
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning RabbitMQ

Build and optimize efficient messaging applications
with ease

Martin Toshev

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning RabbitMQ

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1171215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-456-5

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Martin Toshev

Reviewers
Van Thoai Nguyen

Héctor Veiga

Commissioning Editor
Ashwin Nair

Acquisition Editor
Vinay Argekar

Content Development Editor
Kirti Patil

Technical Editor
Danish Shaikh

Copy Editor
Vibha Shukla

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=bb16f0be-c710-26bd-261a-53d25a6eaf8a
http://www.it-ebooks.info/

About the Author

Martin Toshev is a software developer and Java enthusiast with more than eight
years of experience and vast expertise originating from projects in areas such as
enterprise Java, social networking, source code analysis, Internet of Things, and
investment banking in companies such as Cisco and Deutsche Telekom. He is a
graduate of computer science from the University of Sofia. He is also a certified Java
professional (SCJP6) and a certified IBM cloud computing solution advisor. His areas
of interest include a wide range of Java-related technologies (Servlets, JSP, JAXB,
JAXP, JMS, JMX, JAX-RS, JAX-WS, Hibernate, Spring Framework, Liferay Portal, and
Eclipse RCP), cloud computing technologies, cloud-based software architectures,
enterprise application integration, and relational and NoSQL databases. Martin is
one of the leaders of the Bulgarian Java Users group (BGJUG), a regular speaker at
Java conferences, and one of the organizers behind the jPrime conference in Bulgaria
(http://jprime.io/).

www.it-ebooks.info

http://jprime.io/
http://www.it-ebooks.info/

About the Reviewers

Van Thoai Nguyen has worked in the software industry for a decade in various
domains. In 2012, he joined BuzzNumbers as one of the core senior software
engineers, where he had opportunities to design, implement, and apply many
cool technologies, tools, and frameworks. A RabbitMQ cluster was employed as
the backbone of the real-time data processing platform, which includes various
data collectors, data filtering, enrichment, and storage using a sharded cluster of
MongoDB and SOLR. He is still maintaining the open source .NET RabbitMQ client
library, Burrow.NET (https://github.com/vanthoainguyen/Burrow.NET), which
he built during the time he worked for BuzzNumbers. This library is still being used
in many different applications in that company. Van is interested in clean code and
design, SOLID principle, and BIG data. You can read his blog at http://thoai-
nguyen.blogspot.com.au/.

www.it-ebooks.info

https://github.com/vanthoainguyen/Burrow.NET
http://thoai-nguyen.blogspot.com.au/
http://thoai-nguyen.blogspot.com.au/
http://www.it-ebooks.info/

Héctor Veiga is a software engineer specializing in real-time data integration and
processing. Recently, he has focused his work on different cloud technologies, such
as AWS, to develop scalable, resilient, and high-performing applications with the
latest open source technologies, such as Scala, Akka, or Apache Spark. Additionally,
he has a strong foundation in messaging systems, such as RabbitMQ and AMQP. He
also has a master's degree in telecommunications engineering from the Universidad
Politécnica de Madrid and a master's degree in information technology and
management from the Illinois Institute of Technology.

He currently works as part of the Connected Driving real-time data collection team
and is actively developing scalable applications to ingest and process data from
several different sources. He utilizes RabbitMQ heavily to address their messaging
requirements. In the past, he worked at Xaptum Technologies, a company dedicated
to M2M technologies.

Héctor also helped with the reviewing process of RabbitMQ Cookbook and RabbitMQ
Essentials, both from Packt Publishing.

I would like to thank my parents, Pilar and Jose Carlos, as well as my sister, Paula,
for always supporting me and motivating me to keep pushing on. Without them,
all this would not have been possible.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and readPackt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

I would like to thank all of the people that supported me during the process of
writing this book and especially my mother Milena, my beloved Tsveti and my

grandmother Maria. Without them this would not have been possible.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Introducing RabbitMQ	 1

Enterprise messaging	 2
Use cases	 6
Solutions	 7
Patterns	 7

Point-to-point 	 7
Publish-subscribe	 7
Request-response	 7

Understanding RabbitMQ	 8
Features	 10
Comparison with other technologies	 11
Installation	 11

Linux	 16
Case study: CSN (Corporate Social Network)	 17
Summary	 18
Exercises	 18

Chapter 2: Design Patterns with RabbitMQ	 19
Messaging patterns in RabbitMQ	 19
Point-to-point communication	 23
Publish-subscribe communication	 29
Request-reply communication 	 34
Message router	 39
Case study: Initial design of the CSN	 41
Summary	 42
Exercises	 42

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Administration, Configuration, and Management	 43
Administering RabbitMQ instances	 43

Administering RabbitMQ components	 46
Administering users	 47
Administering vhosts	 49
Administering permissions	 50
Administering exchanges	 50
Administering queues	 51
Administering bindings	 52
Administering policies	 52
Administering the RabbitMQ database	 55
Full backup and restore	 55
Backing up and restoring the broker metadata	 56

Installing RabbitMQ plugins	 57
Configuring RabbitMQ instances	 58

Setting environment variables	 58
Modifying the RabbitMQ configuration file	 59

Managing RabbitMQ instances	 59
Upgrading RabbitMQ	 62

Case study: Administering CSN	 63
Summary	 64
Exercises	 65

Chapter 4: Clustering	 67
Benefits of clustering	 67
RabbitMQ clustering support	 68

Creating a simple cluster	 69
Adding nodes to the cluster	 70
Adding RAM-only nodes to the cluster	 73
Removing nodes from a cluster	 74
Connecting to the cluster	 75

Case study: scaling the CSN	 81
Summary	 82
Exercises	 82

Chapter 5: High Availability	 83
Benefits of high availability	 84
High availability support in RabbitMQ	 85

Mirrored queues	 86
Federation plugin	 90
Shovel plugin 	 96

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Reliable delivery	 98
AMQP transactions	 100
Publisher confirms	 103

Client high availability	 104
Client reconnections	 104
Load balancing	 104

Case study: introducing high availability in CSN	 105
Summary	 106
Exercises	 106

Chapter 6: Integrations	 107
Types of integrations	 108

Spring framework	 109
Spring AMQP	 110
Spring Integration	 113

Integration with ESBs	 116
Mule ESB	 116
WSO2	 122

Integration with databases	 127
Oracle RDBMS	 127
MongoDB	 129
Hadoop	 129

RabbitMQ integrations	 130
RabbitMQ deployment options	 130

Puppet	 131
Docker	 132
Vagrant	 133

Testing RabbitMQ applications	 133
Unit testing of RabbitMQ applications	 133
Integration testing of RabbitMQ applications	 133

Case study: Integrating CSN with external systems	 134
Summary	 135
Exercises	 135

Chapter 7: Performance Tuning and Monitoring	 137
Performance tuning of RabbitMQ instances	 137

Memory usage	 139
Faster runtime execution	 140
Message size	 141
The maximum frame size of messages	 141
The maximum number of channels 	 141
Connection heartbeats	 142
Clustering and high availability	 142
QoS prefetching	 143

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Message persistence	 144
Mnesia transaction logs	 145
Acknowledgements, transactions and publisher confirms	 145
Message routing	 145
Queue creation/deletion	 145
Queue message TTL	 146
Alarms	 147
Network tuning	 148
Client tuning	 149
Performance testing	 149

Monitoring of RabbitMQ instances	 154
The management UI	 154
Nagios	 156
Monit	 158
Munin 	 159

Comparing RabbitMQ with other message brokers	 162
Case Study : Performance tuning and monitoring of
RabbitMQ instances in CSN	 162
Summary	 162
Exercises	 163

Chapter 8: Troubleshooting	 165
General troubleshooting approach	 165

Checking the status of a particular node	 166
Inspecting the RabbitMQ logs	 167
The RabbitMQ mailing list and IRC channel	 169
Erlang troubleshooting	 169

An Erlang Primer	 169
The Erlang crash dump	 177

Problems with starting/stopping RabbitMQ nodes	 179
Problems with message delivery	 182
Summary	 182
Exercises	 183

Chapter 9: Security	 185
Types of threats	 185
Authentication	 188

Configuring the LDAP backend	 190
Security considerations	 194

Authorization	 194
LDAP authentication	 195

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Secure communication	 198
Secure communication with the management interface	 201
Secure cluster communication	 203
EXTERNAL SSL authentication	 203

Penetration testing	 203
Case study – securing CSN	 204
Summary	 206
Exercises	 206

Chapter 10: Internals	 207
High level architecture of RabbitMQ	 207
Overview of RabbitMQ components	 212

Boot component	 212
Plug-in loader component	 215
Recovery component	 216
Persistence component	 217

Metadata persistence	 217
Message persistence component	 218

Networking component	 219
Other components	 220
Developing plug-ins for RabbitMQ	 221

Case Study: Developing a RabbitMQ plugin for CSN	 222
Summary	 222
Exercises	 223

Appendix: Contributing to RabbitMQ	 225
RabbitMQ community	 225
RabbitMQ repositories	 225

Getting the sources	 226
Building the RabbitMQ server	 226

Points for contribution	 230
Index	 231

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
Learning RabbitMQ provides you with a practical guide for the notorious message
broker and covers the essentials required to start using it. The reader is able to
build up knowledge along the way—starting from the very basics (such as what is
RabbitMQ and what features does it provide) and reaching the point where more
advanced topics, such as RabbitMQ troubleshooting and internals, are discussed.
Best practices and important tips are provided in a variety of scenarios; some of them
are related to external systems that provide integration with the message broker or
that are integrated as part of the message broker in the form of a RabbitMQ plugin.
Practical examples are also provided for most of these scenarios that can be applied
in a broader context and used as a good starting point.

An example system called CSN (Corporate Social Network) is used to illustrate the
various concepts provided throughout the chapters.

Each chapter ends with an Exercises section that allows the reader to test his
understanding on the presented topic.

What this book covers
Chapter 1, Introducing RabbitMQ, provides you with a brief recap on enterprise
messaging and a short overview of RabbitMQ along with its features. Other similar
technologies are mentioned and an installation guide for the message broker is
provided at the end of the chapter. The basic terminology behind RabbitMQ such as
exchanges, queues, and bindings is introduced.

Chapter 2, Design Patterns with RabbitMQ, discusses what messaging patterns
can be implemented using RabbitMQ, including point-to-point, publish-subscribe,
request-reply, and message router types of communication. The patterns are
implemented using the building blocks provided by the message broker and
using the Java client API.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 3, Administration, Configuration and Management, reveals how to administer
and configure RabbitMQ instances, how to install and manage RabbitMQ plugins,
and how to use the various utilities provided as part of the RabbitMQ installation
in order to accomplish a number of administrative tasks. A brief overview of the
RabbitMQ management HTTP API is provided.

Chapter 4, Clustering, discusses what built-in clustering support is provided in the
message broker and how it can be used to enable scalability in terms of message
queues. A sample RabbitMQ cluster is created in order to demonstrate how nodes
can be added/removed from a cluster and how RabbitMQ clients can connect to
the cluster.

Chapter 5, High Availability, extends on the concepts of clustering by providing an
overview of how a RabbitMQ cluster can be made more reliable in terms of mirrored
queues and how messages can be replicated between remote instances using the
Federation and Shovel plugins. High availability in terms of client connections and
reliable delivery is also discussed with AMQP transactions, publisher confirms, and
client reconnections.

Chapter 6, Integrations, provides you with a number of practical scenarios for
integration of the message broker with the Spring framework, with ESB (enterprise
services bus) systems such as MuleESB and WS02, and with database management
systems (RDBMS and NoSQL). Deployment options for RabbitMQ using systems
such as Puppet, Docker, and Vagrant are discussed in the chapter. A brief overview
of how RabbitMQ applications can be tested using third-party frameworks is
provided at the end of the chapter.

Chapter 7, Performance Monitoring and Tuning, gives a detailed list of factors that must
be considered in terms of performance tuning of the message broker. The PerfTest
tool is used to demonstrate how the RabbitMQ performance can be tested. At the end
of the chapter, several monitoring solutions that provide support for RabbitMQ such
as Nagios, Munin, and Monit are used to demonstrate how the message broker can
be monitored in terms of stability and performance.

Chapter 8, Troubleshooting, illustrates a number of problems that can occur during the
startup of the message broker and normal operation along with the various causes
and resolutions in such cases. A brief primer on the Erlang programming language
is provided for the purpose of understanding and analyzing the RabbitMQ crash
dump—either directly or using the Crashdump Viewer for convenience.

Chapter 9, Security, provides a high-level overview of the vulnerability landscape
related to the message broker along with a number of techniques to secure a
RabbitMQ setup. Authentication, authorization, and secure communication are
among the most important concepts covered in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Chapter 10, Internals, discusses the internal architecture of the message broker and
provides a detailed overview on the most important components that RabbitMQ
comprises of.

Appendix A, Contributing to RabbitMQ, provides a short guide on how to get the
RabbitMQ sources, how to set up a development environment, and how to build the
message broker. A short discussion on how to contribute to the RabbitMQ ecosystem
is provided as part of the appendix.

What you need for this book
In order to get the most out of this book, the reader is expected to have at least a
basic understanding of what messaging is all about and a good understanding in at
least one object-oriented programming language. As the book features the RabbitMQ
Java client API in order to demonstrate how to use the message broker, it is good to
have at least a basic understanding of the Java programming language. Most of the
examples are not specific to a particular operating system; if they are, it is explicitly
mentioned whether this is, for example, a Windows- or Unix-based distribution
such as Ubuntu. For this reason, there is no particular requirement for an operating
system in order to run the examples.

Who this book is for
If you are a developer or system administrator with basic knowledge in messaging
who wants to learn RabbitMQ or further enhance your knowledge in working with
the message broker, then this book is ideal for you. For a full understanding of
some the examples in the book, basic knowledge of the Java programming language
is required. Feeling comfortable with RabbitMQ is a great way to leverage your
expertise in the world of messaging systems.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, names of third-party applications, utilities, folder names,
filenames, file extensions andpathnames are shown in bold as follows: "We already
saw how easy it is to start/stop/restart instances using the rabbitmqctl and
rabbitmq-server utilities that are part of the standard RabbitMQ installation."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

A block of code displayed in a box with console font:

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.16</version>
</dependency>

A block of configuration or output is also displayed in a box as follows:

sudo apt-get install rabbitmq-server –y
sudo rabbitmq-plugins enable rabbitmq_management
sudo service rabbitmq-server restart

New terms and important words are also shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Introducing RabbitMQ
In the world of enterprise messaging systems there are a number of patterns and
practices that are already successfully applied in order improve to scalability and
interoperability between different components in a system or between varying in
size and complexity systems. RabbitMQ is one such messaging solution, which
combines powerful messaging capabilities with easy use and availability on a
number of target platforms.

The following topics will be covered in this chapter:

•	 Fundamentals of enterprise messaging
•	 RabbitMQ brief overview
•	 RabbitMQ features
•	 Comparing RabbitMQ to other technologies
•	 Installing RabbitMQ

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[2]

Enterprise messaging
A typical enterprise will have a number of systems that must typically communicate
with each other in order to implement a well-defined business process. A question that
is frequently tackled for this reason is how to implement the communication channel
between these types of systems? For example, consider the following diagram:

System 4

System 5

System 6

System 1

System 2

System 3

?

The question mark in the preceding picture denotes the communication media for
the six systems that are illustrated. In the diagram, we can think of these separate
systems as the components of one large system and the problem stays the same.
Before discussing the various alternatives for integration, a number of key factors are
considered, as follows:

•	 Loose coupling: At what degree do the different systems depend on each
other or can operate independently?

•	 Real-time workload processing: How fast is the communication between
the systems?

•	 Scalability: How does the entire system scale when more systems are added
and the workload demands an increase?

•	 Maintainability: How hard it is to maintain the integrated systems?
•	 Extensibility: How easy it is to integrate new systems?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Let's assume that the systems communicate directly via some kind of remote
procedure calls as shown in the following diagram:

System 4

System 5

System 6

System 1

System 2

System 3

This implies that separate communication links must be established between each
pair of systems, which leads to tight coupling, a lot of effort to maintain all of the
links, reduced scalability, and reduced extensibility (for every new system that
is added, a few more communication links with other systems must be created).
However, real-time communication requirements might be met with some additional
effort to design the communication links.

A second approach is to use a shared file system in order to exchange files between
the systems that are being integrated, as illustrated in the following diagram:

File System

System 4

System 5

System 6

System 1

System 2

System 3

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[4]

A shared file system is used to provide the communication medium. Each system
may export data to a file that can be imported and used by other systems. The fact
that each system may support its own data format leads to the fact that each system
must have a particular mechanism to import data from every other system that it
needs to communicate with. This, on other hand, leads to the same problems that are
described in the case of direct communication. Moreover, real-time communication
requirements might be more difficult to establish and reading or writing data from
disk is also an expensive operation.

A third option is to use a shared database as shown in the following diagram:

Database

System 4

System 5

System 6

System 1

System 2

System 3

Here, all the systems should depend on the same database schema. Although this
reduces coupling between systems and improves extensibility (new systems must
conform to a single database schema in order to integrate with other systems),
real-time workload processing is still an issue. Scalability and maintainability
depend directly on the type of database that is being used and they could turn out
to be weak factors especially if it is a relational database (this may not be the case if
NoSQL solutions are applicable for the particular use case).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Messaging comes to the rescue when considering the problems that arise when
applying the previous approaches. Consider the following diagram for the
Enterprise Messaging System:

Enterprise
Messaging

System

System 4

System 5

System 6

System 1

System 2

System 3

A message is the central unit of communication used in enterprise messaging
systems. A message typically consists of the following:

•	 A message header: It provides metadata about the message such as encoding,
routing information, and security-related information

•	 A message body: It provides the actual data that is carried by the message,
represented in a proper format

The messaging system itself provides mechanisms to validate, store, route, and
transform messages that are being sent between the different systems. Each system is
responsible for crafting its own message that is transferred via the messaging system
(also called the messaging broker) to other systems that are connected to the broker
and configured to receive that particular type of message. Each system may create a
message in a proper format that is specified by the protocol of the message broker—
meaning that the system is only coupled with that particular protocol. If the broker
implements a protocol that is based on a well-recognized standard, then this would
further decouple the systems from that particular message broker implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[6]

Real-time workload processing is typically quite fast as the particular protocol that
is implemented by different messaging brokers is optimized to process message data
in a reliable and secure manner with minimal overhead. Most messaging solutions
provide a number of facilities that allow easy configuration, management, and
monitoring; thus, simplifying maintainability. Clustering support is also considered
by most implementations due to scalability and reliability requirements and
increasing workload demands. Integrating new systems is a matter of implementing
a mechanism for direct communication with the message broker.

In case the different systems provide different implementations of messaging protocols
(such as REST, SOAP, JSON-RPC, JMX, AMQP, and many others), a messaging system
could further provide various adapters for the different protocols as well as extended
mechanisms for routing and transformation of different types of messages—this
extended functionality also categorizes the message brokers as Enterprise Service
Bus (ESB) solutions. One major drawback of an ESB is that it must implement all
the communication requirements of all systems that are being integrated by the ESB,
otherwise workarounds must be used in order to implement direct communication
between the integrated systems (thus, neglecting the usage of an ESB).

Use cases
There are a variety of scenarios where messaging systems may be applied, such as
the following:

•	 Financial services: High rate real-time trade transactions handled between
different systems

•	 Social networking: Activity streams and event propagation between
different components in a social network

•	 E-mailing: Sending e-mail notifications or digests periodically to a large
number of users

•	 Processing large volumes of data upon request, such as image rendering
•	 Chat services
•	 Propagation of events throughout a system
•	 Any type of real-time system integration (system of systems)

As you can see, messaging solutions can be applied to a variety of scenarios that
typically involve a number of systems that must communicate in a timely manner
or perform a large number of time-consuming tasks. Messaging solutions are also
extensively being deployed by Cloud providers in order to provide messaging as a
service for Cloud-based applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Solutions
A wide variety of open source and property messaging solutions are available for
use, which are based on the multitude of use cases. The choice of a messaging broker
depends on a number of factors, as shown in the following:

•	 Supporting tools, documentation and services: These are tools for
management and monitoring of the broker along with possible options to
receive support, typically the support is guaranteed only for commercial
brokers. For open source, this depends on the activeness of the community.

•	 Ease of configuration: This shows how easy it is to set up and configure the
message broker.

•	 Functionality: The features implemented by the solution and their coverage
of the usage scenario. Here the supported protocols for message transfer play
a key role in the decision.

•	 The cost and licensing model.

Patterns
A messaging system provides patterns for communication between system endpoints.

Point-to-point
In a point-to-point communication model, there is exactly one sender and one
receiver of a message. In case there are multiple senders that are applicable for the
purpose of receiving the message, only one of them succeeds. Such receivers are
also referred to as competing consumers, indicating that any of them are eligible to
receive the message. The sender does not receive a response in a point-to-point model.

Publish-subscribe
In a Publish-subscribe communication model, there is one sender and multiple
receivers (subscribers) of the message. It is a form of fire-and-forget, where the
sender does not await for a response once the message is sent to the broker.

Request-response
In a request-response communication model, there is one sender and one receiver
that sends a response to the sender of the message.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[8]

Understanding RabbitMQ
The RabbitMQ messaging server is an open source implementation of the AMQP 0-9-1
protocol (Advanced Message Queuing Protocol) that defines how messages should be
queued, routed, and delivered in a reliable and secure manner. AMQP 1.0, which is an
OASIS (Organization for the Advancement of Structured Information Standards),
is not directly supported in the message broker; however, RabbitMQ provides a
plugin for AMQP 1.0 (as it is not backward-compatible with AMQP 0-9-1). OASIS is
a non-profit organization that works for the development of a number of technology
standards. As an open standard, AMQP promotes interoperability among the
messaging brokers that implement the protocol. It also defines the delivery semantics
for a message, which dictates how many times that message can be sent from one
endpoint to another—zero or once, exactly once or multiple times. As a wire protocol,
AMQP provides better performance in regard to other messaging protocols such as
XMPP (Extensible Messaging and Presence Protocol).

Before we discuss more about RabbitMQ as a message broker, we will introduce
some terminologies from the RabbitMQ world that we will use frequently
throughout the book:

•	 exchanges: These are the RabbitMQ server endpoints to which the clients
will connect and send messages. Each endpoint is identified by a unique key.

•	 queues: These are the RabbitMQ server components that buffer messages
coming from one or more exchanges and send them to the corresponding
message receivers. The messages in a queue can also be offloaded to a
persistent storage (such queues are also called durable queues) that provides
a higher degree of reliability in case of a failed messaging server; once the
server is running again, the messages from persistent storage are placed
back in the corresponding queues for transfer to recipients. Each queue is
identified by a unique key.

•	 bindings: These are the logical link between exchanges and queues. Each
binding is a rule that specifies how the exchanges should route messages
to queues. A binding may have a routing key that can be used by clients in
order to specify the routing semantics of a message.

•	 virtual hosts: The logical units that divide RabbitMQ server components
(such as exchanges, queues, and users) into separate groups for better
administration and access control. Each AMQP client connection is bound
to a concrete virtual host.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The AMQP protocol allows a client to establish a one-way logical link to send
messages for exchange. Each logical link is a separate AMQP channel that may
provide additional options for the reliable transfer of messages. In this regard,
a single-client TCP connection to the RabbitMQ server allows multiple AMQP
channels of communication. Since AMQP does not provide the capability to retrieve
the list of queues, exchanges, or bindings that are defined in the RabbitMQ message
broker, client applications must specify the exchange name, queue names, and,
optionally, routing information by means of routing keys for particular bindings.
AMQP is a programmatic protocol that allows its clients to create and delete
exchanges, queues, and bindings when necessary. RabbitMQ addresses some
limitations of AMQP by providing custom extensions apart from the fact that the
AMQP protocol itself is extensible. In order to simply application development,
RabbitMQ provides several exchange types out of the box, as follows:

•	 direct exchange: This delivers a message based on a routing key that is
provided in the message header (bindings should already be defined
between the direct exchange and the queue). There is a pre-created direct
exchange with the name .amq.direct. A specialized type of a direct exchange
called default exchange with the empty string as the exchange name is
also pre-created in the message broker. It has the special property where
the binding key that is specified by the client should match the name of the
queue to which a message is routed.

•	 fanout exchange: This delivers a message to all the queues that are bound
to the exchange; it can be used to establish a broadcast mechanism for the
delivery of messages to the queues. There is a pre-created fanout exchange
with name .amq.fanout.

•	 topic exchange: This delivers the message to queues based on a routing filter
specified between the topic exchange and queues; it can be used to establish
a multicast mechanism for the delivery of messages. There is a pre-created
topic exchange with the name .amq.topic.

•	 headers exchange: This can be used to deliver messages to queues based on
other message header attributes (and not the routing key). There are two
pre-created headers exchanges with names .amq.headers and .amq.match.

Receivers can either subscribe to a queue in order to receive messages (also called
push-style communication) or request messages on demand from a queue (also
called pull-style communication).

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[10]

Features
The RabbitMQ message broker provides a number of features and tools that support
production-level deployment, management, and configuration of the RabbitMQ
server instances as shown in the following:

•	 support for multiple protocols: Apart from AMQP, RabbitMQ provides
support for the STOMP, MQTT, and HTTP protocols by the means of
RabbitMQ plug-ins.

•	 routing capabilities: As we already saw, we can implement rules to route
messages between exchanges and queues by means of bindings, moreover,
more custom exchange types can be defined that can provide additional
routing capabilities.

•	 support for multiple programming languages: There are a variety of
supported clients for a great variety of programming languages.

•	 reliable delivery: This is a mechanism that guarantees successful message
delivery by the means of acknowledgements. It can be enabled between the
producer and the broker as well as the broker and the consumer.

•	 clustering: This provides a mechanism to implement scalable applications in
terms of the RabbitMQ message broker.

•	 federation: This is an alternative mechanism to implement scalable
applications with RabbitMQ by the means of transferring messages between
exchanges and queues in different broker instances without the need to
create a RabbitMQ cluster.

•	 high availability: This ensures that if a broker fails, communication will be
redirected to a different broker instance. It is implemented by the means
of mirroring queues; messages from a queue on a master broker instance
are copied to a queue on a slave broker instance and, once the message is
acknowledge, the messages are discarded from both the master and
slave instances.

•	 management and monitoring: A number of utilities are built around the
RabbitMQ broker server that provide these capabilities.

•	 Authentication and access control.
•	 pluggable architecture: RabbitMQ provides a mechanism to extend its

functionality by the means of RabbitMQ plug-ins.

All of these features will be covered in detail in the next chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Comparison with other technologies
As RabbitMQ is not the only player in the world of enterprise messaging solutions,
it is good to see what makes RabbitMQ different compared to other messaging
systems. A short list of alternative solutions (some of them also implementing the
AMQP protocol) may include systems such as Apache ActiveMQ, Apache Kafka,
Apache Qpid, JBoss Messaging, Microsoft BizTalk Server, and WebSphere Message
Broker. There are different benchmarks that can be found throughout the internet
that show us the relative results in comparison to the different types of brokers in
terms of message sending (from publisher to broker) and message delivery (from
broker to consumer). In case you need to compare RabbitMQ with the previously
mentioned or other messaging solutions, you can apply the following strategy:

•	 Select a subset of technologies that are suitable for your use case based on the
variety of factors that are listed at the beginning of this chapter

•	 Perform different types of benchmark based on the variations of size and
number of messages that will be sent for the purpose of processing by each
solution in the comparison group, based on the format of messages for the
particular use case

Installation
You can download a RabbitMQ distribution package for the operating system of
your choice from http://www.rabbitmq.com/Windows.

For Windows operating systems, you have the ability to use the provided RabbitMQ
installer (the simpler alternative) or manually install the broker using the provided
zip distribution archive (requires additional setup of Windows system paths). We
will provide an overview of the installation process for Windows 7 using the installer
for Rabbit 3.3.5 (rabbitmq-server-3.3.5.exe) that is quite straight-forward.
Initially, the installer checks whether Erlang is installed on the target Windows
system and, if it cannot find it, a dialog prompts you to install it, as shown in the
following image:

www.it-ebooks.info

http://www.rabbitmq.com/
http://www.rabbitmq.com/
http://www.rabbitmq.com/Windows
http://www.it-ebooks.info/

Introducing RabbitMQ

[12]

If you click Yes, the dialog redirects you to the official Erlang website. There, you
will find the appropriate binaries for your 32-bit/64-bit Windows operating system.
Download and install the Erlang 17.3 distribution (compatible with RabbitMQ 3.3.5)
for 64-bit Windows (otp_win64_17.3.exe):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

File associations can be established and the Erlang documentation can be installed as
a part of the Erlang installation process:

The next step is to specify the location to install Erlang:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[14]

Finally, you have the option to place an Erlang shortcut in the Start menu folder. After
the installation is finished, you can run the RabbitMQ 3.3.5 server installer again:

You can specify in addition that Start menu items and a Windows service should
be added along with RabbitMQ server installation. Adding a Windows service for
RabbitMQ server is usually recommended as it provides a convenient mechanism to
manage a RabbitMQ server instance:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The final step is to specify the location to install the RabbitMQ server. Once the
installation is complete, the installer tries to start the RabbitMQ server and, if
your Windows firewall is turned on, you might be prompted to allow access to
the RabbitMQ server in order to open a port on the target machine (the default
port is 5672 for a RabbitMQ server node instance). In order to check whether the
RabbitMQ service is running, you can open services.msc from the Windows Run
menu and check whether the RabbitMQ service has started. Additionally, you can
check whether the RabbitMQ instance node is initiated, by default on port 5672, by
executing from the command prompt:

netstat –a

RabbitMQ installation also provides a number of command-line utilities that you
can use in order to manage the RabbitMQ instance, which is located under the
rabbitmq_server-3.3.5\sbin folder in the RabbitMQ installation directory. You
can use the rabbitmqctl utility to check the status of a broker, start, or stop it:

rabbitmqctl.bat status
rabbitmqctl.bat stop
rabbitmqctl.bat start

In addition to this, rabbitmqctl provides a number of other commands that can be
used to manage the RabbitMQ broker. There is a RabbitMQ management plugin that
provides the ability to manage a RabbitMQ broker from a web-based interface and in
particular to do the following:

•	 Manage broker objects such as message queues, users, and permissions
•	 Send messages to the broker
•	 Receive messages from the broker
•	 Monitor and manage connections to the broker
•	 Monitor broker workload
•	 Monitor resource usage such as memory, processes, and file descriptors that

are used by the broker

These are included in the set of plugins that are installed by default; however, it
must be enabled by executing the rabbitmq-plugins utility that is located under the
rabbitmq_server-3.3.5\sbin folder in the RabbitMQ installation directory from
the following command prompt:

rabbitmq-plugins.bat enable rabbitmq_management

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[16]

After the management plugin is enabled, you have to restart the RabbitMQ server:

rabbitmq-server.bat restart

The management plugin starts an http server, on port 15672, by default in order to
verify that the plugin is trying to open http://localhost:15672/ from a browser.
You will be prompted to provide a Username and Password in order to login:

By default, RabbitMQ installs with a user with a guest name and guest password
that are only available from local host connections to the broker. In the next chapter,
we will see how to manage users for a RabbitMQ server.

Linux
For various Linux distributions, there are out-of-the-box packages provided for the
RabbitMQ server. Some Linux distributions also provide you with the ability to
install the broker directly from a package repository. We will provide an overview
of the installation process for Ubuntu 12.04 Desktop edition based on a package
repository that we can also download and install directly, a RabbitMQ Debian
package for the purpose. To install the broker and enable the management plugin,
open a terminal and execute the following command:

echo "deb http://www.rabbitmq.com/debian/ testing main" | sudo tee /
etc/apt/sources.list.d/rabbitmq.list > /dev/null
sudo wget http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
sudo apt-key add rabbitmq-signing-key-public.asc
sudo apt-get update
sudo apt-get install rabbitmq-server –y
sudo rabbitmq-plugins enable rabbitmq_management
sudo service rabbitmq-server restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

The server installation also installs utilities for the management of the RabbitMQ
server—used in the same way as in the Windows installation of RabbitMQ.

Case study: CSN (Corporate Social
Network)
The Corporate Social Network (CSN) is a social networking service that is being
deployed in an enterprise and allows its users to upload content and interact with
each other. In particular, the system allows the user to post blogs, upload files,
subscribe to other user profiles (in order to track the activity of other users), and chat
with other users. The social network uses RabbitMQ in order to process events that
have been triggered by user activity, trigger long-running jobs (such as batch file
uploading), and serve as a backbone for the delivery of chat messages from the chat
feature of the social network. The following diagram provides a high-level overview
of the components of the system:

CSN web node

Database

RabbitMQ server CSN worker node

We will design the system from the very beginning and then start expanding it.
In the meantime, we will demonstrate the various capabilities of RabbitMQ by
applying them to the extensions of the social network.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RabbitMQ

[18]

Summary
In this chapter, we covered the fundamentals of enterprise messaging solutions
and discussed the features of RabbitMQ along with the installation process. A brief
comparison with other messaging brokers was provided in order to reveal what
the strengths and weaknesses of RabbitMQ are compared to the other alternatives.
We also introduced a case study project CSN that makes use of RabbitMQ as a
messaging solution for propagation of events throughout the system and lays the
basis for further demonstrations on the various features of RabbitMQ.

Exercises
Attempt the following questions:

1.	 What is messaging?
2.	 What are the typical components of a message broker?
3.	 What appropriate usage scenarios can you think of for the application of

messaging systems?
4.	 Which message patterns does RabbitMQ support and how?
5.	 What are the advantages of using AMQP for messaging compared to

other protocols?
6.	 What are the different features that are supported by RabbitMQ?
7.	 What are the prerequisites for RabbitMQ installation on a target

operating system?

www.it-ebooks.info

http://www.it-ebooks.info/

[19]

Design Patterns with
RabbitMQ

As a robust messaging solution, RabbitMQ provides different utilities for distributing
messages between endpoints in the communication channel. These utilities provide an
implementation of best practices and design patterns that apply to messaging solutions
and form the backbone of a messaging broker such as RabbitMQ.

Topics covered in the chapter:

•	 Messaging patterns in RabbitMQ
•	 Point-to-point communication
•	 Publish-subscribe communication
•	 Request-reply communication
•	 Message router

Messaging patterns in RabbitMQ
Messaging patterns in RabbitMQ are implemented based on exchanges, queues, and
the bindings between them. We can distinguish between the different approaches for
implementing a design pattern with RabbitMQ:

•	 For point-to-point communication between the publisher and the broker
you can use a default or a direct exchange in order to deliver a message to a
single queue. However, note that there might be multiple subscribers to this
single queue, thus implementing publish-subscribe between the broker and
the message receivers bound to that queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[20]

•	 For publish-subscribe, we can use a fanout exchange, which will deliver a
message from an exchange to all queues that are bound to this exchange; in
this manner, we may have a queue-per-subscriber strategy for implementing
publish-subscribe.

•	 For request-response communication, we can use two separate exchanges and
two queues; the publisher sets a message identifier in the message header and
sends the request message to the request exchange, which in turn delivers
the message to the request queue. The subscriber retrieves the message
from the request queue, processes it, and sends a response message to the
response exchange by also setting the same message identifier found in the
request message to the response message header. The response exchange then
delivers the message to a response queue. The publisher is subscribed to a
response queue in order to retrieve response messages and uses the message
identifier from the response message header to map the response message to
the corresponding request message.

•	 For message routing we can use a topic exchange in order to deliver
messages based on a binding key pattern or a headers exchange based
on one or more headers.

