NUMBER,
 supplier_spec XMLTYPE)
XMLTYPE supplier_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
 ELEMENT "vendors"
OBJECT IDENTIFIER IS SYSTEM GENERATED
OIDINDEX vendor_ndx TABLESPACE tblspc_xml_vendors;
When creating XML and object tables, you may refer to inline_ref_constraint and table_ref_constraint clauses. The syntax for an inline_ref_constraint clause is:
{SCOPE IS scope_table |
 WITH ROWID |
 [CONSTRAINT constraint_name] REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}
The only difference between an inline reference constraint and a table reference constraint is that inline reference constraints operate at the column level and table reference constraints operate at the table level. (This is essentially the same behavior and coding rule of standard relational constraints like PRIMARY KEY or FOREIGN KEY.) The syntax for a table_ref_constraint follows:
{SCOPE FOR (ref_col | ref_attr) IS scope_table |
 REF (ref_col | ref_attr) WITH ROWID |
 [CONSTRAINT constraint_name] FOREIGN KEY (ref_col | ref_attr)
 REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}
The constraint_state clause contains a number of options that have already been defined earlier in the discussion of the Oracle CREATE TABLE statement. However, these options are applied only to the condition of the scope reference:
[NOT] DEFERRABLE
INITIALLY {IMMEDIATE | DEFERRED}
{ENABLE | DISABLE}
{VALIDATE | NOVALIDATE}
{RELY | NORELY}
EXCEPTIONS INTO table_name
USING INDEX {index_name | (create_index_statement) | index_attributes}
Object-type tables are useful for creating tables containing user-defined types. For example, the following code creates the building_type type:
CREATE TYPE OR REPLACE building_type AS OBJECT
 (building_name VARCHAR2(100),
 building_address VARCHAR2(200));
We can then create a table called offices_object_table that contains the object and defines some of its characteristics, such as OID information. In addition, we'll create two more tables, based upon building_type, that reference the object type as an inline_ref_constraint and a table_ref_constraint, respectively:
CREATE TABLE offices_object_table
 OF building_type (building_name PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;
CREATE TABLE leased_offices
 (office_nbr NUMBER,
 rent DEC(9,3),
 office_ref REF building_type
 SCOPE IS offices_object_table);
CREATE TABLE owned_offices
 (office_nbr NUMBER,
 payment DEC(9,3),
 office_ref REF building_type
 CONSTRAINT offc_in_bld REFERENCES offices_object_table);
In these examples, the SCOPE IS clause defines the inline_ref_constraint, while the CONSTRAINT clause defines the table_ref_constraint.

Oracle ALTER TABLE
When using the Oracle command ALTER TABLE, you are able to ADD, DROP, or MODIFY every aspect of each element of the table. For example, the syntax diagram shows that the method for adding or modifying an existing column includes its attributes, but you need to explicitly state that the attributes include any Oracle-specific extensions. So, while the ANSI standard only lets you modify attributes such as DEFAULT or NOT NULL (as well as column-level constraints assigned to the column), Oracle also allows you to alter any special characteristics that might exist, such as LOB, VARRAY, NESTED TABLE, index-organized table, CLUSTER, or PARTITION settings.
For example, the following code adds a new column to a table in Oracle and adds a new, unique constraint to that table:
ALTER TABLE titles
ADD subtitle VARCHAR2(32) NULL
CONSTRAINT unq_subtitle UNIQUE;
When a foreign key constraint is added to a table, the DBMS verifies that all existing data in the table meets that constraint. If not, the ALTER TABLE fails.
Tip
Any queries that use SELECT * return the new columns, even if this was not planned. Precompiled objects, such as stored procedures, can return any new columns if they use the %ROWTYPE attribute. Otherwise, a precompiled object may not return any new columns.

Oracle also allows you to perform multiple actions, such as ADD or MODIFY, on multiple columns by enclosing the actions within parentheses. For example, the following command adds several columns to a table with a single statement:
ALTER TABLE titles
ADD (subtitles VARCHAR2(32) NULL,
 year_of_copyright INT,
 date_of_origin DATE);

PostgreSQL
PostgreSQL supports the ANSI standards for CREATE and ALTER TABLE, with a couple of extensions that enable you to quickly build a new table from existing table definitions. Following is the syntax for CREATE TABLE:
CREATE [LOCAL] [[TEMP]ORARY] TABLE table_name
 (column_name datatype attributes[, ...]) |
CONSTRAINT constraint_name [{NULL | NOT NULL}]
{[UNIQUE] | [PRIMARY KEY (column_name[, ...])] | [CHECK (expression)] |
REFERENCES reference_table (reference_column[, ...])
 [MATCH {FULL | PARTIAL | default}]
 [ON {UPDATE | DELETE}
 {CASCADE | NO ACTION | RESTRICT | SET NULL | SET DEFAULT value}]
 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}]}[, ...] |
 [table_constraint][, ...]
[WITH[OUT] OIDE]
[INHERITS (inherited_table[, ...])]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[AS select_statement]
And the PostgreSQL syntax for ALTER TABLE is:
ALTER TABLE [ONLY] table_name [*]
[ADD [COLUMN] column_name datatype attributes [...]]
| [ALTER [COLUMN] column_name
 {SET DEFAULT value | DROP DEFAULT | SET STATISTICS int}]
| [RENAME [COLUMN] column_name TO new_column_name]
| [RENAME TO new_table_name]
| [ADD table_constraint]
| [DROP CONSTRAINT constraint_name RESTRICT]
| [OWNER TO new_owner]
The parameters are as follows:
	REFERENCES . . . MATCH . . . ON {UPDATE | DELETE} . . .
	Checks a value inserted into the column against the values of a column in another table. This clause can also be used as part of a FOREIGN KEY declaration. The MATCH options are FULL, PARTIAL, and the default, where MATCH has no other keyword. FULL match forces all columns of a multicolumn foreign key either to be NULL or to contain a valid value. The default allows mixed NULLs and values. PARTIAL matching is a valid syntax, but is not supported. The REFERENCES clause also allows several different behaviors to be declared for ON DELETE and/or ON UPDATE referential integrity:
	NO ACTION
	Produces an error when the foreign key is violated (the default).

	RESTRICT
	Synonym for NO ACTION.

	CASCADE
	Sets the value of the referencing column to the value of the referenced column.

	SET NULL
	Sets the value of the referencing column to NULL.

	SET DEFAULT value
	Sets the referencing column to its declared default value or NULL, if no default value exists.

	[NOT] DEFERRABLE [INITIALLY {DEFERRED | IMMEDIATE}]
	The DEFERRABLE option of the REFERENCES clause tells PostgreSQL to defer evaluation of all constraints until the end of a transaction. NOT DEFERRABLE is the default behavior for the REFERENCES clause. Similar to the DEFERRABLE clause is the INITIALLY clause: specifying INITIALLY DEFERRED checks constraints at the end of a transaction; INITIALLY IMMEDIATE checks constraints after each statement (the default).

	FOREIGN KEY
	Can be declared only as a table-level constraint, not as a column-level constraint. All options for the REFERENCES clause are supported as part of the FOREIGN KEY clause. The syntax follows:
[FOREIGN KEY (column_name[, ...]) REFERENCES...]

	WITH[OUT] OIDS
	Specifies whether rows of the new table should have automatically assigned object IDs (WITH OIDS) or not (WITHOUT OIDS). The default is WITH OIDS. OIDs are assigned based on a 32-bit counter. Once the counter is surpassed, the OID numbers cycle over and uniqueness can no longer be guaranteed. We recommend that you add a unique index to any OID columns you specify to avoid an error with duplicate OIDs on very large tables. A table with an inherited structure receives the OID setting of its parent table.

	INHERITS inherited_table
	Specifies a table or tables from which the table you are creating inherits all columns. The newly created table also inherits functions attached to tables higher in the hierarchy. If any inherited column appears more than once, the statement fails.

	ON COMMIT {DELETE | PRESERVE} ROWS
	Used only with temporary tables. This clause controls the behavior of the temporary table after records are committed to the table. ON COMMIT DELETE ROWS clears the temporary table of all rows after each commit. This is the default if the ON COMMIT clause is omitted. ON COMMIT PRESERVE ROWS saves the rows in the temporary table after the transaction has committed.

	AS select_statement
	Enables you to create and populate a table with data from a valid SELECT statement. The column names and datatypes do not need to be defined, since they are inherited from the query. The CREATE TABLE . . . AS statement has similar functionality to SELECT . . . INTO, but is more readable.

	ONLY
	Specifies that only the named table is affected by the ALTER TABLE statement, not any parent or subtables in the table hierarchy.

	OWNER TO new_owner
	Changes the owner of the table to the user identified by new_owner.

A PostgreSQL table cannot have more than 1,600 columns. However, you should limit the number of columns to well below 1,600, for performance reasons. For example:
CREATE TABLE distributors
 (name VARCHAR(40) DEFAULT 'Thomas Nash Distributors',
 dist_id INTEGER DEFAULT NEXTVAL('dist_serial'),
 modtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP);
Tip
Unique to PostgreSQL is the ability to create column-level constraints with multiple columns. Since PostgreSQL also supports standard table-level constraints, the ANSI-standard approach is still the recommended approach.

PostgreSQL's implementation of ALTER TABLE allows the addition of extra columns using the ADD keyword. Existing columns may have new default values assigned to them using ALTER COLUMN . . . SET DEFAULT, while ALTER COLUMN . . . DROP DEFAULT allows the complete erasure of a column-based default. In addition, new defaults may be added to columns using the ALTER clause, but only newly inserted rows will be affected by such new default values. RENAME allows new names for existing columns and tables.

SQL Server
SQL Server offers a plethora of options when defining or altering a table, its columns, and its table-level constraints. Its CREATE TABLE syntax is:
CREATE TABLE table_name
(column_name datatype { [DEFAULT default_value]
 | [IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]
 [ROWGUIDCOL] [NULL | NOT NULL]
 | [{PRIMARY KEY | UNIQUE}
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]
 | [[FOREIGN KEY]
 REFERENCES reference_table [(reference_column[, ...])]
 [ON {DELETE | UPDATE} {CASCADE | NO ACTION}]
 [NOT FOR REPLICATION]]
 | [CHECK [NOT FOR REPLICATION] (expression)]
 | [COLLATE collation_name]
| column_name AS computed_column_expression }
[, ...]
| [table_constraint][, ...])
[ON {filegroup | DEFAULT}]
[TEXTIMAGE_ON {filegroup | DEFAULT}]
And the SQL Server version of ALTER TABLE is:
ALTER TABLE table_name
[ALTER COLUMN column_name new_datatype attributes {ADD | DROP} ROWGUIDCOL]
| [ADD [COLUMN] column_name datatype attributes][, ...]]
| [WITH CHECK | WITH NOCHECK] ADD table_constraint][, ...]
| [DROP { [CONSTRAINT] constraint_name | COLUMN column_name }][, ...]
| [{CHECK | NOCHECK} CONSTRAINT { ALL | constraint_name[, ...] }]
| [{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, ...] }]
The parameters are as follows:
	DEFAULT default_value
	Applies to any column except those with a TIMESTAMP datatype or an IDENTITY property. The default_value must be a constant value such as a character string or a number, a system function such as GETDATE(), or NULL.

	IDENTITY [(seed, increment)]
	Creates and populates the column with a monotonically increasing number when applied to an integer column. The IDENTITY starts counting at the value of seed and increases by the value of increment. When either is omitted, the default is 1.

	NOT FOR REPLICATION
	Specifies that the values of an IDENTITY or FOREIGN KEY are not replicated to subscribing servers. This helps in situations in which different servers require the same table structures, but not the exact same data.

	ROWGUIDCOL
	Identifies a column as a globally unique identifier (GUID), which ensures no two values are ever repeated across any number of servers. Only one such column may be identified per table. This clause does not, however, create the unique values itself. They must be inserted using the NEWID function.

	{PRIMARY KEY | UNIQUE}
	Defines a unique or primary key constraint for the table. The primary key declaration differs from the ANSI standard by allowing you to assign the clustered or nonclustered attributes on the primary key index, as well as a starting fillfactor. (Refer to the section PRIMARY KEY Constraints in Chapter 2 for more information.) The attributes of a unique or primary key include:
	CLUSTERED | NONCLUSTERED
	Declares that the column or columns of the primary key set the physical sort order of the records in the table (CLUSTERED), or that the primary key index maintains pointers to all of the records of the table (NONCLUSTERED). CLUSTERED is the default when this clause is omitted.

	WITH FILLFACTOR = int
	Declares that a percentage of space (int) should remain free on each data page when the table is created. SQL Server does not maintain FILLFACTOR over time, so you should rebuild the index on a regular basis.

	ON {filegroup | DEFAULT}
	Specifies that the primary key either is located on the pre-existing, named filegroup or is assigned to the DEFAULT filegroup.

	FOREIGN KEY
	Checks values as they are inserted into the table against a column in another table in order to maintain referential integrity. Foreign keys are described in detail in Chapter 2. A foreign key can only reference columns that are defined as a PRIMARY KEY or UNIQUE index on the referencing table. A referential action may be specified to take place on the reference_table when the record is deleted or updated, according to the following:
	ON {DELETE | UPDATE}
	Specifies that an action needs to happen in the local table when either (or both) an UPDATE or DELETE occurs on the referenced table.

	CASCADE
	Specifies that any DELETE or UPDATE also takes place on the referring table for any records dependent on the value of the FOREIGN KEY.

	NO ACTION
	Specifies that no action occurs on the referring table when a record on the current table is deleted or updated.

	NOT FOR REPLICATION
	Specifies that an IDENTITY property should not be enforced when the data is replicated from another database. This ensures that data from the published server is not assigned new identity values.

	CHECK
	Ensures that a value inserted into the specified column of the table is a valid value, based on the CHECK expression. For example, the following shows a table with two column-level CHECK constraints:
CREATE TABLE people
 (people_id CHAR(4)
 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED
 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '
 [A-Z][A-Z][A-Z][A-Z]'),
 people_name VARCHAR(40) NULL,
 people_addr1 VARCHAR(40) NULL,
 people_addr2 VARCHAR(40) NULL,
 city VARCHAR(20) NULL,
 state CHAR(2) NULL
 CONSTRAINT def_st DEFAULT ("CA")
 CONSTRAINT chk_st REFERENCES states(state_ID),
 zip CHAR(5) NULL
 CONSTRAINT ck_dist_zip
 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12) NULL,
 sales_rep empid NOT NULL DEFAULT USER)
GO
The CHECK constraint on people_id ensures an all-alphabetic ID, while the one on zip ensures an all-numeric value. The REFERENCES constraint on state performs a lookup on the states table. The REFERENCES constraint is essentially the same as a CHECK constraint, except that it derives its list of acceptable values from the values stored in another column. This example illustrates how column-level constraints are named using the CONSTRAINT constraint_name syntax.

	COLLATE
	Allows programmers to change, on a column-by-column basis, the sort order and character set that is used by the column.

	TEXTIMAGE_ON {filegroup | DEFAULT}
	Controls the placement of text, ntext, and image columns, allowing you to place LOB data on the pre-existing filegroup of your choice. When omitted, these columns are stored in the default filegroup with all other tables and database objects.

	WITH [NO]CHECK
	Tells SQL Server whether the data in the table should be validated against any newly added constraints or keys. When constraints are added using WITH NOCHECK, the query optimizer ignores them until they are enabled via ALTER TABLE table_name CHECK CONSTRAINT ALL. When constraints are added using WITH CHECK, the constraints are checked immediately against all data already in the table.

	[NO]CHECK CONSTRAINT
	Enables an existing constraint with CHECK CONSTRAINT or disables one with NOCHECK CONSTRAINT.

	{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, . . .] }
	Enables or disables the specified trigger or triggers, respectively. All triggers on the table may be enabled or disabled by substituting the keyword ALL for the table name, as in ALTER TABLE employee DISABLE TRIGGER ALL. You may, alternately, disable or enable a single trigger_name or more than one trigger by placing each trigger_name in a comma-delimited list.

SQL Server allows any column-level constraint to be named by specifying CONSTRAINT constraint_name . . ., and then the text of the constraint. Several constraints may be applied to a single column, as long as they are not mutually exclusive (for example, PRIMARY KEY and NULL).
SQL Server also allows a local temporary table to be created, but not using ANSI syntax. A local temporary table, which is stored in the tempdb database, requires a prefix of a single pound sign (#) to the name of the table. The local temporary table is usable by the person or process that created it and is deleted when the person logs out or the process terminates. A global temporary table, which is usable by all people and processes that are currently logged in/running, can be established by prefixing two pound signs (##) to the name of the table. The global temporary table is deleted when its process terminates or its creator logs out.
SQL Server also allows the creation of tables with columns that contain computed values. Such a column does not actually contain data; instead, it is a virtual column containing an expression using other columns already in the table. For example, a computed column could contain an expression such as order_cost AS (price * qty). Computed columns also can contain constants, functions, variables, noncomputed columns, or any of these combined with each other using operators.
Any of the column-level constraints shown earlier also may be declared at the table level. That is, PRIMARY KEY constraints, FOREIGN KEY constraints, CHECK constraints, and others may be declared after all the columns have been defined in the CREATE TABLE statement. This is very useful for constraints that cover more than one column. For example, a column-level UNIQUE constraint can be applied only to that column. However, declaring the constraint at the table level allows it to span several columns. Here is an example of both column- and table-level constraints:
-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL)
GO
-- Creating a table-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) NOT NULL,
 book_name VARCHAR(40) NOT NULL,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)
 WITH FILLFACTOR=70,
 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))
GO
These two commands provide nearly the same results, except that the table-level UNIQUE constraint has two columns, whereas only one column is included in the column-level UNIQUE constraint.
The following example adds a new CHECK constraint to a table, but does not check to ensure that the existing values in the table pass the constraint:
ALTER TABLE favorite_book WITH NOCHECK
ADD CONSTRAINT extra_check CHECK (ISBN > 1)
GO
In this example, we further add a new column with an assigned DEFAULT value that is placed in each existing record in the table:
ALTER TABLE favorite_book ADD reprint_nbr INT NULL
CONSTRAINT add_reprint_nbr DEFAULT 1 WITH VALUES
GO
-- Now, disable the constraint
ALTER TABLE favorite_book NOCHECK CONSTRAINT add_reprint_nbr
GO

See Also
	CREATE SCHEMA
	DROP

Name
CREATE/ALTER TRIGGER Statement

A trigger is a special kind of stored procedure that fires automatically (hence the term "trigger") when a specific data-modification statement is executed against a table. The trigger is directly associated with the table and is considered a dependent object. For example, you might want all of the part_numbers in the sales table to be updated when a part_number is changed in the products table, thus ensuring that part numbers are always in sync. You can accomplish this with a trigger.
Tip
ALTER TRIGGER is not an ANSI-supported statement.

	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
CREATE TRIGGER trigger_name
{BEFORE | AFTER} {DELETE | INSERT | UPDATE [OF column[, ...]]}
ON table_name
[REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW
{ROW | TABLE} [AS] new_name}] [FOR EACH { ROW | STATEMENT }]
[WHEN (conditions)]
[BEGIN ATOMIC]code_block
[END]

Keywords
	CREATE TRIGGER trigger_name
	Creates a trigger named trigger_name and associates it with a specific table.

	BEFORE | AFTER
	Declares that the trigger logic is fired either BEFORE or AFTER the data-manipulation operation that invoked the trigger. BEFORE triggers perform their operations before the INSERT, UPDATE, or DELETE operation occurs, allowing you to do dramatic things like circumvent the data-manipulation operation altogether. AFTER triggers fire after the data-manipulation operation has completed and are useful for after-the-fact operations like recalculating running totals.

	DELETE | INSERT | UPDATE [OF column[, . . .]]
	Defines the data-manipulation operation that causes the trigger to fire: DELETE statements, INSERT statements, or UPDATE statements. You may optionally choose which columns will trigger an update trigger using UPDATE OF column[, . . .]. If an update occurs on any columns not in the column list, the trigger will not fire.

	ON table_name
	Declares the pre-existing table on which the trigger is dependent.

	REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW {ROW | TABLE} [AS] new_name}
	Enables aliasing for the old or new ROW or TABLE acted upon by the trigger. Although the syntax shows the options as exclusive, you may have up to four aliasing references: one for the old row, one for the old table, one for the new row, and one for the new table. The alias OLD refers to the data contained in the table or row before the data-manipulation operation that fired the trigger, while the alias NEW refers to the data that will be contained in the table or row after the data-manipulation operation that fired the trigger. Note that the syntax indicates that ROW is optional, but TABLE is not. (That is, OLD ROW AS is the same as OLD AS, but for TABLE, the only valid option is OLD TABLE AS.) INSERT triggers do not have an OLD context, while DELETE triggers do not have a NEW context. The keyword AS is noise and may be omitted. If the REFERENCING clause specifies either OLD ROW or NEW ROW, the FOR EACH ROW clause is required.

	FOR EACH { ROW | STATEMENT }
	Tells the database to apply the trigger for each row in the table that has changed (ROW) or for each SQL statement issued against the table (STATEMENT). Consider a single UPDATE statement that updates the salaries of 100 employees. If you specify FOR EACH ROW, the trigger will execute 100 times. If you specify FOR EACH STATEMENT, the trigger will execute only once.

	WHEN (conditions)
	Allows you to define additional criteria for a trigger. For example, you might have a trigger called DELETE employee that will fire whenever an employee is deleted. When a trigger fires, if the search conditions contained in the WHEN clause evaluate to TRUE, the trigger action will fire. Otherwise, the trigger will not fire.

	BEGIN ATOMIC | code_block | END
	The ANSI standard requires that the code_block should contain only one SQL statement or, if it contains multiple SQL statements, they should be encosed in a BEGIN and END block.

Rules at a Glance
Triggers, by default, fire once at the statement level. That is, a single INSERT statement might insert 500 rows into a table, but an insert trigger on that table will fire only one time. However, some vendors allow a trigger to fire for each row of the data-modification operation. A statement that inserts 500 rows into a table that has a row-level insert trigger will cause that trigger to fire 500 times, once for each inserted row.
In addition to being associated with a specific data-modification statement (INSERT, UPDATE, or DELETE) on a given table, triggers are associated with a specific time of firing. In general, triggers can fire BEFORE the data-modification statement is processed, AFTER it is processed, or (when supported by the vendor) INSTEAD OF the statement being processed. Triggers that fire before or instead of the data-modification statement do not see the changes that the statement renders, while those that fire afterward can see and act upon the changes rendered.
Triggers make use of two pseudotables. (They are pseudotables in the sense that they are not declared with a CREATE TABLE statement, but they exist logically on the database.) The pseudotables have different names on the different platforms, but we'll call them Before and After here. They are structured exactly the same as the table a trigger is associated with, but they contain snapshots of the table's data: the Before table contains a snapshot of all the records in the table before the trigger fired, while the After table contains a snapshot of how all the records in the table will look after the event that fires the trigger has occurred. You can then use comparison operations to compare the data in the table before and after the event to determine exactly what you want to happen.
Here is an Oracle BEFORE trigger that uses the OLD and NEW pseudotables to compare values. (By way of comparison, SQL Server uses the DELETED and INSERTED pseudotables in the same way.) This trigger creates an audit record before changing an employee's pay record:
CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
WHEN (new.emp_salary <> old.emp_salary)
BEGIN
 INSERT INTO employee_audit
 VALUES ('old', :old.emp_id, :old.emp_salary, :old.emp_ssn);
END;
You can also take advantage of capabilities within each database platform to make your triggers more powerful and easier to program. For example, Oracle has a special IF . . . THEN clause for use just in triggers. This IF . . . THEN clause takes the form IF {DELETING | INSERTING | UPDATING} THEN. The following example builds an Oracle DELETE and UPDATE trigger that uses the IF DELETING THEN clause:
CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
BEGIN
 IF DELETING THEN
 INSERT INTO employee_audit
 VALUES ('DELETED', :old.emp_id, :old.emp_salary, :old.emp_ssn);
 ELSE
 INSERT INTO employee_audit
 VALUES ('UPDATED', :old.emp_id, :new.emp_salary, :old.emp_ssn);
 END IF;
END;
This SQL Server example adds a new table called contractor to the database, and all records in the employee table that indicate that the employee is a contractor are moved into the contractor table. Now we'll specify that all new employees inserted into the employee table will go into the contractor table instead, using an INSTEAD OF INSERT trigger:
CREATE TRIGGER if_emp_is_contractor
INSTEAD OF INSERT ON employee
BEGIN
 INSERT INTO contractor
 SELECT * FROM inserted WHERE status = 'CON'
 INSERT INTO employee
 SELECT * FROM inserted WHERE status = 'FTE'
END
GO
Adding triggers to a table that already has data in it does not cause the triggers to fire. A trigger will fire only for data-modification statements declared in the trigger definition that occur after the trigger is created.
Once in place, a trigger generally ignores structural changes to tables, such as an added column or an altered datatype on an existing column, unless the modification directly interferes with the operation of the trigger. For example, if you add a new column to a table, existing triggers will ignore the new column (with the exception of UPDATE triggers). On the other hand, removing from a table a column that is used by a trigger will cause that trigger to fail every time it executes.

Programming Tips and Gotchas
One of the key programming issues associated with triggers is the inappropriate and uncontrolled use of nested and recursive triggers. A nested trigger is a trigger that invokes a data-manipulation operation that causes other triggers to fire. For example, assume we have three tables, T1, T2, and T3. Table T1 has a BEFORE INSERT trigger that inserts a record into table T2. Table T2 also has a BEFORE INSERT trigger that inserts a record into table T3. Although this is not necessarily a bad thing if your logic is well considered and fully thought out, it does introduce two problems. First, an INSERT into table T1 now requires many more I/O operations and transactions than a simple INSERT statement typically does. Second, you can get yourself into hot water if table T3 performs an INSERT operation against table T1. In a case like that, you may have a looping trigger process that can consume all available disk space and even shut down the server.
Recursive triggers are triggers that can fire themselves; for example, an INSERT trigger that performs an INSERT against its own base table. If the procedural logic within the code_body is not properly constructed, adding a recursive trigger can cause a looping trigger error. In recognition of this danger, using recursive triggers often requires setting a special configuration flag on the various database platforms.

MySQL
MySQL's implementation of the CREATE TRIGGER statement follows:
CREATE [DEFINER = {user_name | CURRENT_USER}]
 TRIGGER trigger_name {BEFORE | AFTER} {INSERT | UPDATE | DELETE}
 ON table_name FOR EACH ROW code_body
where:
	DEFINER = {user_name | CURRENT_USER}
	Specifies the user account to use when checking privileges. You may specify either a pre-existing user or the user who issued the CREATE TRIGGER statement (i.e., the CURRENT_USER). CURRENT USER is the default when this clause is omitted.

MySQL does not allow triggers on temporary tables. Insert triggers will fire any time data is inserted into a table, not just on INSERT statements. Thus, insert triggers on a table will also fire when LOAD DATA and REPLACE statements are executed. Similarly, a delete trigger will also fire on a REPLACE statement. Triggers are not, however, activated by cascading foreign key actions.
MySQL allows only one type of trigger per table. Thus, a table could have a BEFORE INSERT and an AFTER INSERT trigger, but not two AFTER INSERT triggers. To fire multiple SQL statements for each row that the trigger fires upon, be sure to use a BEGIN...END block inside of the code_body.
MySQL doesn't yet support the ALTER TRIGGER statement.

Oracle
Oracle supports the ANSI standard for CREATE TRIGGER, with several additions and variations:
CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF}
{ {[object_event] [database_event] [...] ON {DATABASE | schema.SCHEMA}} |
 {[DELETE] [OR] [INSERT] [OR] [UPDATE [OF column[, ...]]] [...]}
 ON {table_name | [NESTED TABLE column_name OF] view_name}
 [REFERENCING {[OLD [AS] old_name] [NEW [AS] new_name]
 [PARENT [AS] parent_name]}]
 [FOR EACH ROW] }
[FOLLOWS trigger_name]
[{ENABLE | DISABLE}]
[WHEN (conditions)] code_block
Here is the syntax for ALTER TRIGGER, which allows you to rename, enable, or disable a trigger without dropping and recreating it:
ALTER TRIGGER trigger_name
{ {ENABLE | DISABLE} | RENAME TO new_name |
 COMPILE [compiler_directives] [DEBUG] [REUSE SETTINGS] }
The parameters are:
	OR REPLACE
	Recreates an existing trigger by assigning a new definition to an existing trigger named trigger_name.

	object_event
	In addition to the standard data-modification events, Oracle allows triggers to fire based on object events. object_event operations may be paired with BEFORE and AFTER keywords. An object_event fires the trigger whenever such an event occurs, according to the following keywords:
	ALTER
	Fires whenever an ALTER statement (except ALTER DATABASE) is issued.

	ANALYZE
	Fires whenever Oracle validates the structure of a database object, or collects or deletes statistics on an index.

	ASSOCIATE STATISTICS
	Fires whenever Oracle associates a statistics type with a database object.

	AUDIT
	Fires whenever Oracle tracks a SQL statement or operation against a schema object.

	COMMENT
	Fires whenever an Oracle comment is added in the data dictionary to a database object.

	DDL
	Fires whenever Oracle encounters any object_event in this list.

	DISASSOCIATE STATISTICS
	Fires whenever Oracle disassociates a statistics type from a database object.

	DROP
	Fires whenever a DROP statement erases a database object from the data dictionary.

	GRANT
	Fires whenever a user grants privileges or roles to another user or role.

	NOAUDIT
	Fires whenever the NOAUDIT statement causes Oracle to stop tracking SQL statements or operations against schema objects.

	RENAME
	Fires whenever the RENAME statement changes the name of a database object.

	REVOKE
	Fires whenever a user revokes privileges or roles from another user or role.

	TRUNCATE
	Fires whenever a TRUNCATE statement is issued against a table or cluster.

	database_event
	In addition to the standard data-modification events, Oracle allows triggers to fire based on database events. database_event operations may be paired with BEFORE and AFTER keywords. The list of allowable database_event keywords is:
	LOGON
	Fires whenever a client application logs on to the database. Valid for AFTER triggers only.

	LOGOFF
	Fires whenever a client application logs off of the database. Valid for BEFORE triggers only.

	SERVERERROR
	Fires whenever a server error message is logged. Valid for AFTER triggers only.

	SHUTDOWN
	Fires whenever an instance of the database is shut down. Valid only for BEFORE triggers with the ON DATABASE clause.

	STARTUP
	Fires whenever an instance of the database is opened. Valid only for AFTER triggers with the ON DATABASE clause.

	SUSPEND
	Fires whenever a server error causes a transaction to suspend. Valid for AFTER triggers only.

	ON {DATABASE | schema.SCHEMA}
	Declares that the trigger fires whenever any database user invokes a triggering event with ON DATABASE. The trigger then fires for events occurring anywhere in the entire database. Otherwise, ON schema.SCHEMA declares that the trigger fires whenever a user connected as schema invokes a triggering event. The trigger then fires for events occurring anywhere in the current schema.

	ON [NESTED TABLE column_name OF] view_name
	Declares that the trigger fires only if the data-manipulation operation applies to the column(s) of the view called view_name. The ON NESTED TABLE clause is compatible only with INSTEAD OF triggers.

	REFERENCING PARENT [AS] parent_name
	Defines the alias for the current row of the parent table (i.e., supertable). Otherwise, identical to the ANSI standard.

	FOLLOWS trigger_name
	Specifies that the new trigger is of the same type as another trigger and that it should fire only after the other trigger has fired. The trigger_name must already exist. Rather than creating a series of triggers that must fire in a specific order, it is recommended that you instead create a single trigger with logic to handle all of the situations that the multiple triggers handled.

	ENABLE
	Enables a deactivated trigger when used with ALTER TRIGGER, or creates a new trigger in enabled mode (the default). You may alternately use the statement ALTER TABLE table_name ENABLE ALL TRIGGERS.

	DISABLE
	Disables an activated trigger when used with ALTER TRIGGER, or creates a new trigger in disabled mode. You may alternately use the statement ALTER TABLE table_name DISABLE ALL TRIGGERS.

	RENAME TO new_name
	Renames the trigger to new_name, though the state of the trigger remains unchanged when used with ALTER TRIGGER.

	COMPILE [DEBUG] [REUSE SETTINGS]
	Compiles a trigger, whether valid or invalid, and all the objects on which the trigger depends. If any of the objects are invalid, the trigger is invalid. If all of the objects are valid, including the code_body of the trigger, the trigger is valid.
	DEBUG
	Tells the PL/SQL compiler to generate and store extra information for use by the PL/SQL debugger.

	REUSE SETTINGS
	Tells Oracle to retain all compiler switch settings, which can save significant time during the compile process.

	compiler_directives
	Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are: PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for the unit being compiled.

When referencing values in the OLD and NEW pseudotables, the values must be prefaced with a colon (:), except in the trigger's WHEN clause, where no colons are used. In this example, we'll call a procedure in the code_body and use both :OLD and :NEW values as arguments:
CREATE TRIGGER scott.sales_check
BEFORE INSERT OR UPDATE OF ord_id, qty ON scott.sales
 FOR EACH ROW
 WHEN (new.qty > 10)
 CALL check_inventory(:new.ord_id, :new.qty, :old.qty);
Multiple trigger types may be combined into a single trigger command if they are of the same level (row or statement) and they are on the same table. When triggers are combined in a single statement, the clauses IF INSERTING THEN, IF UPDATING THEN, and IF DELETING THEN may be used in the PL/SQL block to break the code logic into distinct segments. An ELSE clause also can be used in this structure.
Following is an example of a database_event-style trigger:
CREATE TRIGGER track_errors
AFTER SERVERERROR ON DATABASE
BEGIN
 IF (IS_SERVERERROR (04030))
 THEN INSERT INTO errors ('Memory error');
 ELSE (IS_SERVERERROR (01403))
 THEN INSERT INTO errors ('Data not found');
 END IF;
END;
This example creates a trigger that is SCHEMA-wide in scope:
CREATE OR REPLACE TRIGGER create_trigger
AFTER CREATE ON scott.SCHEMA
BEGIN
 RAISE_APPLICATION_ERROR (num => −20000, msg =>
 'Scott created an object');
END;
DDL triggers
Oracle now has support for DDL triggers, meaning that you can have a trigger fire, for example, when a new table is created or when a view is dropped. DDL triggers may be created on either a DATABASE or a SCHEMA for events like CREATE, ALTER, or DROP. For example:
CREATE TRIGGER audit_object_changes AFTER CREATE ON SCHEMA
 code_body;
The full list of DDL trigger events includes the firing of any of these statements: ALTER, ANALYZE, ASSOCIATE STATISTICS, AUDIT, COMMENT, CREATE, DISASSOCIATE STATISTICS, DROP, GRANT, NOAUDIT, RENAME, REVOKE, TRUNCATE, and DDL (which will fire the trigger when any of the preceding DDL statements are issued). You may also create a DDL trigger that fires on a specific database state, rather than on a DDL statement. The database states you may use include AFTER STARTUP, BEFORE SHUTDOWN, AFTER DB_ROLE_CHANGE, AFTER LOGON, BEFORE LOGOFF, AFTER SERVERERROR, and AFTER SUSPEND.

PostgreSQL
PostgreSQL's implementation of CREATE TRIGGER offers a subset of the features found in the ANSI standard. On PostgreSQL, a trigger may fire BEFORE a data-modification operation is attempted on a record and before any constraints are fired, or it may fire AFTER a data-manipulation operation fires (and after constraints have been checked), making all operations involved in the transaction visible to the trigger. Finally, the trigger may fire INSTEAD OF the data-modification operation and completely replace the INSERT, UPDATE, or DELETE statement with some other behavior. The CREATE TRIGGER syntax is:
CREATE TRIGGER trigger_name
{ BEFORE | AFTER }
{ {[DELETE] [OR | ,] [INSERT] [OR | ,] [UPDATE]} [OR ...] }
ON table_name
FOR EACH { ROW | STATEMENT }
EXECUTE PROCEDURE function_name (parameters)
PostgreSQL's implementation of ALTER TRIGGER merely allows you to rename an existing trigger:
ALTER TRIGGER trigger_name ON table_name RENAME TO new_trigger_name
The CREATE TRIGGER parameters are:
	OR
	Declares an additional trigger action. The OR keyword is a synonym for the comma delimiter.

	FOR EACH ROW
	Explicitly declares that the trigger acts at the row level. This is also the default. Although PostgreSQL does not reject the STATEMENT keyword, it does not enforce statement-level triggers.

	EXECUTE PROCEDURE function_name (parameters)
	Executes a previously defined function (created using CREATE FUNCTION) rather than a block of procedural code. (PostgreSQL does not have its own procedural language.)

The following is an example of a PostgreSQL BEFORE trigger that checks at the row level to ensure that the specified distributor code exists in the distributors table before inserting or updating a row in the sales table:
CREATE TRIGGER if_dist_exists
BEFORE INSERT OR UPDATE ON sales
FOR EACH ROW
EXECUTE PROCEDURE check_primary_key
 ('dist_id', 'distributors', 'dist_id');
BEFORE and AFTER triggers are supported by the ANSI standard. INSTEAD OF triggers on PostgreSQL completely skip the data-modification operation that triggered them in favor of code that you substitute for the data-modification operation.

SQL Server
SQL Server supports the basics of the ANSI standard with the addition of the INSTEAD OF trigger type and a column change check. It does not support the REFERENCING or WHEN clauses. Its syntax is:
{CREATE | ALTER} TRIGGER trigger_name ON table_name
[WITH [ENCRYPTION] [EXEC[UTE] AS {CALLER | SELF | 'user_name'}]]
{FOR | AFTER | INSTEAD OF}
{ dml_events | ddl_events }
[WITH APPEND]
[NOT FOR REPLICATION]
AS
 [IF UPDATE(column) [{AND | OR} UPDATE(column)][...]]
 code_block
where:
	{CREATE | ALTER} TRIGGER trigger_name
	Creates a new trigger named trigger_name or alters an existing trigger of that name by adding or changing trigger properties or the trigger code_block. When altering an existing trigger, the permissions and dependencies of the existing trigger are maintained.

	ON table_name
	Declares the table or view on which the trigger is dependent. Views may have INSTEAD OF triggers defined on them, as long as they are updatable and do not have the WITH CHECK clause on them.

	WITH ENCRYPTION
	Encrypts the text of the CREATE TRIGGER statement as shown in the syscomments table. This option is useful to protect important intellectual property. WITH ENCRYPTION prevents the trigger from being used in a SQL Server replication scheme.

	EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}
	Specifies the privileges under which the trigger will execute. CALLER indicates the routine will run with the privileges of the user invoking the routine. When this clause is omitted, SQL Server assumes CALLER. SELF indicates the routine will run with the privileges of the creator of the routine. OWNER indicates the routine will run with the privileges of the current owner of the routine. 'user_name' indicates the routine will run with the privileges of the named, pre-existing user.

	FOR | AFTER | INSTEAD OF
	Tells SQL Server when the trigger should fire. FOR and AFTER are synonyms and specify that the trigger should fire only after the triggering data-modification statement (and any cascading actions and constraint checks) have completed successfully. The INSTEAD OF trigger is similar to the ANSI BEFORE trigger in that the code of the trigger may completely replace the data-modification operation. It specifies that the trigger be executed instead of the data-modification statement that fired the trigger. INSTEAD OF DELETE triggers cannot be used when there is a cascading action on the delete. Only INSTEAD OF triggers can access TEXT, NTEXT, or IMAGE columns.

	dml_events
	Specifies an ANSI-standard DML event that causes the trigger to fire: DELETE, INSERT, and/or UPDATE. You may specify one or more DML events in a single statement.

	ddl_events
	Specifies a DDL event that causes the trigger to fire: CREATE, ALTER, DROP, GRANT, DENY, REVOKE, BIND, UNBIND, RENAME, or UPDATE STATISTICS. DDL events may fire FOR or AFTER the event. You may also specify a trigger that fires FOR or AFTER LOGON. SQL Server also has a number of shortcuts called "DDL Event Groups" that include many DDL events with one term: for example, DDL_TABLE_EVENTS includes the CREATE, ALTER, and DROP TABLE DDL events. Refer to the SQL Server documentation for a full listing of DDL Event Groups.

	WITH APPEND
	Adds an additional trigger of an existing type to a table or view. This clause is supported for backward compatibility with earlier versions of the product and can be used only with FOR triggers. This clause cannot be used with INSTEAD OF triggers or if AFTER is explicitly stated during creation, nor can it be used with CLR triggers.

	NOT FOR REPLICATION
	Prevents data-manipulation operations invoked through SQL Server's built-in replication engine from firing the trigger.

	IF UPDATE(column) [{AND | OR} UPDATE(column)][. . .]
	Allows you to choose the specific columns that fire the trigger. A column-specific trigger fires only on UPDATE and INSERT operations, not on DELETE operations. If an UPDATE or INSERT occurs on any columns not in the column list, the trigger will not fire.

SQL Server allows multiple triggers for a given data-manipulation operation on a table or view. Thus, three UPDATE triggers are possible on a single table, and multiple AFTER triggers are possible on a given table. Their specific order is undefined, though the first and last triggers can be explicitly declared using the sp_settriggerorder system stored procedure. Only one INSTEAD OF trigger is possible per INSERT, UPDATE, or DELETE statement on a given table.
In SQL Server, any combination of triggers is possible in a single trigger definition statement; simply separate each option with a comma. (When you do so, the same code fires for each statement in the combination definition.)
SQL Server implicitly fires in the FOR EACH STATEMENT style of the ANSI standard.
SQL Server instantiates two important pseudotables when a trigger is fired: deleted and inserted. They are equivalent, respectively, to the before and after pseudotables described earlier, in the SQL2003 section. These tables are identical in structure to the table on which the triggers are defined, except that they contain the old data before the data-modification statement fired (deleted) and the new values of the table after the data-modification statement has fired (inserted).
The AS IF UPDATE(column) clause tests specifically for INSERT or UPDATE actions on a given column or columns, in the way the ANSI statement uses the UPDATE(column) syntax. Specify multiple columns by adding separate UPDATE(column) clauses after the first. Follow the AS IF UPDATE(column) clause with a Transact-SQL BEGIN . . . END block to allow the trigger to fire multiple Transact-SQL operations. This clause is functionally equivalent to the IF . . . THEN . . . ELSE operation.
In addition to intercepting data-modification statements as shown in the ANSI SQL example, SQL Server allows you to perform other sorts of actions when a data-modification operation occurs. In the following example, we've decided that the table sales_archive_2002 is off-limits and that anyone who attempts to alter data in this table is to be notified of that restriction:
CREATE TRIGGER archive_trigger
ON sales_archive_2002
FOR INSERT, UPDATE
AS RAISERROR (50009, 16, 10, 'No changes allowed to this table')
GO
SQL Server does not allow the following statements within the Transact-SQL code_block of a trigger: ALTER, CREATE, DROP, DENY, GRANT, REVOKE, LOAD, RESTORE, RECONFIGURE, or TRUNCATE. In addition, it does not allow any DISK statements or the UPDATE STATISTICS command.
SQL Server allows triggers to fire recursively using the recursive triggers setting of the sp_dboption system stored procedure. Recursive triggers, by their own action, cause themselves to fire again. For example, if an INSERT trigger on table T1 performs an INSERT operation on table T1, it might perform a recursive operation. Since recursive triggers can be dangerous, this functionality is disabled by default.
Similarly, SQL Server allows nested triggers up to 32 levels deep. If any one of the nested triggers performs a ROLLBACK operation, no further triggers execute. An example of nested triggers is a trigger on table T1 firing an operation against table T2, which also has a trigger that fires an operation against table T3. The triggers cancel if an infinite loop is encountered. Nested triggers are enabled with the nested triggers setting of the system stored procedure sp_configure. If nested triggers are disabled, recursive triggers are disabled as well, regardless of what the recursive triggers setting is in sp_dboption.
In the following example, we want to reroute the user activity that occurs on the people table—especially UPDATE transactions—so that changes to records in the people table are instead written to the people_reroute table. Our update trigger will record any changes to columns 2, 3, or 4 of the people table and write them to the people_reroute table. The trigger will also record which user issued the UPDATE statement and the time of the transaction:
CREATE TABLE people
 (people_id CHAR(4),
 people_name VARCHAR(40),
 people_addr VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2),
 zip CHAR(5),
 phone CHAR(12),
 sales_rep empid NOT NULL)
GO
CREATE TABLE people_reroute
 (reroute_log_id UNIQUEIDENTIFIER DEFAULT NEWID(),
 reroute_log_type CHAR (3) NOT NULL,
 reroute_people_id CHAR(4),
 reroute_people_name VARCHAR(40),
 reroute_people_addr VARCHAR(40),
 reroute_city VARCHAR(20),
 reroute_state CHAR(2),
 reroute_zip CHAR(5),
 reroute_phone CHAR(12),
 reroute_sales_rep empidNOT NULL,
 reroute_user sysname DEFAULT SUSER_SNAME(),
 reroute_changed datetime DEFAULT GETDATE())
GO
CREATE TRIGGER update_person_data
ON people
FOR update AS
IF (COLUMNS_UPDATED(people_name)
 OR COLUMNS_UPDATEE(people_addr)
 OR COLUMNS_UPDATED(city))
BEGIN
-- Audit OLD record
 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,
 reroute_people_name, reroute_people_addr, reroute_city)
 SELECT 'old', d.people_id, d.people_name, d.people_addr, d.city
 FROM deleted AS d
-- Audit NEW record
 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,
 reroute_people_name, reroute_people_addr, reroute_city)
 SELECT 'new', n.people_id, n.people_name, n.people_addr, n.city
 FROM inserted AS n
END
GO
Note that SQL Server CREATE statements allow deferred name resolution, meaning that commands will be processed even if they refer to a database object that does not yet exist in the database.
SQL Server supports the creation of triggers written in Microsoft .NET Framework common language runtime (CLR) methods that can take and return user-supplied parameters. These routines have similar CREATE and ALTER declarations to regular SQL triggers, but the code bodies are external assemblies. Refer to the SQL Server documentation if you want to learn more about programming routines using the CLR.

See Also
	CREATE/ALTER FUNCTION/PROCEDURE
	DELETE
	DROP
	INSERT
	UPDATE

Name
CREATE/ALTER TYPE Statement

The CREATE TYPE statement allows you to create a user-defined type (UDT); that is, a user-defined datatype or "class" in object-oriented terms. UDTs extend SQL capabilities into the realm of object-oriented programming by allowing inheritance and other object-oriented features. You can also create something called typed tables with the CREATE TABLE statement using a previously created type made with the CREATE TYPE statement. Typed tables are based on UDTs and are equivalent to "instantiated classes" from object-oriented programming.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
CREATE TYPE type_name
[UNDER supertype_name]
[AS [new_udt_name] datatype [attribute][, ...]
 {[REFERENCES ARE [NOT] CHECKED
 [ON DELETE
 {NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT}]] |
 [DEFAULT value] |
 [COLLATE collation_name]}]
 [[NOT] INSTANTIABLE]
 [[NOT] FINAL]
[REF IS SYTEM GENERATED |
 REF USING datatype
 [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH identifier] |
 REF new_udt_name[, ...]]
[CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier]
[method_definition[, ...]]
The following syntax alters an existing user-defined datatype:
ALTER TYPE type_name {ADD ATTRIBUTE type_definition |
 DROP ATTRIBUTE type_name}

Keywords
	{CREATE | ALTER} TYPE type_name
	Creates a new type or alters an existing type with the name type_name.

	UNDER supertype_name
	Creates a subtype that is dependent upon a single, pre-existing, named supertype. (A UDT can be a supertype if it is defined as NOT FINAL.)

	AS [new_udt_name] datatype [attribute][, . . .]
	Defines attributes of the type as if they were column declarations in a CREATE TABLE statement without constraints. You should either define the UDT attribute on an existing datatype, such as VARCHAR(10), or on another, previously created UDT, or even on a user-defined domain. Defining a UDT using a predefined datatype (e.g., CREATE TYPE my_type AS INT) creates a distinct type, while a UDT defined with an attribute definition is a structured type. The allowable attributes for a structured type are:
	ON DELETE NO ACTION
	Produces an error when the foreign key is violated (the default).

	ON DELETE RESTRICT
	Synonym for NO ACTION.

	ON DELETE CASCADE
	Sets the value of the referencing column to the value of the referenced column.

	ON DELETE SET NULL
	Sets the value of the referencing column to NULL.

	ON DELETE SET DEFAULT value
	Defines a default value for the UDT for when the user does not supply a value. Follows the rules of a DEFAULT in the section.

	COLLATE collation_name
	Assigns a collation—that is, a sort order—for the UDT. When omitted, the collation of the database where the UDT was created applies. Follows the rules of a COLLATION in the section.

	[NOT] INSTANTIABLE
	Defines the UDT such that it can be instantiated. INSTANTIABLE is required for typed tables, but not for standard UDTs.

	[NOT] FINAL
	Required for all UDTs. FINAL means the UDT may have no subtypes. NOT FINAL means the UDT may have subtypes.

	REF
	Defines either a system-generated or user-generated reference specification—that is, a sort of unique identifier that acts as a pointer that another type may reference. By referencing a pre-existing type using its reference specification, you can have a new type inherit properties of a pre-existing type. There are three ways to tell the DBMS how the typed table's reference column gets its values (i.e., its reference specification):
	new_udt_name[, . . .]
	Declares that the reference specification is provided by another pre-existing UDT called new_udt_name.

	IS SYSTEM GENERATED
	Declares that the reference specification is system-generated (think of an automatically incrementing column). This is the default when the REF clause is omitted.

	USING datatype [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH identifier]
	Declares that the user defines the reference specification. You do this by using a predefined datatype and optionally casting the value. You can use CAST (SOURCE AS REF) WITH identifier to cast the value with the specified datatype to the reference type of the structured type, or use CAST (REF AS SOURCE) WITH identifier to cast the value for the structured type to the datatype. The WITH clause allows you to declare an additional identifier for the cast datatype.

	CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier method_definition[, . . .]
	Defines one or more pre-existing methods for the UDT. A method is merely a specialized user-defined function and is created using the CREATE METHOD statement (see CREATE FUNCTION). The method_definition clause is not needed for structured types since their method(s) are implicitly created. The default characteristics of a method are LANGUAGE SQL, PARAMETER STYLE SQL, NOT DETERMINISTIC, CONTAINS SQL, and RETURN NULL ON NULL INPUT.

	ADD ATTRIBUTE type_definition
	Adds an additional attribute to an existing UDT, using the format described earlier under the AS clause. Available via the ALTER TYPE statement.

	DROP ATTRIBUTE type_name
	Drops an attribute from an existing UDT. Available via the ALTER TYPE statement.

Rules at a Glance
You can create user-defined types as a way to further ensure data integrity in your database and to ease the work involved in doing so. An important concept of UDTs is that they allow you to easily create subtypes, which are UDTs built upon other UDTs. The UDT that subtypes depend on is called a parent type or supertype. Subtypes inherit the characteristics of their supertypes.
Assume, for example, that you want to define a general UDT for phone numbers called phone_nbr. You could then easily build new subtypes of phone_nbr called home_phone, work_phone, cell_phone, pager_phone, etc. Each of the subtypes could inherit the general characteristics of the parent type but also have characteristics of its own.
In this example, we create a general root UDT called money and then several subtypes:
CREATE TYPE money (phone_number DECIMAL (10,2))
 NOT FINAL;
CREATE TYPE dollar UNDER money AS DECIMAL(10,2)
 (conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE euro UNDER money AS DECIMAL(10,2)
 (dollar_conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE pound UNDER euro
 (euro_conversion_rate DECIMAL(10,2)) FINAL;

Programming Tips and Gotchas
The biggest programming gotcha for user-defined types is that they are seldom used and not well understood by most database developers and database administrators. Consequently, they can be problematic due to simple ignorance. They offer, however, a consistent and labor-saving approach for representing commonly reused conceptual elements in a database, such as an address (e.g., street1, street2, city, state, postal code).

MySQL
Not supported.

Oracle
Oracle has CREATE TYPE and ALTER TYPE statements, but they are not ANSI-standard. Instead of a single CREATE TYPE statement, Oracle uses CREATE TYPE BODY to define the code that makes up the UDT, while CREATE TYPE defines the argument specification for the type. The syntax for CREATE TYPE is:
CREATE [OR REPLACE] TYPE type_name
{ [OID 'object_identifier'] [AUTHID {DEFINER | CURRENT_USER}]
 { {AS | IS} OBJECT | [UNDER supertype_name] |
 {OBJECT | TABLE OF datatype | VARRAY (limit) OF datatype} }
 EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition
 { [(attribute datatype[, ...]) [EXTERNAL NAME 'name'] |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 [{ {MEMBER | STATIC}
 {function_based | procedure_based} | constructor_clause |
 map_clause } [...]]
 [pragma_clause]] } }
Once the type has been declared, you encapsulate all of the UDT logic in the type body declaration. The type_name for both CREATE TYPE and CREATE TYPE BODY should be identical. The syntax for CREATE TYPE BODY is shown here:
CREATE [OR REPLACE] TYPE BODY type_name
{AS | IS}
{{MEMBER | STATIC}
{function_based | procedure_based | constructor_clause}}[...]
[map_clause]
Oracle's implementation of ALTER TYPE enables you to drop or add attributes and methods from or to the type:
ALTER TYPE type_name
 {COMPILE [DEBUG] [{SPECIFICATION | BODY}]
 [compiler_directives] [REUSE SETTINGS] |
 REPLACE [AUTHID {DEFINER | CURRENT_USER}] AS OBJECT
 (attribute datatype[, ...] [element_definition[, ...]]) |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 { {ADD | DROP} { {MAP | ORDER} MEMBER FUNCTION function_name
 (parameter datatype[, ...]) } |
 { {MEMBER | STATIC} {function_based | procedure_based} |
 constructor_clause | map_clause [pragma_clause] } [...] |
 {ADD | DROP | MODIFY} ATTRIBUTE (attribute [datatype][, ...]) |
 MODIFY {LIMIT int | ELEMENT TYPE datatype} }
 [{INVALIDATE |
 CASCADE [{ [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE }]
 [FORCE] [EXCEPTIONS INTO table_name]}]}
Parameters for the three statements are as follows:
	OR REPLACE
	Recreates the UDT if it already exists. Objects that depend on the type are marked as DISABLED after you recreate the type.

	AUTHID {DEFINER | CURRENT_USER}
	Determines what user permissions any member functions or procedures are executed under and how external name references are resolved. (Note that subtypes inherit the permission styles of their supertypes.) This clause can be used only with an OBJECT type, not with a VARRAY type or a nested table type.
	DEFINER
	Executes functions or procedures under the privileges of the user who created the UDT. Also specifies that unqualified object names (object names without a schema definition) in SQL statements are resolved to the schema where the member functions or procedures reside.

	CURRENT_USER
	Executes functions or procedures under the privileges of the user who invoked the UDT. Also specifies that unqualified object names in SQL statements are resolved to the schema of the user who invoked the UDT.

	UNDER supertype_name
	Declares that the UDT is a subtype of another, pre-existing UDT. The supertype UDT must be created with the AS OBJECT clause. A subtype will inherit the properties of the supertype, though you should override some of those or add new properties to differentiate it from the supertype.

	OID 'object_identifier'
	Declares an equivalent identical object, of the name 'object_identifier', in more than one database. This clause is most commonly used by those developing Oracle Data Cartridges and is seldom used in standard SQL statement development.

	AS OBJECT
	Creates the UDT as a root object type (the top-level object in a UDT hierarchy of objects).

	AS TABLE OF datatype
	Creates a named nested table type of a UDT called datatype. The datatype cannot be an NCLOB, but CLOB and BLOB are acceptable. If the datatype is an object type, the columns of the nested table must match the name and attributes of the object type.

	AS VARRAY (limit) OF datatype
	Creates the UDT as an ordered set of elements, all of the same datatype. The limit is an integer of zero or more. The type name must be a built-in datatype, a REF, or an object type. The VARRAY cannot contain LOB or XMLType datatypes. VARRAY may be substituted with VARYING ARRAY.

	EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition
	Maps a Java class to a SQL UDT by specifying the name of a public Java external class, java_ext_name. Once defined, all objects in a Java class must be Java objects. The data_definition may be SQLData, CustomDatum, or OraData, as defined in the "Oracle9i JDBC Developers Guide." You can map many Java object types to the same class, but there are two restrictions. First, you should not map two or more subtypes of a common datatype to the same class. Second, subtypes must be mapped to an immediate subclass of the class to which their supertype is mapped.

	datatype
	Declares the attributes and datatypes used by the UDT. Oracle does not allow ROWID, LONG, LONG ROW, or UROWID. Nested tables and VARRAYs do not allow attributes of AnyType, AnyData, or AnyDataSet.

	EXTERNAL NAME 'name' [NOT] OVERRIDING
	Declares that this method overrides a MEMBER method defined in the supertype (OVERRIDING) or not (NOT OVERRIDING, the default). This clause is valid only for MEMBER clauses.

	MEMBER | STATIC
	Describes the way in which subprograms are associated with the UDT as attributes. MEMBER has an implicit first argument referenced as SELF, as in object_expression.method(). STATIC has no implicit arguments, as in type_name.method(). The following bases are allowed to call subprograms:
	function_based
	Declares a subprogram that is function-based using the syntax:
FUNCTION function_name (parameter datatype[, ...])
return_clause | java_object_clause
This clause allows you to define the PL/SQL function-based UDT body without resorting to the CREATE TYPE BODY statement. The function_name cannot be the name of any existing attribute, including those inherited from supertypes. The return_clause and java_object_clause are defined later in this list.

	procedure_based
	Declares a subprogram that is function-based using the syntax:
PROCEDURE procedure_name (parameter datatype[, ...])
{AS | IS} LANGUAGE {java_call_spec | c_call_spec}
This clause allows you to define the PL/SQL procedure-based UDT body without resorting to the CREATE TYPE BODY statement. The procedure_name cannot be the name of any existing attribute, including those inherited from supertypes. Refer to the entries on java_call_spec and c_call_spec later in this list for details on those clauses.

	constructor_clause
	Declares one or more constructor specifications, using the following syntax:
[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION datatype
 [([SELF IN OUT datatype,] parameter datatype[, ...])]
RETURN SELF AS RESULT
 [{AS | IS} LANGUAGE {java_call_spec | c_call_spec}]
A constructor specification is a function that returns an initialized instance of a UDT. Constructor specifications are always FINAL, INSTANTIABLE, and SELF IN OUT, so these keywords are not required. The java_call_spec and c_call_spec subclauses may be replaced with a PL/SQL code block in the CREATE TYPE BODY statement. (Refer to the entries on java_call_spec and c_call_spec later in this list for details.)

	map_clause
	Declares the mapping or ordering of a supertype, using the following syntax:
{MAP | ORDER} MEMBER function_based
MAP uses more efficient algorithms for object comparison and is best in situations where you're performing extensive sorting or hash joins. MAP MEMBER specifies the relative position of a given instance in the ordering of all instances of the UDT. ORDER MEMBER specifies the explicit position of an instance and references a function_based subprogram that returns a NUMBER datatype value. Refer to the entry on function_based earlier in this list for details.

	return_clause
	Declares the datatype return format of the SQL UDT using the syntax:
RETURN datatype [{AS | IS} LANGUAGE {java_call_spec |
 c_call_spec}]

	java_object_clause
	Declares the return format of the Java UDT using the syntax:
RETURN {datatype | SELF AS RESULT} EXTERNAL [VARIABLE] NAME
 'java_name'
If you use the EXTERNAL clause, the value of the public Java method must be compatible with the SQL returned value.

	pragma_clause
	Declares a pragma restriction (that is, an Oracle precompiler directive) for the type using the syntax:
PRAGMA RESTRICT REFERENCES ({DEFAULT | method_name},
{RNDS | WNDS |RNPS | WNPS | TRUST}[, ...])
This feature is deprecated and should be avoided. It is intended to control how UDTs read and write database tables and variables.
	DEFAULT
	Applies the pragma to all methods in the type that don't have another pragma in place.

	method_name
	Identifies the exact method to which to apply the pragma.

	RNDS
	Reads no database state—no database reads allowed.

	WNDS
	Writes no database state—no database writes allowed.

	RNPS
	Reads no package state—no package reads allowed.

	WNPS
	Writes no package state—no package writes allowed.

	TRUST
	States that the restrictions of the pragma are assumed but not enforced.

	java_call_spec
	Identifies the Java implementation of a method using the syntax JAVA NAME 'string'. This clause allows you to define the Java UDT body without resorting to the CREATE TYPE BODY statement.

	c_call_spec
	Declares a C language call specification using the syntax:
C [NAME name] LIBRARY lib_name [AGENT IN (argument)]
[WITH CONTEXT] [PARAMETERS (parameter[, ...])]
This clause allows you to define the C UDT body without resorting to the CREATE TYPE BODY statement.

	COMPILE
	Compiles the object type specification and body. This is the default when neither a SPECIFICATION clause nor a BODY clause is defined.

	DEBUG
	Generates and stores additional codes for the PL/SQL debugger. Do not specify both DEBUG and the compiler_directive PLSQL_DEBUG.

	SPECIFICATION | BODY
	Indicates whether to recompile the SPECIFICATION of the object type (created by the CREATE TYPE statement) or the BODY (created by the CREATE TYPE BODY statement).

	compiler_directives
	Defines a special value for the PL/SQL compiler in the format directive = 'value'. The directives are: PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for the unit being compiled.

	REUSE SETTINGS
	Retains the original value for the compiler_directives.

	REPLACE AS OBJECT
	Adds new member subtypes to the specification. This clause is valid only for object types.

	[NOT] OVERRIDING
	Indicates that the method overrides a MEMBER method defined in the supertype. This clause is valid only with MEMBER methods and is required for methods that define (or redefine, using ALTER) a supertype method. NOT OVERRIDING is the default if this clause is omitted.

	ADD
	Adds a new MEMBER function, function- or procedure-based subprogram, or attribute to the UDT.

	DROP
	Drops an existing MEMBER function, function- or procedure-based subprogram, or attribute from the UDT.

	MODIFY
	Alters the properties of an existing attribute of the UDT.

	MODIFY LIMIT int
	Increases the number of elements in a VARRAY collection type up to int, as long as int is greater than the current number of elements in the VARRAY. Not valid for nested tables.

	MODIFY ELEMENT TYPE datatype
	Increases the precision, size, or length of a scalar datatype of a VARRAY or nested table. This clause is valid for any non-object collection type. If the collection is a NUMBER, you may increase its precision or scale. If the collection is a RAW, you may increase its maximum size. If the collection is a VARCHAR2 or NVARCHAR2, you may increase its maximum length.

	INVALIDATE
	Invalidates all dependent objects without checks.

	CASCADE
	Cascades the change to all subtypes and tables. By default, the action will be rolled back if any errors are encountered in the dependent types or tables.

	[NOT] INCLUDING TABLE DATA
	Converts data stored in the UDT columns to the most recent version of the column's type (INCLUDING TABLE DATA, the default), or not (NOT INCLUDING TABLE DATA). When NOT, Oracle checks the metadata but does not check or update the dependent table data.

	CONVERT TO SUBSTITUTABLE
	Used when changing a type from FINAL to NOT FINAL. The altered type then can be used in substitutable tables and columns, as well as in subtypes, instances of dependent tables, and columns.

	FORCE
	Causes the CASCADE operation to go forward, ignoring any errors found in dependent subtypes and tables. All errors are logged to a previously created EXCEPTIONS table.

	EXCEPTIONS INTO table_name
	Logs all error data to a table previously created using the system package DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE.

In this example, we create a Java SQLJ object type called address_type:
CREATE TYPE address_type AS OBJECT
 EXTERNAL NAME 'scott.address' LANGUAGE JAVA
 USING SQLDATA (street1 VARCHAR(30) EXTERNAL NAME 'str1',
 street2 VARCHAR(30) EXTERNAL NAME 'str2',
 city VARCHAR(30) EXTERNAL NAME 'city',
 state CHAR(2) EXTERNAL NAME 'st',
 locality_code CHAR(15) EXTERNAL NAME 'lc',
 STATIC FUNCTION square_feet RETURN NUMBER
 EXTERNAL VARIABLE NAME 'square_feet',
 STATIC FUNCTION create_addr (str VARCHAR,
 City VARCHAR, state VARCHAR, zip NUMBER)
 RETURN address_type
 EXTERNAL NAME 'create (java.lang.String,
 java.lang.String, java.lang.String, int)
 return scott.address',
 MEMBER FUNCTION rtrims RETURN SELF AS RESULT
 EXTERNAL NAME 'rtrim_spaces () return scott.address')
NOT FINAL;
We could create a UDT using a VARRAY type with four elements:
CREATE TYPE employee_phone_numbers AS VARRAY(4) OF CHAR(14);
In the following example, we alter the address_type that we created earlier by adding a VARRAY called phone_varray:
ALTER TYPE address_type
 ADD ATTRIBUTE (phone phone_varray) CASCADE;
In this last example, we'll create a supertype and a subtype called menu_item_type and entry_type, respectively:
CREATE OR REPLACE TYPE menu_item_type AS OBJECT
(id INTEGER, title VARCHAR2(500),
 NOT INSTANTIABLE
 MEMBER FUNCTION fresh_today
 RETURN BOOLEAN)
NOT INSTANTIABLE
NOT FINAL;
In the preceding example, we created a type specification (but not the type body) that defines items that may appear on a menu at a café. Included with the type specification is a subprogram method called fresh_today, a Boolean indicator that tells whether the menu item is made fresh that day. The NOT FINAL clause that appears at the end of the code tells Oracle that this type may serve as the supertype (or base type) to other subtypes that we might derive from it. So now, let's create the entre_type:
CREATE OR REPLACE TYPE entry_type UNDER menu_item_type
(entre_id INTEGER, desc_of_entre VARCHAR2(500),
 OVERRIDING MEMBER FUNCTIOIN fresh_today
 RETURN BOOLEAN)
NOT FINAL;

PostgreSQL
PostgreSQL supports both an ALTER TYPE statement and a CREATE TYPE statement used to create a new datatype. PostgreSQL's implementation of the CREATE TYPE statement is nonstandard:
CREATE TYPE type_name
 (INPUT = input_function_name,
 OUTPUT = output_function_name
[, INTERNALLENGTH = { int | VARIABLE }]
[, DEFAULT = value]
[, ELEMENT = array_element_datatype]
[, DELIMITER = delimiter_character]
[, PASSEDBYVALUE]
[, ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}]
[, STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}]
[, SEND = send_function]
[, RECEIVE = receive_function]
[, ANALYZE = analyze_function])
PostgreSQL allows you to change the schema or owner of an existing type using the ALTER TYPE statement:
ALTER TYPE type_name [OWNER TO new_owner_name] [SET SCHEMA new_schema_name]
The parameters are as follows:
	CREATE TYPE type_name
	Creates a new user-defined datatype called type_name. The name may not exceed 30 characters in length, nor may it begin with an underscore.

	INPUT = input_function_name
	Declares the name of a previously created function that converts external argument values into a form usable by the type's internal form.

	OUTPUT = output_function_name
	Declares the name of a previously created function that converts internal output values to a display format.

	INTERNALLENGTH = { int | VARIABLE }
	Specifies a numeric value, int, for the internal length of the new type, if the datatype is fixed-length. The keyword VARIABLE (the default) declares that the internal length is variable.

	DEFAULT = value
	Defines a value for type when it defaults.

	ELEMENT = array_element_datatype
	Declares that the datatype is an array and that array_element_datatype is the datatype of the array elements. For example, an array containing integer values would be ELEMENT = INT4. In general, you should allow the array_element_datatype value to default. The only time you might want to override the default is when creating a fixed-length UDT composed of an array of multiple identical elements that need to be directly accessible by subscripting.

	DELIMITER = delimiter_character
	Declares a character to be used as a delimiter between output values of an array produced by the type. Only used with the ELEMENT clause. The default is a comma.

	PASSEDBYVALUE
	Specifies that the values of the datatype are passed by value and not by reference. This optional clause cannot be used for types whose value is longer than the DATUM datatype (4 bytes on most operating systems, 8 bytes on a few others).

	ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}
	Defines a storage alignment for the type. Four datatypes are allowed, with each equating to a specific boundary: CHAR equals a 1-byte boundary, INT2 equals a 2-byte boundary, INT4 equals a 4-byte boundary (the requirement for a variable-length UDT on PostgreSQL), and DOUBLE equals an 8-byte boundary.

	STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}
	Defines a storage technique for variable-length UDTs. (PLAIN is required for fixed-length UDTs.) Four types are allowed:
	PLAIN
	Stores the UDT inline, when declared as the datatype of a column in a table, and uncompressed.

	EXTERNAL
	Stores the UDT outside of the table without trying to compress it first.

	EXTENDED
	Stores the UDT as a compressed value if it fits inside the table. If it is too long, PostgreSQL will save the UDT outside of the table.

	MAIN
	Stores the UDT as a compressed value within the table. Bear in mind, however, that there are situations where PostgreSQL cannot save the UDT within the table because it is just too large. The MAIN storage parameter puts the highest emphasis on storing UDTs with all other table data.

	SEND = send_function
	Converts the internal representation of the type to the external binary representation. Usually coded in C or another low-level language.

	RECEIVE = receive_function
	Converts the text's external binary representation to the internal representation. Usually coded in C or another low-level language.

	ANALYZE = analyze_function
	Performs type-specific statistical collection for columns of the type.
Tip
More details on the SEND, RECEIVE, and ANALYZE functions are available in the PostgreSQL documentation.

When you create a new datatype in PostgreSQL, it is available only in the current database. The user who created the datatype is the owner. When you create a new type, the parameters may appear in any order and are largely optional, except for the first two (the input and output functions).
To create a new datatype, you must create at least two functions before defining the type (see the earlier section "CREATE/ALTER FUNCTION/PROCEDURE Statements"). In summary, you must create an INPUT function that provides the type with external values that can be used by the operators and functions defined for the type, as well as an OUTPUT function that renders a usable external representation of the datatype. There are some additional requirements when creating the input and output functions:
	The input function should either take one argument of type OPAQUE or take three arguments of OPAQUE, OID, and INT4. In the latter case, OPAQUE is the input text of a C string, OID is the element type for array types, and INT4 (if known) is the typemod of the destination column.

	The output function should either take one argument of type OPAQUE or take two arguments of type OPAQUE and OID. In the latter case, OPAQUE is the datatype itself and OID is the element type for array types, if needed.

For example, we can create a UDT called floorplan and use it to define a column in two tables, one called house and one called condo:
CREATE TYPE floorplan
 (INTERNALLENGTH=12, INPUT=squarefoot_calc_proc,
 OUTPUT=out_floorplan_proc);
CREATE TABLE house
 (house_plan_id int4,
 size floorplan,
 descrip varchar(30));
CREATE TABLE condo
 (condo_plan_id INT4,
 size floorplan,
 descrip varchar(30)
 location_id varchar(7));

SQL Server
SQL Server supports the CREATE TYPE statement, but not the ALTER TYPE statement. New datatypes can also be added to SQL Server using the non-ANSI system stored procedure sp_addtype. The syntax for SQL Server's implementation of CREATE TYPE follows:
CREATE TYPE type_name
{ FROM base_type [(precision [, scale])] [[NOT] NULL] |
 AS TABLE table_definition |
 CLR_definition }
where:
	FROM base_type
	Supplies the datatype upon which the datatype alias is based. The datatype may be one of the following: BIGINT, BINARY, BIT, CHAR, DATE, DATETIME, DATETIME2, DATETIMEOFFSET, DECIMAL, FLOAT, IMAGE, INT, MONEY, NCHAR, NTEXT, NUMERIC, NVARCHAR, REAL, SMALLDATETIME, SMALLINT, SMALLMONEY, SQL_VARIANT, TEXT, TIME, TINYINT, UNIQUEIDENTIFIER, VARBINARY, or VARCHAR. Where appropriate to the datatype, a precision and scale may be defined.

	[NOT] NULL
	Specifies whether the type can hold a NULL value. When omitted, NULL is the default.

	AS TABLE table_definition
	Specifies a user-defined table type with columns, datatypes, keys, constraints (such as CHECK, UNIQUE, and PRIMARY KEY), and properties (such as CLUSTERED and NONCLUSTERED), just like a regular table.

SQL Server supports the creation of types written in Microsoft .NET Framework common language runtime (CLR) methods that can take and return user-supplied parameters. These types have similar CREATE and ALTER declarations to regular SQL types; however, the code bodies are external assemblies. Refer to the SQL Server documentation if you want to learn more about programming routines using the CLR.
User-defined types created with sp_addtype are accessible by the public database role. However, permission to access user-defined types created with CREATE TYPE must be granted explicitly, including to PUBLIC.

See Also
	CREATE/ALTER FUNCTION/PROCEDURE
	DROP

Name
CREATE/ALTER VIEW Statement

This statement creates a view (also known as a virtual table). A view acts just like a table but is actually defined as a query. When a view is referenced in a statement, the result set of the query becomes the content of the view for the duration of that statement. Almost any valid SELECT statement can define the contents of a view, though some platforms restrict the certain clauses of the SELECT statement and certain set operators.
In some cases, views can be updated, causing the view changes to be translated to the underlying data in the base tables. Some database platforms support a materialized view; that is, a physically created table that is defined with a query just like a view.
Tip
ALTER VIEW is not an ANSI-supported statement.

	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
CREATE [RECURSIVE] VIEW view_name {[(column[, ...])] |
[OF udt_name [UNDER supertype_name
 [REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [column_name WITH OPTIONS SCOPE table_name]]]}
AS select_statement [WITH [CASCADED | LOCAL] CHECK OPTION]

Keywords
	CREATE VIEW view_name
	Creates a new view using the supplied name.

	RECURSIVE
	Creates a view that derives values from itself. It must have a column clause and may not use the WITH clause.

	[(column[, . . .])]
	Names all of the columns in the view. The number of columns declared here must match the number of columns generated by the select_statement. When omitted, the columns in the view derive their names from the columns in the table. This clause is required when one or more of the columns is derived and does not have a base table column to reference.

	OF udt_name [UNDER supertype_name]
	Defines the view on a UDT rather than on the column clause. The typed view is created using each attribute of the type as a column in the view. Use the UNDER clause to define a view on a subtype.

	REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}
	Defines the object-ID column for the view.

	column_name WITH OPTIONS SCOPE table_name
	Provides scoping for a reference column in the view. (Since the columns are derived from the type, there is no column list. Therefore, to specify column options, you must use column_name WITH OPTIONS)

	AS select_statement
	Defines the exact SELECT statement that provides the data of the view.

	WITH [CASCADED | LOCAL] CHECK OPTION
	Used only on views that allow updates to their base tables. Ensures that only data that may be read by the view may be inserted, updated, or deleted by the view. For example, if a view of employees showed salaried employees but not hourly employees, it would be impossible to insert, update, or delete hourly employee records through that view. The CASCADED and LOCAL options of the CHECK OPTION clause are used for nested views. CASCADED performs the check option for the current view and all views upon which it is built; LOCAL performs the check option only for the current view, even when it is built upon other views.

Rules at a Glance
Views are usually only as effective as the queries upon which they are based. That is why it is important to be sure that the defining SELECT statement is speedy and well written. The simplest view is based on the entire contents of a single table:
CREATE VIEW employees
AS
SELECT *
FROM employee_tbl;
A column list also may be specified after the view name. The optional column list contains aliases serving as names for each element in the result set of the SELECT statement. If you use a column list, you must provide a name for every column returned by the SELECT statement. If you don't use a column list, the columns of the view will be named whatever the columns in the SELECT statement are called. You will sometimes see complex SELECT statements within a view that make heavy use of AS clauses for all columns, because that allows the developer of the view to put meaningful names on the columns without including a column list.
The ANSI standard specifies that you must use a column list or an AS clause. However, some vendors allow more flexibility, so follow these rules for when to use an AS clause:
	When the SELECT statement contains calculated columns, such as (salary * 1.04)

	When the SELECT statement contains fully qualified column names, such as pubs.scott.employee

	When the SELECT statement contains more than one column of the same name (though with separate schema or database prefixes)

For example, the following two view declarations have the same functional result:
-- Using a column list
CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_monthly_sales,
 publisher)
AS
SELECT t.title, ta.au_ord, a.au_lname, t.price, (t.ytd_sales / 12),
 t.pub_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;

-- Using the AS clause with each column
CREATE VIEW title_and_authors
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0
Alternatively, you can change the titles of columns using the column list. In this case, we'll change avg_monthly_sales to avg_sales. Note that the code overrides the default column names provided by the AS clauses (in bold):
CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_sales, publisher)
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;
An ANSI-standard view can update the base table(s) it is based upon if it meets the following conditions:
	The view does not have UNION, EXCEPT, or INTERSECT operators.

	The defining SELECT statement does not contain GROUP BY or HAVING clauses.

	The defining SELECT statement does not contain any reference to non-ANSI pseudocolumns such as ROWNUM or ROWGUIDCOL.

	The defining SELECT statement does not contain the DISTINCT clause.

	The view is not materialized.

This example shows a view named california_authors that allows data modifications to apply only to authors within the state of California:
CREATE VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH LOCAL CHECK OPTION
The view shown in this example would accept INSERT, DELETE, and UPDATE statements against the base table but guarantee that all inserted, updated, or deleted records contain a state of 'CA' using the WITH . . . CHECK clause.
The most important rule to remember when updating a base table through a view is that all columns in a table that are defined as NOT NULL must receive a not-NULL value when receiving a new or changed value. You can do this explicitly by directly inserting or updating a not-NULL value into the column, or by relying on a default value. In addition, views do not lift constraints on the base table. Thus, the values being inserted into or updated in the base table must meet all the constraints originally placed on the table through unique indexes, primary keys, CHECK constraints, etc.

Programming Tips and Gotchas
Views also can be built upon other views, but this is inadvisable and usually considered bad practice. Depending on the platform, such a view may take longer to compile, but may offer the same performance as a transaction against the base table(s). On other platforms, where each view is dynamically created as it is invoked, nested views may take a long time to return a result set because each level of nesting means that another query must be processed before a result set is returned to the user. In this worst-case scenario, a three-level nested view must make three correlated query calls before it can return results to the user.
Although materialized views are defined like views, they take up space more like tables. Ensure that you have enough space available for the creation of materialized views.

MySQL
MySQL supports both a CREATE VIEW and an ALTER VIEW statement. MySQL doesn't support SQL3 recursive views, UDT and supertyped views, or views using REF. The syntax for both statements follows:
{ALTER | CREATE [OR REPLACE]}
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = {user_name | CURRENT_USER}]
[SQL SECURITY {DEFINER | INVOKER}]
VIEW view_name [(column[, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]
where:
	ALTER | CREATE [OR REPLACE]
	Alters an existing view or creates (or replaces) a view.

	ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}
	Specifies how MySQL should process the view. MERGE tells MySQL to merge the query plans of the query referencing the view and the underlying view itself to achieve optimal performance. TEMPTABLE tells MySQL to first retrieve the results of the view into a temporary table, then act upon the query that called the view against the temporary table. UNDEFINED tells MySQL to choose the best algorithm to process the view. When this clause is omitted, UNDEFINED is the default.

	DEFINER = {user_name | CURRENT_USER}
	Specifies the user account to use when checking privileges. You may specify either a pre-existing user, or the user who issued the CREATE TRIGGER statement (i.e., the CURRENT_USER). CURRENT USER is the default when this clause is omitted.

	SQL SECURITY {DEFINER | INVOKER}
	Specifies the security context under which the view runs: either that of the user that created the view (DEFINER, the default when this clause is omitted), or the user running the view (INVOKER).

In MySQL, tables and views may not have the same names, because they share the same namespace.

Oracle
Oracle supports extensions to the ANSI standard to create object-oriented views, XMLType views, and views that support LOB and object types:
CREATE [OR REPLACE] [[NO] FORCE] VIEW view_name
 {[(column[, ...]) [constraint_clause]] |
 [OF type_name {UNDER parent_view |
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}
 [(constraint_clause)]}] |
 [OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT
 {element | xml_schema_url # element}]
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}]]}
AS
(select statement)
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]
Oracle's implementation of the ALTER VIEW statement supports added capabilities, such as adding, dropping, or modifying constraints associated with the view. In addition, the ALTER VIEW statement will explicitly recompile a view that is invalid, enabling you to locate recompilation errors before runtime. This recompiling feature enables you to determine whether a change in a base table negatively impacts any dependent views:
ALTER VIEW view_name
 {ADD constraint_clause |
 MODIFY CONSTRAINT constraint_clause [NO]RELY]] |
 DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column[, ...])}}
COMPILE
The parameters are:
	OR REPLACE
	Replaces any existing view of the same view_name with the new view.

	[NO] FORCE
	The FORCE clause creates the view regardless of whether the base tables exist or the user creating the view has privileges to read from or write to the base tables, views, or functions defined in the view. The FORCE clause also creates the view regardless of any errors that occur during view creation. The NO FORCE clause creates the view only if the base tables and proper privileges are in place.

	constraint_clause
	Allows you to specify constraints on views for CREATE VIEW (see the section on CREATE TABLE for details). Using ALTER VIEW, this clause also allows you to affect a named, pre-existing constraint. You can define the constraint at the view level, similar to a table-level view, or at the column or attribute level. Note that although Oracle allows you to define constraints on a view, it doesn't yet enforce them. Oracle supports constraints on a view in DISABLE and NOVALIDATE modes.

	OF type_name
	Declares that the view is an object view of type type_name. The columns of the view correspond directly to the attributes returned by type_name, where type_name is a previously declared type (see the section on CREATE TYPE). You do not specify column names for object and XMLType views.

	UNDER parent_view
	Specifies a subview based on a pre-existing parent_view. The subview must be in the same schema as the parent view, the type_name must be an immediate subtype of the parent_view, and only one subview is allowed.

	WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, . . .])}
	Defines the root object view as well as any attributes of the object type used to identify each row of the object view. The attributes usually correspond to the primary key columns of the base table and must uniquely identify each row of the view. This clause is incompatible with subviews and dereferenced or pinned REF keys. The DEFAULT keyword uses the implicit object identifier of the base object table or view.

	OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT {element | xml_schema_url # element }] WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, . . .])}
	Specifies that the view will return XMLType instances. Specifying the optional xml_schema_url as a pre-registered XMLSchema and element name further constrains the returned XML as an element in that XMLSchema. The WITH OBJECT IDENTIFIER clause specifies the identifier that uniquely identifies each row of the XMLType view. One or more attributes may use non-aggregate functions like EXTRACTVALUE to obtain the identifiers from the resultant XMLType.

	WITH READ ONLY
	Ensures that the view is used only to retrieve data, not to modify it.

	WITH CHECK OPTION [CONSTRAINT constraint_name]
	Forces the view to accept only inserted and updated data that can be returned by the view's SELECT statement. Alternately, you can specify a single CHECK OPTION constraint_name that exists on the base table that you want to enforce. If the constraint is not named, Oracle names the constraint SYS_Cn, where n is an integer.

	ADD constraint_clause
	Adds a new constraint to the view. Oracle supports constraints only in DISABLE and NOVALIDATE modes.

	MODIFY CONSTRAINT constraint_clause [NO]RELY
	Changes the RELY or NORELY setting of an existing view constraint. (RELY and NORELY are explained in the section on CREATE TABLE.)

	DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column[, . . .])}
	Drops an existing constraint on a view.

	COMPILE
	Recompiles the view.

Any dblinks in the view's SELECT statement must be declared using the CREATE DATABASE LINK . . . CONNECT TO statement. Any view containing flashback queries will have its AS OF clause evaluated at each invocation of the view, not when the view is compiled.
In this example, we create a view that has an added constraint:
CREATE VIEW california_authors (last_name, first_name,
 author_ID UNIQU RELY DISABLE NOVALIDATE,
 CONSTAINT id_pk PRIMARY KEY (au_id) RELY DISABLE NOVALIDATE)
AS
SELECT au_lname, au_fname, au_id
FROM authors
WHERE state = 'CA';
We might also wish to create an object view on an Oracle database and schema. This example creates the type and the object view:
CREATE TYPE inventory_type AS OBJECT
(title_id NUM(6),
 warehouse wrhs_typ,
 qty NUM(8));
CREATE VIEW inventories OF inventory_type
WITH OBJECT IDENTIFIER (title_id)
AS
SELECT i.title_id, wrhs_typ(w.wrhs_id, w.wrhs_name,
 w.location_id), i.qty
FROM inventories i
JOIN warehouses w ON i.wrhs_id = w.wrhs_id;
We could recompile the inventory_type view like this:
ALTER VIEW inventory_type COMPILE:
An updatable view in Oracle cannot contain any of the following:
	The DISTINCT clause

	UNION, INTERSECT, or MINUS clauses

	Joins that cause inserted or updated data to affect more than one table

	Aggregate or analytic functions

	GROUP BY, ORDER BY, CONNECT BY, or START WITH clauses

	Subqueries or collection expressions in the SELECT item list (subqueries are acceptable in the SELECT statement's WHERE clause)

	Update pseudocolumns or expressions

There are some restrictions on how subviews and materialized views can be defined in Oracle:
	The subview must use aliases for ROWID, ROWNUM, or LEVEL pseudocolumns.

	The subview cannot query CURRVAL or NEXTVAL pseudocolumns.

	The subview cannot contain the SAMPLE clause.

	The subview evaluates all columns of a SELECT * FROM . . . statement at compile time. Thus, any new columns added to the base table will not be retrieved by the subview until the view is recompiled.

Note that while older versions of Oracle supported partitioned views, this feature has been deprecated. You should use explicitly declared partitions instead.

PostgreSQL
PostgreSQL supports a no-frills subset of the ANSI standard for CREATE VIEW:
CREATE [OR REPLACE] [TEMP[ORARY]] VIEW view_name [(column[, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]
PostgreSQL does not support ALTER VIEW. However, you can use CREATE OR REPLACE view_name to substitute the definition of an old view with the definition of a new view. In addition, PostgreSQL allows you to create temporary views, which is an extension to the SQL3 standard.
PostgreSQL's CREATE VIEW does not support some of the more complex options that other vendors' versions of this statement do. However, it does allow views to be built on tables and other defined class objects. PostgreSQL views are built only upon other tables, not upon other views. They are always read-only and cannot be used to perform data modifications on the underlying base tables.

SQL Server
SQL Server supports some extensions to the ANSI standard but does not offer object views or subviews:
CREATE VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}[, ...]]
AS select_statement
[WITH CHECK OPTION]
SQL Server's implementation of ALTER VIEW allows you to change an existing view without affecting the permissions or dependent objects of the view:
ALTER VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}[, ...]]
AS select_statement
[WITH CHECK OPTION]
The parameters are as follows:
	ENCRYPTION
	Encrypts the text of the view in the syscomments table. This option is usually invoked by software vendors who want to protect their intellectual capital.

	SCHEMABINDING
	Binds the view to a specific schema, meaning that all objects in the view must be referenced by their full names (both owner and object name). The view and any tables referenced in the view's SELECT statement must be fully qualified, as in pubs.scott.employee. Views created with SCHEMABINDING (and tables referenced by these views) must have the schema binding dropped (via ALTER VIEW) before they may be dropped or altered.

	VIEW_METADATA
	Specifies that SQL Server return metadata about the view (rather than the base table) to calls made from DBLIB or OLEDB APIs. Views created or altered with VIEW_METADATA enable their columns to be updated by INSERT and UPDATE INSTEAD OF triggers.

	WITH CHECK OPTION
	Forces the view to accept only inserted and updated data that can be returned by the view's SELECT statement.

The SELECT clause of a SQL Server view cannot:
	Have COMPUTE, COMPUTE BY, INTO, or ORDER BY clauses (ORDER BY is allowed if you use SELECT TOP)

	Reference a temporary table

	Reference a table variable

	Reference more than 1,024 columns, including those referenced by subqueries

Here, we define a SQL Server view with both ENCRYPTION and CHECK OPTION clauses:
CREATE VIEW california_authors (last_name, first_name, author_id)
WITH ENCRYPTION
AS
 SELECT au_lname, au_fname, au_id
 FROM authors
 WHERE state = 'CA'
WITH CHECK OPTION
GO
SQL Server allows multiple SELECT statements in a view, as long as they are linked with UNION or UNION ALL clauses. SQL Server also allows functions and hints in a view's SELECT statement. A SQL Server view is updatable if all of the conditions in the following list are true:
	The SELECT statement has no aggregate functions.

	The SELECT statement does not contain TOP, GROUP BY, DISTINCT, or UNION clauses.

	The SELECT statement has no derived columns (see SUBQUERY).

	The FROM clause of the SELECT statement references at least one table.

SQL Server allows indexes to be created on views (see CREATE INDEX). By creating a unique, clustered index on a view, you cause SQL Server to store a physical copy of the view on the database. Changes to the base table are automatically updated in the indexed view. Indexed views consume extra disk space but provide a boost in performance. These views must be built using the SCHEMABINDING clause.
SQL Server also allows the creation of local and distributed partitioned views. A local partitioned view is a partitioned view where all views are present on the same SQL server. A distributed partitioned view is a partitioned view where one or more views are located on remote servers.
Partitioned views must very clearly derive their data from different sources, with each distinct data source joined to the next with a UNION ALL statement. Furthermore, all columns of the partitioned views should be selected and identical. (The idea is that you have split the data out logically by means of a frontend application; SQL Server then recombines the data through the partitioned view.) This example shows how the data in the view comes from three separate SQL servers:
CREATE VIEW customers
AS
--Select from a local table on server New_York
SELECT *
FROM sales_archive.dbo.customers_A
UNION ALL
SELECT *
FROM houston.sales_archive.dbo.customers_K
UNION ALL
SELECT *
FROM los_angeles.sales_archive.dbo.customers_S
Note that each remote server (New_York, houston, and los_angeles) has to be defined as a remote server on all of the SQL servers using the distributed partitioned view.
Partitioned views can greatly boost performance because they can split I/O and user loads across many machines. However, they are difficult to plan, create, and maintain. Be sure to read the vendor documentation for complete details about all the permutations available with partitioned views.
When altering an existing view, SQL Server acquires and holds an exclusive schema lock on the view until the alteration is finished. ALTER VIEW drops any indexes that might be associated with a view; you must manually recreate them using CREATE INDEX.

See Also
	CREATE/ALTER TABLE
	DROP
	SELECT
	SUBQUERY

Name
DECLARE CURSOR Command

The DECLARE command is one of four commands used in cursor processing, along with FETCH, OPEN, and CLOSE. Cursors allow you to process queries one row at a time, rather than in a complete set. The DECLARE CURSOR command specifies the exact records to be retrieved and manipulated (one row at a time) from a specific table or view.
In other words, cursors are especially important for relational databases because databases are set-based, while most client-centric programming languages are row-based. This is important for two reasons. First, cursors allow programmers to program using methodologies supported by their favorite row-based programming languages. Second, cursors run counter to the default behavior of some relational database platforms, which operate on sets of records, and on those specific platforms cursor operations may be noticeably slower than standard set-based operations.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
DECLARE cursor_name [{SENSITIVE | INSENSITIVE | ASENSITIVE}]
[[NO] SCROLL] CURSOR [{WITH | WITHOUT} HOLD]
 [{WITH | WITHOUT} RETURN]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column[, ...]]}]

Keywords
	DECLARE cursor_name
	Gives the cursor a unique name in the context in which it is defined (for example, in the database or schema where it is created). No other cursors may share the same name.

	SENSITIVE | INSENSITIVE | ASENSITIVE
	Defines the manner in which the cursor interacts with the source table and the result set retrieved by the cursor query, where:
	SENSITIVE
	Tells the database to operate directly against the result set, so that the cursor will see changes to its result set as it moves through the records.

	INSENSITIVE
	Tells the database to create a temporary but separate copy of the result set, so that all changes made against the result set by other operations are invisible to the cursor during the cursor operation.

	ASENSITIVE
	Allows the database implementation to determine whether to make a copy of the result set. ASENSITIVE is the SQL2003 default.

	[NO] SCROLL
	SCROLL tells the database not to enforce processing one row at a time, using FETCH NEXT, but that all forms of the FETCH clause are allowed against the result set. NO SCROLL enforces processing one row at a time.

	{WITH | WITHOUT} HOLD
	WITH HOLD tells the cursor to remain open when a transaction encounters the COMMIT statement. Conversely, WITHOUT HOLD tells the cursor to close when the transaction encounters a COMMIT statement. (A cursor that uses WITH HOLD can only be and is always closed with a ROLLBACK statement or a CLOSE CURSOR statement.)

	{WITH | WITHOUT} RETURN
	Used only in a stored procedure. The WITH RETURN clause tells the database to return the result set, if it is still open, when the stored procedure terminates. With the WITHOUT RETURN clause, which is the default, all open cursors are implicitly closed when the stored procedure terminates.

	FOR select_statement
	Defines the underlying SELECT statement that determines the rows in the result set of the cursor. As with a regular SELECT statement, the results of the query may be sorted according to an ORDER BY clause.

	FOR {READ ONLY | UPDATE [OF column[, . . .]]}
	Specifies that the cursor is not updatable in any way, using FOR READ ONLY. This is the default when the cursor is defined with the SCROLL or INSENSITIVE properties, and when the query contains an ORDER BY clause or is against a non-updatable table. Alternately, you can specify FOR UPDATE OF column1, column2[, . . .], defining the columns where you want to execute UPDATE statements, or omit the column list to include all columns in the cursor.

Rules at a Glance
The DECLARE CURSOR command enables the retrieval and manipulation of records from a table one row at a time. This provides row-by-row processing, rather than the traditional set processing offered by SQL.
At the highest level, these steps are followed when working with a cursor:
	Create a cursor using DECLARE.

	Open the cursor using OPEN.

	Operate against the cursor using FETCH.

	Dismiss the cursor using CLOSE.

The DECLARE CURSOR command works by specifying a SELECT statement. Each row returned by the SELECT statement may be individually retrieved and manipulated. In this Oracle example, the cursor is declared in the declaration block, along with some other variables. The cursor is then opened, fetched against, and then closed in the BEGIN . . . END block that follows:
DECLARE CURSOR title_price_cursor IS
SELECT title, price
FROM titles
WHERE price IS NOT NULL;
 title_price_val title_price_cursor%ROWTYPE;
 new_price NUMBER(10,2);
BEGIN
 OPEN title_price_cursor;
 FETCH title_price_cursor INTO title_price_val;
 new_price := "title_price_val.price" * 1.25
 INSERT INTO new_title_price
 VALUES (title_price_val.title, new_price)
 CLOSE title_price_cursor;
END;
Because this example uses PL/SQL, much of the code is beyond the scope of this book. However, the DECLARE block clearly shows that the cursor is declared. In the PL/SQL execution block, the cursor is initialized with the OPEN command, values are retrieved with the FETCH command, and the cursor finally is terminated with the CLOSE command.
The SELECT statement is the heart of your cursor, so it is a good idea to test it thoroughly before embedding it in the DECLARE CURSOR statement. The SELECT statement may operate against a base table or a view. For that matter, read-only cursors may operate against non-updatable views. The SELECT statement can have subclauses such as ORDER BY, GROUP BY, and HAVING if it is not updating the base table. If the cursor is FOR UPDATE, however, it is a good idea to exclude these clauses from the SELECT statement.
Local cursors are sometimes used as output parameters of stored procedures. Thus, a stored procedure could define and populate a cursor and pass that cursor to a calling batch or stored procedure.
In this next example from Microsoft SQL Server, a cursor from the publishers table is declared and opened. The cursor takes the first record from publishers that matches the SELECT statement and inserts it into another table; it then moves to the next record and then the next, until all records are processed. Finally, the cursor is closed and deallocated (DEALLOCATE is used only with Microsoft SQL Server):
DECLARE @publisher_name VARCHAR(20)
DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA'
OPEN pub_cursor
FETCH NEXT FROM pub_cursor INTO @publisher_name
WHILE @@FETCH_STATUS = 0
BEGIN
 INSERT INTO foreign_publishers VALUES(@publisher_name)
END
CLOSE pub_cursor
DEALLOCATE pub_cursor
In this example, you see how the cursor moves through a set of records. (The example was intended only to demonstrate this concept, since there is actually a better way to accomplish the same task; namely, an INSERT . . . SELECT statement.)

Programming Tips and Gotchas
Most platforms do not support dynamically executed cursors. Rather, cursors are embedded within an application program, stored procedure, user-defined function, etc. In other words, the various statements for creating and using a cursor are usually used only in the context of a stored procedure or other database-programming object, not in a straight SQL script.
For ease of programming and migration, don't use the SCROLL clause or the various sensitivity keywords. Some platforms support only forward-scrolling cursors, so you can avoid headaches later by just sticking to the simplest form of cursor.
Cursors behave differently on the various database platforms when crossing a transaction boundary—for example, when a set of transactions is rolled back in the midst of a cursor operation. Be sure to familiarize yourself with exactly how each database platform behaves in these circumstances.
MySQL does not support server-side cursors in the ANSI SQL style, but it does support extensive C programming extensions that provide the same functionality.

MySQL
MySQL supports a subset of the SQL3 standard syntax:
DECLARE cursor_name
FOR select_statement
MySQL only allows cursors within stored procedures, functions, and triggers. MySQL cursors are always read-only, non-updatable, non-scrollable (the cursor only moves in one direction and cannot skip rows), and asensitive (meaning that the server will choose whether to make a copy of the result table according to what is most expedient). MySQL will not allow you to create more than one cursor in a block with the same name. Cursors must be declared after variables and conditions, but before handlers.

Oracle
Oracle has a rather interesting implementation of cursors. In reality, all Oracle data-modification statements (INSERT, UPDATE, DELETE, and SELECT) implicitly open a cursor. For example, a C program accessing Oracle would not need to issue a DECLARE CURSOR statement to retrieve data on a record-by-record basis, because that is the implicit behavior of Oracle. Because of this behavior, you'll only use DECLARE CURSOR in PL/SQL constructs such as stored procedures, not in a script that is purely SQL.
Tip
Since cursors can only be used in stored procedures and user-defined functions in Oracle, they are documented in the Oracle PL/SQL reference material, not in the SQL reference material.

Oracle utilizes a variation of the DECLARE CURSOR statement that supports parameterized inputs, as the following syntax demonstrates:
DECLARE CURSOR cursor_name [(parameter datatype[, ...])]
IS select_statement
[FOR UPDATE [OF column_name[, ...]]]
where:
	[(parameter datatype[, . . .])] IS select_statement
	Defines the parameter name and datatype of each input parameter as well as the select_statement used to retrieve the cursor result set. Serves the same purpose as the ANSI SQL2003 FOR select_statement clause.

	FOR UPDATE [OF column_name]
	Defines the cursor or specific columns of the cursor as updatable. Otherwise, the cursor is assumed to be read-only.

In Oracle, variables are not allowed in the WHERE clause of the SELECT statement unless they are first declared as variables. The parameters are not assigned in the DECLARE statement; instead, they are assigned values in the OPEN command. This is important since any system function will return an identical value for all rows in the cursor result set.

PostgreSQL
PostgreSQL does not support the WITH clauses. It does allow you to return result sets in binary rather than text format. Although the compiler will not cause errors with many of the ANSI keywords, PostgreSQL's implementation of DECLARE CURSOR is more limited than it might first appear:
DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR
[{WITH | WITHOUT} HOLD]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column_name[, ...]]}]
where:
	BINARY
	Forces the cursor to retrieve binary-formatted data rather than text-formatted data.

	INSENSITIVE
	Indicates that data retrieved by the cursor is unaffected by updates from other processes or cursors. This is PostgreSQL's default behavior, so omitting this keyword has no effect.

	[NO] SCROLL
	Allows multiple rows to be retrieved by a single FETCH operation in either a forward or backward direction. Be aware that SCROLL can slow down processing. NO SCROLL specifies that the cursor reads only in a forward direction and that it does not skip any records.

	{WITH | WITHOUT} HOLD
	WITH HOLD specifies that the cursor can continue to be used after the transaction that created it has completed a COMMIT. WITHOUT HOLD, the default, specifies that the cursor cannot be used outside of the transaction that created it.

	FOR {READ-ONLY | UPDATE [OF column_name[, . . .]]}
	Indicates that a cursor is opened using read-only mode or update mode, respectively. However, PostgreSQL only supports read-only cursors. Consequently, the FOR READ-ONLY clause has no effect, while the FOR UPDATE [OF column_name[, ...]] clause produces an informational error message.

