

II

THE ESSENCE OF SQL:
A Guide to Learning Most of SQL

in the Least Amount of Time

David Rozenshtein
Department of Computer Science

Long Island University

II

40087 Mission Boulevard, Suite 167, Fremont, CA 94539

(800) 943-9300 Voice

(510) 65�5116 Fax

http://www.sqlforum.com

Library of Congress Catalog Card Number 96-092799
ISBN 0-9649812-1-1

a:> 1996 SQL Forum Press

Editor: Tom Bondur
Cover concept Anna Bondur

Cover design: Tom Mcl<eith

Inside layout Mimi Fujii

4CX87MissionBoulevard,Suill!167, Pmnmt. CA 94539
(800) 9e9300 Voice
(510) 656-5116 Fu

http://www.sqlforum.com

r;-,-····-·--······· L.:J THE ESSENCE OF IQL: A Gulde to Leaming Most of SQl In the Least Amount of Time

Contents

1 Introduction 1
2 Example Database 3
3 A Bird's Eye View of SQL 5
4 The Standard Questions 9
6 The First Two Questions 11
8 Standard Questions Involving "or" and ''both-and" 17
7 Negation in SQL 23
8 Standard Questions Involving "at least" 27
9 Negation Revisited 29

10 JYpe 2 SQL Queries 31
11 Using JYpe 2 to Implement Real Negation 35
12 Posing Questions Involving "at most," 37

"exactly," "only," and "either-or"

13 Computing Extremes as JYpe 2 Queries with Negation 43
14 A Look at SQL Enhancements 45
15 Handling Composite Keys 53
18 Negation Over Composite Keys 55
17 Standard Questions Involving "every" 59
18 A Brief Interlude 61
19 Additional Standard Questions 63
20 Computing Aggregates for Groups 65
21 Combining Scalar Expressions with Aggregation 73
22 Some Old Questions Revisited 75
23 Global Aggregations 77

24 Comparing Base Values to Aggregates 79

.. r::l Contents�

25 Combining fype 2 Queries with Aggregation 83
26 The Overall Order of Evaluation 87
27 NULL Values in SQL 91
28 Introduction to fype 3 SQL Queries 97
29 Inter-Query Connectors Revisited:

Existential Quantifiers in SQL 101
30 Some Old Questions Revisited-Again 103
31 Data Manipulation Facilities of SQL 109
32 Extensions to SQL 115
33 Last Remarks 117

List of Figures

Figure2.l: Example database. 3
Figure3.l: DDL for table Student. 5
Figure3.2: SQL query types. 7
Figure4.l: A list of standard questions. 9
FigureS.l: Query Qt for question El - Who takes CS112? 12
FigureS.2: The Type 1 SQL evaluation mechanism. 13
Figure5.3: Query Q2 for question E2 - What are student numbers

and names of students who take CS112? 14
Figure5.4: Query Q2 rewritten with all explicit prefixes. 16
Figure6.l: Query Q3 for question E3 - Who takes CS112 or CS114? 17
Figure6.2: First attempt at question E4 - Who takes both CS112

andCS114? 18
Figure6.3: A sketch of the query for E4 - Who takes both CS112

andCS114? 20
Figure6.4: Query Q4 for question E4 - Who takes both CS112

andCS114? 21
Figure6.5: Q4 rewritten with both copies of Take aliased. 22
Figure7.l: Orthogonality of questions ES and E6. 24
Figure7.2: Query Q6 for question E6 - Who takes a course

which is not CS112? 24
Figure8.l: Query Q7 for question E7 - Who takes at least 2 courses? 27

Figure8.2: The query for question: Who takes at least 3 courses? 27

Figure9.l: Questions E8 through E13 rephrased to explicitly show

negation. 30
Figure 10.1: A sample Type 2 SQL query. 31
Figure 10.2: The definition of a Type 2 query. 33
Figure 10.3: The Type 2 SQL evaluation mechanism. 33
Figure 11.1: A mystery 'JYpe 2 SQL query involving negation. 35
Figure 11.2: Using Take in both FROM clauses. 36
Figure 12.1: Query Q8 for question E8 - Who takes at most 2 courses? 37
Figure 12.2: Query Q9 for question E9 - Who takes exactly

2 courses? 38
Figure 12.3: Query QlO for question ElO - Who takes only CS112? 39
Figure 12.4: Query of Figure 12.3 simplified. 40
Figure 12.5: Query Qll for question Ell - Who takes either CS112

orCS114? 40
Figure 13.1: Query Q12 for question E12 - Who are the youngest

students? 43
Figure 14.1: Example of query with the omitted WHERE clause. 45
Figure 14.2: Using symbol• to mean "all columns." 46

.. IVl
Ust of Figures L..:J

Figure 14.3: Suppressing duplicates from the answer. 47
Figure 14.4: Sorting facilities of SQL 48
Figure 14.5: Example use of arithmetic in SQL. SO
Figure 14.6: Formatting an answer. 51
Figure 15.1: Query for the question What are full names and

ages of professors who teach CS112? 53
Figure 15.2: Query for the question Which courses are taught by

at least 2 professors? 54
Figure 16.1: First attempt at the question Who does not teach CS112? SS
Figure 16.2: Example data for tables Professor and Teach. 56
Figure 16.3: Another example data for tables Professor and Teach. 57
Figure 16.4: Desired query form for the question Who does not

teach CS112? 57
Figure 16.5: Using string concatenation expressions for the

question Who does not teach CS112? 58
Figure 17.1: Query Q13 for question E13- Who takes every course? 59
Figure 19.1: A list of additional standard questions motivating

SQL aggregation facilities. 63
Figure 20.1: Query Q14 for question E14- For each department

that has more than 3 professors older than SO, what
is the average salary of such professors? 65

Figure 20.2: The evaluation mechanism for queries involving
aggregation. 67

Figure 20.3: A query showing the use of all aggregate functions,
and also showing the use of Boolean expressions in
the HAVING clause. 68

Figure 20.4: The query for the question For each department,
what is the average salary of those professors
who are older than SO? 69

Figure 20.5: SQL query for the question For each department/
rank combination that has more than 3 professors
older than SO, what is the average salary of such
professors? 70

Figure 21.1: Query QlS for question EIS - What is the grade
point average (GPA) of each student? 73

Figure 22.1: A query with the GROUP BY and HAVING clauses
for the question Who takes at least 3 courses? 75

Figure 23.1: Query Ql6 for question E16 - What is the overall
average salary of all professors who are older
than SO? 77

Figure 24.1: Query Q17 for question E17 - Whose
(i.e., which professors') salary is greater than the
overall average salary? 79

Figure 24.2: Alternative query form for question E17 - Whose
(i.e., which professors') salary is greater than the
overall average salary? 81

Figure 24.3: Query Q18 for question EIS- Whose salary is greater
than the average salary within that professor's
department? 81

Figure 25.1: Alternative query for question E12 - Who are the
youngest students? - showing the use of
aggregates inside the subqueries. 83

Figure 25.2: Alternative query for question E17- Whose salary is
greater than the overall average salary?- showing
the use of binary comparators in front of subqueries. 84

Figure26.l: A query involving most of the features presented so far. 87
Figure 27.1: Truth tables for the three-valued logic. 92
Figure '27.2. A query that will retrieve names of all professors-

or will it? 95
Figure 28.1: A sample 'fype 3 query. 97
Figure 28.2: A 'fype 3 query with two correlations, for the question

Who teaches CS112? 99
Figure 29.1: An example query with EXISTS. 101
Figure 30.1: A 'fype 3 query for question E9 - Who takes exactly

2courses? 103
Figure 30.2: A 'fype 3 query for question E12 - Who are the

youngest students? 104
Figure 30.3: A 'fype 3 query for question E18 - Whose salary is

greater than the average salary within that
professor's department? 105

Figure 30.4: A 'fype 3 query for question E13- Who takes every
course? 106

Figure 30.5: The middle query from Figure 30.4 after substitution
forS.Sno. 106

Figure 30.6: A 'fype 3 query with a 'fype 2 subquery for question
E13 - Who takes every course? 107

Figure 30.7: The middle query from Figure 30.6 after substitution
forS.Sno. 108

Figure 31.1: Inserting individual rows. 109
Figure 31.2: Inserting a query result. 110
Figure 31.3: Example of a DELETE command. 111
Figure 31.4: Example of an UPDATE command. 112
Figure 33.1: Assorted reminders for programming in SQL 118

.. r.;.i
Ust of FJgures �

1 Introduction

This essay is dedicated to the proposition that

one can often accomplish 80% of the task in

20% of the time, or, in this case, that one can

learn most of the important features and

capabilities of SQL quickly. To achieve this,

we have developed a new approach to

presenting SQL.

Traditionally, SQL is presented in a "bottom-up" fashion, by
enumerating all of its features in some order and illustrat­
ing each feature with an example query. While complete in
its treatment of the language, this approach often fails to
clearly distinguish between what is essential and what is
secondary in the language, and frequently leaves an
impression of too long a "laundry list" of language features.
Even more importantly, by concentrating on the language
first and motivation second, this approach does not clearly
explain why certain features are present in the language,
when they should be used, nor how to actually pose queries
using SQL.

... ;���:·11

Our approach, on the other hand, is "top-down." We begin
by identifying a rather short list of standard questions, or
more precisely types of questions, that are often asked of
relational databases. We then show how these standard
questions are posed in SQL, introducing and motivating the
use of its capabilities and features as they become relevant.

As a result, we develop concrete solutions for a set of well
specified question types. Solutions for particular business
problems can then be developed by selecting the appropriate
question type or combination of types and rephrasing the
corresponding standard solutions to fit the particular prob­
lem domain.

It is important to note that we do not claim completeness in
our approach- some features of the language will not be
covered here. We also do not claim objectivity in the selec­
tion of features. This essay is based on the SQL working and
teaching experience of the author, and reflects his views on
the language.

While we assume a familiarity with the basic relational con­
cepts of tables, attributes, keys, etc., no prior knowledge of
SQL itself is assumed. In fact, those who already know
some SQL should set their knowledge aside and start anew
with this essay.

Finally, whatever liberties we take in this essay are all moti­
vated by its primary purpose - to leave the reader with a

deep understanding of the essence of SQL and a set of cook­
book recipes for its immediate use.

2 Example Database

All of the SQL queries in this essay will be posed with
respect to the example database shown in Figure 2.1. This
database consists of five tables, three of which correspond
to entity classes: Student, Course and Professor, and two to
relationships: Take- between students and courses, and
Teach- between professors and courses.

Student(SnQ, Sname, Age)
Course(Cno, Title, Credits)
Professor(Fname. Lname, Dept, Rank, Salary, Age)
Take(Sno, Cno, Grade)
Teach(Fname. Lname. Cno)

Figure 2.1: Example database.

In the tables, the column name abbreviations have the fol­
lowing meaning:

Sno: student number;
Sname: student name;
Cno: course number;
Fname: professor's first name;
Lname: professor's last name;
Dept professor's department.

Relational keys are identified by underlining. Note that
table Professor has a composite- two column-key. We
have split professors' names into separate first and last
names to motivate certain SQL features introduced later .

.. 11
Example Datablle

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

3 A Bird's Eye View of SQL

SQL can be divided into four parts, or sublanguages, as they
are traditionally called: data definition language (DDL), data
manipulation language (DML), system administration language
(SAL) and query language.

DDL provides facilities for creating and destroying tables
and indices, as well as for affecting their physical layout. A
simple example of DDL, creating our table Student and its
related index is shown in Figure 3.1 . (In this essay, we use
generic SQL syntax which, except for the data type names
and minor syntactic differences, is applicable to all SQL
dialects.)

CREATE TABLE Student(
Sno char(9)
Sname varchar(20)
Age int

NOT NULL,
NULL,
NULL)

CREATE UNIQUE INDEX Student_ndx ON
Student(Sno)

Rgure 3.1: DDL for table Student.

The table creation syntax closely mimics record layout defi­
nitions in most modern 3GLs. Concept of NULL and the
meaning of the NULL and NOT NULL qualifiers will be
explained later.

The index creation syntax is also straightforward- the
name of the index is Student_ndx, and it is defined on table
Student with respect to column Sno. Furthermore, because

··�·�;��:�-��:·�::����� II

of the UNIQUE qualifier, this index will enforce the unique­
ness of Sno values in the Student table. While the stated
purpose of indices is to speed up query execution, in many
systems UNIQUE indices also provide the only way to
enforce uniqueness of key values.

We note that details of physical layout do not shed any light
on the "meaning" of SQL and are thus omitted from this
example and this essay.

Destruction of tables and indices is done using keyword
DROP, as in

DROP TABLE Student

DML provides facilities to insert, delete and modify rows in
tables. These facilities are best presented after the query
facilities of SQL, and are left for the end of this essay.

SAL provides facilities for managing the system- e.g., for
setting up security and authorization schemes for the data­
base. While essential for system administration tasks, these
features again do not shed any light on SQL meaning, and
are omitted from this essay.

The query language component of SQL provides facilities
for asking questions about the data. These query facilities
make SQL what it is, and this essay is devoted specifically
to them.

Roughly speaking, all SQL query facilities can be divided
into six categories, as shown in Figure 3.2.

11,

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

Type 1 Queries or Type 2 Queries or Type 3 Queries

Aggregation Facilities

Enhancements

Extensions

Figure 3.2: SQL query types.

Types 1, 2 and 3 are the three distinct query types, each
motivated by a different category of questions and database
designs. For those already familiar with SQL, Type 1
queries correspond to "flat" (single level) queries, and Type
2 and Type 3 queries correspond to "nested" (multi-level)
queries: Type 2- without correlations, and Type 3-- with
correlations.

Aggregation facilities, enhancements and extensions are
orthogonal to these three query types, and can be used in
conjunction with all of them. They can also be used in com­
binations with each other.

Aggregation facilities provide means for computing various
aggregates, such as sums and averages, and for grouping
the data.

Enhancements are those features that make SQL more prac­
tical, but do not fundamentally increase its expressive
power. For example, ability to sort the answer is one such
enhancement.

Extensions encompass various advanced features- most
important of which is the explicit WHILE loop- that have
been added to SQL recently by various vendors. These

.. 11
A Bird's Eye View of SQL

extensions make the language fundamentally more power­
ful; however, they are still quite non-standard, and are con­
sidered only briefly at the end of this essay.

11 .. .

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

4 The Standard Questions

We begin our presentation of SQL with a list of standard
questions, as shown in Figure 4.1. (Designation El stands
for "English question l," etc.) This list will be extended with
additional standard questions as we proceed. The key sub­
phrases that make these questions standard are italicized
for emphasis.

El. Who takes (the course with the course number) CS112?
(By "Who" we mean that we want the student num­
bers retrieved. If we want the names retrieved, we
will explicitly say so.)

E2. What are student numbers and names of students who
take CS112?

E3. Who takes CS112 or CS114?
E4. Who takes both CS112 and CS114?
ES. Who does not take CS112?
E6. Who takes a course which is not CS112?
E7. Who takes at least 2 courses (i.e., at least 2 courses

with different course numbers)?
(A more general question: Who takes at least 3, 4, 5,
etc., courses?)

ES. Who takes at most 2 courses?
(More generally: 3, 4, 5, etc., courses?)

E9. Who takes exactly 2 courses?
(More generally: 3, 4, 5, etc., courses?)

ElO. Who takes only CS112?
Ell. Who takes either CS112 or CS114?
El2. Who are the youngest students?

(Similarly, Who are the oldest students?)
El3. Who takes every course?

Figure 4.1: A list of standard questions.