It is important to remember that AMQP 0-9-1 protocol messages are load-balanced
between consumers in a round-robin fashion. In this case, if there are multiple
consumers on a message queue (bound using the basic.consume AMQP protocol
command) then only one of them will receive the message, signifying that we
have competing consumers. The same applies for the basic.get AMQP protocol
command that retrieves a message from a queue on-demand (pull style) rather than
by consumption (push style). If a message arrives on a queue that has no subscribers
then the message will stay in the queue until a new subscriber is bound to the queue
or the message is explicitly requested using basic.get. A message can also be
rejected using the basic.reject AMQP protocol command. We will illustrate each
of the preceding message patterns with concrete examples in subsequent sections.
Before trying out the examples, you have to include the AMQP client library for Java.
If you are using Maven, you can include the following dependencies for the client
library along with the slf4j dependencies that provide the slf4j logging features
used to provide logging capabilities in the examples:

<dependency>
 <groupId>com.rabbitmq</groupId>
 <artifactId>amqp-client</artifactId>
 <version>3.4.1</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

 <version>1.6.1</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.6.1</version>
</dependency>
<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.16</version>
</dependency>

In order to send messages to RabbitMQ, the Sender class will be used:

import java.io.IOException;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.Channel;

public class Sender {

 private final static String QUEUE_NAME = "event_queue";
 private final static Logger LOGGER =
 LoggerFactory.getLogger(Sender.class);
 private static final String DEFAULT_EXCHANGE = "";
 private Channel channel;
 private Connection connection;
}

The initialize() method is used to initialize the message sender by doing
the following:

•	 Creating a ConnectionFactory that is used to create AMQP connections to a
running RabbitMQ server instance; in this case, this is an instance running on
localhost and accepting connections on the default port (5672)

•	 Creating a new connection using the connection factory

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[22]

•	 Creating a new channel for sending messages in the created connection:
 public void initialize() {
 try {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection();
 channel = connection.createChannel();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }

The send() method has two variants: one that accepts a message and sends it
to the default queue and a second one that accepts an exchange name, exchange
type, and the message to send. The first variant is appropriate for point-to-point
communication and does the following:

•	 Declares a queue in the message broker using the queueDeclare() method;
if the queue is already created then it is not recreated by the method

•	 Publishes a message on the default exchange that is delivered to that queue

The second variant of send() is appropriate for the publish-subscribe type of
communication and does the following:

•	 Declares the specified exchange along with its type on the message bus using
the exchangeDeclare() method; the exchange is not recreated if it exists on
the message bus

•	 Sends a message to this exchange with a routing key equal to the empty
string (we are indicating that we will not use the routing key with this
variant of the method):
 public void send(String message) {
 try {
 channel.queueDeclare(QUEUE_NAME, false, false, false,
null);
 channel.basicPublish(DEFAULT_EXCHANGE, QUEUE_NAME,
null,
 message.getBytes());
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }

 public void send(String exchange, String type, String message)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

 try {
 channel.exchangeDeclare(exchange, type);
 channel.basicPublish(exchange, "", null,
 message.getBytes());
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }

The destroy() method is used to close the connection and all connection channels to
the message broker:

 public void destroy() {
 try {
 if (connection != null) {
 connection.close();
 }
 } catch (IOException e) {
 LOGGER.warn(e.getMessage(), e);
 }
 }
}

Point-to-point communication
The following diagram provides an overview of the scenario that we will implement:

Sender

default exchange event_queue

CompetingReceiver

RabbitMQ server

CompetingReceiver

For point-to-point communication, the sender can use either the default exchange
or a direct exchange (that uses the routing key to determine to which queue a
message must be sent; the routing key should match the binding key between the
exchange and the queue). The CompetingReceiver class can be used to subscribe to
a particular queue and receive messages from that queue:

import java.io.IOException;
import org.slf4j.Logger;

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[24]

import org.slf4j.LoggerFactory;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class CompetingReceiver {

 private final static String QUEUE_NAME = "event_queue";
 private final static Logger LOGGER =
LoggerFactory.getLogger(Sender.class);
 private Connection connection = null;
 private Channel channel = null;
 public void initialize() {
 try {
 ConnectionFactory factory =
new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection();
 channel = connection.createChannel();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }
}

The receive() method is used to receive a message from the queue named
event_queue by doing the following:

•	 Creating the event_queue in the message broker, if not already created,
using the queueDeclare() method

•	 Creating a QueueingConsumer instance that is used as the handler for
messages from the event_queue queue

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

•	 Registering the QueueingConsumer as a message consumer using the
basicConsume() method of the Channel instance that represents the
AMQP channel to the message broker

•	 Consuming a message from the event_queue queue using the
nextDeliver() method of the QueueingConsumer instance, which blocks
until a message arrives on the queue; QueueingConsumer.Delivery
represents the received message:
 public String receive() {
 if (channel == null) {
 initialize();
 }
 String message = null;
 try {
 channel.queueDeclare(QUEUE_NAME, false, false, false,
null);
 QueueingConsumer consumer =
new QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, true,
consumer);
 QueueingConsumer.Delivery delivery =
consumer.nextDelivery();
 message = new String(delivery.getBody());
 LOGGER.info("Message received: " + message);
 return message;

 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ShutdownSignalException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ConsumerCancelledException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 }
 return message;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[26]

The destroy() method closes the AMQP connection and must be called explicitly
when needed; closing the connection closes all AMQP channels created in that
connection:

 public void destroy() {
 if (connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 LOGGER.warn(e.getMessage(), e);
 }
 }
 }

In order to demonstrate the usage of the CompetingConsumer class in a point-to-point
channel, we can use the DefaultExchangeSenderDemo class to send a message to the
default exchange:

public class DefaultExchangeSenderDemo {

 public static void sendToDefaultExchange() {
 Sender sender = new Sender();
 sender.initialize();
 sender.send("Test message.");
 sender.destroy();
 }

 public static void main(String[] args) {
 sendToDefaultExchange();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

When invoking the main() method, a message is sent to the RabbitMQ server instance
running on localhost; if no instance is running then a java.net.ConnectionException
is thrown from the client. Assuming that there are no defined queues yet in the message
broker, if you open the RabbitMQ management console you will notice the following
before invoking the main() method:

After invoking the main() method, you will notice that the event_queue is created:

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[28]

Moreover, there is one unprocessed message in the queue; the Ready section gives
the number of unprocessed messages on the particular queue. In order to consume
the message CompetingReceiverDemo class, perform the following:

public class CompetingReceiverDemo {

 public static void main(String[] args)
throws InterruptedException {
 final CompetingReceiver receiver1 = new CompetingReceiver();
 receiver1.initialize();
 final CompetingReceiver receiver2 = new CompetingReceiver();
 receiver2.initialize();

 Thread t1 = new Thread(new Runnable() {
 public void run() {
 receiver1.receive();
 }
 });
 Thread t2 = new Thread(new Runnable() {
 public void run() {
 receiver2.receive();
 }
 });
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 receiver1.destroy();
 receiver2.destroy();
 }
}

We create two CompetingReceiver instances and invoke the receive() methods of
the two instances in separate threads so that we have two subscribers for the same
queue waiting for a message. The two threads are joined to the main application
thread so that method execution continues once both consumers receive a message
from the queue. Since our queue already has one message, one of the two consumers
will receive the message while the other will continue to wait for a message. If we
invoke the main() method of the DefaultExchangeSenderDemo class once again, the
other consumer will also receive a message from the queue and the main() method
of CompetingReceiverDemo() will terminate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Publish-subscribe communication
The following diagram provides an overview of the scenario that we will implement:

Sender

fanout exchange
("pubsub_exchange")

queue
("pubsub_queue1")

queue
("pubsub_queue2")

PublishSubscribeReceiver

PublishSubscribeReceiver

RabbitMQ server

For publish-subscribers we can use a fanout exchange and bind any number of queues
to that exchange regardless of the binding key. The PublishSubscribeReceiver class
can be used to bind a specified queue to a fanout exchange and receive messages
from it:

import java.io.IOException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class PublishSubscribeReceiver {

 private final static String EXCHANGE_NAME = "pubsub_exchange";
 private final static Logger LOGGER =
LoggerFactory.getLogger(Sender.class);
 private Channel channel = null;
 private Connection connection = null;

 public void initialize() {
 try {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection();

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[30]

 channel = connection.createChannel();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }
 . . .
}

The receive() method can be used to retrieve a message from a queue that is bound
to the pubsub_exchange fanout exchange and does the following:

•	 Creates the pubsub_exchange, if not already created
•	 Creates the specified queue if not already created
•	 Binds the queue to the pubsub_exchange using the queueBind() method

of the Channel instance that represents the AMQP channel for the receiver;
notice that in this case we don't specify any particular binding key and for
that reason we are using the empty string

•	 Creates a new QueueingConsumer instance, registered using the AMQP
channel, and the nextDelivery() method is called to receive a message
from the channel:
 public String receive(String queue) {

 if (channel == null) {
 initialize();
 }

 String message = null;
 try {
 channel.exchangeDeclare(EXCHANGE_NAME, "fanout");
 channel.queueDeclare(queue, false, false, false, null);
 channel.queueBind(queue, EXCHANGE_NAME, "");
 QueueingConsumer consumer = new
QueueingConsumer(channel);
 channel.basicConsume(queue, true, consumer);
 QueueingConsumer.Delivery delivery =
consumer.nextDelivery();
 message = new String(delivery.getBody());
 LOGGER.info("Message received: " + message);
 return message;

 } catch (IOException e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

 LOGGER.error(e.getMessage(), e);
 } catch (ShutdownSignalException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ConsumerCancelledException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 }
 return message;
 }

And we also have a destroy() method:

 public void destroy() {
 try {
 if (connection != null) {
 connection.close();
 }
 } catch (IOException e) {
 LOGGER.warn(e.getMessage(), e);
 }
 }
}

In order to demonstrate the usage of QueueingConsumer for establishing a publish-
subscribe communication channel, we will use the FanoutExchangeSenderDemo
class to send a message to the pubsub_exchange fanout exchange:

public class FanoutExchangeSenderDemo {

 private static final String FANOUT_EXCHANGE_TYPE = "fanout";

 public static void sendToFanoutExchange(String exchange) {
 Sender sender = new Sender();
 sender.initialize();
 sender.send(exchange, FANOUT_EXCHANGE_TYPE, "Test message.");
 sender.destroy();
 }

 public static void main(String[] args) {
 sendToFanoutExchange("pubsub_exchange");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[32]

When you invoke the main() method of the FanoutExchangeSenderDemo class, you
may notice from the management console that the pubsub_exchange exchange is
created in the RabbitMQ server instance separate from the predefined exchanges:

If you restart the RabbitMQ instance then you will not see the pubsub_exchange
from the management console again, because the exchange is not marked as durable.
In order to mark a queue/exchange as durable, you can provide an additional
parameter to the queueDeclare()/exchangeDeclare() methods of the Channel
class. In order to provide further message delivery guarantees on the broker, you can
use the publisher confirms of the extension.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

The PublishSubscribeReceiverDemo class provides a demonstration of the
PublishSubscribeReceiver class for the establishment of a publish-subscribe
channel:

public class PublishSubscribeReceiverDemo {

 public static void main(String[] args)
throws InterruptedException {
 final PublishSubscribeReceiver receiver1 =
new PublishSubscribeReceiver();
 receiver1.initialize();
 final PublishSubscribeReceiver receiver2 =
new PublishSubscribeReceiver();
 receiver2.initialize();
 Thread t1 = new Thread(new Runnable() {
 public void run() {
 receiver1.receive("pubsub_queue1");
 }
 });
 Thread t2 = new Thread(new Runnable() {
 public void run() {
 receiver2.receive("pubsub_queue2");
 }
 });
 t1.start();
 t2.start();
 t1.join();
 t2.join();

 receiver1.destroy();
 receiver2.destroy();
 }
}

The main() method creates two receivers that bind to two different queues:
pubsub_queue1 and pubsub_queue2. If you have already sent a message to the
pubsub_exchange exchange, it will be delivered to both queues and thus sent to
both consumers.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[34]

Request-reply communication
The following diagram provides an overview of the scenario that we will implement:

Sender

default exchange
(" ")

queue
("request_queue")

queue
("request_queue")

default exchange
(" ")

RequestReceiverRabbitMQ server

The sender will send a message to the default exchange with a routing key that
matches the name of the designated request queue. The request receiver is a
subscriber to the request queue. After a request message is received, the request
receiver retrieves the value of the replyTo property from the message header,
creates a response message, and sends it to the default exchange with a routing key
that matches the replyTo property. This means that the replyTo property points to a
queue that handles response messages and the sender is subscribed to that queue in
order to receive a response.

Let's extend our Sender class with the following sendRequest() method, which
sends a message to the request_exchange exchange, and the receiveResponse()
method, which receives a message from the response_queue queue as follows:

private static final String REQUEST_QUEUE = "request_queue";
private static final String RESPONSE_QUEUE = "response_queue";
public void sendRequest(String requestQueue, String message, String
correlationId) {
 try {
 channel.queueDeclare(REQUEST_QUEUE, false, false, false,
null);
 channel.queueDeclare(RESPONSE_QUEUE, false, false, false,
null);
 AMQP.BasicProperties amqpProps = new AMQP.BasicProperties();
 amqpProps = amqpProps.builder()
 .correlationId(String.valueOf(correlationId))
 .replyTo(RESPONSE_QUEUE).build();
 channel.basicPublish(DEFAULT_EXCHANGE,
REQUEST_QUEUE, amqpProps, message.
getBytes());
 } catch (IOException e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

 LOGGER.error(e.getMessage(), e);
 }
}

public String waitForResponse(final String correlationId) {
 QueueingConsumer consumer = new QueueingConsumer(channel);
 String result = null;

 try {
 channel.basicConsume(RESPONSE_QUEUE, true, consumer);
 QueueingConsumer.Delivery delivery = consumer.
nextDelivery(3000);
 String message = new String(delivery.getBody());
 if (delivery.getProperties() != null) {
 String msgCorrelationId = delivery.getProperties()
 .getCorrelationId();
 if (!correlationId.equals(msgCorrelationId)) {
 LOGGER.warn("Received response of another request.");
 } else {
 result = message;
 }
 }
 LOGGER.
info("Message received: " + message);

 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ShutdownSignalException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ConsumerCancelledException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 }
 return result;
}

The sendRequest() method crafts an AMQP.BasicProperties instance and provides
the replyTo and correlationId properties. The correlationId must be a unique
identifier that is passed back in the response message and can be used by the sender
to determine the request for which a response is received.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[36]

The RequestReceiver class provides a sample implementation of a request receiver:

public class RequestReceiver {

 private static final String DEFAULT_QUEUE = "";
 private static final String REQUEST_QUEUE = "request_queue";
 private final static Logger LOGGER =
 LoggerFactory.getLogger(Sender.class);
 private Connection connection = null;
 private Channel channel = null;

 public void initialize() {
 try {
 ConnectionFactory factory =
new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection();
 channel = connection.createChannel();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }
 . . .
}

The receive() method is used to read a request message from a queue:

 public void receive() {

 if (channel == null) {
 initialize();
 }

 String message = null;
 try {
 channel.queueDeclare(REQUEST_QUEUE, false,
false, false, null);
 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(REQUEST_QUEUE, true, consumer);
 QueueingConsumer.Delivery delivery =
consumer.nextDelivery();
 message = new String(delivery.getBody());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

 LOGGER.info("Request received: " + message);

 // do something with the request message ...

 BasicProperties properties = delivery.getProperties();
 if (properties != null) {
 AMQP.BasicProperties amqpProps =
new AMQP.BasicProperties();
 amqpProps = amqpProps.builder().correlationId(

String.valueOf(properties.getCorrelationId())).build();

 channel.basicPublish(DEFAULT_QUEUE,
properties.getReplyTo(), amqpProps, "Response message.".getBytes());
 } else {
 LOGGER.warn("Cannot determine response
destination for message.");
 }

 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ShutdownSignalException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ConsumerCancelledException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }

And again we have a destroy() method – it is important to make sure that you
close your connections to the broker if you are no longer using them:

 public void destroy() {
 if (connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 LOGGER.warn(e.getMessage(), e);
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[38]

In order to send a request message we can use the RequestSenderDemo class:

public class RequestSenderDemo {

 private static final String REQUEST_QUEUE =
"request_queue";

 public static String sendToRequestReplyQueue() {
 Sender sender = new Sender();
 sender.initialize();
 sender.sendRequest(REQUEST_QUEUE, "Test message.", "MSG1");
 String result = sender.waitForResponse("MSG1");
 sender.destroy();
 return result;
 }
 public static void main(String[] args) {
 sendToRequestReplyQueue();
 }
}

In order to receive the request message and send a response message, you can use
the RequestReceiverDemo class:

public class RequestReceiverDemo {

 public static void main(String[] args) throws InterruptedException
{
 final RequestReceiver receiver = new RequestReceiver();
 receiver.initialize();
 receiver.receive();
 receiver.destroy();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Message router
The following diagram provides an overview of the scenario that we will implement:

Sender

topic exchange
("topic_exchange")

queue
("seminar_queue")

queue
("hackaton_queue")

SeminarReceiver

RabbitMQ server

HackatonReceiver

Let's say we have a service that triggers an event upon the creation of a new
programming seminar, or hackathon, for a given community. We want to send all
seminar events to a particular destination receiver and all hackaton events to another
destination receiver. Moreover, we want to send messages to the same exchange.
For that setup, a topic exchange is a rational choice; one queue will be bound to the
topic exchange with the seminar.# routing key and another queue will be bound
with hackaton.# routing key. The # character is special and serves as a pattern that
matches any character sequence.

We can implement this type of message sending by further extending our Sender class:

private static final String SEMINAR_QUEUE = "seminar_queue";
private static final String HACKATON_QUEUE = "hackaton_queue";
private static final String TOPIC_EXCHANGE = "topic_exchange";

public void sendEvent(String exchange, String message, String
messageKey) {
 try {
 channel.exchangeDeclare(TOPIC_EXCHANGE, "topic");
 channel.queueDeclare(SEMINAR_QUEUE, false, false,
false, null);
 channel.queueDeclare(HACKATON_QUEUE, false, false,
false, null);
 channel.queueBind(SEMINAR_QUEUE, TOPIC_EXCHANGE,
"seminar.#");
 channel.queueBind(HACKATON_QUEUE, TOPIC_EXCHANGE,
"hackaton.#");
channel.basicPublish(TOPIC_EXCHANGE, messageKey, null,

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[40]

 message.getBytes());
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
}

In order to demonstrate event sending, we can use the TopicSenderDemo class:

public class TopicSenderDemo {

 private static final String TOPIC_EXCHANGE =
"topic_exchange";

 public static void sendToTopicExchange() {
 Sender sender = new Sender();
 sender.initialize();
 sender.sendEvent(TOPIC_EXCHANGE, "Test message 1.",
"seminar.java");
 sender.sendEvent(TOPIC_EXCHANGE, "Test message 2.",
"seminar.rabbitmq");
 sender.sendEvent(TOPIC_EXCHANGE, "Test message 3.",
"hackaton.rabbitmq");
 sender.destroy();
 }

 public static void main(String[] args) {
 sendToTopicExchange();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Case study: Initial design of the CSN
The following diagram extends the general overview of a CSN in regard to a client
browser that provides client-side interaction with the system:

Database

CSN web node

Client browser

RabbitMQ server CSN worker node

Now that we have seen how to implement messaging patterns in RabbitMQ, we can
apply this to implement the following:

•	 Global event handling; we can use the default exchange along with a single
queue called event_queue. The worker nodes as illustrated in the preceding
diagram will subscribe to the event_queue and start handling events for
long-running tasks in a round-robin fashion; the CompetingReceiver class
is a proper alternative for the implementation of a point-to-point receiver on
the worker nodes.

•	 Chat service; each user of the system will have a separate queue that will
receive messages for that queue. You can use a variant—a point-to-point
channel—to send a message from one user to the other. For group chatting,
you can have a fanout or topic exchange (based on the implementation
strategy) for the particular group that will be used to deliver messages to all
use queues.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns with RabbitMQ

[42]

To implement a chat client that is displayed in the client's browser you have a
number of alternatives, such as:

•	 Using the WebSocket protocol, since it allows two-way communication
between the browser and the CSN frontend server; the frontend server
sends the message to the RabbitMQ server for further handling. In this case,
you may need to create a mapping between the WebSocket endpoints and
AMQP queues.

•	 Implementing a browser plugin that makes use of the AMQP protocol
directly; this allows you to connect clients directly to the RabbitMQ broker.

•	 Ajax requests with long polling; this option is not preferred since it implies a
heavy footprint on network bandwidth but it is still another alternative.

Summary
In this chapter, we saw how to implement various messaging patterns in RabbitMQ.
We also discussed how to design the various components of a CSN (Corporate
Social Network) that makes use of such messaging patterns, with RabbitMQ as the
message broker used in the system. In the next chapter we will see how to configure
and administer RabbitMQ.

Exercises
1.	 How can you implement different enterprise integration patterns with

RabbitMQ other than the ones listed in this chapter? Refer to the book
Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf.

2.	 Can you think of any non-standard applications of RabbitMQ in CSN? List
them and think of a general design for implementing them in CSN.

www.it-ebooks.info

http://www.it-ebooks.info/

[43]

Administration, Configuration,
and Management

In order to get the most out of a system, you need to know how to configure and
control it. Depending on the type of system, these tasks could turn out to be quite
daunting and onerous (consider a relational database, for example). However,
the RabbitMQ team has provided very convenient facilities for administering and
managing the message broker.

Topics covered in the chapter:

•	 Administering RabbitMQ instances
•	 Administering the RabbitMQ database
•	 Installing RabbitMQ plugins
•	 Configuring RabbitMQ instances
•	 Managing RabbitMQ instances
•	 Upgrading RabbitMQ

Administering RabbitMQ instances
Administration of RabbitMQ server instances can be considered in several directions:

•	 Starting/stopping/restarting instances
•	 Adding/removing/modifying/inspecting users, virtual hosts, exchanges,

queues, and bindings
•	 Backup and recovery of the RabbitMQ database
•	 Setting up a different database for message persistence
•	 Taking care of broker security

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[44]

•	 Inspecting RabbitMQ logs for errors
•	 Optimizing resource utilization, tuning performance and monitoring

the broker
•	 Configuring the broker using environment variables, configuration

parameters, and policies
•	 Managing the broker by writing custom applications that make use of the

REST API exposed by the RabbitMQ management plugin

Some of the preceding concepts are covered in subsequent chapters. We already saw
how easy it is to start/stop/restart instances using the rabbitmqctl and rabbitmq-
server utilities that are part of the standard RabbitMQ installation. Before diving
into the nuts and bolts of RabbitMQ administration, let's review the standard
directory structure of a typical RabbitMQ server installation. In Windows, run the
following command from the installation folder of RabbitMQ:

 tree /A

The following screenshot displays the output from the preceding command:

Mnesia is a distributed NoSQL database used by RabbitMQ to store information
about users, vhosts, exchanges, queues, bindings, index files (the position of
messages in queues), and cluster information. It can store data either on RAM or
on disk. Although persistent messages are stored along with the Mnesia files (in
the Mnesia folder), they are not managed by Mnesia. RabbitMQ provides its own
persistent storage for messages. On the one hand, persistent messages are stored in
the msg_store_persistent directory (both when they are persisted when received
on a queue or when memory consumption grows beyond a specific threshold); on
the other hand, non-persistent (transient) message are persisted in the msg_store_
transient directory (when memory consumption on a queue grows beyond a
specific threshold).

The ebin directory contains the Erlang compiled sources. They are cross-platform
and are interpreted by the Erlang virtual machine installed on the machine on which
the RabbitMQ server is installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

The include directory includes the Erlang header files (similar in notion to C++
header files but for Erlang).

The log directory contains the RabbitMQ log files and the Erlang SASL (System
Application Support Libraries) log files, not to be confused with SASL (Simple
Authentication and Security Layer), for which RabbitMQ also provides support,
covered in Chapter 9, Security. Erlang SASL provides support for topics such as error
logging, alarm handling, and overload regulation.

The plugins directory provides packages for the RabbitMQ binaries.

The sbin directory contains the RabbitMQ scripts used for server administration,
such as rabbitmq-server.bat and rabbitmqctl.bat under Windows.

The following screenshot illustrates the RabbitMQ folder structure for Ubuntu/Debian:

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[46]

And the following is for a generic Unix installation:

Note that database and log files are not created until the RabbitMQ broker is started
for the first time. If you delete the RabbitMQ database and/or log files, they will be
recreated when the broker is started again.

The locations of some parts of the RabbitMQ installation files can be configured
using environment variables, such as:

•	 RABBITMQ_BASE sets the location of the RabbitMQ database and log files.
Note that, if it is not set under Windows, then the default location for the
variable will be %APPDATA%\RabbitMQ (meaning that your database, log,
and configuration files will be stored under that directory unless other
configuration parameters are used to change their location). You can set this
directory to be the installation folder of your RabbitMQ server if you want
to store the database, log, and configuration in the same location as the other
RabbitMQ server components.

•	 RABBITMQ_CONFIG_FILE sets the location of the RabbitMQ configuration file
(without the .config extension of the file).

•	 RABBITMQ_LOG_BASE specifies the base directory for storing RabbitMQ
log files.

For more information on the various environment variables related to the directory
structure of the RabbitMQ server, you can refer to the RabbitMQ server documentation.

Administering RabbitMQ components
The various RabbitMQ components can be modified in any of the following ways:

•	 From the web interface of the RabbitMQ management plugin
•	 From the rabbitmqctl script (in the sbin directory)
•	 From the REST API of the RabbitMQ management plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

So far, we have seen how to programmatically create queues, exchanges, and
bindings. However, they can be pre-created in the broker so that the overhead of
managing them from source code on the producer/consumer side is minimized.
Moreover, we can also create users, vhosts, and policies using the management
plugin or the rabbitmqctl utility. For some administrative tasks, you can use a
command line utility (rabbitmqadmin) that comes with the RabbitMQ management
plugin. In order to download it, navigate to http://localhost:15672/cli/
and save it to a proper location (for example, the sbin directory of the RabbitMQ
installation; make sure you save it with a .py extension since it is a Python script,
and ensure you have Python 3 installed before using the script). To view all available
commands for the rabbitmqadmin.py script, you can issue the following from the
command line:

rabbitmqadmin.py help
rabbitmqadmin.py help subcommands

Administering users
You can easily create new users from the command line. For example, if you want
to create a user with the name sam and the password d1v, and a user jim with the
password tester, you can issue the following commands:

rabbitmqctl add_user sam d1v
rabbitmqctl add_user jim tester

The preceding users are regular (non-administrative) users and not assigned to
any vhost. At that point, if you try to access the web management console you
will receive a login failure. In order to make sam an admin user you can issue the
following command:

rabbitmqctl.bat set_user_tags jim administrator

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[48]

Now jim is able to administer the broker and login to the management console. The
users still don't have access to any vhost (even the default one). If you navigate to the
Admin tab in the management console, you will see something like this:

The following command can be used to list all users in the broker instance:

rabbitmqctl.bat list_users

If you want to change the password for sam to t1ster, you can issue the following
command:

rabbitmqctl.bat change_password jim t1ster

If you want to delete the user sam, you can issue the following command:

rabbitmqctl.bat delete_user jim

You can also manage users from the RabbitMQ web management interface or the
rabbitmqadmin.py script. Let's make sam an administrator:

rabbitmqctl.bat set_user_tags sam administrator

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Administering vhosts
We have already mentioned that vhosts are used to logically separate a broker
instance into multiple domains, each one with its own set of exchanges, queues,
and bindings. The following example creates the chat and events vhost:

rabbitmqctl.bat add_vhost chat
rabbitmqctl.bat add_vhost events

Note that it might be a better idea to name your vhosts hierarchically (meaning
that chat becomes /chat and vhost becomes /vhost; any child vhosts can be added
following the same pattern—for example, /chat/administrators and /events/
follow).

If you navigate to the Admin tab in the management console and click on Virtual
Hosts, you will see something like this:

The following command can be used to list all virtual hosts in the broker instance:

rabbitmqctl.bat list_vhosts

You can use the following command to the delete the events vhost:

rabbitmqctl.bat delete_vhost events

You can also manage vhosts from the RabbitMQ web management interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[50]

Administering permissions
Now that we have seen how to create users and vhosts, we can assign permissions to
particular users so that they are able to access particular vhosts (and all of the RabbitMQ
components associated with that vhost). The following example grants configure, write,
and read permissions to all resources in the chat vhost to the user jim:

rabbitmqctl.bat set_permissions –p chat jim ".*" ".*" ".*"

Note that in some cases under Windows, any of the rabbitmqctl commands may not
be properly executed due to Erlang issues with encoding under Windows. In that
case, you can also use the rabbitmqadmin.py script as follows:

rabbitmqadmin.py declare permission vhost=chat user=sam configure=.*
write=.* read=.*

As you can see, the configure, write, and read permissions can be regular expressions
that match the names of the vhosts components that the user has access to. You can
list all permissions in the broker with the following command:

rabbitmqctl.bat list_permissions

Alternatively, you can use the rabbitmqadmin.py script for this purpose:

rabbitmqadmin.py list permissions

You can delete the permission given to the user sam for the chat vhost using the
following command:

rabbitmqctl.bat clear_permissions -p chat sam

Alternatively you can use the rabbitmqadmin.py script for this purpose:

rabbitmqadmin.py delete permission vhost=chat user=sam

If you omit the vhost from the preceding commands, you will clear all permissions
assigned to the user sam. You can also list all vhosts to which the user sam is assigned
with the following command:

rabbitmqadmin -u sam -p d1v list vhosts

Administering exchanges
You can create exchanges from the RabbitMQ management web interface or the
rabbitmqadmin script. The following example creates the logs fanout exchange in
the default vhost:

rabbitmqadmin.py declare exchange name=logs type=fanout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

The following example creates another fanout exchange with the name logs in the
chat vhost (first we set permissions for the guest user to the vhost; otherwise, we
have to specify a user that has administrator permissions for the vhost):

rabbitmqadmin.py declare permission vhost=chat user=guest
configure=.* write=.* read=.*
rabbitmqadmin.py declare -V chat exchange name=logs type=fanout

When declaring an exchange, you can specify additional properties such as exchange
durability. To delete the logs exchange from the chat domain, you can issue:

rabbitmqadmin.py -V chat delete exchange name=logs

To list all exchanges in the chat vhost, you can issue:

rabbitmqadmin.py -V chat list exchanges

To list all exchanges in the default vhost, you can issue:

rabbitmqadmin.py list exchanges

Administering queues
You can create queues from the RabbitMQ management web interface or the
rabbitmqadmin script. The following example creates the non-durable error_logs
queue in the default vhost:

rabbitmqadmin.py declare queue name=error_logs durable=false

The following example creates a queue with the same name in the chat vhost:

rabbitmqadmin.py -V chat declare queue name=error_logs

To delete the error_logs queue from the chat vhost, you can issue the following:

rabbitmqadmin.py -V chat delete queue name=error_logs

To list all queues in the default domain, you can issue:

rabbitmqadmin.py list queues

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[52]

Administering bindings
Now that we have seen how straightforward it is to create exchanges and queues,
let's see how to create bindings. The following creates a binding between the logs
fanout exchange we already created and the error_logs queue in the default vhost:

rabbitmqadmin.py declare binding source=logs destination=error_logs

In order to test that the binding works, we can use the rabbitmqadmin script to
publish to the logs exchange, then read from the error_logs queue (here you can
check if the message is successfully retrieved from the queue), and finally clear the
error_logs queue from any messages:

rabbitmqadmin.py publish exchange=logs routing_key= payload="new log"
rabbitmqadmin.py get queue=error_logs
rabbitmqadmin.py purge queue name=error_logs

Administering policies
Policies allow you to define (and change) certain properties of exchanges and queues at
runtime. Since no more than one policy can be defined per exchange/queue, a policy
can incorporate multiple settings at once. Let's consider the following scenarios:

•	 We decide to set a limit on the capacity of a queue; if it is exceeded then the
messages are either dropped or dead-lettered (meaning they are redirected to
an alternative exchange)

•	 We decide to set a limit on the time that a message is allowed to stay in a
queue; if that time is exceeded for a message then it is either dropped or
dead-lettered

•	 We want to define a dead-letter exchange that receives dead-letter messages
from one or more queues

In order to set the capacity of the error_logs queue in the default ('/') vhost to
200,000 bytes, you can apply the following policy:

rabbitmqctl set_policy max-queue-len "error_logs" "{""max-length-
bytes"" : 200000}" apply-to queue

You can also use the rabbitmqadmin.py script for this purpose:

rabbitmqadmin.py declare policy name=max-queue-len pattern=error_logs
definition="{""max-length-bytes"":200000}" apply-to=queues

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

The following policy sets the maximum queue length in terms of messages (if you
want to apply it you must first drop the previously created policy):

rabbitmqadmin.py declare policy name=max-queue-len pattern=error_logs
definition="{""max-length"":200000}" apply-to=queues

Notice that instead of the name of the queue (error_logs in that case), you can
specify a pattern for the names of the queues to which the policy applies. This means
that policies apply to queues that match the pattern and they are added after the
policy is created. To delete the policy you can issue:

rabbitmqctl.bat clear_policy max-queue-len

Alternatively you can issue:

rabbitmqadmin.py delete policy name=max-queue-len

Note that the queue length might also be set from the client using the x-max-length
arguments passed to the arguments map in the declaration of a queue from the client.

In order to set the TTL (time-to-live) of the messages to all queues in the default
vhost to three seconds, you can apply the following policy:

rabbitmqadmin.py declare policy name=ttl pattern=.*
definition="{""message-ttl"":3000}" apply-to=queues

Note that the message TTL for the queue might also be set from the client using
the x-message-ttl arguments passed to the arguments map in the declaration
of a queue from the client or on a per-message basis using the expiration field
set properly on the AMQP.BasicProperties instance passed when publishing
a message. You can also set expiration for the entire queue, which means that
the queue will be automatically deleted after a certain period of idle time; this is
particularly useful when a large number of queues is created and they need to be
purged over time. The following example sets the queue TTL for all queues starting
with the response prefix to 10 minutes:

rabbitmqadmin.py declare policy name=queue-ttl
pattern=response.* definition="{""expires"":600000}" apply-to=queues

Note that the queue TTL might also be set from the client using the x-queue
arguments passed to the arguments map in the declaration of a queue from the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[54]

If a message TTL expires, the queue capacity is exhausted, or a message received
from a queue is explicitly rejected from a consumer, it can be routed to an alternative
dead-letter exchange. The following diagram provides an overview of the scenario:

Sender

'logs'
exchange

'logs_dix'
exchange

'error_logs'
queue

1) receiver rejects message
2) message TTL expires
3) queue is full

ReceiverRabbitMQ server

The following example creates the logs_dlx exchange and sets it as a dead-letter
exchange to the error_logs queue:

rabbitmqadmin.py declare exchange name=logs_dlx type=fanout
rabbitmqadmin.py declare policy name=ttl
pattern="^error_logs$" definition="{""dead-letter-exchange"": ""logs_
dlx"", ""message-ttl"":3000}" apply-to=queues

Note that if we use only "error_logs" instead of "^error_logs$" then error_
logs_dlx will also be matched and we don't want this to happen. Notice that in
the preceding example we combined the dead-letter-exchange policy with the
message-ttl policy. You can list all policies with the following command:

rabbitmqadmin.py list policies

Note that you have to make sure that only one policy applies at a time on a queue; if
two or more patterns match a queue name then it becomes unclear which policy will
be applied. If that happens, remove policies that apply to a queue and combine them
in a single composite policy. To delete the max-queue-len policy we created earlier,
issue the following command:

rabbitmqadmin.py delete policy name=max-queue-len

In order to test that the dead-letter exchange is properly configured we can use the
following scenario:

•	 Create a queue named error_logs_dlx that binds to the logs_dlx exchange
•	 Send a message to the logs exchange

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

•	 Wait for more than three seconds
•	 Check that the message can be consumed from error_logs_dlx
•	 Clear the error_logs_dlx queue

The following example can be used to test the preceding scenario:

rabbitmqadmin.py declare queue name=error_logs_dlx
rabbitmqadmin.py declare binding source=logs_dlx
destination=error_logs_dlx
rabbitmqadmin.py publish exchange=logs routing_key= payload="dlx
message"

Wait at least three seconds and execute the following in order to verify that the
message is sent to the dead-letter queue (clearing the queue at the end):

rabbitmqadmin.py get queue=error_logs_dlx
rabbitmqadmin.py purge queue name=error_logs

Administering the RabbitMQ database
The RabbitMQ database stores both message server metadata and messages from
queues. In the next sections we will see how can we manage this database for the
purpose of disaster recovery.

Full backup and restore
As we have already seen, RabbitMQ uses Mnesia to store information about the
various components of the broker as well as cluster configuration and a custom
database for storing persistent messages. In that regard it is straightforward to
back up the contents of the RabbitMQ database:

•	 Stop the broker
•	 Copy the Mnesia folder and archive it
•	 Restart the broker

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[56]

The restore procedure, as you might have guessed, is pretty similar. You should also
consider the fact that if a message is not persistent it may not be backed up using the
preceding procedure since it is not written to the persistent store of RabbitMQ (in
the event of a crash). In order for a message to be persistent, the exchange and queue
through which it passes must be durable (marked as such during creation) and
the message must be marked as persistent (with a delivery mode set to 2 from the
sender). A response for a successfully received persistent message is not sent until a
message is written to the persistent log file on an exchange. You may be wondering
about the case when a live backup must be made on the RabbitMQ database with
preservation of messages at a particular point in time. In this case you have a number
of options to consider, such as:

•	 Using the exchange-to-exchange bindings extension that allows you to
pass a message through multiple exchanges. In this regard you can create a
separate exchange for backup purposes and bind all other exchanges to that
one; a dedicated queue bound to that exchange can be used to save messages
to a persistent store along with a timestamp for a custom point-in time
recovery implementation.

•	 Creating a federated exchange (in the same or another broker), linked to
all exchanges in the broker, that receives all of the messages published to
exchanges from the broker. The federated exchange can then be bound to a
dedicated queue that can be used to save messages to a persistent store along
with a timestamp for a custom point-in time recovery implementation; the
Federation plugin is required for that purpose.

•	 Replicating messages from all queues to a destination exchange using
shovels; the Shovel plugin is required for that purpose.