PostgreSQL closes any existing cursor when a newly declared cursor is created with the same name. Binary cursors tend to be faster because PostgreSQL stores data as binary on the backend. However, user applications are only text-aware. Therefore, you'll have to build in binary handling for any BINARY cursors.
PostgreSQL allows cursors only within a transaction. You should enclose a cursor within a BEGIN and COMMIT or ROLLBACK transaction block.
PostgreSQL does not support an explicit OPEN cursor statement. Cursors are considered open when they are declared. So, to declare and open a cursor in PostgreSQL, you could use code like this:
DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA';

SQL Server
SQL Server supports the ANSI standard, as well as a good many extensions that provide flexibility in how a cursor scrolls through a result set and manipulates data, as shown in the following syntax:
DECLARE cursor_name CURSOR
 [LOCAL | GLOBAL] [INSENSITIVE | FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column_name[, ...]]}]
The parameters are as follows:
	LOCAL | GLOBAL
	Scopes the cursor for either the local Transact-SQL batch or makes the cursor available to all Transact-SQL batches issued by the current session via OPEN and FETCH statements, respectively. A global cursor name can be referenced by any stored procedure, function, or Transact-SQL batch executed in the current session. A global cursor is implicitly deallocated at disconnect, but a local cursor must be manually deallocated. The LOCAL and GLOBAL keywords are optional. The default behavior, if neither is specified, is defined by the default to local database property.

	INSENSITIVE | FORWARD_ONLY | SCROLL
	Determines how the cursor will move through the result set, with three options:
	INSENSITIVE
	Creates the result set as a table in TEMPDB. Changes to the base table are not reflected in the cursor result set. Not compatible with SQL Server extensions to the DECLARE CURSOR command such as LOCAL, GLOBAL, STATIC, KEYSET, DYNAMIC, FAST_FORWARD, etc. Can only be used in a SQL92-style DECLARE CURSOR statement, such as DECLARE sample CURSOR INSENSITIVE FOR select_statement FOR UPDATE.

	FORWARD_ONLY
	Indicates that the cursor must scroll from the first to the last record in the result set and that FETCH NEXT is the only supported form of the FETCH statement. The cursor is assumed to be DYNAMIC unless STATIC or KEYSET is used. FAST_FORWARD is mutually exclusive of FORWARD_ONLY.

	SCROLL
	Enables all FETCH options (ABSOLUTE, FIRST, LAST, NEXT, PRIOR, and RELATIVE). Otherwise, only FETCH NEXT is available. If DYNAMIC, STATIC, or KEYSET is used, the cursor defaults to SCROLL behavior. FAST_FORWARD is mutually exclusive of SCROLL.

	STATIC | KEYSET | DYNAMIC | FAST_FORWARD
	Determines how records are manipulated in the result set. These settings are incompatible with the FOR READ ONLY and FOR UPDATE clauses. There are four options:
	STATIC
	Makes a temporary copy of the result set data and stores it in tempdb. Modifications made to the source table or view do not show up when processing the cursor. STATIC cursors cannot modify data in the source table or view.

	KEYSET
	Makes a temporary copy of the result set with membership and fixed row order (also known as a keyset) in tempdb. The keyset correlates the data in the cursor result set to the base table or view, so that the cursor can see changes made to the underlying data. Rows that have been deleted or updated show an @@FETCH_STATUS of −2 (unless the update was done using UPDATE . . . WHERE CURRENT OF, in which case they are fully visible), while rows inserted by other users are not visible at all.

	DYNAMIC
	Determines the records in the cursor result set as each FETCH operation is executed. Thus, DYNAMIC cursors see all changes made to the base table or view, even those by other users. Because the result set may be in constant flux, DYNAMIC cursors do not support FETCH ABSOLUTE.

	FAST_FORWARD
	Creates a FORWARD_ONLY, READ_ONLY cursor that quickly reads through the entire cursor result set at one time.

	READ_ONLY | SCROLL_LOCKS | OPTIMISTIC
	Determines concurrency and positional update behavior for the cursor. These settings are incompatible with FOR READ ONLY and FOR UPDATE. The allowable parameters are:
	READ_ONLY
	Prevents updates to the cursor and disallows the cursor from being referenced in UPDATE or DELETE statements that contain WHERE CURRENT OF.

	SCROLL_LOCKS
	Ensures that positional updates and deletes succeed by locking the cursor result set rows as they are read into the cursor. The locks are held until the cursor is closed and deallocated. SCROLL_LOCKS is mutually exclusive of FAST_FORWARD.

	OPTIMISTIC
	Ensures that positional updates and deletes succeed unless the row being updated or deleted in the cursor result set has changed since it was read into the cursor. SQL Server accomplishes this by comparing a timestamp, or a checksum value when no timestamp exists, on the columns. It does not lock the rows in the cursor result set. OPTIMISTIC is mutually exclusive of FAST_FORWARD.

	TYPE_WARNING
	Warns the user when the cursor is implicitly converted from one type to another (for example, from SCROLL to FORWARD_ONLY).

	FOR {READ ONLY | UPDATE [OF column_name[, . . .]]}
	FOR READ ONLY identifies the cursor as read-only, using the ANSI-standard syntax. This clause is not compatible with the other type identifiers discussed previously; it should only be used with INSENSITIVE, FORWARD_ONLY, and SCROLL. FOR UPDATE allows updates to columns in the cursor using UPDATE and DELETE statements with the WHERE CURRENT OF clause. If FOR UPDATE is used without a column list, all columns in the cursor are updatable. Otherwise, only those columns listed are updatable.
Warning
Microsoft SQL Server allows two basic forms of syntax for the DECLARE CURSOR statement. These syntax forms are not compatible! The basic forms of syntax are SQL92-compatible and Transact-SQL extensions. You cannot mix together keywords of the two forms.

The SQL92 compatibility syntax for DECLARE CURSOR is:
DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR
FOR select_statement
[FOR { READ ONLY | UPDATE [OF column_name[, ...]] }]
while the Transact-SQL extensions syntax for DECLARE CURSOR is:
DECLARE cursor_name CURSOR
[LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement
[FOR UPDATE [OF column_name[, ...]]]
The SQL92 compatability syntax is supported to enable your code to be more transportable. The Transact-SQL extensions syntax enables you to define cursors using the same cursor types that are available in popular database APIs such as ODBC, OLE-DB, and ADO, but it may only be used in SQL Server stored procedures, user-defined functions, triggers, and ad hoc queries.
If you do define a Transact-SQL extension cursor but do not define concurrency behavior using the OPTIMISTIC, READ_ONLY, or SCROLL_LOCKS keywords, then:
	The cursor defaults to READ-ONLY if was defined as FAST_FORWARD or STATIC, or the user has insufficient privileges to update the base table or view.

	The cursor defaults to OPTIMISTIC if the cursor was defined as DYNAMIC or KEYSET.

Note that variables may be used in the select_statement of a SQL Server cursor, but the variables are evaluated when the cursor is declared. Thus, a cursor containing a column based on the system function GETDATE() will have the same date and time for every record in the cursor result set.
In the following SQL Server example, we use a KEYSET cursor to change blank spaces to dashes in the phone column of the authors table:
SET NOCOUNT ON
DECLARE author_name_cursor CURSOR LOCAL KEYSET TYPE_WARNING
 FOR SELECT au_fname FROM pubs.dbo.authors
DECLARE @name varchar(40)
OPEN author_name_cursor
FETCH NEXT FROM author_name_cursor INTO @name
WHILE (@@fetch_status <> −1)
BEGIN
-- @@fetch_status checks for 'record not found' conditions and errors
 IF (@@fetch_status <> −2)
 BEGIN
 PRINT 'updating record for ' + @name
 UPDATE pubs.dbo.authors
 SET phone = replace(phone, ' ', '-')
 WHERE CURRENT OF author_name_cursor
 END
 FETCH NEXT FROM author_name_cursor INTO @name
END
CLOSE author_name_cursor
DEALLOCATE author_name_cursor
GO

See Also
	CLOSE CURSOR
	FETCH
	OPEN

Name
DELETE Statement

The DELETE statement erases records from a specified table or tables. DELETE statements acting against tables are sometimes called search deletes. The DELETE statement may also be used in conjunction with a cursor. DELETE statements acting upon the rows of a cursor are sometimes called positional deletes.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported

	SQL Server
	Supported, with limitations

SQL2003 Syntax
DELETE FROM { table_name | ONLY (table_name) }
[{ WHERE search_condition | WHERE CURRENT OF cursor_name }]

Keywords
	FROM { table_name | ONLY (table_name) }
	Identifies the table (called table_name) from which rows will be deleted. The table_name assumes the current schema if one is not specified. You may alternately specify a single table view name. FROM is mandatory, except in the DELETE . . . WHERE CURRENT OF statement. When not using the ONLY clause, do not enclose the table_name in parentheses. ONLY restricts cascading of the deleted records to any subtables of the target table or view. This clause affects only typed (object-oriented) tables and views. If used with a non-typed table or view, it is ignored and does not cause an error.

	WHERE search_condition
	Defines search criteria for the DELETE statement, using one or more search_condition clauses to ensure that only the target rows are deleted. Any legal WHERE clause is acceptable. Typically, these criteria are evaluated against each row of the table before the deletion occurs.

	WHERE CURRENT OF cursor_name
	Restricts the DELETE statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance
The DELETE statement erases rows from a table or view. Space released by erased rows will be returned to the database where the table is located, though this may not happen immediately.
A simple DELETE statement that erases all records in a given table has no WHERE clause, as in the following:
DELETE FROM sales;
You can use any valid WHERE clause to filter records that you do not want to delete. All three of the following examples show valid DELETE statements, and since all are search deletes, they all include the FROM clause:
DELETE FROM sales
WHERE qty IS NULL;
DELETE FROM suppliers
WHERE supplierid = 17
 OR companyname = 'Tokyo Traders';
DELETE FROM distributors
WHERE postalcode IN
 (SELECT territorydescription FROM territories);
Note that in the positional delete, the FROM clause is not required.
In some cases, you may wish to delete a specific row that is being processed by a declared and open cursor:
DELETE titles WHERE CURRENT OF title_cursor;
This query assumes that you have declared and opened a cursor named title_cursor; whichever row the cursor is on will be deleted when the command is executed.

Programming Tips and Gotchas
It is rare to issue a DELETE statement without a WHERE clause, because this results in all rows being deleted from the affected table. You should first issue a SELECT statement with the same WHERE clause you intend to use in the DELETE statement. That way, you can be sure exactly which records will be deleted.
If it becomes necessary to remove all the rows in a table, you should consider using the non-ANSI though very common TRUNCATE TABLE statement. In those databases that support the command, TRUNCATE TABLE is usually a faster method to physically remove all rows. TRUNCATE TABLE is faster than DELETE because the deletion of individual records is not logged. The reduction of logging overhead saves considerable time when erasing a large number of records, but on some platforms this makes rollback of a TRUNCATE statement impossible. Furthermore, on some database platforms all foreign keys on the table must be dropped before issuing a TRUNCATE statement.

MySQL
MySQL allows a number of extensions to the ANSI standard, but it does not support the WHERE CURRENT OF clause. The syntax is shown here:
DELETE [LOW_PRIORITY] [QUICK] [table_name[.*][, ...]]
{FROM table_name[.*][, ...] | [USING table_name[.*][, ...]]}
[WHERE search_condition]
[ORDER BY clause]
[LIMIT nbr_of_rows]
The parameters are:
	LOW PRIORITY
	Delays the execution of DELETE until no other clients are reading from the table.

	QUICK
	Prevents the storage engine from merging index leaves during the delete operation.

	DELETE table_name[, . . .]
	Enables you to delete from more than one table at a time. Tables listed before the FROM clause, assuming one or more tables appear in the FROM clause, will be the target of the delete operation. That is, if more than one table appears before the FROM clause, all matching records in all of the tables will be deleted.

	FROM table_name[.*]
	Specifies the table or tables from which records will be deleted. (The .* clause is an option to improve compatibility with MS-Access.) If tables are listed before the FROM clause, the table or tables in the FROM clause are assumed to be used to support a join or lookup operation.

	USING table_name[.*][, . . .]
	Substitutes the table or tables before the FROM clause with those after the FROM clause.

	ORDER BY clause
	Specifies the order in which rows will be deleted. This is useful only in conjunction with LIMIT.

	LIMIT nbr_of_row
	MySQL also can place an arbitrary cap on the number of records deleted before control is passed back to the client using the LIMIT nbr_of_rows clause.

MySQL allows deletion from more than one table at a time. For example, the following two DELETE statements are functionally equivalent:
DELETE orders FROM customers, orders
WHERE customers.customerid = orders.customerid
 AND orders.orderdate BETWEEN '19950101' AND '19951231'
DELETE FROM orders USING customers, orders
WHERE customers.customerid = orders.customerid
 AND orders.orderdate BETWEEN '19950101' AND '19951231'
In the preceding examples, we delete all orders made by customers during the year 1995. Note that you cannot use ORDER BY or LIMIT clauses in a multitable delete like those just shown.
You can also delete records in orderly batches using the ORDER BY clause in conjunction with the LIMIT clause:
DELETE FROM sales
WHERE customerid = 'TORTU
ORDER BY customerid
LIMIT 5
MySQL exhibits several behaviors that speed up delete operations. For example, it normally returns the number of records deleted when it completes the operation, but it will return zero as the number of deleted records when you delete all records from a table because it is faster to do so than to count the actual number of rows deleted. In AUTOCOMMIT mode, MySQL will even substitute a TRUNCATE statement for a DELETE statement without a WHERE clause because TRUNCATE is faster.
Note that the speed of a MySQL delete operation is directly related to the number of indexes on the table and the available index cache. You can speed up delete operations by executing the command against tables with few or no indexes or by increasing the size of the index cache.

Oracle
Oracle allows you to delete rows from tables, views, materialized views, nested subqueries, and partitioned views and tables, as follows:
DELETE [FROM]
 {table_name | ONLY (table_name)} [alias]
 [{PARTITION (partition_name) |
 SUBPARTITION (subpartition_name)}] |
 (subquery [WITH {READ ONLY |
 CHECK OPTION [CONSTRAINT constraint_name]}]) |
 TABLE (collection_expression) [(+)]}[hint]
[WHERE search_condition]
[RETURNING expression[, ...] INTO variable[, ...]]
[LOG ERRORS [INTO [schema.]table_name] [(simple_expression)]
 [REJECT LIMIT {UNLIMITED |int }]]
The parameters are:
	table_name [alias]
	Specifies the table, view, materialized view, or partitioned table or view from which the records will be deleted. You may optionally prepend a schema identifier to the table_name or append a database link. Otherwise, Oracle will assume the user's default schema and the local database server. You may also optionally apply an alias to the table_name. The alias is required if the target table references an object type attribute or method.

	PARTITION partition_name
	Applies the delete operation to the named partition, rather than to the entire table. You are not required to name a partition when deleting from a partitioned table, but it can, in many cases, help reduce the complexity of the WHERE clause.

	SUBPARTITION subpartition_name
	Applies the operation to a named subpartition, rather than to the entire table.

	(subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}])
	Specifies that the target for deletion is a nested subquery, not a table, view, or other database object. The parameters of this clause are:
	subquery
	Describes the SELECT statement that makes up the subquery. The subquery can be any standard subquery, though it may not contain an ORDER BY clause.

	WITH READ ONLY
	Specifies that the subquery cannot be updated.

	WITH CHECK OPTION [CONSTRAINT constraint_name]
	Tells Oracle to abort any changes to the deleted table that would not appear in the result set of the subquery. [CONSTRAINT constraint_name] tells Oracle to further restrict changes based upon a specific constraint identified by constraint_name.

	TABLE (collection_expression) [(+)]
	Informs Oracle that the collection_expression should be treated like a table even though it may, in fact, be a subquery, a function, or some other collection constructor. In any case, the value returned by the collection_expression must be a nested table or VARRAY.

	hint
	Instructs the database to use specific optimizer instructions other than those it might choose for itself; for example, to use or ignore a specific index. Refer to the vendor documentation for a full discussion of hints.

	RETURNING expression
	Retrieves the rows affected by the command (DELETE normally only shows the number of rows deleted). The RETURNING clause can be used when the target is a table, a materialized view, or a view with a single base table. When used for single-row deletes, the RETURNING clause stores values from the row deleted by the statement, defined by expression, into PL/SQL variables and bind variables. When used for a multirow delete, the RETURNING clause stores the values of the deleted rows, defined by expression, into bind arrays.

	INTO variable
	Specifies the variables into which the values returned as a result of the RETURNING clause are stored. There must be a corresponding variable for every expression in the RETURNING clause.

	LOG ERRORS [INTO [schema.]table_name] [(simple_expression)] [REJECT LIMIT {UNLIMITED |int}]
	Captures DML errors and log column values of affected rows, saving them in an error-logging table. Constraint violations will always cause the statement to fail and roll back, regardless of whether you specify a LOG ERRORS clause. The LOG ERRORS clause also cannot track errors in the error-logging table for columns with LONG, LOG, or object-type columns, though the table that is that target of the DML operation may have columns of these datatypes. The parameters of this clause are:
	INTO [schema.]table_name
	Specifies the error-logging table. When omitted, the default is ERR$_xxx, where xxx is the first 25 characters of the name of the table from which the records are being deleted.

	(simple_expression)
	Specifies a value that tags each error in the logging table so that you can differentiate errors from many DML statements.

	REJECT LIMIT {UNLIMITED | int}
	Specifies an upper limit for the number of errors to be logged (int) before terminating the DELETE and rolling back any changes. The default is 0. The UNLIMITED keyword allows error logging with no upper limit.

When you execute a DELETE statement, Oracle releases space from the target table (or the base table of a target view) back to the table or index that owned the data.
When deleting from a view, the view cannot contain a set operator, the DISTINCT keyword, joins, an aggregate function, an analytic function, a subquery in the SELECT list, a collection expression in the SELECT list, a GROUP BY clause, an ORDER BY clause, a CONNECT BY clause, or a START WITH clause.
Here's an example where we delete records from a remote server:
DELETE FROM scott.sales@chicago;
In the following query, we delete from a derived table that is a collection expression:
DELETE TABLE(SELECT contactname FROM customers
 c WHERE c.customerid = 'BOTTM') s
WHERE s.region IS NULL OR s.country = 'MEXICO';
Here's an example where we delete from a partition:
DELETE FROM sales PARTITION (sales_q3_1997)
WHERE qty > 10000;
Finally, in the next example, we use the RETURNING clause to look at the values that are deleted:
DELETE FROM employee
WHERE job_id = 13
 AND hire_date + TO_YMINTERVAL('01-06') =< SYSDATE;
RETURNING job_lvl
INTO :int01;
This example deletes records from the employee table and returns the job_lvl values into the predefined :into1 variable.

PostgreSQL
PostgreSQL uses the DELETE command to remove rows and any defined subclasses from the table. Its implementation is otherwise identical to the ANSI standard. The syntax follows:
DELETE [FROM] [ONLY] [schema.]table_name
[USING usinglist]
[WHERE search_condition | WHERE CURRENT OF cursor_name]
[RETURNING { * | expression [AS alias][, ...] }]
When deleting rows from only the table specified, use the optional ONLY clause. Otherwise, PostgreSQL will also delete records from any explicitly defined subtable. PostgreSQL supports two other important subclauses:
	USING usinglist
	Specifies a list of table expressions, thereby allowing columns from other tables to appear in the WHERE clause. This has the effect of specifying multiple tables in the FROM clause of a SELECT statement.

	RETURNING { * | expression [AS alias][, . . .] }
	Specifies an expression to be returned by the DELETE statement after each row is deleted. The expression can return all columns (using the * wildcard) or any columns you specify that are in table_name or in the usinglist.

To delete all records from the titles table:
DELETE titles
To delete all records in the authors table where the last name starts with "Mc":
DELETE FROM authors
WHERE au_lname LIKE 'Mc%'
To delete all titles with an old ID number:
DELETE titles WHERE title_id >= 40
To delete all titles that have no sales:
DELETE titles WHERE ytd_sales IS NULL
To delete all records in one table based on the results of a subquery against another table (in this case, erasing from the titleauthor table the records that have a match concerning "computers" in the titles table):
DELETE FROM titleauthor
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE title LIKE '%computers%')
DISCONNECT
To delete all records in a table and return the full details of the deleted rows:
DELETE FROM titles WHERE ytd_sales IS NULL RETURNING *;

SQL Server
Microsoft SQL Server allows records to be deleted both from tables and from views that describe a single table. SQL Server also allows a second FROM clause to allow JOIN constructs, as in the following example:
[WITH cte_expression[, ...]]
DELETE [TOP (number) [PERCENT]] [FROM] table_name [[AS] alias]
[WITH (hint [...])]
[OUTPUT expression INTO {@table_variable | output_table}
 [(column_list[, ...])]]
[FROM table_source[, ...]]
[[{INNER | CROSS | [LEFT | RIGHT | FULL] OUTER}]
 JOIN joined_table ON condition][, ...]]
[WHERE search_condition | WHERE CURRENT OF [GLOBAL] cursor_name]
[OPTION (hint[, ...n])]
The syntax elements are as follows:
	WITH cte_expression
	Defines the temporary named result set of a common table expression, derived from a SELECT statement, for the DELETE statement.

	DELETE table_name
	Allows the deletion of records from the named table or view filtered by the WHERE clause. You can delete records from a view, provided the view is based on one table and contains no aggregate functions and no derived columns. If you omit the server name, database name, or schema name when naming the table or view, SQL Server assumes the current context. An OPENDATASOURCE or OPENQUERY function, as described in the section on the SELECT statement, may be referenced instead of a table or view.

	TOP (number) [PERCENT]
	Indicates that the statement should delete only the specified number of rows. If PERCENT is specified, only the first number percent of the rows are retrieved. If number is an expression, such as a variable, it must be enclosed in parentheses. The expression should be of the FLOAT datatype with a range of 0 to 100 when using PERCENT. When not using PERCENT, the number should be of the BIGINT datatype.

	WITH (hint)
	Instructs the database to use specific optimizer instructions other than those it might choose for itself; for example, to use or ignore a specific index. The WITH (hint) clause specifies one or more table hints that are allowed for the target table. Refer to the vendor documentation for a full discussion of hints.

	OUTPUT expression INTO {@table_variable | output_table} [(column_list[, . . .])]
	Retrieves the rows affected by the command, whereas DELETE normally only shows the number of rows deleted, placing the rows you specify in expression into either a given table_variable or output_table. If the column_list is omitted for the output_table, the output_table must have the same number of columns as the number of columns in the OUTPUT expression. The output_table cannot have triggers, participate in a foreign key, or have any CHECK constraints.

	FROM table_source
	Names an additional FROM clause that correlates records from the table in the first FROM clause using a JOIN rather than forcing you to use a correlated subquery. One or more tables may be listed in the second FROM clause.

	[{INNER | CROSS | [LEFT | RIGHT | FULL] OUTER}] JOIN joined_table ON condition][, . . .]
	Specifies one or more JOIN clauses, in conjunction with the second FROM clause. You may use any of the join types that SQL Server supports. Refer to the section "The JOIN clause" within the discussion of the SELECT satement, later in this chapter, for more information.

	GLOBAL cursor_name
	Specifies that the delete operation should occur on the current row of an open global cursor. This clause is otherwise the same as the standard for WHERE CURRENT OF.

	OPTION (hint[, . . .])
	Replaces elements of the default query plan with your own. Because the optimizer usually picks the best query plan for any query, we strongly discourage you from placing optimizer hints into your queries.

A significant extension to SQL Server's implementation of the DELETE statement is the addition of a second FROM clause. The second FROM allows the use of the JOIN statement and makes it quite easy to delete rows from the table specified in the first FROM by correlating rows of a table declared in the second FROM. For example, you could use a rather complex subquery to erase all the sales records of computer books with this command:
DELETE sales
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE type = 'computer')
But SQL Server allows a more elegant construction using a second FROM clause and a JOIN clause:
DELETE s
FROM sales AS s
INNER JOIN titles AS t ON s.title_id = t.title_id
 AND type = 'computer'
The following example deletes all rows with an order_date of 2003 or earlier, in batches of 2,500:
WHILE 1 = 1
BEGIN
 DELETE TOP (2500)
 FROM sales_history WHERE order_date <= '20030101'
 IF @@rowcount < 2500 BREAK
END
The TOP clause should be used in favor of the old SET ROWCOUNT statement because the TOP clause is open to many more query-optimization algorithms. (Prior to SQL Server 2005, the SET ROWCOUNT statement was often used with data-modification transactions to process large numbers of rows in batches, thus preventing the transaction log from filling up and ensuring that row locks would not escalate to a full table lock.)
Common table expressions may be used with SELECT, INSERT, UPDATE, and DELETE statements as well as the CREATE VIEW statement. These expressions are a means of naming and defining a temporary result set from a SELECT statement, even allowing recursive behaviors. When defining a common table expression, you may not use COMPUTE, COMPUTE BY, FOR XML, FOR BROWSE, INTO, OPTION, or ORDER BY clauses. Multiple SELECT statements are allowed in a common table expression only if they are combined with set operators such as UNION, UNION ALL, EXCEPT, or INSERSECT. The following is a simple DELETE statement using a common table expression:
WITH direct_reports (Manager_ID, DirectReports) AS
(SELECT manager_ID, COUNT(*)
 FROM hr.employee AS e
 WHERE manager_id IS NOT NULL
 GROUP BY manager_id)
DELETE FROM direct_reports
WHERE DirectReports <= 1;
The OUTPUT clause allows you to see all of the rows that are being deleted:
DELETE TOP 10 error_log WITH (READPAST)
OUTPUT deleted.*
WHERE error_log_id = '28-OCT-2008';

See Also
	INSERT
	SELECT
	TRUNCATE TABLE
	UPDATE

Name
DISCONNECT Statement

The DISCONNECT statement terminates one or more connections created between the current SQL process and the database server.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with limitations

	PostgreSQL
	Not supported

	SQL Server
	Supported, with limitations

SQL2003 Syntax
DISCONNECT {CURRENT | ALL | connection_name | DEFAULT}

Keywords
	CURRENT
	Closes the currently active user connection.

	ALL
	Closes all open connections for the current user.

Rules at a Glance
DISCONNECT is used to disconnect a named SQL session (connection_name), the CURRENT connection, the DEFAULT connection, or ALL connections held by the user. For example, we can disconnect a single session called new_york:
DISCONNECT new_york
or disconnect all currently open sessions for the current user process:
DISCONNECT ALL

Programming Tips and Gotchas
DISCONNECT is not universally supported across platforms. Do not build cross-platform applications based on DISCONNECT unless you've made provisions to disconnect SQL sessions using each platform's preferred disconnection methodology.

MySQL
Not supported.

Oracle
Oracle allows DISCONNECT only in its ad hoc query tool, SQL*Plus, using this syntax:
DISC[ONNECT]
In this usage, the command ends the current session with the database server but otherwise allows work in SQL*Plus to continue. For example, a programmer can continue to edit the buffer, save run files, and so on, but must establish a new connection to issue any SQL commands. Exiting SQL*Plus and returning to the filesystem requires the EXIT or QUIT command. For example, to end the current connection with an Oracle server:
DISCONNECT;
You may achieve a similar effect to the SQL3 command by using the Oracle statement ALTER SYSTEM DISCONNECT SESSION.

PostgreSQL
Not supported. Instead, every programming interface supports a disconnect operation; for example, SPI_FINISH is available under the Server Programming Interface, and PG_DISCONNECT is available under the PL/TCL programming package.

SQL Server
Microsoft SQL Server supports the ANSI syntax for DISCONNECT in Embedded-SQL (ESQL) only, not within its ad hoc querying tool, SQL Server Management Studio. To disconnect cleanly from Microsoft SQL Server in an ESQL program, use the DISCONNECT ALL statement.

See Also
	CONNECT

Name
DROP Statements

All of the database objects created with CREATE statements may be destroyed using complementary DROP statements. On some platforms, a ROLLBACK statement after a DROP statement will recover the dropped object. However, on other database platforms the DROP statement is irreversible and permanent, so it is advisable to use the command with care.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
Currently, the SQL2003 standard supports the ability to drop a lot of object types that are largely unsupported by most vendors. The ANSI SQL2003 syntax follows this format:
DROP [object_type] object_name {RESTRICT | CASCADE}

Keywords
	DROP [object_type] object_name
	Irreversibly and permanently destroys the object of type object_type called object_name. The object_name does not need a schema identifier, but if none is provided the current schema is assumed. ANSI SQL2003 supports a long list of object types, each created with its own corresponding CREATE statement. CREATE statements covered in this book with corresponding DROP statements include:
	DOMAIN

	FUNCTION

	METHOD

	PROCEDURE

	ROLE

	SCHEMA

	TABLE

	TRIGGER

	TYPE

	VIEW

	RESTRICT | CASCADE
	Prevents the DROP from taking place if any dependent objects exist (RESTRICT), or causes all dependent objects to also be dropped (CASCADE). This clause is not allowed with some forms of DROP, such as DROP TRIGGER, but is mandatory for others, such as DROP SCHEMA. To further explain, DROP SCHEMA RESTRICT will only drop an empty schema. Otherwise (i.e., if the schema contains objects), the operation will be prevented. In contrast, DROP SCHEMA CASCADE will drop a schema and all objects contained therein.

Rules at a Glance
For rules about the creation or modification of each of the object types, refer to the sections on the corresponding CREATE/ALTER statements.
The DROP statement destroys a pre-existing object. The object is permanently destroyed, and all users who had permission to access the object immediately lose the ability to access it.
The object may be qualified—that is, you may fully specify the schema where the dropped object is located. For example:
DROP TABLE scott.sales_2008 CASCADE;
This statement will drop not only the table scott.sales_2004, but also any views, triggers, or constraints built on it. On the other hand, a DROP statement may include an unqualified object name, in which case the current schema context is assumed. For example:
DROP TRIGGER before_ins_emp;
DROP ROLE sales_mgr;
Although not required by the SQL2003 standard, most implementations cause the DROP command to fail if the database object is in use by another user.

Programming Tips and Gotchas
DROP will only work when it is issued against a pre-existing object of the appropriate type and when the user has appropriate permissions (usually the DROP TABLE permission—refer to the section on the GRANT statement for more information). The SQL standard requires only that the owner of an object be able to drop it, but most database platforms allow variations on that requirement. For example, the database superuser/superadmin can usually drop any object on a database server.
With some vendors, the DROP command fails if the database object has extended properties. For example, Microsoft SQL Server will not drop a table that is replicated unless you first remove the table from replication.
Warning
It is important to be aware that most vendors do not notify you if the DROP command creates a dependency problem. Thus, if a table that is used by a few views and stored procedures elsewhere in the database is dropped, no warning is issued; those other objects simply fail when they are accessed. To prevent this problem, you may wish to use the RESTRICT syntax where it is available, or check for dependencies before invoking the DROP statement.

You may have noticed that the ANSI standard does not support certain common DROP commands, such as DROP DATABASE and DROP INDEX, even though every vendor covered in this book (and just about every one in the market) supports these commands. The exact syntax for each of these commands is covered in the platform-specific sections that follow.

MySQL
MySQL supports a very limited number of objects via the CREATE/ALTER statement. Consequently, the syntax for DROP is also limited:
DROP { {DATABASE | SCHEMA} | FUNCTION | INDEX [ONLINE | OFFLINE] |
 PROCEDURE | [TEMPORARY] TABLE | TRIGGER | VIEW }
[IF EXISTS] object_name[, ...]
[RESTRICT |CASCADE]
The supported SQL3 syntax elements are:
	{DATABASE | SCHEMA} database_name
	Drops the named database, including all the objects it contains (such as tables and indexes). DROP SCHEMA is a synonym for DROP DATABASE on MySQL. The DROP DATABASE command removes all database and table files from the filesystem, as well as two-digit subdirectories. MySQL will return a message showing how many files were erased from the database directory. (Files of these extensions are erased: .BAK, .DAT, .FRM, .HSH, .ISD, .ISM, .MRG, .MYD, .MYI, .DM, and .FM.) If the database is linked, both the link and the database are erased. You may drop only one database at a time. RESTRICT and CASCADE are not valid on DROP DATABASE.

	FUNCTION routine_name
	Drops the named routine from a MySQL v5.1 or greater database. You can use the IF EXISTS clause with a DROP FUNCTION statement.

	INDEX [ONLINE | OFFLINE] index_name ON table_name
	Drops the named index from the named table, in MySQL v3.22 or later. This command doesn't do anything in versions earlier than 3.22, but in 3.22 it actually executes an ALTER TABLE . . . DROP INDEX command behind the scenes. Beginning with version 5.1.22-ndb-6.2.5, you can drop indexes online using the eponymous keyword. Dropping an index online means that the specified table is not copied, while dropping the index offline creates a copy of the table before performing the action. You cannot use RESTRICT, CASCADE, or IF EXISTS with a DROP INDEX statement.

	PROCEDURE routine_name
	Drops the named routine from a MySQL v5.1 or greater database. You can use the IF EXISTS clause with a DROP PROCEDURE statement.

	[TEMPORARY] TABLE table_name[, . . .]
	Drops one or more named tables, with table names separated from each other by commas. MySQL erases each table's definition and deletes the three table files (.FRM, .MYD, and .MYI) from the filesystem. Issuing this command causes MySQL to commit all active transactions. The TEMPORARY keyword drops only temporary tables without committing running transactions or checking access rights.

	TRIGGER [schema_name.]trigger_name
	Drops a named trigger for a MySQL v5.0.2 or greater database. You can use the IF EXISTS clause with a DROP TRIGGER statement to ensure that you only drop a trigger that actually exists within the database.

	VIEW view_name
	Drops a named view for the MySQL database. You can use the IF EXISTS clause with a DROP VIEW statement.

	IF EXISTS
	Prevents an error message when you attempt to drop an object that does not exist. Usable in MySQL v3.22 or later.

	RESTRICT | CASCADE
	Noise words. These keywords do not generate an error, nor do they have any other effect.

MySQL supports only the ability to drop a database, a table (or tables), or an index from a table. Although the DROP statement will not fail with the RESTRICT and CASCADE optional keywords, they have no effect. You can use the IF EXISTS clause to prevent MySQL from returning an error message if you try to delete an object that doesn't exist.
Other objects that MySQL allows you to drop using similar syntax include:
DROP { EVENT | FOREIGN KEY | LOGFILE GROUP | PREPARE | PRIMARY KEY |
 SERVER | TABLESPACE | USER }
object_name
These variations of the DROP statement are beyond the scope of this book. Check the MySQL documentation for more details.

Oracle
Oracle supports most of the ANSI keywords for the DROP statements, as well as many additional keywords corresponding to objects uniquely supported by Oracle. Oracle supports the DROP statement for the following SQL3 objects:
DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE | TABLE |
 TRIGGER | TYPE [BODY] | VIEW }
object_name
The rules for Oracle DROP statements are less consistent than the ANSI standard's rules, so the full syntax of each DROP variant is shown in the following list:
	DATABASE database_name
	Drops the named database from the Oracle server.

	FUNCTION function_name
	Drops the named function, as long as it is not a component of a package. (If you want to drop a function from a package, use the CREATE PACKAGE . . .OR REPLACE statement to redefine the package without that function.) Any local objects that depend on or call the function are invalidated, and any statistical types associated with the function are disassociated.

	INDEX index_name [FORCE]
	Drops a named index or domain index from the database. Dropping an index invalidates all objects that depend on the parent table, including views, packages, functions, and stored procedures. Dropping an index also invalidates cursors and execution plans that use the index and will force a hard parse of the affected SQL statements when they are next executed.
Non-IOT indexes are secondary objects and can be dropped and recreated without any loss of user data. IOTs, because they combine both table and index data in the same structure, cannot be dropped and recreated in this manner. IOTs should be dropped using the DROP TABLE syntax.
When you drop a partitioned index, all partitions are dropped. When you drop a composite partitioned index, all index partitions and subpartitions are dropped. When you drop a domain index, any statistics associated with the domain index are removed and any statistic types are disassociated. The optional keyword FORCE applies only when dropping domain indexes. FORCE allows you to drop a domain index marked IN PROGRESS, or to drop a domain index when its indextype routine invocation returns an error. For example:
DROP INDEX ndx_sales_salesperson_quota;

	PROCEDURE procedure_name
	Drops the named stored procedure. Any dependent objects are invalidated when you drop a stored procedure, and attempts to access them before you recreate the stored procedure will fail with an error. If you recreate the stored procedure and then access a dependent object, the dependent object will be recompiled.

	ROLE role_name
	Drops the named role, removes it from the database, and revokes it from all users and roles to whom it has been granted. No new sessions can use the role, but sessions that are currently running under the role are not affected. For example, the following statement drops the sales_mgr role:
DROP ROLE sales_mgr:

	TABLE table_name [CASCADE CONSTRAINTS] [PURGE]
	Drops the named table, erases all of its data, drops all indexes and triggers built from the table (even those in other schemas), and invalidates all permissions and all dependent objects (views, stored procedures, etc.). On partitioned tables, Oracle drops all partitions (and subpartitions). On index-organized tables, Oracle drops all dependent mapping tables. Statistic types associated with a dropped table are disassociated. Materialized view logs built on a table are also dropped when the table is dropped.
The DROP TABLE statement is effective for standard tables, index-organized tables, and object tables. The table being dropped is only moved to the recycling bin, unless you add the optional keyword PURGE, which tells Oracle to immediate free all space consumed by the table. (Oracle also supports a non-ANSI SQL command called PURGE that lets you remove tables from the recycling bin outside of the DROP TABLE statement.) DROP TABLE erases only the metadata of an external table. You must use an external operating system command to drop the file associated with an external table and reclaim its space.
Use the optional CASCADE CONSTRAINTS clause to drop all referential integrity constraints elsewhere in the database that depend on the primary or unique key of the dropped table. You cannot drop a table with dependent referential integrity constraints without using the CASCADE CONSTRAINTS clause. The following example drops the job_desc table in the emp schema, then drops the job table and all referential integrity constraints that depend on the primary key and unique key of the job table:
DROP TABLE emp.job_desc;
DROP TABLE job CASCADE CONSTRAINTS;

	TRIGGER trigger_name
	Drops the named trigger from the database.

	TYPE [BODY] type_name [{FORCE | VALIDATE}]
	Drops the specification and body of the named object type, nested table type, or VARRAY, as long as they have no type or table dependencies. You must use the optional FORCE keyword to drop a supertype, a type with an associated statistic type, or a type with any sort of dependencies. All subtypes and statistic types are then invalidated. Oracle will also drop any public synonyms associated with a dropped type. The optional BODY keyword tells Oracle to drop only the body of the type while keeping its specification intact. BODY cannot be used in conjunction with the FORCE or VALIDATE keywords. Use the optional VALIDATE keyword when dropping subtypes to check for stored instances of the named type in any of its supertypes. Oracle performs the drop only if no stored instances are found. For example:
DROP TYPE salesperson_type;

	VIEW view_name [CASCADE CONSTRAINTS]
	Drops the named view and marks as invalid any views, subviews, synonyms, or materialized views that refer to the dropped view. Use the optional clause CASCADE CONSTRAINTS to drop all referential integrity constraints that depend on the view. Otherwise, the DROP statement will fail if dependent referential integrity constraints exist. For example, the following statement drops the active_employees view in the hr schema:
DROP VIEW hr.active_employees;

In the DROP syntax, object_name can be replaced with [schema_name.]object_name. If you omit the schema name, the default schema of the user session is assumed. Thus, the following DROP statement drops the specified view from the sales_archive schema:
DROP VIEW sales_archive.sales_1994;
However, if your personal schema is scott, the following command is assumed to be against scott.sales_1994:
DROP VIEW sales_1994;
Oracle also supports the DROP statement for a large number of objects that aren't part of SQL3, including:
DROP { CLUSTER | CONTEXT | DATABASE LINK | DIMENSION | DIRECTORY | DISKGROUP |
 FLASHBACK ARCHIVE | INDEXTYPE | JAVA | LIBRARY | MATERIALIZED VIEW |
 MATERIALIZED VIEW LOG | OPERATOR | OUTLINE | PACKAGE | PROFILE | RESTORE
 POINT |
 ROLLBACK SEGMENT | SEQUENCE | SYNONYM | TABLESPACE | TYPE BODY | USER }
object_name
These variations are beyond the scope of this book. Refer to the Oracle documentation if you want to drop an object of one of these types (although the basic syntax is the same for almost all variations of the DROP statement).

PostgreSQL
PostgreSQL does not support the RESTRICT or CASCADE optional keywords supported by the ANSI standard. It does support a wide variety of DROP variants, as follows:
DROP { DATABASE | DOMAIN | FUNCTION | INDEX | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | VIEW }
[IF EXISTS]
object_name
[CASCADE | RESTRICT]
Following is the full SQL3-supported syntax for each variant:
	DATABASE database_name
	Drops the named database and erases the operating system directory containing all of the database's data. This command can only be executed by the database owner, while that user is connected to a database other than the target database. For example, we can drop the sales_archive database:
DROP DATABASE sales_archive;

	DOMAIN domain_name[, . . .] [CASCADE | RESTRICT]
	Drops one or more named domains owned by the session user. CASCADE automatically drops objects that depend on the domain, while RESTRICT prevents the action from occurring if any objects depend on the domain. When omitted, RESTRICT is the default behavior.

	FUNCTION function_name ([datatype1[, . . .]) [CASCADE | RESTRICT]
	Drops the named user-defined function. Since PostgreSQL allows multiple functions of the same name, distinguished only by the various input parameters they require, you must specify one or more datatypes to uniquely identify the user-defined function you wish to drop. PostgreSQL does not perform any kind of dependency checks on other objects that might reference a dropped user-defined function. (They will fail when invoked against an object that no longer exists.) For example:
DROP FUNCTION median_distribution (int, int, int, int);

	INDEX index_name[, . . .] [CASCADE | RESTRICT]
	Drops one or more named indexes that you own. For example:
DROP INDEX ndx_titles, ndx_authors;

	ROLE rule_name[, . . .]
	Drops one or more named database roles. On PostgreSQL, a role cannot be dropped when it is referenced in any database. That means you'll need to drop or reassign ownership of any objects owned by the role, using REASSIGN OWNED and DROP OWNED statements, before dropping it, and then revoke any privileges the role has been granted.

	SCHEMA schema_name[, . . .] [CASCADE | RESTRICT]
	Drops one or more named schemas from the current database. A schema can only be dropped by a superuser or the owner of the schema (even when the owner does not explicitly own all of the objects in the schema).

	TABLE table_name[, . . .] [CASCADE | RESTRICT]
	Drops one or more existing tables from the database, as well as any indexes or triggers specified for the tables. For example:
DROP TABLE authors, titles;

	TRIGGER trigger_name ON table_name [CASCADE | RESTRICT]
	Drops the named trigger from the database. You must specify the table_name because PostgreSQL requires that trigger names be unique only on the tables to which they are attached. This means it is possible to have many triggers called, say, insert_trigger or delete_trigger, each on a different table. For example:
DROP TRIGGER insert_trigger ON authors;

	TYPE type_name[, . . .] [CASCADE | RESTRICT]
	Drops one or more pre-existing user-defined types from the database. PostgreSQL does not check to see what impact the DROP TYPE command might have on any dependent objects, such as functions, aggregates, or tables; you must check the dependent objects manually. (Do not remove any of the built-in types that ship with PostgreSQL!) Note that PostgreSQL's implementation of types differs from the ANSI standard. Refer to the section on the CREATE/ALTER TYPE statement for more information.

	VIEW view_name[, . . .] [CASCADE | RESTRICT]
	Drops one or more pre-existing views from the database.

	CASCADE | RESTRICT
	CASCADE automatically drops objects that depend on the object being dropped, while RESTRICT prevents the action from occurring if any objects depend on the object being dropped. When omitted, RESTRICT is the default behavior. Since this subclause is not allowed with all forms of DROP in PostgreSQL, it is shown with the statements where it is allowed.

	IF EXISTS
	Suspends the creation of an error message of the object to be dropped does not exist. This subclause is usable for all variations of the DROP statement.

Note that PostgreSQL drop operations do not allow you to specify the target database where the operation will take place (except for DROP DATABASE). Therefore, you should execute any drop operation from the database where the object you want to drop is located.
PostgreSQL supports variations of the DROP statement for several objects that are extensions to the SQL3 standard, as shown here:
DROP { AGGREGATE | CAST | CONVERSION | GROUP | LANGUAGE | OPERATOR [CLASS] |
 RULE | SEQUENCE | TABLESPACE | USER } object_name
These variations are beyond the scope of this book. Refer to the PostgreSQL documentation if you want to drop an object of one of these types (although the basic syntax is the same for almost all variations of the DROP statement).

SQL Server
SQL Server supports several SQL3 variants of the DROP statement:
DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | VIEW } object_name
Following is the full syntax for each variant:
	DATABASE database_name[, . . .]
	Drops the named database(s) and erases all disk files used by the database(s). This command may only be issued from the master database. Replicated databases must be removed from their replication schemes before they can be dropped, as must log shipping databases. You cannot drop a database while it is in use, nor can you drop system databases (master, model, msdb, or tempdb). For example, we can drop the northwind and pubs databases with one command:
DROP DATABASE northwind, pubs
GO

	FUNCTION [schema.]function_name[, . . .]
	Drops one or more user-defined functions from the current database.

	INDEX index_name ON table_or_view_name[, . . .] [WITH { MAXDOP =int | ONLINE = {ON | OFF} | MOVE TO location [FILESTREAM_ON location] }]
	Drops one or more indexes from tables or indexed views in the current database and returns the freed space to the database. This statement should not be used to drop a PRIMARY KEY or UNIQUE constraint. Instead, drop these constraints using the ALTER TABLE . . . DROP CONSTRAINT statement. When dropping a clustered index from a table, all non-clustered indexes are rebuilt. When dropping a clustered index from a view, all non-clustered indexes are dropped. The WITH subclause may only be used when dropping a clustered index. MAXDOP specifies the maximum degrees of parallelism that SQL Server may use to drop the clustered index. Values for MAXDOP may be 1 (suppresses parallelism), 0 (the default, using all or fewer processors on the system), or a value greater than 1 (restricts parallelism to the value of int). ONLINE specifies that queries or updates may continue on the underlying tables (with ON), or that table locks are applied and the table is unavailable for the duration of the process (with OFF). MOVE TO specifies a pre-existing filegroup or partition, or the default location for data within the database to which the clustered index will be moved. The clustered index is moved to the new location in the form of a heap.

	PROC[EDURE] procedure_name[, . . .]
	Drops one or more stored procedures from the current database. SQL Server allows multiple versions of a single procedure via version numbers, but these versions cannot be dropped individually; you must drop all versions of a stored procedure at once. System procedures (those with an sp_ prefix) are dropped from the master database if they are not found in the current user database. For example:
DROP PROCEDURE calc_sales_quota
GO

	ROLE rule_name[, . . .]
	Drops one or more roles from the current database. The role must not own any objects, or else the statement will fail. You must first drop owned objects or change their ownership before dropping a role that owns any objects.

	SCHEMA schema_name
	Drops a schema that does not own any objects. To drop a schema that owns objects, first drop the dependent objects or assign them to a different schema.

	TABLE [database_name.][schema_name.]table_name[, . . .]
	Drops a named table and all data, permissions, indexes, triggers, and constraints specific to that table. (The table_name may be a fully qualified table name like pubs.dbo.sales or a simple table name like sales, if the current database and owner are correct.) Views, functions, and stored procedures that reference the table are not dropped or marked as invalid, but will return an error when their procedural code encounters the missing table. Be sure to drop these yourself! You cannot drop a table referenced by a FOREIGN KEY constraint without first dropping the constraint. Similarly, you cannot drop a table used in replication without first removing it from the replication scheme. Any user-defined rules or defaults are unbound when the table is dropped. They must be rebound if the table is recreated.

	TRIGGER trigger_name[, . . .] [ON {DATABASE | ALL SERVER}]
	Drops one or more triggers from the current database. The subclause [ON {DATABASE | ALL SERVER}] is available when dropping DDL triggers, while the subclause [ON ALL SERVER] is also available to LOGON event triggers. ON DATABASE indicates the scope of the DDL trigger applied to the current database and is required if the subclause was used when the trigger was created. ON ALL SERVER indicates the scope of the DDL or LOGON trigger applied to the current server and is required if the subclause was used when the trigger was created.

	TYPE [schema_name.]type_name[, . . .]
	Drops one or more user-defined types from the current database.

	VIEW [schema_name.]view_name[, . . .]
	Drops one or more views from the database, including indexed views, and returns all space to the database.

SQL Server also has a large number of objects that extend the ANSI standard and that are removed using the more-or-less standardized syntax of the DROP statement. These variations of the syntax include:
DROP { AGGREGATE | APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY | BROKER PRIORITY |
 CERTIFICATE | CONTRACT | CREDENTIAL | CRYPTOGRAPHIC PROVIDER | DATABASE AUDIT
 SPECIFICATION | DATABASE ENCRYPTIIN KEY | DEFAULT | ENDPOINT | EVENT
 NOTIFICATION | EVENT SESSION | FULLTEXT CATALOG | FULLTEXT INDEX | FULLTEXT
 STOPLIST | LOGIN | MASTER KEY | MESSAGE TYPE | PARTITION FUNCTION | PARTITION
 SCHEME | QUEUE | REMOTE SERVICE BINDING | RESOURCE POOL | ROUTE | SERVER AUDIT |
 SERVER AUDIT SPECIFICATION | SERVICE | SIGNATURE | STATISTICS | SYMMETRIC KEY |
 SYNONYM | USER | WORKLOAD GROUP | XML SCHEMA COLLECTION }
object_name
These variations are beyond the scope of this book. Refer to the SQL Server documentation to drop an object of one of these types (although the basic syntax is the same for almost all variations of the DROP statement).

See Also
	CALL
	CONSTRAINTS
	CREATE/ALTER FUNCTION/PROCEDURE/METHOD
	CREATE SCHEMA
	CREATE/ALTER TABLE
	CREATE/ALTER VIEW
	DELETE
	DROP
	GRANT
	INSERT
	RETURN
	SELECT
	SUBQUERY
	UPDATE

Name
EXCEPT Set Operator

The EXCEPT set operator retrieves the result sets of two or more queries, including all the records retrieved by the first query that are not also found in subsequent queries. Whereas JOIN clauses are used to return the rows of two or more queries that are in common, EXCEPT is used to filter out the records that are present in only one of multiple, but similar, tables.
EXCEPT is in a class of keywords called set operators. Other set operators include INTERSECT and UNION. (MINUS is Oracle's equivilent to the EXCEPT keyword; EXCEPT is the ANSI standard.) All set operators are used to simultaneously manipulate the result sets of two or more queries, hence the term "set operators."
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
There are technically no limits to the number of queries that you may combine with the EXCEPT operator. The general syntax is:
{SELECT statement1 | VALUES (expr1[, ...])}
EXCEPT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, colum2, ...)]]
{SELECT statement2 | VALUES (expr2[, ...])}
EXCEPT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
...

Keywords
	VALUES (expr1[, . . .])
	Generates a derived result set with explicitly declared values as expr1, expr2, etc. It is essentially a SELECT statement result set without the SELECT . . . FROM syntax. This is known as a row constructor, since the rows of the result set are manually constructed. According to the ANSI standard, mutliple hand-coded rows in a row constructor must be enclosed in parentheses and separated by commas.

	EXCEPT
	Determines which rows will be excluded from the single result set.

	ALL | DISTINCT
	ALL considers duplicate rows from all result sets. DISTINCT drops duplicate rows from all result sets prior to the EXCEPT comparison. Any columns containing a NULL value are considered duplicates. (If neither ALL nor DISTINCT is used, DISTINCT behavior is the default.)

	CORRESPONDING [BY (column1, column2, . . .)]
	Specifies that only columns with the listed names are returned, even if one or both queries use the asterisk shortcut.

Rules at a Glance
There is only one significant rule to remember when using EXCEPT: the number and order of the columns should be the same in all queries, and the datatypes should be of the same category.
The datatypes do not have to be identical, but they must be compatible. For example, CHAR and VARCHAR are compatible datatypes. By default, the result set will default to the largest datatype size of each column in each ordinal position. For example, a query retrieving rows from VARCHAR(10) and VARCHAR(15) columns will use the VARCHAR(15) datatype and size.

Programming Tips and Gotchas
None of the platforms supports the CORRESPONDING [BY (column1, column2, . . .)] clause.
Tip
On platforms that do not support EXCEPT, you might substitute a NOT IN subquery. However, NOT IN subqueries have different NULL handling and, on some database platforms, produce different result sets.

According to the ANSI standard, the UNION and EXCEPT set operators evaluate with equal precedence. However, the INTERSECT set operator evaluates before the other set operators. We recommend that you explicitly control the precedence of the set operators using parentheses as a general best practice.
According to the ANSI standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the last SELECT statement. To avoid column and table ambiguity, be sure to alias each column for each table with the same respective alias. For example:
SELECT au_lname AS 'lastname', au_fname AS 'firstname'
FROM authors
EXCEPT
SELECT emp_lname AS 'lastname', emp_fname AS 'firstname'
FROM employees
ORDER BY lastname, firstname
Also, while each of your column lists may list columns with correspondingly compatible datatypes, there may be some variation in behavior across the DBMS platforms with regard to the length of the columns. For example, if the au_lname column in the previous example's first query is markedly longer than the emp_lname column in the second query, the platforms may apply different rules as to which length is used for the final result. In general, though, the platforms will choose the longer (and less restrictive) column size for use in the result set.
Note that you can use NOT IN or NOT EXISTS operations in conjunction with a correlated subquery as alternatives. The following queries are examples of how you can achieve EXCEPT functionality using NOT EXISTS and NOT IN:
SELECT DISTINCT a.city
FROM pubs..authors AS a
WHERE NOT EXISTS
 (SELECT *
 FROM pubs..publishers AS p
 WHERE a.city = p.city)
SELECT DISTINCT a.city
FROM pubs..authors AS a
WHERE a.city NOT IN
 (SELECT p.city
 FROM pubs..publishers AS p
 WHERE p.city IS NOT NULL)
In general, NOT EXISTS is faster than NOT IN. In addition, there is a subtle issue with NULLs that differentiates the IN and NOT IN operators and the EXISTS and NOT EXISTS set operators. To get around this different handling of NULLs, simply add the IS NOT NULL clause to the WHERE clause, as shown in the preceding example.
Each DBMS may apply its own rules as to which column name is used if the names vary across column lists. In general, the column names of the first query are used.

MySQL
EXCEPT is not supported in MySQL. However, you can use the NOT IN or NOT EXISTS operations as alternatives, as detailed in the previous section.

Oracle
Oracle does not support the EXCEPT set operator. However, it has an alternative set operator, MINUS, with identical functionality:
<SELECT statement1>
MINUS
<SELECT statement2>
MINUS
...
MINUS DISTINCT and MINUS ALL are not supported. MINUS is the functional equivalent of MINUS DISTINCT. Oracle does not support MINUS on queries under the following circumstances:
	Queries containing columns whose datatypes are LONG, BLOB, CLOB, BFILE, or VARRAY

	Queries containing a FOR UPDATE clause

	Queries containing TABLE collection expressions

If the first query in a set operation contains any expressions in the select item list, you must include AS clauses to associate aliases with those expressions. Also, only the last query in the set operation may contain an ORDER BY clause.
For example, you could generate a list of all store IDs that do not have any records in the sales table as follows:
SELECT stor_id FROM stores
MINUS
SELECT stor_id FROM sales
The MINUS command is functionally similar to a NOT IN query. This query retrieves the same results:
SELECT stor_id FROM stores
WHERE stor_id NOT IN
 (SELECT stor_id FROM sales)

PostgreSQL
PostgreSQL supports the EXCEPT and EXCEPT ALL set operators using the basic ANSI SQL syntax:
<SELECT statement1>
EXCEPT [ALL]
<SELECT statement2>
EXCEPT [ALL]
...
PostgreSQL does not support EXCEPT or EXCEPT ALL on queries with a FOR UPDATE clause. EXCEPT DISTINCT is not supported, but EXCEPT is the functional equivalent. PostgreSQL also does not support the CORRESPONDING clause.
The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the EXCEPT or EXCEPT ALL set operation may contain these clauses, but such queries must be enclosed in parentheses. Otherwise, the rightmost occurence of ORDER BY or LIMIT will be applied to the entire set operation.
PostgreSQL evaluates SELECT statements in a multi-EXCEPT statement from top to bottom, unless you use parentheses to change the evaluation hierarchy of the statements.
Normally, duplicate rows are eliminated from the two result sets, unless you add the ALL keyword. For example, you could find all titles in the authors table that have no records in the sales table using this query:
SELECT title_id
FROM authors
EXCEPT ALL
SELECT title_id
FROM sales;

SQL Server
EXCEPT is supported, though the SQL3 subclauses CORRESPONDING, ALL, and DISTINCT are not. For comparison purposes, SQL Server considers NULL values equal when evaluating an EXCEPT result set. If using the SELECT...INTO statement, only the first query may contain the INTO clause. ORDER BY is only allowed at the end of the statement and is not allowed with each individual query. Conversely, GROUP BY and HAVING clauses can only be used within individual queries and may not be used to affect the final result set. The FOR BROWSE clause may not be used with statements that include EXCEPT.

See Also
	INTERSECT
	SELECT
	UNION

Name
EXISTS Operator

The EXISTS operator tests a subquery for the existence of rows.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
SELECT ...
WHERE [NOT] EXISTS (subquery)
The parameters and keywords are as follows:
	WHERE [NOT] EXISTS
	Tests the subquery for the existence of one or more rows. If even one row satisfies the subquery clause, it returns a Boolean TRUE value. The optional NOT keyword returns a Boolean TRUE value when the subquery returns no matching rows.

	subquery
	Retrieves a result set based on a fully formed subquery.

Rules at a Glance
The EXISTS operator checks a subquery for the existence of one or more records against the records in the parent query.
For example, if we want to see whether there any jobs where no employee is filling the position:
SELECT *
FROM jobs
WHERE NOT EXISTS
 (SELECT * FROM employee
 WHERE jobs.job_id = employye.job_id)
This example tests for the absence of records in the subquery using the optional NOT keyword. The next example looks for specific records in the subquery to retrieve the main result set:
SELECT au_lname
FROM authors
WHERE EXISTS
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)
This query returns the last names of authors who live in the same city as their publishers. Note that the asterisk in the subquery is acceptable, since the subquery only needs to return a single record to provide a Boolean TRUE value. Columns are irrelevant in these cases. The first example selects only a single column; the key point is whether a row exists.

Programming Tips and Gotchas
EXISTS, in many queries, does the same thing as ANY (in fact, it is symantically equivalent to the ANY operator). EXISTS is usually most effective with correlated subqueries.
The EXISTS subquery usually searches for only one of two things. Your first option is to use the asterisk wildcard (e.g., SELECT * FROM . . .) so that you are not retrieving any specific column or value. In this case, the asterisk means "any column." The second option is to select only a single column in the subquery (e.g., SELECT au_id FROM . . .). Some individual database platforms also allow a subquery against more than one column (e.g., SELECT au_id, au_lname FROM . . .). However, this feature is rare and should be avoided in code that needs to be transportable across platforms.

Platform Differences
All of the platforms support EXISTS in the manner described above.

See Also
	ALL/ANY/SOME
	SELECT
	WHERE

Name
FETCH Statement

The FETCH statement is one of four commands used in cursor processing, along with DECLARE, OPEN, and CLOSE. Cursors allow you to process queries one row at a time, rather than as a complete set. FETCH positions a cursor on a specific row and retrieves that row from the result set.
Cursors are especially important in relational databases because they are set-based, while most client-centric programming languages are row-based. Cursors allow you to perform operations a single row at a time, to better fit what a client program can do, rather than operating on a whole set of records at once.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
FETCH [{ NEXT | PRIOR | FIRST | LAST |
 { ABSOLUTE int | RELATIVE int } }
 FROM] cursor_name
[INTO variable1[, ...]]

Keywords
	NEXT
	Tells the cursor to return the record immediately following the current row, and increments the current row to the row returned. FETCH NEXT is the default behavior for FETCH. It retrieves the first record if FETCH is performed as the first fetch against a cursor.

	PRIOR
	Tells the cursor to return the record immediately preceding the current row and decrements the current row to the row returned. FETCH PRIOR does not retrieve a record if it is performed as the first fetch against the cursor.

	FIRST
	Tells the cursor to return the first record in the cursor result set, making it the current row.

	LAST
	Tells the cursor to return the last record in the cursor result set, making it the current row.

	ABSOLUTE int
	Tells the cursor to return the int record from the cursor record set counting from the top (if int is a positive integer), or the int record counting from the bottom (if int is a negative integer), making the returned record the new current record of the cursor. If int is 0, no rows are returned. If the value of int moves the cursor past the end of the cursor result set, the cursor is positioned after the last row (for a positive int) or before the first row (for a negative int).

	RELATIVE int
	Tells the cursor to return the record int rows after the current record (if int is positive) or int rows before the current record (if int is negative), making the returned record the new current row of the cursor. If int is 0, the current row is returned. If the value of int moves the cursor past the end of the cursor result set, the cursor is positioned after the last row (for a positive int) or before the first row (for a negative int).

	[FROM] cursor_name
	Gives the name of the (open) cursor from which you want to retrieve rows. The cursor must be previously created and instantiated using the DECLARE and OPEN clauses. FROM is optional, but encouraged.

	INTO variable1[, . . .]
	Stores data from each column in the open cursor into a local variable. Each column in the cursor must have a corresponding variable of a matching datatype in the INTO clause. Each column value is directly related to the variables in ordinal positions.

Rules at a Glance
At the highest level, a cursor must be:
	Created using DECLARE

	Opened using OPEN

	Operated against using FETCH

	Dismissed using CLOSE

By following these steps, you create a result set similar to that of a SELECT statement, except that you can operate against each individual row within the result set separately.
Tip
Each database platform has its own rules about how variables are used. For example, SQL Server requires an at sign (@) as a prefix, PostgreSQL and Oracle have no prefix, and so forth. The SQL standard says that a colon (:) prefix is necessary for languages that are embedded, like C or COBOL, but no prefix is needed for procedural SQL.

A cursor rests either directly on a row, before the first row, or after the last row. When a cursor is resting directly in a row, that row is known as the current row. You can use cursors to position an UPDATE or DELETE statement in the current row using the WHERE CURRENT OF clause.
It is important to remember that a cursor result set does not wrap around. Thus, if you have a result set containing 10 records and you tell the cursor to move forward 12 records, it will not wrap back around to the beginning and continue its count from there. Instead, the default cursor behavior is to stop after the last record in the result set when scrolling forward, and to stop before the first record when scrolling back. For example, on SQL Server:
FETCH RELATIVE 12 FROM employee_cursor
INTO @emp_last_name, @emp_first_name, @emp_id
When fetching values from the database into variables, make sure that the datatypes and number of columns and variables match. Otherwise, you'll get an error. For example, this will fail since the employee_cursor contains three columns while the fetch operation has only two variables:
FETCH PRIOR FROM employee_cursor
INTO @emp_last_name, @emp_id

Programming Tips and Gotchas
The most common errors encountered with the FETCH statement are mismatches between the number, order, or datatypes of the variables and the values in the cursor. So, before you write your FETCH statements, make sure you know exactly what values are in the cursor and what their datatypes are.
Typically, the database will lock at least the current row and possibly all rows held by the cursor. According to the ANSI standard, cursor locks are not held through ROLLBACK or COMMIT operations, although this behavior varies from platform to platform.
Although the FETCH statement is detailed in isolation here, it should always be managed as a group with the DECLARE, OPEN, and CLOSE statements. For example, every time you open a cursor, the server consumes memory. If you forget to close your cursors, you could create memory-management problems. So, you need to make sure that every declared and opened cursor is eventually closed.
Cursors are also often used in stored procedures or batches of procedural code. The reason for this is because sometimes you need to perform actions on individual rows rather than on entire sets of data at a time. But because cursors operate on individual rows and not sets of data, they are often much slower than other means of accessing your data. It's important to analyze your approach. Many challenges, such as a convoluted DELETE operation or a very complex UPDATE, can be solved by using clever WHERE and JOIN clauses instead of cursors.

MySQL
MySQL supports the basics of the SQL3 standard FETCH statement:
FETCH cursor_name INTO variable_name1[, ...]
MySQL will fetch the next row (if one exists) using the specific open cursor and advance the cursor pointer one increment. When no more rows are available, MySQL returns a SQLSTATE value of '02000' and a NO DATA condition event. You can detect and treat this occurrence using a handler for the SQLSTATE value or for a NOT FOUND condition.

Oracle
Oracle cursors are implicitly forward-only cursors that always scroll forward one record at a time. An Oracle cursor, when compared to the ANSI standard, is essentially a FETCH NEXT 1 cursor. Oracle cursors must either insert the retrieved values into matching variables, or use the BULK COLLECT clause to insert all of the records of the result set into an array. Oracle does not support keywords like PRIOR, ABSOLUTE, and RELATIVE. However, Oracle does support both forward-only and scrollable cursors in the database via the Oracle Call Interface (OCI). OCI also supports features like PRIOR, ABSOLUTE, and RELATIVE for read-only cursors whose result sets are based on read-consistent snapshots.
Oracle's FETCH syntax is:
FETCH cursor_name
{ INTO variable_name1[, ...] | BULK COLLECT INTO
 collection_name[, ...] [LIMIT int] }
where:
	BULK COLLECT INTO collection_name
	Retrieves the entire rowset, or a specified number of rows (see LIMIT), into a client-side array or collection variable named collection_name.

	LIMIT int
	Limits the number of records fetched from the database when using the BULK statement. The int value is a nonzero integer (or a variable representing an integer value).

Oracle supports dynamic SQL-based cursors whose text can be built at runtime. Oracle also supports cursor_names that may be any allowable variable, parameter, or host-array type. In fact, you may also use user-defined or %ROWTYPE record variables for the INTO clause. This allows you to construct flexible, dynamic cursors in a template-like structure.
For example:
DECLARE
 TYPE namelist IS TABLE OF employee.lname%TYPE;
 names namelist;
 CURSOR employee_cursor IS SELECT lname FROM employee;
BEGIN
 OPEN employee_cursor;
 FETCH employee_cursor BULK COLLECT INTO names;
 ...
 CLOSE employee_cursor;
END;
Oracle FETCH often is paired with a PL/SQL FOR loop (or other kind of loop) to cycle through all the rows in the cursor. You should use the cursor attributes %FOUND or %NOTFOUND to detect the end of the rowset. For example:
DECLARE
 TYPE employee_cursor IS REF CURSOR RETURN employee%ROWTYPE;
 employee_cursor EmpCurTyp;
 employee_rec employee%ROWTYPE;
BEGIN
 LOOP
 FETCH employee _cursor INTO employee_rec;
 EXIT WHEN employee _cursor%NOTFOUND;
 ...
 END LOOP;
CLOSE employee_cursor;
END;
This example uses a standard PL/SQL loop with an EXIT clause to end the loop when there are no more rows in the cursor to process.

PostgreSQL
PostgreSQL supports both forward- and backward-scrolling cursors with a superset of modes compared to the SQL3 standard. The syntax for FETCH in PostgreSQL is:
FETCH { FORWARD [{ALL | int}] | BACKWARD [{ALL | int}] |
 ABSOLUTE int | RELATIVE int | int | ALL | NEXT | PRIOR | FIRST | LAST }
{ IN | FROM } cursor_name
[INTO :variable1[, ...]]
where:
	FORWARD [{ALL | int}]
	Tells PostgreSQL to fetch the next row (same as NEXT), if there are no other keywords. This is the default if no other mode is defined. FORWARD ALL fetches all remaining rows in the cursor and positions the cursor after the last remaining row, while FORWARD int returns all rows up to int rows forward (or the current row if int is 0) and places the cursor after the last row fetched.

	BACKWARD [{ALL | int}]
	Fetches the prior row, if no other keywords are specified. BACKWARD ALL fetches all prior rows in the cursor scanning backward and positions the cursor before the first row, while BACKWARD int returns all rows up to int rows back (or the current row if int is 0) and places the cursor before the last row fetched.

	ABSOLUTE int
	Fetches the row occurring at position int.

	RELATIVE int
	Fetches the int next rows or int prior rows (if negative).

	int
	A signed integer that indicates how many records to scroll forward (if positive) or backward (if negative).

	ALL
	Retrieves all records remaining in the cursor.

	NEXT
	Retrieves the next single record.

	PRIOR
	Retrieves the previous single record.

	IN | FROM cursor_name
	Defines the previously declared and opened cursor from which data will be retrieved.

	INTO variable
	Assigns a cursor value to a specific variable. As with ANSI cursors, the values retrieved by the cursor and the variables must match in number, datatype, and order.

PostgreSQL cursors must be used with transactions explicitly declared using BEGIN and must be closed with COMMIT or ROLLBACK.
The following PostgreSQL statement retrieves five records from the employee table and displays them:
FETCH FORWARD 5 IN employee_cursor;
PostgreSQL also supports a separate command, MOVE, to move to a specific cursor position. It differs from FETCH only by not returning values into variables:
MOVE { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }
 { [int | ALL | NEXT | PRIOR] }
{ IN | FROM } cursor_name
For example, the following code declares a cursor, skips forward five records, and then returns the values in the sixth record:
BEGIN WORK;
 DECLARE employee_cursor CURSOR FOR SELECT * FROM employee;
 MOVE FORWARD 5 IN employee_cursor;
 FETCH 1 IN employee_cursor;
 CLOSE employee_cursor;
COMMIT WORK;
The preceding code will return a single row from the employee_cursor result set.

SQL Server
SQL Server supports a variation of FETCH that is very close to the ANSI standard:
FETCH [{ NEXT | PRIOR | FIRST | LAST |
 { ABSOLUTE int | RELATIVE int } }]
 [FROM] [GLOBAL] cursor_name
[INTO @variable1[, ...]]
The differences between SQL Server's implementation and the ANSI standard are very small. First, SQL Server allows you to use variables in place of the int and cursor_name values. Second, SQL Server allows the declaration and use of GLOBAL cursors that can be accessed by any user or session, not just the one that created it.
There are some rules that apply to how you use the FETCH command based upon how you issued the DECLARE CURSOR command:
	When you declare a SCROLL SQL-92 cursor, all FETCH options are supported. In all other SQL-92 cursors, NEXT is the only option supported. (There is also an alternate Transact-SQL-style DECLARE CURSOR statement.)

	DYNAMIC SCROLL cursors support all FETCH options except ABSOLUTE.

	FORWARD_ONLY and FAST_FORWARD cursors support only FETCH NEXT.

	KEYSET and STATIC cursors support all FETCH options.

Warning
SQL Server also requires a DEALLOCATE statement, in addition to CLOSE, to release memory consumed by a cursor.

Here's a full example that goes from declaring and opening a cursor, to initiating several fetches, and then finally closing and deallocating the cursor:
DECLARE @vc_lname VARCHAR(30), @vc_fname VARCHAR(30), @i_emp_id CHAR(5)
DECLARE employee_cursor SCROLL CURSOR FOR
 SELECT lname, fname, emp_id
 FROM employee
 WHERE hire_date <= 'FEB-14-2004'
OPEN employee_cursor
-- Fetch the last row in the cursor.
FETCH LAST FROM employee_cursor
-- Fetch the row immediately prior to the current row in the cursor.
FETCH PRIOR FROM employee_cursor
-- Fetch the fifth row in the cursor.
FETCH ABSOLUTE 5 FROM employee_cursor
-- Fetch the row that is two rows after the current row.
FETCH RELATIVE 2 FROM employee_cursor
-- Fetch values eight rows prior to the current row into variables.
FETCH RELATIVE −8 FROM employee_cursor
INTO @vc_lname, @vc_fname, @i_emp_id
CLOSE employee_cursor
DEALLOCATE employee_cursor
GO
Remember that in SQL Server you must not only CLOSE the cursor, but also DEALLOCATE it. In some rare cases, you might wish to reopen a closed cursor. You can reuse any cursor that you have closed but not deallocated. The cursor is permanently destroyed only when it is deallocated.

See Also
	CLOSE
	DECLARE CURSOR
	OPEN

Name
GRANT Statement

The GRANT statement assigns privileges to users and roles, allowing them to access and use database objects. In addition, most database platforms use the GRANT statement to authorize users and roles to create database objects and execute stored procedures, functions, and so on. In other words, on most platforms it can be used to assign both object and usage privileges.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
The SQL2003 syntax for GRANT allows for only the assignment of object privileges and roles to a specific user:
GRANT { {object privilege[, ...] | role[, ...]} }
[ON database_object_name]
[TO grantee[, ...]]
[WITH HIERARCHY OPTION] [WITH GRANT OPTION] [WITH ADMIN OPTION]
[FROM {CURRENT_USER | CURRENT_ROLE}]

Keywords
	GRANT object privilege[, . . .]
	Grants privileges to issue one or more SQL statements. Multiple privileges may be granted at one time, separated by commas. You should not combine ALL PRIVILEGES with other privileges, but the remainder may be combined in any order. Valid privileges are:
	ALL PRIVILEGES
	Indicates every privilege the grantor has available to grant; grants all privileges currently assigned to the grantor to the named user(s) and/or for the specified database objects. This is generally not a recommended approach, since it can encourage sloppy permissioning.

	EXECUTE
	Grants the privilege to execute any ANSI SQL routine. An ANSI routine is any stored procedure, user-defined function, or user-defined method.

	SELECT | INSERT | UPDATE | DELETE
	Grants the specified privilege for a given user on the specified database object, such as a table or view. You may add a parenthetical list of the columns of a given table on which the privilege will be granted (except for the DELETE statement).

	REFERENCES
	Grants the privilege to use the column(s) in any constraint or assertion, not just a foreign key. The REFERENCES clause also allows you to define column-specific details (by including a parenthetical, comma-delimited list) for statements such as INSERT, SELECT, and so on. Finally, REFERENCES grants the privilege to create or drop foreign key constraints referencing the database object as a parent object.

	TRIGGER
	Grants the privilege to create a trigger to operate on a specific table and its columns.

	UNDER
	Grants the privilege to create subtypes or typed tables.

	USAGE
	Grants privileges to use a domain, user-defined type, character set, collation, sequence, or translation.

	GRANT role[, . . .]
	Grants a specific, predefined role to the grantee; this role must be available to the user or role identified in the FROM clause. For example, the database administrator might want to create a role called Reporter that has read-only access to several tables. Subsequently granting this role to a user would bestow upon that user all of the read-only permissions granted to the Reporter role. That is, users can have roles assigned to them and receive all of the permissions already assigned to those roles.

	ON database_object_name
	Grants privileges on the specified, predefined database object identified by database_object_name, which may be one of the following:
{[TABLE] object_name | DOMAIN object_name |
 COLLATION object_name | CHARACTER SET object_name |
 TRANSLATION object_name | SPECIFIC ROUTINE routine_name}

	TO grantee
	Assignes the privilege(s) to the named user(s) or role(s), designated as grantee. You can assign privileges to multiple users and/or roles, as long as commas separate them. Alternately, privileges may be granted to PUBLIC, meaning that all users (including those that will be created in the future) have the specified privileges.

	WITH HIERARCHY OPTION
	Bestows the WITH HIERARCHY OPTION privilege, enabling the grantee to SELECT not only from the named table, but also from all of its subtables. This applies to privilege grants only.

	WITH GRANT OPTION
	Enables the grantee to further grant the privileges to other users. This applies to privilege grants only.

	WITH ADMIN OPTION
	Bestows the ability to assign a role. The ability to assign role responsibilities is separate from the ability to grant privileges to other users or roles.

	FROM {CURRENT_USER | CURRENT_ROLE}
	Names the user who is granting the specified privilege(s), either the CURRENT_USER or the CURRENT_ROLE. This clause is optional and assumes the current user context.

Rules at a Glance
You may grant many privileges on a single object with one statement, but do not mix the ALL PRIVILEGES privilege with the individual SQL statement keywords in a single GRANT statement. You can grant a specific privilege on a specific database object to a single user using the syntax:
GRANT privilege_name ON object_name TO grantee_name
For example:
GRANT SELECT ON employee TO Dylan;
You can grant a specific privilege on a specific object to all users via the PUBLIC user. When a grant is issued to PUBLIC, that means everyone has permission to the object without the need for a grant specifically to the object. For example:
GRANT SELECT ON employee TO PUBLIC;
When granting privileges to multiple grantees, simply place a comma between each:
GRANT SELECT ON employee TO Dylan, Matt, PUBLIC
The previous example shows that you may grant privileges to multiple users, in this case Dylan and Matt, and to the PUBLIC user in a single GRANT statement. When granting privileges on a table, you may extend or restrict the privileges to the column level by providing a list of columns enclosed in parentheses after the table name. For example:
GRANT SELECT ON employee(emp_id, emp_fname, emp_lname, job_id)
TO Dylan, Matt
This example shows that Dylan and Matt now have select privileges on several columns of the employee table.

Programming Tips and Gotchas
Depending on the specific database implementation, views may or may not have access privileges independent from their base tables.
Note that all of the optional WITH clauses control extensions to the base privilege(s) granted in the statement. Thus, the following command grants Dylan the privilege to SELECT records from the employee table:
GRANT SELECT ON employee TO Dylan;
but the following command grants the privilege to SELECT records from the employee table and to grant that SELECT privilege to other users:
GRANT SELECT ON employee TO Dylan
WITH GRANT OPTION;
Similarly, you can use the REVOKE statement to revoke only the WITH GRANT OPTION, the individual SELECT privilege, or both.
Most of the platforms isolate privileges at the user and role level. Thus, an individual user who is a member of two roles may be granted an individual permission four times—once for herself, once for PUBLIC, and once via each of the roles of which she is a member. In this situation, you must be very careful: to remove the privilege completely, you'll have to remove the user from the PUBLIC role and then revoke the user's privileges directly in both of the other roles.

MySQL
MySQL provides additional access privileges, primarily relating to object manipulation within a database. GRANT in MySQL is available from v3.22.11 and on. The syntax is as follows:
GRANT [{ ALL [PRIVILEGES] |
 {SELECT | INSERT | UPDATE} [(column_name[, ...])] | DELETE |
 REFERENCES [(column_name[, ...])] } |
 {[{ALTER | CREATE | DROP} [dml_option]] | [EVENT] | [EXECUTE] |
 [FILE] | [INDEX] | [LOCK TABLES] | [PROCESS] | [RELOAD] |
 [REPLICATION {CLIENT | SLAVE}] | [SHOW DATABASES] | [SHOW VIEW] | [SHUTDOWN] |
 [SUPER] | [TRIGGER] | [USAGE]}[, ...]
ON [{TABLE | FUNCTION | PROCEDURE}]
 { [database_name.]table_name | * | *.* | database_name.* }
TO grantee_name [IDENTIFIED BY [PASSWORD] 'password'][, ...]
[REQUIRE security_options]
[WITH with_option[...]]
where:
	ALL [PRIVILEGES]
	Grants a user all applicable privileges that apply at the current level on one or more objects in the database, with the exception of WITH GRANT OPTION. For example, GRANT ALL ON *.* grants all privleges globally, except WITH GRANT OPTION.

	SELECT | INSERT | UPDATE | DELETE | REFERENCES
	Grants the ability to read, write, modify, and erase data from tables (and possibly from specific columns of a table), respectively. Column-level permissions are allowed on SELECT, INSERT, and UPDATE, but not DELETE. Granting column-level permissions can slow down MySQL somewhat, since more permission checking is required. The REFERENCES subclause is unimplemented.

	{ALTER | CREATE | DROP} [dml_option]
	Grants the ability to alter, drop, or create tables and other database objects. When using the CREATE syntax, you are not required to specify an ON clause to identify a specific table. Specify ALTER, CREATE, or DROP, and an object name; MySQL assumes the object name is for a table. You can further refine this subclause with these dml_options:
	{CREATE | ALTER | DROP} ROUTINE
	Grants the privilege to create, alter, or drop procedures and functions.

	CREATE TEMPORARY TABLE
	Grants the use of the CREATE TEMPORARY TABLE statement, for use with GRANT CREATE only.

	CREATE USER
	Grants the privilege to create, drop, and rename users as well as to use the statement REVOKE ALL PRIVILEGES.

	CREATE VIEW
	Grants the use of the CREATE VIEW statement.

	EVENT
	Grants the privilege to create events for the event scheduler.

	EXECUTE
	Grants the privilege to run procedures and functions.

	FILE
	Grants the ability to load data from, or write data to, files using the SELECT INTO and LOAD DATA commands.

	INDEX
	Grants the ability to create or drop indexes.

	LOCK TABLES
	Grants the use of the MySQL command LOCK TABLES on tables where the user has SELECT privileges.

	PROCESS
	Grants the ability to view running processes using SHOW PROCESSLIST.

	RELOAD
	Grants the ability to invoke the FLUSH and RESET commands.

	REPLICATION {CLIENT | SLAVE}
	Grants a user the privilege to see metadata about replication slaves and masters (CLIENT), or grants a replication slave the right to read binlogs from a replication master (SLAVE).

	SHOW DATABASES
	Grants the user the privilege to execute the MySQL command SHOW DATABASES.

	SHOW VIEW
	Grants the use of the SHOW CREATE VIEW command.

	SHUTDOWN
	Grants usage of the MYSQLADMIN SHUTDOWN command to kill the server process.

	SUPER
	Grants the user the privilege of one connection even if the MAX_CONNECTIONS threshold is reached. Users with SUPER privileges can also execute important MySQL commands such as CHANGE MASTER, KILL, MYSQLADMIN DEBUG, PURGE [MASTER] LOGS, and SET GLOBAL.

	TRIGGER
	Grants the ability to create and drop triggers on a specific table, not on a specific trigger. (Before version 5.1.6, the SUPER privilege was required to create or drop triggers.)

	USAGE
	Creates a "no privilege" user account (i.e., a user that has no privileges).

	ON {[database_name.]table_name | * | *.* | database_name.*}
	Grants privileges on the specified table_name, on all tables within the current database using an asterisk (*), on all tables in all databases with *.*, or on all tables in the specified database_name with database_name.*.

	TO grantee_name [IDENTIFIED BY [PASSWORD] 'password'][, . . .]
	Names the user or users who will gain the specified privilege(s). The PASSWORD keyword is entirely optional. You may enter multiple users separated by commas. When granting privileges to a new user, you may also optionally set the new password for the new named user at the same time using the IDENTIFIED BY clause.

	REQUIRE security_options = { NONE | {SSL | X509} [CIPHER 'cipher_name' [AND]] [ISSUER 'issuer_name' [AND]] [SUBJECT 'subject_name'] }
	Specifies whether the user must connect with a secured connection or not, according to these security options:
	REQUIRE NONE
	The account has no special SSL or X509 requirements. This is the default if no REQUIRE subclause is specified.

	REQUIRE SSL
	Allows only SSL-encrypted connections for the account.

	REQUIRE X509
	Specifies that the client must have a valid certificate, though the certificate, issuer, and subject do not matter. You can specify X509 to also include one or more specific SUBJECTs, ISSUERs, and CIPHERs. The AND keyword is optional between the security_options.

	REQUIRE CIPHER 'cipher_name'
	Ensures that a specific cipher method and ciphers and key lengths of sufficient length are used.

	REQUIRE ISSUER 'issuer_name'
	Ensures that a valid X509 certificate containing a specific CA issuer is used.

	REQUIRE SUBJECT 'subject_name'
	Ensures that a valid X509 certificate containing a specific subject is used.

	WITH with_option
	Allows you to set one or more optional privileges:
	GRANT OPTION
	Entitles the grantee to assign the granted privilege (in fact, any privilege that that user/role possesses) to other users.

	MAX_QUERIES_PER_HOUR count
	Limits the number of queries not served from the cache that may be performed by the user per hour. Queries served from cache do not count against the limit. The default value of 0 means unlimited queries per hour.

	MAX_UPDATES_PER_HOUR count
	Limits the number of UPDATE statements that may be performed by the user per hour. The default value of 0 means unlimited updates per hour.

	MAX_CONNECTIONS_PER_HOUR count
	Limits the maximum number of simultaneously open connections that the user may hold per hour. The default value of 0 means the maximum number of simultaneous connections is determined by the MAX_USER_CONNECTION system variable.

Since MySQL is focused on speed, you can implement server-wide features that provide high-speed performance. For example, you can enable the SKIP_GRANT_TABLES startup option to disable checks for privileges. This can speed up queries, but obviously no permission checking is done, which means that all users have full access to all resources in the database.
The following are access privileges that are usable with tables: SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, GRANT, WITH GRANT OPTION, CREATE VIEW, SHOW VIEW, INDEX, TRIGGER, and ALTER. INSERT, UPDATE, and SELECT permissions are also grantable or revocable at the column level of a table. Thus, for example, you can grant SELECT permissions on a specific column of a specific table.
For routines (i.e., procedures and functions), you can specify ALTER ROUTINE, EXECUTE, and WITH GRANT OPTION permissions. CREATE ROUTINE is not actually a routine-level privilege, because a user must have this privilege in the first place to create a routine.
Several privileges can be granted only globally, using ON *.* syntax, including: FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, SUPER, and CREATE USER.
In any situation, table, database, and column names may each be up to 64 characters in length, and the hostname may be up to 60 characters long. The username (a.k.a. the grantee_name) may be up to 16 characters long.
MySQL also supports the possibility of granting rights to a specific user on a specific host if the grantee_name is in the form USER@HOST. Wildcards can be included in the hostname of a grantee_name to provide the access privilege to a large number of users at one time. A missing hostname is considered the same as the "%" wildcard. For example, consider this GRANT statement:
GRANT SELECT ON employee TO katie@% IDENTIFIED BY 'audi',
 annalynn IDENTIFIED BY 'cadillac',
 cody@us% IDENTIFIED BY 'bmw';
This statement grants read privileges on the employee table to the user katie explicitly at any hostname. Similarly, it grants read privileges to the user annalynn implicitly at any hostname. Finally, this statement grants read privileges to the user cody explicitly at any hostname starting with "US".
The grantee_name must be at most 16 characters long. When specifying the user, password protection may be enforced by including the IDENTIFIED BY clause.
The following example grants permissions to three users with passwords:
GRANT SELECT ON employee TO dylan IDENTIFIED BY 'porsche',
 kelly IDENTIFIED BY 'mercedes',
 emily IDENTIFIED BY 'saab';
If you grant permissions to a user that doesn't exist in MySQL, MySQL creates that user. The two statements that follow create a user and password with global privileges and another user that has no privileges (the USAGE privilege):
GRANT SELECT ON *.* TO tony IDENTIFIED BY 'humbolt';
GRANT USAGE ON sales.* TO alicia IDENTIFIED BY 'dakota';
Warning
Failing to include the IDENTIFIED BY clause on a GRANT statement that creates a new user will create a user without a password. This practice is insecure and dangerous.
If you do create a new user using the GRANT command, and you forget to specify a password, you can (and probably should) set a password using the SET PASSWORD command.

MySQL also allows you to issue grants on remote hosts, specified with @hostname, and include the wildcard character percent (%). For example, the following grant provides all permissions on all tables of the current database across all hosts in the notforprofit.org domain to the user annalynn:
GRANT ALL ON * TO annalynn@'%.notforprofit.org';
Privileges are written directly to system tables at four different levels:
	Global level
	Global privileges apply to all databases on a given server and are stored in the mysql.user system table.

	Database level
	Database privileges apply to all tables in a given database and are stored in the mysql.db system table.

	Table level
	Table privileges apply to all columns in a given table and are stored in the mysql.tables_priv system table.

	Column level
	Column privileges apply to single columns in a given table and are stored in the mysql.columns_priv system table.

Because of the way permissions are granted and the system tables involved, you may grant redundant permissions at different levels. For example, you could grant a user SELECT privileges on a specific table, and then grant global SELECT privileges on that same table to all users of the database. To ensure that that user no longer had the privilege of SELECTing from the table, you would then have to revoke those privileges separately. Furthermore, MySQL does not automatically revoke any privileges when dropping a table or database, though it will drop routine privileges when dropping a procedure or function.
The system tables are also somewhat unprotected, so it is possible to change permissions by issuing INSERT, UPDATE, and DELETE statements against those tables rather than by using GRANT or REVOKE. Normally, all privileges are read into memory when MySQL starts. Database, table, and column privileges issued by a GRANT statement are available immediately and take effect right away. User privileges issued by a GRANT statement are noticed immediately and take effect the next time the user connects. If you directly modify permissions in the system tables, none of the changes will be noticed until you restart MySQL or issue a FLUSH PRIVILEGES command.
If high-level, certificate-based security is important, you should consider using the REQUIRE clause. You do not have to specify all elements of the REQUIRE clause if you simply want the user to have a valid SSL or X509 certificate. However, you may add more specifications if they're required to meet your needs. Here, for example, we grant privileges to the user Tony on the localhost MySQL server and require an X509 subject, issuer, and cipher:
GRANT SELECT ON *.* TO 'tony'@'localhost'
 IDENTIFIED BY 'humbolt'
 REQUIRE SUBJECT '/C=EE/ST=CA /L=Frisco/O=MySQL demo client certificate/
 CN=Tony Tubs/Email=tont@myorg.com'
 AND ISSUER '/C=FI/ST=CA /L=UC /O=MySQL /CN=Tony Tubs/Email=tont@myorg.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

Oracle
Oracle's implementation of the GRANT statement supports an enormous number of variations and permutations. The syntax is as follows:
GRANT { [object_privilege][, ...] | [system_privilege][, ...] | [role][, ...] }
[ON { [schema_name.][object][, ...] |
 [DIRECTORY directory_object_name] |
 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]] }]
TO {grantee_name[, ...] | role_name[, ...] | PUBLIC}
 [WITH { GRANT | HIERARCHY } OPTION]
[IDENTIFIED BY password] [WITH ADMIN OPTION];
You can grant multiple privileges with a single invocation of the command, but they must all be of the same type (object, system, or role).
For example, you could grant a user three object privileges on a single table in one GRANT statement, and then issue a separate grant of two system privileges to a role, and yet a third grant of several roles to a user, but you could not do all of this in one GRANT statement.
Following are the parameters to Oracle's GRANT statement:
	GRANT object_privilege
	Grants the specified privilege(s) to the specified grantee_name or role_name on the named schema object (for example, a table or view). You may combine several object privileges, schema objects, and grantees in a single statement. However, you may not grant system privileges or roles in the same statement as object privileges. The object privileges are:
	ALL [PRIVILEGES]
	Grants all available privileges on a named schema object. Available for use on tables.

	ALTER
	Grants the privilege to change an existing table using the ALTER TABLE statement. Available for use on tables and sequences.

	DEBUG
	Grants access to a table through a debugger. The access granted applies to any triggers on the table and to information in SQL that directly references the table. Available for use on tables, views, procedures, functions, packages, Java objects, and types.

	EXECUTE
	Grants the privilege to execute a stored procedure, user-defined function, indextype, library, or package. Available for use on procedures, functions, packages, Java objects, libraries, types, indextypes, and user-defined operators.

	INDEX
	Grants the privilege to create indexes on a table.

	{ ON COMMIT REFRESH | QUERY REWRITE }
	Grants the privilege to create a refresh-on-commit materialized view or to create a materialized view for query rewrite on the specified table. Available for materialized views only.

	QUERY REWRITE
	Grants the privilege to create a materialized view for query rewriting on a specific table. Available for materialized views only.

	{ READ | WRITE }
	Grants the privilege to read and write files against a named directory, including the full pathname of the operating system directory. Since Oracle has the ability to store files outside of the database, the Oracle server process must run under a user context with privileges on the applicable directories. You can enable Oracle to enforce security on individual users via this security mechanism. Note that WRITE is only useful in connection with an external table, such as a logfile or an error file.

	REFERENCES
	Grants the privilege to define referential integrity constraints. Available for use on tables.

	{ SELECT | INSERT | DELETE | UPDATE }
	Grants the privilege to execute each of the respective SQL commands against the named schema object. Available for use on tables and views, as well as sequences and materialized views (SELECT only). Note that you must grant SELECT privileges to a user or role that requires DELETE privileges. You can grant column-level privileges (as a parentheses-encapsulated list following the object name) only when granting INSERT, REFERENCES, or UPDATE object privileges on a table or view.

	UNDER
	Grants the privilege to create a subview under the named view. Available for use on views and types only.

	GRANT system_privilege
	Grants the specified Oracle system privilege to one or more users or roles. For example, you could grant the CREATE TRIGGER privilege or the ALTER USER privilege; in each case, issuing a grant for a system privilege empowers the user or role to execute the command of the same name. Refer to Table 3-2 later in this section for a full list of system privileges.

	role
	Grants a role to the specified user or to another role. In addition to user-defined roles, there are a number of system roles that come predefined with Oracle:
	CONNECT, RESOURCE, and DBA
	Provided for backward compatibility with older versions of Oracle. Do not use these roles in current or newer versions of Oracle, since they may be dropped in the future.

	DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE, and SELECT_CATALOG_ROLE
	Grant members of these roles the privilege to delete, execute, and select from data dictionary views and packages.

	EXP_FULL_DATABASE and IMP_FULL_DATABASE
	Grant members of these roles the privilege to execute the import and export utilities.

	AQ_USER_ROLE and AC_ADMINISTRATOR_ROLE
	Grant members of these roles the privilege to use or administrate Oracle's Advanced Queuing functionality.

	SNMPAGENT
	Assigned only to Oracle Enterprise Manager and Intelligent Agent.

	RECOVERY_CATALOG_OWNER
	Grants the privilege to create users who own their own recovery catalogs.

	HS_ADMIN_ROLE
	Grants the privilege to access areas of the data dictionary used to support Oracle's heterogeneous services feature.

	ON schema_name
	Grants a user or role the named privilege(s) to on an object in the schema. Database objects include tables, views, sequences, stored procedures, user-defined functions, packages, materialized views, user-defined types, libraries, indextypes, user-defined operators, and any synonyms for any of these. If you do not include the schema name, Oracle assumes the schema of the current user.
Oracle also supports two additional keywords for special cases:
	DIRECTORY
	Grants privileges on a directory object, which is an Oracle object corresponding to a filesystem directory.

	JAVA
	Grants privileges on a Java SOURCE or a RESOURCE schema object.

	TO {grantee_name | role_name | PUBLIC} [WITH { GRANT | HIERARCHY } OPTION]
	Names the user or role that will get the specified privilege(s). PUBLIC may also be used to revoke privileges granted to the PUBLIC role. Multiple grantees can be listed with a comma between each.
	WITH GRANT OPTION
	Enables the grantee to grant the specific privilege(s) to other users or to PUBLIC, but not to roles.

	WITH HIERARCHY OPTION
	Enables the grantee to receive privileges on all subobjects when granted privileges on a parent object. This includes subobjects created in the future. You can use this option only when granting the SELECT object privilege.

	IDENTIFIED BY password
	Establishes or changes a password that the grantee must use to enable a role being granted.

	WITH ADMIN OPTION
	Enables the grantee to exercise control over a role that you are granting to that grantee. This clause enables the grantee to grant the role to and revoke it from other users or non-GLOBAL roles, and to drop the role or change the authorization needed to access the role.

Grants to users take effect right away. Grants to roles also take effect right away, assuming the roles are enabled. Otherwise, a grant to a role takes effect when the role is enabled. Note that you can grant roles to users and to other roles (including PUBLIC). For example:
GRANT sales_reader TO sales_manager;
To grant privileges on a view, you must have the specific privilege and the WITH GRANT OPTION on all of the base tables for the view.
Any time you want a privilege to be available to all users, simply grant it to PUBLIC:
GRANT SELECT ON work_schedule TO public;
However, there are some restrictions when granting system privileges and roles:
	A privilege or role should not appear more than once in the GRANT statement.

	Roles cannot be granted to themselves.

	Roles cannot be granted recursively. That is, you can't grant the role sales_reader to sales_manager and then grant the role sales_manager to sales_reader.

You can grant multiple privileges of the same type in a single statement. However, the grants must be on the same type of objects:
GRANT UPDATE (emp_id, job_id), REFERENCES (emp_id),
ON employees
TO sales_manager;
As an aside, granting any of the object permissions on a table allows the user (or role) to lock the table in any lock mode using Oracle's LOCK TABLE statement.
Recent versions of Oracle have added a number of business intelligence objects. Although the business intelligence features are beyond the scope of this book, granting privileges to them works in essentially the same way as you might grant privileges to any other object. The business intelligence objects include MINING MODEL, CUBE, CUBE MEASURE FOLDER, CUBE DIMENSIONS, and CUBE BUILD PROCESS. Oracle also includes some additional advanced queuing features in other add-on components. The privilege syntax for these add-ons' objects is similar to that for objects such as AQ_USER_ROLE and AQ_ADMINISTRATOR_ROLE. Refer to Oracle's documentation for more information on business intelligence and advanced queuing features and privileges.
Nearly every supported Oracle feature or command is assignable with a GRANT command (as shown in Table 3-2). Privileges can be granted not only on database objects (such as tables and views) and system commands (such as CREATE ANY TABLE), but also on schema objects (such as DIRECTORY, JAVA SOURCE, and RESOURCE). The ANY option grants the privilege to execute a given statement against objects of a specific type owned by any user within the schema. Without the ANY option, the user can only execute the statement against objects in his own schema.
Table 3-2. Oracle system privileges
	Options
	Description

	Create | Alter | Drop
	
	CREATE CLUSTER
	Grants the privilege to create a cluster in the grantee's own schema.

	{CREATE | ALTER | DROP} ANY CLUSTER
	Grants the privilege to create, alter, or drop (respectively) a cluster in any schema.

	{CREATE | DROP} ANY CONTEXT
	Grants the privilege to create or drop (respectively) any context namespace.

	CREATE DIMENSION
	Grants the privilege to create dimensions in the grantee's own schema.

	{CREATE | ALTER | DROP} ANY DIMENSION
	Grants the privilege to create, alter, or drop dimensions in any schema.

	{CREATE | DROP} ANY DIRECTORY
	Grants the privilege to create or drop directory database objects.

	{CREATE | ALTER | DROP | EXECUTE} [ANY] INDEX
	Grants the privilege to create, alter, drop, or execute a specific index in one or (using the ANY keyword) all schemas.

	CREATE INDEXTYPE
	Grants the privilege to create an indextype in the grantee's own schema.

	{CREATE | DROP | EXECUTE} ANY INDEXTYPE
	Grants the privilege to create, alter, drop, or execute an indextype in any schema.

	CREATE DATABASE LINK
	Grants the privilege to create private database links in the grantee's own schema.

	CREATE EXTERNAL JOB
	Allows the grantee to create an executable scheduler job that runs on the OS within the grantee's schema.

	CREATE [ANY] JOB
	Grants the privilege to create, alter, or drop jobs, schedules, or programs in any schema or, without ANY, a single specific schema. Grant this with caution, because it allows the user to execute any code as if she were another user.

	{CREATE | DROP} [ANY] LIBRARY
	Grants the privilege to create or drop external procedure/function libraries in any or, without ANY, a single specific schema.

	{CREATE | ALTER | DROP} [ANY] MATERIALIZED VIEW
	Grants the privilege to create, alter, or drop materialized views in any schema. CREATE ANY allows creation of a materialized view in any schema, while CREATE without ANY allows it only in the current schema.

	CREATE OPERATOR
	Grants the privilege to create an operator and its bindings in the grantee's own schema.

	{CREATE | DROP | ALTER | EXECUTE} ANY OPERATOR
	Grants the privilege to create, drop, alter, or execute an operator and its bindings in any schema.

	CREATE PUBLIC DATABASE LINK
	Grants the privilege to create public database links.

	{CREATE | ALTER | DROP} [ANY] ROLE
	Grants the privilege to create a database role (do not use ANY with the CREATE keyword), as well as to alter or drop any existing role.

	{CREATE | DROP | ALTER} ANY OUTLINE
	Grants the privilege to create, alter, or drop outlines that can be used in any schema that uses outlines.

	SELECT ANY OUTLINE
	Grants the privilege to clone private outlines from public ones.

	{CREATE | ALTER | DROP | EXECUTE} [ANY] PROCEDURE
	Grants the privilege to create, alter, drop, or execute stored procedures, functions, and packages in any schema, or, without ANY, to create a procedure in the current schema.

