

J O E C E L K O ’ S
S Q L P U Z Z L E S

& A N S W E R S

Second Edition

The Morgan Kaufmann Series in Data Management Systems
Series Editor: Jim Gray, Microsoft Research

Joe Celko’s Analytics and OLAP in SQL
Joe Celko

Data Preparation for Data Mining Using SAS
Mamdouh Refaat

Querying XML: XQuery, XPath, and SQL/XML in Context
Jim Melton and Stephen Buxton

Data Mining: Concepts and Techniques, Second Edition
Jiawei Han and Micheline Kamber

Database Modeling and Design: Logical Design, Fourth Edition
Toby J, Teorey, Sam S. Lightstone and Thomas P. Nadeau

Foundations of Multidimensional and Metric Data Structures
Hanan Samet

Joe Celko’s SQL for Smarties: Advanced SQL Programming, Third Edition
Joe Celko

Moving Objects Databases
Ralf Hartmut Güting and Markus Schneider

Joe Celko’s SQL Programming Style
Joe Celko

Data Mining, Second Edition: Concepts and Techniques
Ian Witten and Eibe Frank

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
Earl Cox

Data Modeling Essentials, Third Edition
Graeme C. Simsion and Graham C. Witt

Location-Based Services
Jochen Schiller and Agnès Voisard

Database Modeling with Microsft“ Visio for Enterprise Architects
Terry Halpin, Ken Evans, Patrick Hallock, Bill Maclean

Designing Data-Intensive Web Applications
Stephano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and Maristella Matera

Mining the Web: Discovering Knowledge from Hypertext Data
Soumen Chakrabarti

Advanced SQL: 1999—Understanding Object-Relational and Other Advanced Features
Jim Melton

Database Tuning: Principles, Experiments, and Troubleshooting Techniques
Dennis Shasha and Philippe Bonnet

SQL:1999—Understanding Relational Language Components
Jim Melton and Alan R. Simon

Information Visualization in Data Mining and Knowledge Discovery
Edited by Usama Fayyad, Georges G. Grinstein, and Andreas Wierse

Transactional Information Systems: Theory, Algorithms, and Practice of Concurrency Control
and Recovery
Gerhard Weikum and Gottfried Vossen

Spatial Databases: With Application to GIS
Philippe Rigaux, Michel Scholl, and Agnes Voisard

Information Modeling and Relational Databases: From Conceptual Analysis to Logical Design
Terry Halpin

Component Database Systems
Edited by Klaus R. Dittrich and Andreas Geppert

Managing Reference Data in Enterprise Databases: Binding Corporate Data to the Wider World
Malcolm Chisholm

Understanding SQL and Java Together: A Guide to SQLJ, JDBC, and Related Technologies
Jim Melton and Andrew Eisenberg

Database: Principles, Programming, and Performance, Second Edition
Patrick and Elizabeth O'Neil

The Object Data Standard: ODMG 3.0
Edited by R. G. G. Cattell and Douglas K. Barry

Data on the Web: From Relations to Semistructured Data and XML
Serge Abiteboul, Peter Buneman, and Dan Suciu

Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations
Ian Witten and Eibe Frank

Joe Celko’s SQL for Smarties: Advanced SQL Programming, Second Edition
Joe Celko

Joe Celko’s Data and Databases: Concepts in Practice
Joe Celko

Developing Time-Oriented Database Applications in SQL
Richard T. Snodgrass

Web Farming for the Data Warehouse
Richard D. Hackathorn

Management of Heterogeneous and Autonomous Database Systems
Edited by Ahmed Elmagarmid, Marek Rusinkiewicz, and Amit Sheth

Object-Relational DBMSs: Tracking the Next Great Wave, Second Edition
Michael Stonebraker and Paul Brown,with Dorothy Moore

A Complete Guide to DB2 Universal Database
Don Chamberlin

Universal Database Management: A Guide to Object/Relational Technology
Cynthia Maro Saracco

Readings in Database Systems, Third Edition
Edited by Michael Stonebraker and Joseph M. Hellerstein

Understanding SQL’s Stored Procedures: A Complete Guide to SQL/PSM
Jim Melton

Principles of Multimedia Database Systems
V. S. Subrahmanian

Principles of Database Query Processing for Advanced Applications
Clement T. Yu and Weiyi Meng

Advanced Database Systems
Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S. Subrahmanian, and
Roberto Zicari

Principles of Transaction Processing
Philip A. Bernstein and Eric Newcomer

Using the New DB2: IBMs Object-Relational Database System
Don Chamberlin

Distributed Algorithms
Nancy A. Lynch

Active Database Systems: Triggers and Rules For Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri

Migrating Legacy Systems: Gateways, Interfaces, & the Incremental Approach
Michael L. Brodie and Michael Stonebraker

Atomic Transactions
Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete

Query Processing for Advanced Database Systems
Edited by Johann Christoph Freytag, David Maier, and Gottfried Vossen

Transaction Processing: Concepts and Techniques
Jim Gray and Andreas Reuter

Building an Object-Oriented Database System: The Story of O2
Edited by François Bancilhon, Claude Delobel, and Paris Kanellakis

Database Transaction Models for Advanced Applications
Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL Applications
Setrag Khoshafian, Arvola Chan, Anna Wong, and Harry K. T. Wong

The Benchmark Handbook for Database and Transaction Processing Systems, Second Edition
Edited by Jim Gray

Camelot and Avalon: A Distributed Transaction Facility
Edited by Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector

Readings in Object-Oriented Database Systems
Edited by Stanley B. Zdonik and David Maier

This Page Intentionally Left Blank

J O E C E L K O ’ S
S Q L P U Z Z L E S

& A N S W E R S

Second Edition

Joe Celko

Publisher Diane Cerra
Publishing Services Manager George Morrison
Editorial Assistant Asma Palmeiro
Cover Design Side by Side Studios
Cover Image Side by Side Studios
Cover Designer Eric DeCicco
Composition Multiscience Press, Inc.
Copyeditor Multiscience Press, Inc.
Proofreader Multiscience Press, Inc.
Indexer Multiscience Press, Inc.
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means-electronic, mechanical, photocopying,
scanning, or otherwise-without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com) by selecting “Customer Support”
and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Application submitted.

ISBN-10 : 0-12-373596-3
ISBN-13: 978-0-12-373596-3

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
06 07 08 09 5 4 3 2 1

 To chanticleer Michael—
I now have a convincing argument

against solipsism for you.

This Page Intentionally Left Blank

C O N T E N T S

Introduction xv

Acknowledgments, Corrections, and Future Editions xvi

Puzzle
1 Fiscal Year Tables 1
2 Absentees 4
3 The Anesthesia Puzzle 9
4 Security Badges 16
5 Alpha Data 19
6 Hotel Reservations 21
7 Keeping A Portfolio 24
8 Scheduling Printers 29
9 Available Seats 34
10 Wages Of Sin 37
11 Work Orders 45
12 Claims Status 48
13 Teachers 53
14 Telephone 56
15 Find The Last Two Salaries 60
16 Mechanics 69
17 Employment Agency 75
18 Junk Mail 80
19 Top Salespeople 82
20 Test Results 86
21 Airplanes And Pilots 88
22 Landlord 92
23 Magazine 94
24 One In Ten 103
25 Milestone 107
26 Dataflow Diagrams 112
27 Finding Equal Sets 115
28 Calculate The Sine Function 121
29 Find The Mode Computation 123
30 Average Sales Wait 126
31 Buying All The Products 129

xii C O N T E N T S

32 Computing Taxes 132
33 Computing Depreciation 137
34 Consultant Billing 141
35 Inventory Adjustments 145
36 Double Duty 148
37 A Moving Average 152
38 Journal Updating 155
39 Insurance Losses 158
40 Permutations 163
41 Budgeting 169
42 Counting Fish 172
43 Graduation 176
44 Pairs Of Styles 179
45 Pepperoni Pizza 183
46 Sales Promotions 186
47 Blocks Of Seats 190
48 Ungrouping 192
49 Widget Count 200
50 Two Of Three 203
51 Budget Versus Actual 208
52 Personnel Problem 212
53 Collapsing A Table By Columns 215
54 Potential Duplicates 218
55 Playing The Ponies 221
56 Hotel Room Numbers 224
57 Gaps—version One 227
58 Gaps—version Two 230
59 Merging Time Periods 234
60 Barcodes 237
61 Sort A String 242
62 Report Formatting 244
63 Contiguous Groupings 254
64 Boxes 257
65 Age Ranges For Products 261
66 Sudoku 263
67 Stable Marriages Problem 267
68 Catching The Next Bus 280
69 Lifo-fifo Inventory 283

C O N T E N T S xiii

70 Stock Trends 292
71 Calculations 297
72 Scheduling Service Calls 300
73 A Little Data Scrubbing 304
74 Derived Tables Or Not? 306
75 Finding A Pub 309

Index 313

About the Author 327

This Page Intentionally Left Blank

C H A P T E R

Introduction

Back in the early and mid-1990s, I wrote regular magazine columns in
Database Programming & Design and later in DBMS magazine. The
gimmick I used to attract reader responses was to end each column
with a SQL programming puzzle. Ten years later, those two magazines
were consolidated into Intelligent Enterprise. My SQL puzzles moved to
some smaller publications and then finally faded away. Today, I throw
out a puzzle or two on the www.dbazine.com Web site and other
places on the Internet rather than in print media.

Over the years, college students had all kinds of programming
contests that used the procedural language du jour—C, Pascal, then
Java and C++ today. There is not much for database programmers to
test themselves against, except my little puzzle book.

I would often find my puzzles showing up in homework
assignments because I was the only source that teachers knew about
for SQL problems. I would then get an e-mail from a lazy student
wanting me to do his homework for him, unaware of the source of
the assignment.

Back in those early days, the de facto standard was SQL-86, and the
SQL-92 standard was a design goal for the database vendors. Today,
most vendors have gotten most of SQL-92 into their products. The
design goal is now the SQL-99 standard’s OLAP features.

xvi INTRODUCTION

A decade ago, college students took RDBMS courses, and becoming
an SQL programmer required some expertise. SQL products were
expensive and the best ones lived on mainframes.

Today, colleges are not teaching RDBMS theory in the undergrad
curriculum. SQL is not as exotic as it once was, and you can get cheap or
open-source SQL databases. The Internet is full of newsgroups where
you can get help for particular products.

The bad news is that the quality of SQL programmers has gotten worse
because people who have no foundations in RDBMS or training in SQL are
being asked to write SQL inside their native programming languages.

This collection of puzzles includes the original puzzles, so that the
original readers can look up their favorites. But now many of them have
new solutions, some use the older syntax, and some use the newer
features. Many of the original solutions have been cooked by other
people over the years. The term “cooked” is a puzzler’s term for finding a
better solution than the proposer of the problem presented. The original
book contained 50 puzzles; this edition has 75 puzzles.

In the first edition, I tried to organize the puzzles by categories rather
than in chronological order or by complexity. This edition, I have given
up my informal category scheme because it made no sense. A problem
might be solved by a change to the DDL or a query, so should it be
categorized as a DDL puzzle or a DML puzzle?

I have tried to credit the people involved with each problem, but if I
missed someone, I apologize.

Acknowledgments, Corrections, and Future Editions
I will be glad to receive corrections, new tricks and techniques, and
other suggestions for future editions of this book. Send your ideas to or
contact me through the publisher, Morgan Kaufmann.

I would like to thank Diane Cerra of Morgan Kaufmann, David
Kalman of DBMS magazine, Maurice Frank of DBMS magazine, David
Stodder of Database Programming & Design, Phil Chapnick of Miller-
Freeman, Frank Sweet of Boxes & Arrows, and Dana Farver at
www.dbazine.com.

Special thanks to Richard Romley of Smith Barney for cooking so
many of my early puzzles, all the people on CompuServe and SQL
newsgroups who sent me e-mail all these years, and the people who are
posting on the newsgroups today (I used your newsgroup handles, so
people can search for your postings). These include, but are not limited
to, Raymond D’Anjou, Dieter Noeth, Alexander Kuznetsov, Andrey

Acknowledgments, Corrections, and Future Editions xvii

Odegov, Steve Kass,Tibor Karaszi, David Portas, Hugo Kornelis, Aaron
Bertrand, Itzik Ben-Gan, Tom Moreau, Serge Rielau, Erland
Sommarskog, Mikito Harakiri, Adam Machanic, and Daniel A. Morgan.

This Page Intentionally Left Blank

PUZZLE 1 FISCAL YEAR TABLES 1

PUZZLE

1 FISCAL YEAR TABLES

Let’s write some CREATE TABLE statements that are as complete as
possible. This little exercise is important because SQL is a declarative
language and you need to learn how to specify things in the database
instead of in the code.

The table looks like this:

CREATE TABLE FiscalYearTable1
(fiscal_year INTEGER,
 start_date DATE,
 end_date DATE);

It stores date ranges for determining what fiscal year any given date
belongs to. For example, the federal government runs its fiscal year from
October 1 until the end of September. The scalar subquery you would
use to do this table lookup is:

(SELECT F1.fiscal_year
 FROM FiscalYearTable1 AS F1
 WHERE outside_date BETWEEN F1.start_date AND F1.end_date)

Your assignment is to add all the constraints you can think of to the
table to guarantee that it contains only correct information.

While vendors all have different date and time functions, let’s assume
that all we have is the SQL-92 temporal arithmetic and the function
EXTRACT ([YEAR | MONTH | DAY] FROM <date expression>), which
returns an integer that represents a field within a date.

Answer #1

1. First things first; make all the columns NOT NULL since there
is no good reason to allow them to be NULL.

2. Most SQL programmers immediately think in terms of adding
a PRIMARY KEY, so you might add the constraint PRIMARY
KEY (fiscal_year, start_date, end_date) because the fiscal year is
really another name for the pair (start_date, end_date). This is
not enough, because it would allow this sort of error:

2 PUZZLE 1 FISCAL YEAR TABLES

 (1995, '1994-10-01', '1995-09-30')
 (1996, '1995-10-01', '1996-08-30') <== error!
 (1997, '1996-10-01', '1997-09-30')
 (1998, '1997-10-01', '1997-09-30')

You could continue along the same lines and fix some prob-
lems by adding the constraints UNIQUE (fiscal_year),
UNIQUE (start_date), and UNIQUE (end_date), since we do
not want duplicate dates in any of those columns.

3. The constraint that almost everyone forgets to add because it is
so obvious is:

CHECK (start_date < end_date) or CHECK (start_date <=
end_date), as is appropriate.

4. A better way would be to use the constraint PRIMARY KEY
(fiscal_year) as before, but then since the start and end dates
are the same within each year, you could use constraints on
those column declarations:

CREATE TABLE FiscalYearTable1
(fiscal_year INTEGER NOT NULL PRIMARY KEY,
 start_date DATE NOT NULL,
 CONSTRAINT valid_start_date
 CHECK ((EXTRACT (YEAR FROM start_date) = fiscal_year - 1)
 AND (EXTRACT (MONTH FROM start_date) = 10)
 AND CHECK (EXTRACT (DAY FROM start_date) = 01)),
 end_date DATE NOT NULL,
 CONSTRAINT valid_end_date
 CHECK ((EXTRACT (YEAR FROM end_date) = fiscal_year)
 AND (EXTRACT (MONTH FROM end_date) = 09)
 AND (EXTRACT (DAY FROM end_date) = 30)));

You could argue for making each predicate a separate con-
straint to give more detailed error messages. The predicates on
the year components of the start_date and end_date columns
also guarantee uniqueness because they are derived from the
unique fiscal year.

5. Unfortunately, this method does not work for all companies.
Many companies have an elaborate set of rules that involve tak-
ing into account the weeks, weekends, and weekdays involved.

PUZZLE 1 FISCAL YEAR TABLES 3

They do this to arrive at exactly 360 days or 52 weeks in their
accounting year. In fact, there is a fairly standard accounting
practice of using a “4 weeks, 4 weeks, 5 weeks” quarter with
some fudging at the end of the year; you can have a leftover
week between 3 and 11 days. The answer is a FiscalMonth
table along the same lines as this FiscalYears example.

A constraint that will work surprisingly well for such cases is:

 CHECK ((end_date - start_date) = INTERVAL 359 DAYS)

where you adjust the number of days to fit your rules (i.e., 52 weeks * 7
days = 364 days). If the rules allow some variation in the size of the fiscal
year, then replace the equality test with a BETWEEN predicate.

Now, true confession time. When I have to load such a table in a
database, I get out my spreadsheet and build a table using the built-in
temporal functions. Spreadsheets have much better temporal functions
than databases, and there is a good chance that the accounting
department already has the fiscal calendar in a spreadsheet.

4 PUZZLE 2 ABSENTEES

PUZZLE

2 ABSENTEES

This problem was presented on the MS ACCESS forum on CompuServe
by Jim Chupella. He wanted to create a database that tracks employee
absentee rates. Here is the table you will use:

CREATE TABLE Absenteeism
(emp_id INTEGER NOT NULL REFERENCES Personnel (emp_id),
 absent_date DATE NOT NULL,
 reason_code CHAR (40) NOT NULL REFERENCES ExcuseList
(reason_code),
 severity_points INTEGER NOT NULL CHECK (severity_points
BETWEEN 1 AND 4),
 PRIMARY KEY (emp_id, absent_date));

An employee ID number identifies each employee. The reason_code
is a short text explanation for the absence (for example, “hit by beer
truck,” “bad hair day,” and so on) that you pull from an ever-growing
and imaginative list, and severity point is a point system that scores the
penalty associated with the absence.

If an employee accrues 40 severity points within a one-year period,
you automatically discharge that employee. If an employee is absent
more than one day in a row, it is charged as a long-term illness, not as a
typical absence. The employee does not receive severity points on the
second, third, or later days, nor do those days count toward his or her
total absenteeism.

Your job is to write SQL to enforce these two business rules, changing
the schema if necessary.

Answer #1

Looking at the first rule on discharging personnel, the most common
design error is to try to drop the second, third, and later days from the
table. This approach messes up queries that count sick days, and makes
chains of sick days very difficult to find.

The trick is to allow a severity score of zero, so you can track the long-
term illness of an employee in the Absenteeism table. Simply change the
severity point declaration to “CHECK (severity_points BETWEEN 0
AND 4)” so that you can give a zero to those absences that do not count.

PUZZLE 2 ABSENTEES 5

This is a trick newbies miss because storing a zero seems to be a waste of
space, but zero is a number and the event is a fact that needs to be noted.

UPDATE Absenteeism
 SET severity_points= 0,
 reason_code = 'long term illness'
 WHERE EXISTS
 (SELECT *
 FROM Absenteeism AS A2
 WHERE Absenteeism.emp_id = A2.emp_id
 AND Absenteeism.absent_date = (A2.absent_date -
INTERVAL 1 DAY));

When a new row is inserted, this update will look for another absence
on the day before and change its severity point score and reason_code in
accordance with your first rule.

The second rule for firing an employee requires that you know what
his or her current point score is. You would write that query as follows:

SELECT emp_id, SUM(severity_points)
 FROM Absenteeism
 GROUP BY emp_id;

This is the basis for a grouped subquery in the DELETE statement
you finally want. Personnel with less than 40 points will return a NULL,
and the test will fail.

DELETE FROM Personnel
 WHERE emp_id = (SELECT A1.emp_id
 FROM Absenteeism AS A1
 WHERE A1.emp_id = Personnel.emp_id
 GROUP BY A1.emp_id
 HAVING SUM(severity_points) >= 40);

The GROUP BY clause is not really needed in SQL-92, but some older
SQL implementations will require it.

6 PUZZLE 2 ABSENTEES

Answer #2

Bert Scalzo, a senior instructor for Oracle Corporation, pointed out that
the puzzle solution had two flaws and room for performance
improvements.

The flaws are quite simple. First, the subquery does not check for
personnel accruing 40 or more severity points within a one-year period,
as required. It requires the addition of a date range check in the WHERE
clause:

DELETE FROM Personnel
 WHERE emp_id = (SELECT A1.emp_id
 FROM Absenteeism AS A1
 WHERE A1.emp_id = Personnel.emp_id
 AND absent_date
 BETWEEN CURRENT_TIMESTAMP - INTERVAL 365 DAYS
 AND CURRENT_TIMESTAMP
 GROUP BY A1.emp_id
 HAVING SUM(severity_points) >= 40);

Second, this SQL code deletes only offending personnel and not their
absences. The related Absenteeism row must be either explicitly or
implicitly deleted as well. You could replicate the above deletion for the
Absenteeism table. However, the best solution is to add a cascading
deletion clause to the Absenteeism table declaration:

CREATE TABLE Absenteeism
 (... emp_id INTEGER NOT NULL
 REFERENCES Personnel(emp_id)
 ON DELETE CASCADE,
 ...);

The performance suggestions are based on some assumptions. If you
can safely assume that the UPDATE is run regularly and people do not
change their departments while they are absent, then you can improve
the UPDATE command’s subquery:

UPDATE Absenteeism AS A1
 SET severity_points = 0,
 reason_code = 'long term illness'
 WHERE EXISTS

PUZZLE 2 ABSENTEES 7

 (SELECT *
 FROM absenteeism as A2
 WHERE A1.emp_id = A2.emp_id
 AND (A1.absent_date + INTERVAL 1 DAY) =
A2.absent_date);

There is still a problem with long-term illnesses that span weeks. The
current situation is that if you want to spend your weekends being sick,
that is fine with the company. This is not a very nice place to work. If an
employee reports in absent on Friday of week number 1, all of week
number 2, and just Monday of week number 3, the UPDATE will catch
only the five days from week number 2 as long-term illness. The Friday
and Monday will show up as sick days with severity points. The subquery
in the UPDATE requires additional changes to the missed-date chaining.

I would avoid problems with weekends by having a code for
scheduled days off (weekends, holidays, vacation, and so forth) that
carry a severity point of zero. A business that has people working
weekend shifts would need such codes.

The boss could manually change the Saturday and Sunday “weekend”
codes to “long-term illness” to get the UPDATE to work the way you
described. This same trick would also prevent you from losing scheduled
vacation time if you got the plague just before going on a cruise. If the
boss is a real sweetheart, he or she could also add compensation days for
the lost weekends with a zero severity point to the table, or reschedule an
employee’s vacation by adding absences dated in the future.

While I agreed that I left out the aging on the dates missed, I will
argue that it would be better to have another DELETE statement that
removes the year-old rows from the Absenteeism table, to keep the size
of the table as small as possible.

The expression

(BETWEEN CURRENT_TIMESTAMP - INTERVAL 365 DAYS AND
CURRENT_TIMESTAMP)

could also be

(BETWEEN CURRENT_TIMESTAMP - INTERVAL 1 YEAR AND
CURRENT_TIMESTAMP),

so the system would handle leap years. Better yet, DB2 and some other
SQL products have an AGE(date1) function, which returns the age in

8 PUZZLE 2 ABSENTEES

years of something that happened on the date parameter. You would
then write (AGE(absent_date) >= 1) instead.

Answer #3

Another useful tool for this kind of problem is a Calendar table, which
has the working days that can count against the employee. In the 10
years since this book was first written, this has become a customary SQL
programming practice.

SELECT A.emp_id,
 SUM(A.severity_points) AS absentism_score
 FROM Absenteeism AS A, Calendar AS C
 WHERE C1.cal_date = A.absent_date
 AND A.absent_date
 BETWEEN CURRENT_TIMESTAMP - INTERVAL 365 DAYS
 AND CURRENT_TIMESTAMP
 AND C1.date_type = ‘work’
 GROUP BY emp_id
HAVING SUM(A.severity_points)>= 40;

Some people will also have a column in the Calendar table that
Julianizes the working days. Holidays and weekends would carry the
same Julian number as the preceding workday. For example (cal_date,
Julian_workday) :

(‘2006-04-21’, 42) – Friday
(‘2006-04-22’, 42) – Saturday
(‘2006-04-23’, 42) – Sunday
(‘2006-04-24’, 43) – Monday

You do the math from the current date’s Julian workday number to
find the start of their adjusted one-year period.

PUZZLE 3 THE ANESTHESIA PUZZLE 9

PUZZLE

3 THE ANESTHESIA PUZZLE

Leonard C. Medal came up with this nifty little problem many years ago.
Anesthesiologists administer anesthesia during surgeries in hospital
operating rooms. Information about each anesthesia procedure is
recorded in a table.

Procs
proc_id anest_name start_time end_time
======================================
 10 'Baker' 08:00 11:00
 20 'Baker' 09:00 13:00
 30 'Dow' 09:00 15:30
 40 'Dow' 08:00 13:30
 50 'Dow' 10:00 11:30
 60 'Dow' 12:30 13:30
 70 'Dow' 13:30 14:30
 80 'Dow' 18:00 19:00

Note that some of the times for a given anesthesiologist overlap. This
is not a mistake. Anesthesiologists, unlike surgeons, can move from one
operating room to another while surgeries are underway, checking on
each patient in turn, adjusting dosages, and leaving junior doctors and
anesthesia nurses to monitor the patients on a minute-to-minute basis.

Pay for the anesthesiologist is per procedure, but there’s a catch.
There is a sliding scale for remuneration for each procedure based on
the maximum count of simultaneous procedures that an
anesthesiologist has underway. The higher this count, the lower the
amount paid for the procedure.

For example, for procedure #10, at each instant during that
procedure Dr. Baker counts up how many total procedures in which he
was concurrently involved. This maximum count for procedure #10 is 2.
Based on the “concurrency” rules, Dr. Baker gets paid 75% of the fee for
procedure #10.

The problem then is to determine for each procedure over its
duration, the maximum, instantaneous count of procedures carried out
by the anesthesiologist.

We can derive the answer graphically at first to get a better
understanding of the problem.

10 PUZZLE 3 THE ANESTHESIA PUZZLE

Example 1 shows two overlapping procedures. The upper, Gantt-
like graph displays the elapsed time of the procedure we are evaluating
(the subject procedure) and all the doctor’s other procedures that
overlap in time.

The lower graph (Instantaneous Count of In-Progress Procedures)
shows how many procedures are underway at each moment. It helps to
think of a slide rule hairline moving from left to right over the Gantt
chart while each procedure start or end is plotted stepwise on the
lower chart.

We can see in Example 1 by inspection that the maximum is 2.

Example 1—Dr. Baker, Proc #10

Example 2 shows a more complex set of overlapping procedures, but
the principle is the same. The maximum, which happens twice, is 3.

Example 2—Dr. Dow, Proc #30

Note that the correct answer is not the number of overlapping
procedures but the maximum instantaneous count. The puzzle is how to
do this for each procedure using SQL. Here is the desired result for the
sample data:

PUZZLE 3 THE ANESTHESIA PUZZLE 11

proc_id max_inst_count
============================
 10 2
 20 2
 30 3
 40 3
 50 3
 60 3
 70 2
 80 1

Answer #1

The first step is to convert each procedure into two Events—a start and
end event—and put them in a view. The UNION operator appends the set
of end Events to the set of start Events. A (+1) indicates a start event and
a (-1) indicates an end event.

The WHERE clauses assure that the procedures compared overlap and
are for the same anesthesiologist. The NOT condition eliminates
procedures that do not overlap the subject procedure.

CREATE VIEW Events (proc_id, comparison_proc, anest_name,
event_time, event_type)
AS SELECT P1.proc_id,
 P2.proc_id,
 P1.anest_name,
 P2.start_time,
 +1
 FROM Procs AS P1, Procs AS P2
 WHERE P1.anest_name = P2.anest_name
 AND NOT (P2.end_time <= P1.start_time
 OR P2.start_time >= P1.end_time)
 UNION
 SELECT P1.proc_id,
 P2.proc_id,
 P1.anest_name,
 P2.end_time,
 -1 AS event_type
 FROM Procs AS P1, Procs AS P2
 WHERE P1.anest_name= P2.anest_name
 AND NOT (P2.end_time <= P1.start_time
 OR P2.start_time >= P1.end_time);

12 PUZZLE 3 THE ANESTHESIA PUZZLE

The result is this view shown here for procedure #10 only and sorted
by event_time for clarity. Notice that the same anesthesiologist can start
more than one procedure at the same time.

Events
proc_id comparison_proc anest_name event_time event_type

==
 10 10 Baker 08:00 +1
 10 20 Baker 09:00 +1
 10 10 Baker 11:00 -1
 10 20 Baker 13:00 -1

Now, for each set of Events with the same proc_id id, we can
compute for each event the sum of the event_types for Events that
occur earlier. This series of backward-looking sums gives us the values
represented by each step in the step charts.

SELECT E1.proc_id, E1.event_time,
 (SELECT SUM(E2.event_type)
 FROM Events AS E2
 WHERE E2.proc_id = E1.proc_id
 AND E2.event_time < E1.event_time)
 AS instantaneous_count
 FROM Events AS E1
 ORDER BY E1.proc_id, E1.event_time;

The result of this query is shown here for procedure #10 only.

 proc_id instantaneous_count
===============================
 10 NULL
 10 1
 10 2
 10 1

You could put this result set into a view called ConcurrentProcs,
then query the view to get the maximum instantaneous count for each
subject procedure using this statement:

PUZZLE 3 THE ANESTHESIA PUZZLE 13

SELECT proc_id,
 MAX(instantaneous_count) AS max_inst
 FROM ConcurrentProcs
 GROUP BY proc_id;

But you could also extract the desired result directly from the Events
view. You could do this by merging the two select statements:

SELECT E1.proc_id,
 MAX((SELECT SUM(E2.event_type)
 FROM Events AS E2
 WHERE E2.proc_id = E1.proc_id
 AND E2.event_time < E1.event_time)) AS
max_inst_count
 FROM Events AS E1
 GROUP BY E1.proc_id;

However, it is illegal to put a subquery expression in an aggregate
function in SQL-92, so you are depending on a vendor extension.

Answer #2

Richard Romley’s single-query answer depends on the SQL-92 table
query expressions in the FROM clause, so that what had been a VIEW
can be folded into the query.

SELECT P3.proc_id, MAX(ConcurrentProcs.tally)
 FROM (SELECT P1.anest_name, P1.start_time, COUNT(*)
 FROM Procs AS P1
 INNER JOIN
 Procs AS P2
 ON P1.anest_name= P2.anest
 AND P2.start_time <= P1.start_time
 AND P2.stop_time > P1.start_time
 GROUP BY P1.anest_name, P1.start_time)
 AS ConcurrentProcs(anest_name, start_time, tally)
 INNER JOIN
 Procs AS P3
 ON ConcurrentProcs.anest_name= P3.anest
 AND P3.start_time <= ConcurrentProcs.start_time
 AND P3.stop_time > ConcurrentProcs.start_time
 GROUP BY P3.proc_id;

14 PUZZLE 3 THE ANESTHESIA PUZZLE

Answer #3

This answer came from Lex van de Pol (aavdpol@hotmail.com) on June
9, 2000. The idea is to loop through all procedures (P1); for each
procedure P1 you look at procedures P2 where their start time lies in the
interval of procedure P2. For each start time you found of P2, count the
number of procedures (P3) that are ongoing on that time. Then, take the
maximum count for a certain procedure P1.

For doing this, Lex first created this view:

CREATE VIEW Vprocs (id1, id2, total)
AS SELECT P1.prc_id, P2.prc_id, COUNT(*)
 FROM Procs AS P1, Procs AS P2, Procs AS P3
 WHERE P2.ant_name = P1.ant_name
 AND P3.ant_name = P1.ant_name
 AND P1.prc_start <= P2.prc_start
 AND P2.prc_start < P1.prc_end
 AND P3.prc_start <= P2.prc_start
 AND P2.prc_start < P3.prc_end
 GROUP BY P1.prc_id, P2.prc_id;

He then took the maximum for each procedure P1:

SELECT id1 AS proc_id, MAX(total) AS max_inst_count
 FROM Vprocs
 GROUP BY id1;

The funny thing is, you do not need to look at the end times for
procedures P2.

Answer #4

Bert C. Hughes (bhughes@twincities.net) came up with a solution in
Microsoft ACCESS, a proprietary near-SQL language. Here is his code
translated into a single SQL statement:

SELECT P1.proc_id, P1.anest_name, MAX(E1.ecount) AS maxops
 FROM Procs AS P1,
 -- E1 is # of processes active at time for each
anesthetist
 (SELECT P2.anest_name, P2.start_time, COUNT(*)

PUZZLE 3 THE ANESTHESIA PUZZLE 15

 FROM Procs AS P1, Procs AS P2
 WHERE P1.anest_name = P2.anest_name
 AND P1.start_time <= P2.start_time
 AND P1.end_time > P2.start_time
 GROUP BY P2.anest_name, P2.start_time)
 AS E1(anest_name, etime, ecount)
 WHERE E1.anest_name= P1.anest_name
 AND E1.etime >= P1.start_time
 AND E1.etime < P1.end_time
 GROUP BY P1.proc_id, P1.anest;

Answer #5

Another approach is to set up a Clock table, since you probably round
the billing to within a minute. That means we would have a table with
(24 hours * 60 minutes) = 1,440 rows per day, or 525,600 rows; a year’s
worth of scheduling. But you can also set up a VIEW for the current day:

SELECT X.anest_name, MAX(X.proc_tally)
 FROM (SELECT P1.anest_name, COUNT(DISTINCT proc_id)
 FROM Procs AS P1, Clock AS C
 WHERE C1.clock_time BETWEEN P1.start_time
 AND P1.end_time
 GROUP BY P1.anest_name)
 AS X(anest_name, proc_tally)
 GROUP BY X.anest_name);

This is just another version of the Calendar auxiliary table. This kind
of table depends on a known granularity—Calendars work to the day,
and Clocks to the minute, usually. You also can create a VIEW that uses
a table of one day’s clock ticks stored in minutes and the system constant
CURRENT_DATE.

CREATE VIEW TodayClock (clock_time)
AS
SELECT CURRENT_DATE + ticks
 FROM DayTicks;

16 PUZZLE 4 SECURITY BADGES

PUZZLE

4 SECURITY BADGES

Due to rightsizing (we never say downsizing or outsourcing) at your
company, you are now the security officer and database administrator.
You want to produce a list of personnel and their active security badge
numbers. Each employee can have many badges, depending on how
many job sites they are currently working, but only one of their badges
will be active at a time. The default is that the most recently issued badge
is assumed to be active because it will be issued at a new job site. The
badge numbers are random to prevent counterfeiting. Your task is to
produce a list of personnel, each with the relevant active badge number.
Let’s use ‘A’ for active and ‘I’ for inactive badge status.

Answer #1

From the specification, you know that each employee can have all but
one badge set to inactive, so it would be nice to enforce that at the
database level.

CREATE TABLE Personnel
(emp_id INTEGER NOT NULL PRIMARY KEY,
 emp_name CHAR(30) NOT NULL,
 ...);

CREATE TABLE Badges
(badge_nbr INTEGER NOT NULL PRIMARY KEY,
 emp_id INTEGER NOT NULL REFERENCES Personnel(emp_id),
 issued_date DATE NOT NULL,
 badge_status CHAR(1) NOT NULL CHECK (badge_status IN ('A',
'I')),
 ...
 CHECK (1 <= ALL (SELECT COUNT(badge_status)
 FROM Badges
 WHERE badge_status = 'A'
 GROUP BY emp_id))
);

In fairness, I must point out that a lot of SQL implementations will gag
on the final CHECK() clause on Badges because of the self-reference in
the predicate, but it is legal SQL-92 syntax. You could drop that

PUZZLE 4 SECURITY BADGES 17

CHECK() clause and allow an employee to have no active badge. That,
however, would mean that you have to create a way of updating the
badge status of the most recently issued badge to “A” for the employees.

UPDATE Badges
 SET badge_status = 'A'
 WHERE ('I' = ALL (SELECT badge_status
 FROM Badges AS B1
 WHERE emp_id = B1.emp_id))
 AND (issued_date = (SELECT MAX (issuedate)
 FROM Badges AS B2
 WHERE emp_id = B2.emp_id));

Again, I must point out that a lot of SQL implementations will also
gag on this update because of the correlation names. The rule in SQL-92
is that the scope of the table name in the UPDATE is the whole statement,
and the current row is used for the column values referenced. Therefore,
you have to use the correlation names to see the rest of the table. Now
the original query is really easy:

SELECT P.emp_id, empname, badge_nbr
 FROM Personnel AS P, Badges AS B
 WHERE B.emp_id = P.emp_id
 AND B.badge_status = 'A';

Answer #2

Another approach is to assign a sequence number to each of the badges
using the MIN() or MAX() sequence number as the active badge:

CREATE TABLE Badges
(badge_nbr INTEGER NOT NULL PRIMARY KEY,
 emp_id INTEGER NOT NULL REFERENCES Personnel(emp_id),
 issued_date DATE NOT NULL,
 badge_seq INTEGER NOT NULL
 CHECK (badge_seq > 0),
 UNIQUE (emp_id, badge_seq),
 ..
);

Now create a view to show the active badge:

18 PUZZLE 4 SECURITY BADGES

CREATE VIEW ActiveBadges (emp_id, badge_nbr)
AS
SELECT emp_id, MAX(badge_nbr)
 FROM Badges
 GROUP BY emp_id;

This approach also needs to have an update to reset the sequence
numbering when badges are lost or retired. It is not required for the
queries, but people feel better if they see the sequence, and it makes it
easier to find the number of badges per employee.

UPDATE Badges
 SET badge_seq
 = (SELECT COUNT(*)
 FROM Badges AS B1
 WHERE Badges.emp_id = B1.emp_id
 AND Badges.badge_seq = B1.badge_seq;

PUZZLE 5 ALPHA DATA 19

PUZZLE

5 ALPHA DATA

How do you ensure that a column will have a single alphabetic-
character–only string in it? That means no spaces, no numbers, and no
special characters within the string.

In older procedural languages, you have to declare data fields with
format constraints in the file declarations. The obvious examples are
COBOL and PL/I. Another approach is to use a template to filter the data
as you read; the FORTRAN-style FORMAT statement is the best-known
example.

SQL made a strong effort to separate the logical view of data from the
physical representation of it, so you don’t get much help with specifying
the physical layout of your data. When a programmer at our little shop
came to me with this one, I came up with some really bad first tries using
substrings and BETWEEN predicates in a CHECK() clause that was longer
than the whole schema declaration.

Answer #1

I keep telling people to think in terms of whole sets and not in a “record
at a time” mind-set when they write SQL. The trick is to think in terms of
whole strings and not in a “character at a time” mind-set. The answer
from the folks at Ocelot software is surprisingly easy:

CREATE TABLE Foobar
(no_alpha VARCHAR(6) NOT NULL
 CHECK (UPPER(no_alpha) = LOWER(no_alpha)),
 some_alpha VARCHAR(6) NOT NULL
e_alpha)),
 all_alpha VARCHAR(6) NOT NULL
 CHECK (UPPER(all_alpha) <> LOWER(all_alpha)
 AND LOWER (all_alpha)
 BETWEEN 'aaaaaa' AND 'zzzzzz'),
 ...);

These CHECK() constraints assume that you are using Standard SQL-
92 case sensitivity. Letters have different uppercase and lowercase
values, but other characters do not. This lets us edit a column for no
alphabetic characters and some alphabetic characters.

20 PUZZLE 5 ALPHA DATA

Answer #2

However, trying to find a string of all alphabetic characters is difficult
without using a vendor extension, such as a regular expression parser in
the LIKE predicate.

 all_alpha VARCHAR(6) NOT NULL
 CHECK (TRANSLATE (all_alpha USING
one_letter_translation)
 = 'xxxxxx')

The one_letter_translation is a translation that maps all letters to
‘x.’ This is standard SQL, but it is not a common function yet. The syntax
for creating a translation is:

<translation definition> ::=
 CREATE TRANSLATION <translation name>
 FOR <source character set specification>
 TO <target character set specification> FROM
<translation source>;

I will not discuss details here.

Answer #3

The regular expression predicate in standard SQL is based on the POSIX
syntax, but you will probably have to look at vendor particulars for your
product.

all_alpha VARCHAR(6) NOT NULL
 CHECK (all_alpha SIMILAR TO ‘[a-zA-Z]’)

PUZZLE 6 HOTEL RESERVATIONS 21

PUZZLE

6 HOTEL RESERVATIONS

Scott Gammans posted a version of the following problem on the
WATCOM Forum on CompuServe. Suppose you are the clerk at Hotel
SQL, and you have the following table:

CREATE TABLE Hotel
(room_nbr INTEGER NOT NULL,
 arrival_date DATE NOT NULL,
 departure_date DATE NOT NULL,
 guest_name CHAR(30) NOT NULL,
 PRIMARY KEY (room_nbr, arrival_date),
 CHECK (departure_date >= arrival_date));

Right now the CHECK() clause enforces the data integrity constraint
that you cannot leave before you have arrived, but you want more. How
do you enforce the rule that you cannot add a reservation that has an
arrival date conflicting with the prior departure date for a given room?
That is, no double bookings.

Answer #1

One solution requires a product to have the capability of using fairly
complex SQL in the CHECK() clause, so you will find that a lot of
implementations will not support it.

CREATE TABLE Hotel
(room_nbr INTEGER NOT NULL,
 arrival_date DATE NOT NULL,
 departure_date DATE NOT NULL,
 guest_name CHAR(30),
 PRIMARY KEY (room_nbr, arrival_date),
 CHECK (departure_date >= arrival_date),
 CHECK (NOT EXISTS
 (SELECT *
 FROM Hotel AS H1, Hotel AS H2
 WHERE H1.room_nbr = H2.room_nbr
 AND H1.arrival_date
 BETWEEN H2.arrival_date AND
H2.departure_date)));

22 PUZZLE 6 HOTEL RESERVATIONS

Answer #2

Another solution is to redesign the table, giving a row for each day and
each room, thus:

CREATE TABLE Hotel
(room_nbr INTEGER NOT NULL,
 occupy_date DATE NOT NULL,
 guest_name CHAR(30) NOT NULL,
 PRIMARY KEY (room_nbr, occupy_date, guest_name));

This does not need any check clauses, but it can take up disk space
and add some redundancy. Given cheap storage today, this might not be
a problem, but redundancy always is. You will also need to find a way in
the INSERT statements to be sure that you put in all the room days
without any gaps.

As an aside, in full SQL-92 you will have an OVERLAPS predicate that
tests to see if two time intervals overlap a temporal version of the
BETWEEN predicate currently in SQL implementations. Only a few
products have implemented it so far.

Answer #3

Lothar Flatz, an instructor for Oracle Software Switzerland, made the
objection that the clause “H1.arrival_date BETWEEN
H2.arrival_date AND H2.depatures” does not allow for a guest name
to arrive the same day another guest name leaves.

Since Oracle cannot put subqueries into CHECK() constraints and
triggers would not be possible because of the mutating table problem, he
used a VIEW that has a WITH CHECK OPTION to enforce the occupancy
constraints:

CREATE VIEW HotelStays (room_nbr, arrival_date,
departure_date, guest_name)
AS SELECT room_nbr, arrival_date, departure_date,
guest_name
 FROM Hotel AS H1
 WHERE NOT EXISTS
 (SELECT *
 FROM Hotel AS H2
 WHERE H1.room_nbr = H2.room_nbr
 AND H2.arrival_date < H1.arrival_date

PUZZLE 6 HOTEL RESERVATIONS 23

 AND H1.arrival_date < H2.departure_date)
 WITH CHECK OPTION;

For example,

INSERT INTO HotelStays
VALUES (1, '2008-01-01', '2008-01-03', 'Coe');
COMMIT;
INSERT INTO HotelStays
VALUES (1, '2008-01-03', '2008-01-05', 'Doe');

will give a WITH CHECK OPTION clause violation on the second INSERT
INTO statement. This is a good trick for getting table-level constraints in
a table on products without full SQL-92 features.

24 PUZZLE 7 KEEPING A PORTFOLIO

PUZZLE

7 KEEPING A PORTFOLIO

Steve Tilson sent this problem to me in November 1995:
I have a puzzle for you. Perhaps I cannot see the forest for the trees

here, but this seems like a real challenge to solve in an elegant manner
that does not result in numerous circular references.

Although this puzzle seems to be an entire system, my question is
whether or not there is a way to eliminate the apparent circular
references within the table design phase.

Let’s say you must keep track of Portfolios in an organization for
lookup or recall. There are various attributes attached, but only certain
items are pertinent to the puzzle:

CREATE TABLE Portfolios
(file_id INTEGER NOT NULL PRIMARY KEY,
 issue_date DATE NOT NULL,
 superseded_file_id INTEGER NOT NULL REFERENCES Portfolios
(file_id),
 supersedes_file_id INTEGER NOT NULL REFERENCES
Portfolios(file_id));

Here is the puzzle:

� You need to keep track of which portfolio superseded the current
portfolio.

� You need to keep track of which portfolio this portfolio has super-
seded.

� You need to be able to reinstate a portfolio (which has the effect of
superseding a portfolio or portfolio chain, which results in a circu-
lar reference).

� You can track the dates by virtue of the issue_date, but another
thorny issue results if a portfolio is reinstated!

� You need to be able to SELECT the most current portfolio regard-
less of the portfolio in a SELECT statement.

� You need to be able to reproduce an audit trail for a chain of
documents.

PUZZLE 7 KEEPING A PORTFOLIO 25

Answer #1

Steve is still thinking in terms of pointer chains and procedural
languages. Shame on him! We know this is a problem that deals with
ordinal numbering, because we have the give-away words “successor”
and “predecessor” in the specification. Let’s apply what we know about
nested sets instead.

First, create a table to hold all the information on each file:

CREATE TABLE Portfolios
(file_id INTEGER NOT NULL PRIMARY KEY,
 other_stuff ..);

Then create a table to hold the succession of the documents, with two
special columns, chain and next, in it.

CREATE TABLE Succession
(chain INTEGER NOT NULL,
 next INTEGER DEFAULT 0 NOT NULL CHECK (next >= 0),
 file_id INTEGER NOT NULL REFERENCES Portfolios(file_id),
 suc_date NOT NULL,
 PRIMARY KEY(chain, next));

Imagine that the original document is the zero point on a line.
The next document that supersedes _file_id is a circle drawn

around the point. The third document in the chain of succession is a
second circle drawn around the first circle, and so forth. We show these
nested sets with the next value, flattening the circles onto the number
line starting at zero.

You have to create the new document row in Portfolios, then the
succession table entry. The value of next in the successor is one greater
than the highest next value in the chain. Nested sets!!

Here is some sample data where a chain of ‘22?’ and ‘32?’ documents
are superseded by a single document, 999.

CREATE TABLE Portfolios
(file_id INTEGER NOT NULL PRIMARY KEY,
 stuff CHAR(15) NOT NULL);

INSERT INTO Portfolios
VALUES (222, 'stuff'),

26 PUZZLE 7 KEEPING A PORTFOLIO

 (223, 'old stuff'),
 (224, 'new stuff'),
 (225, 'borrowed stuff'),
 (322, 'blue stuff'),
 (323, 'purple stuff'),
 (324, 'red stuff'),
 (325, 'green stuff'),
 (999, 'yellow stuff');

CREATE TABLE Succession
(chain INTEGER NOT NULL,
 next INTEGER NOT NULL,
 file_id INTEGER NOT NULL REFERENCES Portfolios(file_id),
 suc_date NOT NULL,
 PRIMARY KEY(chain, next));

INSERT INTO Succession
VALUES (1, 0, 222, '2007-11-01'),
 (1, 1, 223, '2007-11-02'),
 (1, 2, 224, '2007-11-04'),
 (1, 3, 225, '2007-11-05'),
 (1, 4, 999, '2007-11-25'),
 (2, 0, 322, '2007-11-01'),
 (2, 1, 323, '2007-11-02'),
 (2, 2, 324, '2007-11-04'),
 (2, 3, 322, '2007-11-05'),
 (2, 4, 323, '2007-11-12'),
 (2, 5, 999, '2007-11-25');

To answer your queries:

� You need to be able to SELECT the most current portfolio regard-
less of the portfolio in a SELECT statement.

SELECT DISTINCT P1.file_id, stuff, suc_date
 FROM Portfolios AS P1, Succession AS S1
 WHERE P1.file_id = S1.file_id
 AND next = (SELECT MAX(next)
 FROM Succession AS S2
 WHERE S1.chain= S2.chain);

PUZZLE 7 KEEPING A PORTFOLIO 27

I have to use the SELECT DISTINCT option in case two or more chains
were superseded by a single document.

� You need to be able to reproduce an audit trail for a chain of docu-
ments.

SELECT chain, next, P1.file_id, stuff, suc_date
 FROM Portfolios AS P1, Succession AS S1
 WHERE S1.file_id = P1.file_id
 ORDER BY chain, next;

� You need to keep track of which portfolio superseded this portfolio.

SELECT S1.file_id, ' superseded ',
 S2.file_id, ' on ', S2.suc_date
 FROM Succession AS S1, Succession AS S2
 WHERE S1.chain = S2.chain
 AND S1.next = S2.next + 1
 AND S1.file_id = :my_file_id; -- remove for all
portfolios

� You need to be able to reinstate a portfolio, which has the effect of
superseding a portfolio or portfolio chain, which results in a circu-
lar reference.

BEGIN
-- Create a row for the new document
INSERT INTO Portfolios VALUES (1000, 'sticky stuff');

-- adds new_file_id to chain with :old_file_id anywhere in
it.
INSERT INTO Succession (chain, next, file_id, suc_date)
VALUES ((SELECT DISTINCT chain
 FROM Succession AS S1
 WHERE S1.file_id = :old_file_id),
 (SELECT MAX(next) + 1
 FROM Succession AS S1
 WHERE S1.chain = (SELECT DISTINCT chain
 FROM Succession AS S2
 WHERE file_id = :my_file_id)),
 :new_file_id, :new_suc_date);
END;

28 PUZZLE 7 KEEPING A PORTFOLIO

The problem here is that I allowed for a single file to supersede more
than one existing file and for more than one file to supersede a single
existing file. My chains are not really all that linear. This code blows up if
:old_file_id is in more than one chain. You can fix it by asking for the
chain number or the file_id of the document that the new file supersedes
_file_id, but the SQL is ugly and I don’t have time to work it out right
now. You can try it.

� You can track the dates by virtue of the issue date, but another
thorny issue results if a portfolio is reinstated!

No big deal with this schema. Do a SELECT on any particular file_id
and look at the dates and next column to get the chain of events. You did
not say if the succession date column values have to be in increasing
order, along with the next column values. Is that true? If so, we need to
add another CHECK() clause to handle this.

PUZZLE 8 SCHEDULING PRINTERS 29

PUZZLE

8 SCHEDULING PRINTERS

Yogesh Chacha ran into a problem and sent it to me on CompuServe on
September 12, 1996. Users in his shop usually end up using the wrong
printer for printout, thus they decided to include a new table in the
system that will derive the correct printer for each user at runtime. Their
table looked like this:

CREATE TABLE PrinterControl
(user_id CHAR(10), -- null means free printer
 printer_name CHAR(4) NOT NULL PRIMARY KEY,
 printer_description CHAR(40) NOT NULL);

The rules of operation are that:

1. If the user has an entry in the table, he will pick the
corresponding printer_name.

2. If the user is not in the table then, he is supposed to use one of
the printers whose user_id is NULL.

Now, consider the following example:

PrinterControl
user_id printer_name printer_description
==
'chacha' 'LPT1' 'First floor's printer'
'lee' 'LPT2' 'Second floor's printer'
'thomas' 'LPT3' 'Third floor's printer'
NULL 'LPT4' 'Common printer for new user'
NULL 'LPT5' 'Common printer for new user'

When 'chacha' executes the report he is entitled to use only LPT1,
whereas a user named 'celko' is expected to use either LPT4 or LPT5.
In the first case, a simple query can pull out one row and it works fine; in
the second case, you get two rows and cannot use that result.

Can you come up with a one-query solution?

30 PUZZLE 8 SCHEDULING PRINTERS

Answer #1

I would answer that the problem is in the data. Look at the user_id
column. The name tells you that it should be unique, but it has multiple
NULLs in it. There is also another problem in the real world; you want to
balance the printer loads between LPT4 and LPT5, so that one of them is
not overused.

Do not write a fancy query; change the table:

CREATE TABLE PrinterControl
(user_id_start CHAR(10) NOT NULL,
 user_id_finish CHAR(10) NOT NULL,
 printer_name CHAR(4) NOT NULL,
 printer_description CHAR(40) NOT NULL
 PRIMARY KEY (user_id_start, user_id_finish));

Now, consider the following example:

PrinterControl
user_id_start user_id_finish printer_name
printer_description
==
'chacha' 'chacha' 'LPT1' 'First floor's printer'
'lee' 'lee' 'LPT2' 'Second floor's printer'
'thomas' 'thomas' 'LPT3' 'Third floor's printer'
'aaaaaaaa' 'mzzzzzzzz' 'LPT4' 'Common printer #1 '
'naaaaaaa' 'zzzzzzzz' 'LPT5' 'Common printer #2'

The query then becomes:

 SELECT MIN(printer_name)
 FROM PrinterControl
 WHERE :my_id BETWEEN user_id_start AND user_id_finish;

The trick is in the start and finish values, which partition the range of
possible strings between 'aaa...' and 'zzz...' any way you wish. The
'celko' user id qualified only for LPT4 because it falls alphabetically
within that range of strings. A user 'norman' is qualified only for LPT5.
Careful choice of these ranges will allow you to distribute the printer
loads evenly if you know what the user ids are going to be like.

PUZZLE 8 SCHEDULING PRINTERS 31

I have assumed the common printers always will have higher LPT
numbers. When 'chacha' goes to this table, he will get a result set of
(LPT1, LPT4), and then pick the minimum value, LPT1, from it. A
smart optimizer should be able to use the PRIMARY KEY index to speed
up the query.

Answer #2

Richard Romley came up with a different solution:

SELECT COALESCE(MIN(printer_name),
 (SELECT MIN(printer_name)
 FROM PrinterControl AS P2
 WHERE user_id IS NULL))
 FROM PrinterControl AS P1
 WHERE user_id = :user_id;

This is trickier than it looks. You go to the outer WHERE clause with
user_id = 'celko', an unregistered user, so you would think that you
don’t get any rows from the P1 copy of PrinterControl.

This is not true. While a query like:

SELECT col
 FROM SomeTable
 WHERE 1 = 2;

will return no rows, a query like:

SELECT MAX(col)
 FROM SomeTable
 WHERE 1 = 2;

will return one row containing one column (col) that is NULL. This is a
funny characteristic of the aggregate functions on empty sets. Therefore,

SELECT COALESCE(MAX(col), something_else)
 FROM SomeTable
 WHERE 1 = 2;

will work. The WHERE clause is used only to resolve MAX(col) and not to
determine whether or not to return rows; that is the job of the SELECT

32 PUZZLE 8 SCHEDULING PRINTERS

clause. The aggregate MAX(col) will be NULL and will get returned.
Therefore, the COALESCE() will work.

The bad news is that when I get back a row, this query is going to
return the same printer over and over, instead of distributing the
workload over all the unassigned printers. You can add an update
statement to replace the NULL with the guest user, so that the next printer
will be used.

Answer #3

This can be fixed with a simple repair:

SELECT COALESCE(MIN(printer_name),
 (SELECT CASE
 WHEN :user_id < 'n'
 THEN 'LPT4'
 ELSE 'LPT5' END
 FROM PrinterControl
 WHERE user_id IS NULL))
 FROM printer_control
 WHERE user_id = :user_id;

The flaw with this answer is that all common printer rows are being
handled in the query, so you don’t need them in the table at all. If you
went that route, you would just remove everything after the CASE
statement from the second query above. This would mean, however, that
you never record information about the printers in the database. If you
drop or add printers, you have to change the query, not the database
where you are supposed to keep this information.

Answer #4

We can change the table design again to hold a flag for the type of
printer:

CREATE TABLE PrinterControl
(user_id CHAR(10), -- null means free printer
 printer_name CHAR(4) NOT NULL PRIMARY KEY,
 assignable_flag CHAR(1) DEFAULT ‘Y’ NOT NULL
 CHECK (assignable_flag IN (‘Y’, ‘N’),
 printer_description CHAR(40) NOT NULL);

PUZZLE 8 SCHEDULING PRINTERS 33

We then update the table with:

UPDATE PrinterControl
 SET user_id = :guest_id
 WHERE printer_name
 = (SELECT MIN(printer_name)
 FROM PrinterControl
 WHERE assignable_flag = ‘Y’
 AND user_id IS NULL);

Then you need to clear out the guest users at some point in time.

UPDATE PrinterControl
 SET user_id = NULL
 WHERE assignable_flag = ‘Y’;

34 PUZZLE 9 AVAILABLE SEATS

PUZZLE

9 AVAILABLE SEATS

You have a restaurant with 1,000 seats. Whenever a waiter puts
someone at a seat, he logs it in a table of seats (I was going to say “table
of tables” and make this impossible to read). Likewise, when a guest
finishes a meal, you remove the guest’s seat number. You want to write a
query to produce a list of the available seats in the restaurant, set up in
blocks by their starting and ending seat numbers. Oh yes, the gimmick
is that the database resides on a personal digital assistant and not a
mainframe computer.

As part of the exercise, you must do this with the smallest amount of
storage possible. Assume each seat number is an integer.

The first thought is to add a (free/occupied) flag column next to the
seat-number column. The available seating query would be based on the
flag. This would be 1,000 rows of one integer and one character for the
whole restaurant and would work pretty well, but we have that minimal
storage requirement. Darn!

Answer #1

The flag can be represented by a plus or minus on the seat number itself
to save the extra column, but this is very bad relational practice; two
attributes are being collapsed into one column. But it does keep us at
1,000 rows.

UPDATE Seats
 SET seat_nbr = -seat_nbr
 WHERE seat_nbr = :my_seat;

The same update statement can be used to put back into the Available
list, and a “SET seat_nbr = ABS(seat_nbr)” will reset the restaurant at
closing time.

Answer #2

The second thought is to create a second table with a single column of
occupied seating and to move numbers between the occupied and
available tables. That would require a total of 1,000 rows in both tables,
which is a little weird, but it leads to the next answer.