In many cases however you may need to backup/restore only the configuration of
RabbitMQ components at a particular point in time.

Backing up and restoring the broker metadata
In order to back up the RabbitMQ broker metadata (the configuration of broker
components) you can use the rabbitmqadmin management plugin as follows
(assuming we want to backup the broker configuration to a file named
broker.export in the current directory):

rabbitmqadmin.py export broker.json

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

If you open the file you will notice that there is a section for each type of component,
along with the version of the broker:

{
 "rabbit_version":"3.4.4",
 "users":[
 {
 "name":"sam",
 "password_hash":"y7CFOccmv5tReRwEskXapNOSsmM=",
 "tags":"administrator"
 },
 ….
],
 "vhosts":[
 {
 "name":"chat"
 },
 {
 "name":"/"
 }
],
…
}

To import back the configuration, you can use the following command:

rabbitmqadmin.py import broker.json

Note that it is a good idea to add a user-readable timestamp to the name of the
export file, based on the utilities provided by your OS for that purpose. You can
also perform the export/import of the current RabbitMQ configuration for the
management web interface from the Overview tab.

Installing RabbitMQ plugins
So far, we have used the rabbitmq-plugins utility in order to enable the management
plugin (already part of the RabbitMQ installation). You may want to install
additional (for example, community) plugins that allow you to extend the features
of the broker, thus giving you the opportunity to implement a wider range of
messaging scenarios. Installing a plugin is a two-step process:

•	 Download the ez archive (Erlang ZIP archive) of the plugin and copy it to the
plugins folder from the RabbitMQ installation

•	 Enable the plugin with the rabbitmq-plugins utility

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[58]

Let's say we want to be able to send e-mails from our messages directly from the
RabbitMQ instance that receives the messages. For that reason, you can install the
rabbitmq_email plugin that provides the AMQP-SMTP and SMTP-AMQP protocol
conversion plugins. Download the AMQP-SMTP plugin from https://www.
rabbitmq.com/community-plugins/v3.4.x/gen_smtp-0.9.0-rmq3.4.x-61e19ec5-
gita62c02e.ez and copy it to the plugins folder in the RabbitMQ installation. You
can see that the plugin can now be managed from the broker by issuing:

rabbitmq-plugins.bat list

You should see that the gen_smtp plugin is present in the lists and points to the
archive we copied to the plugins folder. In order to enable it, you can issue the
following:

rabbitmq-plugins.bat enable gen_smtp

To delete a plugin you can disable it and remove it from the plugins directory.

Configuring RabbitMQ instances
RabbitMQ configuration can be established in several ways:

•	 By setting proper environment variables
•	 By modifying the RabbitMQ configuration file
•	 By defining runtime parameters and policies that can be modified at runtime

Setting environment variables
Environment variables can be set using a standard mechanism provided by your
OS (for example, using the Control Panel in Windows or setting them permanently
from the shell in Linux). However they can also be specified in the scripts used to run
the RabbitMQ broker, such as the rabbitmq-server utility, the rabbitmq-service
utility (used in Windows to start RabbitMQ as a Windows service), or rabbitmq-
env.conf (using in Unix-like operating systems by RabbitMQ to configure
environment variables). At the beginning of the chapter we covered several such
variables related to the location of the RabbitMQ database, logs, and configuration
file. Here are several more you can configure:

•	 RABBITMQ_NODE_IP_ADDRESS: The IP address of network interface to which
you want to bind the RabbitMQ broker. This is useful if you have multiple
such interfaces on the machine where the broker is installed and you want to
bind it to only one of them (an empty value means that the broker is bound
to all network interface addresses).

www.it-ebooks.info

https://www.rabbitmq.com/community-plugins/v3.4.x/gen_smtp-0.9.0-rmq3.4.x-61e19ec5-gita62c02e.ez
https://www.rabbitmq.com/community-plugins/v3.4.x/gen_smtp-0.9.0-rmq3.4.x-61e19ec5-gita62c02e.ez
https://www.rabbitmq.com/community-plugins/v3.4.x/gen_smtp-0.9.0-rmq3.4.x-61e19ec5-gita62c02e.ez
http://www.it-ebooks.info/

Chapter 3

[59]

•	 RABBITMQ_NODE_PORT: The port on which the RabbitMQ broker listens.
•	 RABBITMQ_NODENAME: The name of the RabbitMQ broker instance (this is

required in a clustered configuration—more on that in the next chapter).
•	 RABBITMQ_SERVICENAME: The name of the Windows service for the

RabbitMQ broker instance.

Modifying the RabbitMQ configuration file
The rabbitmq configuration file (rabbitqm.config) can be used to provide
additional configuration of the broker, such as how much RAM the broker is
allowed to consume before messages are flushed to the hard disk (vm_memory_high_
watermark); what IP addresses and ports of the network interfaces the broker listens
on (tcp_listeners); or what the maximum file size is of the RabbitMQ message
stores— both transient and persistent (msg_store_file_size_limit). If that limit
is exceeded then messages are garbage-collected. The default location for rabbitmq.
config is under the %RABBITMQ_BASE% directory; if RabbitMQ is not specified under
Windows the default location of the file will be under %APPDATA%. There is a sample
configuration file in the etc directory for the installation of the RabbitMQ server.
If you copy it and save it under the root installation directory of RabbitMQ with
the name rabbitmq.config, you can simply uncomment and change the various
configuration parameters based on your preferences. Here is a sample configuration
that sets limits on the used RAM and message store size:

[
 {rabbit,
 [
 {vm_memory_high_watermark, 0.4},
 {msg_store_file_size_limit, 16777216}
]
 }
]

Managing RabbitMQ instances
RabbitMQ provides a number of utilities for managing RabbitMQ instances
since the AMQP protocol provides limited support for that purpose (and it is
not a responsibility of the protocol in general to do so). So far we have seen how
we can administer RabbitMQ from the command line using the rabbitmqctl or
the rabbitmqadmin utilities. However there are many scenarios where more
sophisticated tools for provisioning and managing the RabbitMQ broker
components are needed (for example, in the form of an alternative web interface).

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[60]

In that case, the management plugin provides an interface of REST (Representational
State Transfer)-based web services. In order to see all the available services in
your current installation of the management plugin you can navigate from the
browser to http://localhost:15672/api/—there is a short description with basic
examples and a reference guide for the various services. For testing purposes, you
can use any utility (such as cURL) that allows you to send HTTP requests to the
manage REST API. As everything in REST is a resource that is managed with CRUD
operations provided by the HTTP methods (such as GET, POST, PUT, DELETE), so are
RabbitMQ resources. If you take a closer look you will notice that all of the resources
are precisely the various types of RabbitMQ components (such as vhosts, users,
permissions, queues, exchanges, and bindings); no rocket science here. The REST
interface respects the current user permissions (configure, write, read for particular
components) when checking for permissions for performing a certain action.

Let's assume that we want to implement a simple utility called ComponentFinder
that allows us to list particular RabbitMQ components in a given vhost based on a
regular expression. For that purpose we will create a new Maven project that uses
the REST client from the Apache Jersey library provided as a Maven dependency,
along with the standard JSON utility in Java:

<dependency>
 <groupId>com.sun.jersey</groupId>
 <artifactId>jersey-client</artifactId>
 <version>1.19</version>
</dependency>
<dependency>
 <groupId>org.json</groupId>
 <artifactId>json</artifactId>
 <version>20140107</version>
</dependency>

Here is the class for the ComponentFinder utility:

import java.util.Scanner;
import java.util.regex.Pattern;

import org.json.JSONArray;
import org.json.JSONObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.WebResource;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

import com.sun.jersey.api.client.filter.HTTPBasicAuthFilter;

public class ComponentFinder {

 private final static Logger LOGGER = LoggerFactory
 .getLogger(ComponentFinder.class);
private static final String API_ROOT =
"http://localhost:15672/api";

The main() method provides the logic for the tool, reading from the standard input
and processing the request based on the input parameters. A simple HTTP client is
used for the purpose:

 public static void main(String[] args) {

 Scanner scanner = null;
 try {
 scanner = new Scanner(System.in);
 System.out.println("Enter component type in
plural form (for example, queues, exchanges) ");
 String type = scanner.nextLine();
 System.out.println("Enter vhost (leave empty
for default vhost) ");
 String vhost = scanner.nextLine();
 System.out.println("Enter name pattern (leave
empty for match-all pattern)");
 String pattern = scanner.nextLine();

 Client client = Client.create();
 String path;
 if (vhost.trim().isEmpty()) {
 path = API_ROOT + "/" + type +
"?columns=name";
 } else {
 path = API_ROOT + "/" + type +
"/" + vhost + "?columns=name";
 }

 WebResource resource = client.resource(path);
 resource.header("Content-Type",
"application/json;charset=UTF-8");
 resource.addFilter(new HTTPBasicAuthFilter("guest",
"guest".getBytes()));
 String result = resource.get(String.class);

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[62]

 JSONArray jsonResult = new JSONArray(result);
 LOGGER.debug("Result: \n" + jsonResult.toString(4));
filterResult(jsonResult, pattern);
 } finally {
 if (scanner != null) {
 scanner.close();
 }
 }
 }

The filterResult() helper method is used to filter the response from the
management API based on a regular expression:

private static void filterResult(JSONArray jsonResult,
String pattern) {
 // filter the result based on the pattern
 for (int index = 0; index < jsonResult.length();
index++) {
 JSONObject componentInfo =
(JSONObject) jsonResult.get(index);
 String componentName =
(String) componentInfo.get("name");
 if (Pattern.matches(pattern, componentName)) {
 LOGGER.info("Matched component: " +
componentName);
 // do something else with component
 }
 }
 }}

Upgrading RabbitMQ
Upgrading RabbitMQ can be considered in two directions:

•	 Upgrading the Erlang installation
•	 Upgrading the broker installation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

In both cases, it is good practice to perform a full backup of the RabbitMQ broker
before performing an upgrade. Also you should check out the release notes for
all the versions issued between the old and the new version to see if there are any
specific steps that must be performed during the update. Typically, installation of a
RabbitMQ broker preserves data and updates only the RabbitMQ installation and the
database structures used for representing the broker metadata and message stores.
It is important to make sure that, if you have to update nodes in a cluster, you first
stop all nodes and use the same version of RabbitMQ for the update over all nodes
in the cluster.

Case study: Administering CSN
For easier management, we have decided to pre-configure our CSN RabbitMQ
broker (using a custom script) with two separate vhosts:

•	 v_chat: For handling all chat messages in CSN
•	 v_events: For handling of all events in CSN

Moreover we have decided to separate the users that are allowed to access each
vhost. The users of the v_events group are further divided into the following
logical groups:

•	 Administrators have the ability to create event queues, and publish and
consume messages

•	 event_publishers have the ability to publish messages
•	 event_subscribers have the ability to consume messages

As you may guess, we can implement the preceding logical separation easily for the
users in the v_events host using policies. The users of the v_chat vhosts have full
configure, read, and write access to the components of the vhost.

www.it-ebooks.info

http://www.it-ebooks.info/

Administration, Configuration, and Management

[64]

Another thing we want to provide is the ability to log all messages that pass through
the broker for backup and restore purposes. We also decide to set limitations on the
RAM and disk storage used by the broker using a custom rabbitmq.config file.

Database

message backup
database

CSN web node
event_publishers
user

CSN web node
event_subscribers
user

Client browser

RabbitMQ server
v_events

v_chat

You can provision the additional components as part of the setup process easily by
using custom code and the REST API, which allows to create the vhosts, users for them
(with the appropriate policies to act as access control based on the logical separation
of the users), and a backup exchange that receives a copy of all messages passed to
all other exchanges in the broker. A custom utility (that could be part of the backup
databases as well) subscribes to that exchange and stores the messages in the database.

Summary
In this chapter, we saw how to administer a standalone RabbitMQ broker along
with its components, users, vhosts, permissions, queues, exchanges, bindings, and
policies. We discussed the structure of a typical RabbitMQ installation (along with
the parameters that allow us to configure different locations for various parts of the
broker) and how to provide further configuration in terms of environment variables
and the rabbitmq.config file. We discussed administrative tasks such as backing
up and restoring the RabbitMQ database, updating a RabbitMQ broker, and plugin
installation and management of the broker using the management REST API. In the
next chapter we will explore what clustering support the message broker provides
for the purpose of scalability.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Exercises
1.	 What utilities can you use to create users, vhosts, and policies in a

RabbitMQ broker?
2.	 What utilities can you use to create exchanges, queues, and bindings?
3.	 How can you back up and restore RabbitMQ broker metadata?
4.	 How can you set limits on the maximum RAM and disk space for storing

messages in RabbitMQ?
5.	 What happens when the various resource limits set on the broker are exceeded?
6.	 Assuming you need to migrate the RabbitMQ message stores to a larger disk

mounted on the current machine, how can you do it?
7.	 A new version of RabbitMQ comes out that provides a major security fix.

How can you upgrade your installation of RabbitMQ?

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[67]

Clustering
So far, we have been dealing with a single RabbitMQ instance, thus demonstrating
the various capabilities of the message broker. However RabbitMQ provides a
built-in clustering mechanism that can be used in a variety of scenarios related to
large scale production deployments of RabbitMQ.

Topics covered in the chapter:

•	 Benefits of clustering
•	 Clustering support in RabbitMQ
•	 A case study on scaling the CSN

Benefits of clustering
So far we have discussed how to use a single RabbitMQ instance for handling
various types of message. However, in many production scenarios the number
of messages that needs to be processed may increase rapidly over time that this
should not impact the time required to process a single message – now we have a
problem. To resolve it we need to be able to scale our RabbitMQ server deployment.
RabbitMQ clustering support provides a mechanism for horizontally scaling
RabbitMQ instances. This essentially means that multiple RabbitMQs can be
configured to work as a single logical unit in the form of a clustered message broker.

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[68]

This provides the means to distribute workloads among instances in a cluster, link
clients to different instances in a cluster (thus distributing the number of clients linked
to a single instance), or even establish high availability of the messaging broker:

RabbitMQ
instance RabbitMQ

instance

RabbitMQ
instance

RabbitMQ clustering support
RabbitMQ clustering is based on the underlying Erlang message-passing interface.
Messages between Erlang processes are just Erlang terms which can be processed by
the receiving instance. Communication between the nodes is established by means
of the so called magic cookie (or Erlang cookie), which provides a mechanism to
authenticate nodes in a cluster with each other. Once a new node is started, its cookie
(the .erlang.cookie file) is read from the home directory of the user (denoted
by the $HOME environment variable in Uni-based operating systems or by the
%HOMEPATH% variable in Windows-based operating systems). If the cookie does not
exist then it is created based on information from the current node. Once retrieved,
the cookie is set for the Erlang process with erlang:set_cookie(node(), Cookie).
Later, when we try to connect the node to a RabbitMQ cluster, we retrieve the cookie
with erlang:get_cookie() and compare it against the cookies of the other nodes in
the cluster – if they don't match, the connection of the node to the cluster is rejected.

All nodes in the cluster see information about the elements of a cluster such as
virtual hosts, users, permissions, exchanges, bindings, and queues. When you add
new nodes to the cluster they only receive the cluster metadata and not the contents
of the queues in the cluster, which not only saves you disk space but also improves
performance since messages are not replicated by default across the cluster nodes
(although they can be replicated across RabbitMQ instances for high-availability, as
we shall see in a separate chapter).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

In order to be able to establish a RabbitMQ cluster, the following prerequisites must
be met:

•	 All of the machines where RabbitMQ instances reside must have the same
version of RabbitMQ and Erlang installed

•	 All of the instances must have the same Erlang cookie (since Erlang message
passing is used to establish communication between the brokers)

Creating a simple cluster
Let's create a simple RabbitMQ cluster with three nodes on the local machine. The
steps we can follow in order to do this are:

•	 Disable all plug-ins before starting the node instances – this is required in
order to avoid problems with plug-ins such as the management-plugin,
which already runs on port 15672 – if you don't disable it and it is already
running as part of the another RabbitMQ instance on the same machine,
then attempting to start a node will fail since the node will try to start
the management plug-in on the same port unless you provide a different
configuration with a different management port for the particular plug-in.

•	 You don't have to worry about this since the RabbitMQ management plug-
in is aware of clusters and it is sufficient to start the plug-in only for one of
the instances in the cluster. If you want to enable a failover configuration for
the management plug-in you can start it for two or more nodes running on
different ports.

•	 Start three independent RabbitMQ node instances on the current machine.
•	 Add nodes to the cluster by specifying at least one active node in the cluster

for the purpose. You can specify more than one active node in the cluster
but at least one is needed to join the node to all the other nodes currently in
the cluster.

The first step can be accomplished by executing the following command:

rabbitmq-plugins.bat disable rabbitmq_management

The second step is also pretty straightforward. The root node in the cluster is already
present – that is the instance of RabbitMQ that we were running so far. You just
need to execute the following commands in order to the start two more independent
nodes (named instance2 and instance3 and running on different ports):

set RABBITMQ_NODENAME=instance1 &
set RABBITMQ_NODE_PORT=5701 &
rabbitmq-server.bat –detached

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[70]

set RABBITMQ_NODENAME=instance2 &
set RABBITMQ_NODE_PORT=5702 &
rabbitmq-server.bat –detached

If you are using a Unix-based operating system, the preceding commands will look
like the following:

RABBITMQ_NODENAME=instance1 &&
RABBITMQ_NODE_PORT=5701 &&
./rabbitmq-server.sh –detached

RABBITMQ_NODENAME=instance2 &&
RABBITMQ_NODE_PORT=5702 &&
./rabbitmq-server.bat –detached

If you are using the default installation on Windows then a standalone instance will
already be running with some specified name (upon installation of the broker) and
using the default node port of 5672 and distribution port of 25672 (the 20000 + node
port value). That is why we need to specify different names and distribution ports
when starting the instances.

Adding nodes to the cluster
Now let's add the two nodes we created and started to the cluster – currently
consisting only of a single node. To verify this, you can run the following command:

rabbitmqctl.bat cluster_status

You will see something like this in the output:

[s
{nodes,
 [{disc,[rabbit@DOMAIN]}]},
{running_nodes,[rabbit@DOMAIN]},
{cluster_name,<<»rabbit@Domain»>>},
{partitions,[]}
]

The cluster configuration lists the current nodes in the cluster – these could be either
DISK or RAM nodes. By default, nodes are created as DISK nodes, meaning that
they persist cluster metadata on disk. RAM nodes allow for optimizations among
the cluster nodes since they store everything in memory rather than persisting
information on disk. This trade-off between loss of data and performance depends
on the particular messaging requirements of the application. In the preceding
example, we can see that there is only one DISK node currently running and that the
name of the cluster is inherited from the name of the root node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Let's add the instance1 node to the cluster:

rabbitmqctl.bat -ninstance1 stop_app
rabbitmqctl.bat -n instance1 join_cluster rabbit@DOMAIN
rabbitmqctl.bat -n instance1 start_app

In case instance1 was not a new instance and already had some metadata such as
queues, exchanges, or vhosts, then after the app_stop step you have to clear the state
of the node as follows before joining it to the cluster:

rabbitmqctl.bat –n instance1 reset

If the preceding commands succeed, you should get the following sequence
of messages:

Stopping node instance1@Domain ...
Clustering node instance1@Domain with rabbit@DOMAIN ...
Starting node instance1@Domain ...

Now let's also add the second node to the cluster:

rabbitmqctl.bat -n instance2 stop_app
rabbitmqctl.bat -n instance2 join_cluster rabbit@DOMAIN
rabbitmqctl.bat -n instance2 start_app

Note that you have to provide only a single node in the cluster rather than a list of
all nodes – RabbitMQ automatically clusters the node with all other nodes existing in
the cluster . We simply specify just one of them (the only condition is that the node
must be up-and-running).

If we check again the configuration of the cluster again:

rabbitmqctl.bat cluster_status

We will see something like this:

[
{nodes,
 [{disc,[instance1@DOMAIN, instance2@DOMAIN, rabbit@DOMAIN]}]},
{running_nodes,[instance1@DOMAIN, instance2@DOMAIN, rabbit@DOMAIN]},
{cluster_name,<<»rabbit@Domain»>>},
{partitions,[]}
]

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[72]

Since the management console is already enabled for the root node in the cluster
(rabbit@DOMAIN), if we go the Overview tab we will see the three nodes under the
Nodes section:

At that point we have a fully functional RabbitMQ cluster with three DISC nodes.
Let's see how to add RAM nodes to our cluster.

If you notice, there are some statistics displayed for the root node such as
used/available Erlang processes, used/available memory, and a few others.
However, for the other two nodes we added to the cluster a Node statistics not
available message is being displayed. This is due to the fact that we have disabled
the management plug-in for the two nodes before starting them and it requires the
rabbitmq_management_agent plug-in that is required in order to display statistics
for the instances from the RabbitMQ management plug-in running over a cluster
node. The following enables the management agent plug-in on the instances:

rabbitmq-plugins.bat -n instance1 enable rabbitmq_management_agent
rabbitmq-plugins.bat -n instance2 enable rabbitmq_management_agent

If we now go to the Overview tab, we will see that statistics are displayed for all
three nodes:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

We can also configure the RabbitMQ cluster nodes directly in the RabbitMQ
configuration—we just specify a list of running RabbitMQ instances as identified
by their name—and once the node starts up it will try to cluster against the list of
nodes. There are some prerequisites when RabbitMQ tries to create the cluster from
the configuration—the nodes must be in a clean state, the same version of RabbitMQ
must be running over them, and they must have the same Erlang cookie. To make
sure that the nodes are in a clean state (if they are not newly created), reset their state
with the rabbitmqctl utility:

rabbitmqctl.bat -n instance1 reset

To make sure they are running the same version of RabbitMQ you can use the
rabbitmqctl utility again:

rabbitmqctl.bat –n instance1 status

Note that, in our case, the preceding code is not relevant since we are running the
instances from the same installation of RabbitMQ. If the instances were running on
different versions of the broker (on the same or different machines), then we could
upgrade all of the nodes with the same version of RabbitMQ. In order to perform the
upgrade, however, we must designate one of the DISK nodes as the upgrader node
that will synchronize the cluster nodes once the upgrade is done – that node should
be stopped last and started first when the entire cluster is brought down to upgrade
the nodes. To make sure the nodes have the same cookie, just copy it over to all the
nodes from the root node in the cluster.

Another consideration is that nodes might be running behind firewalls and in that
case you have to make sure that the ports used by RabbitMQ are opened–one is 4369
(unless changed) and is used by the epmd port mapper process that is used to resolve
host names in the cluster. The other port is the distribution port for the node – for
instance1 in our case that is 5701 and for instance2 5702 (these are the ports we
assigned to the nodes when starting them).

Adding RAM-only nodes to the cluster
Adding a RAM only node to our cluster is similar to how we add a DISK node but
with one additional parameter. The following example adds the instance3 RAM
node to the cluster:

set RABBITMQ_NODENAME=instance3 &
set RABBITMQ_NODE_PORT=5703 &
rabbitmq-server.bat –detached
rabbitmqctl.bat -n instance3 stop_app
rabbitmqctl.bat -n instance3 join_cluster --ram rabbit@DOMAIN
rabbitmqctl.bat -n instance3 start_app

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[74]

If we now check the cluster status:

rabbitmqctl.bat cluster_status

We will see that the instance3 node is registered as a RAM node to the cluster:

[
{nodes,
 [{disc,[instance1@DOMAIN, instance2@DOMAIN, rabbit@DOMAIN],
 {ram,[instance3@Domain]}
]},
 {running_nodes,[instance3@Domain, instance1@DOMAIN, instance2@
DOMAIN, rabbit@DOMAIN]},
{cluster_name,<<»rabbit@Domain»>>},
{partitions,[]}
]

You can also switch the node to DISK mode using the rabbitmqctl utility – you
must first stop the running RabbitMQ application on the node:

rabbitmqctl.bat -n instance3 change_cluster_node_type disk

Removing nodes from a cluster
Let's assume that we want to remove the instance2 node from the cluster. First
we have to stop the RabbitMQ application on that node and leave only the Erlang
process running:

rabbitmqctl.bat -n instance2 stop_app

At that point instance2 is still registered to the cluster but is not running (this can
be verified from the status of the cluster). Now you have to remove the node itself
from the cluster. This can be done by resetting the node or directly removing the
node from the cluster first and later resetting it. Even if you remove the node from
the cluster without resetting it, the node configuration still implies that it is part of
a cluster and it still needs to be reset. To first remove the instance2 node from the
cluster, you can execute the following command:

rabbitmqctl.bat forget_cluster_node instance2@Domain

At that point the instance2 node is removed from the cluster. You also have to reset
its state:

rabbitmqctl.bat -n instance2 reset

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

Connecting to the cluster
Now let's see how to connect to the cluster we created and experiment with it. Let's
assume that we have a publisher sending messages on one instance of the cluster and
a subscriber on another instance of the cluster, as outlined in the following diagram:

Sender

instance3 Receiver

instance1rabbit

The ClusterSender class provides the implementation of a message sender that
uses the default exchange in order to publish to the event_queue queue – it is a
modified variant of the Sender class we used when we discussed messaging patterns
with RabbitMQ – refer to Chapter 2, Design Patterns with RabbitMQ, for details of the
implementation. There is one core difference – the initialize() method accepts
a list of addresses (hostname/port pairs) that represent the instance to which the
sender connects upon initialization:

public class ClusterSender {
 private final stsatic Logger LOGGER =
LoggerFactory.getLogger(Sender.class);
 private final static String QUEUE_NAME = "event_queue";
 private static final String DEFAULT_EXCHANGE = "";

 private Channel channel;
 private Connection connection;

 public void initialize(Address... hosts) {
 try {

 ConnectionFactory factory =
 new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection(hosts);
 channel = connection.createChannel();
 } catch (IOException e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[76]

 LOGGER.error(e.getMessage(), e);
 }
 }

 public void send(String message) {
 try {
 channel.queueDeclare(QUEUE_NAME,
false, false, false, null);
 channel.basicPublish(DEFAULT_EXCHANGE,
 QUEUE_NAME, null, message.getBytes());
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }

 public void destroy() {
 try {
 if (connection != null) {
 connection.close();
 }
 } catch (IOException e) {
 LOGGER.warn(e.getMessage(), e);
 }
 }
}

The ClusterReceiver class provides the implementation of a receiver that
retrieves a single message from the event_queue queue. It also extends the variant
of a receiver we already introduced earlier and the initialize() method is also
extended to accept a list of addresses that represent one or more nodes in the cluster
we would like to connect to:

public class ClusterReceiver {

 private final static String QUEUE_NAME = "event_queue";
 private final static Logger LOGGER = LoggerFactory.
getLogger(ClusterReceiver.class);

 private Connection connection = null;
 private Channel channel = null;

 public void initialize(Address ...hosts) {
 try {
 ConnectionFactory factory = new
ConnectionFactory();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

 factory.setHost("localhost");
 connection = factory.newConnection(hosts);
 channel = connection.createChannel();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 }
 }

 public String receive(Address ...hosts) {

 if (channel == null) {
 initialize(hosts);
 }

 String message = null;
 try {
 channel.queueDeclare(QUEUE_NAME,
false, false, false, null);
 QueueingConsumer consumer = new
QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, true, consumer);

 QueueingConsumer.Delivery delivery =
consumer.nextDelivery();
 message = new String(delivery.getBody());
 LOGGER.info("Message received: " + message);
 return message;

 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ShutdownSignalException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ConsumerCancelledException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 }

 return message;
 }

 public void destroy() {
 if (connection != null) {
 try {

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[78]

 connection.close();
 } catch (IOException e) {
 LOGGER.warn(e.getMessage(), e);
 }
 }
 }

Let's first subscribe the receiver to the instance3 node by running the main()
method of the ClusterSenderDemo class:

public class ClusterReceiverDemo {

 private static final String NODE_HOSTNAME = "localhost";

 // this is the port on which instance3 is running
 private static final int NODE_PORT = 5703;

 public static void main(String[] args) throws
InterruptedException {
 final ClusterReceiver receiver = new ClusterReceiver();
 receiver.initialize(new Address(NODE_HOSTNAME, NODE_PORT));
 receiver.receive();
 receiver.destroy();
 }
}

After you have subscribed to the cluster (on the instance3 node) run the main()
method of the ClusterSenderDemo class in order to send a message on the default
exchange (on the rabbit node):

public class ClusterSenderDemo {

 private static final String NODE_HOSTNAME = "localhost";

 // default port 5672 which corresponds
 // to the 'rabbit@Domain' instance
 // is being used for the connection to the broker
 public static void sendToDefaultExchange() {
 ClusterSender sender = new ClusterSender();
 Address address = new Address(NODE_HOSTNAME);
 sender.initialize(address);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

 sender.send("Test message.");

 sender.destroy();
 }

 public static void main(String[] args) {
 sendToDefaultExchange();
 }
}

You will notice that the receiver received the message successfully:

INFO ClusterReceiver:51 - Message received: Test message.

In order to understand what exactly happened, it is essential to understand that it is
actually the connection channel that routes the message; the default exchange is just
a logical name used to indicate to the channel where to route the message. In that
regard the channel that connected the sender to the rabbit node routed the message
directly to the event_queue queue. Although the sender is connected to the rabbit
node, it is the instance3 node that is the owner of the event_queue queue and so it
must receive all the messages that are designated for that queue. In that regard the
queue will have pushed messages to the receiver even if it was subscribed to another
node (e.g. instance1) that was not the owner of the queue.

Let's see what would happen in the scenario of a node failure:

•	 The rabbit node fails – in that case the sender will not be able to send a
message. If however we had specified at least one more node that was
running when creating the RabbitMQ connection from the subscriber, then
the message would have been sent to that node:

Sender

instance3 Receiver

instance1rabbit

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[80]

•	 The instance1 node fails – nothing will happen in that case. The sender
and the receiver will continue to function as usual. If the event_queue was
declared on that node (rather than instance3), then that would disconnect the
receiver even if it was still connected on a running node:

Sender

instance3 Receiver

instance1rabbit

•	 The instance3 node fails. That would disconnect the receiver even if more
nodes were specified for the RabbitMQ connection from the receiver (and the
receiver was connected to that node):

Sender

instance3 Receiver

instance1rabbit

Based on several facts, it can be concluded that:

•	 RabbitMQ clustering support is targeted at horizontal scaling based on
queue distribution among the nodes rather than high availability in the
case of node failure

•	 The Java API does not support out-of-the box failover scenarios in terms
of receiver/sender clients in the case of node failures; if a node fails, an
exception is thrown that must be handled by the client and reconnection is
not attempted

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Case study: scaling the CSN
Over time, the users of the CSN increased rapidly and the workload of the system
was increasing even more rapidly on a daily basis. It was estimated that this growth
might cause issues with the single RabbitMQ broker instance, which essentially
turned out to be a bottleneck.

That is why the team behind the CSN decided to introduce several new RabbitMQ
instances installed on separate powerful servers and separate the queues from
the v_events vhost on one node and the queues from the v_chat host on two
other nodes:

Database

message backup
database

CSN web node
event_publishers
user

CSN web node
event_subscribers
user

Client browser

RabbitMQ server
v_events

v_chat

RabbitMQ server
v_events

v_chat

RabbitMQ server
v_events

v_chat

This not only improved the performance of the system (as shown by the benchmarks
the CSN did over the new configuration) but also mitigated the risk of resource
depletion on the single RabbitMQ server the system had.

Note that we are providing clustering support only on behalf of the message broker
and this concept can be applied to the other components of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering

[82]

Summary
In this chapter, we saw how to create a cluster of RabbitMQ nodes for the purpose of
scaling out our broker. We saw how this allowed for the even distribution of queues
on different nodes in the cluster, thus increasing storage capacity and performance
in the cluster. We discussed what DISK and RAM nodes are and how they can be
added and removed from a cluster; we also demonstrated how to connect to the
cluster from a Java publisher/subscriber client and how a cluster tolerates failure on
some of the nodes. Finally, we further extended the CSN with multiple RabbitMQ
instances, forming a RabbitMQ cluster. The clustering mechanism supported
by RabbitMQ has some drawbacks such as, for example, the lack of support for
establishing high availability as a means of making image processing more reliable.

Exercises
1.	 Why do we store queue contents in a single node in the RabbitMQ cluster

rather than replicating it over all nodes?
2.	 What types of cluster nodes does RabbitMQ support? What is the purpose of

each of them?
3.	 What type of data is being sent between the nodes of a cluster?
4.	 How do nodes in a RabbitMQ cluster communicate?
5.	 How can you add a node to a cluster?
6.	 How can you remove a node from a cluster?
7.	 How can you check the cluster status?
8.	 What happens to the subscribers of a queue if its node goes down?
9.	 What considerations should be taken into account when deploying

RabbitMQ cluster nodes on different machines in the network?
10.	 What drawbacks can you mention in the clustering mechanism provided

by RabbitMQ?

www.it-ebooks.info

http://www.it-ebooks.info/

[83]

High Availability
Even though messaging allows for a very loosely coupled type of communication,
it is common in many scenarios that a large downtime or message loss are not
acceptable, especially when guaranteed delivery must take place. In the previous
chapter, we described how RabbitMQ supports clustering and how it focuses on
queue scalability rather than providing high availability. In this chapter, we will
further discover mechanisms for establishing high availability at the level of the
message broker.

Topics covered in the chapter:

•	 Benefits of high availability
•	 High availability support in RabbitMQ
•	 Client high availability
•	 Case Study: Introducing high availability in CSN

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[84]

Benefits of high availability
When we design and develop large systems that need to be up-and-running most
of the time, we need to consider what would happen when a single component
fails. This could be due to a hardware, network, or any other type of failure. Some
systems, for example, have an SLA (service level agreement) that specifies a 99.99
percent uptime. In this regard, high availability should be considered for every such
component that could turn out to be a bottleneck, including the message broker. This
not only allows you to justify the SLAs (service level agreements) defined over your
system, which increases confidence in its reliability, it also allows you to implement
a system that minimizes as much as possible the impact of having a system that
fails from time to time for a certain amount of time—at least until some manual
intervention takes place in order to bring it up. This imposes the risk of losing
money; the more users are impacted by a system failure, the more likely it is your
SLAs oblige you to pay out. In reality, there are general solutions that allow you to
provide high availability clusters for systems that do not have built-in support for
creating such clusters. Luckily RabbitMQ provides mechanisms for that, as we will
discover later in this chapter.

Moreover, we may want to perform upgrades without having to disrupt users of our
system or backup data while the system is running.

High availability may be considered when:

•	 A connection fails (for example, due to a network/node failure). In that
case, your client, either a publisher or a consumer, must be able to reconnect
automatically to the cluster. You can use a load balancer that provides
capabilities for detecting node failures or extending your client with support
for reconnection to the cluster.

•	 A node fails. In that case, other nodes in the cluster should be able to take
over the processing of messages in the cluster. There are various cluster
topologies that allow for the implementation of high availability in a cluster.
One is an active/active topology, where all nodes can take over the load for
a failed node. Another type is an active/passive topology, where there are
some passive nodes that can become active and take over the load for a failed
node. There are yet other variations that are derived on the basis of these,
considering the number of passive nodes available, or passivating nodes,
when failed nodes become available again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

High availability support in RabbitMQ
RabbitMQ provides an extension of the default clustering mechanism that allows
the replication of the contents of a queue over one or more nodes. It takes the
active-active approach for establishing a highly available cluster, and you can select
how many nodes to replicate a queue in a master-slave configuration (one node is
designated as the master and all other nodes as the slaves):

•	 Replicate to all nodes in the cluster
•	 Replicate to a certain number of nodes in the cluster
•	 Replicate to certain nodes in the cluster (specified as a list of node names)

In terms of RabbitMQ, this extension is called mirrored queues.

Note that there is an opportunity to establish an active-passive RabbitMQ cluster
using helper technologies that allow you to use redundant servers in order to
establish that type of clustering; this was the preferred approach in most production
scenarios before built-in support for mirrored queues was provided. However,
mirrored queues are now the preferred approach since they are way faster and
easier to configure than custom active-passive high availability configurations using
third-party solutions. However, they inherit the drawbacks of the RabbitMQ built-in
clustering mechanism on top of which they step:

•	 It cannot be applied across instances in distant locations (for example,
datacenters in different regions in the world) due to the fact that it is very
sensitive to latency issues. Such issues cause communication failures in the
cluster. One solution could be to ensure that only high-bandwidth leased
lines are available across the datacenters, thus eliminating the risk of
latency problems.

•	 Even if a queue on a node is marked as durable, its contents cannot be
directly copied over to another node in case the current one fails unless the
mirrored queue policy you define matches the queue name. You should
make sure that any new durable queues you add to the cluster (and need
to be mirrored) are matched by a proper policy that specifies the nodes on
which to replicate the contents of that queue. Otherwise, if no policy is in
effect and if the node on which the durable queue is defined fails, then it
should be restored again in order to be able to use that queue.