···���:��:�-��:;: II

5 The First Two Questions

The first two questions fall into the category of Type 1
queries. All Type 1 SQL queries have the basic form

SELECT <list of desired columns>
FROM <list of tables>
WHERE <Boolean condition>

where SELECT, FROM and WHERE are keywords designat­
ing the three basic components, or clauses, of the query.
(While SQL is generally case insensitive, for clarity we will
show all keywords in upper case.)

In thinking about, understanding and composing SQL
queries, we look at the FROM clause first. This clause lists
the table(s) that need to be considered to answer the ques­
tion. (To determine this list, pretend that you have to
answer this question without a computer system, using just
paper copies of the tables, and think of which of them you
would actually need.)

In question El- Who takes CS112?- "Who" stands for stu­
dent numbers (Sno), and CS112 stands for a course number
(Cno). Thus, since all relevant information is contained in
table Take, the FROM clause becomes

FROM Take

Next, we consider the WHERE clause. It contains a Boolean
condition which defines which rows from table(s) in the
FROM clause should be retrieved by the query. For ques­
tion El this condition is for the course number to be CS112,
thus making the WHERE clause

WHERE (Cno = "CS112")
.. �·�·;:·�11

(Whether one uses single or double quotes around string
literals is usually system dependent. Also, while parenthe­
sis around conditions are often not required, we use them
to improve readability.)

Finally, the SELECT clause lists the column(s) that define
the structure of the answer. Since in this case we just want
the student numbers retrieved, the SELECT clause becomes

SELECTSno

The final query then takes the form shown in Figure 5.1.

SELECTSno
FROM Take
WHERE (Cno = "CS112")

Figure 5.1: Query Q1 for question E1 - Who takes CS112?

While it is true that this query does intuitively correspond
to question El, intuition is not a reliable means for under­
standing SQL. So, to be safe in interpreting SQL queries, we
introduce a conceptual device known as the query evaluation
mechanism.

A query evaluation mechanism gives us a precise and for­
mal algorithm to trace queries.

This ability to trace is fundamental to all SQL
programming, since it is only by following the trace
that we can see how the answer is actually computed,
and thus understand its true meaning.

Different types of SQL queries have different evaluation
mechanisms. The Type 1 evaluation mechanism is shown in
Figure5.2

1. Take a cross-product of all tables in the FROM clause -
i.e., create a temporary table consisting of all possible
combinations of rows from all of the tables in the FROM
clause. (H the FROM clause contains a single table, skip
the cross-product and just use the table itself.)

2. Consider every row from the result of Step 1 exactly
once, and evaluate the WHERE clause condition for it.

3. Uthe condition returns True in Step 2, formulate a
resulting row according to the SELECT clause, and
retrieve it.

Figure 5.2: The Type 1 SQL evaluatlon mechanism.

Given this evaluation mechanism, we can now formally

trace query Ql, as follows.

1. Since query Ql involves only one table, we

effectively skip Step 1.
2. We look at every row from table Take, and evaluate

condition (Cno = "CS112") for it.
3. We take the Sno values from those rows where this

condition returns True, and place them into the
result.

By following this trace, we can now confidently assert that
query Ql indeed corresponds to our question El. (Do not be
deceived into thinking that just because this evaluation
mechanism and the consequent trace are so simple, using
the mechanism is the same as just using the basic intuition.
As we will demonstrate very shortly, this is not at all so.)

.. 11
The Rrst Two Questions

We note that because evaluation mechanisms are formal
devices, they do not represent actual evaluation strategies
taken by real systems. (No real system would be caught
dead actually taking cross-products all the time.) All that is
required of them is that they always give the same result as a

real system. Thus, in developing this particular form of the
evaluation mechanism, we were not concerned with its
apparent inefficiency, and concentrated instead on its clarity
and ease of use in tracing.

The SQL query corresponding to question E2- What are
student numbers and names of students who take CS112?- is
shown in Figure 5.3.

SELECT Student.Sno, Sname
FROM Student, Take
WHERE (Student.Sno = Take.Sno)

AND (Cno = "CS112")

Rgure 5.3: Query Q2 for question E2 - What are student nu ..
bers and names of students who take CS112?

This query shows an example of using several tables in the
FROM clause and several columns in the SELECT clause. It
also introduces a new syntactic feature.

Because cross-products retain all columns from all of the
tables involved, in this case the result of the cross-product
will have two columns labeled Sn� one from the Student
table and the other from the Take table. Thus, every time we
refer to Sno, we need to explicitly specify, or disambiguate,
which of the two Sno columns we mean. The use of the
"dotted" notation Student.Sno and Take.Sno achieves this.
This notation (which is quite standard in most program­
ming languages for use with record variables and their

II�;·��-��·�;·���··�·��;�:·�:·���;��·�:��·��-;�·;�·�:·����-::����:···

fields) is called a prefix notation in SQL, with
"Student." and "Take." called prefixes.

Also, while it does not matter which of the two Sno
columns- Student.Sno or Take.Sno- we choose
for the answer (after all, they are equal to each
other), we must explicitly specify one of them in the
SELECT clause. Not doing so would cause a syntax
error. (An informal explanation for this is as fol­
lows: Column name disambiguation is a syntactic
issue and must be resolved at compile-time, while
equality is not known until run-time.)

We now trace this query, using our evaluation
mechanism, as follows. (To better follow this trace,
make some example data for the tables, and execute
its steps on paper.)

1. We take the cross-product of tables Student
and Take. This cross product would con­
tain every combination of rows from these
tables. (A good way to visualize the result
of this cross-product is to think of it as

comprised of "wide" rows formed by
"concatenating" the Student and Take rows
from each combination.)

2. We evaluate the WHERE clause condition
for every such combination. This condition
has two parts, with the conjunct
(Student.Sno = Take.Sno) assuring that the
Student row and the Take row in the com­
bination deal with the same student, and
the conjunct (Cno = "CS112") assuring that
we are dealing with course CS112.

3. For those combinations where the condi­
tion returns True, we choose the Sno and

.. 11
The First Two Questions

Sname values from the Student row and put them
into the answer.

Again, it is by following this trace, that we can confidently
conclude that query Q2 indeed corresponds to question E2.

While required to disambiguate which columns come from
which tables when there are several same-named columns
in the result of the cross-product, the prefix notation is
always permitted for all column references. Thus, even
though it is not necessary to use a prefix with Sname or
Cno- there is only one column called Sname and only one
column called Cno in the cross-product, it is perfectly legal
to write our query Q2 as shown in Figure 5.4.

SELECT Student.Sno, Student.Sname
FROM Student, Take
WHERE (Student.Sno = Take.Sno)

AND (Take.Cno = "CS112")

Figure 6.4: Query Q2 rewritten with all explicit prefixes.

The essential feature of the Type 1 evaluation mechanism is
that every wide row from the result of the cross-product is
considered exactly once. Thus, even though the order in
which these rows are considered is not specified, fundamen­
tally, Type 1 queries involve only one pass through the data.

This means that the decision of whether or not some row
combination from the cross-product will contribute to the
answer has to be made exactly when this combination is
considered, and not at any other time during the evalua­
tion. In particular, it cannot be delay ed until after some
other row combinations have been looked at. As we will see

shortly, this one-pass-only property of Type 1 queries �
be of great importance.

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

6 Standard Questions Involving 11or'' and
"both-and"

Our standard question E3- Who takes CS112 or CS114?- is
posed by query Q3 shown in Figure 6.1.

SELECT Sno
FROM Take
WHERE (Cno = "CS112")

OR (Cno = "CS114")

Rgure 6.1: Query Q3 for question E3 - Who takes CS112 or
CS114?

A trace of this query shows its correctness. The only new
issue here is this: If some student actually does take both
CS112 and CS114, then his Sno will be retrieved twice by the
query- the first time when the query processes a Take row
with his Sno and CS112, and the second time when it
processes a Take row with his Sno and CS114. Such dupli­
cates can be eliminated by rewriting the SELECT clause as
follows:

SELECT DISTINCT Sno

The keyword DISTINCT, which eliminates duplicate rows
from the answer, is one of the enhancements available in
SQL. (It is considered an enhancement because it does not
change the meaning of the answer- it simply makes it
more concise.) However, its use is expensive, since dupli­
cate elimination requires the answer to be sorted. Thus, it
should be used only when concerns for the clarity of the
answer outweigh those for its efficiency.

··�::��;�··����:�·;���;�,��·::�:�·:;:::�:· 111

An interesting variation of this query is to rewrite the
WHERE clause as

WHERE (Cno IN ("CS112", "CS114"))

which uses the list membership operator IN. (Operator IN
returns True if the value on its left is equal to one of the val­
ues in the list on its right.) While just providing an alterna­
tive formulation in this case, this operator is actually a sig­
nificant feature of SQL and will become necessary when we
introduce Type 2 queries.

Our standard question E4- Who take both CS1 12 and
CS114?- presents a much more interesting case. First, con­
sider the query of Figure 6.2.

SELECTSno
FROM Take
WHERE (Cno = "CS112")

AND (Cno = "CS114")

Figure 8.2: First attempt at question E4 - Who takes both
CS112 and CS1J.4?

This query, which was generated from query Q3 by replac­
ing OR with AND, reflects a misplaced intuition that logical
operators directly model, and thus can be automatically
substituted for, their English counterparts. However, intu­
ition is not a reliable tool when programming in SQL, and
the query of Figure 6.2 is not a correct implementation of
question E4. It will compile, however, and therefore will
generate some answer. (Before proceeding further, try to
figure out exactly what answer this query will generate,
and why it is incorrect.)

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of nme

Recall that the conditions of Type 1 queries are evaluated on
a row-by-row basis, once per row. Since no row can have a
Cno value which is simultaneously equal to "CS112" and to
"CS114", the condition of this query will always return
False. Thus, the answer to this query will always be empty.

While question E4 can be posed as a Type 1 query, to dis­
cover this solution, we need to employ a bit of "reverse
engineering." In other words, we first need to figure out
how we can actually compute the answer to this question in
a manner consistent with the Type 1 evaluation mecha­
nism- in effect, visualizing the corresponding trace, and
then to ''back into" the SQL query itself. We note that:

This ability to visualize traces and then reverse engineer the
appropriate SQL code is the key to one's mastery of SQL.

To visualize the trace, we first need to determine which
table(s) need to be considered. Since the question Who takes
both CS112 and CS114? involves only student numbers (Sno)
and course numbers (Cno), the only table that is needed is
table Take.

However, as we have just argued, since every Take row con­
tains only one Cno value, and since it is considered only
once by the evaluation mechanism, we cannot evaluate our
condition directly on the rows of Take. What we need
instead is a table with rows that for each student would list
not one, but two, course numbers for the courses he takes.

But how can we generate such a table from our basic table
Take? The answer is: In two steps. First, we can compute a
cross-product of table Take with itself. (Think of making a copy
of Take and using it in the cross-product with the original.)

.. 11
Standard Questions Involving "or" and "botft.and"

Second, we can impose equality on the two Sno values in
each wide row in the result of this cross-product. T his
would remove those wide rows where the Sno value from
the first copy of Take is different from the Sno value from
the second copy.

Each remaining wide row would then refer to just a single
student, and the two- one from each copy of Take- Cno
values for the courses he takes. We can then test one of them
to be "CS112" and the other to be "CS114," and for those
rows where these tests would succeed, retrieve the Sno
value into the answer.

Since in Type 1 SQL queries cross-products are caused by
listing tables in the FROM clause, we can informally sketch
a query that would have such a behavior as shown in
Figure6.3.

SELECT Take.Sno
FROM Take, Take
WHERE (Take.Sno = Take.Sno)

AND (Take.Cno = "CS112")
AND (Take.Cno = "CS114")

Figure 6.3: A sketch of the query for E4 - Who takes both
CS112 and CS114?

There is an obvious problem with this sketch, however.
Since both tables in the FROM clause have the same name
(one of them, after all, is a copy of the other), the use of
table names for prefixes is not sufficient to disambiguate
column references.

What we really want to say here is that in the condition
(Take.Sno = Take.Sno) the left Take.Sno is taken from the

first copy of Take, and the right Take.Sno is taken from the
second copy of Take. Similarly, in the condition (Take.Cno =

"CS112") we mean the first copy of Take and in the condi­
tion (Take.Cno = "CS114") we mean the second one. Finally,
since both Sno values are the same in the wide row, it does
not matter to us which one is retrieved in the SELECT
clause, but we must explicitly choose one or the other. None
of this, however, is reflected in our query sketch.

To take care of such cases, SQL allows any table in the
FROM clause to be optionally followed by its temporary
alias- a new table name, which is valid only for the dura­
tion of the particular query and which is used for prefixes.
The aliasing feature allows us to phrase the correct query
for question E4 as shown in Figure 6.4.

SELECT X.Sno
FROM Take X, Take
WHERE (X.Sno = Take.Sno)

AND (X.Cno = "CS112")
AND (Take.Cno = "CS114")

Figure 6.4: Query Q4 for question E4 - Who takes both CS112
and CS114?

Before proceeding further, we want to make several com­
ments regarding the use of aliases. First, the choice of alias
names is completely arbitrary as long as they do not conflict
with each other or with any real table name used in a query.

Second, aliases are opaque- a technical term meaning that
an alias completely covers and hides the name of the under­
lying table. Thus, from the point of view of the SELECT and
WHERE clauses, the query of Figure 6.4 involves two
tables: one named X and the other named Take.
·· 11

Standard Questions lnvolvlng •or" and •botlHlnd"

Third, it is always permitted to alias tables- even if not
really necessary. Indeed, to save on typing, SQL program­
mers often use short aliases for long, meaningful table
names given to them by well-meaning database designers.
Consequently, our query Q4 could also have been written
as shown in Figure 6.5. We stress, however, that using pre­
fix "Take." anywhere in this query would now be syntacti­
cally incorrect.

SELECT X.Sno
FROM Take X, Take Y
WHERE (X.Sno = Y.Sno)

AND (X.Cno = "CS112")
AND (Y.Cno = "CS114")

Figure 6.5: Q4 rewritten with both copies of Take aliased.

Finally, we note that aliases are an essential feature of SQL.
Without them, standard questions involving the both-and
construct could not have been asked as Type 1 queries.

7 Negation in SQL

Negation is one of the most interesting and complex issues
in SQL. Both question E5- Who does not take CS112?, and
question� Who takes a course which is not CS112? involve
negation.

It is important to understand that these are not restatements
of each other, but are indeed different questions. The fol­
lowing two example situations, for which these two ques­
tions would generate different answers, illustrate this point.
(Try to find them before proceeding.)

The first example involves a student who takes both CS112
and some other course, say CS113. Because this student
takes CS112, he will not be in the answer to question ES.
However, because he takes a course- CS113, in this case-­

which is not CS112, he will be in the answer to question E6.

The second example involves a student who does not take
any courses. (Or, to put it another way, who takes nothing.)
Since he does not take any courses , it follows that he does
not take CS112; therefore, he will be in the answer to ques­
tion ES. However, he will not be in the answer to question
E6, which requires him to take some course. (Note that the
student number of this student would be included in table
Student, but would be absent from table Take. For those
familiar with the concepts of referential integrity and foreign
key constraints, this situation is perfectly legal and would be
allowed in this database.)

.. 11
Negation In SQL

Not only are questions ES and E6 different, they are orthogo­
nal to each other- i.e., all four combinations of Yes/No
answers for these two questions are possible, as shown in
Figure 7.1 .

Situation Included in Included in
answer to ES answer to E6

Student takes both No Yes
CS112 and CS113

Student takes nothing Yes No

Student takes only CS112 No No

Student takes only CS113 Yes Yes

Figure 7 .1: Orthogonallty of questions ES and ES.