PUZZLE 9 AVAILABLE SEATS 35

Answer #3

Instead, we can use a single table and create seats 0 through 1,001 (0
and 1,001 do not really exist and are never assigned to a customer. They
act as sentries on the edge of the real seating to make the code easier).
Delete each seat from the table as it is occupied and insert it back when it
is free again. The Restaurant table can get as small as the two dummy
rows if all the seating is taken, but no bigger than 1,002 rows (2,004
bytes) if the house is empty.

This VIEW will find the first seat in a gap of open seats:

CREATE VIEW Firstseat (seat)
 AS SELECT (seat + 1)
 FROM Restaurant
 WHERE (seat + 1) NOT IN
 (SELECT seat FROM Restaurant)
 AND (seat + 1) < 1001;

Likewise, this VIEW finds the last seat in a gap of open seats:

CREATE VIEW Lastseat (seat)
 AS SELECT (seat - 1)
 FROM Restaurant
 WHERE (seat - 1) NOT IN
 (SELECT seat FROM Restaurant)
 AND (seat - 1) > 0;

Now, use these two VIEWs to show the blocks of empty seats:

SELECT F1.seat AS start, L1.seat AS finish.
 ((L1.seat - F1.seat) + 1) AS available
 FROM Firstseat AS F1, Lastseat AS L1
 WHERE L1.seat = (SELECT MIN(L2.seat)
 FROM Lastseat AS L2
 WHERE F1.seat <= L2.seat);

This query will also tell you how many available seats are in each
block, a fact that could be handy for a waiter to know when seating
groups. It is left as an exercise to the reader to write this as a single query
without VIEWs.

36 PUZZLE 9 AVAILABLE SEATS

Answer #4

Richard Romley combined the VIEWs into one query using the extended
table with the rows 0 and 1,001 included:

 SELECT (R1.seat + 1) AS start,
 (MIN(R2.seat) - 1) AS finish
 FROM Restaurant AS R1
 INNER JOIN
 Restaurant AS R2
 ON R2.seat > R1.seat
 GROUP BY R1.seat
HAVING (R1.seat + 1) < MIN(R2.seat);

Answer #5

For variety you can use the new SQL-99 OLAP functions and get a bit
more information:

SELECT X.seat_nbr, X.rn,
 (rn-seat_nbr) AS available_seat_cnt
 FROM (SELECT seat_nbr,
 ROW_NUMBER()
 OVER (ORDER BY seat_nbr)
 FROM Restaurant) AS X(seat_nbr, rn)
 WHERE rn <> seat_nbr;

The available_seat_cnt is the number of open seats less than the
seat_nbr. This could be useful if the restaurant is broken into sections
in some way.

PUZZLE 10 WAGES OF SIN 37

PUZZLE

10 WAGES OF SIN

Luke Tymowski, a Canadian programmer, posted an interesting problem
on the MS ACCESS Forum on CompuServe in November 1994. He was
working on a pension fund problem. In SQL-92, the table involved
would look like this:

CREATE TABLE Pensions
(sin CHAR(10) NOT NULL,
 pen_year INTEGER NOT NULL,
 month_cnt INTEGER DEFAULT 0 NOT NULL
 CHECK (month_cnt BETWEEN 0 AND 12),
 earnings DECIMAL (8,2) DEFAULT 0.00 NOT NULL);

The SIN column is the Social Insurance Number, which is something
like the Social Security Number (SSN) used in the United States to
identify taxpayers. The pen_year column is the calendar year of the
pension, the month_cnt column is the number of months in that year the
person worked, and earnings is the person’s total earnings for the year.

The problem is to find the total earnings of each employee for the
most recent 60 months of month_cnt in consecutive years. This number
is used to compute the employee’s pension. The shortest period going
back could be 5 years, with 12 months in each year applying to the total
month_cnt. The longest period could be 60 years, with 1 month in each
year. Some people might work four years and not the fifth, and thus not
qualify for a pension at all.

The reason this is a beast to solve is that “most recent” and
“consecutive” are hard to write in SQL.

HINT: For each employee in each year, insert a row even in the years in which
the employee did not work. It not only makes the query easier, but you also
have a record to update when you get in new information.

Answer #1

This query will get me the starting and ending years of consecutive
periods where (1) the employee worked (i.e., month_cnt greater than 0
months) and (2) the month_cnt totaled 60 or more.

38 PUZZLE 10 WAGES OF SIN

CREATE VIEW PenPeriods (sin, start_year, end_year,
earnings_tot)
AS SELECT P0.sin, P0.pen_year, P1.pen_year,
 (SELECT SUM (earnings) -- total earnings for period
 FROM Pensions AS P2
 WHERE P2.sin = P0.sin
 AND P2.pen_year BETWEEN P0.pen_year AND P1.pen_year)
 FROM Pensions AS P0, Pensions AS P1
 WHERE P1.sin = P0.sin -- self-join to make intervals
 AND P1.pen_year >= (P0.pen_year - 4) -- why sooner?
 AND 0 < ALL (SELECT month_cnt -- consecutive months
 FROM Pensions AS P3
 WHERE P3.sin = P0.sin
 AND P3.pen_year
 BETWEEN P0.pen_year AND P1.pen_year)
 AND 60 <= (SELECT SUM (month_cnt) -- total more than
60
 FROM Pensions AS P4
 WHERE P4.sin = P0.sin
 AND P4.pen_year
 BETWEEN P0.pen_year AND
P1.pen_year);

The subquery expression in the SELECT list is a SQL-92 trick, but a
number of products already have it.

The gimmick is that this will give you all the periods of 60 months or
more. What we really want is the most recent end_year. I would handle
this with the pension period view I just defined and a MAX(end_year)
predicate:

SELECT *
 FROM PenPeriods AS P0
 WHERE end_year = (SELECT MAX(end_year)
 FROM PenPeriods AS P1
 WHERE P1.sin = P0.sin);

I can handle that with some ugly HAVING clauses in SQL-92, I could
combine both those subquery predicates with an EXISTS clause, and so
on.

As an exercise, you can try to add another predicate to the final
subquery that says there does not exist a year between P0.pen_year and

PUZZLE 10 WAGES OF SIN 39

P1.pen_year that is greater than the P4.pen_year and still gives a total
of 60 or more consecutive months.

Answer #2

Most of the improved solutions I got via CompuServe were based on my
original answer. However, Richard Romley sent in the best one and used
a completely different approach. His answer used three copies of the
Pensions table, ordered in time as P0, P1, and P2.

SELECT P0.sin,
 P0.pen_year AS start_year,
 P2.pen_year AS end_year,
 SUM (P1.earnings)
 FROM Pensions AS P0, Pensions AS P1, Pensions AS P2
 WHERE P0.month_cnt > 0
 AND P1.month_cnt > 0
 AND P2.month_cnt > 0
 AND P0.sin = P1.sin
 AND P0.sin = P2.sin
 AND P0.pen_year BETWEEN P2.pen_year-59 AND (P2.pen_year -
4)
 AND P1.pen_year BETWEEN P0.pen_year AND P2.pen_year
 GROUP BY P0.sin, P0.pen_year, P2.pen_year
HAVING SUM (P1.month_cnt) >= 60
 AND (P2.pen_year - P0.pen_year) = (COUNT (*) - 1);

Mr. Romley wrote: “This problem would have been easier if there
were no rows allowed with (month_cnt = 0). I had to waste three WHERE
clauses just to filter them out!” Another example of how a better data
design would have made life easier!

The outstanding parts of this answer are the use of the BETWEEN
predicate to look at durations in the range of 5 to 60 years (the minimum
and maximum time needed to acquire 60 months of month_cnt) and the
use of grouping columns in the last expression in the HAVING clause to
guarantee consecutive years.

When I ran this query on WATCOM SQL 4.0, the query planner
estimate was four times greater for Mr. Romley’s solution than for my
original solution, but his actually ran faster. I would guess that the plan
estimation is being fooled by the three-way self-joins, which are usually
very expensive.

40 PUZZLE 10 WAGES OF SIN

Answer #3

In 1999, Dzavid Dautbegovic sent in the following response to the first
edition of this book:

“Both solutions are excellent in their own way (your SQL-92,
Richard’s SQL-89). I must confess that my solution is too complicated
and totally inelegant but much closer to Richard’s answer. For me the
biggest problem was to get sum of earnings in the first position. But I
think that you need to change your second select if you want most recent
end_year and only one solution per SIN. For this to work, we need to
make a VIEW from Richard’s solution.”

SELECT P0.sin, P0.end_year,
 MAX(P0.start_year) AS laststart_year,
 MIN(P0.sumofearnings) AS minearnings,
 MIN(P0.sumofmonth_cnt) AS minmonth_cnt,
 MIN(P0.start_year) AS firststart_year,
 MAX(P0.sumofearnings) AS maxearnings,
 MAX(P0.sumofmonth_cnt) AS maxmonth_cnt
 FROM PensionsView AS P0
 WHERE end_year = (SELECT MAX(end_year)
 FROM Pensions AS P1
 WHERE P1.sin = P0.sin)
 GROUP BY P0.sin, P0.end_year;

Answer #4

Phil Sherman in April 2006 pointed out that this is an interesting
problem because the answer should almost always be indeterminate.

How can you determine the most recent 60 months’ salary in the
following CASE? An employee works for 10 full years starting in January
of the first year and six months in the final, 11th year. The most recent
60 months start in the middle of a year, in July. There is no data available
in the database to show the salary earned during the first six months of
the 60-month period. An average monthly salary for that year could be
used, but that would not properly account for a pay raise that occurred
in July of the first year used for the calculation.

This issue will occur any time the number of months needed to make
60 is less than the number of months worked in the earliest year that is
used to build the 60-month period. The problem is worse for hourly
workers who work different numbers of hours in different months.

PUZZLE 10 WAGES OF SIN 41

Alan Samet sent in the following solution, under the assumption that
getting the 60 months in consecutive years was pretty straightforward.
However, he could not avoid using a subquery to find the most recent of
those 60-month blocks. The subquery itself includes the results you’re
looking for, only it does not reduce it to the most recent block of years.
He also added a column to the results to adjust the first year’s earnings
for the percentage that could apply to the pension (i.e., Person works 6
years, for a total of 71 months, subtract the first year’s earnings * (11 /
12) from the earnings_tot). Here is his solution, with a Common Table
Expression (CTE):

SELECT *,
 MOD(total_month_cnt,12) AS
nonutilized_first_year_month_cnt,
 (total_month_cnt % 12) / (first_year_month_cnt * 1.0)

 *first_year_earnings AS first_year_adjustment,
 earnings_tot - (MOD(total_month_cnt, 12))/
(first_year_month_cnt * 1.0)
 * first_year_earnings AS adjusted_earnings_tot
 FROM (SELECT P1.sin, P1.pen_year AS first_year
 P2.pen_year AS last_year,
 P1.month_cnt AS First_year_month_cnt,
 P1.earnings AS first_year_earnings,
 COUNT(P3.pen_year) AS year_cnt,
 SUM(P3.month_cnt) AS total_month_cnt,
 SUM(P3.earnings) AS earnings_tot,
 FROM Pensions AS P1
 INNER JOIN Pensions AS P2
 ON P1.sin = P2.sin
 INNER JOIN Pensions AS P3
 ON P1.sin = P3.sin
 WHERE P3.pen_year BETWEEN P1.pen_year
 AND P2.pen_year
 AND P3.month_cnt > 0
 GROUP BY P1.sin, P1.pen_year, P2.pen_year,
P1.month_cnt, P1.earnings
 HAVING COUNT(P3.pen_year) = P2.pen_year - P1.pen_year
+ 1
 AND SUM(P3.month_cnt) BETWEEN 60 AND 60 +
P1.month_cnt - 1
) AS A;
 WHERE A.last_year

42 PUZZLE 10 WAGES OF SIN

 = (SELECT MAX(last_year)
 FROM (SELECT P2.pen_year AS last_year
 FROM Pensions AS P1
 INNER JOIN Pensions AS P2
 ON P1.sin = P2.sin
 INNER JOIN Pensions AS P3
 ON P1.sin = P3.sin
 WHERE P3.pen_year BETWEEN P1.pen_year AND
P2.pen_year
 AND P3.month_cnt > 0
 AND P1.sin = A.sin
 GROUP BY P1.sin, P1.pen_year, P2.pen_year,
P1.month_cnt
 HAVING COUNT(P3.pen_year) = P2.pen_year -
P1.pen_year + 1
 AND SUM(P3.month_cnt) BETWEEN 60 AND 60 +
P1.month_cnt - 1
) AS B
);

WITH A(sin, first_year, last_year, first_year_month_cnt,
first_year_earnings, year_cnt, total_month_cnt,
earnings_tot)
AS (SELECT P1.sin, ROW_NUMBER() OVER (ORDER BY P1.sin),
 P2.pen_year, P1.pen_year, P2.pen_year,
 P1.month_cnt, P1.earnings,
 COUNT(P3.pen_year),
 SUM(P3.month_cnt), SUM(P3.earnings)
 FROM Pensions AS P1
 INNER JOIN Pensions AS P2
 ON P1.sin = P2.sin
 INNER JOIN Pensions ON P3
 ON P1.sin = P3.sin
 WHERE P3.pen_year BETWEEN P1.pen_year AND P2.pen_year
 AND P3.month_cnt > 0
 GROUP BY P1.sin, P1.pen_year, P2.pen_year,
P1.month_cnt, P1.earnings
 HAVING COUNT(P3.pen_year) = P2.pen_year - P1.pen_year + 1
 AND SUM(P3.month_cnt) BETWEEN 60 AND 60 +
P1.month_cnt - 1
)

SELECT sin, earnings_tot
 FROM A AS Parent

PUZZLE 10 WAGES OF SIN 43

 WHERE NOT EXISTS
 (SELECT *
 FROM A
 WHERE sin = Parent.sin
 AND row_number > parent.row_number);

Dave Hughes came to the same answer. However, trying to find a way
to limit the cumulative SUMs to range over consecutive runs of rows
with (month_cnt > 0) seems to be impossible (at least in DB2s
implementation). Assume one adds a “reset” column, which is 'Y' when
(month_cnt = 0) and 'N' otherwise:

WITH P
AS (SELECT sin, pen_year, month_cnt,
 CASE month_cnt WHEN 0
 THEN 'Y' ELSE 'N' END AS month_reset,
 earnings
 FROM Pensions)
...

Unfortunately, this does not help much: you can not partition on
(sin, month_reset) as you will wind up with nonconsecutive runs on
pen_year. The rows and range clauses of the OLAP functions would not
help either because we are not dealing with a fixed offset of pen_year.

If the aggregation-window could be limited by a search-condition
instead of fixed row or key offsets it would be easy, but it does not look
like that’s possible. Hence, I do not think OLAP functions are the
answer here.

Eventually I hit on the same idea that Paul used (joining the table to
itself a couple of times, one to form the start of the range, another to
form the end of the range, and a third to aggregate across the range).
Naturally I ran into the same problem as Paul mentions in his post: that
you wind up with several potential ranges of consecutive years that have
at least 60 months, and you only want the last one.

Instead of using the ROW_NUMBER() function, Dave just used a second
subquery with MAX() to fix this:

WITH Ranges (sin, first_year, last_year, earnings_tot)
AS (SELECT P1.sin, P1.pen_year, P2.pen_year,
 SUM(P3.earnigns) AS earnigns_tot
 FROM Pensions AS P1

44 PUZZLE 10 WAGES OF SIN

 INNER JOIN Pensions AS P2
 ON P1.sin = P2.sin
 INNER JOIN Pensions AS P3
 ON P1.sin = P3.sin
 WHERE P3.pen_year BETWEEN P1.pen_year AND P2.pen_year
 AND P3.month_cnt > 0
 GROUP BY P1.sin, P1.pen_year, P2.pen_year,
P1.month_cnt
 HAVING SUM(P3.month_cnt) BETWEEN 60 AND 60 +
P1.month_cnt - 1
 AND COUNT(P3.pen_year) = P2.pen_year - P1.pen_year + 1),

LastRange (sin, last_year)
AS (SELECT sin, MAX(last_year)
 FROM Ranges
 GROUP BY sin)

SELECT R.*
 FROM Ranges AS R
 INNER JOIN LastRange AS L
 ON R.sin = L.sin
 AND R.last_year = L.last_year

Self-joined solution is more complete given that it includes the
columns that would be required to normalize the result by excluding
excess months from the first year, which is missing in Dave’s answer.

Andrey Odegov pointed out that I had an answer in the January 1998
issue of DBMS magazine (http://www.dbmsmag.com/9801d06.html),
but it lacked the current features. His rewrite of that query is:

WITH P(sin, pen_year, earnings)
AS(SELECT P1.sin, P1.pen_year, P1.earnings
 FROM Pensions AS P1, Pensions AS P2
 WHERE P1.sin = P2.sin
 AND P1.pen_year <= P2.pen_year
 GROUP BY P1.sin, P1.pen_year, P1.month_cnt, P1.earnings
 HAVING SUM(P2.month_cnt) - P1.month_cnt < 60)

SELECT sin, MIN(pen_year) AS set_year,
 MAX(pen_year) AS end_year,
 SUM(earnings) AS earnings_tot
 FROM P
 GROUP BY sin;

PUZZLE 11 WORK ORDERS 45

PUZZLE

11 WORK ORDERS

Cenk Ersoy asked this question on the Gupta Forum on CompuServe. In
a factory, a project is described in a work order, which has a series of
steps that it must go through. A step_nbr on the work order is either
completed or awaiting the completion of one or more of the steps that
come before it. His table looks like this:

CREATE TABLE Projects
(workorder_id CHAR(5) NOT NULL,
 step_nbr INTEGER NOT NULL CHECK (step_nbr BETWEEN 0 AND
1000),
 step_status CHAR(1) NOT NULL
 CHECK (step_status IN ('C', 'W')), -- complete, waiting
 PRIMARY KEY (workorder_id, step_nbr));

With some sample data like this:

 Projects
 workorder_id step_nbr step_status
 =================================
 'AA100' 0 ‘C’
 'AA100' 1 ‘W’
 'AA100' 2 ‘W’
 'AA200' 0 ‘W’
 'AA200' 1 ‘W’
 'AA300' 0 ‘C’
 'AA300' 1 ‘C’

He would like to get the work orders where the step_nbr is zero and
the step_status is ‘C’, but all other legs for that work order have a
step_status of ‘W’. For example, the query should return only 'AA100'
in the sample data.

Answer #1

This is really fairly straightforward, but you have to reword the query
specification into the passive voice to see the answer. Instead of saying,
“all other legs for that work order have step_status of Waiting,”

46 PUZZLE 11 WORK ORDERS

instead say “Waiting is the step_status of all the nonzero legs,” and
the answer falls out immediately, thus:

 SELECT workorder_id
 FROM Projects AS P1
 WHERE step_nbr = 0
 AND step_status = ‘C’
 AND ‘W’ = ALL (SELECT step_status
 FROM Projects AS P2
 WHERE step_nbr <> 0
 AND P1.workorder_id = P2.workorder_id);

Answer #2

Another rewording would be to say that we are looking for a work order
group (i.e., a group of step_nbrs) that has certain properties in the
step_status column for certain step_nbrs. Using a characteristic
function in a SUM() will let us know if all the elements of the group meet
the criteria; if they all do, then the count of the characteristic function is
the size of the group.

SELECT workorder_id
 FROM Projects
 GROUP BY workorder_id
HAVING SUM(CASE
 WHEN step_nbr <> 0 AND step_status = ‘W’ THEN 1
 WHEN step_nbr = 0 AND step_status = ‘C’ THEN 1
 ELSE 0 END) = COUNT (step_nbr);

or if you do not have a CASE expression, you can use some algebra:

 SELECT workorder_id
 FROM Projects AS P1
 GROUP BY workorder_id
 HAVING SUM(
 ((1-ABS(SIGN(step_nbr)) * POSITION(‘W’ IN
step_status))
 + ((1-ABS(step_nbr)) * POSITION(‘C’ IN step_status))
) = COUNT(step_nbr);

Since this query involves only one copy of the table and makes a single
pass through it, it should be as fast as possible. There are also subtle

PUZZLE 11 WORK ORDERS 47

optimization tricks in the CASE expression. The CASE expression’s WHEN
clauses are tested in the order they appear, so you should arrange the
WHEN clauses in order from mostly likely to occur to least likely to occur.

While not required by the standard, the terms of an AND predicate
will also often execute in the order of their appearance when they are all
join predicates (i.e., involve columns from two tables) or are all search
arguments (i.e., a column from one table compared to a constant value—
also called SARGs in the literature). Therefore you can put the SARG with
the smallest datatype first to improve performance; integers compare
faster than long CHAR(n).

Answer #3

A version of the second answer that avoided the subquery was sent by
Mr. Francisco Moreno of Columbia, South America. The original version
used the Oracle DECODE() function, but his query would translate into
SQL-92 like this:

SELECT workorder_id
 FROM Projects
 GROUP BY workorder_id
HAVING COUNT(*) -- total rows in the workorder_id
 = COUNT(CASE WHEN leg || step_status = 'C'
 THEN 1
 ELSE NULL END) -- total 0 & ‘C’ rows
 + COUNT(CASE WHEN step_status = ‘W’
 THEN 1
 ELSE NULL END); -- total ‘W’ rows

This puts the COUNT(*) on one side of a comparison operator and not in an
expression. This can be a help for some optimizers.

One of my students (Stephan Gneist) found a nice, simple solution:

SELECT workorder_id
 FROM Projects
 WHERE step_status = ‘C’
 GROUP BY workorder_id
HAVING SUM(step_nbr) = 0;

This solution exploits the NOT NULL and CHECK() constraints of the
table definition and does not require any join. This illustrates the point
that SQL is a combination of both DDL and DML.

48 PUZZLE 12 CLAIMS STATUS

PUZZLE

12 CLAIMS STATUS

Leonard C. Medal posted this problem on CompuServe. Patients make
legal claims against a medical institution, and we record it in the Claims
table:

Claims
claim_id patient_name
=====================
 10 'Smith'
 20 'Jones'
 30 'Brown'

Each claim has one or more defendants, usually physicians, recorded
in the table 'Defendants':

Defendants
claim_id defendant_name
=======================
 10 'Johnson'
 10 'Meyer'
 10 'Dow'
 20 'Baker'
 20 'Meyer'
 30 'Johnson'

Each defendant associated with a claim has a history of legal events,
where changes in the claim status of the defendant on a given claim are
recorded:

LegalEvents
claim_id defendant_name claim_status change_date
==
 10 'Johnson' 'AP' '1994-01-01'
 10 'Johnson' 'OR' '1994-02-01'
 10 'Johnson' 'SF' '1994-03-01'
 10 'Johnson' 'CL' '1994-04-01'
 10 'Meyer' 'AP' '1994-01-01'
 10 'Meyer' 'OR' '1994-02-01'

PUZZLE 12 CLAIMS STATUS 49

 10 'Meyer' 'SF' '1994-03-01'
 10 'Dow' 'AP' '1994-01-01'
 10 'Dow' 'OR' '1994-02-01'
 20 'Meyer' 'AP' '1994-01-01'
 20 'Meyer' 'OR' '1994-02-01'
 20 'Baker' 'AP' '1994-01-01'
 30 'Johnson' 'AP' '1994-01-01'

Changes in claim status for each defendant occur in a known
sequence, determined by law, as shown in the Claims status table:

ClaimStatusCodes
claim_status claim_status_desc claim_seq
==
'AP' 'Awaiting review panel' 1
'OR' 'Panel opinion rendered' 2
'SF' 'Suit filed' 3
'CL' 'Closed' 4

The claim status of a defendant (with regard to a given claim) is his
or her latest claim status, which is the claim status with the highest
claim sequence number. For certain legal reasons, legal events ordered
by date do not always correspond to legal events ordered by claim
sequence number.

The claim status of a claim is the claim status of the defendant having
the lowest claim status of all the defendants involved in the claim. This
makes the claim status a minimum of the maximums. For this sample
data, the answer would be:

claim_id patient_name claim_status
==================================
 10 'Smith' 'OR'
 20 'Jones' 'AP'
 30 'Brown' 'AP'

The problem is to find the claim status of each claim and display it.

Answer #1

Mr. Medal’s answer was a single SQL query that directly translated the
description into code:

50 PUZZLE 12 CLAIMS STATUS

SELECT C1.claim_id, C1.patient, S1.claim_status
 FROM Claims AS C1, ClaimStatusCodes AS S1
 WHERE S1.claim_seq
 IN (SELECT MIN(S2.claim_seq)
 FROM ClaimStatusCodes AS S2
 WHERE S2.claim_seq
 IN (SELECT MAX(S3.claim_seq)
 FROM LegalEvents AS AS E1,
ClaimStatusCodes AS S3
 WHERE E1.claim_status =
S3.claim_status
 AND E1.claim_id = C1.claim_id
 GROUP BY E1.defendant));

Answer #2

But there is another solution. It is easier to get the set of all claim status
codes within a claim that all the defendants have obtained:

SELECT E1.claim_id, C1.patient, E1.claim_status
 FROM LegalEvents AS E1, Claims AS C1
 WHERE E1.claim_id = C1.claim_id
 GROUP BY E1.claim_id, C1.patient, E1.claim_status
HAVING COUNT(*) = (SELECT COUNT(DISTINCT defendant)
 FROM LegalEvents AS E2
 WHERE E1.claim_id = E2.claim_id)
 ORDER BY E1.claim_id;

But more to the point, look at the ClaimStatusCodes table and you
will see that claim status and claim sequence numbers are both keys that
point to the claim status description (actually, all three columns are
keys). This is a code translation table.

If we dropped the two-letter claim status code domain and replaced it
with the numeric claim sequence in all the places it occurs, we would get
a result from which we can easily pick the maximum value of the claim
sequence column in each claim. A quick way to do this translation is
with a scalar subquery in the SELECT clause:

SELECT E1.claim_id, C1.patient, (SELECT claim_seq
 FROM ClaimStatusCodes AS S1
 WHERE S1.claim_status =
E1.claim_status)

PUZZLE 12 CLAIMS STATUS 51

 FROM LegalEvents AS E1, Claims AS C1
 WHERE E1.claim_id = C1.claim_id
 GROUP BY E1.claim_id, C1.patient, E1.claim_status
HAVING COUNT(*) = (SELECT COUNT(DISTINCT defendant)
 FROM LegalEvents AS E2
 WHERE E1.claim_id = E2.claim_id)
 ORDER BY E1.claim_id;

Answer #3

Sorin Shtirbu submitted a third answer:

SELECT claim_id, MAX(patient), MAX(T1.claim_status)
 FROM ClaimStatusCodes AS T1, Claims AS C1
 WHERE T1.claim_seq =
 (SELECT MAX(T2.claim_seq)
 FROM ClaimStatusCodes AS T2, LegalEvents AS E1
 WHERE T2.claim_status = E1.claim_status
 AND E1.claim_id = C1.claim_id
 GROUP BY E1.claim_id, defendant)
 GROUP BY claim_id, T1.claim_seq
 HAVING T1.claim_seq = MIN(T1.claim_seq)

It is a good question if this is more efficient or not. It might depend
on the implementation: subquery versus a GROUP BY.

Answer #4

This answer came from Francisco Moreno, and it is designed to avoid
subqueries by using the JOIN syntax of SQL-92.

Step 1
Insert a dummy row in the claim_status table:

INSERT INTO Claim_status (claim_status, claim_status_desc,
claim_seq)
VALUES ('XX', 'Dummy', 5);

52 PUZZLE 12 CLAIMS STATUS

Step 2
The query:

SELECT C1.claim_id, C1.patient,
 CASE MIN(S1.claim_seq)
 WHEN 2 THEN 'AP'
 WHEN 3 THEN 'OR'
 WHEN 4 THEN 'SF'
 ELSE 'CL' END
 FROM
 ((Claims AS C1
 INNER JOIN
 Defendants s AS D1
 ON C1.claim_id = D1.claim_id)
 CROSS JOIN
 Claim_status AS S1)
 LEFT OUTER JOIN
 LegalEvents AS E1
 ON C1.claim_id = E1.claim_id
 AND D1.’[= E1.defendant
 AND S1.claim_status = E1.claim_status
 WHERE E1.claim_id IS NULL
 GROUP BY C1.claim_id, C1.patient;

PUZZLE 13 TEACHERS 53

PUZZLE

13 TEACHERS

Brendan Campbell posted an interesting problem on the Oracle User
Group Forum on CompuServe in May 1996. He gave me permission to
use it and to publish his alternative PL/SQL solution as a bad example,
thus submitting himself to public humiliation and disgrace for the good
of science. Donating your body is easy—you’re dead—but donating your
dignity is hard.

We want a query to pass to a report program that shows the names of
the teachers for each course and each student. Now here’s the catch: we
physically have room for only two teacher names on the printout.

If there is only one teacher, display that teacher’s name in the first
teacher_name column and set the second column to blanks or NULL. If
there are exactly two teachers, display both names in ascending order. If
there are more than two teachers, the report will display the name of the
first teacher in the first column and the string '--more--' in the second
teacher_name column.

Assume the necessary data is in a table like this:

CREATE TABLE Register
(course_nbr INTEGER NOT NULL,
 student_name CHAR(10) NOT NULL,
 teacher_name CHAR(10) NOT NULL,
 ..);

Brenden’s original solution was 70 lines long, while the pure SQL
answer is about 12 lines of code in a single statement.

Answer #1

One method is to use the extrema functions and UNIONs.

SELECT R1.course_nbr, R1.student_name,
MIN(R1.teacher_name), NULL
 FROM Register AS R1
 GROUP BY R1.course_nbr, R1.student_name
HAVING COUNT(*) = 1
UNION

54 PUZZLE 13 TEACHERS

SELECT R1.course_nbr, R1.student_name,
MIN(R1.teacher_name),
 MAX(R1.teacher_name)
 FROM Register AS R1
 GROUP BY R1.course_nbr, R1.student_name
HAVING COUNT(*) = 2
UNION
SELECT R1.course_nbr, R1.student_name,
MIN(R1.teacher_name), '--More--'
 FROM Register AS R1
 GROUP BY R1.course_nbr, R1.student_name
HAVING COUNT(*) > 2;

Now, to go into my usual painful details:

The first SELECT statement picks the course_nbr/student_name
combinations with one and only one teacher_name. See why the MIN()
works?

Without any competition, the only teacher_name will be the
minimum by default. I like to use NULLs for missing values, but you
could use a string constant instead.

The second SELECT statement picks the course_nbr/student_name
combinations with two and only two teachers. The MIN() and MAX()
functions work and order the names because there are only two teachers.

The third SELECT statement picks the course_nbr/student_name
combinations with more than two teachers. I use the MIN() to get the
first teacher_name, then a constant of 'more' as per the report
specification, in the second column.

The reason for this solution is that the original problem was given for
a situation in Oracle and Oracle lacks certain SQL-92 features.

Answer #2

Richard Romley once more cooked my published solution by collapsing
the two SELECT statements into a CASE expression with the extrema
functions in SQL-92 syntax, like this:

SELECT course_nbr, student_name, MIN(teacher_name),
 CASE COUNT(*) WHEN 1 THEN NULL
 WHEN 2 THEN MAX(teacher_name)
 ELSE '--More--' END
 FROM Register
 GROUP BY course_nbr, student_name;

PUZZLE 13 TEACHERS 55

This version of the CASE expression can also be replaced with syntax,
which is equivalent to:

 CASE WHEN COUNT(*) = 1 THEN NULL
 WHEN COUNT(*) = 2 THEN MAX(teacher_name)
 ELSE '--More--' END

You will find that a CASE expression in the SELECT list is very handy
for a display problem, as you will see in the next answer.

Answer #3

This is a bad way to lay out a report; what we really want is a list of all
teachers, but without the course_nbr and student_name information
repeated on each line. That is, those columns should be blank after the
first line. This is easy in COBOL or any report writer. In SQL-92, it looks
like this:

SELECT CASE WHEN teacher_name = (SELECT MIN(teacher_name)
FROM Register AS R1
 WHERE R1.course_nbr = R0.course_nbr
 AND R1.student_name = R0.student_name)
 THEN course_nbr
 ELSE ' ' END AS course_nbr_hdr,
 CASE WHEN teacher_name = (SELECT MIN(teacher_name)
 FROM Register AS R1
 WHERE R1.course_nbr = R0.course_nbr
 AND R1.student_name = R0.student_name)
 THEN student_name
 ELSE ' ' END AS student_name_hdr,
 teacher_name
 FROM Register
 ORDER BY teacher_name;

Having given this code, it is a bad idea. You are destroying First
Normal Form (1NF) and doing something that should be done in the
front end and not the database.

56 PUZZLE 14 TELEPHONE

PUZZLE

14 TELEPHONE

Suppose you are trying to set up an office telephone directory with your
new database publishing system, and you have the following tables:

CREATE TABLE Personnel
(emp_id INTEGER PRIMARY KEY,
 first_name CHAR(20) NOT NULL,
 last_name CHAR(20) NOT NULL);

CREATE TABLE Phones
(emp_id INTEGER NOT NULL,
 phone_type CHAR(3) NOT NULL
 CHECK (phone_type IN ('hom', 'fax')),
 phone_nbr CHAR(12) NOT NULL,
 PRIMARY KEY (emp_id, phone_type),
 FOREIGN KEY emp_id REFERENCES Personnel(emp_id));

The codes 'hom' and 'fax' indicate whether the number is the
employee’s home phone number or a fax number. You want to print out
a report with one line per employee that gives both numbers, and shows
a NULL if either or both numbers are missing.

I should note here that the FOREIGN KEY constraint on the Phones
table means that you cannot list a telephone number for someone who is
not an employee. The PRIMARY KEY looks a bit large until you stop and
think about all the cases. Married personnel could share the same fax or
home telephones, and a single line could be both voice and fax services.

Answer #1

You can do a lot of things wrong with this query. The first thought is to
construct the home telephone information as a query in its own right.
Because you want to see all the personnel, you need an OUTER JOIN:

CREATE VIEW Home_phones (last_name, first_name, emp_id,
home_phone)
AS SELECT E1.last_name, E1.first_name, E1.emp_id,
H1.phone_nbr
 FROM (Personnel AS E1
 LEFT OUTER JOIN

PUZZLE 14 TELEPHONE 57

 Phones AS H1
 ON E1.emp_id = H1.emp_id
 AND H1.phone_type = 'hom');

Likewise, you could construct the fax information as a query, using
the same approach:

CREATE VIEW Fax_phones (last_name, first_name, emp_id,
fax_phone)
AS SELECT E1.last_name, E1.emp_id, F1.phone_nbr
 FROM (Personnel AS E1
 LEFT OUTER JOIN
 Phones AS F1
 ON E1.emp_id = F1.emp_id
 AND F1.phone_type = 'fax');

It would seem reasonable to combine these two VIEWs to get:

SELECT H1.last_name, H1.first_name, home_phone, fax_phone
 FROM HomePhones AS H1, FaxPhones AS F1
 WHERE H1.emp_id = F1.emp_id;

But this does not work because it leaves out the “fax only” people. If
you want to preserve both phone tables, you need a FULL OUTER JOIN,
which might look like this:

SELECT H1.last_name, H1.first_name, home_phone, fax_phone
 FROM HomePhones AS H1
 FULL OUTER JOIN
 FaxPhones AS F1
 ON H1.emp_id = F1.emp_id;

But this still does not print the names of the “fax only” people who
show up as NULLs because you are only printing the Home_phones
people’s names. The COALESCE() function will take care of that problem
for you. It will take a list of expressions and return the first non-NULL
value that it finds, reading from left to right:

SELECT COALESCE (H1.last_name, F1.last_name),
 COALESCE (H1.first_name, F1.first_name),
 home_phone, fax_phone

58 PUZZLE 14 TELEPHONE

 FROM HomePhones AS H1
 FULL OUTER JOIN
 FaxPhones AS F1
 ON H1.emp_id = F1.emp_id;

Answer #2

The bad news with the previous solution is that this will work, but it will
run like glue because it will probably materialize the VIEWs before using
them. The real trick is to go back and see that the FaxPhones and
HomePhones VIEWs are outer-joined to the Personnel table. You can
factor out the Personnel table and combine the two FROM clauses to give:

SELECT E1.last_name, E1.first_name,
 H1.phone_nbr AS Home,
 F1.phone_nbr AS FAX
 FROM (Personnel AS E1
 LEFT OUTER JOIN
 Phones AS H1
 ON E1.emp_id = H1.emp_id
 AND H1.phone_type = 'hom)
 LEFT OUTER JOIN
 Phones AS F1
 ON E1.emp_id = F1.emp_id
 AND F1.phone_type = 'fax';

Because this gets all the tables at once, it should run a good bit faster
than the false start. This is also a query that you cannot write easily using
Sybase-, Oracle-, or Gupta-style extended equality OUTER JOIN syntax
because that syntax cannot handle nesting of OUTER JOINs.

Answer #3

Kishore Ganji, a database analyst at Liz Claiborne Cosmetics, proposed a
solution that avoids the two views altogether. He originally gave his
answer in Oracle, but it can be translated into SQL-92:

 SELECT E1.emp_id, E1.first_name, E1.last_name,
 MAX (CASE WHEN P1.phone_type = 'hom'
 THEN P1.phone_nbr
 ELSE NULL) AS home_phone,

PUZZLE 14 TELEPHONE 59

 MAX (CASE WHEN P1.phone_type = 'fax'
 THEN P1.phone_nbr
 ELSE NULL) AS fax_phone
 FROM Personnel AS E1
 LEFT OUTER JOIN
 Phones AS P1
 ON P1.emp_id = E1.emp_id
 GROUP BY E1.emp_id, E1.first_name, E1.last_name;

The CASE expression positions the telephone number in its proper
column, then the MAX() and GROUP BY, consolidating them into one row
in the result table.

Answer #4

This answer came from Francisco Moreno of Columbia:

SELECT P1.last_name, P1.first_name,
 (SELECT T1.phone_nbr
 FROM Phones AS T1
 WHERE T1.emp_id = P1.emp_id
 AND T1.phone_type = 'hom') AS home_phone,
 (SELECT T2.phone_nbr
 FROM Phones AS T2
 WHERE T2.emp_id = P1.emp_id
 AND T2.phone_type = 'fax') AS fax_phone
 FROM Personnel AS P1;

However, the scalar subqueries will not perform very well.

60 PUZZLE 15 FIND THE LAST TWO SALARIES

PUZZLE

15 FIND THE LAST TWO SALARIES

Jack Wells sent this perplexing SQL problem in June 1996 over
CompuServe. His situation is pretty typical for SQL programmers who
have to work with 3GL people. The programmers are writing a report on
the employees, and they want to get information about each employee’s
current and previous salary status so that they can produce a report.
The report needs to show the date of each person’s promotion and the
salary amount.

This is pretty easy if you can put each salary in one row in the result
set and let the host program format it. That is the first programming
problem for the reader, in fact.

Oh, I forgot to mention that the application programmers are a
bunch of lazy bums who want to have both the current and previous
salary information on one row for each employee. This will let them write
a very simple cursor statement and print out the report without any real
work on their part.

Jack spoke with Fabian Pascal, who runs the www.dbdebunk.com
Web site, the week he was working on this problem, and Mr. Pascal
replied that this query could not be done. He said “in a truly relational
language it could be done, but since SQL is not relational it isn’t
possible, not even with SQL-92.” Sounds like a challenge to me!

Oh, I forgot to mention an additional constraint on the query; Jack is
working in Oracle. This product was not up to SQL-92 standards at the
time (i.e., no proper OUTER JOINs, no general scalar subexpressions, and
so on), so his query has to run under the old SQL-89 rules.

Assume that we have this test data:

CREATE TABLE Salaries
(emp_name CHAR(10) NOT NULL,
 sal_date DATE NOT NULL,
 sal_amt DECIMAL (8,2) NOT NULL,
 PRIMARY KEY (emp_name, sal_date));

INSERT INTO Salaries
VALUES ('Tom', '1996-06-20', 500.00),
 ('Tom', '1996-08-20', 700.00),
 ('Tom', '1996-10-20', 800.00),
 ('Tom', '1996-12-20', 900.00),
 ('Dick', '1996-06-20', 500.00),

PUZZLE 15 FIND THE LAST TWO SALARIES 61

 ('Harry', '1996-07-20', 500.00),
 ('Harry', '1996-09-20', 700.00);

Tom has had two promotions, Dick is a new hire, and Harry has had
one promotion.

Answer #1

First, let’s do the easy problem. The answer is use the query I call a
generalized extrema or “top (n)” function and put it in a VIEW, like this:

CREATE VIEW Salaries1 (emp_name, curr_sal_date,
curr_sal_amt)
AS SELECT S0.emp_name, S0.sal_date, MAX(S0.sal_amt)
 FROM Salaries AS S0, Salaries AS S1
 WHERE S0.sal_date >= S1.sal_date
 GROUP BY S0.emp_name, S0.sal_date
 HAVING COUNT(*) <= 2;

CREATE VIEW Salaries2 (emp_name, sal_date, sal_amt)
AS SELECT S0.emp_name, S0.sal_date, MAX(S0.sal_amt)
 FROM Salaries AS S0, Salaries AS S1
 WHERE S0.sal_date <= S1.sal_date
 AND S0.emp_name = S1.emp_name
 GROUP BY S0.emp_name, S0.sal_date
 HAVING COUNT(*) <= 2;

Results
emp_name sal_date sal_amt
===================================
'Dick' '1996-06-20' 500.00
'Harry' '1996-07-20' 500.00
'Harry' '1996-09-20' 700.00
'Tom' '1996-10-20' 800.00
'Tom' '1996-12-20' 900.00

The S1 copy of the Salaries table determines the boundary of the
subset of two or fewer salary changes for each employee. The MAX()
function is a trick to get the salary amount column in the results. This
gives you one row for each of the first two salary changes for each

62 PUZZLE 15 FIND THE LAST TWO SALARIES

employee. If the programmers were not so lazy, you could pass this table
to them and let them format it for the report.

Answer #2

The real problem is harder. One way to do this within the limits of SQL-
89 is to break the problem into two cases:

1. Employees with only one salary action

2. Employees with two or more salary actions

We know that every employee has to fall into one and only one of
those cases. One solution is to UNION both of the sets together:

SELECT S0.emp_name, S0.sal_date, S0.sal_amt, S1.sal_date,
S1.sal_amt
 FROM Salaries AS S0, Salaries AS S1
 WHERE S0.emp_name = S1.emp_name
 AND S0.sal_date =
 (SELECT MAX(S2.sal_date)
 FROM Salaries AS S2
 WHERE S0.emp_name = S2.emp_name)
 AND S1.sal_date =
 (SELECT MAX(S3.sal_date)
 FROM Salaries AS S3
 WHERE S0.emp_name = S3.emp_name
 AND S3.sal_date < S0.sal_date)
UNION ALL
SELECT S4.emp_name, MAX(S4.sal_date), MAX(S4.sal_amt),
NULL, NULL
 FROM Salaries AS S4
 GROUP BY S4.emp_name
HAVING COUNT(*) = 1;

emp_name sal_date sal_amt sal_date sal_amt
==
'Tom' '1996-12-20' 900.00 '1996-10-20' 800.00
'Harry' '1996-09-20' 700.00 '1996-07-20' 500.00
'Dick' '1996-06-20' 500.00 NULL NULL

PUZZLE 15 FIND THE LAST TWO SALARIES 63

DB2 programmers will recognize this as a version of the OUTER JOIN
done without an SQL-92 standard OUTER JOIN operator. The first
SELECT statement is the hardest. It is a self-join on the Salaries table,
with copy S0 being the source for the most recent salary information and
copy S1 the source for the next most recent information. The second
SELECT statement is simply a grouped query that locates the employees
with one row. Since the two result sets are disjoint, we can use the UNION
ALL instead of a UNION operator to save an extra sorting operation.

Answer #3

I got several answers in response to my challenge for a better solution
to this puzzle. Richard Romley of Smith Barney sent in the following
SQL-92 solution. It takes advantage of the subquery table expression
to avoid VIEWs:

SELECT B.emp_name, B.maxdate, Y.sal_amt, B.maxdate2,
Z.sal_amt
FROM (SELECT A.emp_name, A.maxdate, MAX(X.sal_date) AS
maxdate2
 FROM (SELECT W.emp_name, MAX(W.sal_date) AS
maxdate
 FROM Salaries AS W
 GROUP BY W.emp_name) AS A
 LEFT OUTER JOIN Salaries AS X
 ON A.emp_name = X.emp_name
 AND A.maxdate > X.sal_date
 GROUP BY A.emp_name, A.maxdate) AS B
 LEFT OUTER JOIN Salaries AS Y
 ON B.emp_name = Y.emp_name
 AND B.maxdate = Y.sal_date
 LEFT OUTER JOIN Salaries AS Z
 ON B.emp_name = Z.emp_name
 AND B.maxdate2 = Z.sal_date;

If your SQL product supports common table expressions (CTEs), you
can convert some of the subqueries into VIEWs for the table subqueries
named A and B.

64 PUZZLE 15 FIND THE LAST TWO SALARIES

Answer #4

Mike Conway came up with an answer in Oracle, which I tried to
translate into SQL-92 with mixed results. The problem with the
translation was that the Oracle version of SQL did not support the SQL-
92 standard OUTER JOIN syntax, and you have to watch the order of
execution to get the right results. Syed Kadir, an associate application
engineer at Oracle, sent in an improvement on my answer using the
VIEW that was created in the first solution:

SELECT S1.emp_name, S1.sal_date, S1.sal_amt, S2.sal_date,
S2.sal_amt
 FROM Salaries1 AS S1, Salaries2 AS S2 -- use the view
 WHERE S1.emp_name = S2.emp_name
 AND S1.sal_date > S2.sal_date
UNION ALL
SELECT emp_name, MAX(sal_date), MAX(sal_amt), NULL, NULL
 FROM Salaries1
 GROUP BY emp_name
HAVING COUNT(*) = 1;

You might have to replace the last two columns with the expressions
CAST (NULL AS DATE) and CAST(NULL AS DECIMAL(8,2)) to assure
that they are of the right datatypes for a UNION.

Answer #5

Jack came up with a solution using the relational algebra operators as
defined in one of Chris Date’s books on the www.dbdebunk.com Web
site, which I am not going to post, since (1) the original problem was to
be done in Oracle, and (2) nobody has implemented Relational Algebra.
There is an experimental language called Tutorial D based on Relational
Algebra, but it is not widely available.

The problem with the solution was that it created false data. All
employees without previous salary records were assigned a previous
salary of 0.00 and a previous salary date of '1900-01-01', even
though zero and no value are logically different and the universe did
not start in 1900.

Fabian Pascal commented that “This was a very long time ago and I
do not recall the exact circumstances, and whether my reply was
properly represented or understood (particularly coming from Celko).

PUZZLE 15 FIND THE LAST TWO SALARIES 65

My guess is that it had something to do with inability to resolve such
problems without a precise definition of the tables to which the query is
to be applied, the business rules in effect for the tables, and the query at
issue. I will let Chris Date to respond to PV’s solution.”

Chris Date posted a solution in his private language that was more
compact than Jack’s solution, and that he evaluated was “Tedious, but
essentially straightforward,” along with the remark “Regarding whether
Celko’s solution is correct or not, I neither know, nor care.”

A version that replaces the outer join with a COALESCE() by Andrey
Odegov:

SELECT S1.emp_name_id, S1.sal_date AS curr_date, S1.sal_amt
AS
curr_amt,
 CASE WHEN S2.sal_date <> S1.sal_date THEN S2.sal_date
END AS
prev_date,
 CASE WHEN S2.sal_date <> S1.sal_date THEN S2.sal_amt
END AS
prev_amt
 FROM Salaries AS S1
 INNER JOIN Salaries AS S2
 ON S2.emp_name_id = S1.emp_name_id
 AND S2.sal_date = COALESCE((SELECT MAX(S4.sal_date)
 FROM Salaries AS S4
 WHERE S4.emp_name_id =
S1.emp_name_id
 AND S4.sal_date <
S1.sal_date),
S2.sal_date)
 WHERE NOT EXISTS(SELECT *
 FROM Salaries AS S3
 WHERE S3.emp_name_id = S1.emp_name_id
 AND S3.sal_date > S1.sal_date);

Answer #6

One approach is to build a VIEW or CTE that gives all possible pairs of
salary dates, and then filter them:

CREATE VIEW SalaryHistory (curr_date, curr_amt, prev_date,
prev_amt)

66 PUZZLE 15 FIND THE LAST TWO SALARIES

AS
SELECT S0.emp_name_id, S0.sal_date AS curr_date,
 S0.sal_amt AS curr_amt,
 S1.sal_date AS prev_date,
 S1.sal_amt AS prev_amt
 FROM Salaries AS S0
 LEFT OUTER JOIN
 Salaries AS S1
 ON S0.emp_name_id = S1.emp_name_id
 AND S0.sal_date > S1.sal_date;

then use it in a self-join query:

SELECT S0.emp_name_id, S0.curr_date, S0.curr_amt,
S0.prev_date, S0.prev_amt
 FROM SalaryHistory AS S0
 WHERE S0.curr_date
 = (SELECT MAX(curr_date)
 FROM SalaryHistory AS S1
 WHERE S0.emp_name_id = S1.emp_name_id)
 AND (S0.prev_date
 = (SELECT MAX(prev_date)
 FROM SalaryHistory AS S2
 WHERE S0.emp_name_id = S2.emp_name_id)
 OR S0.prev_date IS NULL)

This is still complex, but that view might be useful for computing
other statistics.

Answer #7

Here is another version of the VIEW approach from MarkC600 on the
SQL Server Newsgroup. The OUTER JOIN has been replaced with a
RANK() function from SQL:2003. Study this and see how the thought
pattern is changing:

WITH SalaryRanks(emp_name, sal_date, sal_amt, pos)
AS
(SELECT emp_name, sal_date, sal_amt,
 RANK() OVER(PARTITION BY emp_name ORDER BY sal_date
DESC)

PUZZLE 15 FIND THE LAST TWO SALARIES 67

 FROM Salaries)
SELECT C.emp_name,
 C.sal_date AS curr_date, C.sal_amt AS curr_amt,
 P.sal_date AS prev_date, P.sal_amt AS prev_amt
 FROM SalaryRanks AS C
 LEFT OUTER JOIN
 SalaryRanks AS P
 ON P.emp_name = C.emp_name
 AND P.pos = 2
WHERE C.pos = 1;

Answer #8

Here is an SQL:2003 version, with OLAP functions and SQL-92 CASE
expressions from Dieter Noeth:

SELECT S1.emp_name,
 MAX (CASE WHEN rn = 1 THEN sal_date ELSE NULL END) AS
curr_date,
 MAX (CASE WHEN rn = 1 THEN sal_amt ELSE NULL END) AS
curr_amt,
 MAX (CASE WHEN rn = 2 THEN sal_date ELSE NULL END) AS
prev_date,
 MAX (CASE WHEN rn = 2 THEN sal_amt ELSE NULL END) AS
prev_amt,
 FROM (SELECT emp_name, sal_date, sal_amt,
 RANK()OVER (PARTITION BY S1.emp_name ORDER BY
sal_date DESC)
 FROM Salaries) AS S1 (emp_name, sal_date, sal_amt,
rn)
WHERE rn < 3
GROUP BY S1.emp_name;

The idea is to number the rows within each employee and then to
pull out the two most current values for the employment date. The other
approaches build all the target output rows first and then find the ones
we want. This query finds the raw rows first and puts them together last.

The table is used only once, no self-joins, but a hidden sort will be
required for the RANK() function. This is probably not a problem in SQL
engines that use contiguous storage or have indexing that will group the
employee names together.

68 PUZZLE 15 FIND THE LAST TWO SALARIES

Answer #9

Here is another answer from Dieter Noeth using OLAP/CTE (tested on
Teradata, but runs on MS-SQL 2005, too):

WITH CTE (emp_name, sal_date, sal_amt, rn)
AS
(SELECT emp_name, sal_date, sal_amt ,
ROW_NUMBER() OVER (PARTITION BY emp_name
ORDER BY sal_date DESC) AS rn – row numbering
FROM Salaries)
SELECT O.emp_name,
O.sal_date AS curr_date, O.sal_amt AS curr_amt,
I.sal_date AS prev_date, I.sal_amt AS prev_amt
FROM CTE AS O
 LEFT OUTER JOIN
 CTE AS I
 ON O.emp_name = I.emp_name AND I.rn = 2
WHERE O.rn = 1;

Again, SQL:2003 using OLAP functions in Teradata:

SELECT emp_name, curr_date, curr_amt,
 prev_date, prev_amt
 FROM (SELECT emp_name,
 sal_date AS curr_date, sal_amt AS curr_amt,
 MIN(sal_date)
 OVER (PARTITION BY emp_name
 ORDER BY sal_date DESC
 ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING)
 AS prev_date,
 MIN(sal_amt)
 OVER (PARTITION BY emp_name
 ORDER BY sal_date DESC
 ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING)
 AS prev_amt,
 ROW_NUMBER() OVER (PARTITION BY emp_name ORDER BY
sal_date DESC) AS rn
FROM Salaries) AS DT
WHERE rn = 1;

This query would be easier if Teradata supported the WINDOW clause.

PUZZLE 16 MECHANICS 69

PUZZLE

16 MECHANICS

Gerard Manko at ARI posted this problem on CompuServe in April
1994. ARI had just switched over from Paradox to Watcom SQL (now
part of Sybase). The conversion of the legacy database was done by
making each Paradox table into a Watcom SQL table, without any
thought of normalization or integrity rules—just copy the column
names and data types. Yes, I know that as the SQL guru, I should have
sent him to that ring of hell reserved for people who do not normalize,
but that does not get the job done, and ARI’s approach is something I
find in the real world all the time.

The system tracks teams of personnel to work on jobs. Each job has a
slot for a single primary mechanic and a slot for a single optional
assistant mechanic. The tables involved look like this:

CREATE TABLE Jobs
(job_id INTEGER NOT NULL PRIMARY KEY,
 start_date DATE NOT NULL,
 ...);

CREATE TABLE Personnel
(emp_id INTEGER NOT NULL PRIMARY KEY,
 emp_name CHAR(20) NOT NULL,
 ...);

CREATE TABLE Teams
(job_id INTEGER NOT NULL,
 mech_type INTEGER NOT NULL,
 emp_id INTEGER NOT NULL,
 ...);

Your first task is to add some integrity checking into the Teams table.
Do not worry about normalization or the other tables for this problem.

What you want to do is build a query for a report that lists all the jobs
by job_id, the primary mechanic (if any), and the assistant mechanic (if
any). Here are some hints: You can get the job_ids from Jobs because
that table has all of the current jobs, while the Teams table lists only
those jobs for which a team has been assigned. The same person can be
assigned as both a primary and assistant mechanic on the same job.

70 PUZZLE 16 MECHANICS

Answer #1

The first problem is to add referential integrity. The Teams table should
probably be tied to the others with FOREIGN KEY references, and it is
always a good idea to check the codes in the database schema, as
follows:

CREATE TABLE Teams
(job_id INTEGER NOT NULL REFERENCES Jobs(job_id),
 mech_type CHAR(10) NOT NULL
 CHECK (mech_type IN ('Primary', 'Assistant')),
 emp_id INTEGER NOT NULL REFERENCES Personnel(emp_id),
 ...);

Experienced SQL people will immediately think of using a LEFT
OUTER JOIN, because to get the primary mechanics only, you could
write:

SELECT Jobs.job_id, Teams.emp_id AS “primary”
 FROM Jobs LEFT OUTER JOIN Teams
 ON Jobs.job_id = Teams.job_id
 WHERE Teams.mech_type = 'Primary';

You can do a similar OUTER JOIN to the Personnel table to tie it to
Teams, but the problem here is that you want to do two independent
outer joins for each mechanic’s slot on a team, and put the results in one
table. It is probably possible to build a horrible, deeply nested self OUTER
JOIN all in one SELECT statement, but you would not be able to read or
understand it.

You could do the report with views for primary and assistant
mechanics, and then put them together, but you can avoid all of this
mess with the following query:

SELECT Jobs.job_id,
 (SELECT emp_id
 FROM Teams
 WHERE Jobs.job_id = Teams.job_id
 AND Teams.mech_type = 'Primary') AS "primary",
 (SELECT emp_id
 FROM Teams
 WHERE Jobs.job_id = Teams.job_id

PUZZLE 16 MECHANICS 71

 AND Teams.mech_type = 'Assistant') AS assistant
 FROM Jobs;

The reason that “primary” is in double quotation marks is that it is a
reserved word in SQL-92, as in PRIMARY KEY. The double quotation
marks make the word into an identifier. When the same word is in single
quotation marks, it is treated as a character string.

One trick is the ability to use two independent scalar SELECT
statements in the outermost SELECT. To add the employee’s name,
simply change the innermost SELECT statements.

SELECT Jobs.job_id,
 (SELECT name
 FROM Teams, Personnel
 WHERE Jobs.job_id = Teams.job_id
 AND Personnel.emp_id = Teams.emp_id
 AND Teams.mech_type = 'Primary') AS “primary",
 (SELECT name
 FROM Teams, Personnel
 WHERE Jobs,job_id = Teams,job_id
 AND Personnel.emp_id = Teams.emp_id
 AND Teams.mech_type = 'Assistant') AS Assistant
 FROM Jobs:

If you have an employee acting as both primary and assistant
mechanic on a single job, then you will get that employee in both slots. If
you have two or more primary mechanics or two or more assistant
mechanics on a job, then you will get an error, as you should. If you have
no primary or assistant mechanic, then you will get an empty SELECT
result, which becomes a NULL. That gives you the outer joins you wanted.

Answer #2

Skip Lees of Chico, California, wanted to make the Teams table enforce
the rules that:

1. A job_id has zero or one primary mechanics.

2. A job_id has zero or one assistant mechanics.

3. A job_id always has at least one mechanic of some kind.

72 PUZZLE 16 MECHANICS

Based on rule 3, there should be no time at which a job has no team
members. On the face of it, this makes sense.