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[86]

Having regard to the fact that RabbitMQ clustering is not proper for nodes over
a WAN, queue mirroring must be supported with additional mechanisms that
provide such distribution of queue contents. The federation and shovel plugins
come to the rescue in that scenario. The federation plugin allows you to replicate
messages between exchanges or between queues, while the shovel plugin allows
you to send messages from a queue in one broker instance to an exchange in another
broker instance. Apart from the fact that this provides a mechanism for establishing
custom message broker topologies, it provides for a more resilient mechanism for
communication between instances in an unreliable network environment, and also
the possibility of running different versions of the RabbitMQ broker on each instance.
Moreover, the different instances remain completely independent of each other.

In regard to the fact that there is a policy matching each queue we want to mirror,
we must always consider testing either manually or automatically that our setup is
correct by intentionally bringing down one or more nodes.

Mirrored queues
The steps for creating a mirrored queue are pretty straight-forward based on the fact
that we already know how to configure a RabbitMQ cluster:

•	 Create the RabbitMQ cluster
•	 Create the mirroring policy over the particular queue from the cluster

(this can be done from any node in the cluster)

The node on which the queue is created becomes the master and all other nodes
matched by the mirroring policy become the slaves. When the master node fails then
one of the slave nodes is designated as the new master; typically, this is the eldest
slave node. The following diagram outlines a node with three nodes (the one we
already described when we discussed clustering) and one mirrored queue called
mirrored_queue defined on the rabbit node:

mirrored_queue
(master)

mirrored_queue
(slave)

mirrored_queue
(slave)

rabbit instance 1

instance 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

Assuming the rabbit node is already running, we will add the instance1 DISK
node (that persists metadata on disk) and the instance3 RAM node (that persists
metadata in-memory) to the cluster in the same way we did in the previous chapter:

set RABBITMQ_NODENAME=instance1 & set RABBITMQ_NODE_PORT=5701
& rabbitmq-server –detached
rabbitmqctl –n instance1 stop_app
rabbitmqctl –n instance1 join_cluster rabbit@DOMAIN
rabbitmqctl –n instance1 start_app
set RABBITMQ_NODENAME=instance3 & set RABBITMQ_NODE_PORT=5703 &
rabbitmq-server –detached
rabbitmqctl –n instance3 stop_app
rabbitmqctl –n instance3 join_cluster --ram rabbit@DOMAIN
rabbitmqctl –n instance3 start_app

Let's declare the mirrored_queue on the instance1 node:

rabbitmqadmin.py declare queue name="mirrored_queue"

And finally let's make the queue mirrored on all nodes:

rabbitmqctl set_policy ha-all "mirrored_queue" "{""ha-mode"":""all""}"

If you go to the RabbitMQ management console and click on the Queues tab you
will notice that mirrored_queue now has a +2 under node, indicating that there are
two slaves, and under Features you can see a ha-all feature, which indicates the
mirrored queue policy:

If you click on mirrored_queue you see further information about the queue along
with the slave nodes on which the queue is mirrored:

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[88]

Each time a message is sent to a node in the RabbitMQ cluster, the channel routes
the message directly to the master node, which passes it over to the slave instances.
However in the event a new slave is created for the queue (for example, if a new
node is joined to the cluster and we have a mirrored queue policy that replicates
queue contents over all nodes), then it must be synchronized with the already
existing messages in the master queue. Another scenario when synchronization is
necessary is when the node of a durable slave queue is shut down and later restored;
in that case, the contents of the durable queue are cleared by RabbitMQ and it
behaves as if a new slave is joined to the master that needs synchronization. The
master queue blocks until it synchronizes with the slave(s). Synchronization must
be triggered either manually (which is the default behavior) or automatically (which
can be defined as part of the mirrored queue policy).

Let's assume we have added a new node to the cluster we have. In that case we have
to trigger synchronization manually using the following command:

rabbitmqctl sync_queue mirrored_queue

If you don't want to perform synchronization each time a new slave joins you can
reconfigure your policy as follows:

rabbitmqctl set_policy ha-all "mirrored_queue" "{""ha-mode"":""all"",
""ha-sync-mode"":""automatic""}"

You may be wondering whether replication of messages and queue synchronization
impact the performance of the cluster; the short answer is, yes they do. However this
performance hit can be minimized by carefully defining the topology of your cluster.
Let's assume that we have a large cluster with several queues defined on each node
and each queue is mirrored over all other nodes in the cluster. This implies a lot of
communication between the nodes in the cluster, which may introduce severe delays
in message senders or receivers. One strategy that can be incorporated in order to
avoid this is to have only one slave queue. You can do this by defining that you only
want to replicate messages to one (random) node using the following policy:

rabbitmqctl set_policy ha-exactly "mirrored_queue" "{""ha-
mode"":""exactly"",""ha-params"":2,""ha-sync-mode"":""automatic""}"

The ha-exactly policy replaces the ha-all policy in effect for the mirrored_queue
queue (although both policies exist in the cluster metadata), as visible from the
RabbitMQ management console:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

The instance1 node is selected by RabbitMQ as the slave queue node. If you want
to specify a concrete node for that purpose (let's say instance3), you can set the
following policy:

rabbitmqctl set_policy ha-by-name "mirrored_queue"
"{""ha-mode"":""nodes"",""ha-params"":[""rabbit@DOMAIN"",
""instance3@Domain""],""ha-sync-mode"":""automatic""}"

In that case, the rabbit node is designated as the master and the instance3 node
as the slave. You should be careful with the names you specify in the nodes policy
(also consider case-sensitivity); RabbitMQ will ignore invalid nodes and set master/
slave nodes wrongly. Moreover, if you specify nodes that do not contain the current
master node (the node where the queue is originally created), the policy will enforce
the first node synchronized with the master slave node in the list to become the
new master. If no such node is present in the list, RabbitMQ will continue using
the current master until a node from the list is synchronized with it. You should be
careful when changing mirroring policies and having unsynchronized slaves; this
may cause unexpected behavior. Consider the following scenario where the master
queue on the rabbit node has two messages that must be synchronized with the
slaves on the other two nodes (instance1 and instance3):

mirrored_queue
(master)

messages: [A,B]

mirrored_queue
(slave)

messages: []

mirrored_queue
(slave)

messages: []

rabbit instance 1

instance 3

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[90]

If the master queue node (in this case rabbit) fails, then RabbitMQ will try to elect
a new master from one of the synchronized slaves (for example, from new or
restored nodes that joined the cluster). Since we don't have such a slave, RabbitMQ
will behave as if there are no slaves and processing on that queue will fail. If we
don't want that to happen, we can additionally set the ha-promote-on-shutdown
parameter to always on the mirroring policy; this will, however, impose the risk of
losing messages in regard to the increased degree of high availability.

Mirrored queues are great for establishing high availability. However, the following
questions remain open due to the fact that mirrored queues make use of the
RabbitMQ clustering mechanism:

•	 How can we establish high availability over long distances since the
clustering mechanism is not cooperative over the WAN?

•	 How can we upgrade cluster nodes both in terms of Erlang and
RabbitMQ versions?

•	 How can we create a cluster of geographically distributed RabbitMQ clusters?

The Federation and Shovel plugins provide the answers to the preceding questions.

Federation plugin
The RabbitMQ federation plugin allows messages to be sent from an exchange in one
host to an exchange in another or from a queue in one host to a queue in another.
This is done by upstream links defined over the federated exchanges/queues in the
upstream host (the host that receives the messages). The mechanism provided by the
Federation plugin is not dependent upon RabbitMQ clustering but is cooperative
with it, meaning that messages can be federated between exchanges or queues in
different clusters. The Federation plugin must be enabled on the RabbitMQ nodes
that participate in the message federation. All nodes in a RabbitMQ cluster must
have the Federation plugin enabled in case replication of messages using the plugin
happens between RabbitMQ clusters. To enable the plugin on a particular node
execute the following command:

rabbitmq-plugins enable rabbitmq_federation
rabbitmq-plugins enable rabbitmq_federation_management

The rabbitmq_federation_management plugin enables management of the
federation uplinks from the RabbitMQ management console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

Let's assume that we want to create a federated exchange and a federated
queue defined in a new three-node cluster that link respectively to an upstream
exchange and an upstream queue in our existing three-node cluster, as shown
in the following diagram:

rabbit remote2

remote3

federated_queue

instance3

upstream_queue

instance1

upstream_exchange

remote1

federated_exchange

The following commands define our new local cluster:

set RABBITMQ_NODENAME=remote1 &
set RABBITMQ_NODE_PORT=5711 &
set RABBITMQ_SERVER_START_ARGS=-rabbitmq_management listener
[{port,55555}] &
rabbitmq-server.bat –detached
rabbitmq-plugins.bat -n remote1 enable rabbitmq_management
rabbitmq-plugins.bat -n remote2 disable rabbitmq_management
rabbitmq-plugins.bat -n remote3 disable rabbitmq_management
set RABBITMQ_NODENAME=remote2 &
set RABBITMQ_NODE_PORT=5712 &
rabbitmq-server.bat –detached
rabbitmqctl.bat -n remote2 stop_app
rabbitmqctl.bat -n remote2 join_cluster remote1@Martin
rabbitmqctl.bat -n remote2 start_app
set RABBITMQ_NODENAME=remote3 &
set RABBITMQ_NODE_PORT=5713 &
rabbitmq-server.bat –detached
rabbitmqctl.bat -n remote3 stop_app
rabbitmqctl.bat -n remote3 join_cluster remote1@Martin
rabbitmqctl.bat -n remote3 start_app

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[92]

Essentially, the steps we perform in order to start a second cluster on a local machine
are as follows:

•	 We start the remote1 node and specify additionally RABBITMQ_SERVER_
START_ARGS, which specifies the port on which we want to start the
RabbitMQ management plugin (we are already using the management plugin
for the initial cluster on default port 15672 and so we won't be able to enable
its use for the management plugin UI in the second cluster). Another option
is to specify a different configuration file for the remote1 node before starting
it using the RABBITMQ_CONFIG_FILE environment variable and specify the
management plugin port inside that specific node configuration file.

•	 We enable the management plugin on the remote1 node.
•	 We disable the management plugin on the remote2 and remote3 nodes

(this is just a precaution in case RabbitMQ tries to start the management
plugin by default on the nodes). Note that so far we have been using the
default enabled_plugins file that stores the configuration of each plugin
that must be enabled and so far we have been modifying the file using
the rabbitmq-plugins utility before starting each node. However, it is better
to specify a separated enabled_plugins file for each node, which can be
achieved by setting the RABBITMQ_ENABLED_PLUGINS_FILE environment
variable prior to starting each RabbitMQ node.

•	 We start the remote2 and remote3 nodes and join them in the same cluster
using the remote1 node in the usual manner we use to set up a cluster.

We need to enable the Federation plugin on the nodes in the cluster, create the
upstream links, and set the proper federation policies on the remote1 and remote3
nodes, as shown in the preceding diagram. You can think of the later process as
creating a "subscription" from the federated_exchange exchange in the remote
cluster to the upstream_exchange in the initial cluster and a "subscription" from the
federated_queue queue in the remote cluster to the upstream_queue queue in the
initial cluster. The following enables the Federation plugin on the remote3 node in
the remote cluster:

rabbitmq-plugins -n remote1 enable rabbitmq_federation
rabbitmq-plugins -n remote1 enable rabbitmq_federation_management

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

To verify the cluster is successfully created, try opening http://localhost:55555
and verify that you see the three cluster nodes in the management UI:

Let's define the exchanges and clusters in our clusters. We will define the exchanges
as direct and bind additionally the federated_queue queue refined in the remote3
node to the federated_exchange exchange defined in the remote1 node:

rabbitmqadmin.py -N instance1 declare exchange name=upstream_exchange
type=direct
rabbitmqadmin.py -N instance3 declare queue name=upstream_queue
durable=false
rabbitmqadmin.py -N remote1 -P 55555 declare exchange name=federated_
exchange type=direct
rabbitmqadmin.py -N remote3 -P 55555 declare queue name=federated_
queue durable=false
rabbitmqadmin.py -N remote1 -P 55555 declare binding source=federated_
exchange destination=federated_queue routing_key=federated

Note that when creating the nodes using the rabbitmqadmin utility, we must specify
the port of the RabbitMQ management plugin (here, 55555) since the utility uses the
HTTP API of the management plugin. If we omit the port, the items will be created
in the first cluster (since the default management plugin port of 15672 is used).

The final configuration we should make is to actually create the federation links by
creating upstreams in the remote cluster and binding them to the target federated
exchange or queue using policies:

rabbitmqctl -n remote1 set_parameter federation-upstream upstream
"{""uri"":""amqp://localhost:5672"",""expires"":3600000,
""exchange"":""upstream_exchange"", ""queue"":""upstream_queue""}"

rabbitmqctl -n remote1 set_policy federate-exchange
--apply-to exchanges "federated_exchange"
"{""federation-upstream"":""upstream""}"

rabbitmqctl -n remote1 set_policy federate-queue
--apply-to queues "federated_queue"
"{""federation-upstream"":""upstream""}"

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[94]

We first create an upstream that points to the rabbit node in the first cluster
(amqp://localhost:5672) and specifies upstream_exchange and upstream_queue
as an upstream exchange and a queue. We can omit them from the definition of
the upstream link, but in that case the policy would expect that their names should
match those of the federated exchange and queue. After that, we define a federation
policy for the federated_exchange that references the upstream link (thus
retrieving messages from the upstream_exchange). Lastly, we define a policy for the
federated_queue that references the upstream link (thus retrieving messages from
the upstream exchange).

You may be wondering how the federation link authenticates against the upstream
cluster or how we specify a vhost in which our upstream exchanges and queues reside.
The answer to both of these question is related to the capabilities of the amqp URI
scheme. We can additionally provide a username and password along with the vhost;
by default, the guest user and the default vhost are assumed by the federation links.

We have already enabled the federation_management_agent on the remote
cluster so we can observe the federation configuration in the management UI. If we
navigate to Federation Upstreams under the Admin tab, we can see what federation
upstreams we have configured, along with the attributes we have assigned to them
(in our particular case a one-hour buffer for queuing messages from the upstream):

We can also check the status of the federation links from Federation Status under the
Admin tab:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

If we navigate to the Exchanges tab, we will observe the federate-exchange policy
present as a feature on our federated_exchange exchange:

If we navigate to the Queues tab we will observe similar behavior for the
federated_queue queue:

If we navigate to the management UI of the first cluster (running on port 15672)
we will observe that a generic exchange and queue are created for the exchange
federation link in the upstream cluster configuration:

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[96]

In order to verify that the federation links work, we will send two messages, one
to the upstream_exchange with the federated binding key (earlier we created a
binding with that key between federated_exchange and federated_queue) and
one to the default exchange with the upstream_queue key:

rabbitmqadmin.py publish exchange=upstream_exchange
routing_key=federated payload="first test message"
rabbitmqadmin.py publish exchange=amq.default
routing_key=upstream_queue payload="second test message"

If you subscribe to the federated_queue in the remote cluster using the
ClusterReceiver Java class from the previous chapter, you will notice that in
both cases the subscriber instance receives the test messages. In the first case, the
upstream_exchange exchange sends the message to the federated_exchange
exchange in the remove cluster and the federated_exchange exchange routes the
message to the federated_queue queue, using the federated routing key matching
the binding key defined between the exchange and the queue in the remote cluster.
In the second case, the federated link sends the message from the upstream_queue
queue directly to the federated_queue.

You can play around with the cluster by bringing down nodes from one of the clusters
and investigating how the exchange/queue federation behaves in certain scenarios;
since the federation plugin is aware of RabbitMQ clusters, it will try to migrate
exchange/queue federation links in case a node in the upstream/downstream cluster
fails. What would happen if the instance3 node that is the node for the upstream_
queue queue fails? If we bring down the node and send the two test messages again
we will find that both of them arrive successfully at the federated_queue queue.

Shovel plugin
The Federation plugin is not the only mechanism that allows for successfully
sending messages between RabbitMQ instances over the WAN. The shovel
plugin can be used to send a message from a queue defined in a single RabbitMQ
instance to an exchange defined in another RabbitMQ instance located possibly in a
different geographic location. This means that the shovel plugin can also be used to
transfer messages over the WAN and moreover, it is also cooperative in clustered
configurations. The Shovel plugin works at a lower level than the Federation
plugin and can be defined either statically (in the RabbitMQ configuration file) or
dynamically, via parameters similarly to how federation upstreams are created.
Dynamic shovels are a newer addition to the Shovel plugin (introduced with the
release 3.3.0 of RabbitMQ). Having regard to static shovels, which provide only the
option to send messages from a source queue to a destination exchange, dynamic
shovels provide all scenarios for queue/exchange-to-queue/exchange message
sending in addition to a simplified configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

In order to use the Shovel plugin you must enable it on the target nodes along with
the management plugin extensions (if needed). The following commands enable
a dynamic shovel between the upstream_queue in the source cluster and the
federated_exchange in the target cluster (the same configuration can be achieved
using static shovels but without the benefits of dynamic configuration):

rabbitmq-plugins -n remote1 enable rabbitmq_shovel
rabbitmq-plugins -n rabbit enable rabbitmq_shovel_management

rabbitmqctl -n remote1 set_parameter shovel test_shovel
"{""src-uri"": ""amqp://localhost:5672"", ""src-queue"": ""upstream_
queue"", ""dest-uri"": ""amqp://localhost:5712"", ""dest-exchange"":
""federated_exchange""}"

If you open localhost:55555 (the management web interface for the remote cluster)
in the browser and navigate to Shovel Management, when clicking the Admin tab
you will notice that there is one dynamic shovel configured:

You can also inspect the status of the shovel when navigating to the Shovel Status
under the Admin tab and verify that the shovel is up-and-running:

In fact, we can specify the dynamic shovel in the upstream cluster with regard to the
federation plugin where we need to specify the upstreams and the federation policies
in the node where the federated exchanges/queues reside.

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[98]

To verify that the shovel works, we can create a second binding between the
federation_upstream and the federation_queue with a binding key of upstream_
queue, and send a test message to the default exchange in the first cluster (the
routing key of the message is passed along from the upstream_queue queue in the
source cluster to the federated_exchange exchange in the destination cluster):

rabbitmqadmin.py -N remote1 -P 55555 declare binding source=federated_
exchange destination=federated_queue routing_key=upstream_queue
rabbitmqadmin.py publish exchange=amq.default
routing_key=upstream_queue payload="second test message"

If we subscribe to the federation_queue queue, we will notice that the message is
successfully received.

The following table provides a summary of the different options supported by the
Federation and Shovel plugins:

Reliable delivery
So far we have been looking at high availability mostly in terms of node redundancy.
What about network connections? Network failures introduce another degree of
uncertainty when transferring messages via a single RabbitMQ node or an entire
cluster of nodes. Let's refer to the cluster we created originally:

Sender

rabbit

instance3

instance1

Receiver

test
queue

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

What happens if the sender sends a message to the default exchange with a key of
test (the name of the test queue defined in instance3) By default, both publisher
and subscriber do not expect any acknowledgements. Remember that performance is
by default the target priority for the broker. Here is what happens:

•	 The sender sends a message and does not await a confirmation that the broker
has successfully processed the message (delivered it to the test queue)

•	 The broker receives the message and routes it to the test queue, which may
or may not persist it on disk or replicate it among the other nodes in the
cluster (depending on how durability and mirroring are configured)

•	 The broker sends the message to the receiver without awaiting
acknowledgement from the receiver (by default the queue is created with
autoAck=true, meaning that the message is discarded from the queue once
sent to the receiver without awaiting a confirmation)

The preceding message flow does not take into account reliable delivery.
In particular:

•	 If the sender has sent the message (the first step is completed) but the broker
instance fails while processing the message, then the message is lost and
publishing is unsuccessful.

•	 If however the message is successfully sent to the broker (the second step
is completed) and the test queue is created with autoAck=false, then the
receiver must send an acknowledgement/rejection of the message. Only
when the queue receives an explicit acknowledgement from the receiver will
it discard the message. If the receiver gets the message but the broker node
that hosts the queue fails before processing the acknowledgement from
the queue, then it may send the message a second time to the receiver once
up-and-running again (assuming the message is lost and hence consumption
is unsuccessful).

In both of the preceding scenarios we need a mechanism that will guarantee that
publishing/acknowledging messages is successful at the broker. This is possible via
AMQP transactions.

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[100]

AMQP transactions
The AMQP 0-9-1 specification defines the tx class of protocol operation that allows
us to establish transactions with the broker:

•	 tx.select, for starting a transaction with the broker
•	 tx.commit, for committing a transaction at the broker
•	 tx.rollback, for rolling back a transaction at the broker

A transaction is initiated by the client using the tx.select AMQP command
and then committed or rolled-back depending on the particular use case. The
TransactionalSender class provides an example of a sender that uses transactions
(queue, exchange, or binding declarations are omitted for the sake of simplicity):

import java.io.IOException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

public class TransactionalSender {

 private final static Logger LOGGER =
 LoggerFactory.getLogger(TransactionalSender.class);

 public void send(String exchange, String key, String message){
 Connection connection = null;
 Channel channel = null;
 try {
 ConnectionFactory factory =
 new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection();
 channel = connection.createChannel();

 channel.txSelect();channel.basicPublish(exchange, key,
null,
 message.getBytes());
 channel.txCommit();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 if (channel != null) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

 try {
 channel.txRollback();
 } catch (IOException re) {
 LOGGER.error("Rollback failed: " +
re.getMessage(), re);
 }
 }
 } finally {
 if(connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 LOGGER.warn("Failed to close connection: " +
 e.getMessage(), e);
 }
 }
 }
 }
}

In the preceding example, you can publish as many messages as you want between
txSelect() and txCommit() and all of them are committed/rolled back at once.
This means that AMQP transactions are very suitable for creating batch publishing of
messages. In practice, this can improve the performance of our application if we need
to guarantee that messages are successfully processed by the broker and we decide
to use AMQP transactions for the purpose.

The following example demonstrations using AMQP transactions with subscriber
acknowledgements:

import java.io.IOException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class TransactionalReceiver {

 private final static Logger LOGGER = LoggerFactory.
 getLogger(TransactionalReceiver.class);

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[102]

 private static final String REQUEST_QUEUE = "tx_queue";

 public void receive() {
 Connection connection = null;
 Channel channel = null;
 try {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 connection = factory.newConnection();
 channel = connection.createChannel();
 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(REQUEST_QUEUE, false, consumer);
 QueueingConsumer.Delivery delivery =
consumer.nextDelivery();
 String message = new String(delivery.getBody());
 LOGGER.info("Request received: " + message);
 channel.txSelect();
 channel.basicAck(delivery.getEnvelope().getDeliveryTag(),
 false);
 channel.txCommit();
 } catch (IOException e) {
 LOGGER.error(e.getMessage(), e);
 if (channel != null) {
 try {
 channel.txRollback();
 } catch (IOException re) {
LOGGER.error("Rollback failed: " + re.getMessage(), re);
 }
 }
 } catch (ShutdownSignalException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (ConsumerCancelledException e) {
 LOGGER.error(e.getMessage(), e);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 } finally {
 if(connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 LOGGER.warn("Failed to close
 connection: " +
e.getMessage(), e);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

 }
 }
 }
 }
}

In the preceding example, we set autoAck to false when we bind the consumer to
the queue and then we use the basicAck method to acknowledge that the message is
processed successfully by the consumer.

Publisher confirms
While AMQP transactions provide a reliable mechanism for ensuring that the broker
has processed a message upon publishing, it is quite heavyweight. There are two
reasons for this:

•	 Transactions make publishing messages synchronous; the publisher cannot
send a message over the same channel until the previously sent message has
been confirmed

•	 Transactions are onerous operations on their own.

For that reason, the broker introduces an extension called publisher confirms (not
defined in the AMQP spec). Publisher confirms work by creating a channel in
publish model, thus making the broker responsible for sending acknowledgements
upon successful processing of messages over the channel. Moreover, confirms
are asynchronous, meaning that multiple messages can be sent and confirmed
independently by the broker. In order to enable publisher confirms you can modify
the TransactionalPublisher class as follows:

•	 Use the confirmSelect() method instead of txSelect() on the channel in order
to enable publisher confirms

•	 Register a handler for message acknowledgements/rejections from the broker

The following snippet demonstrates the preceding points:

channel.addConfirmListener(new ConfirmListener() { public void
handleNack(long deliveryTag, boolean multiple) throws IOException {
 LOGGER.warn("Message(s) rejected.");
 }

 public void handleAck(long deliveryTag, boolean multiple)
 throws IOException {
 LOGGER.warn("Message(s) confirmed.");
 }});

channel.confirmSelect();
channel.basicPublish(exchange, key, null, message.getBytes());

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[104]

Client high availability
Now that we have seen how to establish high availability at the level of the broker
along with some mechanisms to improve reliability when publishing/consuming
messages, we have to explore what mechanisms we have to ensure client reliability
in the event of broker failures.

Client reconnections
Later versions of the RabbitMQ Java client provide a mechanism for handling
automatic recovery in the event of connection failures with the broker. In earlier
versions of the client this has to be done manually or with the help of a wrapper
library that provides recovery on top of an existing RabbitMQ client (there are
various implementations in the public space). Recovery via the Java client API is
enabled with a single line of code:

factory.setAutomaticRecoveryEnabled(true);

The preceding method invoked on a RabbitMQ connection factory does a number
of things in the context of a publisher/consumer connection, such as reopening
channels, recovering consumers, restoring connection/channel settings and listeners,
and redeclaring queues/exchanges/bindings.

Load balancing
Another option you have in order to improve reliability upon connection to the
broker is to use a hardware/software TCP load-balancer (such as HAProxy and
Balance). It requires more configuration but you can manage the IP addresses of
cluster nodes in the configuration of the load balancer rather than the configuration
of the client. Apart from that, you get a mechanism for the even distribution of traffic
among nodes in the cluster using the features provided by the TCP load balancer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

Case study: introducing high availability
in CSN
With the increase in utilization of the CSN, it was decided to establish additional
mechanisms that would allow a more resilient day-to-day usage of the CSN. The
system was performing well but with no guarantees in respect of information loss.
Since event propagation is considered a highly important concept in the normal
operation of the CSN, message loss in that area was established as a major risk. For
that reason, the team decided to apply additional mechanisms for minimizing that
risk. In particular, the innovations that were introduced were:

•	 Support for automatic recovery in the CSN web and worker nodes and the
browser plugin.

•	 Support for publisher confirms when sending messages from the web node.
•	 Additional remote RabbitMQ instance for the purpose of disaster recovery.

The CSN web and worker nodes and the browser plugin were enhanced to
take the remote instance into consideration upon automatic recovery (by
extending those nodes with the address of the remote instance). The remote
instance defined as upstream the nodes in the original RabbitMQ cluster,
along with a policy for replication of all queues from the v_events vhost:

Database

message backup
database

message backup
database

CSN web node
event_publishers
user

CSN web node
event_subscribers
user

Client browser

RabbitMQ server
v_events

v_chat

RabbitMQ server
v_events

v_chat

RabbitMQ server
v_events

v_chat

RabbitMQ remote
server

v_events
v_chat

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability

[106]

Summary
In this chapter, we saw how to extend the concept of RabbitMQ clustering with
mirrored queues, which allow us to establish high availability at the level of the
broker. Furthermore, we discussed additional mechanisms for improving reliability
(in terms of connecting to the broker and processing messages such as AMQP
transactions), publisher confirms, and client reconnections.

Exercises
1.	 How is high availability established?
2.	 How do mirrored queues work?
3.	 What is the Federation plugin used for?
4.	 How does the Federation plugin behave when used between

exchanges/queues in clusters?
5.	 What is the Shovel plugin used for?
6.	 How can you ensure a message has been processed successfully by the

broker upon publishing?
7.	 How can you establish high availability in terms of client connectivity to a

RabbitMQ cluster?

www.it-ebooks.info

http://www.it-ebooks.info/

[107]

Integrations
So far, we have been looking at what features does RabbitMQ provide in terms of
fast and reliable message sending—from message patterns and broker administration
to clustering and high availability. In this chapter, we will go further by providing an
overview of how the broker integrates with other systems and how the other systems
integrate with the broker.

The following topics will be covered in the chapter:

•	 Spring framework integrations
•	 Integration with ESBs
•	 Integration with databases
•	 RabbitMQ integrations
•	 RabbitMQ deployment options
•	 Testing RabbitMQ applications

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[108]

Types of integrations
Let's take a look at the standard setup that we have been discussing so far (including
a producer, consumer, and three-node RabbitMQ cluster):

Sender

Client domain Client domain

Receiver

rabbit
instance 1

instance 3

RabbitMQ domain

If we consider the client domain (publisher/subscriber), we can perform the following:

•	 We can use a client AMQP library written in any programming language
(thus integrating RabbitMQ with a particular programming language). We
are already using the out-of-the-box RabbitMQ Java client. As RabbitMQ
supports a multitude of AMQP clients, you can use one that best suits your
application or write your own AMQP client in your programming language
of choice, if one is missing.

•	 We can use a wrapper library written on top of a client library. Many
applications that use RabbitMQ as a message broker are deployed as part of
a web or dependency injection container. For this reason, there are wrappers
around the client libraries for different containers, such as the ones provided
by the Spring framework and implemented on top of the RabbitMQ Java
client library and Spring AMQP library.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

If we consider the RabbitMQ domain (the RabbitMQ cluster), we can perform the
following:

•	 We can send messages via other protocols such as STOMP, MQTT, or HTTP.
•	 We can send messages via AMQP from an ESB (enterprise service bus) such

as Mule ESB or WSO2 that integrate with a number of other protocols.
•	 We can persist messages by subscribing to the broker directly from a

database (either relational or NoSQL) using the utilities provided by the
database rather than a separate application that subscribes to the broker
and persists to the database. For example, this could be a PL/SQL stored
procedure that subscribes directly to the message broker (in case of an Oracle
relational database management system).

Spring framework
Many applications that are deployed along with a dependency injection container
such as Spring make use of the additional utilities provided by the container in
order to use a variety of features out of the box. In terms of RabbitMQ, these
features are as follows:

•	 Spring AMQP: This provides you with an abstraction layer and core library
on top of the AMQP protocol. The Spring RabbitMQ library uses it to provide
utilities for interaction with the RabbitMQ message broker.

•	 Spring Integration: The framework provides an implementation of the
enterprise integration patterns as defined by Gregor Hohpe and Bobby
Wolfe in their book on this topic. As such, the Spring integration framework
serves the purpose of providing a convenient Spring-based DSL for the
configuration of an enterprise integration bus that enables different systems
to communicate with each other. In this regard, the framework provides
producer/consumer adapters for RabbitMQ.

•	 Spring XD (extreme data): The framework provides capabilities for easier
handling and analytics on big data from a variety of sources—RabbitMQ
message broker being one of them.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[110]

Spring AMQP
The Spring AMQP framework along with the more concrete Spring RabbitMQ
support that builds on top of that framework provides the biggest portion of
RabbitMQ in the Spring framework. There are three main building blocks behind
Spring RabbitMQ:

•	 The RabbitTemplate class that provides a convenient utility to publish
messages or subscribe to a RabbitMQ broker

•	 The RabbitAdmin class that provides a convenient utility to create/remove
exchanges, queues, and bindings

•	 The message listener containers that provide a convenient mechanism to
create asynchronous listeners that bind to a RabbitMQ message queue

Each of these can be used either directly or configured via a Spring XML or
annotation-based configuration. In order to include the Spring Rabbit library in your
application, you need to add the following Maven dependency to the pom.xml file of
your project:

<dependency>
<groupId>org.springframework.amqp</groupId>
 <artifactId>spring-rabbit</artifactId>
 <version>1.4.5.RELEASE</version>
</dependency>

The following snippet demonstrates the use of the RabbitTemplate class to send a
message to a queue named sample-queue via the default exchange:

CachingConnectionFactory factory = null;
try {
 factory = new CachingConnectionFactory("localhost");
 RabbitTemplate template = new RabbitTemplate(factory);
 template.convertAndSend("", "sample-queue",
"sample-queue test message!");
} finally {
 If(factory != null) {
 factory.destroy();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Initially, we create an instance of the CachingConnectionFactory class provided
by Spring RabbitMQ that, by default, caches a predefined number of channels
(and is very convenient to use in a concurrent environment), but the cache mode
can be set to cache connections rather than channels and the cache size of the
factory can be changed as well. We can specify a number of additional properties
on a CachingConnectionFactory instance such as the host and port against
which to connect (or multiple addresses, in case of a RabbitMQ cluster), a virtual
host, username, password, or even a different thread pool implementation
(implementation of the Java ExecutorService, Spring-based or a custom one) used by
the factory when it creates connections/channels. We then use convertAndSend() of
the RabbitTemplate class to send a message by specifying an exchange and routing
key. In the final block, we destroy the connection factory.

The following example demonstrates the use of the RabbitAdmin class to create a
queue called sample-queue and bind it to an exchange called sample-topic-exchange
using the sample-key binding key:

CachingConnectionFactory factory = new CachingConnectionFactory
("localhost");
RabbitAdmin admin = new RabbitAdmin(factory);
Queue queue = new Queue("sample-queue");
admin.declareQueue(queue);
TopicExchange exchange = new TopicExchange("sample-topic-exchange");
admin.declareExchange(exchange);
admin.declareBinding(BindingBuilder.bind(queue).
to(exchange).with("sample-key"));
factory.destroy();

The RabbitTemplate and RabbitAdmin classes are convenient utilities that allow
you to send/retrieve messages from the broker and create broker items. If you want
to listen asynchronously for messages sent to a queue, you can create one using a
listener container as follows:

CachingConnectionFactory factory = new CachingConnectionFactory
("localhost");
SimpleMessageListenerContainer container = new SimpleMessageListener
Container(factory);
Object listener = new Object() {
public void handleMessage(String message) {
System.out.println("Message received: " + message);
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[112]

MessageListenerAdapter adapter = new MessageListenerAdapter(listener);
container.setMessageListener(adapter);
container.setQueueNames("sample-queue");
container.start();

First, we create SimpleMessageListenerContainer that is used to manage the
listener's life cycle; it allows the listener to bind to more than one queue. Then we
create an instance of the listener by supplying the handleMessage() method; we
can also use an instance of the MessageListener interface from the Spring AMQP
library in order to avoid the usage of MessageListenerAdapter from the preceding
example. After we have set the listener and queue names on the listener container
instance, we can bind the listener asynchronously using the start() method.

All of these examples demonstrate the use of the utilities provided by the Spring
RabbitMQ library without using any additional Spring configuration.

We can decouple the configuration of RabbitTemplate, RabbitAdmin, and listener
container instances using the Spring configuration. The additional benefit is that
the source code becomes even more concise. The following sample Spring XML
configuration file demonstrates how to configure the Spring RabbitMQ utilities:

<beans xmlns=http://www.springframework.org/schema/beans
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rabbit=http://www.springframework.org/schema/rabbit
xsi:schemaLocation="http://www.springframework.org/schema/rabbit
http://www.springframework.org/schema/rabbit/spring-rabbit.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<rabbit:connection-factory id="connectionFactory" host="localhost" />
<rabbit:template id="amqpTemplate" connection-factory="connection
Factory" exchange="" routing-key="sample-queue-spring"/>

<rabbit:admin connection-factory="connectionFactory" />
<rabbit:queue name="sample-queue-spring" />
<rabbit:topic-exchange name="sample-spring-exchange">
<rabbit:bindings>
<rabbit:binding queue="sample-queue-spring"
pattern="sample-key-spring" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

</rabbit:bindings>
</rabbit:topic-exchange>

<rabbit:listener-container
 connection-factory="connectionFactory">
 <rabbit:listener ref="springListener" method="receiveMessage"
queue-names="sample-queue-spring" />
</rabbit:listener-container>
<bean id="springListener" class="ContainerListenerSpringExample" />
</beans>

We first declare the connection factory instance and then use it to create a
RabbitTemplate instance, RabbitAdmin instance, and listener container. The
RabbitTemplate instance is configured to use the default exchange with a sample-
queue-spring routing key by default. On the creation of a connection to the broker, a
topic exchange called sample-spring-exchange will be defined. A new asynchronous
listener that binds to the sample-queue-spring queue will be created.