The query posing question E6- Who takes a course which is
not CS112?-is shown in Figure 7.2.

SELECT Sno
FROM Take
WHERE (Cno != "CS112")

Figure 7.2: Query Q6 for question E6-Who takes a course
which Is not CS112?

A trace of this query shows its correctness. We only note that
the answer to this query may contain duplicates. To elimi­
nate them we would need DISTINCT in the SELECT clause.

This is a good time to mention that in addition to equality
(=) and inequality (which in some SQL dialects is expressed
as != and in some as <>), SQL supports all other standard
binary comparators: <, <=, >, and >=. All SQL dialects sup­
port these latter comparators for numeric data types; most
also support them for strings and other data types as well.

Question ES- Who does not take CS112?-is much trickier.
First, note that rewriting the WHERE clause as

WHERE NOT (Cno = "CS112")

will not work, because conditions NOT (Cno = "CS112")
and (Cno != "CS112") are equivalent to each other, and thus
would both pose question E6. (We note that SQL supports
full Boolean logic including DeMorgan's and standard
Boolean Distributive and Associative Laws.)

A more fundamental problem with question ES emerges
when one considers the basic one-pass nature of Type 1
queries. As it turns out, the answer to this question cannot
be computed in a single pass, even if we do take a cross­
p;oduct of tables Student and Take. (Try it on some data
examples, and observe that one pass is not enough.)

What is required, instead, are two passes: the first pass
through table Take to select those students who do take
CS112, and the second pass through table Student to "get
rid of" them. Furthermore, the first pass has to be complet­
ed- i.e., we have to identify and in a way "collect" all of
these "bad students," before starting on the second pass­
to eliminate them .

.. 11
Negation In SQL

Since the Type 1 SQL evaluation mechanism is fundamental­
ly "one pass," it is impossible to pose question E5as a Type1
query, given this or any other reasonable database design.
Instead, question E5 requires subqueries, which are provided
by Type 2 and 3 queries, and which are covered later.

An important general difference between questions E5 and
E6 is that E5 involves "real negation" and E6 involves the
so called "pseudo-negation." Questions involving pseudo­
negation can be posed as Type 1 queries; questions involv­
ing real negation cannot.

One way to distinguish between the two is to see what is
being negated- some noun constant (e.g. , "is not course
CS112" in E6) or a verb (e.g., "does not take" in ES). Also,
question Q6 can be rephrased by replacing the English word
"not" with the phrase "different from" (or "other than"), as

in Who takes some course different from CS112? This technique
is a rule of thumb that works most of the time.

11 .. .

THE ESSENCE OF SQL: A Guide to Leaming Most of SQL In the Least Amount of Time

8 Standard Questions Involving "at leasf'

Question E7- Who takes at least 2 courses?- is the last of
our standard questions that can be posed as a Type 1 query.
The query corresponding to this question, shown in Figure
8.1, is quite similar to the ''both-and" query Q4, and has a
very similar trace. (An alternative way to pose this query is
to replace the inequality in the WHERE clause by the less­
than comparison (X.Cno < Take.Cno), assuming that the
particular SQL dialect allows less-than comparisons
between strings.) To eliminate duplicates from the answer
we would need DISTINCT in the SELECT clause.

SELECT X.Sno
FROM Take X, Take
WHERE (X.Sno = Take.Sno)

AND (X.Cno != Take.Cno)

Rgure 8.1: Query Q7 for question E7 - Who takes at least
2 courses?

Of course, as noted in our standard questions list, there are
many cases of the use of "at least." So, how would we pose
the question Who takes at least 3 courses? The answer is: The
same way, only using 3 copies of table Take, as shown in
Figure8.2.

SELECT X.Sno
FROM Take X, Take Y, Take
WHERE (X.Sno = Y.Sno)

AND (Y.Sno = Take.Sno)
AND (X.Cno != Y.Cno)
AND (Y.Cno != Take.Cno)
AND (X.Cno != Take.Cno)

Rgure 8.2: The query for question: Who takes at least
3 courses?

···;:�:·��:·;:;;:�·:::· 11

Again a trace shows the correctness of this query. We note
that, because equality is transitive, two equalities on Sno are
sufficient. However, because inequality is not transitive,
three inequalities on Cno are necessary. We also note that the
use of DISTINCT is again necessary to eliminate duplicates.

An interesting variation here is to replace the three inequal­
ities among the Cno's in the WHERE clause by the condi­
tion (X.Cno < Y.Cno) AND (Y.Cno < Take.Cno). First, since
less-than comparisons are transitive, only two of them are
necessary. Second, this also substantially reduces the num­
ber of potential duplicates in the answer.

We now have a general approach that gives us a family of
Type 1 solutions for "at least K" questions for any K. For "at
least 4 courses" we would use 4 copies of Take, 3 equalities
on Sno, and either 6 inequalities or 3 less-than comparisons
among Cno's. For "at least 5 courses" we would use 5
copies of Take, 4 equalities and either 10 inequalities or 4
less-thans, etc. (The formula for computing the number of
required inequalities is K*(K-1)/2.)

Clearly, these solutions become very bulky and inefficient
for all but the smallest values of K. We will show later how
the questions involving "at least" can also be posed in a
more concise and efficient way using aggregation.
Nonetheless, the ability to pose them as Type 1 queries is
important.

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

9 Negation Revisited

We now consider the remaining questions from our stan­
dard list: questions EB through El3, as well as question ES.
As we have already noted, question ES involves real nega­
tion- the kind that cannot be phrased as a Type 1 query.
Although not obvious at the first glance, these remaining
questions also involve real negation- to see that, consider
rephrasing them as shown in Figure 9.1. (Negation is itali­
cized for emphasis.)

While the rephrasings for questions E12 and E13 are some­
what obscure (they are, nevertheless, correct), the rest of the
rephrasings are quite intuitive. Thus, we have essentially
reached a dead-end- to proceed further we need real nega­
tion, and Type 1 SQL cannot give it to us. Not to worry,
however-that's why we have the rest of SQL.

EB. Who takes at most 2 courses?
is equivalent to
Who does not take at least 3 courses?

E9. Who takes exactly 2 courses?
is equivalent to
Who takes at least 2 courses and does not
take at least 3 courses?

ElO. Who takes only CS112?
is equivalent to
Who takes CS112 and does not take
any other course?

Ell. Who takes either CS112 or CS114?
is equivalent to
Who takes CS112 or CS114, and does not
take both CS112 and CS114?

···�:����:·;��;:�:�· -

E12. Who are the youngest students?
is equivalent to
Who are not among those students who
are not youngest?

E13. Who takes every course?
is equivalent to
Which students are not among those for whom
there is a course that they do not take?

Figure 9.1: Questions ES through E13 rephrased to expllcltly
show negation.

The positive aspect of this, however, is that once we master
real negation (i.e., question ES) posing questions E8 through
Ell becomes quite straightforward because they simply
combine negation with the previously considered standard
question types. Specifically,

EB. Construct "at most" is a combination of "does
not" and "at least."

E9. Construct "exactly" is a combination of "does not"
and two "at leasts."

ElO. Construct "only" is a combination of "does not"
and "is not" (or, "other than").

Ell . Construct "either-or" (or "exclusive or," as it is
conventionally called) is a combination of "or,"
"does not" and ''both-and."

Questions E12 (construct "youngest") and E13 (construct
"every") will be considered separately.

11

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

10 Type 2 SQL Queries

A sample Type 2 query is shown in Figure 10.1. We begin
the discussion by first explaining its syntax, then introduc­
ing the Type 2 evaluation mechanism, and finally tracing
this query to determine the question it poses.

SELECT Sno, Sname
FROM Student
WHERE (Sno IN

(SELECT Sno
FROM Take
WHERE (Cno = "CS112")))

Rgure 10.1: A sample Type 2 SQL query.

Syntactically, a Type 2 SQL query is a collection of several
non-correlated component queries, with some of them nested
in the WHERE clauses of the others. (The meaning of the
term "non-correlated" will be explained in a moment.)

Theoretically, there is no limit on the number of nesting lev­
els or on the number of component queries involved. On a
practical level, however, SQL compilers do impose some
limitations in this regard (e.g., no more than 16 nesting lev­
els or 256 component queries), but these rarely present any
real problems.

In the above example, we have two component queries. The
inner query (called the subquery) is nested in the WHERE
clause of the outer query (called the main query), and the
queries are connected by the list-membership operator IN.
(Out of the three pairs of parenthesis used in this example,

... ... 11
Type 2 SQL Queries

the only pair that is actually required is the left parenthesis
immediately before SELECT and its matching right paren­
thesis.)

A query is called non-correlated if all column references in it
are local- i.e. , all columns come from, or are bound to, the
tables in the local FROM clause. Any non-local column ref­
erence is called a correlation, and the query containing it
becomes correlated.

In determining these column-to-table bindings, SQL follows
the standard "inside-out, try the local scope first" scope
rules. Specifically, given a column reference, SQL first tries
to find some table in the local FROM clause containing that
column. If the column reference also involves a prefix­
either a table name or an alias- then SQL also looks for the
match on that prefix. Three alternative outcomes are then
possible.

1 . SQL finds a single such table and successfully binds
that column reference to that table .

2. SQL finds several such tables. Then column reference
is ambiguous and the appropriate error message is
generated.

3. SQL does not find any such table in the local FROM
clause. Then column reference is not local. SQL then
looks at the next outer scope- i.e., at the FROM
clause in the immediately enclosing query, and
attempts to bind that column reference to a table in
that FROM clause.

This process continues (using the same three possibilities)
until either a column reference is successfully bound, or an
ambiguity is found, or the binding process "falls off" the
main query, in which case the column reference cannot be
bound at all, and the appropriate error is declared. (This

last case corresponds to an undeclared variable in conven­
tional programming languages.)

Given this process and the query of Figure 10.1, columns
Sno and Cno in its subquery are bound to the inner Take
table, and columns Sno and Sname in its main query are
bound to the outer Student table, thus making all bindings
local, the component queries non-correlated, and this entire
query of Type 2.

The formal syntactic condition for a multi-level (i.e., with
subqueries) query to be of Type 2 is presented in Figure 10.2.

A query with subqueries is of Type 2 if every component
query in it is non-correlated or, equivalently, if every column
reference in it is local.

Figure 10.2: The definition of a Type 2 query.

The evaluation mechanism for Type 2 queries is presented
in Figure 10.3.

To execute a Type 2 query, execute its component queries in
the "inside-out" order- i.e., with the inner-most nested
subquery first, replacing each query by its result as it gets
evaluated.

Figure 10.3: The Type 2 SQL evaluation mechanism.

In case of the query of Figure 10.1, the subquery

SELECT Sno
FROM Take
WHERE (Cno = "CS112")

. �·�·���·�:�·II

which is a regular Type 1 query, is executed first. Its answer
is then substituted into its place in the main query

SELECT Sno, Sname
FROM Student
WHERE (Sno IN (. . .))

which is executed next. Note that, at this point, the main
query has been reduced to a simple Type 1 query. Also note
that, since the subquery retrieves a single column in its
SELECT clause, the answer to it is just a list of values. Thus,
the use of the list membership operator IN as the inter­
query connector is quite appropriate.

We note that Type 2 queries fundamentally involve multiple
data passes - one for each component query. In this case,

the first pass is through table Take in the subquery, and the
second pass is through table Student in the main query.

To determine the question posed by this query, observe that
the subquery is a verbatim copy of query Ql, and thus
poses question El- Who takes CS112 ? The main query,
which retrieves their student numbers and names then cor­
responds to the question What are the student numbers and
names of students who take CS112? In other words, this is just
another way of asking our standard question E2.

Before concluding this section, we note that, from a syntac­
tic point of view, the condition (Sno IN . . .) of the main
query is just that- a condition; thus, it can itself be part of
a more complex Boolean expression involving NOT, AND
and OR- a feature that will become very handy in a
moment.

111

THE ESSENCE OF SQL: A Guide to Learning Most of SQL In the Least Amount of Time

11 Using Type 2 to Implement Real Negation

As we have discussed in Section 7, questions involving real
negation need two passes through the data, using the fol­
lowing general strategy:

To pose a question "Who does not do X?"
1. identify and select those who actually do X; and
2. remove them from the list of those who potentially

may do X.

Since 1}1pe 2 queries fundamentally involve multiple data
passes, they give us exactly what is necessary to implement
real negation in SQL. Consider the query of Figure 11.1.

SELECT Sno
FROM Student
WHERE NOT (Sno IN

(SELECT Sno
FROM Take
WHERE (Cno = "CS112")))

Rgure 11.1: A mystery Type 2 SQL query Involving negation.

This query differs from the query of Figure 10.1 in two
ways: there is a NOT in front of the main query's condition,
and Sno is used alone in the main SELECT clause. But how
is this query evaluated, and what question does it pose?

Since this is a Type 2 query, it is evaluated inside-out.
Again, the subquery is the same as query Qt and poses
question El- Who takes CS112? Because of the NOT opera­
tor in its WHERE clause, the main query now retrieves the

.. 11
IJllng Type 2 to Implement Real Negation

student numbers of all other students- i.e., those student
numbers that are not on the list generated by the subquery.
Thus, the full query of Figure 11.1 corresponds to the ques­
tion Who does not take CS112?- i.e., our standard question
ES. (We will refer to this query as QS.)

An interesting related query is shown in Figure 11 .2.

SELECT Sno
FROM Take
WHERE NOT (Sno IN

(SELECT Sno
FROM Take
WHERE (Cno = "CS112")))

Rgure 1.1.2: Using Take In both FROM clauses.

This query was obtained from the query of Figure 11 . 1
by replacing table Student with table Take in the main
FROM clause.

Note that this is still a Type 2 query, with the inner Sno and
Cno coming from the inner Take table, and the outer Sno
coming from the outer Take table. (Even though we use two
copies of table Take here, because of the scope rules, no
binding ambiguities arise and no aliases are necessary.)

The use of table Take in the main FROM clause limits the
list of students who may potentially appear in the answer
to whose who are listed in Take and thus take some course.
Thus, it corresponds to the question Who takes some (i.e., at
least 1) course, but does not take CS112?

As we can see, this query is different from the query of
Figure 11.1, just as this question is different from our origi­
nal question ES- Who does not take CS112?

11 .. .

THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

12 Posing Questions Involving "at most,"
"exactly," "only," and "either-or"

Using the solution to question ES as a foundation, it is now
quite easy to generate solutions to questions ES through
Ell . Specifically, question ES- Who takes at mos t 2
courses?- is posed by query QB of Figure 12.1.

SELECT Sno
FROM Student
WHERE NOT (Sno IN

(SELECT X.Sno
FROM Take X, Take Y, Take
WHERE (X.Sno = Y.Sno)

AND (Y.Sno = Take.Sno)
AND (X.Cno != Y.Cno)
AND (Y.Cno != Take.Cno)
AND (X.Cno != Take.Cno)))

Figure 12.1: Query QB for question ES - Who takes at most
2 courses?

This query is based on rephrasing question E8 as Who does
not take at least 3 courses? The subquery here poses the ques­
tion Who takes at least 3 courses? and is taken from Figure 8.2.
The NOT in the main WHERE clause achieves the desired
negation.

We note that this query will retrieve students who do not
take any courses. This is appropriate, since "at most 2"
means 0 (!), 1 or 2.

By using Take instead of Student in the main FROM clause
we can change this query to ask a related question-Who
takes some (i.e., at least 1), but at most 2, courses? In other
words, Who takes 1 or 2 courses?

Question E9- Who takes exactly 2 courses?- is posed by
query Q9 of Figure 12.2.