	{CREATE | ALTER | DROP} PROFILE
	Grants the privilege to create, alter, or drop profiles.

	ALTER RESOURCE COST
	Allows the grantee to set costs for session resources.

	{CREATE | ALTER | DROP | GRANT} ANY ROLE
	Grants the privilege to create, alter, drop, or grant roles in the database.

	{CREATE | ALTER | DROP} ROLLBACK SEGMENT
	Grants the privilege to create, alter, or drop rollback segments.

	{CREATE | ALTER | DROP | SELECT} [ANY] SEQUENCE
	Grants the privilege to create, alter, drop, or select sequences in any schema in the database or, without ANY, to create a sequence in the current schema.

	CREATE SNAPSHOT
	Grants the privilege to create snapshots (a.k.a. materialized views) in the grantee's own schema.

	{CREATE | ALTER | DROP} ANY SNAPSHOT
	Grants the privilege to create, alter, or drop snapshots in any schema.

	CREATE SYNONYM
	Grants the privilege to create synonyms in grantee's own schema.

	{CREATE | DROP} ANY SYNONYM
	Grants the privilege to create or drop private synonyms in any schema.

	{CREATE | DROP} PUBLIC SYNONYM
	Grants the privilege to create or drop public synonyms.

	Execute
	
	EXECUTE ANY PROGRAM
	Grants the privilege to run any program in a job within the grantee's schema.

	EXECUTE ANY CLASS
	Grants the privilege to run any job class in a job in the grantee's schema.

	Session
	
	CREATE SESSION
	Grants the privilege to connect to the database.

	ALTER SESSION
	Grants the privilege to issue ALTER SESSION statements.

	RESTRICTED SESSION
	Enforces that the grantee logs on after the instance is started after the instance is started using the SQL*Plus STARTUP RESTRICT statement.

	DEBUG CONNECT SESSION
	Grants the privilege to connect the current session to the Java Debug Wire Protocol (JDWP) debugger.

	DEBUG ANY PROCEDURE
	Grants the privilege to debug all PL/SQL objects in the database. Similar to granting DEBUG on all procedures, functions, and packages.

	DROP PUBLIC DATABASE LINK
	Grants the privilege to drop public database links.

	FLASHBACK ARCHIVE ADMINISTRATOR
	Grants the privilege to create, alter, or drop any flashback data archive.

	GRANT ANY ROLE
	Grants the privilege to grant a role to other users.

	MANAGE SCHEDULER
	Grants full privileges for jobs (i.e., privileges to drop, create, or alter any job class, window, or window group).

	ON COMMIT REFRESH
	Grants privileges to create a refresh-on-commit materialized view on any table in the database or alter any refresh-on-demand materialized view into a refresh-on-commit materialized view.

	Table and Tablespace
	
	FLASHBACK ANY TABLE
	Grants the privilege to issue a SQL flashback query on any table, view, or materialized view in any schema. This privilege is not required for DBMS_FLASHBACK procedures.

	CREATE ANY TABLE
	Grants the privilege to create tables in any schema. The owner of the schema containing the table must have enough free space in the tablespace to contain the table.

	ALTER ANY TABLE
	Grants the privilege to alter any table or view in the schema.

	BACKUP ANY TABLE
	Enables the use of the export utility to incrementally export objects from the schemas of other users.

	DELETE ANY TABLE
	Allows the deletion of rows from tables, table partitions, or views in any schema.

	DROP ANY TABLE
	Grants the privilege to drop or truncate tables or table partitions in any schema.

	INSERT ANY TABLE
	Grants the privilege to insert rows into tables and views in any schema.

	LOCK ANY TABLE
	Grants the privilege to lock tables and views in any schema.

	UPDATE ANY TABLE
	Grants the privilege to update rows in tables and views in any schema.

	SELECT ANY TABLE
	Grants the privilege to query tables, views, or snapshots in any schema.

	{CREATE | ALTER | DROP} TABLESPACE
	Grants the privilege to create, alter, or drop tablespaces.

	MANAGE TABLESPACE
	Grants the privilege to take tablespaces offline and online and begin and end tablespace backups.

	UNLIMITED TABLESPACE
	Grants the privilege to use an unlimited amount of any tablespace. This privilege overrides any specific quotas assigned. If you revoke this privilege from a user, the user's schema objects remain, but further tablespace allocation is denied unless authorized by specific tablespace quotas. You cannot grant this system privilege to roles.

	Trigger
	
	ADMINISTER DATABASE TRIGGER
	Grants the privilege to create a trigger on DATABASE. (The user/role must also have the CREATE TRIGGER or CREATE ANY TRIGGER privilege.)

	{CREATE | ALTER | DROP} [ANY] TRIGGER
	Grants the privilege to create, alter, or drop database triggers in any schema or, without ANY, to create, alter, or drop a trigger in the current schema.

	Type
	
	{CREATE | ALTER | DROP} [ANY] TYPE
	Grants the privilege to create, alter, or drop object types and object-type bodies in any schema or, without ANY, to create a type in the current schema.

	EXECUTE ANY TYPE
	If granted to a specific user, allows that user to use and reference object types and collection types in any schema and to invoke methods of an object type in any schema. If granted to a role, individual members of that role will not be able to invoke methods of an object type in any schema.

	User
	
	CREATE USER
	Grants the privilege to create users. This privilege also allows the grantee to:

	Assign quotas on any tablespace.

	Set default and temporary tablespaces.

	Assign a profile as part of a CREATE USER statement.

	ALTER USER
	Grants the privilege to alter any user. This privilege authorizes the grantee to:

	Change another user's password or authentication method.

	Assign quotas on any tablespace.

	Set default and temporary tablespaces.

	Assign a profile and default roles.

	BECOME USER
	Grants the privilege to become another user (required by any user performing a full database import).

	DROP USER
	Grants the privilege to drop users.

	UNDER ANY TYPE
	Allows the creation of subtypes under any parent object type, such as a table or view.

	View
	
	{CREATE | DROP} [ANY] VIEW
	Grants the privilege to create or drop views in any schema or, without ANY, to create a view in the current schema.

	UNDER ANY VIEW
	Grants the privilege to create a subview under any parent view.

	MERGE ANY VIEW
	Grants the privilege to the optimizer to use view merging on behalf of the user to speed query performance.

	Additional privileges
	
	ADMINISTER [ANY] SQL TUNING SET
	Grants privileges to create, drop, select, load, or delete an owned SQL tuning set (without the ANY keyword) or any user's SQL tuning set (with the ANY keyword) through the DBMS_SQLTUNE package.

	ADVISOR
	Grants the privilege to access the advisor framework through PL/SQL packages.

	ALTER DATABASE
	Grants the privilege to alter the database.

	ALTER SYSTEM
	Grants the privilege to issue ALTER SYSTEM statements.

	ANALYZE ANY
	Grants the privilege to analyze any table, cluster, or index in any schema.

	ANALYZE ANY DICTIONARY
	Grants the privilege to analyze any data dictionary object.

	AUDIT ANY
	Grants the privilege to audit any object in any schema using AUDIT schema_objects statements.

	AUDIT SYSTEM
	Grants the privilege to issue AUDIT sql_statements statements.

	{DELETE | EXECUTE | SELECT} CATALOG_ROLE
	Grants privileges to access data dictionary views and packages.

	CHANGE NOTIFICATION
	Allows the grantee to register for and receive notifications of a change in a database or query.

	COMMENT ANY TABLE
	Allows comments on any table, view, or column in any schema.

	EXEMPT ACCESS POLICY
	Circumvents fine-grained access control. Generally, this is ill-advised since the user can then bypass any application-driven security policies.

	FORCE ANY TRANSACTION
	Forces the commit or rollback of any in-doubt distributed transaction in the local database and induces the failure of a distributed transaction.

	FORCE TRANSACTION
	Forces the commit or rollback of grantee's own in-doubt distributed transactions in the local database.

	{EXP | IMP} FULL_DATABASE
	Grants the privilege to use the import and export utilities.

	GRANT ANY PRIVILEGE
	Grants any system privilege.

	GRANT ANY OBJECT PRIVILEGE
	Grants any object privilege available.

	RECOVERY_CATALOG_OWNER
	Grants the privilege to create and own recovery catalogs.

	RESUMABLE
	Enables resumable space allocations.

	SELECT ANY DICTIONARY
	Allows the user to query any data dictionary object in the SYS schema.

	SELECT ANY TRANSACTION
	Grants the privilege to view the contents of the FLASHBACK_TRANSACTION_QUERY view. (Grant this with caution, because it allows the grantee to see all data in the database!)

	SYSDBA
	Provides the user with RESTRICTED SESSION permission and authorizes the user to:

	Perform STARTUP and SHUTDOWN operations

	Issue CREATE/ALTER DATABASE commands and OPEN/MOUNT/BACKUP commands

	Change the character set

	Perform ARCHIVELOG and RECOVERY operations

	SYSOPER
	Provides the user with RESTRICTED SESSION permission and authorizes the user to:

	Perform STARTUP and SHUTDOWN operations

	Issue ALTER DATABASE and OPEN/MOUNT/BACKUP commands

	Perform ARCHIVELOG and RECOVERY operations

	QUERY REWRITE
	Enables rewrites using a materialized view, or creates a function-based index, when that materialized view or index references tables and views that are in the grantee's own schema.

	GLOBAL QUERY REWRITE
	Enables rewrites using a materialized view, or creates a function-based index.

Any of the privileges shown in Table 3-2 containing the ANY keyword has a special meaning. In effect, ANY gives a user the privilege to execute the specified command or operation in any schema. If you want to include all user schemas but exclude the SYS system schema, keep the O7_DICTIONARY_ ACCESSIBILITY initialization parameter at its default value of FALSE.

PostgreSQL
PostgreSQL supports a subset of the ANSI GRANT commands supporting object privileges against database objects such as tables, sequences, functions, and so forth. PostgreSQL's GRANT syntax is as follows:
GRANT { role_name | { ALL [PRIVILEGES] | SELECT | INSERT | DELETE | UPDATE | RULE |
 REFERENCES| TRIGGERS | CREATE | USAGE }[, ...] }
ON { [TABLE | SEQUENCE | DATABASE | FUNCTION | LANGUAGE | SCHEMA | TABLESPACE]
 object_name[, ...] }
[WITH GRANT OPTION]
TO {grantee_name | GROUP group_name | PUBLIC}[, ...]
[WITH ADMIN OPTION]
where:
	GRANT role_name
	Grants a previously created role to a specific user following the syntax GRANT role_name TO grantee_name [WITH ADMIN OPTION]. The grantee then receives all of the privileges inherent with the role. Role-based privileges may not be granted to PUBLIC.

	ALL [PRIVILEGES]
	Grants all privileges the grantor has available to grant. Using ALL is generally not a recommended approach, since it can encourage sloppy permissioning.

	CREATE
	Grants the privilege to create objects of the specified type. Usable with ON DATABASE, ON SCHEMA, and ON TABLESPACE. On databases, this privilege allows the creation of new schemas within the database. On schemas, it allows the creation of new objects and the renaming of existing objects in the schema. On tablespaces, this privilege allows the creation of tables and indexes within the tablespace.

	CONNECT | TEMP[ORARY]
	Grants the privilege to connect to a specific database and/or to create temporary tables when using the named database.

	SELECT | INSERT | DELETE | UPDATE
	Grants the specified privilege to a given user on the specified database object, such as a table or view. For column-level privileges, you may add a parenthetical list of specific columns of a given table; the permission then applies only to the columns of the table that are named.

	RULE
	Grants the privilege to create or drop a rule on a table or view.

	REFERENCES
	Grants the privilege to create or drop foreign key constraints referencing the database object as a parent object.

	TRIGGERS
	Grants the privilege to create a trigger to operate on a specific table and its columns.

	USAGE
	Grants privileges to use these objects: CHARACTER SET, COLLATION, TRANSLATION, and DOMAIN (a user-defined datatype). You can grant USAGE privileges on sequences, languages, and schemas.

	ON { [TABLE] | SEQUENCE | DATABASE | FUNCTION | LANGUAGE | SCHEMA | TABLESPACE object_name[, . . .] }
	Specifies the object to which permissions are granted. The optional TABLE keyword is the default if omitted. You may grant permissions on more than one object at a time by specifying a comma-delimited list of object names, as long as the objects are of the same type.

	WITH GRANT OPTION
	Allows the grantee to grant any of his privileges in turn to any other users.

	TO {grantee_name | GROUP group_name | PUBLIC}[, . . .]
	Names the user(s) or role(s) that will receive the specified privilege(s). In PostgreSQL, PUBLIC is a synonym for all users. PostgreSQL allows permissions to be assigned to a GROUP (essentially a role), provided it is a valid, pre-existing group_name.

	WITH ADMIN OPTION
	Grants the privilege for a member of a role to grant membership in that role to or revoke it from other users.

Multiple privileges may be granted at one time, in a comma-separated list. However, when granting privileges, they should be of a related type. You should not combine ALL [PRIVILEGES] with other privileges, but many of the remainding privileges may be combined in any order.
PostgreSQL does not support the WITH clauses or column-level permissions. Under PostgreSQL, the creator of an object has all privileges on the object. She may revoke most of her own privileges on that object, but the privilege for the creator of an object to assign privileges on that object cannot be revoked. Similarly, the right to drop an object is permanently assigned to the creator of the object and cannot be revoked. Users other than the creator of an object do not have permissions on an object until they are specifically granted.
Certain privileges are allowed only for certain objects, as shown here:
	TABLE
	May be granted SELECT, INSERT, UPDATE, DELETE, REFERENCES, TRIGGER, and ALL [PRIVILEGES].

	SEQUENCE
	May be granted USAGE, SELECT, and ALL [PRIVILEGES].

	DATABASE
	May be granted CONNECT, CREATE, TEMP[ORARY], and ALL [PRIVILEGES].

	FUNCTION
	May be granted EXECUTE and ALL [PRIVILEGES].

	LANGUAGE
	May be granted USAGE and ALL [PRIVILEGES].

	SCHEMA
	May be granted CREATE, USAGE, and ALL [PRIVILEGES].

	TABLESPACE
	May be granted CREATE and ALL [PRIVILEGES].

PostgreSQL's support for the GRANT statement is elementary. In the following examples, INSERT privileges are granted on the publishers table to the PUBLIC role and SELECT and UPDATE privileges are granted on the sales table to the users Emily and Dylan:
GRANT INSERT ON TABLE publishers TO PUBLIC;
GRANT SELECT, UPDATE ON sales TO emily, dylan;
The following example grants database control privileges to the user Katie and then assign the users Katie and Anna to a new group:
GRANT ALL ON DATABASE publishing TO katie;
GRANT manager_role ON katie, anna WITH ADMIN OPTION;

SQL Server
SQL Server's implementation of GRANT offers few variations from the ANSI standard. SQL Server does not support the ANSI standard's FROM clause or the HIERARCHY or ADMIN options, but it does offer the ability to grant specific system privileges, and to grant them under another user's security context. The syntax is as follows:
GRANT { [object_privilege][, ...] | [system_privilege] }
[ON { [definition_scope::[[schema_name.]object_name] [(column[, ...])] }]
TO { grantee_name[, ...] | role[, ...] | PUBLIC | GUEST }
[WITH GRANT OPTION]
[AS {group | role}]
where:
	GRANT object_privilege
	Grants privileges for a variety of objects, which may all be combined in any order (with the exception of the ALL [PRIVILEGES] privilege). Object privileges may be granted for tables, views, functions (table-valued, scalar, and aggregate), procedures (stored and extended), service queues, and synonyms. The privileges that may be granted on objects include:
	ALL [PRIVILEGES]
	Grants all privileges currently assigned to the named user(s) and/or for the specified database objects. This is generally not a recommended approach, since it can encourage sloppy programming. ALL can only be used by members of the SYSADMIN and DB_OWNER system roles, or by the object owner. ALL is deprecated in SQL Server 2008 and only included for backward compatibility. GRANT ALL is now shorthand for the following privileges:
	GRANT ALL on databases
	Grants the privileges BACKUP DATABASE, BACKUP LOG, CREATE DATABASE, CREATE DEFAULT, CREATE FUNCTION, CREATE PROCEDURE, CREATE RULE, CREATE TABLE, and CREATE VIEW.

	GRANT ALL on functions
	Grants the privileges EXECUTE and REFERENCES for scalar functions and DELETE, INSERT, REFERENCES, SELECT, and UPDATE for table-valued functions.

	GRANT ALL on procedures (includes both stored procedures and extended stored procedures)
	Grants the EXECUTE privilege.

	GRANT ALL on tables and views
	Grants the privileges DELETE, INSERT, REFERENCES, SELECT, and UPDATE.

	{SELECT | INSERT | DELETE | UPDATE}
	Grants the specified privilege to a given user on the specified database object, such as a table or view. For column-level privileges, add a parenthetical list of table columns; the privileges will then be assigned only for the named columns.

	REFERENCES
	Grants the privilege to create or drop foreign key constraints referencing the database object as a parent object.

	EXECUTE
	Grants the privilege to execute a stored procedure, user-defined function, or extended stored procedure.

	GRANT system_privilege
	Grants the privilege to execute one of the corresponding statements (EXECUTE) or to select against one (or more) of the views in the SYS schema (SELECT). More details can be found in Table 3-3.
The privilege to issue a CREATE statement also implies the privilege to issue the equivalent ALTER or DROP statement. However, granting a single granular permission does not ensure that all required permissions have been granted—for example, granting EXECUTE permission on sp_addlinkedserver doesn't allow a user to create a linked server unless that user has also been added as a member to the sysadmin role.

	ON [definition_scope::][[schema_name.]object_name] [(column[, . . .])]
	Specifies the object for which the privilege is granted. This clause is not required when granting system privileges. The definition_scope is required and indicates the type of object to which you will be granting privileges. definition_scopes must always include the assignment symbols (::). The definition scope OBJECT:: is for tables, views, and other database objects. Other definition_scopes are applicable to objects of the same name: APPLICATION ROLE, ASSEMBLY, ASYMMETRIC KEY, CERTIFICATE, ENDPOINT, FULLTEXT CATALOG, LOGIN, ROLE, SCHEMA, service broker scopings (CONTRACT, MESSAGE TYPE, REMOTE SERVICE BINDING, ROUTE, and SERVICE), SYMMETRIC KEY, TYPE, USER, and XML SCHEMA COLLECTION. If the object is a table or view, you may optionally grant privileges on specific columns. You can grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges on a table or view, but you can only grant SELECT and UPDATE privileges on the columns of a table, a view, or a user-defined function. You can grant EXECUTE privileges on a stored procedure or extended stored procedure, and REFERENCES privileges on user-defined functions. REFERENCES privileges are also required on functions or views created using the WITH SCHEMABINDING clause.

	TO {grantee_name[, . . .] | role[, . . .] | PUBLIC | GUEST}
	Names the user or role that will gain the privilege being granted. Multiple grantees can be listed in a comma-separated list. Use the keyword PUBLIC to grant privileges to the PUBLIC role, a role that implicitly includes all users. SQL Server also supports a GUEST role, which is the role used by all users who do not have any other roles in the database. Because SQL Server allows two different security models (one based on the database and one based on the Windows operating system), you may be granting privileges to a SQL Server user, a Windows user, a Windows group, or a SQL Server database role. The grantee_name may be any of these.

	WITH GRANT OPTION
	Enables the grantee to further grant the given permission to other users or roles. You may use WITH GRANT OPTION only when granting object permissions.

	AS {group | role}
	Specifies an alternative user or group that has the authority in the current database to execute the GRANT command. You can use the AS clause to grant privileges as if the granting session is part of a different group or role context from the current one.

Privileges may not be granted in any database other than the current database, nor may privileges be granted in more than one database at a time.
Tip
SQL Server has a somewhat different security model than the other platforms described here (and from the ANSI standard). Like the ANSI standard, SQL Server uses the GRANT command to assign specific privileges to a user or role and the REVOKE command to remove those permissions. However, SQL Server augments these commands with the DENY command, using essentially the same syntax as REVOKE.
DENY, under SQL Server, allows DBAs to declare certain privileges as strictly off-limits to a user or role. Any privileges that have been denied must be revoked before they can be granted. As such, DENY takes precedence over GRANT and REVOKE. DENY can be used to effectively take away any permission from an individual who might otherwise inherit permissions from membership in Windows groups or SQL Server database roles.

SQL Server applies precedence to permissions. Thus, if a user has a privilege granted at the user level, but the permission is revoked at the group level (when the user is a member of a group), the permission is revoked at both levels.
System privileges to CREATE or ALTER an object also imply the privilege to DROP the object. System privileges to CREATE an object additionally imply the privilege to ALTER the object. A complete list of system privileges is shown in Table 3-3.
Table 3-3. SQL Server system privileges
	Options
	Description

	ADMINISTER BULK OPERATIONS
	Grants the privilege to execute bulk operations, such as BULK INSERT, within the current database.

	ALTER ANY { APPLICATION ROLE | DATABASE DDL TRIGGER | DATASPACE |USER }
	Grants the privilege to alter any pre-existing object of the named type within the current database.

	{ALTER [ANY] | CREATE} ASSEMBLY
	Grants the privilege to CREATE an assembly, or to ALTER a specific assembly or (with ANY) all assemblies within the database.

	{ALTER [ANY] | CREATE} ASYMMETRIC KEY
	Grants the privilege to CREATE an asymmetric security key, or to ALTER a specific asymmetric security key or (with ANY) all asymmetric security keys within the database.

	{ALTER [ANY] | CREATE} CERTIFICATE
	Grants the privilege to CREATE a security certificate, or to ALTER a specific security certificate or (with ANY) all security certificates within the database.

	{ALTER [ANY] | CREATE} CONTRACT
	Grants the privilege to alter a specific service broker contract or (with ANY) all service broker contracts within the current database, or to create a new contract.

	{ALTER [ANY] | CREATE} DATABASE DDL EVENT NOTIFICATION
	Grants the privilege to alter a specific database DDL event notification or (with ANY) all database DDL event notifications, or to create a new database DDL notification.

	{ALTER [ANY] | CREATE} FULLTEXT CATALOG
	Grants the privilege to alter a specific full-text catalog or (with ANY) all full-text catalogs within the current database, or to create a new full-text catalog.

	CREATE FUNCTION
	Grants the privilege to create new functions.

	{ALTER [ANY] | CREATE} MESSAGE TYPE
	Grants the privilege to alter a specific service broker message type or (with ANY) all service broker message types within the current database, or to create new message type.

	{ALTER [ANY] | CREATE} REMOTE SERVICE BINDING
	Grants the privilege to alter a specific service broker service binding or (with ANY) all service bindings within the current database, or to create new service binding.

	{ALTER [ANY] | CREATE} ROLE
	Grants the privilege to alter a specific role or (with ANY) all roles on the server, or to create new role.

	{ALTER [ANY] | CREATE} ROUTE
	Grants the privilege to alter a specific service broker route or (with ANY) all service broker route within the current database, or to create new route.

	{ALTER [ANY] | CREATE} SCHEMA
	Grants the privilege to alter a specific schema or (with ANY) all schemas on the server, or to create new schema.

	{ALTER [ANY] | CREATE} SERVICE
	Grants the privilege to alter a specific service broker service or (with ANY) all service broker services within the current database, or to create new service.

	{ALTER [ANY] | CREATE} SYMMETRIC KEY
	Grants the privilege to alter a specific security symmetric key or (with ANY) all security symmetric keys within the current database, or to create new symmetric key.

	AUTHENTICATE [SERVER]
	Grants the privilege to connect to and authenticate a server.

	BACKUP {DATABASE | LOG}
	Grants to a specific user or role the privilege to execute the BACKUP DATABASE or BACKUP LOG statements.

	CHECKPOINT
	Grants to a specific user or role the privilege to execute CHECKPOINT statements.

	CONNECT
	Grants permission to a service broker endpoint to connect to an instance of SQL Server.

	CONNECT REPLICATION
	Grants permission to a replication scheme to connect to an instance of SQL Server.

	CONTROL [SERVER]
	Grants all permissions on all objects (for CONTROL SERVER) or all permissions on all objects in named database or schema (for CONTROL), as well as the ability to grant privileges to other users. When used with a single object, grants full control over the named object, as in GRANT CONTROL ON USER::anna TO manager123;.

	CREATE {AGGREGATE | DATABASE | DEFAULT | PROCEDURE | QUEUE | RULE | SYSNONYM | TABLE | TYPE | VIEW | XML SCHEMA COLLECTION}
	Grants the privilege to create the object of the specified type within the current server, database, or schema.

	IMPERSONATE
	Grants a user the privilege to act as another user, as in GRANT IMPERSONATE ON USER::katie TO manager123;.

	RECEIVE
	Grants the privilege for a user to receive a given service broker queue, as in GRANT RECEIVE ON query_notification_errorqueue TO emily;.

	SEND
	Grants the privilege to send query notifications from a service broker queue to a named login, as in GRANT SEND ON SERVICE:://mysvc TO dylan;.

	SHOWPLAN
	Grants the privilege to see query execution plans.

	SHUTDOWN
	Grants the privilege to shut down the SQL server.

	SUBSCRIBE QUERY NOTIFICATIONS
	Grants the privilege to receive notifications from a given query notification queue, as in GRANT SUBSCRIBE QUERY NOTIFICATIONS TO sam;.

	TAKE OWNERSHIP
	Grants the privilege to transfer ownership of an XML schema collection from one user to another.

	VIEW {DATABASE STATE | DEFINITION}
	Grants the privilege to view the metadata that describes all of a database, regardless of whether the user owns or may use that databas (for DATABASE STATE) or the metadata about a server, database, schema, or individual object (for DEFINITION).

SQL Server also contains a number of fixed system roles with preset privileges on both objects and commands. The SQL Server system roles are:
	SYSADMIN
	Can perform any activity on the server and has access to all objects

	SERVERADMIN
	Can set server configuration options as well as shut down and restart the server

	SETUPADMIN
	Can start up procedures and linked servers

	SECURITYADMIN
	Can read error logs, change passwords, administrate logins, and grant CREATE DATABASE permissions

	PROCESSADMIN
	Can administrate processes running on the SQL server

	DBCREATOR
	Can create, alter, and drop databases

	DISKADMIN
	Can administrate disks and files

	BULKADMIN
	Can perform Bulk Copy Program (BCP) operations and execute BULK INSERT statements (and regular INSERT statements) against tables in the database.

The SYSADMIN system role can grant any permission in any database on the server. Members of the DB_OWNER and DB_SECURITYADMIN system roles can grant any permission on any statement or object in databases they own. Members of the DB_DDLADMIN system role, the SYSADMIN system role, and the database owner may grant system privileges.
Members of the system roles may add other logins or users to their roles, but not via a GRANT statement. Instead, to add a user to a system role, you must use a SQL Server system stored procedure called sp_addsrvrolemember.
In addition to the server-wide system roles, there are a number of database-wide system roles. That is, whereas the previous system roles have privileges that span every database on the server, the following system roles exist in each individual database and have privileges within the scope of a specific database:
	DB_OWNER
	Grants the privilege to perform all the functions of the other database system roles, plus other maintenance and configuration tasks for the database

	DB_ACCESSADMIN
	Grants the privilege to add Windows and SQL Server users and groups to the database, or to remove them

	DB_DATAREADER
	Grants the privilege to read data from all user tables in the database

	DB_DATAWRITER
	Grants privileges to read, add, change, or delete data in all user tables in the database

	DB_DDLADMIN
	Grants privileges to add, change, and drop objects in the database, as well as run all DDL statements

	DB_SECURITYADMIN
	Grants the privilege to administrate SQL Server roles and users as well as statement and object permissions throughout the database

	DB_BACKUPOPERATOR
	Grants the privilege to perform backups of the database

	DB_DENYDATAREADER
	Denies permission to read data in the database

	DB_DENYDATAWRITER
	Denies permission to change data in the database

Like the server-wide system roles, database-wide system roles cannot be granted to a user via the GRANT statement. Instead, you must use a SQL Server system stored procedure called sp_addrolemember.
In the following example, the CREATE DATABASE and CREATE TABLE system privileges are granted to the users emily and sarah. Next, numerous permissions on the titles table are granted to the editors group. The editors are then able to grant permissions to others:
GRANT CREATE DATABASE, CREATE TABLE TO emily, sarah
GO
GRANT SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
WITH GRANT OPTION
GO
The following example grants permissions to the database user sam and the Windows user jacob:
GRANT CREATE TABLE TO sam, [corporate\jacob]
GO
Finally, the following example shows how to grant permissions using the optional AS keyword. In this example, the user emily owns the sales_detail table, and she grants SELECT privileges to the sales_manager role. The user kelly, who is a member of the sales_manager role, wants to grant SELECT privileges to sam, but she cannot because the permissions were granted to the sales_manager role and not to her explicitly. kelly can use the AS clause to get around this hurdle:
-- Initial grant
GRANT SELECT ON sales_detail TO sales_manager
WITH GRANT OPTION
GO
-- Kelly passes the privilege to Sam as a member of the sale_manager role
GRANT SELECT ON sales_detail TO sam AS sales_manager
GO

See Also
	REVOKE

Name
IN Operator

The IN operator provides a way to delineate a list of values, either explicity listed or from a subquery, and compare a value against that list in a WHERE or HAVING clause. In other words, it gives you a way to say "Is value A in this list of values?"
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
{WHERE | HAVING | {AND | OR}}
 value [NOT] IN ({comp_value1, comp_value2[, ...] | subquery})

Keywords
	{WHERE | HAVING | {AND | OR}} value
	IN is permitted under either the WHERE or the HAVING clause. The IN comparison may also be a part of an AND or OR clause in a multicondition WHERE or HAVING clause. value may be of any datatype, but is usually the name of a column of the table referenced by the transaction, or perhaps a host variable when used programmatically.

	NOT
	Optionally tells the database to look for a result set that contains values that are not in the list.

	IN ({comp_value1, comp_value2[, . . .] | subquery})
	Defines the list of comparative values (hence, comp_value) to compare against. Each comp_value must be of the same or a compatible datatype as the initial value. They are also governed by standard datatype rules. For example, string values must be delimited by quotes, while integer values need no delimiters. As an alternative to listing specific values, you may use parentheses to enclose a subquery that returns one or more values of a compatible datatype.

In the following example, generated on SQL Server, we look for all employees in the employee table of the HR database who have a home state of Georgia, Tennessee, Alabama, or Kentucky:
SELECT *
FROM hr..employee
WHERE home_state IN ('AL','GA','TN','KY')
Similarly, we can look for all employees in the HR database who are authors in the PUBS database:
SELECT *
FROM hr..employee
WHERE emp_id IN (SELECT au_id FROM pubs..authors)
We can also use the NOT keyword to return a result set based upon the absence of a value. In the following case, the company headquarters is located in New York, and many workers commute in from neighboring states. We want to see all such workers:
SELECT *
FROM hr..employee
WHERE home_state
 NOT IN ('NY','NJ','MA','CT','RI','DE','NH')
Note that Oracle, while fully supporting the ANSI functionality, extends the functionality of the IN operator by allowing multiple argument matches. For example, the following SELECT . . . WHERE . . . IN statement is acceptable on Oracle:
SELECT *
FROM hr..employee e
WHERE (e.emp_id, e.emp_dept) IN
((242, 'sales'), (442, 'mfg'), (747, 'mkt))

See Also
	ALL/ANY/SOME
	BETWEEN
	EXISTS
	LIKE
	SELECT
	SOME/ANY

Name
INSERT Statement

The INSERT statement adds rows of data to a table or view.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported

	SQL Server
	Supported, with variations

The INSERT statement allows rows to be written to a table through one of several methods:
	One or more rows can be inserted using the DEFAULT values specified for a column via the CREATE TABLE or ALTER TABLE statements.

	The actual values to be inserted into each column of the record can be declared (this is the most common method).

	The result set of a SELECT statement can be inserted into a table or view, populating it with many records simultaneously.

SQL2003 Syntax
INSERT INTO [ONLY] {table_name | view_name} [(column1[, ...])]
[OVERRIDE {SYSTEM | USER} VALUES]
{DEFAULT VALUES | VALUES (value1[, ...]) | select_statement}

Keywords
	ONLY
	Used on typed tables only, this optional keyword ensures that the values inserted into table_name are not inserted into any subtables.

	{table_name | view_name} [(column1[, . . .])]
	Declares the updatable target table or view into which the records will be inserted. You must have INSERT privileges on the table or, at a minimum, on the columns that will receive the inserted values. If no schema information is included, as in scott.employee, the current schema and user context are assumed. You may optionally include a list of the columns in the target table or view that will receive data.

	OVERRIDE {SYSTEM | USER} VALUES
	Requires the SYSTEM keyword when inserting a literal value into a column that would otherwise be given a system-generated value, such as an autogenerated sequence number. The OVERRIDE USER VALUES clause does the converse, by inserting system-supplied values even if a user has provided literal values to insert.

	DEFAULT VALUES
	Inserts all values declared via the DEFAULT column characteristic on the target table where they exist, and NULLs where they do not exist. (Of course, the DEFAULT column characteristic can specify NULL as a value, too.) This operation inserts a single record. It might encounter an error, depending on how the PRIMARY KEY constraint or UNIQUE constraint is constructed on the target table (assuming such constraints exist).

	VALUES (value1[, . . .])
	Specifies the actual values to be inserted into the target table. The number of values must match the exact number of columns in the column list, if one is provided. Furthermore, the values must be datatype- and size-compatible with the columns of the target table. Each value in the value list corresponds to the column with the same ordinal number in the column list. Thus, the first column will get its data from the first value, the second column from the second value, and so on until all columns are satisfied. You may also optionally use the keywords DEFAULT to insert a column's default value and NULL to insert a NULL value.

	select_statement
	Inserts rows retrieved via the specified SELECT statement into the target table or view. The values retrieved by the fully formed SELECT statement's select item list correspond directly to the columns of the column list. The target table or view may not be referenced in the SELECT statement's FROM or JOIN clauses.

Rules at a Glance
You may insert values into tables, and into views built upon a single source table. The INSERT . . . VALUES statement adds a single row of data to a table, using literal values supplied in the statement. In the following example, a new row in the authors table is inserted for the author Jessica Rabbit:
INSERT INTO authors (au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1)
Every column in the table is assigned a specific, literal value except the phone column, which is assigned the default value (as defined in the CREATE TABLE or ALTER TABLE statement), and the city column, which is set to NULL.
It's important to remember that you may skip columns in the table and set them to NULL, assuming they allow NULL values. Inserts that leave some columns NULL are called partial INSERTs. Here is a partial INSERT that performs the same work as the preceding example:
INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, 1)
The INSERT statement, combined with a nested SELECT statement, allows a table to be quickly populated with one or more rows from the result set of the SELECT statement. When using INSERT . . . SELECT between a target table and a source table, it is important to ensure that the datatypes returned by the SELECT statement are compatible with the datatypes in the target table. For example, to load data from the sales table into the new_sales table:
INSERT INTO sales (stor_id, ord_num, ord_date, qty, payterms,
 title_id)
SELECT
 CAST(store_nbr AS CHAR(4)),
 CAST(order_nbr AS VARCHAR(20)),
 order_date,
 quantity,
 SUBSTRING(payment_terms,1,12),
 CAST(title_nbr AS CHAR(1))
FROM new_sales
WHERE order_date >= 01-JAN-2005
-- Retrieve only the newer records
You must specify the columns in the table that will receive data by enclosing their names in parentheses, in a comma-delimited list. This column_list can be omitted, but all columns that are defined for the table are then assumed, in their ordinal positions. Any column with an omitted value will be assigned its default value (according to any DEFAULT column setting on the table) or, if no DEFAULT column setting exists, NULL. The columns in the column list may be in any order, but you may not repeat any column in the list. Furthermore, the columns and their corresponding value entries must agree in terms of datatype and size.
The first of the following two examples leaves off the column list, while the second uses only DEFAULT values:
INSERT INTO authors
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1)
INSERT INTO temp_details
DEFAULT VALUES
The first statement will succeed only if all the values in the value list correspond correctly with the datatypes and size limitations of the columns of the target table. Any inconsistencies will generate an error. The second statement will succeed only as long as defaults have been declared for the columns of the target table, or those columns allow NULL values.
Tip
Executing an INSERT statement without a column list is a "worst practice," since the statement may fail if the target table ever changes.

Programming Tips and Gotchas
INSERT statements will always fail under the following circumstances:
	When a datatype mismatch occurs between a column and its value

	When a column is defined as NOT NULL and the insertion value is NULL

	When a duplicate value is inserted into a UNIQUE or PRIMARY KEY constraint

	When the inserted values do not meet the requirements of a CHECK constraint

	When an inserted value is constrained by a FOREIGN KEY constraint because the value is not derived from the declared primary key of another table

The most common error encountered when executing INSERT statements is a mismatch between the number of columns and the number of values. If you accidentally leave out a value that corresponds to a column, you are likely to encounter an error that will cause the statement to fail.
INSERT statements also fail when an inserted value is of a datatype that is a mismatch with the column of the target table. For example, an attempt to insert a string like "Hello World" into an integer column would fail. On the other hand, some database platforms automatically and implicitly convert certain datatypes. For example, SQL Server will automatically convert a date value to a character string for insertion into a VARCHAR column.
Another common problem encountered with the INSERT statement is a size mismatch between a value and its target column. For example, inserting a long string into a CHAR(5) target column or inserting a very large integer into a TINYINT column can cause problems. Depending on the platform you are using, the size mismatch may cause an outright error and rollback of the transaction, or the database server may simply trim the extra data. Either result is undesirable. Similarly, a problem can arise when an INSERT statement attempts to insert a NULL value into a target column that does not accept NULLs.
Tip
Most problems with INSERT statements occur because the programmer does not know the target table very well. Make sure you understand the target table or view before writing elaborate INSERT statements.

MySQL
MySQL supports several INSERT syntax options that engender this platform's reputation for high speed:
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] [[database_name.]owner.]table_name [(column1[, ...])]
{VALUES ({value1 | DEFAULT}[, ...]) | select_statement |
 SET [ON DUPLICATE KEY UPDATE] column1=value1, column2=value2[, ...]}
where:
	LOW_PRIORITY | DELAYED | HIGH_PRIORITY
	Defers the execution of INSERT until no other clients are reading from the table, for LOW_PRIORITY. This may result in a long wait. LOW_PRIORITY should not be used with MyISAM tables, because it disables concurrent inserts. The DELAYED keyword allows the client to continue immediately, even if the INSERT has not yet completed. DELAYED is ignored with INSERT...SELECT and INSERT...ON DUPLICATE variations. HIGH_PRIORITY merely overrides the effect of servers running in low-priority mode; it does not otherwise boost priority (or processing speed) for queries running normally.

	IGNORE
	Tells MySQL not to attempt to insert records that would duplicate a value in a primary key or unique key; without this clause, the INSERT will fail if such duplication occurs. If a duplicate is encountered while the IGNORE clause is in use, the duplicate records are ignored while all the other records are inserted.

	SET column=value
	An alternate syntax that allows you to specify values for target columns by name.

	ON DUPLICATE KEY UPDATE
	Causes an INSERT operation that would create a duplicate value of in a UNIQUE index or PRIMARY KEY to update the value of the existing row.

Tip
MySQL does not support the ANSI-standard OVERRIDE clauses.

MySQL trims any portion of a value that has a size or datatype mismatch. Thus, inserting the value "10.23 X" into a decimal datatype column will cause " . . . X" to be trimmed from the inserted value. If you attempt to insert into a column a numeric value that is beyond the range of the column, MySQL will trim the value. Inserting an illegal time or date value in a column will result in a zero value for the target column. Inserting the string "Hello World" into a CHAR(5) column will result in the value being trimmed to just the five characters in "Hello". This string-trimming feature applies to CHAR, VARCHAR, TEXT, and BLOB columns.
MySQL supports a statement called REPLACE with similar syntax to INSERT that overwrites existing values rather than discarding rows that are duplicates. REPLACE is essentially the same as INSERT...IGNORE.

Oracle
Oracle's implementation of the INSERT statement allows data insertion into a given table, view, partition, subpartition, or object table. It also supports additional extensions such as inserting records into many tables at once and conditional inserts. The syntax is:
-- Standard INSERT statement
INSERT [INTO] {table_name [[SUB]PARTITION { (prtn_name) | (key_value) }] |
 (subquery) [WITH {READ ONLY | CHECK OPTION
 [CONSTRAINT constr_name]}] |
 TABLE (collection) [(+)] } [alias]
 [(column1[, ...])]
{VALUES (value1[, ...]) [RETURNING expression1[, ...]
 INTO variable1[, ...]] | select_statement [WITH {READ ONLY |
 CHECK OPTION [CONSTRAINT constr_name]}]}
-- Conditional INSERT statement
INSERT {[ALL | FIRST]} WHEN condition
 THEN standard_insert_statement
ELSE standard_insert_statement
[LOG ERRORS [INTO [schema.]table_name] [(expression)]
 [REJECT LIMIT {int | UNLIMITED}]]
where:
	INSERT [INTO]
	Inserts one or more rows into a single table, view, materialized view, or subquery. The INTO keyword is optional. You insert a single row using the VALUES clause and many rows using a subquery.

	table_name [[SUB]PARTITION { (prtn_name) | (key_value) }]
	Identifies the target into which you will insert data. The target may be a table, view, materialized view, or subquery. To enable you to fully qualify the target, table_name can expand to [schema.]table_name[@db_link]. You may optionally identify the schema and remote address (via @db_link) of the target, but the current schema and local database are assumed if you do not otherwise specify them. You may also optionally identify the PARTITION or SUBPARTITION (through the prtn_name parameter or a key_value for a hash partition or subpartition) into which the record(s) will be inserted, as long as the target is not an object table or object view.

	subquery
	Instructs Oracle to insert records into the base table or tables of the subquery, where the subquery is a normally formed SELECT statement. Essentially, you're using a subquery to construct a view on the fly, and the effect is the same as inserting into a view. This is the primary means for inserting values into multiple tables at one time. All of the columns defined by the subquery, across all tables, must have a corresponding value to insert, or a failure will occur. Multitable inserts must use the subquery format. The following options apply when using subqueries:
	WITH READ ONLY
	Indicates that the subqueried table or view cannot be updated until the statement completes.

	WITH CHECK OPTION [CONSTRAINT constr_name]
	Indicates that you cannot insert into the table or view rows that would not pass the constr_name check constraint.

	TABLE (collection) [(+)] } [alias]
	Tells Oracle that the collection should be treated like a standard target (i.e., a table or view), whether it be a subquery, a column, a function, or a collection constructor. In any event, the table collection must return a nested table or VARRAY set of values. Since constructions can be very long, you can provide an optional alias. Aliases are not allowed in multitable insert operations.

	(column1[, . . .])
	Specifies the target column(s) into which data will be inserted. If you leave off the list of columns, Oracle assumes that the VALUES clause or columns of the subquery will perfectly match the columns of the target. Oracle will return an error if you do not insert a value for any columns marked as NOT NULL that do not have defined default values.

	VALUES (value1[, . . .]) [RETURNING expression1[, . . .] INTO variable1[, . . .]]
	Inserts values into the target table or tables. As with the ANSI standard, there must be a matching value for every column, though the value can be DEFAULT or, if the column accepts NULLs, the literal NULL. DEFAULT is not allowed when inserting into a view. On multitable insert operations, the VALUES clause must return a corresponding value for every item in the select list of the subquery. The syntax is as follows:
	RETURNING expression1
	Retrieves the rows inserted by the operation. The expression returned by the statement is often a value being inserted, but it may be another value. For example, you might use the RETURNING clause to find the value of an automatically generated primary key. Single-row operations store the results into host variables or PL/SQL variables, while multirow operations store them in bind arrays. You can use RETURNING against tables, views with a single base table, and materialized views. The RETURNING clause is not allowed with multitable insert operations.

	INTO variable1
	Specifies the variables that will hold the values returned as a result of the RETURNING clause. You must declare a corresponding host variable or PL/SQL variable for each expression in the RETURNING clause. You cannot use the INTO clause to hold a LONG datatype; with remote objects; on views that have INSTEAD OF triggers; or with parallel INSERT, UPDATE, or DELETE statements.

	ALL
	Performs a multitable INSERT statement. ALL is used only with the subquery format. Without a WHEN clause, ALL unconditionally inserts all the data retrieved by the subquery into the tables defined. With a WHEN clause, ALL performs conditional insert operations that tell Oracle to evaluate all WHEN clauses regardless of the results of any other WHEN operation. Each time a WHEN clause evaluates as TRUE, Oracle executes the corresponding INTO clause. Multitable inserts are not parallelized on index-organized tables or bitmap indexed tables. They are not allowed at all when:
	The target is a view or materialized view.

	The target is a remote table.

	The INSERT command uses a TABLE collection expression.

	The table needs more than 999 total target columns.

	The subquery uses a sequence.

	FIRST
	Tells Oracle to evaluate the WHEN clauses in order and, when it finds the first TRUE expression, to execute the corresponding INTO clause and skip all other WHEN clauses.

	WHEN condition THEN standard_insert_statement
	Sets a condition and, when the condition is TRUE, executes the THEN insert clause. The value of condition is evaluated for each column returned in the result set of the subquery. Up to 127 WHEN clauses are allowed.

	ELSE standard_insert_statement
	Executes when no WHEN clause evaluates as TRUE.

	LOG ERRORS [INTO [schema.]table_name] [(expression)] [REJECT LIMIT {int | UNLIMITED}]
	Captures DML errors and logs column values of the affected rows into an error-logging table. INTO specifies the name of the error-logging table. When omitted, Oracle inserts the affected rows into a table with a name of ERR$_ prepended to the first 25 characters of the table name. expression is a literal string or general SQL expression (such as TO_CHAR(SYSDATE)) that you want inserted into the error-logging table. REJECT LIMIT allows an upper limit for the total number of errors allowed before terminating the DML operation and rolling back the transaction. (Note that you cannot track errors for LONG, LOB, or object type columns.)

Oracle allows the standard INSERT operations as described in the ANSI implementation section, such as INSERT . . . SELECT and INSERT . . . VALUES. However, it has a great many special variations.
When inserting into tables that have assigned sequences, be sure to use the <sequence_name>.nextval function call to insert the next logical number in the sequence. For example, assume you want to use the authors_seq sequence to set the value of au_id when inserting a new row into the authors table:
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)
When retrieving values during an INSERT operation, check for a one-for-one match between the expressions in the RETURNING clause and the variables of the INTO clause. The expressions returned by the clause do not necessarily have to be those mentioned in the VALUES clause. For example, the following INSERT statement places a record into the sales table, but places a completely distinct value into a bind variable:
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1)
RETURNING hire_date INTO :temp_hr_dt;
Notice that the RETURNING clause returns the hire_date even though hire_date is not one of the values listed in the VALUES clause. (In this example, it is reasonable to assume a default value was established for the hire_date column.)
An unconditional multitable INSERT statement into a lookup table that contains a list of all the approved jobs in the company looks like this:
INSERT ALL
 INTO jobs(job_id, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+1, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+2, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+3, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions
WHERE job_status = 'Active';
And just to make things more complex, Oracle allows multitable INSERT statements that are conditional:
INSERT ALL
 WHEN job_status = 'Active' INTO jobs
 WHEN job_status = 'Inactive' INTO jobs_old
 WHEN job_status = 'Terminated' INTO jobs_cancelled
 ELSE INTO jobs
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions;
Note that in the preceding example, you would have to follow each INTO clause with a VALUES clause if you were skipping NOT NULL columns in the target table. The following example shows this syntax:
INSERT FIRST
 WHEN job_status = 'Active'
 INTO jobs
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Inactive'
 INTO jobs_old
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Terminated'
 INTO jobs_cancelled
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Terminated'
 INTO jobs_outsourced
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 ELSE INTO jobs
 VALUES(job_id, job_desc, min_lvl, max_lvl)
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions;
Notice that in this example, the FIRST clause also tells Oracle to execute the first occurrence of job_status = 'Terminated' by inserting the records into the jobs_cancelled table and skipping the jobs_outsourced INSERT operation.
Oracle allows you to insert data into a table, partition, or view (also known as the target) using either a regular or a direct-path INSERT statement. In a regular insert, Oracle maintains referential integrity and reuses free space in the target. In a direct-path insert, Oracle appends data at the end of the target table without filling in any free space gaps elsewhere in the table. This method bypasses the buffer cache and writes directly to the datafiles; hence the term "direct-path."
Tip
Oracle allows the use of hints to circumvent default query optimization for INSERT statements. For example, you can use the APPEND hint to ensure that an INSERT uses a direct-path approach. Refer to the platform documentation for more details on hints that are usable with INSERT.

The direct-path approach enhances performance on long, multirecord insert operations. However, if any of the following are true, Oracle will perform a regular INSERT instead of a direct-path INSERT:
	The data in the target is altered with an UPDATE or DELETE statement before the INSERT statement, in a single transaction. (UPDATE and DELETE are allowed after the direct-path INSERT statement.)

	The INSERT statement is or may become distributed.

	The target contains a LOB or object datatype column.

	The target has a clustered index or index-organized table.

	The target has triggers or referential integrity constraints.

	The target is replicated.

	The ROW_LOCKING initialization parameter is set to INTENT.

In addition, Oracle will not allow you to query (e.g., using SELECT) a table later in the same transaction after you perform a direct-path INSERT into that table until a COMMIT has been performed.
Oracle allows you to use parallel direct-path inserts into multiple tables, but you may only use subqueries to insert the data into the tables, not a standard VALUES clause.
Tip
Inserting LOBs and BFILEs is tricky. You should initilize such values to NULL before inserting. RAW columns are also tricky. If you insert a regular string into a RAW column, all future queries against the column will be forced to use a table scan.

PostgreSQL
PostgreSQL supports the ANSI standard for the INSERT statement, but it does not support the ANSI SQL clause OVERRIDE SYSTEM GENERATED VALUES and has added support for a RETURNING clause:
INSERT INTO table_name [(column1[, ...])]
{[DEFAULT] VALUES | VALUES {(value1[, ...]) | DEFAULT} | SELECT_statement}
[RETURNING { * | column_value [AS output_name][, ...] }]
where:
	(column1[, . . .])
	Identifies one or more columns in the target table. The list must be enclosed in parentheses, and commas must separate each item in the list. SQL Server automatically provides values for IDENTITY columns, TIMESTAMP columns, and columns with DEFAULT constraints.

	DEFAULT
	Tells the INSERT statement simply to create a new record using all of the default values specified for the target table.

	RETURNING { * | column_value [AS output_name][, . . .] }
	Retrieves the rows inserted by the operation. You may return all columns using an asterisk (*), or one or more columns of the table with the heading output_name. For example, you might use the RETURNING clause to find the value of an automatically generated primary key.

PostgreSQL attempts to perform automatic datatype coercion when the expressions in the VALUE clause or the select item list of a subquery do not match the datatypes defined for the target table or view.

SQL Server
SQL Server supports a few extensions to the ANSI standard for INSERT. Specifically, it supports several rowset functions (explained below), as well as the capability to insert the results from stored procedures and extended procedures directly into the target table. SQL Server's syntax is:
[WITH cte_expression[, ...]]
INSERT [TOP (number) [PERCENT]]
[INTO] table_name [(column1[, ...])]
[OUTPUT expression INTO {@table_variable | output_table}
 [(column_list[, ...])]]
{[DEFAULT] VALUES | VALUES (value1[, ...]) | select_statement |
 EXEC[UTE] proc_name [[@param =] value] [OUTPUT] [, ...]]}
where:
	WITH cte_expression
	Defines the temporary named result set of a common table expression, derived from a SELECT statement, for the DELETE statement.

	INSERT [INTO] table_name
	Tells SQL Server that the target is a table, a view, or a rowset function. When inserting into a view, an INSERT cannot affect more than one of the base tables in the view, if there are more than one. Rowset functions allow SQL Server to source data from special or external data sources such as XML streams, full-text search file structures (a special structure in SQL Server used to store things like MS Word documents and MS PowerPoint slideshows within the database), or external data sources (such as an MS-Excel spreadsheet). Examples are shown later in this section. SQL Server currently supports the following rowset_functions for the INSERT statement:
	OPENQUERY
	Executes a pass-through INSERT against a linked server. This is an effective means of performing a nested INSERT against a data source that is external to SQL Server. The data source must first be declared as a linked server.

	OPENROWSET
	Executes a pass-through INSERT statement against an external data source. This is similar to OPENDATASOURCE, except that OPENDATASOURCE only opens the data source; it does not actually pass through an INSERT statement. OPENROWSET is intended for occasional, ad hoc usage only.

	TOP (number) [PERCENT]
	Indicates that the statement should insert only the specified number of rows. If PERCENT is specified, only the first number percent of the rows are inserted. If number is an expression, such as a variable, it must be enclosed in parentheses. The expression should be of the FLOAT datatype with a range of 0 to 100 when using PERCENT. When not using PERCENT, the value of number should conform to the rules for the BIGINT datatype.

	(column1[, . . .])
	Identifies one or more columns in the target table. The list must be enclosed in parentheses, and commas must separate each item in the list. SQL Server automatically provides values for IDENTITY columns, TIMESTAMP columns, and columns with DEFAULT constraints.

	OUTPUT expression INTO {@table_variable | output_table} [(column_list[, . . .])]
	Retrieves the rows affected by the command (whereas INSERT normally only shows the number of rows affected), placing the rows you specify in expression into either a given table_variable or output_table. If the column_list is omitted for the output_table, the output_table must have the same number of columns as the target table. The output_table cannot have triggers, participate in a foreign-key constraint, or have any CHECK constraints.

	DEFAULT
	Tells the INSERT statement simply to create a new record using all of the default values specified for the target table.

	EXEC[UTE] proc_name [[@param =] value] [OUTPUT][, . . .]]
	Tells SQL Server to execute a dynamic Transact-SQL statement, a stored procedure, a Remote Procedure Call (RPC), or an extended stored procedure and store the results in a local table. proc_name is the name of the stored procedure you wish to execute. You may optionally include any of the parameters of the stored procedure, as identified by @param (the at sign is required), assign a value to the parameter, and optionally designate the parameter as an OUTPUT parameter. The columns returned by the result set must match the datatypes of the columns in the target table.

Although SQL Server automatically assigns values to IDENTITY columns and TIMESTAMP columns, it does not do so for UNIQUEIDENTIFIER columns. Columns of either of the former datatypes can simply be skipped in the columns and values lists. However, you cannot do that with a UNIQUEIDENTIFIER column. Instead, you must use the NEWID() function to obtain and insert a globally unique ID (GUID):
INSERT INTO guid_sample (global_ID, sample_text, sample_int)
VALUES (NEWID(), 'insert first record','10000')
GO
When migrating between platforms, remember that inserting an empty string (' ') into a SQL Server TEXT or VARCHAR column results in a zero-length string being stored. This is not the same as a NULL value, as some platforms interpret it. When inserting into a table using the INSERT...SELECT variant, WITH hints are allowed on the subquery as long as you do not use READPAST, NOLOCK, and READUNCOMMITTED.
The following example illustrates the INSERT . . . EXEC statements. It first creates a temporary table called #ins_exec_container. Then, the first INSERT operation retrieves a listing of the c:\temp directory and stores it in the temporary table, while the second INSERT executes a dynamic SELECT statement:
CREATE TABLE #ins_exec_container (result_text
 VARCHAR(300) NULL)
GO
INSERT INTO #ins_exec_container
EXEC master..xp_cmdshell "dir c:\temp"
GO
INSERT INTO sales
EXECUTE ('SELECT * FROM sales_2002_Q4')
GO
This functionality can be very useful when you want to build business logic using Transact-SQL stored procedures; for example, to determine the state of objects in or outside of the database and then act on those results using Transact-SQL.
Tip
SQL Server allows the use of hints to circumvent default query optimization for INSERT statements. However, this type of tuning is recommended only for the most advanced users. Refer to the vendor documentation for more details on hints that are usable with INSERT.

Common table expressions may be used with SELECT, INSERT, UPDATE, and DELETE statements, as well as the CREATE VIEW statement. Common table expressions offer a means of naming and defining a temporary result set from a SELECT statement, even allowing recursive behaviors. When defining a common table expression, you may not use COMPUTE, COMPUTE BY, FOR XML, FOR BROWSE, INTO, OPTION, or ORDER BY clauses. Multiple SELECT statements are allowed in a common table expression only if they are combined with set operators such as UNION, UNION ALL, EXCEPT, or INSERSECT.
The following is a simple INSERT statement using a common table expression:
WITH direct_reports (Manager_ID, DirectReports) AS
(SELECT manager_ID, COUNT(*)
 FROM hr.employee AS e
 WHERE manager_id IS NOT NULL
 GROUP BY manager_id)
DELETE FROM direct_reports
WHERE DirectReports <= 1;
Performing an INSERT that shows what records and column values were inserted is easy using the OUTPUT clause:
INSERT hr.employee
 OUTPUT INSERTED.employee_id, INSERTED.employee_lname, INSERTED.employee_
fname
 INTO @my_temporary_table_variable
VALUES ('Insert Error', GETDATE());

See Also
	DELETE
	MERGE
	SELECT
	UPDATE

Name
INTERSECT Set Operator

The INTERSECT set operator retrieves the rows of two or more queries, where the rows of the result sets are identical in both the first and second (and possibly more) queries. In some ways, INTERSECT is a lot like an INNER JOIN operation (see the JOIN section for details).
INTERSECT is in a class of keywords called set operators. Other set operators include EXCEPT and UNION. All set operators are used to simultaneously manipulate the result sets of two or more queries; hence the term "set operators."
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
There is technically no limit to the number of queries that you may combine with the INTERSECT set operator. The general syntax is:
<SELECT statement1>
INTERSECT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
<SELECT statement2>
INTERSECT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
...

Keywords
	ALL
	Includes duplicate rows from all result sets.

	DISTINCT
	Drops duplicate rows from all result sets prior to the INTERSECT comparison. Columns containing a NULL value are considered duplicates. (If neither ALL nor DISTINCT is used, the DISTINCT behavior is the default.)

	CORRESPONDING
	Specifies that only columns with the same name in both queries are returned, even if both queries use the asterisk shortcut.

	BY
	Specifies that only the named columns are returned, even if more columns with corresponding names exist in the queries. Must be used with the CORRESPONDING keyword.

Rules at a Glance
There is only one significant rule to remember when using INTERSECT: the order and number of columns must be the same in all of the queries.
Also, while the datatypes of the corresponding columns do not have to be identical, they must be compatible (for example, CHAR and VARCHAR are compatible datatypes). By default, the result set will default to the largest of the columns in each ordinal position.

Programming Tips and Gotchas
None of the platforms support the ANSI CORRESPONDING [BY (column1, column2, . . .)] clause.
Tip
On platforms that do not support INTERSECT, substitute a query using FULL JOIN.

The ANSI standard evaluates INTERSECT as higher priority than other set operators, but not all platforms evaluate set operator precedence the same way. You can explicitly control the precedence of set operators using parentheses. Otherwise, the DBMS might evaluate the expressions either from leftmost to rightmost or from first to last.
According to the standard, only one ORDER BY clause is allowed in the entire query. It should be included at the end of the last SELECT statement. To avoid column and table ambiguity, be sure to alias each column of each table with the same respective alias. For example:
SELECT a.au_lname AS 'lastname', a.au_fname AS 'firstname'
FROM authors AS a
INTERSECT
SELECT e.emp_lname AS 'lastname', e.emp_fname AS 'firstname'
FROM employees AS e
ORDER BY lastname, firstname
Also, be aware that while your column datatypes may be compatible throughout the queries in the INTERSECT, there may be some variation in behavior across the DBMS platforms with regard to varying length of the columns. For example, if the au_lname column in the first query is markedly longer than the emp_lname column in the second query, different platforms may apply different rules as to which length is used for the final result. In general, though, the platforms will choose the longer (and less restrictive) column size for use in the result set.
Each DBMS may apply its own rules as to which column name is used if the columns across the tables have different names. In general, the column names from the first query are used.

MySQL
Not supported.

Oracle
Oracle supports the INTERSECT and INTERSECT ALL set operators using the basic ANSI SQL syntax:
<SELECT statement1>
INTERSECT
<SELECT statement2>
INTERSECT
...
Oracle does not support the CORRESPONDING clause. INTERSECT DISTINCT is not supported, but INTERSECT is the functional equivalent. Oracle does not support INTERSECT on the following types of queries:
	Queries containing columns with LONG, BLOB, CLOB, BFILE, or VARRAY datatypes

	Queries containing a FOR UPDATE clause or a TABLE collection expression

If the first query in the set operation contains any expressions in the select item list, you should include the AS keyword to associate an alias with the column resulting from the expression. Also, only the first query in the set operation may contain an ORDER BY clause.
For example, you could find all store IDs that also have sales using this query:
SELECT stor_id FROM stores
INTERSECT
SELECT stor_id FROM sales

PostgreSQL
PostgreSQL supports the INTERSECT and INTERSECT ALL set operators using the basic ANSI SQL syntax:
<SELECT statement1>
INTERSECT [ALL]
<SELECT statement2>
INTERSECT [ALL]
...
PostgreSQL does not support INTERSECT or INTERSECT ALL on queries with a FOR UPDATE clause, nor does it support the CORRESPONDING clause. INTERSECT DISTINCT is not supported, but INTERSECT is the functional equivalent.
The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the INTERSECT or INTERSECT ALL set operation may contain these clauses, but such queries must be enclosed in parentheses. Otherwise, the rightmost occurance of ORDER BY or LIMIT will be assumed to apply to the entire set operation.
For example, you can find all authors who are also employees and whose last last names start with "P":
SELECT a.au_lname
FROM authors AS a
WHERE a.au_lname LIKE 'P%'
INTERSECT
SELECT e.lname
FROM employee AS e
WHERE e.lname LIKE 'W%';

SQL Server
SQL Server supports the INTERSECT set operators using the basic ANSI SQL syntax:
<SELECT statement1>
INTERSECT [ALL]
<SELECT statement2>
INTERSECT [ALL]
The column names of the result set are those returned by the first query. Any column names or aliases referenced in an ORDER BY clause must appear in the first query. When using INTERSECT (or EXCEPT) to compare more than two result sets, each pair of result sets (i.e., each pair of queries) is compared before moving to the next pair in the order of expressions in parentheses first, INTERSECT set operators second, and EXCEPT and UNION last in order of appearance.
Also note that you can use NOT IN or NOT EXISTS operations in conjunction with a correlated subquery, as alternatives. Refer to the sections on IN and EXISTS for examples.

See Also
	EXCEPT
	SELECT
	UNION

Name
IS Operator

The IS operator determines whether a value is NULL or not.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
{WHERE | {AND | OR}} expression IS [NOT] NULL

Keywords
	{WHERE | {AND | OR}} expression IS NULL
	Returns a Boolean value of TRUE if the expression is NULL, and FALSE if the expression is not NULL. The expression evaluated for NULL can be preceded by the WHERE keyword or AND or OR keywords.

	NOT
	Inverses the predicate: the statement will instead return a Boolean TRUE if the value of expression is not NULL, and FALSE if the value of expression is NULL.

Rules at a Glance
Because the value of NULL is unknown, you cannot use comparison expressions to determine whether a value is NULL. For example, the expressions X = NULL and X <> NULL cannot be resolved because no value can equal, or not equal, an unknown.
Instead, you must use the IS NULL operator. Be sure that you do not put the word NULL within quotation marks, because if you do that, the DBMS will interpret the value as the word "NULL" and not the special value NULL.

Programming Tips and Gotchas
Some platforms support the use of a comparison operator to determine whether an expression is NULL. However, all platforms covered by this book now support the ANSI IS [NOT] NULL syntax.
Sometimes, checking for NULL will make your WHERE clause only slightly more complex. For example, rather than a simple predicate to test the value of stor_id, as shown here:
SELECT stor_id, ord_date
FROM sales
WHERE stor_id IN (6630, 7708)
you need to add a second predicate to accommodate the possibility that stor_id might be NULL:
SELECT stor_id, ord_date
FROM sales
WHERE stor_id IN (6630, 7708)
 OR stor_id IS NULL

See Also
	SELECT
	WHERE

Name
JOIN Subclause

The JOIN subclause enables you to retrieve rows from two or more logically related tables. You can define many different join conditions and types of joins, though the types of joins supported by the different platforms vary greatly.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
FROM table [AS alias] {CROSS JOIN |
 [NATURAL] [join_type] JOIN joined_table [[AS] alias]
 { ON join_condition1 [{AND | OR} join_condition2] [...] |
 USING (column1[, ...]) }}
[...]

Keywords
	FROM table
	Defines the first table or view in the join.

	NATURAL
	Specifies that the join (either inner or outer) should be assumed on the tables using all columns of identical name shared between the two tables. Consequently, you should not specify join conditions using the ON or USING clauses. The query will fail if you issue a natural join on two tables that do not contain any columns with the same name(s).

	[join_type] JOIN joined_table
	Specifies the type of JOIN and the second (and any subsequent) table(s) in the join. You may also define an alias on any of the joined_tables. The join types are:
	CROSS JOIN
	Specifies the complete cross product of two tables. For each record in the first table, all the records in the second table are joined, creating a huge result set. This command has the same effect as leaving off the join condition, and its result set is also known as a "Cartesian product." Cross joins are not advisable or recommended.

	[INNER] JOIN
	Specifies that unmatched rows in either table of the join should be discarded. If no join type is explicitly defined in the ANSI style, this is the default.

	LEFT [OUTER] JOIN
	Specifies that all records be returned from the table on the left side of the join statement. If a record returned from the left table has no matching record in the table on the right side of the join, it is still returned. Columns from the right table return NULL values when there is no matching row. It is a good idea to configure all your outer joins as left outer joins (rather than mixing left and right outer joins) wherever possible, for consistency.

	RIGHT [OUTER] JOIN
	Specifies that all records be returned from the table on the right side of the join statement, even if the table on the left has no matching record. Columns from the left table return NULL values when there is no matching row.

	FULL [OUTER] JOIN
	Specifies that all rows from both tables be returned, regardless of whether a row from one table matches a row in the other table. Any columns that have no value in the corresponding joined table are assigned a NULL value.

	UNION JOIN
	Specifies that all the columns of both tables and every row of both tables will be returned. Any columns that have no value in the corresponding joined table are assigned a NULL value.

	[AS] alias
	Specifies an alias or shorthand for the joined table. The AS keyword is optional when specifying an alias.

	ON join_condition
	Joins together the rows of the table shown in the FROM clause and the rows of the table declared in the JOIN clause. You may have multiple JOIN statements, all based on a common set of values. These values are usually contained in columns of the same name and datatype appearing in both of the tables being joined. These columns, or possibly a single column from each table, are called the join key or common key. Most (but not all) of the time, the join key is the primary key of one table and a foreign key in another table. As long as the data in the columns match, the join can be performed.

join_conditions are syntactically depicted in the following form (note that join types are intentionally excluded in this example):
FROM table_name1
JOIN table_name2
 ON table_name1.column1 = table_name2.column2
 [{AND|OR} table_name1.column3 = table_name2.column4]
 [...]
JOIN table_name3
 ON table_name1.columnA = table_name3.columnA
 [{AND|OR} table_name1.column3 = table_name2.column4]
 [...]
[JOIN...]
Use the AND operator and the OR operator to issue a JOIN with multiple conditions. It is also a good idea to use brackets around each pair of joined tables if more than two tables are involved, as this makes reading the query much easier.
	USING (column[, . . .])
	Assumes an equality condition on one or more named columns that appear in both tables. The column (or columns) must exist, as named, in both tables. Writing a USING clause is a little quicker than writing . . . ON table1.columnA = table2.columnA, but the results are functionally equivalent.

Rules at a Glance
Joins enable you to retrieve records from two (or more) logically related tables in a single result set. You can use an ANSI JOIN (detailed here) to perform this operation, or something called a theta join. Theta joins, which use a WHERE clause to establish the filtering criteria, are the "old" way to do join operations.
For example, you might have a table called employee that tracks information about everyone employed in your company. The employee table, however, doesn't contain extensive information about the job an employee holds; instead, it holds only job_ids. All information about the job, such as its description and title, are stored in a table called job. Using a JOIN, you can easily return columns from both tables in a single set of records. The following sample queries illustrate the difference between a theta and an ANSI JOIN:
/* Theta join */
SELECT emp_lname, emp_fname, job_title
FROM employee, jobs
WHERE employee.job_id = jobs. job_id;
/* ANSI join */
SELECT emp_lname, emp_fname, job_title
FROM employee
JOIN jobs ON employee.job_id = jobs.job_id;
Whenever you reference multiple columns in a single query, the columns must be unambiguous. In other words, the columns must either be unique to each table or be referenced with a table identifier. In the preceding example, both tables have a job_id column, so references to job_id must be qualified with a table identifier (the columns in the query that don't exist in both tables don't need to be qualified by table identifiers). However, queries like this are often very hard to read. The following variation of the previous ANSI join is in better form, because it uses the short, easy-to-read alias e to refer to the table:
SELECT e.emp_lname, e.emp_fname, j.job_title
FROM employee AS e
JOIN jobs AS j ON e.job_id = j.job_id;
The previous examples were limited to equi-joins, or joins using equality and an equals sign (=). However, most other comparison operators are also allowed: you can perform joins on >, <, >=, <=, <>, and so forth.
You cannot join on large object binary datatypes (e.g., BLOB) or any other large object datatypes (e.g., CLOB, NLOB, etc.). Other datatypes are usually allowed in a join comparison.
Warning
Cartesian products (i.e., a join between two or more tables that returns all the data for all the rows in all possible variations) are a really bad idea. Refer to the following description of CROSS JOINs so you know what they look like, and then avoid them!

Following are examples of each type of join:
	CROSS JOIN
	Following are some cross join examples. The first is a theta join that simply leaves off the join conditions, the second is written using the CROSS JOIN clause, and the final query is similar in concept to the first, with a JOIN clause that omits the join conditions:
SELECT *
FROM employee, jobs;

SELECT *
FROM employee
CROSS JOIN jobs;

SELECT *
FROM employee
JOIN jobs;

	INNER JOIN
	Following is an inner join written using the newer syntax:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
INNER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC
There are lots of authors in the authors table, but very few of them have cities that match their publishers' cities in the publishers table. For example, the preceding query executed in the pubs database on SQL Server produces results like the following:
first name last name publisher
--------------- -------------------- ------------------
Carson Cheryl Algodata Infosystems
Bennet Abraham Algodata Infosystems
The join is called an inner join because only those records that meet the join condition in both tables are said to be "inside" the join. You could also issue the same query, on platforms that support it, by substituting the USING clause for the ON clause:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
INNER JOIN publishers AS p USING (city)
ORDER BY a.au_lname DESC
The results for this above query would be the same.

	LEFT [OUTER] JOIN
	It is a good idea to configure all your outer joins as left outer joins, for greater consistency, rather than mixing left and right outer joins.
In the following example, we show a LEFT OUTER JOIN by asking for the publisher for each author (we could also substitute the USING clause for the ON clause, as shown in the earlier INNER JOIN example):
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
LEFT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC
In this example every author will be returned, along with the publisher's name where there is a match, or a NULL value where there is no match. For example, in the SQL Server pubs database, the query returns:
first name last name publisher
--------------- -------------------- ----------------
Yokomoto Akiko NULL
White Johnson NULL
Stringer Dirk NULL
Straight Dean NULL
...
All of the data is returned in the lefthand columns (those from the authors table), and any column on the righthand side (those from the publishers table) that does not have a match returns a NULL value. The result set shows NULL values where no data matches in the join.

	RIGHT [OUTER] JOIN
	A RIGHT OUTER JOIN is essentially the same as a LEFT OUTER JOIN, except everything is weighted toward the table on the right side of the query. For example, the following query executed in the pubs database on SQL Server:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
RIGHT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC
returns the following result set:
first name last name publisher
---------------- ---------------- ------------------------
Carson Cheryl Algodata Infosystems
Bennet Abraham Algodata Infosystems
NULL NULL New Moon Books
NULL NULL Binnet & Hardley
All of the data is returned on the righthand side of the query (hence the term "right outer join"), and any columns from the lefthand side that do not have a match return a NULL value. The result set shows NULL values where no data matches in the join.

	NATURAL [INNER | {LEFT | RIGHT} [OUTER]] JOIN
	Natural joins are a substitute for the ON or USING clause, so do not use NATURAL with those clauses. For example:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
NATURAL RIGHT OUTER JOIN publishers AS p
ORDER BY a.au_lname DESC
The preceding query will work the same as the earlier examples, but only if both tables possess a column called city and that is the only column that they hold in common. You could similarly perform any of the other types of joins (INNER, FULL, OUTER) using the NATURAL prefix.

	FULL [OUTER] JOIN
	Specifies that all rows from either table be returned, regardless of whether the records match. The result set shows NULL values where no data matches in the join. Note that the OUTER keyword is optional. If we take our earlier example query and render it as a FULL JOIN, it looks like this:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
FULL JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC
The result set returned by the query is actually the accumulation of the result sets of issuing separate INNER, LEFT, and RIGHT join queries (some records have been excluded for brevity):
first name last name publisher
-------------------- -------------------- --------------------
Yokomoto Akiko NULL
White Johnson NULL
Stringer Dirk NULL
...
Dull Ann NULL
del Castillo Innes NULL
DeFrance Michel NULL
Carson Cheryl Algodata Infosystems
Blotchet-Halls Reginald NULL
Bennet Abraham Algodata Infosystems
NULL NULL Binnet & Hardley
NULL NULL Five Lakes Publishin
NULL NULL New Moon Books
...
NULL NULL Scootney Books
NULL NULL Ramona Publishers
NULL NULL GGG&G
As you can see, with a FULL JOIN you get some records with the NULLs on the right and data on the left (LEFT JOIN), some with all of the data (INNER JOIN), and some with NULLs on the left and data on the right (RIGHT JOIN).

Programming Tips and Gotchas
If an explicit join_type is omitted, an INNER JOIN is assumed. Note that there are many types of joins, each with their own rules and behaviors, as described in the preceding section.
In general, you should favor the JOIN clause over the WHERE clause for describing join expressions. This not only keeps your code cleaner, making it easy to differentiate join conditions from search conditions, but also avoids the possibility of buggy behavior resulting from some platform-specific implementations of outer joins specified using the WHERE clause.
In general, we do not recommend the use of labor-saving keywords like NATURAL, since the subclause will not automatically update itself when the structures of the underlying tables change. Consequently, statements using these constructs may fail when a table change is introduced without also changing the query.
Not all join types are supported by all platforms, so refer to the following sections for full details on platform-specific join support.
Tip
Joins involving more than two tables can be difficult. When joins involve three or more tables, it is a good idea to think of the query as a series of two table joins.

MySQL
MySQL supports most ANSI syntax, except that natural joins are supported only on outer joins, not on inner joins. MySQL's JOIN syntax is:
FROM table [AS alias]
{[STRAIGHT_JOIN joined_table] |
{ {[INNER] | [CROSS] |
 [NATURAL] [{LEFT | RIGHT | FULL} [OUTER]]}
 JOIN joined_table [AS alias]
 { ON join_condition1 [{AND|OR} join_condition2] [...] } |
 USING (column1[, ...]) }}
[...]
where:
	STRAIGHT_JOIN
	Forces the optimizer to join tables in the exact order in which they appear in the FROM clause.
The STRAIGHT_JOIN keyword is functionally equivalent to JOIN, except that it forces the join order from left to right. This option was supplied because MySQL might, rarely, join the tables in the wrong order.
Refer to the earlier section "Rules at a Glance" for examples.

Oracle
Oracle fully supports the entire ANSI-standard JOIN syntax. However, Oracle only began to support ANSI-standard JOIN syntax in version 9. Consequently, any older Oracle SQL code exclusively uses WHERE clause joins. Oracle's old syntax for outer theta joins included adding "(+)" to the column names on the opposite side of the direction of the join. This comes from the fact that the table supplying the NULL value rows in effect has NULL value rows added to it.
For example, the following query does a RIGHT OUTER JOIN on the authors and publishers tables. The old Oracle syntax looks like this:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors a, publishers p
WHERE a.city(+) = p.city
ORDER BY a.au_lname DESC
while the same query in the ANSI syntax would look like this:
SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
RIGHT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC
Refer to the section "Rules at a Glance" for more JOIN examples.
Oracle is unique in offering partitioned outer joins, which are useful for filling gaps in result sets due to sparse data storage. For example, assume we store production records in a manufacturing table keyed on day and product_id. The table holds a row showing the quantity of each product produced during any day on which it is made, but there are no rows for the days it is not produced. This is considered sparse data, since a list of all rows will not show every day for every product. For calculation and reporting purposes, it's very useful to be able to create result sets where each product has a row for every day, regardless of whether or not it was manufactured on that day. A partitioned outer join makes it simple to do that, since it lets you define a logical partition and apply an outer join to each partition value. The following example does a partitioned outer join with a times table to make sure each product_id has the full set of dates in a specified time range:
SELECT times.time_id AS time, product_id AS id, quantity AS qty
FROM manufacturing
PARTITION BY (product_id)
RIGHT OUTER JOIN times
ON (manufacturing.time_id = times.time_id)
WHERE manufacturing.time_id
BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')
 AND TO_DATE('06/10/05', 'DD/MM/YY')
ORDER BY 2, 1;
Here is the output from this query:
time id qty
--------- ------ ---
01-OCT-05 101 10
02-OCT-05 101
03-OCT-05 101
04-OCT-05 101 17
05-OCT-05 101 23
06-OCT-05 101
01-OCT-05 102
02-OCT-05 102
03-OCT-05 102 43
04-OCT-05 102 99
05-OCT-05 102
06-OCT-05 102 87
Getting these results without using a partitioned outer join would require much more complex and less efficient SQL.

PostgreSQL
PostgreSQL fully supports the ANSI standard. Refer to the section "Rules at a Glance" for examples.

SQL Server
SQL Server supports INNER, OUTER, and CROSS joins using the ON clause. SQL Server does not support NATURAL join sytax, nor the USING clause. SQL Server's JOIN syntax is:
FROM table [AS alias]
{ {[INNER] | [CROSS] | [{LEFT | RIGHT | FULL} [OUTER]]}
 JOIN joined_table [AS alias]
 { ON join_condition1 [{AND|OR}
 join_condition2] [...] } }
[...]
Refer to the section "Rules at a Glance" for examples.

See Also
	SELECT
	WHERE

Name
LIKE Operator

The LIKE operator enables specified string patterns in SELECT, INSERT, UPDATE, and DELETE statements to be matched, specifically in the WHERE clause. A specified pattern may include special wildcard characters. The specific wildcards supported vary from platform to platform.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
WHERE expression [NOT] LIKE string_pattern
 [ESCAPE escape_sequence]

Keywords
	WHERE expression LIKE
	Returns a Boolean TRUE when the value of expression matches the string_pattern. The expression may be a column, a constant, a host variable, a scalar function, or a concatenation of any of these. It should not be a user-defined type, nor should it be certain types of LOBs.

	NOT
	Inverses the predictate: the statement returns a Boolean TRUE if the value of expression does not contain the string_pattern and returns FALSE if the value of expression contains the string_pattern.

	ESCAPE escape_sequence
	Allows you to search for the presence of characters that would normally be interpreted as wildcards.

Rules at a Glance
Matching string patterns is easy with LIKE, but there are a couple of simple rules to remember:
	All characters, including trailing and leading spaces, are important.

	Differing datatypes may be compared using LIKE, but they store string patterns differently. In particular, be aware of the differences between the CHAR, VARCHAR, and DATE datatypes.

	Using LIKE may negate indexes or force the DBMS to use alternative, less optimal indexes than a straight comparison operation.

The ANSI standard currently supports two wildcard operators that are supported by all of the platforms covered in this book:
	%
	Matches any string

	_ (underscore)
	Matches any single character

The first query in the following example retrieves any city record with "ville" in its name. The second query returns authors with a first name not like Sheryl or Cheryl (or Aheryl, Bheryl, Dheryl, 2heryl, and so forth):
SELECT * FROM authors
WHERE city LIKE '%ville%';
SELECT * FROM authors
WHERE au_fname NOT LIKE '_heryl';
Some of the platforms support additional wildcard symbols. These are described in the platform-specific sections that follow.
Use of the ESCAPE clause allows you to look for wildcard characters in the strings stored in your database. Using this mechanism, you designate a character—typically a character that does not otherwise appear in the pattern string—as your escape character. For example, you might designate the tilde (~) because you know it never appears in the pattern string. Any wildcard character preceded by the escape sequence is then treated not as a wildcard, but rather as the character itself. For example, we can look through the comments column of the sales_detail table (on SQL Server) to see whether any customers have mentioned a newly introduced discount using this query:
SELECT ord_id, comment
FROM sales_detail
WHERE comment LIKE '%˜%%' ESCAPE '˜'
In this case, the first and last %s are interpreted as wildcards, but the second % character is interpreted as just that (a % character), because it is preceded by the designated escape sequence.

Programming Tips and Gotchas
The usefulness of LIKE is based on the wildcard operators that it supports. LIKE returns a Boolean TRUE value when the comparison finds one or more matching values.
The default case sensitivity of the DBMS is very important to the behavior of LIKE. For example, Microsoft SQL Server is not case sensitive by default (though it can be configured that way). Thus, Microsoft SQL Server will evaluate the strings DAD and dad to be equal. Oracle, on the other hand, is case sensitive. Thus, on Oracle a comparison of DAD and dad would show them to be unequal. Here's an example query to better illustrate this point:
SELECT *
FROM authors
WHERE lname LIKE 'LARS%'
This query on Microsoft SQL Server would find authors whose last names are stored as 'larson' or 'lars', even though the search was for the uppercase 'LARS%'. Oracle, however, would not find 'Larson' or 'Lars', because Oracle performs case-sensitive comparisons.

MySQL
MySQL supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards, as well as the ESCAPE clause.
MySQL also supports the special functions of REGEXP and RLIKE, plus NOT REGEXP and NOT RLIKE for the evaluation of regular expressions. MySQL, after version 3.23.4, is not case-sensitive by default.

Oracle
Oracle supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards, and ESCAPE sequences. Oracle's LIKE syntax is as follows:
WHERE expression [NOT] {LIKE | LIKEC | LIKE2 |
 LIKE4} string_pattern
[ESCAPE escape_sequence]
The Oracle-specific syntax elements have the following meanings:
	LIKEC
	Uses UNICODE complete characters

	LIKE2
	Uses UNICODE USC2 codepoints

	LIKE4
	Uses UNICODE UCS4 codepoints

Since Oracle is case sensitive, you should enclose the expression, the string_pattern, or both with the UPPER function. That way, you are always comparing apples to apples.

PostgreSQL
PostgreSQL supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards and ESCAPE sequences.
PostgreSQL is case sensitive by default but provides the keyword ILIKE for case-insensitive pattern matching. You can also use the operators ~~ as an equivalent to LIKE, ~~* for ILIKE, and !~~ and !~~* for NOT LIKE and NOT ILIKE, respectively. These are all extensions to the ANSI SQL2003 standard.
For example, the following queries are functionally the same:
SELECT * FROM authors
WHERE city LIKE '%ville';
SELECT * FROM authors
WHERE city ˜˜ '%ville';
Since these queries are in lowercase, you might run into a case-sensitivity problem. That is, the queries are looking for a lowercase '%ville', but the table might contain uppercase (and unequal) values such as 'BROWNSVILLE', 'NASHVILLE', and 'HUNTSVILLE'. You can get around this as follows:
-- Convert the values to uppercase
SELECT * FROM authors
WHERE city LIKE UPPER('%ville');
-- Perform the pattern match using case insensitivity
SELECT * FROM authors
WHERE city ˜˜* '%ville';
SELECT * FROM authors
WHERE city ILIKE '%ville';
Although beyond the scope of this text, you should be aware that PostgreSQL also supports POSIX regular expressions. See the platform documentation for details.

SQL Server
SQL Server supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards, and ESCAPE sequences. It also supports the following additional wildcard operators:
	[]
	Matches any value in the specified set, as in [abc], or range, as in [k-n].

	[^]
	Matches any characters not in the specified set or range.

Using SQL Server's additional wildcard operators, you have some added capabilities. For example, you can retrieve any author with a last name like Carson, Carsen, Karson, or Karsen:
SELECT * FROM authors
WHERE au_lname LIKE '[CK]ars[eo]n'
or you can retrieve any author with a last name that ends in "arson" or "arsen," but is not Larsen or Larson:
SELECT * FROM authors
WHERE au_lname LIKE '[A-Z^L]ars[eo]n'
Tip
Remember that when you're performing string comparisons with LIKE, all characters in the pattern string are significant, including all leading and trailing blank spaces.

See Also
	SELECT
	UPDATE
	DELETE
	WHERE

Name
MERGE Statement

The MERGE statement is sort of like a CASE statement for DML operations. It combines UPDATE and INSERT statements into a single atomic statement with either/or functionality.
Basically, MERGE examines the records of a source table and a target table. If the records exist in both the source and target tables, the records in the target table are updated with the values of the records in the source table, based upon predefined conditions. If records that do not exist in the target table do exist in the source table, they are inserted into the target table. The MERGE statement was added in the SQL2003 release of the ANSI standard.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
MERGE INTO {object_name | subquery} [[AS] alias]
USING table_reference [[AS] alias]
ON search_condition
WHEN MATCHED
 THEN UPDATE SET column = { expression | DEFAULT }[, ...]
 WHEN NOT MATCHED
 THEN INSERT [(column[, ...])] VALUES (expression[, ...])

Keywords
	MERGE INTO {object_name | subquery}
	Declares the target object of the merge operation. The target object may be a table or updatable view of object_name, or it may be a nested table subquery.

	[AS] alias
	Provides an optional alias for the target table.

	USING table_reference
	Declares the source table, view, or subquery of the merge operation.

	ON search_condition
	Specifies the condition or conditions on which a match between the source and target table is evaluated. The syntax is essentially the same as the ON subclause of the JOIN clause. For example, when merging records from the new_hire_emp table into the emp table, the clause might look like ON emp.emp_id = new_hire_emp.emp_id.

	WHEN MATCHED THEN UPDATE SET column = { expression | DEFAULT }[, . . .]
	Declares that if a record from the source table has a matching record in the target table (based on the search_condition), one or more specified columns of the target table should be updated with the indicated value of expression.

	WHEN NOT MATCHED THEN INSERT [(column[, . . .])] VALUES (expression[, . . .]
	Declares that if a record from the source table does not have a matching record in the target table (based on the search_condition), a new record should be inserted into the target table using one or more specified columns with the value of expression.

Rules at a Glance
The rules for using MERGE are straightforward:
	The WHEN MATCHED and WHEN NOT MATCHED clauses are required, but may not be specified more than once.

	The target table can be a standard updatable table, an updatable view, or an updatable subquery.

	If the table_reference is a subquery, enclose it in parentheses.

	The search_condition clause should not contain any references to stored procedures or user-defined functions.

	The search_condition clause may contain multiple elements using the AND or OR operators.

	If the column list is omitted from the WHEN NOT MATCHED clause, a column list of all the columns in the target table, in ordinal position, is assumed.

Other important rules used by the MERGE statement are self-evident. For example, the columns referenced in the WHEN MATCHED clause must be updatable.

Programming Tips and Gotchas
The MERGE statement is sometimes nicknamed the "upsert" statement. That is because it allows, in a single operation, a set of records to be either inserted into a table or, if they already exist, updated with new values.
The only tricky aspect of the MERGE statement is simply getting used to the idea of the either/or processing of the INSERT and UPDATE statements.
Assume that we have two tables, EMP and NEW_HIRE. The EMP table contains all employees of the company who have successfully completed the mandatory 90-day probationary period at the start of their employment. Employees in the EMP table can also have several statuses, such as active, inactive, and terminated. Any new hire to the company is recorded in the NEW_HIRE table. After 90 days, they are moved into the EMP table like all other regular employees. However, since our company hires college interns every summer, it's very likely that some of our new hires will actually have a record in the EMP table from last year with a status of inactive. Using pseudocode, the business problem is summarized as:
For each record in the NEW_HIRE table
 Find the corresponding record in the EMP table
 If the record exists in the EMP table
 Update existing data in the EMP table
 Else
 Insert this record into the EMP table
 End If
End For
We could write a rather lengthy stored procedure that would examine all the records of the NEW_HIRE table and then conditionally perform INSERT statements for the entirely new employees or UPDATE statements for the returning college interns. However, the following ANSI-standard MERGE statement makes this process much easier:
MERGE INTO emp AS e
 USING (SELECT * FROM new_hire) AS n
 ON e.empno = n.empno
WHEN MATCHED THEN
 UPDATE SET
 e.ename = n.ename,
 e.sal = n.sal,
 e.mgr = n.mgr,
 e.deptno = n.deptno
WHEN NOT MATCHED THEN
 INSERT (e.empno, e.ename, e.sal, e.mgr, e.deptno)
 VALUES (n.empno, n.ename, n.sal, n.mgr, n.deptno);
As you can see, the MERGE statement is very useful for data-loading operations.

MySQL
Not supported. However, you may use the syntactically and functionally similar REPLACE statement to do the same thing as a MERGE statement.

Oracle
Oracle supports the MERGE statement with only the tiniest variations, which are almost entirely evident by comparing the Oracle syntax diagram against the ANSI-standard syntax diagram:
MERGE INTO [schema.]{object_name | subquery} [alias]
USING [schema.]table_reference [alias]
ON (search_condition)
WHEN MATCHED THEN
 UPDATE SET column = { expression | DEFAULT }[, ...]
WHEN NOT MATCHED THEN
 INSERT (column[, ...]) VALUES (expression[, ...]
[LOG ERRORS [INTO [schema.]table_name] [(expression)]
 [REJECT LIMIT { int | UNLIMITED}]]
The differences between the ANSI standard and Oracle's implementation include:
	The Oracle implementation does not allow the AS keyword with assigning an alias to the target or source table.

	Oracle requires parentheses around the search_condition clause.

	In Oracle the WHEN NOT MATCHED clause requires an insert column list, while the ANSI standard makes it optional.

Oracle supports error logging on the MERGE statement following the syntax LOG ERRORS [INTO [schema.]table_name] [(expression)] [REJECT LIMIT { int | UNLIMITED }]. This clause captures DML errors and logs column values of the affected rows into an error-logging table. INTO specifies the name of the error-logging table. When omitted, Oracle inserts the affected rows into a table with a name of ERR$_ prepended to the first 25 characters of the table name. expression is a literal string or general SQL expression (such as TO_CHAR(SYSDATE)) that you want inserted into the error-logging table. REJECT LIMIT allows an upper limit for the total number of errors allowed before terminating the DML operation and rolling back the transaction. (Note that you cannot track errors for LONG, LOB, or object type columns.)
Refer to the examples in the earlier "Rules at a Glance" and "Programming Tips and Gotchas" sections for more information.

PostgreSQL
Not supported.

SQL Server
SQL Server supports its own distinctive variant of the MERGE statement, starting in SQL Server 2008. In most ways, it is the same as the SQL3 ANSI standard. The syntax follows:
[WITH common_table_expression[, ...]]
MERGE [TOP (number) [PERCENT]]
[INTO] {object_name | subquery} [[AS] alias]
USING (table_reference) [[AS] alias]
ON search_condition
WHEN MATCHED
 THEN { UPDATE SET column = { expression | DEFAULT }[, ...] | DELETE }
WHEN [{[TARGET] | SOURCE}] NOT MATCHED
 THEN INSERT [(column[, ...])] [DEFAULT] VALUES (expression[, ...])
[OUTPUT expression [INTO {@table_variable | output_table}
 [(column_list[, ...])]]]
where:
	WITH cte_expression
	Defines the temporary named result set of a common table expression, derived from a SELECT statement, for the DELETE statement.

	TOP (number) [PERCENT]
	Indicates that the statement should insert only the specified number of rows. If PERCENT is specified, only the first number percent of the rows are inserted. If the number is an expression, such as a variable, it must be enclosed in parentheses. The expression should be of the FLOAT datatype with a range of 0 to 100 when using PERCENT. When not using PERCENT, the value of number should conform to the rules for the BIGINT datatype.

	WHEN {[TARGET] | SOURCE} NOT MATCHED
	Specifies the behavior of the transaction when a matching value is not discovered between the source and target tables. When neither keyword is specified, the TARGET behavior is assumed, so WHEN NOT MATCHED is equivalent to WHEN TARGET NOT MATCHED. The WHEN SOURCE NOT MATCHED clause is for use with additional search conditions, all of which must be matched for the condition to be considered satisfied. Otherwise, you should use WHEN [TARGET] NOT MATCHED. You may have two WHEN SOURCE NOT MATCHED clauses that specify different conditions for a DELETE operation and an UPDATE operation.

	OUTPUT expression INTO {@table_variable | output_table} [(column_list[, . . .])]
	Retrieves the rows affected by the command (whereas MERGE normally only shows the number of rows affected), placing the rows you specify in expression into either a given table_variable or output_table. If the column_list is omitted for the output_table, the output_table must have the same number of columns as the target table. The output_table cannot have triggers, participate in a foreign-key constraint, or have any CHECK constraints.

The MERGE statement allows a few variations on simply specifying a column name to update or insert values into. The column may be {DELETED | INSERTED | from_table_name}.{* | column_name} or $ACTION ($ACTION is a keyword that outputs the actual INSERT, UPDATE, or DELETE statement used by the MERGE statement, depending on the action(s) it performs). SQL Server maintains the same inserted and deleted pseudotables that are used in triggers to maintain transactional consistency within the MERGE statement. Therefore, a column may be referenced in the OUTPUT clause using the inserted or deleted pseudotables. In addition, any AFTER triggers declared on the target table may fire according to the INSERT, UPDATE, or DELETE triggers defined upon it and the INSERT, UPDATE, or DELETE transaction initiated by the MERGE statement.

See Also
	INSERT
	JOIN
	SELECT
	SUBQUERY
	UPDATE

Name
OPEN Statement

The OPEN statement is one of four commands used in cursor processing, along with DECLARE, FETCH, and CLOSE. Cursors allow you to process queries one row at a time, rather than as a complete set. The OPEN statement opens a pre-existing server cursor created with the DECLARE CURSOR statement.
Cursors are especially important in relational databases because databases are set-based, while most client-centric programming languages are row-based. Cursors allow programmers and databases to perform operations a single row at a time, while the default behavior of a relational database is to operate on a whole set of records.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Not supported

	SQL Server
	Supported

SQL2003 Syntax
OPEN cursor_name

Keywords
	OPEN cursor_name
	Identifies and opens the previously defined cursor created with the DECLARE CURSOR command.

Rules at a Glance
At the highest level, a cursor must be:
	Created using DECLARE

	Opened using OPEN

	Operated against using FETCH

	Dismissed using CLOSE

By following these steps, you create a result set similar to that generated by a SELECT statement, except that you can operate against each individual row within the result set.
The following generic SQL example opens a cursor and fetches the first and last names of all of the authors from the authors table:
DECLARE employee_cursor CURSOR FOR
 SELECT au_lname, au_fname
 FROM pubs.dbo.authors
 WHERE lname LIKE 'K%'
OPEN employee_cursor
FETCH NEXT FROM employee_cursor
BEGIN
 FETCH NEXT FROM employee_cursor
END
CLOSE employee_cursor

Programming Tips and Gotchas
The most common error encountered with the OPEN statement is failing to close the cursor properly. Although the OPEN statement is detailed in isolation here, it should always be managed as a group with the DECLARE, FETCH, and CLOSE statements. You won't get an error message if you fail to close a cursor, but the cursor may continue to hold locks and consume memory and other resources on the server as long as it is open. If you forget to close your cursors, you could end up creating a problem similar to a memory leak. Each cursor consumes memory until it is closed, so even if you're no longer use the cursors, they're still taking up memory that the database server might otherwise be using elsewhere. It's worth taking a little extra time to make sure that every declared and opened cursor is eventually closed.
Cursors are often used in stored procedures and in batches of procedural code. They are useful when you need to perform actions on individual rows rather than on entire sets of data at a time. But because cursors operate on individual rows and not on sets of data, they are often much slower than other means of accessing data. Make sure that you analyze your approach carefully. Many challenges, such as a convoluted DELETE operation or a very complex UPDATE, can be solved by using clever WHERE and JOIN clauses instead of cursors.

MySQL
Fully supports the SQL3 standard.

Oracle
Oracle fully supports the ANSI standard, and it allows parameters to be passed directly into the cursor when it is opened. Do this using the following format:
OPEN cursor_name [parameter1[, ...]]

PostgreSQL
PostgreSQL does not support the OPEN CURSOR statement. Instead, PostgreSQL implicitly opens a cursor when it is created using the DECLARE statement.

SQL Server
In addition to the standard OPEN statement, SQL Server allows "global" cursors using the following syntax:
OPEN [GLOBAL] cursor_name
where:
	cursor_name
	Specifies the name of a cursor (or is a string variable containing the name of a cursor) created earlier with the DECLARE CURSOR statement.

	GLOBAL
	Enables the cursor to be referenced by multiple users, even if they have not explicitly been assigned permissions to the cursor. If this keyword is omitted, a local cursor is assumed.

SQL Server allows you to declare several different kinds of cursors. If a cursor is INSENSITIVE or STATIC, the OPEN statement creates a temporary table to hold the cursor result set. Similarly, if the cursor is declared with the KEYSET option, a temporary table is automatically created to hold the keyset.

See Also
	CLOSE
	DECLARE
	FETCH
	SELECT

Name
ORDER BY Clause

The ORDER BY clause specifies the sort order of the result set retrieved by a SELECT statement.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
ORDER BY {sort_expression [COLLATE collation_name]
 [ASC | DESC]}[, ...]

Keywords
	ORDER BY
	Specifies the order in which rows should be returned by a query. You should not anticipate a specific ordering if you exclude the ORDER BY clause, even if you specify a GROUP BY clause and it appears that a sort has been done.

	sort_expression
	Specifies an item in the query that will help determine the order of the result set. You can have multiple sort_expressions. They are usually column names or column aliases from the query; however, they may also be expressions like (salary * 1.02). SQL92 allowed the use of ordinal positions for sort_expressions, but this functionality has been deprecated and should not be used in SQL2003 queries.

	COLLATE collation_name
	Overrides the default collation of the sort_expression and applies the collation_name to the sort expression for the purposes of the ORDER BY clause.

	ASC | DESC
	Specifies that the sort_expression should be returned in either ascending order (ASC) or descending order (DESC).

Rules at a Glance
The ORDER BY clause should reference columns as they appear in the select item list of the SELECT statement, preferably using their aliases (if aliases exist). For example:
SELECT au_fname AS first_name, au_lname AS last_name
FROM authors
ORDER BY first_name, last_name
The ORDER BY clause uses a major-to-minor sort ordering. This means that the result set is ordered by the first column referenced; equal values in the first column are then ordered by the second column, equal values in the second column are ordered by the third column, and so forth.
The individual aspects of a column's ordering—COLLATE and ASC/DESC—are independent of the other columns in the ORDER BY clause. Thus, you could order a result set in ascending order by one column, and then flip the next column and order it in descending order:
SELECT au_fname AS first_name, au_lname AS last_name
FROM authors
ORDER BY au_lname ASC, au_fname DESC
NULLs are always grouped together (i.e., considered equal) for the purposes of sorting. Depending on your platform, NULLs will be clumped together at the top or at the bottom of the result set. The following query on SQL Server:
SELECT title, price
FROM titles
ORDER BY price, title
provides this result set (edited for brevity):
title price
-- -------
Net Etiquette NULL
The Psychology of Computer Cooking NULL
The Gourmet Microwave 2.9900
You Can Combat Computer Stress! 2.9900
Life Without Fear 7.0000
Onions, Leeks, and Garlic: Cooking Secrets of the Me 20.9500
Computer Phobic AND Non-Phobic Individuals: Behavior 21.5900
But Is It User Friendly? 22.9500
You can force NULLs to appear at the top or bottom of the result set using ASC or DESC. Of course, all the non-NULL rows of the result set are also ordered in ascending or descending order.
The ANSI standard for ORDER BY also supports for the sort_expression the use of columns that are not referenced in the select item list. For example, the following query is valid under SQL2003:
SELECT title, price
FROM titles
ORDER BY title_id
Looking at this example, you can see that although the query does not select title_id, that column is the primary sort_expression. The result set is returned in title_id order even though that column is not selected.