Here is a sample usage of the RabbitTemplate class using the preceding
configuration (Note that the asynchronous listener is also created and bound upon
context initialization.):

AbstractApplicationContext context = new ClassPathXmlApplication
Context("configuration.xml");
RabbitTemplate template = context.getBean(RabbitTemplate.class);
template.convertAndSend("Sample Spring test message.");
context.destroy();

Spring Integration
The Spring integration framework provides support for RabbitMQ by means of
proper adapters to send a message or subscribe to a queue. In order to use the Spring
integration AMQP adapters, you have to include the following dependencies in the
build configuration of your Maven project:

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-core</artifactId>
 <version>4.0.4.RELEASE</version>
</dependency>
<dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[114]

 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-amqp</artifactId>
 <version>4.0.4.RELEASE</version>
</dependency>

We will implement the following simple Spring integration message bus:

RabbitMQ
broker

RabbitMQ
broker

inbound
channel
adapter

outbound
channel
adapter

channel

First, we subscribe to a queue in the RabbitMQ broker using a Spring integration
AMQP inbound channel adapter. The inbound channel adapter is bound to a Spring
integration channel that routes messages to a Spring integration AMQP outbound
channel adapter from where it is sent to a RabbitMQ message broker. (We will
use the same RabbitMQ broker as the one to which the inbound channel adapter
binds.) Note that the channel works with a common representation of a message—
the purpose of the adapters is to convert that representation to/from the AMQP
representation of a message. The following Spring configuration describes the
preceding components and the connection between them using the test-queue queue
as a source queue and the test-destination-queue queue as a destination queue:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans
xmlns=http://www.springframework.org/schema/
integrationxmlns:xsi=http://www.w3.org/2001/XMLSchema-
instancexmlns:beans=http://www.springframework.org/schema/
beans
xmlns:amqp=http://www.springframework.org/schema/integration/amqp
xmlns:rabbit=http://www.springframework.org/schema/rabbit
xmlns:context=http://www.springframework.org/schema/
contextxmlns:stream=http://www.springframework.org/schema/integration/
stream
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/rabbit
http://www.springframework.org/schema/rabbit/spring-rabbit.xsd
http://www.springframework.org/schema/integration

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

http://www.springframework.org/schema/integration/spring-integration-
4.1.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-
integration-stream-4.1.xsd
http://www.springframework.org/schema/integration/amqp
http://www.springframework.org/schema/integration/amqp/spring-
integration-amqp.xsd">
 <rabbit:connection-factory id="connectionFactory"
host="localhost" />
 <channel id="test-channel" />

 <rabbit:queue name="test-queue" />
 <rabbit:queue name="test-destination-queue" />

 <rabbit:template id="amqpTemplate"
connection-factory="connectionFactory"
exchange="" routing-key="test-queue" />
 <rabbit:admin connection-factory="connectionFactory" />

 <amqp:inbound-channel-adapter channel="test-channel"
queue-names="test-queue" connection-factory="connectionFactory" />

 <amqp:outbound-channel-adapter channel="test-channel"
exchange-name="" routing-key="test-destination-queue"
amqp-template="amqpTemplate" />

 <rabbit:connection-factory id="connectionFactory"
host="localhost" />
</beans:beans>

The following example demonstrates the use of the preceding configuration to send a
message to the test-queue queue that is delivered via the Spring integration channel
to the test-destination-queue queue:

AbstractApplicationContext context =
new ClassPathXmlApplicationContext(
"configuration-int.xml");
RabbitTemplate template = context.
getBean(RabbitTemplate.class);
template.convertAndSend("test message ...");

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[116]

Integration with ESBs
Various ESBs also provide features to integrate with a RabbitMQ message broker. In
the previous example, we saw how to use Spring integration as an ESB that provides
RabbitMQ adapters. In the following section, we will take a look at the Mule and
WSO2 ESBs that also provide integration with RabbitMQ.

Mule ESB
The Mule ESB provides you with a runtime and development environment based
on the Eclipse IDE called Anypoint Studio that allows you to create integration
workflows easily using either a graphical editor or directly from the XML
configuration file of your Mule ESB project. The AnypointStudio comes with a
preinstalled runtime of the Mule ESB enterprise edition but you can also set up a
community edition of MuleESB with the development studio. The first step is to
download the trial version of the AnypointStudio from the official MuleSoft website
and install it. Start the studio and create a new project by clicking on the Create a
Project button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Then specify the name and Maven settings for the new project:

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[118]

Specify the location and JDK version of your project; specify an already installed JDK
by clicking on the Configure JREs link, and finally, click on the Finish button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

After you create the new Mule project, you will notice that a graphical editor
appears, where you can specify the integration flow of your application using the
drag-and-drop items on the right-hand side of the editor. You can see a number
of preinstalled connectors on the right-hand side. However, an AMQP/RabbitMQ
connector is missing and must be installed separately. To install this, navigate
to Help -> Install New Software … in the AnypointStudio; select Anypoint
Connectors Update Site from the Work With drop down; type in the Search
AMQP and select Mule AMQP Transport, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[120]

We will create the same flow that we created with Spring integration without the
need to specify a channel. (It is implicitly represented by the Mule ESB.) From the
Endpoints section, drag and drop an AMQP-0-9 item to the workspace. Select a
second AMQP-0-9 item and drag-and-drop it in the Process area of the workspace,
next to the first item:

Double-click on the flow window that contains the two items and change the name to
rabbitmq-sample-flow. Click on the first AMQP endpoint and specify the following
(this will be our inbound endpoint that will subscribe to the test-queue queue):

•	 Display Name: rabbitmq-inbound-endpoint
•	 Queue Name: test-queue
•	 Queue Durable: enabled
•	 Advanced -> Exchange Patterns -> One Way: default

You need to specify explicitly on the queue-related attributes so that Mule precreates
the specified queue in the endpoint in case it is missing. In the preceding case, we
specify that the test-queue queue is durable (but we can explicitly specify queue
durability as false in the Mule XML configuration and the queue will still be created).

Click on the second AMQP endpoint and specify the following (this will be our
outbound endpoint that will send messages to the test-destination-queue queue):

•	 Display Name: rabbitmq-outbound-endpoint
•	 Queue Name: test-destination-queue
•	 Routing Key: test-destination-queue
•	 Queue Durable: enabled
•	 Advanced -> Exchange Patterns -> One Way: default

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

Apart from the endpoints, you also need to specify an AMQP connector
configuration in your Mule configuration, and specify it for both endpoints using the
connector-ref attribute so that they connect to the designated RabbitMQ broker. The
Mule configuration for the projects is the following:

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"
xmlns:http="http://www.mulesoft.org/schema/mule/http"
xmlns:amqp="http://www.mulesoft.org/schema/mule/amqp" xmlns="http://
www.mulesoft.org/schema/mule/core" xmlns:doc="http://www.mulesoft.org/
schema/mule/documentation"
xmlns:spring="http://www.springframework.org/schema/beans"
version="EE-3.7.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.mulesoft.org/schema/mule/http http://
www.mulesoft.org/schema/mule/http/3.1/mule-http.xsd
http://www.mulesoft.org/schema/mule/core http://www.mulesoft.org/
schema/mule/core/3.1/mule.xsd
http://www.mulesoft.org/schema/mule/amqp http://www.mulesoft.org/
schema/mule/amqp/3.1/mule-amqp.xsd
http://www.mulesoft.org/schema/mule/ee/tracking http://www.mulesoft.
org/schema/mule/ee/tracking/3.1/mule-tracking-ee.xsd
http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans-current.xsd">
 <amqp:connector name="localhostAMQPConnector"
activeDeclarationsOnly="true" doc:name="AMQP-0-9 Connector"/>

 <flow name="rabbitmq-sample-flow">
<amqp:inbound-endpoint responseTimeout="10000"
doc:name="rabbitmq-inbound-endpoint" queueName="test-queue"
queueDurable="true" connector-ref="localhostAMQPConnector"/>
<amqp:outbound-endpoint responseTimeout="10000"
doc:name="rabbitmq-outbound-endpoint"
queueName="test-destination-queue" routingKey="test-destination-queue"
queueDurable="true" connector-ref="localhostAMQPConnector"/>
</flow>
</mule>

In order to use the AMQP transport, you need to provide the Mule AMQP transport
and RabbitMQ Java client on your classpath. The Maven dependency for the
transport library is as follows:

<dependency>
 <groupId>org.mule.transports</groupId>
 <artifactId>mule-transport-amqp</artifactId>
 <version>3.3.0</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[122]

However, Anypoint studio can dynamically deploy the AMQP client and Mule
AMQP transport dependencies to your Mule ESB at runtime, and so, you need to
copy them manually to the runtime libraries in the following path:

<anypoint_install_path>\plugins\org.mule.tooling.server.<version>\
mule\lib\mule

If you are using version 3.4.1 of the Mule AMQP transport and version 3.2.1 of the
client, copy mule-transport-amqp-3.4.1.jar and amqp-client-3.2.1.jar files
from the local Maven repository to that directory. If you don't do this, you may
get an error that states Mule ESB fails to find a namespace handler for the AMQP
transport declarations in your Mule configuration.

Mule ESB uses byte array representation of messages, so if you want to convert the
byte array into a string, you can either use a proper AMQP transformer and register
it in the Mule runtime or convert the byte array manually in your application. To
test your setup, you can send a test message to the test-queue queue using the
RabbitTemplateExample class with that queue and bind a listener such as the
one specified by the ContainerListenerExample class to test-destination-queue.
However, the handleMessage() method should be refactored a little bit in order to
accept a byte array as a message:

public void handleMessage(Object message) {
 System.out.println("Message received: " +
new String((byte[])message));
}

WSO2
WSO2 is an open source ESB that is used by a number of enterprises including eBay.
It also provides integration with the AMQP protocol. There is also an Eclipse-based
IDE for WSO2 (WSO2 Developer Studio) to develop WSO2 applications. Download
the WSO2 distributable that contains the WSO2 ESB along with an administrative
web interface and unzip it to a proper location. Navigate to the bin directory and
execute the following command to start the WSO2 message broker (assuming that
we are running a Windows OS):

wso2server.bat --run

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

After the server has successfully started, you should be able to open the administrative
web from the https://localhost:9443 URL and log in with the admin/admin
default credentials. A screen similar to the following will be displayed:

The WSO2 ESB steps on the WSO2 carbon platform, which is an OSGi-based
middleware. The WSO2 carbon platform provides support for the provisioning of
dependencies (OSGi bundles) from an Equinox p2 repository. The WSO2 RabbitMQ
AMQP transport is also provided in a p2 repository that can be downloaded
locally from the WSO2 website. After you download the p2 repository of the
AMQP transport bundles and unzip it, navigate to Configure -> Features from the
administrative interface and specify the path to the local repository along with a
proper name from the repository, and click on Add. Then, specify the newly added
repository, unselect Group features by category, click on Find Features, specify
the Axis2 Transport RabbitMQ AMQP feature, click on the Install button, and
follow the steps from the installation process. Add the following to the listeners
configuration in <wso2_install_path>/repository/conf/axis2/axis2.xml in
order to create a RabbitMQ transport listener for WSO2:

<transportReceiver name="rabbitmq"
class="org.apache.axis2.transport.rabbitmq.RabbitMQListener">
<parameter name="AMQPConnectionFactory" locked="false">
<parameter name="rabbitmq.server.host.name"
locked="false">localhost</parameter>
<parameter name="rabbitmq.server.port"
locked="false">5672</parameter>
<parameter name="rabbitmq.server.user.name"
locked="false">guest</parameter>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[124]

<parameter name="rabbitmq.server.password"
locked="false">guest</parameter>
</parameter>
</transportReceiver>

The locked attribute specifies that the parameters cannot be overridden by a WSO2
service. Add the following to configure the RabbitMQ transport sender in the axis2.
xml configuration file:

<transportSender name="rabbitmq"
class="org.apache.axis2.transport.rabbitmq.RabbitMQSender"/>

Apart from this, the ESB runtime may not need to load the RabbitMQ transport
libraries (even though they have been installed from the p2 repository), and so
you may need to copy them from the p2 repository to the <wso2_install_path>\
repository\components\lib directory. As the libraries might be a little outdated
with regard to the version of RabbitMQ that you are using, you can also download
the source code of the WSO2 transports from GitHub, build the Maven project for
the RabbitMQ transport, and replace the old version in the preceding directory. You
need to make sure that the version of the transport library works with your version
of the RabbitMQ broker.

After you have installed the RabbitMQ AMQP transport and added the configuration
for the sender and receiver, restart the WSO2 server in order to load the new feature
along with the configured transports.

Now, we are ready to configure a proxy service that will allow us to transfer
messages from test-queue to test-destination-queue using the WSO2 ESB.

First, create an endpoint that will be used by the RabbitMQ transport sender by
navigating to Main -> Endpoints -> Add Endpoint -> Address Endpoint:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[125]

Specify the following settings:

•	 Name: rabbitmq_sender_endpoint
•	 Address: rab-bitmq:/rabbitmq_proxy_service?rabbitmq.server.host.

name=127.0.0.1 & rab-bitmq.server.port=5672 & rabbitmq.server.
user.name=guest&rabbitmq.server.password=guest&rabbitmq.queue.
name=test-destination-queue

•	 Click on the Save & Close button. Click on the Switch Off link under the
Action menu in order to enable the endpoint. The address uses the RabbitMQ
transport that we defined in the Apache Axis2 configuration along with the
rabbitmq_proxy_service proxy service that uses the specified RabbitMQ
parameters to send a message to the test-destination-queue queue. The
same rabbitmq_proxy_service service will be used to retrieve messages
from the test-queue queue, and if the two queues are missing, they will be
created from the RabbitMQ transport. Create the proxy service by clicking on
Add -> Proxy Service -> Custom Proxy, and click on Switch to Source View
in order to provide the service configuration without using the wizard:
<?xml version="1.0" encoding="UTF-8"?>
<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="rabbitmq_proxy_service"
 transports="rabbitmq"
 statistics="disable"
 trace="disable"
 startOnLoad="true">
 <target endpoint="rabbitmq_sender_endpoint">
 <inSequence>
 <log level="full"/>
 <property name="OUT_ONLY" value="true"/>
 <property name="FORCE_SC_ACCEPTED" value="true"
scope="axis2"/>
 </inSequence>
 </target>
 <parameter name="rabbitmq.queue.name"> test-queue</parameter>
 <parameter name="rabbitmq.connection.factory">
AMQPConnectionFactory</parameter>
 <description/>
</proxy>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[126]

The proxy uses the RabbitMQ transport in order to subscribe to the test-queue queue
using AMQPConnectionFactory to create an AMQP connection. The inSequence
section specifies how a message received from the test-queue queue is processed.
We enable full logging (that also prints the message in the WSO2 console) and
we specify that we do not expect a response once we forward the message to an
endpoint (using the OUT_ONLY attribute). FORCE_SC_ACCEPTED is used to indicate that
the ESB must send an acknowledgement after the message was successfully received.
We also provide a reference to the rabbitmq_sender_endpoint endpoint so that
received messages are sent using the RabbitMQ transport sender to this endpoint.
Click on the Save button in order to save and deploy the proxy service. In order to
check whether your setup works fine, you can use the Java client library or Spring
framework in order to send a message to the test-queue queue and subscribe to the
test-destination-queue queue as shown earlier. As the WSO2 endpoint is exposed
as an Apache Axis2 SOAP web service, you need to send a SOAP message to the
RabbitMQ broker and additionally specify the content type as text/xml and content
encoding as utf-8 along with a SOAP_ACTION message header that specifies the
SOAP action you are specifying in the message. The following snippet uses the Java
client library in order to create an AMQP message in the proper format to be handled
by the WSO2 proxy service:

String soapMessage = "<soapenv:Envelope " + "xmlns:soapenv=\"http://
schemas.xmlsoap.org/soap/envelope/\">\n" + <soapenv:Header/>\n" +
<soapenv:Body>\n" + <p:test xmlns:p=\"http://test.service.sample.
com\"> \n" +
<in>" + "sample message" + "</in>\n" +
</p:test>\n" + "</soapenv:Body>\n" + </soapenv:Envelope>";
BasicProperties.Builder props = new BasicProperties.Builder();
props.contentType("text/xml");
props.contentEncoding("utf-8");

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("SOAP_ACTION", "test");
props.headers(headers);
channel.basicPublish(DEFAULT_EXCHANGE, QUEUE_NAME,
props.build(), message.getBytes());

In case you don't want to format and parse SOAP messages as this can introduce
unnecessary complexity in your integration scenario, then you can use the WSO2
message broker that handles AMQP messages and integrates with the WSO2 ESB
via JMS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[127]

Integration with databases
Most relational and NoSQL databases provide a built-in language to create programs
directly at the database level. Whether this is PL/SQL or Java for the Oracle
database, T/SQL for the MSSQL server, or JavaScript for MongoDB, most of them
can leverage the use of the client utilities provided by RabbitMQ in order to establish
a direct connection to the message broker and persist data from AMQP messages.
In many cases, it might be easier and more proper to use a database API along with
a RabbitMQ client library written in the same language via a proper application
running outside the database. In this section, we will look at how to integrate the
RabbitMQ broker with several widely used databases.

Oracle RDBMS
If you decide to use PL/SQL, you will have to supply your own PL/SQL AMQP
client implementation, which can turn out to be a lot of work unless you manage to
find a publicly available implementation. (At the time of writing this, no such free or
commercial distribution is available.) As the Oracle database provides support for
multiple languages, we can use Java stored procedures in the database. In order to create
a publisher or subscriber as a stored procedure, we can use the following procedure:

•	 Load the RabbitMQ Java client library in the database
•	 Load the Java stored procedures to publish/subscribe (static Java methods)
•	 Define PL/SQL procedures that call the loaded Java stored procedures

We will use Oracle database 12c. The loadjava command-line utility supplied by
the Oracle database allows us to load Java classes, source files, or resource files in
a database schema. We can use the utility to load the RabbitMQ Java client library
along with the additional required libraries using the utility as follows (assuming
that we are retrieving the libraries from the local Maven repository in a Windows
operating system):

cd %userprofile%/.m2
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
repository\log4j\log4j\1.2.16\log4j-1.2.16.jar
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
repository\commons-logging\commons-logging\1.2\commons-logging-1.2.jar
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
repository\org\slf4j\slf4j-api\1.6.1\slf4j-api-1.6.1.jar
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
repository\org\slf4j\slf4j-log4j12\1.6.1\slf4j-log4j12-1.6.1.jar
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
repository\com\rabbitmq\amqp-client\3.4.1\amqp-client-3.4.1.jar

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[128]

We used the resolve option in order to try resolving the loaded Java classes from
the specified JAR files. In case there is a resolution failure, a console output will
provide information on the resolution error. In case there are missing classes during
the loading of libraries, you must find and load the libraries that contain these
classes first. We are also specifying resolver, which serves as CLASSPATH to resolve
dependencies from database schemas. In this particular case, we are using the
C##DEMO user schema and the PUBLIC schema, which contains the core Java classes.

Navigate to the directory of your compiled Java classes created in Chapter 2, Design
Patterns with RabbitMQ, and load them using the loadjava utility:

loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
Sender.class
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
DefaultExchangeSenderDemo.class
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
CompetingReceiver.class
loadjava -u c##demo -resolve -resolver "((* C##DEMO) (* PUBLIC))"
CompetingReceiverDemo*.class

Note the * operator after the name of the CompetingReceiverDemo class. This will
also load the inner classes defined in the CompetingReceiverDemo class.

Now, you can bind the static methods from the sender and receiver demo classes to
the PL/SQL stored procedures using a tool such as SQL*Plus or SQLDeveloper:

CREATE OT REPLACE PROCEDURE RABBITMQ_SENDER AS
 LANGUAGE JAVA NAME 'org.packt.rabbitmq.book.samples.chapter2.
DefaultExchangeSenderDemo.sendToDefaultExchange()';

CREATE OT REPLACE PROCEDURE RABBITMQ_RECEIVER AS
 LANGUAGE JAVA NAME 'org.packt.rabbitmq.book.samples.chapter2.
CompetingReceiverDemo.main(java.lang.String[])';

To test the stored procedures, you can first enable DBMS_OUTPUT. In SQLDeveloper,
you can do this from the Dbms Output view or use the SET SERVEROUTPUT ON
command in SQL*Plus. In order to enable the mapping of System.out and logger
output to DBMS_OUTPUT, invoke the set_output() stored procedure with a buffer
size of 2,000 bytes as follows:

EXECUTE DBMS_JAVA.SET_OUTPUT(2000);

To test your RabbitMQ sender stored procedure, execute the following:

EXECUTE RABBITMQ_SENDER;

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=b2d6fd8a-b006-ef33-9192-544754bc3f47
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=b2d6fd8a-b006-ef33-9192-544754bc3f47
http://www.it-ebooks.info/

Chapter 6

[129]

To test your RabbitMQ receiver stored procedure, execute the following and send
some test messages to the event_queue queue used by the sender and receiver:

EXECUTE RABBITMQ_RECEIVER;

You can observe the loaded Java classes from the current user schema using the
following query:

SELECT * FROM USER_OBJECTS WHERE object_type LIKE '%JAVA%';

In case any of the loaded Java classes fails to resolve (in case we were not using
the resolve option with the loadjava utility), then our class would be marked
as INVALID in the Status column. If this happens, you can try to reload the
proper libraries by first dropping them (using the dropjava utility with the same
parameters) and then loading them again using the loadjava utility.

MongoDB
MongoDB is a document store that stores data hierarchically in a JSON format
(compiled by the database to a binary JSON format called BSON). MongoDB is used
in a variety of scenarios where performance and eventual consistency are favored
with regard to the transactional consistency provided by relational databases
such as Oracle. In order to integrate RabbitMQ with MongoDB, it may be more
appropriate to use the NodeJS MongoDB driver along with a NodeJS AMQP client
implementation to establish the integration using server-side JavaScript or creating
a Java application that uses the MongoDB Java driver along with the RabbitMQ Java
library either directly or via the Spring framework (using Spring Data for MongoDB
and Spring AMQP for RabbitMQ).

Hadoop
To integrate with a Hadoop cluster, you can use a Java application that serves as
a mediator between the Hadoop cluster and RabbitMQ instance/cluster. Another
option is to use the Apache Flume project, which provides a mechanism to aggregate
data from multiple sources in a Hadoop database. Apache Flume has an AMQP
plugin that can be used to create a RabbitMQ source from which to retrieve data for
further processing and storage in a Hadoop cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[130]

RabbitMQ integrations
RabbitMQ provides adapters for various other types of protocol in the form of
RabbitMQ plugins. Such protocols include STOMP, MQTT, HTTP, Websocket,
and others. Each adapter plugin follows a common usage pattern:

•	 The login information is passed in terms of the capabilities provided by the
particular protocol to the RabbitMQ broker for authentication

•	 SSL support is provided for most of the protocol adapter plugins
•	 Adapter plugins expose TCP ports on which they accept the connection

via the protocol that they implement, for example, by default, the STOMP
adapter is configured to use 61613 (TCP) and 61614 (SSL), and for MQTT,
these are 1883 (TCP) and 8883 (SSL)

•	 Adapter plugins use a particular syntax to specify the RabbitMQ endpoint
elements such as exchanges, queues, and bindings that are used when
protocol messages are translated to particular operations on the broker (such
as subscriptions on the sending of messages to the broker)

You can install protocol adapter plugins with the rabbitmq_plugins utility.
For example, the STOMP plugin comes with the RabbitMQ broker installation
and must be enabled with the following command:

rabbitmq-plugins.bat enable rabbitmq-stomp

In case you want to use RabbitMQ directly from the browser using Websockets, you
can additionally install the rabbitmq-web-stomp plugin, which is a bridge between
a SockJS Websocket server and the rabbitmq-stomp plugin to communicate with the
broker via Websockets. There is also a separate plugin called rabbitmq-web-stomp-
examples that demonstrates the use of rabbitmq-web-stomp using a web browser.

RabbitMQ deployment options
So far, we have been manually configuring our RabbitMQ instances. However, it's
common for many production systems to use automatic provisioning and management
of the configuration of components, including the message broker. There are a number
of ways in which we can deploy and manage a RabbitMQ broker instance:

•	 Installing and configuring the broker manually in a virtual machine that is
used to distribute it

•	 Automatically provisioning in a virtual container hosted directly on the
operating system using a tool such as Docker, which provides integration
with RabbitMQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[131]

•	 Deploying or using managed RabbitMQ instances in the cloud; many
platform-as-a-service cloud providers enable the use of such instances in the
form of messaging-as-a-service or RabbitMQ-as-a-service (such as the Google
Cloud and CloudAMQP platforms)

•	 Automatically provisioning a target operating system using a recipe written
in a domain-specific language with a provisioning tool such as Puppet or
Chef (both of them provide integration with RabbitMQ with some limitations
with regard to the target operating systems)

•	 Using a combination of the preceding points; automatically creating a
VirtualBox (or other) virtual machine or virtual container using Docker,
and automatically provisioning the RabbitMQ instances along with their
configurations using Puppet or Chef—this can be achieved with a tool such
as Vagrant

In this section, we will look at some of the most widely used tools that allow us to
deploy and configure the message broker using any of the preceding mechanisms.

Puppet
Download the open source version of the Puppet tool for your operating system
(we will be using the one for Windows) from the Puppetlabs site and install it:

puppet module install puppetlabs-rabbitmq

After you install Puppet, you can install the RabbitMQ module using the
following command. Note that the RabbitMQ Puppet plugin does not support a
Windows-based configuration at the time of writing this book; you can try it with
a Debian-based distribution such as RedHat or supply your own Puppet class that
does the provisioning on Windows.

Create a file named rabbitmq.pp with the following contents that specifies the
configuration of your RabbitMQ instance:

class { 'rabbitmq':
 port => '5666',
 service_manage => true,
 environment_variables => {
 'RABBITMQ_NODENAME' => 'RabbitMQ_Puppet',
 'RABBITMQ_SERVICENAME' => 'RabbitMQ_Puppet'
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[132]

To provision the instance on the same local machine, use the following command:

puppet apply rabbitmq.pp

Note that in a production scenario, you will typically use a master/client Puppet
setup rather than local provisioning.

Docker
A Docker file contains the instructions to build a docker image. A RabbitMQ broker
instance is started in a separate process running from a Docker image. The image
runs the RabbitMQ instance in a Docker container. As Docker contains Linux-specific
commands, you must run the image in a Linux environment (for example, Ubuntu).
The steps required in order to run the image are as follows:

•	 Download and install Docker. If you are using Ubuntu, you can install it
using the following command:
wget -qO- https://get.docker.com/ | sh

•	 Download and build the Docker Ubuntu container, and then download and
build the RabbitMQ Docker image from the Docker Hub repository using the
following commands:
sudo docker build -t="dockerfile/ubuntu" github.com/dockerfile/
ubuntu
sudo docker build -t="dockerfile/rabbitmq" github.com/dockerfile/
rabbitmq

•	 Run the RabbitMQ server from the image using the following command:
sudo docker run -d -p 5672:5672 -p 15672:15672 dockerfile/rabbitmq

The –p argument specifies port redirection. In the preceding case, RabbitMQ ports
5672 and 15672 from the docker image are mapped to ports 5672 and 15672 from
the host machine. The steps defined in the RabbitMQ image are as follows:

1.	 Specify the Ubuntu Docker container that will run the RabbitMQ
message broker.

2.	 Install the RabbitMQ message broker.
3.	 Enable the management plugin.
4.	 Define /data/mnesia and /data/log as the directories for the RabbitMQ

database and log files.
5.	 Start the RabbitMQ broker instance.
6.	 Expose the RabbitMQ broker instance and management plugin ports (5672

and 15672) from the container.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[133]

Vagrant
In case you decide to create a VirtualBox VM with RabbitMQ using a Vagrant script,
then perform the following steps:

1.	 Download and install Vagrant.
2.	 Download and install VirtualBox.
3.	 Create a puppet file that provisions the RabbitMQ message broker and

enables the management plugin.
4.	 Create a Vagrantfile that creates the VirtualBox VM and runs the Puppet script.
5.	 Fire up the VM using the following command:

vagrant up

Testing RabbitMQ applications
Testing is essential to ensure that a system works as expected. In this sense, the
message broker is no exception. In the next sections, we will cover very briefly the
different aspects of testing applications that use RabbitMQ as a message broker.

Unit testing of RabbitMQ applications
You can test applications that publish/subscribe to a RabbitMQ broker by isolating
client API calls to the broker using a mocking framework such as JMock or Mockito in
case of Java. The mocking library to use depends on the language that you are using
to interact with the broker, but, in general, you would mock calls to the broker as you
would with any other type of external system that is used by your application.

Integration testing of RabbitMQ applications
In case you are using only AMQP 0-9-1 features in your communication with the
RabbitMQ broker, you can use an embedded AMQP server. Apache Qpid provides
an embedded version that you can use in your integration tests. In order to use it,
you can include the following Maven dependency:

<dependency>
 <groupId>org.apache.qpid</groupId>
 <artifactId>qpid-broker</artifactId>
 <version>0.14</version>
 <scope>test</scope>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrations

[134]

In order to create, configure, and start a Qpid broker instance, you can use the
following code:

BrokerOptions configuration = new BrokerOptions("config.json");
Broker broker = new Broker();
broker.startup(configuration);

The config.json file specifies the Qpid configuration. After you start the AMQP
server, you can use a proper test configuration to redirect your AMQP client
communication to the embedded AMQP server in your test framework. In case you
are using RabbitMQ-specific extensions such as publisher confirms, you may want to
start up RabbitMQ as an external process in your test suite.

Case study: Integrating CSN with
external systems
As the workload of CSN continued to increase and the CSN team expanded as well,
a number of new enhancements to the system were introduced:

•	 The CSN web and worker nodes were refactored to use Spring AMQP
instead of the Java client library for communication with the broker, which
improved maintenance of the nodes.

•	 The browser plugin used to accept chat messages was removed in favor of
SockJS websockets used along with the newly provisioned rabbitmq-web-
stomp plugin. This further improved the maintenance of the system.

•	 A separate application was used to store data from the broker to the Oracle
database, but it was decommissioned in favor of the Java stored procedures
used to retrieve messages from the broker for the purposes of backup.

•	 More integration tests to test the communication with the message broker
were introduced as part of the system building.

•	 Puppet scripts to deploy the separate components of the system, including
the RabbitMQ broker, were created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[135]

Summary
In this chapter, we covered a lot of areas related to the integration of the RabbitMQ
message broker with other types of system. The Spring AMQP and Spring
integration frameworks were introduced as layers of abstraction on top of the
RabbitMQ Java client libraries. Demonstrations on the use of RabbitMQ with the
Mule and WSO2 ESBs were introduced following the pattern that we implemented
using the Spring integration framework. We discussed how to integrate different
types of database directly with the message broker and what types of adapter for
other protocols the RabbitMQ broker provides. In the end, we saw how different
provisioning tools provide support for RabbitMQ so that it can be deployed in a
purely automated manner and how to test applications using the broker.

Exercises
1.	 How does the Spring framework integrate with RabbitMQ?
2.	 How does RabbitMQ integrate with the Mule and WSO2 ESBs?
3.	 How can you create an Oracle stored procedure to publish/subscribe to a

RabbitMQ broker?
4.	 How does RabbitMQ provide support with other messaging protocols?
5.	 How can you provide integration of RabbitMQ with MySQL and Cassandra?
6.	 What deployment options do you have for RabbitMQ?
7.	 How can you test applications that communicate with a RabbitMQ

message broker?

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[137]

Performance Tuning
and Monitoring

Performance is a critical requirement for many applications. Each component in the
communication flow between the components in a system impacts performance,
including the message broker. In this chapter, we will focus our attention on
optimizing and monitoring the performance of the RabbitMQ message broker and
using various benchmarks to compare RabbitMQ against other brokers.

The following topics will be covered in this chapter:

•	 Performance tuning of RabbitMQ instances
•	 Monitoring RabbitMQ instances
•	 Comparing RabbitMQ with other message brokers

Performance tuning of RabbitMQ
instances
Tuning the performance of a system is, in many cases, a nontrivial process that
is conducted gradually over time. This also applies to the message broker itself.
The RabbitMQ team has done a pretty good job in optimizing the various bits
and pieces of the broker over time. One such example is topic exchanges. Version
2.4.0 significantly improved the performance of message routing from topic
exchanges using a tire data structure. Another one is the significant improvement in
performance predictability in version 2.8.1 during the heavy loading of the message
broker due to improved memory management. However, there are many scenarios
that require the tuning of the broker based on the usage patterns and properties of
the system, as we shall see in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[138]

To understand better how to tune the performance of our broker, let's take a look at
the standard three-tier broker setup:

Client domain Client domain

rabbit
instance 1

instance 3

RabbitMQ domain

Receiver

Sender

We can consider performance tuning at each level of message passing as follows:

•	 The sender may decide to optimize the way it establishes the connection to
the broker (the number of channels created, usage of multiple threads for
the creation of channels, and sending of messages), the size of the messages
(whether the compression or batching of messages is proper), whether to
use AMQP transactions or publisher confirms (which may hit message
performance in terms of reliable delivery—reliability typically always
implies a trade-off for performance), and message TTL (time to live).

•	 The network link between the sender/consumer and broker might be an
issue. While in systems where RabbitMQ is a component that provides
loosely-coupled communication between the system components running
on the same server or server cluster, network links may not be an issue,
but if we use RabbitMQ to process messages being sent from a system on a
remote network, this may be an issue. In this case, it is a shared responsibility
between the AMQP client and server to tune the way channels are created in
a connection or the size of messages processed in the channel. One possible
solution would be to establish a dedicated line between the sender/consumer
and broker. Network tuning may improve the communication link; network
optimizations are out of scope for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[139]

•	 Broker optimizations are for focus points when we discuss performance
tuning in terms of RabbitMQ. This involves a number of aspects such
as memory management, CPU utilization (in terms of multiple cores),
storage of persistent and transient messages on the disk, faster execution
of Erlang code from the RabbitMQ broker, impact of node synchronization
and queue mirroring in a cluster, per queue message TTL customization,
queue creation/deletion rates, message sending/consumption rates, and
complexity of binding key patterns.

•	 The consumer may use similar optimization techniques as the sender
with the addition of broker subscription management (such as preventing
excessive subscriptions to the broker).

To check the performance load, you need to prepare a maximum-sized volume of
messages of the expected size to send for the processing and measuring of latency
and throughput. Let's kick off our performance tuning guide by taking into account
these considerations.

Memory usage
Persistent messages are always written to the disk once they arrive on a queue, while
transient messages will be written to the disk under high memory consumption
(based on the memory limit specified for use by the RabbitMQ broker instance).
Each disk operation slows down the message processing. By default, RabbitMQ
is configured to use up to 40% of the physical RAM on the machine on which an
instance runs; although this is not guaranteed as it only implies a threshold at which
publishers are notified to slow down message sending (throttled). Be careful to set
the parameter properly in case multiple RabbitMQ instances are running on the same
physical/virtual machine. Assuming that you have a single instance running per
workstation, you can increase the parameter so that RabbitMQ may consume more
memory for its queues. This can be done either in the RabbitMQ configuration file or
using the rabbitmqctl utility as follows:

rabbitmqctl set_vm_memory_high_watermark 0.7

You should see a message that tells you whether the memory threshold has been set
successfully:

Setting memory threshold on rabbit@DOMAIN to 0.7 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[140]

In this case, we are assuming that a single instance is running on the workstation and
there are no other applications running on the same server. In case you run a cluster
of three nodes on the same machine, you may want to set the parameter to each of
them to something less than 0.33 (for example, 0.25):

rabbitmqctl set_vm_memory_high_watermark 0.25
rabbitmqctl -n instance1 set_vm_memory_high_watermark 0.25
rabbitmqctl -n instance2 set_vm_memory_high_watermark 0.25

Before RabbitMQ hits the memory limit in order to start the persistence of messages
on the disk (persistent messages are already stored on the disk as they are persisted
upon arrival in the queue, but they need to be removed from memory anyway),
saving to the disk starts earlier (by default, when 50% of the maximum memory
limit is reached). To change this threshold (let's say, to 80%), you need to set the
vm_memory_high_watermark_paging_ratio parameter per each RabbitMQ
node as follows:

rabbitmqctl eval "application:set_env
(rabbit, vm_memory_high_watermark_paging_ratio, 0.8). "

You can also set the parameter in the RabbitMQ configuration file before the node is
started. The memory consumption in the broker is affected by the number of client
connections, number of queues and messages in each of them, enabled plugins and
the amount of memory that they use, in-memory Mnesia metadata and message
store index, and the additional amount of memory used by the Erlang VM.

Faster runtime execution
Erlang supports the HiPE (High Performance Erlang) compilation for some
platforms that improves the performance of message processing by the RabbitMQ
broker. (At the time of writing, this was still in the experimental phase.) The
HiPe compiler is pretty similar in comparison to a server Java virtual machine—
more native optimizations are done on the startup of the server Java application
resulting in an improved runtime execution. In many scenarios, the start up time
of the RabbitMQ broker may not be critical so HiPe compilation may be a good
optimization. Behind the scenes, the Erlang VM precompiles the RabbitMQ modules
by passing the [native] parameter to the compiler that triggers the HiPE compilation.
On some platforms, however (such as Windows at the time of writing), the HiPE
compilation is not supported. In order to enable the HiPE compilation for RabbitMQ,
you can set the hipe_compile parameter to true in the RabbitMQ configuration file.
In case the HiPE compilation is not enabled for the particular platform where the
RabbitMQ instances are running, you will get a message in the instance logs that the
HiPE compilation is not performed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

Message size
Smaller messages can improve the latency (time to process a single message) and
throughput (message rate per period of time). To reduce the message size, you can
use a proper format for the marshalling and unmarshalling of messages, for example,
JSON instead of XML. Try to avoid additional information as part of the message in
order to reduce the size of the message further.