SELECT X.Sno
FROM Take X, Take
WHERE (X.Sno = Take.Sno)

AND (X.Cno < Take.Cno)
AND NOT (X.Sno IN

(SELECT X.Sno
FROM Take X, Take Y, Take
WHERE (X.Sno = Y.Sno)

AND (Y.Sno = Take.Sno)
AND (X.Cno < Y.Cno)
AND (Y.Cno < Take.Cno)))

Figure 12.2: Query Q9 for question E9 - Who takes exactly
2 courses?

This query is based on rephrasing question E9 as Who takes at
least 2 courses and does not take at least 3 courses? The main
query poses Who takes at least 2 courses? and is copied from
query Q7. (We have used the less-than operator in its condi­
tion to remove duplicates from the final answer.) The sub­
query again poses Who takes at least 3 courses? (Here, we have
used less-than operators for conciseness.) The NOT in the
main WHERE clause again achieves the desired negation.

We note that even though we have used the same alias
name X in both the main query and in the subquery,
because of the scope rules, no confusion arises.

Question ElO- Who takes only CS112?- is posed by query
QlO of Figure 12.3.

SELECT Sno
FROM Take
WHERE (Cno = "CS112")

AND NOT (Sno IN
(SELECT Sno
FROM Take
WHERE (Cno != "CS112")))

Figure 12.3: Query Q10 for question E10 - Who takes only
CS112?

This query is based on rephrasing question E9 as Who takes
CS112 and does not take any other course? Here, the main
query is based on query Ql- Who takes CS112? The sub­
query is taken verbatim from query Q6- Who takes a course
which is not CS112? The NOT in the main WHERE clause
again achieves the desired negation.

Two things should be noted about query QlO. First, think­
ing that the outer NOT can be brought inside the WHERE
clause of the subquery, and thus cancel the negation
implied by the != operator, is a common mistake- it can­
not. Doing so would change the meaning of the query.

Second, the condition (Cno = "CS112") in the main WHERE
clause is unnecessary in this case (!) and can be dropped
without changing the query's meaning. The simplified query is
shown in Figure 12.4. (Before proceeding further, try tracing
it to determine why this is so.)

······················;:�·��::·;��:;�·��·�:··���::·:;::·:�·�::::· 11

SELECT Sno
FROM Take
WHERE NOT (Sno IN

(SELECT Sno
FROM Take
WHERE (Cno != "CS112")))

Figure 12.4: Query of Figure 12.3 simplified.

For a particular Sno to appear in the final result, it must not
appear with any Cno value different from "CS112" in table
Take. (If it did, the NOT . . . IN of the main condition would
"remove" that Sno from the answer.) But, for this Sno to
even be considered in the main query, it must come from
some Take row, and, thus must have some Cno associated
with it in that row. Since this Cno cannot be anything other
than CS112, it must be CS112. Thus, explicitly testing for it
is unnecessary.

Finally, question Ell- Who takes either CS112 or CS114?- is
posed by query Qll of Figure 12.5.

SELECT Sno
FROM Take
WHERE ((Cno = "CS112") OR (Cno = "CS114"))

AND NOT (Sno IN
(SELECT X.Sno
FROM Take X, Take
WHERE (X.Sno = Take.Sno)

AND (X.Cno = "CS112")
AND (Take.Cno = "CS114")))

Figure 12.5: Query Q11 for question E11 - Who takes either
CS112 or CS114?

11 . .
I THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

This query which is based on rephrasing question Ell as
Who takes CS112 or CS114, and does not take both CS112 and
CS114? is a combination of query Q3- Who takes CS112 or
CS114?- for the main query, and query Q4- Who takes both
CS112 and CS114?- for the subquery, with the outer NOT
achieving the negation.

Note the extra pair of parenthesis around the OR in the
main condition. This forces the OR to be executed before the
AND in the main condition- otherwise, the SQL standard
rules of precedence for logical operators are: first NOT, then
AND, and only lastly OR.

11

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

13 Computing Extremes as Type 2
Queries with Negation

Consider question E12- Who are the youngest students ?
While the most natural way of posing this question involves
the use of the aggregate function MIN() (to be presented
later), this question can also be posed using a Type 2 query
with negation, as shown in Figure 13.1.

SELECT Sno
FROM Student
WHERE NOT (Age IN

(SELECT X.Age
FROM Student X, Student
WHERE (X.Age > Student.Age)))

Figure 13.1: Query Q12 for question E12 - Who are the
youngest students?

This solution is interesting because it looks at the problem
of minimums (and maximums) in a novel way. It is also
important, because, as we will point out later, SQL imposes
certain limitations of the use of its aggregate functions.
Thus, ability to ask this and similar questions without the
use of aggregates is important.

To see how this query operates, let's trace its execution. (You
should follow this trace on paper.) Since this is a Type 2 query,
it is evaluated inside-out. That means that the subquery is
evaluated first. But, what does this subquery retrieve?

··· · · · · · · · · · · · ·· 11
Computing Extremes as Type 2 Queries with Negation

It retrieves a particular Age value if there is some other Age
value less than it. In other words, it retrieves those Age val­
ues which are not smallest. To rephrase this even shorter, it
retrieves all Ages except the smallest one.

Given each student, the main query then tests whether his
age is not in the list of ages retrieved by the subquery. Of
course, since the only age not present in the list is the small­
est one, only the students possessing it- i.e., the youngest
ones- will be retrieved in the final answer.

If all students happen to be of the same age, then all stu­
dents would be youngest. In that case, the answer to the
subquery would be empty; the main WHERE clause would
be True for all Student rows; and all students would be
retrieved.

Note that, in Figure 13.1, the connection between the main
query and the subquery is made on the Age column.
However, it is also possible to ask the same question by
making this connection on the Sno column, by replacing the
WHERE clause as follows. (The choice between these two
alternatives is a matter of personal preference.)

WHERE NOT (Sno IN
(SELECT X.Sno
FROM Student X, Student
WHERE (X.Age > Student.Age)))

If we wish to pose the question Who are the oldest students?,
we can simply replace the greater-than operator in the
WHERE clause of the subquery with the less-than operator.

11

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

14 A Look at SQL Enhancements

In this section, we take a break from the fundamental fea­
tures of the language and take a brief look at the various
enhancements it provides. Roughly speaking, these enhance­
ments can be divided into three categories: syntactic enhance­
ments, presentation enhancements and scalar expressions.

Syntactic enhancements are those features that make the
writing of SQL queries easier. They include: omitting the
WHERE clause, using symbol * (asterisk) in the SELECT
clause, and using operator NOT IN.

SQL permits the omission of the WHERE clause if the con­
dition of the query is always True-- i.e., there really is no
condition that needs to be imposed. Thus, a request to
retrieve the student numbers of all students is posed by the
query of Figure 14.1.

SELECT Sno
FROM Student

Figure 14.1: Example of query with the omitted WHERE clause.

SQL provides the shorthand symbol * (asterisk) if the
request is to retrieve all columns from some table in the
FROM clause. For example, the query of Figure 14 .2
retrieves all information about students who take CS112.

··�·:�·�·���·��::::::· 11

SELECT Student.""
FROM Student, Take
WHERE (Student.Sno = Take.Sno)

AND (Cno = "CS112")

Figure 14.2: Using symbol * to mean "all columns."

We note that using symbol "" without the prefix, as in

SELECT ""

causes all columns from all tables in the FROM clause to be
retrieved.

The NOT IN operator is a syntactic enhancement that
allows NOT to be brought inside parenthesis containing IN.
In other words, any construct of the form

NOT (<SOmething> IN (SELECT . . . FROM ... WHERE ...))

can be equivalently rewritten (i.e., without changing its
meaning) as

(<SOmething> NOT IN (SELECT . . . FROM . . . WHERE ...))

While NOT IN is actually a primitive operator in SQL, we
can think of it simply as a shorthand for the longer NOT . . .
IN combination, making such combinations easier to read.

Presentation enhancements make answers easier to under­
stand. They include: suppressing duplicates in the answer,
assigning new names to columns of the answer, and sorting
the answer.

11

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

As previously discussed, using the keyword DISTINCT, we
can suppress duplicates from the answer.

We emphasize that DISTINCT eliminates duplicate rows, and
not individual values, from the answer. A simple query that
makes this point clear is shown in Figure 14.3.

SELECT DISTINCT Sname, Age
FROM Student

Rgure 14.3: Suppressing duplicates from the answer.

This query would eliminate an answer row only if it dupli­
cates both the Sname value and the Age value from some
other answer row. Thus, it would leave both rows <"John
Doe", 20> and <"John Doe", 23> in the answer. (Recall that
Sno, and not Sname, is the key for table Student; so, there
can be two students, each named John Doe.)

Often, names of columns in the SELECT clause are not the
ones desired for the column headings in the answer. To
overcome this, SQL allows for the assignment of new col­
umn headings. Depending on the SQL dialect, there are
basically two ways to do this. We can prefix the column ref­
erence in the SELECT clause with its new name followed by
the equal sign.

SELECT Name = Sname, . . .

Alternatively, we can follow the column reference by the
keyword AS and the new name.

SELECT Sname AS Name, . . .

. 11
A Look at SQL Enhancements

In both cases, when we want the new column heading to
include spaces (and, in some SQL dialects, certain other
characters as well), the new name should be enclosed in
quotes.

SELECT "Student Name" = Sname, . . .

The sorting of a query answer can involve one or several
columns from the answer, and may also specify the direc­
tion (ascending or descending) for each of these columns.
As an example, consider the query of Figure 14.4.

SELECT Sname, Age
FROM Student, Take
WHERE (Student.Sno = Take.Sno)

AND (Cno = "CS112")
ORDER BY Sname, Age DESC

Rgure 14.4: Sorting facllltles of SQL

The sort specification is contained in the ORDER BY clause,
which syntactically appears as the very last clause of the
query, and which is executed after the SELECT clause.

The argument to the ORDER BY clause is a list of columns
from the SELECT clause, where the left-to-right column
order defines the major-to-minor sort sequence. Each column
can optionally be followed by the keywords ASC or DESC,
defining the sort order on that column as ascending or
descending, respectively, with ASC as the default if omitted.

In this case, the answer would first be sorted by Sname
ascending, and then, within each group of rows with the
same Sname, by Age descending.

11 ,

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

An interesting feature of the ORDER BY clause is that it also
allows us to refer to columns from the SELECT clause by
their position. Furthermore, mixing of column names and
positions is allowed. Thus, for example, the ORDER BY
clause from the query of Figure 14.4 can be equivalently
rewritten as

ORDER BY Sname, 2 DESC

Notably, this is the only place in the entire SQL language
where columns can be referenced by their positions. (This
feature will become useful in a moment.)

We note that changing the ORDER BY clause in our query to

ORDER BY Age DESC, Sname

only changes how the answer is displayed row-wise- it
will now be sorted first by Age descending, and then by
Sname. Columns will still be displayed as specified in the
SELECT clause- with Sname column on the left, and Age
column on the right.

Finally, the behavior of sorts is always consistent with the
behavior of the less-than and greater-than operators. For
example, if the less-than operator treats strings as left-justi­
fied, the ascending sort would place them in the standard
lexicographic (dictionary) ordering.

The most important enhancement feature of SQL is the
availability of scalar expressions. Luckily, their use is very
intuitive. Basically, SQL provides a reasonable set of scalar
operators and functions for operating on numerics, strings
and other data types, and allows their use in all reasonable
places in the SELECT and WHERE clauses of queries.

· 11
·

A Look at SQL Enhancements

While specifics as to which operators and functions are
actually provided differ widely among SQL dialects, as an
example here is a sampling of what Transact SQL provides.
For numerics, there are the four basic arithmetic operators
(+, -, "' and /), modulo division (%), functions round(),
trunc() and abs(), exponentiation function power(), logarith­
mic functions log() and loglO() for natural and base-10 loga­
rithms, a full set of trigonometric functions, etc.

For strings, there is a concatenation operator (+) and a set of
substring functions, etc.

Other data types (most notably, datetime- for dealing with
calendar dates and time values) have rich sets of functions
as well.

The basic rule of thumb for using scalar expressions in SQL
is as follows: Wherever one can use a column name in the
SELECT or WHERE clauses, one can also use an expression
of an appropriate data type comprised of column names,
constants and various scalar operators and functions.

For example, the query of Figure 14.5 assumes table
Room(Rno. Length, Width) and retrieves room numbers
and areas of those rooms where the length of the room is
within 1% of its width, sorting the answer in the descend­
ing order by area.

SELECT Rno, Area = Length*Width
FROM Room
WHERE abs(Length-Width)/Width <= 0.01
ORDER BY 2 DESC

Figure 14.5: Example use of arithmetic In SQL

Since many SQL dialects forbid the use of expressions in the
ORDER BY clause, and since in most of them column
renaming is done after the sorting, referring to expression­
based columns by their positions in the ORDER BY clause is
the only means left to achieve the desired sort.

A less obvious consequence of having expressions in SQL, is
that we can use the string manipulation capabilities for for­
matting query answers. As an example, Figure 14.6 shows a
query that will retrieve all professor names, formatted as
last name, comma, space, first initial, period, as in: "Smith,
J." (Function substring(Fname,1,1) gets one character start­
ing at position 1 from Fname; when used with strings, sym­
bol + denotes the concatenation operator.)

SELECT Lname + ", " + substring(Fname,1,1) + " ."
FROM Professor

Figure 14.6: Fonnattlng an answer •

. �·:;;·�·���·��· 11

11 . .

THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

15 Handling Composite Keys

All of the questions considered thus far in this essay have
been about students taking courses. Surely, the same types
of questions can also be asked about professors teaching
them. Are there any differences, and do the same types of
solutions apply?

The answer is: Yes, the same types of solutions apply, but
with an adjustment. Specifically, since table Professor has a
composite, two column- Fname and Lname- key, any
professor-based connection (positive or negative) between
tables Professor and Teach, or between multiple copies of
Professor or of Teach, has to involve both of these columns.

To illustrate this point, we briefly go through some of our
standard questions, restated with respect to professors
teaching courses. We begin with questions not involving
negation.

The query of Figure 15.1 poses the question What are full
names and ages of professors who teach CS112?, which is simi­
lar to our standard question E2.

SELECT P.Fname, P.Lname, Age
FROM Professor P, Teach T
WHERE (P.Fname = T.Fname)

AND (P.Lname = T.Lname)
AND (Cno = "CS112")

Figure 15.1: Query for the question What are full names and ages
of professors who teach CS112?

. 11
Handling Composite Keys

Questions about professors teaching courses involving "or,"
"both-and," and "is not" (similar to standard questions E3,
E4, E6) are posed in a similar fashion, and are left as an
exercise for the reader.

The question Who teaches at least 2 courses? (similar to ques­
tion E7) is also quite straightforward, and is posed in a
manner similar to query Q7.

Another question also involving "at least"- Which courses
are taught by at least 2 professors ?- but formulated with
respect to courses taught by professors, however, takes
more thought. (Try posing it before proceeding.)

The tricky part here is to realize that a difference in just the
first names or just the last names of two professors is suffi­
cient to make them different from each other. The correct
way of expressing this condition involves the use of OR, as
shown in Figure 15.2, with the necessary extra pair of
parenthesis around the OR operands. As an additional exer­
cise, try posing the question Which courses are taught by at
least 3 professors?

SELECT X.Cno
FROM Teach X, Teach Y
WHERE (X.Cno = Y.Cno)

AND ((X.Fname != Y.Fname)
OR (X.Lname != Y.Lname))

Figure 15.2: Query for the question Which courses are taught by
at least 2 professors?