Programming Tips and Gotchas
When using set operators (UNION, EXCEPT, INTERSECT), only the last query may have an ORDER BY clause. You should not use ORDER BY in subqueries of any type.
A number of behaviors that were supported in SQL92 are deprecated in SQL2003. You should avoid these usages:
	References to table aliases
	For example, ORDER BY e.emp_id should be changed to ORDER BY emp_id. If there is an ambiguous column name, use an alias to compensate.

	References to ordinal position
	Use explicitly defined column aliases to compensate.

You may sort not only on columns, but also on expressions involving columns, or even literals:
SELECT SUBSTRING(title,1,55) AS title, (price * 1.15) as price
FROM titles
WHERE price BETWEEN 2 and 19
ORDER BY price, title
When sorting on expressions from the select item list, you should use aliases to make the ORDER BY sort_expression column references easier.

MySQL
MySQL supports the ANSI standard, except for the COLLATE option.
You should not attempt to ORDER BY columns of the BLOB datatype, because only the first bytes, defined by the MAX_SORT_LENGTH setting, will be used in the sort. By default, MySQL sorts NULL values as lowest (first) for ASC order and highest (last) for DESC order.

Oracle
Oracle supports the ANSI standard, except for the COLLATE option. It also supports the SIBLINGS and NULLS {FIRST | LAST} options. Oracle's ORDER BY syntax is:
ORDER [SIBLINGS] BY
 {sort_expression [ASC | DESC] [NULLS {FIRST | LAST}]}[, ...]
where the Oracle-specific keywords are:
	ORDER [SIBLINGS] BY sort_expression
	Sorts the result set of the query in order of the sort_expression(s). A sort_expression may be a column name, an alias, an integer indicating a column's ordinal position, or another expression (e.g., salary * 1.02). The ORDER SIBLINGS BY clause tells Oracle to preserve any ordering specified by a hierarchical query clause (CONNECT BY), and to use the sort expression order for ordering of siblings in the hierarchy.

	NULLS {FIRST | LAST}
	NULLS FIRST and NULLS LAST specify that the records containing NULLs should appear either first or last, respectively. By default, Oracle places NULLs last for ascending-order sorts and first for descending-order sorts.

You can emulate the behavior of the COLLATE option for a single session by using the NLSSORT function with the NLS_SORT parameter. You can also emulate the behavior of the COLLATE option for all sessions on the server either explicitly, by using the NLS_SORT initialization parameter, or implicitly, with the NLS_LANGUAGE initialization parameter.
Oracle continues to support deprecated SQL92 features, such as sorting by ordinal position. However, you should not perform an ORDER BY on any LOB column, nested table, or VARRAY.

PostgreSQL
PostgreSQL supports the ANSI SQL2003 standard, with the exception of the COLLATE option. It also supports the USING extension:
ORDER BY {sort_expression1 [ASC | DESC | USING operator]}[, ...]
where:
	USING operator
	Specifies a specific comparison operator. Thus, you may sort by >, <, =, >=, <=, and so forth. Ascending order is the same as specifying USING <, while descending order is the same as USING >.

PostgreSQL sorts NULLs as the highest values. Thus, NULLs will appear at the end when sorting in ascending order, and at the beginning when sorting in descending order.

SQL Server
SQL Server fully supports the ANSI standard, including the COLLATE option. For example, the following query retrieves the authors' first names from the authors table in the SQL_Latin1 collation:
SELECT au_fname
FROM authors
ORDER BY au_fname
COLLATE SQL_Latin1_general_cp1_ci_as
SQL Server continues to support the deprecated SQL92 features of the ORDER BY clause, including the ability to specify ORDER BY columns by their ordinal positions.
By default, SQL Server sorts NULL values higher than all other values.
You should not use TEXT, IMAGE, or NTEXT columns as sort_expressions on SQL Server.

See Also
	SELECT

Name
RELEASE SAVEPOINT Statement

The RELEASE SAVEPOINT statement eliminates one or more previously created savepoints in the current transaction.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Not supported

	PostgreSQL
	Supported

	SQL Server
	Not supported

SQL2003 Syntax
RELEASE SAVEPOINT savepoint_name

Keywords
	savepoint_name
	Represents a named savepoint (or target specification) created earlier in the transaction with the SAVEPOINT statement. The savepoint_name must be unique within the transaction.

Rules at a Glance
Use the RELEASE SAVEPOINT statement within a transaction to destroy a named savepoint. Any savepoints that were created after the named savepoint will also be destroyed.
To illustrate the behavior of savepoints, the following example code inserts a few records, creates a savepoint named first_savepoint, and then releases it:
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);
SAVEPOINT first_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('366-36-3636', 'Duck', 'P.J.', 1);
RELEASE SAVEPOINT first_savepoint;
COMMIT;
In this example, the first_savepoint savepoint is destroyed and then all three records are inserted into the authors table.
In the next example, we perform the same action but with more savepoints:
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);
SAVEPOINT first_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);
SAVEPOINT second_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('366-36-3636', 'Duck', 'P.J.', 1);
SAVEPOINT third_savepoint;
RELEASE SAVEPOINT second_savepoint;
COMMIT;
In this example, when we release the savepoint called second_savepoint the database actually releases second_savepoint and third_savepoint, since third_savepoint was created after second_savepoint.
Once released, a savepoint name can be reused.

Programming Tips and Gotchas
Issuing either a COMMIT or a full ROLLBACK statement will destroy all open savepoints in a transaction. Issuing a ROLLBACK TO SAVEPOINT statement returns the transaction to its state at the specified savepoint; any savepoints declared afterward are nullified.

MySQL
Supports the SQL3 standard syntax.

Oracle
Not supported.

PostgreSQL
Supports the SQL3 standard syntax, although the keyword SAVEPOINT is optional:
RELEASE [SAVEPOINT] savepoint_name

SQL Server
Not supported.

See Also
	ROLLBACK
	SAVEPOINT

Name
RETURN Statement

The RETURN statement terminates processing within a SQL-invoked function (as opposed to a host-invoked function) or stored procedure and returns the routine's result value.
Tip
Some vendors use RETURNS instead of RETURN (the SQL standard).

	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported

SQL2003 Syntax
RETURN return_parameter_value | NULL

Keywords
	return_parameter_value
	Represents a value returned by the routine code. A wide variety of value types are possible.

	NULL
	Terminates the function without returning an actual value.

Rules at a Glance
Use the RETURN statement within procedural code to terminate processing. For example, you might create a user-defined function that takes a complex and often-used CASE expression and, when passed a parameter, returns a single, easy-to-understand expression value.

Programming Tips and Gotchas
Although the RETURN statement is categorized as a separate command within SQL, it is deeply intertwined with the CREATE FUNCTION and CREATE PROCEDURE statements. Consequently, the RETURN statement is almost always found embedded in one of these other commands. Check each statement's section in this book, or your vendor documentation, to get a more complete understanding of each platform's implementation of RETURN within the context of each statement.

MySQL
MySQL supports the ANSI-standard syntax for RETURN, excluding the NULL keyword:
RETURNS return_parameter_value

Oracle
Oracle supports the ANSI-standard syntax for RETURN, excluding the NULL keyword. (Oracle does support the return of a NULL value, just not using the ANSI syntax.) Oracle allows the RETURN clause only in user-defined functions and user-defined operators. The returned value cannot be a LONG, LONG RAW, or REF datatype in the CREATE OPERATOR statement. PL/SQL user-defined functions fully support Boolean datatypes internally, but you cannot invoke a Boolean UDF from a SQL statement. To hold Boolean values, use INT (0 or 1) or VARCHAR2 ('TRUE' or 'FALSE').
The following example creates a function that returns the value stored in the proj_rev variable to the calling session:
CREATE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0) -
 SUM(DECODE(action,'STARTED',amount,0) +
 SUM(DECODE(action,'PAYMENT',amount,0)
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;

PostgreSQL
PostgreSQL supports the ANSI-standard syntax for RETURN, excluding the NULL keyword:
RETURNS return_parameter_value
PostgreSQL allows you to define user-defined functions using either SQL code or C/C++. PostgreSQL does not currently allow stored procedures, though you can duplicate their functionality with user-defined functions. For the purposes of this discussion, we are interested only in SQL functions.
The output allowed by the return_parameter_value may be a base type, a complex type, a SETOF type, an OPAQUE modifier, or the same as the type of an existing column. The SETOF type modifier is used to return a set of items via the RETURNS statement, rather than a single data value. The OPAQUE modifier indicates that the RETURNS statement does not return a value. OPAQUE can be used only within triggers.

SQL Server
SQL Server supports the RETURN statement with this syntax:
RETURN [return_integer_value]
The RETURN command is typically used in stored procedures or user-defined functions. It causes an immediate and complete exit from the program and, optionally, returns an integer value upon exit. SQL Server procedures implicitly return a zero value if no RETURN clause is supplied in the procedure definition. Any commands that follow the RETURN statement are ignored.
The RETURN statement in the following function returns an integer representing the calculated value:
CREATE FUNCTION metric_volume -- Input dimensions in centimeters.
 (@length decimal(4,1),
 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic centimeters.
AS
BEGIN
 RETURN (@length * @width * @height)
END
GO
REVOKE
This example creates a function that returns a calculated value—the metric volume of a space—to the calling session.

See Also
	CREATE/ALTER FUNCTION/PROCEDURE
	CREATE/ALTER TRIGGER

Name
REVOKE Statement

The REVOKE statement takes two main forms. The first form of the statement removes specific statement permissions from a user, group, or role. The second form of the statement removes access permissions to specific database objects or resources.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
The SQL2003 syntax for REVOKE takes this general form:
REVOKE { [special_options] | {privilege[, ...] | role[, ...]} }
ON database_object_name
FROM grantee_name[, ...]
[GRANTED BY {CURRENT_USER | CURRENT_ROLE}]
{CASCADE | RESTRICT}

Keywords
	special_options
	Allows the use of one of three optional special_options:
	GRANT OPTION FOR
	Undoes the WITH GRANT OPTION privilege assigned to a user, meaning that the user can no longer grant privileges to other users on the object. That user's own privileges on the object remain intact. (This clause is valid to revoke a privilege, but not to revoke a role.)

	HIERARCHY OPTION FOR
	Undoes the WITH HIERARCHY OPTION privilege that allows a user to SELECT not only from the named table, but also all of its subtables. (This clause is valid to revoke a privilege, but not to revoke a role.)

	ADMIN OPTION FOR
	Undoes the ability to grant a role to other users. (This clause is valid to revoke a privilege, but not to revoke a role.)

	privilege
	Revokes privileges for a variety of statements, which may all be combined in any order:
	ALL PRIVILEGES
	Revokes all privileges currently assigned to the named users and/or for the specified database objects. Generally not a recommended approach, since it can encourage sloppy coding.

	EXECUTE
	Revokes the privileges to execute a routine (i.e., a stored procedure, user-defined function, or method).

	SELECT | INSERT | UPDATE | DELETE
	Revokes the specific privilege for a given user on the specified database object, such as a table or view. You may add a parenthetical list of the columns on a given table where the privilege will be revoked for SELECT, INSERT, and UPDATE privileges, to limit the action to those columns.

	REFERENCES
	Revokes the user's privilege to create any constraints or assertions referencing the database object as a parent object. You may add a parenthetical list of the columns on a given table where the privilege will be revoked, to limit the action to those columns.

	TRIGGER
	Revokes the user's ability to create triggers on the specified tables. As a side effect of the REVOKE, any triggers that depend on the privilege are also dropped.

	UNDER
	Revokes the privilege to create subtypes or typed tables.

	USAGE
	Revokes the privilege to use a domain, user-defined type, character set, collation, or translation.

	role
	Revokes a specific, predefined role from the named grantee identified in the FROM clause. For example, the database administrator might want to create a role called Reporter that has read-only access to several tables. When that role is granted to a user, the user is able to do all of the actions the role may do. See the section on the GRANT statement for more details.

	ON database_object_name
	Revokes privileges on a specific, predefined database object identified by the database_object_name provided. SQL2003 does not include support for system privileges, but many implementations provide a variation of this clause to revoke such privileges. (The ON subclause is not used at all when revoking system privileges or roles.) The database_object_name may be one of the following:
{ [TABLE] object_name | DOMAIN object_name |
 COLLATION object_name |
 CHARACTER SET object_name | TRANSLATION object_name |
 TYPE object_name | [SPECIFIC] {ROUTINE | FUNCTION |
 PROCEDURE | METHOD}
 object_name }

	FROM grantee_name
	Names the user(s) or role(s) who will lose the specified privilege(s). The PUBLIC keyword may be used to revoke privileges granted to the PUBLIC global user list. Multiple grantees can be listed with a comma between each.

	FROM { CURRENT_USER | CURRENT_ROLE }
	Optionally used to specify who granted the privilege to the user in the first place. For example, when using FROM CURRENT_USER, the privilege is revoked only if the current user granted the privilege. Otherwise, the statement will fail. When this clause is omitted, CURRENT_USER is the default.

	RESTRICT | CASCADE
	Limits a REVOKE operation to only the specified privilege (RESTRICT), or causes the specified privilege and all dependent privileges to be revoked (CASCADE) and possibly causes objects that depend on the privilege to be dropped. Note that REVOKE . . . RESTRICT will fail if dependent privileges exist. The dependent privileges must be revoked first.

Rules at a Glance
A specific privilege on a specific database object can be revoked for a single user using REVOKE privilege_name ON object_name FROM grantee_name RESTRICT. A specific privilege on a specific object may be revoked from all users via the PUBLIC global user list.
When revoking privileges from multiple grantees, simply place a comma between each. You may also revoke privileges from one or more grantees and the PUBLIC role in a single REVOKE statement. (PUBLIC is described in detail in the section on the GRANT statement. When a GRANT is issued to PUBLIC, that means everyone has the specified permissions.)
When revoking privileges on a table, the operation may be restricted to the column level by including a list of columns enclosed in parentheses after the table name.

Programming Tips and Gotchas
Most of the platforms isolate privileges at the user and role level. (Remember, a role is a group of privileges.) Thus, it's possible for an individual user who is assigned two roles to be granted the same permission three times. In this situation, to revoke that permission you would have to revoke the user's privilege directly and remove the user from both roles.
An important aspect of REVOKE (and its sister command GRANT) is that certain elements of the command are geared toward object-level permissions, while other options of the command are more oriented toward roles or administrative privileges. Generally, these operations are never combined. (The differences in object-level permissions and administrative privileges are fully explained in the database platform sections that follow.) For example, you might want to revoke certain object-level privileges for a given role (salespeople) or for individual users (e_fudd and prince_edward):
REVOKE SELECT ON TABLE authors FROM salespeople RESTRICT;
REVOKE ALL PRIVILEGES ON TABLE sales FROM e_fudd,
 prince_edward CASCADE;
A lot of table-level privileges can even be assigned down to the column level. Those privileges can be revoked as follows:
REVOKE INSERT(au_id, au_fname, au_lname)
 ON authors FROM e_fudd;
The special option clauses (GRANT OPTION, HIERARCHY OPTION, and ADMIN OPTION) all exist to allow you to revoke the ability of users to pass privileges or roles on to other users. However, these clauses do not prevent the first group of users themselves from exercising those privileges. For example, we can issue this command if we no longer want anyone in the role manager to grant their UPDATE privileges to other users:
REVOKE GRANT OPTION FOR UPDATE ON sales FROM manager CASCADE;
You can also remove role privileges from a user with the REVOKE command:
REVOKE manager FROM e_fudd CASCADE;
A common best practice is to keep REVOKE and GRANT statements as self-contained and logical as possible. Under this practice, you should avoid using the CASCADE and ALL PRIVILEGES clauses, because they perform work for you that may not be immediately evident within the scope of the command.

MySQL
MySQL supports many of the standard keywords of the ANSI standard. Notable exceptions include TRIGGER, EXECUTE, and UNDER. MySQL also has a nice shortcut to allow global assignment or revocation of privileges. Please refer back to the ANSI-standard description for those elements of the command not described below:
REVOKE [{ ALL [PRIVILEGES] |
 {SELECT | INSERT | UPDATE} [(column_name[, ...])] | DELETE |
 REFERENCES [(column_name[, ...])] } |
{ [USAGE] | [{ALTER | CREATE | DROP}] | [FILE] | [INDEX] | [PROCESS] |
 [RELOAD] | [SHUTDOWN] | [CREATE TEMPORARY TABLES] | [LOCK TABLES] |
 [REPLICATION CLIENT] | [REPLICATION SLAVE] | [SHOW DATABASES] |
 [SUPER] }[, ...]
ON [object_type] {table_name | * | *.* | database_name.*}
FROM user_name[, ...]
where:
	ALL [PRIVILEGES]
	Synonymous with ALL PRIVILEGES. On MySQL, this includes all privileges that apply at the level indicated by the ON clause, except the GRANT OPTION. (This includes privileges like SELECT, INSERT, UPDATE, DELETE, and others.)

	SELECT | INSERT | UPDATE | DELETE
	Revoke the ability to read, write, modify, and erase data from tables (and possibly from specific columns of a table), respectively.

	REFERENCES
	Unimplemented.

	USAGE
	Revokes all of a user's privileges.

	{ALTER | CREATE | DROP} ON table_name
	Revokes the ability to alter, create, or drop tables and other database objects.

	FILE
	Revokes the ability to load data from or write data to files using the SELECT INTO and LOAD DATA commands.

	INDEX
	Revokes the ability to create or drop indexes.

	PROCESS
	Revokes the ability to view running processes using SHOW FULL PROCESSLIST.

	RELOAD
	Revokes the ability to invoke the FLUSH command.

	SHUTDOWN
	Revokes the ability to use the MYSQLADMIN SHUTDOWN command to kill the server process.

	CREATE TEMPORARY TABLES
	Revokes the ability to create temporary tables.

	LOCK TABLES
	Revokes the ability to use the MySQL command LOCK TABLES on tables where the user has SELECT privileges.

	REPLICATION CLIENT
	Revokes the privilege to see metadata about replication slaves and masters.

	REPLICATION SLAVE
	Revokes the right to read binlogs of a replication master from a replication slave.

	SHOW DATABASES
	Revokes the privilege to execute the MySQL command SHOW DATABASES.

	SUPER
	Revokes the user privilege of opening one connection even if the MAX_CONNECTIONS threshold has been reached. Also revokes from the users the privileges to execute these MySQL commands: CHANGE MASTER, KILL, MYSQLADMIN DEBUG, PURGE [MASTER] LOGS, and SET GLOBAL.

	ON [object_type] {table_name | * | *.* database_name.*}
	Removes privileges from the specified table_name, from all tables within the current database with *, from all tables in the specified database_name with database_name.*, or from all tables in all databases with *.*. The optional object_type may be used to revoke privileges on specific objects (namely, TABLE, FUNCTION, or PROCEDURE object types).

	FROM
	Removes the privileges of one or more users, separated by commas. Usernames may also include an @host_name suffix, if you wish to restrict the revocation to a specific host computer.

REVOKE has size limitations: usernames cannot be longer than 16 characters, while host, database, and database object names can be up to 60 characters long. Usernames may also be linked to a specific host. Refer to the section on the GRANT command for more details.
Warning
MySQL's implementation of REVOKE does not explicitly roll back permissions on objects that are dropped. Thus, it is necessary to explicitly REVOKE permissions on a table, even if the table is dropped. For example, let's say you drop a table without issuing a REVOKE on the existing permissions. If you later recreate the table, all of the old permissions will still be in place. Similarly, a user's privileges still persist in the database, even after the user has been dropped.

It is also important to note that MySQL allows multiple levels of permissions. Thus, a user might have access to a table from a table-level grant, and have an additional set of permissions to the same table because she has been given global database or server-wide permissions. Thus, you need to be careful when revoking permissions, because global-level permissions might continue to provide to a user permissions you thought you had revoked!
The first of the following commands revokes all privileges on the sales table for users emily and dylan, while the second command revokes SELECT privileges for the user kelly in the current database:
REVOKE ALL PRIVILEGES ON sales FROM emily, dylan;
REVOKE SELECT ON * FROM kelly;
The first of the next two commands removes kelly's ability to grant privileges to other users on the sales table, while the second command removes privileges that the user sam has in the pubs database:
REVOKE GRANT OPTION ON sales FROM kelly;
REVOKE ALL ON pubs.* FROM sam;

Oracle
The REVOKE command can be used not only to immediately revoke object and system privileges, but also to revoke a role from a user (or a role from another role). Refer to the section on the GRANT statement for more information on the specific object and system privileges supported by the REVOKE command.
Tip
The two forms of the REVOKE command, REVOKE object_privilege and REVOKE system_privilege, are mutually exclusive. Do not attempt to do both operations in a single statement. Since the complete syntax for both forms of the command is extremely long, refer to the section on GRANT for more details on the different object_privileges and system_privileges.

Oracle provides an interesting twist on privileges. While other database platforms typically allow a user to have more than one context for a set of privileges (based on the individual user and again for any groups to which that user belongs), Oracle takes this one step further. More than one grantor may have given a user a particular privilege on a specific object. When this is the case, all grantors must revoke that privilege to effectively rid the user of the privilege. If even one grantor doesn't do this, the user still has the privilege.
In Oracle, use the following syntax with REVOKE:
REVOKE { [object_privilege][, ...]|
 [system_privilege] |
 [role] }
[ON { [schema_name.][object] |
 [DIRECTORY directory_object_name] |
 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]] }]
FROM {grantee_name[, ...] | role_name[, ...] | PUBLIC}
[CASCADE [CONSTRAINTS]] [FORCE];
where:
	object_privilege
	Revokes the specified privilege(s) for the given user(s) or role(s) on the named schema object (for example, a table or view).
	ALL [PRIVILEGES]
	Revokes all granted privileges on the named schema object. Since ALL also includes the REFERENCES privilege, you must include the CASCADE clause (see REFERENCES below).

	ALTER
	Revokes the privilege to change an existing table using the ALTER TABLE statement.

	EXECUTE
	Revokes the privilege to execute a stored procedure, user-defined function, or package.

	INDEX
	Revokes the privilege to create indexes on a table.

	REFERENCES
	Revokes the privilege to define referential integrity constraints. Requires that the CASCADE CONSTRAINTS clause also be used.

	SELECT | INSERT | DELETE | UPDATE
	Revokes the privilege to execute each of the respective SQL commands against the named schema object. Note that DELETE privileges are dependent on SELECT privileges.

	system_privilege
	Revokes the specified Oracle system privilege(s), such as CREATE TRIGGER or ALTER USER, for the given user(s) or role(s). Do not use the ON clause with the REVOKE system_privilege variation of the statement. Because there are so many system privileges, we won't list them again here. Please refer to the section on Oracle's implementation of the GRANT statement for a full list of system privileges.

	role
	Revokes a user's or role's membership in the named role.

	ON
	Revokes the named privilege for the given user(s) or role(s) from the named object. Objects include tables, views, sequences, stored procedures, user-defined functions, packages, materialized views, user-defined types, libraries, indextypes, user-defined operators, and synonyms for any of these. For example, you could revoke SELECT privileges for a given user on the scott.authors table. If you do not include the schema name, Oracle assumes the schema of the current user. Oracle also supports two additional keywords for special cases:
	DIRECTORY directory_object_name
	Identifies a directory object from which the privileges are revoked.

	JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]
	Identifies a Java source or a resource schema object from which the privileges are revoked.

	FROM {grantee_name | role_name |PUBLIC}
	Names the user or role that will lose the specified privilege. PUBLIC may also be used to revoke privileges granted to the PUBLIC role. Multiple grantees can be listed with a comma between each.

	CASCADE [CONSTRAINTS]
	Drops any referential integrity constraints that depend on the privilege being revoked. This clause is needed only when the REFERENCES or ALL [PRIVILEGES] clauses are used.

	FORCE
	Required to revoke EXECUTE object privileges on user-defined type objects with type or table dependencies.

Oracle automatically cascades the revocation from the defined grantee_name to all users that received their privileges from the grantee. In addition, any objects created by the grantee that depend on the privilege (such as stored procedures, triggers, views, and packages that depend on a SELECT privilege against a certain table) will become invalid.
Users who are granted the GRANT ANY ROLE system privilege may revoke any role. The REVOKE command can only revoke privileges specifically granted with the GRANT command, not privileges available through roles or the operating system. In those cases, you must use the REVOKE command to drop the privilege from the role. All users assigned to the role will then lose the privilege.
The following are examples of revoking a role from specific grantee and revoking a system privilege from a role:
REVOKE read_only FROM sarah;
REVOKE CREATE ANY SEQUENCE,
 CREATE ANY DIRECTORY FROM read_only;
Here's an example that revokes a REFERENCES privilege and cascades the revoked privileges:
REVOKE REFERENCES
ON pubs_new_york.emp
FROM dylan
CASCADE CONSTRAINTS;
Finally, the following example grants all privileges on a specific table, and then revokes a privilege:
GRANT ALL PRIVILEGES ON emp TO dylan;
REVOKE DELETE, UPDATE ON emp FROM dylan;

PostgreSQL
PostgreSQL offers base-level features of the REVOKE statement, primarily for revoking privileges on specific tables, views, and sequences. It does not offer the ANSI-standard special options like HIERARCHY OPTION FOR or ADMIN OPTION FOR. The syntax is as follows:
REVOKE [GRANT OPTION FOR]
{ privileges | { ALL [PRIVILEGES] | {SELECT | INSERT | DELETE | UPDATE} | RULE |
 REFERENCES| TRIGGERS | CREATE | USAGE }[, ...] }
ON { [TABLE] | SEQUENCE | DATABASE | FUNCTION | LANGUAGE | SCHEMA | TABLESPACE]
 object_name[, ...] }
FROM {grantee_name | GROUP group_name | PUBLIC}[, ...]
[{CASCADE | RESTRICT}]
where:
	REVOKE [GRANT OPTION FOR] privileges
	Revokes privileges for a variety of statements, which may be combined in any order. GRANT OPTION FOR revokes the privilege to grant privileges the named user/role possesses to other users/roles.

	ALL [PRIVILEGES]
	Shorthand for every privilege the grantor has available to grant. Revokes all privileges currently assigned to the named user(s) and/or group(s) for the specified database object(s). Generally not a recommended approach, since it can encourage sloppy coding.

	SELECT | INSERT | DELETE | UPDATE
	Revokes the specified privilege for a given user or group on the specified database object, such as a table or view. You may add a parenthetical list of the columns on a given table where the privilege will be revoked.

	RULE
	Revokes the user or group's privilege to create or drop a rule on a table or view.

	REFERENCES
	Revokes the user of group's privilege to create or drop foreign key constraints that reference the database object as a parent object.

	TRIGGERS
	Revokes the user or group's privilege to create or drop triggers on a table.

	CREATE
	Revokes a user or group's privilege to create objects.

	USAGE
	Revokes privileges to use a domain, user-defined type, or character set (as opposed to the UNDER privilege, which controls the ability to create these objects).

	FROM grantee_name[, . . .] | PUBLIC | GROUP group_name
	Names the user or role that will lose the specified privilege. PUBLIC may also be used to revoke privileges granted to the PUBLIC role (a role that implicitly includes all users). Multiple grantees can be listed with a comma between each.

	CASCADE | RESTRICT
	Limits a REVOKE operation to only the specified privilege (RESTRICT), or causes the specified privilege and all dependent privileges to be revoked (CASCADE). Only used with the GRANT OPTION FOR clause. When omitted, PostgreSQL assumes RESTRICT by default.

Refer to the section detailing PostgreSQL's implementation of the GRANT statement to see a full list of privileges allowed for each object type. You may, in turn, revoke any of these privileges that have been assigned to a user or role.
PostgreSQL's implementation of REVOKE is relatively straightforward. The only issue to be aware of is that PostgreSQL treats the term GROUP as a synonym for ROLE. For example, the following commands remove some privileges from the PUBLIC group and from the READ-ONLY group:
REVOKE ALL PRIVILEGES ON employee FROM public;
REVOKE SELECT ON jobs FROM read-only;
PostgreSQL does not support privileges on individual columns within a table or view.
When revoking the GRANT OPTION FOR clause, you should pay extra attention to dependencies. If you revoke a user's privilege with the RESTRICT keyword, the statement will fail if other users depend on the revokee. If you revoke a user's privilege with the CASCADE keyword, the statement will revoke privileges not only for the revokee, but for all users that depend on the revokee.

SQL Server
SQL Server implements the REVOKE statement as a means to undo any permission settings for a given user or role. This is significant because SQL Server supports an extension statement called DENY, which explicity disallows a user from a specific resource. REVOKE, in SQL Server, can be used to undo permissions granted to a user with GRANT. If you want to explicitly prevent a user from having a certain privilege, you must use the DENY statement.
SQL Server does not support the HIERARCHY OPTION and ADMIN OPTION clauses of the ANSI standard. Although the ADMIN OPTION clause is not supported, a couple of administrative privileges (CREATE and BACKUP) are supported in SQL Server's version of REVOKE. Use the following syntax:
REVOKE [GRANT OPTION FOR]
{ [object_privilege][, ...]|
 [system_privilege] }
[ON [class::][object] [(column[, ...])]]|
{TO | FROM} {grantee_name[, ...] | role[, ...] | PUBLIC | GUEST}
[CASCADE]
[AS {group_name | role_name}]
where:
	GRANT OPTION FOR
	Revokes the privilege of a user to grant a specific privilege to other users.

	object_privilege
	Revokes privileges for a variety of statements, which may be combined in any order. Refer to the discussion of SQL Server's implementation of the GRANT statement for a full list of object privileges.

	system_privilege
	Revokes privileges to execute commands and perform certain functions. Refer to the discussion of SQL Server's implementation of the GRANT statement for a full list of system privileges.

	ON object [(column[, . . .])]
	Removes the privilege for the user on the named object. If the object is a table or view, you may optionally revoke privileges on specific columns. You may revoke SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges on a table or view, but only SELECT and UPDATE privileges on the columns of a table or view. You may revoke EXECUTE privileges on a stored procedure, user-defined function, or extended stored procedure.

	{TO | FROM} {grantee_name | role | PUBLIC | GUEST}
	Names the user or role that will lose the specified privilege. PUBLIC may also be used to revoke privileges granted to the PUBLIC role (a role that implicitly includes all users). Multiple grantees can be listed with a comma between each. SQL Server also supports the role known as GUEST, an account used by all users who do not have a user account in the database.

	CASCADE
	Revokes privileges from users who received their permissions under the WITH GRANT OPTION clause. Required when using the GRANT OPTION FOR clause.

	AS {group_name | role_name}
	Defines the authority by which the privilege is revoked. In certain circumstances, a user may need to temporarily assume the privileges of a group to revoke the specified privileges. To accommodate this scenario, you can use the AS clause to assume the authority of a given group.

The two forms of the REVOKE command, REVOKE object_privilege and REVOKE system_privilege, are mutually exclusive. Do not attempt to do both operations in a single statement. The key syntactical difference between the two versions is that you should not include the ON clause when revoking system privileges. For example, to drop a system privilege:
REVOKE CREATE DATABASE, BACKUP DATABASE FROM dylan, katie
If commands were granted to a user with WITH GRANT OPTION enabled, the privilege should be revoked using both WITH GRANT OPTION and CASCADE. For example:
REVOKE GRANT OPTION FOR
SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
CASCADE
GO
REVOKE can be used only in the current database. Consequently, the CURRENT_USER and CURRENT_ROLE options in the ANSI variations are always implied. REVOKE is also used to disable any DENY settings.
Tip
SQL Server additionally supports the DENY statement, which is syntactically the same as REVOKE. However, it is conceptually different in that REVOKE neutralizes a user's privileges, while DENY explicitly prohibits a user from having certain privileges. You can use the DENY statement to keep a user or role from accessing a privilege, even it is granted through a role or an explicit GRANT statement.

You must use REVOKE to remove previously granted or denied privileges. For example, say the user kelly took an extended leave of absence for maternity leave. During that time, her permissions on the employee table were denied. Now that she's returned, we'll lift (REVOKE) the denied privileges:
DENY ALL ON employee TO kelly
GO
REVOKE ALL ON employee TO kelly
GO
In this example, the REVOKE command did not remove kelly's privileges; rather, it neutralized the DENY statement.

See Also
	GRANT

Name
ROLLBACK Statement

The ROLLBACK statement undoes a transaction to its beginning or to a previously declared savepoint. ROLLBACK also closes any open cursors.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with variations

SQL2003 Syntax
ROLLBACK [WORK]
[AND [NO] CHAIN]
[TO SAVEPOINT savepoint_name]

Keywords
	WORK
	An optional keyword, but basically just noise.

	AND [NO] CHAIN
	AND CHAIN tells the DBMS to end the current transaction, but to share the common transaction environment (such as transaction isolation level) with the next transaction. AND NO CHAIN simply ends the transaction (and is effectively the same as not including the clause at all).

	TO SAVEPOINT savepoint_name
	Allows the transaction to be rolled back to a named savepoint (that is, a partial rollback) rather than rolling back the entire transaction. The savepoint_name may be a literal expression or a variable. If no savepoint of savepoint_name is active, the statement will return an error. When the TO SAVEPOINT clause is omitted, all cursors are closed. When the TO SAVEPOINT clause is included, only the cursors that were open within the savepoint are closed.

In addition to undoing a single data-manipulation operation such as an INSERT, UPDATE, or DELETE statement (or a batch of them), the ROLLBACK statement undoes transactions up to the last issued START TRANSACTION, SET TRANSACTION, or SAVEPOINT statement.

Rules at a Glance
ROLLBACK is used to undo a transaction. It can be used to undo explicitly declared transactions that are started with a START TRAN statement or a transaction-initiating statement. It can also be used to undo implicit transactions that are started without a START TRAN statement. ROLLBACK is mutually exclusive of the COMMIT statement.
Most people associate commands like INSERT, UPDATE, and DELETE with the term "transaction." However, transactions encompass a wide variety of commands. The list of commands varies from platform to platform but generally includes any command that alters data or database structures and is logged to the database logging mechanism. According to the ANSI standard, all SQL statements can be undone with ROLLBACK.

Programming Tips and Gotchas
The most important gotcha to consider is that some database platforms perform automatic and implicit transations, while others require explicit transactions. If you assume a platform uses one method of transactions, you may get bitten. Thus, when moving between database platforms, you should follow a standard, preset way of addressing transactions. We recommend an explicit approach, using SET TRAN or START TRAN to begin a transaction and COMMIT or ROLLBACK to end a transaction.

MySQL
MySQL supports a simple and direct rollback mechanism, as well as the ANSI SQL CHAIN keyword:
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE] TO [SAVEPOINT] savepoint_name
The optional RELEASE clause allows you to specify that MySQL should automatically terminate the client connection when the current transaction has completed.
When creating a table in MySQL, beware that if you might issue a ROLLBACK against it, it must be transaction-safe. (A transaction-safe table is one declared with the InnoDB or NDB Cluster property. Refer to the CREATE TABLE statement for more information.) MySQL allows you to issue transaction-control statements like COMMIT and ROLLBACK against non-transaction-safe tables, but it will simply ignore them and autocommit as usual. In the case of a ROLLBACK against a non-transaction-safe table, the changes will not be rolled back.
MySQL, by default, runs in AUTOCOMMIT mode, causing all data modifications to automatically be written to disk. You can turn AUTOCOMMIT off by issuing the command SET AUTOCOMMIT=0. You can also control the autocommit behavior on a statement-by-statement basis using the BEGIN or BEGIN WORK command:
BEGIN;
SELECT @A:=SUM(salary) FROM employee WHERE job_type=1;
BEGIN WORK;
UPDATE jobs SET summmary=@A WHERE job_type=1;
COMMIT;
MySQL automatically issues an implicit COMMIT upon the completion of any of these statements: ALTER TABLE, BEGIN, CREATE INDEX, DROP DATABASE, DROP TABLE, RENAME TABLE, and TRUNCATE.
MySQL supports rollbacks using savepoints starting with version 4.0.14.

Oracle
Oracle supports the ANSI-standard form of the ROLLBACK statement with the addition of the FORCE clause:
ROLLBACK [WORK] {[TO [SAVEPOINT] savepoint_name] | [FORCE 'text']};
ROLLBACK clears all data modifications made to the current open transaction (or to a specific, existing savepoint). It also releases all locks held by the transaction, erases all savepoints, undoes all the changes made by the current transaction, and ends the current transaction.
ROLLBACK . . . TO SAVEPOINT rolls back just the portion of the transaction after the savepoint, erases all savepoints that followed, and releases all table- and row-level locks aquired after the savepoint. Refer to the section on the SAVEPOINT statement later in this chapter for more information.
Oracle's implementation closely follows the SQL standard, with the exception of the FORCE option. ROLLBACK FORCE rolls back an in-doubt, distributed transaction. You must have the FORCE TRANSACTION privilege to issue a ROLLBACK . . . FORCE statement. FORCE cannot be used with TO [SAVEPOINT]. ROLLBACK . . . FORCE affects not the current transaction but the transaction named in 'text', where 'text' must be equal to the local or global transaction ID of the transaction you want to roll back. (These transactions and their ID names are detailed in the Oracle system view DBA_2PC_PENDING.)
For example, you might want to roll back your current transaction to the salary_adjustment savepoint. These two commands are equivalent:
ROLLBACK WORK TO SAVEPOINT salary_adjustment;
ROLLBACK TO salary_adjustment;
In the following example, you roll back an in-doubt distributed transaction:
ROLLBACK FORCE '45.52.67'

PostgreSQL
PostgreSQL supports the basic form of ROLLBACK, with savepoints:
ROLLBACK { [WORK] | [TRANSACTION] | PREPARED }
[TO [SAVEPOINT] savepoint_name]
where:
	WORK | TRANSACTION
	Optional keywords that are not required.

	PREPARED
	Rolls back a transaction that was prepared earlier for two-phase commit (i.e., a prepared transaction). Only the superuser or the user who owns the prepared transaction may roll it back. Use the non-SQL3 PostgreSQL command PREPARE TRANSACTION to create a transaction for two-phase commit and the command COMMIT PREPARED to save the prepared transaction.

	TO [SAVEPOINT] savepoint_name
	Rolls back all commands that were executed after the savepoint was established. The savepoint stays active and can be reused later, if needed.

ROLLBACK clears all data modifications made to the current open transaction. It will return an error if no transaction is currently open. For example, to roll back all open changes, use:
ROLLBACK;
Be careful with cursors and rolling back to savepoints. For example, a cursor that is opened within a savepoint will be closed if the transaction is rolled back to that savepoint. If a cursor is open but has a savepoint midway through its FETCH processes, the cursor position will remain at the position that FETCH left it at (meaning that it won't be rolled back). A cursor will remain closed even if rolling back to a savepoint takes you back before the CLOSE CURSOR command was issued. Generally, it's a good idea not to mix cursors and savepoints.
Remember that only the command RELEASE SAVEPOINT permanently destroys a savepoint; otherwise, it remains active and reusable.
PostgreSQL supports ABORT as a synonym of ROLLBACK, in the form ABORT [WORK] or ABORT [TRANSACTION].

SQL Server
SQL Server supports both the WORK and TRAN keywords. The only difference between them is that the ROLLBACK WORK statement doesn't allow rolling back of a named transaction or to a specific savepoint:
ROLLBACK { [WORK] | [TRANSACTION] } {transaction_name | savepoint_name};
If ROLLBACK is issued alone without the WORK or TRAN keywords, it rolls back all current open transactions. ROLLBACK normally frees locks, but it does not free locks when rolling back to a savepoint.
SQL Server allows you to name a specific transaction_name in addition to a specific savepoint_name. You may reference them explicitly, or you may use variables within Transact-SQL.
SQL Server does not allow rolling back transactions to a savepoint with a two-phase commit (i.e., a distributed transaction on SQL Server).
ROLLBACK TRANSACTION, when issued in a trigger, undoes all data modifications, including those performed by the trigger, up to the point of the ROLLBACK statement. Nested triggers are not executed if they follow a ROLLBACK within a trigger; however, any statements within the trigger that follow the rollback are not impacted by the rollback. ROLLBACK behaves similarly to COMMIT with regard to nesting, resetting the @@TRANCOUNT system variable to zero. (Refer to the section on the COMMIT statement earlier in this chapter for more information on transaction control within a SQL Server nested trigger.)
Following is a Transact-SQL batch using COMMIT and ROLLBACK in Microsoft SQL Server. In this example, the code inserts a record into the sales table. If the insertion fails the transaction is rolled back, but if the insertion succeeds the transaction is committed:
BEGIN TRAN -- Initializes a transaction
-- The transaction itself
INSERT INTO sales
VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832')
-- Some error-handling in the event of a failure
IF @@ERROR <> 0
BEGIN
 -- Raises an error in the event log and skips to the end
 RAISERROR 50000 'Insert of sales record failed'
 ROLLBACK WORK
 GOTO end_of_batch
END
-- The transaction is committed if no errors are detected
COMMIT TRAN
-- The GOTO label that enables the batch to skip to
-- the end without committing
end_of_batch:
GO
SAVEPOINT sales1

See Also
	COMMIT
	RELEASE SAVEPOINT
	SAVEPOINT

Name
SAVEPOINT Statement

This command breaks a transaction into logical breakpoints. Multiple savepoints may be specified within a single transaction. The main benefit of the SAVEPOINT command is that transactions may be partially rolled back to a savepoint marker using the ROLLBACK command.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported, with limitations

SQL2003 Syntax
SAVEPOINT savepoint_name

Keywords
	SAVEPOINT savepoint_name
	Establishes a savepoint named savepoint_name within the current transaction.
Some vendors allow duplicate savepoint names within a transaction, but this is not recommended by the ANSI standard.
SQL2003 supports the statement RELEASE SAVEPOINT savepoint_name, enabling an existing savepoint to be eliminated. Refer to the "RELEASE SAVEPOINT Statement" section for more information about eliminating an existing savepoint.

Rules at a Glance
Savepoints are established within the scope of the entire transaction in which theyare defined, and savepoint names should be unique within their scope. Always make sure toprovide easy-to-understand names for your savepoints, because you'll be referencing them later in your programs. Furthermore, make sure you use BEGIN and COMMIT statements prudently, because accidentally placing a BEGIN statement too early or a COMMIT statement too late can have a dramatic impact on the way transactions are written to the database.

Programming Tips and Gotchas
Generally, reusing a savepoint name won't produce an error or warning, but a duplicate savepoint name will render the previous savepoint with the same name useless. So, be careful when naming savepoints!
When a transaction is initiated, resources (namely, locks) are expended to ensure transactional consistency. Make sure that your transaction runs to completion as quickly as possible so that the locks are released for others to use.
The following example performs several data modifications and then rolls back to a savepoint:
INSERT INTO sales
VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832');
SAVEPOINT after_insert;
UPDATE sales SET terms = 'Net 90'
WHERE sales_id = '7896';
SAVEPOINT after_update;
DELETE sales;
ROLLBACK TO after_insert;

MySQL
MySQL fully supports the ANSI implementation.

Oracle
Oracle fully supports the ANSI implementation.

PostgreSQL
PostgreSQL fully supports the ANSI implementation.

SQL Server
SQL Server does not support the SAVEPOINT command. Instead, it uses the SAVE command:
SAVE TRAN[SACTION] savepoint_name;
In addition, rather than declaring the literal name of the savepoint, you can optionally reference a variable containing the name of the savepoint. If you use a variable, it must be of the CHAR, VARCHAR, NCHAR, or NVARCHAR datatype.
SQL Server allows you to have many different named savepoints in a single transaction. However, be careful—since SQL Server supports multiple savepoints in a single transaction, it might appear that SQL Server fully supports nested savepoints, but in fact it does not. Any time you issue a commit or savepoint in SQL Server, it only commits or rolls back to the last open savepoint.
When the ROLLBACK TRAN savepoint_name command is executed, SQL Server rolls the transaction back to the specified savepoint, then continues processing with the next valid Transact-SQL command following the ROLLBACK statement. The transaction must ultimately be concluded with a COMMIT or a final ROLLBACK statement.

See Also
	COMMIT
	RELEASE SAVEPOINT
	ROLLBACK

Name
SELECT Statement

The SELECT statement retrieves rows, columns, and derived values from one or many tables of a database.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
The full syntax of the SELECT statement is powerful and complex, but can be broken down into these main clauses:
SELECT [{ALL | DISTINCT}] select_item [AS alias][, ...]
FROM [ONLY | OUTER]
 {table_name [[AS] alias] | view_name [[AS] alias]}[, ...]
[[join_type] JOIN join_condition]
[WHERE search_condition] [{AND | OR | NOT} search_condition [...]]
[GROUP BY group_by_expression {group_by_columns | ROLLUP group_by_columns |
 CUBE group_by_columns | GROUPING SETS (grouping_set_list) |
 () | grouping_set, grouping_set_list}
 [HAVING search_condition]]
[ORDER BY {order_expression [ASC | DESC]}[, ...]]

Keywords
Each of the keywords shown below, except the select_item clause, is discussed in greater detail in the "Rules at a Glance" section that follows:
	[{ALL | DISTINCT}] select_item
	Retrieves values that compose the query result set. Each select_item may be a literal, an aggregate or scalar function, a mathematic calculation, a parameter or variable, or a subquery, but a select_item is most commonly a column from a table or view. A comma must separate each item ina list of such items.
The schema or owner name should be prefixed to a column's name when it's extracted from a context outside of the current user's. If another user owns the table, that user must be included in the column reference. For example, assume the user jake needs to access data in the schema katie:
SELECT emp_id
FROM katie.employee;
You can use the asterisk (*) shorthand to retrieve all columns in every table or view shown in the FROM clause. It's a good idea to use this shortcut on single-table queries only.
ALL, the default behavior, returns all records that meet the selection criteria. DISTINCT tells the database to filter out any duplicate records, thus retrieving only one instance of many identical records.

	AS alias
	Replaces a column heading (when in the select_item clause) or a table name or view name (when in the FROM clause) with a shorter heading or name. This clause is especially useful for replacing cryptic or lengthy names with short, easy to understand names or mnemonics, and for when the column contains only derived data, so you don't end up with a column called something like ORA000189x7/0.02. It is also very useful in self-joins and correlated subqueries where a single query references the same table more than once. When multiple items appear in the select_item clause or FROM clause, make sure to place the commas after the AS alias clauses. Also, be careful to always use an alias uniformly once you introduce it into the query.

	FROM table_name
	Lists all of the tables and/or views from which the query retrieves data. Separate table and view names using commas. The FROM clause also allows you to assign aliases to long table/or view names or subqueries using the AS clause. Using shorter aliases instead of longer table or view names simplifies coding. (Of course, this might thwart the DBA's carefully planned naming conventions, but the alias only lasts for the duration of the query. Refer to the following section, "Rules at a Glance," for more information on aliases.) A FROM clause may contain a subquery (refer to the SUBQUERY section later in this chapter for details).

	ONLY
	Specifies that only the rows of the named table or view (and no rows in subtables or subviews) will be retrieved in the result set. When using ONLY, be sure to enclose the table_name or view_name within parentheses. ONLY is ignored if the table or view has no subtables or subviews.

	OUTER
	Specifies that the rows of the named table or view, along with the rows and columns of any and all subtables or subviews, will be retrieved in the result set. Columns of the subtables (or subviews) will be appended to the right, in subtable hierarchy order according to the depth of the subtable. In extensive hierarchies, subtables with common parents are appended in creation order of their types. When using OUTER, be sure to enclose the table_name or view_name within parentheses. OUTER is ignored if the table or view has no subtables or subviews.

	JOIN join_condition
	Joins together the result set of the table shown in the FROM clause to another table that shares a meaningful relationship based on a common set of values. These values are usually contained in columns of the same name and datatype that appear in both tables being joined. These columns, or possibly a single column from each table, are called the join key or common key. Most—but not all—of the time, the join key is the primary key of one table and a foreign key in another table. As long as the data in the columns matches, the join can be performed. (Note that joins can also be performed using the WHERE clause. This technique is sometimes called a theta join.)
join_conditions are most commonly depicted in the form:
JOIN table_name2 ON table_name1.column1 <comparison operator>
 table_name2.column1
JOIN table_name3 ON table_name1.columnA <comparison operator>
 table_name3.columnA
[...]
When the comparison_operator is the equals sign (=), a join is said to be an equijoin. However, the comparison operator may be <, >, <=, >=, or even <>.
Use the AND operator to issue a JOIN with multiple conditions. You can also use the OR operator to specify alternate join conditions.
If an explicit join_type is omitted, an INNER JOIN is assumed. Note that there are many types of joins, each with its own rules and behaviors (as described in the upcoming "Rules at a Glance" section). Also be aware that an alternate approach to the join condition, via the USING clause, exists:
	USING (column_name[, . . .])
	Acts as an alternative to the ON clause. With this clause, instead of describing the conditions of the join, you simply provide a column_name (or column names, separated by commas) that appears in both tables. The database then evaluates the join based on the column (or columns) of column_name that appear in both tables. (The column names must be identical in both tables.) In the following example, the two queries produce identical results:
SELECT emp_id
ROM employee
LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id
FROM employee AS e
LEFT JOIN sales AS s
 ON e.emp_id = s.emp_id
 AND e.region_id = s.region_id;

	WHEREsearch_condition
	Filters unwanted data from the result set of the query, returning only those records that satisfy the search conditions. A poorly written WHERE clause can ruin the performance of an otherwise useful SELECT statement, so mastering the nuances of the WHERE clause is of paramount importance. search_conditions are syntactically depicted in the form:
WHERE [schema.[table_name.]]column operator value
WHERE clauses usually compare the values contained in a column of the table. The values of the column are compared using an operator of some type (refer to Chapter 2 for more details). For example, a column might equal (=) a given value, be greater than (>) a given value, or be BETWEEN a range of values.
WHERE clauses may contain many search conditions concatenated together using the AND or OR Boolean operators, and parentheses can be used to impact the order of precedence of the search conditions. WHERE clauses can also contain subqueries (refer to the section on the WHERE subclause later in this chapter).

	GROUP BYgroup_by_expression
	Used in queries that utilize aggregate functions such as AVG, COUNT, COUNT DISTINCT, MAX, MIN, and SUM to group result sets into the categories you define in the group_by_expression. The group_by_expression of the GROUP BY clause has an elaborate syntax of its own:
[GROUP BY group_by_expression
where group_by_expression is:
{ (grouping_column[, ...]) | ROLLUP (grouping_column[, ...]) |
 CUBE (grouping_column[, ...]) | GROUPING SETS (grouping_set_list) |
 () | grouping_set, grouping_set_list }
Refer to the upcoming "Rules at a Glance" section for examples and more information on ROLLUP, CUBE, and GROUPING SETS.

	HAVINGsearch_condition
	Adds search conditions on the results of the GROUP BY clause in a manner similar to the WHERE clause. HAVING does not affect the rows used to calculate the aggregates. HAVING clauses may contain subqueries.

	ORDER BYorder_expression[ASC | DESC]
	Sorts the result set in either ascending (ASC) or descending (DESC) order using the order_expression specified. The order_expression is a list of columns, separated by commas, that you want to sort by.

Rules at a Glance
Each clause of the SELECT statement has a specific use. Thus, it is possible to speak individually of the FROM clause, the WHERE clause, the GROUP BY clause, and so forth. You can get more details and examples of SELECT statements by looking up the entries for each clause of the statement. However, not every query needs every clause. At a minimum, a query needs a SELECT item list and a FROM clause. Because the SELECT clause is so important and offers so many options, we've divided this "Rules at a Glance" section into the following detailed subsections:
	Aliases and WHERE clause joins

	The JOIN clause

	The WHERE clause

	The GROUP BY clause

	The HAVING clause

	The ORDER BY clause

Aliases and WHERE clause joins
Column names may need to be prefixed with their database, schema, and table names, particularly when the same column name may appear in more than one table in the query. For example, on an Oracle database, both the jobs table and scott's employee table may contain job_id columns. The following example joins the employee and jobs tables using the WHERE clause:
SELECT scott.employee.emp_id,
 scott.employee.fname,
 scott.employee.lname,
 jobs.job_desc
FROM scott.employee,
 jobs
WHERE scott.employee.job_id = jobs.job_id
ORDER BY scott.employee.fname,
 scott.employee.lname
You can also use aliases to write such a query more simply and clearly:
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM scott.employee AS e,
 jobs AS j
WHERE e.job_id = j.job_id
ORDER BY e.fname,
 e.lname
These two queries also illustrate the following important rules about WHERE clause joins:
	Use commas to separate multiple elements in the select_item list, tables in the FROM clause, and items in the order_expression.

	Use the AS clause to define aliases.

	Use aliases consistently throughout the SELECT statement once you define them.

In general, you should favor the JOIN clause (explained in a moment) over the WHERE clause for describing join expressions. This not only keeps your code cleaner, making it easy to differentiate join conditions from search conditions, but also allows you to avoid the counterintuitive behavior that may result from using the WHERE clause for outer joins in some implementations.

The JOIN clause
To perform the same query as in the previous example using an ANSI-style join, list the first table and the keyword JOIN, followed by the name of the table to be joined, the keyword ON, and the join condition that would have been used in the old-style query. The next example shows the preceding query in ANSI style:
SELECT e.emp_id, e.fname, e.lname, j.job_desc
FROM scott.employee AS e
JOIN jobs AS j ON e.job_id = j.job_id
ORDER BY e.fname, e.lname;
Alternately, you could use the USING clause. Instead of describing the conditions of the join, simply provide one or more column_names (separated by commas) that appear in both of the joined tables. The database then evaluates the join based on the column (or columns) of column_name that appear in both tables. (The column names must be identical in both tables.) In the following example, the two queries (one using the ON clause and one using the USING clause) produce identical results:
SELECT emp_id
FROM employee
LEFT JOIN sales USING (emp_id, region_id);
SELECT emp_id
FROM employee AS e
LEFT JOIN sales AS s
 ON e.emp_id = s.emp_id
 AND e.region_id = s.region_id;
You can specifiy several different types of joins in ANSI style:
	CROSS JOIN
	Specifies the complete cross product of two tables. For each record in the first table, all the records in the second table are joined, creating a potentially huge result set. (Of course, the result set would be small if both tables had only four records each, but imagine if they each had four million!) This command has the same effect as leaving off the join condition and is also known as a "Cartesian product." We do not recommend using cross joins.

	INNER JOIN
	Specifies that unmatched rows in either table of the join should be discarded. If no join type is explicitly defined in the ANSI style, this is the default.

	LEFT [OUTER] JOIN
	Specifies that all records be returned from the table on the left side of the join statement. If a record returned from the left table has no matching record in the table on the right side of the join, it is still returned, and the corresponding column from the right table returns a NULL value. Many professionals recommend configuring outer joins as left joins wherever possible for consistency.

	RIGHT [OUTER] JOIN
	Specifies that all records be returned from the table on the right side of the join statement, even if the table on the left has no matching record. In this case, the columns from the left table return NULL values.

	FULL [OUTER] JOIN
	Specifies that all rows from either table be returned, regardless of matching records in the other table. The result set shows NULL values where no matching data exists in the join.
Tip
Not all joins are supported by all platforms, so refer to the specific RDBMS sections for full details on platform-specific join support.

The WHERE clause
A poorly written WHERE clause can ruin an otherwise beautiful SELECT statement, so the nuances of the WHERE clause must be mastered thoroughly. Here is an example of a typical query and a multipart WHERE clause:
SELECT a.au_lname,
 a.au_fname,
 t2.title,
 t2.pubdate
FROM authors a
JOIN titleauthor t1 ON a.au_id = t1.au_id
JOIN titles t2 ON t1.title_id = t2.title_id
WHERE (t2.type = 'business' OR t2.type = 'popular_comp')
 AND t2.advance > 5500
ORDER BY t2.title
In examining this query, note that the parentheses impact the order of processing for the search conditions. You can use parentheses to move search conditions up or down in precedence, just like you would in an algebra equation.
Tip
On some platforms, the database's default collation (also known as the sort order) impacts how the WHERE clause filters results for a query. For example, SQL Server is (by default) dictionary-order and case insensitive, making no differentiation between "Smith," "smith," and "SMITH." Oracle, however, is dictionary-order and case sensitive, finding the values "Smith," "smith," and "SMITH" to be unequal.

The WHERE clause offers many more specific capabilities than the preceding example illustrates. The following list references some of the more common capabilities of the WHERE clause:
	NOT
	Inverts a comparison operation using the syntax WHERE NOT expression. Thus, you might use WHERE NOT LIKE . . . or WHERE NOT IN . . . in a query.

	Comparison operators
	Compare any set of values, using the operations <, >, <>, >=, <=, and =. For example:
WHERE emp_id = '54123'

	IS NULL or IS NOT NULL conditions
	Search for any NULL or NOT NULL values using the syntax WHERE expression IS [NOT] NULL.

	AND
	Merges multiple conditions, returning only those records that meet all conditions, using the AND operator. The maximum number of multiple conditions is platform-dependent. For example:
WHERE job_id = '12' AND job_status = 'active'

	OR
	Merges alternative conditions, returning records that meet any of the conditions, using the OR operator. For example:
WHERE job_id = '13' OR job_status = 'active'

	LIKE
	Tells the query to use a pattern-matching string contained within quotation marks. The wildcard symbols supported by each platform are detailed in their individual sections. All platforms support the percent sign (%) for a wildcard symbol. For example, to find any phone number starting with the 415 area code:
WHERE phone LIKE '415%'

	EXISTS
	Used only with subqueries, EXISTS tests to see whether the subquery data exists. It is typically much faster than a WHERE IN subquery. For example, the following query finds all authors who are also employees:
SELECT au_lname FROM authors WHERE EXISTS (SELECT last_name FROM employees)

	BETWEEN
	Performs a range check to see whether a value is in between two values (inclusive of those two values). For example:
WHERE ytd_sales BETWEEN 4000 AND 9000.

	IN
	Performs a test to see whether an expression matches any one value out of a list of values. The list may be literal, as in WHERE state IN ('or', 'il', 'tn', 'ak'). The list of values may also be derived using a subquery:
WHERE state IN (SELECT state_abbr FROM territories).

	SOME | ANY
	Functions the same as the EXISTS operation, though with slightly different syntax. For example, the following query finds all authors who are also employees:
SELECT au_lname FROM authors WHERE au_lname = SOME(SELECT last_name FROM employees)

	ALL
	Performs a check to see whether all records in the subquery match the evaluation criteria, and returns TRUE when the subquery returns zero rows. For example:
WHERE city = ALL (SELECT city FROM employees WHERE emp_id = 54123)

The GROUP BY clause
The GROUP BY clause (and the HAVING clause) is needed only in queries that utilize aggregate functions.
The GROUP BY clause is used to report an aggregated value for one or more rows returned by a SELECT statement based on one or more non-aggregated columns called grouping columns. For example, here is a query that counts up how many people we hired each year during the years 1999 through 2004:
SELECT hire_year, COUNT(emp_id) AS nbr_emps
FROM employee
WHERE status = 'ACTIVE'
 AND hire_year BETWEEN 1999 AND 2004
GROUP BY hire_year;
The results are:
hire_year nbr_emps
--------- --------
1999 27
2000 17
2001 13
2002 19
2003 20
2004 32
Queries using aggregate functions provide many types of summary information. The most common aggregate functions include:
	AVG
	Returns the average of all non-NULL values in the specified column(s)

	AVG DISTINCT
	Returns the average of all unique, non-NULL values in the specified column(s)

	COUNT
	Counts the occurrences of all non-NULL values in the specified column(s)

	COUNT DISTINCT
	Counts the occurrences of all unique, non-NULL values in the specified column(s)

	COUNT(*)
	Counts every record in the table

	MAX
	Returns the highest non-NULL value in the specified column(s)

	MIN
	Returns the lowest non-NULL value in the specified column(s)

	SUM
	Totals all non-NULL values in the specified column(s)

	SUM DISTINCT
	Totals all unique, non-NULL values in the specified column(s)
Some queries that use aggregates return a sole value. Single-value aggregates are known as a scalar aggregates. Scalar aggregates do not need a GROUP BY clause. For example:
--Query
SELECT AVG(price)
FROM titles
--Results
14.77

Queries that return both regular column values and aggregate function values are commonly called vector aggregates. Vector aggregates use the GROUP BY clause and return one or many rows. There are a few rules to follow when using GROUP BY:
	Place GROUP BY in the proper clause order—after the WHERE clause and before the ORDER BY clause.

	Include all non-aggregate columns in the GROUP BY clause.

	Do not use column aliases in the GROUP BY clause, though table aliases are acceptable.

For example, let's suppose you need to know the total purchase amount of several purchases, with an Order_Details table that looks like this:
OrderID ProductID UnitPrice Quantity
----------- ----------- ------------------- --------
10248 11 14.0000 12
10248 42 9.8000 10
10248 72 34.8000 5
10249 14 18.6000 9
10249 51 42.4000 40
10250 41 7.7000 10
10250 51 42.4000 35
10250 65 16.8000 15
...
The following example will give you the results:
SELECT OrderID, SUM(UnitPrice * Quantity) AS 'Order Amt'
FROM order_details
WHERE orderid IN (10248, 10249, 10250)
GROUP BY orderid
The results are:
OrderID Order Amt
----------- ----------------
10248 440.0000
10249 1863.4000
10250 1813.0000
We could further refine the aggregations by using more than one grouping column. Consider the following query, which retrieves the average price of our products, grouped first by name and then by size:
SELECT name, size, AVG(unit_price) AS 'avg'
FROM product
GROUP BY name, size
The results are:
Name Size avg
------------ ------ -----------------------
Flux Capacitor small 900
P32 Space Modulator small 1400
Transmorgrifier medium 1400
Acme Rocket large 600
Land Speeder large 6500
In addition, the GROUP BY clause supports a number of very important subclauses:
	GROUP BY [{ROLLUP | CUBE}] ([grouping_column[, . . .]])[, grouping set list]
	Groups the aggregate values of the result set by one or more grouping columns. (Without ROLLUP or CUBE, the GROUP BY (grouping_column[, . . .]) clause is the simplest and common form of the GROUP BY clause.)

	ROLLUP
	Produces subtotals for each set of grouping columns as a hierarchical result set, adding subtotal and grand total rows into the result set in a hierarchical fashion. ROLLUP operations return one row per grouping column, with NULL appearing in the grouping column to show the subtotaled or totaled aggregate value (illustrated in a moment).

	CUBE
	Produces subtotals and cross-tabulated totals for all grouping columns. In a sense, the CUBE clause enables you to quickly return multidimensional result sets from standard relational tables without a lot of programmatic work. CUBE is especially useful when working with large amounts of data. Like ROLLUP, CUBE provides subtotals of the grouping columns, but it also includes subtotal rows for all possible combinations of the grouping columns specified in the query.

	GROUP BY GROUPING SETS [{ROLLUP | CUBE}] ([grouping_column[, . . .]])[, grouping set list]
	Enables aggregated groups on several different sets of grouping columns within the same query. This is especially useful when you want to return only a portion of an aggregated result set. The GROUPING SETS clause also lets you select which grouping columns to compare, whereas CUBE returns all of the grouping columns and ROLLUP returns a hierarchical subset of the grouping columns. As the syntax shows, the ANSI standard also allows GROUPING SETS to be paired with ROLLUP or CUBE.

Consider the clauses shown in Table 3-4 and the result sets they return.
Table 3-4. GROUP BY syntax variations
	GROUP BY syntax
	Returns the following sets

	
GROUP BY (col_A, col_B, col_C)

	
(col_A, col_B, col_C)

	
GROUP BY ROLLUP (col_A, col_B, col_C)

	
(col_A, col_B, col_C)
(col_A, col_B)
 (col_A)
 ()

	
GROUP BY CUBE (col_A, col_B, col_C)

	
(col_A, col_B, col_C)
 (col_A, col_B)
 (col_A)
 (col_B, col_C)
 (col_B)
 (col_C)
 ()

	
GROUP BY GROUPING SETS
 ((col_A, col_B),
 (col_A, col_C), (col_C))

	
Subquery:
 SELECT *
 FROM stores
 WHERE stor_id IN
 (SELECT stor_id FROM sales
 WHERE ord_date >
 '01-JAN-2004')

Each type of GROUP BY clause returns a different set of aggregated values and, in the case of ROLLUP and CUBE, totals and subtotals.
The concepts of ROLLUP, CUBE, and GROUPING SETS are much more intuitive when explained by example. In the following example, we query for data summarizing the number of sales_orders by order_year and by order_quarter:
SELECT order_year AS year, order_quarter AS quarter,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY ROLLUP (order_year, order_quarter)
ORDER BY order_year, order_quarter;
The results are:
year quarter orders
---- ------- ------
NULL NULL 648 -- the grand total
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125
2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10
Adding grouping columns to the query provides more details (and more subtotaling) in the result set. Now let's modify the previous example by adding a region to the query (but since the number of rows increases, we'll only look at the first and second quarters):
SELECT order_year AS year, order_quarter AS quarter, region,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
 AND order_quarter IN (1,2)
 AND region IN ('USA', 'CANADA')
GROUP BY ROLLUP (order_year, order_quarter)
ORDER BY order_year, order_quarter;
The results are:
year quarter region orders
---- ------- ------ ------
NULL NULL NULL 183 -- the grand total
2003 NULL NULL 68 -- the subtotal for year 2003
2003 1 NULL 36 -- the subtotal for all regions in q1 of 2003
2003 1 CANADA 3
2003 1 USA 33
2003 2 NULL 32 -- the subtotal for all regions in q2 of 2004
2003 2 CANADA 3
2003 2 USA 29
2004 NULL NULL 115 -- the subtotal for year 2004
2004 1 NULL 57 -- the subtotal for all regions in q1 of 2004
2004 1 CANADA 11
2004 1 USA 46
2004 2 NULL 58 -- the subtotal for all regions in q2 of 2004
2004 2 CANADA 4
2004 2 USA 54
The GROUP BY CUBE clause is useful for performing multidimensional analyses on aggregated data. Like GROUP BY ROLLUP, it returns subtotals, but unlike GROUP BY ROLLUP, it returns subtotals combining all of the grouping columns named in the query. (As you will see, it also has the potential to increase the number of rows returned in the result set.)
In the following example, we query for data summarizing the number of sales_orders by order_year and by order_quarter:
SELECT order_year AS year, order_quarter AS quarter,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY CUBE (order_year, order_quarter)
ORDER BY order_year, order_quarter;
The results are:
year quarter orders
---- ------- ------
NULL NULL 648 -- the grand total
NULL 1 226 -- the subtotal for q1 of both years
NULL 2 196 -- the subtotal for q2 of both years
NULL 3 101 -- the subtotal for q3 of both years
NULL 4 125 -- the subtotal for q4 of both years
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125
2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10
The GROUP BY GROUPING SETS clause lets you aggregate on more than one group in a single query. For each group set, the query returns subtotals with the grouping column marked as NULL. While the CUBE and ROLLUP clauses place predefined subtotals into the result set, the GROUPING SETS clause allows you to control what subtotals to add to the query. The GROUPING SETS clause does not return a grand total.
Using a similar example query to the ones shown with ROLLUP and CUBE, this time we'll subtotal by year and quarter and separately by year:
SELECT order_year AS year, order_quarter AS quarter, COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY GROUPING SETS ((order_year, order_quarter), (order_year))
ORDER BY order_year, order_quarter;
The results are:
year quarter orders
---- ------- ------
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125
2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10
Another way to think of GROUPING SETS is to consider them to be like a UNION ALL of more than one GROUP BY query that references different parts of the same data. You can tell the database to add subtotals to a GROUPING SET by simply adding in the ROLLUP or CUBE clause according to how you would like subtotaling to occur.
GROUPING SETS can also be concatenated to concisely generate large combinations of groupings. Concatenated GROUPING SETS yield the cross product of groupings from each of the sets within a GROUPING SETS list. Concatenated GROUPING SETS are compatible with CUBE and ROLLUP, but since they perform a cross product of all GROUPING SETS, they will generate a very large number of final groupings from even a small number of concatenated groupings. This is demonstrated in the example in Table 3-5.
Table 3-5. GROUP BY syntax variations
	GROUP BY syntax
	Returns the following sets

	
GROUP BY (col_A, col_B, col_C)

	
(col_A, col_B, col_C)

	
...

	
...

	
GROUP GY GROUPING SETS (col_A, col_B)
(col_Y, col_Z)

	
(col_A, col_Y)
 (col_A, col_Z)
 (col_B, col_Y)
 (col_B, col_Z)

You can imagine how large the result set would be if the concatenated GROUPING SETS contained a large number of groupings! However, the information returned can be very valuable and hard to reproduce.

The HAVING clause
The HAVING clause adds search conditions on the result of the GROUP BY clause. HAVING works very much like the WHERE clause, but it applies to the GROUP BY clause. The HAVING clause supports all the same search conditions as the WHERE clause shown earlier. For example, using the same query as before, say we now want to find only those jobs that are performed by more than three people:
--Query
SELECT j.job_desc "Job Description",
 COUNT(e.job_id) "Nbr in Job"
FROM employee e
JOIN jobs j ON e.job_id = j.job_id
GROUP BY j.job_desc
HAVING COUNT(e.job_id) > 3
--Results
Job Description Nbr in Job
-- -----------
Acquisitions Manager 4
Managing Editor 4
Marketing Manager 4
Operations Manager 4
Productions Manager 4
Public Relations Manager 4
Publisher 7
Note that the ANSI standard does not require that an explicit GROUP BY clause appear with a HAVING clause. For example, the following query against the employee table is valid because it has an implied GROUP BY clause:
SELECT COUNT(dept_nbr)
FROM employee
HAVING COUNT(dept_nbr) > 30;
Even though it's valid, though, this application for the HAVING clause is rather rare.

The ORDER BY clause
A result set can be sorted through the ORDER BY clause, in accordance with the database's sort order. Each column of the result set may be sorted in either ascending (ASC) or descending (DESC) order. (Ascending order is the default.) If no ORDER BY clause is specified, most implementations return the data either according to the physical order of the data within the table or according to the order of an index utilized by the query. However, when no ORDER BY clause is specified, there is no guarantee as to the order of the result set. Following is an example of a SELECT statement with an ORDER BY clause on SQL Server:
SELECT e.emp_id "Emp ID",
 e.fname "First",
 e.lname "Last",
 j.job_desc "Job Desc"
FROM employee e,
 jobs j
WHERE e.job_id = j.job_id
 AND j.job_desc = 'Acquisitions Manager'
ORDER BY e.fname DESC,
 e.lname ASC
The results are:
Emp ID First Last Job Desc
--------- --------------- --------------- --------------------
MIR38834F Margaret Rancé Acquisitions Manager
MAS70474F Margaret Smith Acquisitions Manager
KJJ92907F Karla Jablonski Acquisitions Manager
GHT50241M Gary Thomas Acquisitions Manager
After the result set is pared down to meet the search conditions, it is sorted by the authors' first names in descending order. Where the authors' first names are equal, the results are sorted in ascending order by last name.
Tip
You may write an ORDER BY clause using columns in the table that do not appear in the select list. For example, you might query all emp_ids from the employee table, yet ORDER BY the employee's first and last name.

Programming Tips and Gotchas
Once you've assigned an alias to a table or view in the FROM clause, use it exclusively for all other references to that table or view within the query (in the WHERE clause, for example). Do not mix references to the full table name and the alias within a single query. You should avoid mixed references for a couple of reasons. First, it is simply inconsistent and makes code maintenance more difficult. Second, some database platforms return errors on SELECT statements containing mixed references. (Refer to the section on SUBQUERY later in this chapter for special instructions on aliasing within a subquery.)
MySQL, PostgreSQL, and SQL Server support certain types of queries that do not need a FROM clause. Use these types of queries with caution, since the ANSI standard requires a FROM clause. Queries without a FROM clause must be manually migrated either to the ANSI-standard form or to a form that also works on the target database. Certain platforms do not support the ANSI-style JOIN clause. Refer to the entry for each clause to fully investigate the varying degrees of support offered by the different database vendors for the various options of the SELECT command.

MySQL
MySQL's implementation of SELECT includes partial JOIN support, the INTO clause, the LIMIT clause, and the PROCEDURE clause. MySQL does not support subqueries prior to version 4.0. Its syntax follows:
SELECT [DISTINCT | DISTINCTROW | ALL]
 [STRAIGHT_JOIN] [{SQL_SMALL_RESULT | SQL_BIG_RESULT}] [SQL_BUFFER_RESULT]
 [{SQL_CACHE | SQL_NO_CACHE}] [SQL_CALC_FOUND_ROWS]
 [HIGH_PRIORITY] select_item AS alias[, ...]
[INTO {OUTFILE | DUMPFILE | variable, ...]} 'file_name' options]
[FROM table_name AS alias [, ...]
 [{ USE INDEX (index1[, ...]) | IGNORE INDEX (index1[, ...]) }]
[join type] [JOIN table2] [ON join_condition]
[WHERE search_condition]
[GROUP BY {unsigned_integer | column_name | formula}
 [ASC | DESC][, ...] [WITH ROLLUP]]
[HAVING search_condition]
[ORDER BY {unsigned_integer | column_name | formula} [ASC | DESC][, ...]]
[LIMIT { [offset_position,] number_of_rows] | number_of_rows
 OFFSET offset_position }]
[PROCEDURE procedure_name (param[, ...])]
[{FOR UPDATE | LOCK IN SHARE MODE}];
where:
	STRAIGHT_JOIN
	Forces the optimizer to join tables in the exact order in which they appear in the FROM clause.

	SQL_SMALL_RESULT | SQL_BIG_RESULT
	Tells the optimizer to expect a small or large result set on a GROUP BY clause or a DISTINCT clause, respectively. MySQL builds a temporary table when a query has a DISTINCT or GROUP BY clause, and these optional clauses tell MySQL whether to build a fast temporary table in memory (for SQL_SMALL_RESULT) or a slower, disk-based temporary table (for SQL_BIG_RESULT) to process the worktable.

	SQL_BUFFER_RESULT
	Forces the result set into a temporary table so that MySQL can free table locks earlier and speed the result set to the client.

	SQL_CACHE | SQL_NO_CACHE
	Controls caching of the result sets of the query. SQL_CACHE stores the result set in the query cache, assuming that the result set is cachable and the value of query_cache_type is 2 or DEMAND. SQL_NO_CACHE causes the result set not to reside in the query cache. For queries with UNIONs or subqueries or views, SQL_NO_CACHE applies everywhere if it is used even for just one query, while SQL_CACHE applies only if it appears after the first query.

	SQL_CALC_FOUND_ROWS
	Calculates how many rows are in the result set (regardless of a LIMIT clause), which can then be retrieved using SELECT FOUND_ROWS().

	HIGH_PRIORITY
	Gives the query a higher priority than statements that modify data within the table. This should be used only for special, high-speed queries.

	select_item
	Retrieves the expressions or columns listed. Columns may be listed in the format [database_name .][table_name.]column_name. If the database and/or table names are left out, MySQL assumes the current database and table.

	FROM . . . USE INDEX | IGNORE INDEX
	Indicates the table from which rows will be retrieved. The table may be described as [database_name .][table_name]. MySQL will treat the query as a join if more than one table appears in the FROM clause. The optional FORCE INDEX, USE INDEX (index1 , index2 , . . .), and IGNORE INDEX (index1 , index2 , . . .) clauses enable you to tell MySQL to use or ignore specific indexes on a table, respectively.

	INTO {OUTFILE | DUMPFILE | variable[, . . .]} 'file_name'
	Writes the result set of the query to a file named 'file_name' on the host filesystem with the OUTPUT option. The file_name must not already exist on the filesystem. The DUMPFILE option writes a single continuous line of data without column terminations, line terminations, or escape characters. This option is used mostly for BLOB files. Specific rules for using this clause are detailed below. The INTO variable clause allows you to list one or more variables (one for each column returned). If using INTO variable, do not also use the 'file_name' keyword.

	LIMIT { [offset_position,] number_of_rows] | number_of_rows OFFSET offset_position}
	Constrains the number of rows returned by the query, starting at the offset_position and returning number_of_rows. If only one integer is supplied, the specified number of records is returned, and a default offset (or starting position) of zero is assumed. The alternative syntax number_of_rows OFFSET is included for interoperability with PostgreSQL.

	PROCEDURE procedure_name (param[, . . .])
	Names a procedure that processes the data in the result set. The procedure is an external procedure (usually C++), not an internal database stored procedure.

	FOR UPDATE | LOCK IN SHARE MODE
	Issues a write lock on the rows returned by the query (FOR UPDATE) for its exclusive use (provided the table is of InnoDB or BDB type), or issues read locks on the rows returned by the query (LOCK IN SHARE), such that other users may see the rows but may not modify them.

Keep a couple of rules in mind when using the INTO clause. First, the output file cannot already exist, since overwrite functionality is not supported. Second, any file created by the query will be readable by everyone that can connect to the server. (When using SELECT . . . INTO OUTFILE, you can then turn around and use the MySQL command LOAD DATA INFILE to quickly load the data.)
You can use the following options to better control the content of the output file when using SELECT . . . INTO OUTFILE:
	ESCAPED BY

	FIELDS TERMINATED BY

	LINES TERMINATED BY

	OPTIONALLY ENCLOSED BY

The following example illustrates the use of these optional commands via a MySQL query that returns a result set in a comma-delimited output file:
SELECT job_id, emp_id, lname+fname
INTO OUTFILE "/tmp/employees.text"
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY "\;n"
FROM employee;
MySQL also allows SELECT statements without a FROM clause when performing simple arithmetic. For example, the following queries are valid on MySQL:
SELECT 2 + 2;
SELECT 565 - 200;
SELECT (365 * 2) * 52;
For interoperability with Oracle, MySQL also supports selection from the pseudotable called dual:
SELECT 565 - 200 FROM dual;
MySQL is very fluid in the way it supports joins. You can use several different syntaxes to perform a join; for example, you can explicitly declare a join in a query using the JOIN clause, but then show the join condition in the WHERE clause. The other platforms force you to pick one method or the other and do not allow you to mix them in a single query. However, we think it's bad practice to mix methods, so our examples use ANSI JOIN syntax.
MySQL supports the following types of JOIN syntax:
FROM table1, table2
FROM table1 {
 [CROSS] JOIN table2 |
 STRAIGHT_JOIN table2 |
 INNER JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 LEFT [OUTER] JOIN table2 {ON join_condition |
 USING (column_list)} |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 RIGHT [OUTER] JOIN table2 [{ON join_condition |
 USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2 }
where:
	[CROSS] JOIN table2
	Retrieves all records from both table1 and table2. Refer to the section on the JOIN subclause, earlier in this chapter, for more information on the different types of joins.

	STRAIGHT_JOIN table2
	Retrieves all records of both table1 and table2, as any other JOIN statement would, but with some special behavior. Normally, MySQL evaluates the table order of a join operation based on choices made by the query optimizer. However, the optimizer can occasionally choose an ineffective table order. The STRAIGHT_JOIN keyword forces the optimizer to evaluate the tables in the order listed in the query.

	INNER JOIN
	Retrieves those records of both table1 and table2 where there are matching values in both tables according to the join condition. Note that the syntax FROM table1 , table2 is semantically equivalent to an inner join. When using FROM table1 , table2, be sure include the join condition(s) in the WHERE clause.

	NATURAL
	Shortcuts the need to declare a join condition by assuming a USING clause that names all columns that exist in both tables. (An example of the USING clause appears later.)

	LEFT [OUTER] JOIN
	Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2). If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this type of join to retrieve all records in a table even when there are no counterparts in the joined table.

	RIGHT [OUTER] JOIN
	Retrieves all records in the rightmost table, regardless of whether there is a matching record in the leftmost table. A RIGHT JOIN is nothing more than a LEFT JOIN written from the opposite direction. As a best practice, write all outer join queries as either LEFT or RIGHT OUTER JOIN queries, but do not use both types, since they require a shift in thinking to understand at first glance.

MySQL offers an interesting alternative to the ANSI SQL standard for querying tables—the HANDLER statement. The HANDLER statement works a lot like SELECT, except that HANDLER provides very rapid data reads that circumvent the SQL query engine in MySQL. However, since the HANDLER statement is not a SQL statement, we'll refer you to the MySQL documentation for more information.

Oracle
Oracle allows a very large number of extensions to the ANSI SELECT statement. For example, since both nested tables and partitioned tables are allowed in Oracle (see CREATE TABLE), the SELECT statement allows queries to those types of structures:
[WITH query_name AS (subquery)[, ...]]
SELECT { {[ALL | DISTINCT]} | [UNIQUE] } [optimizer_hints]
select_item [AS alias][, ...]
[INTO {variable[, ...] | record}]
FROM {[ONLY] {[schema.][table_name
| view_name |
materialized_view_name]}[@database_link] [AS [OF]
{SCN | TIMESTAMP} expression] |
 subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}] |
 [[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE} AND
 {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP} expression] |
 TABLE (nested_table_column) [(+)]
 {[PARTITION (partition_name) | SUBPARTITION (subpartition_name)]}
 [SAMPLE [BLOCK] [sample_percentage] [SEED (seed_value)]]} [AS alias]
 [, ...]
[[join_type] JOIN join_condition [PARTITION BY expression[, ...]]]
[WHERE search_condition
 [{AND | OR} search_condition[, ...]]
 [[START WITH value] CONNECT BY [PRIOR] condition]]
[GROUP BY group_by_expression [HAVING search_condition]]
[MODEL model_clause]
[ORDER [SIBLINGS] BY order_expression {[ASC | DESC]}
 {[NULLS FIRST | NULLS LAST]}]
[FOR UPDATE [OF [schema.][table.]column][, ...]
 {[NOWAIT | WAIT (integer)]}]
Unless otherwise noted, the clauses shown here follow the ANSI standard. Similarly, elements of the clauses are identical to those in the ANSI standard unless otherwise noted. For example, Oracle's GROUP BY clause is nearly identical to the ANSI standard, including its component elements, such as ROLLUP, CUBE, GROUPING SETS, concatenated GROUPING SETS, and the HAVING clause.
The parameters are:
	WITH query_name AS (subquery)[, . . .]
	References a named query. Oracle allows you to assign names to subqueries, and you can then reference the subquery in multiple places by specifying only its name. (Oracle optimizes this process by treating the subquery as a nested table subquery or a temporary table.)

	ALL | DISTINCT | UNIQUE
	ALL and DISTINCT are identical to the ANSI ALL and DISTINCT clauses (see the ANSI SQL syntax described earlier). UNIQUE is a synonym for DISTINCT. DISTINCT cannot be used on LOB columns.

	optimizer_hint
	Overrides the default behavior of the query optimizer with user-specified behaviors. For example, hints can force Oracle to use an index that it might not otherwise use or to avoid an index that it might otherwise use. Refer to the vendor documentation for more information about optimizer hints.

	select_item
	May be an expression or a column from a named query, table, view, or materialized view in the format [schema.][table_name .]column_name. If you omit the schema, Oracle assumes the context of the current schema. Oracle also allows for named queries (explained earlier, under the WITH keyword) that may be referenced much like nested table subqueries (refer to the section on SUBQUERY later in this chapter). Oracle refers to using named queries as subquery factoring. In addition to named queries, Oracle also supports subqueries and the asterisk (*), shorthand for all columns, in the select_item list.

	INTO {variable[, . . .] | record}
	Retrieves the result set values into PL/SQL variables or into a PL/SQL record.

	FROM [ONLY]
	Identifies the table, view, materialized view, partition, or subquery from which the result set is retrieved. The ONLY keyword is optional and applies only to views belonging to a hierarchy. Use ONLY when you want to retrieve records from a named view only, and not from any of its subviews.

	AS [OF] {SCN | TIMESTAMP} expression
	Implements SQL-driven flashback, whereby system change numbers (or timestamps) are applied to each object in the select_item list. Records retrieved by the query are only those that existed at the specific system change number (SCN) or time. (This feature can also be implemented at the session level using the DBMS_FLASHBACK built-in package.) SCN expression must equal a number, while TIMESTAMP expression must equal a timestamp value. Flashback queries cannot be used on linked servers.

	subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}]
	Mentioned separately because Oracle allows you extra ways to control a subquery. WITH READ ONLY indicates that the target of the subquery cannot be updated. WITH CHECK OPTION indicates that any update to the target of the subquery must produce rows that would be included in the subquery. WITH CONSTRAINT creates a CHECK OPTION constraint of constraint_name on the table. Note that WITH CHECK OPTION and WITH CONSTRAINT are usually used in INSERT . . . SELECT statements.

	[[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE} AND {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP} expression]
	Specifies a special kind of query using a flashback_query_clause to retrieve the history of changes made to data from a table, view, or materialized view. The VERSIONS_XID pseudocolumn shows the identifier corresponding to the transaction that made the change. A flashback_query_clause requires that you specify an SCN (system change number) or a TIMESTAMP value for each object in the select_item list. (Implement SQL-driven session-level flashback using the Oracle DBMS_FLASHBACK package.)

The optional subclause VERSIONS BETWEEN is used to retrieve multiple versions of the data specified, either using an upper and lower boundary of an SCN (a number) or TIMESTAMP (a timestamp value), or using the MINVALUE and MAXVALUE keywords. Without this clause, only one past version of the data is returned. (Oracle also provides several version query pseudocolumns for additional versioning information.)
The AS OF clause, discussed earlier in this list, determines the SCN or moment in time from which the database issues the query when used with the VERSIONS clause.
You cannot use flashback queries with the VERSIONS clause against temporary tables, external tables, tables in a cluster, or views.
	TABLE
	Required when querying a hierarchically declared nested table.

	PARTITION
	Restricts a query to the specified partition of the table. In essence, rows are retrieved only from the named partition, not from the entire table.

	SUBPARTITION
	Restricts a query to the specified subpartition of the table. I/O is reduced because the rows are retrieved from only the named subpartition instead of the entire table.

	SAMPLE [BLOCK] [sampling_percentage] [SEED (seed_value)]
	Tells Oracle to select records from a random sampling of rows within the result set, as either a percentage of rows or blocks, rather than from the entire table. BLOCK tells Oracle to use block sampling rather than row sampling. The sampling_percentage, telling Oracle the total block or row percentage to be included in the sample, may be anywhere between .000001 and 99. The optional SEED clause is used to provide limited repeatability. If you specify a seed value, Oracle will attempt to return the same sample from one execution of the query to the next. The seed value can be between 0 and 4294967295. When SEED is omitted, the resulting sample will change from one execution of the query to the next. Sampling may be used only on single-table queries.

	JOIN
	Merges the result sets of two or more tables in a single query. Described in detail in the upcoming "Oracle" subsection.

	PARTITION BY expression[, . . .]
	Defines a special kind of query called a partitioned_outer_join that extends the conventional outer join syntax by applying a right or left outer join to a partition of one or more rows specified by the expression. This is especially useful for querying sparse data along a particular dimension of data, thereby returning rows that otherwise would be omitted from the result set. For an example, see the upcoming subsection "Partitioned outer joins." The PARTITION BY clause can be used on either side of an outer join, resulting in a UNION of the outer joins of each of the partitions in the partitioned result set and the table on the other side of the join. (When this clause is omitted, Oracle treats the entire result set as a single partition.) PARTITION BY is not allowed with FULL OUTER JOIN.

	WHERE . . . [[START WITH value] CONNECT BY [PRIOR] condition]
	Filters records returned in the result set. Oracle allows the use of hierarchical information within tables, whose filtering can be controlled with the START WITH clause. START WITH identifies the rows that will serve as the parent rows in the result set. CONNECT BY identifies the relationship condition between the parent rows and their child rows. The PRIOR keyword is used to identify the parent rows instead of the child rows.
Hierarchical queries use the LEVEL pseudocolumn to identify the root node (1), the child nodes (2), the grandchild nodes (3), and so forth. Other pseudocolumns available in hierarchical queries are CONNECT_BY_ISCYCLE and CONNECT_BY_ISLEAF. Hierarchical queries are mutually exclusive of the ORDER BY and GROUP BY clauses. Do not use those clauses in a query containing START WITH or CONNECT BY. You can order records from siblings of the same parent table by using the ORDER SIBLINGS BY clause.

	ORDER [SIBLINGS] BY order_expression {NULLS FIRST | NULLS LAST}
	Sorts the result set of the query in order of order_expression. The order_expression may be the column names, their aliases, or integers indicating their ordinal positions. The ORDER SIBLINGS BY clause is used when querying hierarchical tables with the CONNECT BY clause. ORDER SIBLINGS BY tells Oracle to preserve any ordering specified in the CONNECT BY clause and applies the ordering only to siblings (i.e., rows of equal level in the hierarchy). NULLS FIRST and NULLS LAST specify that the records containing NULLs should appear either first or last, respectively.

	FOR UPDATE [OF [schema.] . . . {[NOWAIT | WAIT (integer)]}
	Locks the rows of the result set so that other users cannot lock or update them until you're finished with your transaction. FOR UPDATE cannot be used in a subquery, in queries using DISTINCT or GROUP BY, or in queries with set operators or aggregate functions. Child rows in a hierarchical table are not locked when this clause is issued against the parent rows. The OF keyword is used to lock only the selected table or view. Otherwise, Oracle locks all the tables or views referenced in the FROM clause. When using OF, the columns are not significant, though real column names (not aliases) must be used. The NOWAIT and WAIT keywords tell Oracle either to return control immediately if a lock already exists or to wait integer seconds before returning control to you, respectively. If neither NOWAIT nor WAIT is specified, Oracle waits until the rows become available.

Unlike some other database platforms, Oracle does not allow a SELECT statement without a FROM clause. The following query, for example, is invalid:
SELECT 2 + 2;
As a workaround, Oracle has provided a special-purpose table called dual. Any time you want to write a query that does not retrieve data from a user-created table, such as to perform a calculation, use FROM dual. All of the following queries are valid:
SELECT 2 + 2
FROM dual;
SELECT (((52-4) * 5) * 8)
FROM dual;
Oracle's implementation of SELECT is quite straightforward if you want to retrieve data from a table. For example, Oracle allows the use of named queries. A named query is, in a sense, an alias to an entire query that can save you time when you're writing a complex multi-subquery SELECT statement. For example:
WITH pub_costs AS
 (SELECT pub_id, SUM(job_lvl) dept_total
 FROM employees e
 GROUP BY pub_id),
avg_costs AS
 (SELECT SUM(dept_total)/COUNT(*) avg
 FROM employee)
SELECT * FROM pub_costs
WHERE dept_total > (SELECT avg FROM avg_cost)
ORDER BY department_name;
In this example, we create two named subqueries—pub_costs and avg_costs—which are later referenced in the main query. The named queries are effectively the same as subqueries; however, subqueries must be written out in their entirety each time they're used, while named queries need not.
Oracle allows you to select rows from a single partition of a partitioned table using the PARTITION clause, or to retrieve only a statistical sampling of the rows (as a percentage of rows or blocks) of a result set using SAMPLE. For example:
SELECT *
FROM sales PARTITION (sales_2004_q3) sales
WHERE sales.qty > 1000;
SELECT *
FROM sales SAMPLE (12);
Flashback queries are a feature of Oracle that enable retrieval of point-in-time result sets. For example, you could find out what everyone's salary was yesterday before a big change was applied to the database:
SELECT job_lvl, lname, fname
FROM employee
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);
Another interesting Oracle extension of the standard query format is the hierarchic query. Hierarchic queries return the results of queries against hierarchically designed tables in the order you define. For example, the following query returns the names of the employees and their positions in the hierarchy (represented by the position in the org_char column), employee IDs, manager IDs, and job IDs:
SELECT LPAD(' ',2*(LEVEL-1)) || lname AS org_chart,
 emp_id, mgr_id, job_id
FROM employee
START WITH job_id = 'Chief Executive Officer'
CONNECT BY PRIOR emp_id = mgr_id;
ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
-------------- ----------- ---------- ------------------------
Cramer 101 100 Chief Executive Officer
Devon 108 101 Business Operations Mgr
Thomas 109 108 Acquisitions Manager
Koskitalo 110 108 Productions Manager
Tonini 111 108 Operations Manager
Whalen 200 101 Admin Assistant
Chang 203 101 Chief Financial Officer
Gietz 206 203 Comptroller
Buchanan 102 101 VP Sales
Callahan 103 102 Marketing Manager
In the previous query, the CONNECT BY clause defines the hierarchical relationship of the emp_id value as the parent row equal to the mgr_id value in the child row, while the START WITH clause specifies where in the hierarchy the result set should begin.
Oracle supports the following types of JOIN syntax (refer to the section on the JOIN subclause for more details):
FROM table1 {
 CROSS JOIN table2 |
 INNER JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 LEFT [OUTER] JOIN table2 [{ON join_condition
 | USING (column_list)}] |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 RIGHT [OUTER] JOIN table2 [{ON join_condition
 | USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2
 FULL [OUTER] JOIN table2 }
	[CROSS] JOIN
	Retrieves all records of both table1 and table2. This is syntactically the same as FROM table1, table2 with no join conditions in the WHERE clause.

	INNER JOIN
	Retrieves those records of both table1 and table2 where there are matching values in both tables according to the join condition. Note that the syntax FROM table1, table2 with join conditions in the WHERE clause is semantically equivalent to an inner join.

	NATURAL
	Shortcuts the need to declare a join condition by assuming a USING clause containing all columns that are in common between the two joined tables. (Be careful if columns have the same names but not the same datatypes or the same sort of values!) LOB columns cannot be referenced in a natural join. Referencing a LOB or collection column in a NATURAL JOIN will return an error.

	LEFT [OUTER] JOIN
	Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2). If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this type of join to retrieve all the records in a table, even when there are no counterparts in the joined table. For example:
SELECT j.job_id, e.lname
FROM jobs j
LEFT OUTER JOIN employee e ON j.job_id = e.job_id
ORDER BY d.job_id

	RIGHT [OUTER] JOIN
	Retrieves all records in the rightmost table, regardless of whether there is a matching record in the leftmost table. A right join is the same as a left join, except that the optional table is on the left.

	FULL [OUTER] JOIN
	Specifies that all rows from both tables be returned, regardless of whether a row from one table matches a row in the other table. Any columns that have no value in the corresponding joined table are assigned a NULL value.

	ON join_condition
	Declares the condition(s) that join the result set of two tables together. This takes the form of declaring the columns in table1 and table2 that must match the join condition. When multiple columns must be compared, use the AND clause.

	USING (column_list)
	Acts as an alternative to the ON clause. Instead of describing the conditions of the join, simply provide a column name (or columns separated by commas) that appears in both tables. The column names must be identical in both tables and cannot be prefixed with a table name or alias. USING cannot be used on LOB columns of any type. The following two queries produce identical results. One is written with a USING clause and the other specifies join conditions using ANSI syntax:
SELECT column1
FROM foo
LEFT JOIN poo USING (column1, column2);

SELECT column1
FROM foo
LEFT JOIN poo ON foo.column1 = poo.column1
AND foo.column2 = poo.column2;

Note that older Oracle syntax for joins centered around the WHERE clause, and outer joins were described using a (+) marker. ANSI JOIN syntax only became available with Oracle 9i Release 1. Therefore, you will often see existing code using the old syntax. For example, the following query is semantically equivalent to the earlier example of a left outer join:
SELECT j.job_id, e.lname
FROM jobs j, employee e
WHERE j.job_id = e.job_id (+)
ORDER BY d.job_id
This older syntax is sometimes problematic and more difficult to read. You are strongly advised to use the ANSI-standard syntax.

Partitioned outer joins
Partitioned outer joins are useful for retrieving sparse data that might otherwise not be easily seen in a result set. (The ANSI standard describes partitioned outer joins, but Oracle is the first to support them.) For example, our product table keeps track of all products we produce, while the manufacturing table shows when we produce them. Since we're not continuously making every product at all times, the joined data between the two tables may be sparse at times:
SELECT manufacturing.time_id AS time, product_name AS name,
 quantity AS qty
FROM product
PARTITION BY (product_name)
RIGHT OUTER JOIN times ON (manufacturing.time_id =
 product.time_id)
WHERE manufacturing.time_id
 BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')
 AND TO_DATE('06/10/05', 'DD/MM/YY')
ORDER BY 2, 1;
returns the following:
time name qty

--------- ---------- ----------

01-OCT-05 flux capacitor 10
02-OCT-05 flux capacitor
03-OCT-05 flux capacitor
04-OCT-05 flux capacitor
05-OCT-05 flux capacitor
06-OCT-05 flux capacitor 10
06-OCT-05 flux capacitor 8
01-OCT-05 transmorgrifier 10
01-OCT-05 transmorgrifier 15
02-OCT-05 transmorgrifier
03-OCT-05 transmorgrifier
04-OCT-05 transmorgrifier 10
04-OCT-05 transmorgrifier 11
05-OCT-05 transmorgrifier
06-OCT-05 transmorgrifier
The example query and result set show that partitioned outer joins are useful for retrieving result sets that might otherwise be hard to query due to sparse data.

Flashback queries
Oracle 9i and later versions also supports flashback queries—queries that keep track of previous values of the result requested by the SELECT statement. In the following set of example code, we'll issue a regular query on a table, change the values in the table with an UPDATE statement, and then query the flashback version of the data. First, the regular query:
SELECT salary FROM employees
WHERE last_name = 'McCreary';
The results are:
SALARY

3800
Now, we'll change the value in the employees table and query the table to confirm the current value:
UPDATE employees SET salary = 4000
WHERE last_name = 'McCreary ';
SELECT salary FROM employees
WHERE last_name = 'McCreary ';
The results are:
SALARY

4000
Finally, we'll perform a flashback query to see what the salary value was in the past:
SELECT salary FROM employees
AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY)
WHERE last_name = 'McCreary';
The results are:
SALARY

3800
If we wanted to be more elaborate, we could find out all of the values of salary for a given time period, say, the last two days:
SELECT salary FROM employees
VERSIONS BETWEEN TIMESTAMP
 SYSTIMESTAMP - INTERVAL '1' MINUTE AND
 SYSTIMESTAMP - INTERVAL '2' DAY
WHERE last_name = 'McCreary';
The results are:
SALARY

4000
3800

The MODEL clause
Oracle Database 10g introduced a powerful new clause, called MODEL, which enables spreadsheet-like result sets from a SELECT statement. The MODEL clause, in particular, is designed to alleviate the need for developers to extract data from the database and put it into a spreadsheet, like Microsoft Excel, for further manipulation. It creates a multidimensional array in which cells can be referenced by dimension values. For instance, you might dimension an array on product and time, specifying column values that you wish to access via combinations of those two dimensions. You can then write rules that are similar in concept to spreadsheet formulas, that are executed in order to change values in your model, or that create new values, and perhaps even new rows, in your model.
Syntactically, the MODEL clause appears after the GROUP BY and HAVING clauses and before the ORDER BY clause. The earlier syntax diagram for Oracle's SELECT statement shows the position of the clause, and the syntax details are presented here:
MODEL
 [{IGNORE | KEEP} NAV] [UNIQUE {DIMENSION | SINGLE REFERENCE}]
 [RETURN {UPDATED | ALL}]
 [REFERENCE reference_model_name ON (subquery)
 [PARTITION BY (column [AS alias][, ...])]
 DIMENSION BY (column [AS alias][, ...])
 MEASURES (column [AS alias][, ...])
 [{IGNORE | KEEP} NAV] [UNIQUE {DIMENSION | SINGLE REFERENCE}]]
[MAIN main_model_name]
 [PARTITION BY (column [AS alias][, ...])]
 DIMENSION BY (column [AS alias][, ...])
 MEASURES (column [AS alias][, ...])
 [{IGNORE | KEEP} NAV] [UNIQUE {DIMENSION | SINGLE REFERENCE}]]
 model_rules_clause
[RULES [UPSERT [ALL] | UPDATE] [{AUTOMATIC | SEQUENTIAL} ORDER]]
 [ITERATE (int) [UNTIL (ending_condition)]]
 ([{UPSERT [ALL] | UPDATE }] measure [...]
 [FOR { dimension | (dimension[, ...]) }
 { [IN ({subquery | literal[, ...]})] |
 [LIKE pattern] FROM start_literal TO end_literal
 {INCREMENT | DECREMENT} diff_literal }[, ...]
 [ORDER [SIBLINGS] BY (order_column [ASC | DESC]
 [NULLS FIRST | NULLS_LAST][, ...])]]
 = expr[, ...])
The parameters of this MODEL clause are as follows:
	{IGNORE | KEEP} NAV
	Specifies whether NULL or absent values (NAV) are retained as NULLs (KEEP), or whether they are replaced with suitable defaults (IGNORE): zero for numeric types, 1-Jan-2000 for date types, an empty string for character types, and NULL for anything else.