Therefore, team information will have to be entered before job
records. Using a referential integrity constraint will enforce this
constraint. Restrictions 1 and 2 can be enforced by making “job_id” and
“mech_type” into a two-column PRIMARY KEY, so that a job_id could
never be entered more than once with a given mech_type.

CREATE TABLE Jobs
(job_id INTEGER NOT NULL PRIMARY KEY REFERENCES Teams
(job_id),
 start_date DATE NOT NULL,
 ...);

 CREATE TABLE Teams
 (job_id INTEGER NOT NULL,
 mech_type CHAR(10) NOT NULL
 CHECK (mech_type IN ('Primary', 'Assistant')),
 emp_id INTEGER NOT NULL REFERENCES Personnel(emp_id),
 ...
 PRIMARY KEY (job_id, mech_type));

There is a subtle “gotcha” in this problem. SQL-92 says that a
REFERENCES clause in the referencing table has to reference a UNIQUE or
PRIMARY KEY column set in the referenced table. That is, the reference is
to be to the same number of columns of the same datatypes in the same
order. Since we have a PRIMARY KEY, (job_id, mech_type) is available
in the Teams table in your answer.

Therefore, the job_id column in the Jobs table by itself cannot
reference just the job_id column in the Teams table. You could get
around this with a UNIQUE constraint:

CREATE TABLE Teams
(job_id INTEGER NOT NULL UNIQUE,
 mech_type CHAR(10) NOT NULL
 CHECK (mech_type IN ('Primary', 'Assistant')),
 PRIMARY KEY (job_id, mech_type));

but it might be more natural to say:

PUZZLE 16 MECHANICS 73

CREATE TABLE Teams
(job_id INTEGER NOT NULL PRIMARY KEY,
 mech_type CHAR(10) NOT NULL
 CHECK (mech_type IN ('primary', 'assistant')),
 UNIQUE (job_id, mech_type));

because job_id is what identifies the entity that is represented by the
table. In actual SQL implementations, the PRIMARY KEY declaration can
affect data storage and access methods, so the choice could make a
practical difference in performance.

But look at what we have done! I cannot have both “primary” and
“assistant” mechanics on one job because this design would require
job_id to be unique.

Answer #3

Having primary and assistant mechanics is a property of a team on a job,
so let’s fix the schema:

CREATE TABLE Teams
(job_id INTEGER NOT NULL REFERENCES Jobs(job_id),
 primary_mech INTEGER NOT NULL
 REFERENCES Personnel(emp_id),
 assist_mech INTEGER NOT NULL
 REFERENCES Personnel(emp_id),
 CONSTRAINT at_least_one_mechanic
 CHECK(COALESCE (primary_mech, assist_mech) IS NOT NULL),
 ...);

But this is not enough; we want to be sure that only qualified
mechanics hold those positions:

CREATE TABLE Personnel
(emp_id INTEGER NOT NULL PRIMARY KEY,
 mech_type CHAR(10) NOT NULL
 CHECK (mech_type IN ('Primary', 'Assistant')),
UNIQUE (emp_id, mech_type),
 ..);

So change the Teams again:

74 PUZZLE 16 MECHANICS

CREATE TABLE Teams
(job_id INTEGER NOT NULL REFERENCES Jobs(job_id),
 primary_mech INTEGER NOT NULL,
 primary_type CHAR(10) DEFAULT ‘Primary’ NOT NULL
 CHECK (primary_type = ‘Primary’)
 REFERENCES Personnel(emp_id, mech_type),
 assist_mech INTEGER NOT NULL
 assist_type CHAR(10) DEFAULT ‘Assistant’ NOT NULL
 CHECK (assist_type = ‘Assistant’)
 REFERENCES Personnel(emp_id, mech_type),
 CONSTRAINT at_least_one_mechanic
 CHECK(COALESCE (primary_mech, assist_mech) IS NOT NULL),
 ...);

Now it should work.

PUZZLE 17 EMPLOYMENT AGENCY 75

PUZZLE

17 EMPLOYMENT AGENCY

Larry Wade posted a version of this problem on the Microsoft ACCESS
forum at the end of February 1996. He is running an employment
service that has a database with tables for job orders, candidates, and
their job skills. He is trying to do queries to match candidates to job
orders based on their skill. The job orders take the form of a Boolean
expression connecting skills. For example, find all candidates with
manufacturing and inventory or accounting skills.

First, let’s construct a table of the candidate’s skills. You can assume
that personal information about the candidate is in another table, but we
will not bother with it for this problem.

CREATE TABLE CandidateSkills
(candidate_id INTEGER NOT NULL,
 skill_code CHAR(15) NOT NULL,
 PRIMARY KEY (candidate_id, skill_code));

INSERT INTO CandidateSkills
VALUES ((100, 'accounting'),
 (100, 'inventory'),
 (100, 'manufacturing'),
 (200, 'accounting'),
 (200, 'inventory'),
 (300, 'manufacturing'),
 (400, 'inventory'),
 (400, 'manufacturing'),
 (500, 'accounting'),
 (500, 'manufacturing'));

The obvious solution would be to create dynamic SQL queries in a
front-end product for each job order, such as:

SELECT candidate_id, 'job_id #212' -- constant job id code
 FROM CandidateSkills AS C1, -- one correlation per skill
 CandidateSkills AS C2,
 CandidateSkills AS C3
 WHERE C1.candidate_id = C2.candidate_id
 AND C1.candidate_id = C3.candidate_id
 AND -- job order expression created here

76 PUZZLE 17 EMPLOYMENT AGENCY

 (C1.skill_code = 'manufacturing'
 AND C2.skill_code = 'inventory'
 OR C3.skill_code = 'accounting')

A good programmer can come up with a screen form to do this in less
than a week. You then save the query as a VIEW with the same name as
the job_id code. Neat and quick! The trouble is that this solution will
give you a huge collection of very slow queries.

Got a better idea? Oh, I forgot to mention that the number of job
titles you have to handle is over 250,000. The agency is using the DOT
(Dictionary of Occupational Titles), an encoding scheme used by the
U.S. government for statistical purposes.

Answer #1

If we were not worrying about so many titles, the problem would be
much easier. You could use an integer as a bit string and set the positions
in the string to 1 or 0 for each occupation. For example:

 'accounting' = 1
 'inventory'= 2
 'manufacturing'= 4
 etc.

Thus ('inventory' AND 'manufacturing') can be represented by
(2+ 4) = 6. Unfortunately, with a quarter of a million titles, this approach
will not work.

The first problem is that you have to worry about parsing the search
criteria. Does “manufacturing and inventory or accounting” mean
“(manufacturing AND inventory) OR accounting” or does it mean
“manufacturing AND (inventory OR accounting)” when you search? Let’s
assume that ANDs have higher precedence.

Answer #2

Another solution is to put every query into a disjunctive canonical form;
what that means in English is that the search conditions are written as a
string of AND-ed conditions joined together at the highest level by ORs.

Let’s build another table of job orders that we want to fill:

PUZZLE 17 EMPLOYMENT AGENCY 77

CREATE TABLE JobOrders
(job_id INTEGER NOT NULL,
 skill_group INTEGER NOT NULL,
 skill_code CHAR(15) NOT NULL,
 PRIMARY KEY (job_id, skill_group, skill_code));

The skill_group code says that all these skills are required—they are
the AND-ed terms in the canonical form. We can then assume that each
skill_group in a job order is OR-ed with the others for that job_id.
Create the table for the job orders.

Now insert the following orders in their canonical form:

Job 1 = ('inventory' AND 'manufacturing') OR 'accounting'
Job 2 = ('inventory' AND 'manufacturing')
 OR ('accounting' AND 'manufacturing')
Job 3 = 'manufacturing'
Job 4 = ('inventory' AND 'manufacturing' AND 'accounting')

This translates into:

INSERT INTO JobOrders
VALUES (1, 1, 'inventory'),
 (1, 1, 'manufacturing'),
 (1, 2, 'accounting'),
 (2, 1, 'inventory'),
 (2, 1, 'manufacturing'),
 (2, 2, 'accounting'),
 (2, 2, 'manufacturing'),
 (3, 1, 'manufacturing'),
 (4, 1, 'inventory'),
 (4, 1, 'manufacturing'),
 (4, 1, 'accounting');

The query is a form of relational division, based on using the
skill_code and skill_group combinations as the dividend and the
candidate’s skills as the divisor. Since the skill groups within a job_id
are OR-ed together, if any one of them matches, we have a hit.

SELECT DISTINCT J1.job_id, C1.candidate_id
 FROM JobOrders AS J1 INNER JOIN CandidateSkills AS C1
 ON J1.skill_code = C1.skill_code

78 PUZZLE 17 EMPLOYMENT AGENCY

 GROUP BY candidate_id, skill_group, job_id
HAVING COUNT(*) >= (SELECT COUNT(*)
 FROM JobOrders AS J2
 WHERE J1.skill_group = J2.skill_group
 AND J1.job_id = J2.job_id);

The sample data should produce the following results:

 job_id candidate_id
====== ===========
 1 100
 1 200
 1 400
 1 500
 2 100
 2 400
 2 500
 3 100
 3 300
 3 400
 3 500
 4 100

As job orders and candidates are changed, the query stays the same.
You can put this query into a VIEW and then use it to find the job for
which we have no candidates, candidates for which we have no jobs, and
so on.

Answer #3

Another answer came from Richard Romley at Smith Barney. He then
came up with an answer that does not involve a correlated subquery in
SQL-92, thus:

SELECT J1.job_id, C1.candidate_id
 FROM (SELECT job_id, skill_grp, COUNT(*)
 FROM JobSkillRequirements
 GROUP BY job_id, skill_grp)
 AS J1(job_id, skill_grp, grp_cnt)
 CROSS JOIN

PUZZLE 17 EMPLOYMENT AGENCY 79

 (SELECT R1.job_id, R1.skill_grp, S1.candidate_id,
COUNT(*)
 FROM JobSkillRequirements AS R1, CandidateSkills AS
S1
 WHERE R1.skillid = S1.skillid
 GROUP BY R1.job_id, R1.skill_grp, S1.candidate_id)
 AS C1(job_id, skill_grp, candidate_id, candidate_cnt)

 WHERE J1.job_id = C1.job_id
 AND J1.skill_grp = C1.skill_grp
 AND J1.grp_cnt = C1.candidate_cnt
 GROUP BY J1.job_id, C1.candidate_id;

You can replace the subquery table expressions in the FROM with a
CTE clause, but I am not sure if they will run better or not. Replacing the
table expressions with two VIEWs for C1 and J1 is not a good option,
unless you want to use those VIEWs in other places.

I am also not sure how well the three GROUP BY statements will work
compared to the correlated subquery. The grouped tables will not be
able to use any indexing on the original tables, so this approach could
be slower.

80 PUZZLE 18 JUNK MAIL

PUZZLE

18 JUNK MAIL

You are given a table with the addresses of consumers to whom we wish
to send junk mail. The table has a family (fam) column that links
Consumers with the same street address (con_id). We need this because
our rules are that we mail only one offer to a household. The column
contains the PRIMARY KEY value of the first person who has this address.
Here is a skeleton of the table.

Consumers
con_name address con_id fam
================================
 'Bob' 'A' 1 NULL
 'Joe' 'B' 3 NULL
 'Mark' 'C' 5 NULL
 'Mary' 'A' 2 1
 'Vickie' 'B' 4 3
 'Wayne' 'D' 6 NULL

We need to delete those rows where fam is NULL, but there are other
family members on the mailing list. In the above example, I need to
delete Bob and Joe, but not Mark and Wayne.

Answer #1

A first attempt might try to do too much work, but translating the
English specification directly into SQL results in the following:

DELETE FROM Consumers
 WHERE fam IS NULL -- this guy has a NULL family value
 AND EXISTS -- ..and there is someone who is
 (SELECT *
 FROM Consumers AS C1
 WHERE C1.id <> Consumers.id -- a different person
 AND C1.address = Consumers.address -- at same
address
 AND C1.fam IS NOT NULL); -- who has a family value

PUZZLE 18 JUNK MAIL 81

Answer #2

But if you think about it, you will see that the COUNT(*) for the
household has to be greater than 1.

DELETE FROM Consumers
 WHERE fam IS NULL -- this guy has a NULL family value
 AND (SELECT COUNT(*)
 FROM Consumers AS C1
 WHERE C1.address = Consumers.address) > 1;

The trick is that the COUNT(*) aggregate will include NULLs in its tally.

Answer #3

Another version of Answer #1 comes from Franco Moreno:

DELETE FROM Consumers
 WHERE fam IS NULL -- this guy has a NULL family value
 AND EXISTS (SELECT *
 FROM Consumers AS C1
 WHERE C1.fam = Consumers.id);

82 PUZZLE 19 TOP SALESPEOPLE

PUZZLE

19 TOP SALESPEOPLE

This problem came up in March 1995 at Database World, when someone
came back from the IBM pavilion to talk to me. IBM had a DB2 expert
with a whiteboard set up to answer questions, and this one had stumped
her. The problem starts with a table of salespeople and the amount of
their sales, which looks like this:

CREATE TABLE SalesData
(district_nbr INTEGER NOT NULL,
 sales_person CHAR(10) NOT NULL,
 sales_id INTEGER NOT NULL,
 sales_amt DECIMAL(5,2) NOT NULL);

The boss just came in and asked for a report that will tell him about
the three biggest sales and salespeople in each district. Let’s use this data:

SalesData
district_nbr sales_person sales_id sales_amt
==
 1 'Curly' 5 3.00
 1 'Harpo' 11 4.00
 1 'Larry' 1 50.00
 1 'Larry' 2 50.00
 1 'Larry' 3 50.00
 1 'Moe' 4 5.00
 2 'Dick' 8 5.00
 2 'Fred' 7 5.00
 2 'Harry' 6 5.00
 2 'Tom' 7 5.00
 3 'Irving' 10 5.00
 3 'Melvin' 9 7.00
 4 'Jenny' 15 20.00
 4 'Jessie' 16 10.00
 4 'Mary' 12 50.00
 4 'Oprah' 14 30.00
 4 'Sally' 13 40.00

PUZZLE 19 TOP SALESPEOPLE 83

Answer #1

Unfortunately, there are some problems in the specification we got. Do
we want the three largest sales (regardless of who made them) or the top
three salespeople? There is a difference—look at district 1, where 'Larry'
made all three of the largest sales, but the three best salespeople were
'Larry', 'Moe', and 'Harpo'.

What if more than three people sold exactly the same amount, as in
district 2? If a district has less than three salespeople working in it, as in
district 3, do we drop it from the report or not? Let us make the decision,
since this is just a puzzle and not a production system, that the boss
meant the three largest sales in each district, without regard to who the
salespeople were. That query can be:

SELECT *
 FROM SalesData AS S0
 WHERE sales_amt IN (SELECT S1.sales_amt
 FROM SalesData AS S1
 WHERE S0.district_nbr = S1.district_nbr
 AND S0.sales_amt <= S1.sales_amt
 HAVING COUNT(*) <= 3)
 ORDER BY S0.district_nbr, S0.sales_person, S0.sales_id,
S0.sales_amt;

In SQL-92, a HAVING clause by itself treats the whole table as a single
group. If your SQL does not like this, then replace the “sales_amt IN
(SELECT sales_amt ...” with “sales_amt >= (SELECT
MIN(sales_amt) ...” in the SELECT clause. If you do that, however, the
HAVING clause will drop the district_nbrs with only one sales_amt,
which is district_nbr 2 in this case—giving these results:

Results
district_nbr sales_person sales_id sales_amt
====================================
 1 'Larry' 1 50.00
 1 'Larry' 2 50.00
 1 'Larry' 3 50.00
 3 'Irving' 10 5.00
 3 'Melvin' 9 7.00
 4 'Mary' 12 50.00
 4 'Oprah' 14 30.00
 4 'Sally' 13 40.00

84 PUZZLE 19 TOP SALESPEOPLE

Now what if we wanted the top three salespeople in their districts,
without regard to how many people were assigned to each district? We
could modify the query like this:

SELECT DISTINCT district_nbr, sales_person
 FROM SalesData AS S0
 WHERE sales_amt <= (SELECT MAX(S1.sales_amt)
 FROM SalesData AS S1
 WHERE S0.district_nbr = S1.district_nbr
 AND S0.sales_amt <= S1.sales_amt
 HAVING COUNT(DISTINCT S0.sales_amt) <= 3);

and get these results. Please notice that you are getting the three largest
sales.

Answer
district_nbr sales_person
====================
 1 'Harpo'
 1 'Moe'
 1 'Larry'
 2 'Dick'
 2 'Fred'
 2 'Harry'
 2 'Tom'
 3 'Irving'
 3 'Melvin'
 4 'Oprah'
 4 'Sally'
 4 'Mary'

Notice that four people are tied for the top three sales positions in
district 2. Likewise, the lack of competition in district 3 gave us two
salespeople in the top three.

Answer #2

With the addition of OLAP functions in SQL-99, life becomes very easy:

SELECT S1.district_nbr, S1.sales_person
 FROM (SELECT district_nbr, sales_person,

PUZZLE 19 TOP SALESPEOPLE 85

 DENSE_RANK()
 OVER (PARTITION BY district_nbr
 ORDER BY sales_amt DESC)
 FROM SalesData)
 AS S1.(district_nbr, sales_person, rank_nbr)
 WHERE S1.rank_nbr <= 3;

Teradata, Oracle, DB2, and SQL Server 2005 support these OLAP
functions. How you want to handle ties will determine which OLAP
function you will use.

RANK () assigns a sequential numbering to each row within a
partition. If there are duplicate values, they all are assigned equal ranks
and you can get gaps in the numbering.

DENSE_RANK () also assigns a sequential rank to a row within a
partition. However, DENSE_RANK() has no gaps while ties are assigned
the same numbering.

ROW_NUMBER() assigns a unique sequential numbering to each row
within a partition and does not care about duplicate values.

If an ORDER BY clause is not given in the partition, the number will
be arbitrary. For example, given a partition with two values of foo and
five rows:

foo ROW_NUMBER() RANK() DENSE_RANK()
=====================================
'A' 1 1 1
'A' 2 1 1
'A' 3 1 1
'B' 4 4 2
'B' 5 4 2

86 PUZZLE 20 TEST RESULTS

PUZZLE

20 TEST RESULTS

A problem got posted on the CompuServe Sybase Forum in May 1995
by a Mr. Shankar. It had to do with a table of test results. This table
tracks the progress of the testing by providing a completion date for each
test_step in the test. The test_steps are not always done in order,
and each test can have several test_steps. For example, the 'Reading
Skills' test might have five test_steps and the 'Math Skills' test
might have six test_steps. We can assume that the test_steps are
numbered from 1 to whatever is needed.

CREATE TABLE TestResults
(test_name CHAR(20) NOT NULL,
 test_step INTEGER NOT NULL,
 comp_date DATE, -- null means incomplete
 PRIMARY KEY (test_name, test_step));

The problem is to write a quick query to find those tests that have
been completed.

Answer #1

I came up with the “obvious” answer:

SELECT DISTINCT test_name
 FROM TestResults AS T1
 WHERE NOT EXISTS
 (SELECT *
 FROM TestResults AS T2
 WHERE T1.test_name = T2.test_name
 AND T2.comp_date IS NULL);

This says that the test does not have any uncompleted test_steps.
Can you think of a different way to do it?

Answer #2

Roy Harvey had a better and simpler solution, based on a completely
different approach:

PUZZLE 20 TEST RESULTS 87

SELECT test_name
 FROM TestResults
 GROUP BY test_name
HAVING COUNT(*) = COUNT(comp_date);

This works because COUNT(*) will tally the NULLs in the comp_date
columns (actually, it is counting whole rows), while COUNT(comp_date)
will drop the NULLs before doing the tally.

This is a good trick that can be used when you need to compare one
set to another. Carry this one step further and you can find out how
complete a test is:

SELECT test_name,
 COUNT(*) AS test_steps_needed
 (COUNT(*) - COUNT(comp_date)) AS test_steps_missing
 FROM TestResults
 GROUP BY test_name
HAVING COUNT(*) <> COUNT(comp_date);

If you just need a list of the incomplete tests, without any information
as to how much is still needed, then you can write:

SELECT DISTINCT test_name
 FROM TestResults
 WHERE comp_date IS NULL;

Instead of looking at each step one at a time, think about how the set
as a whole will behave.

88 PUZZLE 21 AIRPLANES AND PILOTS

PUZZLE

21 AIRPLANES AND PILOTS

We have a table of pilots and the planes they can fly and a table of planes
in the hangar. We want the names of the pilots who can fly every plane in
the hangar.

CREATE TABLE PilotSkills
(pilot CHAR(15) NOT NULL,
 plane CHAR(15) NOT NULL,
 PRIMARY KEY (pilot, plane));

INSERT INTO PilotSkills
VALUES ('Celko', 'Piper Cub'),
 ('Higgins', 'B-52 Bomber'),
 ('Higgins', 'F-14 Fighter'),
 ('Higgins', 'Piper Cub'),
 ('Jones', 'B-52 Bomber'),
 ('Jones', 'F-14 Fighter'),
 ('Smith', 'B-1 Bomber'),
 ('Smith', 'B-52 Bomber'),
 ('Smith', 'F-14 Fighter'),
 ('Wilson', 'B-1 Bomber'),
 ('Wilson', 'B-52 Bomber'),
 ('Wilson', 'F-14 Fighter'),
 ('Wilson', 'F-17 Fighter');

CREATE TABLE Hangar
(plane CHAR(15) PRIMARY KEY);

INSERT INTO Hangar
VALUES ('B-1 Bomber'),
 ('B-52 Bomber'),
 ('F-14 Fighter');

The answer would be:

PilotSkills DIVIDED BY Hangar
pilot
=============================
'Smith'
'Wilson'

PUZZLE 21 AIRPLANES AND PILOTS 89

In this example, Smith and Wilson are the two pilots who can fly
everything in the hangar. Notice that Higgins and Celko know how to fly
a Piper Cub, but we don’t have one right now. In Codd’s original
definition of relational division, having more rows than are called for is
not a problem.

The important characteristic of a relational division is that the CROSS
JOIN (Cartesian product) of the divisor and the quotient produces a valid
subset of rows from the dividend. This is where the name comes from,
since the CROSS JOIN acts like a multiplication operator.

Answer #1

The classic answer is to pull out a copy of almost any textbook and look
up relational division. Chris Date’s classic textbook is the usual choice,
and it gives a template that you can copy for the problem. We are
dividing the pilot’s skill table (dividend) by the hangar (divisor) to get a
list of pilot names (quotient).

Can you find another way, which uses a trick we have already seen?

SELECT DISTINCT pilot
 FROM PilotSkills AS PS1
 WHERE NOT EXISTS
 (SELECT *
 FROM Hangar
 WHERE NOT EXISTS
 (SELECT *
 FROM PilotSkills AS PS2
 WHERE (PS1.pilot = PS2.pilot)
 AND (PS2.plane = Hangar.plane)));

Answer #2

Look at the puzzle that came just before this problem. Roy Harvey’s trick
that we used in the Test Results Puzzle can be applied here. It is
important to reuse tricks when you can.

Imagine that each pilot gets a set of stickers that he pastes to each
plane in the hangar he can fly. If the number of planes in the hangar is
the same as the number of stickers he used, then he can fly all the planes
in the hangar. That becomes the query:

90 PUZZLE 21 AIRPLANES AND PILOTS

SELECT Pilot
 FROM PilotSkills AS PS1, Hangar AS H1
 WHERE PS1.plane = H1.plane
 GROUP BY PS1.pilot
HAVING COUNT(PS1.plane) = (SELECT COUNT(*) FROM Hangar);

The WHERE clause restricts the PilotSkills plane list to those that
are in the hangar before each pilot is grouped and tallied. If pilots were
limited to only a subset of the hangar planes, you could drop the WHERE
clause and use two COUNT (DISTINCT x) expressions instead of two
COUNT(x) expressions.

The nested EXISTS() predicates version of relational division was
made popular by Chris Date’s textbooks, while I am associated with
popularizing the COUNT(*) version of relational division. The interesting
difference between these two approaches is how they handle an empty
hangar—a sort of “relational division by zero,” if you will. Version #1 will
return all the pilots, while version #2 will return an empty set. In his
book Introduction to Database Systems—6th Edition, Date defined a
divisional operator that behaves like #2, so I assume that he views this as
the correct answer.

Answer #3

Another kind of relational division is exact relational division. The
dividend table must match exactly to the values of the divisor without
any extra values:

SELECT PS1.pilot
 FROM PilotSkills AS PS1
 LEFT OUTER JOIN
 Hangar AS H1
 ON PS1.plane = H1.plane
 GROUP BY PS1.pilot
HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM Hangar)
 AND COUNT(H1.plane) = (SELECT COUNT(plane) FROM Hangar);

This says that a pilot must have the same number of certificates as
there are planes in the hangar, and these certificates all match to a plane
in the hangar, not something else. The “something else” is shown by a
created NULL from the LEFT OUTER JOIN.

PUZZLE 21 AIRPLANES AND PILOTS 91

Please do not make the mistake of trying to reduce the HAVING
clause with a little algebra to:

HAVING COUNT(PS1.plane) = COUNT(H1.plane)

because it does not work; it will tell you that the hangar has (n) planes in
it and the pilot is certified for (n) planes, but not that those two sets of
planes are equal to each other.

The Winter 1996 edition of DB2 On-Line Magazine had an article
entitled “Powerful SQL: Beyond the Basics” by Sheryl Larsen that gave
the results of testing both methods. Her conclusion for DB2 was that the
nested EXISTS() version is better when the quotient has less than 25%
of the dividend table’s rows, and the COUNT(*) version is better when the
quotient is more than 25% of the dividend table.

92 PUZZLE 22 LANDLORD

PUZZLE

22 LANDLORD

Karen Gallaghar tried to use the following SQL (translated from the
Microsoft ACCESS original) to do a report on who has paid their rent in
an apartment complex:

SELECT *
 FROM Units AS U1
 LEFT OUTER JOIN
 (Tenants AS T1
 LEFT OUTER JOIN
 RentPayments AS RP1
 ON T1.tenant_id = RP1.tenant_id)
 ON U1.unit_nbr = T1.unit_nbr
 WHERE U1.complex_id = 32
 AND U1.unit_nbr = RP1.unit_nbr
 AND T1.vacated_date IS NULL
 AND ((RP1.payment_date >= :my_start_date
 AND RP1.payment_date < :my_end_date)
 OR RP1.payment_date IS NULL)
 ORDER BY U1.unit_nbr, RP1.payment_date;

What she wanted was a report with either RentPayments rows within
the date range, or blank RentPayments rows for each unit/tenant
combination. What happened was that she did not get blank rows where
there are no RentPayments rows unless she dropped the RentPayments
conditions. Can you see the problem and rewrite the query?

Answer #1

The trick is to think about what is persistent and what is transient in a
problem with OUTER JOINs. The unit and tenant pairs are the place to
start: the unit stays but the tenants come and go, so you need to preserve
the unit side of the LEFT OUTER JOIN. Once you have the unit and
tenant pairs, ask the same question and conclude that rent payments
may be missing, even when you have a tenant in a unit.

SELECT * -- * is bad in real code
 FROM (Units AS U1
 LEFT OUTER JOIN Tenants AS T1

PUZZLE 22 LANDLORD 93

 ON U1.unit_nbr = T1.unit_nbr
 AND T1.vacated_date IS NULL
 AND U1.complex_id = 32)
 LEFT OUTER JOIN RentPayments AS RP1
 ON (T1.tenant_id = RP1.tenant_id
 AND U1.unit_nbr = RP1.unit_nbr)
 WHERE RP1.payment_date BETWEEN :my_start_date
 AND :my_end_date
 OR RP1.payment_date IS NULL;

The predicate (T1.tenant_id = RP1.tenant_id AND U1.unit_nbr
= RP1.unit_nbr) is saying that a particular tenant has paid rent for a
particular unit. This is to cover the situations where the same party rents
more than one unit in the complex. You may assume that referential
constraints prevent you from collecting rent from someone who does not
have a unit. The use of a BETWEEN predicate makes code easier to read
and maintain, but it means you have to adjust the ending date.

94 PUZZLE 23 MAGAZINE

PUZZLE

23 MAGAZINE

This one was posted on the Sybase forum of CompuServe by Keith
McGregor in November 1994. One of his end users came to him with
the following query. After nearly three days of trial and error, he still did
not have a clue how to tell her to do it. He could have done this in about
30 minutes using COBOL and flat files, but did not see any way to do it
in SQL. This is a good exercise in switching from a procedural mind-set
to a declarative one.

You are given the following tables for a magazine distribution
database:

CREATE TABLE Titles
(product_id INTEGER NOT NULL PRIMARY KEY,
 magazine_sku INTEGER NOT NULL,
 issn INTEGER NOT NULL,
 issn_year INTEGER NOT NULL);

CREATE TABLE Newsstands
(stand_nbr INTEGER NOT NULL PRIMARY KEY,
 stand_name CHAR(20) NOT NULL);

CREATE TABLE Sales
(product_id INTEGER NOT NULL REFERENCES Titles(product_id),

 stand_nbr INTEGER NOT NULL REFERENCES
Newsstands(stand_nbr),
 net_sold_qty INTEGER NOT NULL,
 PRIMARY KEY(product_id, stand_nbr));

He needed to select the newsstand(s) where:

1. The average net_sold_qty is greater than 2 for both magazine
titles 02667 and 48632 (if the average is 2 or less for either
one, do not select the newsstand at all).

Or

PUZZLE 23 MAGAZINE 95

2. The average net_sold_qty is greater than 5 for magazine
01107 (if this is true, select the newsstand regardless of the
result of condition 1).

Answer #1

Let’s create a VIEW of the three tables joined together that will give us the
basic information we are after. Maybe this VIEW can be used for other
reports later.

CREATE VIEW MagazineSales(stand_name, title, net_sold_qty)
AS SELECT Sales.stand_name, Titles.title, net_sold_qty
 FROM Titles, Sales, Newsstands
 WHERE Sales.stand_nbr = Newsstands.stand_nbr
 AND Titles.product_id = Sales.product_id;

Then we write the query from Hell:

 SELECT stand_name
 FROM MagazineSales AS M0
 GROUP BY stand_name
 HAVING -- the two accept conditions
 ((SELECT AVG(net_sold_qty)
 FROM MagazineSales AS M1
 WHERE M1.stand_nbr = M0.stand_nbr
 AND magazine_sku = '01107') > 5)
 OR ((SELECT AVG(net_sold_qty)
 FROM MagazineSales AS M2
 WHERE M2.stand_nbr = M0.stand_nbr
 AND magazine_sku IN ('02667', '48632')) > 2)
 AND NOT -- the two reject conditions
 ((SELECT AVG(net_sold_qty)
 FROM MagazineSales AS M3
 WHERE M3.stand_nbr = M0.stand_nbr
 AND magazine_sku = '02667') < 2

 OR
 (SELECT AVG(net_sold_qty)
 FROM MagazineSales AS M4
 WHERE M4.stand_nbr = M0.stand_nbr
 AND magazine_sku = '48632') < 2);

96 PUZZLE 23 MAGAZINE

For bonus points, can you simplify or improve this expression?

Hint: DeMorgan’s law might be useful, and it would help to have a decision
table.

Answer #2

In April 1995, Carl C. Federl, an independent consultant in Clarendon
Hills, Illinois, proposed that the solution provided to this puzzle could
be greatly simplified by using two techniques: First, create a VIEW of the
average sales and include an 'EXISTS' for the condition of two titles that
both must exceed a threshold.

CREATE VIEW MagazineSales (stand_nbr, title, avg_qty_sold)
AS SELECT Sales.stand_nbr, Titles.title,
AVG(Sales.net_sold_qty)
 FROM Titles, Newsstands, Sales
 WHERE Titles.product_id = Sales.product_id
 AND Newsstands.stand_nbr = Sales.stand_nbr
 AND Titles.magazine_sku IN (01107,02667, 48632)
 GROUP BY Sales.stand_nbr, Titles.title;

Now the query is greatly reduced:

SELECT DISTINCT Newsstands.stand_name
 FROM MagazineSales AS M0, Newsstands AS N0
 WHERE N0.stand_nbr = M0.stand_nbr
 AND ((M0.magazine_sku = 1107 AND M0.avg_qty_sold > 5)
 OR (M0.magazine_sku = 2667 AND M0.avg_qty_sold > 2
 AND EXISTS (SELECT *
 FROM MagazineSales AS Other
 WHERE Other.magazine_sku = 48632
 AND Other.stand_nbr = M0.stand_nbr
 AND Other.avg_qty_sold > 2)));

In older versions of Sybase SQL and other databases, a VIEW with an
aggregate that is joined will not produce the desired results. Today, the
VIEW could be a CTE expression.

Instead of a VIEW, a temporary table must be used.

PUZZLE 23 MAGAZINE 97

Answer #3

This answer came from Adam Thompson, manager of technical support
at Doncar Systems, Inc., after he saw the first edition of this book. First,
he added an inverse-lookup index on Titles.

This is pretty much essential to top-notch performance in a data-
heavy environment. I have not mentioned indexing in this book,
because that is not part of the SQL Standards.

CREATE INDEX Titles_magazine_sku ON Titles (title,
product_id);

Then he found a completely SQL-89 solution:

SELECT DISTINCT N1.stand_name
 FROM Newsstands AS N1
 WHERE N1.stand_nbr IN
 (SELECT S1.stand_nbr
 FROM Sales AS S1
 WHERE S1.product_id IN
 (SELECT T1.product_id
 FROM Titles AS T1
 WHERE magazine_sku = 01107)
 GROUP BY S1.stand_nbr
 HAVING AVG(S1.net_sold_qty) > 5)
 OR (N1.stand_nbr IN (SELECT S1.stand_nbr
 FROM Sales AS S1
 WHERE S1.product_id IN
 (SELECT T1.product_id
 FROM Titles AS T1
 WHERE magazine_sku = 02667)
 GROUP BY S1.stand_nbr
 HAVING AVG(S1.net_sold_qty) > 2)
 AND N1.stand_nbr IN
 (SELECT S1.stand_nbr
 FROM Sales AS S1
 WHERE S1.product_id IN
 (SELECT T1.product_id
 FROM Titles AS T1
 WHERE magazine_sku = 48632)
 GROUP BY S1.stand_nbr
 HAVING AVG(S1.net_sold_qty) > 2));

98 PUZZLE 23 MAGAZINE

He tested this under SQL Anywhere v5.5, and with the addition of
one index as indicated above in the schema, the entire thing runs off
indices with only one full-table scan, on n1. I think that full-table scan is
perfectly reasonable, given the query.

Note that the GROUP BYs inside the correlated subqueries need only
the stand_nbr column and can omit product_id only because of the
WHERE clause immediately preceding each instance. A more general
solution would have been to have “group by stand_nbr, product_id”
to allow for future expansion of the query terms. The ability to use a
multiple-column row expression in a predicate is part of the SQL-92
standard, but it is not widely implemented yet.

Answer #4

Another solution uses the GROUP BY instead, but it requires the CASE
statement:

SELECT N1.stand_name
 FROM Sales AS S1, Titles AS T1, Newsstands AS N1
 WHERE T1.title_id IN (02667, 48632,01107)
 AND S1.product_id = T1.product_id
 GROUP BY S1.stand_nbr
HAVING ((AVG(CASE WHEN T1.magazine_sku = 02667
 THEN S1.net_sold_qty
 ELSE NULL END) > 2
 AND
 AVG(CASE WHEN T1.magazine_sku = 48632
 THEN S1.net_sold_qty
 ELSE NULL END) > 2)
 OR AVG(CASE WHEN T1.magazine_sku = 01107
 THEN S1.net_sold_qty
 ELSE NULL END) > 5)
 AND S1.stand_nbr = N1.stand_nbr;

Answer #5

Richard Romley proposed several answers in SQL-92 syntax in
September 1997.

SELECT N1.stand_name
 FROM (SELECT S1.stand_nbr

PUZZLE 23 MAGAZINE 99

 FROM Sales AS S1
 INNER JOIN
 Titles AS T1
 ON S1.product_id = T1.product_id
 WHERE T1.title_id IN (02667, 48632,01107)
 GROUP BY S1.stand_nbr
 HAVING (AVG(CASE
 WHEN T1.magazine_sku = 02667
 THEN S1.net_sold_qty
 ELSE NULL END) > 2
 AND AVG(CASE
 WHEN T1.magazine_sku = 48632
 THEN S1.net_sold_qty
 ELSE NULL END) > 2)
 OR AVG(CASE
 WHEN T1.magazine_sku = 01107
 THEN S1.net_sold_qty
 ELSE NULL END) > 5)
 INNER JOIN
 Newsstands AS N1
 ON S1.stand_nbr = N1.stand_nbr;

He observed that:

1. The newsstands table has nothing to do with the solution of the
problem. It is only needed to look up the stand name once the
qualifying “stand_nbr” has been determined. It only confuses
and complicates the solution by introducing it up front.

2. We only need to look up the stand name once for each qualify-
ing stand_nbr. This should be done last, after the stand_nbr
has been found. Suppose there are 10,000 Sales rows. In this
solution we will do 10,000 JOINs to the newsstands table! In
the original solution we will do one INNER JOIN! Which do you
think is better?

3. In this solution, the stand_name column must be included in
the GROUP BY clause in order to include it in the SELECT list.
This is bad for several reasons:

� The stand_name column has nothing to do with the group-
ing and logically does not belong there.

100 PUZZLE 23 MAGAZINE

� Any additional columns we wanted to include in the SELECT
list having clauses or ORDER BYs would need to be added to
the GROUP BY. This is illogical, because the GROUP BY should
be used to create the aggregates necessary to solve the prob-
lem and include nothing else. Additional columns in the
GROUP BY mask what the purpose of the GROUP BY is and
make the query hard to read.

� Adding unnecessary columns to the GROUP BY represents a
potentially huge performance hit. Just look at stand_nbr as
an integer. We could add a dozen additional columns to the
SELECT list, requiring a dozen additional columns in the
GROUP BY. What effect do you think it will have forcing the
server to do a GROUP BY on 10,000 rows with a dozen col-
umns totaling a couple of hundred bytes each, versus one
single-integer column?

� It is a maintenance nightmare. If you need to add another
column to the SELECT list, you also need to add it to the
GROUP BY, even though the request has nothing to do with
the grouping of the query.

Answer #6

In July 1999, Francisco Moreno proposed a version that takes advantage
of the set operators in SQL-92 syntax and a little algebra:

SELECT stand_name
 FROM Newsstands AS N1
 WHERE 1 = ANY ((SELECT SIGN(AVG(net_sold_qty) - 2)
 FROM Sales AS S1
 WHERE product_id IN (SELECT product_id
 FROM Titles
 WHERE magazine_sku = 2667)
 AND S1.stand_nbr = S21.stand_nbr
 INTERSECT
 SELECT SIGN(AVG(net_sold_qty) - 2)
 FROM Sales AS S2
 WHERE product_id IN (SELECT product_id
 FROM Titles
 WHERE magazine_sku = 48632)
 AND S2.stand_nbr = S21.stand_nbr)
 UNION

PUZZLE 23 MAGAZINE 101

 SELECT SIGN(AVG(net_sold_qty) - 5)
 FROM Sales AS S3
 WHERE product_id IN (SELECT product_id
 FROM Titles
 WHERE magazine_sku = 1107)
 AND S3.stand_nbr = S21. stand_nbr);

Answer #7

Mr. Kuznetsov also came up with a simple solution:

CREATE TABLE Titles
(product_id INTEGER NOT NULL PRIMARY KEY,
 magazine_sku INTEGER NOT NULL,
 issn INTEGER NOT NULL,
 issn_year INTEGER NOT NULL);

INSERT INTO Titles
VALUES (1, 12345, 1, 2006), (2, 2667, 1, 2006), (3, 48632,
1, 2006),
 (4, 1107, 1, 2006), (5, 12345, 2, 2006), (6, 2667, 2,
2006),
(7, 48632, 2, 2006), (8, 1107, 2, 2006);

CREATE TABLE Sales
(product_id INTEGER NOT NULL,
 stand_nbr INTEGER NOT NULL,
 net_sold_qty INTEGER NOT NULL);
-- stand 1
INSERT INTO Sales VALUES (1, 1, 1);
INSERT INTO Sales VALUES (2, 1, 4);
INSERT INTO Sales VALUES (3, 1, 1);
INSERT INTO Sales VALUES (4, 1, 1);
INSERT INTO Sales VALUES (5, 1, 1);
INSERT INTO Sales VALUES (6, 1, 2);
INSERT INTO Sales VALUES (7, 1, 1);
-- stand 2 meets the criteria
INSERT INTO Sales VALUES (4, 2, 5);
INSERT INTO Sales VALUES (8, 2, 6);
INSERT INTO Sales VALUES (3, 2, 1);
-- stand 3 meets the criteria
INSERT INTO Sales VALUES (1, 3, 1);

102 PUZZLE 23 MAGAZINE

INSERT INTO Sales VALUES (2, 3, 3);
INSERT INTO Sales VALUES (3, 3, 3);
INSERT INTO Sales VALUES (4, 3, 1);
INSERT INTO Sales VALUES (5, 3, 1);
INSERT INTO Sales VALUES (6, 3, 3);
INSERT INTO Sales VALUES (7, 3, 3);
-- stand 4
INSERT INTO Sales VALUES (1, 4, 1);
INSERT INTO Sales VALUES (2, 4, 1);
INSERT INTO Sales VALUES (3, 4, 4);
INSERT INTO Sales VALUES (4, 4, 1);
INSERT INTO Sales VALUES (5, 4, 1);
INSERT INTO Sales VALUES (6, 4, 1);
INSERT INTO Sales VALUES (7, 4, 2);

SELECT stand_nbr
 FROM (SELECT stand_nbr,
 AVG(CASE WHEN title = 2667 THEN net_sold_qty
END),
 AVG(CASE WHEN title = 48632 THEN net_sold_qty
END),
 AVG(CASE WHEN title = 1107 THEN net_sold_qty
END) avg_1107
 FROM Sales, Titles
 WHERE Sales.product_id = Titles.product_id
 GROUP BY stand_nbr
) AS T (stand_nbr, avg_2667, avg_48632, avg_1107)
 WHERE avg_1107 > 5 OR (avg_2667 > 2 AND avg_48632 > 2);

A minor note: leaving off the ELSE NULL in a CASE expression is legal
shorthand, but I prefer to use it as a placeholder for future updates and
additions, as well as a reminder that a NULL is being created.

PUZZLE 24 ONE IN TEN 103

PUZZLE

24 ONE IN TEN

Alan Flancman ran into a problem with some legacy system data that
had been moved over to an SQL database. The table looked like this:

 CREATE TABLE MyTable
 (keycol INTEGER NOT NULL,
 f1 INTEGER NOT NULL,
 f2 INTEGER NOT NULL,
 f3 INTEGER NOT NULL,
 f4 INTEGER NOT NULL,
 f5 INTEGER NOT NULL,
 f6 INTEGER NOT NULL,
 f7 INTEGER NOT NULL,
 f8 INTEGER NOT NULL,
 f9 INTEGER NOT NULL,
 f10 INTEGER NOT NULL);

The columns f1 through f10 were an attempt to flatten out an array
into a table. What he wanted was an elegant way to test against the f1
through f10 columns to find the rows that had exactly one nonzero
value in their columns.

How many different approaches can you find? We are looking for
variety and not performance.

Answer #1

You could use the SIGN() function in Sybase and other SQL products.
This function returns -1, 0, or +1 if the argument is negative, zero, or
positive, respectively. Assuming that your numbers are zero or greater,
you simply write:

 SELECT *
 FROM MyTable
 WHERE SIGN(f1) + SIGN(f2) + ... + SIGN(f10) = 1;

to find a single nonzero value. If you can have negative values, then make
the functions SIGN(ABS(fn)).

104 PUZZLE 24 ONE IN TEN

The SIGN(ABS()) function combination can be written with the
CASE expression in SQL-92 as:

 CASE WHEN x <> 0 THEN 1 ELSE 0 END

Answer #2

Since the fields are really an attempt to fake an array, you should put this
table into First Normal Form (1NF), like this:

 CREATE TABLE Foobar
 (keycol INTEGER NOT NULL,
 i INTEGER NOT NULL CHECK (i BETWEEN 1 AND 10),
 f INTEGER NOT NULL,
 PRIMARY KEY (keycol, i));

The extra column i is really the subscript for the array. You now view
the problem as finding an entity that has exactly nine zero-valued
columns, instead of finding an entity that has exactly one nonzero-
valued nonkey column. That is suddenly easy:

 SELECT keycol
 FROM Foobar
 WHERE f = 0
 GROUP BY keycol
 HAVING COUNT(*) = 9;

You can create a VIEW that has the structure of Foobar, but things are
going to run pretty slowly unless you have a good optimizer:

CREATE VIEW Foobar (keycol, f)
AS SELECT keycol, f1 FROM MyTable WHERE f1 <> 0
 UNION
 SELECT keycol, f2 FROM MyTable WHERE f2 <> 0
 UNION
 ...
 UNION
 SELECT keycol, f10 FROM MyTable WHERE f10 <> 0 ;

PUZZLE 24 ONE IN TEN 105

Answer #3

This depends on a feature of SQL-92 that is not generally available yet.
First, the code, then the explanation:

SELECT *
 FROM MyTable
 WHERE (f1, f2, ... , f10) IN
 (VALUES (f1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
 (0, f2, 0, 0, 0, 0, 0, 0, 0, 0),

 (0, 0, 0, 0, 0, 0, 0, 0, 0, f10))
 AND (f1 + f2 + ... f10) > 0;

In SQL-92, you can use row and table constructors in comparison
predicates. The IN predicate expands into a sequence of OR-ed equality
predicates. The row-wise version of equality is then done on a position-
by-position basis, where all corresponding values must be equal.

Answer #4

If one and only one column is nonzero, then there is a one set of nine
columns that are all zeros.

SELECT *
 FROM MyTable
 WHERE 0 IN
 (VALUES (f2 + f3 + .. f10), -- pull out f1
 (f1 + f3 + .. f10), -- pull out f2
 ...
 (f1 + f2 + .. f9)) -- pull out f10
 AND (f1 + f2 + ... f10) > 0;

Answer #5

In January 1999, Trevor Dwyer posted a similar problem he actually had
on CompuServe. The differences were that his table had NULLs in it,
instead of zeros. His problem was the need to test for any number of
columns having a non-NULL value. This is very easy in SQL-92:

106 PUZZLE 24 ONE IN TEN

 SELECT *
 FROM MyTable
 WHERE COALESCE(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)
 IS NOT NULL;

The COALESCE() function will return the first non-NULL it finds in the
list. If the entire list is made up of NULLs, then it will return NULL.

Obviously, the original problem could be done by replacing each of
the column expressions in the list with a call to a conversion function:

 COALESCE (NULLIF (f1, 0), NULLIF (f2, 0), ..., NULLIF (f10,
0))

Answer #6

Frédéric Brouard (f.brouard@simog.com) came up with this answer:

SELECT *
 FROM MyTable
 WHERE
(f1+1)*(f2+1)*(f3+1)*(f4+1)*(f5+1)*(f6+1)*(f7+1)*(f8+1)*(f9
+1)*(f10+1)*(f2+1)= 2

PUZZLE 25 MILESTONE 107

PUZZLE

25 MILESTONE

This puzzle, in a slightly different form, came from Brian Young. His
system tracks a series of dates (milestones) for each particular type of
service (service_type) that they sell on a particular order (my_order).

These dates constitute the schedule for the delivery of the service and
vary with the type of service they are delivering. Their management
would like to see a schedule for each shop horizontally, which I must
admit is a reasonable request, but it is really a job for the display
functions in the front end and not the database. They also want to be
able to specify which task code (service_type) to display.

Brian ran across a clever solution to this problem by Steve Roti in an
SQL server book, but it relies on the SUM function and a multiplication
by 1 to yield the correct result. (That Roti guy is very clever!)
Unfortunately, this technique doesn’t work with dates. So here is the
table structure:

 CREATE TABLE ServicesSchedule
 (shop_id CHAR(3) NOT NULL,
 order_nbr CHAR(10) NOT NULL,
 sch_seq INTEGER NOT NULL CHECK (sch_seq IN (1,2,3)),
 service_type CHAR(2) NOT NULL,
 sch_date DATE,
 PRIMARY KEY (shop_id, order_nbr, sch_seq));

Where sch_seq is encoded as:

(1 = 'processed')
(2 = 'completed')
(3 = 'confirmed')

The data normally appears like this:

ServicesSchedule
shop_id order_nbr sch_seq service_type sch_date
==
002 4155526710 1 01 '1994-07-16'
002 4155526710 2 01 '1994-07-30'
002 4155526710 3 01 '1994-10-01'

108 PUZZLE 25 MILESTONE

002 4155526711 1 01 '1994-07-16'
002 4155526711 2 01 '1994-07-30'
002 4155526711 3 01 NULL

This is the way they would like it to appear, assuming they want to
look at (service_type = 01),

order_nbr processed completed confirmed
===
4155526710 '1994-07-16' '1994-07-30' '1994-10-01'
4155526711 '1994-07-16' '1994-07-30' NULL

Answer #1

If you only have an SQL-89 product instead of an SQL-92, you can do
this with self-joins:

SELECT S0.order_nbr, S0.sch_date, S0.sch_date,
 S1.sch_date, S2.sch_date, S3.sch_date
 FROM ServicesSchedule AS S0, ServicesSchedule AS S1,
 ServicesSchedule AS S2, ServicesSchedule AS S3
 WHERE S0.service_type = :my_tos -- set task code
 AND S0.order_nbr = :my_order -- set order_nbr
 AND S1.order_nbr = S0.order_nbr AND S1.sch_seq = 1
 AND S2.order_nbr = S0.order_nbr AND S2.sch_seq = 2
 AND S3.order_nbr = S0.order_nbr AND S3.sch_seq = 3;

The problem is that for some SQL products, the self-joins are very
expensive. This is probably the fastest answer on the old SQL products.
Can you think of another way?

Answer #2

In SQL-92, this is easy and very fast with subquery expressions:

SELECT S0.order_nbr,
 (SELECT sch_date
 FROM ServicesSchedule AS S1
 WHERE S1.sch_seq = 1
 AND S1.order_nbr = S0.order_nbr) AS processed,
 (SELECT sch_date

PUZZLE 25 MILESTONE 109

 FROM ServicesSchedule AS S2
 WHERE S2.sch_seq = 2
 AND S2.order_nbr = S0.order_nbr) AS completed,
 (SELECT sch_date
 FROM ServicesSchedule AS S3
 WHERE S3.sch_seq = 3
 AND S3.order_nbr = S0.order_nbr) AS confirmed
 FROM ServicesSchedule AS S0
 WHERE service_type = :my_tos ; -- set task code

The trouble with this trick is that it might not be optimized in your
SQL. This can be worse than the self-join.

Answer #3

You could try using UNION ALL operators and a work table to flatten out
the original table. This is not usually a very good performer, but if the
original table is very large, it can sometimes beat the self-join used in
Answer #2.

INSERT INTO Work (order_nbr, processed, completed,
confirmed)
SELECT order_nbr, NULL, NULL, NULL
 FROM ServicesSchedule AS S0
 WHERE service_type = :my_tos -- set task code
UNION ALL
SELECT order_nbr, sch_date, NULL, NULL
 FROM ServicesSchedule AS S1
 WHERE S1.sch_seq = 1
 AND S1.order_nbr = :my_order
 AND service_type = :my_tos -- set task code
UNION ALL
 SELECT order_nbr, NULL, sch_date, NULL
 FROM ServicesSchedule AS S2
 WHERE S2.sch_seq = 2
 AND S2.order_nbr = :my_order
 AND service_type = :my_tos -- set task code
UNION ALL
 SELECT order_nbr, NULL, NULL, sch_date
 FROM ServicesSchedule AS S3
 WHERE S3.sch_seq = 3

110 PUZZLE 25 MILESTONE

 AND S3.order_nbr = :my_order
 AND service_type = :my_tos -- set task code

This simple UNION ALL statement might have to be broken down into
four INSERTs. The final query is simply:

SELECT order_nbr, MAX(processed), MAX(completed),
MAX(confirmed)
 FROM Work
 GROUP BY order_nbr;

The MAX() function picks the highest non-NULL value in the group,
which also happens to be the only non-NULL value in the group.

Answer #4

However, UNIONs can often be replaced by CASE expressions in SQL-92,
which leads us to this solution:

SELECT order_nbr,
 (CASE WHEN sch_seq = 1
 THEN sch_date
 ELSE NULL END) AS processed,
 (CASE WHEN sch_seq = 2
 THEN sch_date END) AS
 ELSE NULL END) AS completed,
 (CASE WHEN sch_seq = 3
 THEN sch_date
 ELSE NULL END) AS confirmed
 FROM ServicesSchedule
 WHERE service_type = :my_tos
 AND order_nbr = :my_order;

or you can try this same query with a GROUP BY clause:

SELECT order_nbr,
 MAX(CASE WHEN sch_seq = 1 THEN sch_date ELSE NULL
END) AS processed,
 MAX(CASE WHEN sch_seq = 2 THEN sch_date ELSE NULL
END) AS completed,
 MAX(CASE WHEN sch_seq = 3 THEN sch_date ELSE NULL
END) AS confirmed

PUZZLE 25 MILESTONE 111

 FROM ServicesSchedule
 WHERE service_type=:my_tos
 AND order_nbr= :my_order
 GROUP BY order_nbr, service_type;

This is the preferred way in current SQL products, and now you can
translate old code into this template when you see it.

112 PUZZLE 26 DATAFLOW DIAGRAMS

PUZZLE

26 DATAFLOW DIAGRAMS

Tom Bragg posted a version of this problem on the CASE Forum on
CompuServe. You have a table of dataflow diagrams (DFDs), which has
the name of the diagram, the names of the bubbles in each diagram, and
the labels on the flow lines. It looks like this:

CREATE TABLE DataFlowDiagrams
(diagram_name CHAR(10) NOT NULL,
 bubble_name CHAR(10) NOT NULL,
 flow_name CHAR(10) NOT NULL,
 PRIMARY KEY (diagram_name, bubble_name, flow_name));

To explain the problem, let’s use this table:

DataFlowDiagrams
diagram_name bubble_name flow_name
====================================
Proc1 input guesses
Proc1 input opinions
Proc1 crunch facts
Proc1 crunch guesses
Proc1 crunch opinions
Proc1 output facts
Proc1 output guesses
Proc2 reckon guesses
Proc2 reckon opinions
 ...

What we want to find is what flows do not go into each bubble within
the diagrams. This will be part of a diagram validation routine that will
search for missing dataflows. To make this easier, assume that all
bubbles should have all flows. This would mean that (Proc1, input) is
missing the 'facts' flow, and that (Proc1, output) is missing the
'opinions' flow.

Answer #1

We could use this SQL-92 query:

PUZZLE 26 DATAFLOW DIAGRAMS 113

 SELECT F1.diagram_name, F1.bubble_name, F2.flow_name
 FROM (SELECT F1.diagram_name, F1.bubble_name
 FROM DataFlowDiagrams AS F1
 CROSS JOIN
 SELECT DISTINCT F2.flow_name
 FROM DataFlowDiagrams AS F2)
 EXCEPT
 SELECT F3.diagram_name, F3.bubble_name, F3.flow_name

 FROM DataFlowDiagrams AS F3;

Basically, it makes all possible combinations of diagrams and flows,
and then removes the ones we already have.

Answer #2

Another SQL-92 query would be:

 SELECT F1.diagram_name, F1.bubble_name, F2.flow_name
 FROM (SELECT F1.diagram_name, F1.bubble_name
 FROM DataFlowDiagrams AS F1
 CROSS JOIN
 SELECT DISTINCT F2.flow_name
 FROM DataFlowDiagrams AS F2
 WHERE flow NOT IN (SELECT F3.flow_name
 FROM DataFlowDiagrams AS F3
 WHERE F3.diagram_name =
F1.diagram_name
 AND F3.bubble_name =
F1.bubble_name)
 ORDER BY F1.diagram_name, F1.bubble_name, F2.flow_name;

Answer #3

Or to answer the puzzle in SQL-89, you will need to use VIEWs:

 -- build a set of all the flows
 CREATE VIEW AllDFDFlows (flow_name)
 AS SELECT DISTINCT flow_name FROM DataFlowDiagrams;

 -- attach all the flows to each row of the original table

114 PUZZLE 26 DATAFLOW DIAGRAMS

 CREATE VIEW NewDFD (diagram_name, bubble_name, flow_name,
missingflow)
 AS SELECT DISTINCT F1.diagram_name, F1.bubble_name,
F1.flow, F2.flow_name
 FROM DataFlowDiagrams AS F1, AllDFDFlows AS F2
 WHERE F1.flow_name <> F2.flow_name;

 -- Show me the (diagram_name, bubble_name) pairs and
missing flow
 -- where the missing flow was not somewhere in the flow
column
 -- of the pair.
 SELECT DISTINCT diagram_name, bubble_name, missingflow
 FROM NewDFD AS ND1
 WHERE NOT EXISTS (SELECT *
 FROM NewDFD AS ND2
 WHERE ND1.diagram_name = ND2.diagram_name
 AND ND1.bubble_name = ND2.bubble_name
 AND ND1.flow = ND2.missingflow)
 ORDER BY diagram_name, bubble_name, missingflow;

I probably overdid the DISTINCTs, but you can experiment with it for
execution speed. This should still run faster than moving all the rows
across the network.

PUZZLE 27 FINDING EQUAL SETS 115

PUZZLE

27 FINDING EQUAL SETS

Set theory has two symbols for subsets. One is a “horseshoe” on its side
(⊂), which means that set A is contained within set B and is sometimes
called a proper subset. The other is the same symbol with a horizontal
bar under it (⊆), which means “contained in or equal to,” which is
sometimes called just a subset or containment operator.