11

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

16 Negation Over Composite Keys

Posing negative questions regarding professors teaching
courses presents its own set of interesting problems.
Consider the question Who does not teach CS112? - similar
to our question ES- along with the query of Figure 16.1 .

SELECT Fname, Lname
FROM Professor
WHERE (Fname NOT IN

(SELECT Fname
FROM Teach
WHERE (Cno = "CS112")))

AND (Lname NOT IN
(SELECT Lname
FROM Teach
WHERE (Cno = "CS112")))

Figure 16.1: First attempt at the question Who does not teach
CSU2?

However intuitive, this query is nonetheless incorrect for
this question. (Try to determine why before proceeding.)

The problem here is that the lists of the first names and the
last names of professors who do teach CS112 are compiled
and tested independently of each other. Thus, they are not
"synchronized" to come from the same Teach row. As a
result, professors who do not in fact teach CS112 may incor­
rectly be suppressed by this query.

To see this, consider an example where table Professor con­
tains only two rows, and table Teach contains only a single

. 11
Negation Over Composite Keys

row, as shown in Figure 16.2. (Since the Dept, Rank, Salary
and Age values are immaterial for this example, we are not
showing these columns in table Professor.)

Professor
Fname Lname . . .

"John" "Smith"
"Mary" "Smith"

Teach
Fname I Lname I Cno
"John" I "Smith" I "CS112"

Figure 16.2: Example data for tables Professor and Teach.

A trace of the query of Figure 16.l on this data shows that it
will return an empty result. Yet, Mary Smith does not teach
CS112, and thus should be in the answer to the question
Who does not teach CS112?

Changing this query to use OR in place of AND does not fix
the problem either. As an example here, consider tables
Professor and Teach as shown in Figure 16.3.

Professor
Fname Lname . . .

"John" "Smith"
"Mary" "Smith"
"John" "Brown"
"Mary" "Brown"

11

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

Teach
Fname Lname Cno
"John" "Smith" "CS112"
"Mary" "Smith" "CS112"
"John" "Brown" "CS112"

Figure 16.3: Another example data for tables Professor and
Teach.

The answer to such a modified query on the data of Figure
16.3 would again be empty. Yet, the answer to our question
here should list Mary Brown.

Note that we seem to have run out of available syntax at
this point- there does not seem to be any other reasonable
query modification. Does that mean that we cannot ask
such a question? The answer is: Of course, we can- we just
need to recall and appropriately use one of the previously
introduced language features.

We must first determine what it is that we actually need.
The concept of a composite key offers a clue: We do not
want first names and last names to be treated separately.
Rather, we want NOT IN to be tested between Fname/Lname
pairs. In other words, we would like to be able to write a
query as shown in Figure 16.4.

SELECT Fname, Lname
FROM Professor
WHERE (Fname, Lname NOT IN

(SELECT Fname, Lname
FROM Teach
WHERE (Cno = "CS112")))

Figure 16.4: Desired query fonn for the question Who does not
teach CS112?

. 11
Negation Over Composite Keys

Unfortunately, this is syntactically incorrect: the IN and
NOT IN operators cannot be used with a list of "pairs."
They can, however, be used with a list of expression results!

In other words, even though the IN and NOT IN operators
require that the subquery retrieve a single column in its
SELECT clause, the specification for that column need not
be a single basic attribute, but can be an expression.
Likewise, the object to the left of IN and NOT IN can also
be an expression. All that is required is that the data types
of these expressions be compatible.

The query of Figure 16.5 incorporates expressions to pose
our question Who does not teach CS112?

SELECT Fname, Lname
FROM Professor
WHERE (Fname + Lname NOT IN

(SELECT Fname + Lname
FROM Teach
WHERE (Cno = "CS112")))

Figure 16.5: Using string concatenation expressions for the
question Who does not teach CS112?

We assume here that columns Fname and Lname are imple­
mented as fixed character strings, and that the concatena­
tion operator + does not suppress extra spaces, so that
Fname and Lname do not "intrude" into each other.

Using expressions in this manner, we can now pose ques­
tions involving "at most," "exactly," "only" and "either-or"
(similar to questions E8 through Ell) about professors
teaching courses, as well as a question involving
"youngest" (or "oldest") (similar to question E12) about
professors. These are left as exercises for the reader.

11

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

17 Standard Questions Involving 11every"

Given an ability to use expressions around the IN and NOT
IN operators, we can now pose question E13- Who takes
every course?- as shown in Figure 17.1.

SELECT Sno
FROM Student
WHERE (Sno NOT IN

(SELECT Sno
FROM Student, Course
WHERE (Sno + Cno NOT IN

(SELECT Sno + Cno
FROM Take))))

Rgure 17.1: Query Q13 for question E13 - Who takes every
course?

This query, which is motivated by the rephrasing of ques­
tion Q13 as Which students are not among those for whom there
is a course that they do not take? (see Figure 9.1) is quite com­
plex, and really has to be traced in order to understand how
it works.

Because all column references in this query are local, this
query is of Type 2. (The inner Sno and Cno come from the
inner table Take, the middle Sno and Cno come from the
middle tables Student and Course respectively, and the
outer Sno comes from the outer table Student.) Therefore, it
is executed inside-out.

We first evaluate the inner-most subquery, which returns a
list of Sno/Cno concatenations from table Take.

··�::�·��:··,���·��· 11

We then evaluate the middle subquery. This subquery exe­
cutes a cross-product between tables Student and Course.
Its NOT IN operator then retains only those wide rows
from this cross-product where the Sno/Cno combinations
are not retrieved by the inner subquery- i.e., not present in
table Take- i.e., where student Sno does not take course
Cno. The answer to the middle subquery then contains the
Sno values from these combinations- i.e., the student
numbers of those students for whom there is a course that
they do not take.

The condition of the outer query then fails for these stu­
dents, leaving for the final answer the student numbers of
only those students who are not among those retrieved by
the middle subquery. In other words, those students who
take every course .

.... .

- THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

18 A Brief Interlude

We have just completed all of the standard questions from
Figure 4.1, covering Type 1 and Type 2 queries, as well as
SQL enhancement features. What remains are: the aggrega­
tion facilities, NULLs (remember the NULL and NOT
NULL qualifiers from Figure 3.1?), the Type 3 queries, the
DML component of SQL- namely, the facilities to insert,
delete and update rows, and SQL extensions.

··�·���;·;������ II

11

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

19 Additional Standard Questions

Five additional standard questions, motivating SQL aggre­
gation facilities, are listed in Figure 19.1.

E14. For each department that has more than 3 profes­
sors older than 50, what is the average salary of
such professors?
(A related question: For each department/rank com­
bination that has more than 3 professors older than
50, what is the average salary of such professors?)

E15. What is the grade point average (GPA) of each
student?

E16. What is the overall average salary of all professors
who are older than 50?

E17. Whose (i.e., which professors') salary is greater
than the overall average salary?

E18. Whose salary is greater than the average salary
within that professor's department?

Figure 19.1: A llst of additional standard questions motivating
SQL aggregation facilities.

While the standard nature of these questions is not immedi­
ately apparent, it will become clear as we consider each
question in turn .

.. 11
Additional Standard Questions

11 . .

THE ESSENCE OF SQL: A Guide to Leaming Most of SQL in the Least Amount of Time

20 Computing Aggregates for Groups

The query posing question E14- For each department that
has more than 3 professors older than 50, what is the average
salary of such professors?- is shown in Figure 20.1 .

SELECT Dept, AVG(Salary)
FROM Professor
WHERE (Age > 50)
GROUP BY Dept
HAVING (COUNT(,.) > 3)

Figure 20.1: Query Q14 for question E14 - For each department
that has more than 3 professors older than 50,
what Is the average salary of such professors?

This query involves two new clauses: the GROUP BY
clause, which takes a list of columns as an argument, and
the HAVING clause, which takes a condition as an argu­
ment. It also involves two aggregate functions: AVG() and
COUNT(,.).

Syntactically, the HAVING clause is positioned immediately
after the GROUP BY clause. The two are placed after the
WHERE clause, but before the ORDER BY clause (not pre­
sent in this case).

Operationally, the following sequence of events takes place.
First, SQL formulates and evaluates the query

SELECT ""
FROM Professor
WHERE (Age > 50)

··�::·����·�:;:·:·�:��· -

This query is called the underlying query. It is formed from
our original query by dropping the GROUP BY and HAV­
ING clauses and by replacing the SELECT specification
with symbol "' (asterisk). Thus, it retrieves all columns from
all of the tables involved. (While, in this case, the underly­
ing query uses only one table and is of Type 1, in general it
can involve multiple tables and be of any type.)

The result of this underlying query is then grouped by the
Dept column (or, more precisely, by the values remaining in
this column). In other words, the rows are re-arranged (or,
re-ordered) in such a way that all rows sharing the same
Dept value are listed next to each other.

We note that grouping is not the same as sorting; in particu­
lar, grouping does not guarantee that among themselves the
groups would be listed in any particular order. Thus, for
example, a group of "Mathematics" rows may appear after
the group of "English" rows, but before the group of
"History" ones.

SQL then evaluates the HAVING clause condition
(COUNT("') > 3) for each group, and eliminates those
groups for which this condition fails. When evaluated for a
group, the aggregate function COUNT("') returns the num­
ber of rows in that group. Thus; for our query, only those
groups that have more than 3 rows in them remain.

Finally, SQL formulates one resulting row corresponding to
each remaining group and retrieves it. In this case, accord­
ing to the SELECT clause of our query

SELECT Dept, AVG(Salary)

this resulting row would contain the Dept value of the
group, and the average of all its Salary values. 11 . .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

This overall evaluation process involves four steps, as listed
in the evaluation mechanism shown in Figure 20.2.

1 . Formulate and evaluate the appropriate underlying
query

SELECT ,.
FROM . . .
WHERE .. .

2. Group (re-arrange) the rows in the result of Step 1
according to the GROUP BY clause.

3. Evaluate the HAVING clause condition for each group,
and eliminate those groups for which this condition fails.

4. Formulate one resulting row for each remaining group,
according to the SELECT clause, and retrieve it.

Figure 20.2: The evaluatlon mechanism for queries lnvolvlng
aggregation.

We emphasize that this is a formal evaluation mechanism.
As such it may differ from, and in particular appear less
efficient than, the actual evaluation strategies taken by real
SQL systems. However, we do guarantee that it will always
generate the same result.

In addition to COUNT(,.) and AVG(), SQL provides four
other aggregate functions : MIN(), MAX(), SUM(), and
COUNT(DISTINCT <column>), that also can be used in the
SELECT and HAVING clauses. The HAVING clause can
also involve Boolean operators NOT, AND and OR, as well
as scalar expressions. No subqueries are allowed in the
HAVING clause, however! These capabilities are illustrated
by the query of Figure 20.3

· m
Computing Aggregates for Groups

SELECT Dept,
MIN(Salary), MAX(Salary), AVG(Salary),
COUNT(DISTINCT Salary)

FR.()M Professor
WHERE (Age > 50)
GROUP BY Dept
HAVING (COUNT(*) > 3)

OR (SUM(Salary) - 200000 > 0)

Figure 20.3: A query showing the use of all aggregate functions,
and also showing the use of Boolean expressions In
the HAVING clause.

For numeric arguments, the behavior of MIN(), MAX(),
AVG() and SUM() is quite natural: given a column of val­
ues, they return the smallest value, the largest value, the aver­
age of the values, and the arithmetic sum of the values,
respectively. (We note that the aggregate function AVG()
does not suppress duplicate values in its argument.)

For non-numeric data types, functions AVG() and SUM()
are generally not defined, and the behavior of MIN() and
MAX() is consistent with the behavior of the less-than and
greater-than operators for those data types. For example,
function MIN() applied to a column of string values, would
return the lexicographically smallest of them. (Recall that
the sorting behavior imposed by the ()RDER BY clause is
also consistent with the behavior of the less-than and
greater-than operators.)

Functions COUNT(*) and COUNT(DISTINCT <column>)
are both counters, and apply to all data types. What they
count, however, is quite different. As we have already
noted, function COUNT(*) simply counts the number of
rows in a group.

11 . . .

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

Function COUNT(DISTINCT <column>) counts how many
different <column>-values are present in the group. For
example, given a group with 5 rows containing Salary val­
ues (20000, 30000, 20000, 20000, 30000), function
COUNT(DISTINCT Salary) would return 2- for the two
distinct values: 20000 and 30000. (While this use of DIS­
TINCT serves a different purpose than its use in SELECT
DISTINCT, both uses are quite consistent with each other.)

The question corresponding to the query of Figure 20.3 can
be phrased as follows: For each department that has more than
3 professors older than 50 or where the total salary of such profes­
sors exceeds $200,000, what is the minimum salary, the maxi­
mum salary, the average salary, and the number of distinct salary
values, of such professors?

SQL permits the omission of the HAVING clause if the con­
dition on the groups is always True- i.e., all groups are
desired for the answer. (Recall the similar ability with the
WHERE clause.) This allows the question For each depart­
ment, what is the average salary of those professors who are older
than 50? to be posed as shown in Figure 20.4.

SELECT Dept, AVG(Salary)
FROM Professor
WHERE (Age > 50)
GROUP BY Dept

Figure 20.4: The query for the question For each department,
what Is the average salary of those professors who
are older than 50?

If the argument to the GROUP BY clause is a list of several
columns, then the grouping occurs for all of them simulta-

.. 11·
Computing Aggregates for Groups

neously. To illustrate this, consider the query of Figure 20.5,
which poses the question For each department/rank combina­
tion that has more than 3 professors older than 50, what is the
average salary of such professors? (the related question to El 4).

SELECT Dept, Rank, AVG(Salary)
FROM Professor
WHERE (Age > 50)
GROUP BY Dept, Rank
HAVING (COUNT(•) > 3)

Figure 20.5: SQL query for the question For each department/
rank combination that has more than 3 professors
older than 50, what Is the average salary of such
professors?

In this query, rows are grouped both by Dept and by Rank­
in other words, all rows in a group must now agree both on
Dept and on Rank values. (Generally, this creates more
groups, each with fewer rows.) Since grouping does not
imply sorting, the order of columns in the GROUP BY
clause has no significance.

We note that in this case, the condition " . . . that has more than
3 professors older than 50 . . . " will be applied to each depart­
ment/ rank combination separately. Thus, it is possible for
some department to survive this condition in query Ql4,
but to not survive this condition here, when the department
is further subdivided by rank. (Find such a data example,
and trace the two queries.)

Standard SQL imposes an extremely important syntactic
restriction on the form of the SELECT and HAVING clauses
in queries involving aggregate functions and/or the
GROUP BY clause:

Only those columns explicitly listed in the GROUP
BY clause may appear un-aggregated (i.e., not as a
parameter of an aggregate function) in the SELECT or
HAVING clauses.

or, for those who prefer negative formulations:

It is prohibited to use an un-aggregated column in the
SELECT or HAVING clauses, unless it is explicitly
listed in the GROUP BY clause.

The motivation for this restriction is as follows. Since SQL
generates a single result row for each group, the values malc­
ing this row up must be representative - or, deterministic­
of that group. Likewise, when SQL tests the HAVING
clause condition for the group, the arguments involved in
this test must also be representative of it.

The only columns for which this "representativeness" can

be syntactically guaranteed are those found in the GROUP
BY clause- by the very nature of grouping, all values for
such a column will be the same within a group. Thus, these
columns can appear un-aggregated in the SELECT or HAV­
ING clauses. Reference to any other column in the SELECT
clause and in the HAVING clause must be aggregated. As
we will see later in Section 24, this syntactic restriction has
some awkward consequences.