	UNIQUE {DIMENSION | SINGLE REFERENCE}
	Specifies the scope within which the database ensures that a given cell reference points to a unique data value. Use DIMENSION to require that each possible cell reference, whether on the left or right side of a rule, represent a single value. Use SINGLE REFERENCE to perform that check only for those cell references that appear on the righthand side of a rule.

	RETURN {UPDATED | ALL} ROWS
	Specifies whether all rows are returned from model processing, or whether only updated row are returned.

	reference_model_name
	Defines a reference model on which you cannot perform calculations, but containing values that you can reference from within your main query.

	reference_model_name ON (subquery
	Specifies the name and rowsource for a reference model.

	alias
	Specifies an alias for a partition.

	DIMENSION BY (column[, column . . .])
	Specifies the dimensions for a model. Values from these columns represent the set of index values that are used to identify cells in the multidimensional addressing space.

	MEASURES (column[, column . . .])
	Specifies the values associated with each unique combination of dimensions (e.g., with each cell of the model).

	PARTITION BY [(]column[, column . . .][)]
	Splits a model into independent partitions based on the columns given. You can not partition reference models.

	main_model_name
	Represents the model on which you perform work. Rows from your containing SELECT feed into this model, rules are applied, and the resulting rows are returned.

	MAIN model_name
	Begins the definition of the main model, and also gives that model a name.

	RULES [UPSERT | UPDATE]
	Specifies whether rules may both create new cells and update existing cells (UPSERT), or whether they much only update existing cells (UPDATE). If you want your model to be able to create new rows in your result set, specify UPSERT. The default is UPSERT. You can also control this behavior on a rule-by-rule basis; see rule in the syntax.

	{AUTOMATIC | SEQUENTIAL} ORDER
	Specifies whether the optimizer determines the order in which rules are evaluated (AUTOMATIC), or whether rules are evaluated in the order in which you list them (SEQUENTIAL). The default is SEQUENTIAL.

	ITERATE (int)
	Requests that entire set of rules be evaluated repeatedly, int times. The default is to evaluate the set of rules just once.

	UNTIL(ending_condition)
	Specifies a condition that, when met, causes iteration to end. You must still specify a int, which serves as a safeguard against infinite loops.

	measure[. . .]
	A reference to one of the measures listed in the MEASURES clause. When you reference a measure, the square brackets are part of the syntax. You must specify all dimensions, either via a subquery or by listing them, and the specific value of the measure associated with those dimensions will be returned, or referenced.

	FOR . . .
	A FOR-loop iterating over one or many dimensions. The multi-iterating FOR-loop is much like a subquery where each row of the result set represents a specific combination of dimensions.

	dimension_indexes
	A list of values, whether from columns or expressions, that collectively identify a unique cell in the model.

	IN ({subquery | literal[, literal . . .]})
	The source of values for a for-loop may be a subquery, or it may be a specific list of literal values.

	LIKEpattern
	Allows you to insert dimension values into a pattern. Use a percent-sign to mark the location at which you want dimension values to be inserted. For example, use FOR x LIKE 'A%B' FROM 1 TO 3 INCREMENT 1 to generate values such as 'A1B', 'A2B', 'A3B'.

	FROMstart_literal TO end_literal {INCREMENT | DECREMENT} diff_literal
	Defines the starting and ending for-loop values, and also the difference between each subsequent value as the loop iterates from start to end.

	ORDER BY (order_column[, . . .])
	Imposes an order of evaluation with respect to the cells referenced from the left side of a rule. Use this clause if you want a rule to be applied to cells in order. Otherwise, you have no guarantee as to the order in which the rule is applied to the cells that it affects.

Following is a list of functions that have been designed specifically for use in the MODEL clause:
	CV() or CV(dimension_column)
	Returns the current value of a dimension column. May be used only on the righthand side of an expression in a rule. When the CV() form is used, the dimension column is determined implicitly based on the function call's position in a list of dimension values.

	PRESENTNNV(measure[dimension, dimension . . .], not_null, was_null)
	Returns either not_null or was_null, depending on whether the specified measure was NULL when model processing began. This function may be used only from the righthand side of a rule expression.

	PRESENTV(measure[dimension, dimension . . .], did_exist, didnt_exist)
	Returns either did_exist or didnt_exist, depending on whether the specified measure existed when model processing began. This function may be used only from the righthand side of a rule expression. Be aware that whether a measure existed is a completely separate question from whether that measure was NULL.

	ITERATION_NUMBER
	Returns zero on the first iteration through the rules, 1 on the second iteration, and so forth. This is useful when you want to base rule calculations on the number of iterations.

The following example demonstrates that the MODEL clause gives a normal SELECT statement the ability to construct a multidimensional array as a result set and calculate inter-row and inter-array values interdependently. The newly calculated values are returned as part of the SELECT statement's result set:
SELECT SUBSTR(region,1,20) country, SUBSTR(product,1,15) product,
 year, sales
FROM sales_view
WHERE region IN ('USA','UK')
MODEL RETURN UPDATED ROWS
 PARTITION BY (region)
 DIMENSION BY (product, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce',2006] = sales['Bounce',2005] + sales['Bounce',2004],
 sales['Y Box', 2006] = sales['Y Box', 2005],
 sales['2_Products',2006] = sales['Bounce',2006]
 + sales['Y Box',2006])
ORDER BY region, product, year;
In this example, a query against the SALES_VIEW materialized view returns the sum of sales over the course of a few years for the regions 'USA' and 'UK'. The MODEL clause then falls between the WHERE clause and the ORDER BY clause. Since SALES_VIEW currently holds data for the years 2004 and 2005, we provide it rules to calculate figures for the year 2006.
The subclause RETURN UPDATED ROWS limits the result set to the rows that were created or updated by the query. Next, the example defines the logical divisions of the data using data elements from the materialized view and using the PARTITION BY, DIMENSION BY, and MEASURES subclauses. The RULES subclause then references individual measures of the model by referring to combinations of different dimension values much like a spreadsheet macro references worksheet cells with specific lookups and references to ranges of values.
Oracle (and SQL Server using a somewhat different technique) both support a non-ANSI, non-ISO query known as a pivot query. Although you should refer to the vendor documentation for exactly how to write a pivot (or unpivot) query, an example here will help you take advantage of this useful technique. A pivot query turns the result set on its side, enabling you to extract more value from the data. In Oracle, you must first create your pivot table. By using a pivot table, you can now turn the result "on its side" so that the order_type column becomes the column headings:
CREATE TABLE pivot_table AS
SELECT * FROM (SELECT year, order_type, amt FROM sales)
PIVOT SUM(amt) FOR order_type IN ('retail', 'web');

SELECT * FROM pivot_table ORDER BY YEAR;
where the results are:
YEAR RETAIL WEB
---- ----------- ------
2004 7014.54
2005 9745.12
2006 16717.88 10056.6
2007 28833.34 39334.9
2008 66165.77 127109.4

PostgreSQL
PostgreSQL supports a straightforward implementation of the SELECT statement. It supports JOIN and subquery applications. PostgreSQL also allows the creation of new temporary or permanent tables using the SELECT . . . INTO syntax.
;SELECT [ALL | DISTINCT [ON (select_item[, ...])]]
[AS alias [(alias_list)]][, ...]
[FROM [ONLY] table1[.*] [AS alias][, ...]]
[[join type] JOIN table2 {[ON join_condition] |
 [USING (column_list)]}
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING having_condition]
[ORDER BY order_by_expression [{ASC | DESC | USING operator][, ...] }]
[FOR UPDATE [OF column[, ...]]
[LIMIT {count | ALL}][OFFSET [number_of_records]]]
where:
	ALL | DISTINCT [ON (select_item[, . . .]]
	Supports the ALL and DISTINCT keywords of the ANSI SQL standard, where ALL (the default) returns all rows (including duplicates) and DISTINCT eliminates duplicate rows. In addition, DISTINCT ON eliminates duplicates on only the specified select_items, not on all of the select_items in the query (example below).

	select_item
	Includes the standard elements of a select_item list supported by the ANSI SQL standard. In addition to the asterisk (*) shorthand to retrieve all rows, you can use table_name.* to retrieve all rows from an individual table.

	AS alias [(alias_list)]
	Creates an alias or a list of aliases for one or more columns (or tables in the FROM clause). AS is required for select_item aliases, but not for FROM table aliases. (Some other database platforms treat the AS as an option when declaring an alias.)

	INTO [[TEMP]ORARY] [TABLE] new_table_name
	Creates a new table from the result set of the query. Both TEMP and TEMPORARY are acceptable usages to create a temporary table that is automatically dropped at the end of the session. Otherwise, the command creates a permanent table. Permanent tables created with this statement must have new, unique names but temporary tables may have the same name as an existing table. If you create a temporary table with the same name as an existing permanent table, the temporary table is used to resolve all operations against that table name while in the same session as the one that created it. Other sessions will continue to see the existing permanent table.

	FROM [ONLY]table1[, . . .]
	Specifies one or more source tables where the data resides. (Be sure to specify a join condition or a theta WHERE clause so that you don't get a Cartesian product of all records in all tables.) PostgreSQL allows inheritance in child tables of declared parent tables. Use the ONLY keyword to suppress rows from the child tables of your source table. (You can turn off this default inheritance globally with the command SET SQL_Inheritance TO OFF.) PostgreSQL also supports nested table subqueries (see the section on SUBQUERY later in this chapter). The FROM clause is not needed when used for computation:
SELECT 8 * 40;
PostgreSQL will also include an implicit FROM on SELECT statements that include schema-identified columns. For example, the following query is acceptable (though not recommended):
SELECT sales.stor_id WHERE sales.stor_id = '6380';

	GROUP BY group_by_expression
	Allows group_by_expressions that can be the column name or the ordinal number of the column (as determined by its position in the select_item list). An example illustrates this concept under the ORDER BY entry just below.

	ORDER BY order_by_expression
	Allows order_by_expressions that can be the column name, its alias, or the ordinal number of the column (as determined by its position in the select_item list.) For example, the following two queries are functionally identical:
SELECT stor_id, ord_date, qty AS quantity
FROM sales
ORDER BY stor_id, ord_date DESC, qty ASC;

SELECT stor_id, ord_date, qty
FROM sales
ORDER BY 1, 2 DESC, quantity;

In single-table SELECT statements, you may also order by columns of the table that do not appear in the select_item list. For example:
SELECT *
FROM sales
ORDER BY stor_id, qty;
ASC and DESC are ANSI standard. If not specified, ASC is the default. PostgreSQL sorts NULL values as higher than any other value, causing NULL values to appear at the end of ASC sorts and at the beginning of DESC sorts.
	FOR UPDATE [OF column [, . . .]] LIMIT { count | ALL} [OFFSET [number_of_records]]
	Limits the number of rows returned by the query to the maximum specified by the integer count. The optional OFFSET keyword tells PostgreSQL to skip number_of_records before starting to return rows. You should make sure you have an ORDER BY clause when using LIMIT or you may get an unexpected result set. (PostgreSQL 7.0 and greater treat LIMIT/OFFSET as a hint and use it to create optimal, possibly very different query plans.)

PostgreSQL supports a handy variation of the DISTINCT clause—DISTINCT ON (select_item[, . . .]). This variation allows you to pick and choose the exact columns that are considered for elimination of duplications. PostgreSQL chooses the result set in a manner much like it does for ORDER BY. You should include an ORDER BY clause so that there's no unpredictability as to which record is returned. For example:
SELECT DISTINCT ON (stor_id), ord_date, qty
FROM sales
ORDER BY stor_id, ord_date DESC;
The above query retrieves the most recent sales report for each store based on the most recent order date. However, there would be no way to predict what single record would have been returned without the ORDER BY clause.
PostgreSQL supports only these types of JOIN syntax:
FROM table1[, ...] {
 CROSS JOIN table2 |
 [INNER] JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 LEFT [OUTER] JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 RIGHT [OUTER] JOIN table2 [{ON join_condition |
 USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2
 FULL [OUTER] JOIN table2 }
where:
	[CROSS] JOIN
	Retrieves all records of both table1 and table2. This is syntactically the same as FROMtable1, table2. The results are a Cartesian product (usually a very bad thing!).

	INNER JOIN
	Retrieves those records of both table1 and table2 where there are matching values in both tables according to the join condition. Note that the syntax FROM table1, table2 is semantically equivalent to an inner join without a join condition (i.e., a Cartesian product). When using FROM table1, table2, be sure include the join condition(s) in the WHERE clause. If you leave out a join type, PostgreSQL assumes you want an inner join.

	NATURAL
	Shortcuts the need to declare a join condition by assuming a USING clause that names all columns that have the same name in both tables. (Be careful if columns have the same names but not the same datatypes or the same sort of values!) NATURAL is mutually exclusive of a specified join condition via ON or USING.

	LEFT [OUTER] JOIN
	Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2). If there isn't a matching record in table2, a NULL value is substituted. You can use LEFT OUTER JOIN to find all the records in a table even when there are no counterparts in the joined table. For example:
SELECT j.job_id, e.lname
FROM jobs j
LEFT OUTER JOIN employee e ON j.job_id = e.job_id
ORDER BY d.job_id

	RIGHT [OUTER] JOIN
	Retrieves all records in the rightmost table regardless of whether there are matching records in the leftmost table. Analogous to a LEFT JOIN, but the join is performed in the opposite direction.

	FULL [OUTER] JOIN
	Retrieves all records in the inner join in addition to all records that have no matching records on both the left and right sides.

	ONjoin_condition
	Declares the condition(s) that join the result set of two (or more) tables together. This takes the form of declaring the columns in table1 and table2 that must be equal. When multiple columns must be compared, use the AND clause.

SQL Server
SQL Server supports most of the basic elements of the ANSI SELECT statement, including all of the various join types. It also offers several variations on the SELECT statement, including optimizer hints, the INTO clause, the TOP clause, GROUP BY variations, COMPUTE, and WITH OPTIONS:
[WITH cte_expression[, ...]]
SELECT {[ALL | DISTINCT] | [TOP number [PERCENT] [WITH TIES]]}
 select_item [AS alias]
[INTO new_table_name]
[FROM {[rowset_function | table1[, ...]]} [AS alias]]
[[join type] JOIN table2 [ON join_condition]]
[WHERE search_condition]
[GROUP BY [GROUPING SETS] {grouping_column[, ...] | ALL}]
[WITH { CUBE | ROLLUP }]
[HAVING search_condition]
[ORDER BY order_by_expression [ASC | DESC]]
[COMPUTE {aggregation (expression)}[, ...]
 [BY expression[, ...]]]
[FOR {BROWSE | XML {RAW | AUTO | EXPLICIT}
 [, XMLDATA][, ELEMENTS][, BINARY base64]}]
[OPTION (hint[, ...])]
where:
	WITH cte_expression
	Defines the temporary named result set of a common table expression, derived from a SELECT statement, for the SELECT statement.

	TOP number [PERCENT] [WITH TIES]
	Indicates that only the specified number of rows should be retrieved in the query result set. If PERCENT is specified, only the first number percent of the rows are retrieved. WITH TIES is used only for queries with an ORDER BY clause. This variation specifies that additional rows are returned from the base result set using the same value in the ORDER BY clause, appearing as the last of the TOP rows.

	INTO new_table_name
	Creates a new table from the result set of the query. You can use this command to create temporary or permanent tables. (Refer to SQL Server's rules for creating temporary or permanent tables in the section.) The SELECT . . . INTO command quickly copies the rows and columns queried from other table(s) into a new table using a non-logged operation. Since it is not logged, COMMIT and ROLLBACK statements do not affect it.

	FROM {[rowset_function | table1[, . . .]]}
	Supports the standard behavior of the ANSI SQL FROM clause, including nested table subqueries. In addition, SQL Server supports a set of extensions called rowset_functions. Rowset functions allow SQL Server to source data from special or external data sources such as XML streams, full-text search file structures (a special structure in SQL Server used to store things like MS Word documents and MS PowerPoint slide shows within the database), or external data sources (like an MS Excel spreadsheet).
(See the SQL Server documentation for the full description of the available FROM {[rowset_function | table1[, . . .]]} options. Among the manypossibilities, SQL Server currently supports the following rowset_functions

	CONTAINSTABLE
	Returns a table derived from a specified table that contains at least one full-text index TEXT or NTEXT column. The records derived are based upon either a precise, fuzzy, weighted-match, or proximity-match search. The derived table is then treated like any other FROM data source.

	FREETEXTTABLE
	Similar to CONTAINSTABLE, except that records are derived based upon a meaning search of 'freetext_string'. FREETEXTTABLE is useful for ad hoc queries against full-text tables, but less accurate than CONTAINSTABLE.

	OPENDATASOURCE
	Provides a means of sourcing data external to SQL Server via OLE DB without declaring a linked server, such as an MS Excel spreadsheet or a Sybase Adaptive Serverdatabase table. It is intended for the occasional ad hoc query; if you frequently retrieve result sets from external data sources, you should declare a linked server.

	OPENQUERY
	Executes a pass-through query against a linked server. It is an effective means of performing a nested table subquery against a data source that is external to SQL Server. The data source must first be declared as a linked server.

	OPENROWSET
	Executes a pass-through query against an external data source. It is similar to OPENDATASOURCE, except that OPENDATASOURCE only opens the data source; it does not actually pass through a SELECT statement. OPENROWSET is intended for occasional, ad hoc usageonly.

	OPENXML
	Provides a queryable, table-like view to an XML string.

	[GROUP BY [GROUPING SETS] {grouping_column[, . . .] | ALL}][WITH {CUBE | ROLLUP}]
	SQL Server supports the ANSI SQL standard, with some variations. The first noticeable difference is in syntax: where the ANSI standard clause is GROUP BY [{CUBE | ROLLUP}] (grouping_column [, . . .]), SQL Server uses GROUP BY [ALL] (group_by_expression) [WITH {CUBE | ROLLUP}]. The ALL keyword is the default behavior and may not be explicitly used with grouping sets, cubes, or rollups. To use grouping sets, you must explicitly use the GROUPING SETS subclause. Note that grouping sets may not be nested. (SQL Server also supports the clause GROUP BY (), which returns a grand total for the result set.)

GROUP BY ALL tells SQL Server to provide group_by categories even when the matching aggregation is NULL (normally, SQL Server does not return a category whose aggregation is NULL). It must be used only in conjunction with a WHERE clause. WITH {CUBE | ROLLUP} tells SQL Server to perform additional higher-level aggregates of the summary categories. In the simplest terms, ROLLUP produces subtotals for the categories, while CUBE produces cross-tabulated totals for the categories.
Tip
The GROUPING function can be used to help differentiate normally occurring NULLs from the NULLs generated by ROLLUP and CUBE behavior.

This example groups royalty and aggregate advance amounts. The GROUPING function is applied to the royalty column:
USE pubs
SELECT royalty, SUM(advance) 'total advance',
 GROUPING(royalty) 'grp'
 FROM titles
 GROUP BY royalty WITH ROLLUP
The result set shows two NULL values under royalty. The first NULL represents the group of NULL values from this column in the table. The second NULL is in the summary row added by the ROLLUP operation. The summary row shows the total advance amounts for all royalty groups and is indicated by 1 in the grp column.
Here is the result set:
royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1
	ORDER BY
	Functions normally, as specified by the ANSI SQL standard. However, you should remember that SQL Server allows a variety of collations that can affect how the result set is evaluated. Thus, under certain collations "SMITH" and "smith" might evaluate and sort differently. Also note that you cannot ORDER BY columns of TEXT, NTEXT, or IMAGE datatype.

	COMPUTE {aggregation (expression)}[, . . .] [BY expression[, . . .]]
	Generates additional aggregations—usually totals—that appear at the end of the result set. BY expression adds subtotals and control breaks to the result set. COMPUTE and COMPUTE BY can be used simultaneously in the same query. COMPUTE BY must be coupled with an ORDER BY clause, though the expression used by COMPUTE BY can be a subset of the order_by_expression. The aggregation may be any of these function calls: AVG, COUNT, MAX, MIN, STDEV, STDEVP, VAR, VARP, and SUM. Examples are shown later in this section.
COMPUTE, in any form, does not work with the DISTINCT keyword or with TEXT, NTEXT, or IMAGE datatypes.

	FOR {BROWSE | XML {RAW | AUTO | EXPLICIT}[, XMLDATA][, ELEMENTS][, BINARY BASE64]}
	FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse mode cursor. (DB-Library is the original access methodology for SQL Server and has since been supplanted by OLE DB in most applications.) FOR BROWSE can only be used against tables with a unique index and a column with the TIMESTAMP datatype. FOR BROWSE cannot be used in UNION statements or when a HOLDLOCK hint is active.

	FOR XML
	Used to extract the result set as an XML document to the SQL Server 2000 client only. You must further define the resulting XML document as either RAW, AUTO, or EXPLICIT. RAW transforms each returned row into a generic XML element with the <row/> element tag. AUTO transforms the results into a simple, nested XML tree. Finally, EXPLICIT transforms the resulting XML tree into an explicitly defined shape. However, the query must be written such that the desired nesting information is specified explicitly. You may optionally attach a few extra control features.

	XMLDATA
	Returns the schema appended to the XML document. ELEMENTS returns the columns as subelements instead of mapping them to XML attributes.

	BINARY BASE6
	Returns the binary data in base64-encoded format. (Binary is the default format for the AUTO mode but must be declared explicitly for RAW and EXPLICIT.) FOR XML cannot be used in any sort of subquery, in conjunction with a COMPUTE clause or a BROWSE clause, in the definition of a view, in the result set of a user-defined function, or in a cursor. Aggregations and GROUP BY are mutually exclusive of FOR XML AUTO.

	OPTION (hint[, . . .])
	Replaces elements of the default query plan with your own. Because the optimizer usually picks the best query plan for any query, you are strongly discouraged from placing optimizer hints into your queries. Refer to the SQL Server documentation for more information on hints.

Here's an example of SQL Server's SELECT . . . INTO capability. This example creates a table called non_mgr_employees using SELECT . . . INTO. The table contains the emp_id, first name, and last name of each non-manager from the employee table, joined with their job descriptions (taken from the jobs table):
-- Query
SELECT e.emp_id, e.fname, e.lname,
 SUBSTRING(j.job_desc,1,30) AS job_desc
INTO non_mgr_employee	
FROM employee e
JOIN jobs AS j ON e.job_id = j.job_id
WHERE j.job_desc NOT LIKE '%MANAG%'
ORDER BY 2,3,1
The newly created and loaded table non_mgr_employee now can be queried like any other table.
Warning
SELECT . . . INTO should be used only in development or non-production code because it is not logged or recoverable.

Many of SQL Server's extensions to the ANSI SELECT statement involve the GROUP BY clause. For example, the GROUP BY ALL clause causes the aggregation to include NULL valued results when they would normally be excluded. The following two queries are essentially the same except for the ALL keyword, yet they produce very different result sets:
-- Standard GROUP BY
SELECT type, AVG(price) AS price
FORM titles
WHERE royalty <= 10
GROUP BY type
ORDER BY type
-- Results
type price
------------ -------
business 17.3100
mod_cook 19.9900
popular_comp 20.0000
psychology 13.5040
trad_cook 17.9700

-- Using GROUP BY ALL
SELECT type, AVG(price) AS price
FROM titles
WHERE royalty = 10
GROUP BY ALL type
ORDER BY type
-- Results
type price
------------ -------
business 17.3100
mod_cook 19.9900
popular_comp 20.0000
psychology 13.5040
trad_cook 17.9700
UNDECIDED NULL
COMPUTE has a number of permutations that can impact the result set retrieved by the query. The following example shows the sum of book prices broken out by type of book and sorted by type and then price:
-- Query
SELECT type, price
FROM titles
WHERE type IN ('business','psychology')
 AND price > 10
ORDER BY type, price
COMPUTE SUM(price) BY type
-- Results
type price
------------ ---------------------
business 11.9500
business 19.9900
business 19.9900
 sum
 =====================
 51.9300
type price
------------ ---------------------
psychology 10.9500
psychology 19.9900
psychology 21.5900
 sum
 =====================
 52.5300
The COMPUTE clause behaves differently if you do not include BY. The following query retrieves the grand total of prices and advances for books with prices over $16.00:
-- Query
SELECT type, price, advance
FROM titles
WHERE price > $16
COMPUTE SUM(price), SUM(advance)
-- Result
type price advance
------------ --------------------- ---------------------
business 19.9900 5000.0000
business 19.9900 5000.0000
mod_cook 19.9900 .0000
popular_comp 22.9500 7000.0000
popular_comp 20.0000 8000.0000
psychology 21.5900 7000.0000
psychology 19.9900 2000.0000
trad_cook 20.9500 7000.0000
 sum
 =====================
 165.4500
 sum
 =====================
 41000.0000
You can even use COMPUTE BY and COMPUTE in the same query to produce subtotals and grand totals. (For the sake of brevity, we'll show an example query, but not the result set.) In this example, we find the sum of prices and advances by type for business and psychology books that cost over $16.00:
SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
COMPUTE SUM(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)
Don't forget that you must include the ORDER BY clause with a COMPUTE BY clause! (You do not need an ORDER BY clause with a simple COMPUTE clause without the BY keyword.) There are many permutations that you can perform in a single query—multiple COMPUTE and COMPUTE BY clauses, GROUP BY with a COMPUTE clause, and even COMPUTE with an ORDER BY statement. It's actually fun to tinker around with the different ways you can build queries using COMPUTE and COMPUTE BY. It's not theme park fun, but what'dya want? This is a programming book!
SQL Server also includes the FOR XML clause, which converts the standard result set output into an XML document. This is very useful for web database applications. You can execute queries with FOR XML directly against the database or within a stored procedure. For example, we can retrieve one of our earlier example queries as an XML document:
SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
FOR XML AUTO
The results aren't particularly pretty, but they're very usable:
XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<titles type="business " price="19.9900"
advance="5000.0000"/><titles type="business " price="19.9900"
advance="5000.0000"/>
<titles type="psychology" price="19.9900" advance="2000.0000"/><titles
type="psychology" price="21.5900" advance="7000.000
If you wanted the XML schema and/or XML elements fully tagged in the output, you could simply append the XMLDATA and ELEMENTS keywords to the FOR XML clause. The query would look like this:
SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
FOR XML AUTO, XMLDATA, ELEMENTS
SQL Server also implements a number of other enhancements to support XML. For example, the OPENXML rowset function can be used to insert an XML document into a SQL Server table. SQL Server also includes system stored procedures that can help you prepare and manipulate XML documents.
SQL Server (and Oracle, using a somewhat different technique) both support a non-ANSI, non-ISO query known as a pivot query. Although you should refer to the vendor documentation for details on exactly how to write a pivot (or unpivot) query, an example here will help you take advantage of this useful technique. A pivot query turns the result set on its side, enabling you to extract more value from the data. For example, the following query produces a two-column, four-row result set:
SELECT days_to_make, AVG(manufacturing_cost) AS Avg_Cost
FROM manufacturing.products
GROUP BY days_to_make;
where the result set is:
days_to_make Avg_Cost
0 5
1 225
2 350
4 950
By using a pivot query, you can now turn the result "on its side" so that the days_to_make column values become the column headings and the query returns one row with five columns:
SELECT 'Avg_Cost' As Cost_by_Days, [0], [1], [2], [3], [4]
FROM (SELECT days_to_make, manufacturing_cost FROM manufacturing.products)
AS source
PIVOT
 (AVG(manufacturing_cost) FOR days_to_make IN ([0], [1], [2], [3], [4]))
 AS pivottable;
where the results are:
Cost_by_Days 0 1 2 3 4
Avg_Cost 5 225 350 NULL 950

See Also
	JOIN
	WHERE

Name
SET Statement

The SET statement assigns a value to a runtime variable. The variables may be platform-specific system variables or user-defined variables.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Not supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
SET variable = value

Keywords
	variable
	Denotes a system or user-defined variable.

	value
	Denotes a string or numeric value appropriate to the system or user-defined variable.

Rules at a Glance
Variable values are set for the duration of the session. The value assigned to a variable must match the datatype of the variable. For example, you cannot assign a string value to a variable that is declared with a numeric datatype. The actual command to create a variable varies from platform to platform. For example, Oracle and SQL Server use the DECLARE statement to declare a variable name and datatype, but other platforms may use other means.
The value assigned to a variable does not have to be a literal value. It may be a dynamic value that is derived from a subquery. For example, we assign the maximum employee ID to the emp_id_var variable in the following example:
DECLARE emp_id_var CHAR(5)
SET emp_id_var = (SELECT MAX(emp_id)
 FROM employees WHERE type = 'F')
In this example, an employee type of 'F' indicates that the employee is a full-time, salaried employee.

Programming Tips and Gotchas
The SET statement is easily transportable between the database platforms. Only Oracle uses a consistently different scheme for assigning values to variables. In the following example, we declare a variable on SQL Server called emp_id_var and assign a value to it:
DECLARE emp_id_var CHAR(5)
SET emp_id_var = '67888'
Now, we will perform the same action on an Oracle server:
DECLARE emp_id_var CHAR(5);
emp_id_var := '67888';
You'll find more on these differences in the sections that follow.

MySQL
SET, as a keyword in MySQL, has several uses. First, SET is a MySQL datatype that allows multiple comma-separated values. In addition, SET may assign a value to a user variable. That latter use is described here, and the syntax for it is:
SET @variable = value[, ...]
When setting multiple values in a single statement, set each value separately with a comma between them:
SET new_var.order_qty = 125, new_var.discount = 4;
In addition, MySQL allows the use of SELECT to assign values to variables in the same fashion as that described under the ANSI description of SET. However, there are some weaknesses when using the SELECT method for assigning values to variables. The primary problem is that values are not assigned immediately within the SELECT statement. Thus, in the following example:
SELECT (@new_var := row_id) AS a,
 (@new_var + 3) AS b
FROM table_name;
the @new_var variable will not possess the newly selected value of row_id + 3; instead, it will retain the value from the beginning of the statement. For this reason, it is a best practice to assign only one value to a variable at a time.

Oracle
The SET clause is not supported as the method of assigning values to variables in Oracle. Instead, user-defined variables are simply assigned values using the assignment indicator :=. The basic syntax is shown here:
variable := value

PostgreSQL
The PostgreSQL command SET is used to set a runtime variable:
SET [SESSION | LOCAL] variable { TO | = } { value | DEFAULT }
The runtime variable may be set to a string literal designated by value, or to its default value using the DEFAULT keyword. The optional SESSION keyword specifies that the command takes effect only for the current session (the default when both SESSION and LOCAL are omitted). The optional LOCAL keyword indicates that the command takes effect only for the current transaction; behavior falls back to whatever the session-level settings are after the current transaction is committed or rolled back.
In addition, some client configuration settings may be configured using SET (though you can also use the function SET_CONFIG for equivalent functionality). PostgreSQL supports setting additional runtime values for:
	[CLIENT_ENCODING] NAMES
	Sets multibyte client encoding on PostgreSQL installations built with multibyte support.

	DATESTYLE
	Sets the style used to display dates and times. Supported styles include:
	ISO
	Depicts date and time as YYYY-MM-DD HH:MM:SS (the default ISO 8601 style).

	SQL
	Depicts the Oracle/Ingres style of date and time, not the date and time style mandated by ANSI SQL.

	Postgresql
	Depicts the long-time date and time format in PostgreSQL (this is no longer the default).

	German
	Depicts the date and time as DD.MM.YYYY.

You can further qualify the SQL and Postgresql styles using the keywords European, US, and NonEuropean, which give dates in the forms DD/MM/YYYY, MM/DD/YYYY, and MM/DD/YYYY, respectively (for example, SET DATESTYLE = SQL, European;).

	SEED
	Sets the internal random number generator seed. The value may be any floating-point number between 0 and 1 multiplied by 231−1. This value can also be set via the PostgreSQL setseed function. For example:
SELECT setseed(value);

	SERVER_ENCODING
	Enables multibyte server encoding on servers built with multibyte support.

	TIME ZONE {timezone | LOCAL | DEFAULT}
	Sets the timezone to timezone, or to the localtime zone (i.e., the default for the server operating system) using either LOCAL or DEFAULT. Refer to the vendor documentation for the full listing of allowable time zones.

SQL Server
SQL Server supports SET for variable assignments, provided the variables have previously been created with the DECLARE statement, and to define values for cursor variables in SQL Server. (SQL Server also uses the SET statement for a variety of other purposes, such as enabling or disabling session flags like SET NOCOUNT ON.) The platform-specific syntax is:
SET { { @variable = value }
 | { @cursor_variable = { @cursor_variable | cursor_name
 | { CURSOR [FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
FOR select_statement
 [FOR { READ ONLY | UPDATE [OF column_name[, ...]] }
] } } } }
The command does not support the DEFAULT keyword, but otherwise supports all the syntax of the ANSI command. The value for server_name must reference a connection named in a previous CONNECT statement, either as a literal or as a variable.

Name
SET CONNECTION Statement

The SET CONNECTION statement allows users to switch between several open connections on one or more database servers.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Not supported

	PostgreSQL
	Not supported

	SQL Server
	Supported, with limitations

SQL2003 Syntax
SET CONNECTION {DEFAULT | connection_name}

Keywords
	connection_name
	Names the connection of the current session. If the connection_name is different from the current session connection name, the connection context is switched to the connection_name.

	DEFAULT
	Switches to the default connection from any other connection. This enables rapid switching to the default connection without knowing its name.

Description
This command does not end a connection. Instead, it switches from the current connection to the connection named (making it the current connection), or from the current connection to the default connection. When switching between connections, the old connection becomes dormant (without committing any changes), while the new connection becomes active.

Rules at a Glance
SET CONNECTION does not create a connection; it merely switches your connection context. Use the CONNECT command to create a new connection, and use DISCONNECT to terminate a connection.

Programming Tips and Gotchas
The SET CONNECTION command is not frequently used, since many users connect programmatically via ODBC, JDBC, or some other connectivity method. However, on those platforms that support SET CONNECTION, the command can be very useful for rapidly changing connection properties without terminating any existing connections.

MySQL
Not supported.

Oracle
Not supported.

PostgreSQL
Not supported.

SQL Server
SQL Server supports SET CONNECTION, but only in embedded SQL, not within its ad hoc querying tool, SQL Query Analyzer. Although SQL Server supports the full SQL2003 syntax within SQL embedded in other programs, such as a C++ program, it is not used very often. Most prefer the SQL Server-specific command USE instead. The platform-specific SET CONNECTION syntax is:
SET CONNECTION connection_name
This command does not support the DEFAULT keyword but is otherwise the same as the ANSI command. The value for connection_name must reference a connection named in a previous CONNECT statement, either as a literal or as a variable.
Here is a full T-SQL program in SQL Server that shows CONNECT, DISCONNECT, and SET CONNECTION:
EXEC SQL CONNECT TO chicago.pubs AS chicago1 USER sa;
EXEC SQL CONNECT TO new_york.pubs AS new_york1 USER read-only;
-- Opens connections to the servers named "chicago" and
 "new_york"
EXEC SQL SET CONNECTION chicago1;
EXEC SQL SELECT name FROM employee INTO :name;
-- Sets the chicago1 connection as active and performs work
 within that session
EXEC SQL SET CONNECTION new_york1;
EXEC SQL SELECT name FROM employee INTO :name;
-- sets the new_york1 connection as active and performs work
 within that session
EXEC SQL DISCONNECT ALL;
-- Terminates all sessions. You could alternately use two
-- DISCONNECT commands, one for each named connection.

See Also
	CONNECT
	DISCONNECT

Name
SET CONSTRAINT Statement

The SET CONSTRAINT statement defines, for the current transaction, whether a deferrable constraint is checked after each DML statement or when the transaction is finally committed. If the session is not currently in an open transaction, thesetting applies to the next transaction.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Not supported

SQL2003 Syntax
SET CONSTRAINT {constraint_name[, ...] | ALL} {DEFERRED | IMMEDIATE}

Keywords
	constraint_name[, . . .] | ALL
	Names one or more deferrable constraints where the setting will apply. The keyword ALL sets the constraint mode for all deferrable constraints of the current transaction.

	DEFERRED
	Checks the conditions specified by the deferrable constraint when the transaction is committed, rather than when the DML statements are issued.

	IMMEDIATE
	Checks the conditions specified by the deferrable constraint immediately after each DML statement is issued, rather than when the transaction is committed.

Rules at a Glance
SET CONSTRAINT defines a value for the constraint mode of all deferrable constraints of the current transaction. If the session is not currently in a transaction, the SET CONSTRAINT statement applies to the next transaction issued during the session.
The following example sets all deferrable constraints to be checked immediately following the issuance of each DML statement:
SET CONSTRAINT ALL IMMEDIATE;
The next example sets two constraints to defer their data modifications until the transaction is committed:
SET CONSTRAINT scott.hr_job_title, scott.emp_bonus DEFERRED:

Programming Tips and Gotchas
Constraints, when they are defined, may be specified as DEFERRABLE or NOT DEFERRABLE. The SET CONSTRAINT statement will fail if it is issued against a specific constraint that was defined as NOT DEFERRABLE.

MySQL
Not supported.

Oracle
Oracle supports the ANSI standard exactly as described, except that SET CONSTRAINTS is allowed, as well as SET CONSTRAINT.

PostgreSQL
PostgreSQL supports the ANSI-standard syntax exactly as described. Currently, however, PostgreSQL allows SET CONSTRAINT only against foreign key constraints, not check and unique constraints, which are always considered IMMEDIATE.

SQL Server
Not supported.

Name
SET PATH Statement

The SET PATH statement changes the value of the CURRENT PATH setting to one or more schemas.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Not supported

	PostgreSQL
	Not supported

	SQL Server
	Not supported

SQL2003 Syntax
SET PATH schema_name[, ...]

Keywords
	schema_name[, . . .]
	Defines one or more schemas as the current path.

Rules at a Glance
SET PATH defines one or more schemas used to qualify an unqualified routine name (that is, functions, procedures, and methods).
The following example sets the current path (i.e., schema name) for unqualified objects to scott:
SET PATH scott;
Then, whenever a routine is referenced during the current session, it will assume the scott schema if no schema is identified.

Programming Tips and Gotchas
When referencing multiple schema names, all the schemas must belong to the current database. (The schemas cannot be on a remote database.)
SET PATH does not apply the schema to unqualified objects like tables or views; it only applies to routines.
SET PATH is not supported on any of the platforms discussed in this book.

See Also
	SET SCHEMA

Name
SET ROLE Statement

The SET ROLE statement enables and disables specific roles for the current session.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with variations

	PostgreSQL
	Not supported

	SQL Server
	Not supported

SQL2003 Syntax
SET ROLE {NONE | role_name}

Keywords
	NONE
	Assigns the CURRENT ROLE role to the current session.

Rules at a Glance
When a user session is opened using the CONNECT statement, issuing the SET ROLE statement grants that session the privileges associated with a role. The SET ROLE command can be issued only outside of a transaction.
The value for role_name must reference a valid user role existing on the server. You may specify the role name either as a literal or through a variable.

Programming Tips and Gotchas
Sessions are created using the CONNECT statement, while roles are created using the CREATE ROLE statement.
Most database platforms offer some method of setting or changing the role used during a user session. SET ROLE is the ANSI-standard approach to setting the role used during a user session, but it is not widely supported by the different database platforms. The following sections detail the analogous commands supported by the platforms discussed in this book; check your platform's documentation for more information.

MySQL
SET ROLE is not supported. An analogous method to control connection settings in MySQL is controlled in the [client] section of the .my.cnf configuration file in the home directory. For example:
[client]
host=server_name
user=user_name
password=client_password
To rapidly change between user roles, you can reassign host, user, and password connection properties, respectively, by assigning new values to MYSQL_HOST, USER (for Windows only), and MYSQL_PWD (though MYSQL_PWD is insecure in that other users can view this file).

Oracle
When a user initiates a connection, Oracle explicitly assigns roles to that user. The role(s) under which the session is operating can be changed with the SET ROLE command, assuming the user is a member of the assigned role. Oracle uses the MAX_ENABLED_ROLES initialization parameter (in the INIT.ORA file) to control the maximum number of roles that can be enabled concurrently. The Oracle syntax is:
SET ROLE { role_name [IDENTIFIED BY password][, ...]
| [ALL [EXCEPT role_name[, ...]]
| NONE };
Options for the SET ROLE command include:
	role_name
	Declares a valid role name (or names) already created within Oracle, of which the user must already be a member. Any roles not specified here are unavailable throughout the current session. You can enable multiple roles by providing a list, placing a comma between each role listed.

	IDENTIFIED BY password
	If the role_name has a password, that password must be specified using this clause.

	ALL
	Enables all roles that are granted to the current user, including roles that are granted through other roles. Cannot be used with the IDENTIFIED BY clause.

	EXCEPT
	Specifies a list of roles to exclude from a SET ROLE ALL command.

	NONE
	Disables all roles, including the default role.

Roles with passwords may be accessed only through the statement SET responsibility role_name IDENTIFIED BY password. For example, we can use this statement to enable the specific roles read_only and updater—identified by the passwords editor and red_marker, respectively—for the current session:
SET ROLE
 read_only IDENTIFIED BY editor,
 updater IDENTIFIED BY red_marker;
To enable all roles except the read_write role, we can issue this command:
SET ROLE ALL EXCEPT read_write;

PostgreSQL
SET ROLE is not supported in PostgreSQL. However, the ANSI SQL command SET SESSION AUTHORIZATION is supported and can achieve somewhat similar results.

SQL Server
Not supported.

See Also
	CONNECT
	CREATE ROLE
	DISCONNECT
	SET SESSION AUTHORIZATION

Name
SET SCHEMA Statement

The SET SCHEMA statement changes the value of the CURRENT SCHEMA setting to a user-specified schema.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Not supported

	PostgreSQL
	Not supported

	SQL Server
	Not supported

SQL2003 Syntax
SET SCHEMA schema_name[, ...]

Keywords
	schema_name[, . . .]
	Defines one or more schemas as the current path.

Rules at a Glance
SET SCHEMA defines a user-defined schema to use to qualify an unqualified object, such as a table or view.
The following example sets the current schema for unqualified objects to scott:
SET SCHEMA scott;
Then, whenever an object is referenced during the current session, it will assume the scott schema if no schema is identified.

Programming Tips and Gotchas
The SET SCHEMA statement cannot assign a schema from a remote database as the CURRENT SCHEMA.
SET SCHEMA does not apply the schema to unqualified routines such as functions, procedures, and methods; it applies only to database objects such as tables and views.
This command is not supported on any of the platforms discussed in this book.

See Also
	SET PATH

Name
SET SESSION AUTHORIZATION Statement

The SET SESSION AUTHORIZATION statement sets the user identifier for the current session.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Not supported

	PostgreSQL
	Supported

	SQL Server
	Not supported

SQL2003 Syntax
SET SESSION AUTHORIZATION username

Keywords
	username
	Sets the session user and the current user of the SQL session to the context of username, where username may be a literal, a parameter, or a host variable.

Rules at a Glance
This command allows you to switch between users and to run under their permissions.

Programming Tips and Gotchas
Some platforms allow you to use special shortcut keywords like SESSION USER and CURRENT USER. These are usually the same thing: the username of the currently active session provided by the client. However, SESSION USER and CURRENT USER can diverge in a session when SETUID functions and other similar mechanisms are invoked.
Superuser permissions are required to invoke the SET SESSION AUTHORIZATION command, but you will still be able to switch back to the initial user session even if the current user session does not normally have permission to run SET SESSION AUTHORIZATION.
You might also wish to check the value of the SESSION_USER and CURRENT_USER functions with this SQL statement:
SELECT SESSION_USER, CURRENT_USER;
Normally, you should issue SET SESSION AUTHORIZATION before any transactions, to set the session and current user values for all transactions that follow. It must be issued as the only command in its transaction batch.

MySQL
Not supported. You must disconnect your session from MySQL and then reconnect to utilize another set of user privileges.

Oracle
Not supported. Similar functionality is achieved using the CONNECT statement or by logging off the server and reconnecting.

PostgreSQL
PostgreSQL supports the ANSI standard for this command. The only difference, and it is a minor one, is that the ANSI standard does not allow this command during a transaction, while PostgreSQL does not care one way or the other.

SQL Server
Not supported. Similar functionality is achieved with the CONNECT statement or by logging off the server and reconnecting.

See Also
	CONNECT
	GRANT
	SESSION_USER

Name
SET TIME ZONE Statement

The SET TIME ZONE statement changes the current session's time zone if it needs to be different from the default time zone.
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Not supported

SQL2003 Syntax
SET TIME ZONE {LOCAL | INTERVAL {+ | -}'00:00' [HOUR TO MINUTE]}

Keywords
	LOCAL
	Sets the current session's time zone to that of the local server.

	INTERVAL
	Specifies the time zone offset from Coordinated Universal Time (UTC) in terms of hours and minutes. The offset can be either an increase (with +) or decrease (with -) in relation to the default time.

	HOUR TO MINUTE
	Specifies the datatype of the TIME ZONE value.

Rules at a Glance
This is a relatively simple command that either sets the user session time zone to that of the server (LOCAL), or sets the time zone in relation to Coordinated Universal Time (formerly Greenwich Mean Time, or GMT). Thus, an INTERVAL of 2 would advance the time zone two hours greater than UTC, while an INTERVAL of -6 would reduce thetime zone by six hours from UTC to the United States central time zone.

Programming Tips and Gotchas
Like most SET commands, SET TIME ZONE can be executed only outside of an explicit transaction. In other words, you do not need to encapsulate the command within a START or BEGIN TRAN and a COMMIT TRAN statement.

MySQL
Not supported.

Oracle
In Oracle9i and higher, you can use the following ALTER SESSION command to set the session time zone:
ALTER SESSION
 SET TIME_ZONE = {'[+ | -] hh:mm'
 | LOCAL
 | DBTIMEZONE
 | 'region'}
Use LOCAL to revert back to your session's original default time zone, Use DBTIMEZONE to set your session time zone to be the database time zone, and use 'region' to specify a time zone region name such as 'EST' or 'PST'. Use an offset such as '-5:00' to specify your time zone in terms of an hour and minute displacement from UTC. A displacement of '-5:00' means that your time is five hours behind UTC time (e.g., 5:00 A.M. your time is 10:00 A.M. UTC time).
To retrieve a list of valid time zone region names, issue the following query:
SELECT tzname FROM v$timezone_names;
Both of the following commands set the time zone to Eastern Standard Time. The first command does this by specifying the appropriate displacement from UTC, while the second command specifies the time zone region name:
ALTER SESSION SET TIME_ZONE = '-5:00';
ALTER SESSION SET TIME_ZONE = 'EST';
Oracle's time zone support is complex. Steven Feuerstein's Oracle PL/SQL Programming (O'Reilly) contains a good explanation of it in the chapter on datetime datatypes.

PostgreSQL
PostgreSQL allows a session's time value to be set to the server default by using the LOCAL or the DEFAULT clause:
SET TIME ZONE {'timezone' | LOCAL | DEFAULT };
There are some variations from the ANSI standard:
	'timezone'
	Specifies a time zone by name. The possible values for time zone depend on the operating system. For example, the file /usr/share/zoneinfo contains the database of time zones for Linux servers.

	LOCAL / DEFAULT
	Sets the current session's time values to those of the default time zone as determined by the local server.

For example, 'PST8PDT' is a valid time zone for California on Linux systems, while 'Europe/Rome' is a valid time zone for Italy on Linux and other systems. If you specify an invalid time zone, the command sets the time zone to UTC.
When increasing the time zone over UTC, the plus sign is optional.
The following example sets the PostgreSQL time zone to Pacific Standard Time:
SET TIME ZONE 'PST8PDT';
Next, the time for the current session is returned to the server's default time zone:
SET TIME ZONE LOCAL;

SQL Server
Not supported.

Name
SET TRANSACTION Statement

The SET TRANSACTION statement controls many characteristics of data modification, primarily the read/write characteristics and isolation level of a transaction.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported

	SQL Server
	Supported, with variations

SQL2003 Syntax
SET [LOCAL] TRANSACTION [READ ONLY | READ WRITE]
 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |
 REPEATABLE READ | SERIALIZABLE}]
 [DIAGNOSTIC SIZE int]

Keywords
	LOCAL
	Changes transaction settings for the current session on the local server only. If this keyword is not specified, the transaction settings for the next transaction are changed, even if the transaction runs on a remote server.

	READ ONLY
	Sets the next upcoming transaction as a read-only transaction. Once the next transaction is complete, transaction behavior reverts to the default settings.

	READ WRITE
	Sets the next upcoming transaction so it may perform transactions that read and write data.

	ISOLATION LEVEL
	Sets the isolation level for the next transaction in the session.

	READ COMMITTED
	Allows a transaction to read rows written by other transactions only when they have been committed.

	READ UNCOMMITTED
	Allows a transaction to read rows that have been written, but not committed, by other transactions.

	REPEATABLE READ
	All sessions can see records that are committed before their first transactions were begun. Other open sessions can see or change only committed rows in the user's current session. Consequently, later transactions can add records that might then be visible to the transactions of earlier sessions, but the other sessions must requery to see those records.

	SERIALIZABLE
	All sessions can see records that are committed before their first transactions were begun. Before that point, open sessions can see records within other user sessions but cannot insert or update until those sessions' transactions are completed. This is the most restrictive isolation level and the default for SQL2003.

	DIAGNOSTIC SIZE int
	Designates the specific number of error messages (int) to capture for a transaction. The GET DIAGNOSTICS statement retrieves these error messages.

Rules at a Glance
When issued, SET TRANSACTION sets the properties of the next upcoming transaction. Because of this, SET TRANSACTION is an interim statement that should be issued after one transaction completes and before the next transaction starts. (To begin a transaction and set its characteristics at the same time, use START TRANSACTION.) More than one option may be applied with this command, but only one access mode, isolation level, and diagnostic size may be specified at a time.
The isolation level of a transaction specifies the degree of isolation a transaction has from other concurrently running sessions. The isolation level controls:
	Whether rows read and updated by your database session are available to other concurrently running database sessions.

	Whether the update, read, and write activity of other database sessions can affect your database session.

If you are unfamiliar with isolation levels, be sure to read your platform's vendor documentation.

Programming Tips and Gotchas
The ISOLATION LEVEL clause controls a number of behaviors and anomalies in a transaction concerning concurrent transactions, including the following:
	Dirty reads
	Occur when a transaction reads the altered records of another transaction before the other transaction has completed. This allows a data modification to occur on a record that might not be committed to the database.

	Nonrepeatable reads
	Occur when one transaction reads a record while another modifies it. If the first transaction then attempts to reread the record, it won't be able to find it.

	Phantom records
	Occur when transaction A reads a group of records, but transaction B adds or changes the data so that more records satisfy the query issued by transaction A. Thus, transaction A may read in the records of transaction B as if they were committed to the database, when in fact the records from transaction B may still be rolled back. Since transaction A is reading records that are not yet permanent, these are called phantom records.

Table 3-6 shows the impact of various isolation level settings on the anomalies just listed.
Table 3-6. Isolation level and anomaly impact
	Isolation level
	Dirty reads
	Nonrepeatable reads
	Phantom records

	READ UNCOMMITTED
	Allowed
	Allowed
	Allowed

	READ COMMITTED
	Not allowed
	Allowed
	Allowed

	REPEATABLE READ
	Not allowed
	Not allowed
	Allowed

	SERIALIZABLE
	Not allowed
	Not allowed
	Not allowed

MySQL
MySQL allows you to set the transaction isolation level for the next individual transaction, the whole session, or globally across the server, as follows:
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
[READ UNCOMMITTED |READ COMMITTED | REPEATABLE READ
 | SERIALIZABLE]
By default, MySQL sets the isolation level for the transaction that immediately follows the statement. The keywords are:
	GLOBAL
	Sets the transaction isolation level for all subsequent transactions across all user sessions or system threads.

	SESSION
	Sets the transaction isolation level for all subsequent transactions of the current session.

	TRANSACTION ISOLATION LEVEL
	Sets a specific transaction isolation level, as described earlier in the section "Keywords." When omitted, MySQL defaults to the REPEATABLE READ isolation level.

The SUPER privilege is required to set a GLOBAL transaction isolation level. You can also set the default isolation level via the MYSQL command-line executable using the -transaction-isolation=" switch. Following is an example that sets all subsequent threads (both user and system threads) to a serializable transaction isolation level:
SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Oracle
Oracle allows you to set a transaction as read-only or read-write, set the transaction isolation level, and specify a specific rollback segment for your transactions:
SET TRANSACTION { [READ ONLY | READ WRITE]
| [ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }]
| [USE ROLLBACK SEGMENT segment_name]
| NAME 'transaction_name' };
where:
	READ ONLY
	Sets the next transaction as read-only and serializable. This option is not available to the user SYS. The only statements permitted in read-only sessions are SELECT, ALTER SESSION, ALTER SYSTEM, LOCK TABLE, and SET ROLE.

	READ WRITE
	The default transaction style in Oracle. Allows transactions to read and write data.

	READ COMMITTED
	The default transaction isolation level in Oracle. The same as the ANSI standard.

	SERIALIZABLE
	Sets the transaction isolation level to the ANSI serializable level and requires the COMPATIBLE init parameter to be set to 7.3.0 or higher.

	USE ROLLBACK SEGMENT segment_name
	Sets the next read/write transaction to be written to a specific Oracle rollback segment identified by segment_name. Because it applies only to the current transaction, USE ROLLBACK SEGMENT should be the first statement in the transaction. This option is not compatible with the READ ONLY option. The rollback segment must already exist, or this statement will fail.

	NAME
	Assigns a name of 255 characters or less to the current transaction. This option is useful in distributed transaction processing environments for two-phase commits, because it lets you easily identify which local transactions belong to a single distributed transaction.

The USE ROLLBACK SEGMENT variant can be useful for performance tuning, as it allows you to direct long-running transactions to rollback segments large enough to hold them, while small transactions can be directed to rollback segments that might be small enough to be retained in the cache.
The SET TRANSACTION statement should be the first statement in any SQL batch, but Oracle treats it virtually the same as the START TRANSACTION statement, so one could be substituted for the other.
In the following example, the query reports from a bi-weekly process on the chicago server while avoiding any impact from other users who might be updating or inserting records:
SET TRANSACTION READ ONLY NAME 'chicago';
SELECT prod_id, ord_qty
FROM sales
WHERE stor_id = 5;
In another case, late-night batch processing might create a huge transaction that would overflow all but the rollback segment created to support that one transaction:
SET TRANSACTION USE ROLLBACK SEGMENT huge_tran_01;

PostgreSQL
SET TRANSACTION in PostgreSQL impacts only the new transaction you are beginning. Consequently, you may have to issue this statement before each new transaction. The syntax is:
SET TRANSACTION ISOLATION LEVEL {READ COMMITTED | SERIALIZABLE};
where:
	READ COMMITTED
	Sets the transaction isolation level to the ANSI level READ COMMITTED. This is the default.

	SERIALIZABLE
	Sets the transaction isolation level to the ANSI level SERIALIZABLE.

By default, PostgreSQL supports the READ COMMITTED transaction isolation level. You can set the default transaction isolation level for all transactions in the session by using either of the following commands:
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
 { READ COMMITTED | SERIALIZABLE }
SET default_transaction_isolation =
 { 'read committed' | 'serializable' }
Of course, you can then override the isolation level of any subsequent transaction using the SET TRANSACTION statement.
For example, you can set the next transaction to the serializable transaction isolation level:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
Alternately, you could set all the transactions in an entire session to serializable:
SET SESSION CHARACTERISTICS AS TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;

SQL Server
SET TRANSACTION in SQL Server sets the isolation level for an entire session. All queries that follow a SET TRANSACTION statement run under the isolation level set by the statement until it is otherwise changed. The syntax is:
SET TRANSACTION ISOLATION LEVEL
{ READ COMMITTED
| READ UNCOMMITTED
| REPEATABLE READ
| SERIALIZABLE}
where:
	READ COMMITTED
	Sets the transaction isolation level to the ANSI level READ COMMITTED. This is the default.

	READ UNCOMMITTED
	Sets the transaction isolation level to the ANSI level READ UNCOMMITTED. This has the same effect as the NOLOCK optimizer hint.

	REPEATABLE READ
	Sets the transaction isolation level to the ANSI level REPEATABLE READ.

	SERIALIZABLE
	Sets the transaction isolation level to the ANSI level SERIALIZABLE. Similar results can be achieved in SQL Server using the HOLDLOCK optimizer hint.

For example, the following command lowers the transaction isolation level for all SELECT statements during the session from READ COMMITTED to REPEATABLE READ:
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO

See Also
	COMMIT
	ROLLBACK

Name
START TRANSACTION Statement

The START TRANSACTION statement allows you to perform all the functions of SET TRANSACTION while also initiating a new transaction.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Not supported

	PostgreSQL
	Not supported; use BEGIN TRANSACTION instead

	SQL Server
	Not supported; use BEGIN TRANSACTION instead

SQL2003 Syntax
START TRANSACTION [READ ONLY | READ WRITE]
 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |
 REPEATABLE READ | SERIALIZABLE}]
 [DIAGNOSTIC SIZE int]

Keywords
	READ ONLY
	Sets the next upcoming transaction as a read-only transaction. Once the next transaction is complete, transaction behavior reverts to the default settings.

	READ WRITE
	Sets the next upcoming transaction so it may perform transactions that read and write data.

	ISOLATION LEVEL
	Sets the isolation level for the next transaction in the session.

	READ COMMITTED
	Allows a transaction to read rows written by other transactions only when they have been committed.

	READ UNCOMMITTED
	Allows a transaction to read rows that have been written, but not committed, by other transactions.

	REPEATABLE READ
	All sessions can see records that are committed before their first transactions were begun. Other open sessions can see or change only committed rows in the user's current session. Consequently, later transactions can add records that might then be visible to the transactions of earlier sessions, but the other sessions must requery to see those records.

	SERIALIZABLE
	All sessions can see records that are committed before their first transactions were begun. Before that point, open sessions can see records within other user sessions but cannot insert or update until those sessions' transactions are completed. This is the most restrictive isolation level and the default for SQL2003.

	DIAGNOSTIC SIZE int
	Designates the specific number of error messages (int) to capture for a transaction. The GET DIAGNOSTICS statement retrieves these error messages.

Rules at a Glance
According to the ANSI standard, the only difference between SET and START is that SET is considered outside of the current transaction, while START is considered the beginning of a new transaction. Thus, SET TRANSACTION settings apply to the next transaction, while START TRANSACTION settings apply to the current transaction.
While only MySQL supports the START TRANSACTION statement, three of the vendors (MySQL, PostgreSQL, and SQL Server) support a similar command, BEGIN [TRAN[SACTION]] and its synonym BEGIN [WORK]. BEGIN TRANSACTION declares an explicit transaction, but it does not set isolation levels. The only significant rule of the START TRANSACTION statement is that it is used to control the access mode, isolation level, and/or diagnostic size of the current transaction only. Once a new transaction starts, you must either issue new values for the setting(s) or rely on the defaults.
Most database platforms allow you to implicitly control transactions, using what is commonly called autocommit mode. In autocommit mode, the database treats each statement as a transaction in and of itself, complete with implicit BEGIN TRAN and COMMIT TRAN statements.
The alternative to autocommit mode is to manually control each transaction. Under explicit transaction control, you declare each new transaction with the START TRANSACTION statement. A new transaction may also start implicitly any time a transaction-initiating statement is issued, such as INSERT, UPDATE, DELETE, or SELECT. The transaction is not committed or rolled back until either a COMMIT or ROLLBACK statement is explicitly issued.
Oracle does not support the explicit declaration of a new transaction using START TRANSACTION, but it does support explicitly committing, savepointing, and rolling back a transaction. Other platforms, including MySQL, PostgreSQL, and SQL Server, allow you both to explicitly declare a transaction with START TRANSACTION and to explicitly commit, savepoint, and roll back the transaction.

Programming Tips and Gotchas
Many of the platforms discussed in this book run in autocommit mode by default. Therefore, it is a good rule of thumb to use explicitly declared transactions only if you intend to do so for all transactions in a session. In other words, do not mix implicitly declared transactions and explicitly declared transactions in a single session.
Each transaction that is explicitly declared can only be made permanent with the COMMIT statement. Similarly, any transaction that fails or needs to be discarded must be explicitly undone with the ROLLBACK statement.
Warning
Be sure to issue START in a pair with either COMMIT or ROLLBACK. Otherwise, the DBMS may not complete the transaction(s) until it encounters a COMMIT or ROLLBACK statement. Poor planning and omitting timely COMMITs (or ROLLBACKs) could potentially lead to huge transactions.

It is a good idea to issue explicit COMMITs or ROLLBACKs after one or a few statements, because long-running transactions can lock up resources, thus preventing other users from accessing those resources. Long-running or very large transaction batches can fill up the rollback segments or transaction logs of a database, even if those files are small.

MySQL
MySQL normally runs in autocommit mode, which means changes are automatically saved to disk when completed. If a change fails for any reason, it is automatically rolled back.
MySQL supports START TRANSACTION and a synonym, BEGIN. You can suspend autocommit for one or several statements using the BEGIN syntax:
START TRANSACTION [WITH CONSISTENT SNAPSHOT]
BEGIN [WORK]
where:
	WITH CONSISTENT SNAPSHOT
	Starts a consistent read of data on engines that support consistency of reads (currently, only InnoDB) when running under a transaction isolation level that supports consistent reads (i.e., SERIALIZABLE and REPEATABLE READ).

	BEGIN [WORK]
	Marks the beginning of one or more transactions. WORK is an optional keyword with no effect.

Issuing the following command can disable autocommit mode for all sessions and threads:
SET AUTOCOMMIT=0
Once you have disabled autocommit, the COMMIT statement is required to store any and every data modification to disk, and the ROLLBACK statement is required to undo changes made during a transaction. Disabling autocommit is only effective with "transaction-safe tables," such as InnoDB or BDB tables. Disabling autocommit on non-transaction-safe tables has no effect—autocommit will still be enabled.
Warning
Earlier versions of MySQL use an update log. However, the update log does not support ANSI transactions unless the tables are defined as InnoDB or NDB Cluster tables.

Transactions are stored in the binary log in a single write operation when the COMMIT statement is issued. Here's an example:
BEGIN;
 SELECT @A := SUM(salary)
 FROM employee
 WHERE type=1;
 UPDATE payhistory SET summmary=@A WHERE type=1;
COMMIT;
Rollbacks issued against non-transactional tables will fail with the error ER_WARNING_NOT_COMPLETE_ROLLBACK, but transaction-safe tables will be restored as expected.

Oracle
Not supported. Transactions in Oracle are started implicitly. Refer to the "Oracle" section in the earlier discussion of SET TRANSACTION for more information about how Oracle controls individual transactions.

PostgreSQL
PostgreSQL does not support START TRANSACTION. Instead, the PostgreSQL syntax is:
BEGIN [WORK | TRANSACTION]
where:
	BEGIN
	Marks the beginning of one or more transactions.

	WORK
	Is an optional keyword with no effect.

	TRANSACTION
	Is an optional keyword with no effect.

PostgreSQL normally runs in autocommit mode, where each data-modification statement or query is its own transaction. PostgreSQL applies an implicit COMMIT for any transaction that completes without an error, and an implicit ROLLBACK for any statement that fails. The BEGIN statement allows explicit COMMIT or ROLLBACK of a transaction, which may then consist of multiple statements.
Manually coded transactions are much faster in PostgreSQL than autocommitted transactions. SET TRANSACTION ISOLATION LEVEL should be set to SERIALIZABLE just after the BEGIN statement to bolster the transaction isolation level. PostgreSQL allows many data-modification statements (INSERT, UPDATE, DELETE) within a BEGIN . . . COMMIT block. However, when the COMMIT command is issued, either all or none of the transaction is committed, depending on the success or failure of the command.
Tip
BEGIN has a separate usage on database platforms that support their own procedural languages (namely, Oracle and SQL Server). On these platforms, BEGIN (without the keyword TRANSACTION), is used to mark a new block of procedural code. For this reason, you are advised to include the TRANSACTION keyword for any transactions you write on PostgreSQL. Otherwise, you will face some complicated migration issues should you ever move your code to Oracle or SQL Server.

Following is an example of BEGIN TRANSACTION in PostgreSQL:
BEGIN TRANSACTION;
 INSERT INTO jobs(job_id, job_desc, min_lvl, max_lvl)
 VALUES(15, 'Chief Operating Officer', 185, 135)
COMMIT;

SQL Server
Microsoft SQL Server supports the BEGIN TRANSACTION statement rather than the ANSI START TRANSACTION statement. It also supports a couple of extensions that facilitate transaction backup and recovery. The Microsoft SQL Server syntax is:
BEGIN TRAN[SACTION] [transaction_descriptor
 [WITH MARK ['log_descriptor']]]
where:
	TRAN[SACTION]
	Marks the beginning of a transaction. SQL Server allows either TRAN or TRANSACTION.

	transaction_descriptor
	A name or variable string datatype (CHAR, NCHAR, VARCHAR, or NVARCHAR) variable, of up to 32 characters in size, used to identify a transaction. When working with nested transactions, only name the outermost transaction.

	WITH MARK log_descriptor
	Tells SQL Server to place a mark of name log_descriptor in the transaction log, allowing SQL Server to restore a transaction log up to that point. In a sense, this allows point-in-time recovery based on the name of the mark for databases set to FULL recovery mode. WITH MARK must be used in conjunction with a named transaction.

When nesting transactions, only the outermost BEGIN . . . COMMIT or BEGIN . . . ROLLBACK pair should reference the transaction name (if it has one). In general, we recommend avoiding nested transactions.
Here is a SQL Server set of INSERT statements, all performed as a single transaction:
BEGIN TRANSACTION
 INSERT INTO sales VALUES('7896','JR3435','Oct 28 2003',25,
 'Net 60','BU7832')
 INSERT INTO sales VALUES('7901','JR3435','Oct 28 2003',17,
 'Net 30','BU7832')
 INSERT INTO sales VALUES('7907','JR3435','Oct 28 2003',6,
 'Net 15','BU7832')
COMMIT
GO
If for some reason any one of these INSERT statements had to wait for completion, they would all have to wait, since they are treated as a single transaction.

See Also
	COMMIT
	ROLLBACK

Name
SUBQUERY Substatement

A subquery is a nested query. Subqueries may appear in various places within a SQL statement.
	Platform
	Command

	MySQL
	Supported, with limitations

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL supports the following types of subquery:
	Scalar subqueries
	Subqueries that retrieve a single value. These are the most widely supported type of subquery among the various database platforms.

	Table subqueries
	Subqueries that retrieve more than one value or row of values.

	Nested table subqueries
	Subqueries that retrieve more than one column and more than one row.

Scalar and vector subqueries can, on some platforms, appear as part of the expression in a SELECT list of items, a WHERE clause, or a HAVING clause. Nested table subqueries tend to appear in the FROM clauses of SELECT statements.
A correlated subquery is a subquery that is dependent upon a value in an outer query. Consequently, the inner query is executed once for every record retrieved in the outer query. Since subqueries can be nested many layers deep, a correlated subquery may reference any level in the main query higher that is than its own level.
Different rules govern the behavior of a subquery, depending on the clause in which it appears. The level of support amongst the database platforms also varies: some platforms support subqueries in all clauses mentioned earlier (SELECT, FROM, WHERE, and HAVING), while others support subqueries in only one or two of the clauses.
Subqueries are usually associated with the SELECT statement. Since subqueries may appear in the WHERE clause, they can be used in any SQL statement that supports a WHERE clause, including SELECT, INSERT . . . SELECT, DELETE, and UPDATE statements.

SQL2003 Syntax
Scalar, table, and nested table subqueries are represented in the following generalized syntax:
SELECT column1, column2, ... (scalar subquery)
FROM table1, ... (nested table subquery)
 AS subquery_table_name]
WHERE foo = (scalar subquery)
 OR foo IN (table subquery)
Correlated subqueries are more complex because the values of such subqueries are dependent on values retrieved in their main queries. For example:
SELECT column1
FROM table1 AS t1
WHERE foo IN
 (SELECT value1
 FROM table2 AS t2
 WHERE t2.pk_identifier = t1.fk_identifier)
Note that the IN clause is for example purposes only. Any comparison operator may be used.

Keywords
	scalar subquery
	Includes a scalar subquery in the SELECT item list or in the WHERE or HAVING clause of a query.

	nested table subquery
	Includes a nested table subquery only in the FROM clause in conjunction with the AS clause.

	table subquery
	Includes a table subquery only in the WHERE clause with operators such as IN, ANY, SOME, EXISTS, or ALL that act upon multiple values. Table subqueries return one or more rows containing a single value each.

Rules at a Glance
Subqueries allow you to return one or more values and nest them inside a SELECT, INSERT, UPDATE, or DELETE statement, or inside another subquery. Subqueries can be used wherever expressions are allowed. Subqueries also can often be replaced with a JOIN statement. Depending on the DBMS, subqueries may perform less quickly than joins.
Tip
Subqueries are always enclosed in parentheses.

Subqueries may appear in a SELECT clause with an item list containing at least one item, in a FROM clause for referencing one or more valid tables or views, and in WHERE and HAVING clauses.
Scalar subqueries can return only a single value. Certain operators in a WHERE clause, such as =, <, >, >=, <=, and <> (or !=), expect only one value. If a subquery returns more than one value against an operator that expects a single value, the entire query will fail. On the other hand, table subqueries may return multiple values, but they are usable only with multivalue expressions like [NOT] IN, ANY, ALL, SOME, or [NOT] EXISTS.
Nested table subqueries may appear only in the FROM clause and should be aliased by the AS clause. The result set returned by the nested table subquery, sometimes called a derived table, offers similar functionality to a view (see CREATE VIEW). Every column returned in the derived table need not be used in the query, though they can all be acted upon by the outer query.
Correlated subqueries typically appear as a component of a WHERE or HAVING clause in the outer query (and, less commonly, in the SELECT item list) and are correlated through the WHERE clause of the inner query (that is, the subquery).
(Correlated subqueries can also be used as nested table subqueries, though this is less common.) Be sure to include in such a subquery a WHERE clause that evaluates based on a correlating value from the outer query; the example for a correlated query in the earlier ANSI syntax diagram illustrates this requirement.
It is also important to specify a table alias, called a correlation name, using the AS clause or other alias shortcut for every table referenced in a correlated query, both in the outer and inner query. Correlation names avoid ambiguity and help the DBMS quickly resolve the tables involved in the query.
All ANSI-compliant subqueries comply with the following short list of rules:
	A subquery cannot include an ORDER BY clause.

	A subquery cannot be enclosed in an aggregate function. For example, the following query is invalid: SELECT foo FROM table1 WHERE sales >= AVG(SELECT column1 FROM sales_table . . .). You can get around this limitation by performing the aggregation in the subquery rather than in the outer query.

Programming Tips and Gotchas
For most vendor platforms, subqueries should not reference large object datatypes (e.g., CLOB or BLOB on Oracle and IMAGE or TEXT on SQL Server) or array datatypes (such as TABLE or CURSOR on SQL Server).
The platforms all support subqueries, but not every vendor supports every type of subquery. Table 3-7 tells you whether your platform supports each type of subquery.
Table 3-7. Platform-specific subquery support
	Platform
	MySQL
	Oracle
	PostgreSQL
	SQL Server

	Scalar subquery in SELECT item list
	✓
	✓
	x
	✓

	Scalar subquery in WHERE/HAVING clause
	✓
	✓
	✓
	✓

	Vector subquery in WHERE/HAVING clause
	✓
	✓
	✓
	✓

	Nested table in FROM clause
	✓
	✓
	✓
	✓

	Correlated subquery in WHERE/HAVING clause
	✓
	✓
	✓
	✓

Subqueries are not relegated to SELECT statements only. They may also be used in INSERT, UPDATE, and DELETE statements that include a WHERE clause. Subqueries are often used for the following purposes:
	To identify the rows inserted into the target table using an INSERT . . . SELECT statement, a CREATE TABLE . . . SELECT statement, or a SELECT . . . INTO statement

	To identify the rows of a view or materialized view in a CREATE VIEW statement

	To identify value(s) assigned to existing rows using an UPDATE statement

	To identify values for conditions in the WHERE and HAVING clauses of SELECT, UPDATE, and DELETE statements

	To build a view of a table(s) on the fly (i.e., nested table subqueries)

Examples
This section shows subquery examples that are equally valid on MySQL, Oracle, PostgreSQL, and SQL Server.
A simple scalar subquery is shown in the SELECT item list of the following query:
SELECT job, (SELECT AVG(salary) FROM employee) AS "Avg Sal"
FROM employee
Nested table subqueries are functionally equivalent to querying a view. In the following, we query the education level and salary in a nested table subquery, and then perform aggregations on the values in the derived table in the outer query:
SELECT AVG(edlevel), AVG(salary)
FROM (SELECT edlevel, salary
 FROM employee) AS emprand
GROUP BY edlevel
Warning
Remember that this query may fail, depending on the platform, without the AS clause to associate a name with the derived table.

The following query shows a standard table subquery in the WHERE clause expression. In this case, we want all project numbers for employees in the department 'A00':
SELECT projno
FROM emp_act
WHERE empno IN
(SELECT empno
 FROM employee
 WHERE workdept ='A00')
The above subquery is executed only once for the outer query.
In the next example, we want to know the names of employees and their level of seniority. We get this result set through a correlated subquery:
SELECT firstname, lastname,
 (SELECT COUNT(*)
 FROM employee, senior
 WHERE employee.hiredate > senior.hiredate) as senioritype
FROM employee
Unlike the previous subquery, this subquery is executed one time for every row retrieved by the outer query. In a query like this, the total processing time could be very long, since the inner query may potentially execute many times for a single result set.
Correlated subqueries depend on values retrieved by the outer query before being able to complete the processing of the inner query. They are tricky to master, but they offer unique programmatic capabilities. The following example returns information about orders where the quantity sold in each order is less than the average quantity in other sales for that title:
SELECT s1.ord_num, s1.title_id, s1.qty
FROM sales AS s1
WHERE s1.qty <
 (SELECT AVG(s2.qty)
 FROM sales AS s2
 WHERE s2.title_id = s1.title_id)
For this example, you can accomplish the same functionality using a self-join. However, there are situations in which a correlated subquery may be the only easy way to do what you need.
The next example shows how a correlated subquery might be used to update values in a table:
UPDATE course SET ends =
 (SELECT min(c.begins) FROM course AS c
 WHERE c.begins BETWEEN course.begins AND course.ends)
WHERE EXISTS
 (SELECT * FROM course AS c
 WHERE c.begins BETWEEN course.begins AND course.ends)
Similarly, you can use a subquery to determine which rows to delete. This example uses a correlated subquery to delete rows from one table based on related rows in another table:
DELETE FROM course
WHERE EXISTS
 (SELECT * FROM course AS c
 WHERE course.id > c.id
 AND (course.begins BETWEEN c.begins
 AND c.ends OR course.ends BETWEEN c.begins AND c.ends))

MySQL
MySQL supports nested table subqueries as select items and in the WHERE clause.

Oracle
Oracle supports ANSI-standard subqueries, though it uses a different nomenclature. In Oracle, a nested table subquery that appears in the FROM clause is called an inline view. That makes sense, because nested table subqueries are basically views built on the fly. Oracle calls a subquery that appears in the WHERE clause or the HAVING clause of a query a nested subquery. It allows correlated subqueries in the SELECT item list and in the WHERE and HAVING clauses.

PostgreSQL
PostgreSQL supports ANSI-standard subqueries in the FROM, WHERE, and HAVING clauses. However, subqueries appearing in a HAVING clause cannot include ORDER BY, FOR UPDATE, or LIMIT clauses. PostgreSQL does not currently support subqueries in the select item list.

SQL Server
SQL Server supports ANSI-standard subqueries. Scalar subqueries can be used almost anywhere a standard expression is allowed. Subqueries in SQL Server cannot include the COMPUTE or FOR BROWSE clauses. They can include the ORDER BY clause if the TOP clause is also used.

See Also
	DELETE
	INSERT
	SELECT
	UPDATE
	WHERE

Name
TRUNCATE TABLE Statement

The TRUNCATE TABLE statement, a non-ANSI statement, irrevocably removes all rows from a table without logging the individual row deletes. It quickly erases all the records in a table without altering the table structure, taking up little or no space in the redo logs or transaction logs. However, since a truncate operation is not logged, the TRUNCATE TABLE statement cannot be rolled back once it is issued.
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

De Facto Standard Syntax
Officially, TRUNCATE TABLE is not an ANSI-standard command. However, it is a commonly supported statement that follows this standard format:
TRUNCATE TABLE table_name

Keywords
	table_name
	The name of any valid table within the current database or schema context.

Rules at a Glance
The TRUNCATE TABLE statement has the same effect on a table as a DELETE statement with no WHERE clause; both erase all rows in a given table. However, there are some important differences: TRUNCATE TABLE is faster and it is non-logged, meaning it cannot be rolled back if issued in error, and TRUNCATE TABLE does not activate triggers, while the DELETE statement does.
This command should be issued manually. We strongly encourage you not to place it into automated scripts or production systems that contain irreplaceable data. It cannot be paired with transaction control statements such as BEGIN TRAN or COMMIT.

Programming Tips and Gotchas
Because the TRUNCATE TABLE statement is not logged, it is generally used only in development databases. Use it in production databases with caution!
Warning
We strongly advise that you do not write TRUNCATE TABLE statements into the stored procedures or functions of a production application, because most platforms do not log the operation and cannot recover an improperly issued TRUNCATE statement.

The TRUNCATE TABLE command will fail if another user has a lock on the table at the time the statement is issued. TRUNCATE TABLE does not activate triggers but will work when they are present. However, it won't work when foreign key constraints are in place on a given table.

MySQL
MySQL versions 3.23 and later support a basic format of the TRUNCATE TABLE statement:
TRUNCATE TABLE name
MySQL achieves the result of a TRUNCATE TABLE command by dropping and recreating the affected table. Since MySQL stores each table in a file called <table_name>.frm, the <table_name>.frm file must exist in the directory containing the database files for the command to work properly.
For example, to remove all data from the publishers table:
TRUNCATE TABLE publishers

Oracle
Oracle allows a table or an indexed cluster (but not a hash cluster) to be truncated. Oracle's syntax is:
TRUNCATE { CLUSTER [owner.]cluster
 | TABLE [owner.]table [{PRESERVE | PURGE} MATERIALIZED VIEW LOG] }
[{DROP | REUSE} STORAGE]
TRUNCATE TABLE was first introduced by Oracle, and other platforms soon added support for the statement. Oracle has added more features to this statement than are commonly implemented by other vendors. The syntax elements are as follows:
	CLUSTER | TABLE
	Specifies whether an index cluster or a table will be truncated. An index cluster is a physical construct that stores related rows of two tables next to each other physically on disk to speed up joins by lowering I/O. The MATERIALIZED VIEW LOG and STORAGE options are not available when truncating an index cluster.

	{PRESERVE | PURGE} MATERIALIZED VIEW LOG
	Maintains any snapshot logs when a master table is truncated (PRESERVE), or clears out any snapshot logs (PURGE).

	{DROP | REUSE} STORAGE
	Causes the disk space freed by the deleted rows to be deallocated (DROP), or causes the space allocated to a table to remain allocated to that table, though empty (REUSE).

For example:
TRUNCATE TABLE scott.authors
 PRESERVE MATERIALIZED VIEW LOG REUSE STORAGE
This example command erases all records in the table scott.authors. It also maintains the existing snapshot log and allows the table to keep and reuse the storage space already allocated to it.

PostgreSQL
PostgreSQL varies little from the de facto industry standard, but it does add the optional TABLE keyword:
TRUNCATE [TABLE] name
The following command erases all the records in the authors table on a PostgreSQL database:
TRUNCATE authors

SQL Server
SQL Server supports the de facto industry standard.

See Also
	DELETE

Name
UNION Set Operator

The UNION set operator combines the result sets of two or more queries, showing all the rows returned by each of the queries as one single result set.
UNION is in a class of keyword known as set operators. Other set operators include INTERSECT and EXCEPT/MINUS. (EXCEPT and MINUS are functually equivalent; EXCEPT is the ANSI standard.) All set operators are used to simultaneously manipulate the result sets of two or more queries; hence the term "set operators."
	Platform
	Command

	MySQL
	Not supported

	Oracle
	Supported, with limitations

	PostgreSQL
	Supported, with limitations

	SQL Server
	Supported, with limitations

SQL2003 Syntax
There are technically no limits to the number of queries that you may combine with the UNION statement. The general syntax is:
<SELECT statement1>
UNION [ALL | DISTINCT]
<SELECT statement2>
UNION [ALL | DISTINCT]
...

Keywords
	UNION
	Determines which result sets will be combined into a single result set. Duplicate rows are, by default, excluded.

	ALL | DISTINCT
	Combines duplicate rows from all result sets (ALL) or eliminates duplicate rows from the final result set (DISTINCT). Columns containing a NULL value are considered duplicates. If neither ALL nor DISTINCT is used, DISTINCT behavior is the default.

Rules at a Glance
There is only one significant rule to remember when using UNION: the order, number, and datatypes of the columns should be the same in all queries.
The datatypes do not have to be identical, but they should be compatible. For example, CHAR and VARCHAR are compatible datatypes. By default, the result set will default to the largest of two (or more) compatible datatypes, so a query that unions three CHAR columns—CHAR(5), CHAR(10), and CHAR(12)—will display the results in the CHAR(12) format with extra space padded onto the smaller column results.

Programming Tips and Gotchas
Even though the ANSI standard calls for INTERSECT to take precedence over other set operators in a single statement, many platforms evaluate all set operators with equal precedence. You can explicitly control the precedence of set operators using parentheses. Otherwise, the DBMS is likely to evaluate them in order from the leftmost to the rightmost expression.
Depending on the platform, specifying DISTINCT can incur a significant performance cost, since it often involves a second pass through the results to winnow out duplicate records. ALL can be specified in any instance where no duplicate records are expected (or where duplicate records are OK) for faster results.
According to the ANSI standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the last SELECT statement. To avoid column and table ambiguity, be sure to alias matching columns in each table with the same respective aliases. However, for column-naming purposes, only the aliases in the first query are used for each column in the SELECT . . . UNION query. For example:
SELECT au_lname AS "lastname", au_fname AS "firstname"
FROM authors
UNION
SELECT emp_lname AS "lastname", emp_fname AS "firstname"
FROM employees
ORDER BY lastname, firstname
Also be aware that even if the queries in your UNION have compatibly datatyped columns, there may be some variation in behavior across the DBMS platforms, especially with regard to the length of the columns. For example, if the au_lname column in the first query is markedly longer than the emp_lname column in the second query, different platforms may apply different rules as to which length is used. In general, though, the platforms will choose the longer (and less restrictive) column size for use in the result set.
Each DBMS may apply its own rules as to which column name is used if the columns across the tables have different names. In general, the column names of the first query are used.

MySQL
Not supported.

Oracle
Oracle supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:
<SELECT statement1>
UNION [ALL]
<SELECT statement2>
UNION [ALL]
...
Oracle does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional equivalent. Oracle does not support UNION or UNION ALL on the following types of queries:
	Queries containing columns with LONG, BLOB, CLOB, BFILE, or VARRAY datatypes.

	Queries containing a FOR UPDATE clause or a TABLE collection expression.

If the first query in the set operation contains any expressions in the select item list, include the AS statement to associate an alias with the column. Also, only the last query in the set operation may contain an ORDER BY clause. For example, you could find out all unique store IDs without duplicates using this query:
SELECT stor_id FROM stores
UNION
SELECT stor_id FROM sales;

PostgreSQL
PostgreSQL supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:
<SELECT statement1>
UNION [ALL]
<SELECT statement2>
UNION [ALL]
...
PostgreSQL does not support UNION or UNION ALL on queries with a FOR UPDATE clause, and it does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional equivalent.
The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the UNION or UNION ALL set operation may contain these clauses, but such queries must be enclosed in parentheses. Otherwise, the rightmost occurrence of ORDER BY or LIMIT will be assumed to apply to the entire set operation.
For example, we could find all authors and all employees whose last names start with "P" with the following query:
SELECT a.au_lname
FROM authors AS a
WHERE a.au_lname LIKE 'P%'
UNION
SELECT e.lname
FROM employee AS e
WHERE e.lname LIKE 'W%';

SQL Server
SQL Server supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:
<SELECT statement1>
UNION [ALL]
<SELECT statement2>
UNION [ALL]
...
SQL Server does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional equivalent.
You can use SELECT . . . INTO with UNION or UNION ALL, but INTO may appear only in the first query of the union. Special keywords, such as SELECT TOP and GROUP BY . . . WITH CUBE, are usable with all queries in a union, but if you use them in one query you must use them with all of the queries. If you use SELECT TOP or GROUP BY . . . WITH CUBE in only one query in a union, the operation will fail.
Each query in a union must contain the same number of columns. The datatypes of the columns do not have to be identical, but they must implicitly convert. For example, mixing VARCHAR and CHAR columns is acceptable. SQL Server uses the larger of the two columns when evaluating the size of the columns returned in the result set. Thus, if a SELECT . . . UNION statement has a CHAR(5) column and a CHAR(10) column, it will display the data of both columns as a CHAR(10) column. Numeric columns are converted to and displayed as the most precise datatype in the union.
For example, the following query unions the results of two independent queries that use GROUP BY . . . WITH CUBE:
SELECT ta.au_id, COUNT(ta.au_id)
FROM pubs..titleauthor AS ta
JOIN pubs..authors AS a ON a.au_id = ta.au_id
WHERE ta.au_id >= '722-51-5454'
GROUP BY ta.au_id WITH CUBE
UNION
SELECT ta.au_id, COUNT(ta.au_id)
FROM pubs..titleauthor AS ta
JOIN pubs..authors AS a ON a.au_id = ta.au_id
WHERE ta.au_id < '722-51-5454'
GROUP BY ta.au_id WITH CUBE

See Also
	EXCEPT
	INTERSECT
	MINUS
	SELECT

Name
UPDATE Statement

The UPDATE statement changes existing data in a table. Use great caution when issuing an UPDATE statement without a WHERE clause, since the statement then affects every row in the entire table.
	Platform
	Command

	MySQL
	Supported, with variations

	Oracle
	Supported, with variations

	PostgreSQL
	Supported, with variations

	SQL Server
	Supported, with variations

SQL2003 Syntax
UPDATE [ONLY] {table_name | view_name}
SET {{column_name = { ARRAY [array_val[, ...]] | DEFAULT |
 NULL | scalar_expression },
 column_name = { ARRAY | DEFAULT |
 NULL | scalar_expression }
 [, ...]}
 | ROW = row_expression}
[WHERE search_condition | WHERE CURRENT OF cursor_name]

Keywords
	ONLY
	Restricts cascading of the updated values to any subtables of the target table or view. ONLY affects only typed (object-oriented) tables and views. If used with a nontyped table or view, it causes an error.

	table_name | view_name
	The target table or view of the UPDATE statement. You need appropriate permissions on the target, according to the rules of the platform. Updates against views often have special rules. Generally, it is advisable to perform an UPDATE against a view only if the view is representative of a single table.

	SET
	Assigns a specific value to a column or row.

	column_name
	Used in conjunction with SET, as in SET column1 = 'foo'. Allows you to set a new value for the specified column. You can update as many columns as you like in one statement, though you cannot update the same column more than once in a single statement.

	ARRAY [array_va[, . . .]
	Assigns the column to an array value or to an empty array (using ARRAY[]). This behavior is not widely supported by DBMS platforms.

	NULL
	Sets the column to NULL.

	DEFAULT
	Sets the column to its default value as defined by a DEFAULT specification.

	scalar_expression
	Sets the column to any single value expression, such as a literal string or numeric value, a scalar function, or a scalar subquery.

	ROW
	Used in conjunction with SET, is a mutually exclusive option to SET column_name, as in SET ROW = ROW('foo','bar'). This behavior is not widely supported by DBMS platforms.

	row_expression
	Used to set a value for each and every column in the table.

	WHERE search_condition
	Defines search criteria for the UPDATE statement using the search_condition to ensure that only the target rows are updated. Any legal WHERE clause is acceptable. Typically, these criteria are evaluated against each row of the table before the update is applied. If the search criterion is a subquery, the subquery is executed on each row, which is potentially a long-running process.

	WHERE CURRENT OF cursor_name
	Restricts the UPDATE statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance
The UPDATE statement can be used to modify the value of one or more columns of a table or view at a time. Typically, you will update the values in one or more rows at a time. The new values must be scalar (except in row expressions and arrays). That is, a given field/column must have a single, constant value at the time the transaction is executed, though it can be literal or derived from a function call or subquery.
A basic UPDATE statement without a WHERE clause looks like this:
UPDATE authors
SET contract = 0
This example sets the contract status of all authors in the authors table to zero (meaning they don't have contracts anymore). Similarly, values can be adjusted mathematically with an UPDATE statement:
UPDATE titles
SET price = price * 1.1
This UPDATE statement would increase all book prices by 10%.
You can also set multiple values in one statement, as shown here, where we set all author last names and first names to uppercase letters:
UPDATE authors SET au_lname = UPPER(au_lname),
 au_fname = UPPER(au_fname);
Adding a WHERE clause to an UPDATE statement allows records in the table to be modified selectively:
UPDATE titles
SET type = 'pers_comp',
 price = (price * 1.15)
WHERE type = 'popular_com';
This query makes two changes to any record of the type 'popular_com': it increases the price by 15% and alters the type to 'pers_comp'.
You can also invoke functions or subqueries to derive the values used in an UPDATE statement. In some cases, you may wish to update the specific row that is being processed by a declared and open cursor. The following example shows both concepts:
UPDATE titles SET ytd_sales = (SELECT SUM(qty)
 FROM sales
 WHERE title_id = 'TC7777')
WHERE CURRENT OF title_cursor;
This query assumes that you have declared and opened a cursor named title_cursor and that it is processing titles with IDs of 'TC7777'.
Sometimes you need to update values in a given table based on the values stored in another table. For example, if you need to update the publication date for all the titles written by a certain author, you might find the author and a list of her titles first through subqueries:
UPDATE titles
SET pubdate = 'Jan 01 2002'
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor
 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))

Programming Tips and Gotchas
The UPDATE statement alters values in existing records of a table or view. If you update a view, the view should include all necessary (NOT NULL) columns, or else the statement may fail. Columns with a DEFAULT value can usually be safely omitted.
The SET ROW clause is not widely supported among DBMS platforms and should be avoided. The WHERE CURRENT OF clause is more commonly implemented on DBMS platforms, but it must be used in conjunction with a cursor. Make sure you understand the use and functionality of cursors before using this clause.
In an interactive user session, it is good practice to issue a SELECT statement using the same WHERE clause before issuing the actual UPDATE statement. This precaution enables you to check all rows in the result set before actually performing the UPDATE, helping ensure that you don't alter anything you don't mean to alter.

MySQL
MySQL supports the ANSI standard with a few variations, including the LOW PRIORITY clause, the IGNORE clause, and the LIMIT clause:
UPDATE [LOW PRIORITY] [IGNORE] table_name
SET column_name = {scalar_expression}
 [, ...]
WHERE search_conditions
[ORDER BY column_name1 [{ASC | DESC}][, ...]]
[LIMIT integer]
where:
	LOW PRIORITY
	Tells MySQL to delay the execution of the UPDATE statement until no other client is reading from the table.

	IGNOREm
	Tells MySQL to ignore any duplicate key errors generated by PRIMARY KEY and UNIQUE constraints. However, only records that don't generate such errors will be updated.

	ORDER BY
	Tells MySQL to update the rows in the specified order (ascending or descending) of the columns specified.

	LIMITinteger
	Restricts the UPDATE action to a specific number of rows, as designated by the integer value.

MySQL supports DEFAULT value assignment in the INSERT statement, but not currently in the UPDATE statement.
The following UPDATE increases all prices in the titles table by 1:
UPDATE titles SET price = price + 1;
The next example limits the UPDATE to the first 10 records encountered in the titles table, according to title_id. Also, the value of price is updated twice. Those two updates of price are assessed from left to right. First the price is doubled, and then it is increased by 1:
UPDATE titles
SET price = price * 2,
 price = price + 1
ORDER BY title_id
LIMIT 10;

Oracle
The Oracle implementation of UPDATE allows updates against views, materialized views, subqueries, and tables in an allowable schema:
UPDATE [ONLY]
 { [schema
.]{view_name | materialized_view_name |
 table_name}
 [@database_link] [alias]
 {[PARTITION (partition_name)] |
 [SUBPARTITION (subpartition_name)]}
 | subquery [WITH { [READ ONLY] | [CHECK OPTION [CONSTRAINT constraint_name]] }]
 | [TABLE (collection_expression_name) [(+)]] }
SET {column_name1[, ...]} = {expression[, ...] | subquery} |
 VALUE [(alias)] = {value | (subquery)},
 {column_name2[, ...]} = {expression
[, ...] | subquery} |
 VALUE [(alias)] = {value | (subquery)},
 [, ...]
{WHERE search_conditions | CURRENT OF cursor_name}
[RETURNING expression[, ...] INTO variable[, ...]];
Syntax elements for Oracle's version of UPDATE are:

ONLY
Tells Oracle not to update rows from any subviews. Applies only to views that belong to a hierarchy.
	materialized_view_name
	Applies the UPDATE statement to a pre-existing snapshot.

	@database_link
	Applies the UPDATE statement to a view or table on a remote server made available through a pre-existing database link.

	alias
	Specifies an alias for the table being updated. Oracle allows table aliases, but it does not support the AS keyword with UPDATE statements. Aliases can also be supplied for the VALUE clause of an UPDATE statement.

	PARTITION
	Applies the update to a named partition, rather than to an entire table. You are not required to name a partition when updating a partitioned table, but doing so can, in many cases, help reduce the complexity of your WHERE clause.

	SUBPARTITION
	Applies the update to a named subpartition, rather than to an entire table.

	WITH READ ONLY
	Specifies that the subquery cannot be updated. In some cases, an UPDATE transaction may actually alter the records used in a subquery. The WITH READ ONLY clause prevents this from happening.

	WITH CHECK OPTION
	Tells Oracle to abort any changes to the updated table that would not appear in the result set of the subquery.

	CONSTRAINT
	Tells Oracle to further restrict changes based upon a specific constraint.

	SET VALUE
	Allows you to set the entire row value for any TABLE datatype. The SET VALUE clause is very similar to the ANSI SET ROW clause. You can also specify a subquery that retrieves all values needed by the SET VALUE clause.

	RETURNING
	Retrieves the rows affected by the command, whereas UPDATE normally only shows the number of rows updated. When used for a single-row update, the values of the row can be stored in PL/SQL variables and bind variables. When used for a multirow delete, the values of the rows are stored in bind arrays.

	INTO
	Indicates the variables into which the values brought back by the RETURNING clause should be stored.

Oracle has some important rules about issuing UPDATE statements:
	UPDATE statements are not allowed against tables or the base tables of views containing a domain index with a status of FAILED or IN PROGRESS. UPDATE statements are also not allowed against any table that has an index partition with a status of UNUSABLE. (You can avoid the index partition problem by setting the SKIP_UNUSABLE_INDEXES session parameter to TRUE.)

	Updates against views can be problematic if a view's defining query contains a join, an aggregate function, a set operator, the DISTINCT keyword, an ORDER BY clause, a GROUP BY clause, a CONNECT BY clause, a START WITH clause, an analytical function, a collection expression, or a subquery. (Under these circumstances, you can use an INSTEAD OF trigger to update the tables underlying a view.)

The following code snippets show some examples of the extensions that Oracle offers to the UPDATE statement. To begin with, assume that the sales table has grown into a large partitioned table. You can update a specific partition using the PARTITON clause. For example:
UPDATE sales PARTITION (sales_yr_2004) s
 SET s.payterms = 'Net 60'
 WHERE qty > 100;
You can also use the SET VALUE clause to supply a new value for each column in the row identified by the WHERE clause:
UPDATE big_sales bs
 SET VALUE(bs) = (SELECT VALUE(s) FROM sales s
 WHERE bs.title_id = s.title_id)
 AND bs.stor_id = s.stor_id)
 WHERE bs.title_id = 'TC7777';
You can return values for review after an update by using the RETURNING clause. The following example updates one row, placing the updated values into PL/SQL variables:
UPDATE employee
 SET job_id = 13, job_level = 140
 WHERE last_name = 'Josephs'
RETURNING last_name, job_id
 INTO :var1, :var2;

PostgreSQL
PostgreSQL supports the ANSI-standard UPDATE syntax with a couple of small variations: it supports the addition of a FROM clause and supports an array functionality, but it does not support the ARRAY keyword. PostgreSQL's UPDATE syntax is:
UPDATE [ONLY] {table_name | view_name}
SET column_name1 = {DEFAULT | NULL | scalar_expression},
 column_name2 = {DEFAULT | NULL | scalar_expression}
 [, ...]
[FROM {table1 [AS alias], table2 [AS alias][, ...]}]
[WHERE search_condition | WHERE CURRENT OF cursor_name]
Most of the syntax elements are the same as in the ANSI standard. The only non-standard element is:
	FROM
	Provides the ability to build highly selective join-based criteria when determining which rows to update. FROM is not needed when only one table (the target table) is used to determine the rows to be updated.

In the following example, we want to update job_lvl for employees who have a job_id of 12 and a min_lvl of 25. We could do this with a large, complex subquery, or we could use the FROM clause to enable us to build a join:
UPDATE employee
 SET job_lvl = 80
 FROM employee AS e, jobs AS j
 WHERE e.job_id = j.job_id
 AND j.job_id = 12
 AND j.min_lvl = 25;
All other aspects of the ANSI standard are fully supported.

SQL Server
SQL Server supports most of the basic components of the ANSI UPDATE statement, but it does not support the ONLY and ARRAY keywords, nor does it support an array update functionality. However, SQL Server has extended the capabilities of UPDATE by adding table hints using the WITH clause, query hints using the OPTION clause, as well as more robust variable handling, as follows:
UPDATE {table_name | view_name | rowset}
[WITH (hint1, hint2[, ...])]
SET {column_name = {DEFAULT | NULL | scalar_expression}
 | variable_name = scalar_expression
 | variable_name = column_name = scalar_expression}[, ...]
[FROM {table1 | view1 | nested_table1 | rowset1}[, ...]]
 [AS alias]
[JOIN {table2[, ...]}]
WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}
[OPTION (hint1, hint2[, ...])]
SQL Server's UPDATE syntax elements are as follows:
	WITHhint
	Allows the use of table hints to override the default behavior of the query optimizer. Since the query optimizer is quite good at choosing query plans, use hints only with a deep understanding of the tables, indexes, and data affected by the operation. Without this understanding, including hints could result in a decrease rather than an increase in performance.

	variable_name
	SQL Server variables must be declared prior to the UPDATE statement, in the form DECLARE @variable. The construct SET @variable = column1 = expression1 sets a variable to the final value of an updated column, whereas SET @variable = column1, column1 = expression sets the variable to the value of the column before execution of the UPDATE statement.

	FROM
	Provides the ability to build highly selective join-based criteria when determining which rows to update. FROM is not needed when only one table (the target table) is used to determine the rows to be updated. SQL Server rowset functions are described later in the section.

	ASalias
	Allows you to assign an easy-to-use alias to the table, view, nested table subquery, or rowset function.

	JOIN
	Provides the ability to use ANSI-standard syntax for joined tables, in conjunction with the FROM clause.

	GLOBAL
	A slight variation on the ANSI-standard WHERE CURRENT OF clause. The clause WHERE CURRENT OF cursor_name, when used in combination with a cursor, tells SQL Server to update only the single record where the cursor is currently positioned. The cursor is assumed to be a local cursor, but it can be designated a global cursor by using the keyword GLOBAL.

	OPTIONhint
	Allows the use of query hints to override the default behavior of the query optimizer. As with the WITH clause, which uses table hints, use query hints only if you have a deep understanding of the tables, indexes, and data affected by the operation. Without this understanding, including hints could result in a decrease rather than an increase in performance.