Standard SQL has never had an operator to compare tables against
each other. Several college textbooks on relational databases mention a
CONTAINS predicate that does not exist in standard SQL. Two such
offenders are An Introduction to Data Base Systems by Bipin C. Desai
(West Publishing, 1990, ISBN 0-314-66771-7) and Fundamentals of
Database Systems by Elmasri and Navthe (Benjamin Cummings, 1989,
ISBN 0-8053-0145-3). This predicate used to exist in the original System
R, IBM’s first experimental SQL system, but it was dropped from later
SQL implementations because of the expense of running it.

The IN() predicate is a test for membership, not for subsets. For
those of you who remember your high school set theory, membership is
shown with a stylized epsilon with the containing set of the right side,
thus ∈. Membership is for one element, while a subset is itself a set, not
just an element.

Chris Date’s puzzle in the December 1993 issue of Database
Programming & Design magazine (“A Matter of Integrity, Part II”
According to Date, December 1993) was to use a supplier and parts table
to find pairs of suppliers who provide exactly the same parts. This is the
same thing as finding two equal sets. Given his famous table:

CREATE TABLE SupParts
(sno CHAR(2) NOT NULL,
 pno CHAR(2) NOT NULL,
 PRIMARY KEY (sno, pno));

How many ways can you find to do this problem?

Answer #1

One approach would be to do a FULL OUTER JOIN on each pair of
suppliers. Any parts that are not common to both would show up, but
would have generated NULLs in one of the columns derived from the
supplier who was not in the INNER JOIN portion. This tells you which

116 PUZZLE 27 FINDING EQUAL SETS

pairs are not matched, not who is. The final step is to remove these
nonmatching pairs from all possible pairs.

SELECT SP1.sno, SP2.sno
 FROM SupParts AS SP1
 INNER JOIN
 SupParts AS SP2
 ON SP1.pno = SP2.pno
 AND SP1.sno < SP2.sno
EXCEPT
SELECT DISTINCT SP1.sno, SP2.sno
 FROM SupParts AS SP1
 FULL OUTER JOIN
 SupParts AS SP2
 ON SP1.pno = SP2.pno
 AND SP1.sno < SP2.sno)
 WHERE SP1.sno IS NULL
 OR SP2.sno IS NULL;

This is probably going to run very slowly. The EXCEPT operator is the
SQL equivalent of set difference.

Answer #2

The usual way of proving that two sets are equal to each other is to show
that set A contains set B, and set B contains set A. What you would
usually do in standard SQL would be to show that there exists no
element in set A that is not in set B, and therefore A is a subset of B. So
the first attempt is usually something like this:

SELECT DISTINCT SP1.sno, SP2.sno
 FROM SupParts AS SP1, SupParts AS SP2
 WHERE SP1.sno < SP2.sno
 AND SP1.pno IN (SELECT SP22.pno
 FROM SupParts AS SP22
 WHERE SP22.sno = SP2.sno)
 AND SP2.pno IN (SELECT SP11.pno
 FROM SupParts AS SP11
 WHERE SP11.sno = SP1.sno));

PUZZLE 27 FINDING EQUAL SETS 117

Oops, this does not work because if a pair of suppliers has one item
in common, they will be returned.

Answer #3

You can use the NOT EXISTS predicate to imply the traditional test
mentioned in Answer #2.

SELECT DISTINCT SP1.sno, SP2.sno
 FROM SupParts AS SP1, SupParts AS SP2
 WHERE SP1.sno < SP2.sno
 AND NOT EXISTS (SELECT SP3.pno -- part in SP1 but not in
SP2
 FROM SupParts AS SP3
 WHERE SP1.sno = SP3.sno
 AND SP3.pno
 NOT IN (SELECT pno
 FROM SupParts AS SP4
 WHERE SP2.sno = SP4.sno))
 AND NOT EXISTS (SELECT SP5.pno -- part in SP2 but not in
SP1
 FROM SupParts AS SP5
 WHERE SP2.sno = SP5.sno
 AND SP5.pno
 NOT IN (SELECT pno
 FROM SupParts AS SP4
 WHERE SP1.sno = SP4.sno));

Answer #4

Instead of using subsets, I thought I would look for another way to do set
equality. First, I join one supplier to another on their common parts,
eliminating the situation where supplier 1 is the same as supplier 2, so
that I have the intersection of the two sets. If the intersection has the
same number of pairs as each of the two sets has elements, then the two
sets are equal.

SELECT SP1.sno, SP2.sno
 FROM SupParts AS SP1
 INNER JOIN
 SupParts AS SP2
 ON SP1.pno = SP2.pno

118 PUZZLE 27 FINDING EQUAL SETS

 AND SP1.sno < SP2.sno
 GROUP BY SP1.sno, SP2.sno
HAVING (SELECT COUNT(*) -- one to one mapping EXISTS
 FROM SupParts AS SP3
 WHERE SP3.sno = SP1.sno)
 = (SELECT COUNT(*)
 FROM SupParts AS SP4
 WHERE SP4.sno = SP2.sno);

If there is an index on the supplier number in the SupParts table, it
can provide the counts directly as well as help with the join operation.

Answer #5

This is the same as Answer #4, but the GROUP BY has been replaced with
a SELECT DISTINCT clause:

SELECT DISTINCT SP1.sno, SP2.sno
 FROM (SupParts AS SP1
 INNER JOIN
 SupParts AS SP2
 ON SP1.pno = SP2.pno
 AND SP1.sno < SP2.sno)
 WHERE (SELECT COUNT(*)
 FROM SupParts AS SP3
 WHERE SP3.sno = SP1.sno)
 = (SELECT COUNT(*)
 FROM SupParts AS SP4
 WHERE SP4.sno = SP2.sno);

Answer #6

This is a version of Answer #3, from Francisco Moreno, which has the NOT
EXISTS predicate replaced by set difference. He was using Oracle, and its
EXCEPT operator (called MINUS in their SQL dialect) is pretty fast.

SELECT DISTINCT SP1.sno, SP2.sno
 FROM SupParts AS SP1, SupParts AS SP2
 WHERE SP1.sno < SP2.sno
 AND NOT EXISTS (SELECT SP3.pno -- part in SP1 but not in
SP2
 FROM SupParts AS SP3

PUZZLE 27 FINDING EQUAL SETS 119

 WHERE SP1.sno = SP3.sno
 EXCEPT
 SELECT SP4.pno
 FROM SupParts AS SP4
 WHERE SP2.sno = SP4.sno
 AND NOT EXISTS (SELECT SP5.pno -- part in SP2 but notin
SP1
 FROM SupParts AS SP5
 WHERE SP2.sno = SP5.sno
 EXCEPT
 SELECT SP6.pno
 FROM SupParts AS SP6
 WHERE SP1.sno = SP6.sno);

Answer #7

Alexander Kuznetsov once more has a submission that improves the old
“counting matches in a join” approach:

SELECT A.sno, B.sno AS sno1
 FROM (SELECT sno, COUNT(*), MIN(pno), MAX(pno)
 FROM SubParts GROUP BY sno)
 AS A(cnt, min_pno, max_pno)
 INNER JOIN
 (SELECT sno, COUNT(*), MIN(pno), MAX(pno)
 FROM SubParts GROUP BY sno)
 AS B(cnt, min_pno, max_pno)
-- four conditions filter out most permutations
 ON A.cnt = B.cnt
 AND A.min_pno = B.min_pno
 AND A.max_pno = B.max_pno
 AND A.sno < B.sno
-- Expensive inner select below does not have to execute for
every pair
 WHERE A.cnt
 = (SELECT COUNT(*)
 FROM SubParts AS A1,
 SubParts AS B1
 WHERE A1.pno = B1.pno
 AND A1.sno = A.sno
 AND B1.sno = B.sno);

120 PUZZLE 27 FINDING EQUAL SETS

sn sn
=======
ab bb
aq pq

The clever part of this query is that most optimizers can quickly find
the MIN() and MAX() values on a column because they are stored in the
statistics table.

Answer #8

Let’s look at notation and some of the usual tests for equality:

((A ⊆ B) = (B ⊆ A)) ⇒ (A = B)

((A ∪ B) = (B ∩ A)) ⇒ (A = B)

The first equation is really the basis for the comparisons that use
joins. The second equation is done at the set level rather than the subset
level, and it implies this answer:

SELECT DISTINCT ‘not equal’
 FROM (SELECT * FROM A)
 INTERSECT
 SELECT * FROM B)
 EXCEPT
 (SELECT * FROM A)
 UNION
 SELECT * FROM B);

The idea is to return an empty set if tables A and B are equal. You
have to be careful about using the ALL clauses on the set operators if
you have duplicates. The good news is that these operators work with
rows and not at the column level, so this template will generalize to
any pairs of union-compatible tables. You do not have to know the
column names.

PUZZLE 28 CALCULATE THE SINE FUNCTION 121

PUZZLE

28 CALCULATE THE SINE FUNCTION

Let’s assume that your SQL product does not have a sine function in its
standard library. Can you write a query that will calculate the sine of a
number in radians?

Answer #1

Just create a table with all the values you need:

CREATE TABLE Sine
(x REAL NOT NULL,
 sin REAL NOT NULL);

INSERT INTO Sine
VALUES (0.00, 0.0000),
 ...
 (0.75, 0.6816),
 (0.76, 0.6889);
 ...
 etc.

You can fill in this table with the help of a spreadsheet or a
programming language with a good math library. You can now use this
table in a scalar subquery:

(SELECT sin FROM Sine WHERE x = :myvalue)

Of course the table can get pretty big for some functions, but for
smaller functions with a limited range of argument values, this is not a
bad approach. The sine just happens to be a horrible choice since it is a
continuous function defined over all real numbers.

Answer #2

Did you notice that if :myvalue in the first answer was not in the table,
the subquery would be empty and hence return a NULL? This is not good.

If you get out an old calculus or trigonometry book, you will find out
how your ancestors used tables in the days before there were calculators.

122 PUZZLE 28 CALCULATE THE SINE FUNCTION

They had a mathematical technique called interpolation, which came in
several flavors.

The easiest method is linear interpolation. Given two known values of
a function, f(a) and f(b), you can approximate a third value of the
function that lies between them. The formula is:

 f(a) + (x-a) * ((f(b) - f(a))/ (b-a))

As an example, assume we want to find sin(0.754)

INSERT INTO Sine VALUES (0.75, 0.6816);
INSERT INTO Sine VALUES (0.76, 0.6889);

We plug in the formula and get:

 0.6816 + (0.754 - 0.75) * ((0.6889 - 0.6816)/ (0.76-0.75))
 = 0.68452

The actual answer is 0.68456, which means we are off by 0.00004,
and that is not bad for an estimate in most cases. The trick is to put it in
a query:

 SELECT A.sin + (:myvalue - A.x)
 * ((B.sin - A.sin)/ (B.x - A.x))
 FROM Sine AS A, Sine AS B
 WHERE A.x = (SELECT MAX(x) FROM Sine WHERE x <= :myvalue)
 AND B.x = (SELECT MIN(x) FROM Sine WHERE x >= :myvalue);

You really need some more predicates to restrict the range of the
function between zero and two pi, but that is a minor detail. There are
other interpolation methods, but the idea is the same.

The lesson here is that SQL is a language designed to work with tables
and joins, not computations. You should look for a table solution before
you use a computational one. If you really want to get into the math
behind interpolation, I would suggest a copy of Interpolation by J. F.
Steffensen (Dover Publications, 2006, ISBN 0-486-45009-0).

PUZZLE 29 FIND THE MODE COMPUTATION 123

PUZZLE

29 FIND THE MODE COMPUTATION

The only descriptive statistical function in SQL is the simple average,
AVG(). While it is a common statistic, it is not the only one. The mean,
the median, and the mode are all ways of measuring “central tendency”
in a set of values. The mode is the most common value in a column in a
table. Let’s suppose that the table is named “Payroll” and has the
check_nbr number and the amount of each check_nbr.

CREATE TABLE Payroll
(check_nbr INTEGER NOT NULL PRIMARY KEY,
 check_amt DECIMAL(8,2) NOT NULL,
 ...);

What we want to see is the most common check amount and the
number of occurrences on the payroll. How would you write this query
in SQL-89? In SQL-92? In SQL-99?

Answer #1

SQL-89 lacks the orthogonality that SQL-92 has, so the best way is
probably to build a VIEW first:

CREATE VIEW AmtCounts
AS SELECT COUNT(*) AS check_cnt
 FROM Payroll
 GROUP BY check_amt;

then use the VIEW to find the most frequent check_amt amount:

SELECT check_amt, COUNT(*)
 FROM Payroll
 GROUP BY check_amt
HAVING COUNT(*) = (SELECT MAX(check_cnt)
 FROM AmtCounts);

But this solution leaves a VIEW lying around the database schema. If
you need it for something else, this is handy, but otherwise it is clutter. It
would be better to do this in one statement without VIEWs.

124 PUZZLE 29 FIND THE MODE COMPUTATION

Answer #2

The orthogonality of SQL-92 will allow you to fold the VIEW into a
tabular subquery, thus:

SELECT check_amt, COUNT(*)AS check_cnt
 FROM Payroll
 GROUP BY check_amt
HAVING COUNT(*) = (SELECT MAX(check_cnt)
 FROM (SELECT COUNT(*) AS check_cnt
 FROM Payroll
 GROUP BY check_amt));

The innermost SELECT statement has to be expanded completely
before it passes the grouped table to its immediate containing SELECT
statement. That statement finds the MAX() and then passes that single
number to the outermost SELECT. There is a very good chance that the
grouped table will be destroyed in this process.

If the optimizer were smart, it would have saved the first query to
reuse in the final answer, but don’t bet on it. Let’s keep looking.

Answer #3

Here is another SQL-92 solution that will handle NULLs a bit differently
than the last solution; can you tell me what the differences are?

SELECT P0.check_amt, COUNT(*)AS check_cnt
 FROM Payroll
 GROUP BY check_amt
HAVING COUNT(*) >= ALL (SELECT COUNT(*) AS check_cnt
 FROM Payroll
 GROUP BY check_amt);

The possible advantage of this answer is that since no MAX() function
is used, there is a better chance that the grouped table will be preserved
from one SELECT to be used by the other. Notice that the innermost
SELECT is a projection of the outermost SELECT.

You should try all three solutions to see how your particular SQL
implementation will perform with them.

PUZZLE 29 FIND THE MODE COMPUTATION 125

Answer #4

You will find that many of the current versions of SQL have a mode()
function in them now as part of the upcoming OLAP extensions, so this
is not much of a question anymore. We can effectively replace the
subquery with an OLAP function call.

SELECT check_amt,
 COUNT(*)OVER (PARTITION BY check_amt)
 AS check_cnt
 FROM Payroll;

However, I do not know if there is any particular performance
advantage to this.

126 PUZZLE 30 AVERAGE SALES WAIT

PUZZLE

30 AVERAGE SALES WAIT

Raymond Petersen asked me the following question: Given a Sales table
with just the date of the sale and customer columns, is there any way to
calculate the average number of days between sales for each customer in
a single SQL statement? Use a simple table in which you can assume that
nobody makes a sale to the same person on the same day:

CREATE TABLE Sales
(customer_name CHAR(5) NOT NULL,
 sale_date DATE NOT NULL,
 PRIMARY KEY (customer_name, sale_date));

Let’s take a look at the date for the first week in June 1994:

Sales
customer_name sale_date
=========================
'Fred' '1994-06-01'
'Mary' '1994-06-01'
'Bill' '1994-06-01'
'Fred' '1994-06-02'
'Bill' '1994-06-02'
'Bill' '1994-06-03'
'Bill' '1994-06-04'
'Bill' '1994-06-05'
'Bill' '1994-06-06'
'Bill' '1994-06-07'
'Fred' '1994-06-07'
'Mary' '1994-06-08'

The data shows that Fred waited one day, then waited five days, for
an average of three days between his visits. Mary waited seven days, for
an average of seven days. Bill is a regular customer every day.

Answer #1

The first impulse is to construct an elaborate VIEW that shows the
number of days between each purchase for each customer. The first task

PUZZLE 30 AVERAGE SALES WAIT 127

in this approach is to get the sales into a table with the current
sale_date and the date of the last purchase:

CREATE VIEW Lastsales (customer_name, this_sale_date,
last_sale_date)
 AS SELECT S1.customer_name, S1.saledate,
 (SELECT MAX(sale_date)
 FROM Sales AS S2
 WHERE S2.saledate < S1.saledate
 AND S2.customer_name = S1.customer_name)
 FROM Sales AS S1, Sales AS S2;

This is a greatest lower bound query—we want the highest date in the
set of dates for this customer that comes before the current date.

Now we construct a VIEW with the gap in days between this sale and
the customer’s last purchase. You could combine the two views into one
statement, but it would be unreadable and would not optimize any
better. Just to keep the code simple, assume that we have a DAYS()
function that returns an integer to do the temporal math.

CREATE VIEW SalesGap (customer_name, gap)
AS
SELECT customer, DAYS(this_sale_date, last_sale_date)
 FROM Lastsales;

The final answer is one query:

 SELECT customer, AVG(gap)
 FROM SalesGap
 GROUP BY customer_name;

You could combine the two views into the AVG() parameter, but it
would be totally unreadable, might blow up, and would run like
molasses.

Answer #2

I showed you Answer #1 because it demonstrates how you can be too
smart for your own good. Because we only look for the average number
of days a customer waits between purchases, there is no need to build an

128 PUZZLE 30 AVERAGE SALES WAIT

elaborate VIEW. Simply count the number of lapsed days and then divide
by the number of sales.

SELECT customer_name, DAYS(MAX(sale_date) - MIN(sale_date))
/ (COUNT(*)-1.0) AS avg_gap
 FROM Sales
 GROUP BY customer
HAVING COUNT(*) > 1;

The (COUNT(*) -1.0) works because there is always one less gap
than orders if you do not consider the time gap between the date of the
last order and today’s date. The decimal will cast the results to a numeric
rather than an integer. The HAVING clause will remove from
consideration customers who have made only one purchase. These one-
shot customers can be included by changing MAX(sale_date) to
CURRENT_DATE in the SELECT statement.

Incidentally, with either approach, you can have more than one sale
per day per customer.

PUZZLE 31 BUYING ALL THE PRODUCTS 129

PUZZLE

31 BUYING ALL THE PRODUCTS

Software AG introduced an intelligent SQL query-writing product called
Esperant in the mid-1990s. Using the keyboard and an interactive pick
list, the user constructs an English sentence, which the machine turns
into a series of target SQL queries.

Yes, natural-language queries are an old idea, but most of them have
involved some preprogramming of English phrases to make them work.
The amount of work that Esperant can do by itself is what makes it worth
looking at. It will generate relational divisions, create views, and build
complex transactions without any preprogramming.

Software AG’s demo had a typical schema with tables of customers,
orders, and order details.

CREATE TABLE Customers
(customer_id INTEGER NOT NULL PRIMARY KEY,
 acct_balance DECIMAL (12, 2) NOT NULL,
 ...);

CREATE TABLE Orders
(customer_id INTEGER NOT NULL,
 order_id INTEGER NOT NULL PRIMARY KEY,
 ...);

CREATE TABLE OrderDetails
(order_id INTEGER NOT NULL,
 item_id INTEGER NOT NULL,
 PRIMARY KEY(order_id, item_id),
 item_qty INTEGER NOT NULL,
 ...);

CREATE TABLE Products
(item_id INTEGER NOT NULL PRIMARY KEY,
 item_qty_on_hand INTEGER NOT NULL,
...);

Part of one sample problem was to find the average customer
acct_balance for all customers who had orders for all products, and the
average customer acct_balance for all customers who did not have
orders for all of the products. Esperant did an impressive job, but it

130 PUZZLE 31 BUYING ALL THE PRODUCTS

generated a lot of VIEWs for portability. Using some of the SQL-92
constructs or making better use of the old SQL-89 constructs, can you
improve this query?

Answer #1

The traditional answer is to use a deeply nested query. This query would
translate into “Find the average for the set of customers for whom there
is a product that is not in their orders” in English.

 SELECT AVG(acct_balance)
 FROM Customers AS C1
 WHERE EXISTS
 (SELECT *
 FROM Products AS P1
 WHERE P1.item_id
 NOT IN (SELECT D1.item_id
 FROM Orders AS O1, OrderDetails AS
D1
 WHERE O1.customer_id =
C1.customer_id
 AND O1.order_id = D1.order_id));

To get the average account balance of the customers, you could
change the EXISTS() to NOT EXISTS().

Answer #2

Gillian Robertson, of Worcestershire, England, found a neat trick that
saves some of the nesting of correlated subquery.

 SELECT AVG(acct_balance)
 FROM Customers AS C1
 WHERE (SELECT COUNT(DISTINCT item_id) -- all products we
sell ...
 FROM Products)
 <> (SELECT COUNT(DISTINCT item_id) -- versus what
he bought
 FROM Orders, OrderDetails
 WHERE Orders.customer_id = C1.customer_id
 AND Orders.order_id = OrderDetails.order_id);

PUZZLE 31 BUYING ALL THE PRODUCTS 131

This will find the average account balance of all customers who do
not buy all products, by ensuring that the number of DISTINCT items
that show up in their order details is not the number of DISTINCT items
in the products list. Obviously, changing “<>” to “=” returns the
customers who did order everything we sell.

Answer #3

Alex Kuznetsov realized that we need both answers (for those who
ordered all products and for those who did not order all products), and
we can get them in one query—simpler and better performing than
issuing two queries.

SELECT AVG(acct_balance), ordered_all_desc
 FROM SELECT Customers.customer_id, acct_balance,
 CASE WHEN num_ordered_products =
num_all_products
 THEN 'ordered all'
 ELSE 'not ordered all' END
 AS ordered_all_desc
 FROM Customers
 INNER JOIN
 (SELECT customer_id, COUNT(DISTINCT item_id)
num_ordered_products
FROM Orders
 INNER JOIN
 OrderDetails ON Orders.order_id = OrderDetails.order_id

GROUP BY customer_id
) AS ordered_products
ON Customers.customer_id = ordered_products.customer_id
CROSS JOIN
(SELECT COUNT(DISTINCT item_id)
 FROM Products)AS AllProducts (all_product_cnt)
) AS T
GROUP BY ordered_all_desc;

132 PUZZLE 32 COMPUTING TAXES

PUZZLE

32 COMPUTING TAXES

Richard Romley sent this problem via CompuServe. This is a simplified
version of a problem relating to tax calculations. I will define a tax area as
being made up of multiple tax authorities. For example, a tax area might
be a city, and the tax authorities for that city might be the city, the city’s
county, and the state. When you pay tax on a purchase in the city, the
tax rate you pay is made up of the city tax, the county tax, and the state
tax. Each of these taxing authorities changes its tax rate independently.

You have the following table:

CREATE TABLE TaxAuthorities
(tax_authority CHAR(10) NOT NULL,
 tax_area CHAR(10) NOT NULL,
 PRIMARY KEY (tax_authority, tax_area));

This is a hierarchy in which each tax area pays the multiple tax
authorities to which it belongs.

TaxAuthories
tax_authority tax_area
=======================
 'city1' 'city1'
 'city2' 'city2'
 'city3' 'city3'
 'county1' 'city1'
 'county1' 'city2'
 'county2' 'city3'
 'state1' 'city1'
 'state1' 'city2'
 'state1' 'city3'

This means that city1 and city2 are in county1 of state1; city3 is
in county2 of state1, and so forth. The other table you need is the tax
rates, as follows. There is an assumption that the rates are additive in a
direct, simple fashion.

CREATE TABLE TaxRates
(tax_authority CHAR(10) NOT NULL,

PUZZLE 32 COMPUTING TAXES 133

 effect_date DATE NOT NULL,
 tax_rate DECIMAL (8,2) NOT NULL,
 PRIMARY KEY (tax_authority, effect_date));

Populate this table as follows:

TaxRates
tax_authority effect_date tax_rate
======================================
 'city1' '1993-01-01' 1.0
 'city1' '1994-01-01' 1.5
 'city2' '1993-09-01' 1.5
 'city2' '1994-01-01' 2.0
 'city2' '1995-01-01' 2.0
 'city3' '1993-01-01' 1.7
 'city3' '1993-07-01' 1.9
 'county1' '1993-01-01' 2.3
 'county1' '1994-10-01' 2.5
 'county1' '1995-01-01' 2.7
 'county2' '1993-01-01' 2.4
 'county2' '1994-01-01' 2.7
 'county2' '1995-01-01' 2.8
 'state1' '1993-01-01' 0.5
 'state1' '1994-01-01' 0.8
 'state1' '1994-07-01' 0.9
 'state1' '1994-10-01' 1.1

This table is to be used for answering problems such as “What is the
total tax rate for city2 on November 1, 1994?” for the tax collector. The
answer for this particular question would be:

city2 tax rate = 2.0
county1 tax rate = 2.5
state1 tax rate = 1.1

Total tax rate = 5.6

Can you write a single SQL query to answer this question?

134 PUZZLE 32 COMPUTING TAXES

Answer #1

It is best to solve this problem in pieces. First, you want to find out who
the taxing authorities for the city are, so you write a subquery:

(SELECT tax_authority
 FROM TaxAuthories AS A1
 WHERE A1.tax_area = 'city2')

which will result in the set ('city2', 'county1', 'state1').
Next, you want to find out what the tax rates were on November 1,

1994, so you write another subquery:

(SELECT tax_authority, tax_rate
 FROM TaxRates AS R1
 WHERE R1.effect_date = (SELECT MAX (R2.effect_date)
 FROM TaxRates AS R2
 WHERE R2.effect_date <= '1994-11-01'))

Now, combine the two subqueries, do a summation, and put your
constants in the SELECT list to make the final answer readable. Actually,
I would change these constants into parameters to generalize the routine,
but for now, let’s stick to the original problem:

SELECT 'city2' AS city, '1994-11-01' AS effect_date,
 SUM (tax_rate) AS total_taxes
 FROM TaxRates AS R1
 WHERE R1.effect_date =
 (SELECT MAX (R2.effect_date)
 FROM TaxRates AS R2
 WHERE R2.dteffective <= '1994-11-01'
 AND R1.tax_authority = R2.tax_authority)
 AND R2.tax_authority IN (SELECT tax_authority
 FROM TaxAuthoriies AS A1
 WHERE A1.tax_area =
'city2')
 GROUP BY city, effect_date;

But wait! You can do more consolidation and move the second AND
predicate to a deeper level of nesting, like this:

PUZZLE 32 COMPUTING TAXES 135

SELECT 'city2' AS city, '1994-11-01' AS effective_date,
 SUM(tax_rate) AS total_taxes
 FROM TaxRates AS R1
 WHERE R1.effect_date =
 (SELECT MAX (R2.effect_date)
 FROM TaxRates AS R2
 WHERE R2.dteffective <= '1994-11-01'
 AND R1.tax_authority = R2.tax_authority
 AND R2.tax_authority
 IN (SELECT tax_authority
 FROM TaxAuthories AS A1
 WHERE A1.tax_area = 'city2'
 GROUP BY city, effect_date;

Because the subquery is a noncorrelated, constant list, performance
should be pretty good. And sure enough, when I look at the execution
plan in WATCOM SQL, I found that the R1 and R2 tables were
sequentially scanned, but the A1 table used the primary key index. If I put
indexes on the TaxRates table, I can get an even faster execution plan.

Answer #2

Diosdado Nebres, of Washington state, sent in an alternative solution to
this puzzler:

SELECT SUM(T2.authtaxrate)
 FROM TaxAuthoriies AS T1, TaxRates AS T2
 WHERE T1.tax_area = 'city2'
 AND T2.tax_authority = T1.tax_authority
 AND T2.effect_date =
 (SELECT MAX(effect_date)
 FROM TaxRates
 WHERE tax_authority = T2.tax_authority
 AND effect_date <= '1994-11-01');

He eliminated the GROUP BY, which is a good move since the query
will work as well, if not better, without it. And he replaced the deepest
level of nesting with a JOIN between TaxAuthority and TaxRates. That
greatly reduces the number of times the first subquery is executed.

136 PUZZLE 32 COMPUTING TAXES

Answer #3

Most current SQL programmers will recognize that the taxing authorities
are in a hierarchy and would use a nested sets model. I will not bother to
explain nested sets and the use of (lft, rgt) pairs for modeling hierarchies
(see my book, Joe Celko’s Trees and Hierarchies in SQL for Smarties, ISBN
1-55860-920-2), but the two tables are replaced by a single table:

CREATE TABLE TaxRates
(tax_authority CHAR(10) NOT NULL,
 lft INTEGER NOT NULL CHECK (lft > 0),
 rgt INTEGER NOT NULL,
 CHECK (lft < rgt),
 start_date DATE NOT NULL
 end_date DATE, -- null is current rate
 tax_rate DECIMAL(8,2) NOT NULL,
 PRIMARY KEY (tax_authority, start_date)
);

The date pairs are the time ranges that a tax rate was in effect. They
have to be nonoverlapping. The reason for using the ranges is so that
historical rates can be computed more easily.

SELECT SUM(T2.taxrate)
 FROM TaxRates AS T1, TaxRates AS T2
 WHERE T1.tax_authority = :my_location
 AND :my_date BETWEEN T1.prior_date
 AND COALESCE (T1.effect_date, CURRENT_DATE)
 AND T1.lft BETWEEN T2.lft AND T2.rgt;

The COALESCE() will handle the current tax rates, if we do not have a
future date for their expiration.

PUZZLE 33 COMPUTING DEPRECIATION 137

PUZZLE

33 COMPUTING DEPRECIATION

This is based on a problem posted by Gerhard F. Jilovec on
CompuServe. He had a manufacturing company database from which he
wished to compute depreciation on the machinery. To this end, his
database has a table of machines, like this:

CREATE TABLE Machines
(machine_name CHAR(20) NOT NULL PRIMARY KEY,
 purchase_date DATE NOT NULL,
 initial_cost DECIMAL (10,2) NOT NULL,
 lifespan INTEGER NOT NULL);

Where the column purchase_date is just what you think—the
purchase date of that machine. The initial_cost column is the initial
cost of the machine. The lifespan column is the expected lifespan of the
equipment given in days.

There is also a table of the cost of using a particular machine on a
particular batch of work, defined as:

CREATE TABLE ManufactCosts
(machine_name CHAR(20) NOT NULL
 REFERENCES Machinery(machine_name),
 manu_date DATE NOT NULL,
 batch_nbr INTEGER NOT NULL,
 manu_cost DECIMAL (6,2) NOT NULL,
 PRIMARY KEY (machine_name, manu_date, batch_nbr));

Where the manu_date column is the date that a particular batch was
processed on that machine. The manu_cost is what it cost to
manufacture that batch. A similar table of manufacturing hours tells us
how much time each batch took. It looks like this:

CREATE TABLE ManufactHrs
(machine_name CHAR(20) NOT NULL REFERENCES Machines,
 manu_date DATE NOT NULL,
 batch_nbr INTEGER NOT NULL,
 manu_hrs DECIMAL(4,2) NOT NULL,
 PRIMARY KEY (machine_name, manu_date, batch_nbr));

138 PUZZLE 33 COMPUTING DEPRECIATION

Your problem is to suggest a better design for the database. Then you
are to write a query that will give us the average hourly cost of each
machine to date for any day we choose.

Answer #4

Time and money were in separate tables in the original design because
the data was collected separately from time cards and from the
accounting department.

You should put manufacturing cost (manu_cost) and manufacturing
hours (manu_hrs) in a single table, keyed by the machine, the date, and
the batch number. If you can have hours without knowing the cost or
cost without knowing the hours, your design might allow NULLs in those
columns, but you will still have to watch your math. I would replace the
two tables with:

CREATE TABLE ManufactHrsCosts
(machine_name CHAR(20) NOT NULL
 REFERENCES Machines(machine_name),
 manu_date DATE NOT NULL,
 batch_nbr INTEGER NOT NULL,
 manu_hrs DECIMAL(4,2) NOT NULL,
 manu_cost DECIMAL (6,2) NOT NULL,
 PRIMARY KEY (machine_name, manu_date, batch_nbr));

Let’s do an example with some data. We just bought a frammis cutter
for $10,000 five days ago, and we were able to run seven batches on it.
The lifetime for a frammis cutter is 1,000 days.

ManufactHrsCosts
machine_name manu_date batch_nbr manu_hrs manu_cost
===
'Frammis' '1995-07-24' 101 2.5 123.00
'Frammis' '1995-07-25' 102 2.5 125.00
'Frammis' '1995-07-25' 103 2.0 110.00
'Frammis' '1995-07-26' 104 2.5 125.00
'Frammis' '1995-07-27' 105 2.5 120.00
'Frammis' '1995-07-27' 106 2.5 120.00
'Frammis' '1995-07-28' 107 2.5 125.00

PUZZLE 33 COMPUTING DEPRECIATION 139

On July 24, the first day of use, the average hourly cost was
($123.00 / 2.5) + $10.00 = $59.20 per hour. But by July 25, the second
day of use, the average hourly cost was ($123.00 + $125.00 + $110.00
+(2 * $10.00))/(2.5 + 2.5 + 2.0 hrs) = $55.43, a considerable reduction.
At the end of the first five days, the hourly cost is $52.82 for the
frammis cutter.

While you could do this with other approaches, I like to create a VIEW
for total cost and hours. I can use it for other daily reports.

CREATE VIEW TotHrsCosts (machine_name, manu_date, day_cost,
day_hrs)
 AS SELECT machine_name, manu_date, SUM(manu_cost),
SUM(manu_hrs)
 FROM ManufactHrsCosts
 GROUP BY machine_name, manu_date;

Let’s assume we can compute the number of days between two DATE
variables by subtraction. After that, your query is simply:

SELECT :mydate, M1.machine_name,
 (((initial_cost/lifespan) -- amortized cost per day
 * (:mydate - M1.purchase_date + 1)) -- days of life so
far)
 -- add the average hourly cost
 + (SELECT SUM(THC.daycost)/SUM(THC.dayhrs)
 FROM TotHrsCosts AS THC
 WHERE M1.machine_name = THC.machine_name)) AS
hourly_cost
 FROM Machines AS M1
WHERE :mydate BETWEEN M1.purchase_date AND manu_date;

Think about the WHERE clause predicate for a moment; it is a nice
trick to avoid negative values in the first part of the calculations for
hourly cost.

Answer #5

This came from Francisco Moreno, when he was a student in Colombia,
who found a short solution, avoiding the view and the scalar subquery:

SELECT MAX(:mydate) AS my_date,
 F.machine_name,

140 PUZZLE 33 COMPUTING DEPRECIATION

 (MAX ((initial_cost/lifespan) *
 (:mydate - purchase_date + 1)
) + SUM(manucost)
) / SUM(manu_hrs) AS average_hour
FROM ManufactCosts AS F,
 Machines AS M
WHERE M.machine_name = F.machine_name
 AND purchase_date <= :mydate
 AND manu_date <= :mydate
GROUP BY F.machine_name;

PUZZLE 34 CONSULTANT BILLING 141

PUZZLE

34 CONSULTANT BILLING

Brian K. Buckley posted a version of the following problem in November
1994, requesting assistance. He has three tables, declared as:

CREATE TABLE Consultants
(emp_id INTEGER NOT NULL,
 emp_name CHAR(10) NOT NULL);

INSERT INTO Consultants
VALUES (1, 'Larry'),
 (2, 'Moe'),
 (3, 'Curly');

CREATE TABLE Billings
(emp_id INTEGER NOT NULL,
 bill_date DATE NOT NULL,
 bill_rate DECIMAL (5,2));

INSERT INTO Billings
VALUES (1, '1990-01-01', 25.00);
 (2, '1989-01-01', 15.00),
 (3, '1989-01-01', 20.00),

 (1, '1991-01-01', 30.00);

CREATE TABLE HoursWorked
(job_id INTEGER NOT NULL,
 emp_id INTEGER NOT NULL,
 work_date DATE NOT NULL,
 bill_hrs DECIMAL(5, 2));

INSERT INTO HoursWorked
VALUES (4, 1, '1990-07-01', 3),
 (4, 1, '1990-08-01', 5),
 (4, 2, '1990-07-01', 2),
 (4, 1, '1991-07-01', 4);

He wanted a single query that would show a list of names and total
charges for a given job. Total charges are calculated for each employee as

142 PUZZLE 34 CONSULTANT BILLING

the hours worked multiplied by the applicable hourly billing rate. For
example, the sample data shown would give the following answer:

Results
name totalcharges
===================
'Larry' 320.00
'Moe' 30.00

since Larry would have ((3+5) hours * $25 rate + 4 hours * $30 rate) =
$320.00 and Moe (2 hours * $15 rate) = $30.00.

Answer #1

I think the best way to do this is to build a VIEW, then summarize from it.
The VIEW will be handy for other reports. This gives you the VIEW:

CREATE VIEW HourRateRpt (emp_id, emp_name, work_date,
bill_hrs, bill_rate)
AS
SELECT H1.emp_id, emp_name, work_date, bill_hrs,
 (SELECT bill_rate
 FROM Billings AS B1
 WHERE bill_date = (SELECT MAX(bill_date)
 FROM Billings AS B2
 WHERE B2.bill_date <=
H1.work_date
 AND B1.emp_id = B2.emp_id
 AND B1.emp_id =
H1.emp_id)))
 FROM HoursWorked AS H1, Consultants AS C1
 WHERE C1.emp_id = H1.emp_id;

Then your report is simply:

SELECT emp_id, emp_name, SUM(bill_hrs * bill_rate) AS
bill_tot
 FROM HourRateRpt
 GROUP BY emp_id, emp_name;

PUZZLE 34 CONSULTANT BILLING 143

But since Mr. Buckley wanted it all in one query, this would be his
requested solution:

SELECT C1.emp_id, C1.emp_name, SUM(bill_hrs) *
(SELECT bill_rate
 FROM Billings AS B1
 WHERE bill_date = (SELECT MAX(bill_date)
 FROM Billings AS B2
 WHERE B2.bill_date <= H1.work_date
 AND B1.emp_id = B2.emp_id
 AND B1.emp_id = H1.emp_id))
 FROM HoursWorked AS H1, Consultants AS C1
 WHERE H1.emp_id = C1.emp_id
 GROUP BY C1.emp_id, C1.emp_name;

This is not an obvious answer for a beginning SQL programmer, so
let’s talk about it. Start with the innermost query, which picks the
effective date of each employee that immediately occurred before the
date of this billing. The next level of nested query uses this date to find
the billing rate that was in effect for the employee at that time; that is
why the outer correlation name B1 is used. Then, the billing rate is
returned to the expression in the SUM() function and multiplied by the
number of hours worked. Finally, the outermost query groups each
employee’s billings and produces a total.

Answer #2

Linh Nguyen sent in another solution:

SELECT name, SUM(H1.bill_hrs * B1.bill_rate)
 FROM Consultants AS C1, Billings AS B1, Hoursworked AS H1
 WHERE C1.emp_id = B1.emp_id
 AND C1.emp_id = H1.emp_id
 AND bill_date = (SELECT MAX(bill_date)
 FROM Billings AS B2
 WHERE B2.emp_id = C1.emp_id
 AND B2.bill_date <= H1.work_date)
 AND H1.work_date >= bill_date
 GROUP BY name;

144 PUZZLE 34 CONSULTANT BILLING

This version of the query has the advantage over the first solution in
that it does not depend on subquery expressions, which are often slow.
The moral of the story is that you can get too fancy with new features.

PUZZLE 35 INVENTORY ADJUSTMENTS 145

PUZZLE

35 INVENTORY ADJUSTMENTS

This puzzle is a quickie in SQL-92, but was very hard to do in SQL-89.
Suppose you are in charge of the company inventory. You get
requisitions that tell how many widgets people are putting into or taking
out of a warehouse bin on a given date. Sometimes the quantity is
positive (returns), and sometimes the quantity is negative (withdrawals).

CREATE TABLE InventoryAdjustments
(req_date DATE NOT NULL,
 req_qty INTEGER NOT NULL
 CHECK (req_qty <> 0),
 PRIMARY KEY (req_date, req_qty));

Your job is to provide a running balance on the quantity-on-hand as
an SQL column. Your results should look like this:

Warehouse
req_date req_qty onhand_qty
================================
'1994-07-01' 100 100
'1994-07-02' 120 220
'1994-07-03' -150 70
'1994-07-04' 50 120
'1994-07-05' -35 85

Answer #1

SQL-92 can use a subquery in the SELECT list, or even a correlated
query. The rules are that the result must be a single value (hence the
name “scalar subquery”); if the query results are an empty table, the
result is a NULL. This interesting feature of the SQL-92 standard
sometimes lets you write an OUTER JOIN as a query within the SELECT
clause. For example, the following query will work only if each customer
has one or zero orders:

SELECT cust_nbr, cust_name,
 (SELECT order_amt
 FROM Orders
 WHERE Customers.cust_nbr = Orders.cust_nbr)

146 PUZZLE 35 INVENTORY ADJUSTMENTS

 FROM Customers;

and give the same result as:

SELECT cust_nbr, cust_name, order_amt
 FROM Customers
 LEFT OUTER JOIN
 Orders
 ON Customers.cust_nbr = Orders.cust_nbr;

In this problem, you must sum all the requisitions posted up to and
including the date in question. The query is a nested self-join, as follows:

SELECT req_date, req_qty,
 (SELECT SUM(req_qty)
 FROM InventoryAdjustments AS A2
 WHERE A2.req_date <= A1.req_date)
 AS req_onhand_qty
 FROM iInventoryAdjustments AS A1
 ORDER BY req_date;

Frankly, this solution will run slowly compared to a procedural
solution, which could build the current quantity-on-hand from the
previous quantity-on-hand from a sorted file of records.

Answer #2

Jim Armes at Trident Data Systems came up with a somewhat easier
solution than the first answer:

SELECT A1.req_date, A1.req_qty, SUM(A2.req_qty) AS
req_onhand_qty
 FROM InventoryAdjustments AS A2, InventoryAdjustments AS
A1
 WHERE A2.req_date <= A1.req_date
 GROUP BY A1.req_date, A1.req_qty
 ORDER BY A1.req_date;

This query works, but becomes too costly. Assume you have (n)
requisitions in the table. In most SQL implementations, the GROUP BY

PUZZLE 35 INVENTORY ADJUSTMENTS 147

clause will invoke a sort. Because the GROUP BY is executed for each
requisition date, this query will sort one row for the group that belongs
to the first day, then two rows for the second day’s requisitions, and so
forth until it is sorting (n) rows on the last day.

The “SELECT within a SELECT” approach in the first answer involves
no sorting, because it has no GROUP BY clause. Assuming no index on
the requisition date column, the subquery approach will do the same
table scan for each date as the GROUP BY approach does, but it could
keep a running total as it does. Thus, we can expect the “SELECT within a
SELECT” to save us several passes through the table.

Answer #3

The SQL:2003 standards introduced OLAP functions that will give you
running totals as a function. The old SQL-92 scalar subquery becomes a
function. There is even a proposal for a MOVING_SUM() option, but it is
not widely available.

SELECT req_date, req_qty,
 SUM(req_qty)
 OVER (ORDER BY req_date DESC
 ROWS UNBOUNDED PRECEDING))
 AS req_onhand_qty
 FROM InventoryAdjustments
 ORDER BY req_date;

This is a fairly compact notation, but it also explains itself. I take the
requisition date on the current row, and I total all of the requisition
quantities that came before it in descending date order. This has the
same effect as the old scalar subquery approach. Which would you rather
read and maintain?

Notice also that you can change SUM() to AVG() or other aggregate
functions with that same OVER() window clause. At the time of this
writing, these are new to SQL, and I am not sure as to how well they are
optimized in actual products.

148 PUZZLE 36 DOUBLE DUTY

PUZZLE

36 DOUBLE DUTY

Back in the early days of CompuServe, Nigel Blumenthal posted a
notice that he was having trouble with an application. The goal was to
take a source table of the roles that people play in the company, where
'D' means the person is a Director, 'O' means the person is an Officer,
and we do not worry about the other codes. We want to produce a
report with a code 'B', which means the person is both a Director and an
Officer. The source data might look like this when you reduce it to its
most basic parts:

Roles
person role
=============
'Smith' 'O'
'Smith' 'D'
'Jones' 'O'
'White' 'D'
'Brown' 'X'

and the result set will be:

Result
person combined_role
=====================
'Smith' 'B'
'Jones' 'O'
'White' 'D'

Nigel’s first attempt involved making a temporary table, but this was
taking too long.

Answer #1

Roy Harvey’s first reflex response—written without measurable
thought—was to use a grouped query. But we need to show the double-
duty guys and the people who were just 'D' or just 'O' as well. Extending
his basic idea, you get:

PUZZLE 36 DOUBLE DUTY 149

 SELECT R1.person, R1.role
 FROM Roles AS R1
 WHERE R1.role IN ('D', 'O')
 GROUP BY R1.person
 HAVING COUNT(DISTINCT R1.role) = 1
 UNION
 SELECT R2.person, 'B'
 FROM Roles AS R2
 WHERE R2.role IN ('D', 'O')
 GROUP BY R2.person
 HAVING COUNT(DISTINCT R2.role) = 2

but this has the overhead of two grouping queries.

Answer #2

Leonard C. Medal replied to this post with a query that could be used in
a VIEW and save the trouble of building the temporary table. His attempt
was something like this:

SELECT DISTINCT R1.person,
 CASE WHEN EXISTS (SELECT *
 FROM Roles AS R2
 WHERE R2.person = R1.person
 AND R2.role IN ('D', 'O'))
 THEN 'B'
 ELSE (SELECT DISTINCT R3.role
 FROM Roles AS R3
 WHERE R3.person = R1.person
 AND R3.role IN ('D', 'O'))
 END AS combined_role
 FROM Roles AS R1
 WHERE R1.role IN ('D', 'O');

Can you come up with something better?

Answer #3

I was trying to mislead you into trying self-joins. Instead you should
avoid all those self-joins in favor of a UNION. The employees with a dual
role will appear twice, so you are just looking for a row count of two.

150 PUZZLE 36 DOUBLE DUTY

SELECT R1.person, MAX(R1.role)
 FROM Roles AS R1
 WHERE R1.role IN ('D','O')
 GROUP BY R1.person
HAVING COUNT(*) = 1
UNION
SELECT R2.person, 'B'
 FROM Roles AS R2
 WHERE R2.role IN ('D','O')
 GROUP BY R2.person
HAVING COUNT(*) = 2;

In SQL-92, you will have no trouble putting a UNION into a VIEW, but
some older SQL products may not allow it.

Answer #4

SQL-92 has a CASE expression and you can often use it as replacement.
This leads us to the final simplest form:

SELECT person,
 CASE WHEN COUNT(*) = 1
 THEN role
 ELSE 'B' END
 FROM Roles
 WHERE role IN ('D','O')
 GROUP BY person;

The clause “THEN role” will work since we know that it is unique
within a person because it has a count of 1. However, some SQL
products might want to see “THEN MAX(role)” instead because “role”
was not used in the GROUP BY clause, and they would see this as a syntax
violation between the SELECT and the GROUP BY clauses.

Answer #5

Here is another trick with a CASE expression and a GROUP BY:

SELECT person,
 CASE WHEN MIN(role) <> MAX(role)
 THEN ‘B’ ELSE MIN(role) END

PUZZLE 36 DOUBLE DUTY 151

 AS combined_role
 FROM Roles
 WHERE role IN ('D','O')
 GROUP BY person;

Answer #6

Mark Wiitala used another approach altogether. It was the fastest answer
available when it was proposed.

SELECT person,
 SUBSTRING ('ODB' FROM SUM (POSITION (role IN 'DO'))
FOR 1)
 FROM Person_Role
 WHERE role IN ('D','O')
 GROUP BY person;

This one takes some time to understand, and it is confusing because
of the nested function calls. For each group formed by a person’s name,
the POSITION() function will return a 1 for 'D' or a 2 for 'O' in the role
column. The SUM() of those results is then used in the SUBSTRING()
function to convert a 1 back to 'D', a 2 back to 'O', and a 3 into 'B'. This is
a rather interesting use of conjugacy, the mathematical term where you
use a transform and its inverse to make a problem easier. Logarithms
and exponential functions are the most common examples.

152 PUZZLE 37 A MOVING AVERAGE

PUZZLE

37 A MOVING AVERAGE

You are collecting statistical information stored by the quarter hour.
What your customer wants is to get information by the hour—not on the
hour. That is, we don’t want to know what the load was at 00:00 hours, at
01:00 hours, at 02:00 hours, and so forth. We want the average load for
the first four quarter hours (00:00, 00:15, 00:30, 00:45), for the next
four quarter hours (00:15, 00:30, 00:45, 01:00), and so forth. This is
called a moving average, and we will assume that the sample table looks
like this:

CREATE TABLE Samples
(sample_time TIMESTAMP NOT NULL PRIMARY KEY,
 load REAL NOT NULL);

Answer #1

One way is to add another column to hold the moving average:

CREATE TABLE Samples
(sample_time TIMESTAMP NOT NULL PRIMARY KEY,
 moving_avg REAL NOT NULL DEFAULT 0
 load REAL DEFAULT 0 NOT NULL);

then update the table with a series of statements, like this:

UPDATE Samples
 SET moving_avg
 = (SELECT AVG(S1.load)
 FROM Samples AS S1
 WHERE S1.sample_time
 IN (Samples.sample_time,
 (Samples.sample_time - INTERVAL 15
MINUTES),
 (Samples.sample_time - INTERVAL 30
MINUTES),
 (Samples.sample_time - INTERVAL 45
MINUTES));

PUZZLE 37 A MOVING AVERAGE 153

Answer #2

However, this is not the only way to write the UPDATE statement. The
assumption that we are sampling exactly every 15 minutes is probably
not true; there will be some sampling errors, so the timestamps could
be a few minutes off. We could try for the hour time slot, instead of an
exact match:

UPDATE Samples
 SET moving_avg
 = (SELECT AVG(S1.load)
 FROM Samples AS S1
 WHERE S1.sample_time
 BETWEEN (Samples.sample_time - INTERVAL 1
HOUR)
 AND Samples.sample_time);

Answer #3

That last update attempt suggests that we could use the predicate to
construct a query that would give us a moving average:

SELECT S1.sample_time, AVG(S2.load) AS avg_prev_hour_load
 FROM Samples AS S1, Samples AS S2
 WHERE S2.sample_time
 BETWEEN (S1.sample_time - INTERVAL 1 HOUR)
 AND S1.sample_time
 GROUP BY S1.sample_time;

Is the extra column or the query approach better? The query is
technically better because the UPDATE approach will denormalize the
database. However, if the historical data being recorded is not going to
change and computing the moving average is expensive, you might
consider using the column approach.

Answer #4

We can also use the new SQL-99 OLAP functions. Create the table with
time slots for all the measurements that you are going to make:

SELECT sample_time,
 AVG(load)

154 PUZZLE 37 A MOVING AVERAGE

 OVER (ORDER BY sample_time DESC
 ROWS 4 PRECEDING)
 FROM Samples
 WHERE EXTRACT (MINUTE FROM sample_time) = 00;

The SELECT computes the running total over the preceding time
slots, and the WHERE clause prunes out three of the four to display the
desired sample points.

Another trick is to build a table of 15-minute points for a 24-hour
period. You can then construct a VIEW that will update itself every day
and save you from having a huge table.

CREATE VIEW DailyTimeSlots (slot_timestamp)
AS
SELECT CURRENT_DATE + CAST (tick AS MINUTES)
 FROM ClockTicks;

PUZZLE 38 JOURNAL UPDATING 155

PUZZLE

38 JOURNAL UPDATING

This is a simple accounting puzzle. You are given a table that represents
an accounting journal with transaction dates, transaction amounts, and
the accounts to which they are applied. You are to find the number of
days between each transaction and post that number of days on the first
of the transactions, effectively giving you how many days until the next
transaction against that account.

Assume that the table is very simple:

CREATE TABLE Journal
(acct_nbr INTEGER NOT NULL,
 trx_date DATE NOT NULL,
 trx_amt DECIMAL (10, 2) NOT NULL,
 duration INTEGER NOT NULL);

Answer #1

The first answer is to use a subquery expression to do the calculation
and to determine when the most recent transaction occurred relative to
the current date. With a little thought, that gives us this code:

UPDATE Journal
 SET duration =
 (SELECT CAST ((Journal.trx_date - J1.trx_date)
 DAYS AS INTEGER)
 FROM Journal AS J1
 WHERE J1.acct_nbr = Journal.acct_nbr
 AND J1.trx_date =
 (SELECT MIN(trx_date)
 FROM Journal AS J2
 WHERE J2.acct_nbr = Journal.acct_nbr
 AND J2.trx_date > Journal.trx_date))
 WHERE EXISTS (SELECT *
 FROM Journal AS J3
 WHERE J3.acct_nbr = Journal.acct_nbr
 AND J3.trx_date > Journal.trx_date);

156 PUZZLE 38 JOURNAL UPDATING

Since we did not say what happens to the latest transaction for each
account, the WHERE clause will keep the UPDATE from touching those
rows.

Answer #2

Look at this a bit closer. The J1 table contributes nothing and can be
removed without affecting the results if we do a little tricky
programming to produce the following:

UPDATE Journal
 SET duration
 = CAST ((Journal.trx_date -
 (SELECT MIN(trx_date)
 FROM Journal AS J1
 WHERE J1.acct_nbr = Journal.acct_nbr
 AND J1.trx_date > Journal.trx_date))
) DAYS AS INTEGER)
 WHERE EXISTS (SELECT *
 FROM Journal J2
 WHERE J2.acct_nbr = Journal.acct_nbr
 AND J2.trx_date > Journal.trx_date);

This depends on the use of a scalar subquery expression inside a
function call. By removing the unnecessary subquery, you reduce the I/O
count by more than 50% in Sybase version 11! This is really not
surprising because nested correlations increase the work exponentially,
not linearly. Now we have two correlated queries but no nested ones.

The bad news is that as a programmer, you have to code the identical
logic in two different places in the query. This is awkward and prone to
errors, especially for future changes. The first time out, you will do a cut
and paste in a text editor, but people tend to forget about that again
when they are maintaining code.

Answer #3

One way around this could be to not use the WHERE clause at all. A
COALESCE() function with your expression would leave things
unchanged where there was no matchup:

PUZZLE 38 JOURNAL UPDATING 157

UPDATE Journal
 SET duration
 = COALESCE (CAST ((Journal.trx_date -
 (SELECT MIN(trx_date)
 FROM Journal AS J1
 WHERE J1.acct_nbr = Journal.acct_nbr
 AND J1.trx_date >
 Journal.trx_date))
) DAYS AS INTEGER),
 Journal.duration);

This statement will result in a table scan of the Journal table. This may
or may not work better than the second solution, depending on how
your database engine releases pages that have been updated.

Answer #4

The best answer is to not do this at all. You can construct a VIEW with the
new OLAP functions to get the preceding:

SELECT acct_nbr, trx_date,
 (trx_date -
 MAX(trx_date)
 OVER(ORDER BY trx_date DESC
 RANGE BETWEEN 1 PRECEDING
 AND 1 PRECEDING)) DAY
 AS duration
 FROM Journal;

Since each product’s temporal functions are different, you will
probably have to change the code a bit.

158 PUZZLE 39 INSURANCE LOSSES

PUZZLE

39 INSURANCE LOSSES

This puzzle came in my e-mail from Mike Gora. I changed the original
problem a bit, but the idea still holds. You are given a table with the
results of an insurance salesperson’s appraisal of the possible losses a
customer might suffer. To make the code easier, let’s alphabetically name
the dangers a through o. If a danger is not present for this customer,
then we show that with a NULL. If a danger is present, then we give it a
numeric rating. For example, a fireworks factory on a mountaintop has
no danger of a flood, but the “explosion” factor is very high. Typically,
only five or six of these attributes will have any values. The table looks
like this:

CREATE TABLE Losses
(cust_nbr INTEGER NOT NULL PRIMARY KEY,
 a INTEGER, b INTEGER, c INTEGER, d INTEGER, e INTEGER,
 f INTEGER, g INTEGER, h INTEGER, i INTEGER, j INTEGER,
 k INTEGER, l INTEGER, m INTEGER, n INTEGER, o INTEGER);

Let’s put one customer into the table so we will have someone to talk
about:

INSERT INTO Losses
VALUES (99, 5, 10, 15, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL);

We have a second table that we use to determine the correct policy to
sell to the customer based on his or her possible losses. That table looks
like this:

CREATE TABLE Policy_Criteria
(criteria_id INTEGER NOT NULL,
 criteria CHAR(1) NOT NULL,
 crit_val INTEGER NOT NULL,
 PRIMARY KEY (criteria_id, criteria, crit_val));

INSERT INTO Policy_Criteria VALUES (1, 'A', 5);
INSERT INTO Policy_Criteria VALUES (1, 'A', 9);

PUZZLE 39 INSURANCE LOSSES 159

INSERT INTO Policy_Criteria VALUES (1, 'A', 14);
INSERT INTO Policy_Criteria VALUES (1, 'B', 4);
INSERT INTO Policy_Criteria VALUES (1, 'B', 10);
INSERT INTO Policy_Criteria VALUES (1, 'B', 20);
INSERT INTO Policy_Criteria VALUES (2, 'B', 10);
INSERT INTO Policy_Criteria VALUES (2, 'B', 19);
INSERT INTO Policy_Criteria VALUES (3, 'A', 5);
INSERT INTO Policy_Criteria VALUES (3, 'B', 10);
INSERT INTO Policy_Criteria VALUES (3, 'B', 30);
INSERT INTO Policy_Criteria VALUES (3, 'C', 3);
INSERT INTO Policy_Criteria VALUES (3, 'C', 15);
INSERT INTO Policy_Criteria VALUES (4, 'A', 5);
INSERT INTO Policy_Criteria VALUES (4, 'B', 21);
INSERT INTO Policy_Criteria VALUES (4, 'B', 22);

In English, this means that:

Policy 1 has criteria A = (5, 9, 14), B = (4, 10, 20)
Policy 2 has criteria B = (10, 19)
Policy 3 has criteria A = 5, B = (10, 30), C = (3, 15)
Policy 4 has criteria A = 5, B = (21, 22)

The Losses data for customer 99 has A = 5, B = 10, C = 15.