However, this restriction does not imply that all of the
GROUP BY columns must appear in the SELECT or HAV­
ING clauses. For example, modifying the SELECT clause of
the query of Figure 20.5 to

SELECT Dept, AVG(Salary)

.. 11
COlftllllllnl Aafelatel for Graupl

is perfectly legitimate. It would still retrieve one average
salary for each department/rank group- we just would
not know which Rank value would go with which average.
Modifying it to

SELECT AVG(Salary)

would also be all right- except now we would not know
either the deparbnent or the rank that goes with the averages.

Further, the restriction does not require any aggregates to
be actually included in the SELECT or HAVING clauses.
Thus, for example, modifying the SELECT clause of the
query of Figure 20.5 to

SELECT Dept, Rank

is again syntactically correct.

In concluding this section, we note that while the standard
nature of question E14 is not immediately apparent, what it
does is compute some column aggregate(s)- in this case,
AVG(Salary), for groups of rows organized by some other
column(s)- Dept, with some condition imposed on the
groups- (COUNT(*) > 3) . We also note that questions
involving computation of aggregates for groups are often
phrased using the English word ''by"- e.g., Compute aver­
age salary by department- and are thus easy to recognize.

21 Combining Scalar Expressions with
Aggregation

One very useful property of SQL is its ability to combine
scalar expressions with aggregation. As an example of one
such combination in the SELECT clause, consider question
E15- What is the grade point average (GPA) of each student?­
posed by the query of Figure 21.1.

SELECT Sno,
GPA=round(SUM(Grade*Credits)/SUM(Credits),2)

FROM Take, Course
WHERE (Take.Cno = Course.Cno)
GROUP BY Sno

Rgure 21.1: Query Q15 for question E15 - What Is the grade
point average (GPA) of each student?

Here, the specification for the second column of the SELECT
clause is an expression consisting of two occurrences of the
aggregate function SUM() and three scalar operations: multi­
plication, division and the scalar function round().

Because the multiplication (Grade*Credits) appears inside
the argument to the aggregate function SUM(), it is carried
out on the individual Grade and Credits values, before aggre­
gation. Conversely, the division appears outside the SUM()
aggregates and is performed after the aggregations on the
results of the aggregates. The function round() is applied to
the result of the division (occurring, therefore, after the
aggregations) and, in this case, rounds it to 2 decimal digits .

.. 11
Combining Scalar Expressions with Aggregation

Scalar expressions can be combined with aggregate func­
tions in the HAVING clause as well. As an example, try
extending query Q15 by adding a restriction that only GPAs
over 2.5 should be retrieved.

We note that the ability to use scalar expressions as argu­
ments to aggregate functions is a direct consequence of
SQL's ability to substitute expressions for column names in
the SELECT clause, and now in the HAVING clause as well.
The only exception to this is with the COUNT(DISTINCT
<column>) construct, where some SQL dialects prohibit the
use of expressions for the <column> specification.

22 Some Old Questions Revisited

The questions involving "at least" posed in Section 8 as
Type 1 queries, along with those involving "at most" and
"exactly" posed in Section 12 as Type 2 queries, can also be
posed very naturally using the queries with the GROUP BY
and HAVING clauses. As an example, the question Who
takes at least 3 courses? is posed by the query of Figure 22.1.

SELECT Sno
FROM Take
GROUP BY Sno
HAVING (COUNT(,.) >= 3)

Figure 22.1: A query with the GROUP BY and HAVING clauses
for the question Who takes at least 3 courses?

By replacing the condition (COUNT(,.) >= 3) in the HAV­
ING clause with the condition (COUNT(,.) = 3), we get the
question Who takes exactly 3 courses? Interestingly, by replac­
ing it with (COUNT(..) <= 3) we get the question Who takes
at least 1, and at most 3, courses? and not Who takes at most 3
courses? This is because the query uses table Take in the
FROM clause, and thus students who take no courses at all
are simply not considered by this query.

We note, however, that the ability to pose such questions
using the GROUP BY and HAVING clauses does not mean
that we can now forget their Type 1 and type 2 implemen­
tations. As we will discuss later, SQL imposes certain
restrictions on the use of GROUP BY and HAVING, and
sometimes these questions have to be posed without them .

.. 11
Some Old Questions Revlllted

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

23 Global Aggregations

In this section, we look at a special case of aggregate
queries- the ones dealing with "global" aggregations. As
an example, consider question E16- What is the overall aver­
age salary of all professors who are older than 50?- posed by
the query of Figure 23.1.

SELECT AVG(Salary)
FROM Professor
WHERE (Age > 50)

Rgure 23.1: Query Q16 for question E16 - What Is the overall
average salary of all professors who are older
than 50?

What's special about this query is the absence of the
GROUP BY clause. With this syntactic form, the entire result
of the underlying query, which in this case is

SELECT ,.
FROM Professor
WHERE (Age > 50)

is implicitly considered to be a single group for aggregation
pwposes. Thus, AVG(Salary) is computed once over all pro­
fessors who are older than 50, generating a single row answer.

In queries involving global aggregations, SQL does not per­
mit the mixing of the aggregated and un-aggregated expres­
sions in the SELECT clause. This is because the presence of
un-aggregated columns would violate the restriction from

··�;:�:;·�:;: II

Section 2� namely, that in queries involving aggregation,
all un-aggregated columns in the SELECT clause must
come from the GROUP BY clause.

Further, no condition can be imposed on the single underly­
ing group in such queries. Such a condition must be placed
in the HAVING clause, which in turn requires the explicit
GROUP BY clause.

11 . .

THE ESSENCE OF SQL: A Guide to Leaming Most of SQL In the Least Amount of Time

24 Comparing Base Values to Aggregates

Questions E17- Whose (i.e., which professors') salary is greater
than the overall average salary?, and E18- Whose salary is
greater than the average salary within that professor 's depart­
ment? represent an interesting category of standard ques­
tions which compare base values with aggregates.

Question E17 is posed by the query of Figure 24.1 .

SELECT X.Fname, X.Lname
FROM Professor X, Professor Y
GROUP BY X.Fname, X.Lname, X.Salary
HAVING (X.Salary > AVG(Y.Salary))

Rgure 24.1: Query Q17 for question E17 - Whose (I.e., which
professors') salary Is greater than the overall aver­
age salary?

We evaluate this query according to its evaluation mechanism.

1 . We form and evaluate the underlying query

SELECT "'
FROM Professor X, Professor Y

This query involves a cross-product between two
copies- X and Y- of table Professor. Because of
the unqualified "' (asterisk) in its SELECT clause,
this query retrieves all columns from both copies of
Professor.

2. We group the wide rows from the result of this
cross-product by the combination of

· ··································· 11
Comparing Base Values to Aggregates

X.Fname/X.Lname/X.Salary values from the X­
copy of Professor. Each group then contains a set of
wide rows, repeating the same row from the X-copy
of Professor together with all different rows from the
Y-copy. This, in effect, provides an entire Y-copy of
table Professor for each Professor X-row.

3. We evaluate the condition ()(.Salary > AVG(Y.Salary))
for each group, and eliminate those groups for which
this condition fails. X.Salary here is the salary of
that professor from the X-copy whose group is
being considered. AVG(Y.Salary) computes the
average salary of all professors from the Y-copy of
Professor.

4. We then retrieve the X.Fname and X.Lname values
from each surviving group.

The inclusion of X.Salary into the GROUP BY clause may
seem unnecessary. As one might argue, since Fname and
Lname together form the key for table Professor, and since
they are already included in the GROUP BY, all Professor
X-rows in a group will definitely share the same value of
X.Salary anyway.

Recall, however, that there is an SQL syntax rule (see Section
20) that requires this inclusion for X.Salary to be used un­
aggregated in the HAVING clause, regardless of any key, or
other semantic, considerations.

An interesting variation of this query is shown in Figure
24.2. Here, because we have not included X.Salary in the
GROUP BY clause, by the same rule, we must aggregate it
in the HAVING clause. Note that, while computing the
smallest value from a set of equal values might seem some­
what strange, this is precisely how we can satisfy SQL syn-

11

THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

tax and at the same time get the X.Salary value for the
group. (Functions MAX(Salary) and AVG(Salary) could also
have been used here.)

SELECT X.Fname, X.Lname
FROM Professor X, Professor Y
GROUP BY X.Fname, X.Lname
HAVING MIN(X.Salary) > AVG(Y.Salary)

Figure 24.2: Altematlve query form for question E1.7 - Whose
(I.e., which professors') salary Is greater than the
overall average salary?

Question E18 is posed by the query of Figure 24.3.

SELECT X.Fname, X.Lname
FROM Professor X, Professor Y
WHERE (X.Oept = Y.Oept)
GROUP BY X.Fname, X.Lname, X.Salary
HAVING (X.Salary > AVG(Y.Salary))

Figure 24.3: Query Q18 for question E18 - Whose salary Is
greater than the average salary within that
professor's department?

This query is very similar to query Q17. The addition of the
WHERE clause condition (X.Dept = Y.Dept) assures that a
professor 's salary will be compared with the average of
salaries from just his department.

. 11·
Comparing Base Values to Aggregates

11

THE ESSENCE OF SQL: A Guide to Learning Most of SQL In the Least Amount of Time

25 Combining Type 2 Queries with
Aggregation

As we have noted earlier, queries underlying aggregation
can be of any type. As an illustration of the Type 2 underly­
ing query, try posing the question What is the grade point
average (GPA) of each student, who does not take CS112? (A
closely related query will be shown in the next section.)
Type 3 underlying queries will be discussed later.

SQL also allows for aggregates to be used in subqueries
within Type 2 queries. As a motivating example, consider
again question E12- Who are the youngest students?- along
with the query of Figure 25.1.

SELECT Sno
FROM Student
WHERE (Age IN

(SELECT MIN(Age)
FROM Student))

Figure 25.1: Alternative query for question E12 - Who are
the youngest students? - showing the use of
aggregates Inside the subquerles.

This query is a Type 2 query with the inner query that
involves aggregation. Its trace shows that it correctly imple­
ments question E12- Who are the youngest students?

There is an interesting feature related to such queries. If the
subquery involves global aggregation (i.e., if it involves
aggregation, but does not have the GROUP BY clause), then

.. 11·
Combining Type 2 Queries with Aggregation

it can be syntactically guaranteed to retrieve a single row. We
can then equivalently replace the operator IN with an equal
sign. This, in turn, improves the readability of the WHERE
clause, which in the case of the query of Figure 25. 1
becomes

WHERE (Age =
(SELECT MIN(Age)
FROM Student))

All other binary comparators- !=, <, etc.- are also allowed
in such cases. For example, our question E17- Whose salary
is greater than the overall average salary?- can also be posed
by the query of Figure 25.2.

SELECT Fname, Lname
FROM Professor
WHERE (Salary >

(SELECT AVG(Salary)
FROM Professor))

Figure 25.2: Alternative query for question E17- Whose salary
Is greater than the overall average salary?- show­
ing the use of binary comparators In front of sub­
queries.

There is an important restriction on the use of aggregates:
SQL does not allow what is conventionally called double
aggregation. That means that it is syntactically illegal to nest
aggregate functions- as in, AVG(SUM(...)), for example.

Consequently, it is impossible to pose, in a single SQL state­
ment, a question such as: What is the average of the departmen­
tal salary totals? Rather, it can be posed in two steps: first,

11 . .

THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

retrieving salary sums into some table, and then computing
the average over it. This, however, requires insert capabili­
ties, which we will cover later.

In queries with subqueries, this prohibition against double
aggregation also disallows the use of aggregate functions
and/or GROUP BY or HAVING clauses in any two query
blocks where one is included in the scope of the other. For
example, it is permitted to use them in two subqueries if the
subqueries are "next" to each other, but not if one is
"inside" the other.

For those familiar with the concept of a query tree, a more
precise way of saying this is: Given a query tree, it is pro­
hibited to use aggregate functions and/or the GROUP BY
or HAVING clauses in any two query blocks where one is a
descendant of the other.

The unavailability of double aggregation also sometimes forces
us to use non-aggregated formulations to pose questions that
have better aggregation-based solutions. As an example, try
posing in a single query with subqueries the question What are

the grade point averages of the youngest students?

. •
Combining Type 2 Queries with Aggregation -

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

26 111e Overall Order of Evaluation

One of the principal SQL programming skills is the ability
to look at a complex query involving many different fea­
tures, and to determine exactly in what order these features
will be executed. As an example, we will consider the query
of Figure 26.1, which involves most of the SQL features pre­
sented thus far.

SELECT DISTINCT Sname,
"Grade Point Average" =

round(SUM(Grade*Credits)/SUM(Credits),2)
FROM Student S, Take T, Course C
WHERE (S.Sno = T.Sno)

AND (T.Cno = C.Cno)
AND (S.Sno NOT IN

(SELECT Sno
FROM Take
WHERE (Cno = "CS112")))

GROUP BY S.Sno, Sname
HAVING (SUM(Credits) > 12)
ORDER BY 2 DESC, Sname

Figure 26.1: A query Involving most of the features presented
so tar.

This query corresponds to the following question:

What is the grade point average (GPA) of each student, who does
not take CS112, but who takes more than 12 credits in total?
Show the answer as student name/GPA pairs, without duplicates,
and with GPA rounded to 2 decimal digits, sorted first in decreas­
ing order by GPA, and then in increasing order by student name .

.. 11·
The Overall Order of Evaluation

The overall order of events in evaluating this query is as
follows:

1 . Formulate and evaluate the underlying query:

SELECT *
FROM Student S, Take T, Course C
WHERE (S.Sno = T.Sno)

AND (T.Cno = C.Cno)
AND (S.Sno NOT IN

(SELECT Sno
FROM Take
WHERE (Cno = "CS112")))

Since this is a Type 2 query, its subquery is
executed first, followed by the main query, with
the clauses considered in the following order:

1 .1 . the inner FROM clause:

FROM Take;

1 .2. the inner WHERE clause:

WHERE (Cno="CS112");

1 .3. the inner SELECT clause: SELECT Sno;
1 .4. the outer FROM clause:

FROM Student S, Take T, Course C;

11

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

1 .5. the outer WHERE clause:

WHERE (S.Sno = T.Sno)
AND (T.Cno = C.Cno)
AND (S.Sno NOT IN

(<answer to the subquery>))

1 .6. the outer SELECT clause: SELECT "'.
2. Group the rows from the result of Step 1 by S.Sno

and Sname, according to the GROUP BY clause:

GROUP BY S.Sno, Sname.

3. Evaluate the HAVING condition (SUM(Credits) >
12) for each group:

3.1. compute SUM(Credits) for every group;
3.2. eliminate those groups for which the HAVING

clause condition fails.
4. Prepare the preliminary result according to the

SELECT clause:
4.1 . compute the multiplication (Grade"'Credits) on

individual Grade and Credits values for each row in
each surviving group;

4.2. compute SUM(Grade"'Credits) over the results of
the multiplication from Step 4.1, and SUM(Credits)
for each surviving group;

4.3. compute division in SUM(. . .)/SUM(.. .) and round
the results to 2 decimal digits;

4.4. create a preliminary result with one row consisting
of Sname md the just computed GPA expression
for each surviving group.

5. Sort the preliminary result, first by the GPA expres­
sion descending, and then by Sname .

. 11·
The Overall Order of Evaluation •

6. Eliminate duplicate rows, if any, from the prelimi­
nary result.

7. Label the second column of the result as "Grade
Point Average" and stop.

This sequence of events was created by following the evalu­
ation mechanisms presented earlier. As such, this is a "for­
mal" sequence, created for the sole purpose of tracing. Any
real SQL evaluation would certainly be more optimized­
e.g., there is really no need to compute SUM(Credits) in
Step 4.2 since it has already been computed in Step 3.1 . In
fact, the real order of evaluation may generally be quite dif­
ferent- we only guarantee that the results will be the same.