The maximum frame size of messages
A frame is a basic unit of data transfer in the AMQP protocol. There are different
types of AMQP frames used to establish the AMQP protocol life cycle. The transfer
frame is particularly used to transfer the message data between the RabbitMQ broker
and clients. The size of the message frame can affect the latency and throughout.
Typically, this value should not be changed but in case you have messages bigger
than 128 MB (the default maximum frame size), then message fragmentation
occurs—the message is split into multiple frames. The more fragmentation there
is, the less throughout there is for the messages. The minimum size of frames in
RabbitMQ is 4 KB. Although the smaller maximum size of frames may degrade the
throughput, it may improve the latency, but you need to measure the performance
of your setup. To change the maximum frame size, you can set the frame_max
parameter to a particular value (in bytes) in the RabbitMQ configuration file.

The maximum number of channels
The number of channels created from a connection to the RabbitMQ server can affect
the performance. An application can achieve better throughput if more channels
are used, and the application uses a channel-per-thread approach to send messages.
However, the more channels there are in the RabbitMQ message broker, the more
memory is consumed. To set the maximum number of channels that an application
can use, use the channel_max parameter in the RabbitMQ configuration file. The
default value is zero meaning that there is no limit for the number of channels that
an application can create.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[142]

Connection heartbeats
Connection heartbeats provide a mechanism to detect a dead TCP connection
from the client (sender/consumer) and RabbitMQ broker. The mechanism works
by setting a heartbeat timeout from the RabbitMQ client. (By default, it is set to
580 seconds, which can be a pretty big timeout depending on your messaging use
cases.) The RabbitMQ server sends a heartbeat frame to the client and waits for a
response. If either side of the connection detects that more than two heartbeats have
been missed, then a TCP connection is detected that can be typically handled by the
client by catching a proper exception (MissedHeartbeatException is thrown by
the RabbitMQ Java client). A heartbeat is sent every timeout/2 period of time. The
heartbeat timeout can be changed by either setting the heartbeat parameter in the
RabbitMQ configuration file or using a proper method in the RabbitMQ client library
to set a value for the heartbeat period before creating a connection to the broker.
Make sure that the heartbeat is set to at least a few seconds as the performance can
degrade (especially in cases when the broker performs intense message processing).

Clustering and high availability
Clustering can affect the performance of the broker in terms of several different
aspects. Heartbeats cannot be sent only between the clients and RabbitMQ broker
but also between nodes in a RabbitMQ cluster in order to detect node availability.
The net_ticktime parameter specifies the frequency of sending heartbeat messages
between nodes in the cluster. The default value is 60 seconds, which means that
a heartbeat is being sent roughly every 15 seconds (four times per net_ticktime
period). Decreasing this value to just a few seconds in a large cluster can have a
slight effect on the performance of the cluster. This applies to cluster_keepalive_
interval that is used to send keepalive messages from a node to all the other nodes
in the cluster and indicates that the node is up (the default is 10,000 milliseconds). A
much larger value than 60 seconds imposes a risk of detecting a dead node too late
in time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[143]

Another factor could be the rate of exchange/queue creation and deletion in a cluster.
As every queue creates a new Erlang process and the information about the queue
must be synchronized with all the nodes in the cluster, this can consume additional
resources and decrease the performance. Imagine that you have a large number of
queues and exchanges being created in a cluster, each one of them creates a separate
Erlang process on the cluster node on which it is created, and information about each
queue must propagate to each node in the cluster using Erlang message passing. Each
cluster node needs to persist the information about the exchanges, queues, and other
items in the cluster on the disk (depending on the type of node). Now, imagine that
you have a large cluster and each queue being created/deleted is mirrored over all
the nodes in the cluster, then you have a recipe for performance issues.

The following is a short list of guidelines considering the performance in terms of
clustering and high availability:

•	 Try to minimize the number of exchanges and queues created and deleted in
a RabbitMQ cluster.

•	 If you have a large enough number of disk nodes and you want to scale,
you can add RAM nodes instead of DISK nodes in order to improve the
performance in terms of exchange/queue creation.

•	 Mirror a queue on several other nodes in the cluster rather than all the nodes
in the cluster. The replication factor depends on your reliability constraints,
but replicating the queue contents over all the nodes in the cluster can hit the
performance seriously, especially when you have a large RabbitMQ cluster.

•	 Choose carefully which queues need to be mirrored and avoid the mirroring
of queues that need to imply message reliability.

•	 Last but not least, try to distribute the queues evenly among the nodes in
a cluster.

QoS prefetching
If you have been sending messages to a queue and one or a few consumers subscribe
to this queue, the consumers may try to fetch and buffer a large number of messages
for consumption before sending any acknowledgments, which can actually drain
resources on the consumer node and slow it down. To prevent this, you can use
the basic.qos operation during the channel creation (when creating the channel
from the client) to specify the maximum number of messages that can be prefetched
(buffered) by a consumer before they are acknowledged. For example, using the Java
client, you can set the prefetch count to 50 per channel consumer using the following
line of code:

channel.basicQos(50);

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[144]

A channel can have a prefetch count limit regardless of the number of consumers:

channel.basicQos(100, true);

The general recommendation is to set a higher prefetch count (for example, 40 or 50)
in order to improve the performance. However, a large prefetch count can prevent
the event distribution of messages among the consumers and so the value must be
tuned with caution.

Message persistence
Message persistence in RabbitMQ also affects the processing time for messages.
We already discussed that transient and persistent messages need to be persisted
on the disk by RabbitMQ. The persistence layer in RabbitMQ provides a message
store to store messages on the disk and also a queue index to keep information
about the location of a message in a queue and additional information (for example,
whether the message has been acknowledged or not) in memory. When under
memory pressure, the queue index may still preserve small messages in-memory
and flush only large messages to the message store. The default size of messages
that RabbitMQ tries to keep in-memory is 4 kilobytes and is specified by the queue_
index_embed_msgs_below parameter, which can be modified in the RabbitMQ
configuration file. Setting a larger value of the parameter can allow you to store
more messages in-memory, thus reducing IO operations. However, as each queue
index points to a segment file held in-memory that can store 16, 384, increasing
the value of the queue_index_embed_msgs_below parameter even slightly may
increase the memory consumption drastically on the broker with regard to improved
performance. Another way that the performance might be affected based on your
scenario would be using a custom backing store that allows you to store messages in
a manner different from the default backing store that writes them to the disk. This
can either improve or decrease the performance of your message broker. In Chapter
10, Internals we will demonstrate how to write a RabbitMQ plugin that uses a custom
database as a message store for RabbitMQ.

For more information about message persistence and backing stores used in
RabbitMQ, you can review the following posts from the RabbitMQ documentation:

•	 Check this link for persistence configuration: https://www.rabbitmq.com/
persistence-conf.html

•	 RabbitMQ backing stores: http://www.rabbitmq.com/blog/2011/01/20/
rabbitmq-backing-stores-databases-and-disks/

www.it-ebooks.info

https://www.rabbitmq.com/persistence-conf.html
https://www.rabbitmq.com/persistence-conf.html
http://www.rabbitmq.com/blog/2011/01/20/rabbitmq-backing-stores-databases-and-disks/
http://www.rabbitmq.com/blog/2011/01/20/rabbitmq-backing-stores-databases-and-disks/
http://www.it-ebooks.info/

Chapter 7

[145]

Mnesia transaction logs
The Mnesia database used by RabbitMQ supports the atomicity of operations via
transactions. Each transaction log is stored in the memory before being flushed to
the disk (in the database itself) and this is performed periodically by Mnesia. This
can affect the performance due to the number of disk writes. To reduce disk writes,
you can increase the size of the transaction log entries kept by Mnesia in-memory by
setting the dump_log_write_threshold parameter in the configuration file (default
value is 100).

Acknowledgements, transactions and
publisher confirms
In case you release the reliability constraints, you can improve the performance by
avoiding the usage of message acknowledgements, AMQP transactions, and publisher
confirms. In case this is not acceptable, you can at least release some constraints. For
publishers, you can use publisher confirms for a batch of messages. For consumers,
you can send a single acknowledgment (using the basic.ack AMQL command) for
multiple messages by specifying a multiple flag set to true and delivery_tag set
to 0 rather than sending an acknowledgement for each message separately. Prefer
publisher confirms instead of AMQP transactions for much better performance.

Message routing
The performance can be hit not only by the complexity of the binding key, but also by
the type of exchange that you use. Topic exchanges are slower than direct or fanout
exchanges, and a headers exchange can be slower than a direct exchange that is
dependent on the number of message keys used to determine where a message will
be routed by the headers exchange. A headers exchange can be slower than a topic
exchange. In case both types of exchanges are an option for your messaging scenario,
make sure that you measure the performance using both types of exchanges.

Queue creation/deletion
We already discussed that queue creation and deletion might be one of the factors
that affects the performance in terms of synchronization between nodes in a cluster.
There are other queue parameters that can affect the performance (both running a
single node and cluster). Queues can be created with the auto-delete flag set to
true. For example, using the Java client and an already created channel, you can
declare sample_queue as auto-delete:

channel.queueDeclare("sample_queue", false, false, true, null);

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[146]

If the queue does not have any consumers, it is never deleted. However, after the
already existing subscribers are removed (either unsubscribed from the queue or
dropped due to a connection failure), then the queue is automatically deleted and
must be created again. If you have a large number of such queues, then intensive
queue creation and deletion can affect message processing. You can also achieve
the same effect by setting a rather small value for the queue TTL (Time-to-live),
fro example, just a few milliseconds. In this case, after there are no consumers and
no operations to retrieve a message from the queue have been performed for the
specified TTL period of time, then the queue is dropped. The following example sets
a TTL of just five milliseconds on the sample_queue queue when it is declared using
the x-expires parameter. Note that you can set it as a policy for all the queues using
the rabbitmqctl utility as well; refer to the RabbitMQ documentation.

Map<String, Object> args = new HashMap<String, Object>();
args.put("x-expires", 5).
channel.queueDeclare("sample_queue", false, false, false, args)

Queue message TTL
In order to avoid the saturation of a queue, which can slow down the processing of
subsequent messages and increase the risk of overconsumption when one or more
consumers are present as we already saw in QoS prefetching, we can set a per-queue
message TTL. The following example sets a message TTL for the sample_queue
queue using the x-message-ttl parameter set to two minutes:

Map<String, Object> args = new HashMap<String, Object>();
args.put("x-message-ttl", 120000).
channel.queueDeclare("sample_queue", false, false, false, args);

You can also set a per-message TTL but this will not solve the problem with queue
saturation as messages stay in the queue even after their TTL has expired and are
dropped when they reach the top of the queue (just before being consumed).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[147]

Alarms
Alarms are triggered by the RabbitMQ broker when memory or disk size limits are
exceeded. We already saw how to configure memory usage using set_vm_memory_
high_watermark. This parameter also specifies when producer throttling (intentional
slowing down of message sending) takes place. Producer connection can also be
blocked entirely in case a memory goes critically high; the management UI shows
this condition in the Connections tab for the blocked connections. Disk size can also
be an issue for the performance. By default, RabbitMQ requires at least 50 MB of free
disk space on the location of the RabbitMQ message store. If this threshold is hit, the
throttling of the producers and connection blocking starts taking place. A general
recommendation from the RabbitMQ documentation is to set the minimum free disk
size to the amount of memory installed on the machine. To do this, you can set the
disk_free_limit parameter in the RabbitMQ configuration file. You can also set a
value relative to the amount of memory on the machine by setting disk_free_limit
to {mem_relative, 1.0}. You should, however, check the RabbitMQ log files on the
particular node to make sure that RabbitMQ has managed to detect the size of the
memory on the machine properly. For example, on an 8 GB machine with a default
setting of 40% for the maximum memory limit for use by the broker, you can see
something similar to the following:

Memory limit set to 3241MB of 8104MB total.

You can also use the rabbitmqctl utility to check the current setting of the disk_
free_limit and set_vm_memory_high_watermark parameters:

rabbitmqctl status

This outputs a lot of additional information such as the number of used file
descriptors, used Erlang processes, and so on:

{vm_memory_high_watermark,0.4},
 {vm_memory_limit,3399178649},
 {disk_free_limit,50000000},
 {disk_free,87735959552},
 {file_descriptors,
 [{total_limit,8092},{total_used,4},{sockets_limit,7280},
{sockets_used,2}]},{processes,[{limit,1048576},{used,201}]},

If a memory or disk alarm has been raised, this will be displayed as part of the
preceding output; if no alarms have been triggered, the parameter is an empty list:

{alarms,[]}

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[148]

Now, you can see that when a memory or disk alarm triggers, the performance can
slow down drastically. So, apart from a decent amount of memory and large enough
limit of maximum memory for use by the broker, you also need a decent amount of
disk space to store transient and persistent messages along with a proper setting of the
minimum disk free space threshold taken into consideration by the message broker.

Network tuning
The RabbitMQ documentation mentions several network improvements that can
increase the message throughput with the most significant one being the TCP buffer
size. The operating system typically allocates memory automatically for a TCP
connection buffer, but you can explicitly specify the size of the TCP buffer used
by RabbitMQ connections using the RabbitMQ configuration. Another factor is
Nagle's algorithm that provides you with more efficient handling of really small TCP
packets. However, the algorithm can typically be disabled in case you don't send
small-sized TCP packets as this can even decrease the performance. The following
configuration of the tcp_listen_options parameter in the RabbitMQ configuration
sets the TCP buffers for the publisher/consumer connections to 256 KB and disables
the Nagle's algorithm explicitly (it is disabled by default in the later versions of
RabbitMQ clients but can be enabled when creating a connection from the client).
For example, ConnectionFactory in the Java client uses a SocketConfigurator
instance to configure the TCP socket to connect to the broker and disables the
algorithm by default on the socket with socket.setTcpNoDelay(true):

 {nodelay, true}
 {sndbuf, 262144},
 {recbuf, 262144}

In case you have a large number of connections, you can set this value to a smaller
value and also increase the number of file handles used by the RabbitMQ instance.
To do this, you can use the ulimit command in Linux before starting up your Rabbit
instance. The following example sets the maximum open files handle to 65536:

ulimit -n 65536

Another tuning option suggested by the RabbitMQ documentation is the size of the
Erlang thread pool used to handle IO operations. A general recommendation is to
use at least 12 threads per core. To set a value, you can set the following environment
variable prior to starting the broker (in this example, we set the value to 96 for an
eight-core machine):

RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS="+A 96"

However, you don't have any guarantees that increasing the value will improve the
throughput; you need to do the proper measurements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[149]

Client tuning
You can improve the publisher/consumer performance in terms of message
publishing or message consumption using more threads to create channels to the
message broker. In terms of consumers, you must be careful when you share a
channel among multiple threads (each using a separate set of queues) and you have
QoS enabled for the shared channels. This can introduce unpredictable behavior
among the consumers. Another case is when you have multiple subscriptions from
different threads and you need to acknowledge multiple messages at once, this
requires proper coordination among consumer threads, which will increase the
complexity of your consumer.

Performance testing
We already discussed a variety of tuning options and we can use this knowledge to
create a proper strategy for the performance tuning of our RabbitMQ instance/cluster.
The process can be divided roughly into two phases executed iteratively:

•	 Perform a RabbitMQ optimization as suggested in the previous sections, such
as changing a configuration parameter, policy, or a routing pattern, reducing
the message size, or increasing system resources such as RAM or disk space
(along with tuning of the proper RabbitMQ parameters).

•	 Measure the performance of your broker's setup and see if the performance
improves. Always consider conducting performance tests on the maximum
performance limits in non-peak hours even with the risk of crashing your
system.

An ideal scenario would be if you have a test environment that mimics your
production environment as closely as possible, and you can measure the
performance over this setup and apply settings to the real environment without
disrupting users or, even better, have a load balancer that would allow you to
measure and tune the performance on only one node/cluster while the other
nodes/clusters continue to operate normally. Unfortunately, this is not always the
case, so you may need to do performance measurements and load testing directly on
your production environment—better finding a bottleneck sooner than discovering
it later the hard way. When conducting performance testing, you can consider the
following basic factors and do proper combinations on any of them (based on your
use cases):

•	 The size of messages
•	 The number of messages
•	 The type of messages (transient/persistent)

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[150]

•	 The number of connections
•	 The number of channels
•	 The number of producers and consumers
•	 The ratio of the number of producers and consumers
•	 The number of pre-existing messages in a queue or set of queues

Typically, you try to use a tool that suits your own needs in terms of performance
testing or use an already existing one. We will first briefly cover the PerfTest Java
utility that comes with the RabbitMQ Java client and see how to use it in order
to conduct performance measurements of our RabbitMQ message broker setup.
Then, we will see how to build our own tool on top of PerfTest in order to execute
performance tests against our current message broker setup in a loosely coupled
manner (independent of the message broker implementation) and see later how to
extend this tool with support for additional message brokers.

You can download the RabbitMQ Java client by cloning the rabbitmq-codegen and
rabbitmq-java-client GitHub repository. You also need to install Python 2.x and
the latest version of Ant in order to build the Java client (Python 3.x is not supported
at the time of writing this book). To download and build the project after you have
installed Python and Ant, execute the following:

git clone https://github.com/rabbitmq/rabbitmq-codegen
git clone https://github.com/rabbitmq/rabbitmq-java-client
cd rabbitmq-java-client
ant dist

You can then either include the rabbitmq-java-VERSION JAR in the build path
of your project (and use it with a testing library such as JUnit or TestNG to build
your performance test suite or build a custom tool on top of it) or execute the
PerfTest utility directly from the command line and observe statistics. The following
example shows the available options for the PerfTest utility in Windows (in a Linux
distribution, you can use the runjava.sh script alternatively):

cd build/dist
runjava.sh com.rabbitmq.examples.PerfTest –help

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[151]

As you can see, it takes into account many of the factors that can affect the performance
and we already covered this in this section. In addition, it allows you to set different
criteria to conduct performance measurements including the prefilling of queues
with messages. It lacks features for the testing of the performance in a cluster, such as
setting up mirroring policies or precreating multiple queues with proper distribution
over the cluster nodes. However, you can easily build your own tool on top of PerfTest
that does that for you. Let's assume that we have our three-node RabbitMQ local
cluster up and running. The tool performs the following functions:

•	 It starts up a number of consumers in separate consumer threads; only one
consumer is started by default

•	 It starts up a number of producers in separate producer threads; only one
producer is started by default

•	 It starts sending messages from the producers and consuming them from
the consumers

•	 It displays the collected statistics for the time period (starting with one
second) and the number of sent and consumed messages for this period
along with the minimum, average, and maximum latency for a message

Before running the tool, you must take into account several important facts:

•	 If you specify the number of messages to the publisher, be sure to specify the
same or smaller number of messages to be consumed from the consumers;
otherwise, the tool will hang and will not display any statistics (at least one
consumer will still be waiting for messages). For example, if you have one
producer and you want to send 10,000 messages to two consumers, you must
specify a value of 50,000 or less for the consumer message count.

•	 If you specify the number of messages to the producer, be sure to specify a
large enough amount of messages (that will require more than a second of
processing) in order to get accurate statistics; for a small amount of messages,
PerfTest will not give you accurate statistics.

The following example runs the tool with auto-acknowledgment by sending
messages from a single producer and binding a single consumer:

cd build/dist
runjava.bat com.rabbitmq.examples.PerfTest -a

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[152]

We can observe the following result:

starting consumer #0
starting producer #0
time: 1.000s, sent: 23959 msg/s, received: 20884 msg/s, min/avg/max
latency: 210
/65998/93740 microseconds
time: 2.000s, sent: 51274 msg/s, received: 51371 msg/s, min/avg/max
latency: 495
19/59427/94140 microseconds
time: 3.000s, sent: 53224 msg/s, received: 52846 msg/s, min/avg/max
latency: 487
12/57278/68175 microseconds
time: 4.000s, sent: 53228 msg/s, received: 53752 msg/s, min/avg/max
latency: 477
22/56663/65392 microseconds
time: 5.000s, sent: 53878 msg/s, received: 53533 msg/s, min/avg/max
latency: 487
26/57483/70630 microseconds
…

You can see that after the first second, we produce and consume roughly about
52,000 messages per second with auto-acknowledgement enabled. Now, let's execute
the same test with the acknowledgment of each message from the consumer:

runjava.bat com.rabbitmq.examples.PerfTest

We can observe the following result:

starting consumer #0
starting producer #0
time: 1.000s, sent: 15088 msg/s, received: 11151 msg/s, min/avg/max
latency: 262
6/133696/214058 microseconds
time: 2.001s, sent: 25932 msg/s, received: 23126 msg/s, min/avg/max
latency: 137
341/213911/272298 microseconds
time: 3.001s, sent: 26605 msg/s, received: 22065 msg/s, min/avg/max
latency: 249
500/333672/455356 microseconds
time: 4.002s, sent: 22690 msg/s, received: 19948 msg/s, min/avg/max
latency: 444
164/570170/643165 microseconds
time: 5.002s, sent: 24013 msg/s, received: 20410 msg/s, min/avg/max
latency: 562
357/654099/717019 microseconds
…

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[153]

You can see now that the performance drops more than twice (roughly about
21,000 messages per second) with acknowledgments from the consumer, which is a
significant performance hit. Let's also make messages persistent before running the
performance measurement:

runjava.bat com.rabbitmq.examples.PerfTest -f persistent

We can observe the following result:

starting consumer #0
starting producer #0
time: 1.004s, sent: 11297 msg/s, received: 6623 msg/s, min/avg/max
latency: 3168
/227397/373579 microseconds
time: 2.006s, sent: 15388 msg/s, received: 11577 msg/s, min/avg/max
latency: 338
389/456810/586714 microseconds
time: 3.006s, sent: 13493 msg/s, received: 10476 msg/s, min/avg/max
latency: 570
519/711663/886369 microseconds
time: 4.006s, sent: 12850 msg/s, received: 9844 msg/s, min/avg/max
latency: 8203
60/1052631/1172428 microseconds
time: 5.010s, sent: 14719 msg/s, received: 11384 msg/s, min/avg/max
latency: 113
1484/1183177/1235015 microseconds

This is even worse: about 10,000 messages per second when message persistence
takes place. You can specify further options such as publisher confirms, number
of consumers/producers, messages, and others depending on your setup and
messaging requirements.

The following example allows you to predict what would be the relative time to
produce and consume 1,000,000 messages of size 4 KB using a single producer and
consumer without acknowledgments:

runjava.bat com.rabbitmq.examples.PerfTest -a -C 1000000 -D 1000000 -s
4096

On the sample three-node RabbitMQ cluster, it took about 20 seconds to process all
the messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[154]

Monitoring of RabbitMQ instances
We have been discussing various performance tuning tips that would allow us to
create a more scalable broker setup. However, in order to be able to observe how our
setup behaves in various scenarios, it is not sufficient to do only partial performance
measurements using PerfTest, a custom performance tool, or even a third-party
performance-testing solution. In a production environment, we would typically want
to have a real-time monitoring solution that would allow us to observe how our
broker behaves at any point in time enabling us to take measures as fast as possible
when something goes wrong with our RabbitMQ instances.

The RabbitMQ management plugin provides you with a good real-time overview of
the resource utilization of the instances of a cluster and the message rates per queue
or exchange. However, we may want to have a central monitoring infrastructure that
monitors all the parts of our infrastructure, including the message broker. Moreover,
we may want to make use of advanced features provided by a typical monitoring
solution such as the ability to receive notifications (e-mail, SMS, and so on) when
something wrong happens with the broker such as a failed RabbitMQ instance or an
exceeded memory / CPU / free disk threshold. For this reason, we can leverage a
monitoring solution to do the job.

We will briefly discuss the capabilities provided by the management plugin, and
then we will see how to monitor RabbitMQ using Nagios, Monit, or Munin assuming
that we are running our RabbitMQ instances in a Linux environment.

The management UI
When you navigate to the Overview tab of the RabbitMQ management web interface
and click on a node, you can observe the resource consumption by this node in real
time under the Statistics section:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

You can observe the number of file descriptors or socket descriptors that are used,
Erlang processes, and memory currently used by the message broker along with the
current free disk space. On the same page, you can observe more information about
the distribution of memory among the different components of the message broker
under the Memory details section by clicking on the Update button first in order to
take a memory snapshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[156]

You can also check the message rates from Queues and Exchanges by clicking on a
particular queue or exchange.

Nagios
Nagios is an open source system monitoring application that provides a number
of plugins to extend its capabilities along with various types of integrations with
different network protocols and applications. In order to install Nagios in Ubuntu,
you can use the following command:

sudo apt-get update
sudo apt-get install nagios3 nagios-nrpe-plugin

When prompted during the installation, specify a proper password for the Nagios
administrative panel. To check whether the Nagios service is running, execute the
following command:

sudo service nagios3 status

You should now be able to log in to the Nagios administrative interface from
http://localhost/nagios3 and provide the nagiosadmin user along with the
password that you specified during the installation. The next thing to do is to install
some Nagios health checks (or write your own if the installed ones are not proper):

git clone https://github.com/jamesc/nagios-plugins-rabbitmq
sudo chown -R nagios:nagios nagios-plugins-rabbitmq/
mv nagios-plugins-rabbitmq /usr/lib/nagios/plugins/
sudo apt-get install libnagios-plugin-perl
sudo apt-get install libnagios-object-perl
apt-get install perl-Nagios-Plugin
apt-get install libreadonly-xs-perl
sudp perl -MCPAN -e 'install Bundle::LWP'
perl -MCPAN -e 'install Monitoring::Plugin'
sudo cp -R /usr/share/perl/5.14.2/CPAN/LWP/ /etc/perl/
sudo cpan install JSON

In short, the process described in the preceding commands is as follows:

1.	 We download the sources of the health checks from the nagios-plugins-
rabbitmq GitHub repository. You can see the available checks (provided as
Perl scripts) under the nagios-plugins-rabbitmq/scripts directory; they
use the RabbitMQ management REST API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

2.	 We change the permissions of the sources and move them to the Nagios
plugins directory.

3.	 We install the Monitoring:Plugin Perl plugin along with the additional
dependencies that is needed in order to write plugins for Nagios under Perl;
this is required as the RabbitMQ health checks that we downloaded are
provided as Perl scripts that depend on this library.

To verify that you can run a check, you can execute the following:

cd nagios-plugins-rabbitmq/scripts
./check_rabbitmq_server

If you are prompted to provide a hostname, then check whether your compiles are
fine. You need to define a particular command using this script in the commands.cfg
configuration file of Nagios:

sudo vim /etc/nagios3/commands.cfg
define command {
 command_name check_rabbitmq_server
 command_line /usr/lib/nagios/plugins/nagios-plugins-rabbitmq/scripts/
check_rabbitmq_server -H localhost --port=15672 -u guest -p guest
}

You can now restart the service with the following:

sudo service nagios3 restart

When you navigate to the Configuration menu under the System section,
select Commands from the dropdown and click on view; you should see the you
check-rabbitmq-server command in the list. In a similar way, you can define the
other already provided RabbitMQ checks if you need them to monitor.

You can create a service definition that uses the command and allows you to specify
which groups you would like to notify, for example, in case the RabbitMQ server
goes down. You can do this with the other RabbitMQ health checks as well. You
can also write your own health checks for RabbitMQ, for example, using Java and
RabbitMQ management REST API or the rabbitmqctl utility.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[158]

Monit
Monit is a Unix utility to monitor processes. You can also use it to monitor the
RabbitMQ instance process in a pretty straightforward manner. Monit requires a pid
file that stores the process ID for the currently running process. In the earlier versions
of the rabbitmq-server script init script under /etc/init.d, you had to add the
creation and deletion of this pid file manually upon the service startup/shutdown.
However, the later versions of RabbitMQ store a pid file for the RabbitMQ Erlang
process under the /var/run/rabbitmq/pid directory.

In order to install Monit, execute the following command:

sudo apt-get install monit

You can then add the following configuration to the /etc/monit/monitrc file in
order to monitor the RabbitMQ process from the localhost:

set httpd port 2812 and
use address localhost
allow localhost
allow @monit
allow @users readonly

CHECK PROCESS rabbitmq-server WITH PIDFILE /var/run/rabbitmq/pid
 GROUP rabbitmq
 START PROGRAM "/usr/sbin/service rabbitmq-server start"
 STOP PROGRAM "/usr/sbin/service rabbitmq-server stop"
 IF DOES NOT EXIST FOR 3 CYCLES THEN RESTART
 IF FAILED PORT 5672 4 TIMES WITHIN 6 CYCLES THEN RESTART

You can start monit in the background with the following command:

sudo service monit start

sudo monit

You can then check the status of the monited processes (including the Erlang process
of RabbitMQ) using the following command:

sudo monit status

You should see an output similar to the following:

Process 'rabbitmq-server'
 status Running
 monitoring status Monitored
 pid 1046
 parent pid 1039

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

 uptime 6d 12h 6m
 children 2
 memory kilobytes 13680
 memory kilobytes total 14484
 memory percent 0.6%
 memory percent total 0.7%
 cpu percent 0.0%
 cpu percent total 0.0%
 port response time 0.000s to localhost:5672 [DEFAULT
via TCP]
 data collected Mon, 31 Aug 2015 01:47:59

Munin
You can use Munin as a nice alternative to Nagios for the monitoring. The following
command installs Munin in Ubuntu (note that the Apache HTTP server must also
be installed):

sudo apt-get install apache2
sudo apt-get install munin

You must then edit the Munin configuration:

vim /etc/munin/munin.conf

Uncomment the following and change the value of the htmldir attribute to
/var/www/munin:

dbdir /var/lib/munin
htmldir /var /www/munin
logdir /var/log/munin
rundir /var/run/munin

tmpldir /etc/munin/templates

Add the following to the Munin configuration file in order to enable monitoring on
the localhost:

[MuninMonitor]
 address 127.0.0.1
 use_node_name yes

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[160]

Open the Munin Apache configuration and change the alias to allow external
connections:

sudo vim /etc/munin/apache.conf
Alias /munin /var/www/munin
<Directory /var/www/munin>
 Order allow,deny
 #Allow from localhost 127.0.0.0/8 ::1
 Allow from all
 Options None

Create the /var/www/munin directory, change permissions to the munin user and
group, and finally restart the apache2 and munin-node services:

sudo mkdir /var/www/munin
sudo chown munin:munin /var/www/munin
sudo service munin-node restart
sudo service apache2 restart

If you navigate to http://localhost/munin/, you should be able to see the Munin
administrative interface:

Now, we need to install the Munin RabbitMQ set of plugins. To do so, execute the
following commands in order to download the Munin plugins directly to the Munin
plugins directory:

cd /etc/munin/plugins/
sudo git clone https://github.com/ask/rabbitmq-munin
sudo cp rabbitmq-munin/* .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[161]

Add the following configuration to the /etc/munin/plugin-conf.d/munin-node file:

sudo vim /etc/munin/plugin-conf.d/munin-node
[rabbitmq_connections]
user root

[rabbitmq_consumers]
user root

[rabbitmq_messages]
user root

[rabbitmq_messages_unacknowledged]
user root

[rabbitmq_messages_uncommitted]
user root

[rabbitmq_queue_memory]
user root

Finally, restart the munin-node service and check whether you have the munin
plugins available from the administrative interface:

sudo service munin-node restart

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning and Monitoring

[162]

Comparing RabbitMQ with other
message brokers
It is not uncommon that when it comes to choosing a message broker for your
system, you may not choose RabbitMQ as a proper solution without any comparison
with other message brokers. Although RabbitMQ is a great technology, it can turn
out that there is a better message broker (either in turns of features or performance)
based on your requirements. For this reason, you can benchmark RabbitMQ against
other message brokers such as Qpid, ActiveMQ, ZeroMQ, HornetMQ, and Kafka,
just to name a few. For this, you can follow the approach provided by the PerfTest
tool and build a wrapper utility (that can abstract PerfTest for RabbitMQ) that allows
you to produce and consume messages of different numbers and sizes on each of the
brokers that you would like to benchmark along with RabbitMQ.

Case Study : Performance tuning and
monitoring of RabbitMQ instances in
CSN
The CSN team decided to scale the system both vertically and horizontally in terms
of the RabbitMQ message broker by introducing more RAM and disk space on
each of the RabbitMQ instance servers and change the RabbitMQ configuration
parameters accordingly so that the broker can use more memory and disk space, if
needed. The team also decided to introduce more RAM nodes for the chat queues
along with a deployment of Nagios to monitor all the parts of the system (including
the message broker) and send notifications to the team in case of issues with resource
utilization based on defined thresholds.

Summary
In this chapter, we provided a list of performance tuning tips that can be used to
build a proper approach for the tuning of the performance of the RabbitMQ message
broker. We discussed how to measure the performance using the PerfTest utility
provided by the RabbitMQ Java client and monitor the performance in real time
using either the management interface or third-party monitoring solution, such
as Nagios, Monit, or Munin. At the end, we discussed how we can compare the
performance of RabbitMQ against a few other message brokers that are widely used
in practice and compete against RabbitMQ.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[163]

Exercises
1.	 How can you optimize the performance of a single RabbitMQ instance?
2.	 How can you optimize the performance of a single RabbitMQ cluster?
3.	 How do acknowledgments and publisher confirms affect the performance?
4.	 What tool can you use to measure the performance of a RabbitMQ instance?
5.	 How can you set memory and disk free limits per RabbitMQ instance?
6.	 What is QoS prefetching and how does it affect the performance?
7.	 How do message persistence and message TTL affect the performance?
8.	 How can you monitor memory, disk, and CPU consumption of a

RabbitMQ instance?
9.	 How can you evaluate RabbitMQ against other message brokers in terms

of performance?
10.	 Is RabbitMQ better than ActiveMQ or ZeroMQ in terms of performance?

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[165]

Troubleshooting
Running and maintaining a system successfully requires a good understanding
of its components along with the various utilities that can be used to troubleshoot
problems occurring in any of these components. In this chapter, we will look into some
techniques that can be applied to troubleshoot the problem that is occurring with your
RabbitMQ instances along with several common issues occurring in practice.

The topics to be covered in the chapter are as follows:

•	 General troubleshooting approach
•	 Problems with starting/stopping the RabbitMQ nodes
•	 Problems with message delivery

General troubleshooting approach
As RabbitMQ instances run on top of the Erlang virtual machine, we can leverage
the troubleshooting utilities provided by Erlang to troubleshoot problems occurring
in the message broker. The variety of errors occurring may range from problems
relating to starting/stopping the broker instance to performance issues—we already
covered performance tuning and monitoring in the previous chapter; therefore,
you can already apply that knowledge to troubleshooting. We will use a top-down
approach to troubleshoot issues, as follows:

1.	 Check the status of a particular node.
2.	 Inspect RabbitMQ logs.
3.	 Check the RabbitMQ community mailing list or ask in the IRC chat.
4.	 Use Erlang utilities to troubleshoot a particular node.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[166]

Checking the status of a particular node
You can check the status of a particular node using the rabbitmq utility as follows:

rabbitmqctl.bat -n instance1 status

In the preceding example, we are checking the status of the instance1 RabbitMQ
node. You will observe an output of the status command similar to the following
(we are omitting resource-related statistics, such as memory usage and number of
processes, as we already covered them in the previous chapter):

[{pid,10312},
 {running_applications,
 [{rabbitmq_shovel,"Data Shovel for RabbitMQ","3.4.4"},
 {rabbitmq_management_agent,"RabbitMQ Management Agent","3.4.4"},
 {rabbit,"RabbitMQ","3.4.4"},
 {os_mon,"CPO CXC 138 46","2.3"},
 {gen_smtp,"An erlang SMTP server/client framework",
 "0.9.0-rmq3.4.x-61e19ec5-gita62c02e"},
 {ssl,"Erlang/OTP SSL application","5.3.8"},
 {public_key,"Public key infrastructure","0.22.1"},
 {crypto,"CRYPTO","3.4.2"},
 {mnesia,"MNESIA CXC 138 12","4.12.4"},
 {amqp_client,"RabbitMQ AMQP Client","3.4.4"},
 {xmerl,"XML parser","1.3.7"},
 {asn1,"The Erlang ASN1 compiler version 3.0.3","3.0.3"},
 {sasl,"SASL CXC 138 11","2.4.1"},
 {stdlib,"ERTS CXC 138 10","2.3"},
 {kernel,"ERTS CXC 138 10","3.1"}]},
 {os,{win32,nt}},
 {erlang_version,
 "Erlang/OTP 17 [erts-6.3] [64-bit] [smp:8:8] [async-
threads:30]\n"}

In the preceding piece of output, you can observe a lot of useful information, such as
the following:

•	 RabbitMQ message broker version
•	 Erlang distribution
•	 Operating system
•	 RabbitMQ Erlang applications along with their versions

This is a good starting point to troubleshoot.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[167]

Inspecting the RabbitMQ logs
The RabbitMQ logs are located in the logs directory by default in the RabbitMQ
installation directory in Windows or in the /var/log/rabbitmq directory in Unix-
like operating systems. This location can be changed by setting the RABBITMQ_LOG_
BASE environment variable. You can inspect the error logs for more detailed errors
that are related to either the particular instance or in regard to communication with
other nodes in the cluster. The RabbitMQ logs can be rotated using the rabbitmqctl
utility with the rotate_logs command. Along with the RabbitMQ log file for the
node, there is an alternative log file (ending with an SASL suffix), which is generated
by the Erlang SASL (System Architecture Support Libraries) application libraries
that provide different forms of logging reports, including crash reports.