Therefore, the customer 99 could be offered policies 1, 2, and 3, but
not 4. Policy 3 should be ranked the highest, because it matches the
most qualifications and returned as the answer. Policy 1 should be
second highest, and Policy 2 should be last, but let’s not worry about
presenting alternatives yet.

Answer #1

The trick in this problem is that the losses are presented as attributes in
the Losses table and as values in the Policy Criteria table. This messes up
the data model and means that you have to convert one table to match the
other. I will pick the Losses table and flatten it out as shown below. This
might be done with a VIEW, but I am going to show it as a working table:

CREATE TABLE LossDoneRight
(cust_nbr INTEGER NOT NULL,
 criteria CHAR(1) NOT NULL,

160 PUZZLE 39 INSURANCE LOSSES

 crit_val INTEGER NOT NULL)

Here is how you transform values to and from attributes:

INSERT INTO LossDoneRight (cust_nbr, criteria, crit_val)
SELECT cust_nbr, 'A', a FROM Losses WHERE a IS NOT NULL
 UNION ALL
 SELECT cust_nbr, 'B', b FROM Losses WHERE b IS NOT NULL
 UNION
 SELECT cust_nbr, 'C', c FROM Losses WHERE c IS NOT NULL
 UNION
 SELECT cust_nbr, 'D', d FROM Losses WHERE d IS NOT NULL
 UNION
 SELECT cust_nbr, 'E', e FROM Losses WHERE e IS NOT NULL
 UNION
 SELECT cust_nbr, 'F', f FROM Losses WHERE f IS NOT NULL
 UNION
 SELECT cust_nbr, 'G', g FROM Losses WHERE g IS NOT NULL
 UNION
 SELECT cust_nbr, 'H', h FROM Losses WHERE h IS NOT NULL
 UNION SELECT cust_nbr, 'I', i FROM Losses
 WHERE i IS NOT NULL
 UNION
 SELECT cust_nbr, 'J', j FROM Losses WHERE j IS NOT NULL
 UNION
 SELECT cust_nbr, 'K', k FROM Losses WHERE k IS NOT NULL
 UNION
 SELECT cust_nbr, 'L', l FROM Losses WHERE l IS NOT NULL
 UNION
 SELECT cust_nbr, 'M', m FROM Losses WHERE m IS NOT NULL
 UNION
 SELECT cust_nbr, 'N', n FROM Losses WHERE n IS NOT NULL
 UNION
 SELECT cust_nbr, 'O', o FROM Losses WHERE o IS NOT NULL;

Now we have a relational division problem:

SELECT L1.cust_nbr, ' could use policy ', C1.criteria_id,
 COUNT(*) AS score
 FROM LossDoneRight AS L1, Policy_Criteria AS C1
 WHERE L1.criteria = C1.criteria

PUZZLE 39 INSURANCE LOSSES 161

 AND L1.crit_val = C1.crit_val
 GROUP BY L1.cust_nbr, C1.criteria_id
HAVING COUNT(*) = (SELECT COUNT(*)
 FROM LossDoneRight AS L2
 WHERE L1.cust_nbr = L2.cust_nbr);

In English, you join the losses and criteria together. If the loss was
able to match all the criteria (i.e., has the same count) in the Policy
Criteria description, we keep it. It is a one-to-one mapping of the two
tables, but one of them can have leftovers and the other cannot.

Answer #2

Mr. Gora then wrote that we were getting closer but were not there yet.
This gives us the perfect matches, but life is not always that kind. Instead
we want to rank how well the Loss and Policy criteria match, using the
rules that:

1. The policy must have a subset of the criteria given in the loss—
no extra criteria.

2. The policy gets a point for each criteria value that matches the
loss value.

So under these rules, policy #3 scores a perfect 3 points, policy #1
gets 2 points, and policy #2 gets 1 point. However, policy #4 did not
really match because it included criteria B but did not match the
required value. This is not a problem. You just have to extend the HAVING
clause a bit:

SELECT L1.loss_nbr, 'matches to ', C1.criteria_id,
 ' with a score of ', COUNT(*) AS score
 FROM LossDoneRight AS L1, Policy_Criteria AS C1
 WHERE L1.criteria = C1.criteria
 AND L1.crit_val = C1.crit_val
 GROUP BY L1.loss_nbr, C1.criteria_id
HAVING COUNT(*) <= (SELECT COUNT(*)
 FROM LossDoneRight AS L2
 WHERE L1.loss_nbr = L2.loss_nbr)
 AND COUNT(*) = (SELECT COUNT(DISTINCT C2.criteria)
 FROM Policy_Criteria AS C2

162 PUZZLE 39 INSURANCE LOSSES

 WHERE C1.criteria_id = C2.criteria_id)
 ORDER BY L1.loss_nbr, score;

The first test against COUNT(*) says that you have a match on some or
all of the policy criteria in this loss on both criteria and values. The
second test against COUNT(*) says that this matching subset was the
same as the criteria in the policy—thus, policy #4 gets kicked for having
criteria B, but not having a criteria value of 10.

I do not know what the execution speed will be, but it looks fairly tight
to me. You might want to have indexes on loss_nbr and criteria_id,
since they are used for grouping and the scalar subquery expressions.

PUZZLE 40 PERMUTATIONS 163

PUZZLE

40 PERMUTATIONS

SQL is pretty good about letting you do CROSS JOINs to get all possible
pairs (x, y) from two sets of elements with a simple query, for example:

SELECT x, y
 FROM BigX CROSS JOIN BigY;

But sometimes you would like to do this sort of thing horizontally
instead of vertically. A permutation is an ordered arrangement of
elements of a set. For example, if I have the set {1, 2, 3}, the
permutations of those elements are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),
(3, 1, 2), and (3, 2, 1). The rule is that for (n) elements, you have a
factorial number (n!) of permutations. What I would like is a query that
returns one permutation per row from a set of the first seven integers
(that will give us 5,040 rows). Try to make the answer easy to generalize
for more numbers.

CREATE TABLE Elements
(i INTEGER NOT NULL PRIMARY KEY);
INSERT INTO Elements
VALUES (1), (2), (3), (4), (5), (6), (7);

Answer #1

The obvious and horrible answer is:

SELECT E1.i, E2.i, E3.i, E4.i, E5.i, E6.i, E7.i
 FROM Elements AS E1, Elements AS E2, Elements AS E3,
 Elements AS E4, Elements AS E5, Elements AS E6,
 Elements AS E7
 WHERE E1.i NOT IN (E2.i, E3.i, E4.i, E5.i, E6.i, E7.i)
 AND E2.i NOT IN (E1.i, E3.i, E4.i, E5.i, E6.i, E7.i)
 AND E3.i NOT IN (E1.i, E2.i, E4.i, E5.i, E6.i, E7.i)
 AND E4.i NOT IN (E1.i, E2.i, E3.i, E5.i, E6.i, E7.i)
 AND E5.i NOT IN (E1.i, E2.i, E3.i, E4.i, E6.i, E7.i)
 AND E6.i NOT IN (E1.i, E2.i, E3.i, E4.i, E5.i, E7.i)
 AND E7.i NOT IN (E1.i, E2.i, E3.i, E4.i, E5.i, E6.i);

164 PUZZLE 40 PERMUTATIONS

This monster predicate will guarantee that all column values in a row
are unique. Execution time, however, is pretty bad.

Answer #2

An improvement on this query can be made by adding one more
predicate to the WHERE clause:

SELECT E1.i, E2.i, E3.i, E4.i, E5.i, E6.i, E7.i
 FROM Elements AS E1, Elements AS E2, Elements AS E3,
 Elements AS E4, Elements AS E5, Elements AS E6,
 Elements AS E7
 WHERE (E1.i + E2.i + E3.i + E4.i + E5.i + E6.i + E7.i)
 = 28
 AND E1.i NOT IN (E2.i, E3.i, E4.i, E5.i, E6.i, E7.i)
 AND E2.i NOT IN (E1.i, E3.i, E4.i, E5.i, E6.i, E7.i)
 AND E3.i NOT IN (E1.i, E2.i, E4.i, E5.i, E6.i, E7.i)
 AND E4.i NOT IN (E1.i, E2.i, E3.i, E5.i, E6.i, E7.i)
 AND E5.i NOT IN (E1.i, E2.i, E3.i, E4.i, E6.i, E7.i)
 AND E6.i NOT IN (E1.i, E2.i, E3.i, E4.i, E5.i, E7.i)
 AND E7.i NOT IN (E1.i, E2.i, E3.i, E4.i, E5.i, E6.i);

This improves things because most optimizers will see a predicate of
the form <expression> = <constant> and will execute it before the AND-ed
chain of IN() predicates. While not all rows that total 28 are a
permutation, all permutations will total to 28 for this set of integers.
When you have a factorial, you look for all the improvements you can get!

Answer #3

But let’s carry the totals trick one step further. First, redefine the
Elements table to have a weight for each element in the set:

CREATE TABLE Elements
(i INTEGER NOT NULL
 wgt INTEGER NOT NULL);
 INSERT INTO Elements
 VALUES (1, 1), (2, 2), (3, 4), (4, 8),
 (5, 16), (6, 32), (7, 64);

PUZZLE 40 PERMUTATIONS 165

The weights are powers of 2, and we are about to write a bit vector in
SQL with them. Now, the WHERE clause becomes:

 SELECT E1.i, E2.i, E3.i, E4.i, E5.i, E6.i, E7.i
 FROM Elements AS E1, Elements AS E2, Elements AS E3,
 Elements AS E4, Elements AS E5, Elements AS E6,
 Elements AS E7
 WHERE (E1.wgt + E2.wgt + E3.wgt + E4.wgt
 + E5.wgt + E6.wgt + E7.wgt) = 127;

This does the whole filtering job for you and the IN() predicates are
all unnecessary. This answer also has another beneficial effect: the
elements can now be of any datatype and are not limited just to integers.

Answer #4

Ian Young played with these solutions in MS SQL Server (both version
7.0 and 2000) and came up with the following conclusions for that
product.

Well, the answer is not what you might expect. For Answer #1, the
optimizer takes apart each of the predicates and applies the relevant
parts on a join-by-join basis. So for the i-th join, the result has 7!/(7-i)!
items.

The addition of the global constraint in Answer #2 leaves the overall
approach the same, but makes it run a little (10% to 15%) slower.

Using the bit vector in Answer #3 means it cannot localize any
constraints and is only able to filter the last cross join, taking (n^(n-1) *
n) items down to n!. Result: the naive answer is about 5 to 10 times
faster for seven items, and the bit vector approach is essentially unusable
for nine items.

There are some improvements to the naive method, though.
Firstly, we are testing each of the constraints in two places, so we can

reduce this to the upper or lower triangle—though this doesn’t make
much useful difference on MS SQL Server. More important, we are using
seven cross joins to generate seven items when the last is uniquely
constrained by the others. Better to drop the last join and calculate the
value in the same way as the global constraint in Answer #2.

SELECT E1.i, E2.i, E3.i, E4.i, E5.i, E6.i,
 (28 - E1.i - E2.i - E3.i - E4.i - E5.i - E6.i)
 AS i

166 PUZZLE 40 PERMUTATIONS

 FROM Elements AS E1, Elements AS E2, Elements AS E3,
 Elements AS E4, Elements AS E5, Elements AS E6
 WHERE E2.i NOT IN (E1.i)
 AND E3.i NOT IN (E1.i, E2.i)
 AND E4.i NOT IN (E1.i, E2.i, E3.i)
 AND E5.i NOT IN (E1.i, E2.i, E3.i, E4.i)
 AND E6.i NOT IN (E1.i, E2.i, E3.i, E4.i, E5.i)

Another possibility is to try to make it perform (n!) iterations, the
minimum needed in theory, in the joins. This is possible if we view a
string as a list of characters. It results in a query that is essentially an
unrolled recursive function. Here, a string is accumulating the chosen
values, and string c contains the remaining choices:

SELECT a || c
 FROM (SELECT a || SUBSTRING(c FROM i FOR 1),
 STUFF(c, i, 1, '')
 FROM Elements,
 (SELECT a || SUBSTRING(c FROM i FOR 1),
 STUFF(c, i, 1, '')
 FROM Elements,
 (SELECT a || SUBSTRING(c FROM i FOR 1),
 STUFF(c, i, 1, '')
 FROM Elements,
 (SELECT a || SUBSTRING(c FROM
 i FOR 1),
 STUFF(c, i, 1, '')
 FROM Elements,
 (SELECT a || SUBSTRING(c
 FROM i FOR 1),
 STUFF(c,
 i, 1, '')
 FROM Elements,
 (SELECT
SUBSTRING('1234567', i, 1),

STUFF('1234567',
i, 1, '')
 FROM Elements
WHERE i <= 7) AS T1 (a,c)
 WHERE i <= 6) AS T2
(a,c)

PUZZLE 40 PERMUTATIONS 167

 WHERE i <= 5) AS T3 (a,c)
 WHERE i <= 4) AS T4 (a,c)
 WHERE i <= 3) AS T5 (a,c)
 WHERE i <= 2) AS T6 (a,c);

The STUFF function is proprietary; it takes a target string, pulls it
apart, and inserts another string at a given location. However, it is
common in most SQLs, and it is easy to write as a user-defined function
in products that do not have it.

There’s as much work in the string operations as the extra loops of
joins. And of course, it is additional work to separate and convert the
characters of the string if this is what we want when we use the results.

Answer #5

I did not stop here. Looking at the query plan for this last approach, it
appears to decide to unpick the accumulation, giving something
operationally equivalent to this monstrosity:

SELECT SUBSTRING('1234567', a, 1) ||
 SUBSTRING(STUFF('1234567', a, 1, ''), b, 1) ||
 SUBSTRING(STUFF(STUFF('1234567', a, 1, ''), b, 1,
''), c,
1) ||
 SUBSTRING(STUFF(STUFF(STUFF('1234567',
 a, 1, ''), b, 1, ''), c, 1, ''), d, 1) ||
 SUBSTRING(STUFF(STUFF(STUFF(STUFF('1234567',
 a, 1, ''), b, 1, ''), c, 1, ''), d, 1, ''), e, 1) ||
 SUBSTRING(STUFF(STUFF(STUFF(STUFF(STUFF('1234567',
 a, 1, ''), b, 1, ''), c, 1, ''), d, 1, ''), e, 1,
''),
f, 1) ||
 STUFF(STUFF(STUFF(STUFF(STUFF(STUFF('1234567',

 a, 1, ''), b, 1, ''), c, 1, ''), d, 1, ''), e, 1,
''),
f, 1, '')
FROM (SELECT i
 FROM Elements
 WHERE i <= 7) AS T1 (a),
 (SELECT i
 FROM Elements

168 PUZZLE 40 PERMUTATIONS

 WHERE i <= 6) AS T2 (b),
 (SELECT i
 FROM Elements
 WHERE i <= 5) AS T3 (c),
 (SELECT i
 FROM Elements
 WHERE i <= 4) AS T4 (d),
 (SELECT i
 FROM Elements
 WHERE i <= 3) AS T5 (e),
 (SELECT i
 FROM Elements
 WHERE i <= 2) AS T6 (f);

If you are interested in this kind of problem, you can get a survey on
algorithms by Robert Sedgewick at http://www.princeton.edu/~rblee/
ELE572Papers/p137-sedgewick.pdf. The algorithms are procedural,
with loops or recursion, but you might be able to translate them into
recursive CTEs.

PUZZLE 41 BUDGETING 169

PUZZLE

41 BUDGETING

Mark Frontera at LanSoft, Inc., in Miami, Florida, posted this problem in
September 1995. He has budgeting information that consists of the
following three tables: the items to be paid for, the estimated amounts to
be spent on them, and the actual amounts spent on them. I am going to
skip the DDL and post the data, since they are simple.

Notice that some items are covered by more than one check, and
sometimes one check covers several items.

Items
item_nbr item_descr
=====================
 10 'Item 10'
 20 'Item 20'
 30 'Item 30'
 40 'Item 40'
 50 'item 50'

Actuals
item_nbr actual_amt check_nbr
=================================
 10 300.00 '1111'
 20 325.00 '2222'
 20 100.00 '3333'
 30 525.00 '1111'

Estimates
item_nbr estimated_amt
=========================
 10 300.00
 10 50.00
 20 325.00
 20 110.00
 40 25.00

I would like the following output from a single query:

170 PUZZLE 41 BUDGETING

Results
item_nbr item_descr actual_tot estimate_tot check_nbr
===
 10 'item 10' 300.00 350.00 '1111'
 20 'item 20' 425.00 435.00 'Mixed'
 30 'item 30' 525.00 NULL '1111'
 40 'item 40' NULL 25.00 NULL

Item 50 from the Items table is not to be shown, because there was no
record for it in either the Actuals or the Estimates table. The column
actual_tot is the total of actual amounts for that item; the column
estimate_tot is the total of estimated amounts for that item.

Answer #1

I think that this schema needs some work, but you can do this with scalar
subqueries and some tricky code.

SELECT I1.item_nbr, I1.item_descr,
 (SELECT SUM (A1.actual_amt)
 FROM Actuals AS A1
 WHERE I1.item_nbr = A1.item_nbr) AS tot_act,
 (SELECT SUM (E1.estimated_amt)
 FROM Estimates AS E1
 WHERE I1.item_nbr = E1.item_nbr) AS estimate_tot,
 (SELECT CASE WHEN COUNT(*) = 1
 THEN MAX(check_nbr)
 ELSE 'Mixed' END
 FROM Actuals) AS A2
 WHERE I1.item_nbr = A2.item_nbr
 GROUP BY item_nbr) AS check_nbr
 FROM Items AS I1
 WHERE actual_tot IS NOT NULL
 OR estimate_tot IS NOT NULL;

The trick is in the scalar subqueries. The first two calculate the total
actual amounts and the total estimated amounts as if they were part of a
GROUP BY and LEFT OUTER JOIN.

The final subquery is trickier. The query finds all of the Actuals that
are associated with the item under consideration in the result table and
makes a group from them. If the group is empty (no checks issued),

PUZZLE 41 BUDGETING 171

then the subquery returns a single NULL, and we display that NULL. If
the group has one check in it, then the CASE expression will return that
single check number. The MAX() function is a safety check to guarantee
that you have a scalar result from the subquery; you might not need it
in all SQL-92 implementations. If there is more than one check actually
issued on the item, then the COUNT(*) is greater than 1, and you get the
string 'Mixed' instead of a string that represents the unique check
number.

Answer #2

You can replace the subqueries with LEFT OUTER JOINs:

SELECT I1.item_nbr, I1.item_descr,
 SUM(A1.actual_amt) AS tot_act,
 SUM(E1.estimated_amt) AS estimate_tot,
 (SELECT CASE WHEN COUNT(check_nbr) = 1
 THEN MAX(check_nbr)
 ELSE 'Mixed' END
 FROM Actuals) AS check_nbr
 FROM (items AS I1
 LEFT OUTER JOIN
 Actuals AS A1
 ON I1.acct_nbr = A1.acct_nbr)
 LEFT OUTER JOIN
 Estimates AS E1
 ON I1.acct_nbr = E1.acct_nbr
 GROUP BY I1.item_nbr, I1.item_descr;

172 PUZZLE 42 COUNTING FISH

PUZZLE

42 COUNTING FISH

Let’s go fishing! A fish and game warden is trying to find the average of
something that is not there. This is not quite as strange as it first sounds,
nor quite as simple. The warden is collecting sample data on fish in the
following table:

CREATE TABLE Samples
(sample_id INTEGER NOT NULL,
 fish_name CHAR(20) NOT NULL,
 found_tally INTEGER NOT NULL,
 PRIMARY KEY (sample_id, fish_name));

INSERT INTO Samples
VALUES (1, 'minnow', 18),
 (1, 'pike', 7),
 (2, 'pike', 4),
 (2, 'carp', 3),
 (3, 'carp', 9),
 ... ;

CREATE TABLE SampleGroups
(group_id INTEGER NOT NULL,
 group_descr CHAR(20) NOT NULL,
 sample_id INTEGER NOT NULL
 REFERENCES Samples(sample_id),
 PRIMARY KEY (group_id, sample_id));

INSERT INTO SampleGroups
VALUES (1, 'muddy water', 1),
 (1, 'muddy water', 2),
 (2, 'fresh water' 1),
 (2, 'fresh water', 3),
 (2, 'fresh water', 4),
 ...;

Notice that a sample can be grouped many ways; sample 1 is fresh
muddy-water fish.

The warden needs to get the average number of each species of fish in
the sample groups. For example, group number one ('muddy water') has

PUZZLE 42 COUNTING FISH 173

samples 1 and 2; you could use the parameters (:my_fish_name =
'minnow') and (:my_group = 1) to find the average number of
minnows in sample group 1, as follows:

SELECT fish_name, AVG(found_tally)
 FROM Samples
 WHERE sample_id IN (SELECT sample_id
 FROM SampleGroups
 WHERE group_id = :my_group)
 AND fish_name = :my_fish_name
 GROUP BY fish_name;

This query will give you an average of 18 minnows, which is wrong.
There were no minnows for sample_id = 2 within group 1, so the
average is ((18 + 0)/2) = 9. The other approach is to do several steps to
get the correct answer: first use a SELECT statement to get the number
of samples involved, then use another SELECT to get the sum, and
finally manually calculate the average. Is there a way to do it in one
SELECT statement?

Answer #1

The obvious answer is to enter a count of 0 for each fish_name under
each sample_id instead of letting it be missing. This approach will let
you use the original query. You can create the missing rows with the
following statement:

INSERT INTO Samples
SELECT M1.sample_id, M2.fish_name, 0
 FROM Samples AS M1, Samples AS M2
 WHERE NOT EXISTS
 (SELECT *
 FROM Samples AS M3
 WHERE M1.sample_id = M3.sample_id
 AND M2.fish_name = M3.fish_name);

Answer #2

Unfortunately, it turns out that there are more than 100,000 different
species of fish and tens of thousands of samples. This trick would fill up

174 PUZZLE 42 COUNTING FISH

more disk space than the warden has. You need to use SQL tricks to get
it into one statement:

SELECT fish_name, SUM(found_tally)/
 (SELECT COUNT(sample_id)
 FROM SampleGroups
 WHERE group_id = :my_group)
 FROM Samples
 WHERE fish_name = :my_fish_name
 GROUP BY fish_name;

The scalar subquery query is really using the rule that an average is
the total of the values divided by the number of occurrences. But the
SQL is a little tricky.

The SUM() in the dividend returns a NULL when it has an empty set.
This will make the fraction (quotient) become NULL. The scalar subquery
expression in the divisor returns NULL when its result is an empty set.
However, the COUNT(<expression>) aggregate function inside the
subquery will return a zero when it has an empty set as its parameter.

The only way that the COUNT(<expression>) aggregate function will
return a NULL is from a table that has only NULLs in it. But we have
declared all the tables to be without NULLs, so we are safe.

Answer #3

Anilbabu Jaiswal of Kansas City submitted a slightly different Oracle
version, which translates into SQL-92 as:

SELECT fish_name, AVG(COALESCE(found_tally, 0))
 FROM Samples AS SA
 LEFT OUTER JOIN
 SampleGroups AS SG
 ON SA.sample_id = SG.sample_id
 AND SA.fish_name = :my_fish_name
 AND group_id = :my_group
 GROUP BY fish_name;

The COALESCE function will inspect its parameter list and return the
first non-NULL value, so this converts the AVG() parameter from NULL to
zero. Most people seem to have trouble with the idea that an aggregate
can handle an expression, not just a single column, as a parameter. The

PUZZLE 42 COUNTING FISH 175

other good trick in this solution is doing a LEFT OUTER JOIN on two
columns instead of just one. This is very handy because the primary key
of a table is not always just one column.

176 PUZZLE 43 GRADUATION

PUZZLE

43 GRADUATION

Richard Romley created this problem based on the logic of a more
complicated problem. It is a good example of how we need to learn to
analyze problems differently with ANSI/ISO SQL-92 stuff than we did
before. There are some really neat solutions that didn’t exist before if
we learn to think in terms of the new features; the same thing applies
to SQL-99 features. This solution takes advantage of derived tables,
CASE statements, and outer joins based on other than equality—all in
one query.

In this problem, student_names represents students who take
courses for which they receive credits. Each course belongs to a credit
category. The Categories table lists each credit_cat and the minimum
necessary credits required in that credit_cat to graduate. The
“CreditsEarned” table has a row for each course completed showing
the student_name, credit_cat, and number of credits earned. (This
would more logically contain student_name, course, and credits, and
the credit_cat would be looked up in the Courses table—but for this
problem I simplified the definition slightly.) The first problem is to
generate a list with all student_names who are eligible to graduate—that
is, those students who have completed at least the minimum required
credits in all categories. Then, generate a list with all student_names
who are not eligible to graduate. But best yet is to combine these two and
generate a single list of all student_names showing in the appropriate
column whether or not each student is eligible to graduate.

EligibleReport
student_name grad nograd
=====================
Bob X
Joe X
John X
Mary X

CREATE TABLE Categories
(credit_cat CHAR(1) NOT NULL,
 rqd_credits INTEGER NOT NULL);

CREATE TABLE CreditsEarned -- no primary key
(student_name CHAR(10) NOT NULL,

PUZZLE 43 GRADUATION 177

 credit_cat CHAR(1) NOT NULL,
 credits INTEGER NOT NULL);

INSERT INTO Categories
VALUES (('A', 10),
 ('B', 3),
 ('C', 5));

INSERT INTO CreditsEarned
VALUES ('Joe', 'A', 3), ('Joe', 'A', 2), ('Joe', 'A', 3),
 ('Joe', 'A', 3), ('Joe', 'B', 3), ('Joe', 'C', 3),
 ('Joe', 'C', 2), ('Joe', 'C', 3),
 ('Bob', 'A', 2), ('Bob', 'C', 2), ('Bob', 'A', 12),
 ('Bob', 'C', 4),
 ('John', 'A', 1), ('John', 'B', 100),
 ('Mary', 'A', 1), ('Mary', 'A', 1), ('Mary', 'A', 1),
 ('Mary', 'A', 1), ('Mary', 'A', 1),('Mary', 'A', 1),
 ('Mary', 'A', 1), ('Mary', 'A', 1), ('Mary', 'A', 1),
 ('Mary', 'A', 1), ('Mary', 'A', 1), ('Mary', 'B', 1),
 ('Mary', 'B', 1), ('Mary', 'B', 1), ('Mary', 'B', 1),
 ('Mary', 'B', 1), ('Mary', 'B', 1), ('Mary', 'B', 1),
 ('Mary', 'C', 1), ('Mary', 'C', 1), ('Mary', 'C', 1),
 ('Mary', 'C', 1), ('Mary', 'C', 1), ('Mary', 'C', 1),
 ('Mary', 'C', 1), ('Mary', 'C', 1);

This is the best solution I can come up with:

SELECT X.student_name,
 CASE WHEN COUNT(C1.credit_cat)
 >= (SELECT COUNT(*) FROM Categories)
 THEN 'X'
 ELSE ' ' END AS grad,
 CASE WHEN COUNT(C1.credit_cat)
 < (SELECT COUNT(*) FROM Categories)
 THEN 'X'
 ELSE ' ' END AS nograd
 FROM (SELECT student_name, credit_cat, SUM(credits) AS
cat_credits
 FROM CreditsEarned
 GROUP BY student_name, credit_cat) AS X
 LEFT OUTER JOIN

178 PUZZLE 43 GRADUATION

 Categories AS C1
 ON X.credit_cat = C1.credit_cat
 AND X.cat_credits >= C1.rqd_credits
 GROUP BY X.student_name

Results
student_name grad nograd

Bob X
Joe X
John X
Mary X

The derived table X contains a row for each student, credit category,
and total credits for that (student_name, credit_cat) combination. The
key to this solution is in the next step—the LEFT OUTER JOIN to
credit_cat on credit_cat and (credits >= required credits). By
then grouping on student_name, COUNT(C1.credit_cat) will tell me,
for the categories in which the student took any courses, in how many he
or she has at least the minimum required credits for graduation. By
comparing this to the total number of categories, I can determine if the
student is eligible to graduate and put the “X” in the appropriate column.

This automatically handles the situation where a student may have
taken no courses in a particular credit category. COUNT(C1.credit_cat)
will only count categories in which at least the minimum number of
credits have been earned.

PUZZLE 44 PAIRS OF STYLES 179

PUZZLE

44 PAIRS OF STYLES

Abbott de Rham posted this problem on the ACCESS Forum in
September 1996. He gets data from sales slips that show pairs of items in
the order they are collected at the point of sale. The table looks like this:

CREATE TABLE SalesSlips
(item_a INTEGER NOT NULL,
 item_b INTEGER NOT NULL,
 PRIMARY KEY(item_a, item_b),
 pair_tally INTEGER NOT NULL);

The table is arranged by the style that shows up first on an order as
item_a, and item_b is always the item that came after item_a on the
order. The table will also include pairs where the paired values are the
same style.

SalesSlips
item_a item_b pair_tally
===============================
12345 12345 12
12345 67890 9
67890 12345 5

For some of his reports, he would like to sum all pairs and their
reciprocals together with a result set showing only one entry per pair:

Pairs
item_a item_b pair_tally
===============================
12345 12345 12
12345 67890 14

He had no trouble getting rows with reciprocals added together with
a self-join, but he could not get rid of the duplicate rows:

SELECT S0.item_a, S0.item_b, SUM(S0.pair_tally +
S1.pair_tally) AS pair_tally
 FROM SalesSlips AS S0, SalesSlips AS S1

180 PUZZLE 44 PAIRS OF STYLES

 WHERE S0.item_b = S1.item_a
 AND S0.item_a = S1.item_b
 GROUP BY S0.item_a, S0.item_b, S1.item_a, S1.item_b;

This returned the false results:

Results
item_a item_b pair_tally
============================
12345 12345 24
12345 67890 14
67890 12345 14

He had considered writing code to seek the reciprocal, add the value,
and delete a record while skipping style pairs with the same style
numbers. He was hoping for an SQL solution instead.

Answer #1

The existing query can be easily patched up:

SELECT S0.item_a, S0.item_b, SUM(S0.pair_tally +
S1.pair_tally) AS pair_tally,
 FROM SalesSlips AS S0, SalesSlips AS S1
 WHERE S0.item_a <= S0.item_b
 AND S0.item_a = S1.item_b
 AND S0.item_b = S1.item_a
 GROUP BY S0.item_a, S0.item_b, S1.item_a, S1.item_b;

The self-join will be expensive and you really do not need it; you can
write this instead:

SELECT CASE WHEN item_a <= item_b
 THEN item_a
 ELSE item_b END AS s1,
 CASE WHEN item_a <= item_b
 THEN item_b
 ELSE item_a END AS s2,
 SUM (pair_tally)
 FROM SalesSlips
 GROUP BY s1, s2;

PUZZLE 44 PAIRS OF STYLES 181

Frankly, this is not supposed to work because the column names s1
and s2 come into existence after the GROUP BY and therefore cannot be
used by it. However, lots of products support this syntax because they
improperly create the SELECT list first, and then fill it. The correct SQL-
92 version would use a tabular subquery:

SELECT s1, s2, SUM(pair_tally)
 FROM (SELECT CASE WHEN item_a <= item_b
 THEN item_a
 ELSE item_b END,
 CASE WHEN item_a <= item_b
 THEN item_b
 ELSE item_a END,
 pair_tally
 FROM SalesSlips) AS Report (s1, s2, pair_tally)
 GROUP BY s1, s2;

Answer #2

In SQL-89, you would have to put the tabular subquery expression in a
VIEW and then use the VIEW in another query. It is really the same code,
but broken into separate steps and with the advantage that the VIEW can
be reused for other reports.

CREATE VIEW Report (s1, s2, pair_tally)
AS SELECT CASE WHEN item_a <= item_b
 THEN item_a
 ELSE item_b END,
 CASE WHEN item_a <= item_b
 THEN item_b
 ELSE item_a END,
 pair_tally
 FROM SalesSlips;

SELECT s1, s2, SUM(pair_tally)
 FROM Report
 GROUP BY s1, s2;

182 PUZZLE 44 PAIRS OF STYLES

Answer #3

But the best way is to update the database itself and make item_a the
smallest of the two code numbers, before doing the query, so this is not
an issue:

UPDATE SalesSlips
 SET item_a = item_b,
 item_b = item_a
 WHERE item_a > item_b;

You could also do this with a TRIGGER on insertion, but that would
mean writing proprietary procedural code. The real answer is to mop the
floor (these updates) and then to fix the leak with a CHECK() constraint:

CREATE TABLE SalesSlips
(item_a INTEGER NOT NULL,
 item_b INTEGER NOT NULL,
 PRIMARY KEY(item_a, item_b),
 CHECK (item_a <= item_b)
 pair_tally INTEGER NOT NULL);

PUZZLE 45 PEPPERONI PIZZA 183

PUZZLE

45 PEPPERONI PIZZA

A good classic accounting problem is to print an aging report of old
billings. Let’s use the Friends of Pepperoni, who have a charge card at
our pizza joint. It would be nice to find out if you should have let club
members charge pizza on their cards.

You have a table of charges that contains a member identification
number (cust_id), a date (bill_date), and an amount (pizza_amt).
None of these is a key, so there can be multiple entries for a customer,
with various dates and amounts. This is an old-fashioned journal file,
done as an SQL table.

What you are trying to do is get a sum of amounts paid by each
member within an age range. The ranges are 0 to 30 days old, 31 to 60
days old, 61 to 90 days old, and everything over 90 days old. This is
called an aging report on account receivables, and you use it to see what
the Friends of Pepperoni program is doing to you.

Answer #1

You can write a query for each age range with UNION ALL operators,
like this:

SELECT cust_id, '0-30 days = ' AS age, SUM (pizza_amt)
 FROM Friends Of Pepperoni
 WHERE bill_date BETWEEN CURRENT_DATE
 AND (CURRENT_DATE - INTERVAL 30 DAY)
 GROUP BY cust_id
UNION ALL
SELECT cust_id, '31-60 days = ' AS age, SUM (pizza_amt)
 FROM FriendsOfPepperoni
 WHERE bill_date BETWEEN (CURRENT_DATE - INTERVAL 31 DAY)
 AND (CURRENT_DATE - INTERVAL 90 DAY)
 GROUP BY cust_id
UNION ALL
SELECT cust_id, '61-90 days = ' AS age, SUM(pizza_amt)
 FROM FriendsOfPepperoni
 WHERE bill_date BETWEEN (CURRENT_DATE - INTERVAL 61 DAY)
 AND (CURRENT_DATE - INTERVAL 90 DAY)
 GROUP BY cust_id
UNION ALL

184 PUZZLE 45 PEPPERONI PIZZA

SELECT cust_id, '90+ days = ' AS age, SUM(pizza_amt)
 FROM FriendsOfPepperoni
 WHERE bill_date < CURRENT_DATE - INTERVAL 90 DAY) GROUP BY
cust_id
ORDER BY cust_id, age;

Using the second column to keep the age ranges as text makes sorting
within each customer easier because the strings are in temporal order.
This query works, but it takes awhile. There must be a better way to do
this in SQL-92.

Answer #2

Do not use UNIONs when you can use a CASE expression instead. The
UNIONs will make multiple passes over the table, and the CASE expression
will make only one.

SELECT cust_id,
 SUM(CASE WHEN bill_date
 BETWEEN CURRENT_TIMESTAMP - INTERVAL 30 DAYS
 AND CURRENT_TIMESTAMP
 THEN pizza_amt ELSE 0.00) AS age1,
 SUM(CASE WHEN bill_date
 BETWEEN CURRENT_TIMESTAMP - INTERVAL 60 DAYS
 AND CURRENT_TIMESTAMP - INTERVAL 31 DAYS
 THEN pizza_amt ELSE 0.00) AS age2,
 SUM(CASE WHEN bill_date
 BETWEEN CURRENT_TIMESTAMP - INTERVAL 90 DAYS
 AND CURRENT_TIMESTAMP - INTERVAL 61
DAYS
 THEN pizza_amt ELSE 0.00) AS age3,
 SUM(CASE WHEN bill_date
 < CURRENT_TIMESTAMP - INTERVAL 91 DAYS
 THEN pizza_amt ELSE 0.00) AS age4
 FROM FriendsofPepperoni;

Using the CASE expression to replace UNIONs is a handy trick.

Answer #3

You can avoid both UNIONs and CASE expressions by creating a CTE or
derived table with the ranges for the report.

PUZZLE 45 PEPPERONI PIZZA 185

WITH ReportRanges(day_count, start_cnt, end_cnt)
AS (VALUES ('under Thirty days', 00, 30),
 ('Sixty days', 31, 60),
 ('Ninty days', 61, 90))
SELECT F1.cust_id, R1.day_count, SUM(pizza_amt)
 FROM FriendsofPepperoni AS F1
 LEFT OUTER JOIN
 ReportRanges AS R1
 ON F1.bill_date
 BETWEEN CURRENT_TIMESTAMP - start_cnt DAY
 AND CURRENT_TIMESTAMP - end_cnt DAY;

This is easier to maintain and extend than the CASE expression. It can
also be faster with indexing. Remember, SQL is designed for joins and
not computations.

186 PUZZLE 46 SALES PROMOTIONS

PUZZLE

46 SALES PROMOTIONS

You have just gotten a job as the sales manager for a department store.
Your database has two tables. One is a calendar of the promotional
events the store has had, and the other is a list of the sales that have been
made during the promotions. You need to write a query that will tell us
which clerk had the highest amount of sales for each promotion, so we
can pay that clerk a performance bonus.

CREATE TABLE Promotions
(promo_name CHAR(25) NOT NULL PRIMARY KEY,
 start_date DATE NOT NULL,
 end_date DATE NOT NULL,
 CHECK (start_date <= end_date));

Promotions
promo_name start_date end_date
===
'Feast of St. Fred' '1995-02-01' '1995-02-07'
'National Pickle Pageant' '1995-11-01' '1995-11-07'
'Christmas Week' '1995-12-18' '1995-12-25'

CREATE TABLE Sales
(ticket_nbr INTEGER NOT NULL PRIMARY KEY,
 clerk_name CHAR (15) NOT NULL,
 sale_date DATE NOT NULL,
 sale_amt DECIMAL (8,2) NOT NULL);

Answer #1

The trick in this query is that we need to find out what each employee
sold during each promo and finally pick the highest sum from those
groups. The first part is a fairly easy JOIN and GROUP BY statement.

The final step of finding the largest total sales in each grouping
requires a fairly tricky HAVING clause. Let’s look at the answer first, and
then explain it.

SELECT S1.clerk_name, P1.promo_name, SUM(S1.amount) AS
sales_tot
 FROM Sales AS S1, Promotions AS P1

PUZZLE 46 SALES PROMOTIONS 187

 WHERE S1.saledate BETWEEN P1.start_date AND P1.end_date
 GROUP BY S1.clerk_name, P1.promo_name
HAVING SUM(amount) >=
 ALL (SELECT SUM(amount)
 FROM Sales AS S2
 WHERE S2.clerk_name <> S1.clerk_name
 AND S2.saledate
 BETWEEN (SELECT start_date
 FROM Promotions AS P2
 WHERE P2.promo_name =
P1.promo_name)
 AND (SELECT end_date
 FROM Promotions AS P3
 WHERE P3.promo_name =
P1.promo_name)
 GROUP BY S2.clerk_name);

We want the total sales for the chosen clerk and promotion to be
equal or greater than the other total sales of all the other clerks during
that promotion. The predicate “S2.clerk_name <> S1.clerk_name”
excludes the other clerks from the subquery total. The subquery
expressions in the BETWEEN predicate make sure that we are using the
right dates for the promotion.

The first thought when trying to improve this query is to replace the
subquery expressions in the BETWEEN predicate with direct outer
references, like this:

 SELECT S1.clerk_name, P1.promo_name, SUM(S1.amount) AS
sales_tot
 FROM Sales AS S1 Promotions AS P1
 WHERE S1.saledate BETWEEN P1.start_date AND P1.end_date
 GROUP BY S1.clerk_name, P1.promo_name
HAVING SUM(amount) >=
 ALL (SELECT SUM(amount)
 FROM Sales AS S2
 WHERE S2.clerk_name <> S1.clerk_name
 AND S2.saledate -- Error !!
 BETWEEN P1.start_date AND P1.end_date
 GROUP BY S2.clerk_name);

188 PUZZLE 46 SALES PROMOTIONS

But this will not work—and if you know why, then you really know
your SQL. Cover the rest of this page and try to figure it out before you
read further.

Answer #2

The “GROUP BY S1.clerk_name, P1.promo_name” clause has created a
grouped table whose rows contain only aggregate functions and two
grouping columns. The original working table built in the FROM clause
ceased to exist and was replaced by this grouped working table, so the
start_date and end_date also ceased to exist at that point.

However, the subquery expressions work because they reference the
outer table P1 while it is still available, since the query works from the
innermost subqueries outward and not the grouped table.

If we were looking for sales performance between two known,
constant dates, then the second query would work when we replaced
P1.start_date and P1.end_date with those constants.

Two readers of my column sent in improved versions of this puzzle.
Richard Romley and J. D. McDonald both noticed that the Promotions
table has only key columns if we assume that no promotions overlap, so
that using (promo_name, start_date, end_date) in the GROUP BY clause
will not change the grouping. However, it will make the start_date and
end_date available to the HAVING clause, thus:

SELECT S1.clerk_name, P1.promo_name, SUM(S1.amount) AS sales_tot
 FROM Sales AS S1 Promotions AS P1
 WHERE S1.saledate BETWEEN P1.start_date AND P1.end_date
 GROUP BY P1.promo_name, P1.start_date, P1.end_date,
S1.clerk_name
 HAVING SUM(S1.amount) >
 ALL (SELECT SUM(S2.amount)
 FROM Sales AS S2
 WHERE S2.Saledate BETWEEN P1.start_date AND P1.end_date
 AND S2.clerk_name <> S1.clerk_name
 GROUP BY S2.clerk_name);

Alternatively, you can reduce the number of predicates in the HAVING
clause by making some simple changes in the subquery, thus:

 ...
 HAVING SUM(S1.amount) >=

PUZZLE 46 SALES PROMOTIONS 189

 ALL (SELECT SUM(S2.amount)
 FROM Sales AS S2
 WHERE S2.Saledate BETWEEN P1.start_date AND
P1.end_date
 GROUP BY S2.clerk_name);

I am not sure if there is much difference in performance between the
two, but the second is cleaner.

Answer #3

The new common table expression (CTE) makes it easier to aggregate
data at multiple levels:

WITH ClerksTotals (clerk_name, promo_name, sales_tot)
AS
(SELECT S1.clerk_name, P1.promo_name, SUM(S1.amount)
 FROM Sales AS S1, Promotions AS P1
 WHERE S1.saledate BETWEEN P1.start_date AND P1.end_date
 GROUP BY S1.clerk_name, P1.promo_name)

SELECT C1.clerk_name, C1.promo_name
 FROM ClerksTotals AS C1
 WHERE C1.sales_tot
 = (SELECT MAX(C2.sales_tot)
 FROM ClerksTotals AS C2
 WHERE C1.promo_name = C2.promo_name);

This is fairly tight code and should be easy to maintain.

190 PUZZLE 47 BLOCKS OF SEATS

PUZZLE

47 BLOCKS OF SEATS

The original version of this puzzle came from Bob Stearns at the
University of Georgia and dealt with allocating pages on an Internet
server. I will reword it as a block of seat reservations in the front row of a
theater. The reservations consist of the reserver’s name and the
start_seat and finish_seat seat numbers of his block.

The rule of reservation is that no two blocks can overlap. The table for
the reservations looks like this:

CREATE TABLE Reservations
(reserver CHAR(10) NOT NULL PRIMARY KEY,
 start_seat INTEGER NOT NULL,
 finish_seat INTEGER NOT NULL);

Reservations
reserver start_seat finish_seat
================================
'Eenie' 1 4
'Meanie' 6 7
'Mynie' 10 15
'Melvin' 16 18

What you want to do is put a constraint on the table to ensure that no
reservations violating the overlap rule are ever inserted. This is harder
than it looks unless you do things in steps.

Answer #1

The first solution might be to add a CHECK() clause. You will probably
draw some pictures to see how many ways things can overlap, and you
might come up with this:

CREATE TABLE Reservations
(reserver CHAR(10) NOT NULL PRIMARY KEY,
 start_seat INTEGER NOT NULL,
 finish_seat INTEGER NOT NULL,
 CHECK (start_seat <= finish_seat),

 CONSTRAINT No_Overlaps

PUZZLE 47 BLOCKS OF SEATS 191

 CHECK (NOT EXISTS
 (SELECT R1.reserver
 FROM Reservations AS R1
 WHERE Reservations.start_seat BETWEEN
R1.start_seat AND R1.finish_seat
 OR Reservations.finish_seat BETWEEN
R1.start_seat AND R1.finish_seat));

This is a neat trick that will also handle duplicate start and finish seat
pairs with different reservers, as well as overlaps.

The two problems are that intermediate SQL-92 does not allow
subqueries in a CHECK() clause, but full SQL-92 does allow them. So this
trick is probably not going to work on your current SQL
implementation. If you get around that problem, you might find that you
have trouble inserting an initial row into the table.

The PRIMARY KEY and NOT NULL constraints are no problem.
However, when the engine does the CHECK() constraint, it will make a
copy of the empty Reservations table in the subquery under the name R1.

Now things get confusing. The R1.start_seat and R1.finish_seat
values cannot be NULLs, according to the CREATE TABLE statement, but
D1 is empty, so they have to be NULLs in the BETWEEN predicates.

There is a very good chance that this self-referencing is going to
confuse the constraint checker, and you will never be able to insert a first
row into this table. The safest bet is to declare the table, insert a row or
two, and add the No_Overlaps constraint afterward. You can also defer a
constraint, and then turn it back on when you leave the session.

192 PUZZLE 48 UNGROUPING

PUZZLE

48 UNGROUPING

Sissy Kubu sent me a strange question on CompuServe. She has a table
like this:

CREATE TABLE Inventory
(goods CHAR(10) NOT NULL PRIMARY KEY,
 pieces INTEGER NOT NULL CHECK (pieces >= 0));

She wants to deconsolidate the table; that is, get a VIEW or nontable
with one row for each piece. For example, given a row with ('CD-ROM', 3)
in the original table, she would like to get three rows with ('CD-ROM', 1) in
them. Before you ask me, I have no idea why she wants to do this;
consider it a training exercise.

Since SQL has no “UN-COUNT(*) ... DE-GROUP BY..” operators,
you will have to use a cursor or the vendor’s 4GL to do this. Frankly, I
would do this in a report program instead of an SQL query, since the
results will not be a table with a key. But let’s look for weird answers
since this is an exercise.

Answer #1

The obvious procedural way to do this would be to write a routine in
your SQL’s 4GL that reads a row from the Inventory table, and then write
the value of good to the second table in a loop driven by the value of
pieces.

This will be pretty slow, since it will require (SELECT SUM(pieces)
FROM Inventory) single-row insertions into the working table.

Can you do better?

Answer #2

I always stress the need to think in terms of sets in SQL. The way to build
a better solution is to do repeated self-insertion operations using a
technique based on the “Russian peasant’s algorithm,” which was used
for multiplication and division in early computers. You can look it up in
a history of mathematics text or a computer science book—it is based on
binary arithmetic and can be implemented with right and left shift
operators in assembly languages.

PUZZLE 48 UNGROUPING 193

You are still going to need a 4GL to do this, but it will not be so bad.
First, let’s create two working tables and one for the final answer:

CREATE TABLE WorkingTable1 – no key possible!!
(goods CHAR(10) NOT NULL,
 pieces INTEGER NOT NULL);

CREATE TABLE WorkingTable2
(goods CHAR(10) NOT NULL,
pieces INTEGER NOT NULL);

CREATE TABLE Answer
(goods CHAR(10) NOT NULL,
 pieces INTEGER NOT NULL);

Now start by loading the goods that have only one piece in inventory
into the answer table:

INSERT INTO Answer
SELECT * FROM Inventory WHERE pieces = 1;

Now put the rest of the data into the first working table:

INSERT INTO WorkingTable1
SELECT * FROM Inventory WHERE pieces > 1;

This block of code will load the second working table with pairs of
rows that each has half (or half plus one) piece counts of those in the
first working table:

INSERT INTO WorkingTable2
SELECT goods, FLOOR(pieces/2.0)
 FROM WorkingTable1
WHERE pieces > 1
UNION ALL
SELECT goods, CEILING(pieces/2.0)
 FROM WorkingTable1
WHERE pieces > 1;

The FLOOR(x) and CEILING(x) functions return, respectively, the
greatest integer that is lower than x and smallest integer higher than x. If

194 PUZZLE 48 UNGROUPING

your SQL does not have them, you can write them with rounding and
truncation functions. It is also important to divide by (2.0) and not by 2,
because this will make the result into a decimal number.

Now harvest the rows that have gotten down to a piece count of one
and clear out the first working table:

INSERT INTO Answer
SELECT *
 FROM WorkingTable2
 WHERE pieces = 1;

DELETE FROM WorkingTable1;

Exchange the roles of WorkingTable1 and WorkingTable2, and
repeat the process until both working tables are empty. That is simple
straightforward procedural coding. The way that the results shift from
table to table is interesting to follow. Think of these diagrams as an
animated cartoon:

Step 1: Load the first working table, harvesting any goods that already
had a piece count of one.

WorkingTable1 WorkingTable2
goods pieces goods pieces
================= ==================
'Alpha' 4
'Beta' 5
'Delta' 16
'Gamma' 50

The row ('Epsilon', 1) goes immediately to Answer table.

Step 2: Halve the piece counts and double the rows in the second
working table. Empty the first working table.

WorkingTable1 WorkingTable2
goods pieces goods pieces
================= =================
 'Alpha' 2
 'Alpha' 2
 'Beta' 2

PUZZLE 48 UNGROUPING 195

 'Beta' 3
 'Delta' 8
 'Delta' 8
 'Gamma' 25
 'Gamma' 25

Step 3: Repeat the process until both working tables are empty.

WorkingTable1 WorkingTable2
goods pieces goods pieces
========== ======= ========== =======
'Alpha' 1
'Alpha' 1
'Alpha' 1
'Alpha' 1
'Beta' 1 'Alpha' and 'Beta' are ready to harvest
'Beta' 1
'Beta' 1

'Beta' 2
'Delta' 4
'Delta' 4
'Delta' 4
'Delta' 4
'Gamma' 12
'Gamma' 12
'Gamma' 13
'Gamma' 13

The cost of completely emptying a table is usually very low.
Likewise, the cost of copying sets of rows (which are in physical

blocks of disk storage that can be moved as whole buffers) from one
table to another is much lower than inserting one row at a time.

The code could have been written to leave the results in one of the
working tables, but this approach allows the working tables to get
smaller and smaller so that you get better buffer usage. This algorithm
uses (SELECT SUM(pieces) FROM Inventory) rows of storage and
(log2((SELECT MAX(pieces) FROM Inventory)) + 1) moves, which is
pretty good on both counts.

196 PUZZLE 48 UNGROUPING

Answer #3

Peter Lawrence suggested another answer on CompuServe to the
“uncount” problem. First, create a Sequence auxiliary table that contains
all integers up to at least the maximum number of pieces (n):

CREATE TABLE Sequence (seq INTEGER NOT NULL PRIMARY KEY);
INSERT INTO Sequence VALUES (1), (2), ..., (n);

Or you can use:

INSERT INTO Sequence(seq)
WITH Digits (digit)
AS (VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9))
SELECT D1.digit + 10*D2 + 100*D3 + ..
 FROM Digits AS D1, Digits AS D2, ..
 WHERE D1.digit + 10*D2 + 100*D3 + .. > 0;

Select the “uncount” as follows:

SELECT goods, 1 AS tally, seq
 FROM Inventory AS I1, Sequence AS S1
 WHERE I1.pieces >= S1.seq;

Note that the predicate “T1.seq >= 1” is redundant because of the
CHECK() clause on the table declaration. I choose to leave it in this
statement because (1) not all tables are declared with such clauses, and
(2) it might help the optimizer.

The results should be:

Results
goods tally seq
===================
'CD-ROM' 1 1
'CD-ROM' 1 2
'CD-ROM' 1 3
'Printer' 1 1
'Printer' 1 2
...

PUZZLE 48 UNGROUPING 197

Mr. Lawrence finds a table like Sequence above very useful and also
frequently has a temporal table containing, say, every hour of a date/time
range. This can be used for similar queries such as selecting every hour
that someone was in the office when all the database contains is the start
and end times.

I like this answer, and the simple JOIN should be faster than my
elaborate shuffle between two working tables. Mr. Lawrence was not the
only reader of my DBMS column to find a solution using this method.

Answer #4

Mary Attenborough also came up with the same solution, but her twist
was a novel way of generating the table of consecutive numbers. This is
another version of the Russian peasant’s algorithm. Vinicius Mello then
improved this method of creating the working table further by
simplifying the math involved. The procedure looks like this:

BEGIN
DECLARE maxnum INTEGER NOT NULL;
DECLARE ntimes INTEGER NOT NULL;
DECLARE increment INTEGER NOT NULL;

INSERT INTO Sequence VALUES ((1), (2));

-- the count of rows in Sequence doubles each loop
SET maxnum = (SELECT MAX(pieces) FROM Inventory);
SET increment = 2;

WHILE increment < maxnum
 DO INSERT INTO Sequence
 SELECT seq + increment FROM Sequence;
 SET increment = increment + increment;
 END WHILE;

If we decide to make Sequence permanent, instead of loading it with a
procedure, then we will need to see that some of the work gets done,
leaving the items with a piece count greater than the highest seq still
intact, thus:

SELECT goods, 1 AS tally, seq
 FROM Inventory AS I1, Sequence AS T1

198 PUZZLE 48 UNGROUPING

 WHERE I1.pieces >= T1.seq
 AND T1.seq BETWEEN 1 AND MAX(I1.pieces);

A second approach would be to reject the whole query if we have a
piece count greater than the highest seq, thus:

SELECT goods, 1 AS tally, seq
 FROM Inventory AS I1, Sequence AS T1
 WHERE I1.pieces >= T1.seq
 AND (SELECT MAX(I2.pieces) FROM Inventory AS I2)
 <= (SELECT MAX(T2.seq) FROM Sequence AS T2);

The subquery expressions are known to be constant for the life of the
query, so the optimizer can do them once by going to an index in the
case of the Sequence and with a table scan in the case of the Inventory
table, since it is not likely to be indexed on the piece count.

Use a query to find the maximum number of pieces, and create only
enough copies of digits in the FROM clause to build numbers that will
cover it.

Answer #5

Another approach is to use a JOIN to a table with duplicate rows:

CREATE TABLE Repetitions – no key
(pieces INTEGER NOT NULL,
 one INTEGER DEFAULT 1 NOT NULL
 CHECK (one = 1));

INSERT INTO Repetitions
VALUES (2,1), (2,1), (3,1), (3,1), (3,1)..;

INSERT INTO WorkingTable
SELECT goods, one
 FROM Repetitions AS R1
 CROSS JOIN
 Inventory AS I1
 WHERE I1.pieces = R1.pieces
 AND I1.pieces > 1;

PUZZLE 48 UNGROUPING 199

If the piece count is higher than the Repetitions table limits, run the
insertion until no more rows are added.

Notes on Complexity

Let’s compare the two approaches, assuming an Inventory table with (m)
total rows and a maximum quantity of (n) for one or more items. Let the
final table have (r) rows in it, where r = (SELECT SUM(pieces) FROM
Inventory). This implies that r <= (m*n).

The Russian peasant algorithm approach will require O(log2(n))
iterations to solve the problem. It cuts the problem in half with each
pass and has no join or search costs. The Russian peasant algorithm also
has a cost for writing and rewriting the rows of one table into another.
Each row is written and rewritten log2(pieces) times, which would total
to O(log2(r)) for the whole table. This gives us a total cost of O(log2(n) +
log2(r)).

The “sequential join” approach will require the time to build the
Sequence plus the time to do the join. The iterative Sequence builds will
be O(n). The join of Inventory and Sequence will be O(m * n), because
this will be a cross join that has to be reduced. With a good index, this
could be reduced to O(r) by avoiding some of the values in Sequence
that are not needed. Therefore, the total cost will be O(n + r), which is
higher than the Russian peasant’s algorithm approach.

Having said all of that, the Russian peasant’s algorithm will probably
not be as fast in the real world as the sequential join approach because
there is a really high cost to physically writing and rewriting the rows of
one table into another. You would have the same (or worse) problems
with just one table in which you updated an existing row’s piece count by
half and then inserted a new row in the table with the “other half” as its
piece count.

200 PUZZLE 49 WIDGET COUNT

PUZZLE

49 WIDGET COUNT

You get a production report from production centers that have a date, a
production center code, and how many widgets were produced from
each batch of raw materials sent to the center that day. It looks like this:

CREATE TABLE Production
(production_center INTEGER NOT NULL,
 wk_date DATE NOT NULL,
 batch_nbr INTEGER NOT NULL,
 widget_cnt INTEGER NOT NULL,
 PRIMARY KEY (production_center, wk_date, batch_nbr));

The boss comes in and wants to know the average number of widgets
produced in all batches by date and production center. You say “No
problem” and do it. The next day your boss comes back and wants the
same data separated into three equal-sized batch groups. This sort of
breakdown is important for certain types of statistical analysis of
production work.

In other words, if on February 24, in production center 42, you
processed 21 batches, your report will show the average number of
widgets made from the first seven batches, the second seven batches,
and the last seven batches. Write a query that will show, by work
production center and date, the batch groups and the average number of
widgets in each group.