11
I

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

27 NULL Values in SQL

NULL is a special symbol that can be used in place of regu­
lar values in tables to mean that the value in question is cur­
rently unknown. (Other meanings of NULLs also exist, but
they are much less common.) The SQL rules for handling
NULLs are as follows.

NULLs can appear in any column that has been declared
with the NULL qualifier in the CREATE TABLE state­
ment- e.g., columns Sname and Age in table Student creat­
ed in Figure 3.1.

All scalar arithmetic expressions involving at least one
NULL evaluate to NULL. For example, given a Professor
row with the NULL Age value, the expression (Age+ 1) eval­
uates to NULL. This is reasonable, because if an Age value
is unknown, it follows that the result of (Age+l) is also
unknown.

Most scalar expressions for other data types follow this rule
as well, and return a NULL if at least one of their arguments
is NULL. (There are some exceptions to this, particularly
when dealing with strings; consult the appropriate SQL
manuals for details.)

All binary comparisons involving the operators =, !=, <, <=,
>, and >=, and at least one NULL evaluate to a new logical
value Maybe. For example, given a Professor row with the
NULL Age value, the condition (Age > 50) evaluates to
Maybe. This is again reasonable, because we simply do not
know whether his age is definitely greater or definitely not
greater than 50 .

. 11
NUU. Values In SQL

Since traditional Boolean (two-valued) logic is not sufficient
to support this new logical value Maybe, SQL supports
what is known as the three-valued logic, defined by the truth
tables shown in Figure 27.1. (In these tables, symbols F, M
and T stand for False, Maybe and True, respectively.) We
note that for the False and True combinations these tables
are consistent with their traditional Boolean counterparts.

� 1 1 lVl F
AND F M T

F F F F
M F M M
T F M T

OR F M T
F F M T

M M M T
T T T T

Rgure 27 .1.: Truth tables for the three-valued loglc.

Since none of the standard binary comparators can be used
to identify and test for NULLs, to recognize them SQL pro­
vides two special operators: IS NULL and IS NOT NULL, as
in (Age IS NULL) and (Age IS NOT NULL).

The condition (Age IS NULL) returns True if the Age value
is in fact NULL, and returns False if it is some regular- i.e.,
non-NULL- value. The condition (Age IS NOT NULL)
acts in the opposite way. (In fact, the expression (Age IS
NOT NULL) can be thought of simply as a shorthand for
NOT (Age IS NULL).) Naturally, the left operand of the IS
NULL and IS NOT NULL operators need not be a simple
column reference but can also be an expression.

The behavior of the IN and NOT IN operators in the pres­
ence of NULLs is somewhat complex.

11 . .

THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

Given a regular value as its left operand, and a list of values
containing at least one NULL on its right (in the answer to
the subquery, that is), the IN operator returns True if that
value is present in the list, and returns Maybe if it is not.
(One of the NULLs in the list may actually stand for that
regular value, and we do not definitively know whether
this is or is not so.)

The NOT IN operator acts in the opposite way. Given a reg­
ular value on its left, and a list of values containing at least
one NULL on its right, the NOT IN operator returns False if
that value is present in the list, and returns Maybe if it is not.

Given a NULL as a left operand, and IN operator returns
Maybe if the answer to the subquery is non-empty, and
returns False if it is empty. Given a NULL as a left operand,
the NOT IN operator again returns Maybe if the answer to
the subquery is non-empty, but returns True if it is empty.

The behavior of the WHERE clause is refined to retrieve
rows into the answer only when the WHERE condition
evaluates to True; thus, within this clause, Maybe is treated
in the same manner as False.

Similarly, the HAVING clause also treats Maybe in the same
manner as False, and suppresses groups for which the
HAVING condition evaluates to Maybe or to False.

The behavior of aggregate functions in the presence of
NULLs is defined as follows. As long as at least one regular
value exists in a column, the aggregate functions MIN(),
MAX(), AVG() and SUM(), will operate only on the regular
values, in effect ignoring the NULLs. Given a column con­
sisting entirely of NULLs or given an empty column, all of

. ���·����:·;�·��� II

these functions return NULL. (The latter case happens
when an aggregate is evaluated over the empty result
returned by its underlying query.)

The aggregate function COUNT(DISTINCT <column>) also
counts only the regular values. Thus, as long as at least one
regular value exists in a column, this function will return
the number of distinct regular values. Given the column of
all NULLs or given an empty column, it will return 0 (zero).

However, the aggregate function COUNT(*) simply returns
the number of rows in a group, regardless of whether or not
some of the values are NULL.

In the GROUP BY clause, all NULLs are treated as equal.
Thus,

GROUP BY Age

would group all rows with the NULL Age value into the
same group.

For the purposes of duplicate suppression (in SELECT DIS­
TINC1) all NULLs are also treated as equal.

In the ORDER BY clause, all NULLs are treated as smaller
or larger than any other value, depending on the imple­
mentation (check the appropriate manual).

We note that there are some conceptual inconsistencies in
the SQL's treatment of NULLs. First, the equality

SUM(Age}/COUNT(*) = AVG(Age)

11

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

no longer holds true, when evaluated for column Age com­
prised of some regular values and some NULLs. For exam­
ple, given a column of Age values (50, 52, NULL), the
expression SUM(Age)/COUNT(*) returns 102/3=34, while
AVG(Age) returns 51.

Second, even though all NULLs may potentially stand for
different values, the GROUP BY clause and the duplicate
suppression mechanism in SELECT DISTINCT treat all
NULLs as the same.

Finally, the fact that all binary comparisons involving
NULLs evaluate to Maybe may sometimes result in
counter-intuitive query answers. To illustrate this, consider
the query of Figure 27.2.

SELECT •
FROM Professor
WHERE (Age = Age)

Figure 27.2. A query that will retrieve all professors- or wlll It?

When the condition of this query is evaluated for a Professor
row with the NULL Age value, it will return Maybe, thus
suppressing this row from the answer. While consistent with
the SQL treatment of comparisons involving NULLs, this is
arguably counter-intuitive. After all, why should it matter
that the Age value is NULL? Even if we do not know what
the actual Age value is for some professor, surely, it is equal
to itself! (This happens, by the way, because SQL does not
attempt to syntactically simplify conditions.)

. 11
NULL Valuee In SQL

Similarly, the conditions (Age != Age), (Age < Age), etc.,
also all evaluate to Maybe, instead of to False, as our intu­
ition might suggest.

In concluding this section, we note that we have not
addressed here any semantic issues involving NULLs­
e.g., When is their use appropriate?, How do they affect
database designs?- and have simply concentrated on their
treatment in SQL. We do mention, however, that it is a com­
monly held view that NULLs should not be allowed to
appear in primary key columns; hence, the use of the NOT
NULL qualifier for column Sno in Figure 3.1 .

. ..
- THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

28 Introduction to Type 3 SQL Queries

While there are very few questions that really require Type 3
queries- all of them too convoluted to be included in this
essay- Type 3 queries form an essential part of SQL and
provide an important alternative to the Type 2 formulations.

Consider the query of Figure 28.1 .

SELECT Sno, Sname
FROM Student
WHERE ("CS112" IN

(SELECT Cno
FROM Take
WHERE (Sno = Student.Sno)))

Figure 28.1: A sample Type 3 query.

This query uses the column reference Student.Sno in the
subquery. This column reference cannot be bound locally­
its prefix "Student." does not match table name Take- and,
according to the SQL scope rules, it is instead bound to the
outer table Student. This non-local reference (or, correlation) is
precisely what makes this query Type 3 rather than Type 2.
(Recall that in Type 2 queries all bindings must be local.)

We note that any attempt to evaluate this query "inside­
out" (as was done with Type 2 queries) is now meaning­
less- Student.Sno is undefined as we go through the local
table Take. Instead, this query must be evaluated "outside­
in," as follows .

.............. .. 11
Introduction to Type 3 SQL Queries

We first pick some row from the outer table Student. Once
picked, this row "gives" Student.Sno its value, which "com­
pletes" the condition of the subquery, and, in effect, reduces
the subquery to a simple Type 1 query.

We then evaluate the subquery for that value of
Student.Sno, evaluate the IN operator in the main condition
with respect to the subquery's result, and, if True, retrieve
the Sno and Sname values from our picked Student row
into the main result.

We then repeat this process for every other row from the outer
Student table.

By following this trace, we can determine that this query
asks our question E2- What are student numbers and names
of students who take CS112?

Several things should be noted here. First, we do evaluate
the subquery anew for every outer Student row.

Second, this is not terribly inefficient, since we are again
describing a formal evaluation mechanism here, and thus
the issue of efficiency does not even apply. (While the actual
evaluation strategy taken by any real SQL system may be
quite different, we do guarantee that it will always generate
the same answer as our formal evaluation sequence.)

Third, the IN operator used here is the same old IN intro­
duced earlier; we only note the use of a constant on its left,
which is syntactically fine- we simply have not seen exam­
ples of such use earlier.

Fourth, we are not limited to just a single correlation. For
example, the query of Figure 28.2 (which poses the question

11 .. .

THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

Who teaches CS112?) uses two correlations: Professor.Fname
and Professor.Lname, both of which get their values from
the outer Professor rows.

SELECT Fname, Lname
FROM Professor
WHERE ("CS112" IN

(SELECT Cno
FROM Take
WHERE (Fname = Professor.Fname)

AND (Lname = Professor.Lname)))

Figure 28.2: A Type 3 query with two correlatlons, for the
question Who teaches CS112?

.. 11·
Introduction to Type 3 SQL Queries

29 Inter-Query Connectors Revisited:
Existential Quantifiers in SQL

So far we have seen only two kinds of inter-query connec­
tors: the list membership operator IN and, in limited cir­
cumstances, regular binary comparators (=, <, etc.). SQL
also provides another inter-query operator, EXISTS, which
syntactically acts as a Boolean function- i.e., it takes a sub­
query as an argument, and returns a Boolean as the result.

Semantically, the behavior of EXISTS is defined as follows:
It returns True if the subquery retrieves at least one row in
its answer, and returns False otherwise- i.e., when the
answer to the subquery is empty.

An example of the use of EXISTS is shown in Figure 29.1.

SELECT Sno, Sname
FROM Student
WHERE EXISTS (SELECT *

FROM Take
WHERE (Sno = Student.Sno)

AND (Cno = "CS112")}

Figure 29.1: An example query with EXISTS.

We can now trace the query of Figure 29.1- after all, it is
just a regular Type 3 query- and determine that it again
poses our question E2- What are student numbers and names
of students who take CS112 ? (We are intentionally staying
with the same question here.)

. ""'
lnter.(!uery Connectors Revisited: Exlstentlal Quantifiers In SQL lilll

Three things should be noted about EXISTS. First, it is not
the use of EXISlS that makes the query Type 3- non-local
references do. We make this point because, in practice,
EXISTS and correlations are very often used together­
indeed, they do compliment each other very well. However,
they do not have to be used together. We may have Type 3
queries not involving EXISTS- e.g., the two queries from
the previous section. Likewise, there are cases- albeit infre­
quent ones- where EXISlS is used in conjunction with
Type 2 queries.

Second, by syntax, the SELECT clause of the subquery
under EXISTS must contain just symbol • (asterisk). Putting
anything else there will cause a syntax error.

Third, since EXISTS returns a Boolean result, it can be
included into general logical expressions, and thus may
have NOT, AND or OR connect it to other parts of the
WHERE clause. (In fact, NOT EXISlS (. . .) formulations are
very common in posing queries involving negation.)

Finally, for those familiar with the first order predicate cal­
culus, EXISTS is an SQL implementation of the existential
quantifier. Notably, SQL does not provide a similar
FOR-ALL operator for the universal quantifier, which then
has to be implemented via NOT-EXISTS-NOT formulations .

. , ,
-THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Tlme

30 Some Old Questions Revisited- Again

In this section we look at an assortment of previously con­
sidered questions and develop their implementations using
Type 3 queries. We begin with the queries just developed.

By changing IN to NOT IN in the query of Figure 28.1, we
get our old question ES- Who does not take CS112? We also
get this question by placing NOT directly in front of EXISTS
in the query of Figure 29.1.

By changing IN to NOT IN in the query of Figure 28.2, we
get the question Who does not teach CS112? (Try posing this
question using NOT EXISTS yourself.)

We now consider the query of Figure 30.1, which shows an
interesting implementation of question E9- Who takes
exactly 2 courses?

SELECT X.Sno
FROM Take X, Take Y
WHERE (X.Sno = Y.Sno)

AND (X.Cno < Y.Cno)
AND NOT EXISTS

(SELECT ,.
FROM Take
WHERE (Sno = X.Sno)

AND (Cno != X.Cno)
AND (Cno != Y.Cno))

Figure 30.1: A Type 3 query for question E9 - Who takes exactly
2 courses?

··�:�·�;�·��:·����·��· II

This implementation is based on the fact that "exactly 2"
means "at least 2 and not a third." In other words, a student
takes exactly two courses if he takes at least two courses
and there does not exist a third course (different from the
first two) that he also takes.

Aliases X and Y in the outer FROM clause of this query are
used not only to disambiguate the two outer copies of Take
from each other, but also to bind references X.Sno, X.Cno
and Y.Cno in the subquery to the outer copies of Take, thus
allowing them to "escape" their local FROM clause.

The query of Figure 30.2 implements question E12- Who
are the youngest students?

SELECT Sno
FROM Student S
WHERE NOT EXISTS

(SELECT *
FROM Student
WHERE (Age < S.Age))

Figure 30.2: A Type 3 query for question E12 - Who are the
youngest students?

This query is based on the observation that a student is
youngest if there does not exist any student who is younger
(than he is). We again note the use of aliasing in the outer

query.

Type 3 facilities are also very useful in posing questions
that compare base values with aggregates. For example, the
query of Figure 30.3 implements question E18- Whose
salary is greater than the average salary within that professor's
department? 11

.
THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

SELECT Fname, Lname
FROM Professor X
WHERE (Salary > (SELECT AVG(Salary)

FROM Professor
WHERE (Dept = X.Dept)))

Figure 30.3: A Type 3 query for question E18 - Whose salary
Is greater than the average salary within that
professor's department?

This query also shows an example of using an aggregate (a
global aggregate, in this case) inside a subquery. The evalua­
tion rules, however, remain exactly the same: this is a Type
3 query, so we execute it "outside-in"- we pick every pro­
fessor in turn, supply his department (through X.Dept) to
the subquery, execute the subquery thus computing the
average salary in that department, and then compare his
salary to that average.

We note that the treatment of aggregates and the use of the
greater-than operator in front of the subquery are exactly as they
were presented earlier in this essay. In fact, this is the whole
point of this essay: Once you know the SQL building blocks and
know how to connect them- you know the language.

Our final examples of Type 3 queries are two re-implemen­
tations of question Ql� Who takes every course? The first of
them, shown in Figure 30.4, is interesting because it shows a
three-level Type 3 query with two correlations: one between
the outer query and the inner one, and the other between
the middle query and the inner one .

. •
Some Old Questions Revisited- Again 11111

SELECT Sno
FROM Student
WHERE NOT EXISTS

(SELECT •
FROM Course
WHERE NOT EXISTS

(SELECT •
FROM Take
WHERE (Sno = Student.Sno)

AND (Cno = Course.Cno)))

Rgure 30.4: A Type 3 query for question E13- Who takes every
course?