The following message specifies that free disk monitoring (required for comparison
against the free disk threshold, set by the disk_free_limit configuration
parameter) is not supported on the platform that runs the RabbitMQ node:

=INFO REPORT==== 2-Sep-2015::20:41:47 ===
Disabling disk free space monitoring on unsupported platform:
{{'EXIT',{eacces,[{erlang,open_port,
 [{spawn,"C:\\Windows\\system32\\cmd.exe /c
dir /-C /W \"d:/software/RabbitMQ/rabbitmq_server-3.4.4/db/rabbit@
DOMAIN-mnesia\""},
 [stream,in,eof,hide]],
 []},
 {os,cmd,1,[{file,"os.erl"},{line,204}]},
 {rabbit_disk_monitor,get_disk_free,2,[]},
 {rabbit_disk_monitor,init,1,[]},
 {gen_server,init_it,6,[{file,"gen_server.
erl"},{line,306}]},
 {proc_lib,init_p_do_apply,3,
 [{file,"proc_lib.erl"},{line,237}]}]}},

In this particular example, the message is descriptive enough and can save you the
effort of looking further in the Erlang stack trace. In the SASL log file, the same error
looks similar to the following:

=CRASH REPORT==== 2-Sep-2015::20:41:45 ===
 crasher:
 initial call: rabbit_disk_monitor:init/1
 pid: <0.28939.1>
 registered_name: []
 exception exit: unsupported_platform
 in function gen_server:init_it/6 (gen_server.erl, line 322)
 ancestors: [rabbit_disk_monitor_sup,rabbit_sup,<0.143.0>]
 messages: []

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[168]

 links: [<0.262.0>]
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 1598
 stack_size: 27
 reductions: 646
 neighbours:

If you are trying to consume a message from a non-existent queue (for example,
test-queue), you may see a message such as the following in the logs:

=ERROR REPORT==== 20-Jul-2015::12:31:20 ===
Channel error on connection <0.514.0> (127.0.0.1:63451 ->
127.0.0.1:5672, vhost: '/', user: 'guest'), channel 2:
{amqp_error,not_found,"no queue 'test-queue' in vhost '/'",'basic.
consume'}

In case you lose a connection with a cluster node, you will get a message that can be
easily interpreted, as follows:

=ERROR REPORT==== 2-Sep-2015::23:12:27 ===
** Node instance1@Domain not responding **
** Removing (timedout) connection **

In case you are running a RabbitMQ cluster and you already have the web
management console started on the default port, you can hit the following problem
(as displayed in the RabbitMQ log file):

=ERROR REPORT==== 20-Jul-2015::12:25:41 ===
** Generic server rabbit_web_dispatch_registry terminating
** Last message in was {add,rabbit_mgmt,
 [{port,15672}],
 #Fun<rabbit_web_dispatch.1.31447083>,
 #Fun<rabbit_mgmt_app.0.15521781>,
 {[],"RabbitMQ Management"}}
** When Server state == undefined
** Reason for termination ==
** {{could_not_start_listener,[{port,15672}],eaddrinuse},
 [{rabbit_web_dispatch_sup,check_error,2,[]},
 {rabbit_web_dispatch_registry,handle_call,3,[]},
 {gen_server,try_handle_call,4,[{file,"gen_server.
erl"},{line,607}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,639}]},
 {proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,237}]}]}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[169]

This indicates that 15672 could not be opened (if another cluster node is running
the management console, you do not need to enable it for other cluster nodes
anyway, unless you want to specify a different port on which you want to run the
management plugin for the purpose of high availability). However, if the 15672 port
is not in use, this may indicate a mismatch between the Erlang distribution and the
RabbitMQ server, preventing the management plugin to open the 15672 port. This
leads us to use alternative mechanisms for further troubleshooting of the problem.

The RabbitMQ mailing list and IRC channel
At this point, you may have already discovered the output of the status command
and inspected the logs; however, you might still be clueless about what the reason
for the error that we saw in the previous section could be:

** Generic server rabbit_web_dispatch_registry terminating

Now, you may look for a similar issue on the rabbitmq-users or rabbitmq-discuss
mailing lists. If you don't find a similar issue suggested with a proper solution for
the problem, you can drop a message to the mailing list describing your problem
in detail and sending the RabbitMQ logs, along with the Erlang crash dump. The
Erlang crash dump file is generated when the Erlang VM abnormally terminates, and
it is generated in the directory where your RabbitMQ server starts (for example, the
sbin directory from the RabbitMQ installation in Windows).

Erlang troubleshooting
The erl_crash.dump file is created in the startup directory of the RabbitMQ server
when something goes wrong with the message broker. It is not the only means by
which you can troubleshoot the message broker using information that is provided
by the Erlang runtime, you can also directly connect to the Erlang process of the
RabbitMQ instance and query it for the purpose of troubleshooting.

An Erlang Primer
To be able to dig into the root cause of a problem requires a good understanding of
the Erlang programming language. In this section, we will cover the basics of Erlang
and make use of this knowledge in the last chapter of the book, when we discuss
how to create a plugin for RabbitMQ and how to implement RabbitMQ.

To begin, you need to add the <erlang_home>\bin directory to your PATH and
execute the following command from the command line:

erl

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[170]

The command will fire up the Erlang REPL (Read-Eval-Print-Loop) shell, where you
can type the Erlang commands. To connect to a particular node that is running on the
local workstation, you can provide the domain name of the instance with the –sname
option (sname stands for 'short names' and it is the default instance-naming format
that RabbitMQ uses), as shown in the following:

erl –sname rabbit@DOMAIN

In order to use the preceding command, you need to stop the rabbit@DOMAIN
node first.

You can start by evaluating the following expression using the Erlang interpreter
(don't forget the dot at the end of each expression):

(4 + 6) * 2.

Not only can the arithmetic expressions be evaluated. Let's transform the preceding
example using two variables, as follows:

X = 4.
Y = 6.
(X + Y) * 2.

If you reassign the X variable to 10, as follows:

X = 10.

You will get an error as shown in the following:

** exception error: no match of right hand side value 10

To reassign the variable, you need to first unbind it using the f() function:

f(X).

Note that you can unbind all variables by simply calling the following function:

f().

The preceding expression is not of much use; therefore, let's make a function out of it
from the Erlang shell:

F = fun(X,Y) -> (X + Y) * 2 end.

The fun keyword can be used to define an anonymous function. In the previous case,
this function is bound to the F variable. Now, you can evaluate the former expression
using the following function:

F(4,6).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[171]

Functions in Erlang are typically defined in modules. A module in Erlang is defined
as a file with an .erl extension, which is further compiled to an Erlang object file
with a .beam extension that represents the actual byte code that is executed by the
Erlang virtual machine. You can define the preceding function in a module called
sample (saved in a sample.erl file. Please note that the name of the file should
match the module declaration):

-module(sample).
-export([double/2]).
double(X,Y) -> (X+Y) * 2.

The –module declaration specifies the name of the module, followed by one or more
-export declarations that explicitly specify which functions from the module are
exported by the module and can be used by other modules. You should specify the
name of the function along with its arity (number of parameters that the function
accepts). Functions with the same name but different numbers of parameters are
treated as separate function declarations by Erlang. In the module, there is a double
function—this declaration is valid only in a module and cannot be executed from the
shell—you should use the fun keyword for this, as we saw earlier.

To compile the module, you must first navigate to the directory of your module
using the cd() function and then, the c() function, to compile the module to a beam
file. Assuming the sample.erl file is created in the D:\sources directory, you can
execute the following from the Erlang REPL in order to compile the module:

cd('D:/sources').(sample).

If compilation is successful, you will see a message as follows:

{ok,sample}

This is actually a tuple that is returned from the c() function, which indicates a
successful status (ok) and the name of the compiled module. A tuple, in Erlang, is a
container with a fixed number of elements that can be of different types. In order to
invoke the double function from the sample module, you can write the following:

sample:double(6,4).

Use the m() function or the module_info() method (which returns a list with the
result) that is available for each Erlang module to check for information, such as
available functions, about the module:

m(sample).
sample:module_info().

These can also be pretty useful utilities to inspect the existing modules in a system
such as RabbitMQ.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[172]

Variable definitions do not specify the type of the variable, it is determined at
runtime (as seen in the double function). We have the following types of data:

•	 integers: There is no limit to the size of an integer in Erlang, for example, 257.
•	 floats: For example, 45.6.
•	 atoms: They are used to create constants; you can think of them as values of

an enumeration or constant, for example, X, Y.
•	 booleans: true or false.
•	 references: They are used to create unique identifiers for objects.
•	 bit strings: They are used to represent sequences of bits as segments of

particular value that optionally have a length and a type, for example, <<
<<0:1,1:1, 0:1>>. In this particular example, the bit string represents the bit
sequence "010". Bit strings are very useful to parse binary streams of data, for
example, parsing a protocol message based on a protocol mask. As you can
see, this mechanism can be directly used to parse an AMQP message.

•	 binaries: They are simply bit strings, where each segment of the string is a
sequence of bits that is divisible by eight. For example, <<111, 172, 15>>.

•	 pids: They are used to represent process identifiers.
•	 ports: They are used to represent Erlang ports; essentially a separate

processes is started for an Erlang process that maps to an OS port and
provides a communication with the external world.

•	 funs: They are used to create function objects (closures).
•	 tuples: They are containers for a fixed number of items, possibly of

different types.
•	 lists: They are containers for a variable number of items, possibly of

different types.
•	 maps: They are containers for a key-value pair of items.
•	 records: They are containers for a mixed type of data, similar to C structs

and compiled to tuples.

Erlang uses the concept of pattern matching in order to bind one or more variables
to the particular values. It is used to assign variables (denoted by atoms) using more
complex expressions that direct assignment. Consider the following examples:

{X,b} = {a,b}.
[10,[Y],15] = [10,[[1,2,3]],15].
{X,X} = {a,b}.
[A,2] = [10].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[173]

The first expression binds X to a, the second expressions binds Y to the [1,2,3] list,
and the third and fourth expressions result in exceptions as pattern matching fails in
these cases. We will briefly cover error handling later in the chapter.

Another useful concept is list comprehensions, where you can iterate over a list and
return a modified list using a filter function and a generator for the elements of the
new list. Consider the following example:

[X+1 || X <- [4,5,6], X rem 2 == 0].

The result is the [5,7] list, all even elements are filtered and incremented by one
in the new list. We can rewrite the preceding example using a recursive function,
as Erlang enforces the functional programming style along with idioms derived
from languages such as Prolog; the language does not provide a looping construct.
The filter_list_sample function implements the same behavior as the list
comprehension using an if statement:

filter_list_sample(L) -> filter_list_sample_helper(L, []).
filter_list_sample_helper([], Res) -> Res.
filter_list_sample_helper([X|L], Res) ->
if
 X rem 2 == 0 ->
 filter_list_sample_helper(L, [X+1| Res]).
 true ->
 filter_list_sample_helper(L, Res)
end.

If you add this to the sample module that we created earlier, export the filter_
list_sample function from the module, and recompile it, you can invoke the
preceding function with the following:

sample:filter_list_sample([4,5,6]).

The result is returned in reverse order due to the recursion; implement a function
that reverses the resulting list as an exercise. Note that if you have multiple
definitions of the same function (in this case, filter_list_sample_helper), you
should separate them with a semicolon. Multiple expressions in the same function
are separated by a comma. You can also use the case expression instead of the if
expression in the preceding example, as shown in the following:

filter_list_sample_helper([X|L], Res) ->
case X rem 2 of
0 -> filter_list_sample_helper(L, [X+1| Res]).
 _ -> filter_list_sample_helper(L, Res)
end.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[174]

The underscore (_) indicates any match (in this case, this could be only 1).

There are many scenarios where Erlang may throw an error, and we can differentiate
between the three types of runtime errors, as follows:

1.	 regular errors: Thrown by an erlang:error() call. This is the equivalent
of a throw statement in the programming languages such as C++ or Java,
stacktrace is included as a part of the error.

2.	 throw errors: Thrown by a throw() function. This is typically used to exit a
deeply nested function call and does include a stacktrace rather it includes a
value that was handled earlier in the call stack.

3.	 exit errors: Thrown by an erlang:exit() call. This is used to signal that a
process is exiting (a value of normal passed to the function indicates that the
process exits normally, other exit codes indicate an error).

All the types of errors can be caught using a try … catch block. The following
example demonstrates the use of the different types of exceptions in Erlang:

exception_sample(Val) ->
 case Val of
 1 -> throw("Invalid value: 1").
 2 -> error("Invalid value: 2").
 3 -> exit("Invalid value: 3").
 _ -> "Success"
 end.

exception_handler(Val) ->
 try
 exception_sample(Val)
 catch
 error: Error -> {error, Error}.
 throw: Error -> {throw, Error}.
 exit: Error -> {exit, Error}
 end.

Export the exception_handler() function as part of the sample module and
execute it with different arguments to see how it behaves:

sample:exception_handler(1).
sample:exception_handler(2).
sample:exception_handler(3).
sample:exception_handler(4).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[175]

You should receive the following output:

{throw,"Invalid value: 1"}
{error,"Invalid value: 2"}
{exit,"Invalid value: 3"}
"Success"

When an Erlang process exits as a result of an error that is not handled by the
process, you will get a result that is in a format similar to the RabbitMQ node
crashing as RabbitMQ nodes are started as Erlang processes.

So far, we discussed the basic constructs of the language. However, Erlang excels
when it comes to distributed programming. Processes in Erlang are lightweight,
they are created by the Erlang VM without actually interacting with the underlying
operating system (and creating any OS-level threads or processes). Communication
between processes is possible via message passing. The Erlang VM takes the
responsibility of handling the process execution underneath on one or more CPUs
in the system on which the Erlang VM runs. Thus, reducing context switching' you
don't need to go to the kernel scheduler to switch between the currently executing
threads. This, and the ability to dynamically allocate process stacks (thus saving
the effort to reserve a lot of RAM), provides the possibility of creating thousands
of Erlang processes at once. If any two processes need to communicate on the same
machine, you can do it directly using the ! and receive expression in order to
exchange messages, as demonstrated in the following example:

sample_sender(Pid, Message) ->
 Pid ! Message.

sample_receiver() ->
 receive
 Message -> io:format(Message, [])
 end.

start() ->
 Preceiver = spawn(?MODULE, sample_receiver, []),
 spawn(?MODULE, sample_sender, [Preceiver, "Test message."]).

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[176]

We create a sender and receiver as separate processes in the start() method using
the spawn function that creates a process based on a module function, along with
the parameter passed to that function upon process creation. The ?MODULE macros
refer to the current module, you can think of the Erlang macros as C++ preprocessor
directives. The sample_sender() function sends a message using the ! operator to
the process identified by a particular pid (proportional–integral–derivative). The
sample_receiver() method uses the receive expression to wait for a message
and is blocked until a message is received. The message is printed on the standard
output using the built-in io:format Erlang function. You need to export all the three
functions from the sample module and run the demo using the following line of
code from the Erlang REPL:

sample:start().

In this particular example, the processes run in the same Erlang VM. However, if the
processes are started on a remote machine, then several concerns are further raised.
The most important issues to solve are as follows:

•	 How do we exchange the process identifiers among the processes? How are
the processes aware of each other?

•	 How can you prevent tampering of communication from a third party
among the processes?

The answer to the first question is the register() built-in function that allows you
to map a symbolic name to a process identifier. This mapping information is stored
in an Erlang register, and when a process needs to communicate with another remote
process, it must know the address of the machine where the other process resides
along with the symbolic name of the remote process. The rest is handled by Erlang
behind the scenes.

The answer to the second question is the Erlang cookies that we mentioned in the
earlier chapters when we talked about RabbitMQ clustering. Erlang cookies are
stored in an .erlang.cookie file and are used by the Erlang processes as a shared
secret. A node is not obliged to use the same cookie for all other remote nodes—a
different cookie can be specified for communication with a remote node. This can be
accomplished using the erlang:set_cookie() method that uses the remote node
identifier and Erlang cookie instance as arguments. To retrieve the current cookie
used by the node, you can use the erlang:get_cookie() method. In case no cookie
is in use, the method will return nocookie.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[177]

Our brief primer of the Erlang language should be sufficient in order to make use of
the utilities provided by the language for further troubleshooting of your RabbitMQ
instances. You can retrieve the name of the current node with the following command:

node().

You can also retrieve the names and the ports of the processes that are registered by
the EPMD (Erlang Port Mapper Daemon) process running on the same Erlang VM:

net_adm:names().

Assuming that we have started our three-node cluster on the same machine, we
should observe the following output:

{ok,[{"rabbit",25672},
 {"instance1",25701},
 {"instance2",25702}]}

The ports that you see for each node are the ports assigned to the Erlang processes
for each RabbitMQ instance (in the previous case, 20000 + the name of the RabbiqMQ
instance port).

We can also use the rpc:call function in order to execute a function in a particular
local/remote Erlang process (and this could be the process of a RabbitMQ instance).
You can also use the different Erlang utilities, such as the rpc:call() function,
to execute the commands on remote processes or retrieve the information about
these processes.

The Erlang crash dump
The Erlang crash dump file is created in the current working directory of a Rabbit
instance when it crashes. The crash dump file contains useful statistics that are
collected at the time of the crash along with the information about the processes that
are affected as part of the crash. The reason for the node failure is indicated by the
line starting with the word slogan. For example, the following command indicates
that there is a problem with starting up of a node (without providing more details as
a part of the reason):

Slogan: init terminating in do_boot ()

You can use the knowledge gained from the previous section to inspect the
information that is collected in the crash dump or better, use the Crashdump Viewer
GUI utility to inspect the crash dump. To start the utility, invoke the following
commnad from the Erlang REPL:

crashdump_viewer:start().

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[178]

After the tool is started, you will be prompted to select the crash dump file. After the
file is selected, the tool will divide the information from the file into proper sections
and tables for easier inspection, as follows:

We will expand further on the concept of troubleshooting when we discuss the
internal architecture of the message broker. If you get an error that contains: init
terminating in do_boot(), then there are several things that might be the
root cause of the problem (make sure that you analyze the crash dump for more
information on the problem):

•	 Insufficient permissions on some of the RabbitMQ folders and files.
•	 Corrupt RabbitMQ database. In this case, delete the contents of the

%APPDATA%\RabbitMQ folder (in Windows) and restore it using a recent
backup, if this is at all possible.

•	 Check the version of your Erlang installation and if it does not match your
OS architecture (32/64-bit), reinstall it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[179]

Problems with starting/stopping
RabbitMQ nodes
Consider that you have configured a running cluster with three nodes and one of
your nodes suddenly fails. When you try to bring up that node using the following:

rabbitmq-server.bat

You get the dreadful BOOT FAILED message along with an error description message
of timeout_waiting_for_tables and an Erlang stacktrace, as follows:

##########
 Starting broker...

BOOT FAILED
===========

Error description:
 {boot_step,database,
 {error,
 {timeout_waiting_for_tables,
 [rabbit_user,rabbit_user_permission,rabbit_vhost,
 rabbit_durable_route,rabbit_durable_exchange,
 rabbit_runtime_parameters,rabbit_durable_queue]}}}

Log files (may contain more information):
 D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/rabbit@MARTIN.log
 D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/rabbit@MARTIN-sasl.
log

Stack trace:
 [{rabbit_table,wait,1,[]},
 {rabbit_table,check_schema_integrity,0,[]},
 {rabbit_mnesia,ensure_schema_integrity,0,[]},
 {rabbit_mnesia,init_db,3,[]},
 {rabbit_mnesia,init_db_and_upgrade,3,[]},
 {rabbit_mnesia,init,0,[]},
 {rabbit,'-run_step/3-lc$^1/1-1-',2,[]},
 {rabbit,run_step,3,[]}]

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[180]

The error message tells you that there is something wrong while loading the data
from the Mnesia database; however, it doesn't give you enough information on the
exact cause of the problem. One thing you can do is that you can simply remove the
node database files from the rabbit@DOMAIN-mnesia and rabbit@DOMAIN-plugins-
expand folders that provide the storage of the Mnesia tables and the expanded plugins
that are used by the RabbitMQ node. If you have a recent backup of your Mnesia
database, you can try to use it to restore your database data. However, if using a
backup is not an option, you need to perform some more troubleshooting in order to
find and fix the problem. The first obvious thing to do is to inspect the RabbitMQ logs,
as suggested earlier. However, doing so may not always give you more information
than the error log that is displayed in the console. Moreover, there is a chance that your
Mnesia database is not corrupt. You can try the following options:

•	 If you are running a single (non-clustered) RabbitMQ node, you may try to
specify the full RabbitMQ node name, along with the hostname (if you have
changed the hostname of the machine on which you startup your nodes,
you may get timeout_waiting_for_tables when Mnesia tries to fire up),
as follows:
set RABBITMQ_NODENAME=rabbit@<DOMAIN>

•	 If you are running the node in a clustered environment and the other nodes
have not started, the RabbitMQ node may wait for the other nodes to start by
default within 30 seconds before throwing a timeout_waiting_for_tables
error message. In that case, you can try to startup the other nodes in the
cluster in 30 seconds from starting the current node and see if this resolves
the problem.

Another common issue that may prevent the startup of clustered nodes is network
partitioning. Consider that you can have a two- or three-node cluster and the
communication links between the nodes fail. Each node becomes isolated from
the other and thinks that the other nodes have failed and hence, becomes a master
node. If you fix the communication links between the nodes and try to restart them,
RabbitMQ will detect that there is more than one master node and startup of nodes
may fail with an incosistent database, running_partitioned_network error
message on subsequent master nodes that try to startup and join the cluster. You can
detect this condition by running the following command:

rabbitmqctl.bat cluster_status

If you see a non–empty partition in the partitions attribute from the log, then
a network partitioning was detected by RabbitMQ. In normal circumstances,
this list is empty:

Cluster status of node rabbit@DOMAIN...
[{nodes,[{disc,[instance1@Domain,instance2@Domain,rabbit@DOMAIN]}]},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[181]

 {running_nodes,[instance2@Domain,instance1@Martin,rabbit@DOMAIN]},
 {cluster_name,<<"rabbit@Domain">>},
 {partitions,[]}]

While each node can act as a standalone master, this means that it may define new
exchanges, queues, and bindings without the knowledge of other nodes. However,
if you want to restore the cluster, you need to select one node as the master and
rejoin the others to the cluster using this node. Before rejoining a node to the cluster,
you may also want to reset its state. Assuming that the rabbit@DOMAIN node is
your preferred master node, you can issue the following commands to rejoin the
instance1 node to the cluster:

rabbitmqctl –n instance1 stop_app
rabbitmqctl –n instance1 reset
rabbitmqctl –n instance1 join_cluster rabbit@DOMAIN
rabbitmqctl –n instance1 start_app

For more information on network partitioning, you can refer to the Network
Partitions entry in the RabbitMQ server documentation.

Another reason that your node may fail to startup is due to a resource that is already
used by another RabbitMQ instance running on the same machine. If this is a
network port that is already taken by the first instance, then the second instance will
fail to start. If the first instance is running, for example, the management plugin on
a default port and you try to start the second instance with the management plugin
enabled, you will get an error message similar to the following:

 ##########
Starting broker...

BOOT FAILED
===========

Error description:
 {could_not_start,rabbitmq_management,
 {could_not_start_listener,[{port,15672}],eaddrinuse}}

Log files (may contain more information):
 D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/instance1 .log
 D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/instance1 -sasl.log

{"init terminating in do_boot",{rabbit,failure_during_boot,{could_not_
start,rabb

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

[182]

itmq_management,{could_not_start_listener,[{port,15672}],eaddrinu
se}}}}

Crash dump was written to: erl_crash.dump
init terminating in do_boot ()

This is easily solved by disabling the management plugin for that instance.
Assuming that this is the instance1 instance, you can execute the following
before starting the node:

rabbitmq-plugins.bat -n instance1 disable rabbitmq_management

As discussed in the earlier chapters, the management plugin is aware of clustering.

Problems with message delivery
In certain broker configurations, it may happen that the messages are not delivered as
expected. This could either be due to a misconfigured queue TTL, or a poor network
combined with the lack of publisher confirms, or AMQP transactions to support
reliable delivery. To inspect what is going on with messages in the broker, you can
install the Firehose plugin that allows you to inspect the traffic flowing through the
message broker. You should be careful when enabling the plugin in a production
environment as it may slow down the performance due to the additional messages that
it sends to the amq.rabbitmq.trace exchange for each message entering the broker
and each message exiting it. The plugin is enabled for a particular node and vhost.
The RabbitMQ Tracer plugin builds on top of the Firehose plugin and provides a user
interface to capture and trace messages. You can review the additional configuration
options for both the plugins in the RabbitMQ documentation.

Summary
In this chapter, we covered the essential mechanisms to troubleshoot the problems
that may occur as part of a RabbitMQ instance. We discussed a general approach
towards troubleshooting, along with an overview of some common problems that
may occur during startup or shutdown of the message broker. For more detailed
troublshooting, we introduced the fundamentals of the Erlang programming
language and we will reuse that knowledge when we discuss how to extend
RabbitMQ. In the next chapter, we will further expand on the concepts that are
covered in this chapter by discussing how to troubleshoot security-related issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[183]

Exercises
1.	 How does the concept of troubleshooting apply in terms of RabbitMQ?
2.	 What problems may occur during the startup/shutdown of the

message broker?
3.	 What are the funs in Erlang?
4.	 How is Erlang handling the process creation?
5.	 What type of runtime exceptions do we have in Erlang?
6.	 How is an Erlang module created and compiled?
7.	 What information does the Erlang crash dump contain?
8.	 What is the Firehose plugin used for?

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[185]

Security
A system is as secure as its weakest component taking the message broker into
account. As RabbitMQ instances can be used to carry sensitive application data or
affect the stability of an entire system, we need to make sure that our RabbitMQ
deployments are secured properly.

The topics covered in this chapter are as follows:

•	 Types of threats
•	 Authentication
•	 Authorization
•	 Secure communication
•	 Penetration testing

Types of threats
There are several aspects in which the security of the message broker is affected.
RabbitMQ hasn't been planned to be exposed on the Internet initially; however, a
number of security concerns exist even with in-house deployments of the message
broker. We will stay away from this fact and not make assumptions on whether the
broker instances under consideration are accessible via the Internet or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[186]

Let's consider again the standard three-cluster diagram (along with an additional
remote broker instance) that we have been using so that we can see what security
issues may arise in practice:

Sender

Client domain Client domain

Receiver

rabbit
instance 1

instance 3

RabbitMQ domain

remote
instance

remote RabbitMQ domain

Can I exploit the
RabbitMQ client
(sender/receiver)?

Can I get access?
Do I have more privileges?
Can I sniff communication?
Can I flood the broker?
Can I exploit the AMQP
protocol?

Can I get physical access to a
RabbitMQ workstation?
Can I plug into the LAN and listen to
cluster communication?
Can I sniff communication over a
shovel or a federation link?
Is there a vulnerable plug-in I can
use to exploit the broker?

We can apply the following mechanisms in order to mitigate the identified threats:

•	 Authentication: This allows you to identify who connects to the
message broker.

•	 Authorization: This allows you to determine the set of privileges and
permissions for the authenticated user.

•	 Secure communication between the clients and the broker: By default,
messages are exchanged by the senders/receivers and broker instances in an
unsecure manner; however, RabbitMQ provides you with a mechanism to
establish secure SSL communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

•	 Secure communication between cluster nodes: Communication between
the cluster nodes in the form of Erlang messages is also unsecure, and
SSL communication can be established between instance nodes in a
RabbitMQ cluster.

•	 Secure communication between remote nodes: As federation links and
shovels provide a mechanism to mirror messages across instances over the
WAN in a client-server fashion in an unsecure manner, you can establish SSL
communication between them as well.

•	 Message encryption: If, by some chance, you cannot reliably secure all the
message broker communication channels using SSL, you can encrypt the
messages that are sent between the sender and consumer using a proper
encryption mechanism (for example, asymmetric encryption with the RSA
algorithm using a key of proper length, 2048, 4096, or others). Depending on
the mechanism used and performance requirements of the application, there
could be a trade-off between security and performance. This applies to the
previous cases when SSL communication takes place as well.

•	 Proper client settings: When we discussed performance tuning, we
discussed a number of settings for resource utilization of the broker. Many
of them can be applied in order to mitigate DoS or DDoS attacks that
target resource exhaustion on the message broker by means of sending
excessive number of messages, creating a huge number of connections (thus
preventing other clients from connecting), or sending an excessive number of
AMQP messages.

•	 Physical security: Physical access to the workstations where the message
broker is deployed should be properly restricted, and the disks where Mnesia
tables reside should be properly encrypted in order to mitigate the risk of
data leakage in case of theft (typically, in cases where the message broker
stores sensitive data passed through messages).

•	 Plugin security: Plugins can also expose vulnerabilities, so it is important
to use plugins from trusted sources that are updated on a regular basis or at
least do proper verification that the plugin isn't doing something malicious.

Vulnerability databases such as CVE (Common Vulnerabilities and Exposures) along
with other resources on the Internet could prove to be good sources of information
regarding known issues against which you can check production deployments of the
broker for possible security issues.

In the next sections, we will demonstrate other basic types of attacks and how to get
protection against them. Apart from the techniques, we will demonstrate that you need
to make sure that you have a message broker upgrade plan set in place. The RabbitMQ
team provides security fixes with upcoming releases of the message broker.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[188]

Authentication
Let's consider the default setup of a RabbitMQ instance. It comes with a default
guest user (with a guest password) known by anyone with basic knowledge about
the broker. Moreover, this user has an administrator tag giving them full access to
administer the broker, and, even worse, if the RabbitMQ instance port is visible to
the outside world, remote commands can be executed using the rabbitmqctl utility
on that workstation using the eval command. For this reason, it is advisable (not to
say mandatory) to remove the guest user in production deployments. Although the
latest versions of RabbitMQ allow only localhost access for the guest user, this still
imposes a high risk for insider attacks. RabbitMQ stores information about users in
an internal database (in the same location where Mnesia stores information about
transient and persistent messages by default). RabbitMQ authentication is provided
by means of the SASL (Simple Authentication and Security Layer) framework
that allows the communicating endpoints to negotiate authentication data before
authentication actually takes place. It is defined in the Internet standard RFC 4422.
The following diagram provides a high-level overview of how SASL works in terms
of a sender and the RabbitMQ message broker (note that the diagram is similar for
the message broker and consumer):

(1) client Initializes SASL
connection

(2) broker suggests
auth methods

(3) client selects auth
method and sends data

(4) client and server
exchange auth data

(5) client and server
exchange messages

(6) client and server
exchange messages

rabbitSender instance1

instance3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[189]

When the client initiates a connection to a RabbitMQ instance, the following
things occur:

1.	 The message broker suggests one or more authentication method to the
client. By default, the authentication method suggested by the server and
supported by all the clients is PLAIN, which is the most basic type of
authentication (equivalent to HTTP basic authentication). RabbitMQ client
libraries also provide a mechanism to specify the SASL configuration for the
client before trying to establish a connection with the message broker.

2.	 The client selects one of the methods and sends this information back to the
message broker.

3.	 The client and server start exchanging security information by means of
proper handlers depending on the authentication mechanism that is selected.
As the SASL framework provides a mechanism for pluggable authentication,
each particular authentication mechanism provides a set of server/client
handlers to establish and exchange security data. The number of steps in this
phase depends on the authentication method.

4.	 After the authentication mechanism is negotiated and the client is
authenticated successfully, the exchange of messages starts taking place.
SASL provides a mechanism to establish the confidentiality and integrity of
the messages exchanged between the client and server if this is negotiated by
them in the previous steps.

When a user is created from the management console, REST API, or the
rabbitadmin script by default, it is stored as part of the RabbitMQ instance and
the information about the user is propagated among the cluster nodes. In practice,
however, the instance can be configured to negotiate other types of authentication. If
the instance is deployed in an environment where many applications share the same
credentials (such as a large enterprise or even a system with multiple components),
then the instance may need to use an external service such as an LDAP (Lightweight
Directory Access Protocol) server or RDBMS for authentication. In this case, you
need to make sure that the same SASL configuration is applied among the cluster
nodes so that clients that need to reconnect to another cluster node are able to
negotiate and authenticate with the same authentication mechanism as the one used
when connecting to the original RabbitMQ instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[190]

In practice, SASL can be implemented in a more general way that allows the client
to authenticate the server (in this case, RabbitMQ) but this is not provided out of the
box by RabbitMQ (although a plugin with proper support by RabbitMQ clients can
provide this support). Currently, the following SASL methods are supported directly
(more information is present in the RabbitMQ documentation):

•	 PLAIN: This is the default one
•	 AMQPLAIN: This is the custom version of PLAIN as defined by the AMQP

0-8 standard
•	 RABBIT-CR-DEMO: This is the custom challenge response authentication
•	 EXTERNAL: This is currently supported by means of rabbitmq_auth_

mechanism_ssl that provides the ability to authenticate a client using the
client's public certificate

Configuring the LDAP backend
Let's see, for example, how to move from the default storage of RabbitMQ users to an
LDAP server using the OpenLDAP server distribution. First, download OpenLDAP
for the operating system of your choice (for Unix-based distribution, you either use
the package manager or go to http://www.openldap.org/, and for a Windows
port, you can go to http://sourceforge.net/projects/openldapwindows/). For
a Ubuntu-based installation, you need to install the slapd and ldap-utils packages
in order to install OpenLDAP using the following command:

sudo apt-get install slapd ldap-utils

The Windows installation comes with a convenient installer. After the LDAP
server is installed in Windows, you can start the server by running the <OpenLDAP_
install_dir>\libexec\StartLDAP.cmd script. After the OpenLDAP server is
started, navigate to the <OpenLDAP_install_dir>\sbin directory and run the
following utility in order to set a new root password for the LDAP server (the same
configuration applies to the other operating systems):

slappasswd.exe

You will be prompted to supply a proper root password. After you supply the
password twice, you will see it in an encrypted form. Assuming that we have
set an example as the root password, you can see the following:

{SSHA}VUCblOSqFJn/L9O2bMTrP/YpGDJyAYYx

www.it-ebooks.info

http://www.openldap.org/
http://sourceforge.net/projects/openldapwindows/
http://www.it-ebooks.info/

Chapter 9

[191]

Copy the encrypted password and apply it (the rootpw parameter) along with
the name of your organization (the suffix parameter) and directory root (the
rootdn parameter) to the <OpenLDAP_install_dir>\etc\openldap\slapd.conf
OpenLDAP configuration file as follows (modify the already existing parameters):

•	 suffix: dc=example,dc=com
•	 rootdn: cn=organization,dc=example,dc=com
•	 rootpw: {SSHA}VUCblOSqFJn/L9O2bMTrP/YpGDJyAYYx

After the preceding configuration changes have been made, you need to restart the
OpenLDAP server. Note that the restart may fail in case there is an <OpenLDAP_
install_dir>\etc\openldap\alock lock file existing. If this is the case, delete the
file and try to start the OpenLDAP server again. Entries in a directory server are
organized hierarchically and the mechanisms to add / edit / delete or retrieve them
is provided by the LDAP protocol. LDAP and OpenLDAP are huge topics that we
will not cover in detail. For now, you can assume that the preceding configuration
specifies the root directory for your entries along with the root password used to
access this directory. Definitions of the LDAP entries are stored in an ldiff file.
Using the configured root and password, we will create the following directory
structure that has the organization at the root along with a subentry that represents
the group of users in the organization and a single user (Martin):

The structure is represented by the following ldiff file (sample.ldiff):

This distinguished name (DN) determines the organization
dn: dc=example,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
dc: example
o: example
description: Sample description

Example.com users
dn: ou=users,dc=example,dc=com
ou: users
description: Users in the organization

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[192]

objectClass: organizationalUnit

Sample user
dn: cn=Martin,ou=users,dc=example,dc=com
objectclass: inetOrgPerson
cn: Martin
sn: Toshev
uid: mtoshev
mail: martin@example.com

Now, you need to import the element definitions from the ldiff file using the
<OpenLDAP_install_dir>\bin\ldapadd utility as follows:

ldapadd -x -D "cn=organization,dc=example,dc=com" -W –f sample.ldiff

Note that to delete entries, you can use the ldapdelete utility as follows (for
example, if you want to remove the last entry that we added):

ldapdelete -D "cn=organization,dc=example,dc=com" "cn= Martin,ou=user
s,dc=example,dc=com" -W

RabbitMQ provides you with an LDAP backend by means of the rabbitmq-auth-
backend-ldap plugin. As the LDAP plugin is already included in the RabbitMQ
distribution, you can simply enable it on a node:

rabbitmq-plugins enable rabbitmq_auth_backend_ldap

After the plugin is enabled, you need to provide proper configuration for the LDAP
backend as part of the RabbitMQ configuration. Uncomment the following line in
order to enable the backend for a node (remember to apply the same configuration
over all the nodes in a cluster):

{auth_backends, [rabbit_auth_backend_ldap]}

In case you want to fall back to using the standard authentication backend provided
by RabbitMQ, you can also add the rabbit_auth_backend_internal entry to the
list. Add the following under the rabbitmq_auth_backend_ldap section to the
configuration file:

{servers, ["localhost"]},{user_dn_pattern, "cn=${username},ou=users,dc
=example,dc=com"}
{tag_queries, [{administrator, {constant, false}},
{management, {constant, true}}]}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[193]

This specifies the hostname (localhost) and user DN (Distinguished Name) pattern;
in this case, this is the path of the LDAP entry containing ${username}, which is
replaced by RabbitMQ with the supplied username. Note that there is an alternative
mechanism that can bind the username to an arbitrary attribute of the user. Refer to
the RabbitMQ LDAP plugin for more details on the alternative configuration. The last
section specifies that our users are able to access the management console but they
don't have administrative privileges. By default, all LDAP users are non-administrative
and are allowed access to the entire broker (all the objects in all vhosts). In the next
section, we will see how to configure additional permissions for LDAP users when
using the plugin (the authorization part of the plugin). Before being able to log in
using the preceding user DN pattern, we must set a password for our users. To set a
password for the user with the name Martin that we created earlier, you can use the
ldappasswd utility as follows (specify the encrypted form of the example that we used
earlier to configure our root LDAP password):

ldappasswd -D "cn=organization,dc=example,dc=com" "cn=Martin,ou=users,
dc=example,dc=com" –W -S

Now, in order to check whether a user can successfully authenticate, you can take
the DN from the RabbitMQ configuration, replace ${username} with the name of
the user (in this case, Martin) that you want to check, and use the ldapwhoampi
utility as follows:

ldapwhoami -vvv -D "cn=Martin,ou=users,dc=example,dc=com" -x -w
example

You should see the following if the test succeeds:

dn:cn=Martin,ou=users,dc=example,dc=com
Result: Success (0)

You should now be able to log in from the management console with the Martin
user and example password. If you omit the tag_queries entry from the preceding
configuration, you will see a warning similar to the following in the log file when
you attempt a login (indicating that the LDAP user is not allowed to access the
management console):

HTTP access denied: user 'Martin' - Not management user

The LDAP plugin provides additional configurations such as SSL support for
the LDAP communication; you can refer to the plugin documentation. The
authentication backend can be used with other types of SASL authentication
such as EXTERNAL, as we will see later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[194]

Security considerations
Having configured the proper authentication mechanisms and removing the default
user is merely not enough. Simple passwords are easily guessable and a very basic
tool can be created based on a RabbitMQ client library that tries to connect to the
broker using a list of pregenerated passwords from a proper source that can be used
to execute a brute force attack on a RabbitMQ message broker. For this reason, you
need to consider the following:

•	 Setting strong passwords for RabbitMQ users whether they are stored
internally in the broker or in an LDAP server.