Answer #1

The first query is straightforward:

SELECT production_center, wk_date, COUNT(batch_nbr),
AVG(widget_cnt)
 FROM Production
 GROUP BY production_center, wk_date;

You have to make some assumptions about the second query. I am
assuming batches are numbered from 1 to (n), starting over every day. If
the number of batches is not divisible by three, then do a best fit that
accounts for all batches. Using the CASE expression in SQL-92, you can
find which third a batch_nbr is contained in, using a VIEW, as follows:

PUZZLE 49 WIDGET COUNT 201

CREATE VIEW Prod3 (production_center, wk_date, widget_cnt,
third)
AS SELECT production_center, wk_date, widget_cnt,
 CASE WHEN batch_nbr <= cont/3 THEN 1
 WHEN batch_nbr > (2 * cont)/3 THEN 3
 ELSE 2 END
 FROM Production, V1
 WHERE V1.production_center =
Production.production_center
 AND V1.wk_date = Production.wk_date;

If you do not have this in your SQL, then you might try something
like this:

CREATE VIEW Prod3 (production_center, wk_date, third,
batch_nbr, widget_cnt)
 AS SELECT production_center, wk_date, 1, batch_nbr,
widget_cnt
 FROM Production AS P1
 WHERE batch_nbr <= (SELECT MAX(batch_nbr)/3
 FROM Production AS P2
 WHERE P1.production_center =
P2.production_center
 AND P1.wk_date = P2.wk_date)
 UNION
 SELECT production_center, wk_date, 2, batch_nbr,
widget_cnt
 FROM Production AS P1
 WHERE batch_nbr > (SELECT MAX(batch_nbr)/3
 FROM Production AS P2
 WHERE P1.production_center =
P2.production_center
 AND P1.wk_date = P2.wk_date)
 AND batch_nbr <= (SELECT 2 * MAX(batch_nbr)/3
 FROM Production AS P2
 WHERE P1.production_center =
P2.production_center
 AND P1.wk_date = P2.wk_date)
 UNION
 SELECT production_center, wk_date, 3, batch_nbr,
widget_cnt
 FROM Production AS P1
 WHERE batch_nbr > (SELECT 2 * MAX(batch_nbr)/3

202 PUZZLE 49 WIDGET COUNT

 FROM Production AS P2
 WHERE P1.production_center =
P2.production_center
 AND P1.wk_date = P2.wk_date);

Answer #2

Either way, you end up with the final query:

SELECT production_center, wk_date, third, COUNT(batch_nbr),
AVG(widget_cnt)
 FROM Prod3
 GROUP BY production_center, wk_date, third;

PUZZLE 50 TWO OF THREE 203

PUZZLE

50 TWO OF THREE

We are putting together an anthology book with contributions from
many other books (identified by their International Standard Book
Number (ISBN)). As it works out, we want to find all authors who have
articles in exactly two out of three categories in the book for a specified
set of three categories that we put into the query as parameters.

CREATE TABLE AnthologyContributors
(isbn CHAR(10) NOT NULL,
 contributor CHAR(20) NOT NULL,
 category INTEGER NOT NULL,
 ...,
 PRIMARY KEY (isbn, contributor));

Answer #1

The first thought is that this is a simple GROUP BY query that would look
like this:

SELECT isbn, contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE A1.category IN (:cat_1, :cat_2, :cat_3)
 GROUP BY isbn, contributor
HAVING COUNT(*) = 2;

But this will not work for two reasons. First, a GROUP BY on the key of
a table gives you groups of one row. Second, one contributor might have
made two contributions in only one area, but they will both be counted.
What you needed was a COUNT (DISTINCT <expression>) aggregate
function. This last problem is easy to fix with a COUNT (DISTINCT
A1.category) = 2;

SELECT contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE A1.category IN (:cat_1, :cat_2, :cat_3)
 GROUP BY contributor
HAVING COUNT(DISTINCT A1.category) = 2;

204 PUZZLE 50 TWO OF THREE

Can you find other ways of doing this without using a GROUP BY? I am
not recommending any of the following solutions; the point of this
exercise is to make you appreciate the GROUP BY clause.

Answer #2

The specification does not tell if we want any two of the three categories,
or if we want them in a particular order (that is, category 1 and category
2, but not category 3). The latter is actually easy to do:

 SELECT A1.isbn, :cat_1, :cat_2
 FROM AnthologyContributors AS A1,
 AnthologyContributors AS A2
 WHERE A1.isbn = A2.isbn -- self-join table
 AND A1.category = :cat_1 -- category #1 first
 AND A2.category = :cat_2 -- category #2 second
 AND NOT EXISTS (SELECT * -- but no category #3
anywhere
 FROM AnthologyContributors AS A3
 WHERE A1.isbn = A3.isbn
 AND A3.category = :cat_3);

Answer #3

But the query to find any two out of three has to rely on some tricky
coding. This answer will not tell you which two of the three is missing,
however:

SELECT isbn, contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE A1.category IN (:cat_1, :cat_2, :cat_3)
 AND EXISTS
 (SELECT *
 FROM AnthologyContributors AS A2,
 WHERE A2.category IN (:cat_1, :cat_2, :cat_3)
 AND A1.category < A2.category
 AND A1.isbn = A2.isbn
 AND NOT EXISTS
 (SELECT *
 FROM AnthologyContributors AS A3,
 WHERE A3.category
 IN (:cat_1, :cat_2, :cat_3)

PUZZLE 50 TWO OF THREE 205

 AND A1.isbn = A3.isbn
 AND (A1.category <> A3.category
 OR A2.category <> A3.category)));

To find the contributors who have something in all three categories,
just change the NOT EXISTS to EXISTS.

To find the contributors who have only one category:

SELECT isbn, contributor, :cat_1
 FROM AnthologyContributors AS A1,
 WHERE A1.category = :cat_1
 AND NOT EXISTS
 (SELECT *
 FROM AnthologyContributors AS A2
 WHERE A2.category IN (:cat_2, :cat_3)
 AND A1.isbn = A2.isbn
 AND A1.category <> A2.category);

which is a “collapsed version” of the “two of three” query.

Answer #4

Until here, everything is okay. But take a look at Answer #3, with the
restriction not to use GROUP BY. The answer is a little wrong because you
are forgetting the condition that joins the contributor.

SELECT DISTINCT contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE 2 = (SELECT COUNT(DISTINCT A2.category)
 FROM AnthologyContributors AS A2
 WHERE A1.contr_num = A2.contr_num
 AND A1.contributor = A2.contributor
 AND A2.category IN (:cat_1, :cat_2, :cat_3));

Answer #5

This is the best answer in the bunch. It neatly handles the requirement
that we have the first two categories and not the third.

SELECT DISTINCT contributor, :cat_1, :cat_2
 FROM AnthologyContributors AS A1

206 PUZZLE 50 TWO OF THREE

 WHERE (SELECT SUM(DISTINCT
 CASE WHEN category = :cat_1
 THEN 1
 WHEN category = :cat_2
 THEN 2
 WHEN category = :cat_3
 THEN -3 ELSE NULL END)) = 3
 FROM AnthologyContributors AS A2
 WHERE A1.contr_num = A2.contr_num
 AND A1.contributor = A2.contributor
 AND A2.category IN (:cat_1, :cat_2, :cat_3));

Of course, it is possible again to use the GROUP BY clause:

SELECT contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE A1.category IN (:cat_1, :cat_2, :cat_3)
 GROUP BY contributor
HAVING (SELECT SUM(DISTINCT
 CASE WHEN category = :cat_1
 THEN 1
 WHEN category = :cat_2
 THEN 2
 WHEN category = :cat_3
 THEN -3 ELSE NULL END)) = 3;

Answer #6

Find the contributors who have all three categories. This is
straightforward using the same basic pattern:

SELECT DISTINCT contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE (SELECT COUNT(DISTINCT A2.category)
 FROM AnthologyContributors AS A2
 WHERE A1.contr_num = A2.contr_num
 AND A1.contributor = A2.contributor
 AND A2.category IN (:cat_1, :cat_2, :cat_3)) = 3;

PUZZLE 50 TWO OF THREE 207

The GROUP BY version is straightforward. If the question was to find
the contributors who have something in any of the three categories, the
answer is:

SELECT DISTINCT contributor, :cat_1, :cat_2, :cat_3
 FROM AnthologyContributors AS A1
 WHERE category IN (:cat_1, :cat_2, :cat_3);

208 PUZZLE 51 BUDGET VERSUS ACTUAL

PUZZLE

51 BUDGET VERSUS ACTUAL

C. Conrad Cady posted a simple SQL problem on the CompuServe
Gupta Forum. He has two tables, Budgeted and Actual, which describe
how a project is being done. Budgeted has a one-to-many relationship
with Actual. The tables are defined like this:

CREATE TABLE Budgeted
(task INTEGER NOT NULL PRIMARY KEY,
 category INTEGER NOT NULL,
 est_cost DECIMAL(8,2) NOT NULL);

CREATE TABLE Actual
(voucher DECIMAL(8,2) NOT NULL PRIMARY KEY,
 task INTEGER NOT NULL REFERENCES Budgeted(task),
 act_cost DECIMAL(8,2) NOT NULL);

He wants a Budgeted versus Actual comparison for each category.
This is easier to see with an example:

Budgeted
task category est_cost
======================
 1 9100 100.00
 2 9100 15.00
 3 9100 6.00
 4 9200 8.00
 5 9200 11.00

Actual
voucher task act_cost
======================
 1 1 10.00
 2 1 20.00
 3 1 15.00
 4 2 32.00
 5 4 8.00
 6 5 3.00
 7 5 4.00

PUZZLE 51 BUDGET VERSUS ACTUAL 209

The output he wants is this:

Result
category estimated spent
==========================
 9100 121.00 77.00
 9200 19.00 15.00

The $121.00 is the sum of the est_cost of the three task items in
category 9100. The $77.00 is the sum of the act_cost of the four
voucher items related to those three task items (three amounts are
related to the first item, one to the second, and none to the third).

He tried the query

SELECT category, SUM(est_cost) AS estimated,
 SUM(act_cost) AS spent
 FROM (Budgeted LEFT OUTER JOIN Actual
 ON Budgeted.task = Actual.task)
 GROUP BY category;

and he got:

Result
category estimated spent
==========================
 9100 321.00 77.00
 9200 31.00 15.00

The problem is that the $100.00 is counted three times in the JOIN,
giving $321.00 instead of $121.00, and the $11.00 is counted twice,
giving $31.00 instead of $19.00 in the JOIN.

Is there a simple, single piece of SQL that will give him the output he
wants, given the above tables?

Answer #1

Bob Badour suggested that he can get the required result by creating a
view in SQL-89:

CREATE VIEW cat_costs (category, est_cost, act_cost)
AS SELECT category, est_cost, 0.00

210 PUZZLE 51 BUDGET VERSUS ACTUAL

 FROM Budgeted
 UNION
 SELECT category, 0.00, act_cost
 FROM Budgeted, Actual
 WHERE Budgeted.task = Actual.task;

followed by the query:

SELECT category, SUM(est_cost), SUM(act_cost)
 FROM cat_costs
 GROUP BY category;

In SQL-92, we can join the total amounts spent on each task to the
category in the Budgeted table, like this:

SELECT B1.category, SUM(est_cost), SUM(spent)
 FROM Budgeted AS B1
 LEFT OUTER JOIN
 (SELECT task, SUM(act_cost) AS spent
 FROM Actual AS A1
 GROUP BY task)

 ON A1.task = B1.task
 GROUP BY B1.category;

The LEFT OUTER JOIN will handle situations where no money has
been spent yet. If you have a transitional SQL that does not allow
subqueries in a JOIN, then extract the subquery shown here and put it in
a VIEW.

Answer #2

Here is an answer from Francisco Moreno of Colombia that uses a scalar
subquery with a GROUP BY clause. Notice that the MIN() and MAX()
values are in the containing query:

SELECT category, SUM(B1.est_cost) AS estimated,
 (SELECT SUM(T1.act_cost)
 FROM Actual AS T1
 WHERE T1.task

PUZZLE 51 BUDGET VERSUS ACTUAL 211

 BETWEEN MIN(B1.task) AND MAX(B1.task)) AS
spent
 FROM Budgeted AS B1
 GROUP BY category;

212 PUZZLE 52 PERSONNEL PROBLEM

PUZZLE

52 PERSONNEL PROBLEM

Daren Race was trying to aggregate the results from an aggregate result set
using Gupta’s SQLBase and could not think of any way other than using a
temporary table or a VIEW. This is an example of what he was doing:

Personnel:
emp_name dept_id
=================
‘Daren’ ‘Acct’
‘Joe’ ‘Acct’
‘Lisa’ ‘DP’
‘Helen’ ‘DP’
‘Fonda’ ‘DP’

Then he viewed the data as an aggregate by dept_id:

SELECT dept_id, COUNT(*)
 FROM Personnel
 GROUP BY dept_id;

The results will be:

Result
dept_id COUNT(*)
===============
 Acct 2
 DP 3

Then he wanted to find the average department size! The way he did
this was to use a VIEW:

CREATE VIEW DeptView (dept_id, tally)
AS SELECT dept_id, COUNT(*)
 FROM Personnel
 GROUP BY dept_id;

Then:

PUZZLE 52 PERSONNEL PROBLEM 213

SELECT AVG(tally) FROM DeptView;

He asked if anyone on the Centura (nee Gupta) Forum on
CompuServe could think of a way of doing this without using temporary
tables (or views). He got two answers, namely:

SELECT AVG(DISTINCT dept_id)
 FROM Personnel;

and

SELECT COUNT(*) / COUNT(DISTINCT dept_id)
 FROM Personnel;

Your problem is to tell me what is wrong with each of them.

Answer #1

The first answer makes absolutely no sense at all. The department codes
are alphabetic and not numeric. This has nothing to do with the number
of people in each department.

The second answer is really much better and will give us the right
results for this data. We have a COUNT(*) = 5, and COUNT(DISTINCT
dept_id) = 2, so the answer we get is (2.5), just as we wished.

But now we hire three new employees, Larry, Moe, and Curly, who
are not yet assigned to a department, and our table looks like this:

Personnel:
emp_name dept_id
===============
 Daren Acct
 Joe Acct
 Lisa DP
 Helen DP
 Fonda DP
 Larry NULL
 Moe NULL
 Curly NULL

We now have a COUNT(*) = 8, but COUNT(DISTINCT dept_id) = 2
because the function will drop all the NULLs before it counts the dept_ids,

214 PUZZLE 52 PERSONNEL PROBLEM

so the answer we get is 4. The problem is that we need to decide what to do
with Larry, Moe, and Curly. Possible ways to do that are:

1. Each one of the new guys is in his own new department (5
departments).

2. They are all in a special department shown by NULL (3 depart-
ments).

3. Three in DP.

4. One in DP, two in Accounting.

5. Three in Accounting.

6. One in Accounting, two in DP.

7. One in DP, two in a new department.

8. One in Accounting, two in a new department.

9. One in DP, two in a new department.

10. One in Accounting, one in DP, and one in a new department.

11. One in Accounting, one in a new department, one in a second
new department.

12. One in DP, one in a new department, one in a second new
department.

This puts the average department size somewhere between (8/2) =
4.0 and (8/5) = 1.6 people. If Mr. Race had stuck to his original method,
we would have gotten:

Result
dept_id COUNT(*)
===============
 Acct 2
 DP 3
 NULL 3

and a final result of 1.5 as before because the NULLs would form a
group by themselves in the VIEW, but then been dropped out by the
average in the final query.

PUZZLE 53 COLLAPSING A TABLE BY COLUMNS 215

PUZZLE

53 COLLAPSING A TABLE BY COLUMNS

Robert Brown proposed this one in 2004. Suppose I have the following
table:

CREATE TABLE Foobar
(lvl INTEGER NOT NULL PRIMARY KEY,
 color VARCHAR(10),
 length INTEGER,
 width INTEGER,
 hgt INTEGER);

INSERT INTO Foobar
VALUES (1, 'RED', 8, 10, 12),
 (2, NULL, NULL, NULL, 20),
 (3, NULL, 9, 82, 25),
 (4, 'BLUE', NULL, 67, NULL),
 (5, 'GRAY', NULL, NULL, NULL);

I want to write a query that will return me a view collapsed from
“bottom-to-top” in order of level (lvl = 1 is the top, lvl = 5 is the bottom).
That means that the sample data would return:

(‘GRAY’, 9, 67, 25)

The principle is that looking from the bottom level up in each
column, we first see 'GRAY' for color, 9 for length, 67 for width, and 25
for height. In other words, any non-null row in a lower level overrides
the value set at a higher level.

Answer #1

John Gilson came up with two answers:

-- Option 1 uses scalar subqueries

SELECT (SELECT color FROM Foobar WHERE lvl = M.lc) AS color,
 (SELECT length FROM Foobar WHERE lvl = M.ll) AS
length,

216 PUZZLE 53 COLLAPSING A TABLE BY COLUMNS

 (SELECT width FROM Foobar WHERE lvl = M.lw) AS width,
 (SELECT hgt FROM Foobar WHERE lvl = M.lh) AS hgt
 FROM (SELECT MAX(CASE WHEN color IS NOT NULL THEN lvl END)
AS lc,
 MAX(CASE WHEN length IS NOT NULL THEN lvl END)
AS ll,
 MAX(CASE WHEN width IS NOT NULL THEN lvl END)
AS lw,
 MAX(CASE WHEN hgt IS NOT NULL THEN lvl END)
AS lh
 FROM Foobar) AS M;

-- Option 2
SELECT MIN(CASE WHEN Foobar.lvl = M.lc THEN Foobar.color
END) AS color,
 MIN(CASE WHEN Foobar.lvl = M.ll THEN Foobar.length
END) AS length,
 MIN(CASE WHEN Foobar.lvl = M.lw THEN Foobar.width
END) AS width,
 MIN(CASE WHEN Foobar.lvl = M.lh THEN Foobar.hgt END)
AS hgt
 FROM (SELECT MAX(CASE WHEN color IS NOT NULL THEN lvl END)
AS lc,
 MAX(CASE WHEN length IS NOT NULL THEN lvl END)
AS ll,
 MAX(CASE WHEN width IS NOT NULL THEN lvl END)
AS lw,
 MAX(CASE WHEN hgt IS NOT NULL THEN lvl END)
AS lh
 FROM Foobar) AS M
 INNER JOIN
 Foobar

 ON Foobar.lvl IN (M.lc, M.ll, M.lw, M.lh)

Answer #2

This was my attempt. COALESCE is executed in the order written, so I can
go from bottom to top easily to get the first non-NULL back.

SELECT COALESCE (F5.color, F4.color, F3.color, F2.color,
F1.color) AS color,
 COALESCE (F5.length, F4.length, F3.length, F2.length,
F1.length) AS length,

PUZZLE 53 COLLAPSING A TABLE BY COLUMNS 217

 COALESCE (F5.width, F4.width, F3.width, F2.width,
F1.width) AS width,
 COALESCE (F5.hgt, F4.hgt, F3.hgt, F2.hgt, F1.hgt) AS
hgt
 FROM Foobar AS F1, Foobar AS F2, Foobar AS F3,
 Foobar AS F4, Foobar AS F5
 WHERE F1.lvl = 1
 AND F2.lvl = 2
 AND F3.lvl = 3
 AND F4.lvl = 4
 AND F5.lvl = 5;

218 PUZZLE 54 POTENTIAL DUPLICATES

PUZZLE

54 POTENTIAL DUPLICATES

Ronny Weisz posted this problem he was having with an application in
DB2. The store has approximately 20,000 customers, and over time they
notice data problems due to typos, inaccurate data entry, separate
listings for different family members (in their context the family is really
a single customer), and so forth. Occasionally they try to clean up their
Customers table by preparing a report with potential duplications.

The definition of a potential duplicate is that the rows have the same
surname and match two of the five columns related to street address:
first_name, street_address, city_name, state_code, and
phone_nbr. The first attempt was something like this:

CREATE VIEW Dups (custnbr, last_name, first_name,
street_address, city_name, state_code, phone_nbr, m)
AS
SELECT C0.custnbr, C0. last_name, C0.first_name,
C0.street_address, C0.city_name,
 C0.state_code, C0.phone_nbr,
 (CASE WHEN C0.first_name = C1.first_name THEN 1 ELSE
0 END)
 + (CASE WHEN C0.street_address = C1.street_address
THEN 1 ELSE 0 END)
 + (CASE WHEN C0.city_name = C1.city_name THEN 1 ELSE
0 END)
 + (CASE WHEN C0.state_code = C1.state_code THEN 1
ELSE 0 END)
 + (CASE WHEN C0.phone_nbr = C1.phone_nbr THEN 1 ELSE
0 END) AS m
 FROM Customers AS C1, Customers AS C0
WHERE C0.custnbr <> C1.custnbr
 AND C0.last_name = C1.last_name);

SELECT DISTINCT *
 FROM Dups
 WHERE m >= 2
 ORDER BY surname;

You need the DISTINCT since a customer can appear more than once.
For example, if A1 matches A3, A5, and A6, then there will be three A1

PUZZLE 54 POTENTIAL DUPLICATES 219

rows in Dups. But performance is not great, so your job is to find an
improvement.

Answer #3

Johannes Becher of CODATA in Germany came up with the following
answer:

SELECT D0.cust_nbr
 FROM Dups AS D0
 WHERE EXISTS (SELECT D1.id
 FROM Dups AS D1
 WHERE D0.surname = D1.surname
 AND D0.cust_nbr <> D1.cust_nbr
 AND (CASE WHEN D0.first_name =
D1.first_name
 THEN 1 ELSE 0 END)
 + (CASE WHEN D0.street_address =
D1.street_address
 THEN 1 ELSE 0 END)
 + (CASE WHEN D0.city_name = D1.city_name
 THEN 1 ELSE 0 END)
 + (CASE WHEN D0.state_code =
D1.state_code
 THEN 1 ELSE 0 END)
 + (CASE WHEN D0.phone_nbr = D1.phone_nbr
 THEN 1 ELSE 0 END) >= 2);

Note that he added the (D0.cust_nbr <> D1.cust_nbr) clause so
that every row would not qualify as a duplicate of itself. Also, he moved
the CASE expressions from the SELECT list, where it was a calculated
column, to the WHERE clause. This made the addition an expression in a
predicate where an optimizer could do shortcut evaluation. In a shortcut
evaluation, as soon as you know the predicate is TRUE or FALSE, then you
stop calculating and return an answer. As a calculated column, it had to
be evaluated completely so it could be materialized in the VIEW.

Going one step further, if you know the optimizer’s order of
evaluation (left to right or right to left) of the CASE expressions and the
columns mostly to be matched, then you can arrange the expressions for
even better performance. For example, city_name and state_code are
probably not often misspelled and should come last, while people and
street names are often wrong.

220 PUZZLE 54 POTENTIAL DUPLICATES

Having said all of this, the best way to handle this kind of problem
is to use specialized packages that are designed for cleaning up mailing
lists. You can take a look at the offerings from Melissa Data (http://
www.melissadata.com/).

PUZZLE 55 PLAYING THE PONIES 221

PUZZLE

55 PLAYING THE PONIES

You have just become the database manager for your bookie. He keeps
records on horse races for statistical purposes, and his basic table looks
like this:

CREATE TABLE RacingResults
(track_id CHAR(3) NOT NULL,
 race_date DATE NOT NULL,
 race_nbr INTEGER NOT NULL,
 win_name CHAR(30) NOT NULL,
 place_name CHAR(30) NOT NULL,
 show_name CHAR(30) NOT NULL,
 PRIMARY KEY (track_id, race_nbr_date, race_nbr));

The track_id column is the name of the track where the race was
held, race_date is when it was held, race_nbr is number of the each
race, and the other three columns are the names of the horses that won,
placed, or showed for that race. If you do not know these terms, won
means that the horse was in first place; placed means that the horse was
in first or second place, and showed means the horse was in first,
second, or third place.

Your bookie comes to you one day and wants to know how many
times each horse was in the money. What SQL query do you write for
this?

Answer #1

The phrase “in the money” means that the horse won, placed, or showed
in a race—we don’t care which. The first step is to build a VIEW with the
aggregate information, thus:

CREATE VIEW InMoney (horse, tally, position) AS
SELECT win_name, COUNT(*), 'win_name'
 FROM RacingResults
 GROUP BY win_name
UNION ALL
SELECT place_name, COUNT(*), 'place_name'
 FROM RacingResults
 GROUP BY place_name

222 PUZZLE 55 PLAYING THE PONIES

UNION ALL
SELECT show_name, COUNT(*), 'show_name'
 FROM RacingResults
 GROUP BY show_name;

Now use that view to get the final summary:

SELECT horse, SUM(tally)
 FROM InMoney
 GROUP BY horse;

There are two reasons for putting those string constants in the
SELECT lists. The first is so that we will not drop duplicates incorrectly in
the UNION ALL. The second reason is so that if the bookie wants to know
how many times each horse finished in each position, you can just
change the query to:

SELECT horse, position, SUM(tally)
 FROM InMoney
 GROUP BY horse, position;

Answer #2

If you have a table with all the horses in it, you can write the query as:

 SELECT H1.horse, COUNT(*)
 FROM HorseNames AS H1, RacingResults AS R1
 WHERE H1.horse IN (R1.win_name, P1.place_name,
R1.show_name)
 GROUP BY H1.horse;

If you use an OUTER JOIN, you can also see the horse that did not
show up in the RacingResults table. There is an important design
principle demonstrated here; it is hard to tell if something is an entity or
an attribute. A horse is an entity and therefore should be in a table. But
the horse’s name is also used as a value in three columns in the
RacingResults table.

PUZZLE 55 PLAYING THE PONIES 223

Answer #3

Another approach that requires a table of the horses’ names is to build
the totals with scalar subqueries.

SELECT H1.horse,
 (SELECT COUNT(*)
 FROM RacingResults AS R1
 WHERE R1.win_name = H1.horse)
 + (SELECT COUNT(*)
 FROM RacingResults AS R1
 WHERE R1.place_name = H1.horse)
 + (SELECT COUNT(*)
 FROM RacingResults AS R1
 WHERE R1.show_name = H1.horse)
 FROM Horses AS H1;

While this works, it is probably going to be expensive to execute.

224 PUZZLE 56 HOTEL ROOM NUMBERS

PUZZLE

56 HOTEL ROOM NUMBERS

Ron Hiner put this question on CompuServe. He had a data conversion
project where he needed to automatically assign some values to use as
part of the PRIMARY KEY to a table of hotel rooms.

The floor number is part of the PRIMARY KEY is the FOREIGN KEY to
another table of floors within the building. The part of the hotel key we
need to create is the room number, which has to be a sequential
number starting at x01 for each floor number x. The hotel is small
enough that we know we will only have three-digit numbers. The table
is defined as follows:

CREATE TABLE Hotel
(floor_nbr INTEGER NOT NULL,
 room_nbr INTEGER,
 PRIMARY KEY (floor_nbr, room_nbr),
 FOREIGN KEY floor_nbr REFERENCES Bldg(floor_nbr);

Currently, the data in the working table looks like this:

floor_nbr room_nbr
===================
 1 NULL
 1 NULL
 1 NULL
 2 NULL
 2 NULL
 3 NULL

WATCOM (and other versions of SQL back then) had a proprietary
NUMBERS(*) function that begins at 1 and returns an incremented
value for each row that calls it. The current SQL Standard now has a
DENSE_RANK () OVER(<window expression>) function that makes
this easy to compute, but can you do it the old-fashion way?

Is there an easy way via the numbering functions (or some other
means) to automatically populate the room_nbr column? Mr. Hiner was
thinking of somehow using a “GROUP BY floor_nbr” clause to restart
the numbering back at 1.

PUZZLE 56 HOTEL ROOM NUMBERS 225

Answer #1

The WATCOM support people came up with this approach. First, make
one updating pass through the whole database, to fill in the room_nbr
numbers. This trick will not work unless you can guarantee that the
Hotel table is updated in sorted order. As it happens, WATCOM can
guarantee just that with a clause on the UPDATE statement, thus:

UPDATE Hotel
 SET room_nbr = (floor_nbr*100)+NUMBER(*)
 ORDER BY floor_nbr;

which would give these results:

room_nbr
==========
 1 101
 1 102
 1 103
 2 204
 2 205
 3 306

followed by:

UPDATE Hotel
 SET room_nbr = (room_nbr - 3)
 WHERE floor_nbr = 2;

UPDATE Hotel
 SET room_nbr = (room_nbr - 5)
 WHERE floor_nbr = 3;

which would give the correct results:

floor_nbr room_nbr
==========
 1 101
 1 102
 1 103
 2 201
 2 202
 3 301

226 PUZZLE 56 HOTEL ROOM NUMBERS

Unfortunately, you have to know quite a bit about the number of
rooms in the hotel. Can you do better without having to use the ORDER
BY clause?

Answer #2

I would use SQL to write SQL statements. This is a neat trick that is not
used enough. Just watch your quotation marks when you do it and
remember to convert numeric values to characters, thus:

SELECT DISTINCT
 'UPDATE Hotel SET room_nbr = ('
 || CAST (floor_nbr AS CHAR(1))
 || '* 100)+NUMBER(*) WHERE floor_nbr = '
 || CAST (floor_nbr AS CHAR(1)) || ';'
 FROM Hotel;

This statement will write a result table with one column that has a
test, like this:

UPDATE Hotel SET room_nbr = (floor_nbr*100)+NUMBER(*) WHERE
floor_nbr = 1;
UPDATE Hotel SET room_nbr = (floor_nbr*100)+NUMBER(*) WHERE
floor_nbr = 2;
UPDATE Hotel SET room_nbr = (floor_nbr*100)+NUMBER(*) WHERE
floor_nbr = 3;
 ...

Copy this column as text to your interactive SQL tool or into a batch
file and execute it. This does not depend on the order of the rows in the
table.

You could also put this into the body of a stored procedure and pass
the floor_nbr as a parameter. You are only going to do this once, so
writing and compiling procedure is not going to save you anything.

Answer #3

What was such a problem in older SQLs is now trivial in SQL-99.

UPDATE Hotel
 SET room_nbr
 = (floor_nbr * 100)
 + ROW_NUMBER()OVER (PARTITION BY floor_nbr);

PUZZLE 57 GAPS—VERSION ONE 227

PUZZLE

57 GAPS—VERSION ONE

This is a classic SQL programming problem that comes up often in
newsgroups. In the simplest form, you have a table of unique numbers
and you want to either find out if they are in sequence or find the gaps in
them. Let’s construct some sample data.

CREATE TABLE Numbers (seq INTEGER NOT NULL PRIMARY KEY);
INSERT INTO Numbers
VALUES (2), (3), (5), (7), 8), (14), (20);

Answer #1

Finding out if you have a sequence from 1 to (n) is very easy. This will
not tell you where the gaps are, however.

SELECT CASE WHEN COUNT(*) = MAX(seq)
 THEN 'Sequence' ELSE 'Not Sequence' END FROM Numbers;

The math for the next one is obvious, but this test does not check that
the set starts at one (or at zero). It is only for finding if a gap exists in the
range.

SELECT CASE WHEN COUNT(*) + MIN(seq) - 1 = MAX(seq)
 THEN 'Sequence' ELSE 'Not Sequence' END FROM Numbers;

Answer #2

This will find the starting and ending values of the gaps. But you have to
add a sentinel value of zero to the set of Numbers.

SELECT N1.seq+1 AS gap_start, N2.seq-1 AS gap_end
 FROM Numbers AS N1, Numbers AS N2
 WHERE N1.seq +1 < N2.seq
 AND (SELECT SUM(seq)
 FROM Numbers AS Num3
 WHERE Num3.seq BETWEEN N1.seq AND N2.seq)
 = (N1.seq + N2.seq);

228 PUZZLE 57 GAPS—VERSION ONE

Bad starts are common in this problem. For example, this query will
return only the start of a gap and one past the maximum value in the
Numbers table, and it misses 1 if it is not in Numbers.

-- does not work; only start of gaps
SELECT N1.seq + 1
 FROM Numbers AS N1
 LEFT OUTER JOIN
 Numbers AS N2
 ON N1.seq = N2.seq -1
 WHERE N2.seq IS NULL;

A more complicated but accurate way to find the first missing
number is:

--first missing seq
SELECT CASE WHEN MAX(seq) = COUNT(*)
 THEN MAX(seq) + 1
 WHEN MIN(seq) < 1
 THEN 1
 WHEN MAX(seq) <> COUNT(*)
 THEN (SELECT MIN(seq)+1
 FROM Numbers
 WHERE (seq + 1)
 NOT IN (SELECT seq FROM Numbers))
 ELSE NULL END
 FROM Numbers;

The first case adds the next value to Numbers if there is no gap. The
second case fills in the value 1 if it is missing. The third case finds the
lowest missing value.

Answer #3

Let’s use the usual Sequence auxiliary table and one of the SQL-99 set
operators:

SELECT X.seq
 FROM ((SELECT seq FROM Sequence AS S1)
 EXCEPT ALL
 (SELECT seq FROM Numbers AS N1

PUZZLE 57 GAPS—VERSION ONE 229

 WHERE seq <= (SELECT MAX(seq) FROM Numbers))
) AS X(seq);

Notice that I used EXCEPT ALL, since there are no duplicates in either
table. You cannot trust the optimizer to always pick up on that fact when
a feature is this new.

230 PUZZLE 58 GAPS—VERSION TWO

PUZZLE

58 GAPS—VERSION TWO

Here is a second version of the classic SQL programming problem of
finding gaps in a sequence. How many ways can you do it? Can you
make it better with SQL-92 and SQL-99 features?

CREATE TABLE Tickets
(buyer_name CHAR(5) NOT NULL,
 ticket_nbr INTEGER DEFAULT 1 NOT NULL
 CHECK (ticket_nbr > 0),
 PRIMARY KEY (buyer_name, ticket_nbr));

INSERT INTO Tickets
VALUES ('a', 2), ('a', 3), ('a', 4),
 ('b', 4),
 ('c', 1), ('c', 2), ('c', 3), ('c', 4), ('c', 5),
 ('d', 1), ('d', 6), ('d', 7), ('d', 9),
 ('e', 10);

Answer #1

Tom Moreau, another well-known SQL author in Toronto, came up
with this solution that does not use a UNION ALL. It finds buyers with a
gap in the tickets they hold, but it does not “fill in the holes” for you.
For example, Mr. D is holding (1, 6, 7, 9) so he has gaps for (2, 3,4, 5,
8), but Tom did not count Mr. A because there is no gap within the
range he holds.

SELECT buyer_name
 FROM Tickets
 GROUP BY buyer_name
HAVING NOT (MAX(ticket_nbr) - MIN(ticket_nbr) <= COUNT
(*));

If we can assume that there is a relatively small number of tickets,
then you could use a table of sequential numbers from 1 to (n) and write:

SELECT DISTINCT T1.buyer_name, S1.seq
 FROM Tickets AS T1, Sequence AS S1
 WHERE seq <= (SELECT MAX(ticket_nbr) -- SET the range

PUZZLE 58 GAPS—VERSION TWO 231

 FROM Tickets AS T2
 WHERE T1.buyer_name = T2.buyer_name)
 AND seq NOT IN (SELECT ticket_nbr -- get missing numbers
 FROM Tickets AS T3
 WHERE T1.buyer_name = T3.buyer_name);

Another trick here is to add a zero to act as a boundary when 1 is
missing from the sequence. In standard SQL-92, you could write the
union all expression directly in the FROM clause.

Answer #2

A Liverpool fan proposed this query:

SELECT DISTINCT T1.buyer_name, S1.seq
 FROM Tickets AS T1, Sequence AS S1
 WHERE NOT EXISTS
 (SELECT *
 FROM Tickets AS T2
 WHERE T2.buyer_name = T1.buyer_name
 AND T2.ticket_nbr = S1);

but it lacks an upper limit on the Sequence.seq value used.

Answer #3

Omnibuzz avoided the DISTINCT and came up with this query, which
does put a limit on the Sequence.

SELECT T2.buyer_name, T2.ticket_nbr
 FROM (SELECT T1.buyer_name, S1.seq AS ticket_nbr
 FROM (SELECT buyer_name, MAX(ticket_nbr)
 FROM Tickets
 GROUP BY buyer_name)
 AS T1(buyer_name, max_nbr),
 Sequence AS S
 WHERE S1.seq <= max_nbr
) AS T2
 LEFT OUTER JOIN
 Tickets AS T3
 ON T2.buyer_name = T3.buyer_name

232 PUZZLE 58 GAPS—VERSION TWO

 AND T2.ticket_nbr = T3.ticket_nbr
 WHERE T3.buyer_name IS NULL;

Answer #4

Dieter Noeth uses the SQL:1999 OLAP functions to calculate the
“previous value.” If the difference to the “current” value is greater than 1
there’s a gap. Since Sequence starts at 1, we need the COALESCE to add a
dummy “prev_value” of 1.

SELECT buyer_name, (prev_nbr + 1) AS gap_start,
 (ticket_nbr – 1) AS gap_end
 FROM (SELECT buyer_name, ticket_nbr,
 COALESCE(MIN(ticket_nbr) OVER (PARTITION BY
buyer_name
 ORDER BY ticket_nbr
 ROWS BETWEEN 1 PRECEDING AND 1
PRECEDING), 0)
 FROM Tickets
) AS DT(buyer_name, ticket_nbr, prev_nbr)
 WHERE (ticket_nbr - prev_nbr) > 1;

Answer #5

Omnibuzz came up with another one using a common table expression
(CTE), no sequence table, and no DISTINCT.

WITH CTE(buyer_name, ticket_nbr)
AS
(SELECT buyer_name, MAX(ticket_nbr)
 FROM Tickets
 GROUP BY buyer_name
UNION ALL
SELECT buyer_name, ticket_nbr - 1
 FROM CTE
 WHERE ticket_nbr - 1 >= 0
)

SELECT A.buyer_name, A.ticket_nbr
 FROM CTE AS A
 LEFT OUTER JOIN
 Tickets AS B

PUZZLE 58 GAPS—VERSION TWO 233

 ON A.buyer_name = B.buyer_name
 AND A.ticket_nbr = B.ticket_nbr
 WHERE B.buyer_name IS NULL;

Notice that this is a recursive CTE expression that generates the
complete range of ticket numbers. The main SELECT statement is doing a
set difference with an OUTER JOIN.

234 PUZZLE 59 MERGING TIME PERIODS

PUZZLE

59 MERGING TIME PERIODS

When you have a timesheet, you often need to merge contiguous or
overlapping time periods. This can be a problem to do in a simple query,
so be careful as this is not easy to follow or understand:

CREATE TABLE Timesheets
(task_id CHAR(10) NOT NULL PRIMARY KEY,
 start_date DATE NOT NULL,
 end_date DATE NOT NULL,
 CHECK(start_date <= end_date));

INSERT INTO Timesheets
VALUES (1, '1997-01-01', '1997-01-03'),
 (2, '1997-01-02', '1997-01-04'),
 (3, '1997-01-04', '1997-01-05'),
 (4, '1997-01-06', '1997-01-09'),
 (5, '1997-01-09', '1997-01-09'),
 (6, '1997-01-09', '1997-01-09'),
 (7, '1997-01-12', '1997-01-15'),
 (8, '1997-01-13', '1997-01-14'),
 (9, '1997-01-14', '1997-01-14'),
 (10, '1997-01-17', '1997-01-17');

Answer #1

SELECT T1.start_date, MAX(T2.end_date)
 FROM Timesheets AS T1, Timesheets AS T2
WHERE T1.start_date < T2.end_date
 AND NOT EXISTS
 (SELECT *
 FROM Timesheets AS T3, Timesheets AS T4
 WHERE T3.end_date < T4.start_date
 AND T3.start_date >= T1.start_date
 AND T3.end_date <= T2.end_date
 AND T4.start_date >= T1.start_date
 AND T4.end_date <= T2.end_date
 AND NOT EXISTS
 (SELECT *
 FROM Timesheets AS T5

PUZZLE 59 MERGING TIME PERIODS 235

 WHERE T5.start_date BETWEEN
T3.start_date AND T3.end_date
 AND T5.end_date
BETWEEN T4.start_date AND T4.end_date))
GROUP BY T1.start_date
HAVING t1.start_date = MIN(t2.start_date);

Results:
start_date end_date
========================
1997-01-01 1997-01-05
1997-01-04 1997-01-05
1997-01-06 1997-01-09
1997-01-12 1997-01-15

Answer #2

It is a long query, but check the execution time.

SELECT X.start_date, MIN(Y.end_date) AS end_date
 FROM (SELECT T1.start_date
 FROM Timesheets AS T1
 LEFT OUTER JOIN
 Timesheets AS T2
 ON T1.start_date > T2.start_date
 AND T1.start_date <= T2.end_date
 GROUP BY T1.start_date
 HAVING COUNT(T2.start_date) = 0) AS X(start_date)
 INNER JOIN
 (SELECT T3.end_date
 FROM Timesheets AS T3
 LEFT OUTER JOIN
 Timesheets AS T4
 ON T3.end_date >= T4.start_date
 AND T3.end_date < T4.end_date
 GROUP BY T3.end_date
 HAVING COUNT(T4.start_date) = 0) AS Y(end_date)
 ON X.start_date <= Y.end_date
 GROUP BY X.start_date;

236 PUZZLE 59 MERGING TIME PERIODS

Results
start_date end_date

1997-01-01 1997-01-05
1997-01-06 1997-01-09
1997-01-12 1997-01-15
1997-01-17 1997-01-17

Answer #3

SELECT X.start_date, MIN(X.end_date) AS end_date
 FROM (SELECT T1.start_date, T2.end_date
 FROM Timesheets AS T1, Timesheets AS T2,
Timesheets AS T3
 WHERE T1.end_date <= T2.end_date
 GROUP BY T1.start_date, T2.end_date
 HAVING COUNT (CASE
 WHEN (T1.start_date > T3.start_date
 AND T1.start_date <= T3.end_date)
 OR (T2.end_date = T3.start_date
 AND T2.end_date < T3.end_date)
 THEN 1 ELSE 0 END) = 0) AS X
 GROUP BY X.start_date;

Results
start_date end_date
========================
1997-01-01 1997-01-05
1997-01-06 1997-01-09
1997-01-12 1997-01-15
1997-01-17 1997-01-17

There is a lot of logic crammed into that little query.

PUZZLE 60 BARCODES 237

PUZZLE

60 BARCODES

In a recent posting on www.swug.org, a regular contributor posted a
T-SQL function that calculates the checksum digit of a standard, 13-
digit barcode. The algorithm is a simple weighted sum method (see
Data & Databases, Section 15.3.1, if you do not know what that
means). Given a string of 13 digits, you take the first 12 digits of the
string of the barcode, use a formula on them, and see if the result is
the 13th digit. The rules are simple:

1. Sum each digit in an odd position to get S1.

2. Sum each digit in an odd position to get S2.

Subtract S2 from S1, do a modulo 10 on the sum, and then compute
the absolute positive value. The formula is ABS(MOD(S1-S2), 10) for the
barcode checksum digit.

Here is the author’s suggested function code translated from T-SQL in
standard SQL/PSM:

CREATE FUNCTION Barcode_CheckSum(IN my_barcode CHAR(12))
RETURNS INTEGER
 BEGIN
 DECLARE barcode_checkres INTEGER;
 DECLARE idx INTEGER;
 DECLARE sgn INTEGER;
 SET barcode_checkres = 0;
-- check if given barcode is numeric
 IF IsNumeric(my_barcode) = 0
 THEN RETURN -1;
 END IF;
-- check barcode length
 IF CHAR_LENGTH(TRIM(BOTH ' ' FROM my_barcode))<> 12
 THEN RETURN -2;
 END IF;
-- compute barcode checksum algorithm
 SET idx = 1;
 WHILE idx <= 12
 DO -- Calculate sign of digit
 IF MOD(idx, 2) = 0

238 PUZZLE 60 BARCODES

 THEN SET sgn = -1;
 ELSE SET sgn = +1;
 END IF;
 SET barcode_checkres = barcode_checkres +
 CAST(SUBSTRING(my_barcode FROM idx FOR 1) AS INTEGER)
 * sgn;
 SET idx = idx + 1;
 END WHILE;

 -- check digit
 RETURN ABS(MOD(barcode_checkres, 10));
END;

Let’s see how it works:

barcode_checkSum('283723281122')
= ABS (MOD(2-8 + 3-7 + 2-3 + 2-8 + 1-1 + 2-2), 10))
= ABS (MOD(-6 -4 -1 -6 + 0 + 0), 10)
= ABS (MOD(-17, 10))
= ABS(-7) = 7

Answer #1

Okay, where to begin? Notice the creation of unnecessary local variables,
the assumption of an IsNumeric() function taken from T-SQL dialect,
and the fact that the check digit is supposed to be a character in the
barcode and not an integer separated from the barcode. We have three
IF statements and a WHILE loop in the code. This is about as procedural
as you can get.

In fairness, SQL/PSM does not handle errors by returning negative
numbers, but I don’t want to get into a lesson on the mechanism used,
which is quite different from the one used in T-SQL.

Why use all that procedural code? Most of it can be replaced by
declarative expressions. Let’s start with the usual Sequence auxiliary table
in place of the loop, nest function calls, and use CASE expressions to
remove IF statements.

The rough pseudoformula for conversion is:

� A procedural loop becomes a sequence set:

PUZZLE 60 BARCODES 239

FOR seq FROM 1 TO n DO f(seq);
 => SELECT f(seq) FROM Sequence WHERE seq <= n;

� A procedural selection becomes a CASE expression:

IF.. THEN .. ELSE
 => CASE WHEN.. THEN .. ELSE.. END;

� A series of assignments and function calls become a nested set of
function calls:

DECLARE x <type>;
SET x = f(..);
SET y = g(x);
 ..;
 => f(g(x))

Answer #2

Here is a translation of those guidelines into a first shot at a rewrite:

CREATE FUNCTION Barcode_CheckSum(IN my_barcode CHAR(12))
RETURNS INTEGER
BEGIN
 IF barcode NOT SIMILAR TO '%[^0-9]%'
 THEN RETURN -1;
 ELSE RETURN
 (SELECT ABS(SUM((CAST (SUBSTRING(barcode
 FROM S.seq FOR 1) AS INTEGER)
 * CASE MOD(S.seq)WHEN 0 THEN 1 ELSE -1 END)))
 FROM Sequence AS S
 WHERE S.seq <= 12);
END IF;
END;

The SIMILAR TO regular expression predicate is a cute trick worth
mentioning. It is a double-negative that assures the input string is all
digits in all 12 positions. Remember that an oversized string will not fit
into the parameter and will give you an overflow error, while a short
string will be padded with blanks.

240 PUZZLE 60 BARCODES

Answer #3

But wait! We can do better:

CREATE FUNCTION Barcode_CheckSum(IN my_barcode CHAR(12))
RETURNS INTEGER
RETURN
 (SELECT ABS(SUM((CAST (SUBSTRING(barcode
 FROM S.seq FOR 1) AS INTEGER)
 * CASE MOD(S.seq)WHEN 0 THEN 1 ELSE -1 END)))
 FROM Sequence AS S
 WHERE S.seq <= 12)
 AND barcode NOT SIMILAR TO '%[^0-9]%';

This will return a NULL if there is an improper barcode. It is only one
SQL statement, so we are doing pretty well. There are some minor
tweaks, like this:

CREATE FUNCTION Barcode_CheckSum(IN my_barcode CHAR(12))
RETURNS INTEGER
RETURN
 (SELECT ABS(SUM(CAST(SUBSTRING(barcode
 FROM Weights.seq FOR 1) AS INTEGER)
 * Weights.wgt))
 FROM (VALUES (CAST(1 AS INTEGER), CAST(-1 AS INTEGER)),
(2, +1), (3, -1), (4, +1), (5, -1),
 (6, +1), (7, -1), (8, +1), (9, -1), (10, +1), (11,
-1), (12, +1)) AS weights(seq, wgt)
 WHERE barcode NOT SIMILAR TO '%[^0-9]%');

Another cute trick in standard SQL is to construct a table constant
with a VALUES() expression. The first row in the table expression
establishes the datatypes of the columns by explicit casting.

Answer #4

What is the best solution? The real answer is none of the above. The
point of this exercise was to come up with a set-oriented, declarative
answer. We have been writing functions to check a condition. What we
want is a CHECK() constraint for the barcode. Try this instead:

PUZZLE 60 BARCODES 241

CREATE TABLE Products
(..
 barcode CHAR(13) NOT NULL
 CONSTRAINT all_numeric_checkdigit
 CHECK (barcode NOT SIMILAR TO '%[^0-9]%')
 CONSTRAINT valid_checkdigit
 CHECK (
 (SELECT ABS(SUM(CAST(SUBSTRING(barcode
 FROM Weights.seq FOR 1) AS INTEGER)
 * Weights.wgt))
 FROM (VALUES (CAST(1 AS INTEGER), CAST(-1 AS INTEGER)),
(2, +1), (3, -1), (4, +1), (5, -1),
 (6, +1), (7, -1), (8, +1), (9, -1), (10, +1), (11,
-1), (12, +1)) AS weights(seq, wgt)
 = CAST(SUBSTRING(barcode FROM 13 FOR 1) AS INTEGER)),
..
);

This will keep bad data out of the schema, which is something that
a function cannot do. The closest thing you could do would be to have
a trigger that fires on insertion. The reason for splitting the code into
two constraints is to provide better error messages. That is how we
think in SQL.

242 PUZZLE 61 SORT A STRING

PUZZLE

61 SORT A STRING

Tony Wilton posted this quick problem in 2003. We are currently writing
a stored procedure that generates a string of characters in the form
‘CABBDBC’. We need to be able to sort this string alphabetically, that is,
“ABBBCCD” as the results. There are no library functions to do this.

Let’s make the assumption that when Tony said “in the form,” he
means the string is always CHAR(7) and always made up of elements of
the four letters {'A', 'B', 'C', 'D'}.

Answer #1

The first answers proposed by people were for a procedure with a WHILE
loop written in a proprietary 4GL. They used bubble sorts on SUBSTRING
(gen_str FROM i FOR 1) within the string, so that you would have to
call on the procedure one row at a time.

If the string is a fixed length, then you can use a Bose-Nelson solution
that will be insanely fast. This sort generates the swap pairs that you need
to consider to order the string. I am not going to go into the details since
it is a bit more math than we want to look at right now, but you can find
them in my book SQL for Smarties. The procedure would be a chain of
UPDATE statements.

Answer #2

If there is a relatively small set of generated string, use a look-up table.

CREATE TABLE SortMeFast
(unsorted_string CHAR(7) NOT NULL PRIMARY KEY,
 sorted_string CHAR(7) NOT NULL);

Fike’s algorithm can give you the permutations to load into the table,
and this will let you process an entire set of unsorted strings at once,
instead of calling a function on one row at a time.

Answer #3

If the set of characters is small, count the A’s, generate a string of them;
count the B’s, generate a string of them; and concatenate it to the first
string. Keep going for the rest of the alphabet.

PUZZLE 61 SORT A STRING 243

Let us assume that we have a REPLICATE(<string expression>, <n>)
function that will create a string of (n) copies of the <string expression>.
Also assume a REPLACE(<target string>,<old string>,<new string>) that
will replace the <old string> with the <new string> wherever it appears in
the <target string>.

BEGIN
DECLARE instring CHAR(7);
SET instring = 'DCCBABA';

 REPLICATE ('A', (DATA_LENGTH(instring)-
DATA_LENGTH(REPLACE(instring,'A',''))))
 || REPLICATE ('B', (DATA_LENGTH(instring)-
DATA_LENGTH(REPLACE(instring,'B',''))))
 || REPLICATE ('C', (DATA_LENGTH(instring)-
DATA_LENGTH(REPLACE(instring,'C',''))))
 || REPLICATE ('D', (DATA_LENGTH(instring)-
DATA_LENGTH(REPLACE(instring,'D',''))))

END;

You can do this for the whole alphabet and it will fly. What you do is
change the current search letter to an empty string, and then compare
the length of the reduced string to the original to get the number of
occurrences of that letter. That count is used by REPLICATE() to build
the output string.

This expression can also be put into a VIEW, so there is absolutely no
procedural code in the schema. SQL programmers too often come from
a procedural programming background and cannot think this way.
When I showed this to a LISP programmer, however, his response was
“Of course, how else?”

244 PUZZLE 62 REPORT FORMATTING

PUZZLE

62 REPORT FORMATTING

SQL is a data retrieval language and not a report writer. Unfortunately,
people do not seem to know this and are always trying to do things for
which SQL was not intended. One of the most common ones is to
arrange a list of values into a particular number of columns for display.

The original version of this puzzle came from Richard S. Romley at
Smith Barney, who many of you know as the man who routinely cooks my
SQL puzzle solutions. He won a bet from a coworker who said it could not
be done. The problem is to first create a simple one-column table “Names”
with a single unique “name” column and populate it as follows:

CREATE TABLE Names
(name VARCHAR(15) NOT NULL PRIMARY KEY);

INSERT INTO Names
VALUES ('Al'), ('Ben'), ('Charlie'),
 ('David'), 'Ed'), ('Frank'),
 ('Greg'), ('Howard'), ('Ida'),
 ('Joe'), ('Ken'), ('Larry'),
 ('Mike');

A simple “SELECT name FROM Names ORDER BY name;” returns the
original list in alphabetic order, but suppose you wanted to display the
names three across, like this:

Results
name1 name2 name3
========================
Al Ben Charlie
David Ed Frank
Greg Howard Ida
Joe Ken Larry
Mike NULL NULL

or four across:

PUZZLE 62 REPORT FORMATTING 245

Results
name1 name2 name3 name4
==============================
Al Ben Charlie David
Ed Frank Greg Howard
Ida Joe Ken Larry
Mike NULL NULL NULL

or any other number across? Can you write single SQL statements that
will generate each of these results?

Answer #1

The best approach is to start with a simple two-across solution and
explain it:

SELECT N1.name AS name1, MIN(N2.name) AS name2
 FROM Names AS N1
 LEFT OUTER JOIN
 Names AS N2
 ON N1.name < N2.name
 WHERE N1.name
 IN (SELECT A.name
 FROM Names AS A
 INNER JOIN
 Names AS B
 ON A.name <= B.name
 GROUP BY A.name
 HAVING MOD(COUNT(B.name), 2) =
 (SELECT MOD(COUNT(*), 2) FROM Names))
 GROUP BY N1.name
 ORDER BY N1.name;

The self OUTER JOIN will put the lower alphabetical ranked name in
the first column. The MIN() aggregate function will then pick the lowest
remaining name from the table, excluding N1.name.

The WHERE clause is the real trick. We want to find the values of
N1.name that will start each row in the desired result table and use that
list of names to define the result set. In this case, that would be the first
name ('Al'), third name ('Charlie'), and so on, in the alphabetized
list. This is all done with a MOD() function. The MOD() function was not

246 PUZZLE 62 REPORT FORMATTING

part of the official SQL-92, so technically we should have been writing
this out with integer arithmetic. But it is such a common vendor
extension, and it does show up in the SQL-99 standard, that I do not
mind using it.

Start with an experimental table that looks like this:

 SELECT A.name
 FROM Names AS A
 INNER JOIN
 Names AS B
 ON A.name <= B.name
 GROUP BY A.name;

Using four names, the ungrouped table would look like this:

A.name B.name
 ==================
 Al Al
 Al Ben
 Al Charlie
 Al David

 Ben Ben
 Ben Charlie
 Ben David

 Charlie Charlie
 Charlie David

 David David

The predicate (MOD(COUNT(A.name), 2) = 0 will find what we want.
This is fine for even numbers, but if we have an odd number of people
(insert 'Ed' into the example), we need to get that “orphaned” row into
the result table. You can do this by knowing the total number of rows in
the original table and using it to adjust the selection of the first column
in the final result table. I am skipping some algebra, but you can work it
out easily.

Instead of doing the cases for three and four across, let’s jump directly
to five across to show how the solution generalizes:

PUZZLE 62 REPORT FORMATTING 247

SELECT N1.name,
 MIN(N2.name) AS name2,
 MIN(N3.name) AS name3,
 MIN(N4.name) AS name4,
 MIN(N5.name) AS name5
 FROM (Names AS N1
 LEFT OUTER JOIN
 Names AS N2
 ON N1.name < N2.name)
 LEFT OUTER JOIN
 Names AS N3
 ON N1.name < N2.name
 AND N2.name < N3.name
 LEFT OUTER JOIN
 Names AS N4
 ON N1.name < N2.name
 AND N2.name < N3.name
 AND N3.name < N4.name
 LEFT OUTER JOIN
 Names AS N5
 ON N1.name < N2.name
 AND N2.name < N3.name
 AND N3.name < N4.name
 AND N4.name < N5.name
 WHERE N1.name IN (SELECT A.name
 FROM Names AS A
 INNER JOIN
 Names AS B
 ON A.name <= B.name
 GROUP BY A.name
 HAVING MOD(COUNT(B.name), 5) =
 (SELECT MOD(COUNT(*), 5)
 FROM Names))
 GROUP BY N1.name;

Answer #2

Another shorter version of the above query is as follows:

 SELECT N3.name, MIN(N4.name), MIN(N5.name), MIN(N6.name),
MIN(N7.name)
 FROM (SELECT N1.name

248 PUZZLE 62 REPORT FORMATTING

 FROM Names AS N1
 INNER JOIN
 Names AS N2
 ON N1.name >= N2.name
 GROUP BY N1.name
 HAVING MOD (COUNT(*), 5) = 1) AS N3(name)
 LEFT OUTER JOIN
 Names AS N4
 ON N3.name < N4.name
 LEFT OUTER JOIN
 Names AS N5
 ON N4.name < N5.name
 LEFT OUTER JOIN
 Names AS N6
 ON N5.name < N6.name
 LEFT OUTER JOIN
 Names AS N7
 ON N6.name < N7.name
 GROUP BY N3.name;

Answer #3

Nayan Raval sent an e-mail to me after this puzzle appeared in the
February 1997 issue of DBMS. He started to think about the repeated
use of (N1.name < N2.name) in the LEFT OUTER JOIN clauses of
Answer #1 and realized that only the first one is required. That is, the
following produced the same output on my system:

-- same code up to ...
FROM (Names AS N1
 LEFT OUTER JOIN
 Names AS N2
 ON N1.name < N2.name)
 LEFT OUTER JOIN
 Names AS N3
 ON N2.name < N3.name
 LEFT OUTER JOIN
 Names AS N4
 ON N3.name < N4.name
 LEFT OUTER JOIN
 Names AS N5

PUZZLE 62 REPORT FORMATTING 249

 ON N4.name < N5.name
-- rest of the code is the same

Answer #4

Along the same lines, Dautbegovic Dzavid of Bosnia-Herzegovina
observed that

...