To trace this query, we first pick some student from the outer
Student table, and substitute his Sno (say 123456789) for
Student.Sno in the inner WHERE clause. This would result in
the middle query effectively becoming as shown in Figure
30.5. (Naturally, when done with this student, we will repeat
the entire process for every other student in turn.)

SELECT •
FROM Course
WHERE NOT EXISTS

(SELECT •
FROM Take
WHERE (Sno = "123456789")

AND (Cno = Course.Cno))

Rgure 30.5: The middle query from Rgure 30.4 after substitu­
tion for S.Sno.

11

THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

Since this is itself a Type 3 query, we again evaluate it "out­
side-in." Specifically, we pick every course in turn, supply
its number (through Course.Cno) to the inner subquery,
execute the subquery, and then test if a row connecting that
course to our student 123456789 was found in Take. The
answer to this partial query then contains all columns for
those courses which are not taken by our student
123456789.

Once the middle query terminates for student 123456789,
the main WHERE clause then tests if it returned an empty
answer. If yes, then there were no courses not taken by stu­
dent 123456789, and he is retrieved into the final result. If
no, then there were such courses- they are, in fact, the ones
retrieved in the middle SELECT- and our student
123456789 is dropped from the final result.

Interestingly, the English reformulation of our question most
closely corresponding to the query of Figure 30.4 is: for
which students, does there not exist a course that they do not take?

The second Type 3 re-implementation of question Q13 is
shown in Figure 30.6.

SELECT Sno
FROM Student
WHERE NOT EXISTS

(SELECT "'
FROM Course
WHERE (Cno NOT IN

(SELECT Cno
FROM Take
WHERE (Sno = Student.Sno))))

Figure 30.6: A Type 3 query with a Type 2 subquery for question
E13 - Who takes every course?

. ... 11
Some Old Questions Rev� Again

The difference between this solution and the one of Figure
30.4 lies in the connection between the middle and inner
subqueries. Here, the trace begins in the same way- we
pick some student from the outer Student table, and substi­
tute his Sno (say 123456789, again) for Student.Sno in the
inner WHERE clause, resulting now in the middle query as
shown in Figure 30.7.

SELECT "'
FROM Course
WHERE (Cno NOT IN

(SELECT Cno
FROM Take
WHERE (Sno = "123456789")))

Figure 30. 7: The middle query from Figure 30.6 after substitution
for S.Sno.

This query, however, is now of Type 2! Thus, it is evaluated
"inside-out," and retrieves all information about courses
that are not among those taken by student 123456789- or,
rephrasing, those courses which are not taken by student
123456789. Since this gives the same intermediate result as
the query of Figure 30.5, the rest of the trace proceeds as in
our original query.

The English reformulation of our question that most closely
corresponds to this query form is: For which students, does
there not exist a course which is not among the courses they take?

""" ····················· ····································· ···
- THE ESSENCE OF SQL: A Guide to Learning Most of SQL in the Least Amount of Time

31 Data Manipulation Facilities of SQL

The data manipulation language (DML) component of SQL
provides facilities for inserting, deleting and updating rows
in tables. There are two forms of insertions: one for insert­
ing individual rows, and one for inserting all rows from
query results. We begin with the former.

An example of a single row insertion is shown in Figure 31.1.

INSERT Student
VALUES ("123456789", "Robert Brown", 20)

Rgure 31.1: Inserting Individual rows.

The syntax is self-explanatory. We only emphasize that the
argument to the VALUES keyword is a single row of values,
presented in the same order as the order of columns in the
corresponding table declaration.

The second form of insertion is much more interesting- as
it turns out, an entire answer to an SQL query can also be
inserted into a table. As an example, assume that we have
created a table Seniors(Sno, Sname, GPA), and consider the
query of Figure 31 .2 .

.. 111
, .

Data Manipulation Facllltles of SQL

INSERT Seniors
SELECT S. Sno, Sname,

round (SUM(Grade*Credits)/SUM(Credits),2)
FROM Student S, Take T, Course C
WHERE (S.Sno = T.Sno)

AND (T.Cno = C.Cno)
GROUP BY S.Sno, Sname
HAVING SUM(Credits) > 90

Figure 31.2: Inserting a query result.

Instead of just being displayed and discarded, the result of
this query, which computes GPAs of all students who have
taken more than 90 credits, is inserted into table Seniors.

Three things need to be noted in connection with the
INSERT command. First, the target table must already exist.

Second, the INSERT command simply appends rows to a

table and does not overwrite its previous content- if the
target table already contained some previously inserted
rows, they remain there. Thus, the INSERT .. . SELECT con­
struct does not act as an assignment operator, which replaces
the previous content of its target.

Third, the query in the INSERT .. . SELECT construct can be
any SQL query. (There are some exceptions to this, but they
involve SQL features not covered in this essay.) The only
constraint here is that the signatures, as they are called- i.e.,
the number of columns and the order of their data types­
of the target table and of the SELECT clause should corre­
spond to each other. (In fact, the data types of the columns
in the target table need not exactly match the data types of

the columns of the answer; they only have to "cover"
them- e.g., the integer column in the SELECT clause can
be inserted into a floating point column in the target table.)

Deletion of rows is done using the DELETE command, as
shown in Figure 31 .3.

DELETE
FROM Seniors
WHERE (GPA < 2.0)

Rgure 31.3: Example of a DELETE command.

The syntax and the behavior of this statement is again self­
explanatory- it will delete from table Seniors all rows with
GPA less than 2.0. We only emphasize that the FROM clause
here can involve only a single table, and that the WHERE
clause can be any SQL WHERE clause, and in particular can

involve subqueries.

We note that omitting the WHERE clause in the DELETE
command has the same meaning as omitting it in a regular
query- it is equivalent to the WHERE condition always
being True. Thus, omitting the WHERE clause in this case
would delete all rows from table Seniors. (So be careful­
SQL provides no warnings!) We also note that table Seniors
(or, more precisely, its structural definition) would still
remain- albeit empty; to destroy it would require the use
of the DROP TABLE command.

Updating rows is done using the UPDATE command, as
shown in Figure 31 .4, which in this case gives a 10% raise to
all professors from the IS department.

.. 1111
Data Manlpulatlon Faclltlel of SQL liil

UPDATE Professor
SEf Salary = Salary*l.1
WHERE (Dept = "IS")

Figure 31.4: Example of an UPDATE command.

Again, several things need to be noted here. First, the
WHERE clause can again be any SQL WHERE clause, and
can involve subqueries. Omitting it is again equivalent to
the WHERE condition always being True, causing all rows
to be updated.

Second, the argument to the SEf clause can involve multi­
ple columns. For example, by modifying the SEf clause in
the above command to

SEf Salary = Salary*l.1, Dept = "CIS"

we can change the name of the IS department simultane­
ously with giving IS professors the raise.

Third, it is allowed to mention the same column both in the
WHERE and SEf clauses; no confusion arises, because the
WHERE clause is evaluated with respect to "old version" of
rows, before any of them is actually updated.

The standard UPDATE command also suffers from one
important limitation- while the condition on which rows to
update may involve other tables in the database (through
the use of subqueries in the WHERE clause), the new value
expressions (i.e., the expressions to the right of the equal sign

.
liil THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

in the SET clause) can only mention the columns from the
table being updated. Thus, it is not possible to update a col­
umn in one table based on the values from some column(s)
in some other table.

To compensate for this limitation, some SQL dialects have
extended the UPDATE command by permitting a FROM
clause (placed between the SET and WHERE clauses), and
by allowing columns from all of the tables in that FROM
clause to be used in the new value expressions. (Consult
appropriate SQL manuals for details.)

.. 11
Data Manlpulatlon FacUltlea of SQL

...
- THE ESSENCE OF SQL: A Gulde to Leaming Most of SQL In the Least Amount of Time

32 Extensions to SQL

To appreciate the need for and the added value of SQL
extensions, it is important to understand that, when origi­
nally conceived, SQL was viewed not as a full program­
ming language, but only as a data sublanguage. It was meant
to be used either interactively, allowing end-users to pose
their queries one at a time, or to be used in a larger pro­
gramming system, by embedding SQL queries into some con­
ventional programming language.

Consequently, it was considered unnecessary to provide
SQL with facilities that were not likely to be used by users
in the interactive mode, or that were already available as
conventional features in the host programming language.
Thus, the "classical" SQL- which is what we have present­
ed in this essay- lacks both the standard control structures
and the complex data structuring mechanisms.

In the recent years however, there has been a concerted
effort on the part of the vendors to extend SQL and to make
it more like a complete programming language. This is a
positive development as SQL popularity grows and as it
becomes recognized that embedded SQL systems are not
well suited for client-server architectures, as they often create
massive communication overhead between the database
server and its clients.

Some of the extensions that significantly increase the
expressive power of SQL are:

. 111!1
Extensions to SQL liil

• the standard control structures (e.g., WIBLE
and FOR loops, and IF-THEN-ELSE state­
ments) and compound statement constructors
(e.g., BEGIN and END), that operate on SQL
query blocks;

• scalar variables, along with the ability to use
them in the SELECT clause to get values from
queries, and in the WHERE and HAVING
clauses to supply values to queries;

• procedures (usually called stored procedures),
that usually allow for both in and out para­
meters, and that allow for segments of SQL
code to be grouped together and pre-compiled;

• user-defined data types, along with the ability to
define related scalar operators and functions,
which can then be used in the clauses of SQL
queries.

These extensions are not yet standard; in fact, they are not
even taken from any single system, but are representations
of what is available in many different SQL dialects.
However, they bring SQL closer to a full programming lan­
guage, and allow many problems not previously solvable
within SQL to now have elegant and efficient solutions.
Further discussion of these extensions, as well as of the
ongoing efforts to standardize the language, is beyond the
scope of this essay .

.... ...
liil THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

33 Last Remarks

We now come to the end of this essay. If you, the reader,
have read it in order, and actually traced every query pre­
sented, then you should now be comfortable with SQL.

Yes, it is true that we have skipped some of the features of
SQL. But SQL is an evolving language- so any attempt to
provide a complete yet lasting coverage of it in any single
presentation is doomed anyway. Rather, we wanted to pre­
sent the fundamental features of SQL- the ones that define
its essense.

By motivating these features with specific standard ques­
tion types, by explaining inter-relationships among them,
and by showing various standard solutions for these ques­
tions, we wanted to give you a solid foundation- a "cul­
ture," if you will- for both the use and further study of this
important, powerful and elegant language.

Given this foundation, you should now have no trouble
understanding all of those features of SQL that we did not
cover- both in terms of what they mean, and how to use
them. (This understanding may even extend to those SQL
features not yet invented.) You should also have no trouble
adapting your understanding of the generic SQL presented
in this essay to any real SQL dialect supported by an actual
database management system.

In presenting SQL, we have concentrated exclusively on the
issues of query correctness rather than their efficiency, the lat­
ter being reserved for a separate essay. This, in turn,
allowed us to reduce the enormous complexity of the actual

. �.��� Ill

evaluation strategies used by real SQL systems to four sim­
ple formal evaluation mechanisms, bringing clarity and
conciseness to the language and its presentation.

We leave you with a list of assorted reminders, shown in
Figure 33.1, for programming in SQL. The items in this list
were chosen for two basic reasons: first, they are important,
and second, people tend to forget them.

1 . Do not rely on your intuition in composing or inter­
preting SQL queries; trace them according to the evalu­
ation mechanisms:
• remember the order of evaluation;
• remember that formally Type 2 queries are evaluat­

ed inside-out;
• remember that formally Type 3 queries are evaluat­

ed outside-in;
2. Remember that real negation requires two passes: To

find out "who does not" first find out "who does" and
then get rid of them.

3. Remember that NOT appearing in front of the sub­
query cannot be brought inside its WHERE clause;
doing so changes the overall query meaning.

4. Remember that in queries involving aggregate func­
tions and/ or GROUP BY, only those columns explicitly
listed in the GROUP BY clause may appear un-aggre­
gated in the SELECT clause and in the HAVING clause.

Rgure 33.1: Assorted reminders for programming In SQL

.
- THE ESSENCE OF SQL: A Gulde to Learning Most of SQL In the Least Amount of Time

Acknowledgments

I wish to express my thanks to my colleague, Professor
Susan Dorchak, for her very substantial help in reviewing
and editing this essay. I also wish to express my gratitude to
my former student, Helen Zeldovich, for her invaluable
assistance in improving the clarity of this presentation and
for her tireless help in proofreading this essay .

. ""'
Acknowledgments -

Notes

Notes

Notes

Notes

Notes

DATABASE TECHNOLOGY
LANGUAGES

c:;z-Essence of SQL:
;__/flt:. A Guide to Learning Most of SQL

in the Least Amount of Time

by David Rozenshtein

This book is ideal for programmers, managers, and students who want to quickly
acquire an in-depth understanding of SOL. It takes the reader from the fundamentals
of SOL through to the most complex features of the language. It explains why the vari­
ous constructs in SOL exist and how SOL can be used to solve real-world, business
problems.

The Essence of SOL provides a practical, problem-centered approach to the study of
this powerful database language. It concentrates on those aspects of SOL which have
traditionally presented problems to programmers; it promotes a smooth transition to
SOL from other programming languages. This book allows the reader to gain a clear
understanding of the essence of SOL in a minimum amount of time. The material pre­
sented in the book appl ies to all SOL dialects.

V' Programmers will find the many SOL code examples to be useful building
blocks for designing effective relational database solutions.

V' Managers will find a clear description of the power of SOL and guidance on
its appropriate uses in relational database systems.

V' Students will find the book to be an invaluable study tool and accelerated,
rigorous SOL tutorial.

About the Author:

David Rozenshtein, Ph.D., is an Associate Professor of Computer Science at Long
lsla.nd University and an independent consultant specializing in the design, implemen­
tation, and optimization of large-scale; SOL-based systems; he has lectured extensively
on SOL and other database topics; he is the author of 2 books and many technical arti­
cles; he holds a Ph.D. in Computer Science from the State University of New York at
Stony Brook.

lSBN 0-9649812 - 1 - 1

SQL FORUM PRESS 5 2 4 9 5
40087 Mission Boulevard, Suite 167

9 780964 981218

	Cover
	Title
	Copyright
	Contents
	List of Figures
	1 Introduction
	2 Example Database
	3 A Bird's Eye View of SQL
	4 The Standard Questions
	5 The First Two Questions
	6 Standard Questions Involving "or'' and "both-and"
	7 Negation in SQL
	8 Standard Questions Involving "at least"
	9 Negation Revisited
	10 Type 2 SQL Queries
	11 Using Type 2 to Implement Real Negation
	12 Posing Questions Involving "at most," "exactly," "only," and "either-or"
	13 Computing Extremes as Type 2 Queries with Negation
	14 A Look at SQL Enhancements
	15 Handling Composite Keys
	16 Negation Over Composite Keys
	17 Standard Questions Involving "every"
	18 A Brief Interlude
	19 Additional Standard Questions
	20 Computing Aggregates for Groups
	21 Combining Scalar Expressions with Aggregation
	22 Some Old Questions Revisited
	23 Global Aggregations
	24 Comparing Base Values to Aggregates
	25 Combining Type 2 Queries with Aggregation
	26 The Overall Order of Evaluation
	27 NULL Values in SQL
	28 Introduction to Type 3 SQL Queries
	29 Inter-Query Connectors Revisited: Existential Quantifiers in SQL
	30 Some Old Questions Revisited—Again
	31 Data Manipulation Facilities of SQL
	32 Extensions to SQL
	33 Last Remarks
	Acknowledgments
	Notes
	Back Cover