The primary extension to the ANSI standard that Microsoft SQL Server offers in an UPDATE statement is a FROM clause. This FROM clause allows the use of the JOIN statement to make it especially easy to update rows in the target table by correlating rows declared in the FROM clause with the rows updated by the UPDATE table_name component of the statement. The following example shows an update using the ANSI style and a rather cumbersome subquery, followed by an update using SQL Server's FROM clause extension to update the result of a table join. Both statements accomplish the same work, but in very different ways:
-- ANSI style
UPDATE titles
SET pubdate = GETDATE()
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor
 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))
-- Microsoft Transact-SQL style
UPDATE titles
SET pubdate = GETDATE()
FROM authors AS a
JOIN titleauthor AS t2 ON a.au_id = t2.au_id
WHERE t2.title_id = titles.title_id
 AND a.au_lname = 'White'
Performing this update using the Transact-SQL style is simply a matter of joining two tables—authors and titleauthor—to the titles table. To perform the same operation using ANSI-compliant code, the au_id in author must first be found and passed up to the titleauthors table, and then the title_id must be identified and passed up to the main UPDATE statement.
The following example updates the state column for the first 10 authors from the authors table:
UPDATE authors
SET state = 'ZZ'
FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1
WHERE authors.au_id = t1.au_id
The important thing to note about this example is that it is normally difficult to update the first n records in an UPDATE statement, unless there is some explicit row sequence you can identify in the WHERE clause. However, the nested table subquery in the FROM clause uses a TOP keyword to return the first 10 records, thereby saving a lot of added programming that would otherwise be required.

See Also
	DECLARE
	SELECT
	WHERE

Name
WHERE Clause

The WHERE clause sets the search criteria for an operation such as SELECT, UPDATE, or DELETE. Any records in the target table(s) that do not meet the search criteria are excluded from the operation. The search conditions may include many variations, such as calculations, Boolean operators, and SQL predicates (for example, LIKE or BETWEEN).
	Platform
	Command

	MySQL
	Supported

	Oracle
	Supported

	PostgreSQL
	Supported

	SQL Server
	Supported

SQL2003 Syntax
{ WHERE search_criteria | WHERE CURRENT OF cursor_name }

Keywords
	WHERE search_criteria
	Defines search criteria for the statement to ensure that only the target rows are affected.

	WHERE CURRENT OF cursor_name
	Restricts the operation of the statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance
WHERE clauses are found in SELECT statements, DELETE statements, INSERT . . . SELECT statements, UPDATE statements, and any statement that might have a query or subquery (such as DECLARE, CREATE TABLE, CREATE VIEW, and so forth).
The search conditions, all of which are described in their own entries elsewhere in this book, can include:
	All records (=ALL, >ALL, <= ALL, SOME/ANY)
	For example, to see publishers who live in the same city as their authors:
SELECT pub_name
FROM publishers
WHERE city = SOME (SELECT city FROM authors);

	Combinations (AND, OR, and NOT) and evaluation hierarchy
	For example, to see all authors with sales in quantities greater than or equal to 75 units, or co-authors with a royalty of greater than or equal to 60:
SELECT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR (a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60)
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2));

	Comparison operators (such as =, < >, <, >, <=, and >=)
	For example, to see the last and first names of authors who don't have a contract (i.e., authors with contract value of zero):
SELECT au_lname, au_fname
FROM authors
WHERE contract = 0;

	Lists (IN and NOT IN)
	For example, to see all authors who do not yet have a title in the titleauthor table:
SELECT au_fname, au_lname
FROM authors
WHERE au_id NOT IN (SELECT au_id FROM titleauthor);

	NULL comparisons (IS NULL and IS NOT NULL)
	For example, to see titles that have NULL year-to-date sales:
SELECT title_id, SUBSTRING(title, 1, 25) AS title
FROM titles
WHERE ytd_sales IS NULL;
Warning
Be sure not to specify = NULL in a query. NULL is unknown and can never be equal to anything. Using = NULL is not the same as specifying the IS NULL operator.

	Pattern matches (LIKE and NOT LIKE)
	For example, to see authors whose last names start with a "C":
SELECT au_id
FROM authors
WHERE au_lname LIKE 'C%';

	Range operations (BETWEEN and NOT BETWEEN)
	For example, to see authors with last names that fall alphabetically between "Smith" and "White":
SELECT au_lname, au_fname
FROM authors
WHERE au_lname BETWEEN 'smith' AND 'white';

Programming Tips and Gotchas
The WHERE clause may require special handling when dealing with certain datatypes, such as LOBs, or certain character sets, including UNICODE.
Parentheses are used to control evaluation hierarchy within a WHERE clause. Encapsulating a clause within parentheses tells the DBMS to evaluate that clause before others. Parentheses can be nested to create a hierarchy of evaluations. The innermost parenthetical clause will be evaluated first. You should watch parentheses very carefully, for two reasons:
	You must always have an equal number of opening and closing parentheses. Any imbalance in the number of opening and closing parentheses will cause an error.

	You should be careful where you place parentheses, since misplacing a parenthesis can dramatically change the result set of your query.

For example, consider again the following query, which returns six rows in the pubs database on the SQL Server platform:
SELECT DISTINCT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR (a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60)
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2))
The output from this query is as follows:
au_id

213-46-8915
724-80-9391
899-46-2035
998-72-3567
Changing just one set of parentheses produces different results:
SELECT DISTINCT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE (ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60))
AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2)
This time, the output will look like this:
au_id

213-46-8915
724-80-9391
899-46-2035
All the platforms discussed in this book support the ANSI standard as described here.

See Also
	ALL/ANY/SOME
	BETWEEN
	DECLARE CURSOR
	DELETE
	EXISTS
	IN
	LIKE
	SELECT
	UPDATE

Chapter 4. SQL Functions

A function is a special type of command word in the SQL command set, and each SQL dialect varies in its implementation of that command set. In effect, functions are one-word commands that return single values. The value of a function can be determined by input parameters, as with a function that averages a list of database values. However, many functions do not use any type of input parameter. The function that returns the current system time, CURRENT_TIME, is an example of such a function.
The ANSI standard supports a number of useful functions. This chapter covers those functions, providing detailed descriptions and examples for each platform. In addition, each database maintains a long list of its own internal functions that are outside the scope of the standard SQL. This chapter provides parameters and descriptions for each database implementation's internal functions.
Tip
Most database platforms also support the ability to create user-defined functions (UDFs). For more information on UDFs, refer to Chapter 3.

Types of Functions

There are different ways to categorize functions into groups. The following subsections describe distinctions that are critical to understanding how functions work.

Deterministic and Nondeterministic Functions

Functions can be either deterministic or nondeterministic. A deterministic function always returns the same results if given the same input values. A nondeterministic function may return different results every time it is called, even when the same input values are provided.
Why is it important that a given input always returns the same output? It is important because of how functions may be used within views, in user-defined functions, and in stored procedures. Restrictions vary across implementations, but these objects sometimes allow only deterministic functions within their defining code. For example, SQL Server allows the creation of an index on a column expression, but only if the expression does not contain any nondeterministic functions. Rules and restrictions vary between the platforms, so check your platform's documentation when using functions.

Aggregate and Scalar Functions

Another way of categorizing functions is in terms of whether they operate on values from just one row at a time, on values from a collection, or on a set of rows. Aggregate functions operate against a collection of values and return a single summarizing value. Scalar functions return a single value based on scalar input arguments. Some scalar functions, such as CURRENT_TIME, do not require any arguments.

Window Functions

Window functions are similar to aggregate functions in that they operate over many rows at one time. The difference lies in how you define those rows. Aggregate functions operate over the sets of rows defined by a query's GROUP BY clause. With window functions, you specify the set of rows for each function call, so different invocations of a function within the same query can execute over different sets of rows.

ANSI SQL Aggregate Functions

Aggregate functions return a single value based upon a set of other values. If used among other expressions in the item list of a SELECT statement, the SELECT must have a GROUP BY or HAVING clause. No GROUP BY or HAVING clause is required if the aggregate function is the only value retrieved by the SELECT statement. The aggregate functions supported by the ANSI SQL standard and their syntax are listed in Table 4-1.
Table 4-1. ANSI SQL aggregate functions
	Function
	Usage

	AVG(expression)
	Computes the average value of a column given by expression

	CORR(dependent, independent)
	Computes a correlation coefficient

	COUNT(expression)
	Counts the rows defined by the expression

	COUNT(*)
	Counts all rows in the specified table or view

	COVAR_POP(dependent, independent)
	Computes population covariance

	COVAR_SAMP(dependent, independent)
	Computes sample covariance

	CUME_DIST(value_list) WITHIN GROUP (ORDER BY sort_list)
	Computes the relative rank of a hypothetical row within a group of rows, where the rank is equal to the number of rows less than or equal to the hypothetical row divided by the number of rows in the group

	DENSE_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
	Generates a dense rank (no ranks are skipped) for a hypothetical row (value_list) in a group of rows generated by GROUP BY

	MIN(expression)
	Finds the minimum value in a column given by expression

	MAX(expression)
	Finds the maximum value in a column given by expression

	PERCENT_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
	Generates a relative rank for a hypothetical row by dividing that row's rank less 1 by the number of rows in the group

	PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY sort_list)
	Generates an interpolated value that, if added to the group, would correspond to the percentile given

	PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY sort_list)
	Returns the value with the smallest cumulative distribution value greater than or equal to percentile

	RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
	Generates a rank for a hypothetical row (value_list) in a group of rows generated by GROUP BY

	REGR_AVGX(dependent, independent)
	Computes the average of the independent variable

	REGR_AVGY(dependent, independent)
	Computes the average of the dependent variable

	REGR_COUNT(dependent, independent)
	Counts the number of pairs remaining in the group after any pair with one or more NULL values has been eliminated

	REGR_INTERCEPT(dependent, independent)
	Computes the y-intercept of the least-squares-fit linear equation

	REGR_R2(dependent, independent)
	Squares the correlation coefficient

	REGR_SLOPE(dependent, independent)
	Determines the slope of the least-squares-fit linear equation

	REGR_SXX(dependent, independent)
	Sums the squares of the independent variables

	REGR_SXY(dependent, independent)
	Sums the products of each pair of variables

	REGR_SYY(dependent, independent)
	Sums the squares of the dependent variables

	STDDEV_POP(expression)
	Computes the population standard deviation of all expression values in a group

	STDDEV_SAMP(expression)
	Computes the sample standard deviation of all expression values in a group

	SUM(expression)
	Computes the sum of the column values given by expression

	VAR_POP(expression)
	Computes the population variance of all expression values in a group

	VAR_SAMP(expression)
	Computes the sample standard deviation of all expression values in a group

Technically speaking, ALL, ANY, and SOME are considered aggregate functions. However, they have been discussed as range search criteria since they are most often used that way. Refer to Chapter 3 for more information on these functions.
The number of values processed by an aggregate function varies depending on the number of rows queried from the table. This behavior differentiates aggregate functions from scalar functions, which can only operate on the values of a single row per invocation.
The general syntax of an aggregate function is:
aggregate_function_name([ALL | DISTINCT] expression)
The aggregate_function_name may be AVG, COUNT, MAX, MIN, or SUM, as listed in Table 4-1. The ALL keyword, which specifies the default behavior, evaluates all rows when aggregating the value of the function. The DISTINCT keyword uses only distinct values when evaluating the function.
Warning
All aggregate functions except COUNT(*) will ignore NULL values when computing their results.

Name
AVG and SUM

The AVG function computes the average of values in a column or an expression, and SUM computes the sum. Both functions work with numeric values and ignore NULL values. Use the DISTINCT keyword to compute the average or sum of all distinct values in a column or expression.

ANSI SQL Standard Syntax
AVG([ALL | DISTINCT] expression)
SUM([ALL | DISTINCT] expression)

MySQL, PostgreSQL, and SQL Server
All of these platforms support the ANSI SQL syntax of AVG and SUM.

Oracle
Oracle supports the ANSI SQL syntax and the following analytic syntax:
AVG([ALL | DISTINCT] expression) OVER (window_clause)
SUM([ALL | DISTINCT] expression) OVER (window_clause)
For an explanation of the window_clause, see the "ANSI SQL Window Functions" section later in this chapter.

Examples
The following query computes average year-to-date sales for each type of book:
SELECT type, AVG(ytd_sales) AS "average_ytd_sales" FROM titles GROUP BY type;
This query returns the sum of year-to-date sales for each type of book:
SELECT type, SUM(ytd_sales) FROM titles GROUP BY type;

Name
CORR

The CORR function returns the correlation coefficient between a set of dependent and independent variables.

ANSI SQL Standard Syntax
Call the function with two variables, one dependent and the other independent:
CORR(dependent, independent)
Any pair in which either the dependent variable, the independent variable, or both are NULL is ignored. The result of the function is NULL when none of the input pairs consists of two non-NULL values.

Oracle
Oracle supports the ANSI SQL syntax, and the following analytic syntax:
CORR(dependent, independent) OVER (window_ clause)
For an explanation of the window_clause, see the "ANSI SQL Window Functions" section later in this chapter.

PostgreSQL
PostgreSQL supports the ANSI SQL syntax of the CORR function.

MySQL and SQL Server
These platforms do not support any form of the CORR function.

Example
The following CORR example uses the data retrieved by the first SELECT:
SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT CORR(y,x) FROM test2;
CORR(Y,X)

 −1

Name
COUNT

The COUNT function is used to compute the number of rows in an expression.

ANSI SQL Standard Syntax
COUNT(*)
COUNT([ALL | DISTINCT] expression)
	COUNT(*)
	Counts all the rows in the target table, regardless of whether they include NULLs.

	COUNT([ALL | DISTINCT] expression)
	Computes the number of rows with non-NULL values in a specific column or expression. When the keyword DISTINCT is used, duplicate values are ignored and a count of the distinct values is returned. ALL returns the number of non-NULL values in the expression and is implicit when DISTINCT is not used.

MySQL, PostgreSQL, and SQL Server
All of these platforms support the ANSI SQL syntax of COUNT.

Oracle
Oracle supports the ANSI SQL syntax and the following analytic syntax:
COUNT ({* | [DISTINCT] expression}) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

Examples
This query counts all the rows in a table:
SELECT COUNT(*) FROM publishers;
The following query finds the number of different countries where publishers are located:
SELECT COUNT(DISTINCT country) "Count of Countries"
FROM publishers

Name
COVAR_POP

The COVAR_POP function returns the population covariance of a set of dependent and independent variables.

ANSI SQL Standard Syntax
Call the function with two variables, one dependent and the other independent:
COVAR_POP(dependent, independent)
The function disregards any pair in which either the dependent variable, the independent variable, or both are NULL. If no rows remain in the group after NULL elimination, the result of the function is NULL.

Oracle
Oracle supports the ANSI SQL syntax and implements the following analytic syntax:
COVAR_POP(dependent, independent) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

PostgreSQL
PostgreSQL supports the ANSI SQL syntax of the COVAR_POP function.

MySQL and SQL Server
These platforms do not support any form of the COVAR_POP function.

Example
The following COVAR_POP example uses the data retrieved by the first SELECT:
SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT COVAR_POP(y,x) FROM test2;
COVAR_POP(Y,X)

 -.66666667

Name
COVAR_SAMP

The COVAR_SAMP function returns the sample covariance of a set of dependent and independent variables.

ANSI SQL Standard Syntax
Call the function with two variables, one dependent and the other independent:
COVAR_SAMP(dependent, independent)
The function disregards any pair in which either the dependent variable, the independent variable, or both are NULL. The result of the function is NULL when none of the input pairs consists of two non-NULL values.

Oracle
Oracle supports the ANSI SQL syntax and implements the following analytic syntax:
COVAR_SAMP(dependent, independent) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

PostgreSQL
PostgreSQL supports the ANSI SQL syntax of the COVAR_SAMP function.

MySQL and SQL Server
These platforms do not support any form of the COVAR_SAMP function.

Example
The following COVAR_SAMP example uses the data retrieved by the first SELECT:
SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT COVAR_SAMP(y,x) FROM test2;
COVAR_SAMP(Y,X)

 −1

Name
CUME_DIST

Computes the relative rank of a hypothetical row within a group of rows, using the following equation:
(rows_preceding_hypothetical + rows_peered_with_hypothetical) / rows_in_group
Bear in mind that the rows_in_group value includes the hypothetical row that you are proposing when you call the function.

ANSI SQL Standard Syntax
CUME_DIST(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
Items in the value_list correspond by position to items in the sort_list. Therefore, both lists must have the same number of expressions.

Oracle
Oracle follows the ANSI SQL syntax and implements the following analytic syntax:
CUME_DIST() OVER ([partioning] ordering)
For an explanation of the partioning and order clauses, see the section later in this chapter titled "ANSI SQL Window Functions."

MySQL, PostgreSQL, and SQL Server
These platforms do not implement the CUME_DIST aggregate function.

Example
The following example determines the relative rank of the hypothetical new row (num=4, odd=1) within each group of rows from test4, where groups are distinguished by the values in the odd column:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, CUME_DIST(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD CUME_DIST(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- ---
 0 1
 1 .8
In the group odd=0, the new row comes after the three rows (0,0), (2,0), and (4,0). It will peer with itself. The total number of rows in the group, including the hypothetical row, will be four. The relative rank, therefore, is computed as follows:
(3 rows preceding + 1 peering) / (3 in group + 1 hypothetical)
= 4 / 4 = 1
In the group odd=1, the new row follows the three rows (1,1), (3,1), and a duplicate (3,1). Again, there is one peer: the hypothetical row itself. The number of rows in the group is five, which includes the hypothetical row. The relative rank is thus:
(3 rows preceding + 1 peering) / (4 in group + 1 hypothetical)
= 4 / 5 = .8

Name
DENSE_RANK

Computes a rank in a group for a hypothetical row that you supply. This is a dense rank, which means rankings are never skipped, even when a group contains rows that rank identically.

ANSI SQL Standard Syntax
DENSE_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
Items in the value_list correspond by position to items in the sort_list. Therefore, both lists must have the same number of expressions.

Oracle and SQL Server
Oracle and SQL Server follow the ANSI SQL syntax and implement the following analytic syntax:
DENSE_RANK() OVER ([partioning]ordering)
For an explanation of the partioning and order clauses, see the section later in this chapter titled "ANSI SQL Window Functions."

MySQL and PostgreSQL
These platforms do not implement the DENSE_RANK aggregate function.

Example
The following example determines the dense rank of the hypothetical new row (num=4, odd=1) within each group of rows from test4, where groups are distinguished by the values in the odd column:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1
SELECT odd, DENSE_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD DENSE_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- --
 0 4
 1 3
In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is in position 4. In the group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1). In that case, the duplicate occurrences of (3,1) both rank #2, so the new row is ranked #3. Compare this behavior with RANK, which gives a different result.

Name
MIN and MAX

MIN(expression) and MAX(expression) find the minimum and maximum values of expression (string, datetime, or numeric) in a set of rows. Either DISTINCT or ALL may be used with these functions, but they do not affect the result.

ANSI SQL Standard Syntax
MIN([ALL | DISTINCT] expression)
MAX([ALL | DISTINCT] expression)

MySQL
MySQL supports the ANSI SQL syntax of MIN and MAX. MySQL also supports the functions LEAST and GREATEST, providing the same capabilities.

Oracle
Oracle supports the ANSI SQL syntax and implements the following analytic syntax:
MIN({ALL|[DISTINCT] expression}) OVER (window_clause)
MAX({ALL|[DISTINCT] expression}) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

PostgreSQL and SQL Server
These platforms support the ANSI SQL syntax of MIN and MAX.

Examples
The following query finds the best and worst sales for any title on record:
SELECT MIN(ytd_sales), MAX(ytd_sales)
FROM titles;
Aggregate functions are used often in the HAVING clauses of queries with GROUP BY. The following query selects all categories (types) of books that have an average price for all books in the category higher than $15.00:
SELECT type 'Category', AVG(price) 'Average Price'
FROM titles
GROUP BY type
HAVING AVG(price) > 15

Name
PERCENT_RANK

Generates a relative rank for a hypothetical row by dividing that row's rank less 1 by the number of rows in the group.

ANSI SQL Standard Syntax
PERCENT_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item
...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
Items in the value_list correspond by position to items in the sort_list. Therefore, both lists must have the same number of expressions.

Oracle
Oracle follows the ANSI SQL syntax and implements the following syntax:
PERCENT_RANK() OVER ([partioning] ordering)
For an explanation of the partioning and order clauses, see the section later in this chapter titled "ANSI SQL Window Functions."

MySQL, PostgreSQL, and SQL Server
These platforms do not implement the PERCENT_RANK aggregate function.

Example
The following example determines the percentage rank of the hypothetical new row (num=4, odd=1) within each group of rows from test4, where groups are distinguished by the values in the odd column:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENT_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD PERCENT_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- --
 0 1
 1 .75
In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is in position 4. The rank computation is (4th rank - 1)/3 rows = 100%. In the group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1), and is again ranked at #4. The rank computation for odd=1 is (4th rank - 1)/4 rows = 3/4 = 75%.

Name
PERCENTILE_CONT

Generates an interpolated value corresponding to a percentile that you specify.

ANSI SQL Standard Syntax
In the following syntax, percentile is a number between 0 and 1:
PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY sort_list)
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Oracle
Oracle allows only one expression in the ORDER BY clause:
PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY expression)
Oracle also allows some use of windowing syntax:
PERCENTILE_CONT(percentile) WITHIN GROUP
(ORDER BY sort_list) OVER (partitioning)
See "ANSI SQL Window Functions," later in this chapter, for a description of partitioning.

MySQL, PostgreSQL, and SQL Server
These platforms do not implement PERCENTILE_CONT.

Example
The following example groups the data in test4 by the column named odd and invokes PERCENTILE_CONT to return a 50th-percentile value for each group:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY NUM)
FROM test4 GROUP BY odd;
 ODD PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)
---------- --
 0 2
 1 3

Name
PERCENTILE_DISC

Determines the value in a group with the smallest cumulative distribution greater than or equal to a percentile that you specify.

ANSI SQL Standard Syntax
PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY sort_list)
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
percentile is a number between zero and one.

Oracle
Oracle allows only one expression in the ORDER BY clause:
PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY expression)
Oracle also allows some use of windowing syntax:
PERCENTILE_DISC(percentile) WITHIN GROUP
(ORDER BY sort_list) OVER (partitioning)
See "ANSI SQL Window Functions," later in this chapter, for a description of partitioning.

MySQL, PostgreSQL, and SQL Server
These platforms do not implement PERCENTILE_DISC.

Example
The following example is similar to that for PERCENTILE_CONT, except that it returns, for each group, the value closest to but not exceeding the 60th percentile:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENTILE_DISC(0.60) WITHIN GROUP (ORDER BY NUM)
FROM test4GROUP BY odd;
PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)
--
 2
 3

Name
RANK

Computes a rank in a group for a hypothetical row that you supply. This is not a dense rank. If the group contains rows that rank identically, it's possible for ranks to be skipped. If you want a dense rank, use the DENSE_RANK function.

ANSI SQL Standard Syntax
RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
Items in the value_list correspond by position to items in the sort_list. Therefore, both lists must have the same number of expressions.

Oracle and SQL Server
Oracle and SQL Server follow the ANSI SQL syntax and implement the following analytic syntax:
RANK() OVER ([partitioning] ordering)
For an explanation of the partioning and order clauses, see the section later in this chapter titled "ANSI SQL Window Functions."

MySQL and PostgreSQL
These platforms do not implement the RANK aggregate function.

Example
The following example determines the rank of the hypothetical new row (num=4, odd=1) within each group of rows from test4, where groups are distinguished by the values in the odd column:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, RANK(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- ------------------------------------
 0 4
 1 4
In both cases, the rank of the hypothetical new row is 4. In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is in position 4. In the group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1). In this case, even though two of the rows are duplicates and so have the same rank, the new row is still ranked #4 because it is preceded by three rows. Compare this behavior with that of DENSE_RANK.

Name
The REGR Family of Functions

ANSI SQL defines a family of functions, having names beginning with REGR_, that relate to different aspects of linear regression. The functions work in the context of a least-squares regression line.

ANSI SQL Standard Syntax
Following is the syntax and a brief description of each REGR_ function:
	REGR_AVGX(dependent, independent)
	Averages (as in AVG(x)) the independent variable values

	REGR_AVGY(dependent, independent)
	Averages (as in AVG(y)) the dependent variable values

	REGR_COUNT(dependent, independent)
	Counts the number of non-NULL number pairs

	REGR_INTERCEPT(dependent, independent)
	Computes the y-intercept of the regression line

	REGR_R2(dependent, independent)
	Computes the coefficient of determination

	REGR_SLOPE(dependent, independent)
	Computes the slope of the regression line

	REGR_SXX(dependent, independent)
	Sums the squares of the independent variable values

	REGR_SXY(dependent, independent)
	Sums the products of each pair of values

	REGR_SYY(dependent, independent)
	Sums the squares of the dependent variable values

The REGR_ functions only work on number pairs containing two non-NULL values. Any number pair with one or more NULL values will be ignored.

Oracle and PostgreSQL
Oracle and PostgreSQL support the ANSI SQL syntax for all REGR_ functions. Oracle also supports the following analytic syntax:
REGR_function(dependent, independent) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

MySQL and SQL Server
These platforms do not implement the REGR_ family of functions.

Example
The following REGR_COUNT example demonstrates that any pair with one or more NULL values is ignored. The table test3 contains three non-NULL number pairs, and three other pairs that have at least one NULL:
SELECT * FROM test3;
 Y X
---------- ----------
 1 3
 2 2
 3 1
 4 NULL
 NULL 4
 NULL NULL
The REGR_COUNT function ignores the pairs containing NULLs, counting only those pairs with two non-NULL values:
SELECT REGR_COUNT(y,x) FROM test3;
REGR_COUNT(Y,X)

 3
Likewise, all other REGR_ functions filter out any pairs containing NULL values before performing their respective computations.

Name
STDDEV_POP

Use STDDEV_POP to find the population standard deviation within a group of numeric values.

ANSI SQL Standard Syntax
STDDEV_POP(numeric_expression)

MySQL, Oracle, and PostgreSQL
MySQL, Oracle, and PostgreSQL support the ANSI SQL syntax. Oracle also supports the following analytic syntax:
STDDEV_POP(numeric_expression) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

SQL Server
Use the STDEVP function.

Example
The following example computes the population standard deviation for the values 1, 2, and 3:
SELECT * FROM test;
 X

 1
 2
 3

SELECT STDDEV_POP(x) FROM test;
STDDEV_POP(X)

 .816496581

Name
STDDEV_SAMP

Use STDDEV_SAMP to find the sample standard deviation within a group of numeric values.

ANSI SQL Standard Syntax
STDDEV_SAMP(numeric_expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax.

Oracle
Oracle supports the standard syntax. It also provides the STDDEV function, which operates similarly to STDDEV_SAMP except that it returns zero (instead of NULL) when there is only one value in the set.
Oracle also supports analytic syntax:
STDDEV_SAMP(numeric_expression) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

SQL Server
Use STDEV (with only one D!).

Example
The following example computes the sample standard deviation for the values 1, 2, and 3:
SELECT * FROM test;
 X

 1
 2
 3

SELECT STDDEV_SAMP(x) FROM test;
STDDEV_SAMP(X)

 1

Name
VAR_POP

Use VAR_POP to compute the population variance of a set of values.

ANSI SQL Standard Syntax
VAR_POP(numeric_expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax.

Oracle
Oracle supports the standard syntax. It also supports the following analytic syntax:
VAR_POP(numeric_expression) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

SQL Server
Use the VARP function.

Example
The following example computes the population variance for the values 1, 2, and 3:
SELECT * FROM test;
 X

 1
 2
 3

SELECT VAR_POP(x) FROM test;
VAR_POP(X)

.666666667

Name
VAR_SAMP

Use VAR_SAMP to compute the sample variance of a set of values.

ANSI SQL Standard Syntax
VAR_SAMP(numeric_expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax.

Oracle
Oracle supports the standard syntax. You may alternatively use the VARIANCE function, which differs from VAR_SAMP by returning zero (instead of NULL) for sets that contain only a single value.
Oracle also supports the following analytic syntax:
VAR_SAMP(numeric_expression) OVER (window_clause)
For an explanation of the window_clause, see the section later in this chapter titled "ANSI SQL Window Functions."

SQL Server
Use the VAR function.

Example
The following example computes the sample variance for the values 1, 2, and 3:
SELECT * FROM test;
 X

 1
 2
 3

SELECT VAR_SAMP(x) FROM test;
VAR_SAMP(X)

 1

ANSI SQL Window Functions

ANSI SQL2003 allows for a window_clause in aggregate function calls, the addition of which makes those functions into window functions. Both Oracle and SQL Server support this window function syntax. This section describes how to use the window_clause within Oracle and SQL Server.
Tip
Oracle tends to refer to window functions as analytic functions.

Window (or analytic) functions are similar to standard aggregate functions in that they operate on multiple rows, or groups of rows, within the result set returned from a query. However, the groups of rows that a window function operates on are defined not by a GROUP BY clause, but by partitioning and windowing clauses. Furthermore, the order within these groups is defined by an ordering clause, but that order affects only function evaluation and has no effect on the order in which rows are returned by the query.
Tip
Window functions are the last items in a query to be evaluated, except for the ORDER BY clause. Because of this late evaluation, window functions cannot be used within the WHERE, GROUP BY, or HAVING clauses.

ANSI SQL2003's Window Syntax

SQL2003 specifies the following syntax for window functions:
FUNCTION_NAME(expr) OVER {window_name | (window_specification)}
window_specification ::= [window_name] [partitioning] [ordering] [framing]
partitioning ::= PARTITION BY value[, value...] [COLLATE collation_name]
ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC] [NULLS {FIRST | LAST}]
framing ::= {ROWS | RANGE} {start | between} [exclusion]
start ::= {UNBOUNDED PRECEDING | unsigned-integer PRECEDING | CURRENT ROW}
between ::= BETWEEN bound AND bound
bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer FOLLOWING}
exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP | EXCLUDE TIES |
 EXCLUDE NO OTHERS}

Oracle's Window Syntax

Oracle's window function syntax is as follows:
FUNCTION_NAME(expr) OVER (window_clause)
window_clause ::= [partitioning] [ordering [framing]]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
framing ::= {ROWS | RANGE} {not_range | begin AND end}
not_range ::= {UNBOUNDED PRECEDING |
 CURRENT ROW |
 value PRECEDING}
begin ::= {UNBOUNDED PRECEDING |
 CURRENT ROW |
 value {PRECEDING | FOLLOWING}}
end ::= {UNBOUNDED FOLLOWING |
 CURRENT ROW |
 value {PRECEDING | FOLLOWING}}

SQL Server's Window Syntax

SQL Server's window function syntax is as follows:
FUNCTION_NAME(expr) OVER ([window_clause])
window_clause ::= [partitioning] [ordering]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER BY rule[, rule...]
rule ::= column [ASC | DESC]

Partitioning

Partitioning the rows operated on by the partitioning clause is similar to using the GROUP BY expression on a standard SELECT statement. The partitioning clause takes a list of expressions that will be used to divide the result set into groups. We'll use the following table as the basis for some examples:
SELECT * FROM odd_nums;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
The following results illustrate the effects of partitioning by ODD. The sum of the even numbers is 2 (0+2), and the sum of the odd numbers is 4 (1+3). The second column of the result set reports the sum of all values in the partition to which that row belongs, yet all the detail rows are returned. The query provides summary results in the context of detail rows:
SELECT NUM, SUM(NUM) OVER (PARTITION BY ODD) S FROM ODD_NUMS;
NUM S
--------- ----------
0 2
2 2
1 4
3 4
Not using a partitioning clause at all will sum all of the numbers in the NUM column for each row returned by the query. In effect, the entire result set is treated as a single, large partition:
SELECT NUM, SUM(NUM) OVER () S FROM ODD_NUMS;
NUM S
--------- ----------
0 6
1 6
2 6
3 6

Ordering

You specify the order of the rows on which an analytic function operates using the ordering clause. However, this analytic ordering clause does not define the ordering of the result set. To define the overall result set ordering, you must use the query's ORDER BY clause. The following use of Oracle's FIRST_VALUE function illustrates the effects of different orderings of the partitions:
SELECT NUM,
 SUM(NUM) OVER (PARTITION BY ODD) S,
 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,
 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM DESC) first_desc
FROM ODD_NUMS;
 NUM S FIRST_ASC FIRST_DESC
---------- ---------- ---------- ----------
 0 2 0 2
 2 2 0 2
 1 4 1 3
 3 4 1 3
As you can see, the ORDER BY clauses in the window function invocations affect the ordering of the rows in the respective partitions when those functions are evaluated. ORDER BY NUM ASC orders partitions in ascending order, resulting in 0 for the first value in the even-number partition and 1 for the first value in the odd-number partition, while ORDER BY NUM DESC has the opposite effect.
Tip
The preceding query also illustrates an important point: using window functions, you can summarize and order results in many different ways in the same query.

Grouping or Windowing

Many analytic functions also allow you to specify a virtual, moving window surrounding a row within a partition, using the framing clause. Such moving windows are useful for calculations such as a running total.
The following Oracle-based example uses the framing clause on the analytic variant of SUM to calculate a running sum of the values in the first column. No partitioning clause is used, so each invocation of SUM operates over the entire result set. However, the ORDER BY clause sorts the rows for SUM in ascending order of NUM's value, and the BETWEEN clause (which is the windowing clause) causes each invocation of SUM to include values for NUM only up through the current row. Each successive invocation of SUM includes yet another value for NUM, in order, from the lowest value of NUM to the greatest:
SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS;
NUM S
--------- ----------
0 0
1 1
2 3
3 6
This example's a bit too easy, as the order of the final result set happens to match the order of the running total. That doesn't need to be the case. The following example generates the same results, but in a different order. You can see that the running total values are appropriate for each value of NUM, but the rows are presented in a different order than before. The result set ordering is completely independent of the ordering used for window function calculations:
SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS
ORDER BY NUM DESC;
 NUM S
---------- ----------
 3 6
 2 3
 1 1
 0 0

List of Window Functions

ANSI SQL specifies that any aggregate function may also be used as a window function. Oracle and SQL Server largely follow the standard in that respect, so you'll find that you can take just about any aggregate function (certainly the standard ones) and apply to it the window function syntax described in the preceding sections.
In addition to the aggregate functions, ANSI SQL defines the window functions described in the following sections. Only Oracle and SQL Server currently implement these functions. All examples use the following table and data, which is a variation on the ODD_NUMS table used earlier to illustrate the concepts of partitioning, ordering, and grouping:
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1
Platform-specific window functions for Oracle (there are none for SQL Server) are included in the lists found in the section "Platform-Specific Extensions," later in this chapter.

Name
CUME_DIST

Calculates the cumulative distribution, or relative rank, of the current row with regard to other rows in the same partition. The calculation for a given row is as follows:
number of peer or preceding rows / number of rows in partition
Because the result for a given row depends on the number of rows preceding that row in the same partition, it's important to always specify an ORDER BY clause when invoking this function.

ANSI SQL Standard Syntax
CUME_DIST() OVER {window_name|(window_specification)}

Oracle
Oracle does not allow the framing portion of the windowing syntax. It requires the ordering clause:
CUME_DIST() OVER ([partitioning] ordering)

SQL Server
SQL Server does not support CUME_DIST.

Example
The following Oracle-based example uses CUME_DIST to generate a relative rank for each row, ordering by NUM, after partitioning the data by ODD:
SELECT NUM, ODD, CUME_DIST() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist
FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 .333333333
 2 0 .666666667
 4 0 1
 1 1 .25
 3 1 .75
 3 1 .75
 5 1 1
Following is an explanation of the calculation behind the rank for the row in which NUM=0:
	Because of the ORDER BY clause, the rows in the partition are ordered as follows:
	NUM=0
	NUM=2
	NUM=4

	There are no rows preceding NUM=0.

	There is one row that is a peer of NUM=0, and that is the NUM=0 row itself. Thus, the divisor is 1.

	There are three rows in the partition as a whole, making the dividend 3.

	The result of 1/3 is .33 repeating, as shown in the example output.

Name
DENSE_RANK

Assigns a rank to each row in a partition, which should be ordered in some manner. The rank for a given row is computed by counting the number of rows preceding the row in question and then adding 1 to the result. Rows with duplicate ORDER BY values will rank the same. Unlike with RANK, gaps in rank numbers will not result from two rows sharing the same rank.

ANSI SQL Standard Syntax
DENSE_RANK() OVER {window_name | (window_specification)}

Oracle and SQL Server
Oracle and SQL Server also require the ordering clause and do not allow the framing clause:
DENSE_RANK() OVER ([partitioning] ordering)

Example
Compare the results from the following Oracle-based example to those shown in the section on the RANK function:
SELECT NUM, DENSE_RANK() OVER (ORDER BY NUM) rank
FROM test4;
 NUM RANK
---------- ----------
 0 1
 1 2
 2 3
 3 4
 3 4
 4 5
 5 6
The two rows where NUM=3 are both ranked at #3, and the next-higher row is ranked at #4. Rank numbers are not skipped, hence the term "dense."

Name
PERCENT_RANK

Computes the relative rank of a row by dividing that row's rank less 1 by the number of rows in the partition, also less 1:
(rank - 1) / (rows - 1)
Compare this calculation to that used for CUME_DIST.

ANSI SQL Standard Syntax
PERCENT_RANK() OVER ({window_name | (window_specification)}

Oracle
Oracle also requires the ordering clause and does not allow the framing clause:
PERCENT_RANK() OVER ([partitioning] ordering)

SQL Server
SQL Server does not support PERCENT_RANK.

Example
The following Oracle-based example assigns relative ranks to the values of NUM, partitioning the data on the ODD column:
SELECT NUM, ODD, PERCENT_RANK() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist
FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 0
 2 0 .5
 4 0 1
 1 1 0
 3 1 .333333333
 3 1 .333333333
 5 1 1
Following is an explanation of the calculation behind the rank for the row in which NUM=2:
	Row NUM=2 is the second row in its partition; thus, it ranks #2.

	Subtract 1 from 2 to get a divisor of 1.

	The dividend is the total number of rows in the partition, or 3.

	Subtract 1 from 3 to get a dividend of 2.

	The result of 1/3 is .33 repeating, as shown in the example output.

Name
RANK

Assigns a rank to each row in a partition, which should be ordered in some manner. The rank for a given row is computed by counting the number of rows preceding the row in question and then adding 1 to the result. Rows with duplicate ORDER BY values will rank the same, leading to gaps in rank numbers.

ANSI SQL Standard Syntax
RANK() OVER {window_name | (window_specification)}

Oracle and SQL Server
Oracle and SQL Server also require the ordering clause and do not allow the framing clause:
RANK() OVER ([partitioning] ordering)

Example
The following Oracle-based example uses the NUM column to rank the rows in the test4 table:
SELECT NUM, RANK() OVER (ORDER BY NUM) rank
FROM test4;
 NUM RANK
---------- ----------
 0 1
 1 2
 2 3
 3 4
 3 4
 4 6
 5 7
Because both rows where NUM=3 rank the same (at #4), the next-higher row will be ranked at #6. The #5 rank is skipped.

Name
ROW_NUMBER

Assigns a unique number to each row in a partition.

ANSI SQL Standard Syntax
ROW_NUMBER() OVER ({window_name | (window_specification)}

Oracle and SQL Server
Oracle and SQL Server also require the ordering clause and do not allow the framing clause:
ROW_NUMBER() OVER ([partitioning] ordering)

Example
SELECT NUM, ODD, ROW_NUMBER() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist
FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 1
 2 0 2
 4 0 3
 1 1 1
 3 1 2
 3 1 3
 5 1 4

ANSI SQL Scalar Functions

The ANSI SQL scalar functions return a single value each time they are invoked. The SQL standard provides many scalar functions that can be used to manipulate date and time types, strings, and numbers, as well as to retrieve system information such as the current user or login name. Scalar functions fall into the categories listed in Table 4-2.
Table 4-2. Categories of scalar functions
	Function category
	Explanation

	Built-in
	Performs operations on values or settings built into the database.

Oracle uses the term "built-in" to describe all the specialty functions that it provides and that are thus "built into" the DBMS. This is a distinct and separate usage from the "built-in" scalar functions described here.

	CASE and CAST
	While these two functions operate on scalar input values, they are in a category all their own. CASE supplies IF/THEN logic to SQL statements, and CAST can convert values from one datatype to another.

	Date and time
	Performs operations on temporal datatypes and returns values in a temporal datatype format. There is no SQL2003 function that operates on a temporal datatype and returns a temporal result. The closest function is EXTRACT (covered in "Numeric Scalar Functions" later in this chapter), which operates on temporal values and returns numeric values. Functions returning temporal values but operating on no arguments are covered in the later section "Built-in Scalar Functions."

	Numeric
	Performs operations on numeric values and returns numeric values.

	String
	Performs operations on character values (e.g., CHAR, VARCHAR, NCHAR, NVARCHAR, and CLOB) and returns string or numeric values.

Built-in Scalar Functions

ANSI SQL built-in scalar functions identify both the current user session and its characteristics, such as the current session privileges. Built-in scalar functions are always nondeterministic. The CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP functions listed in Table 4-3 are built-in functions that fall into the date-and-time category of functions. Although the four platforms discussed in this book provide many additional functions beyond these SQL built-ins, the SQL standard defines only those listed in Table 4-3.
Table 4-3. ANSI SQL built-in scalar functions
	Function
	Usage

	CURRENT_DATE
	Returns the current date

	CURRENT_TIME
	Returns the current time

	CURRENT_TIMESTAMP
	Returns the current date and time

	CURRENT_USER or USER
	Returns the currently active user within the database server

	SESSION_USER
	Returns the currently active authorization ID, if it differs from the user's ID

	SYSTEM_USER
	Returns the currently active user within the host operating system

Name

MySQL
MySQL supports all the ANSI SQL built-in scalar functions. In addition, MySQL supports NOW as a synonym of the function CURRENT_TIMESTAMP.

Oracle
Oracle supports USER, CURRENT_DATE, and CURRENT_TIMESTAMP.

PostgreSQL and SQL Server
PostgreSQL and SQL Server support all the built-in scalar functions. In addition, PostgreSQL supports NOW as a synonym of the function CURRENT_TIMESTAMP.

Examples
The following queries retrieve the values from built-in functions. Notice that the various platforms return dates in their native formats:
/* On MySQL */
SELECT CURRENT_TIMESTAMP;
'2001-12-15 23:50:26'

/* On Microsoft SQL Server */
SELECT CURRENT_TIMESTAMP
GO
'Dec 15,2001 23:50:26'

/* On Oracle */
SELECT USER FROM dual;
dylan

CASE and CAST Functions

ANSI SQL provides a function named CASE that can be used to create IF/THEN flow-control logic within queries or UPDATE statements. The CAST function is for converting between datatypes and is also in the ANSI standard. All of the databases covered in this book provide ANSI standard support for both the CASE and CAST functions.

Name
CASE

The CASE function provides IF/THEN/ELSE functionality within a SELECT or UPDATE statement. It evaluates a list of conditions and returns one value out of several possible values.
CASE has two usages: simple and searched. Simple CASE expressions compare one value, the input_value, with a list of other values and return a result associated with the first matching value. Searched CASE expressions allow the analysis of several logical conditions and return a result associated with the first one that is true.
All vendors provide the ANSI SQL syntax for CASE.

ANSI SQL Standard Syntax and Description
-- Simple comparison operation
CASE input_value
WHEN when_condition THEN resulting_value
[... n]
[ELSE else_result_value
]
END

-- Boolean searched operation
CASE
WHEN Boolean_condition THEN resulting_value
[... n]
[ELSE else_result_expression]
END
In the simple CASE function, the input_value is evaluated against each WHEN clause. The resulting_value is returned for the first TRUE instance of input_value = when_condition. If no when_condition evaluates as TRUE, the else_result_value is returned. If no else_result_value is specified, NULL is returned.
The structure is essentially the same in the more elaborate Boolean searched operation, except that each WHEN clause has its own Boolean comparison operation.
In either usage, multiple WHEN clauses are used, though only one ELSE clause is necessary.

Examples
Here is a simple comparison operation where the CASE function alters the display of the contract column to make it more understandable:
SELECT au_fname,
 au_lname,
 CASE contract
 WHEN 1 THEN 'Yes'
 ELSE 'No'
 END 'contract'
FROM authors
WHERE state = 'CA'
Here is an elaborate searched CASE function in a SELECT statement that will report how many titles have been sold in different year-to-date sales ranges:
SELECT CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END 'YTD Sales',
 COUNT(*) 'Number of Titles'
FROM titles
GROUP BY CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END
ORDER BY MIN(ytd_sales)
The results are:
YTD Sales Number of Titles
---------------------- ----------------
Unknown 2
Not more than 200 1
Between 201 and 1000 2
Between 1001 and 5000 9
Between 5001 and 10000 1
Over 10000 3
Next is an UPDATE statement that applies discounts to all of the titles. This more complicated command will discount all personal computer-related titles by 25% and all other titles by 10%, with the exception of titles with year-to-date sales exceeding 10,000 units, which will receive only a 5% discount. This query uses a searched CASE expression to perform the price adjustments:
UPDATE titles
SET price = price *
 CASE
 WHEN ytd_sales > 10000 THEN 0.95 -- 5% discount
 WHEN type = 'popular_comp' THEN 0.75 -- 25% discount
 ELSE 0.9 -- 10% discount
 END
WHERE pub_date IS NOT NULL
This example demonstrates completion of three separate UPDATE operations in a single statement.

Name
CAST

The CAST command explicitly converts an expression of one datatype to another. All vendors provide the ANSI SQL syntax for CAST.

ANSI SQL Standard Syntax and Description
CAST(expression AS data_type[(length)])
The CAST function converts any expression, such as a column value or variable, into another defined datatype. The length of the datatype may optionally be supplied, for those datatypes (such as CHAR or VARCHAR) that support lengths.
Tip
Be aware that some conversions, such as DECIMAL values to INTEGER, will result in rounding operations. Also, some conversion operations may result in an error if the new datatype does not have sufficient space to display the converted value.

Examples
This example retrieves the year-to-date sales figure as a CHAR and concatenates it with a literal string and a portion of the title of the book. It converts ytd_sales to CHAR(5), and it shortens the length of the title to make the results more readable:
SELECT CAST(ytd_sales AS CHAR(5)) + ' Copies sold of ' +
CAST(title AS VARCHAR(30))
FROM titles
WHERE ytd_sales IS NOT NULL
 AND ytd_sales > 10000
ORDER BY ytd_sales DESC
The results are:

22246 Copies sold of The Gourmet Microwave
18722 Copies sold of You Can Combat Computer Stress
15096 Copies sold of Fifty Years in Buckingham Pala

Numeric Scalar Functions

The list of official ANSI SQL numeric functions is rather small, and the different platforms provide supplementary mathematical and statistical functions. MySQL and PostgreSQL both support many of the ANSI standard functions. The other database platforms offer the same capabilities of numeric scalar functions through their own internally defined functions, but they do not share the same names as those declared by the SQL standard. The supported numeric functions and syntax are listed in Table 4-4.
Table 4-4. ANSI SQL numeric functions
	Function
	Usage

	ABS
	Returns the absolute value of a number.

	BIT_LENGTH
	Returns an integer value representing the number of bits in another value.

	CEIL or CEILING
	Rounds a noninteger value upward to the next greatest integer. Returns an integer value unchanged.

	CHAR_LENGTH
	Returns an integer value representing the number of characters in a string expression.

	EXP
	Raises a value to the power of the mathematical constant known as e.

	EXTRACT
	Allows the datepart to be extracted (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, or TIMEZONE_MINUTE) from a temporal expression.

	FLOOR
	Rounds a noninteger value downward to the next least integer. Returns an integer value unchanged.

	LN
	Returns the natural logarithm of a number.

	MOD
	Returns the remainder of one number divided into another.

	OCTET_LENGTH
	Returns an integer value representing the number of octets in another value. This value is the same as BIT_LENGTH / 8.

	POSITION
	Returns an integer value representing the starting position of a string within the search string.

	POWER
	Raises a number to a specified power.

	SQRT
	Computes the square root of a number.

	WIDTH_BUCKET
	Deposits a value into the appropriate bucket from a set of buckets covering a given range.

Name
ABS

All platforms support the ANSI standard ABS function.

ANSI SQL Standard Syntax
ABS(expression)
ABS returns the absolute value of the number in expression.

Example
The following example shows how to use the ABS function:
/* SQL2003 */
SELECT ABS(−1) FROM NUMBERS
1

Name
BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH

All platforms stray from the ANSI standard in their support for scalar functions for determining the length of expressions. While the platform support is nonstandard, the equivalent functionality exists under different names.

ANSI SQL Standard Syntax
The ANSI SQL scalar functions for getting the length of a value take an expression to calculate the value and return the length as an integer. The BIT_LENGTH function returns the number of bits contained within the value of expression, CHAR_LENGTH returns the number of characters in the string expression, and OCTET_LENGTH returns the number of octets in the string expression. All three of these functions will return NULL if expression is NULL:
BIT_LENGTH(expression)
CHAR_LENGTH(expression)
OCTET_LENGTH(expression)

MySQL and PostgreSQL
MySQL and PostgreSQL both support BIT_LENGTH, CHAR_LENGTH, OCTET_LENGTH, and the ANSI SQL synonym CHARACTER_LENGTH.

Oracle
Oracle supports the LENGTHB function, which returns an integer value representing the number of bytes in an expression. For the length of an expression in characters, Oracle provides a LENGTH function as a synonym for CHAR_LENGTH.

SQL Server
SQL Server provides LEN, which performs all three functions.

Example
The following example, shown for different databases, determines the length of a string and a value retrieved from a column:
/* On MySQL and PostgreSQL */
SELECT CHAR_LENGTH('hello');
SELECT OCTET_LENGTH(book_title) FROM titles;

/* On Microsoft SQL Server */
SELECT DATALENGTH(title) FROM titles
WHERE type = 'popular_comp'
GO

/* On Oracle */
SELECT LENGTH('HORATIO') "Length of characters"
FROM dual;

Name
CEIL

The CEIL function returns the smallest integer greater than an input value that you specify.

ANSI SQL Standard Syntax
ANSI SQL supports the following two forms of the function:
CEIL(expression)
CEILING(expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support both CEIL and CEILING.

Oracle
Oracle supports only CEIL.

SQL Server
SQL Server supports only CEILING.

Examples
When you pass a positive, non-integer number, the effect of CEIL is to round up to the next highest integer:
SELECT CEIL(100.1) FROM dual;
CEIL(100.1)

 101
Remember, though, that with negative numbers, rounding "up" results in a lower absolute value:
SELECT CEIL(−100.1) FROM dual;
CEIL(−100.1)

 −100
Use FLOOR to get behavior opposite to that of CEIL.

Name
EXP

The EXP function returns the value of the mathematical constant e (approximately 2.718281) raised to the power of a specified number.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL standard syntax:
EXP(expression)

Example
The following example uses EXP to return an approximation of e:
SELECT EXP(1) FROM dual;
 EXP(1)

2.71828183
Use LN to go in the opposite direction.

Name
EXTRACT

The ANSI SQL scalar function for extracting parts from a date is EXTRACT.

ANSI SQL Standard Syntax
The ANSI SQL EXTRACT function takes a date_part and an expression that evaluates to a datetime value. MySQL, Oracle, and PostgreSQL support the ANSI SQL standard syntax:
EXTRACT(date_part FROM expression)

MySQL
MySQL's implementation extends somewhat beyond the ANSI standard. The ANSI standard does not have a provision for returning multiple fields from the same call to EXTRACT (e.g., DAY_HOUR). The MySQL extensions try to accomplish what the combination DATE_TRUNC and DATE_PART do in PostgreSQL. MySQL supports the dateparts listed in Table 4-5.
Table 4-5. MySQL dateparts
	Type value
	Meaning

	MICROSECOND
	Microseconds

	SECOND
	Seconds

	MINUTE
	Minutes

	HOUR
	Hours

	DAY
	Days

	WEEK
	Weeks

	MONTH
	Months

	QUARTER
	Quarter

	YEAR
	Years

	SECOND_MICROSECOND
	Seconds and microseconds

	MINUTE_MICROSECOND
	Minutes and microseconds

	MINUTE_SECOND
	Minutes and seconds

	HOUR_MICROSECOND
	Hours and microseconds

	HOUR_SECOND
	Hours, minutes, and seconds

	HOUR_MINUTE
	Hours and minutes

	DAY_MICROSECOND
	Days and microseconds

	DAY_SECOND
	Days, hours, minutes, and seconds

	DAY_MINUTE
	Days, hours, and minutes

	DAY_HOUR
	Days and hours

	YEAR_MONTH
	Years and months

Oracle
Oracle supports the ANSI SQL syntax with the dateparts listed in Table 4-6.
Table 4-6. Oracle dateparts
	Type value
	Meaning

	DAY
	The day of the month field (1–31)

	HOUR
	The hour field (0–23)

	MINUTE
	The minutes field (0–59)

	MONTH
	The month field (1–12)

	SECOND
	The seconds field (0–59)

	TIMEZONE_HOUR
	The hour component of the time zone offset

	TIMEZONE_MINUTE
	The minute component of the time zone offset

	TIMEZONE_REGION
	The current time zone name

	TIMEZONE_ABBR
	The abbreviation of the current time zone

	YEAR
	The year field

PostgreSQL
PostgreSQL supports the ANSI SQL syntax with a few extra dateparts. The dateparts it supports are listed in Table 4-7.
Table 4-7. PostgreSQL dateparts
	Type value
	Meaning

	CENTURY
	Before version 8.0, returned the year field divided by 100. After version 8.0, returns the correct numbering used by Gregorian calendar countries, where the first century starts in 0001 and there is no century numbered 0 (zero).

	DAY
	The day of the month field (1–31).

	DECADE
	The year field divided by 10.

	DOW
	The day of the week field (0–6, where Sunday is 0). This type only works for TIMESTAMP values.

	DOY
	The day of the year field (1–366). The maximum returned value is only 365 for years that are not leap years. This type can only be used on TIMESTAMP values.

	EPOCH
	The number of seconds between the epoch (1970-01-01 00:00:00-00) and the supplied value. The result can be negative for values before the epoch.

	HOUR
	The hour field (0–23).

	MICROSECONDS
	The seconds field (including fractional parts) multiplied by 1,000,000.

	MILLENNIUM
	Before version 8.0, returned the year field divided by 1000. After version 8.0, returns the correct numbering used by Gregorian calendar countries, where the first millennium starts in 0001 and there is no century numbered 0 (zero). The year 1001 is the start of the second millennium, while the year 2001 is the start of the third millennium.

	MILLISECONDS
	The seconds field (including fractional parts) multiplied by 1,000.

	MINUTE
	The minutes field (0–59).

	MONTH
	The month field (1–12).

	QUARTER
	The quarter of the year (1–4) in which the value occurs. This type can only be used with TIMESTAMP values.

	SECOND
	The seconds field (0–59).

	TIMEZONE
	The time zone offset in seconds.

	TIMEZONE_HOUR
	The hour component of the time zone offset.

	TIMEZONE_MINUTE
	The minute component of the time zone offset.

	WEEK
	The number of the week within the year in which the value falls.

	YEAR
	The year field.

SQL Server
SQL Server provides the function DATEPART(date_part, expression) as a synonym for the ANSI SQL function EXTRACT(date_part FROM expression). SQL Server supports the dateparts listed in Table 4-8.
Table 4-8. SQL Server dateparts
	Date part value
	Meaning

	day
	The day of the month for the datetime expression. The abbreviations d and dd can also be used.

	dayofyear
	The day of the year for the datetime expression. The abbreviations y and dy can also be used.

	hour
	The hour of the day for the datetime expression. The abbreviation hh can also be used.

	ISO_WEEK
	The ISO 8601 week number (1–53). The abbreviations isowk and isoww can also be used.

	microsecond
	The microseconds (0-999999) for the datetime expression. The abbreviation mcs can also be used.

	millisecond
	The milliseconds for the datetime expression. The abbreviation ms can also be used.

	minute
	The minute of the hour for the datetime expression. The abbreviations n and mi can also be used.

	month
	The month (1-12). The abbreviations m and mm can also be used.

	nanosecond
	The number of nanoseconds (0-999999999). The abbreviation ns can also be used.

	quarter
	The quarter of the year in which the datetime expression falls. The abbreviations q and qq can also be used.

	second
	The second of the minute for the datetime expression. The abbreviations s and ss can also be used.

	TZoffset
	The time zone. The abbreviation tz can also be used.

	week
	The week of the year for the datetime expression. The abbreviations wk and ww can also be used.

	weekday
	The day of the week for the datetime expression. The abbreviation dw can also be used.

	year
	The year field of the datetime expression. The abbreviations yy and yyyy can also be used for two-digit and four-digit years, respectively.

Example
This example extracts dateparts from several datetime values:
/* On MySQL */
SELECT EXTRACT(YEAR FROM "2013-07-02");
2013
SELECT EXTRACT(YEAR_MONTH FROM "2013-07-02 01:02:03");
201307
SELECT EXTRACT(DAY_MINUTE FROM "2013-07-02 01:02:03");
20102

/* On PostgreSQL */
SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
20

Name
FLOOR

The FLOOR function returns the largest integer less than an input value that you specify.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL syntax:
FLOOR(expression)

Examples
When you pass a positive number, the effect of FLOOR is to eliminate anything after the decimal point:
SELECT FLOOR(100.1) FROM dual;
FLOOR(100.1)

 100
Remember, though, that with negative numbers going in the "less-than" direction corresponds to increasingly larger absolute values:
SELECT FLOOR(−100.1) FROM dual;
FLOOR(−100.1)

 −101
Use CEIL to get behavior opposite to FLOOR.

Name
LN

The LN function returns the natural logarithm of a number, which is the power to which you would need to raise the mathematical constant e (approximately 2.718281) in order to get the number in question as the result.

ANSI SQL Standard Syntax
LN(expression)

MySQL, Oracle, and PostgreSQL
MySQL, Oracle, and PostgreSQL support the ANSI SQL syntax for the LN function. MySQL and PostgreSQL also support the use of LOG as a synonym for LN.

SQL Server
SQL Server calls its natural logarithm function LOG:
LOG(expression)

Example
The following Oracle-based example shows the natural logarithm of a number closely approximating the mathematical constant known as e:
SELECT LN(2.718281) FROM dual;
LN(2.718281)

 .999999695
Use the EXP function to go in the other direction.

Name
MOD

The MOD function returns the remainder of a dividend divided by a divider. All platforms support the ANSI SQL syntax for the MOD function.

ANSI SQL Standard Syntax
MOD(dividend, divider)
The standard syntax for the MOD function is to return the remainder of the dividend divided by the divider; it returns the dividend if the divider is 0.

Example
The following example shows how to use the MOD function from within a SELECT statement:
SELECT MOD(12, 5) FROM NUMBERS
2

Name
POSITION

The POSITION function returns an integer that indicates the starting position of a string within the search string.

ANSI SQL Standard Syntax
POSITION(string1 IN string2)
The standard syntax for the POSITION function is to return the first location of string1 within string2. POSITION returns 0 if string1 does not occur within string2 and NULL if either argument is NULL.

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax for the POSITION function.

Oracle
Oracle's equivalent function is called INSTR.

SQL Server
Instead of POSITION, SQL Server supports CHARINDEX and PATINDEX functions. CHARINDEX and PATINDEX are very similar, except that PATINDEX allows the use of wildcard characters in the search criteria.

Examples
/* On MySQL */
SELECT LOCATE('bar', 'foobar');
4

/* On MySQL and PostgreSQL */
SELECT POSITION('fu' IN 'snafhu');
0

/* On Microsoft SQL Server */
SELECT CHARINDEX('de', 'abcdefg')
GO
4
SELECT PATINDEX('%fg', 'abcdefg')
GO
6

Name
POWER

Use POWER to raise a number to a specific value.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL syntax:
POWER(base, exponent)
The result of the POWER function is base raised to the exponent power, or baseexponent. If base is negative, exponent must be an integer.

Examples
Raising a positive number to an exponent is straightforward:
SELECT POWER(10,3) FROM dual;
POWER(10,3)

 1000
Anything raised to the 0th power evaluates to 1:
SELECT POWER(0,0) FROM dual;
POWER(0,0)

 1
Negative exponents move the decimal point to the left:
SELECT POWER(10,−3) FROM dual;
POWER(10,−3)

 .001

Name
SQRT

The SQRT function returns the square root of a number.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL syntax:
SQRT(expression)

Example
SELECT SQRT(100) FROM dual;
 SQRT(100)

 10

Name
WIDTH_BUCKET

The WIDTH_BUCKET function assigns values to buckets (individual segments) in an equiwidth histogram.

ANSI SQL Standard Syntax
In the following syntax, expression represents a value to be assigned to a bucket. You would typically base expression on one or more columns returned by a query:
WIDTH_BUCKET(expression, min, max, buckets)
The buckets argument specifies the number of buckets to create over the range defined by min through max. min is inclusive, whereas max is not. The value from expression is assigned to one of those buckets, and the function then returns the corresponding bucket number. When expression falls outside the range of buckets, the function returns either 0 or max + 1, depending on whether expression is lower than min or greater than or equal to max.

MySQL and SQL Server
MySQL and SQL Server do not support WIDTH_BUCKET.

Oracle and PostgreSQL
Oracle and PostgreSQL support the ANSI SQL syntax for WIDTH_BUCKET.

Examples
The following example divides the integer values 1 through 10 into two buckets:
SELECT x, WIDTH_BUCKET(x,1,10,2)
FROM pivot;
 X WIDTH_BUCKET(X,1,10,2)
---------- ----------------------
 1 1
 2 1
 3 1
 4 1
 5 1
 6 2
 7 2
 8 2
 9 2
 10 3
This next example is more interesting. It divides 11 values (from 1 through 10) into three buckets and illustrates the distinction between min being inclusive and max being noninclusive:
SELECT x, WIDTH_BUCKET(x,1,10,3)
FROM pivot;
 X WIDTH_BUCKET(X,1,10,3)
---------- ----------------------
 1 1
 2 1
 3 1
 4 2
 5 2
 6 2
 7 3
 8 3
 9 3
 9.9 3
 10 4
Pay particular attention to the results for X=1, X=9.9, and X=10. An input value of min (1, in this example) falls into the first bucket, proving that the lower end of the range for bucket #1 is defined as x >= min. An input value of max, however, falls outside the highest bucket. In this example, 10 falls into the overflow bucket numbered max + 1. The value 9.9, on the other hand, falls into bucket #3, illustrating that the upper end of the range for the highest bucket is defined as x < max.

String Functions and Operators

Basic string functions and operators offer a number of capabilities and return string values as their results. Some string functions are dyadic, indicating that they operate on two strings at once. ANSI SQL supports the string functions listed in Table 4-9.
Table 4-9. SQL string functions and operators
	Function or operator
	Usage

	Concatenation operator
	Appends two or more literal string expressions, column values, or variables together into one string

	CONVERT
	Converts a string to a different representation within the same character set

	LOWER
	Converts a string to all lowercase characters

	OVERLAY
	Returns the result of replacing a substring of one string with another

	SUBSTRING
	Returns a portion of a string

	TRANSLATE
	Converts a string from one character set to another

	TRIM
	Removes leading characters, trailing characters, or both from a character string

	UPPER
	Converts a string to all uppercase characters

Name
Concatenation Operator

ANSI SQL defines a concatenation operator (||), which joins two distinct strings into one string value.

MySQL
MySQL supports CONCAT as a synonym for the ANSI SQL concatenation operator and uses the || operator for logical OR.

Oracle and PostgreSQL
Oracle and PostgreSQL support the ANSI SQL double vertical bar (||) concatenation operator. Oracle also supports CONCAT as a synonym for the ANSI SQL operator.

SQL Server
SQL Server uses the plus sign (+) as a synonym for the ANSI SQL concatenation operator. SQL Server has the system setting CONCAT_NULL_YIELDS_NULL, which can be set to alter the behavior when NULL values are used in the concatenation of string values.

Examples
/* ANSI SQL Syntax */
'string1' || 'string2' || 'string3'
'string1string2string3'

/* On MySQL */
CONCAT('string1', 'string2')
'string1string2'
If any of the concatenation values are NULL, the entire returned string is NULL. Also, if a numeric value is concatenated, it is implicitly converted to a character string.
SELECT CONCAT('My ', 'bologna ', 'has ', 'a ', 'first ', 'name...');
'My bologna has a first name...'
SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');
NULL

Name
CONVERT and TRANSLATE

The CONVERT function alters the representation of a character string within its character set and collation. For example, CONVERT might be used to alter the number of bits per character.
TRANSLATE alters the character set of a string value from one base character set to another. Thus, TRANSLATE might be used to translate a value from the English character set to a Kanji (Japanese) or Cyrillic (Russian) character set. The translation must already exist, either by default or by virtue of having been created using the CREATE TRANSLATION command.

ANSI SQL Standard Syntax
CONVERT(char_value USING conversion_char_name)

TRANSLATE(char_value USING translation_name)
CONVERT converts char_value to the character set with the name supplied in conversion_char_name. TRANSLATE converts char_value to the character set provided in translation_name.

MySQL
MySQL supports the ANSI SQL syntax for CONVERT but does not support TRANSLATE.

Oracle
Oracle supports CONVERT and TRANSLATE with the same meaning as ANSI SQL. The Oracle syntax follows:
CONVERT(char_value, target_char_set, source_char_set)

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})
Under Oracle's implementation, the CONVERT function returns the text of char_value in the target character set. char_value is the string to convert, target_char_set is the name of the character set into which the string is to be converted, and source_char_set is the name of the character set in which char_value was originally stored.
Oracle's TRANSLATE function follows the ANSI syntax, but it supports only two arguments for the character set: you can choose between the database character set (CHAR_CS) and the national character set (NCHAR_CS).
Warning
Oracle also supports a different function named TRANSLATE, which omits the USING keyword. That version of TRANSLATE has nothing to do with character set translation.

Both the target and source character set names can be passed either as literal strings, in variables, or in columns from a table. Note that replacement characters might be substituted when converting from or to a character set that does not support a representation of all the characters used in the conversion.
Oracle supports several common character sets, including US7ASCII, WE8DECDEC, WE8HP, F7DEC, WE8EBCDIC500, WE8PC850, and WE8ISO8859P1. For example:
SELECT CONVERT('Gro2', 'US7ASCII', 'WE8HP')FROM DUAL;
Gross

PostgreSQL
PostgreSQL supports the ANSI standard CONVERT, and conversions can be defined by using CREATE CONVERSION. PostgreSQL's implementation of the TRANSLATE function offers a large superset of functions that can convert any occurrence of one text string to another within a specified string:
TRANSLATE(character_string, from_text, to_text)
Here are some examples:
SELECT TRANSLATE('12345abcde', '5a', 'XX');
'1234XXbcde'

SELECT TRANSLATE(title, 'Computer', 'PC')
FROM titles
WHERE type = 'Personal_computer'

SELECT CONVERT('PostgreSQL' USING iso_8859_1_to_utf_8)
'PostgreSQL'

SQL Server
SQL Server does not support TRANSLATE. SQL Server's implementation of CONVERT is a very rich utility that alters the base datatype of an expression but is otherwise dissimilar to the ANSI SQL CONVERT function. It is functionally equivalent to the CAST function:
CONVERT (data_type[(length) | (precision, scale)], expression[, style])
The style clause is used to define the format of a date conversion. Refer to the SQL Server documentation for more information. Following is an example:
SELECT title, CONVERT(char(7), ytd_sales)
FROM titles
ORDER BY title
GO

Name
LOWER and UPPER

The functions LOWER and UPPER allow the case of a string to be altered quickly and easily, so that all the characters are lower- or uppercase, respectively. These functions are supported in all the database implementations covered in this book. The different database platforms also support a variety of other text formatting functions that are specific to their implementations.

ANSI SQL Standard Syntax
LOWER(string)
UPPER(string)
LOWER converts string into a lowercase string. UPPER is the uppercase counterpart of LOWER.

MySQL
MySQL supports the ANSI SQL UPPER and LOWER scalar functions, as well as the synonyms UCASE and LCASE.

Oracle, PostgreSQL, and SQL Server
These platforms all support the ANSI SQL UPPER and LOWER scalar functions.

Example
SELECT LOWER('You Talkin To ME?'), UPPER('you talking to me?!');
you talkin to me?, YOU TALKING TO ME?!

Name
OVERLAY

The OVERLAY function embeds one string into another and returns the result.

ANSI SQL Standard Syntax
OVERLAY(string PLACING embedded_string FROM start
[FOR length])
If any of the inputs are NULL, the OVERLAY function returns NULL. The embedded_string replaces the length characters in string, starting at the character position start. If the length is not specified, the embedded_string will replace all the characters in string after start.

MySQL, Oracle, and SQL Server
These platforms do not support the OVERLAY function. You can simulate the OVERLAY function on these platforms by using a combination of SUBSTRING and the concatenation operator.

PostgreSQL
PostgreSQL supports the ANSI standard for OVERLAY.

Examples
This is an example of how to use the OVERLAY function:
/* ANSI SQL and PostgreSQL */
SELECT OVERLAY('DONALD DUCK' PLACING 'TRUMP' FROM 8) FROM NAMES;
'DONALD TRUMP'

Name
SUBSTRING

The SUBSTRING function allows one character string to be returned from another.

ANSI SQL Standard Syntax
SUBSTRING(extraction_string FROM starting_position [FOR length]
[COLLATE collation_name])
If any of the inputs are NULL, the SUBSTRING function returns NULL. The extraction_string is the source from which the character value is to be extracted. It may be a literal string, a column in a table with a character datatype, or a variable with a character datatype. The starting_position is an integer value telling the function at which position to begin performing the extraction. The optional length is an integer value that tells the function how many characters to extract, starting at the starting_position. If the optional FOR keyword is omitted, the substring starting at starting_position and continuing to the end of the extraction_string is returned.

MySQL
MySQL largely supports the ANSI standard, but it does not accept the COLLATE clause. MySQL's implementation assumes that the characters are to be extracted from the starting position and will continue to the end of the character string. The syntax is as follows:
SUBSTRING(extraction_string [FROM starting_position] [FOR length])

Oracle
Oracle's implementation, SUBSTR, largely functions the same way as ANSI SQL's SUBSTRING, but Oracle does not support the COLLATE clause. When the starting_position is a negative number, Oracle counts from the end of the extraction_string. If length is omitted, the remainder of the string (starting at starting_position) is returned. The syntax is:
SUBSTR(extraction_string, starting_position[, length])

PostgreSQL
PostgreSQL largely supports the ANSI standard, but it does not accept the COLLATE clause. The PostgreSQL syntax is:
SUBSTRING(extraction_string [FROM starting_position] [FOR length])

SQL Server
SQL Server's implementation is similar to the ANSI standard, except that it does not support the COLLATE clause. SQL Server allows this command to be applied to text, image, and binary datatypes; however, the starting_position and length represent the number of bytes rather than the number of characters to count. The SQL Server syntax follows:
SUBSTRING(extraction_string [FROM starting_position] [FOR length])

Examples
These examples generally work on any one of the five database platforms profiled in this book. Only the second Oracle example, with a negative starting position, fails on the others (assuming, of course, that Oracle's SUBSTR is translated into SUBSTRING):
/* On Oracle, counting from the left */
SELECT SUBSTR('ABCDEFG',3,4) FROM DUAL;
'CDEF'

/* On Oracle, counting from the right */
SELECT SUBSTR('ABCDEFG',−5,4) FROM DUAL;
'CDEF'

/* On MySQL */
SELECT SUBSTRING('Be vewy, vewy quiet' FROM 5);
'wy, vewy quiet'

/* On PostgreSQL or SQL Server */
SELECT au_lname, SUBSTRING(au_fname, 1, 1)
FROM authors
WHERE au_lname = 'Carson'
Carson C

Name
TRIM

The TRIM function removes leading characters, trailing characters, or both from a specified character string or BLOB value. This function also removes other types of characters from a specified character string. The default behavior is to trim the specified character from both sides of the character string. If no removal character is specified, TRIM removes spaces by default.

ANSI SQL Standard Syntax
TRIM([[{LEADING | TRAILING | BOTH}] [removal_char] FROM]
 target_string
 [COLLATE collation_name])
The removal_char is the character to be stripped out, and the target_string is the character string from which characters are to be stripped. If no removal_char is specified, TRIM strips out spaces. The COLLATE clause forces the result set of the function into another pre-existing collation set.

MySQL, Oracle, and PostgreSQL
These platforms support the ANSI SQL syntax of TRIM.

SQL Server
SQL Server provides the functions LTRIM and RTRIM to trim off leading spaces or trailing spaces, respectively. On SQL Server, LTRIM and RTRIM cannot be used to trim other types of characters.

Examples
SELECT TRIM(' wamalamadingdong ');
'wamalamadingdong'

SELECT LTRIM(RTRIM(' wamalamadingdong '));
'wamalamadingdong'

SELECT TRIM(LEADING '19' FROM '1976 AMC GREMLIN');
'76 AMC GREMLIN'

SELECT TRIM(BOTH 'x' FROM 'xxxWHISKEYxxx');
'WHISKEY'

SELECT TRIM(TRAILING 'snack' FROM 'scooby snack');
'scooby '

Platform-Specific Extensions

The following sections provide a full listing and description of each vendor-supported function. The functions are platform-specific. Thus, a MySQL function, for example, is not guaranteed to be supported by any other vendor.

MySQL-Supported Functions

This section provides an alphabetical listing of MySQL-supported functions, with examples and corresponding results.
	ACOS(number)
	Returns the arccosine of number, ranging from −1 to 1. The result ranges from 0 to π and is expressed in radians. For example:
SELECT ACOS(0) -> 1.570796

	ADDDATE(date, days)
	Returns date with days added to it. For example:
SELECT ADDDATE('2008-05-14', 1) -> '2008-05-15'

	ADDDATE(date, INTERVAL expr unit)
	Returns date with expr units of unit added. For example:
SELECT ADDDATE('2008-05-14', INTERVAL 1 DAY) -> '2008-05-15'

	AES_DECRYPT(crypt_str, key_str)
	Returns crypt_str decrypted using AES and the key key_str.

	AES_ENCRYPT(str, key_str)
	Returns str encrypted with AES using the key key_str. For example:
SELECT AES_DECRYPT(AES_ENCRYPT('secret sauce', 'password'), 'password')
-> 'secret sauce'

	ASCII(text)
	Returns the ASCII code of the first character of text. For example:
SELECT ASCII('x') -> 120

	ASIN(number)
	Returns the arcsine of number, ranging from −1 to 1. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ASIN(0) -> 0.000000

	ATAN(number)
	Returns the arctangent of any number. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ATAN(3.1415) -> 1.262619

	ATAN2(x, y)
	Returns the arctangent of the two variables x and y. ATAN2(x, y) is similar to ATAN(y/x), with the exception that the signs of x and y are used to determine the quadrant of the result. For example:
ATAN2(3.1415, 1) -> 1.262619

	BENCHMARK(count, expr)
	Executes the expression expr count times. The result value is always 0. For example:
BENCHMARK(1000000,ATAN2(3.1415, 1)) -> 0

	BIN(number)
	Returns a string containing the binary value of number, where number is a BIGINT.

	BINARY(string)
	Casts string to a binary string.

	BIT_AND(expr)
	Aggregate function that returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision. The value −1 is returned when no matching rows are found. For example:
BIT_AND(mycolumn) -> 0

	BIT_COUNT(number)
	Returns the number of bits that are set in number. For example:
BIT_COUNT(5) -> 2

	BIT_OR(expr)
	Aggregate function that returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision. The value 0 is returned when no matching rows are found. For example:
BIT_OR(mycolumn) -> 1

	BIT_XOR(expr)
	Aggregate function that returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision. The value 0 is returned when no matching rows are found. For example:
BIT_XOR(mycolumn) -> 1

	CHAR(number[, . . .])
	Returns a string consisting of the characters given by the ASCII code values in the arguments. Any NULL values are ignored. For example:
CHAR(120,121,122) -> 'xyz'

	CHARSET(str)
	Returns the character set of the string argument str. For example:
CHARSET('oolong') -> 'latin1'

	COALESCE(list)
	Returns the first non-NULL element in the list. For example:
COALESCE(NULL, 1, 2) -> 1

	COERCIBLITY(expr)
	Returns the collation coercibility value of expr, which is an integer value between 0 and 5; the lowest values have the highest precedence. For example:
COERCIBILITY('darjeeling') -> 4

	COLLATION(str)
	Returns the collation of str. For example:
COLLATION(_utf8'assam') -> 'utf8_general_ci'

	COMPRESS(string)
	Returns a compressed version of string.

	CONCAT_WS(separator, str1, str2[, . . .])
	A special form of CONCAT that inserts separator between every pair of string arguments concatenated. If separator is NULL, the result is NULL. For example:
CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

	CONNECTION_ID()
	Returns the connection ID for the connection. Every connection has its own unique ID. For example:
CONNECTION_ID() -> 305102

	CONV(number, from_base, to_base)
	Returns a string representation of the number number, converted from base from_base to base to_base. If any argument is NULL, the result is NULL. For example:
CONV(12,10,2) -> 1100

	COS(number)
	Returns the cosine of number as an angle expressed in radians. For example:
SELECT COS(0) -> 1.000000

	COT(number)
	Returns the cotangent of number as an angle expressed in radians. For example:
SELECT COT(0) -> NULL

	CRC32(expr)
	Returns the CRC32 checksum of expr. For example:
SELECT CRC32('mysql') -> 2501908538

	CURDATE()
	Returns today's date as a value in YYYY-MM-DD or YYYYMMDD format, depending on whether the function is used in a string or numeric context. For example:
CURDATE() -> '2003-06-24'

	CURTIME()
	Returns the current time as a value in HH:MM:SS or HHMMSS format, depending on whether the function is used in a string or numeric context. For example:
CURTIME() -> '20:40:20'

	DATABASE()
	Returns the current database name. For example:
DATABASE() -> 'PUBS'

	DATE_ADD(date, INTERVAL expr type)
	

	DATE_SUB(date, INTERVAL expr type)
	

	ADDDATE(date, INTERVAL expr type)
	

	SUBDATE(date, INTERVAL expr type)
	These functions perform date arithmetic calculations. ADDATE and SUBDATE are synonyms for DATE_ADD and DATE_SUB. DATE_ADD returns the result of adding the INTERVAL to the date expression. DATE_SUB returns the result of subtracting the INTERVAL from the date expression. For example:
DATE_ADD('1999-04-15', INTERVAL 1 DAY) -> '1999-04-16'
DATE_SUB('1999-04-15', INTERVAL 1 DAY) -> '1999-04-14'

	DATE_ FORMAT(date, format)
	Formats the date value according to the format string. For example:
DATE_FORMAT('2008-04-15', '%M-%D-%Y') -> 'April-15th-2008'
Table 4-10 lists the available specifiers for format and their meanings.
Table 4-10. MySQL format specifiers
	Format specifier
	Meaning

	%a
	Abbreviation of the day (Sun-Sat)

	%b
	Abbreviation of the month (Jan-Dec)

	%c
	Month number (1-12)

	%D
	Day of month with a suffix (1st, 2nd, 3rd, . . .)

	%d
	Two-digit day of month (01, 02, . . .)

	%e
	Day of month (1, 2, 3, . . .)

	%H
	Hour (00–23)

	%h
	Hour (01–12)

	%I
	Hour (01–12)

	%i
	Minute (00–59)

	%j
	Day of year (001–366)

	%k
	Hour (0–23)

	%l
	Hour (1–12)

	%M
	Full month name (January-December)

	%m
	Month (01–12)

	%p
	AM or PM

	%r
	Twelve-hour time (hh:mm:ss AM or PM)

	%S or %s
	Seconds (00–59)

	%T
	Twenty-four-hour time (hh:mm:ss)

	%U
	Week number (00–53, Sunday being the first day of the week)

	%u
	Week number (00–53, Monday being the first day of the week)

	%V
	Week number (01–53, Sunday being the first day of the week)

	%v
	Week number (01–53, Monday being the first day of the week)

	%W
	Name of the day (Sunday-Saturday)

	%w
	Day of the week (0–6, 0 being Sunday and 6 being Saturday)

	%X
	Four-digit year with Sunday being the first day of the week

	%x
	Four-digit year with Monday being the first day of the week

	%Y
	Four-digit year

	%y
	Two-digit year

	%%
	Literal "%"

	DAYNAME(date)
	Returns the name of the weekday for date. For example:
DAYNAME('1999-04-15') -> 'Thursday'

	DAYOFMONTH(date)
	Returns the day of the month for date, in the range 1 to 31. For example:
DAYOFMONTH('1999-04-15') -> 15

	DAYOFWEEK(date)
	Returns the weekday index for date (1 = Sunday, 2 = Monday, . . . 7 = Saturday). For example:
DAYOFWEEK('1999-04-15') -> 5

	DAYOFYEAR(date)
	Returns the day of the year for date, in the range 1 to 366. For example:
DAYOFYEAR('1999-04-15') -> 105

	DECODE(crypt_str, pass_str)
	Decrypts the encrypted string crypt_str using pass_str as the password; crypt_str should be a string returned from ENCODE. For example:
DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

	DEFAULT(column_name)
	Returns the default value of the column column_name. For example:
SELECT DEFAULT(a_column) FROM a_table -> 0

	DEGREES(number)
	Returns the argument number converted from radians to degrees. For example:
DEGREES(3.1415926) -> 179.99999692953

	DES_DECRYPT(crypt_str, key_str)
	Returns crypt_str decrypted using DES and the key key_str.

	DES_ENCRYPT(str, key_str)
	Returns str encrypted with DES using the key key_str. For example:
SELECT DES_DECRYPT(DES_ENCRYPT('secret sauce', 'password'), 'password')
-> 'secret sauce'

	ELT(n, str1, str2, str3[, . . .n])
	Returns str1 if n = 1, str2 if n = 2, and so on. If n is less than 1 or greater than the number of arguments, this function returns NULL. ELT is the complement of FIELD. For example:
ELT(1, 'Hi', 'There') -> 'Hi'ELT(2, 'Hi', 'There') -> 'There'

	ENCODE(str, pass_str)
	Encrypts str using pass_str as the password. To decrypt the result, use DECODE. The result is a binary string the same length as the string. For example:
DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

	ENCRYPT(str[,salt])
	Encrypts str using the Unix crypt system call. The salt argument should be a string with two characters. For example:
ENCRYPT('password') -> 'ZB7yqPUHvNnmo'

	EXPORT_SET(bits, on, off,[separator,[number_of_bits]])
	Returns a string where every bit in bits that is set gets an on string and every unset bit gets an off string. Each string is separated with separator; the default is a comma (,). number_of_bits is optional; when omitted, the default is 64. For example:
EXPORT_SET(4,'T','F')
F,F,T,F,
F,F

	EXTRACTVALUE(xml, xpath)
	Extracts text from the XML fragment given by xml corresponding to the matching XPath in xpath. For example:
EXPORT_SET('<catalog><tea>oolong</tea><tea>darjleeing</tea></catalog>',
 '/catalog/tea')
'oolong darjeeling'

	FIELD(str, str1, str2, str3[, . . .])
	Returns the index of str in the given string arguments, or 0 if str is not found. FIELD is the complement of ELT. For example:
FIELD('GOOSE','DUCK','DUCK','GOOSE','DUCK') -> 3

	FIND_IN_SET(str, strlist)
	Returns the index of str within the strlist, where strlist is a list of strings separated by commas. This function is equivalent to calling FIELD(str, CONCAT_WS(',', str1, str2, str3[, . . .])). For example:
FIND_IN_SET('b','a,b,c,d') -> 2

	FORMAT(number, decimals)
	Formats the number number to a format like #,###,###.##, rounded to decimals decimals. If decimals is 0, the result has no decimal point or fractional part. For example:
FORMAT(12345.2132,2) -> 12,345.21
FORMAT(12345.2132,0) -> 12,345

	FOUND_ROWS()
	Returns the number of rows that would have been returned by a query that was previously executed with the LIMIT clause. The query of FOUND_ROWS must be done immediately after the limited query is executed. For example:
SELECT FOUND_ROWS() -> 31415926

	FROM_DAYS(number)
	Given a day number, returns a DATE value. This function should not be used for values that precede the advent of the Gregorian calendar (1582), due to the days lost when the calendar was changed. For example:
FROM_DAYS(888888) -> 2433-09-10

	FROM_UNIXTIME(unix_timestamp)
	Returns a representation of the unix_timestamp argument as a value in YYYY-MM-DD HH:MM:SS or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. For example:
FROM_UNIXTIME(888123892) -> 1998-02-21 21:04:52

	FROM_UNIXTIME(unix_timestamp, format)
	Returns a string representation of the unix_timestamp, formatted according to the format string. format may contain the same specifiers as those listed in the entry for the DATE_FORMAT function. For example:
FROM_UNIXTIME(888123892,'%Y %D %M') -> '1998 21st February'

	GET_LOCK(str, timeout)
	Tries to obtain a lock with a name given by the string str, with a time-out of timeout seconds. Returns 1 if the lock is obtained successfully, or NULL if an error occurs or the attempt to acquire the lock times out. For example:
GET_LOCK('lochness',10) -> 1

	GREATEST(x, y[, . . .])
	Returns the largest argument. For example:
GREATEST(8,2,4) -> 8

	GROUP_CONCAT([DISTINCT] expr [ORDER BY order [ASC | DESC]] [SEPARATOR sep])
	Returns a concatenation of non-NULL values from a grouping where expr is the expression to use in the concatenation, order is the expression to use in the ordering, and sep is the string to insert between concatenated values. For example:
SELECT estate, GROUP_CONCAT(tea SEPARATOR ';') FROM catalog GROUP BY estate

	HEX(number)
	Returns a string representation of the hexadecimal value of number. This is equivalent to CONV(number, 10, 16). For example:
HEX(255) -> FF

	HOUR(time)
	Returns the hour for time, in the range 0 to 23. For example:
HOUR('08:20:15') -> 8

	IF(expr1, expr2, expr3)
	Returns expr2 if expr1 is TRUE; otherwise, returns expr3. For example:
IF(1,'yes','no') -> 'yes'
IF(0,'yes','no') -> 'no'

	IFNULL(expr1, expr2)
	Returns expr1 if expr1 is not NULL; otherwise, returns expr2. For example:
IFNULL(0,'NULL') -> 0
IFNULL(NULL,'NULL') -> 'NULL'

	INET_ATON(expr)
	Returns a numeric representation of a network IP address found in expr. For example:
INET_ATON('127.0.0.1') -> 2130706433

	INET_NTOA(num)
	Returns the network IP address as a string decoded from the numeric value num. For example:
INET_NTOA(2130706433) -> '127.0.0.1'

	INSERT(str, pos, len, newstr)
	Returns the string str with newstr inserted at character position pos for length len. For example:
INSERT('paper',2,3,'ea') -> 'pear'

	INSTR(str, substr)
	Returns the position of the first occurrence of the substring substr in the string str. For example:
INSTR('ducks','c') -> 3

	INTERVAL(num1, num2, num3, num4[, . . . n])
	Returns 0 if num1 < num2, 1 if num1 < num3, and so on. It is required that num2 < num3 < num4 < . . . < numN. For example:
INTERVAL(5,1,6) -> 1
INTERVAL(5,2,3,7,9) -> 2

	IS_FREE_LOCK(lock)
	Returns 1 if lock is free and 0 if the lock is currently in use. The function may return NULL on error conditions. For example:
IS_FREE_LOCK('lochness') -> 0

	IS_USED_LOCK(lock)
	Returns the connection identifier if the lock with the ID lock is taken, and NULL otherwise. For example:
IS_USED_LOCK('lochness') -> 0

	ISNULL(expr)
	If expr is NULL, IFNULL returns 1; otherwise, it returns 0. For example:
ISNULL(1) -> 0
ISNULL(NULL) -> 1

	LAST_DAY(expr)
	Returns the last day in the month for the date found in expr. For example:
LAST_DAY('2012-01-01') -> '2012-01-31'

	LAST_INSERT_ID([expr])
	Returns the last automatically generated value that was inserted into an AUTO_INCREMENT column. For example:
LAST_INSERT_ID() -> 0

	LCASE(str)
	Synonym for lower(str). For example:
LCASE('DUCK') -> 'duck'

	LEAST(X, Y[, . . . n])
	With two or more arguments, returns the smallest (minimum-valued) argument. For example:
LEAST(10,5,3,7) -> 3

	LEFT(str, len)
	Returns the leftmost len characters from the string str. For example:
LEFT('Ducks', 4) -> 'Duck'

	LENGTH(str)
	Returns the length of the string str. For example:
LENGTH('DUCK') -> 4

	LOAD_FILE(file_name)
	Reads the file identified by file_name and returns the file contents as a string. The file must be on the server, and the user must specify the full pathname to the file and have permission to access the file.

	LOCATE(substr, str), POSITION(substr IN str)
	Returns the position of the first occurrence of the substring substr in the string str; returns 0 if substr is not in str. LOCATE is a synonym for the standard POSITION(substr IN str). For example:
LOCATE('al','Donald') -> 4
POSITION('al' IN 'Donald') -> 4

	LOCATE(substr, str, pos)
	Returns the position of the first occurrence of the substring substr in the string str, starting at position pos; returns 0 if substr is not in str. For example:
LOCATE('World', 'Hello, World!') -> 8

	LOG(X)
	Returns the natural logarithm of X. For example:
LOG(50) -> 3.912023

	LOG2(X)
	Returns the base-2 logarithm of X. For example:
LOG2(50) -> 5.64386

	LOG10(X)
	Returns the base-10 logarithm of X. For example:
LOG10(50) -> 1.698970

	LPAD(str, len, padstr)
	Returns the string str, left-padded with the string padstr until str is len characters long. For example:
LPAD('ucks',6,'d') -> 'dducks'

	LTRIM(str)
	Returns the string str with leading-space characters removed. For example:
LTRIM(' Howdy! ') -> 'Howdy! '

	MAKE_SET(bits, str1, str2[, . . . n])
	Returns a set (a string containing substrings separated by commas) consisting of the string arguments that have the corresponding bit in bits set; str1 corresponds to bit 0, str2 to bit 1, etc. NULL strings in str1, str2, . . . are not appended to the result. For example:
MAKE_SET(1 | 4,'hello','nice','world') -> 'hello,world'

	MAKEDATE(y, n)
	Returns a date corresponding to the year y and the day number n. For example:
MAKEDATE(2008, 1) -> '2008-01-01'

	MAKETIME(hour, minute, second)
	Returns a time matching hour:minute:second. For example:
MAKETIME(2, 30, 0) -> '02:30:00'

	MATCH(col1, col2, . . .) AGAINST (expr [search_modifier])
	Performs a full-text search looking for expr in the supplied columns. See the MySQL documentation for more information on full-text searching.

	MD5(string)
	Calculates an MD5 checksum for the string. The value is returned as a 32-digit-long hex number. For example:
MD5('somestring') -> 1f129c42de5e4f043cbd88ff6360486f

	MICROSECOND(time)
	Returns the microseconds for time, in the range 0 to 999999. For example:
MICROSECOND('08:20:15.000050') -> 50

	MID(str, pos, len)
	Synonym for SUBSTRING(str, pos, len).

	MINUTE(time)
	Returns the minute for time, in the range 0 to 59. For example:
MINUTE('08:20:15') -> 20

	MONTH(date)
	Returns the month for date, in the range 1 to 12. For example:
MONTH('1999-04-15') -> 4

	MONTHNAME(date)
	Returns the name of the month for date. For example:
MONTHNAME('1999-04-15') -> 'April'

	NOW(), SYSDATE()
	Returns the current date and time as a value in YYYY-MM-DD HH:MM:SS or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. For example:
NOW() -> 2003-06-24 20:40:24
SYSDATE() -> 2003-06-24 20:40:24
CURRENT_TIMESTAMP -> 2003-06-24 20:40:24

	NULLIF(expr1, expr2)
	Returns NULL if expr1 is equal to expr2; otherwise, returns expr1. For example:
NULLIF(2,29) -> 2NULLIF(29,29) -> NULL

	OCT(n)
	Returns an octal value equivalent of n, where n is a number. This is equivalent to CONV(N,10,8). Returns NULL if n is NULL. For example:
OCT(255) -> 377

	OLD_PASSWORD(str)
	Calculates a password string from the plain-text password str. This is the function that is used for encrypting MySQL passwords. The "OLD_" prefix was added in version 4.1, when the password hashing changed to improve security. For example:
OLD_PASSWORD('password') -> '5d2e19393cc5ef67'

	ORD(str)
	Returns the character ordinal of the multibyte character string str. The value is calculated using the following formula: ((first byte ASCII code) * 256 + (second byte ASCII code) * 256 * 256) (third byte ASCII code) * 256 * 256 * 256[, . . .]. If str isn't a multibyte character, this function returns the same value as the ASCII function. For example:
ORD('29') -> 50

	PASSWORD(str)
	Calculates a password string from the plain-text password str. This is the function that is used for encrypting MySQL passwords. For example:
PASSWORD('password') -> '5d2e19393cc5ef67'

	PERIOD_ADD(period, months)
	Adds the number of months found in months to the period in period (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. For example:
PERIOD_ADD(9902,3) -> 199905

	PERIOD_DIFF(period1, period2)
	Returns the number of months between period1 and period2. period1 and period2 should be in the format YYMM or YYYYMM. For example:
PERIOD_DIFF(9902,9905) -> −3

	PI()
	Returns the value of π. For example:
PI() -> 3.141593

	POW(X, Y), POWER(X, Y)
	Returns the value of X raised to the power of Y. For example:
POW(2, 8) -> 256.000000

	QUARTER(date)
	Returns the quarter of the year for date, in the range 1 to 4. For example:
QUARTER('1999-04-15') -> 2

	QUOTE(str)
	Returns str with special characters properly escaped for usage within a SQL statement. For example:
QUOTE('\'start and end with quote\'') -> '\'start and end with quote\''

	RADIANS(X)
	Returns the argument X, converted from degrees to radians. For example:
RADIANS(180) -> 3.1415926535898

	RAND(), RAND(N)
	Returns a random floating-point value in the range 0 to 1.0. If an integer argument N is specified, it is used as the seed value. For example:
RAND() -> 0.29588872501244

	expr REGEXP pat, expr RLIKE pat
	Returns 1 if expr matches the regular expression pattern in pat; otherwise, returns 0. For example:
SELECT 'oolong' REGEXP '^[a-z]' -> 1

	RELEASE_LOCK(str)
	Releases the lock named by the string str that was obtained with GET_LOCK. Returns 1 if the lock is released, or NULL if the named lock doesn't exist or isn't locked by this thread (in which case the lock is not released). For example:
RELEASE_LOCK('lochness') -> 1

	REPEAT(str, count)
	Returns a string consisting of the string str repeated count times. For example:
REPEAT('Duck', 3) -> 'DuckDuckDuck'

	REPLACE(str, from_str, to_str)
	Returns the string str with all occurrences of the string from_str replaced by the string to_str. For example:
REPLACE('change', 'e', 'ing') -> 'changing'

	REVERSE(str)
	Returns the string str reversed. For example:
REVERSE('STOP') -> 'POTS'

	RIGHT(str, int)
	Returns the rightmost 10 characters of the string str. For example:
RIGHT('Hello, World!', 6) -> 'World!'

	ROUND(X[, D])
	Returns the argument X, rounded to a number with D decimals. If D is 0, the result has no decimal point or fractional part. For example:
ROUND(12345.6789, 2) -> 12345.68

	ROW_COUNT()
	Returns the number of rows updated in the previous statement. For example:
SELECT ROW_COUNT() -> 4

	RPAD(str, len, padstr)
	Returns the string str, right-padded with the string padstr until str is len characters long. For example:
RPAD('duck',6,'s') -> 'duckss'

	RTRIM(str)
	Returns the string str with trailing space characters removed. For example:
RTRIM(' welcome ') -> 'welcome '

	SCHEMA()
	Synonym for DATABASE.

	SEC_TO_TIME(seconds)
	Returns the seconds argument, converted to hours, minutes, and seconds, as a value in HH:MM:SS or HHMMSS format, depending on whether the function is used in a string or numeric context. For example:
SEC_TO_TIME(256) -> 00:04:16

	SECOND(time)
	Returns the seconds for time, in the range 0 to 59. For example:
SECOND('08:20:15') -> 15

	SESSION_USER()
	Synonym for USER.

	SHA(X) or SHA1(X)
	Returns a SHA1 160-bit checksum for X. For example:
SHA('abc') -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

	SIGN(X)
	Returns the sign of the argument as −1, 0, or 1, depending on whether X is negative, zero, or positive. For example:
SIGN(−3.1415926) -> −1

	SIN(number)
	Returns the sine of number, where number is in radians. For example:
SELECT SIN(0) -> 0.000000

	SLEEP(s)
	Sleeps for s seconds. For example:
SLEEP(60) -> 0

	SOUNDEX(str)
	Returns a soundex string from str. For example:
SOUNDEX('thimble') -> 'T514'

	expr1 SOUNDS LIKEexpr2
	Synonymous with the expression:
SOUNDEX(expr1) = SOUNDEX(expr2)

	SPACE(n)
	Returns a string consisting of n space characters. For example:
SPACE(5) -> ' '

	STD(expr), STDDEV(expr)
	Returns the standard deviation of expr. The STDDEV form of this function is provided for Oracle compatibility. For example:
STD(5) -> NULL

	STR_TO_DATE(str, format)
	Returns a date parsed from str using the format specifiers found in the format argument. This is the reverse of DATE_FORMAT; please see the DATE_FORMAT coverage for a list of the supported specifiers. For example:
STR_TO_DATE('28/08/1976', '%d/%m/%Y') -> '1976-08-28'

	STRCMP(expr1, expr2)
	STRCMP returns 0 if the strings are the same, −1 if the first argument is smaller than the second according to the current sort order, and 1 otherwise. For example:
STRCMP('DUCKY', 'DUCK') -> 1
STRCMP('DUCK', 'DUCK') -> 0

	SUBSTRING(str, pos), SUBSTRING(str FROM pos)
	Returns a substring from the string str starting at the position pos. For example:
SUBSTRING('Hello, World!', 8) -> 'World!'
SUBSTRING('Hello, World!' FROM 8) -> 'World!'

	SUBSTRING(str, pos, len), MID(str, pos, len)
	Returns a substring len characters long from the string str, starting at the position pos. These functions are synonyms for the ANSI SQL92 function SUBSTRING(str FROM pos FOR len). For example:
SUBSTRING('Hello, World!', 8, 10) -> 'World!'
SUBSTRING('Hello, World!' FROM 8 FOR 10) -> 'World!'

	SUBSTRING_INDEX(str, delim, count)
	Returns the substring str after count occurrences of the delimiter delim. For example:
SUBSTRING_INDEX('www.mysql.com', '.', 2) -> 'www.mysql'

	SUBTIME(expr1, expr2)
	Returns the result of subtracting expr2 from expr1. For example:
SUBTIME('2008-01-31 16:30:00.999999', '0 0:30:0.999996') ->
 '2008-01-31 16:00:00.000003'

	TAN(number)
	Returns the tangent of number, where number is in radians. For example:
SELECT TAN(3.1415) -> −0.000093

	TIME(expr)
	Returns the time portion of the value found in expr. For example:
TIME('1976-08-28 08:20:15') -> '08:20:15'

	TIME_FORMAT(time, format)
	Used like DATE_FORMAT, but the format string may contain only those format specifiers that handle hours, minutes, and seconds. Other specifiers produce a NULL value or 0. See DATE_FORMAT for a list of the available format specifiers. For example:
TIME_FORMAT('2003-04-15 08:20:15', '%r') -> 08:20:15 AM

	TIME_TO_SEC(time)
	Returns the time argument, converted to seconds. For example:
TIME_TO_SEC('08:20:15') -> 30015

	TIMEDIFF(expr1, expr2)
	Returns the difference between expr1 and expr2. For example:
TIMEDIFF('1976-08-28 08:20:15', '1976-08-28 08:20:16') ->
'00:00:01.000000'

	TIMESTAMP(expr1[, expr2])
	Returns a timestamp value where the date comes from expr1 and the time component comes from expr2. For example:
TIMESTAMP('1976-08-28', '08:20:16') -> '1976-08-28 08:20:16'

	TIMESTAMPADD(unit, interval, expr)
	Returns a timestamp constructed by adding interval to the date expression expr. The units for interval are specified by unit. For example:
TIMESTAMPADD(DAY, 2, '1976-08-28') -> '1976-08-30 00:00:00'

	TIMESTAMPDIFF(unit, expr1, expr2)
	Returns an integer that is the result of subtracting expr1 from expr2. The units of the result are specified by unit. For example:
TIMESTAMPADD(DAY, '1976-08-30', '1976-08-28') -> −2

	TO_DAYS(date)
	Given a date, returns a day number (the number of days since the year 0). For example:
TO_DAYS('1999-04-15') -> 730224

	TRUNCATE(X, D)
	Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or fractional part. For example:
TRUNCATE('123.456', 2) -> '123.45'
TRUNCATE('123.456', 0) -> '123'
TRUNCATE('123.456', −1) -> '120'

	UCASE(str)
	Synonym for UPPER(str). For example:
UCASE('duck') -> 'DUCK'

	UNCOMPRESS(string)
	Returns an uncompressed version of string.