IN (SELECT N1.name
 FROM Names AS N1.
 INNER JOIN
 Names AS N2
 ON N1.name <= N2.name
 GROUP BY N1.name
 HAVING MOD(COUNT(N2.name), 2)
 = (SELECT MOD(COUNT(*), 2) FROM Names)) ...

could better be replaced by:

...
IN (SELECT N1.name
 FROM Names AS N1
 INNER JOIN
 Names AS N2
 ON N1.name >= N2.name
 GROUP BY N1.name
 HAVING MOD(COUNT(*), 2) = 1)
...

Answer #5

Dmitry Sizintsev came up with an alternative solution. Here is his
solution for N = 5; it’s very different from the one given by Richard
Romley, and avoids using a five-way self-JOIN.

SELECT MAX(name1), MAX(name2), MAX(name3), MAX(name4),
MAX(name5)
 FROM (-- start of monster table query
 (SELECT (COUNT(*) - 1) / 5),
 (SELECT MAX(N1.name)
 FROM Names AS N3

250 PUZZLE 62 REPORT FORMATTING

 WHERE N1.name <= N3.name
 HAVING MOD(COUNT(*), 5)
 = (SELECT MOD(COUNT(*), 5)
 FROM Names)),
 (SELECT MAX(N1.name)
 FROM Names AS N3
 WHERE N1.name <= N3.name
 HAVING MOD (COUNT(*), 5)
 = (SELECT MOD((COUNT(*) - 1), 5)
 FROM Names)),
 (SELECT MAX(N1.name)
 FROM Names AS N3
 WHERE N1.name <= N3.name
 HAVING MOD(COUNT(*), 5)
 = (SELECT MOD((COUNT(*) - 2), 5)
 FROM Names)),
 (SELECT MAX(N1.name)
 FROM Names AS N3
 WHERE N1.name <= N3.name
 HAVING MOD(COUNT(*), 5)
 = (SELECT MOD((COUNT(*) - 3), 5)
 FROM Names)),
 (SELECT MAX(N1.name)
 FROM Names AS N3
 WHERE N1.name <= N3.name
 HAVING MOD(COUNT(*), 5)
 = (SELECT MOD((COUNT(*) - 4), 5)
 FROM Names))
 FROM Names AS N1
 INNER JOIN
 Names AS N2
 ON N1.name >= N2.name
 GROUP BY N1.name)
 AS X0(cnt, name1, name2, name3, name4, name5)
 GROUP BY cnt;

Answer #6

I e-mailed these answers to Richard Romley on March 12, 2000, and he
immediately had a cook on the puzzle that he had not shared:

PUZZLE 62 REPORT FORMATTING 251

--For 3 columns...

SELECT FirstCol.name AS name1,
 MAX(CASE WHEN OtherCols.cnt = 2
 THEN OtherCols.final_name
 ELSE NULL END) AS name2,
 MAX(CASE WHEN OtherCols.cnt = 3
 THEN OtherCols.final_name
 ELSE NULL END) AS name3
 FROM (SELECT N1.name
 FROM Names AS N1, Names AS N2
 WHERE N1.name >= N2.name
 GROUP BY N1.name
 HAVING MOD(COUNT(*), 3) = 1) AS FirstCol(name)
 LEFT OUTER JOIN
 (SELECT N3.name, N5.name, COUNT(*)
 FROM Names AS N3, Names AS N4, Names AS N5
 WHERE N3.name < N5.name
 AND N4.name BETWEEN N3.name AND N5.name
 GROUP BY N3.name, N5.name) AS OtherCols(name,
final_name, cnt)
 ON FirstCol.name = OtherCols.name
 GROUP BY FirstCol.name
 ORDER BY FirstCol.name;

For 5 columns...

SELECT FirstCol.name AS name1,
 MAX(CASE WHEN OtherCols.cnt = 2
 THEN OtherCols.final_name
 ELSE NULL END) AS name2,
 MAX(CASE WHEN OtherCols.cnt = 3
 THEN OtherCols.final_name
 ELSE NULL END) AS name3,
 MAX(CASE WHEN OtherCols.cnt = 4
 THEN OtherCols.final_name
 ELSE NULL END) AS name4,
 MAX(CASE WHEN OtherCols.cnt = 5
 THEN OtherCols.final_name
 ELSE NULL END) AS name5
 FROM (SELECT N1.name
 FROM Names AS N1, Names AS N2

252 PUZZLE 62 REPORT FORMATTING

 WHERE N1.name >= N2.name
 GROUP BY N1.name
 HAVING MOD(COUNT(*), 5) = 1) AS FirstCol(name)
 LEFT OUTER JOIN
 (SELECT N3.name, N5.name, COUNT(*)
 FROM Names AS N3, Names AS N4, Names AS N5
 WHERE N3.name < N5.name
 AND N4.name BETWEEN N3.name AND N5.name
 GROUP BY N3.name, N5.name) AS OtherCols(name,
final_name, cnt)
 ON FirstCol.name = OtherCols.name
 GROUP BY FirstCol.name
 ORDER BY FirstCol.name;

For 6 columns...

SELECT FirstCol.name AS name1,
 MAX(CASE WHEN OtherCols.cnt = 2
 THEN OtherCols.final_name
 ELSE NULL END) AS name2,
 MAX(CASE WHEN OtherCols.cnt = 3
 THEN OtherCols.final_name
 ELSE NULL END) AS name3,
 MAX(CASE WHEN OtherCols.cnt = 4
 THEN OtherCols.final_name
 ELSE NULL END) AS name4,
 MAX(CASE WHEN OtherCols.cnt = 5
 THEN OtherCols.final_name
 ELSE NULL END) AS name5,
 MAX(CASE WHEN OtherCols.cnt = 6
 THEN OtherCols.final_name
 ELSE NULL END) AS name6
 FROM (SELECT N1.name
 FROM Names AS N1, Names AS N2
 WHERE N1.name >= N2.name
 GROUP BY N1.name
 HAVING MOD COUNT(*), 6) = 1) AS FirstCol
 LEFT OUTER JOIN
 (SELECT N3.name, N5.name AS final_name, COUNT(*) AS
cnt
 FROM Names AS N3, Names AS N4, Names AS N5
 WHERE N3.name < N5.name

PUZZLE 62 REPORT FORMATTING 253

 AND N4.name BETWEEN N3.name AND N5.name
 GROUP BY N3.name, N5.name) AS OtherCols
 ON FirstCol.name = OtherCols.name
 GROUP BY FirstCol.name
 ORDER BY FirstCol.name;

Each additional column requires only adding the additional column
in the SELECT list and changing the modulus in the MOD() function. The
rest of the query remains the same.

254 PUZZLE 63 CONTIGUOUS GROUPINGS

PUZZLE

63 CONTIGUOUS GROUPINGS

Donald Halloran proposed this simple-looking problem:

CREATE TABLE T
(num INTEGER NOT NULL PRIMARY KEY,
 data CHAR(1) NOT NULL);

INSERT INTO T
VALUES (1, 'a'),
 (2, 'a'),
 (3, 'b'),
 (6, 'b'),
 (8, 'a');

The aim is to group the results into neighboring ranges with the start
and end of the range, and the data in the range in this example becomes:

low high data
====================
1 2 ‘a’
3 6 ‘b’
8 8 ‘a’

His solution is as follows, but he had a feeling that something was
redundant in what he wrote, given that the algorithm seems to be two
steps but the SQL looks like three:

1. For each row (r), find the first row (R) where r.num > r.num
and r.data <> r.data.

2. group (r) by (R).

Answer #1

Here is the first attempt:

SELECT MIN(T1.num) AS low,
 MAX(T1.num) AS high,
 T1.data

PUZZLE 63 CONTIGUOUS GROUPINGS 255

 FROM T AS T1
 LEFT OUTER JOIN
 T AS T2
 ON T2.num
 = (SELECT MIN(num)
 FROM T
 WHERE num > T1.num
 AND data <> T1.data)
GROUP BY T1.data, T2.num;

Answer #2

I came up with another version that uses the ALL() predicate to check on
the contents of the range of low and high numbers.

SELECT X.data, MIN(X.low) AS low, X.high
 FROM (SELECT T1.data, T1.num, MAX(T2.num)
 FROM T AS T1, T AS T2
 WHERE T1.num <= T2.num
 AND T1.data
 = ALL(SELECT T3.data
 FROM T AS T3
 WHERE T3.num BETWEEN T1.num
 AND T2.num)
 GROUP BY T1.data, T1.num)
 AS X(data, low, high)
GROUP BY X.data, X.high;

Just offhand, I think this is not as good as the original version.

Answer #3

Steve Kass proposed this answer, but did not know whether it’s faster,
but this is another approach (a clustered index on (num, data) helps).

SELECT MIN(num) AS low, MAX(num) AS high, data
 FROM (SELECT A.num,
 SUM(CASE WHEN A.data = B.data THEN 1 ELSE 0
END)
 - COUNT(B.num) AS ct,
 A.data
 FROM T AS A, T AS B

256 PUZZLE 63 CONTIGUOUS GROUPINGS

 WHERE A.num >= B.num
 GROUP BY A.num, A.data
) AS A (num, ct, data)
 GROUP BY data, ct;

He is using a little math to determine that a range has only one data
value in it.

PUZZLE 64 BOXES 257

PUZZLE

64 BOXES

This is an interesting puzzle from Mikito Harakiri. Imagine that you have
a Cartesian space, and you are filling it with n-dimensional boxes. The
boxes are modeled as shown below:

CREATE TABLE Boxes
(box_id INTEGER NOT NULL PRIMARY KEY,
 dimension_nbr INTEGER NOT NULL,
 low INTEGER NOT NULL,
 high INTEGER NOT NULL);

The problem is to find all the pairs of boxes that intersect (e.g., the
3D cubes):

A = {(x,0,2),(y,0,2),(z,0,2)}
B = {(x,1,3),(y,1,3),(z,1,3)}
C = {(x,10,12),(y,0,4),(z,0,100)}

Boxes A and B intersect, but box C intersects neither A nor B. Bonus
point: is there anything special about this kind of query?

Answer #1

This is from Bob Badour:

SELECT B1.box_id AS box1, B2.box_id AS box2
 FROM Boxes AS B1, Boxes AS B2
 WHERE B1.box_id < B2.box_id
 AND NOT EXISTS
 (SELECT *
 FROM Boxes AS B3, Boxes AS B4
 WHERE B3.box_id = B1.box_id
 AND B4.box_id = B2.box_id
 AND B4.dimension_nbr = B3.dimension_nbr
 AND (B4.high < B3.low OR B4.low > B3.high)
)
GROUP BY B1.box_id, B2.box_id;

258 PUZZLE 64 BOXES

Mikito Harakiri thought that this was interesting because it is a
generalization of relational division. Now, relational division expressed
in SQL is either a query with two levels of nested subqueries, or one level
of nested subqueries with EXCEPT operators, or the query with counting
subquery in the HAVING clause. Bob’s query is none of those.

SELECT B1.box_id AS box1, B2.box_id AS box2, B1.dim
 FROM Boxes AS B1, Boxes AS B2
 WHERE B1.low BETWEEN B2.low AND B2.high
 AND B1.dim = B2.dim
 GROUP BY B1.box_id, B2.box_id
HAVING COUNT(*)
 = (SELECT COUNT(*)
 FROM Boxes AS B3
 WHERE B3.box_id = B1.box_id
 AND B3.dim = B1.dim);

Answer #2

Try a slightly different approach. Begin with one dimension and
stronger DDL:

CREATE TABLE Boxes
(box_id CHAR (1) NOT NULL,
 dim CHAR(1) NOT NULL,
 PRIMARY KEY (box_id, dim),
 low INTEGER NOT NULL,
 high INTEGER NOT NULL,
 CHECK (low < high));

INSERT INTO Boxes VALUES ('A', 'x', 0, 2);
INSERT INTO Boxes VALUES ('B', 'x', 1, 3);
INSERT INTO Boxes VALUES ('C', 'x', 10, 12);

--in 1 dimension
SELECT B1.box_id, B2.box_id
 FROM Boxes AS B1, Boxes AS B2
 WHERE B1.box_id < B2.box_id
 AND (B1.high - B1.low) + (B2.high - B2.low)
> ABS(B1.high - B2.low);

PUZZLE 64 BOXES 259

This says that two lines segments overlap when their combined
lengths are less than their span in the dimension. I am using math rather
than BETWEEN-ness.

Cubes A={(x,0,2),(y,0,2),(z,0,2)} and B={(x,1,3),(y,1,3),(z,1,3)}
intersect, while box C={(x,10,12),(y,0,4),(z,0,100)}. Let’s go to two
dimensions:

INSERT INTO Boxes VALUES ('A', 'y', 0, 2);
INSERT INTO Boxes VALUES ('B', 'y', 1, 3);
INSERT INTO Boxes VALUES ('C', 'y', 0, 4);

--in 2 dimension: first shot:
SELECT B1.box_id, B2.box_id, B1.dim
 FROM Boxes AS B1, Boxes AS B2
 WHERE B1.box_id < B2.box_id
 AND B1.dim = B2.dim
 AND (B1.high - B1.low) + (B2.high - B2.low)
ABS(B1.high - B2.low);

Now look for a common area in (x,y) by having overlaps in both
dimensions:

SELECT B1.box_id, B2.box_id
 FROM Boxes AS B1, Boxes AS B2
 WHERE B1.box_id < B2.box_id
 AND B1.dim = B2.dim
 AND (B1.high - B1.low) + (B2.high - B2.low)
 > ABS(B1.high - B2.low)
 GROUP BY B1.box_id, B2.box_id
 HAVING COUNT(B1.dim) = 2;

--3 dimensions:
INSERT INTO Boxes VALUES ('A', 'z', 0, 2);
INSERT INTO Boxes VALUES ('B', 'z', 1, 3);
INSERT INTO Boxes VALUES ('C', 'z', 0, 100);

Now change the HAVING clause to

COUNT(B1.dim) = 3

or

260 PUZZLE 64 BOXES

 (SELECT COUNT (DISTINCT dim) FROM Boxes)

if you do not know the dimension of the space you are using.

PUZZLE 65 AGE RANGES FOR PRODUCTS 261

PUZZLE

65 AGE RANGES FOR PRODUCTS

David Poole posted what he called a simple problem with which he was
struggling. Given an inventory of products, he has prices broken down
by age ranges.

CREATE TABLE PriceByAge
(product_id INTEGER NOT NULL,
 low_age INTEGER NOT NULL,
 high_age INTEGER NOT NULL,
 CHECK (low_age < high_age),
 product_price DECIMAL (12,4) NOT NULL,
PRIMARY KEY (product_id, low_age));

INSERT INTO PriceByAge ('Product1', 5, 15, 20.00);
INSERT INTO PriceByAge ('Product1', 16, 60, 18.00);
INSERT INTO PriceByAge ('Product1', 65, 150, 17.00);
INSERT INTO PriceByAge ('Product2', 1, 5, 20.00);
 ...etc

You are also given a table containing various persons’ ages. This table
should be a VIEW, based on birthdates, but let me be sloppy.

CREATE TABLE Buyers
(person_name VARCHAR(20) NOT NULL PRIMARY KEY,
 age INTEGER NOT NULL CHECK (age > 0));

What he wanted was to bring back all products that could satisfy all
ages.

In the sample data, if I had an age of 4 in the list of ages, then no
rows for products that did not have an age band that included 4 were
to be returned.

Answer #1

Define “all ages.” I will guess you mean a range of 1 to (max_age), say
150, since Elizabeth Israel, also known as Ma Pampo, was born on
January 27, 1875 and is believed to be the world’s oldest living human

262 PUZZLE 65 AGE RANGES FOR PRODUCTS

being, so we should be safe. A quick way is to use your auxiliary
Sequence table.

SELECT P.product_id
 FROM PriceByAge AS P, Sequence AS S
 WHERE S.seq BETWEEN P.low_age AND P.high_age
 AND S.seq <= 150
 GROUP BY P.product_id
HAVING COUNT(seq) = 150;

PUZZLE 66 SUDOKU 263

PUZZLE

66 SUDOKU

I thought that Sudoku, the current puzzle fad, would be a good SQL
programming problem. You start with a 9×9 grid that is further divided
into nine 3×3 regions. Some of the cells will have a digit from 1 to 9 in
them at the start of the puzzle. Your goal is to fill in all the cells with
more digits such that each row, column, and region contains one and
only one instance of each digit.

Strangely, the puzzle appeared in the United States in 1979, then
caught on in Japan in 1986 and became an international fad in 2005.
Most newspapers today carry a daily Sudoku.

How can we do this in SQL? Well we can start by modeling the grid as
an (i, j) array with a value in the cell. The first attempt usually does
not have the region information as one of the columns. The regions do
not have names in the puzzle, so we need a way to give them names.

CREATE TABLE SudokuGrid
(i INTEGER NOT NULL
 CHECK (i BETWEEN 1 AND 9),
 j INTEGER NOT NULL
 CHECK (j BETWEEN 1 AND 9),
 val INTEGER NOT NULL
 CHECK (val BETWEEN 1 AND 9),
 region_nbr INTEGER NOT NULL,
 PRIMARY KEY (i, j, val));

Now we need to fill it. Each (i, j) cell needs to start with all nine
digits, so we build a table of the digits 1 to 9 and do CROSS JOINs. But
how do we get a region number?

An obvious name would be the position of the region by (x, y)
coordinates, where x = {1, 2, 3} and y = {1, 2, 3}. We can then make
them into one number by making x the tens place and y the units place,
so we get {11,12, 13, 21, 22, 23, 31, 32, 33} for the regions. The math
for this depends on integer arithmetic, but it is not really hard.

INSERT INTO SudokuGrid (i, j, val, region_nbr)
SELECT D1.d, D2.d, D3.d,
 10*((D1.d+2)/3) + ((D2.d+2)/3) AS region_nbr
 FROM Digits AS D1
 CROSS JOIN Digits AS D2

264 PUZZLE 66 SUDOKU

 CROSS JOIN Digits AS D3;

We will need a procedure to insert the known values and clear out
that value in the rows, columns, and regions. As we remove more and
more values, we hope to get a table with 81 cells that is the unique
solution for the puzzle.

Answer #1

The first attempt is usually to write three delete statements, one for rows,
one for columns, and one for the region.

BEGIN
DELETE FROM SudokuGrid -- rows
WHERE :my_i = i
 AND :my_j <> j
 AND :my_val = val;

DELETE FROM SudokuGrid -- columns
WHERE :my_i <> i
 AND :my_j = j
 AND :my_val = val;

DELETE FROM SudokuGrid -- region
WHERE i <> :my_i
 AND j <> :my_j
 AND region_nbr = 10*((:my_i+2)/3) + ((:my_j+2)/3)
 AND :my_val = val);
END;

Answer #2

But this is a waste of execution time. Why use three statements when you
can write it in one? Let’s do a brute force code merge:

DELETE FROM SudokuGrid
 WHERE (((:my_i = i AND j <> :my_j)
 OR (:my_i <> i AND j = :my_j))
 AND :my_val = val)
 OR (i <> :my_i
 AND j <> :my_j

PUZZLE 66 SUDOKU 265

 AND region_nbr = 10*((:my_i+2)/3) + ((:my_j+2)/3)
 AND :my_val = val);

Those nested ORs are ugly! The expression (:my_val = val) appears
twice. Get a drink, step back, and consider that the (i, j) pairs can
relate to our input in one of four mutually exclusive ways, which require
that we remove a value from a cell or leave it. That implies a CASE
expression instead of the nested ANDs and ORs.

DELETE FROM SudokuGrid
 WHERE CASE WHEN :my_i = i AND :my_j = j -- my cell
 THEN 'Keep'
 WHEN :my_i = i AND :my_j <> j -- row
 THEN 'Delete'
 WHEN :my_i <> i AND :my_j = j -- column
 THEN 'Delete'
 WHEN i <> :my_i AND j <> :my_j -- square
 AND region_nbr
 = 10*(:my_i+2)/3) + (:my_j+2)/3)
 THEN 'Delete'
 ELSE NULL END = 'Delete'
 AND :my_val = val);

Answer #3

Test it and find out that this is wrong!! We need to pay special attention
to the cell where we know the value; that means two cases.

DELETE FROM SudokuGrid
 WHERE CASE WHEN :my_i = i AND :my_j = j AND my_val = val
 THEN 'Keep'
 WHEN :my_i = i AND :my_j = j AND my_val <> val
 THEN 'Delete'
 WHEN :my_i = i AND :my_j <> j -- row
 THEN 'Delete'
 WHEN :my_i <> i AND :my_j = j -- column
 THEN 'Delete'
 WHEN i <> :my_i AND j <> :my_j -- square
 AND region_nbr
 = 10*(:my_i+2)/3) + (:my_j+2)/3)
 THEN 'Delete'

266 PUZZLE 66 SUDOKU

 ELSE NULL END = 'Delete'
 AND :my_val = val);

The next improvement might be to put the known cells into their
own table so we have a history of the puzzle. But let’s leave that as a
problem for the reader.

PUZZLE 67 STABLE MARRIAGES PROBLEM 267

PUZZLE

67 STABLE MARRIAGES PROBLEM

This is a classic programming problem from procedural language classes.
The setup is fairly simple; you have a set of potential husbands and an
equally sized set of potential wives. We want to pair them up into stable
marriages.

What is a stable marriage? In 25 words or less, a marriage in which
neither partner can do better. You have a set of n men and a set of n
women. All the men have a preference scale for all the women that ranks
them from 1 to n without gaps or ties. The women have the same ranking
system for the men.

The goal is to pair off the men and women into n marriages such that
there is no pair in your final arrangement where Mr. X and Ms. Y are
matched to each other when they both would rather be matched to
someone else.

For example, let’s assume the husbands are (“Joe Celko,” “Brad Pitt”)
and the wives are (“Jackie Celko,” “Angelina Jolie”). If Jackers got
matched to Mr. Pitt, she would be quite happy. And I would enjoy Ms.
Jolie’s company. However, Mr. Pitt and Ms. Jolie can both do better than
us. Once they are paired up they will stay that way, leaving Jackers and I
still wed.

The classic Stable Marriage algorithms usually are based on
backtracking. These algorithms try a combination of couples, and then
attempt to fix any unhappy matches. When the algorithm hits on a
situation where nobody can improve their situation, they stop and give
an answer.

Two important things to know about this problem: (1) there is
always a solution, and (2) there is often more than one solution. Doing
this in SQL is really hard because SQL does not backtrack.

Remember that a stable marriage is not always a happy marriage. In
fact, in this problem, while there is always at least one arrangement of
stable marriages in any set, you most often find many different pairings
that produce a set of stable marriages. Each set of marriages will tend to
maximize either the happiness of the men or the women.

Let’s show a small example in SQL with four couples:

CREATE TABLE Husbands
(man CHAR(5) NOT NULL,
 woman CHAR(5) NOT NULL,
 ranking INTEGER NOT NULL CHECK (ranking > 0),

268 PUZZLE 67 STABLE MARRIAGES PROBLEM

 PRIMARY KEY (man, woman));

INSERT INTO Husbands VALUES ('Abe', 'Joan', 1);
INSERT INTO Husbands VALUES ('Abe', 'Kathy', 2);
INSERT INTO Husbands VALUES ('Abe', 'Lynn', 3);
INSERT INTO Husbands VALUES ('Abe', 'Molly', 4);

INSERT INTO Husbands VALUES ('Bob', 'Joan', 3);
INSERT INTO Husbands VALUES ('Bob', 'Kathy', 4);
INSERT INTO Husbands VALUES ('Bob', 'Lynn', 2);
INSERT INTO Husbands VALUES ('Bob', 'Molly', 1);

INSERT INTO Husbands VALUES ('Chuck', 'Joan', 3);
INSERT INTO Husbands VALUES ('Chuck', 'Kathy', 4);
INSERT INTO Husbands VALUES ('Chuck', 'Lynn', 2);
INSERT INTO Husbands VALUES ('Chuck', 'Molly', 1);

INSERT INTO Husbands VALUES ('Dave', 'Joan', 2);
INSERT INTO Husbands VALUES ('Dave', 'Kathy', 1);
INSERT INTO Husbands VALUES ('Dave', 'Lynn', 3);
INSERT INTO Husbands VALUES ('Dave', 'Molly', 4);

CREATE TABLE Wives
(woman CHAR(5) NOT NULL,
 man CHAR(5) NOT NULL,
 ranking INTEGER NOT NULL CHECK (ranking > 0),
 PRIMARY KEY (man, woman));

INSERT INTO Wives VALUES ('Joan', 'Abe', 1);
INSERT INTO Wives VALUES ('Joan', 'Bob', 3);
INSERT INTO Wives VALUES ('Joan', 'Chuck', 2);
INSERT INTO Wives VALUES ('Joan', 'Dave', 4);
INSERT INTO Wives VALUES ('Kathy', 'Abe', 4);
INSERT INTO Wives VALUES ('Kathy', 'Bob', 2);
INSERT INTO Wives VALUES ('Kathy', 'Chuck', 3);
INSERT INTO Wives VALUES ('Kathy', 'Dave', 1);

INSERT INTO Wives VALUES ('Lynn', 'Abe', 1);
INSERT INTO Wives VALUES ('Lynn', 'Bob', 3);
INSERT INTO Wives VALUES ('Lynn', 'Chuck', 4);
INSERT INTO Wives VALUES ('Lynn', 'Dave', 2);

INSERT INTO Wives VALUES ('Molly', 'Abe', 3);

PUZZLE 67 STABLE MARRIAGES PROBLEM 269

INSERT INTO Wives VALUES ('Molly', 'Bob', 4);
INSERT INTO Wives VALUES ('Molly', 'Chuck', 1);
INSERT INTO Wives VALUES ('Molly', 'Dave', 2);

The pairing of:

('Abe', 'Lynn')
('Bob', 'Joan')
('Chuck', 'Molly')
('Dave', 'Kathy')

does not work. There is a “blocking pair” in ('Abe', 'Joan'). Abe is
Joan’s first choice and he is her first choice, as shown by the rows:

Wives ('Joan', 'Abe', 1)
Husbands ('Abe', 'Joan', 1)

but they are matched to others. A simple swap will give us a stable
situation:

('Abe', 'Joan')
('Bob', 'Lynn')
('Chuck', 'Molly')
('Dave', 'Kathy')

If you use a backtracking algorithm, you do not have to generate all
possible marriage sets. Once you found a blocking pair, you would never
have to create it again. This is considerably faster than the combinatory
explosion that SQL must generate and filter. The only advantage with
SQL—and it is weak—is that the algorithms for this problem will usually
stop at the first success. They do not generate the full solution set, as
SQL does.

This answer is from Richard Romley. Simply explained, it generates
all possible marriages and filters out the failures. But there are some neat
little optimizing tricks in the code.

DROP TABLE Wife_perms;
CREATE TABLE Wife_perms
(wife CHAR(5) NOT NULL PRIMARY KEY,
tally INTEGER NOT NULL);

INSERT INTO Wife_perms VALUES ('Joan', 1);

270 PUZZLE 67 STABLE MARRIAGES PROBLEM

INSERT INTO Wife_perms VALUES ('Kathy', 2);
INSERT INTO Wife_perms VALUES ('Lynn', 4);
INSERT INTO Wife_perms VALUES ('Molly', 8);

Answer #1

The query for finding stable marriages is:

SELECT W1.wife AS abe_wife, W2.wife AS bob_wife,
W3.wife AS check_wife, W4.wife AS dave_wife
FROM Wife_perms AS W1, Wife_perms AS W2,
Wife_perms AS W3, Wife_perms AS W4
WHERE (W1.tally + W2.tally + W3.tally + W4.tally) = 15
AND NOT EXISTS
(SELECT *>
FROM Husbands AS H1, Husbands AS H2,
Wives AS W1, Wives AS W2
WHERE H1.man = H2.man
AND H1.ranking > H2.ranking
AND (H1.man || H1.woman) IN
('Abe' || W1.wife, 'Bob' || W2.wife,
'Chuck' || W3.wife, 'Dave' || W4.wife)
AND H2.woman = W1.woman
AND W1.woman = W2.woman
AND W1.ranking > W2.ranking
AND (W1.man || W1.woman) IN
('Abe' || W1.wife, 'Bob' || W2.wife,
'Chuck' || W3.wife, 'Dave' || W4.wife));

The first predicate generates all the permutations of wives in the
husband columns and the EXISTS() checks for “blocking pairs” in the
row. This query will take some time to run, especially on a small
machine, and it will break down when you have a value of n too large for
the permutation trick.

The other optimization trick is the list of concatenated strings to see
that the blocking pair is in the row that was just constructed. A shorter
version of this trick is replacing

SELECT *
 FROM Foo as F1, Bar as B1
 WHERE F1.city = B1.city
 AND F1.state = B1.state;

PUZZLE 67 STABLE MARRIAGES PROBLEM 271

with

SELECT *
 FROM Foo as F1, Bar as B1
 WHERE F1.city || F1.state = B1.city || B1.state;

to speed up a query. I will rationalize that the concatenated name is
atomic because it has meaning in itself that would be destroyed if it is
split apart. Things like (longitude, latitude) pairs are also atomic in this
sense.

There were only 4! (= 24) possible marriage collections, so this ran
pretty fast, even on a small machine. Now extend the problem to a set of
couples where (n = 8); you now have 8! (= 40,320) possible marriage
collections. And only a small number of the rows will be in the final
answer set.

Answer #2

Here is the code for the Stable Marriages problem with n = 8:

CREATE TABLE Husbands
(man CHAR(2) NOT NULL,
woman CHAR(2) NOT NULL,
ranking INTEGER NOT NULL CHECK (ranking > 0),
PRIMARY KEY (man, woman));

CREATE TABLE Wives
(woman CHAR(2) NOT NULL,
man CHAR(2) NOT NULL,
ranking INTEGER NOT NULL CHECK (ranking > 0),
PRIMARY KEY (woman, man));

INSERT INTO Husbands VALUES ('h1', 'w1', 5);
INSERT INTO Husbands VALUES ('h1', 'w2', 2);
INSERT INTO Husbands VALUES ('h1', 'w3', 6);
INSERT INTO Husbands VALUES ('h1', 'w4', 8);
INSERT INTO Husbands VALUES ('h1', 'w5', 4);
INSERT INTO Husbands VALUES ('h1', 'w6', 3);
INSERT INTO Husbands VALUES ('h1', 'w7', 1);
INSERT INTO Husbands VALUES ('h1', 'w8', 7);

272 PUZZLE 67 STABLE MARRIAGES PROBLEM

INSERT INTO Husbands VALUES ('h2', 'w1', 6);
INSERT INTO Husbands VALUES ('h2', 'w2', 3);
INSERT INTO Husbands VALUES ('h2', 'w3', 2);
INSERT INTO Husbands VALUES ('h2', 'w4', 1);
INSERT INTO Husbands VALUES ('h2', 'w5', 8);
INSERT INTO Husbands VALUES ('h2', 'w6', 4);
INSERT INTO Husbands VALUES ('h2', 'w7', 7);
INSERT INTO Husbands VALUES ('h2', 'w8', 5);

INSERT INTO Husbands VALUES ('h3', 'w1', 4);
INSERT INTO Husbands VALUES ('h3', 'w2', 2);
INSERT INTO Husbands VALUES ('h3', 'w3', 1);
INSERT INTO Husbands VALUES ('h3', 'w4', 3);
INSERT INTO Husbands VALUES ('h3', 'w5', 6);
INSERT INTO Husbands VALUES ('h3', 'w6', 8);
INSERT INTO Husbands VALUES ('h3', 'w7', 7);
INSERT INTO Husbands VALUES ('h3', 'w8', 5);

INSERT INTO Husbands VALUES ('h4', 'w1', 8);
INSERT INTO Husbands VALUES ('h4', 'w2', 4);
INSERT INTO Husbands VALUES ('h4', 'w3', 1);
INSERT INTO Husbands VALUES ('h4', 'w4', 3);
INSERT INTO Husbands VALUES ('h4', 'w5', 5);
INSERT INTO Husbands VALUES ('h4', 'w6', 6);
INSERT INTO Husbands VALUES ('h4', 'w7', 7);
INSERT INTO Husbands VALUES ('h4', 'w8', 2);

INSERT INTO Husbands VALUES ('h5', 'w1', 6);
INSERT INTO Husbands VALUES ('h5', 'w2', 8);
INSERT INTO Husbands VALUES ('h5', 'w3', 2);
INSERT INTO Husbands VALUES ('h5', 'w4', 3);
INSERT INTO Husbands VALUES ('h5', 'w5', 4);
INSERT INTO Husbands VALUES ('h5', 'w6', 5);
INSERT INTO Husbands VALUES ('h5', 'w7', 7);
INSERT INTO Husbands VALUES ('h5', 'w8', 1);

INSERT INTO Husbands VALUES ('h6', 'w1', 7);
INSERT INTO Husbands VALUES ('h6', 'w2', 4);
INSERT INTO Husbands VALUES ('h6', 'w3', 6);
INSERT INTO Husbands VALUES ('h6', 'w4', 5);
INSERT INTO Husbands VALUES ('h6', 'w5', 3);
INSERT INTO Husbands VALUES ('h6', 'w6', 8);
INSERT INTO Husbands VALUES ('h6', 'w7', 2);
INSERT INTO Husbands VALUES ('h6', 'w8', 1);

INSERT INTO Husbands VALUES ('h7', 'w1', 5);
INSERT INTO Husbands VALUES ('h7', 'w2', 1);

PUZZLE 67 STABLE MARRIAGES PROBLEM 273

INSERT INTO Husbands VALUES ('h7', 'w3', 4);
INSERT INTO Husbands VALUES ('h7', 'w4', 2);
INSERT INTO Husbands VALUES ('h7', 'w5', 7);
INSERT INTO Husbands VALUES ('h7', 'w6', 3);
INSERT INTO Husbands VALUES ('h7', 'w7', 6);
INSERT INTO Husbands VALUES ('h7', 'w8', 8);

INSERT INTO Husbands VALUES ('h8', 'w1', 2);
INSERT INTO Husbands VALUES ('h8', 'w2', 4);
INSERT INTO Husbands VALUES ('h8', 'w3', 7);
INSERT INTO Husbands VALUES ('h8', 'w4', 3);
INSERT INTO Husbands VALUES ('h8', 'w5', 6);
INSERT INTO Husbands VALUES ('h8', 'w6', 1);
INSERT INTO Husbands VALUES ('h8', 'w7', 5);
INSERT INTO Husbands VALUES ('h8', 'w8', 8);

INSERT INTO Wives VALUES ('w1', 'h1', 6);
INSERT INTO Wives VALUES ('w1', 'h2', 3);
INSERT INTO Wives VALUES ('w1', 'h3', 7);
INSERT INTO Wives VALUES ('w1', 'h4', 1);
INSERT INTO Wives VALUES ('w1', 'h5', 4);
INSERT INTO Wives VALUES ('w1', 'h6', 2);
INSERT INTO Wives VALUES ('w1', 'h7', 8);
INSERT INTO Wives VALUES ('w1', 'h8', 5);

INSERT INTO Wives VALUES ('w2', 'h1', 4);
INSERT INTO Wives VALUES ('w2', 'h2', 8);
INSERT INTO Wives VALUES ('w2', 'h3', 3);
INSERT INTO Wives VALUES ('w2', 'h4', 7);
INSERT INTO Wives VALUES ('w2', 'h5', 2);
INSERT INTO Wives VALUES ('w2', 'h6', 5);
INSERT INTO Wives VALUES ('w2', 'h7', 6);
INSERT INTO Wives VALUES ('w2', 'h8', 1);

INSERT INTO Wives VALUES ('w3', 'h1', 3);
INSERT INTO Wives VALUES ('w3', 'h2', 4);
INSERT INTO Wives VALUES ('w3', 'h3', 5);
INSERT INTO Wives VALUES ('w3', 'h4', 6);
INSERT INTO Wives VALUES ('w3', 'h5', 8);
INSERT INTO Wives VALUES ('w3', 'h6', 1);
INSERT INTO Wives VALUES ('w3', 'h7', 7);
INSERT INTO Wives VALUES ('w3', 'h8', 2);

INSERT INTO Wives VALUES ('w4', 'h1', 8);
INSERT INTO Wives VALUES ('w4', 'h2', 2);
INSERT INTO Wives VALUES ('w4', 'h3', 1);
INSERT INTO Wives VALUES ('w4', 'h4', 3);

274 PUZZLE 67 STABLE MARRIAGES PROBLEM

INSERT INTO Wives VALUES ('w4', 'h5', 7);
INSERT INTO Wives VALUES ('w4', 'h6', 5);
INSERT INTO Wives VALUES ('w4', 'h7', 4);
INSERT INTO Wives VALUES ('w4', 'h8', 6);

INSERT INTO Wives VALUES ('w5', 'h1', 3);
INSERT INTO Wives VALUES ('w5', 'h2', 7);
INSERT INTO Wives VALUES ('w5', 'h3', 2);
INSERT INTO Wives VALUES ('w5', 'h4', 4);
INSERT INTO Wives VALUES ('w5', 'h5', 5);
INSERT INTO Wives VALUES ('w5', 'h6', 1);
INSERT INTO Wives VALUES ('w5', 'h7', 6);
INSERT INTO Wives VALUES ('w5', 'h8', 8);

INSERT INTO Wives VALUES ('w6', 'h1', 2);
INSERT INTO Wives VALUES ('w6', 'h2', 1);
INSERT INTO Wives VALUES ('w6', 'h3', 3);
INSERT INTO Wives VALUES ('w6', 'h4', 6);
INSERT INTO Wives VALUES ('w6', 'h5', 8);
INSERT INTO Wives VALUES ('w6', 'h6', 7);
INSERT INTO Wives VALUES ('w6', 'h7', 5);
INSERT INTO Wives VALUES ('w6', 'h8', 4);

INSERT INTO Wives VALUES ('w7', 'h1', 6);
INSERT INTO Wives VALUES ('w7', 'h2', 4);
INSERT INTO Wives VALUES ('w7', 'h3', 1);
INSERT INTO Wives VALUES ('w7', 'h4', 5);
INSERT INTO Wives VALUES ('w7', 'h5', 2);
INSERT INTO Wives VALUES ('w7', 'h6', 8);
INSERT INTO Wives VALUES ('w7', 'h7', 3);
INSERT INTO Wives VALUES ('w7', 'h8', 7);

INSERT INTO Wives VALUES ('w8', 'h1', 8);
INSERT INTO Wives VALUES ('w8', 'h2', 2);
INSERT INTO Wives VALUES ('w8', 'h3', 7);
INSERT INTO Wives VALUES ('w8', 'h4', 4);
INSERT INTO Wives VALUES ('w8', 'h5', 5);
INSERT INTO Wives VALUES ('w8', 'h6', 6);
INSERT INTO Wives VALUES ('w8', 'h7', 1);
INSERT INTO Wives VALUES ('w8', 'h8', 3);

-- wife permutations
CREATE TABLE Wife_perms
(wife CHAR(2) NOT NULL PRIMARY KEY,
 tally INTEGER NOT NULL);

PUZZLE 67 STABLE MARRIAGES PROBLEM 275

INSERT INTO Wife_perms VALUES ('w1', 1);
INSERT INTO Wife_perms VALUES ('w2', 2);
INSERT INTO Wife_perms VALUES ('w3', 3);
INSERT INTO Wife_perms VALUES ('w4', 4);
INSERT INTO Wife_perms VALUES ('w5', 5);
INSERT INTO Wife_perms VALUES ('w6', 6);
INSERT INTO Wife_perms VALUES ('w7', 7);
INSERT INTO Wife_perms VALUES ('w8', 8);

This query produces the correct results:

SELECT W1.wife AS h1, W2.wife AS h2, W3.wife AS h3,
W4.wife AS h4, W5.wife AS h5, W6.wife AS h6, W7.wife AS h7,
W8.wife AS h8
FROM Wife_perms AS W1, Wife_perms AS W2, Wife_perms AS W3,
Wife_perms AS W4, Wife_perms AS W5, Wife_perms AS W6,
Wife_perms AS W7 , Wife_perms AS W8
WHERE (W1.tally + W2.tally + W3.tally + W4.tally +
W5.tally + W6.tally + W7.tally + W8.tally) = 255
AND NOT EXISTS
(SELECT *
FROM Husbands AS H1, Husbands AS H2,
Wives AS W1, Wives AS W2
WHERE H1.man = H2.man
AND H1.ranking > H2.ranking
AND (H1.man || H1.woman) IN
('h1' || H1.wife, 'h2' || H2.wife,
'h3' || H3.wife, 'h4' || H4.wife,
'h5' || H5.wife, 'h6' || H6.wife,
'h7' || H7.wife, 'h8' || H8.wife)
AND H2.woman = W1.woman
AND W1.woman = W2.woman
AND W1.ranking > W2.ranking
AND (W1.man || W1.woman) IN
('h1' || H1.wife, 'h2' || H2.wife,
'h3' || H3.wife, 'h4' || H4.wife,
'h5' || H5.wife, 'h6' || H6.wife,
'h7' || H7.wife, 'h8' || H8.wife));

The final results are:

276 PUZZLE 67 STABLE MARRIAGES PROBLEM

h1 h2 h3 h4 h5 h6 h7 h8
================================
w2 w4 w3 w1 w7 w5 w8 w6
w2 w4 w3 w8 w1 w5 w7 w6
w3 w6 w4 w1 w7 w5 w8 w2
w3 w6 w4 w8 w1 w5 w7 w2
w6 w3 w4 w1 w7 w5 w8 w2
w6 w3 w4 w8 w1 w5 w7 w2
w6 w4 w3 w1 w7 w5 w8 w2
w6 w4 w3 w8 w1 w5 w7 w2
w7 w4 w3 w8 w1 w5 w2 w6

This example was taken from Niklaus Wirth’s book (see the references
list at the end of this puzzle).

Answer #3

The key was to maximize the performance of the NOT EXISTS test in the
final SELECT. Unstable is a table of the unstable relationships—in a form
designed to be used as the object of the LIKE clause in the final query.

CREATE TABLE Unstable
(bad_marriage CHAR(16) NOT NULL);

INSERT INTO Unstable
SELECT DISTINCT
 CASE WHEN W.man = 'h1' THEN W.woman
 WHEN Y.man = 'h1' THEN Y.woman
 ELSE '__' END
 || CASE WHEN W.man = 'h2' THEN W.woman
 WHEN Y.man = 'h2' THEN Y.woman
 ELSE '__' END
 || CASE WHEN W.man = 'h3' THEN W.woman
 WHEN Y.man = 'h3' THEN Y.woman
 ELSE '__' END
 || CASE WHEN W.man = 'h4' THEN W.woman
 WHEN Y.man = 'h4' THEN Y.woman
 ELSE '__' END
 || CASE WHEN W.man = 'h5' THEN W.woman
 WHEN Y.man = 'h5' THEN Y.woman
 ELSE '__' END

PUZZLE 67 STABLE MARRIAGES PROBLEM 277

 || CASE WHEN W.man = 'h6' THEN W.woman
 WHEN Y.man = 'h6' THEN Y.woman
 ELSE '__' END
 || CASE WHEN W.man = 'h7' THEN W.woman
 WHEN Y.man = 'h7' THEN Y.woman
 ELSE '__' END
 || CASE WHEN W.man = 'h8' THEN W.woman
 WHEN Y.man = 'h8' THEN Y.woman
 ELSE '__' END
 FROM Husbands AS W, Husbands AS X,
 Wives AS Y, Wives AS Z
 WHERE W.man = X.man
 AND W.ranking > X.ranking
 AND X.woman = Y.woman
 AND Y.woman = Z.woman
 AND Y.ranking > Z.ranking
 AND Z.man = W.man

SELECT A.name AS h1, B.name AS h2, C.name AS h3, D.name AS
h4,
 E.name AS h5, F.name AS h6, G.name AS h7, H.name AS
h8
 FROM wife_hdr AS a, wife_hdr AS b, wife_hdr AS c, wife_hdr
AS d,
 wife_hdr AS e, wife_hdr AS f, wife_hdr AS g, wife_hdr
AS h
 WHERE B.name NOT IN (A.name)
 AND C.name NOT IN (A.name, B.name)
 AND D.name NOT IN (A.name, B.name, C.name)
 AND E.name NOT IN (A.name, B.name, C.name, D.name)
 AND F.name NOT IN (A.name, B.name, C.name, D.name,
E.name)
 AND G.name NOT IN (A.name, B.name, C.name, D.name,
E.name, F.name)
 AND H.name NOT IN (A.name, B.name, C.name, D.name,
E.name, F.name, G.name)
 AND NOT EXISTS
 (SELECT * FROM Unstable
 WHERE A.name || B.name || C.name || D.name
 || E.name || F.name || G.name || H.name
 LIKE bad_marriage)

278 PUZZLE 67 STABLE MARRIAGES PROBLEM

h1 h2 h3 h4 h5 h6 h7 h8
---- ---- ---- ---- ---- ---- ---- ----
w3 w6 w4 w8 w1 w5 w7 w2
w6 w4 w3 w8 w1 w5 w7 w2
w6 w3 w4 w8 w1 w5 w7 w2
w3 w6 w4 w1 w7 w5 w8 w2
w6 w4 w3 w1 w7 w5 w8 w2
w6 w3 w4 w1 w7 w5 w8 w2
w7 w4 w3 w8 w1 w5 w2 w6
w2 w4 w3 w8 w1 w5 w7 w6
w2 w4 w3 w1 w7 w5 w8 w6

When Richard timed this, he got 40,000 rows in 4 seconds at an
average throughput of around 10,000 rows per second. I don’t think I’m
going to do any better than that.

The first predicate generates all the permutations of wives in the
husband columns, and the EXISTS() checks for blocking pairs in the
row. This query will take some time to run, especially on a small
machine, and it will break down when you have a value of n too large for
the permutation trick.

PUZZLE 67 STABLE MARRIAGES PROBLEM 279

REFERENCES
Gusfierld, Dan, and Irving, Robert W., The Stable Marriage Problem:

Structure & Algorithms, ISBN 0-262-07118-5.

Knuth, Donald E., CRM Proceedings & Lecture Notes, Vol #10, “Stable
Marriage and Its Relation to Other Combinatorial Problems,” ISBN
0-8218-0603-3.

This booklet, which reproduces seven expository lectures given by
the author in November 1975, is a gentle introduction to the analysis of
algorithms using the beautiful theory of stable marriages as a vehicle to
explain the basic paradigms of that subject.

Wirth, Niklaus, Section 3.6, Algorithms + Data Structures = Programs,
ISBN 0-13-022418-9.

This section gives an answer in Pascal and a short analysis of the
algorithm. In particular, I used his data for my example. He gives
several answers that give a varying “degrees of happiness” for husbands
and wives.

280 PUZZLE 68 CATCHING THE NEXT BUS

PUZZLE

68 CATCHING THE NEXT BUS

Suppose a man randomly runs to the bus station and catches the next
bus leaving the station. Assume there are only two bus routes in this
town, and call them “A” and “B.” The schedule for each route spaces the
bus trips one hour apart. Your first thought may be that the random
traveler would spend approximately equal time on both routes, but the
truth is that he spends far more time on route A than on route B. Why?

The A bus leaves on the hour, and the B bus leaves at five minutes
after the hour. In order to catch the B bus, the traveler has to be in the
station between the hour and five after the hour. The rest of the time, he
will sit and wait for the A bus to arrive on the hour.

The problem of finding the next bus leaving the station is a fairly easy
bit of SQL. Here is a simple table for an imaginary bus line schedule. It
gives the route number and the departure and arrival times for one day,
without regard to the departure or destination points:

CREATE TABLE Schedule
(route_nbr INTEGER NOT NULL,
 depart_time TIMESTAMP NOT NULL,
 arrive_time TIMESTAMP NOT NULL,
 CHECK (depart_time < arrive_time),
 PRIMARY KEY (route_nbr, depart_time));

INSERT INTO Schedule
VALUES (3, '2006-02-09 10:00', '2006-02-09 14:00'),
 (4, '2006-02-09 16:00', '2006-02-09 17:00'),
 (5, '2006-02-09 18:00', '2006-02-09 19:00'),
 (6, '2006-02-09 20:00', '2006-02-09 21:00'),
 (7, '2006-02-09 11:00', '2006-02-09 13:00'),
 (8, '2006-02-09 15:00', '2006-02-09 16:00'),
 (9, '2006-02-09 18:00', '2006-02-09 20:00');

If you want to catch the next bus at “2006-02-09 15:30,” you should
return (route_nbr = 4). If the time is “2006-02-09 16:30,” then you
should return route numbers 4 and 9, since both of them will depart at
the same time.

PUZZLE 68 CATCHING THE NEXT BUS 281

Answer #1

Okay, how can we solve the problem? The computational way to do so is
to find the departure times that occur on or after the time you arrived at
the station:

SELECT E1.event_id, E1.depart_time, E1.arrive_time
 FROM Events AS E1
 WHERE E1.depart_time
 = (SELECT MIN(E2.depart_time)
 FROM Events AS E2
 WHERE :my_time <= E2.depart_time);

This will work fine because the primary key should give you fast
access to the departure time column for computing the MIN().

Answer #2

The next question that comes to mind is: Can we find a way to do this
without computations?

Let’s try adding a column for the waiting period before the departure
time in a given day. Route 3 is the first bus out, so if you get to the
station any time between midnight and 10:00 hrs on February 9, that is
the next bus out. If you get to the station between 10:00 and 11:00 hrs,
you will take Route 7, and so forth.

CREATE TABLE Schedule
(route_nbr INTEGER NOT NULL,
 wait_time TIMESTAMP NOT NULL,
 depart_time TIMESTAMP NOT NULL,
 arrive_time TIMESTAMP NOT NULL,
 CHECK (depart_time < arrive_time),
 PRIMARY KEY (route_nbr, depart_time));

Now the table looks like this:

INSERT INTO Schedule
VALUES (3, '2006-02-09 00:00', '2006-02-09 10:00', '2006-
02-09 14:00'),
 (7, '2006-02-09 10:00', '2006-02-09 11:00', '2006-02-
09 13:00'),

282 PUZZLE 68 CATCHING THE NEXT BUS

 (4, '2006-02-09 15:00', '2006-02-09 16:00', '2006-02-
09 17:00'),
 (5, '2006-02-09 16:00', '2006-02-09 18:00', '2006-02-
09 19:00'),
 (6, '2006-02-09 18:00', '2006-02-09 20:00', '2006-02-
09 21:00'),
 (8, '2006-02-09 11:00', ‘2006-02-09 15:00', '2006-02-
09 16:00'),
 (9, '2006-02-09 16:00', '2006-02-09 18:00', '2006-02-
09 20:00');

The query can now be done without a subquery:

SELECT E1.event_id, E1.depart_time, E1.arrive_time
 FROM Events AS E1
 WHERE :my_time BETWEEN E1.wait_time AND depart_time;

Will this run better? Well, it will require an extra timestamp for each
row in the schedule. That means (365 days per year * (n) routes in the
system * size of a timestamp) extra storage from the first version of the
table; this is not that bad. In the case of a bus schedule, you can assume
that it will remain constant for at least several months. The real question
is how much trouble is computing the wait time? It will be about the
same as running the first query once and using the data as part of an
UPDATE or INSERT.

It only takes a little adjusting of your own mindset to start seeing
table-driven answers for database problems.

PUZZLE 69 LIFO-FIFO INVENTORY 283

PUZZLE

69 LIFO-FIFO INVENTORY

Imagine a very simple inventory of one kind of item, widgets, into which
we add stock once a day. This inventory is then used to fill orders that
also come in once a day. Here is the table for this toy problem:

CREATE TABLE WidgetInventory
(receipt_nbr INTEGER NOT NULL PRIMARY KEY,
 purchase_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT
NULL,
 qty_on_hand INTEGER NOT NULL
 CHECK (qty_on_hand >= 0),
 unit_price DECIMAL (12,4) NOT NULL);

with the following data:

 WidgetInventory
 receipt_nbr purchase_date qty_on_hand unit_price
 ==
 1 '2005-08-01' 15 10.00
 2 '2005-08-02' 25 12.00
 3 '2005-08-03' 40 13.00
 4 '2005-08-04' 35 12.00
 5 '2005-08-05' 45 10.00

The business now sells 100 units on 2005-08-05. How do you
calculate the value of the stock sold? There is not one right answer, but
here are some options:

1. Use the current replacement cost, which is $10.00 per unit as
of 2005-08-05. That would mean the sale cost us only
$1,000.00 because of a recent price break.

2. Use the current average price per unit. We have a total of 160
units, for which we paid a total of $1,840.00; that gives us an
average cost of $11.50 per unit, or $1,150.00 in total inventory
costs.

284 PUZZLE 69 LIFO-FIFO INVENTORY

3. Use LIFO, which stands for “last in, first out.” We start by look-
ing at the most recent purchases and work backward through
time

 2005-08-05: 45 * $10.00 = $450.00 and 45 units
 2005-08-04: 35 * $12.00 = $420.00 and 80 units
 2005-08-03: 20 * $13.00 = $260.00 and 100 with 20 units
left over

for a total of $1,130.00 in inventory cost.

4. Use FIFO, which stands for “first in, first out.” We start by
looking at the earliest purchases and work forward through
time

 2005-08-01: 15 * $10.00 = $150.00 and 15 units
 2005-08-02: 25 * $12.00 = $300.00 and 40 units
 2005-08-03: 40 * $13.00 = $520.00 and 80 units
 2005-08-04: 20 * $12.00 = $240.00 with 15 units left over

for a total of $1,210.00 in inventory costs.

The first two scenarios are trivial to program.

CREATE VIEW (current_replacement_cost)
AS
SELECT unit_price
 FROM WidgetInventory
 WHERE purchase_date
 = (SELECT MAX(purchase_date) FROM WidgetInventory);

CREATE VIEW (average_replacement_cost)
AS
SELECT SUM(unit_price * qty_on_hand)/SUM(qty_on_hand)
 FROM WidgetInventory;

LIFO and FIFO are more interesting because they involve looking at
matching the order against blocks of inventory in a particular order.

PUZZLE 69 LIFO-FIFO INVENTORY 285

Answer #1

Consider this view:

CREATE VIEW LIFO (stock_date, unit_price, tot_qty_on_hand,
tot_cost)
AS
SELECT W1.purchase_date, W1.unit_price,
SUM(W2.qty_on_hand), SUM(W2.qty_on_hand *
W2.unit_price)
 FROM WidgetInventory AS W1,
 WidgetInventory AS W2
 WHERE W2.purchase_date <= W1.purchase_date
 GROUP BY W1.purchase_date, W1.unit_price;

A row in this view tells us the total quantity on hand, the total cost of
the goods in inventory, and what we were paying for items on each date.
The quantity on hand is a running total. We can get the LIFO cost with
this query:

SELECT (tot_cost - ((tot_qty_on_hand - :order_qty) *
unit_price))
 AS cost
 FROM LIFO AS L1
 WHERE stock_date
 = (SELECT MIN(stock_date)
 FROM LIFO AS L2
 WHERE tot_qty_on_hand >= :order_qty);

This is straight algebra and a little logic. You need to find the most
recent date when we had enough (or more) quantity on hand to meet the
order. If, by dumb blind luck, there is a day when the quantity on hand
exactly matched the order, return the total cost as the answer. If the
order was for more than we have in stock, then return nothing. If we go
back to a day when we had more in stock than the order was for, look at
the unit price on that day, multiply by the overage, and subtract it.

Answer #2

Alternatively, you can use a derived table and a CASE expression. The
CASE expression computes the cost of units that have a running total
quantity less than the :order_qty and then performs algebra on the

286 PUZZLE 69 LIFO-FIFO INVENTORY

final block of inventory, which would put the running total over the
limit. The outer query does a sum on these blocks:

SELECT SUM(W3.v) AS cost
 FROM (SELECT W1.unit_price
 * CASE WHEN SUM(W2.qty_on_hand) <= :order_qty
 THEN W1.qty_on_hand
 ELSE :order_qty
 - (SUM(W2.qty_on_hand) -
W1.qty_on_hand)
 END
 FROM WidgetInventory AS W1,
 WidgetInventory AS W2
 WHERE W1.purchase_date <= W2.purchase_date
 GROUP BY W1.purchase_date, W1.qty_on_hand,
W1.unit_price
 HAVING (SUM(W2.qty_on_hand) - W1.qty_on_hand) <=
:order_qty)
 AS W3(v);

FIFO can be found with a similar VIEW or derived table:

CREATE VIEW FIFO (stock_date, unit_price, tot_qty_on_hand,
tot_cost)
AS
SELECT W1.purchase_date, W1.unit_price,
 SUM(W2.qty_on_hand), SUM(W2.qty_on_hand *
W2.unit_price)
 FROM WidgetInventory AS W1,
 WidgetInventory AS W2
 WHERE W2.purchase_date <= W1.purchase_date
 GROUP BY W1.purchase_date, W1.unit_price;

with the corresponding query:

SELECT (tot_cost - ((tot_qty_on_hand - :order_qty) *
unit_price)) AS cost
 FROM FIFO AS F1
 WHERE stock_date
 = (SELECT MIN (stock_date)
 FROM FIFO AS F2
 WHERE tot_qty_on_hand >= :order_qty);

PUZZLE 69 LIFO-FIFO INVENTORY 287

These queries and VIEWs only told us the value of the widget
inventory. Notice that we never actually shipped anything from the
inventory.

Answer #3

How do we write the UPDATE statements that let us change this simple
inventory?

What we did not do in part 1 was to actually update the inventory
when the widgets were shipped out. Let’s build another VIEW that will
make life easier:

CREATE VIEW StockLevels (purchase_date, previous_qty,
current_qty)
AS
SELECT W1.purchase_date,
 SUM(CASE WHEN W2.purchase_date < W1.purchase_date
 THEN W2.qty_on_hand ELSE 0 END),
 SUM(CASE WHEN W2.purchase_date <= W1.purchase_date
 THEN W2.qty_on_hand ELSE 0 END)
 FROM WidgetInventory AS W1,
 WidgetInventory AS W2
 WHERE W2.purchase_date <= W1.purchase_date
 GROUP BY W1.purchase_date, W1.unit_price;

StockLevels
purchase_date previous_qty current_qty
======================================
'2005-08-01' 0 15
'2005-08-02' 15 40
'2005-08-03' 40 80
'2005-08-04' 80 115
'2005-08-05' 115 160

Using CASE expressions will save you a self-join.

CREATE PROCEDURE RemoveQty (IN my_order_qty INTEGER)
LANGUAGE SQL
BEGIN
IF my_order_qty > 0
THEN

288 PUZZLE 69 LIFO-FIFO INVENTORY

UPDATE WidgetInventory
 SET qty_on_hand
 = CASE
 WHEN my_order_qty
 >= (SELECT current_qty
 FROM StockLevels AS L
 WHERE L.purchase_date
 = WidgetInventory.purchase_date)
 THEN 0
 WHEN my_order_qty
 < (SELECT previous_qty
 FROM StockLevels AS L
 WHERE L.purchase_date
 = WidgetInventory.purchase_date)
 THEN WidgetInventory.qty_on_hand
 ELSE (SELECT current_qty
 FROM StockLevels AS L
 WHERE L.purchase_date =
WidgetInventory.purchase_date)
 - my_order_qty END;
END IF;

-- remove empty bins
DELETE FROM WidgetInventory
 WHERE qty_on_hand = 0;
END;

Another inventory problem is how to fill an order with the smallest or
greatest number of bins. This assumes that the bins are not in order, so
you are free to fill the order as you wish. Using the fewest bins would
make less work for the order pickers. Using the greatest number of bins
would clean out more storage in the warehouse.

For example, with this data, you could fill an order for 80 widgets by
shipping out bins (1, 2, 3) or bins (4, 5). These bins happen to be in date
and bin number order in the sample data, but that is not required.

Mathematicians call it (logically enough) a bin-packing problem, and
it belongs to the NP-complete family of problems. This kind of problem
is too hard to solve for the general case because the work requires trying
all the combinations, and this increases too fast for a computer to do it.

However, there are “greedy algorithms” that are often nearly optimal.
The idea is to begin by taking the “biggest bite” you can until you have

PUZZLE 69 LIFO-FIFO INVENTORY 289

met or passed your goal. In procedural languages, you can backtrack
when you go over the target amount and try to find an exact match or
apply a rule that dictates from which bin to take a partial pick.

Answer #4

This is not easy in SQL, because it is a declarative, set-oriented
language. A procedural language can stop when it has a solution that is
“good enough,” while an SQL query tends to find all of the correct
answers no matter how long it takes. If you can put a limit on the
number of bins you are willing to visit, you can fake an array in a table:

CREATE TABLE Picklists
(order_nbr INTEGER NOT NULL PRIMARY KEY,
 goal_qty INTEGER NOT NULL
 CHECK (goal_qty > 0),
 bin_nbr_1 INTEGER NOT NULL UNIQUE,
 qty_on_hand_1 INTEGER DEFAULT 0 NOT NULL
 CHECK (qty_on_hand_1 >= 0),
 bin_nbr_2 INTEGER NOT NULL UNIQUE,
 qty_on_hand_2 INTEGER DEFAULT 0 NOT NULL
 CHECK (qty_on_hand_2 >= 0),
 bin_nbr_3 INTEGER NOT NULL UNIQUE,
 qty_on_hand_3 INTEGER DEFAULT 0 NOT NULL
 CHECK (qty_on_hand_3 >= 0),
 CONSTRAINT not_over_goal
 CHECK (qty_on_hand_1 + qty_on_hand_2 + qty_on_hand_3
 <= goal_qty)
CONSTRAINT bins_sorted
 CHECK (qty_on_hand_1 >= qty_on_hand_2
 AND qty_on_hand_2 >= qty_on_hand_3));

Now you can start stuffing bins into the table. This query will give you
the ways to fill or almost fill an order with three or fewer bins. The first
trick is to load some empty dummy bins into the table. If you want at
most (n) picks, then add (n-1) dummy bins:

INSERT INTO WidgetInventory VALUES (-1, '1990-01-01', 0
,0.00);
INSERT INTO WidgetInventory VALUES (-2, '1990-01-02', 0
,0.00);

290 PUZZLE 69 LIFO-FIFO INVENTORY

The following code shows how to build a CTE or VIEW with the
possible pick lists:

CREATE VIEW PickCombos(total_pick, bin_1, qty_on_hand_1,
 bin_2, qty_on_hand_2,
 bin_3, qty_on_hand_3)
AS
SELECT DISTINCT
 (W1.qty_on_hand + W2.qty_on_hand + W3.qty_on_hand) AS
total_pick,
 CASE WHEN W1.receipt_nbr < 0
 THEN 0 ELSE W1.receipt_nbr END AS bin_1,
W1.qty_on_hand,
 CASE WHEN W2.receipt_nbr < 0
 THEN 0 ELSE W2.receipt_nbr END AS bin_2,
W2.qty_on_hand,
 CASE WHEN W3.receipt_nbr < 0
 THEN 0 ELSE W3.receipt_nbr END AS bin_3,
W3.qty_on_hand
 FROM WidgetInventory AS W1,
 WidgetInventory AS W2,
 WidgetInventory AS W3
WHERE W1.receipt_nbr NOT IN (W2.receipt_nbr,
W3.receipt_nbr)
 AND W2.receipt_nbr NOT IN (W1.receipt_nbr,
W3.receipt_nbr)
 AND W1.qty_on_hand >= W2.qty_on_hand
 AND W2.qty_on_hand >= W3.qty_on_hand;

Now you need a procedure to find the pick combination that meets
or comes closest to a certain quantity.

CREATE PROCEDURE OverPick (IN goal_qty INTEGER)
LANGUAGE SQL
BEGIN
IF goal_qty > 0
THEN
SELECT goal_qty, total_pick, bin_1, qty_on_hand_1,
 bin_2, qty_on_hand_2,
 bin_3, qty_on_hand_3
 FROM PickCombos
 WHERE total_pick

PUZZLE 69 LIFO-FIFO INVENTORY 291

 = (SELECT MIN (total_pick)
 FROM PickCombos
 WHERE total_pick >= goal_qty)
END IF;
END;

With the SQL-99 syntax, the VIEW could be put into a CTE and
produce a query without a VIEW. With the current data and goal of 73
widgets, you can find two picks that together equal 75, namely {3, 4}
and {4, 2, 1}.

I will leave it as an exercise for the reader to find a query that
underpicks a target quantity.

292 PUZZLE 70 STOCK TRENDS

PUZZLE

70 STOCK TRENDS

You are not supposed to put a calculated column in a table in a pure
SQL database. And as the guardian of pure SQL, I should oppose this
practice. Well, I do oppose it, but it can be handy and you can do it
through VIEWs, so it is technically okay.

The first type is values calculated from columns in the same row. In
the days when we used punch cards, you would take a deck of cards, run
them through a machine that would do the multiplication and addition,
and then punch the results in the right-hand side of the cards. For
example, the total cost of a line in an order could be described as
(closing_price * quantity).

The reason for this calculation was simple; the machines that
processed punch cards had no secondary storage, so the data had to be
kept on the cards themselves. All 80 columns of a punch card are read
into main storage at once, so this was faster than doing the math in the
electromechanical hardware.

There is truly no reason for doing this today; it is much faster to
recalculate the data than it is to read the results from secondary storage.
Disk storage runs in microseconds and CPUs run in nanoseconds.

The second type of calculated data uses data in the same table, but
not always in the same row in which it will appear. The third type uses
data in the same database in multiple tables.

These last two types are used when the cost of the calculation is
higher than the cost of a simple read. In particular, data warehouses love
to have this type of data in them to save time.

When and how you do something is important in SQL. Here is an
example, based on a thread in an SQL server discussion group. I am
changing the table around a bit, and not telling you the names of the
guilty parties involved, but the idea still holds. You are given a table that
looks like this and you need to calculate a column based on the value in
another row of the same table:

CREATE TABLE StockHistory
(ticker_sym CHAR(5) NOT NULL,
 sale_date DATE NOT NULL DEFAULT CURRENT_DATE,
 closing_price DECIMAL (10,4) NOT NULL,
 trend INTEGER NOT NULL DEFAULT 0
 CHECK(trend IN(-1, 0, 1))
 PRIMARY KEY (ticker_sym, sale_date));

PUZZLE 70 STOCK TRENDS 293

It records the closing price of many different stocks. The trend
column is +1 if the closing price increased from the last reported selling
closing price, 0 if it stayed the same, and -1 if it dropped in closing price.
The trend column is the problem, not because it is hard to compute, but
because it can be done several different ways. Let’s look at the methods
for doing this calculation.

Answer #1

You can write a trigger that will fire after the new row is inserted. While
there is an ISO standard SQL/PSM language for writing triggers, the
truth is that every vendor has a proprietary trigger language, and they are
not compatible. In fact, you will find many different features from
product to product and totally different underlying data models. If you
decide to use triggers, you will be using proprietary, nonrelational code
and have to deal with several problems.

One problem is what a trigger does with a bulk insertion. Given this
statement that inserts two rows at the same time:

INSERT INTO StockHistory (ticker_sym, sale_date,
closing_price)
 VALUES ('XXX', '2000-04-01', 10.75),
 ('XXX', '2000-04-03', 200.00);

trend will be set to zero in both of these new rows using the DEFAULT
clause. But can the trigger see these rows and figure out that the 2000-
04-03 row should have a +1 trend or not? Maybe or maybe not, because
the new rows are not always committed before the trigger is fired. Also,
what should that status of the 2000-04-01 row be? That depends on an
already existing row in the table.

But assume that the trigger worked correctly. Now, what if you get
this statement:

INSERT INTO StockHistory (ticker_sym, sale_date,
closing_price)
VALUES ('XXX', '2000-04-02', 313.25);

Did your trigger change the trend in the 2000-04-03 row or not? If I
drop a row, does your trigger change the trend in the affected rows?
Probably not.

As an exercise, write some trigger code for this problem.

294 PUZZLE 70 STOCK TRENDS

Answer #2

You can do this with insertion statements. I admit I am showing off a bit,
but here is one way of inserting data one row at a time. Let me put the
statement into a stored procedure:

CREATE PROCEDURE NewStockSale
(new_ticker_sym CHAR(5) NOT NULL,
 new_sale_date DATE NOT NULL DEFAULT CURRENT_DATE,
 new_closing_price DECIMAL (10,4) NOT NULL)

INSERT INTO StockHistory (ticker_sym, sale_date,
closing_price, trend)
VALUES (new_ticker_sym, new_sale_date,
 new_closing_price,
 SIGN(new_closing_price
 - (SELECT H1.closing_price
 FROM StockHistory AS H1
 WHERE H1.ticker_sym = StockHistory.ticker_sym
 AND H1.sale_date
 = (SELECT MAX(sale_date)
 FROM StockHistory AS H2
 WHERE H2.ticker_sym = H1.ticker_sym
 AND H2.sale_date < H1.sale_date)
))) AS trend
);

This is not as bad as you first think. The innermost subquery finds the
sale just before the current sale, and then returns its closing price. If the
old closing price minus the new closing price is positive, negative, or
zero, the SIGN() function can compute the value of trend. Yes, I was
showing off a little bit with this query.

The problem with this is much the same as the triggers. What if I
delete a row or add a new row between two existing rows? This
statement will not do a thing about changing the other rows.

But there is another problem; this stored procedure is good for only
one row at a time. That would mean that at the end of the business day, I
would have to write a loop that put one row at a time into the
StockHistory table.

Your next exercise is to improve this stored procedure.

PUZZLE 70 STOCK TRENDS 295

Answer #3

You can UPDATE the table. You already have a default value of 0 in the
trend column, so you could just write an UPDATE statement based on the
same logic we have been using.

 UPDATE StockHistory
 SET trend
 = SIGN(closing_price -
 (SELECT H1.closing_price
 FROM StockHistory AS H1
 WHERE H1.ticker_sym = StockHistory.ticker_sym
 AND H1.sale_date =
 (SELECT MAX(sale_date)
FROM StockHistory AS H2
 WHERE H2.ticker_sym = H1.ticker_sym
 AND H2.sale_date < H1.sale_date)));

While this statement does the job, it will recalculate the trend
column for the entire table. What if we only looked at the columns that
had a zero? Better yet, what if we made the trend column NULL-able and
used the NULLs as a way to locate the rows that need the updates?

UPDATE StockHistory
 SET trend = ...
 WHERE trend IS NULL;

But this does not solve the problem of inserting a row between two
existing dates. Fixing that problem is your third exercise.

Use a VIEW.
This approach will involve getting rid of the trend column in the

StockHistory table and creating a VIEW on the remaining columns:

CREATE TABLE StockHistory
(ticker_sym CHAR(5) NOT NULL,
 sale_date DATE NOT NULL DEFAULT CURRENT_DATE,
 closing_price DECIMAL (10,4) NOT NULL,
 PRIMARY KEY (ticker_sym, sale_date));

 CREATE VIEW StockTrends (ticker_sym, sale_date,
closing_price, trend)

296 PUZZLE 70 STOCK TRENDS

 AS SELECT H1.ticker_sym, H1.sale_date, H1.closing_price,
 SIGN(MAX(H2.closing_price) - H1.closing_price)
 FROM StockHistory AS H1, StockHistory AS H2
WHERE H1.ticker_sym = H2.ticker_sym
 AND H2.sale_date < H1.sale_date
GROUP BY H1.ticker_sym, H1.sale_date, H1.closing_price;

This approach will handle the insertion and deletion of any number
of rows, in any order. The trend column will be computed from the
existing data each time. The primary key is also a covering index for the
query, which helps performance. A covering index contains all of the
columns that used the WHERE clause of a query.

The major objection to this approach is that the VIEW can be slow to
build each time if StockHistory is a large table.

Answer #4

The OLAP functions in SQL-99 make this so much easier:

CREATE VIEW StockTrends (ticker_sym, sale_date,
closing_price, trend)
 AS
SELECT H1.ticker_sym, H1.sale_date, H1.closing_price,
 SIGN (H1.closing_price -
 MAX(closing_price)
 OVER(PARTITION BY ticker_sym
 ORDER BY sale_date DESC
 RANGE BETWEEN 1 PRECEDING AND 1 PRECEDING))
 FROM StockHistory;

PUZZLE 71 CALCULATIONS 297

PUZZLE

71 CALCULATIONS

This problem was posted on a newsgroup in 2006, long after people
should not be writing code this bad. The goal is to select three different
values in the same row based on three conditions, but it does the math
improperly and did not include any DDL. I will start with the original
query text:

SELECT DISTINCT SUM(A.calc_rslt_val + A.calc_adj_val),
 SUM(A.unit_rslt_val + A.unit_adj_val),
 SUM(OT1.calc_rslt_val + OT1.calc_adj_val),
 SUM(OT1.unit_rslt_val + OT1.unit_adj_val),
 SUM(OT2.calc_rslt_val + OT2.calc_adj_val),
 SUM(OT2.unit_rslt_val + OT2.unit_adj_val)
 FROM Table1 AS A, Table1 AS OT1, Table1 AS OT2, Table2 AS B
 WHERE OT1.emp_id = A.emp_id
 AND OT2.emp_id = A.emp_id
 AND OT1.pin_num = B.pin_num
 AND OT2.pin_num = B.pin_num
 AND A.empl_rcd = 0
 AND A.pin_num = B.pin_num
 AND A.emp_id = 'xxxxxx'
 AND B.pin_num IN ('52636','52751','52768')
 AND A.pin_num = '52636' AND OT1.pin_num = '52751' AND
OT2.pin_num = '52768'

Answer #1

USASQL posted a reply that assumed you’ll need to use UNIONs to do
something like:

SELECT SUM(a_val1), SUM(a_val2), SUM(OT1_val1),
SUM(OT1_val2),
 SUM(ot2_val1), SUM(ot2_val2)
((SELECT DISTINCT
SUM(A.calc_rslt_val + A.calc_adj_val) AS a_val1,
SUM(A.unit_rslt_val + A.unit_adj_val) AS a_val2,
0 AS OT1_val1, 0 AS OT1_val2, 0 AS ot2_val1
0 AS ot2_val1

298 PUZZLE 71 CALCULATIONS

 FROM Table1 AS A,Table1 AS OT1, Table1 AS OT2, Table2 AS
B
WHERE --put in condition for a select only
UNION
SELECT DISTINCT 0, 0, SUM(OT1.calc_rslt_val +
OT1.calc_adj_val), SUM(OT1.unit_rslt_val +
OT1.unit_adj_val), 0, 0
FROM Table1 AS A, Table1 AS OT1, Table1 AS OT2, Table2 AS B
WHERE --put in condition for OT1 SELECT only
UNION
SELECT DISTINCT 0, 0, 0, 0, SUM(OT2.calc_rslt_val +
OT2.calc_adj_val),
 SUM(OT2.unit_rslt_val + OT2.unit_adj_val)
 FROM Table1 AS A, Table1 AS OT1, Table1 AS OT2, Table2 AS
B
 WHERE --put in condition for OT1 SELECT only
)

Answer #2

This nightmare had no DDL, so people do not have to guess the keys,
constraints, declarative referential integrity, data types, and so on.
Cleaning it up to make it readable was an effort. Next, look at the logic
you have and the way that you were causing a cross product; do you
remember algebra?

a = b, b = c, c = 2

Reduces to

a = 2, b = 2, c = 2

And let’s drop out the table that is never used, except to cause a
CROSS JOIN problem. Here is a clean version of the original code:

SELECT DISTINCT SUM(F1.calc_rslt_val + F1.calc_adj_val) AS
calc_1,
 SUM(F1.unit_rslt_val + F1.unit_adj_val) AS unit_1,
 SUM(f2.calc_rslt_val + f2.calc_adj_val) AS calc_2,
 SUM(f2.unit_rslt_val + f2.unit_adj_val) AS unit_2,
 SUM(f3.calc_rslt_val + f3.calc_adj_val) AS calc_3,
 SUM(f3.unit_rslt_val + f3.unit_adj_val) AS unit_3

PUZZLE 71 CALCULATIONS 299

 FROM Foobar AS F1, Foobar AS f2, Foobar AS f3
WHERE F1.empl_id = 'xxxxxx'
 AND f2.empl_id = 'xxxxxx'
 AND f3.empl_id = 'xxxxxx'
 AND F1.empl_rcd = 0
 AND F1.pin_nbr = '52636'
 AND f2.pin_nbr = '52751'
 AND f3.pin_nbr = '52768';

See how easy it is to read now? The computed columns need names,
too.

Answer #3

But the right way to do it is probably like this. Without DDL, we can only
guess as to the NULLs, keys, and what the columns mean, of course:

SELECT F1.pin_nbr,
 SUM(F1.calc_rslt_val + F1.calc_adj_val) AS calc_val,
 SUM(F1.unit_rslt_val + F1.unit_adj_val) AS unit_val,
 FROM Foobar AS F1
WHERE F1.empl_id = 'xxxxxx'
 AND F1.empl_rcd = 0
 AND F1.pin_nbr IN ('52636', '52751', '52768')
GROUP BY F1.pin_nbr;

What is the basic principle of a tiered architecture? You do all display
formatting in the front end and not in the back end. Arrange the
columns across the page in the front end.

This will run at least three times faster than Answer #2.

300 PUZZLE 72 SCHEDULING SERVICE CALLS

PUZZLE

72 SCHEDULING SERVICE CALLS

This was posted by Sammy on an SQL server newsgroup. He wants help
with his design and needs to make sure no employees are is booked on a
service call when they are off duty.

The process is pretty straightforward. A client calls to book an
appointment, then the dispatcher inputs the desired date and time and
searches for the first available employee to book. Once at the client’s
location, the employee can sell additional SKUs, and all SKUs are based
on 30-minute time blocks.

Sammy was after advice on the design of the schema. His first attempt
was pretty bad. He used IDENTITY (a nonrelational proprietary
autonumbering “feature” in T-SQL) as a key. His data element names
violated ISO-11179 rules—he even put a “-table” suffix on table names
(Department of Redundancy Department)! It was something like this:

CREATE TABLE CallsTable
(call_id INTEGER IDENTITY(1,1) NOT NULL
 PRIMARY KEY, --proprietary data type
 client_id INTEGER NOT NULL,
 employee_id INTEGER NOT NULL, -- hard to remember
 call_date SMALLDATETIME NOT NULL, --proprietary data type
 durration INTEGER NOT NULL,
 start_time SMALLDATETIME NOT NULL, --proprietary data type
 start_time INTEGER NOT NULL,
 end_time INTEGER NOT NULL);

Answer #1

He had computed columns and did not understand how the DATETIME
datatype in T-SQL works. Why is a date or time column defined as
INTEGER? You only need two of the three start, end, and duration
columns to compute the third.

The original table design allows for double booking, since you had to
store a completed job. The right way to do this is to leave the ending
time as a NULL that you can COALESCE() to the current timestamp.

The rest of the schema was just as bad. Columns were absurdly long
and invited garbage data. He numbered his personnel with another
IDENTITY, avoiding a legally required employee identifier. The table
names were singular, to show that he thinks a table is a file. Do you say

PUZZLE 72 SCHEDULING SERVICE CALLS 301

“Personnel” or “Employees” when you think of the set of something? That
is why you use collective names.

Let’s try again, using standard SQL (note that DATETIME in T-SQL
becomes TIMESTAMP, which is not the same thing in T-SQL) and ISO-
11179 naming conventions:

CREATE TABLE ScheduledCalls
(client_id INTEGER NOT NULL
 REFERENCES Clients (client_id),
 scheduled_start_time TIMESTAMP NOT NULL,
 PRIMARY KEY (client_id, emp_id, start_time),
 scheduled_end_time TIMESTAMP NOT NULL,
 CHECK (scheduled_start_time < scheduled_end_time),
 emp_id CHAR(9) DEFAULT ‘{xxxxxxx}’ NOT NULL
 REFERENCES Personnel (emp_id));

Notice the use of a dummy employee id ‘{xxxxxxx}’ to hold a slot
so the dispatcher can try to find someone. You will need to put the
dummy value into the Personnel table and make sure that he is available
24×7 so that integrity checks will work. The curly brackets are a trick to
make him sort to the bottom of the displays and reports. Allowing the
column to be NULL-able will also work, but I wanted to demonstrate this
programming trick.

CREATE TABLE Clients
(client_id INTEGER NOT NULL PRIMARY KEY,
 first_name VARCHAR(15) NOT NULL,
 last_name VARCHAR(20) NOT NULL,
 phone_nbr CHAR(15) NOT NULL,
 phone_nbr_2 CHAR(15),
 client_street VARCHAR(35) NOT NULL,
 client_city_name VARCHAR(20) NOT NULL);

CREATE TABLE Personnel
(emp_id CHAR(9) NOT NULL PRIMARY KEY,
 first_name VARCHAR(15) NOT NULL,
 last_name VARCHAR(20) NOT NULL,
 home_phome_nbr CHAR(15) NOT NULL,
 cell_phone_nbr CHAR(15) NOT NULL,
 street_addr VARCHAR(35) NOT NULL,
 city_name VARCHAR(20) NOT NULL,

302 PUZZLE 72 SCHEDULING SERVICE CALLS

 zip_code CHAR(5) NOT NULL);

CREATE TABLE Services
(client_id INTEGER NOT NULL REFERENCES Clients,
 emp_id CHAR(9) NOT NULL REFERENCES Personnel,
 start_time DATETIME NOT NULL,
 FOREIGN KEY (client_id, emp_id, start_time)
 REFERENCES (client_id, emp_id, start_time),
 end_time DATETIME, -- null is an open job
 CHECK (start_time)< end_time),
 sku INTEGER NOT NULL,
PRIMARY KEY (client_id, emp_id, start_time, sku)
);

Notice the long natural key. If you do not declare it that way, you will
have no data integrity. But newbies will get scared and use things like
IDENTITY as a key and never worry about data integrity.

CREATE TABLE Inventory
(sku INTEGER NOT NULL PRIMARY KEY,
 stock_descr VARCHAR(50) NOT NULL,
 tax_rate DECIMAL(5,3) NOT NULL,
 duration INTEGER NOT NULL);

The real trick is to create a Personnel Schedule table that holds all
available dates for each employee.

CREATE TABLE PersonnelSchedule
(emp_id CHAR(9) NOT NULL
 REFERENCES Personnel(emp_id),
 avail_start_time DATETIME NOT NULL,
 avail_end_time DATETIME NOT NULL,
 CHECK (avail_start_time < avail_end_time),
PRIMARY KEY (emp_id, avail_start_time));

Answer #2

We need someone with available time between the scheduled periods for
the job. In this query, the available time must overlap or exactly contain
the service call period. The dummy employee is a handy trick to let the
dispatcher see a list of available employees via the PK-FK relationship.

PUZZLE 72 SCHEDULING SERVICE CALLS 303

SELECT P.emp_id,
 S.client_id,
 S.scheduled_start_time,
 S.scheduled_end_time,
 FROM ScheduledCalls AS S,
 PersonnelSchedule AS P
 WHERE S.emp_id = ‘{xxxxxxx}’
 AND P.emp_id <> ‘{xxxxxxx}’
 AND S.scheduled_start_time
 BETWEEN P.avail_start_time
 AND P.avail_end_time;
 AND S.scheduled_end_time
 BETWEEN P.avail_start_time
 AND P.avail_end_time;

But beware! This will produce all of the available personnel. We will
have to leave it to the dispatcher to make the actual assignments.

304 PUZZLE 73 A LITTLE DATA SCRUBBING

PUZZLE

73 A LITTLE DATA SCRUBBING

This came in as a data-scrubbing problem from “Stange” at SQL
ServerCentral.com. He is importing data from a source that sends him
rows with all NULLs. And, no, the source cannot be modified to get rid of
these rows on the other side of the system. After staging this data into
SQL, he wants to identify the NULL rows and remove them. His fear was
that he would have to hard-code:

SELECT *
 FROM Staging
 WHERE col1 IS NULL
 AND col2 IS NULL
 AND col3 IS NULL
 etc.
 AND col100 IS NULL;

Answer #1

He was playing around with passing the <tablename> as a parameter
and then interfacing with the Schema Information tables to identify all
columns in said table, get a list of them, then build the query and see if
all of these columns are NULL or not. In SQL Server, that would look
something like this, but each SQL product would be a little different:

SELECT *
 FROM syscolumns
 WHERE id
 = (SELECT id
 FROM sysobjects
 WHERE name = <tablename>);

Answer #2

Chris Teter and Jesper both proposed a highly proprietary looping
cursor that went through the schema information tables to build
dynamic SQL and execute. This was not only nonrelational and highly
proprietary, but also very slow.

I am not going to print their code here for the reasons just given, but
it shows how programmers fall into a procedural mind-set.

PUZZLE 73 A LITTLE DATA SCRUBBING 305

Answer #3

Just do a “cut and paste” from the system utility function that will give
you all the column names and drop it into this statement template: Any
SQL product will have such a function (e.g., EXEC sp_columns in SQL
Server).

DELETE FROM Staging
 WHERE COALESCE
 (col1, col2, col3, .., col100) IS NULL;

This is about as fast as it will get. It also demonstrates that it helps to
read the manual and find out what the SQL vendors have given you.
Most of these utilities will define a <column> and its options (NULL-able,
DEFAULT, key, indexed, etc.) in one row, so you just lift out the name and
add a comma after it.

It takes less than five seconds, even for large tables. You will spend
more time writing code that will probably fail when the next release of
our database comes out and the schema information tables are a little
different.

However, you will have to remember to update your SQL every time
there is a change to the table or your query will fail every time you have a
new release of your system, which will happen much more often than
releases of your schema information tables.

306 PUZZLE 74 DERIVED TABLES OR NOT?

PUZZLE

74 DERIVED TABLES OR NOT?

Allen Davidson was trying to join three tables with two LEFT OUTER
JOINs and an INNER JOIN to get the SUM() of a few of the columns. Can
his query be rewritten to avoid the derived tables?

CREATE TABLE Accounts
(acct_nbr INTEGER NOT NULL PRIMARY KEY);
INSERT INTO Accounts VALUES(1), (2), (3), (4);

Please notice that the following, Foo and Bar, are not tables, since
they have no keys.

CREATE TABLE Foo
(acct_nbr INTEGER NOT NULL
 REFERENCES Accounts(acct_nbr),
 foo_qty INTEGER NOT NULL);

INSERT INTO Foo VALUES (1, 10);
INSERT INTO Foo VALUES (2, 20);
INSERT INTO Foo VALUES (2, 40);
INSERT INTO Foo VALUES (3, 80);

CREATE TABLE Bar
(acct_nbr INTEGER NOT NULL
 REFERENCES Accounts(acct_nbr),
 bar_qty INTEGER NOT NULL);
INSERT INTO Bar VALUES (2, 160);
INSERT INTO Bar VALUES (3, 320);
INSERT INTO Bar VALUES (3, 640);
INSERT INTO Bar VALUES (3, 1);

His proposed query:

SELECT A.acct_nbr,
 COALESCE(F.foo_qty, 0) AS foo_qty_tot,
 COALESCE(B.bar_qty, 0) AS bar_qty_tot
 FROM Accounts AS A
 LEFT OUTER JOIN

PUZZLE 74 DERIVED TABLES OR NOT? 307

 (SELECT acct_nbr, SUM(foo_qty) AS foo_qty
 FROM Foo
 GROUP BY acct_nbr) AS F
 ON F.acct_nbr = A.acct_nbr
 LEFT OUTER JOIN
 (SELECT acct_nbr, SUM(bar_qty) AS bar_qty
 FROM Bar
 GROUP BY acct_nbr) AS B
 ON F.acct_nbr = B.acct_nbr;

This does just fine, but are there other answers?

Results
acct_nbr foo_qty_tot bar_qty_tot
=================================
1 10 0
2 60 160
3 80 961
4 0 0

Answer #1

R. Sharma found a way to avoid one derived table, but not both:

SELECT A.acct_nbr,
 COALESCE(SUM(F.foo_qty), 0) AS foo_qty_tot,
 COALESCE(MAX(B.bar_qty), 0) AS bar_qty_tot
 FROM (SELECT * FROM Accounts) AS A
 LEFT OUTER JOIN
 (SELECT * FROM Foo) AS F
 ON A.acct_nbr = F.acct_nbr
 LEFT OUTER JOIN
 (SELECT acct_nbr, SUM(bar_qty) AS bar_qty
 FROM Bar
 GROUP BY acct_nbr) AS B
 ON A.acct_nbr = B.acct_nbr
 GROUP BY A.acct_nbr;

This will work since the derived table will always get one row per
account number so the MAX() will ensure the right value. The first one, a
derived table, won’t be needed because of the one-to-many relationship

308 PUZZLE 74 DERIVED TABLES OR NOT?

between accounts and Foo and the grouping done on
Accounts.acct_nbr.

Answer #2

Here is my answer. First, assemble the two nontables with the little-used
FULL OUTER JOIN, which will give you a table with Foo and Bar
combined and then we add the Account information.

SELECT A.acct_nbr,
 COALESCE (SUM(F.foo_qty), 0) AS foo_qty_tot,
 COALESCE (SUM(B.bar_qty), 0) AS bar_qty_tot
 FROM Accounts AS A
 LEFT OUTER JOIN
 (Foo AS F
 FULL OUTER JOIN
 Bar AS B
 ON F.acct_nbr = B.acct_nbr)
 ON A.acct_nbr = F.acct_nbr
 GROUP BY A.acct_nbr;

The other queries have started with the accounts, added nontable
Foo, and then added nontable Bar to the mix. Notice that the OUTER
JOIN is a table! Wow! Maybe those RDBMS principles are useful after all.

I am hoping that the Foo-Bar JOIN table will be relatively small, so
the OUTER JOIN will be quick and they can go into main storage.

PUZZLE 75 FINDING A PUB 309

PUZZLE

75 FINDING A PUB

This is a common problem for simple maps. The original version of this
problem was based on the location of pubs in a city, so that when we got
kicked out of one pub, we could locate nearby ones to which to crawl.

The map we use is an (x, y) Cartesian system, which looks like this:

CREATE TABLE PubMap
(pub_id CHAR(5) NOT NULL PRIMARY KEY,
 x INTEGER NOT NULL,
 y INTEGER NOT NULL);

What I would like is an efficient method for finding the group of
points within a neighborhood.

Answer #1

The immediate solution is to use the Cartesian distance formula,
d = √((x1-x2)2 + (y1- y2)2), and to define a neighborhood as a certain
radius from the pub, as the crow flies.

SELECT B.pub_id, B.x, B.y
 FROM PubMap AS A,
 PubMap AS B
 WHERE :my_pub <> B.pub_id
 AND SQRT (POWER((A.x - B.x), 2)
 + POWER((A.y - B.y), 2))
 <= :crawl_distance;

But if you look at the math, you can save yourself some of the
calculation costs. A little algebra tells us that we can square both sides.

SELECT B.pub_id, B.x, B.y
 FROM PubMap AS A,
 PubMap AS B
 WHERE :my_pub <> B.pub_id
 AND :my_pub = A.pub_id
 AND (POWER((A.x - B.x), 2)
 + POWER((A.y - B.y), 2))

310 PUZZLE 75 FINDING A PUB

 <= POWER(:crawl_distance, 2);

Squaring a number is usually pretty fast, since it can now be done as
integer multiplications.

Answer #2

If you are willing to give up a direct distance (circular neighborhood
model) and look for a square neighborhood, the math gets easier:

SELECT A.pub_id, B.pub_id
 FROM PubMap AS A, PubMap AS B
 WHERE :my_pub <> B.pub_id
 AND :my_pub = A.pub_id
 AND ABS(A.x - B.x) <= :distance
 AND ABS(A.y - B.y) <= :distance;

Answer #3

Another approach that is inspired by the square neighborhoods
approach is to divide the plane into a large square grid. Each grid cell
holds several nodes—think of a typical city map. When a node is located
in one quadrant, then the nine adjacent cells centered on his cell would
have the nearest neighbor, so I only did a distance formula on the points
in those cells.

CREATE TABLE PubMap
(pub_id CHAR(5) NOT NULL PRIMARY KEY,
 x INTEGER NOT NULL,
 y INTEGER NOT NULL,
 cell_x INTEGER NOT NULL,
 cell_y INTEGER NOT NULL);

It meant carrying an extra pair of cell coordinates, but it saved
searching all the nodes—the nodes of 9 cells versus approximately
150,000 nodes in the whole map.

SELECT N2.pub_id, N2.x, N2.y
 FROM PubMap AS N1, PubMap AS N2
 WHERE :my_pub <> N2.pub_id
 AND :my_pub = N1.pub_id

PUZZLE 75 FINDING A PUB 311

 AND N2.cell_x IN (N1.cell_x-1, N1.cell_x, N1.cell_x+1)
 AND N2.cell_y IN (N1.cell_y-1, N1.cell_y, N1.cell_y+1);

Use this as a derived table for a limited neighborhood in the first
query in place of the B alias, and you will have a good answer for a
large map.

This Page Intentionally Left Blank

Index

A Absentees
Absenteeism table, 6, 7
Calendar table, 8
discharging personnel, 4
long-term illnesses, 7
puzzle, 4–8
table, 4

ABS() function, 103, 104, 237
AGE() function, 7
Age ranges for products puzzle, 261–

62
Aggregate functions, on empty sets,

31
Airlines and pilots

exact relational division, 90
pilots table, 88
planes table, 88
puzzle, 88–91
relational division, 89

ALL() predicate, 255
Alpha data puzzle, 19–20

ANDs, nested, 265
Anesthesia puzzle, 9–15
Anesthesiologist procedures

concurrent, 12–13
elimination, 11
overlapping, 10
payment, 9

Armes, Jim, 146
Attenborough, Mary, 197
Available seats puzzle, 34–36
Average

moving, 152–54
rule, 174
sales wait puzzle, 126–28

AVG() function, 123, 127, 174

B Backward-looking sums, 12
Badour, Bob, 209, 257
Barcodes

pseudoformula, 238–39

314 I N D E X

puzzle, 237–41
set-oriented, declarative answer,

240–41
Becher, Johannes, 219
BETWEEN predicates, 3

in CHECK() clause, 19
for durations, 39
for reading/maintaining code, 93
subqueries in, 187
temporal version, 22

Bin-packing problem, 288
Block of seats puzzle, 190–91
Blumenthal, Nigel, 148–51
Bose-Nelson solution, 242
Boxes

intersecting pairs, 257
n-dimensional, 257
puzzle, 257–60

Bragg, Tom, 112
Brouard, Frédéric, 106
Brown, Robert, 215
Buckley, Brian K., 141
Budgeted table, 210
Budgeting puzzle, 169–71
Budget versus actual puzzle, 208–11
Buying all products

deeply nested query, 130
puzzle, 129–31
tables, 129

C Cady, C. Conrad, 208
Calculations

puzzle, 297–99
query text, 297

Calendar table, 8
Campbell, Brendan, 53

Cartesian distance formula, 309
CASE expressions, 32, 46

collapsing SELECT statements
into, 54

ELSE NULL and, 102
GROUP BY clause and, 150–51
in LIFO-FIFO inventory puzzle,

285–87
optimization tricks, 46–47
self-joins and, 287
as UNIONs replacement, 110, 184
WHEN clauses, 47
WHERE clause, 219

CAST expression, 64
Catching the next bus

bus schedule, 282
puzzle, 280–82
table, 280
without comparisons, 281–82

Categories table, 176
CEILING() function, 193
Chacha, Yogesh, 29
Chains, 28
Characteristic functions, 46
CHECK() clause, 16–17, 28, 190

BETWEEN predicates in, 19
complex SQL in, 21
constraints, 19, 47, 182
subqueries and, 22, 191
substrings in, 19

Chupella, Jim, 4
Claims status puzzle, 48–52

defendant, 49
numeric claim sequence, 50

Clock table, 15
COALESCE() function, 32, 57, 65,

106, 136, 156

I N D E X 315

to current timestamp, 300
parameter list inspection, 174

Collapsing table by columns puzzle,
215–17

Columns
alpha data, 19–20
collapsing tables by, 215–17
in GROUP BY clause, 100
in SELECT list, 100

Common table expression (CTE), 41,
63

gaps, 233
LIFO-FIFO inventory, 290
recursive, 233
sales promotion, 189

Comparison operators, 47
Comparison predicates, 105
Computing depreciation puzzle, 137–

40
Computing taxes

hierarchy, 132
puzzle, 132–36
table, 132, 133
taxing authorities, 134, 136
See also Taxes

Constraints
CHECK(), 19, 47, 182
FOREIGN KEY, 56
No_Overlaps, 191
PRIMARY KEY, 191
string, 222
testing, 165
UNIQUE, 2

Consultant billing puzzle, 141–44
Contained in or equal to, 115
Contiguous groupings puzzle, 254–56
ConwayMike, 64

COUNT(*), 90
in average sales wait puzzle, 128
in budgeting puzzle, 171
in personnel problem puzzle, 213
testing against, 162

COUNT (DISTINCT <expression>)
aggregate function, 203, 213

Counting fish puzzle, 172–75
Covering index, 296
CREATE TABLE statement, 1
CROSS JOINs, 89, 298

in getting all possible pairs, 163
as multiplication operator, 89

Curly brackets, 301

D Data
alpha, 19–20
false, 64

Database Programming & Design, xi,
115

Dataflow diagrams (DFDs)
bubbles, 112
diagram name, 112
flow lines, 112
puzzle, 112–14
table, 112

Data scrubbing
problem, 304
proprietary looping cursor, 304
puzzle, 304–5
system utility function, 305

Date, Chris, 64, 65, 89, 115
Dautbegovic, Dzavid, 40, 249
Davison, Allen, 306
DAYS() function, 127
DB2 On-Line Magazine, 91

316 I N D E X

DBMS magazine, xi
DECODE() function, 47
DELETE statement, 5
DeMorgan’s law, 96
DENSE_RANK() function, 85
DENSE_RANK() OVER (<window

expression>) function, 224
Depreciation

computing, 137–40
cost table, 137
lifespan, 137
manufacturing hours table, 137

De Rham, Abbott, 179
Derived tables

avoiding, 307
puzzle, 306–8

Desai, Bipin C., 115
DISTINCTs, 114, 131
Double duty puzzle, 148–51
Duplicates

dropping incorrectly, 222
potential, 218–20
row, 179–80

Dwyer, Trevor, 105

E Elements table, 164
Employees

billings, 143
candidate skills, 75
effective date, 143
firing rules, 4–5
mechanic, 71
numbering rows within, 67
salary changes, 61–62
severity points, 4
total charges, 141–42

total earnings, 37
workload, 37

Employment agency
candidates, 75, 78
DOT, 76
job orders, 76
puzzle, 75–79

Empty sets
aggregate functions on, 31
returning, 120

Ersoy, Cenk, 45
Esperant, 129
EXACT function, 1
EXCEPT ALL operator, 229
EXCEPT operator, 118, 258
EXISTS() predicate, 90, 130

for checking “blocking pairs,” 270
nested, 91

Extrema functions, 53

F Federl, Carl C., 96
FIFO (first in, first out). See LIFO-FIFO

inventory
Finding a pub

Cartesian distance formula, 309
puzzle, 309–11
square neighborhood, 310

Finding equal sets puzzle, 115–20
Finding mode computation puzzle,

123–25
Find last two salaries puzzle, 60–68
First Normal Form (1NF), 55, 104
Fiscal year tables puzzle, 1–3
Flags, plus/minus representation, 34
Flancman, Alan, 103
FLOOR() function, 193

I N D E X 317

FOREIGN KEY constraint, 56
Friends of Pepperoni, 183
FROM clauses, 58, 231
Frontera, Mark, 169
FULL OUTER JOINs, 57, 115, 308
Fundamentals of Database Systems, 115

G Gallaghar, Karen, 92
Gammans, Scott, 21
Ganji, Kishore, 58
Gaps

CTE, 233
no, 228
puzzle (version one), 227–29
puzzle (version two), 230–333
starting/ending values, 227

Gilson, John, 215
Gora, Mike, 158
Graduation

Categories table, 176
puzzle, 176–78

Greedy algorithms, 288
GROUP BY clause, 59, 79, 99, 203, 206

in aggregates creation, 100
CASE expression and, 150–51
columns, 100
inside correlated subqueries, 98
sort invocation, 146–47

Grouped tables, 79
Groups

contiguous, 254–56
empty, 170
non-NULL values in, 110

Gusfield, Dan, 278

H Halloran, Donald, 254
Harakiri, Mikito, 257, 258
Harvey, Roy, 86, 89, 148
HAVING clauses, 38, 83, 128

extending, 161–62
predicates, reducing, 188

Hiner, Ron, 224
Hotel reservations puzzle, 21–23
Hotel room numbers

puzzle, 224–26
table, 224
WATCOM approach, 224, 225
working table data, 224

Hughes, Bert C., 14
Hughes, Dave, 43

I Indexes, covering, 296
Indexing, 97
IN predicate, 164

expansion into equality predicate,
105

as test for membership, 115
INSERT INTO statement, 23
INSERT statements, 22
Insurance losses

correct policy tables, 158–59
customer table, 158
losses table, 159
puzzle, 158–62

Intelligent Enterprise, xi
International Standard Book Number

(ISBN), 203
Interpolation, 122
Interpolation, linear, 122

318 I N D E X

An Introduction to Data Base Systems,
115

Introduction to Database Systems, 90
Inventory adjustments puzzle, 145–47
Irving, Robert W., 278
IsNumeric() function, 238
ISO naming conventions, 301
Israel, Elizabeth, 261

J Jaiswal, Anilbabu, 174
Jilovec, Gerhard F., 137
Joe Celko’s Trees and Hierarchies in SQL

for Smarties, 136
JOINs

subqueries in, 210
See also specific types of JOINs

Journal table, 157
Journal updating puzzle, 155–57
Julian workdays, 8
Junk mail puzzle, 80–81

K Kass, Steve, 255
Keeping a portfolio puzzle, 24–28
Knuth, Donald E., 279
Kubu, Sissy, 192
Kuznetsov, Alexander, 101, 119, 131

L Landlord puzzle, 92–93
Larsen, Sheryl, 91
Lawrence, Peter, 196, 197
LEFT OUTER JOINs, 70, 92, 171,

210, 248
joining tables with, 306

on two columns, 175
Legal events, ordering, 49
LIFO-FIFO inventory

bin-packing problem, 288
bins in table, 289
CTE, 290
derived table and CASE

expression, 285–87
puzzle, 283–91
table, 283
UPDATE statements, 287

LIFO (last in, first out). See LIFO-FIFO
inventory

LIKE clause, 276
LIKE predicate, 20
Linear interpolation, 122

M Magazine
distribution database table, 94
newsstand selection, 94–95
puzzle, 94–103

Manko, Gerard, 69
Manufacturing cost, 137, 138
MAX() function, 17, 31–32, 38, 43, 54,

59, 124
highest non-NULL value, 110
as safety check, 171
values, 210–11
values, optimizer finding, 120

McDonald, J. D., 188
McGregor, Keith, 94
Mechanics puzzle, 69–74
Medal, Leonard C., 9, 48, 149
Melissa Data, 220
Mello, Vinicius, 197
Merging time periods puzzle, 34–36

I N D E X 319

Milestone
puzzle, 107–11
self-joins, 108
service delivery, 107
subquery expressions, 108–9
table structure, 107
UNION ALL operators, 109–10

MIN() function, 17, 54, 245
values, 210–11
values, optimizer finding, 120

MINUS operator, 118
Missing values, 54
Mode computation, finding, 123–25
Mode() function, 125
MOD() function, 245–46

modulus, changing, 253
as vendor extension, 246

Moreau, Tom, 231
Moreno, Francisco, 51, 59, 81, 100,

118, 139, 210
Moving average

holding, 152
predicate construction, 153
puzzle, 152–54

Multiple-column row expressions, 98

N Nebres, Diosdado, 135
Nested function calls, 239
Nested ORs, 265
Nested sets, 136
Nested subqueries, 258
Nguyen, Linh, 143
Noeth, Dieter, 67, 68, 232
NOT condition, 11
NOT EXISTS predicate, 130, 205

maximizing performance, 276

set difference replacement, 118
traditional test, 117

NOT NULL, 1, 47
NULLs, 5, 87

handling, 124
for missing values, 54
multiple, 30
return of, 174

Numbering functions, 224
NUMBERS(*) function, 224

O Ocelot software, 19
Odegov, Andrey, 44, 65
OLAP/CTE, 68
OLAP functions, 43

running totals, 147
SQL-99, 153
support, 85

Omnibuzz, 232, 233
One in ten

puzzle, 103–6
table, 103

ORDER BY clause, 85, 226
ORs, nested, 265
Orthogonality, 123, 124
OUTER JOINs, 56–57, 63

Gupta-style extended equality, 58
persistent/transient in, 92
with RANK() function, 66
in Select clauses, 145
self, 245

OVERLAPS predicate, 22
OVER() window clause, 147

320 I N D E X

P Padding, 239
Pairs of styles puzzle, 179–82
Paradox table, 69
Pascal, Fabian, 60, 64
Pepperoni pizza puzzle, 183–85
Permutations

defined, 163
factorial number of, 163
puzzle, 163–68

Personnel problem puzzle, 212–14
Personnel Schedule table, 302
Petersen, Raymond, 126
Playing the ponies

horse name table, 223
puzzle, 221–23
table, 221

Pointer chains, 25
Poole, David, 261
POSITION function, 151
Potential duplicates

defined, 218
expression arrangement, 219
mailing list cleanup packages, 220
puzzle, 218–20

Predicates
ALL, 255
BETWEEN, 3, 19, 22, 39, 93
comparison, 105
EXISTS, 90, 91, 130
HAVING clause, 188–89
IN, 105, 115, 164
LIKE, 20
NOT EXISTS, 117, 118, 130
OVERLAPS, 22
SIMILAR TO, 239

PRIMARY KEY constraint, 191
Primary keys

covering index, 296
multiple columns, 175

Printers
common, 30, 32
load balancing, 30
LPT numbers, 31
scheduling, 29–33
unassigned, 32

Puzzles. See SQL puzzles

R Race, Daren, 212
RANK() function

defined, 85
hidden sort, 67
OUTER JOINs with, 66

Raval, Nayan, 248
REFERENCING clause, 72
Referential integrity, 70
Regular expression predicate, 20
Relational division, 89

COUNT(*) version, 90
exact, 90

REPLACE() function, 243
REPLICATE() function, 243
Report formatting

experimental table, 246
puzzle, 244–53
two-across solution, 245

Reservations
puzzle, 190–91
rule, 190
table, 190

Rightsizing, 16
Robertson, Gillian, 130
Romley, Richard, 13, 31, 36, 39, 54,

63, 98, 132, 176, 188, 269

I N D E X 321

ROW_NUMBER() function, 43, 85
Rows

adding/deleting, 294
“blocking pairs,” 270
duplicate, 179–80
harvesting, 194
inserted, 5

Running totals, 147
Russian peasant’s algorithm, 192, 197,

199

S Sales promotion
clerk performance, 186
CTE, 189
puzzle, 186–89

Samet, Alan, 41
Scalar subqueries, 121, 170

inside function calls, 156
results, 171
See also Subqueries

Scalzo, Bert, 6
Scheduling printers puzzle, 29–33
Scheduling service calls

double booking, 300
Personnel Schedule table, 302
process, 300
puzzle, 300–303

Security badges puzzle, 16–18
Sedgewick, Robert, 168
Select list

columns, 100
improper creation, 181
subqueries in, 145

SELECT statement, 26–27, 173
collapsing, 54
as grouped query, 63

independent scalar, 71
innermost, 124
OUTER JOIN queries in, 145
outermost, 124
scalar subquery, 50–51

Self-joins, 39, 66, 108, 180
CASE expression and, 287–88
milestone puzzle, 108
UNION versus, 149–50

Sequence Auxiliary table, 196, 228
Sequences

gaps, finding (version one), 227–
29

gaps, finding (version two), 230–
33

numbering, resetting, 18
Sequence table, 262
Service delivery, 107
Set difference, 116
Set operations, 100
Sets

empty, 31, 120
equal, finding, 115–20
nested, 136

Shankar, Mr., 86
Sharma, R., 307
Sherman, Phil, 40
Shirbu, Sorin, 51
SIGN() function, 294

ABS() function combination, 103,
104

return, 103
SIMILAR TO predicate, 239
Sine function calculation puzzle, 121–

22
Sizintsev, Dmitry, 249
Sodoku

322 I N D E X

defined, 263
delete statements, 264
known cells table, 265–66
puzzle, 263–66

Sorting strings
Bose-Nelson solution, 242
Fike’s algorithm, 242
puzzle, 242–43
See also Strings

SQL-89, tabular query expressions,
181

SQL-92
CHECK() clause in subqueries

and, 191
orthogonality, 123, 124
row/table constructors, 105
Select list subqueries, 145
set operators, 100

SQL-99, OLAP functions, 153
SQL-2003, OLAP functions, 147
SQL for Smarties, 242
SQL puzzles

absentees, 4–8
age ranges for products, 261–62
airlines and pilots, 88–91
alpha data, 19–20
anesthesia, 9–15
available seats, 34–36
average sales wait, 126–28
barcodes, 237–41
block of seats, 190–91
boxes, 257–60
budgeting, 169–71
budget versus actual, 208–11
buying all products, 129–31
calculations, 297–99
catching the next bus, 280–82

claims status, 48–52
collapsing table by columns, 215–

17
collection, xii
computing depreciation, 137–40
computing taxes, 132–36
consultant billing, 141–44
contiguous groupings, 254–56
counting fish, 172–75
dataflow diagrams, 112–14
data scrubbing, 304–5
defined, xi
derived tables, 306–8
double duty, 148–51
employment agency, 75–79
finding a pub, 309–11
finding equal sets, 115–20
finding mode computation, 123–

25
find last two salaries, 60–68
fiscal year tables, 1–3
graduation, 176–78
hotel reservations, 21–23
hotel room numbers, 224–26
insurance losses, 158–62
inventory adjustments, 145–47
journal updating, 155–57
junk mail, 80–81
keeping a portfolio, 24–28
landlord, 92–93
LIFO-FIFO inventory, 283–91
magazine, 94–102
mechanics, 69–74
merging time periods, 34–36
milestone, 107–11
moving average, 152–54
one in ten, 103–6

I N D E X 323

pairs of styles, 179–82
pepperoni pizza, 183–85
permutations, 163–68
personnel problem, 212–14
playing the ponies, 221–23
potential duplicates, 218–20
report formatting, 244–53
sales promotions, 186–89
scheduling printers, 29–33
scheduling service calls, 300–303
security badges, 16–18
sine function calculation, 121–22
Sodoku, 263–66
sorting strings, 242–43
stable marriages problem, 267–79
stock trends, 292–96
teachers, 53–55
telephone, 56–59
test results, 86–87
top salespeople, 82–85
two of three, 203–7
ungrouping, 192–99
wages of sin, 37–44
widget count, 200–202
work orders, 45–47

Stable marriages problem
backtracking algorithms, 267, 269
defined, 267
goal, 267
happy versus stable marriages, 267
n=8 code, 271–75
puzzle, 267–79
query, 270
solutions, 267
Unstable table, 276

Stearns, Bob, 190
Steffensen, J. F., 122

Stock trends
puzzle, 292–96
triggers, 293
VIEWs, 292

Stock value calculation, 283–84
Stored procedures, 294, 295
Strings

characters, converting, 167
constraints, 222
inserting, 167
oversized, 239
padding, 239
sorting, 242–43

STUFF function, 167
Styles

pairs of, 179–82
table, 179

Subqueries
in BETWEEN predicate, 187
CHECK() clause and, 22, 191
converting to VIEWs, 63
correlated, 98
in JOINs, 210
nested, 258
scalar, 121, 170
in Select list, 145

Subsets, 115
SUBSTRING() function, 151
Substrings, in CHECK() clause, 19
SUM() function, 46, 107, 143, 306

T Tables
Absenteeism, 6, 7
absentees, 4
Budgeted, 210
buying all products, 129

324 I N D E X

Calendar, 8
Categories, 176
Clock, 15
collapsing by columns, 215–17
computing taxes, 132
deconsolidating, 192
derived, 306–8
DFD, 112
dividend, 91
Elements, 164
emptying, 195
fiscal year, 1–3
fish data, 172
grouped, 79
insurance losses, 158–59
Journal, 157
junk mail, 80
magazine distribution database, 94
next bus, 280
one in ten, 103
Paradox, 69
Personnel Schedule, 302
pilots, 88
planes, 88
playing the ponies, 221
primary keys, 175
redesign, 22
reservations, 190
Sequence, 262
Sequence Auxiliary, 196, 228
tax computation, 133
Team, 71, 72
temporary, 96, 148
time slots, 153–54
Unstable, 276

Table scans, 157, 198
Tabular query expressions, 181

Taxes
computing, 132–36
current rates, 136
multiple authorities, 132
table, 133

Team table, 71, 72
Temporal functions, 157
Temporary tables, 96, 148
Teradata, 68
Test results puzzle, 86–87
Teter, Chris, 304
Thompson, Adam, 97
Tilson, Steve, 24
Timestamps, 153, 300
Top salespeople puzzle, 82–85
Triggers

bulk insertions and, 293
on insertion, 182, 241
proprietary language, 293
writing, 293

Two of three puzzle, 203–7
Tymowski, Luke, 37

U Ungrouping
answer table, 193
approach comparison, 199
defined, 192
JOIN to a table, 198
puzzle, 192–99
Russian peasant’s algorithm, 192,

197, 199
Sequence Auxiliary table, 196
table emptying, 195
table scan, 198
working tables, 194–95

UNION ALL operators, 63, 109–10

I N D E X 325

in FROM clause, 231
in milestone puzzle, 109–10

UNION operators, 11, 53, 62, 297
CASE expression replacement,

110, 184
self-joins versus, 149–50

UNIQUE constraints, 2
Unstable table, 276
UPDATE statement, 6–7, 153, 295

V VALUES() expression, 240
Van de Pol, Lex, 14
VIEWs

aggregate information, 221
avoiding with subquery table

expression, 63
combining, 36, 57
converting subqueries to, 63
CTE expression, 96
with joined aggregate, 96
materializing, 58
outer-joined, 58
portability and, 129–30
stock trends puzzle, 292
summarizing from, 142
WITH CHECK OPTION, 22

W Wade, Larry, 75
Wages of sin puzzle, 37–44
WATCOM SQL, 135, 224, 225
Weisz, Ronny, 218
Wells, Jack, 60
WHEN clauses, 47
WHERE clauses, 11, 31, 219, 245
WHILE loops, 242
Widget count puzzle, 200–202
Wiitala, Mark, 151
Wilton, Tony, 242
WINDOW clause, 68
Wirth, Niklaus, 279
Working days, 8
Work orders puzzle, 45–47

Y Young, Brian, 107
Young, Ian, 165

This Page Intentionally Left Blank

A B O U T T H E A U T H O R

Joe Celko is a noted consultant and lecturer, and one of the most-read
SQL authors in the world. He is well known for his 10 years of service
on the ANSI SQL standards committee, his column in Intelligent Enter-
prise magazine (which won several Reader’s Choice Awards), and the
war stories he tells to provide real-world insights into SQL program-
ming. His best-selling books include Joe Celko’s SQL for Smarties:
Advanced SQL Programming, second edition; Joe Celko’s SQL Puzzles and
Answers; and Joe Celko’s Trees and Hierarchies in SQL for Smarties.

About the Author

This Page Intentionally Left Blank