	UNCOMPRESS_LENGTH(string)
	Returns the length of string in its uncompressed form.

	UNHEX(str)
	Returns a binary string constructed from hex characters in str.

	UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)
	If called with no argument, returns a Unix timestamp (seconds since 1970-01-01 00:00:00 GMT). If called with a date argument, returns the value of the argument as seconds since 1970-01-01 00:00:00 GMT. For example:
UNIX_TIMESTAMP() -> 1056512427
UNIX_TIMESTAMP('1999-04-15') -> 924159600

	UPDATEXML(xml_target, xpath_expr, new_xml)
	Returns the XML fragment in xml_target with new_xml at locations specified by the XPath expression xpath_expr. For example:
UPDATEXML('<c><v>unknown</v></c>', '//v', '<v>Acme</v>') -> '<c><v>Acme</v></c>'

	USER(), SYSTEM_USER(), SESSION_USER()
	These functions return the current MySQL username. For example:
USER() -> 'login@machine.com'
SYSTEM_USER() -> 'login@machine.com'
SESSION_USER() -> 'login@machine.com'

	UTC_DATE()
	Returns the current UTC date. For example:
UTC_DATE() -> '2008-05-15'

	UTC_TIME()
	Returns the current UTC time. For example:
UTC_TIME() -> '01:01:00'

	UTC_TIMESTAMP()
	Returns the current UTC date and time. For example:
UTC_TIMESTAMP() -> '2008-05-15 01:01:00'

	UUID()
	Returns a Universal Unique Identifier. For example:
UUID() -> '1ae84bc9-5e4d-8f22-1f2e-123456789abc'

	VARIANCE(expr)
	Synonym for VAR_POP.

	VERSION()
	Returns a string indicating the MySQL server version. For example:
VERSION() -> '4.0.12-standard'

	WEEK(date), WEEK(date, first)
	With a single argument, returns the week for date, in the range 1 to 53. (The beginning of a week 53 is possible during some years.) The two-argument form of WEEK allows the user to specify whether the week starts on Sunday (0) or Monday (1). For example:
WEEK('1999-04-15') -> 15

	WEEKDAY(date)
	Returns the weekday index for date (0 = Monday, 1 = Tuesday, . . .6 = Sunday). For example:
WEEKDAY('1999-04-15') -> 3

	WEEKOFYEAR(date)
	Returns the calendar week for date, where the calendar week is an integer between 1 and 53, inclusive. For example:
WEEKOFYEAR('2008-01-01') -> 1

	op1 XOR op2
	Returns the logical XOR of op1 and op2. For example:
SELECT 1 XOR 1, 1 XOR 0 -> 0, 1

	YEAR(date)
	Returns the year for date, in the range 1,000 to 9,999. For example:
YEAR('1999-04-15') -> 1999

	YEARWEEK(date), YEARWEEK(date, first)
	Returns the year and week for date. The second argument works exactly like the second argument to WEEK. Note that the year may be different from the year in the date argument for the first and the last week of the year. For example:
YEARWEEK('1999-04-15') -> 199915

Oracle-Supported Functions

This section provides an alphabetical listing of the SQL functions specific to Oracle, with examples and corresponding results.
	ACOS(number)
	Returns the arccosine of number ranging from −1 to 1. The result ranges from 0 to π and is expressed in radians. For example:
SELECT ACOS(0) FROM DUAL -> 1.570796

	ADD_MONTHS(date, int)
	Returns the date plus int months. For example:
SELECT ADD_MONTHS('15-APR-1999', 3) FROM DUAL -> 15-JUL-99

	APPENDCHILDXML(xml_fragment, xpath, value[, namespace])
	Injects value into the XML fragment xml_fragment at the location specified by the XPath expression xpath and returns the result. The optional namespace argument provides the namespace information for the XPath expression. For example:
SELECT APPENDCHILDXML('<a>B', '/a', '<c>C</c>') FROM DUAL
'<a>B<c>C</c>'

	ASCII(text)
	Returns the ASCII code of the first character of text. For example:
SELECT ASCII('x') FROM DUAL -> 120

	ASCIISTR(text)
	Converts text from any character set into an ASCII equivalent. Characters in text that have no equivalent in ASCII will be replaced with the string \XXXX, where XXXX represents the UTF-16 code unit. For example:
SELECT ASCIISTR('ÄBC') FROM DUAL -> '\00C4BC'

	ASIN(number)
	Returns the arcsine of number ranging from −1 to 1. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ASIN(0) FROM DUAL -> 0.000000

	ATAN(number)
	Returns the arctangent of any number. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ATAN(3.1415) FROM DUAL -> 1.262619

	ATAN2(number, nbr)
	Returns the arctangent of number and nbr. ATAN2(x, y) is similar to ATAN(y/x), with the exception that the signs of x and y are used to determine the quadrant of the result. For example:
SELECT ATAN2(3.1415, 1) FROM DUAL -> 1.26261873

	BFILENAME(directory, filename)
	Returns a BFILE locator associated with a physical LOB binary file on the server's filesystem in directory with the name filename.

	BIN_TO_NUM(expr[, . . .n])
	Returns a decimal number equivalent of the binary bit vector contained in the expr arguments. For example:
SELECT BIN_TO_NUM(1,0,1) FROM DUAL -> 5

	BITAND(integer1, integer2)
	Returns the bitwise AND of the two integer arguments. For example:
SELECT BITAND(101, 2) FROM DUAL -> 0
SELECT BITAND(column1, 1) FROM DUAL -> 1

	CARDINALITY(nested_table)
	Returns the number of elements (cardinality) of the nested_table. If the nested_table is empty, returns NULL. For example:
SELECT CARDINALITY(mytable) FROM DUAL -> 6

	CHARTOROWID(char)
	Converts a value from a character datatype (CHAR or VARCHAR2 datatype) to a ROWID datatype.

	CHR(number [USING NCHAR_CS])
	Returns the character having the binary equivalent to number in either the database character set (if USING NCHAR_CS is not included) or the national character set (if USING NCHAR_CS is included).

	CLUSTER_ID(), CLUSTER_PROBABILITY(), CLUSTER_SET()
	Support data mining features. See the documentation for the Oracle Data Mining Java API or the DBMS_DATA_MINING package for more details on these functions.

	COALESCE(list)
	Returns the first non-NULL element in the list. For example:
SELECT COALESCE(NULL, 1, 2) FROM DUAL -> 1

	COLLECT(column)
	Creates for each group a nested table consisting of all the values in the column. This is an aggregate function.

	COMPOSE(string)
	Returns string as a fully normalized UNICODE string.

	CONCAT(string1, string2)
	Returns string1 concatenated with string2. CONCAT is equivalent to the concatenation operator (||). For example:
SELECT CONCAT(au_lname, au_fname) FROM AUTHORS -> 'JeffersonThomas'

	CONVERT(char_value, target_char_set, source_char_set)
	Converts a character string from one character set to another; returns char_value in the target_char_set after converting char_value from the source_char_set.

	CORR_K(expr1, expr2[, return_type])
	

	CORR_S(expr1, expr2[, return_type])
	CORR_K returns Kendall's tau-b correlation coefficient, and CORR_S returns Spearman's rho correlation coefficient for a set of numbered pairs (expr1 and expr2). The return_type argument, a VARCHAR2, can be omitted or can one of the following values: 'COEFFICIENT', 'ONE_SIDED_SIG', or 'TWO_SIDED_SIG'. The value 'COEFFICIENT' (the default if this argument is omitted) returns the coefficent of the correlation. The values 'ONE_SIDED_SIG' and 'TWO_SIDED_SIG' return the one- and two-tailed significance of the correlation, respectively.

	COS(number)
	Returns the cosine of number as an angle expressed in radians. For example:
SELECT COS(0) FROM DUAL -> 1.000000

	COSH(number)
	Returns the hyperbolic cosine of number. For example:
SELECT COSH(180) FROM DUAL -> 7.4469E+77

	COT(number)
	Returns the cotangent of number. For example:
SELECT COT(3.1415) -> −10792.88993953

	CUBE_TABLE('expr')
	Extracts a two-dimensional relational view from an OLAP cube or dimension. See the Oracle OLAP documentation for more information.

	CV([dimension_column])
	Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this function returns the current value of the dimension_column. CV can only be used in the righthand side of a rule, since it returns the value of the dimension_column from the lefthand side of the same rule.

	DATAOBJ_TO_PARTITION(table, partition_id)
	Returns the partition identifier for the system-partitioned table specified by the arguments. See the Oracle documentation for more information on this function.

	DBTIMEZONE
	Returns the time zone offset from UTC time for the database server. For example:
SELECT DBTIMEZONE FROM DUAL -> +00:00

	DECODE(expr, search, result[, search, result[, . . . n]][, default])
	Compares expr to the search value; if expr is equal to search, it returns the result. For example:
DECODE ('B','A',1,'B',2,...'Z',26,'?') -> 2
Without a match, DECODE returns default, or NULL if default is omitted. Refer to the Oracle documentation for more details. Consider using CASE instead, as CASE is part of the ANSI SQL standard.

	DECOMPOSE(string [{CANONICAL | COMPATIBILITY}])
	Returns string decomposed into UNICODE code-points. The second argument specifies the type of decomposition performed. CANONICAL, which specifies the default behavior, allows the original UNICODE string to be recomposed.

	DELETEXML(xml_fragment, xpath[, namespace])
	Deletes nodes within xml_fragment that match the XPath expression xpath and returns the result. The optional namespace parameter specifies the namespace for the XPath expression. For example:
SELECT DELETEXML('<a>Sifl<c>Olly</c>', '/a/c') FROM DUAL
'<a>Sifl'

	DEPTH(number)
	Returns the depth of the path specified by the UNDER_PATH condition in an XML query. See the Oracle SQL Reference for more information.

	DEREF(expression)
	Returns the object referenced by expression, where expression must return a REF to an object.

	DUMP(expression[, return_format[, starting_at[, length]]])
	Returns a VARCHAR2 value containing a datatype code, length in bytes, and internal representation of expression. The resulting value is returned in the format of return_format. For example:
SELECT DUMP('abc', 1016) FROM DUAL
Typ=96 Len=3 CharacterSet=AL32UTF8: 61,62,63

	EMPTY_BLOB(), EMPTY_CLOB()
	Returns an empty LOB locator that can be used to initialize a LOB variable. It can also be used to initialize a LOB column or attribute to empty in an INSERT or UPDATE statement.

	EXISTSNODE(instance, xpath[, namespace])
	Returns 1 if applying the XPath query in xpath would return any nodes from instance; otherwise, returns 0. The optional namespace parameter specifies the XML namespace in the query. For more information on XML queries, refer to the Oracle SQL Reference.

	EXTRACT(instance, xpath[, namespace])
	Returns the XML nodes from instance returned by running the XPath query contained in the xpath parameter. The optional namespace parameter specifies the XML namespace in the query. For more information on XML queries, refer to the Oracle SQL Reference. (Oracle also supports an EXTRACT function for date values, which was covered earlier in this chapter.) For example:
SELECT EXTRACT(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar') from DUAL
<bar>Hello, World!</bar>

	EXTRACTVALUE(instance, xpath[, namespace])
	Returns the value from an XML node returned by running the XPath query contained in the xpath parameter. The optional namespace parameter specifies the XML namespace in the query. For more information on XML queries, refer to the Oracle SQL Reference. For example:
SELECT EXTRACTVALUE(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar') from DUAL
Hello, World!

	FEATURE _ID(), FEATURE _SET(), FEATURE_VALUE()
	Support data mining features. See the documentation for the Oracle Data Mining Java API or the DBMS_DATA_MINING package for more details on these functions.

	FIRST
	Aggregate function that returns a specified value from the row that ranks first, given the order specified in the ORDER BY clause. The syntax is:
aggregate(aexpr) KEEP (DENSE_RANK FIRST ORDER BY expr[, ... n])
where the syntax of expr is:
expr := [ASC | DESC] [NULLS {FIRST | LAST}]
The first ranking row following the order specified by expr will be used in the aggregate function aggregate. aexpr is the expression passed to the aggregate function. For example:
SELECT MAX(c1) KEEP (DENSE_RANK FIRST ORDER BY c2) FROM FIVE_NUMS
1

	FIRST_VALUE(expression IGNORE NULLS) OVER (window_clause)
	Returns the first value in an ordered set of values. FIRST_VALUE is an analytic function. See the "ANSI SQL Window Functions" section, earlier in this chapter, for a detailed explanation of the window_clause. For example:
SELECT FIRST_VALUE(col1) OVER () FROM NUMS
1
1
1
1

	FROM_TZ(timestamp, timezone)
	Returns timestamp converted to a TIMESTAMP WITH TIME ZONE value, where timestamp is a TIMESTAMP value and timezone is a string in the TZH:TZM format. For example:
SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL
'15-APR-04 11.59.59 PM +08:00'

	GREATEST(expression[, . . . n])
	Returns the greatest of the list of expressions. All expressions after the first are implicitly converted to the datatype of the first expression before the comparison. For example:
SELECT GREATEST(8,2,4) FROM DUAL -> 8

	GROUP_ID()
	Returns a positive value for each duplicate group returned by a query containing a GROUP BY clause. This function is useful in filtering out duplicate groups created when using CUBE, ROLLUP, or another GROUP BY extension (see GROUPING).

	GROUPING(column_name)
	Returns 1 when a row is added by CUBE, ROLLUP, or another GROUP BY extension; otherwise, returns 0. For example:
SELECT royalty, SUM(advance) 'total advance',
GROUPING(royalty) 'grp'
FROM titles
GROUP BY royalty WITH ROLLUP
royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1

	GROUPING_ID(column_name1[, column_name2, . . .])
	Returns the base-10 number that is equal to the binary value constructed by concatenating the GROUPING values on each of the parameters. GROUPING_ID is useful when returning a query containing multiple levels of aggregation created by GROUP BY expressions. Consider using the GROUPING_ID function instead of multiple GROUPING functions within one query. This function is a shorthand equivalent of:
BIN_TO_NUM(GROUPING(column_name1)[, GROUPING(column_name2), ...])

	HEXTORAW(string)
	Converts a string containing hexadecimal digits into a raw value. For example:
SELECT HEXTORAW('0FE') FROM DUAL -> '00FE'

	INITCAP(string)
	Returns string, with the first letter of each word in uppercase and all other letters in lowercase. For example:
SELECT INITCAP('thomas jefferson') FROM DUAL -> 'Thomas Jefferson'

	INSERTCHILDXML(xml_fragment, xpath, child_expr, value_expr[, namespace])
	Injects the nodes specified by child_expr within value_expr into xml_fragment at the location given by the XPath query xpath, and returns the result. The optional namespace argument provides the namespace for the XPath query. For example:
SELECT INSERTCHILDXML('<a>', '/a', 'b', 'B1B2')
FROM DUAL
'<a>B1B2'

	INSERTXMLBEFORE(xml_fragment, xpath, value_expr[, namespace])
	Injects value_expr into xml_fragment at the location given by the XPath query xpath and returns the result. The optional namespace argument provides the namespace for the XPath query. For example:
SELECT INSERTXMLBEFORE('<a>B2', '/a/b', 'B1') FROM DUAL
'<a>B1B2'

	INSTR(string1, string2[, start_at[, occurrence]])
	Returns the position of string2 within string1. INSTR searches string1 from a starting position of start_at (an integer), looking for the specified occurrence of string2. For example:
SELECT INSTR('foobar', 'o', 1, 1) FROM DUAL -> 2
Use INSTRB for bytes, INSTRC for UNICODE complete characters, INSTR2 for UNICODE UCS2 code points, and INSTR4 for UNICODE UCS4 code points.

	ITERATION_NUMBER
	Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this function returns the number of times the rules within the MODEL clause have been executed while processing the query.

	LAG(expression[, offset][, default]) OVER (window_clause)
	Analytic function that provides access to more than one row of a table at the same time without a self-join. LAG provides a "lagging" value in the result set that lags offset rows behind the current row. The default value is used for the first offset rows in the result set, since the "lagging" value is undefined for these rows. See "ANSI SQL Window Functions," earlier in this chapter, for a detailed explanation of the window_clause. For example:
SELECT c1, LAG(c1, 2, 0) OVER (ORDER BY c1) FROM FIVE_NUMS
1 0
2 0
3 1
4 2
5 3

	LAST
	Returns the row that ranks last given the order specified in the ORDER BY clause. The syntax is:
aggregate(aexpr) KEEP (DENSE_RANK LAST ORDER BY expr[, ... n])
where the syntax of expr is:
expr := [ASC | DESC] [NULLS {FIRST | LAST}]
The last ranking row following the order specified by expr will be used in the aggregate function aggregate. The aexpr is the expression passed to the aggregate function. For example:
SELECT MIN(c1) KEEP (DENSE_RANK LAST ORDER BY c1) FROM FIVE_NUMS
5

	LAST_DAY(date)
	Returns the date of the last day of the month that contains date. For example:
SELECT LAST_DAY('15-APR-1999') FROM DUAL -> 30-APR-99

	LAST_VALUE(expression [IGNORE NULLS]) OVER (window_clause)
	Returns the last value in an ordered set of values. See "ANSI SQL Window Functions," earlier in this chapter, for a detailed explanation of the window_clause. For example:
SELECT c1, LAST_VALUE(c1) OVER (ORDER BY c1) FROM FIVE_NUMS
1 5
2 5
3 5
4 5
5 5

	LEAD(expression[, offset][, default]) OVER (window_clause)
	Analytic function that provides access to more than one row of a table at the same time without a self-join. LEAD provides a "leading" value in the result set that is offset rows ahead of the current row. The default value is used for the last offset rows in the result set, since the "leading" value is undefined for these rows. See "ANSI SQL Window Functions," earlier in this chapter, for a detailed explanation of the window_clause. For example:
SELECT c1, LEAD(c1, 2) OVER (ORDER BY c1) FROM FIVE_NUMS
1 3
2 4
3 5
4
5

	LEAST(expression[, . . .n])
	Returns the least of the list of expressions. For example:
SELECT LEAST(10,5,3,7) FROM DUAL -> 3

	LENGTH(string)
	Returns the integer length of string, or NULL if string is NULL. For example:
SELECT LENGTH('DUCK') FROM DUAL -> 4

	LENGTHB(string)
	Returns the length of char in bytes; otherwise, the same as LENGTH. For example:
SELECT LENGTHB('DUCK') FROM DUAL -> 4
Use LENGTHB for bytes, LENGTHC for UNICODE complete characters, LENGTH2 for UNICODE UCS2 code points, and LENGTH4 for UNICODE UCS4 code points.

	LNNVL(condition)
	Returns TRUE if condition is false or if one of the operands in condition is NULL; otherwise, returns FALSE. For example:
SELECT COUNT(*) FROM authors WHERE LNNVL(contract <> 1) -> 4

	LOCALTIMESTAMP[(precision)]
	Returns a TIMESTAMP value for the current date and time. This function is similar to CURRENT_TIMESTAMP, with the exception that this function does not return a TIME ZONE value with the TIMESTAMP. For example:
SELECT LOCALTIMESTAMP FROM DUAL -> '15-APR-05 03.15.00 PM'

	LOG(base_number, number)
	Returns the logarithm of any base_number of number. For example:
SELECT LOG(50,10) FROM DUAL -> .58859191

	LPAD(string1, number[, string2])
	Returns string1, left-padded to length number using characters in string2; string2 defaults to a single blank. For example:
SELECT LPAD('ucks',5,'d') FROM DUAL -> 'ducks'

	LTRIM(string[, set])
	Removes all characters in set from the left of string. set defaults to a single blank. For example:
SELECT LTRIM(' Howdy! ',' ') FROM DUAL -> 'Howdy! '

	MAKE_REF({table_name | view_name}, key[, . . . n])
	Creates a reference (REF) to a row of an object view or a row in an object table whose object identifier is primary key-based.

	MEDIAN(expression) OVER (partitioning)
	Returns the median value in an ordered set of numeric or datetime values. See "ANSI SQL Window Functions," earlier in this chapte,r for a detailed explanation of the partitioning clause. For example:
SELECT MEDIAN(c1) FROM FIVE_NUMS -> 3

	MONTHS_BETWEEN(date1, date2)
	Returns the number of months between the dates date1 and date2. When date1 is later than date2, the result is positive. When it is earlier, the result is negative. For example:
SELECT MONTHS_BETWEEN('15-APR-2000', '15-JUL-1999') FROM DUAL -> 9

	NANVL(a, b)
	Returns b when a is not a number (NaN); returns a otherwise. The expression a must evaluate to a BINARY_FLOAT or BINARY_DOUBLE number, which are the only number types that permit storing NaN. For example:
SELECT c1, NANVL(c1, 0) FROM NUMS
1.0E+000 1.0E+000
2.0E+000 2.0E+000
Nan 0

	NCHAR(number)
	Synonym for CHR(number) USING NCHAR_CS.

	NEW_TIME(date, time_zone1, time_zone2)
	Returns the date and time in time_zone2, using date as the input date/time and using time_zone1 as the originating time zone. For example:
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH12:MI:SS'
SELECT NEW_TIME(TO_DATE('04-15-99 08:22:31', 'MM-DD-YY HH12:MI:SS'),
'AST', 'PST')
FROM DUAL
15-APR-2099 04:22:31
time_zone1 and time_zone2 may be any of these text strings:
	'AST', 'ADT'
	Atlantic Standard or Daylight Time

	'BST', 'BDT'
	Bering Standard or Daylight Time

	'CST', 'CDT'
	Central Standard or Daylight Time

	'EST', 'EDT'
	Eastern Standard or Daylight Time

	'GMT'
	Greenwich Mean Time

	'HST', 'HDT'
	Alaska-Hawaii Standard or Daylight Time

	'MST', 'MDT'
	Mountain Standard or Daylight Time

	'NST'
	Newfoundland Standard Time

	'PST', 'PDT'
	Pacific Standard or Daylight Time

	'YST', 'YDT'
	Yukon Standard or Daylight Time

	NEXT_DAY(date, string)
	Returns the date of the first weekday named by string that is later than date. The argument string must be either the full name or the abbreviation of a day of the week in the date language of the session. For example:
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY'
SELECT NEXT_DAY('15-APR-1999', 'SUNDAY') FROM DUAL
18-APR-1999

	NLS_CHARSET_DECL_LEN(bytecnt, csid)
	Returns the declaration width (bytecnt) of an NCHAR column using the character set ID (csid) of the column.

	NLS_CHARSET_ID(text)
	Returns the NLS character set ID number corresponding to text.

	NLS_CHARSET_NAME(number)
	Returns the VARCHAR2 name for the NLS character set corresponding to the ID number.

	NLS_INITCAP(string[, nlsparameter])
	Returns string with the first letter of each word in uppercase and all other letters in lowercase. The nlsparameter offers special linguistic sorting features.

	NLS_LOWER(string[, nlsparameter])
	Returns string with all letters in lowercase. The nlsparameter offers special linguistic sorting features.

	NLS_UPPER(string[, nlsparameter])
	Returns string with all letters in uppercase. The nlsparameter offers special linguistic sorting features.

	NLSSORT(string[, nlsparameter])
	Returns the string of bytes used to sort string. The nlsparameter offers special linguistic sorting features.

	NTILE(expression) OVER ([partitioning] ordering)
	Divides an ordered data set into a number of groups numbered from 1 to expression and assigns the appropriate group number to each row. Rows are allocated to each group so that the number of rows per group varies by no more than 1. See "ANSI SQL Window Functions," earlier in this chapter, for details on the partitioning and ordering clauses. For example:
SELECT c1, NTILE(4) OVER (ORDER BY c1) FROM FIVE_NUMS
1 1
2 1
3 2
4 3
5 4

	NULLIF(expr1, expr2)
	Returns NULL if expr1 is equal to expr2; otherwise, returns expr1. When passing a NULL value as one of the expressions, it can only be specified as the second expression (expr2). For example:
SELECT c1, c2, NULLIF(c1, c2) FROM NUMS
1 2 1
2 2
3 2 3

	NUMTODSINTERVAL(number, string)
	Converts number to an INTERVAL DAY TO SECOND literal, where number is a number or an expression resolving to a number, such as a numeric datatype column. The second argument, string, specifies how to interpret number: it can be 'DAY', 'HOUR', 'MINUTE', or 'SECOND'. For example:
SELECT NUMTODSINTERVAL(100, 'DAY') FROM DUAL
+000000100 00:00:00.000000000

	NUMTOYMINTERVAL(number, string)
	Converts number to an INTERVAL YEAR TO MONTH literal, where number is a number or an expression resolving to a number, such as a numeric datatype column. The second argument, string, specifies how to interpret number: it can be 'YEAR' or 'MONTH'. For example:
SELECT NUMTOYMINTERVAL(100, 'YEAR') FROM DUAL
+000000100-00

	NVL(expression1, expression2)
	If expression1 is NULL, expression2 is returned in place of that NULL value. Otherwise, expression1 is returned. expression1 and expression2 may be any datatype. For example:
SELECT NVL(2,29) FROM DUAL -> 2

	NVL2(expression1, expression2, expression3)
	Similar to NVL, except that if expression1 is not NULL, expression2 is returned, and if expression1 is NULL, expression3 is returned. The expressions may be any datatype except LONG. For example:
SELECT NVL2(1,3,5) FROM DUAL -> 3

	ORA_HASH(expression[, buckets[, seed]])
	Computes a hash value from expression and returns a bucket number based on the computed hash value. The optional buckets argument is the maximum bucket number to use, which is one less than the total number of buckets, since the bucket numbering starts at 0. The default for buckets is 4,294,967,295. The optional seed value is used to seed the hashing function so that multiple results can be produced from the same data by changing only the seed value. The seed value defaults to 0. This example pseudorandomly assigns all numbers to one of two buckets and returns those assigned to the first bucket, which will be a sample of roughly half of the values:
SELECT C1 FROM FIVE_NUMS WHERE
 ORA_HASH(C1, 1, TO_CHAR(SYSTIMESTAMP, 'SSSS.FF')) = 0
1
5

	PATH(number)
	Returns the path specified by the UNDER_PATH condition with the correlation variable number in an XML query. See the Oracle SQL Reference for more information.

	POWERMULTISET(nested_table)
	

	POWERMULTISET_BY_CARDINALITY(nested_table, cardinality)
	Return a nested table of nested tables of all nonempty subsets of the input nested table in the nested_table parameter. POWERMULTISET_BY_CARDINALITY has an additional parameter that can be used to limit the subsets returned to a specified minimum cardinality. For more information, see the Oracle SQL Reference.

	PREDICTION(), PREDICTION_BOUNDS(), PREDICTION_COST(), PREDICTION_DETAILS(), PREDICTION_PROBABILTY(), PREDICTION_SET()
	Support Oracle's data mining features. See the documentation for the Oracle Data Mining Java API or the DBMS_DATA_MINING package for more details on these functions.

	PRESENTNNV(cell_reference, expr1, expr2)
	Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this function returns expr1 when cell_reference exists and is not NULL; otherwise, it returns expr2.

	PRESENTV(cell_reference, expr1, expr2)
	Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this function returns expr1 when cell_reference exists; otherwise, it returns expr2.

	PREVIOUS(cell_reference)
	Relevant only in the inter-row calculations performed within the ITERATE . . . [UNTIL] section of a SELECT's MODEL clause, this function returns the value held by cell_reference at the beginning of the iteration.

	RATIO_TO_REPORT(value_exprs) OVER (partitioning)
	Computes the ratio of a value in value_exprs to the sum of all value_exprs with each partition. If value_exprs is NULL, the ratio-to-report value is also NULL. See "ANSI SQL Window Functions," earlier in this chapter, for details on the partitioning clause. For example:
SELECT c1, RATIO_TO_REPORT(c1) OVER () FROM FIVE_NUMS
1 .066666667
2 .133333333
3 .2
4 .266666667
5 .333333333

	RAWTOHEX(raw)
	Converts a raw value to a string (character datatype) of its hexadecimal equivalent. For example:
SELECT RAWTOHEX('Hi') FROM DUAL -> 4869

	RAWTONHEX(raw)
	Converts a raw value to an NVARCHAR2 (character datatype) of its hexadecimal equivalent.

	REF(table_alias)
	Takes a table alias associated with a row from an object table or an object view. A special reference value is returned for the object instance that is bound to the variable or row.

	REFTOHEX(expression)
	Converts expression to a character value containing its hexadecimal equivalent.

	REGEXP_INSTR(string, pattern[, start_at[, occurrence[, roption[, mparam]]]])
	Searches string from a starting position of start_at (an integer greater than 0) looking for the specified occurrence of the regular expression pattern, and returns the character position within string matching pattern. Both the start_at and occurrence parameters default to 1. The roption parameter can be 0 or 1 and specifies whether the position returned is the first character matching the pattern or the character after, respectively. The default for roption is 0. The mparam argument can be used to modify the matching behavior of the function and can be set to one or more of the following characters:
	'i'
	Matching is case insensitive.

	'c'
	Matching is case sensitive.

	'n'
	The "." character matches newline characters.

	'm'
	Treats the input string as multiple lines; use "^" to match the beginning of a line and "$" to match the end of a line.

For example:
SELECT REGEXP_INSTR('Hello, World!', '([^]*)!', 1, 1) FROM DUAL
8

	REGEXP_REPLACE(string, pattern[, newstr[, start_at[, occurrence[, mparam]]]])
	Searches string from a starting position of start_at (an integer greater than 0) looking for the specified occurrence of the regular expression pattern, and returns the result of replacing all occurrences of pattern within string with another string, newstr. Both the start_at and occurrence parameters default to 1. The mparam argument can be used to modify the matching behavior of the function and can be set to one or more of the following characters:
	'i'
	Matching is case-insensitive.

	'c'
	Matching is case-sensitive.

	'n'
	The "." character matches newline characters.

	'm'
	Treats the input string as multiple lines; use "^" to match the beginning of a line and "$" to match the end of a line.

For example:
SELECT REGEXP_REPLACE('Hello, World!', '([^]*!)', 'Reader!') FROM DUAL
'Hello, Reader!'

	REGEXP_SUBSTR(string, pattern[, start_at[, occurrence[, mparam]]])
	Searches string from a starting position of start_at (an integer greater than 0) looking for the specified occurrence of the regular expression pattern, and returns the substring within string matching pattern. Both the start_at and occurrence parameters default to 1. The mparam argument can be used to modify the matching behavior of the function and can be set to one or more of the following characters:
	'i'
	Matching is case insensitive.

	'c'
	Matching is case sensitive.

	'n'
	The "." character matches newline characters.

	'm'
	Treats the input string as multiple lines; use "^" to match the beginning of a line and "$" to match the end of a line.

For example:
SELECT REGEXP_SUBSTR('Hello, World!', '([^]*!)') FROM DUAL
'World!'

	REMAINDER(m, n)
	Returns the remainder of m divided by n. This return value is equivalent to the expression:
m-n*ROUND(m/n)
The function MOD uses FLOOR instead of ROUND. For example:
SELECT REMAINDER(11, 4), MOD(11, 4) FROM DUAL
-1 3

	REPLACE(string, search_string[, replacement_string])
	Returns string with every occurrence of search_string replaced with replacement_string. For example:
SELECT REPLACE('change', 'e', 'ing') FROM DUAL -> 'changing'

	ROUND(date[, format])
	Returns the date rounded to the unit specified by the format model. When format is omitted, the date is rounded to the nearest day. (For more on valid format specifiers, see the TO_CHAR function.) For example:
SELECT ROUND(TO_DATE('15-APR-1999'), 'MONTH') FROM DUAL
01-APR-1999

	ROUND(number[, decimal])
	Returns number rounded to decimal places to the right of the decimal point. When decimal is omitted, number is rounded to an integer. Note that decimal, an integer, can be negative to round off digits to the left of the decimal point. For example:
SELECT ROUND(12345.6789, 2) FROM DUAL -> 12345.68

	ROWIDTOCHAR(rowid), ROWIDTONCHAR(rowid)
	ROWIDTOCHAR converts the rowid value to an 18-character-long VARCHAR2 value; ROWIDTONCHAR converts rowid to an 18-character-long NVARCHAR2 value. For example:
SELECT ROWIDTOCHAR(ROWID) FROM NUMS
ABAsxDAAKAAAAEqAAA
ABAsxDAAKAAAAEqAAB
ABAsxDAAKAAAAEqAAC
ABAsxDAAKAAAAEqAAD

	RPAD(string1, number[, string2])
	Returns string1, right-padded to the length number with the value of string2, repeated as needed. string2 defaults to a single blank. For example:
SELECT RPAD('duck',8,'s') FROM DUAL -> 'duckssss'

	RTRIM(string[, set])
	Returns string, with all the rightmost characters that appear in set removed; set defaults to a single blank. For example:
SELECT RTRIM(' welcome ', ' ') FROM DUAL -> ' welcome'

	SCN_TO_TIMESTAMP(scn)
	Returns the timestamp associated with the system change number (scn) argument. For example:
SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM NUMS WHERE c1 = 1
15-APR-04 02.56.05.000000000 PM

	SESSIONTIMEZONE
	Returns the session's time zone offset. For example:
SELECT SESSIONTIMEZONE FROM DUAL -> −06:00

	SET(nested_table)
	Returns a nested table of distinct elements from the input nested_table. For more information, see the Oracle SQL Reference.

	SIGN(number)
	When number < 0, returns −1. When number = 0, returns 0. When number > 0, returns 1. For example:
SELECT SIGN(−3.1415926) FROM DUAL -> −1

	SIN(number)
	Returns the sine of number, where number is in radians. For example:
SELECT SIN(0) -> 0.000000

	SINH(number)
	Returns the hyperbolic sine of number. For example:
SELECT SINH(180) FROM DUAL -> 7.4469E+77

	SOUNDEX(string)
	Returns a character string containing the phonetic representation of string. This function allows words that are spelled differently but sound alike in English to be compared for equality. For example:
SELECT SOUNDEX('thimble') FROM DUAL -> 'T514'

	STATS_BINOMIAL_TEST, STATS_CROSSTAB, STATS_F_TEST, STATS_KS_TEST, STATS_MODE, STATS_MW_TEST, STATS_ONE_WAY_ANOVA, STATS_T_TEST_INDEP, STATS_T_TEST_INDEPU, STATS_T_TEST_ONE, STATS_T_TEST_PAIRED, STATS_WSR_TEST
	Oracle provides many sophisticated statistical functions. For further information on the STATS_* functions, see the Oracle SQL Reference.

	STDDEV([DISTINCT | ALL] expression) [OVER (window_clause)]
	Returns a sample standard deviation of a set of numbers shown as expression. See "ANSI SQL Window Functions," earlier in this chapter, for details on the window_clause. For example:
SELECT STDDEV(col1) FROM NUMS -> 5.71547607

	STDEV_POP(expression) [OVER (window_clause)]
	Computes the population standard deviation and returns the square root of the population variance. See "ANSI SQL Window Functions," earlier in this chapter, for details on the window_clause. For example:
SELECT STDDEV_POP(col1) FROM NUMS -> 4.94974747

	STDDEV_SAMP(expression) [OVER (window_clause)]
	Computes the cumulative sample standard deviation and returns the square root of the sample variance. See "ANSI SQL Window Functions" earlier in this chapter for details on the window_clause. For example:
SELECT STDDEV_SAMP(col1) FROM NUMS -> 5.71547607

	SUBSTR(string, start [FROM starting_position] [FOR length])
	Refer to the earlier section on SUBSTRING under "String Functions and Operators." For example:
SELECT SUBSTR('Hello, World!',8,10) FROM DUAL -> 'World!'

	SUBSTRB(extraction_string[, length])
	Returns the portion of string beginning at the position start and continuing for length characters. If length is omitted, all characters from start onward are returned. If start is negative, it represents an offset from the right edge of the string. For example:
SELECT SUBSTR('Hello, World!', 8) FROM DUAL -> World!
Use SUBSTRB for bytes, SUBSTRC for UNICODE complete characters, SUBSTR2 for UNICODE UCS2 code points, and SUBSTR4 for UNICODE UCS4 code points.

	SYS_CONNECT_BY_PATH(column, char)
	For hierarchical queries, SYS_CONNECT_BY_PATH returns the path from the root to the node with the column name specified by the column parameter. The char parameter specifies the node separator for the return path. For more on Oracle hierarchical queries, refer to the Oracle SQL Reference.

	SYS_CONTEXT(namespace, attribute[, length])
	Returns the value of the attribute associated with the context namespace, usable in both SQL and PL/SQL statements. The length parameter optionally defines the size of the value returned by the function; it defaults to up to 256 bytes, but you may specify a value of between 1 and 4,000 bytes. For example:
SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER') FROM DUAL
'LOGIN'

	SYS_DBURIGEN(column[, rowid][, . . .][, 'text()'])
	Returns a URL that can be used as a unique reference to the row specified by the column parameter. For columns that don't hold unique values, a rowid can be used directly after the column it identifies to guarantee that the URL only points to one row. Use the 'text()' option if you want the URL to point to the text within an XML document, instead of the document itself.

	SYS_EXTRACT_UTC(datetime)
	Returns the datetime argument converted to a UTC datetime value. For example:
SELECT SYS_EXTRACT_UTC(TIMESTAMP '2004-04-15 11:59:59.00 −08:00')
FROM DUAL
'15-APR-04 07.59.59.000000000 PM'

	SYS_GUID()
	Generates and returns a globally unique identifier (RAW value) made up of 16 bytes. For example:
SELECT SYS_GUID() FROM DUAL -> C0FD3FDC30148EAEE030440A49096A41

	SYS_TYPEID(object_value)
	Returns the type ID of the object_value parameter.

	SYS_XMLAGG(expr[, format])
	Returns a single XML document created by aggregating the XML documents or fragments in the expr parameter. The optional format parameter can be used to format the XML document. For more information, refer to the Oracle SQL Reference.

	SYS_XMLGEN(expression[, format])
	Returns a single XML document created from the expression. The optional format parameter can be used to format the XML document. For more information, refer to the Oracle SQL Reference.

	SYSDATE
	Returns the current date and time on the system in which the database is hosted. The value returned is of type DATE. For example:
SELECT SYSDATE FROM DUAL -> 26-JUN-2003

	SYSTIMESTAMP
	Returns the current date and time on the system in which the database is hosted. The value returned is of type TIMESTAMP. For example:
SELECT SYSTIMESTAMP FROM DUAL
26-JUN-2003 11.15.00.000000 PM −06:00

	TAN(number)
	Returns the tangent of number, where number is in radians. For example:
SELECT TAN(3.1415) FROM DUAL -> −0.000093

	TANH(number)
	Returns the hyperbolic tangent of number. For example:
SELECT TANH(180) FROM DUAL -> 1

	TIMESTAMP_TO_SCN(timestamp_value)
	Returns the approximate system change number (SCN) associated with the timestamp_value. The return value is of type NUMBER.

	TO_BINARY_DOUBLE(expr[, format[, nls_parameter]])
	Converts expr to a BINARY_DOUBLE, optionally in the format specified by the format parameter. If expr is a character expression, the format and nls_parameter options have equivalent meanings, as they do in the TO_CHAR function. If expr is a numeric expression, format and nls_parameter must be omitted. For example:
SELECT c1, TO_BINARY_DOUBLE(c1) FROM NUMS
1 1.0E+000
2 2.0E+000
3 3.0E+000

	TO_BINARY_FLOAT(expr[, format[, nls_parameter]])
	Converts expr to a BINARY_FLOAT, optionally in the format specified by the format parameter. If expr is a character expression, the format and nls_parameter options have equivalent meanings, as they do in the TO_CHAR function. If expr is a numeric expression, format and nls_parameter must be omitted. For example:
SELECT c1, TO_BINARY_FLOAT(c1) FROM NUMS
1 1.0E+000
2 2.0E+000
3 3.0E+000

	TO_CHAR(character_expr)
	Converts character_expr to the database character set. For example:
SELECT TO_CHAR('Howdy') FROM DUAL
Howdy

	TO_CHAR(date | interval[, format[, nls_parameter]])
	Converts date or interval to a VARCHAR2 in the format specified by format. When format is omitted, date is converted to the default date format. The nls_parameter option offers additional control over formatting. For example:
SELECT TO_CHAR(TO_DATE('15-APR-1999') ,'MON-DD-YYYY') FROM DUAL
APR-15-1999
Table 4-11 lists the available specifiers for format and their meanings.
Table 4-11. Oracle format specifiers
	Format specifier
	Meaning

	AD or A.D.
	AD indicator

	AM or A.M.
	Meridian indicator

	BC or B.C.
	BC indicator

	D
	Day of week (1–7)

	DAY
	Name of day

	DD
	Day of month (1–31)

	DDD
	Day of year (1–366)

	DL
	Long date format

	DS
	Short date format

	DY
	Abbreviated name of day

	FF
	Fractional seconds; to specify the precision, include a number (1-9) after the FF specifier

	HH or HH12
	Hour (1–12)

	HH24
	Hour (0–23)

	J
	Julian day; the number of days since January 1, 4713 BC

	MI
	Minute (0–59)

	MM
	Month (01–12)

	MON
	Abbreviated name of month

	RM
	Roman numeral month (I–XII)

	SS
	Second (0–59)

	SSSSS
	Seconds past midnight (0–86,399)

	SYYY
	Four-digit year; BC dates are prefixed with a minus sign

	TS
	Short time format

	TZD
	Daylight savings information (example: PST versus PDT)

	TZH
	Time zone hour

	TZM
	Time zone minute

	TZR
	Time zone region

	X
	Local radix character

	Y, YY, or YYY
	One-, two-, or three-digit year

	Y,YYY
	Year with comma

	YYYY
	Four-digit year

	TO_CHAR(number[, format[, nls_parameter]])
	Converts number to a VARCHAR2 in the format specified. When format is omitted, number is converted to a string long enough to hold the number. The nls_parameter option offers additional control over formatting options. For example:
SELECT TO_CHAR(123.45, '$999.99') FROM DUAL -> $123.45

	TO_CLOB(expr)
	Converts the character expression given by expr to the CLOB datatype. For example:
SELECT LENGTH(TO_CLOB('I am a SQL nut!')) FROM DUAL -> 15

	TO_DATE(string[, format[, nls_parameter]])
	Converts string (a CHAR or VARCHAR2) to the DATE datatype. The nls_parameter option offers additional control over formatting options. For example:
SELECT TO_DATE('15/04/1999', 'DD/MM/YYYY') FROM DUAL
15-APR-1999

	TO_DSINTERVAL(string[, nls_parameter])
	Converts the character expression given by string to the INTERVAL DAY TO SECOND datatype. The nls_parameter option offers additional control over formatting options. For example:
SELECT CURRENT_DATE, CURRENT_DATE-TO_DSINTERVAL('14 00:00:00')
FROM DUAL
15-APR-2003 01-APR-2003

	TO_LOB(long_column)
	Converts LONG or LONG RAW values in the column long_column to LOB values. Usable only by LONG or LONG RAW expressions and only in the SELECT list of a subquery in an INSERT statement.

	TO_MULTI_BYTE(string)
	Returns string with all of its single-byte characters converted to their corresponding multibyte characters.

	TO_NCHAR(expr[, format[, nls_parameter]])
	Synonymous with the TO_CHAR function, except the return datatype is NCHAR. For more on valid format specifiers, see the TO_CHAR function.

	TO_NCLOB(expr)
	Converts the character expression given by expr to the NCLOB datatype. For example:
SELECT LENGTH(TO_NCLOB('I am a SQL nut!')) FROM DUAL -> 15

	TO_NUMBER(string[, format[, nls_parameter]])
	Converts a numeric string (a CHAR or VARCHAR2) to the NUMBER datatype, optionally in the format specified by the format parameter. The nls_parameter option offers additional control over formatting options. For example:
SELECT TO_NUMBER('12345') FROM DUAL -> 12345

	TO_SINGLE_BYTE(string)
	Returns string with all of its multibyte characters converted to their corresponding single-byte characters.

	TO_TIMESTAMP(string[, format[, nls_parameter]])
	Converts the character expression provided by string to the TIMESTAMP datatype, optionally in the format specified by the format parameter. The nls_parameter option offers additional control over formatting options. (For more on valid format specifiers, see the TO_CHAR function.) For example:
SELECT TO_TIMESTAMP(CURRENT_DATE) FROM DUAL -> 04-MAY-04 12.00.00 AM

	TO_TIMESTAMP_TZ(string[, format[, nls_parameter]])
	Converts the character expression provided by string to the TIMESTAMP WITH TIME ZONE datatype, optionally in the format specified by the format parameter. The nls_parameter option offers additional control over formatting options. (For more on valid format specifiers, see the TO_CHAR function.) For example:
SELECT TO_TIMESTAMP_TZ('15-04-2006', 'DD-MM-YYYY') FROM DUAL
15-APR-06 12.00.00.000000000 AM −07:00

	TO_YMINTERVAL(string)
	Converts the character expression provided by string to the INTERVAL YEAR TO MONTH datatype. For example:
SELECT TO_DATE('29-FEB-2000')+TO_YMINTERVAL('04-00') FROM DUAL
29-FEB-04

	TRANSLATE(char_value, from_text, to_text)
	Returns char_value with each occurrence of a character in from_text replaced by its corresponding character in to_text. For example:
SELECT TRANSLATE('foobar', 'fa', 'bu') FROM DUAL -> 'boobur'

	TRANSLATE(text USING [CHAR_CS | NCHAR_CS])
	Converts text into the character set specified. Use CHAR_CS to convert text to the CHAR datatype or NCHAR_CS to convert text to the NCHAR datatype. For example:
SELECT TRANSLATE(N'foobar' USING CHAR_CS) FROM DUAL
'foobar'

	TREAT(expr AS [REF] [schema.]type)
	Converts expr from its declared type to the type specified by the type parameter. For more information on the usage of this function, please look to the SQL Reference for the Oracle Database.

	TRUNC(base[, number])
	Returns base truncated to number decimal places. When number is omitted, base is truncated to an integer. number can be negative to truncate (make zero) digits to the left of the decimal point. For example:
SELECT TRUNC('123.456', 2) FROM DUAL -> 123.45

	TRUNC(date[, format])
	Returns date truncated to the unit specified by format. When format is omitted, date is truncated to the nearest whole day. (For more on valid format specifiers, see the TO_CHAR function.) For example:
SELECT TRUNC(TO_DATE('15/04/1999', 'MM/DD/YYYY'), 'YYYY') FROM DUAL
1999

	TZ_OFFSET({expr | SESSIONTIMEZONE | DBTIMEZONE})
	Returns the time zone offset corresponding to the argument. The character expression expr can either be the name of the time zone or a time zone offset. The SESSIONTIMEZONE and DBTIMEZONE arguments provide the time zone for the session or database, respectively. For example:
SELECT TZ_OFFSET('+08:00'), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL
+08:00 −07:00

	UID
	Returns an integer that uniquely identifies the currently logged-on session user. No parameters are needed. For example:
SELECT UID FROM DUAL -> 47

	UNISTR(string)
	Converts string to the NCHAR datatype, while converting any UNICODE-encoded values within string. For example:
SELECT UNISTR('El Ni\00F1o') FROM DUAL -> 'El Niño'

	UPDATEXML(instance, xpath, expr[, namespace])
	Updates the values held by nodes within instance to the new value in expr. Only those nodes returned by the XPath query contained in the xpath parameter are updated. The optional namespace parameter specifies the XML namespace in the query. For more information on XML queries, refer to the Oracle SQL Reference. For example:
SELECT UPDATEXML(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar', '<bar>Bye, World!</bar>') from DUAL
Bye, World!

	USERENV(option)
	Returns information about the current session in the VARCHAR2 datatype. This function has been deprecated and is only provided for backward compatibility. USERENV is a synonym for SYS_CONTEXT('USER_ENV', option). Refer to the SYS_CONTEXT function with the USERENV namespace for current functionality. For example:
SELECT USERENV('LANGUAGE') "Language" FROM DUAL
'AMERICAN_AMERICA.AL32UTF8'

	VALUE(table_alias)
	Takes a table_alias associated with a row in an object table and returns the object instance stored within the object table for that row.

	VAR_POP(expression) [OVER (window_clause)]
	Returns the population variance of the set of numbers represented by expression after discarding the NULLs in the set. See "ANSI SQL Window Functions," earlier in this chapter, for details on the window_clause. For example:
SELECT VAR_POP(col1) FROM NUMS -> 24.5

	VAR_SAMP(expression) [OVER (window_clause)]
	Returns the sample variance of the set of numbers represented by expression after discarding the NULLs in the set. See "ANSI SQL Window Functions," earlier in this chapter, for details on the window_clause. For example:
SELECT VAR_SAMP(col1) FROM NUMS -> 32.6666667

	VARIANCE([DISTINCT] expression) [OVER (window_clause)]
	Returns the variance of expression, calculated as follows: 0 if the number of rows in expression = 1, and VAR_SAMP if the number of rows in expression > 1. See "ANSI SQL Window Functions," earlier in this chapter, for details on the window_clause. For example:
SELECT VARIANCE(col1) FROM NUMS -> 32.6666667

	VSIZE(expression)
	Returns the number of bytes in the internal representation of expression. When expression is NULL, returns NULL. For example:
SELECT vsize(1) FROM DUAL -> 2

	XMLAGG(instance[, order_by])
	Aggregate function that returns an XML document from a table of XML fragments contained in instance. The optional order_by clause allows the XML fragments in the result to be ordered. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLCAST(value AS datatype)
	Casts the value to the type datatype and returns the result. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLCDATA(value)
	Returns value as an XML CDATA section. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLCOLATTVAL(expr [AS alias][, . . .])
	Returns an XML fragment from the expr arguments. The optional AS clause can be used to change the value of the name attribute. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLCONCAT(instance[, . . .])
	Returns an XML instance that is the union of all XML instance parameters. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLDIFF(xml1, xml2[, hashlevel, flags])
	Returns an Xdiff schema that's the result of diffing xml1 and xml2. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLELEMENT([NAME] name[, XMLATTRIBUTES(expr [AS alias][, . . .])][, value[, . . .]])
	Returns an XMLELEMENT with the name specified in the name parameter and the attributes specified in the optional XMLATTRIBUTES clause. The value parameters provide the values of the XMLELEMENT result. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLEXISTS(xquery[, passing_clause])
	Returns TRUE if the XQuery specified in xquery returns a nonempty XQuery result, and FALSE otherwise. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLFOREST(value [AS alias][, . . .])
	Returns an XML fragment constructed from the values provided in the value parameter list. The optional AS clause can be used to change the enclosing tag name. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLPARSE([DOCUMENT | CONTENT] value [WELLFORMED])
	Returns an XML instance constructed as a result of parsing the XML document in value. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLPATCH(xml, xdiff)
	Returns an XML instance as a result of patching the XML document in xml with the Xdiff found in xdiff. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLPI()
	Generates an XML processing instruction, commonly used to provide application instructions associated with all or part of an XML document. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLQUERY(query)
	Returns the results of executing the XMLQuery found in query. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLROOT(value, VERSION [version | NO VALUE][, STANDALONE {YES | NO | NO VALUE})
	Returns a new XML document using value as the body and the version information for the XML document prolog. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLSEQUENCE(instance)
	Returns an array of XML fragments constructed from the top-level nodes in the XML instance provided by the instance parameter. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLSERIALIZE(. . .)
	Returns an XML expression serialized to a string. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLTABLE(. . .)
	Maps the result of an XQuery into a two-dimensional, relational view. For more information on XML queries, refer to the Oracle SQL Reference.

	XMLTRANSFORM(instance, stylesheet)
	Returns the result of applying the XSL stylesheet in the stylesheet parameter to the XML document contained in instance. For more information on XML queries, refer to the Oracle SQL Reference.

PostgreSQL-Supported Functions

This section lists the functions specific to PostgreSQL, with examples and corresponding results.
	ABSTIME(timestamp)
	Converts the timestamp value to the ABSTIME type. This function is provided for backward compatibility and may be removed in future versions. For example:
SELECT ABSTIME(CURRENT_TIMESTAMP) -> 2003-06-24 00:19:17-07

	ACOS(number)
	Returns the arccosine of number, ranging from −1 to 1. The result ranges from 0 to π and is expressed in radians. For example:
SELECT ACOS(0) -> 1.570796

	AGE(timestamp)
	Has the same meaning as AGE(CURRENT_DATE, timestamp).

	AGE(timestamp, timestamp)
	Returns the time between the two timestamp values. For example:
SELECT AGE('2003-12-31', CURRENT_TIMESTAMP)
6 mons 7 days 00:34:41.658325

	AREA(object)
	Returns the area of an item. For example:
SELECT AREA(BOX '((0,0),(1,1))') -> 1

	ARRAY_APPEND(array, element)
	Returns the result of appending element to array. For example:
SELECT ARRAY_APPEND(ARRAY[1,2], 3) -> {1,2,3}

	ARRAY_CAT(array1, array2)
	Returns the result of appending array2 to array1. For example:
SELECT ARRAY_CAT(ARRAY[1,2], ARRAY[3,4]) -> {1,2,3,4}

	ARRAY_DIMS(array)
	Returns the dimensions of array. For example:
SELECT ARRAY_DIMS(ARRAY[1,2]) -> '[1:2]'

	ARRAY_LOWER(array, i)
	Returns the lower bound of the dimension i of array. For example:
SELECT ARRAY_LOWER(ARRAY[1,2], 1) -> 1

	ARRAY_PREPEND(i, array)
	Returns the result of prepending i to array. For example:
SELECT ARRAY_PREPEND(0, ARRAY[1,2]) -> {0,1,2}

	ARRAY_TO_STRING(array, delimiter)
	Returns a string that is constructed by concatenating the elements of array, with delimiter used as a delimiter between each element. For example:
SELECT ARRAY_TO_STRING(ARRAY[1,2,3], ';') -> '1;2;3'

	ARRAY_UPPER(array, i)
	Returns the upper bound of the dimension i of array. For example:
SELECT ARRAY_UPPER(ARRAY[1,2], 1) -> 2

	ASCII(text)
	Returns the ASCII code of the first character of text. For example:
SELECT ASCII('x') -> 120

	ASIN(number)
	Returns the arcsine of number, ranging from −1 to 1. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ASIN(0) -> 0.000000

	ATAN(number)
	Returns the arctangent of any number. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ATAN(3.1415) -> 1.262619

	ATAN2(float1, float2)
	Returns the arctangent of the two float values. ATAN2(x, y) is similar to ATAN(y/x), with the exception that the signs of x and y are used to determine the quadrant of the result. For example:
SELECT ATAN2(3.1415926, 0) -> 1.5707963267949

	BIT_AND(expression)
	

	BIT_OR(expression)
	Returns the bitwise AND or OR of every non-NULL value in expression. For example:
SELECT BIT_AND(column1) FROM table
0

	BOOL_AND(expression)
	

	BOOL_OR(expression)
	Returns the logical AND or OR of every non-NULL value in expression. For example:
SELECT BOOL_OR(column1) FROM table
true

	BOX(box, box)
	Returns a BOX created by the intersection of the two boxes. If the two boxes do not intersect, the return value is NULL. For example:
SELECT BOX(BOX '((−1,−1),(1,1))', BOX '((0,0),(1,1))')
(1,1),(0,0)

	BOX(circle)
	Returns a BOX with vertices that intersect circle so that the box is the maximum size that can be fully contained within circle. For example:
SELECT BOX(CIRCLE '((0,0),2.0)')
(1.41421356237309,1.41421356237309),
(−1.41421356237309,−1.41421356237309)

	BOX(point, point)
	Returns a BOX with the two point arguments as opposite corners. For example:
SELECT BOX(POINT(0,0), POINT(1,1)) -> (1,1),(0,0)

	BOX(polygon)
	Converts polygon to a BOX. For example:
SELECT BOX(POLYGON '((0,0),(1,1),(2,0))') -> (2,1),(0,0)

	BROADCAST(inet)
	Constructs a broadcast address as text. For example:
SELECT BROADCAST('192.168.1.5/24') -> '192.168.1.255/24'

	BTRIM(s, c)
	Return s without the characters found in c. For example:
SELECT BTRIM('<<<trim_me>>>', '><') -> 'trim_me'

	CBRT(float8)
	Returns the cube root of float8. For example:
SELECT CBRT(8) -> 2

	CENTER(object)
	Returns a POINT object to the center of the argument. For example:
SELECT CENTER(CIRCLE '((0,0), 2.0)') -> (0,0)

	CHAR(text)
	Converts text to the CHAR type.

	CHAR_LENGTH(string) or CHARACTER_LENGTH(string)
	Returns the length of string in characters.

	CIRCLE(box)
	Returns a CIRCLE contained within box. For example:
SELECT CIRCLE(BOX '((0,0),(1,1))') -> <(0.5,0.5),0.707106781186548>

	CIRCLE(point, float8)
	Converts point to a CIRCLE with float8 for the radius. For example:
SELECT CIRCLE(POINT '(0,0)', 2.0) -> <(0,0),2>

	CLOCK_TIMESTAMP()
	Returns the current date and time, which can change within a single SQL statement execution.

	COALESCE(list)
	Returns the first non-NULL value in list. For example:
SELECT COALESCE(NULL,1,2,3,NULL) -> 1

	COS(number)
	Returns the cosine of number as an angle expressed in radians. For example:
SELECT COS(0) -> 1.000000

	COT(number)
	Returns the cotangent of number. For example:
SELECT COT(3.1415) -> −10792.88993953

	CURRVAL(s)
	Returns the current value of the sequence named s. For example:
SELECT CURRVAL('myseq') -> 99

	DATE_PART(text, value)
	Equivalent to EXTRACT(text, value); for more details on the usage of EXTRACT, see the section on EXTRACT earlier in "ANSI SQL Scalar Functions."

	DATE_TRUNC(precision, timestamp)
	Truncates timestamp to the specified precision. For example:
SELECT DATE_TRUNC('hour', TIMESTAMP '2003-04-15 23:58:30')
2003-04-15 23:00:00

	DECODE(s, type)
	Decodes an encoded string s. The type can be 'base64', 'hex', or 'escape'. For example:
SELECT DECODE(ENCODE('darjeeling', 'base64'), 'base64') -> 'darjeeling'

	DEGREES(float8)
	Converts radians to degrees. For example:
SELECT DEGREES(3.1415926) -> 179.999996929531

	DIAMETER(circle)
	Returns the diameter of circle. For example:
SELECT DIAMETER(CIRCLE(POINT '(0,0)', 2.0)) -> 4

	ENCODE(s, type)
	Encodes a string s. The type can be 'base64', 'hex', or 'escape'. For example:
SELECT DECODE(ENCODE('darjeeling', 'base64'), 'base64') -> 'darjeeling'

	EVERY(expression)
	Synonym for BOOL_AND(expression).

	FLOAT(int)
	Converts int to a floating point.

	FLOAT4(int)
	Converts int to a floating point.

	HEIGHT(box)
	Returns the vertical size of box. For example:
SELECT HEIGHT(BOX '((0,0),(1,1))') -> 1

	HOST(inet)
	Extracts the host address as text. For example:
SELECT HOST('192.168.1.5/24') -> '192.168.1.5'

	INITCAP(text)
	Converts the first letter of each word to uppercase. For example:
SELECT INITCAP('my name is inigo montoya.')
'My Name Is Inigo Montoya.'

	INTEGER(float)
	Converts a floating point to integer.

	INTERVAL(reltime)
	Converts reltime to an INTERVAL.

	ISCLOSED(path)
	Returns 't' if path is closed, and 'f' if it's open. For example:
SELECT ISCLOSED(PATH '((0,0),(1,1),(2,0))') -> 't'
SELECT ISCLOSED(PATH '[(0,0),(1,1),(2,0)]') -> 'f'

	ISFINITE(interval)
	Returns 'f' if interval is open, and 't' otherwise. For example:
SELECT ISFINITE(INTERVAL '4 hours') -> 't'

	ISFINITE(timestamp)
	Returns 'f' if timestamp is either invalid or infinite, and 't' otherwise. For example:
SELECT ISFINITE(TIMESTAMP '2001-02-16 21:28:30') -> 't'

	ISOPEN(path)
	Returns an open path. For example:
SELECT ISOPEN(PATH '((0,0),(1,1),(2,0))') -> 'f'
SELECT ISOPEN(PATH '[(0,0),(1,1),(2,0)]') -> 't'

	JUSTIFY_DAYS(interval)
	Returns the number of 30-day time periods within interval. For example:
SELECT JUSTIFY_DAYS(INTERVAL '90 days') -> 3

	JUSTIFY_HOURS(interval)
	Returns the number of 24-hour time periods within interval. For example:
SELECT JUSTIFY_HOURS(INTERVAL '48 hours') -> 2

	JUSTIFY_INTERVAL(interval)
	Returns the number of 30-day time periods and remaining 24-hour time periods within interval. For example:
SELECT JUSTIFY_HOURS(INTERVAL '2 mon - 12 hour') -> '59 days 12:00:00'

	LENGTH(object)
	Returns the length of object. For example:
SELECT LENGTH('Howdy!') -> 6
SELECT LENGTH(PATH '((−1,0),(1,0))') -> 4

	LOG(float8[, b])
	Returns a base-10 logarithm, unless b is specified, in which case it returns the logarithm of base base. For example:
SELECT LOG(100) -> 2

	LPAD(exp1, int, exp2)
	Returns the string 'text', left-padded to the specified (int) length. For example:
SELECT LPAD('Duck', 10, 's') -> 'ssssssDuck'

	LSEG(box)
	Converts a box diagonal to a line segment. For example:
SELECT LSEG(BOX '((−1,0),(1,0))') -> [(1,0),(−1,0)]

	LSEG(point, point)
	Converts points to a line segment. For example:
SELECT LSEG(POINT '(−1,0)', POINT '(1,0)') -> [(−1,0),(1,0)]

	LTRIM(text)
	Returns text with all leading whitespace removed. For example:
SELECT LTRIM(' Howdy! ') -> 'Howdy! '

	MASKLEN(cidr)
	Returns the netmask length of cidr. For example:
SELECT MASKLEN('192.168.1.5/24') -> 24

	MD5(s)
	Returns the MD5 hash of s.

	NETMASK(inet)
	Returns the netmask for inet. For example:
SELECT NETMASK('192.168.1.5/24') -> '255.255.255.0'

	NETWORK(inet)
	Returns the network part of inet. For example:
SELECT NETWORK('192.168.1.5/24') -> '192.168.1.0/24'

	NEXTVAL(s)
	Returns the next number in the sequence named s. For example:
SELECT NEXTVAL('myseq') -> 100

	NPOINTS(object)
	Returns the number of points in object. For example:
SELECT NPOINTS(POLYGON '((1,1),(0,0))') -> 2

	NULLIF(input, value)
	Returns NULL if input = value; otherwise, returns input. For example:
SELECT NULLIF(5, 6), NULLIF(5, 5)
5 NULL

	PATH(polygon)
	Converts polygon to a path. For example:
SELECT PATH('((0,0),(1,1),(2,0))')
((0,0),(1,1),(2,0))

	PCLOSE(path)
	Converts path to a closed path. For example:
SELECT PCLOSE(PATH '[(0,0),(1,1),(2,0)]')
((0,0),(1,1),(2,0))

	PI()
	Returns the constant π.

	POLYGON(path)
	Converts path to a POLYGON. For example:
SELECT POLYGON(PATH '((0,0),(1,1),(2,0))')
((0,0),(1,1),(2,0))

	POINT(circle)
	Returns the center of circle. For example:
SELECT POINT(CIRCLE '((0,0), 2.0)') -> (0,0)

	POINT(lseg1, lseg2)
	Returns the intersection of two line segments. For example:
SELECT POINT(LSEG '((−1,0),(1,0))', LSEG '((−2,−2),(2,2))')
(0,0)

	POINT(polygon)
	Returns the center point of polygon. For example:
SELECT POINT(POLYGON '((0,0),(1,1),(2,0))')
(1,0.333333333333333)

	POLYGON(box)
	Returns a four-point polygon. For example:
SELECT POLYGON(BOX '((0,0),(1,1))')
((0,0),(0,1),(1,1),(1,0))

	POLYGON(circle)
	Synonym for POLYGON(12, circle).

	POLYGON(npts, circle)
	Returns an approximation of circle as a polygon with npts vertices. For example:
SELECT POLYGON(6, CIRCLE '((0,0),2.0)')
((−2,0),
(−0.999999999994107,1.73205080757228),
(1.00000000001179,1.73205080756207),
(2,−2.04136478690279e-11),
(0.999999999976428,−1.73205080758249),
(−1.00000000002946,−1.73205080755187))

	POPEN(path)
	Converts path to an open path. For example:
SELECT POPEN(PATH '((0,0),(1,1),(2,0))')
[(0,0),(1,1),(2,0)]

	POW(number, exponent)
	Raises number to the specified exponent. For example:
SELECT POW(2, 3) -> 8

	QUOTE_IDENT(s)
	Returns s properly escaped so that it can be used as an identifier in a SQL statement. For example:
SELECT QUOTE_IDENT('tea') -> '"tea"'

	QUOTE_LITERAL(s)
	Returns s properly escaped so that it can be used as a string literal in a SQL statement. For example:
SELECT QUOTE_LITERAL('you\'re here') -> 'you"re here'

	RADIANS(float8)
	Converts degrees to radians. For example:
SELECT RADIANS(180) -> 3.14159265358979

	RADIUS(circle)
	Returns the radius of circle. For example:
SELECT RADIUS(CIRCLE '((0,0), 2.0)') -> (0,0)

	RANDOM()
	Returns a random value between 0.0 and 1.0. For example:
SELECT RANDOM() -> 0.785398163397448

	REGEXP_MATCHES(s, pattern[, flags])
	Returns substrings within s matching the regular expression pattern. The optional flags argument can select non-default processing by the regular expression matching engine. The most common options for flags are 'i' for case-insensitive matching, 'n' for newline-sensitive matching, and 'g' for global matching. For example:
SELECT REGEXP_MATCHES('catfish, cowfish', 'c..') -> 'cat'

	REGEXP_REPLACE(s, pattern, replacement[, flags])
	Returns s with all substrings matching the regular expression pattern replaced with the string found in replacement. The optional flags argument can select non-default processing by the regular expression matching engine. The most common options for flags are 'i' for case-insensitive matching, 'n' for newline-sensitive matching, and 'g' for global matching. For example:
SELECT REGEXP_REPLACE('abcabcabc', 'bc', 'nt') -> 'antabcabc'
SELECT REGEXP_REPLACE('abcabcabc', 'bc', 'nt', 'g') -> 'antantant'

	REGEXP_SPLIT_TO_ARRAY(s, pattern[, flags])
	Returns s split into an array using the regular expression pattern as the delimiter for array elements. The optional flags argument can select non-default processing by the regular expression matching engine. The most common options for flags are 'i' for case-insensitive matching, 'n' for newline-sensitive matching, and 'g' for global matching. For example:
SELECT REGEXP_SPLIT_TO_ARRAY('a b c', E'\\s+')
{a,b,c}

	REGEXP_SPLIT_TO_TABLE(s, pattern[, flags])
	Returns s split into a table using the regular expression pattern as the delimiter for rows. The optional flags argument can select non-default processing by the regular expression matching engine. The most common options for flags are 'i' for case-insensitive matching, 'n' for newline-sensitive matching, and 'g' for global matching. For example:
SELECT REGEXP_SPLIT_TO_TABLE('a b c', E'\\s+')
'a'
'b'
'c'

	RELTIME(interval)
	Converts interval to a RELTIME. Provided for backward compatibility and may be removed in a future release.

	ROUND(number[, p])
	Rounds number to p decimal places. The optional p argument defaults to 0 for classic rounding of integers. For example:
SELECT ROUND(5.5) -> 6
SELECT ROUND(5.5555, 2) -> 5.56

	RPAD(text, length, char)
	Pads text to the specified length using char. For example:
SELECT RPAD('Duck', 10, 's') -> 'Duckssssss'

	RTRIM(text)
	Returns text with all trailing whitespace removed. For example:
SELECT RTRIM(' St. Lucia ') -> ' St. Lucia'

	SET_MASKLEN(inet, size)
	Sets the netmask length for inet to size. For example:
SELECT SET_MASKLEN('192.168.1.5/24',16)
'192.168.1.5/16'

	SETSEED(i)
	Seeds the random number generator with i.

	SETVAL(s, i)
	Sets the next number in the sequence named s to i. For example:
SETVAL('myseq', 0)

	SIGN(number)
	Returns the sign of number. For example:
SELECT SIGN(−69), SIGN(69)
-1,1

	SIN(number)
	Returns the sine of number, where number is in radians. For example:
SELECT SIN(0) -> 0.000000

	STATEMENT_TIMESTAMP()
	Returns the date and time at which the SQL statement began execution.

	STRING_TO_ ARRAY(str1, delimiter)
	Returns an array that is constructed by extracting the elements of str1 using delimiter as a delimiter between each element. For example:
SELECT STRING_TO_ARRAY('1;2;3', ';') -> {1,2,3}

	SUBSTRING(string [FROM start] [FOR bytes]), SUBSTR(string, start[, bytes])
	Extracts a substring of length bytes from string starting at the character position start. If bytes is omitted, the length returned is the remainder of the string from the start position. For example:
SELECT SUBSTRING('Inigo Montoya' FROM 7 FOR 4) -> 'Mont'

	TAN(number)
	Returns the tangent of number, where number is in radians. For example:
SELECT TAN(3.1415) -> −0.000093

	TEXT(char)
	Converts char to the TEXT type.

	TIMEOFDAY()
	Returns the current timestamp (using CLOCK_TIMESTAMP) as a string.

	TIMESTAMP(date[, time])
	Converts date to a timestamp.

	TO_CHAR(expression, text)
	Converts expression to a string. For example:
SELECT TO_CHAR(NUMERIC '-125.8', '999D99S') -> 125.80-
SELECT TO_CHAR (interval '15h 2m 12s','HH24:MI:SS') -> 15:02:12

	TO_DATE(string, format)
	Converts string to a date using the second argument for the input format. For example:
SELECT TO_DATE('05 Dec 2000', 'DD Mon YYYY') -> 2000-12-05
Table 4-12 lists the available specifiers for format and their meanings.
Table 4-12. PostgreSQL format specifiers
	Format specifier
	Meaning

	AD or A.D.
	AD indicator

	AM or A.M.
	Meridian indicator

	BC or B.C.
	BC indicator

	CC
	Two-digit century

	D
	Day of week (1–7)

	DAY
	Full uppercase day name

	Day
	Full camel case day name

	day
	Full lowercase day name

	DD
	Day of month (01–31)

	DDD
	Day of year (001–366)

	DY
	Abbreviated day name

	Dy
	Abbreviated camel case day name

	dy
	Abbreviated lowercase day name

	HH or HH12
	Hour (01–12)

	HH24
	Hour (00–23)

	I
	Last digits of ISO year

	IW
	ISO week number of year

	IY, IYY, IYYY
	Last 2 digits, 3 digits, or all digits of ISO year, respectively

	J
	Julian day number (days since January 1, 4713 BC)

	MI
	Minute (00–59)

	MM
	Month (01–12)

	MON
	Abbreviated month name

	Mon
	Abbreviated camel case month name

	mon
	Abbreviated lowercase month name

	MONTH
	Full uppercase month name

	Month
	Full camel case month name

	month
	Full lowercase month name

	MS
	Milliseconds (000–999)

	PM or P.M.
	Meridian indicator

	Q
	Quarter of the year

	RM
	Roman Numeral month (I–XII)

	rm
	Lowercase Roman Numeral month (i–xii)

	SS
	Second (00–59)

	SSSS
	Seconds past midnight (0–86,399)

	SYYY
	Four-digit year; BC dates are prefixed with a minus sign

	TS
	Short time format

	TZ
	Uppercase time zone name

	tz
	Lowercase time zone name

	US
	Microseconds (000000–999999)

	W
	Week of month (1–5)

	WW
	Week of year (1–53)

	Y, YY, YYY, YYYY
	One-, two-, three-, or four-digit year, respectively

	Y,YYY
	Year with comma

	TO_NUMBER(string, format)
	Converts string to a numeric value using the second argument for the input format. For example:
SELECT TO_NUMBER('12,454.8-', '99G999D9S') -> −8

	TO_TIMESTAMP(text, format)
	Converts text to a timestamp value using the second argument for the input format. (For more on valid format specifiers, see the TO_DATE function.) For example:
SELECT TO_TIMESTAMP('05 Dec 2000', 'DD Mon YYYY') ->
2000-12-05 00:00:00-08

	TRANSACTION_TIMESTAMP()
	Returns the date and time at which the current transaction was started.

	TRANSLATE(text, from, to)
	Converts the characters found in text that also exist in from to the corresponding characters in to. For example:
SELECT TRANSLATE('foo', 'fo', 'ab') -> 'abb'

	TRUNC(float8)
	Truncates (toward zero). For example:
SELECT TRUNC(PI()) -> 3

	VARCHAR(string)
	Converts string to a VARCHAR.

	WIDTH(box)
	Returns the width of box. For example:
SELECT WIDTH(BOX '((0,0),(3,1))') -> 3

SQL Server-Supported Functions

This section provides an alphabetical listing of Microsoft SQL Server-supported functions, with examples and corresponding results.
	ACOS(number)
	Returns the arccosine of number, ranging from −1 to 1. The result ranges from 0 to π and is expressed in radians. For example:
SELECT ACOS(0) -> 1.570796

	APP_NAME()
	Returns the application name for the current session, set by the application. For example:
SELECT APP_NAME() -> 'SQL Enterprise Manager'

	ASCII(text)
	Returns the ASCII code of the first character of text. For example:
SELECT ASCII('x') -> 120

	ASIN(number)
	Returns the arcsine of number, ranging from −1 to 1. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ASIN(0) -> 0.000000

	ATAN(number)
	Returns the arctangent of any number. The resulting value ranges from -π/2 to π/2 and is expressed in radians. For example:
SELECT ATAN(3.1415) -> 1.262619

	ATN2(float1, float2)
	Returns the angle (in radians) whose tangent is float1/float2. For example:
SELECT ATN2(35.175643, 129.44) -> 0.265345

	BINARY_CHECKSUM(* | expression[, . . . n])
	Returns the binary checksum for a list of expressions or for a row of a table. This example returns a list of user IDs where the stored password checksum doesn't match the current password's checksum:
SELECT userid AS 'Changed' FROM users
WHERE NOT password_chksum = BINARY_CHECKSUM(password)

	CHAR(integer_expression)
	Converts a numeric ASCII code to a character. For example:
SELECT CHAR(78) -> 'N'

	CHARINDEX(substring, string[, start_location])
	Returns the position of the first occurrence of substring in string, optionally from the given start_location. For example:
SELECT CHARINDEX('he', 'Howdy, there!') -> 9

	CHECKSUM(* | expression[, . . . n])
	Returns a checksum (computed over row values or expressions provided). The following example returns a list of user IDs for which the stored password checksum doesn't match the current password's checksum:
SELECT userid AS 'Changed' FROM users
WHERE NOT password_chksum = CHECKSUM(password)

	CHECKSUM_AGG([ALL | DISTINCT] expression)
	Returns the checksum of the values in a group. For example:
SELECT CHECKSUM_AGG(BINARY_CHECKSUM(*)) FROM authors -> 67

	COALESCE(expression[, . . . n])
	Returns the first non-NULL argument from a list of arguments. For example:
SELECT COALESCE(NULL, 1, 3, 5, 7) -> 1

	COL_LENGTH(table, column)
	Returns the length of column in bytes. For example:
SELECT COL_LENGTH('authors', 'au_fname') -> 50

	COL_NAME(table_id, column_id)
	Returns the column name, given table_id and column_id. For example:
SELECT COL_NAME(OBJECT_ID('authors'), 1)

	CONTAINS({column | *}, contains_search_condition)
	Searches column for exact or "fuzzy" matches of the contains_seach_condition. CONTAINS is an elaborate function used to perform full-text searches; refer to the vendor documentation for more information. This example returns all product IDs from the products table that contain the words "peanut" and "butter" in close proximity to each other.
SELECT productid FROM products
WHERE CONTAINS(productname, ' "peanut" NEAR "butter" ')

	CONTAINSTABLE(table, column, contains_search_condition)
	Returns a table with exact and "fuzzy" matches to contains_search_condition. CONTAINSTABLE is an elaborate function used to perform full-text searches. The following example returns all product ID's from the products table that contain the words "peanut" and "butter" in close proximity to each other:
SELECT productid FROM products
WHERE CONTAINS(products, productname, ' "peanut" NEAR "butter" ')

	CONVERT(data_type[(length)], expression[, style])
	Converts data in expression from one datatype to another. For example:
SELECT CONVERT(VARCHAR(50), CURRENT_TIMESTAMP, 1) -> '06/29/03'

	COS(number)
	Returns the cosine of number as an angle expressed in radians. For example:
SELECT COS(0) -> 1.000000

	COT(number)
	Returns the cotangent of number. For example:
SELECT COT(3.1415) -> −10792.88993953

	COUNT_BIG({ [ALL | DISTINCT] expression } | *)
	Operates the same as COUNT, except the return type is a BIGINT. For example:
SELECT COUNT_BIG(names) FROM people -> 26743

	DATABASEPROPERTYEX(database, property)
	Returns a database option or property. For example:
SELECT DATABASEPROPERTYEX('pubs', 'Version') -> 539

	DATALENGTH(expression)
	Returns the number of bytes in a character or binary string. For example:
SELECT MAX(DATALENGTH(au_fname)) FROM authors -> 11

	DATEADD(datepart, number, date)
	Adds a number of dateparts (e.g., days) to a datetime value. For example:
SELECT DATEADD(Year, 10, CURRENT_TIMESTAMP) -> 2013-06-29 19:47:15.270

	DATEDIFF(datepart, startdate, enddate)
	Calculates the difference between two datetime values expressed in the specified datepart. For example:
SELECT DATEDIFF(Day, CURRENT_TIMESTAMP,
 DATEADD(Year, 1, CURRENT_TIMESTAMP))
366

	DATENAME(datepart, date)
	Returns the name of a datepart (e.g., month) of a datetime argument. For example:
SELECT DATENAME(month, GETDATE()) -> 'June'

	DATEPART(datepart, date)
	Returns the value of a datepart (e.g., year) of a datetime argument. For example:
SELECT DATEPART(year, GETDATE()) -> 2003

	DAY(date)
	Returns an integer value representing the day of the date provided as a parameter. For example:
SELECT DAY('04/15/2004') -> 15

	DB_ID([database_name])
	Returns the database ID when provided with a database_name. For example:
SELECT DB_ID() -> 5

	DB_NAME(database_id)
	Returns the database name when provided with a database_id. For example:
SELECT DB_NAME(5) -> 'pubs'

	DEGREES(numeric_expression)
	Converts radians to degrees. For example:
SELECT DEGREES(PI()) -> 180

	DIFFERENCE(character_expression, character_expression)
	Compares how two arguments sound and returns a number from 0 to 4, with a higher result indicating a better phonetic match. For example:
SELECT DIFFERENCE('moe', 'low') -> 3

	FILE_ID(file_name)
	Returns the file ID for the logical file_name. For example:
SELECT FILE_ID('master') -> 1

	FILE_NAME(file_id)
	Returns the logical filename for the file_id. For example:
SELECT FILE_NAME(1) -> 'master'

	FILEGROUP_ID(filegroup_name)
	Returns the filegroup ID for the logical filegroup_name. For example:
SELECT FILEGROUP_ID('PRIMARY') -> 1

	FILEGROUP_NAME(filegroup_id)
	Returns the logical filegroup name for filegroup_id. For example:
SELECT FILEGROUP_NAME(1) -> 'PRIMARY'

	FILEGROUPPROPERTY(filegroup_name, property)
	Returns the filegroup property value for the specified property. For example:
SELECT FILEGROUPPROPERTY('PRIMARY', 'IsReadOnly') -> 0

	FILEPROPERTY(file, property)
	Returns the file property value for the specified property. For example:
SELECT FILEPROPERTY('pubs', 'SpaceUsed') -> 160

	FORMATMESSAGE(msg_number, param_value[, . . . n])
	Constructs a message from an existing message in the SYSMESSAGES table (similar to RAISEERROR). For example:
sp_addmessage 50001, 1, 'Table %s has %s rows.'
SELECT FORMATMESSAGE(50001, 'AUTHORS', (SELECT COUNT(*) FROM AUTHORS))
'Table AUTHORS has 23.'

	FREETEXT({column | *}, freetext_string)
	Used for full-text searches. Returns rows with column values that match the meaning, but not exactly the value, of freetext_string.

	FREETEXTTABLE(table, {column | *}, freetext_string[, top_n_by_rank])
	Used for full-text searches. Returns rows from table with column values that match the meaning, but not exactly the value, of freetext_string. For example:
SELECT * from FREETEXTTABLE (authors, *, 'kev')

	FULLTEXTCATALOGPROPERTY(catalog_name, property)
	Returns the full-text catalog properties. For example:
SELECT FULLTEXTCATALOGPROPERTY('Cat_Desc', 'LogSize')

	FULLTEXTSERVICEPROPERTY(property)
	Returns the full-text service-level properties. For example:
SELECT FULLTEXTSERVICEPROPERTY('IsFulltextInstalled') -> 1

	GETANSINULL([database])
	Returns the default nullability setting for new columns. For example:
SELECT GETANSINULL() -> 1

	GETDATE()
	Returns the current date and time. For example:
SELECT GETDATE() -> 2003-06-27 19:26:59.893

	GETUTCDATE()
	Returns the current date as a Coordinated Universal Time (UTC) date. For example:
SELECT GETUTCDATE() -> 2003-06-28 02:26:46.720

	GROUPING(column_name)
	Returns 1 when a row is added by CUBE or ROLLUP; otherwise, returns 0. For example:
SELECT royalty, SUM(advance) 'total advance', GROUPING(royalty) 'grp'
FROM titles GROUP BY royalty WITH ROLLUP
royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1

	HOST_ID()
	Returns the workstation ID. For example:
SELECT HOST_ID() -> 216

	HOST_NAME()
	Returns the process host name. For example:
SELECT HOST_NAME() -> 'PLATO'

	IDENT_CURRENT(table_name)
	Returns the last identity value generated for the specified table. For example:
SELECT IDENT_CURRENT('jobs') -> 876

	IDENT_INCR(table_or_view)
	Returns an identity column increment value. For example:
SELECT IDENT_INCR('jobs') -> 1

	IDENT_SEED(table_or_view)
	Returns an identity seed value. For example:
SELECT IDENT_SEED('jobs') -> 1

	IDENTITY(data_type[, seed, increment]) AS column_name
	Used in a SELECT INTO statement to insert an identity column into the destination table. For example:
SELECT IDENTITY(int, 1,1) AS IDINTO NewTableFROM OldTable

	INDEX_COL(table, index_id, key_id)
	Returns an index column name given a table name, an index ID, and the sequential number of the column in the index key. For example:
SELECT INDEX_COL(OBJECT_ID('authors'), 1, 1) -> NULL

	INDEXPROPERTY(table_id, index, property)
	Returns an index property (such as FILLFACTOR). For example:
SELECT INDEXPROPERTY(OBJECT_ID('authors'), 'UPKCL_auidind', 'IsPadIndex')
0

	IS_MEMBER({group | role})
	Returns true or false (1 or 0) depending on whether or not the user is a member of the specified Windows NT group or SQL Server role. For example:
SELECT IS_MEMBER('db_owner') -> 0

	IS_SRVROLEMEMBER(role[, login])
	Returns true or false (1 or 0) depending on whether or not the user is a member of the specified server role. For example:
SELECT IS_SRVROLEMEMBER('sysadmin') -> 0

	ISDATE(expression)
	Validates whether a character string can be converted to DATETIME. For example:
SELECT ISDATE(NULL), ISDATE(GETDATE())
0 1

	ISNULL(check_expression, replacement_value)
	Returns the first argument if it is not NULL; otherwise, returns the second argument. For example:
SELECT ISNULL(NULL, 'NULL') -> 'NULL'

	ISNUMERIC(expression)
	Validates whether a character string can be converted to NUMERIC. For example:
SELECT ISNUMERIC('3.1415'), ISNUMERIC('IRK')
1 0

	LEFT(character_expression, integer_expression)
	Returns the leftmost integer_expression characters of character_expression. For example:
SELECT LEFT('Wet Paint', 3) -> 'Wet'

	LEN(string_expression)
	Returns the number of characters in the expression. For example:
SELECT LEN('Wet Paint') -> 9

	LOG(float_expression)
	Returns the natural logarithm. For example:
SELECT LOG(PI()) -> 1.1447298858494002

	LOG10(float_expression)
	Returns the base-10 logarithm. For example:
SELECT LOG10(PI()) -> 0.49714987269413385

	LTRIM(character_expression)
	Trims leading space characters. For example:
SELECT LTRIM(' beaucoup ') -> 'beaucoup '

	MONTH(date)
	Returns the month part of the date provided. For example:
SELECT MONTH(GETDATE()) -> 6

	NCHAR(integer_expression)
	Returns the UNICODE character with the given integer code. For example:
SELECT NCHAR(120) -> 'x'

	NEWID()
	Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:
SELECT NEWID() -> '32B35185-F55E-4FE0-B2C8-B57B35815C12'

	NULLIF(expression, expression)
	Returns NULL if the two specified expressions are equivalent. For example:
SELECT NULLIF(5, 5) -> NULL

	OBJECT_ID(object)
	Returns the object ID of object. For example:
SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 8

	OBJECT_NAME(object_id)
	Returns the object name of the object with the given object ID. For example:
SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 'authors'

	OBJECTPROPERTY(id, property)
	Returns the properties of objects in the current database. For example:
SELECT OBJECTPROPERTY (object_id('authors'),'ISTABLE') -> 1

	OPEN {{[GLOBAL] cursor_name} | cursor_variable_name}
	Opens a local or global cursor.

	OPENDATASOURCE(provider_name, init_string)
	Makes a connection to a data source without using a linked server name. For examples, refer to the "Loaders" section of the SQL Server User's Guide.

	OPENQUERY(linked_server, query)
	Queries a remote data source previously configured as a linked server. For an example, refer to the "Loaders" section of the SQL Server User's Guide.

	OPENROWSET(provider_name, {datasource, user_id, password | provider_string}, {[catalog.][schema.]object | query})
	Queries a remote data source without setting it up as a linked server.

	PARSENAME(object_name, object_piece)
	Returns the database name, owner name, server name, or object name for the object specified. object_piece is an integer between 1 and 4. For example:
SELECT PARSENAME('pubs..authors', 1) -> 'authors'
SELECT PARSENAME('pubs..authors', 2) -> NULL
SELECT PARSENAME('pubs..authors', 3) -> 'pubs'
SELECT PARSENAME('pubs..authors', 4) -> NULL

	PATINDEX(''%pattern%', expression)
	Returns the position of the first occurrence of a pattern in a string. For example:
SELECT PATINDEX('%Du%', 'Donald Duck') -> 8

	PERMISSIONS([object_id[, column]])
	Returns a numeric value representing a bitmap with the current user's permissions on the specified object or column. For example:
SELECT PERMISSIONS(OBJECT_ID('authors'))&8 -> 8

	PI()
	Returns the constant pi. For example:
SELECT 2*PI() -> 6.2831853071795862

	RADIANS(numeric_expression)
	Converts degrees to radians. For example:
SELECT RADIANS(90.0) -> 1.570796326794896600

	RAND([seed])
	Returns a pseudorandom FLOAT type value between seed and 1. For example:
SELECT RAND(PI()) -> 0.71362925915543995

	REPLICATE(character_expression, integer_expression)
	Repeats a string a number of times. For example:
SELECT REPLICATE('FOOBAR', 3) -> 'FOOBARFOOBARFOOBAR'

	REPLACE(string_expression1, string_expression2, string_expression3)
	Performs a search-and-replace on string_expression1, replacing each occurrence of string_expression2 with string_expression3. For example:
SELECT REPLACE('Donald Duck', 'Duck', 'Trump') -> 'Donald Trump'

	REVERSE(character_expression)
	Reverses the characters of a string. For example:
SELECT REVERSE('Donald Duck') -> 'kcuD dlanoD'

	RIGHT(character_expression, integer_expression)
	Returns the rightmost integer_expression characters of character_expression. For example:
SELECT RIGHT('Donald Duck', 4) -> 'Duck'

	ROUND(number, decimal[, function])
	Returns number rounded to decimal places to the right of the decimal point. Note that decimal, an integer, can be negative to round off digits to the left of the decimal point. If a nonzero integer is provided for function, the return value will be truncated; otherwise, the value is rounded. For example:
SELECT ROUND(PI(), 2) -> 3.1400000000000001

	ROWCOUNT_BIG()
	Returns the number of rows affected by the most recent query. (Same as @@ROWCOUNT, but returns a BIGINT type.) For example:
SELECT ROWCOUNT_BIG() -> 1

	RTRIM(character_expression)
	Trims trailing space characters from the expression. For example:
SELECT RTRIM(' beaucoup ') -> ' beaucoup'

	SIGN(numeric_expression)
	Returns −1 if the argument is negative, 0 if it is zero, and 1 if the argument is positive. For example:
SELECT SIGN(-PI()) -> −1.0

	SIN(number)
	Returns the sine of number, where number is in radians. For example:
SELECT SIN(0) -> 0.000000

	SOUNDEX(character_expression)
	Returns a four-character code based on how the argument string sounds. For example:
SELECT SOUNDEX('char') -> 'C600'

	SPACE(integer_expression)
	Returns a string consisting of a given number of space characters. For example:
SELECT SPACE(5) -> ' '

	STATS_DATE(table_id, index_id)
	Returns the date and time that index statistics were last updated. For example:
SELECT i.name, STATS_DATE(i.id, i.indid)FROM sysobjects o, sysindexes i
WHERE o.name = 'authors' AND o.id = i.id
UPKCL_auidind 2000-08-06 01:34:00.153
aunmind 2000-08-06 01:34:00.170

	STDEV(expression)
	Returns the standard deviation of the values in expression. For example:
SELECT STDEV(qty) FROM sales -> 16.409201831957116

	STDEVP(expression)
	Returns the standard deviation for the population of values in expression. For example:
SELECT STDEVP(qty) FROM sales -> 16.013741264834152

	STR(number[, length[, decimal]])
	Converts number to a character string with length length and decimal decimal places.

	STUFF(string1, start, length, string2)
	Replaces the length characters within string1, starting with the character in the start position, with those in string2. For example:
SELECT STUFF('Donald Duck', 8, 4, 'Trump') -> 'Donald Trump'

	SUBSTRING(string, start, length)
	Extracts length characters from string, starting at the character in the start position. For example:
SELECT SUBSTRING('Donald Duck', 8, 4) -> 'Duck'

	SUSER_ID([login])
	Returns the system user ID of a given login name. This function will always return NULL with SQL Server 2000 or later, so you should avoid using it.

	SUSER_SID([login])
	Returns the security ID (SID) for the current user, or for the specified login. The SID is retuned in binary format. For example:
SELECT SUSER_SID('montoyai')
0x68FC17A71010DE40B005BCF2E443B377

	SUSER_SNAME([server_user_sid])
	Returns the login name for the current user, or for the specified login SID. For example:
SELECT SUSER_SNAME() -> 'montoyai'

	TAN(number)
	Returns the tangent of number, where number is in radians. For example:
SELECT TAN(3.1415) -> −0.000093

	TEXTPTR(column)
	Returns a pointer to a TEXT, NTEXT, or IMAGE column in VARBINARY format. For example:
SELECT TEXTPTR(pr_info)FROM pub_info WHERE pub_id = '0736'ORDER BY pub_id
0xFEFF6F00000000005C00000001000100

	TEXTVALID(table.column, text_ptr)
	Returns true or false (1 or 0), depending on whether or not the provided pointer to a TEXT, NTEXT, or IMAGE column is valid. For example:
SELECT pub_id, 'Valid (if 1) Text data'
 = TEXTVALID('pub_info.logo', TEXTPTR(logo)) FROM pub_infoORDER BY pub_id
0736 1
0877 1
1389 1
1622 1
1756 1
9901 1
9952 1
9999 1

	TYPEPROPERTY(datatype, property)
	Returns information about datatype properties. The datatype argument can contain the name of any datatype, and property can be a string containing one of the following:
	Precision
	The precision of the datatype is the number of digits or characters that it can store.

	Scale
	The scale is the number of decimal places for a numeric datatype. A NULL value will be returned if datatype is not a numeric datatype.

For example:
SELECT TYPEPROPERTY('decimal', 'PRECISION') -> 38

	UNICODE(ncharacter_expression)
	Returns the UNICODE code point for the first character of the input parameter. For example:
SELECT UNICODE('Hello!') -> 72

	USER_ID([user])
	Returns the user ID for user in the current database. If user is omitted, the current user's ID will be returned. For example:
SELECT USER_ID() -> 2

	USER_NAME([id])
	Returns the username of the user identified by id or, if no ID is provided, of the current user. For example:
SELECT USER_NAME() -> 'montoyai'

	VAR(expression)
	Returns the statistical variance for the values represented by expression. For example:
SELECT VAR(qty) FROM sales -> 269.26190476190476

	VARP(expression)
	Returns the statistical variance for the population represented by all values of expression in a group. VARP is an aggregate function. For example:
SELECT VARP(qty) FROM sales -> 256.43990929705217

	YEAR(date)
	Returns an integer that is the YEAR part of the specified date. For example:
SELECT YEAR(CURRENT_TIMESTAMP) -> 2003

Appendix A. Shared and Platform-Specific Keywords

The following tables display the keywords in the ANSI standard, and in the four platform-specific implementations of SQL that are discussed in this book, with the Sybase Adaptive Server. The keyword tables appear in the following order:
	Shared keywords

	SQL2003 keywords

	MySQL keywords

	Oracle keywords

	PostgreSQL keywords

	SQL Server keywords

Table A-1. Shared keywords
	ADD
	ALL
	ALTER
	AND

	AS
	ASC
	BY
	CHECK

	COLUMN
	CREATE
	DATE
	DEFAULT

	DELETE
	DESC
	DROP
	FOR

	FROM
	IN
	INTO
	IS

	LIKE
	NOT
	NULL
	ON

	OR
	ORDER
	REVOKE
	SELECT

	SET
	TABLE
	THEN
	TO

	UNIQUE
	UPDATE
	WITH
	

Table A-2. SQL2003 keywords
	ABSOLUTE
	ACTION
	ADD
	ADMIN

	AFTER
	AGGREGATE
	ALIAS
	ALL

	ALLOCATE
	ALTER
	AND
	ANY

	ARE
	ARRAY
	AS
	ASC

	ASSERTION
	AT
	ATOMIC
	AUTHORIZATION

	BEFORE
	BEGIN
	BIGINT
	BINARY

	BIT
	BLOB
	BOOLEAN
	BOTH

	BREADTH
	BY
	CALL
	CASCADE

	CASCADED
	CASE
	CAST
	CATALOG

	CHAR
	CHARACTER
	CHECK
	CLASS

	CLOB
	CLOSE
	COLLATE
	COLLATION

	COLLECT
	COLUMN
	COMMIT
	COMPLETION

	CONDITION
	CONNECT
	CONNECTION
	CONSTRAINT

	CONSTRAINTS
	CONSTRUCTOR
	CONTAINS
	CONTINUE

	CORRESPONDING
	CREATE
	CROSS
	CUBE

	CURRENT
	CURRENT_DATE
	CURRENT_PATH
	CURRENT_ROLE

	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_USER
	CURSOR

	CYCLE
	DATA
	DATALINK
	DATE

	DAY
	DEALLOCATE
	DEC
	DECIMAL

	DECLARE
	DEFAULT
	DEFERRABLE
	DELETE

	DEPTH
	DEREF
	DESC
	DESCRIPTOR

	DESTRUCTOR
	DIAGNOSTICS
	DICTIONARY
	DISCONNECT

	DO
	DOMAIN
	DOUBLE
	DROP

	ELEMENT
	END-EXEC
	EQUALS
	ESCAPE

	EXCEPT
	EXCEPTION
	EXECUTE
	EXIT

	EXPAND
	EXPANDING
	FALSE
	FIRST

	FLOAT
	FOR
	FOREIGN
	FREE

	FROM
	FUNCTION
	FUSION
	GENERAL

	GET
	GLOBAL
	GOTO
	GROUP

	GROUPING
	HANDLER
	HASH
	HOUR

	IDENTITY
	IF
	IGNORE
	IMMEDIATE

	IN
	INDICATOR
	INITIALIZE
	INITIALLY

	INNER
	INOUT
	INPUT
	INSERT

	INT
	INTEGER
	INTERSECT
	INTERSECTION

	INTERVAL
	INTO
	IS
	ISOLATION

	ITERATE
	JOIN
	KEY
	LANGUAGE

	LARGE
	LAST
	LATERAL
	LEADING

	LEAVE
	LEFT
	LESS
	LEVEL

	LIKE
	LIMIT
	LOCAL
	LOCALTIME

	LOCALTIMESTAMP
	LOCATOR
	LOOP
	MATCH

	MEMBER
	MEETS
	MERGE
	MINUTE

	MODIFIES
	MODIFY
	MODULE
	MONTH

	MULTISET
	NAMES
	NATIONAL
	NATURAL

	NCHAR
	NCLOB
	NEW
	NEXT

	NO
	NONE
	NORMALIZE
	NOT

	NULL
	NUMERIC
	OBJECT
	OF

	OFF
	OLD
	ON
	ONLY

	OPEN
	OPERATION
	OPTION
	OR

	ORDER
	ORDINALITY
	OUT
	OUTER

	OUTPUT
	PAD
	PARAMETER
	PARAMETERS

	PARTIAL
	PATH
	PERIOD
	POSTFIX

	PRECEDES
	PRECISION
	PREFIX
	PREORDER

	PREPARE
	PRESERVE
	PRIMARY
	PRIOR

	PRIVILEGES
	PROCEDURE
	PUBLIC
	READ

	READS
	REAL
	RECURSIVE
	REDO

	REF
	REFERENCES
	REFERENCING
	RELATIVE

	REPEAT
	RESIGNAL
	RESTRICT
	RESULT

	RETURN
	RETURNS
	REVOKE
	RIGHT

	ROLE
	ROLLBACK
	ROLLUP
	ROUTINE

	ROW
	ROWS
	SAVEPOINT
	SCHEMA

	SCROLL
	SEARCH
	SECOND
	SECTION

	SELECT
	SEQUENCE
	SESSION
	SESSION_USER

	SET
	SETS
	SIGNAL
	SIZE

	SMALLINT
	SPECIFIC
	SPECIFICTYPE
	SQL

	SQLEXCEPTION
	SQLSTATE
	SQLWARNING
	START

	STATE
	STATIC
	STRUCTURE
	SUBMULTISET

	SUCCEEDS
	SUM
	SYSTEM_USER
	TABLE

	TABLESAMPLE
	TEMPORARY
	TERMINATE
	THAN

	THEN
	TIME
	TIMESTAMP
	TIMEZONE_HOUR

	TIMEZONE_MINUTE
	TO
	TRAILING
	TRANSACTION

	TRANSLATION
	TREAT
	TRIGGER
	TRUE

	UESCAPE
	UNDER
	UNDO
	UNION

	UNIQUE
	UNKNOWN
	UNTIL
	UPDATE

	USAGE
	USER
	USING
	VALUE

	VALUES
	VARCHAR
	VARIABLE
	VARYING

	VIEW
	WHEN
	WHENEVER
	WHERE

	WHILE
	WITH
	WRITE
	YEAR

	ZONE
	 	 	

Table A-3. MySQL keywords
	ACCESSIBLE
	ADD
	ALL
	ALTER

	ANALYZE
	AND
	AS
	ASC

	ASENSITIVE
	BEFORE
	BETWEEN
	BIGINT

	BINARY
	BLOB
	BOTH
	BY

	CALL
	CASCADE
	CASE
	CHANGE

	CHAR
	CHARACTER
	CHECK
	COLLATE

	COLUMN
	CONDITION
	CONSTRAINT
	CONTINUE

	CONVERT
	CREATE
	CROSS
	CURRENT_DATE

	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_USER
	CURSOR

	DATABASE
	DATABASES
	DAY_HOUR
	DAY_MICROSECOND

	DAY_MINUTE
	DAY_SECOND
	DEC
	DECIMAL

	DECLARE
	DEFAULT
	DELAYED
	DELETE

	DESC
	DESCRIBE
	DETERMINISTIC
	DISTINCT

	DISTINCTROW
	DIV
	DOUBLE
	DROP

	DUAL
	EACH
	ELSE
	ELSEIF

	ENCLOSED
	ESCAPED
	EXISTS
	EXIT

	EXPLAIN
	FALSE
	FETCH
	FLOAT

	FLOAT4
	FLOAT8
	FOR
	FORCE

	FOREIGN
	FROM
	FULLTEXT
	GRANT

	GROUP
	HAVING
	HIGH_PRIORITY
	HOUR_MICROSECOND

	HOUR_MINUTE
	HOUR_SECOND
	IF
	IGNORE

	IN
	INDEX
	INFILE
	INNER

	INOUT
	INSENSITIVE
	INSERT
	INT

	INT1
	INT2
	INT3
	INT4

	INT8
	INTEGER
	INTERVAL
	INTO

	IS
	ITERATE
	JOIN
	KEY

	KEYS
	KILL
	LEADING
	LEAVE

	LEFT
	LIKE
	LIMIT
	LINEAR

	LINES
	LOAD
	LOCALTIME
	LOCALTIMESTAMP

	LOCK
	LONG
	LONGBLOB
	LONGTEXT

	LOOP
	LOW_PRIORITY
	MASTER_SSL_VERIFY_SERVER_CERT
	MATCH

	MEDIUMBLOB
	MEDIUMINT
	MEDIUMTEXT
	MIDDLEINT

	MINUTE_MICROSECOND
	MINUTE_SECOND
	MOD
	MODIFIES

	NATURAL
	NO_WRITE_TO_BINLOG
	NOT
	NULL

	NUMERIC
	ON
	OPTIMIZE
	OPTION

	OPTIONALLY
	OR
	ORDER
	OUT

	OUTER
	OUTFILE
	PRECISION
	PRIMARY

	PROCEDURE
	PURGE
	RANGE
	READ

	READ_ONLY
	READ_WRITE
	READS
	REAL

	REFERENCES
	REGEXP
	RELEASE
	RENAME

	REPEAT
	REPLACE
	REQUIRE
	RESTRICT

	RETURN
	REVOKE
	RIGHT
	RLIKE

	SCHEMA
	SCHEMAS
	SECOND_MICROSECOND
	SELECT

	SENSITIVE
	SEPARATOR
	SET
	SHOW

	SMALLINT
	SPATIAL
	SPECIFIC
	SQL

	SQL_BIG_RESULT
	SQL_CALC_FOUND_ROWS
	SQL_SMALL_RESULT
	SQLEXCEPTION

	SQLSTATE
	SQLWARNING
	SSL
	STARTING

	STRAIGHT_JOIN
	TABLE
	TERMINATED
	THEN

	TINYBLOB
	TINYINT
	TINYTEXT
	TO

	TRAILING
	TRIGGER
	TRUE
	UNDO

	UNION
	UNIQUE
	UNLOCK
	UNSIGNED

	UPDATE
	USAGE
	USE
	USING

	UTC_DATE
	UTC_TIME
	UTC_TIMESTAMP
	VALUES

	VARBINARY
	VARCHAR
	VARCHARACTER
	VARYING

	WHEN
	WHERE
	WHILE
	WITH

	WRITE
	XOR
	YEAR_MONTH
	ZEROFILL

Table A-4. Oracle keywords
	ACCESS
	ADD
	ALL
	ALTER

	AND
	ANY
	AS
	ASC

	AUDIT
	BETWEEN
	BY
	CHAR

	CHECK
	CLUSTER
	COLUMN
	COMMENT

	COMPRESS
	CONNECT
	CREATE
	CURRENT

	DATE
	DECIMAL
	DEFAULT
	DELETE

	DESC
	DISTINCT
	DROP
	ELSE

	EXCLUSIVE
	EXISTS
	FILE
	FLOAT

	FOR
	FROM
	GRANT
	GROUP

	HAVING
	IDENTIFIED
	IMMEDIATE
	IN

	INCREMENT
	INDEX
	INITIAL
	INSERT

	INTEGER
	INTERSECT
	INTO
	IS

	LEVEL
	LIKE
	LOCK
	LONG

	MAXEXTENTS
	MINUS
	MLSLABEL
	MODE

	MODIFY
	NOAUDIT
	NOCOMPRESS
	NOT

	NOWAIT
	NULL
	NUMBER
	OF

	OFFLINE
	ON
	ONLINE
	OPTION

	OR
	ORDER
	PCTFREE
	PRIOR

	PRIVILEGES
	PUBLIC
	RAW
	RENAME

	RESOURCE
	REVOKE
	ROW
	ROWID

	ROWNUM
	ROWS
	SELECT
	SESSION

	SET
	SHARE
	SIZE
	SMALLINT

	START
	SUCCESSFUL
	SYNONYM
	SYSDATE

	TABLE
	THEN
	TO
	TRIGGER

	UID
	UNION
	UNIQUE
	UPDATE

	USER
	VALIDATE
	VALUES
	VARCHAR

Table A-5. PostgreSQL keywords
	ABORT
	ADD
	ALL
	ALLOCATE

	ALTER
	ANALYZE
	AND
	ANY

	ARE
	AS
	ASC
	ASSERTION

	AT
	AUTHORIZATION
	AVG
	BEGIN

	BETWEEN
	BINARY
	BIT
	BIT_LENGTH

	BOTH
	BY
	CASCADE
	CASCADED

	CASE
	CAST
	CATALOG
	CHAR

	CHAR_LENGTH
	CHARACTER
	CHARACTER_LENGTH
	CHECK

	CLOSE
	CLUSTER
	COALESCE
	COLLATE

	COLLATION
	COLUMN
	COMMIT
	CONNECT

	CONNECTION
	CONSTRAINT
	CONTINUE
	CONVERT

	COPY
	CORRESPONDING
	COUNT
	CREATE

	CROSS
	CURRENT
	CURRENT_DATE
	CURRENT_SESSION

	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_USER
	CURSOR

	DATE
	DEALLOCATE
	DEC
	DECIMAL

	DECLARE
	DEFAULT
	DELETE
	DESC

	DESCRIBE
	DESCRIPTOR
	DIAGNOSTICS
	DISCONNECT

	DISTINCT
	DO
	DOMAIN
	DROP

	ELSE
	END
	ESCAPE
	EXCEPT

	EXCEPTION
	EXEC
	EXECUTE
	EXISTS

	EXPLAIN
	EXTEND
	EXTERNAL
	EXTRACT

	FALSE
	FETCH
	FIRST
	FLOAT

	FOR
	FOREIGN
	FOUND
	FROM

	FULL
	GET
	GLOBAL
	GO

	GOTO
	GRANT
	GROUP
	HAVING

	IDENTITY
	IN
	INDICATOR
	INNER

	INPUT
	INSERT
	INTERSECT
	INTERVAL

	INTO
	IS
	JOIN
	LAST

	LEADING
	LEFT
	LIKE
	LISTEN

	LOAD
	LOCAL
	LOCK
	LOWER

	MAX
	MIN
	MODULE
	MOVE

	NAMES
	NATIONAL
	NATURAL
	NCHAR

	NEW
	NO
	NONE
	NOT

	NOTIFY
	NULL
	NULLIF
	NUMERIC

	OCTET_LENGTH
	OFFSET
	ON
	OPEN

	OR
	ORDER
	OUTER
	OUTPUT

	OVERLAPS
	PARTIAL
	POSITION
	PRECISION

	PREPARE
	PRESERVE
	PRIMARY
	PRIVILEGES

	PROCEDURE
	PUBLIC
	REFERENCES
	RESET

	REVOKE
	RIGHT
	ROLLBACK
	ROWS

	SCHEMA
	SECTION
	SELECT
	SESSION

	SESSION_USER
	SET
	SETOF
	SHOW

	SIZE
	SOME
	SQL
	SQLCODE

	SQLERROR
	SQLSTATE
	SUBSTRING
	SUM

	SYSTEM_USER
	TABLE
	TEMPORARY
	THEN

	TO
	TRAILING
	TRANSACTION
	TRANSLATE

	TRANSLATION
	TRIM
	TRUE
	UNION

	UNIQUE
	UNKNOWN
	UNLISTEN
	UNTIL

	UPDATE
	UPPER
	USAGE
	USER

	USING
	VACUUM
	VALUE
	VALUES

	VARCHAR
	VARYING
	VERBOSE
	VIEW

	WHEN
	WHENEVER
	WHERE
	WITH

	WORK
	WRITE
	 	

Table A-6. SQL Server keywords
	ADD
	ALL
	ALTER
	AND

	ANY
	AS
	ASC
	AUTHORIZATION

	BACKUP
	BEGIN
	BETWEEN
	BREAK

	BROWSE
	BULK
	BY
	CASCADE

	CASE
	CHECK
	CHECKPOINT
	CLOSE

	CLUSTERED
	COALESCE
	COLLATE
	COLUMN

	COMMIT
	COMPUTE
	CONSTRAINT
	CONTAINS

	CONTAINSTABLE
	CONTINUE
	CONVERT
	CREATE

	CROSS
	CURRENT
	CURRENT_DATE
	CURRENT_TIME

	CURRENT_TIMESTAMP
	CURRENT_USER
	CURSOR
	DATABASE

	DBCC
	DEALLOCATE
	DECLARE
	DEFAULT

	DELETE
	DENY
	DESC
	DISK

	DISTINCT
	DISTRIBUTED
	DOUBLE
	DROP

	DUMP
	ELSE
	END
	ERRLVL

	ESCAPE
	EXCEPT
	EXEC
	EXECUTE

	EXISTS
	EXIT
	EXTERNAL
	FETCH

	FILE
	FILLFACTOR
	FOR
	FOREIGN

	FREETEXT
	FREETEXTTABLE
	FROM
	FULL

	FUNCTION
	GOTO
	GRANT
	GROUP

	HAVING
	HOLDLOCK
	IDENTITY
	IDENTITY_INSERT

	IDENTITYCOL
	IF
	IN
	INDEX

	INNER
	INSERT
	INTERSECT
	INTO

	IS
	JOIN
	KEY
	KILL

	LEFT
	LIKE
	LINENO
	LOAD

	NATIONAL
	NOCHECK
	NONCLUSTERED
	NOT

	NULL
	NULLIF
	OF
	OFF

	OFFSETS
	ON
	OPEN
	OPENDATASOURCE

	OPENQUERY
	OPENROWSET
	OPENXML
	OPTION

	OR
	ORDER
	OUTER
	OVER

	PERCENT
	PIVOT
	PLAN
	PRECISION

	PRIMARY
	PRINT
	PROC
	PROCEDURE

	PUBLIC
	RAISERROR
	READ
	READTEXT

	RECONFIGURE
	REFERENCES
	REPLICATION
	RESTORE

	RESTRICT
	RETURN
	REVERT
	REVOKE

	RIGHT
	ROLLBACK
	ROWCOUNT
	ROWGUIDCOL

	RULE
	SAVE
	SCHEMA
	SECURITYAUDIT

	SELECT
	SESSION_USER
	SET
	SETUSER

	SHUTDOWN
	SOME
	STATISTICS
	SYSTEM_USER

	TABLE
	TABLESAMPLE
	TEXTSIZE
	THEN

	TO
	TOP
	TRAN
	TRANSACTION

	TRIGGER
	TRUNCATE
	TSEQUAL
	UNION

	UNIQUE
	UNPIVOT
	UPDATE
	UPDATETEXT

	USE
	USER
	VALUES
	VARYING

	VIEW
	WAITFOR
	WHEN
	WHERE

	WHILE
	WITH
	WRITETEXT
	

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	"A Relational Model of Data for Large Shared Data Banks" (Codd), The Relational Model and ANSI SQL

A
	abbreviations in identifiers, Naming conventions
	ABS function, Numeric Scalar Functions
	ABSTIME function, PostgreSQL, PostgreSQL-Supported Functions
	access control, NULLs (rule 3)
	ACOS function, MySQL, Oracle, and PostgreSQL, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL, Oracle, and PostgreSQL
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	ADDDATE function, MySQL, Platform-Specific Extensions, MySQL-Supported Functions
	+ (addition arithmetic operator), Arithmetic operators, System delimiters and operators
	addition arithmetic operator (+), Arithmetic operators, System delimiters and operators
	ADD_MONTHS function, Oracle, Oracle-Supported Functions
	AES_DECRYPT function, MySQL, MySQL-Supported Functions
	AES_ENCRYPT function, MySQL, MySQL-Supported Functions
	AGE function, PostgreSQL, PostgreSQL-Supported Functions
	aggregate functions, The GROUP BY clause, Window Functions, ANSI SQL Aggregate Functions, ANSI SQL Aggregate Functions, , , , , , , , , , , , , , , , , , Grouping or Windowing, , , , , Oracle-Supported Functions, Oracle-Supported Functions
		as window functions, Grouping or Windowing
	AVG, ANSI SQL Aggregate Functions
	CORR,
	COUNT,
	COVAR_POP,
	COVAR_SAMP,
	CUME_DIST, ,
	DENSE_RANK, ,
	MAX,
	MIN,
	PERCENTILE_CONT,
	PERCENTILE_DISC,
	PERCENT_RANK, ,
	RANK, ,
	REGR_,
	STDDEV_POP,
	STDDEV_SAMP,
	SUM, ANSI SQL Aggregate Functions
	VAR_POP, , Oracle-Supported Functions
	VAR_SAMP, , Oracle-Supported Functions

	aliases, Assignment operators,
		assigning, Assignment operators
	WHERE clause joins and,

	ALL operator, Logical operators, SQL Platform Support, ,
	ALTER DATABASE statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER DOMAIN statement, SQL Platform Support
	ALTER FUNCTION statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER INDEX statement, SQL Platform Support, , Oracle, PostgreSQL, SQL Server
		Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER METHOD statement, SQL Platform Support,
	ALTER PROCEDURE statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER ROLE statement, SQL Platform Support, Oracle, PostgreSQL, SQL Server
		Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER SCHEMA statement, SQL Platform Support,
	ALTER SESSION statement, Oracle,
	ALTER TABLE statement, SQL Platform Support, , MySQL, Partitioned tables, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Partitioned tables
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER TRIGGER statement, SQL Platform Support, , Oracle, PostgreSQL, SQL Server
		Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	ALTER TYPE statement, SQL Platform Support, , Oracle, PostgreSQL
		Oracle, Oracle
	PostgreSQL, PostgreSQL

	ALTER VIEW statement, SQL Platform Support, , MySQL, Oracle, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	SQL Server, SQL Server

	ampersand (&), bitwise AND operator, Arithmetic operators
	AND operator, Logical operators,
	ANY operator, Logical operators, SQL Platform Support, ,
	Any Type datatypes, Oracle, Oracle Datatypes
	APPENDCHILDXML function, Oracle, Oracle-Supported Functions
	APP_NAME function, SQL Server, SQL Server-Supported Functions
	AREA function, PostgreSQL, PostgreSQL-Supported Functions
	arithmetic operators, Arithmetic operators
	ARRAY_APPEND function, PostgreSQL, PostgreSQL-Supported Functions
	ARRAY_CAT function, PostgreSQL, PostgreSQL-Supported Functions
	ARRAY_DIMS function, PostgreSQL, PostgreSQL-Supported Functions
	ARRAY_LOWER function, PostgreSQL, PostgreSQL-Supported Functions
	ARRAY_PREPEND function, PostgreSQL, PostgreSQL-Supported Functions
	ARRAY_TO_STRING function, PostgreSQL, PostgreSQL-Supported Functions
	ARRAY_UPPER function, PostgreSQL, PostgreSQL-Supported Functions
	ASCII function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	ASCIISTR function, Oracle, Oracle-Supported Functions
	ASIN function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	assertions, Data structures (rules 1, 2, and 8)
	:= (assignment operator), Oracle, Arithmetic operators, Arithmetic operators
	assignment operator (:=), Oracle, Arithmetic operators
	assignment operator (=), Arithmetic operators
	asterisk (*), multiplication arithmetic operator, Arithmetic operators, System delimiters and operators
	@ (at sign), prefixing parameters, SQL Server,
	at sign (@), prefixing parameters, SQL Server,
	ATAN function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	ATAN2 function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	ATN2 function, SQL Server, SQL Server-Supported Functions
	AuthorizationID (user), NULLs (rule 3)
	AVG DISTINCT function,
	AVG function, , ANSI SQL Aggregate Functions

B
	BEGIN statement, PostgreSQL,
	BEGIN TRANSACTION statement, SQL Server,
	BENCHMARK function, MySQL, MySQL-Supported Functions
	BETWEEN operator, Logical operators, SQL Platform Support, ,
	BFILE datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	BFILENAME function, Oracle, Oracle-Supported Functions
	BIGINT datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	BIGSERIAL datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes, PostgreSQL Datatypes
	BIN function, MySQL, MySQL-Supported Functions
	BINARY datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	SQL Server, SQL Server Datatypes

	binary datatypes, SQL2003 and Platform-Specific Datatypes
	BINARY function, MySQL, MySQL-Supported Functions
	BINARY_CHECKSUM function, SQL Server, SQL Server-Supported Functions
	BINARY_DOUBLE datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	BINARY_FLOAT datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	Bindings:1999 section, SQL99, History of the SQL Standard
	BIN_TO_NUM function, Oracle, Oracle-Supported Functions
	BIT datatype, History of the SQL Standard, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		deleted from SQL99, History of the SQL Standard
	MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	BIT VARYING datatype, History of the SQL Standard, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
		deleted from SQL99, History of the SQL Standard
	PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes

	BITAND function, Oracle, Oracle-Supported Functions
	& (bitwise AND operator), Arithmetic operators
	bitwise AND operator (&), Arithmetic operators
	^ (bitwise exclusive OR operator), Arithmetic operators
	bitwise exclusive OR operator (^), Arithmetic operators
	~ (bitwise NOT unary operator), Unary operators
	bitwise NOT unary operator (~), Unary operators
	bitwise operators, Bitwise operators
	| (bitwise OR operator), Arithmetic operators
	bitwise OR operator (|), Arithmetic operators
	BIT_AND function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	BIT_COUNT function, MySQL, MySQL-Supported Functions
	BIT_LENGTH function, Numeric Scalar Functions
	BIT_OR function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	BIT_XOR function, MySQL, MySQL-Supported Functions
	BLOB datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes

	books and publications, The Relational Model and ANSI SQL
		"A Relational Model of Data for Large Shared Data Banks" (Codd), The Relational Model and ANSI SQL

	BOOL datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes

	BOOLEAN datatype, SQL2003 and Platform-Specific Datatypes, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	Boolean literals, Literals
	BOOL_AND function, PostgreSQL, PostgreSQL-Supported Functions
	BOOL_OR function, PostgreSQL, PostgreSQL-Supported Functions
	BOX datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	BOX function, PostgreSQL, PostgreSQL-Supported Functions
	[...] (brackets), enclosing delimited identifiers, Identifier rules
	brackets ([...]), Identifier rules,
		enclosing delimited identifiers, Identifier rules
	wildcard operator, matches in set, SQL Server,

	brackets, caret ([^...]), wildcard operator, matches not in set, SQL Server,
	BROADCAST function, PostgreSQL, PostgreSQL-Supported Functions
	BTRIM function, PostgreSQL, PostgreSQL-Supported Functions
	built-in scalar functions, Built-in Scalar Functions
	BYTEA datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes

C
	CALL statement, SQL Platform Support,
	Call-Level Interfaace (CLI), package containing, Supplemental Features Packages in the SQL3 Standard
	Cantor, Georg (set theory developed by), Codd's Rules in Action: Simple SELECT Examples
	CARDINALITY function, Oracle, Oracle-Supported Functions
	caret (^), bitwise exclusive OR operator, Arithmetic operators
	CASE function, CASE and CAST Functions
	case of identifiers, Naming conventions
	case sensitivity of identifiers, Identifier rules
	CAST function, CASE and CAST Functions
	catalogs, Data structures (rules 1, 2, and 8), Identifiers
	CBRT function, PostgreSQL, PostgreSQL-Supported Functions
	CEIL function, Numeric Scalar Functions
	CENTER function, PostgreSQL, PostgreSQL-Supported Functions
	CHAR datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	CHAR FOR BIT DATA datatype, SQL2003 and Platform-Specific Datatypes
	CHAR function, MySQL-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	CHAR VARYING datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, Constraints
		Oracle, Oracle Datatypes
	SQL Server, Constraints

	CHARACTER datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	character sets, Data structures (rules 1, 2, and 8)
	character string datatypes, SQL2003 and Platform-Specific Datatypes
	character string literals, Literals
	CHARACTER VARYING datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, SQL Server Datatypes, Constraints
		Oracle, Oracle Datatypes
	PostgreSQL, SQL Server Datatypes
	SQL Server, Constraints

	CHARACTER_LENGTH function, PostgreSQL, PostgreSQL-Supported Functions
	CHARINDEX function, SQL Server, SQL Server-Supported Functions
	CHARSET function, MySQL, MySQL-Supported Functions
	CHARTOROWID function, Oracle, Oracle-Supported Functions
	CHAR_LENGTH function, Numeric Scalar Functions, PostgreSQL-Supported Functions
	CHECK constraints, CHECK Constraints
	CHECKSUM function, SQL Server, SQL Server-Supported Functions
	CHECKSUM_AGG function, SQL Server, SQL Server-Supported Functions
	CHR function, Oracle, Oracle-Supported Functions
	CIDR datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	CIRCLE datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	CIRCLE function, PostgreSQL, PostgreSQL-Supported Functions
	CLI (Call-Level Interface), package containing, Supplemental Features Packages in the SQL3 Standard
	CLOB datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	CLOCK_TIMESTAMP function, PostgreSQL, PostgreSQL-Supported Functions
	CLOSE CURSOR statement, SQL Platform Support,
	clusters, Data structures (rules 1, 2, and 8), Identifiers
	CLUSTER_ID function, Oracle, Oracle-Supported Functions
	CLUSTER_PROBABILITY function, Oracle, Oracle-Supported Functions
	CLUSTER_SET function, Oracle, Oracle-Supported Functions
	COALESCE function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	Codd, E. F., Brand Hunt's Acknowledgments, The Relational Model and ANSI SQL, The Relational Model and ANSI SQL
		relational database rules by, The Relational Model and ANSI SQL
	relational database theory by, The Relational Model and ANSI SQL
	research by, leading to SEQUEL, Brand Hunt's Acknowledgments

	code examples, permission to use, Using Code Examples
	COERCIBLITY function, MySQL, MySQL-Supported Functions
	COLLATION function, MySQL, MySQL-Supported Functions
	collations, Data structures (rules 1, 2, and 8)
	COLLECT function, Oracle, Oracle-Supported Functions
	collection datatypes, SQL2003 and Platform-Specific Datatypes
	colon, equal sign (:=), assignment operator, Oracle, Arithmetic operators
	column-level constraints, Constraints
	columns, The Relational Model and ANSI SQL, Data structures (rules 1, 2, and 8), NULLs (rule 3), NULLs (rule 3), NULLs (rule 3), Keywords and Reserved Words, Constraints,
		assertions for, NULLs (rule 3)
	constraints for, NULLs (rule 3), Constraints,
	datatypes of, NULLs (rule 3), Keywords and Reserved Words

	COL_LENGTH function, SQL Server, SQL Server-Supported Functions
	COL_NAME function, SQL Server, SQL Server-Supported Functions
	comma (,), list item separator, System delimiters and operators
	comments, Keywords and Reserved Words
	/*...*/ (comments, multiline), Keywords and Reserved Words
	-- (comments, single-line), Keywords and Reserved Words
	COMMIT statement, SQL Platform Support,
	comparison operators, Arithmetic operators,
	COMPOSE function, Oracle, Oracle-Supported Functions
	composite (concatenated) indexes, ,
	COMPRESS function, MySQL, MySQL-Supported Functions
	compressed tables, Oracle,
	COMPUTE clause, SQL Server,
	CONCAT function, Oracle, Oracle-Supported Functions
	concatenated indexes, , Keywords
	|| (concatenation operator), String Functions and Operators
	concatenation operator (+), SQL Server, System delimiters and operators
	concatenation operator (||), String Functions and Operators
	+ (concatenation operator, SQL Server), System delimiters and operators
	CONCAT_WS function, MySQL, MySQL-Supported Functions
	CONNECT BY clause, Oracle,
	CONNECT statement, SQL Platform Support,
	connection statements, SQL3 Statement Classes
	CONNECTION_ID function, MySQL, MySQL-Supported Functions
	constraints, Data structures (rules 1, 2, and 8), Constraints, Constraints, Syntax, Syntax, FOREIGN KEY Constraints, UNIQUE Constraints, CHECK Constraints, Keywords
		CHECK, CHECK Constraints
	FOREIGN KEY, FOREIGN KEY Constraints
	PRIMARY KEY, Syntax
	scope of, Constraints
	syntax for, Syntax
	UNIQUE, UNIQUE Constraints

	CONTAINS function, SQL Server, SQL Server-Supported Functions
	CONTAINSTABLE function, SQL Server, SQL Server-Supported Functions
	control statements, SQL3 Statement Classes
	CONV function, MySQL, MySQL-Supported Functions
	CONVERT function, String Functions and Operators, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	SQL Server, SQL Server-Supported Functions

	CORR function, ANSI SQL Aggregate Functions
	correlated subqueries, ,
	CORR_K function, Oracle, Oracle-Supported Functions
	CORR_S function, Oracle, Oracle-Supported Functions
	COS function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	COSH function, Oracle, Oracle-Supported Functions
	COT function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	COUNT DISTINCT function,
	COUNT function, , ANSI SQL Aggregate Functions
	COUNT_BIG function, SQL Server, SQL Server-Supported Functions
	COVAR_POP function, ANSI SQL Aggregate Functions
	COVAR_SAMP function, ANSI SQL Aggregate Functions
	covering index, Rules at a Glance
	covering query, Rules at a Glance
	CRC32 function, MySQL, MySQL-Supported Functions
	CREATE DATABASE statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE DOMAIN statement, SQL Platform Support
	CREATE FUNCTION statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE INDEX statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE METHOD statement, SQL Platform Support, ,
	CREATE PROCEDURE statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE ROLE statement, SQL Platform Support,
	CREATE SCHEMA statement, SQL Platform Support,
	CREATE TABLE statement, SQL Platform Support, , MySQL, Partitioned tables, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Partitioned tables
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE TRIGGER statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE TYPE statement, SQL Platform Support, , Oracle, PostgreSQL, SQL Server
		Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	CREATE VIEW statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	cross joins, , , The JOIN clause
	CUBE subclause,
	CUBE_TABLE function, Oracle, Oracle-Supported Functions
	CUME_DIST function, ANSI SQL Aggregate Functions, List of Window Functions
	CURDATE function, MySQL, MySQL-Supported Functions
	CURRENT_DATE function, ANSI SQL Scalar Functions
	CURRENT_TIME function, ANSI SQL Scalar Functions
	CURRENT_TIMESTAMP function, ANSI SQL Scalar Functions
	CURRENT_USER function, ANSI SQL Scalar Functions
	CURRVAL function, PostgreSQL, PostgreSQL-Supported Functions
	CURSOR datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	cursors, , Keywords, Rules at a Glance
	CURTIME function, MySQL, MySQL-Supported Functions
	CV function, Oracle, Oracle-Supported Functions

D
	dashes (--), single-line comment, Keywords and Reserved Words
	Data Control Language (DCL), SQL3 Statement Classes
	Data Definition Language (DDL), SQL3 Statement Classes
	Data Manipulation Language (DML), SQL3 Statement Classes
	data statements, SQL3 Statement Classes
	data structures, The Relational Model and ANSI SQL, Data structures (rules 1, 2, and 8)
	database, Categories of Syntax, ,
		design of,
	normalization of,

	DATABASE function, MySQL, MySQL-Supported Functions
	database links, Oracle, Identifier rules
	DATABASEPROPERTYEX function, SQL Server, SQL Server-Supported Functions
	DATALENGTH function, SQL Server, SQL Server-Supported Functions
	datalink datatype, SQL2003 and Platform-Specific Datatypes
	DATALINK datatype, SQL2003 and Platform-Specific Datatypes
	DATAOBJ_TO_PARTITION function, Oracle, Oracle-Supported Functions
	datatypes, Data structures (rules 1, 2, and 8), SQL2003 and Platform-Specific Datatypes, SQL2003 and Platform-Specific Datatypes, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	platform comparisons of, SQL2003 and Platform-Specific Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes
	SQL2003, SQL2003 and Platform-Specific Datatypes

	date and time datatypes, Arithmetic operators, SQL2003 and Platform-Specific Datatypes
		arithmetic operations on, Arithmetic operators
	list of, SQL2003 and Platform-Specific Datatypes

	DATE datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	date literals, Literals
	DATEADD function, SQL Server, SQL Server-Supported Functions
	DATEDIFF function, SQL Server, SQL Server-Supported Functions
	DATENAME function, SQL Server, SQL Server-Supported Functions
	DATEPART function, SQL Server, SQL Server-Supported Functions
	DATETIME datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	SQL Server, SQL Server Datatypes

	DATETIME2 datatype, SQL Server, SQL Server Datatypes
	DATETIMEOFFSET datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	DATE_ADD function, MySQL, MySQL-Supported Functions
	DATE_FORMAT function, MySQL, MySQL-Supported Functions
	DATE_PART function, PostgreSQL, PostgreSQL-Supported Functions
	DATE_SUB function, MySQL, MySQL-Supported Functions
	DATE_TRUNC function, PostgreSQL, PostgreSQL-Supported Functions
	DAY function, SQL Server, SQL Server-Supported Functions
	DAYNAME function, MySQL, MySQL-Supported Functions
	DAYOFMONTH function, MySQL, MySQL-Supported Functions
	DAYOFWEEK function, MySQL, MySQL-Supported Functions
	DAYOFYEAR function, MySQL, MySQL-Supported Functions
	DBCLOB datatype, SQL2003 and Platform-Specific Datatypes
	DBTIMEZONE function, Oracle, Oracle-Supported Functions
	DB_ID function, SQL Server, SQL Server-Supported Functions
	DB_NAME function, SQL Server, SQL Server-Supported Functions
	DCL (Data Control Language), SQL3 Statement Classes
	DDL (Data Definition Language), SQL3 Statement Classes
	DEC datatype, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	DECIMAL datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	declarative processing, Set operations (rules 7 and 12)
	DECLARE CURSOR statement, SQL Platform Support, , Programming Tips and Gotchas, Oracle, PostgreSQL, SQL Server, PostgreSQL
		MySQL, Programming Tips and Gotchas
	Oracle, Oracle
	PostgreSQL, PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DECODE function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	DECOMPOSE function, Oracle, Oracle-Supported Functions
	DEFAULT function, MySQL, MySQL-Supported Functions
	DEGREES function, MySQL-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	DELETE privilege,
	DELETE statement, SQL Platform Support,
	DELETEXML function, Oracle, Oracle-Supported Functions
	delimited (quoted) identifiers, Identifier rules, System delimiters and operators
	delimiters, system, System delimiters and operators
	DENSE_RANK function, ANSI SQL Aggregate Functions, List of Window Functions
	DEPTH function, Oracle, Oracle-Supported Functions
	DEREF function, Oracle, Oracle-Supported Functions
	DES_DECRYPT function, MySQL, MySQL-Supported Functions
	DES_ENCRYPT function, MySQL, MySQL-Supported Functions
	deterministic functions, Types of Functions
	diagnostic statements, SQL3 Statement Classes
	dialects, SQL, SQL Dialects
	DIAMETER function, PostgreSQL, PostgreSQL-Supported Functions
	DIFFERENCE function, SQL Server, SQL Server-Supported Functions
	DISCONNECT statement, SQL Platform Support,
	distributed partitioned views, SQL Server,
	/ (division arithmetic operator), Arithmetic operators, System delimiters and operators
	division arithmetic operator (/), Arithmetic operators, System delimiters and operators
	DML (Data Manipulation Language), SQL3 Statement Classes
	DOUBLE datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	DOUBLE PRECISION datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	"..." (double quotes), enclosing delimited identifiers, Identifier rules, Identifier rules, System delimiters and operators
	double quotes ("..."), enclosing delimited identifiers, Identifier rules, Identifier rules, System delimiters and operators
	DROP DATABASE statement, SQL Platform Support, MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP DOMAIN statement, PostgreSQL, SQL Platform Support,
	DROP FUNCTION statement, SQL Platform Support, MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP INDEX statement, SQL Platform Support, MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP METHOD statement, SQL Platform Support
	DROP PROCEDURE statement, SQL Platform Support, MySQL, Oracle, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	SQL Server, SQL Server

	DROP ROLE statement, SQL Platform Support, Oracle, PostgreSQL, SQL Server
		Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP SCHEMA statement, SQL Platform Support, MySQL, PostgreSQL, SQL Server
		MySQL, MySQL
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP statements,
	DROP TABLE statement, SQL Platform Support, MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP TRIGGER statement, SQL Platform Support, MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP TYPE statement, SQL Platform Support, Oracle, PostgreSQL, SQL Server
		Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DROP VIEW statement, SQL Platform Support, MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	DUMP function, Oracle, Oracle-Supported Functions

E
	ELT function, MySQL, MySQL-Supported Functions
	EMPTY_BLOB function, Oracle, Oracle-Supported Functions
	EMPTY_CLOB function, Oracle, Oracle-Supported Functions
	ENCODE function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	ENCRYPT function, MySQL, MySQL-Supported Functions
	ENUM datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	equal sign (=), Assignment operators, Logical operators, System delimiters and operators
		assignment operator, Assignment operators
	comparison operator, Logical operators, System delimiters and operators

	= (equal to comparison operator), Logical operators, System delimiters and operators
	EVERY function, PostgreSQL, PostgreSQL-Supported Functions
	examples, permission to use, Daniel Kline's Acknowledgments
	EXCEPT set operator, SQL Platform Support,
	exclamation point, equals sign (!=), not equal to operator, Logical operators, System delimiters and operators
	exclamation point, left angle bracket (!<), not less than operator, Logical operators
	exclamation point, right angle bracket (!>), not greater than operator, Logical operators
	EXECUTE privilege,
	EXECUTE statement,
	EXISTS operator, Logical operators, SQL Platform Support, , ,
	EXISTSNODE function, Oracle, Oracle-Supported Functions
	EXP function, Numeric Scalar Functions
	explicit transactions,
	EXPORT_SET function, MySQL, MySQL-Supported Functions
	eXtensible Markup Language (XML), What's New in SQL2006, Supplemental Features Packages in the SQL3 Standard, SQL3 Statement Classes
		in SQL2006, What's New in SQL2006
	in SQL3, Supplemental Features Packages in the SQL3 Standard, SQL3 Statement Classes

	EXTRACT function, Numeric Scalar Functions, Oracle-Supported Functions
	EXTRACTVALUE function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

F
	FEATURE_ID function, Oracle, Oracle-Supported Functions
	FEATURE_SET function, Oracle, Oracle-Supported Functions
	FEATURE_VALUE function, Oracle, Oracle-Supported Functions
	FETCH statement, SQL Platform Support,
	FIELD function, MySQL, MySQL-Supported Functions
	FILEGROUPPROPERTY function, SQL Server, SQL Server-Supported Functions
	FILEGROUP_ID function, SQL Server, SQL Server-Supported Functions
	FILEGROUP_NAME function, SQL Server, SQL Server-Supported Functions
	FILEPROPERTY function, SQL Server, SQL Server-Supported Functions
	files (devices), SQL Server,
	FILE_ID function, SQL Server, SQL Server-Supported Functions
	FILE_NAME function, SQL Server, SQL Server-Supported Functions
	filtering checks, Rules at a Glance
	FIND_IN_SET function, MySQL, MySQL-Supported Functions
	FIRST function, Oracle, Oracle-Supported Functions
	FIRST_VALUE function, Oracle, Oracle-Supported Functions
	flashback queries, Oracle, ,
	FLOAT datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, SQL Server Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	SQL Server, SQL Server Datatypes, SQL Server Datatypes

	FLOAT function, PostgreSQL, PostgreSQL-Supported Functions
	FLOAT4 datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	FLOAT4 function, PostgreSQL, PostgreSQL-Supported Functions
	FLOAT8 datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	FLOOR function, Numeric Scalar Functions
	FOR XML clause, SQL Server,
	FOREIGN KEY constraints, FOREIGN KEY Constraints
	FORMAT function, MySQL, MySQL-Supported Functions
	FORMATMESSAGE function, SQL Server, SQL Server-Supported Functions
	Foundation:1999 section, SQL99, History of the SQL Standard
	FOUND_ROWS function, MySQL, MySQL-Supported Functions
	FREETEXT function, SQL Server, SQL Server-Supported Functions
	FREETEXTTABLE function, SQL Server, SQL Server-Supported Functions
	FROM_DAYS function, MySQL, MySQL-Supported Functions
	FROM_TZ function, Oracle, Oracle-Supported Functions
	FROM_UNIXTIME function, MySQL, MySQL-Supported Functions
	full joins, , ,
	FULLTEXTCATALOGPROPERTY function, SQL Server, SQL Server-Supported Functions
	FULLTEXTSERVICEPROPERTY function, SQL Server, SQL Server-Supported Functions
	functions, The GROUP BY clause, SQL Functions, Deterministic and Nondeterministic Functions, Deterministic and Nondeterministic Functions, Aggregate and Scalar Functions, Window Functions, Window Functions, ANSI SQL Window Functions, ANSI SQL Scalar Functions, Platform-Specific Extensions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		aggregate, The GROUP BY clause, Window Functions
	deterministic, Deterministic and Nondeterministic Functions
	MySQL supported, Platform-Specific Extensions
	nondeterministic, Deterministic and Nondeterministic Functions
	Oracle supported, Oracle-Supported Functions
	PostgreSQL supported, PostgreSQL-Supported Functions
	scalar, Aggregate and Scalar Functions, ANSI SQL Scalar Functions
	SQL Server supported, SQL Server-Supported Functions
	window, Window Functions, ANSI SQL Window Functions

G
	GEOGRAPHY datatype, SQL2003 and Platform-Specific Datatypes
	GEOMETRY datatype, SQL2003 and Platform-Specific Datatypes
	GET DIAGNOSTIC statement,
	GETANSINULL function, SQL Server, SQL Server-Supported Functions
	GETDATE function, SQL Server, SQL Server-Supported Functions
	GETUTCDATE function, SQL Server, SQL Server-Supported Functions
	GET_LOCK function, MySQL, MySQL-Supported Functions
	GRANT statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	GRAPHIC datatype, SQL2003 and Platform-Specific Datatypes
	> (greater than operator), Logical operators, System delimiters and operators
	greater than operator (>), Logical operators, System delimiters and operators
	>= (greater than or equal to operator), Logical operators, System delimiters and operators
	greater than or equal to operator (>=), Logical operators, System delimiters and operators
	GREATEST function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	GROUP BY clause, The GROUP BY clause
	GROUPING function, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	SQL Server, SQL Server-Supported Functions

	GROUPING SETS subclause,
	GROUPING_ID function, Oracle, Oracle-Supported Functions
	GROUP_CONCAT function, MySQL, MySQL-Supported Functions
	GROUP_ID function, Oracle, Oracle-Supported Functions

H
	HAVING clause, The HAVING clause
	heaps, Oracle,
	HEIGHT function, PostgreSQL, PostgreSQL-Supported Functions
	HEX function, MySQL, MySQL-Supported Functions
	HEXTORAW function, Oracle, Oracle-Supported Functions
	hierarchic queries, Oracle,
	HIERARCHYID datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	HOST function, PostgreSQL, PostgreSQL-Supported Functions
	HOST_ID function, SQL Server, SQL Server-Supported Functions
	HOST_NAME function, SQL Server, SQL Server-Supported Functions
	HOUR function, MySQL, MySQL-Supported Functions

I
	. (identifier qualifier separator), System delimiters and operators
	identifier qualifier separator (.), System delimiters and operators
	identifiers, Categories of Syntax, Categories of Syntax, Naming conventions, Naming conventions, Identifier rules, Identifier rules, Identifier rules, Identifier rules, Identifier rules, Identifier rules, Identifier rules, Identifier rules, Identifier rules, System delimiters and operators
		case sensitivity of, Identifier rules
	characters allowed in, Identifier rules
	delimited (quoted), Identifier rules, Identifier rules, Identifier rules, System delimiters and operators
	naming conventions for, Naming conventions
	reserved, Identifier rules
	rules for, Naming conventions, Identifier rules
	size of, Identifier rules
	uniqueness of, Identifier rules

	IDENTITY function, SQL Server, SQL Server-Supported Functions
	IDENT_CURRENT function, SQL Server, SQL Server-Supported Functions
	IDENT_INCR function, SQL Server, SQL Server-Supported Functions
	IDENT_SEED function, SQL Server, SQL Server-Supported Functions
	IF function, MySQL, MySQL-Supported Functions
	IFNULL function, MySQL, MySQL-Supported Functions
	IMAGE datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	implicit transactions,
	IN operator, Logical operators, SQL Platform Support, ,
	index-organized table (IOT), Oracle,
	indexes, , Keywords, Programming Tips and Gotchas
		concatenated, Programming Tips and Gotchas

	INDEXPROPERTY function, SQL Server, SQL Server-Supported Functions
	INDEX_COL function, SQL Server, SQL Server-Supported Functions
	INET datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	INET_ATON function, MySQL, MySQL-Supported Functions
	INET_NTOA function, MySQL, MySQL-Supported Functions
	INIT.ORA file, Oracle,
	INITCAP function, Oracle-Supported Functions, PostgreSQL-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	inner joins, , ,
	INSERT function, MySQL, MySQL-Supported Functions
	INSERT privilege,
	INSERT statement, SQL Platform Support, , MySQL, Oracle, PostgreSQL, PostgreSQL
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, PostgreSQL

	INSERTCHILDXML function, Oracle, Oracle-Supported Functions
	INSERTXMLBEFORE function, Oracle, Oracle-Supported Functions
	instances, Identifiers
	INSTR function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	INT datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	INT2 datatype, SQL2003 and Platform-Specific Datatypes
	INT4 datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	INT8 datatype, PostgreSQL, PostgreSQL Datatypes
	INTEGER datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes

	INTEGER function, PostgreSQL, PostgreSQL-Supported Functions
	INTERSECT set operator, SQL Platform Support, ,
	interval datatype, SQL2003 and Platform-Specific Datatypes
	INTERVAL datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	INTERVAL DAY TO SECOND datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	INTERVAL function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	INTERVAL YEAR TO MONTH datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	IOT (index-organized table), Oracle,
	IS NULL or IS NOT NULL condition,
	IS operator, SQL Platform Support,
	ISCLOSED function, PostgreSQL, PostgreSQL-Supported Functions
	ISDATE function, SQL Server, SQL Server-Supported Functions
	ISFINITE function, PostgreSQL, PostgreSQL-Supported Functions
	ISNULL function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	ISNUMERIC function, SQL Server, SQL Server-Supported Functions
	ISOPEN function, PostgreSQL, PostgreSQL-Supported Functions
	IS_FREE_LOCK function, MySQL, MySQL-Supported Functions
	IS_MEMBER function, SQL Server, SQL Server-Supported Functions
	IS_SRVROLEMEMBER function, SQL Server, SQL Server-Supported Functions
	IS_USED_LOCK function, MySQL, MySQL-Supported Functions
	ITERATION_NUMBER function, Oracle, Oracle-Supported Functions

J
	Java Routines and Types (JRT), package containing, SQL3 Statement Classes
	JOIN subclause, Codd's Rules in Action: Simple SELECT Examples, SQL Platform Support, , , MySQL, Oracle, PostgreSQL
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL

	joins, Codd's Rules in Action: Simple SELECT Examples, Codd's Rules in Action: Simple SELECT Examples, Codd's Rules in Action: Simple SELECT Examples, , , , , , , , , , , , , , , , , , Keywords, Rules at a Glance, Aliases and WHERE clause joins, The JOIN clause, The JOIN clause, The JOIN clause, Partitioned outer joins
		aliases and,
	cross joins, , , The JOIN clause
	full joins, , ,
	inner joins, , ,
	left joins, , , The JOIN clause
	natural joins,
	outer joins, Keywords, Rules at a Glance, The JOIN clause
	partitioned outer joins, Partitioned outer joins
	right joins, , ,
	straight joins,
	theta joins, Codd's Rules in Action: Simple SELECT Examples
	union joins,

	JRT (Java Routines and Types), package containing, SQL3 Statement Classes
	JUSTIFY_DAYS function, PostgreSQL, PostgreSQL-Supported Functions
	JUSTIFY_HOURS function, PostgreSQL, PostgreSQL-Supported Functions
	JUSTIFY_INTERVAL function, PostgreSQL, PostgreSQL-Supported Functions

K
	keywords, Categories of Syntax, Keywords and Reserved Words, SQL Server-Supported Functions, Shared and Platform-Specific Keywords, Shared and Platform-Specific Keywords, Shared and Platform-Specific Keywords, Shared and Platform-Specific Keywords, Shared and Platform-Specific Keywords
		MySQL, Shared and Platform-Specific Keywords
	Oracle, Shared and Platform-Specific Keywords
	shared, SQL Server-Supported Functions
	SQL Server, Shared and Platform-Specific Keywords
	SQL2003, Shared and Platform-Specific Keywords

L
	LAG function, Oracle, Oracle-Supported Functions
	LAST function, Oracle, Oracle-Supported Functions
	LAST_DAY function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	LAST_INSERT_ID function, MySQL, MySQL-Supported Functions
	LAST_VALUE function, Oracle, Oracle-Supported Functions
	LCASE function, MySQL, MySQL-Supported Functions
	LEAD function, Oracle, Oracle-Supported Functions
	LEAST function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	left angle bracket (<), less than operator, Logical operators, System delimiters and operators
	left angle bracket, equal sign (<=), less than or equal to operator, Logical operators, System delimiters and operators
	left angle bracket, right angle bracket (<>), not equal to operator, Logical operators, System delimiters and operators
	LEFT function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	left joins, , , The JOIN clause
	LEN function, SQL Server, SQL Server-Supported Functions
	LENGTH function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	LENGTHB function, Oracle, Oracle-Supported Functions
	< (less than operator), Logical operators, System delimiters and operators
	less than operator (<), Logical operators, System delimiters and operators
	<= (less than or equal to operator), Logical operators, System delimiters and operators
	less than or equal to operator (<=), Logical operators, System delimiters and operators
	levels of conformance, Levels of Conformance
	LIKE operator, Logical operators, SQL Platform Support, ,
	LINE datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	, (list item separator), System delimiters and operators
	list item separator (,), System delimiters and operators
	literals, Categories of Syntax, Literals
	LN function, Numeric Scalar Functions
	LNNVL function, Oracle, Oracle-Supported Functions
	LOAD_FILE function, MySQL, MySQL-Supported Functions
	local partitioned views, SQL Server,
	LOCALTIMESTAMP function, Oracle, Oracle-Supported Functions
	LOCATE function, MySQL, MySQL-Supported Functions
	LOG function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	LOG10 function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	LOG2 function, MySQL, MySQL-Supported Functions
	logfiles, Oracle, SQL Server
		Oracle, Oracle
	SQL Server, SQL Server

	logical operators, Logical operators
	LONG datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	LONG RAW datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	LONG VARCHAR datatype, SQL2003 and Platform-Specific Datatypes
	LONG VARGRAPHIC datatype, SQL2003 and Platform-Specific Datatypes
	LONGBLOB datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	LONGTEXT datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	LOWER function, String Functions and Operators
	LPAD function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	LSEG datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	LSEG function, PostgreSQL, PostgreSQL-Supported Functions
	LTRIM function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

M
	MACADDR datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	MAKEDATE function, MySQL, MySQL-Supported Functions
	MAKETIME function, MySQL, MySQL-Supported Functions
	MAKE_REF function, Oracle, Oracle-Supported Functions
	MAKE_SET function, MySQL, MySQL-Supported Functions
	Management of External Data (MED), package containing, Supplemental Features Packages in the SQL3 Standard
	MASKLEN function, PostgreSQL, PostgreSQL-Supported Functions
	MATCH function, MySQL, MySQL-Supported Functions
	MAX function, , ANSI SQL Aggregate Functions
	MD5 function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	MED (Management of External Data), package containing, Supplemental Features Packages in the SQL3 Standard
	MEDIAN function, Oracle, Oracle-Supported Functions
	MEDIUMBLOB datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	MEDIUMINT datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	MEDIUMTEXT datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	MERGE statement, SQL Platform Support,
	metadata, Metadata (rules 4 and 10)
	methods, , Rules at a Glance
	MICROSECOND function, MySQL, MySQL-Supported Functions
	MID function, MySQL, MySQL-Supported Functions, MySQL-Supported Functions
	MIN function, , ANSI SQL Aggregate Functions
	MINUS set operator, Oracle,
	minus sign (-), Arithmetic operators, Unary operators, System delimiters and operators, System delimiters and operators
		negative unary operator, Unary operators
	range indicator in CHECK constraint, System delimiters and operators
	subraction arithmetic operator, Arithmetic operators, System delimiters and operators

	MINUTE function, MySQL, MySQL-Supported Functions
	MOD function, Numeric Scalar Functions
	MODEL clause, Oracle,
	% (modula arithmetic operator), Arithmetic operators
	modula arithmetic operator (%), Arithmetic operators
	MONEY datatype, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	MONTH function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	MONTHNAME function, MySQL, MySQL-Supported Functions
	MONTHS_BETWEEN function, Oracle, Oracle-Supported Functions
	Multimedia datatypes, Oracle, Oracle Datatypes
	* (multiplication arithmetic operator), Arithmetic operators, System delimiters and operators
	multiplication arithmetic operator (*), Arithmetic operators, System delimiters and operators
	MySQL, Resources, Database Platforms Described in This Book, Identifier rules, Bitwise operators, MySQL Datatypes, SQL Platform Support, SQL Server, Shared and Platform-Specific Keywords
		ALL/ANY/SOME operators,
	ALTER DATABASE statement,
	ALTER FUNCTION statement,
	ALTER PROCEDURE statement,
	ALTER TABLE statement,
	ALTER VIEW statement,
	bitwise operators, Bitwise operators
	COMMIT statement,
	CREATE DATABASE statement,
	CREATE FUNCTION statement,
	CREATE INDEX statement,
	CREATE PROCEDURE statement,
	CREATE SCHEMA statement,
	CREATE TABLE statement,
	CREATE TRIGGER statement,
	CREATE VIEW statement,
	datatypes, MySQL Datatypes
	DECLARE CURSOR statement,
	DELETE statement,
	DROP statements,
	FETCH statement,
	functions, SQL Server
	GRANT statement,
	identifier rules, Identifier rules
	INSERT statement,
	JOIN subclause, ,
	keywords, Shared and Platform-Specific Keywords
	ORDER BY clause,
	RETURN statement,
	REVOKE statement,
	ROLLBACK statement,
	SELECT statement,
	SET statement,
	SET TRANSACTION statement,
	SQL statements, SQL Platform Support
	START TRANSACTION statement,
	straight joins,
	TRUNCATE TABLE stateme nt,
	UPDATE statement,
	website resources for, Resources

N
	naming conventions, Naming conventions
	NANVL function, Oracle, Oracle-Supported Functions
	NATIONAL CHAR datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, SQL Server Datatypes
		Oracle, Oracle Datatypes
	SQL Server, SQL Server Datatypes

	NATIONAL CHAR VARYING datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, SQL Server Datatypes
		Oracle, Oracle Datatypes
	SQL Server, SQL Server Datatypes

	NATIONAL CHARACTER datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, SQL Server Datatypes
		Oracle, Oracle Datatypes
	SQL Server, SQL Server Datatypes

	NATIONAL CHARACTER VARYING datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, SQL Server Datatypes
		Oracle, Oracle Datatypes
	SQL Server, SQL Server Datatypes

	NATIONAL TEXT datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	natural joins,
	NCHAR datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	SQL Server, SQL Server Datatypes

	NCHAR function, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	SQL Server, SQL Server-Supported Functions

	NCHAR VARYING datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	NCLOB datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	- (negative unary operator), Unary operators
	negative unary operator (-), Unary operators
	nested table subqueries, , SQL2003 Syntax
	nested tables, Oracle,
	NETMASK function, PostgreSQL, PostgreSQL-Supported Functions
	NETWORK function, PostgreSQL, PostgreSQL-Supported Functions
	NEWID function, SQL Server, SQL Server-Supported Functions
	NEW_TIME function, Oracle, Oracle-Supported Functions
	NEXTVAL function, PostgreSQL, PostgreSQL-Supported Functions
	NEXT_DAY function, Oracle, Oracle-Supported Functions
	NLSSORT function, Oracle, Oracle-Supported Functions
	NLS_CHARSET_DECL_LEN function, Oracle, Oracle-Supported Functions
	NLS_CHARSET_ID function, Oracle, Oracle-Supported Functions
	NLS_CHARSET_NAME function, Oracle, Oracle-Supported Functions
	NLS_INITCAP function, Oracle, Oracle-Supported Functions
	NLS_LOWER function, Oracle, Oracle-Supported Functions
	NLS_UPPER function, Oracle, Oracle-Supported Functions
	nondeterministic functions, Types of Functions
	normalization, The Relational Model and ANSI SQL,
	!= (not equal to operator), Logical operators, Logical operators, System delimiters and operators, System delimiters and operators
	not equal to operator (!=), Logical operators
	not equal to operator (<>), Logical operators, System delimiters and operators
	!> (not greater than operator), Logical operators
	not greater than operator (!>), Logical operators
	!< (not less than operator), Logical operators
	not less than operator (!<), Logical operators
	NOT operator, Logical operators,
	NOW function, ANSI SQL Scalar Functions, CASE and CAST Functions, MySQL-Supported Functions
	NPOINTS function, PostgreSQL, PostgreSQL-Supported Functions
	NTEXT datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	NTILE function, Oracle, Oracle-Supported Functions
	NULL values, NULLs (rule 3)
	NULLIF function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	NUMBER datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	NUMERIC datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes, SQL Server Datatypes

	numeric datatypes, SQL2003 and Platform-Specific Datatypes
	numeric functions, What's New in SQL2003 (SQL3), Numeric Scalar Functions
	numeric literals, Literals
	NUMTODSINTERVAL function, Oracle, Oracle-Supported Functions
	NUMTOYMINTERVAL function, Oracle, Oracle-Supported Functions
	NVARCHAR datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	SQL Server, SQL Server Datatypes

	NVARCHAR2 datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	NVL function, Oracle, Oracle-Supported Functions
	NVL2 function, Oracle, Oracle-Supported Functions

O
	Object Language Binding (OBJ), package containing, Supplemental Features Packages in the SQL3 Standard
	OBJECTPROPERTY function, SQL Server, SQL Server-Supported Functions
	objects, Data structures (rules 1, 2, and 8), Categories of Syntax
	OBJECT_ID function, SQL Server, SQL Server-Supported Functions
	OBJECT_NAME function, SQL Server, SQL Server-Supported Functions
	OCT function, MySQL, MySQL-Supported Functions
	OCTET_LENGTH function, Numeric Scalar Functions
	OID datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	OLAP (Online Analytical Processing) functions, Levels of Conformance
	OLD_PASSWORD function, MySQL, MySQL-Supported Functions
	Online Analytical Processing (OLAP) functions, Levels of Conformance
	OPEN function, SQL Server, SQL Server-Supported Functions
	open source movement, How This Book Is Organized
	OPEN statement, SQL Platform Support,
	OPENDATASOURCE function, SQL Server, SQL Server-Supported Functions
	OPENQUERY function, SQL Server, SQL Server-Supported Functions
	OPENROWSET function, SQL Server, SQL Server-Supported Functions
	operators, Categories of Syntax, Operators, Arithmetic operators, Arithmetic operators, Arithmetic operators, Bitwise operators, Logical operators, Unary operators, Operator precedence, System delimiters and operators, System delimiters and operators, , , , , , , , String Functions and Operators
		ALL/ANY/SOME operators,
	arithmetic operators, Arithmetic operators
	assignment operators, Arithmetic operators
	BETWEEN operator,
	bitwise operators, Bitwise operators
	comparison operators, Arithmetic operators
	concatenation operator (||), String Functions and Operators
	in WHERE clause,
	logical operators, Logical operators
	precedence for, Unary operators
	unary operators, Operator precedence
	wildcard operator (%), matches any string, System delimiters and operators,
	wildcard operator ([...]), matches in set,
	wildcard operator ([^...]), matches not in set,
	wildcard operator (_), matches any character,

	OR operator, Logical operators,
	Oracle, Using Code Examples, Database Platforms Described in This Book, Identifier rules, Identifier rules, Arithmetic operators, Oracle Datatypes, Oracle Datatypes, SQL Platform Support, Oracle, Oracle, Oracle nested tables, Oracle compressed tables, Organized tables: heaps, IOTs, and external tables, Oracle, Oracle, Partitioned outer joins, Flashback queries, The MODEL clause, MySQL, Oracle's Window Syntax, Oracle-Supported Functions, Shared and Platform-Specific Keywords
		ALL/ANY/SOME operators,
	ALTER DATABASE statement,
	ALTER FUNCTION statement,
	ALTER INDEX statement,
	ALTER PROCEDURE statement,
	ALTER ROLE statement,
	ALTER SESSION statement,
	ALTER TABLE statement,
	ALTER TRIGGER statement,
	ALTER TYPE statement,
	ALTER VIEW statement,
	assignment operator (:=), Arithmetic operators
	basics, Oracle
	CALL statement,
	COMMIT statement,
	compressed tables, Oracle compressed tables
	CONNECT BY clause,
	CONNECT statement,
	CREATE DATABASE statement,
	CREATE FUNCTION statement,
	CREATE INDEX statement,
	CREATE PROCEDURE statement,
	CREATE ROLE statement,
	CREATE SCHEMA statement,
	CREATE TABLE statement,
	CREATE TRIGGER statement,
	CREATE TYPE statement,
	CREATE VIEW statement,
	database links, Identifier rules
	datatypes, Oracle Datatypes
	DECLARE CURSOR statement,
	DELETE statement,
	DISCONNECT statement,
	DROP statements,
	FETCH statement,
	flashback queries, , Flashback queries
	functions, Oracle-Supported Functions
	GRANT statement,
	heaps, Organized tables: heaps, IOTs, and external tables
	hierarchic queries,
	identifier rules, Identifier rules
	index-organized table (IOT),
	INIT.ORA file,
	INSERT statement, Oracle
	INTERSECT operator,
	JOIN subclause, ,
	keywords, Shared and Platform-Specific Keywords
	LIKE operator,
	logfiles, Oracle
	MERGE statement,
	MINUS set operator,
	MODEL clause, The MODEL clause
	nested tables, Oracle nested tables
	OPEN statement,
	ORDER BY clause,
	organized tables,
	PARTITION clause,
	partitioned outer joins, Partitioned outer joins
	partitioned tables,
	primary databases,
	RETURN statement,
	REVOKE statement,
	ROLLBACK statement,
	SELECT statement,
	SET CONSTRAINT statement,
	SET ROLE statement,
	SET TIME ZONE statement,
	SET TRANSACTION statement,
	spatial data, Oracle Datatypes
	SQL statements, SQL Platform Support
	standby databases,
	subqueries, MySQL
	system privileges, Oracle
	TRUNCATE TABLE statement,
	UNION set operator,
	UPDATE statement,
	website resources for, Using Code Examples
	window function syntax, Oracle's Window Syntax
	XMLType tables,

	ORA_HASH function, Oracle, Oracle-Supported Functions
	ORD function, MySQL, MySQL-Supported Functions
	ORDER BY clause, SQL Platform Support, , The ORDER BY clause
	organized tables, Oracle,
	outer joins, Keywords, Rules at a Glance, The JOIN clause
	OVERLAY function, String Functions and Operators

P
	(...) (parentheses), affecting operator precedence, Unary operators, System delimiters and operators
	parentheses ((...)), affecting opeator precedence, Unary operators, System delimiters and operators
	PARSENAME function, SQL Server, SQL Server-Supported Functions
	PARTITION clause, Oracle,
	partitioned outer joins, Oracle,
	partitioned tables, Oracle,
	partitioned views, SQL Server,
	partitioning clause, Partitioning
	PASSWORD function, MySQL, MySQL-Supported Functions
	PATH datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	PATH function, Oracle-Supported Functions, PostgreSQL-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	PATINDEX function, SQL Server, SQL Server-Supported Functions
	PCLOSE function, PostgreSQL, PostgreSQL-Supported Functions
	percent sign (%), Arithmetic operators, System delimiters and operators,
		modula arithmetic operator, Arithmetic operators
	wildcard operator, matches any string, System delimiters and operators,

	PERCENTILE_CONT function, ANSI SQL Aggregate Functions
	PERCENTILE_DISC function, ANSI SQL Aggregate Functions
	PERCENT_RANK function, ANSI SQL Aggregate Functions, List of Window Functions
	period (.), identifier qualifier separator, System delimiters and operators
	PERIOD_ADD function, MySQL, MySQL-Supported Functions
	PERIOD_DIFF function, MySQL, MySQL-Supported Functions
	permissions, NULLs (rule 3)
	PERMISSIONS function, SQL Server, SQL Server-Supported Functions
	Persistent Stored Modules (PSM), package containing, Supplemental Features Packages in the SQL3 Standard, SQL Dialects
	PG_CONNECT statement, PostgreSQL,
	PI function, MySQL-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	PL/pgSQL, SQL Dialects
	PL/SQL, SQL Dialects
	platform comparisons, SQL2003 and Platform-Specific Datatypes, SQL Platform Support
		datatypes, SQL2003 and Platform-Specific Datatypes
	SQL statements, SQL Platform Support

	platforms included in this book, Database Platforms Described in This Book
	plus sign (+), Arithmetic operators, Unary operators, System delimiters and operators, System delimiters and operators
		addition arithmetic operator, Arithmetic operators, System delimiters and operators
	concatenation operator, SQL Server, System delimiters and operators
	positive unary operator, Unary operators

	POINT datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	POINT function, PostgreSQL, PostgreSQL-Supported Functions
	POLYGON datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	POLYGON function, PostgreSQL, PostgreSQL-Supported Functions
	POPEN function, PostgreSQL, PostgreSQL-Supported Functions
	POSITION function, Numeric Scalar Functions, MySQL-Supported Functions
	positional deletes,
	+ (positive unary operator), Unary operators
	positive unary operator (+), Unary operators
	PostgreSQL, Resources, Database Platforms Described in This Book, Identifier rules, Bitwise operators, PostgreSQL Datatypes, SQL Platform Support, MySQL, PostgreSQL-Supported Functions, Shared and Platform-Specific Keywords
		ALTER DATABASE statement,
	ALTER FUNCTION statement,
	ALTER INDEX statement,
	ALTER PROCEDURE statement,
	ALTER ROLE statement,
	ALTER SCHEMA statement,
	ALTER TABLE statement,
	ALTER TRIGGER statement,
	ALTER TYPE statement,
	BEGIN statement,
	bitwise operators, Bitwise operators
	CLOSE CURSOR statement,
	COMMIT statement,
	CREATE DATABASE statement,
	CREATE FUNCTION statement,
	CREATE INDEX statement,
	CREATE PROCEDURE statement,
	CREATE ROLE statement,
	CREATE SCHEMA statement,
	CREATE TABLE statement,
	CREATE TRIGGER statement,
	CREATE TYPE statement,
	CREATE VIEW statement,
	datatypes, PostgreSQL Datatypes
	DECLARE CURSOR statement,
	DELETE statement,
	DROP statements,
	EXCEPT set operator,
	FETCH statement,
	functions, PostgreSQL-Supported Functions
	GRANT statement,
	identifier rules, Identifier rules
	INSERT statement,
	INTERSECT operator,
	keywords, Shared and Platform-Specific Keywords
	LIKE operator,
	ORDER BY clause,
	PG_CONNECT statement,
	RETURN statement,
	REVOKE statement,
	ROLLBACK statement,
	SELECT statement,
	SET CONSTRAINT statement,
	SET SESSION AUTHORIZATION statement,
	SET statement,
	SET TIME ZONE statement,
	SET TRANSACTION statement,
	SPI_CONNECT statement,
	SQL statements, SQL Platform Support
	subqueries, MySQL
	TRUNCATE TABLE statement,
	UNION set operator,
	UPDATE statement,
	website resources for, Resources

	# (pound symbol), ,
		prefixing temporary procedures, SQL Server,
	prefixing temporary tables, SQL Server,

	pound symbol (#), ,
		prefixing temporary procedures, SQL Server,
	prefixing temporary tables, SQL Server,

	POW function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	POWER function, Numeric Scalar Functions, MySQL-Supported Functions
	POWERMULTISET function, Oracle, Oracle-Supported Functions
	POWERMULTISET_BY_CARDINALITY function, Oracle, Oracle-Supported Functions
	PREDICTION_ functions, Oracle, Oracle-Supported Functions
	prefixes for identifiers, Naming conventions
	PRESENTNNV function, Oracle, Oracle-Supported Functions
	PRESENTV function, Oracle, Oracle-Supported Functions
	PREVIOUS function, Oracle, Oracle-Supported Functions
	primary databases, Oracle,
	PRIMARY KEY constraints, PRIMARY KEY Constraints
	privileges, Keywords
		list of, Keywords

	procedural programming, Set operations (rules 7 and 12)
	projections, Codd's Rules in Action: Simple SELECT Examples
	PSM (Persistent Stored Modules), package containing, Supplemental Features Packages in the SQL3 Standard, SQL Dialects

Q
	QUARTER function, MySQL, MySQL-Supported Functions
	QUOTE function, MySQL, MySQL-Supported Functions
	QUOTE_IDENT function, PostgreSQL, PostgreSQL-Supported Functions
	QUOTE_LITERAL function, PostgreSQL, PostgreSQL-Supported Functions

R
	RADIANS function, MySQL-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	RADIUS function, PostgreSQL, PostgreSQL-Supported Functions
	RAND function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	RANDOM function, PostgreSQL, PostgreSQL-Supported Functions
	- (range indicator in CHECK constraint), System delimiters and operators
	range indicator in CHECK constraint (-), System delimiters and operators
	RANK function, ANSI SQL Aggregate Functions, List of Window Functions
	RATIO_TO_REPORT function, Oracle, Oracle-Supported Functions
	RAW datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	RAWTOHEX function, Oracle, Oracle-Supported Functions
	RAWTONHEX function, Oracle, Oracle-Supported Functions
	RDBMS (Relational Database Management System), The Relational Model and ANSI SQL
	REAL datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	records (rows), The Relational Model and ANSI SQL, Data structures (rules 1, 2, and 8)
	REF function, Oracle, Oracle-Supported Functions
	REFERENCES privilege,
	REFTOHEX function, Oracle, Oracle-Supported Functions
	REGEXP function, MySQL, MySQL-Supported Functions
	REGEXP_INSTR function, Oracle, Oracle-Supported Functions
	REGEXP_MATCHES function, PostgreSQL, PostgreSQL-Supported Functions
	REGEXP_REPLACE function, Oracle-Supported Functions, PostgreSQL-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	REGEXP_SPLIT_TO_ARRAY function, PostgreSQL, PostgreSQL-Supported Functions
	REGEXP_SPLIT_TO_TABLE function, PostgreSQL, PostgreSQL-Supported Functions
	REGEXP_SUBSTR function, Oracle, Oracle-Supported Functions
	REGR_ functions, ANSI SQL Aggregate Functions
	Relational Database Management System (RDBMS), The Relational Model and ANSI SQL
	relational databases, Brand Hunt's Acknowledgments, The Relational Model and ANSI SQL
		history of, Brand Hunt's Acknowledgments
	rules of, The Relational Model and ANSI SQL

	RELEASE SAVEPOINT statement, SQL Platform Support,
	RELEASE_LOCK function, MySQL, MySQL-Supported Functions
	RELTIME function, PostgreSQL, PostgreSQL-Supported Functions
	REMAINDER function, Oracle, Oracle-Supported Functions
	REPEAT function, MySQL, MySQL-Supported Functions
	REPLACE function, MySQL-Supported Functions, Oracle-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	SQL Server, SQL Server-Supported Functions

	REPLICATE function, SQL Server, SQL Server-Supported Functions
	reserved identifiers, Identifier rules
	reserved words, Categories of Syntax, Keywords and Reserved Words
	RETURN statement, SQL Platform Support,
	REVERSE function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	REVOKE statement, SQL Platform Support,
	right angle bracket (>), greater than operator, Logical operators, System delimiters and operators
	right angle bracket, equal sign (>=), greater than or equal to operator, Logical operators, System delimiters and operators
	RIGHT function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	right joins, , ,
	RLIKE function, MySQL, MySQL-Supported Functions
	roles, Keywords
	ROLLBACK statement, SQL Platform Support,
	ROLLUP subclause,
	ROUND function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	row processing, The language (rules 5 and 11)
	ROWCOUNT_BIG function, SQL Server, SQL Server-Supported Functions
	ROWID datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	ROWIDTOCHAR function, Oracle, Oracle-Supported Functions
	ROWIDTONCHAR function, Oracle, Oracle-Supported Functions
	ROWVERSION datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	ROW_COUNT function, MySQL, MySQL-Supported Functions
	ROW_NUMBER function, List of Window Functions
	RPAD function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	RTRIM function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

S
	sampling, Levels of Conformance
	SAVE statement, SQL Server,
	SAVEPOINT statement, SQL Platform Support,
	scalar aggregates, The GROUP BY clause
	scalar functions, Aggregate and Scalar Functions, ANSI SQL Scalar Functions, ANSI SQL Scalar Functions, Built-in Scalar Functions, Built-in Scalar Functions, Built-in Scalar Functions, Built-in Scalar Functions, Built-in Scalar Functions, Built-in Scalar Functions, Built-in Scalar Functions, MySQL, PostgreSQL and SQL Server, CASE and CAST Functions, , Numeric Scalar Functions, Numeric Scalar Functions, , , , , , , , , , , , , , String Functions and Operators, , , , , , MySQL, Oracle, and SQL Server,
		ABS, Numeric Scalar Functions
	BIT_LENGTH,
	built-in, ANSI SQL Scalar Functions
	CASE, CASE and CAST Functions
	CAST,
	CEIL,
	CHAR_LENGTH,
	CONVERT,
	CURRENT_DATE, Built-in Scalar Functions
	CURRENT_TIME, Built-in Scalar Functions
	CURRENT_TIMESTAMP, Built-in Scalar Functions
	CURRENT_USER, Built-in Scalar Functions
	EXP,
	EXTRACT,
	FLOOR,
	LN,
	LOWER,
	MOD,
	NOW, MySQL, PostgreSQL and SQL Server
	numeric, Numeric Scalar Functions
	OCTET_LENGTH,
	OVERLAY,
	POSITION,
	POWER,
	SESSION_USER, Built-in Scalar Functions
	SQRT,
	string, String Functions and Operators
	SUBSTRING, MySQL, Oracle, and SQL Server
	SYSTEM_USER, Built-in Scalar Functions
	TRANSLATE,
	TRIM,
	UPPER,
	USER, Built-in Scalar Functions
	WIDTH_BUCKET,

	scalar subqueries, ,
	SCHEMA function, MySQL, MySQL-Supported Functions
	schema statements, SQL3 Statement Classes
	schemas, Data structures (rules 1, 2, and 8), Identifiers, , Programming Tips and Gotchas
	Schemata package, History of the SQL Standard, Supplemental Features Packages in the SQL3 Standard
	SCN_TO_TIMESTAMP function, Oracle, Oracle-Supported Functions
	search deletes,
	SECOND function, MySQL, MySQL-Supported Functions
	SEC_TO_TIME function, MySQL, MySQL-Supported Functions
	SELECT clause, Codd's Rules in Action: Simple SELECT Examples
	SELECT privilege,
	SELECT statement, Codd's Rules in Action: Simple SELECT Examples, Codd's Rules in Action: Simple SELECT Examples, SQL Platform Support, SQL Platform Support, SQL Platform Support, , , , , The GROUP BY clause, The HAVING clause, The ORDER BY clause, Programming Tips and Gotchas, Oracle, PostgreSQL, SQL Server
		Codd's rules in, examples of, Codd's Rules in Action: Simple SELECT Examples
	GROUP BY clause, The GROUP BY clause
	HAVING clause, The HAVING clause
	JOIN subclause, Codd's Rules in Action: Simple SELECT Examples, SQL Platform Support, ,
	MySQL, Programming Tips and Gotchas
	Oracle, Oracle
	ORDER BY clause, SQL Platform Support, , The ORDER BY clause
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	selections, Codd's Rules in Action: Simple SELECT Examples, Codd's Rules in Action: Simple SELECT Examples
	SEQUEL (Structured English Query Language), Brand Hunt's Acknowledgments
	SERIAL datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes

	SERIAL4 datatype, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	SERIAL8 datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	session statements, SQL3 Statement Classes
	sessions, Keywords
	SESSIONTIMEZONE function, Oracle, Oracle-Supported Functions
	SESSION_USER function, ANSI SQL Scalar Functions, MySQL-Supported Functions, MySQL-Supported Functions
	SET AUTHORIZATION statement, SQL Platform Support
	SET CONNECTION statement, SQL Platform Support,
	SET CONSTRAINT statement, SQL Platform Support,
	SET datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	SET function, Oracle, Oracle-Supported Functions
	set operations, The language (rules 5 and 11)
	set operators, , , Programming Tips and Gotchas, Programming Tips and Gotchas, ,
		EXCEPT,
	INTERSECT, Programming Tips and Gotchas,
	MINUS, Oracle,
	UNION, Programming Tips and Gotchas,

	SET PATH statement, SQL Platform Support,
	SET ROLE statement, Oracle, SQL Platform Support,
	SET SCHEMA statement, SQL Platform Support,
	SET SESSION AUTHORIZATION statement, PostgreSQL,
	SET statement, SQL Platform Support,
	SET TIME ZONE statement, SQL Platform Support,
	SET TRANSACTION statement, ,
	SETSEED function, PostgreSQL, PostgreSQL-Supported Functions
	SETVAL function, PostgreSQL, PostgreSQL-Supported Functions
	SET_MASKLEN function, PostgreSQL, PostgreSQL-Supported Functions
	SHA function, MySQL, MySQL-Supported Functions
	SHA1 function, MySQL, MySQL-Supported Functions
	SIGN function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	SIN function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	'...' (single quotes), Identifier rules, Literals, System delimiters and operators
		enclosing delimited identifiers, Identifier rules
	enclosing string literals, Literals, System delimiters and operators

	single quotes ('...'), Identifier rules, Literals, System delimiters and operators
		enclosing delimited identifiers, Identifier rules
	enclosing string literals, Literals, System delimiters and operators

	SINH function, Oracle, Oracle-Supported Functions
	slash (/), division arithmetic operator, Arithmetic operators, System delimiters and operators
	slash, asterisk (/*...*/), enclosing multiline comments, Keywords and Reserved Words
	SLEEP function, MySQL, MySQL-Supported Functions
	SMALLDATETIME datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	SMALLINT datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	SMALLMONEY datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	SOME operator, Logical operators, SQL Platform Support, ,
	SOUNDEX function, MySQL-Supported Functions, Oracle-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	SQL Server, SQL Server-Supported Functions

	SPACE function, MySQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	spatial data, MySQL Datatypes, Oracle Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes

	SPI_CONNECT statement, PostgreSQL,
	SQL (Structured Query Language), Brand Hunt's Acknowledgments, The language (rules 5 and 11)
		alternatives to, The language (rules 5 and 11)
	history of, Brand Hunt's Acknowledgments

	SQL Server, Resources, Database Platforms Described in This Book, Identifier rules, Arithmetic operators, Bitwise operators, SQL Server Datatypes, SQL Platform Support, SQL Server, SQL Server, SQL Server, SQL Server, SQL Server, MySQL, Oracle's Window Syntax, SQL Server-Supported Functions, Shared and Platform-Specific Keywords
		ALL/ANY/SOME operators,
	ALTER DATABASE statement,
	ALTER FUNCTION statement,
	ALTER INDEX statement,
	ALTER PROCEDURE statement,
	ALTER ROLE statement,
	ALTER TABLE statement,
	ALTER TRIGGER statement,
	ALTER VIEW statement,
	BEGIN TRANSACTION statement,
	bitwise operators, Bitwise operators
	CLOSE CURSOR statement,
	COMMIT statement,
	COMPUTE clause,
	CONNECT statement,
	CREATE DATABASE statement,
	CREATE FUNCTION statement,
	CREATE INDEX statement,
	CREATE PROCEDURE statement,
	CREATE ROLE statement,
	CREATE SCHEMA statement,
	CREATE TABLE statement,
	CREATE TRIGGER statement,
	CREATE TYPE statement,
	CREATE VIEW statement,
	database roles,
	datatypes, SQL Server Datatypes
	DECLARE CURSOR statement,
	DELETE statement,
	DISCONNECT statement,
	DROP statements,
	EXCEPT set operator,
	FETCH statement,
	files (devices),
	FOR XML clause,
	functions, SQL Server-Supported Functions
	GRANT statement,
	identifier rules, Identifier rules
	INSERT statement,
	INTERSECT operator,
	JOIN subclause,
	keywords, Shared and Platform-Specific Keywords
	LIKE operator,
	logfiles, SQL Server
	MERGE statement,
	modula arithmetic operator (%), Arithmetic operators
	OPEN statement,
	ORDER BY clause,
	partitioned views, SQL Server
	RETURN statement,
	REVOKE statement,
	ROLLBACK statement,
	SAVE statement,
	SELECT statement,
	SET CONNECTION statement,
	SET statement,
	SET TRANSACTION statement,
	SQL statements, SQL Platform Support
	subqueries, MySQL
	system privileges, SQL Server
	system roles, SQL Server
	temporary procedures, SQL Server
	temporary tables,
	UNION set operator,
	UPDATE statement,
	website resources for, Resources
	window function syntax, Oracle's Window Syntax

	SQL standard, NULLs (rule 3), History of the SQL Standard, Levels of Conformance
		history of, History of the SQL Standard
	levels of conformance to, Levels of Conformance
	sorting requirements of, NULLs (rule 3)

	SQL statements, platform support for, SQL Platform Support
	SQL/CLI (Call-Level Interface) package, Supplemental Features Packages in the SQL3 Standard
	SQL/Foundation package, Supplemental Features Packages in the SQL3 Standard
	SQL/Framework package, Supplemental Features Packages in the SQL3 Standard
	SQL/JRT (Java Routines and Types) package, SQL3 Statement Classes
	SQL/MED (Management of External Data) package, Supplemental Features Packages in the SQL3 Standard
	SQL/OBJ (Object Language Binding) package, Supplemental Features Packages in the SQL3 Standard
	SQL/PSM (Persistent Stored Module) package, SQL Dialects
	SQL/PSM (Persistent Stored Modules) package, Supplemental Features Packages in the SQL3 Standard
	SQL/Schemata package, Supplemental Features Packages in the SQL3 Standard
	SQL/XML package, Supplemental Features Packages in the SQL3 Standard, SQL3 Statement Classes
	SQL2 (SQL92), History of the SQL Standard, Levels of Conformance
	SQL2006, SQL History and Implementations, What's New in SQL2006
	SQL3 (SQL2003), History of the SQL Standard, Levels of Conformance, SQL3 Statement Classes, SQL3 Statement Classes
		compliance with, SQL3 Statement Classes
	new features, History of the SQL Standard
	statement classes, SQL3 Statement Classes
	supplemental features packages, Levels of Conformance

	SQL99, History of the SQL Standard
	SQL_VARIANT datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	SQRT function, Numeric Scalar Functions
	standby databases, Oracle,
	START TRANSACTION statement, ,
	STATEMENT_TIMESTAMP function, PostgreSQL, PostgreSQL-Supported Functions
	STATS_ functions, Oracle, Oracle-Supported Functions
	STATS_DATE function, SQL Server, SQL Server-Supported Functions
	STD function, MySQL, MySQL-Supported Functions
	STDDEV function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	STDDEV_POP function, ANSI SQL Aggregate Functions
	STDDEV_SAMP function, ANSI SQL Aggregate Functions, Oracle-Supported Functions
		Oracle, Oracle-Supported Functions

	STDEV function, SQL Server, SQL Server-Supported Functions
	STDEVP function, SQL Server, SQL Server-Supported Functions
	STDEV_POP function, Oracle, Oracle-Supported Functions
	stored procedures, , Programming Tips and Gotchas, Keywords, Programming Tips and Gotchas
		return status of, Programming Tips and Gotchas

	STR function, SQL Server, SQL Server-Supported Functions
	straight joins, MySQL,
	STRCMP function, MySQL, MySQL-Supported Functions
	string concatenation operator, String Functions and Operators
	string functions, String Functions and Operators
	string literals, System delimiters and operators
	STRING_TO_ARRAY function, PostgreSQL, PostgreSQL-Supported Functions
	STR_TO_DATE function, MySQL, MySQL-Supported Functions
	STUFF function, SQL Server, SQL Server-Supported Functions
	SUBDATE function, MySQL, MySQL-Supported Functions
	subqueries, ,
	SUBSTR function, Oracle, Oracle-Supported Functions
	SUBSTRB function, Oracle, Oracle-Supported Functions
	SUBSTRING function, String Functions and Operators, MySQL-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	SUBSTRING_INDEX function, MySQL, MySQL-Supported Functions
	SUBTIME function, MySQL, MySQL-Supported Functions
	-(subtraction arithmetic operator), Arithmetic operators, System delimiters and operators
	subtraction arithmetic operator (-), Arithmetic operators, System delimiters and operators
	suffixes for identifiers, Naming conventions
	SUM DISTINCT function,
	SUM function, , ANSI SQL Aggregate Functions
	SUSER_ID function, SQL Server, SQL Server-Supported Functions
	SUSER_SID function, SQL Server, SQL Server-Supported Functions
	SUSER_SNAME function, SQL Server, SQL Server-Supported Functions
	SYSDATE function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	system delimiters, System delimiters and operators
	SYSTEM_USER function, ANSI SQL Scalar Functions, MySQL-Supported Functions
	SYSTIMESTAMP function, Oracle, Oracle-Supported Functions
	SYS_CONNECT_BY_PATH function, Oracle, Oracle-Supported Functions
	SYS_CONTEXT function, Oracle, Oracle-Supported Functions
	SYS_DBURIGEN function, Oracle, Oracle-Supported Functions
	SYS_EXTRACT_UTC function, Oracle, Oracle-Supported Functions
	SYS_GUID function, Oracle, Oracle-Supported Functions
	SYS_TYPEID function, Oracle, Oracle-Supported Functions
	SYS_XMLAGG function, Oracle, Oracle-Supported Functions
	SYS_XMLGEN function, Oracle, Oracle-Supported Functions

T
	TABLE datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	table-level constraints, Constraints
	tables, The Relational Model and ANSI SQL, Data structures (rules 1, 2, and 8), Data structures (rules 1, 2, and 8), ,
		design of,

	TABLESAMPLE clause, Levels of Conformance
	TAN function, MySQL-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions, SQL Server-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions
	SQL Server, SQL Server-Supported Functions

	TANH function, Oracle, Oracle-Supported Functions
	temporal (date and time) datatypes, Arithmetic operators, SQL2003 and Platform-Specific Datatypes
		arithmetic operations on, Arithmetic operators
	list of, SQL2003 and Platform-Specific Datatypes

	TEXT datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	TEXT function, PostgreSQL, PostgreSQL-Supported Functions
	TEXTPTR function, SQL Server, SQL Server-Supported Functions
	TEXTVALID function, SQL Server, SQL Server-Supported Functions
	theta joins, Codd's Rules in Action: Simple SELECT Examples
	tilde (˜), bitwise NOT unary operator, Unary operators
	TIME datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, PostgreSQL Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	PostgreSQL, PostgreSQL Datatypes
	SQL Server, SQL Server Datatypes

	TIME function, MySQL, MySQL-Supported Functions
	TIMEDIFF function, MySQL, MySQL-Supported Functions
	TIMEOFDAY function, PostgreSQL, PostgreSQL-Supported Functions
	TIMESPAN datatype, SQL2003 and Platform-Specific Datatypes
	TIMESTAMP datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Oracle Datatypes, SQL Server Datatypes, SQL Server Datatypes
		MySQL, MySQL Datatypes
	Oracle, Oracle Datatypes
	PostgreSQL, SQL Server Datatypes
	SQL Server, SQL Server Datatypes

	TIMESTAMP function, MySQL-Supported Functions, PostgreSQL-Supported Functions
		MySQL, MySQL-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	TIMESTAMP WITH TIME ZONE datatype, SQL2003 and Platform-Specific Datatypes
	TIMESTAMPADD function, MySQL, MySQL-Supported Functions
	TIMESTAMPDIFF function, MySQL, MySQL-Supported Functions
	TIMESTAMPTZ datatype, SQL2003 and Platform-Specific Datatypes
	TIMESTAMP_TO_SCN function, Oracle, Oracle-Supported Functions
	TIMETZ datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	TIME_FORMAT function, MySQL, MySQL-Supported Functions
	TIME_TO_SEC function, MySQL, MySQL-Supported Functions
	TINYBLOB datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	TINYINT datatype, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	TINYTEXT datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	TO_BINARY_DOUBLE function, Oracle, Oracle-Supported Functions
	TO_BINARY_FLOAT function, Oracle, Oracle-Supported Functions
	TO_CHAR function, Oracle-Supported Functions, Oracle-Supported Functions, PostgreSQL-Supported Functions
		Oracle, Oracle-Supported Functions, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	TO_CLOB function, Oracle, Oracle-Supported Functions
	TO_DATE function, Oracle-Supported Functions, PostgreSQL-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, PostgreSQL-Supported Functions

	TO_DAYS function, MySQL, MySQL-Supported Functions
	TO_DSINTERVAL function, Oracle, Oracle-Supported Functions
	TO_LOB function, Oracle, Oracle-Supported Functions
	TO_MULTI_BYTE function, Oracle, Oracle-Supported Functions
	TO_NCHAR function, Oracle, Oracle-Supported Functions
	TO_NCLOB function, Oracle, Oracle-Supported Functions
	TO_NUMBER function, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, SQL Server-Supported Functions

	TO_SINGLE_BYTE function, Oracle, Oracle-Supported Functions
	TO_TIMESTAMP function, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, SQL Server-Supported Functions

	TO_TIMESTAMP_TZ function, Oracle, Oracle-Supported Functions
	TO_YMINTERVAL function, Oracle, Oracle-Supported Functions
	Transact-SQL, SQL Dialects
	transaction statements, SQL3 Statement Classes
	transactions,
		implicit and explicit,

	TRANSACTION_TIMESTAMP function, PostgreSQL, SQL Server-Supported Functions
	TRANSLATE function, String Functions and Operators, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, SQL Server-Supported Functions

	TREAT function, Oracle, Oracle-Supported Functions
	TRIGGER privilege,
	triggers, , Keywords
	TRIM function, String Functions and Operators
	TRUNC function, Oracle-Supported Functions, SQL Server-Supported Functions
		Oracle, Oracle-Supported Functions
	PostgreSQL, SQL Server-Supported Functions

	TRUNCATE function, MySQL, MySQL-Supported Functions
	TRUNCATE TABLE statement, , ,
	TYPEPROPERTY function, SQL Server, SQL Server-Supported Functions
	TZ_OFFSET function, Oracle, Oracle-Supported Functions

U
	UCASE function, MySQL, MySQL-Supported Functions
	UID function, Oracle, Oracle-Supported Functions
	unary operators, Operator precedence
	UNCOMPRESS function, MySQL, MySQL-Supported Functions
	UNCOMPRESS_LENGTH function, MySQL, MySQL-Supported Functions
	UNDER privilege,
	_ (underscore), in identifiers, Naming conventions
	underscore (_), Naming conventions,
		in identifiers, Naming conventions
	wildcard operator,

	UNHEX function, MySQL, MySQL-Supported Functions
	UNICODE function, SQL Server, SQL Server-Supported Functions
	UNION JOIN clause, deleted from SQL99, History of the SQL Standard
	union joins,
	UNION set operator, , ,
	UNIQUE constraints, UNIQUE Constraints
	UNIQUEIDENTIFIER datatype, SQL Server, SQL2003 and Platform-Specific Datatypes, SQL Server Datatypes
	UNISTR function, Oracle, Oracle-Supported Functions
	UNIX_TIMESTAMP function, MySQL, MySQL-Supported Functions
	UNSIGNED datatype attribute, MySQL, MySQL Datatypes
	UPDATE privilege,
	UPDATE statement, , , MySQL, Oracle, PostgreSQL, SQL Server
		MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	SQL Server, SQL Server

	UPDATE...SET ROW statement, deleted from SQL99, History of the SQL Standard
	UPDATEXML function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	UPPER function, String Functions and Operators
	UROWID datatype, Oracle, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes
	USAGE privilege,
	user (AuthorizationID), NULLs (rule 3)
	USER function, ANSI SQL Scalar Functions, MySQL-Supported Functions
	user-defined function (UDF), , ,
	user-defined type (UDT),
	USERENV function, Oracle, Oracle-Supported Functions
	USER_ID function, SQL Server, SQL Server-Supported Functions
	USER_NAME function, SQL Server, SQL Server-Supported Functions
	UTC_DATE function, MySQL, MySQL-Supported Functions
	UTC_TIME function, MySQL, MySQL-Supported Functions
	UTC_TIMESTAMP function, MySQL, MySQL-Supported Functions
	UUID function, MySQL, MySQL-Supported Functions

V
	VALUE function, Oracle, Oracle-Supported Functions
	VAR function, SQL Server, SQL Server-Supported Functions
	VARBINARY datatype, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes, Constraints
		MySQL, MySQL Datatypes
	SQL Server, Constraints

	VARBIT datatype, PostgreSQL, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	VARCHAR datatype, SQL2003 and Platform-Specific Datatypes, Oracle Datatypes, SQL Server Datatypes, Constraints
		Oracle, Oracle Datatypes
	PostgreSQL, SQL Server Datatypes
	SQL Server, Constraints

	VARCHAR FOR BIT DATA datatype, SQL2003 and Platform-Specific Datatypes
	VARCHAR function, PostgreSQL, SQL Server-Supported Functions
	VARCHAR2 datatype, Oracle, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	VARGRAPHIC datatype, SQL2003 and Platform-Specific Datatypes
	VARIANCE function, MySQL-Supported Functions, Oracle-Supported Functions
		MySQL, MySQL-Supported Functions
	Oracle, Oracle-Supported Functions

	VARP function, SQL Server, SQL Server-Supported Functions
	VAR_POP function, ANSI SQL Aggregate Functions, Oracle-Supported Functions
	VAR_SAMP function, ANSI SQL Aggregate Functions, Oracle-Supported Functions
	vector aggregates, The GROUP BY clause
	VERSION function, MySQL, MySQL-Supported Functions
	vertical bar (|), bitwise OR operator, Arithmetic operators
	views, Data structures (rules 1, 2, and 8), Views (rule 6), ,
	VSIZE function, Oracle, Oracle-Supported Functions

W
	website resources, Preface, Resources, Resources, Resources, Resources, How to Contact Us
		for this book, How to Contact Us
	MySQL, Resources
	open source movement, Preface
	Oracle, Resources
	PostgresSQL, Resources
	SQL Server, Resources

	WEEK function, MySQL, MySQL-Supported Functions
	WEEKDAY function, MySQL, MySQL-Supported Functions
	WEEKOFYEAR function, MySQL, MySQL-Supported Functions
	WHERE clause, Codd's Rules in Action: Simple SELECT Examples, Codd's Rules in Action: Simple SELECT Examples, Logical operators, Logical operators, , , , , The WHERE clause
		aliases and,
	comparison operators in, Logical operators
	logical operators in, Logical operators
	theta joins in, Codd's Rules in Action: Simple SELECT Examples

	WIDTH function, PostgreSQL, SQL Server-Supported Functions
	WIDTH_BUCKET function, Numeric Scalar Functions
	wildcard operator (%), matches any string, System delimiters and operators,
	wildcard operator ([...]), matches in set, SQL Server,
	wildcard operator ([^...]), matches not in set, SQL Server,
	wildcard operator (_), matches any character,
	_ (wildcard operator, matches any character),
	% (wildcard operator, matches any string), System delimiters and operators,
	[...] (wildcard operator, matches in set, SQL Server),
	[^...] (wildcard operator, matches not in set, SQL Server),
	window functions, Aggregate and Scalar Functions, , , , , ANSI SQL Window Functions, Oracle's Window Syntax, Oracle's Window Syntax, Partitioning, Ordering, Grouping or Windowing, Grouping or Windowing, , , , ,
		aggregate functions as, Grouping or Windowing
	CUME_DIST, ,
	DENSE_RANK, ,
	framing clause, Grouping or Windowing
	Oracle syntax, Oracle's Window Syntax
	ordering clause, Ordering
	partitioning clause, Partitioning
	PERCENT_RANK, ,
	RANK, ,
	ROW_NUMBER,
	SQL Server syntax, Oracle's Window Syntax

X
	XML (eXtensible Markup Language), What's New in SQL2006, Supplemental Features Packages in the SQL3 Standard, SQL3 Statement Classes
		in SQL2006, What's New in SQL2006
	in SQL3, Supplemental Features Packages in the SQL3 Standard, SQL3 Statement Classes

	XML datatype, SQL2003 and Platform-Specific Datatypes, SQL2003 and Platform-Specific Datatypes, Constraints
	XMLAGG function, Oracle, Oracle-Supported Functions
	XMLCAST function, Oracle, Oracle-Supported Functions
	XMLCDATA function, Oracle, Oracle-Supported Functions
	XMLCOLATTVAL function, Oracle, Oracle-Supported Functions
	XMLCONCAT function, Oracle, Oracle-Supported Functions
	XMLDIFF function, Oracle, Oracle-Supported Functions
	XMLELEMENT function, Oracle, Oracle-Supported Functions
	XMLEXISTS function, Oracle, Oracle-Supported Functions
	XMLFOREST function, Oracle, Oracle-Supported Functions
	XMLPARSE function, Oracle, Oracle-Supported Functions
	XMLPATCH function, Oracle, Oracle-Supported Functions
	XMLPI function, Oracle, Oracle-Supported Functions
	XMLQUERY function, Oracle, Oracle-Supported Functions
	XMLROOT function, Oracle, Oracle-Supported Functions
	XMLSEQUENCE function, Oracle, PostgreSQL-Supported Functions
	XMLSERIALIZE function, Oracle, PostgreSQL-Supported Functions
	XMLTABLE function, Oracle, PostgreSQL-Supported Functions
	XMLTRANSFORM function, Oracle, PostgreSQL-Supported Functions
	XMLTYPE datatype, Oracle, SQL2003 and Platform-Specific Datatypes, PostgreSQL Datatypes
	XMLType tables, Oracle,
	XOR function, MySQL, Oracle-Supported Functions

Y
	YEAR datatype, MySQL, SQL2003 and Platform-Specific Datatypes, MySQL Datatypes
	YEAR function, Oracle-Supported Functions, SQL Server-Supported Functions
		MySQL, Oracle-Supported Functions
	SQL Server, SQL Server-Supported Functions

	YEARWEEK function, MySQL, Oracle-Supported Functions

Z
	ZEROFILL datatype attribute, MySQL, MySQL Datatypes

About the Author
Kevin Kline is the Director of SQL Server Solutions at Quest Software, a leading provider of award winning tools for database management and application monitoring on the SQL Server platform. Kevin is also the President of the international Professional Association for SQL Server (PASS) and frequently contributes to database technology magazines, web sites, and discussion forums. Kevin's most popular book is SQL in a Nutshell published by O'Reilly Media. Kevin is also the author of Transact-SQL Programming and three other books on database technologies. Kevin is a top rated speaker, appearing at international conferences like Microsoft TechEd, DevTeach, PASS, Microsoft IT Forum, and SQL Connections. When he's not working, Kevin likes to romance his wife, play to his four kids, write, and garden.

Colophon
The animal on the cover of SQL in a Nutshell, Third Edition, is a chameleon. There are approximately 85 species of chameleons existing in the world today. They are mostly indigenous to Africa, although there are a few species found in Asia and in Europe. Most are tree dwellers. The chameleon is relatively small; the average adult size is between 6 and 12 inches. It lives mostly on insects and uses its long tongue to capture its prey. Indeed, the tongue is a critical tool. It can stretch up to 1.5 times the lizard's body length, and there is an adhesive pad on the end on which the insects are trapped. There are several other characteristics common to all species of chameleons. For example, its eyes are large and protruding, and the lizard can see 360 degrees without moving its head or body. Its toes are on either side of its feet, usually three on one side and two on the other. This is ideal for moving quickly and efficiently through tree branches.
Chameleons are best known for their ability to change their appearance to adapt to their physical environment. Actually, several types of reptiles can change their skin color, but the chameleon is far and away the most accomplished. This skill, which is moderated by the nervous system, obviously is invaluable for hunting prey and avoiding predators, and also helps to stabilize body temperature. The extent of this camouflage capability is related to the gender, age, and species of the lizard.
The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans MonoCondensed.

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Upgrade this ebook today for
 $4.99 at oreilly.com and get access to additional DRM-free formats, including PDF and EPUB,
 along with free lifetime updates.

SQL in a Nutshell

Kevin Kline

Editor
Mary Treseler

Copyright © 2008 O'Reilly Media, Inc.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. The In a Nutshell series designations, SQL in a Nutshell, the image of a chameleon, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-07-05T07:40:52-07:00

OEBPS/oreilly_large.png.jpg

OEBPS/orm_front_cover.jpg
IN ANUTSHELL

A Desktop Quick Reference

Kevin E. Kline
O'REILLY" with il Kine & B Hurd

OEBPS/httpatomoreillycomsourceoreillyimages227670.png
usters also ontrol who gets acces to the data and what sort of permissios the users
might have. Howeve, mostimplementations, such as Oracle and Microsoft SQL Server,
ack permissions at th cataog laer,

nduuensaumquelynamedmomta\ngsavauamemasumssmn.msimugnly
CLUSTERS I comparable to an installation of an ROBMS product, According to the ANS standard,

Contain one
ormany

|
Acatalog s a uniquely named set o schemas. fyoue an Oracle o Micrsoft SQL Server
CATALOGS I user, you might be more comfortable with the term instance.

Contain one
ormany

Aschemais a uniquely named set of objects and data owned by a given user Every
SCHEMAS catalogmustcontalnthe NFORMATON:SCHEHA Whichonans metadt ot
theotfer objects stoed n the atalog, A schema's the ough equivalent ofadatabase.

Contain one
ormany

A objectis a uniquely named st ofdataor SQL functionaliy. Schema objects include
OBJECTS I tables,views, modules, and routines; ., stored procedures and functions.

If the object is a table or view,
it may contain one or many

A column is a uniquely named set of values that defines a specific attribute of a table entit
coLumms | ey " i

Contain one
ormany

These identify the set of valid and allowable values for a given column.

DOMAIN and
USER DEFINED
TYPES

‘These identify further rules that define valid and allowable values for a given column. For
RULESand | it 3o koS0 ke
ASSERTIONS

OEBPS/ad_files/12502_Strata12_3_ebook_ad_f2.jpg
The people and technology
driving the data revolution.

strataconf.com

OREILLY"

Making Data Work

OREILLY"

CONFERENCE
+

HADOOP

+

- 5 o by
#WoORLD | ook s 20

OREILLY"

CONFERENCE ;
Making Health Data Work %
October 16 - 17, b
CA

OREILLY

Spreading the knowledge of innovators.