•	 Setting a broker threshold on the number of failed login attempts for a
RabbitMQ user, which, at the time of writing this, is not supported directly
by the message broker unfortunately. However, with some more effort, a
good plugin can be contributed that implements a way to configure and
enforce password policies.

•	 Setting SSL communication in order to prevent password sniffing, as we will
cover later in this chapter.

•	 Deploying a proper monitoring solution on the broker workstation that takes
into consideration the resource utilization factors that can indicate a security
breach, such as increased memory or CPU time consumption.

•	 Configuring a log auditing tool and storing audit logs for the auditing access.
You can further combine the audit logs with a log analyzer that can scan
them for possible security breaches. Unfortunately, RabbitMQ does not have
such built-in capabilities or plugins; you can either decide to implement
a plugin for the purpose or use the utilities provided by the OS (such as
tcpdump or iptables logging rules for Unix-based operating systems) with
proper log auditing tools in order to be able to analyze incoming traffic for
the message broker.

Authorization
After a client is successfully authenticated by the message broker, it needs to perform
some activities in some virtual hosts. In the earlier chapters, we saw that permissions
are defined per vhost and live either internally in the message broker or externally.
The RabbitMQ LDAP backend plugin that we saw earlier provides you with an
ability to store permissions in an LDAP server. The following types of permissions
are configured in the message broker:

•	 configure: This allows a resource to be created, modified, or deleted
•	 write: This allows a resource to be written to
•	 read: This allows a resource to be read from

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[195]

We already discussed how to manage permissions using the rabbitmqctl utility
and the HTTP API. The following commands can be used from the utility to
manage permissions:

•	 set_permissions: This sets permissions per user per vhost
•	 clear_permissions: This clears permissions per user per vhost
•	 list_permissions: This lists the users that are granted access to a particular

vhost along with their permissions
•	 list_user_permissions: This lists the permissions of a particular user

LDAP authentication
The LDAP user that we created earlier by default has all the permissions to the
broker (except for being an administrator). Let's suppose that we want to disable the
configure permissions, allow more fine-grained write permissions only to certain
queues (in certain vhosts), or make it an administrator. The RabbitMQ LDAP provides
a query mechanism to check permissions as configured in the LDAP server. There are
three types of queries that can be specified in the RabbitMQ configuration and further
contain different types of subqueries that are executed against the LDAP server:

•	 vhost_access_query: As users and permissions must be checked against
vhosts that must be created in RabbitMQ, we can define vhost entries in the
LDAP server against which to check for available permissions and tags. In
fact, these entries represent a subset of the existing vhosts in the RabbitMQ
server against which we check whether users have further access permissions
or not. The default query is {constant, true}, which specifies that access
to all vhosts is given to all the users (the constant queries are aliases for all,
which return true or false for any value checked by vhost_access_query).

•	 resource_access_query: These are the types of queries that allow you to
check whether a user has specific permissions (read, write, or configure) for a
particular vhost to which the user has access (as checked by vhost_access_
query). The default is {constant, true}.

•	 tag_queries: These are the types of queries that allow you to specify
the tags that are given to particular users (such as management or
administrator). The default is {administrator, {constant, false}}.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[196]

The types of subqueries that can be specified for each type of these queries use a
simple DSL; you can review the LDAP RabbitMQ plugin documentation for an
extensive list of all types of subqueries. We will specify the following access domains
for our message broker:

•	 The test user is the vhost
•	 The guest user is an administrator and has access to the management console
•	 The Martin user has access only to the test vhost and can publish to

exchanges starting with the test_ prefix
•	 The Subscriber user has access to the test vhost only and can read

messages from queues starting with the test_ prefix

The following diagram specifies the LDAP structure of the organization:

Before we can implement this setup, we need to create the test vhost in RabbitMQ.
The following example creates the test vhost using the rabbitmqctl utility:

rabbitmqctl add_vhost test

You also need to create LDAP entries for the guest and Subsciber users in the same
manner that we created the entry for the user with the name Martin earlier. Here is a
sample ldiff file (users.ldiff) for the two users:

guest user
dn: cn=guest,ou=users,dc=example,dc=com
objectclass: inetOrgPerson
cn: guest
sn: guest
uid: guest
mail: guest@example.com

Subscriber user
dn: cn=Subscriber,ou=users,dc=example,dc=com
objectclass: inetOrgPerson
cn: Subscriber

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[197]

sn: Subscriber
uid: Subscriber
mail: subscriber@example.com

To import the preceding ldiff file and set a password for the users, you can execute
the following set of commands:

ldapadd -x -D "cn=organization,dc=example,dc=com" -W –f
users.ldiff
ldappasswd -D "cn=organization,dc=example,dc=com" "cn=guest,ou=users,d
c=example,dc=com" –W –S
ldappasswd -D "cn=organization,dc=example,dc=com" "cn=Subscriber,ou=us
ers,dc=example,dc=com" –W –S

Finally, we need to create the vhosts group along with an entry for the test vhost
(vhosts.ldiff):

Example.com vhosts
dn: ou=vhosts,dc=example,dc=com
ou: vhosts
description: Vhosts in the organization
objectClass: organizationalUnit

test vhost
dn: cn=test,ou=vhosts,dc=example,dc=com
objectclass: organizationalRole
description: test vhost

Execute the following in order to import the preceding entries:

ldapadd -x -D "cn=organization,dc=example,dc=com" -W –f vhosts.ldiff

Note that we are using a predefined object class (organizationalRole) for the vhost
entry in LDAP. You can prefer to create your own object class for the purpose of
describing a vhost along with its attributes in your organization. Finally, we need to
specify the proper queries for permission checking in the LDAP configuration (as part
of the rabbitmq_auth_backend_ldap section in your RabbitMQ configuration file):

{vhost_access_query, {exists,
 "cn=${vhost},ou=vhosts,dc=example,dc=com"}},
{resource_access_query,
 {for, [
 {permission, configure, {match,
{string, "${username}"},{string, "guest"}}},
 {permission, write, {'and', [

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[198]

	 {match, {string, "${username}"},
 {string, "(Martin|guest"}},
	 {match, {string, "${name}"},{string, "test_*"}}]} },
 {permission, read, {'and', [
	 {match, {string, "${username}"},
 {string, "(Subscriber|guest)"}},
	 {match, {string, "${name}"},{string, "test_*"}}]} }
] }},
{tag_queries, [{administrator,
 {match, {string, "${username}"},
 {string, "guest"}}},
 {management, {constant, true}}]}

The preceding configuration is easy to understand, but it might turn out to be clumsy
to write and test. After it is added to the configuration file, you can try to log in
with the guest/guest user and check whether it has administrative access. You can
try to create an object using the Subscriber user or send/receive messages using
the Martin/Subscriber user. In practice, the preceding configuration should be
designed carefully based on the organizational LDAP schema in order to prevent
security holes.

Secure communication
Let's turn our attention to how the AMQP messages can be transferred
securely on the wire and how to ensure secure communication between the
publishers/subscribers and our message broker. Even if the message broker is not
visible to the outside world, there is still the risk of an insider attack taking place.
This could be either a network tap or hub that is added with malicious intent to
the communication link between the message broker and publishing/subscribing
applications or a form of ARP (address resolution protocol) poisoning. In both
cases, traffic can be forwarded to a listening port on a machine that aims to sniff
communication. The next step is to capture and analyze the incoming traffic. To
simulate the capturing and analysis phase, we will use Wireshark (version.1.12.8)
along with the AMQP dissector module that comes with the tool in order to listen on
the network interface of a local workstation that has a RabbitMQ instance running.
First, download and install Wireshark from https://www.wireshark.org/. As we
will be listening for traffic on the loopback interface, you need to make sure that you
have proper support to listen on the loopback interface in your OS. For Windows,
WireShark uses the WinPcap utility that, at the time of writing this, does not
support listening on the loopback interface. The Npcap tool is an update of WinPcap
that provides a generic loopback interface for Windows (check https://wiki.
wireshark.org/CaptureSetup/Loopback in the Wireshark, Wikipedia). Download
and install Npcap if you are using Wireshark and RabbitMQ under Windows.

www.it-ebooks.info

https://www.wireshark.org/
https://wiki.wireshark.org/CaptureSetup/Loopback
https://wiki.wireshark.org/CaptureSetup/Loopback
http://www.it-ebooks.info/

Chapter 9

[199]

Once WireShark is installed, navigate to Capture -> Interfaces…, and select the
network interface on which you will listen for the incoming traffic, as shown in the
following screenshot:

Then, click on Close in the Filter field, specify amqp as a display filter, and select
Capture >- Start in order to start the capturing of packets on the loopback interface.
Send a test message to the RabbitMQ broker (you can use a modified version of the
RequestSenderDemo Java class introduced in Chapter 3, Administration, configuration
and management for this purpose) using test_exchange with the test_queue key on
the test vhost (precreate the test_exchange exchange and the test_queue queue).
The result from the capture is visible on the following screen:

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=91d32345-a775-d598-d9f0-5465e5c96ab4
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=91d32345-a775-d598-d9f0-5465e5c96ab4
http://www.it-ebooks.info/

Security

[200]

You can see the entire sequence of AMQP messages that are exchanged when the
message was sent. If you double-click on the Basic Publish package (in the rectangle)
and scroll down a little, you will see the message payload:

As you can see, it was pretty straightforward to inspect the unsecured RabbitMQ
traffic once you are able to receive the network traffic to/from the message
broker. In order to deal with the problem, we need to enable SSL in the RabbitMQ
configuration. In order to listen for the SSL connection, the RabbitMQ message
broker needs to specify a port for the SSL connection along with the additional SSL
options such as CA certificate file, server certificate, and private key, and also needs
to specify whether to verify the client certificate (if any) and not and how to behave
if verification fails (accept or reject the client connection). The following sample
configuration enables SSL support on a RabbitMQ instance on port 5671:

[
 {rabbit, [
 {ssl_listeners, [5671]},
 {ssl_options, [{cacertfile,"cacert.pem"},
 {certfile,"cert.pem"},
 {keyfile,"key.pem"},
 {verify, verify_peer},
 {fail_if_no_peer_cert,true}]}
]}
].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[201]

The preceding configuration further specifies that the client must also send its
certificate and that it must be verified by the message broker. Apart from setting
the port to 5671 in the client connection factory, you must also tell the client to use
SSL when connecting to the broker. The following example prepares the connecting
factory in the Java client before creating SSL connections to the message broker:

ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
factory.setPort(5671);
factory.useSslProtocol();

In this case, the client does not present a certificate to the broker and does
not validate the broker's certificate. To do so, you can supply a javax.net.
sslSSLContext instance that contains a key store with the client certificate and trust
store with the server certificate to the useSslProtocl() method. The RabbitMQ
documentation provides a detailed example on how to create your own certificate
authority, generate keys and server certificates, and sign the server certificate by the
CA—the OpenSSL tool is used to perform these activities. Check the RabbitMQ SSL
guide for more details:

https://www.rabbitmq.com/ssl.html

Secure communication with the management
interface
If the management interface port (15672 by default) is not restricted by a firewall
rule, then SSL must be enabled for the management plugin as well. Let's use
Wireshark again to demonstrate what can happen if the administrator forgets to
restrict access to the management interface or does not enable SSL. Start capturing
packets from Wireshark, and in the Filter field, specify a display filter that permits
only packets to/from the TCP port 15672 using the following expression:

tcp.port eq 15672

Now, send a test message to the management interface REST API using the
rabbitmqadmin utility:

rabbitmqadmin.py -V test publish routing_key=test_queue
exchange=test_exchange payload=test

www.it-ebooks.info

https://www.rabbitmq.com/ssl.html
https://www.rabbitmq.com/ssl.html
http://www.it-ebooks.info/

Security

[202]

The following diagram observes the captured traffic flowing to/from the
management interface:

In the red rectangle, you can see the HTTP packet that sends a POST request with the
message to the management interface. If you click on the packet and scroll down a
little, you will see the information about the AMQP message along with the payload:

In order to enable SSL for the management interface, you must change its
configuration. The following example provides a sample configuration that
enables SSL on port 15671:

[{rabbitmq_management,
 [{listener, [{port, 15671},
 {ssl, true},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[203]

 {ssl_opts, [{cacertfile, "cacert.pem"},
 {certfile, "cert.pem"},
 {keyfile, "key.pem"}]}
]}
]}
].

As you can see, the configuration is very similar to the one that we specified for the
enabling of an SSL for a connection to the message broker.

Secure cluster communication
Although an Erlang cookie is used to allow communication between nodes in a
cluster, it still doesn't enable secure communication between these nodes. To do so,
you need to enable SSL in the Erlang application that runs the RabbitMQ instance.
For further details on how to enable SSL communication between nodes, you can
check the clustering SSL guide from the RabbitMQ documentation:

http://www.erlang.org/doc/apps/ssl/ssl_distribution.html

Apart from setting secure clustering, you must also ensure that filesystem access
to the Erlang cookie is given only to users who are allowed to run and manage the
RabbitMQ instance on that system.

EXTERNAL SSL authentication
The rabbitmq-auth-mechanism-ssl context provides an SASL EXTERNAL type of
authentication that uses a client certificate to authenticate a user. The plugin requires
SSL communication to be enabled between the client and RabbitMQ server. For more
details about the configuration of the plugin, you can check the plugin repository at
https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl.

Penetration testing
Now that we have seen how to secure our message broker, we also need to test
that our setup is indeed in place and really prevents attackers from bringing down
the message broker or stealing messages. For this reason, you can build your own
custom tool for penetration testing of the message broker, which performs the
following functions:

•	 It checks whether the guest/guest user is present and it can perform
administrative activities.

www.it-ebooks.info

http://www.erlang.org/doc/apps/ssl/ssl_distribution.html
http://www.erlang.org/doc/apps/ssl/ssl_distribution.html
https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl
https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl
http://www.it-ebooks.info/

Security

[204]

•	 It tries to brute-force passwords for an existing set of users, either based on a
password generation policy or using a predefined password database.

•	 It tries to access prohibited vhosts from a particular set of users.
•	 It uses nmap to check whether the management console and RabbitMQ

communication ports are visible; this step may include checks on ports that
are exposed by RabbitMQ plugins.

•	 It checks the RabbitMQ configuration settings, authentication mechanism,
and currently-set limits such as minimum free disk space, memory limits, or
maximum number of channels. (Most of these options were covered when
we discussed the performance tuning of the message broker.)

•	 It checks the maximum limit per user as specified by the operating system,
for example, this could be the maximum number of processes or file
descriptors that can be used for the user that runs the RabbitMQ instance. In
Linux, this could be checked against the etc/security/limits.conf file.

More features can be derived from the following article that covers several security
considerations and resource utilization settings for production deployments of
RabbitMQ:

https://www.rabbitmq.com/production-checklist.html

Case study – securing CSN
Once the CSN was in alpha testing and the good performance of the system was
reached, the CSN team was required to take two important steps in order to meet the
company's security policy:

•	 Enable SSL over all the communication links between all the components in
the system (including the RabbitMQ cluster links, federation link with the
remote RabbitMQ instance, and communication links between the broker
and its clients)

•	 Enable the central management of CSN users and their associated
permissions by means of the corporate LDAP server

www.it-ebooks.info

https://www.rabbitmq.com/production-checklist.html
https://www.rabbitmq.com/production-checklist.html
https://www.rabbitmq.com/production-checklist.html
http://www.it-ebooks.info/

Chapter 9

[205]

Further security testing was made by the team in order to ensure that no major
vulnerabilities were found in the setup of the system:

DatabaseSSL

SSL

SSL

SSLSSL

SSL

SSL
SSL

SSL

SSL

SSL

message backup
database

message backup
database

CSN web node
event_publishers
user

CSN web node
event_subscribers
user

Corporate LDAP
server

Client browser

RabbitMQ server
v_events

v_chat

RabbitMQ server
v_events

v_chat

RabbitMQ server
v_events

v_chat

RabbitMQ remote
server

v_events

SSL

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[206]

Summary
In this chapter, we discussed the various aspects of security related to RabbitMQ
and the types of vulnerabilities that can come up in practice and how to mitigate
them. We covered the SASL mechanism provided by RabbitMQ for the purpose of
authentication and extended further on this concept by providing an integration of
the authentication backend with the OpenLDAP server. Additionally, we discussed
how to store and manage permissions in LDAP and provide secure communication
with the message broker, management console, and cluster nodes. In the end, we
covered several guidelines in establishing a successful penetration testing strategy to
verify that the message broker meets the minimum level of security as required by
the policy of your organization.

Exercises
1.	 What types of security threats are imposed on the message broker?
2.	 What is SASL, and what types of SASL authentication are supported in

RabbitMQ?
3.	 How does RabbitMQ enable authentication and authorization against an

LDAP server?
4.	 How does RabbitMQ provide SSL support?
5.	 How can you test whether your RabbitMQ setup provides a good degree

of security?

www.it-ebooks.info

http://www.it-ebooks.info/

[207]

Internals
To get a better understanding of how a system works, on various occasions, developers
need to dig under the hood in the implementation of that system or at least get a basic
overview of its high-level architecture and its most critical components. In this chapter,
we will discuss how RabbitMQ is designed and implemented and how to write
plugins for RabbitMQ.

The topics that will be covered in the chapter are as follows:

•	 High-level architecture for RabbitMQ
•	 Overview of RabbitMQ components
•	 Developing plugins for RabbitMQ

High level architecture of RabbitMQ
We already discussed a lot of details about how the message broker works. We
discussed that RabbitMQ instances are Erlang applications that communicate with each
other by means of Erlang message passing with the help of a shared Erlang cookie that
is used to allow communication between endpoints. As every system that provides a
server and one or more clients for different platforms, we could easily guess that before
an AMQP message is sent to the broker, an AMQP client opens a TCP socket using the
utilities that are provided by the particular programming language in which it writes
the AMQP data. The most interesting part is what happens when the message arrives
at the message broker. Once the message broker receives the AMQP message, it needs
to parse and process it, accordingly. If we take a closer look at what the rabbitmq-
server script executes, we will notice that several actions take place, as follows:

•	 The start method from the rabbit_prelaunch module is executed and it
performs the basic validation (such as, whether a node with the same name
exists and whether the node distribution port is valid) before actually starting
the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[208]

If the checks from the previous step are successful, then the server starts from the
rabbit module that implements the application behavior (meaning that the
module has certain callback methods that must be implemented by the module).

Before we are to understand how RabbitMQ works, we need to clarify a few important
features provided by Erlang and their uses in the implementation of the message
broker. A behaviour, in terms of the Erlang programming language, specifies that a
module must implement certain methods that give it a certain meaning (behavior). We
can compare this with the way in which inheritance works—we can have an abstract
class that extracts certain logic and can be extended by different implementations,
which on the other hand, can be further extended. In that sense, an Erlang module can
either define that it has a certain behavior (and it needs to implement a particular set of
callback methods that are defined by that behavior) or the module itself is a behavior
that defines a set of methods that must be implemented by other modules that use the
behavior. In the following example, we have a sample module that uses the built-in
application behavior and defines the sample behavior with two functions: start_
sender and start_receiver, as follows:

-module(sample).
-export([behaviour_info/1]).
-behaviour(application).
start(normal, []) -> true.
behaviour_info(callbacks) ->
 [{start_sender,2},
 {start_receiver, 0}
];

The sample module uses the application behavior and needs to provide the
implementation of the start(normal, []) method that is executed before the
application (this module) is started successfully. On the other hand, the module
creates a behavior with the same name as that of the module using the behaviour_
info method that specifies the callback functions along with their arity (number
of arguments) that must be implemented by the users of the sample behavior. This
seemingly simple mechanism lays the basis for creating more complex interactions
among the components of an Erlang application. Two of these mechanisms are built
in Erlang and used by RabbitMQ, as shown in the following:

•	 The supervisor behavior allows the creation of a process tree. The main
purpose of this behavior is to allow a parent process to monitor the child
processes for failure and restart them, based on a predefined policy in that
parent (supervisor) process. This allows a fault-tolerant handling of the
failures in the application, which is necessary in the case of RabbitMQ in
order to ensure a decent degree of reliability that prevents the broker from
failing upon process failure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[209]

•	 The gen_event behavior allows the exchange of messages between
processes.

The supervisor behavior is essential for Erlang and for the RabbitMQ message
broker, in particular. A good understanding of how and why RabbitMQ relies on a
supervision tree of processes is necessary in order to understand how the message
broker works at the runtime. Consider the following diagram that provides an
overview of a sample process tree in terms of Erlang and the supervisor behavior:

(root process supervisor)
root_process_sup

(child process supervisor)
child_process_sup

(child process supervisor)
child_process_sup

(sub-child process supervisor)
child_process_sup

(sub-child process supervisor)
child_process_sup

child process

child process child process child process

We have a root process that supervises other processes; if any of them fail, the
supervisor is responsible to restart it. The leaves of the tree are the actual processes
that are running in the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[210]

The following diagram provides a high-level overview of the RabbitMQ components
and their initialization during the server startup:

Recovery component

execution of boot steps

Other components (plugin
registry, statistics event

manager, etc)

Persistence component

Networking component

loading of plugins

RabbitMQ item type definitions
(exchange, binding,...)

rabbit.hrl

start of root process
supervisor

rabbit_sup.erl
RabbitMQ server

boot process

rabbit.erl

The rabbit module uses the rabbit.hrl Erlang header file that provides the
definitions of all types (such as, queue, exchange, binding, vhost, and so on) that are
used in the server and for this reason, the header is included in most of the Erlang
sources of the message broker. The start(normal, []) method of the rabbit module
triggers the start up of the server. First, the root process supervisor that is provided
by the rabbit_sup module is started by invoking the rabbit_sup:start_link()
method. Then, a number of boot steps are executed (we will refer to this process as the
boot component of the message broker). Many of the boot steps start a child process,
which is added to the supervisor tree that has a certain role. The following diagram
describes the process tree, one level under the rabbit_sup supervisor:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[211]

rabbir_sup

rabbit_msg_store
(transient)

rabbit_msg_store
(persistent)

rabbit_msg_store
(persistent)

rabbit_memory_monitor
rabbit_node_monitor

rabbit_disk_monitor
vm_memory_monitor

background_gcrabbit_epmd_monitor

rabbit_registry

rabbit_error_logger

rabbit_alarm

rabbit_guid

rabbit_event

mnesia_sync

file_handle_cache

rabbit_recovery_terms

worker_pool_sup

delgate_sup

rabbit_direct_client_sup

rabbit_tcp_client_sup

rabbit_amqqueue_sup_sup

In the next section, we will briefly discuss most of the processes that are mentioned
in the preceding diagram, along with the structure of the process subtrees that are
provided by the most essential child supervisors, such as rabbit_tcp_client_
sup, rabbit_direct_client_sup, and rabbit_amqqueue_sup_sup, and their
corresponding Erlang modules. Apart from when networking is started as a part of
the boot process on or more tcp_listener_sup supervisor processes are started for
each TCP/SSL interface configured for the message broker.

After the boot steps are finished, the RabbitMQ plugins are loaded. At this point,
the message broker is ready to accept the connections. Logging in the RabbitMQ
components is done by means of the utilities provided by the rabbit_log module.

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[212]

Overview of RabbitMQ components
Before we dive into more details on the separate components of the message broker
and their implementation, you can refer to Appendix A, Contributing to RabbitMQ
on how to get the RabbitMQ source code so that you can review it as we move
through the components and also how to install useful tools that will aid in Erlang
development and RabbitMQ plugin development, in particular.

Boot component
The RabbitMQ boot component provides one of the key mechanisms in the message
broker that allows the plugins to require certain steps from the RabbitMQ server in
order to ensure that the components that they depend on are already loaded and it
also allows the plugins to be installed and enabled in the RabbitMQ message broker.
For this reason, it is advisable to write plugins with caution as they can crash the
message broker if they are not implemented properly. Before the RabbitMQ boot
mechanism is triggered, the common rabbit_sup process supervisor (the root of the
RabbitMQ process tree) is started by calling the rabbit_sup:start_link() method
from the start/2 method in the rabbit module. After the process supervisor starts,
a series of boot steps are executed by calling the rabbit_boot_steps:run_boot_
steps() method. The boot steps are divided into groups, as follows:

•	 external_infrastructure: This prepares the infrastructure for the RabbitMQ
server (such as, worker pool, file handle cache, and Mnesia database)

•	 kernel_ready: This initializes the core functionality of the message broker
(such as plug-in registry, message logging, and statistics collection)

•	 core_intialized: This initializes the additional functions of the message
broker (such as memory alarms, distribution of messages among queues,
cluster node notifications, and memory monitoring)

•	 routing_ready: This initializes more startup activities (such as recovery of
queues, exchanges and bindings, and initialization of queue mirrors)

•	 final steps: This performs the final startup activities (such as error
log initialization, initialization of TCP listeners for configured interfaces,
initialization of processes that are used to handle client connection, and
sending of notifications to join the current RabbitMQ cluster)

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=82559557-8b31-5122-6083-54475452ae48
http://www.it-ebooks.info/

Chapter 10

[213]

The steps are organized in a directed acyclic graph and each step may specify
predecessor steps that may be executed first and successor steps that might be
execute after the current step. For example, the following boot step is used to
add mirrors to the queues based on the mirroring policies that are defined in the
message broker:

-rabbit_boot_step({mirrored_queues,
 [{description, "adding mirrors to queues"},
 {mfa, {rabbit_mirror_queue_misc, on_node_up, []}},
 {requires, recovery},
 {enables, routing_ready}]}).

It requires the recovery step to be executed beforehand and enables the execution of
the routing_ready step. The routing_ready step represents a group (and all other
groups that are mentioned earlier are represented as steps):

-rabbit_boot_step({routing_ready,
 [{description, "message delivery logic ready"},
 {requires, core_initialized}]}).

Each group step represents a barrier for the execution of steps from the next
group. In the preceding example, the routing_ready group requires the core_
initialized step to have been completed (and the core_initialized step will
finish after all the steps that enable the core_initialized have finished executing).

The sequence of steps that are executed during the boot process is as follows:

•	 The external_infrastructure group steps are as follow:
°° codec_correctness_check: This checks whether the AMQP binary

generator is working correctly and is able to generate the correct
AMQP frames.

°° rabbit_alarm: This enables the RabbitMQ alarm handlers (disk and
memory); when the memory grows beyond a threshold or disk space
drops below a limit, alarms are triggered in order to notify the broker
that it must block subsequent connections to the broker.

°° database: This prepares the Mnesia database.
°° database_sync: This starts the mnesia_sync process.
°° file_handle_cache: This handles file read/write synchronization.
°° worker_pool: This provides a mechanism to limit the maximum

parallelism for a job (jobs can be executed synchronously or
asynchronously). It is used for some operations in the message
broker, such as executing transactions in the Mnesia database.

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[214]

•	 The kernel_ready group steps are shown in the following:
°° rabbit_registry: This starts a registry that stores the plugin

information along with the corresponding Erlang modules for
the registered plugins.

°° rabbit_event: This starts the event notifications process that is used
for the statistics collection.

•	 The following are the core_initialized group steps:
°° rabbit_memory_monitor: This starts the rabbit_memory_monitor

process.
°° guid_generator: This starts the rabbit_guid process that provides

a service for the generation of unique random numbers across the
RabbitMQ service instance that is used for various purposes (such as
use in autogenerated queue names).

°° delegate_sup: This starts a process manager that is used to spread
the tasks among child processes (for example, to send a message from
an exchange to one or more queues).

°° rabbit_node_monitor: This starts the rabbit_node_monitor process.
°° rabbit_epmd_monitor: This starts the rabbit_epmd_monitor process.

•	 The routing_ready group steps are as follows:
°° empty_db_check: This verifies that the Mnesia database runs fine and

if necessary, inserts the default database data (such as guest/guest
user and default vhost).

°° recovery: This recovers the bindings between exchanges and queues
and starts the queues.

°° mirrored_queues: This adds mirrors to queues, as defined by the
mirroring policies.

•	 The following are the final boot steps:
°° log_relay step: This starts the rabbit_error_logger process.
°° direct_client: This starts the supervisor tree that takes care of

accepting direct client connections.
°° networking: This starts up the tcp_listener_sup handlers for

each combination of TCP interface/port that will accept incoming
connections for the message broker.

°° notify_cluster: This notifies the current cluster that a node is started.
°° background_gc: This starts the background_gc process that provides

a service to force garbage collection on demand.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[215]

As additional reading on the boot process of RabbitMQ, the entries from the
following GitHub repository at https://github.com/videlalvaro/rabbit-
internals can be reviewed.

Plug-in loader component
Plugin's loading is triggered by the broker_start() method in the rabbit module
once the boot steps of the message broker has finished executing. To recall briefly, the
following table lists the configuration properties that are related to RabbitMQ plugins:

RABBITMQ_PLUGINS_DIR The directory where RabbitMQ plugins are
found

RABBITMQ_PLUGINS_EXPAND_DIR The directory where the enabled RabbitMQ
plugins are expanded before starting the
messaging server

RABBITMQ_ENABLED_PLUGINS_FILE The location of the file that specifies which
plugins are enabled

The start() method of the rabbit_plugins module is called and it clears the
plugins expand directory, reads a list of the enabled plugins from the enabled
plugins file, reads the location of the RabbitMQ plugin directory, builds a
dependency graph from the list of all the plugins in that directory from where the
enabled plugins and their dependencies are retrieved, and finally, they are unzipped
to the plugins expand directory. The start_apps() method that uses the app_utils
module is then called in order to load the plugins; the application module (module
that implements the application behavior) of each plugin is loaded and the
start() method of the plugins application is called.

www.it-ebooks.info

https://github.com/videlalvaro/rabbit-internals
https://github.com/videlalvaro/rabbit-internals
http://www.it-ebooks.info/

Internals

[216]

Recovery component
For the recovery component, we will understand two particular steps from the boot
process, as follows:

1.	 queue, exchange and binding recovery: This is provided by the retrieves
information about the items from Mnesia such as durable queues and
exchanges along with the bindings between them and starts the queues. For
this purpose, the recover() method from the rabbit_policy, rabbit_
amqqueue, rabbit_binding, and rabbit_exchange modules are used.
The rabbit_amqqueue module recovers queues by first retrieving durable
queues from the Mnesia database. Then, two processes for transient and
persistent message storing (represented by the rabbit_msg_store module)
are started and bound to the rabbit_sup supervisor process (this is done
by calling the start() method from the rabbit_variable_queue default
backing module). After this, a queue supervisor of all the queue-related
supervisors from the rabbit_amqqueue_sup_sup module is started. Finally,
the durable queues are recovered by starting a rabbit_amqqueue_sup queue
supervisor process for each queue (from the rabbit_amqqueue_sup_sup
supervisor, which specifies the child specification for the child processes in
its init() method). Each queue supervisor process starts one queue process
(represented by the rabbit_amqqueue_process module) and one queue
slave process for queue mirroring (represented by the rabbit_mirror_
queue_slave module). Once the recovery is completed, the start() method
from the rabbit_amqqueue module is invoked, which triggers the go()
method in rabbit_mirror_queue_slave that further invokes (via the gen_
server2 module RPC) the handle_go() method. This joins the queue slave
process for the particular queue to a group of processes in order to distribute
information in a broadcast manner among these processes. This broadcast
mechanism is implemented by the gm module (which stands for guaranteed
broadcast) that provides the necessary utilities to add/remove a process from
a broadcast group and send a broadcast message among nodes in a group in
a reliable manner.

2.	 Start up of queue mirroring based on the mirroring policies defined for the
recovered queues. For this purpose, the on_node_up() method from the
rabbit_mirror_queue_misc module is executed. It retrieves the cluster
nodes on which to mirror queue messages for each queue based on the
defined mirroring policies. The rabbit_mirror_* modules implement the
logic for queue mirroring using master-slave semantics.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[217]

The following diagram depicts the process subtree for the queue-related processes
and their supervisors:

rabbit_amqqueue_process rabbit_mirror_queue_slave rabbit_amqqueue_process rabbit_mirror_queue_slave

rabbit_amqqueue_sup rabbit_amqqueue_sup

rabbit_amqqueue_sup_sup

Persistence component
We will divide the persistence component into metadata persistence and message
persistence subcomponents.

Metadata persistence
In the boot process, we have a chain for the initialization of the Mnesia databases
along with the relevant RabbitMQ tables. In earlier chapters, we discussed that
the transient and persistent message stores are separated from the Mnesia tables,
which store the information about object definitions (such as exchanges, queues, and
bindings). The rabbit_mnesia module is initialized during the boot process and
provides utilities to start and stop the Mnesia database, check whether the database
is running, and transfer metadata among cluster nodes. It also handles the creation of
the Mnesia schema along with the RabbitMQ tables by means of the rabbit_table
module. The rabbit_table module provides definitions of the RabbitMQ tables.
The following is a list of the RabbitMQ Mnesia tables:

•	 rabbit_user

•	 rabbit_user_permission

•	 rabbit_vhost

•	 rabbit_listener

•	 rabbit_durable_route

•	 rabbit_semi_durable_route

•	 rabbit_route,

•	 rabbit_reverse_route

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[218]

•	 rabbit_topic_trie_node

•	 rabbit_topic_trie_edge

•	 rabbit_topic_trie_binding

•	 rabbit_durable_exchange

•	 rabbit_exchange

•	 rabbit_exchange_serial

•	 exchange_name_match

•	 rabbit_runtime_parameters

•	 rabbit_durable_queue

•	 rabbit_queue

The preceding tables are manipulated by means of the mnesia built in the module
throughout the RabbitMQ server sources. The rabbit_mnesia module uses the file
utilities that are provided by the rabbit_file module.

Message persistence component
First of all, the file handle cache is initialized by the start_fhc() method in the
rabbit module. The file handle cache provides a buffer for read/write operations
on the disk that manages the available file descriptors among processes that use
the file handle cache (readers/writers). You can think of the file handle cache as a
service that accepts jobs for read/write operations by means of the with_handle()
methods, which accept a function closure providing the execution logic for a file
operation and serves as a guard to acquire/release the file handles in order to
accomplish that operation. The rabbit_file module uses file_handle_cache
to perform disk operations. In the RabbitMQ configuration file, we can specify a
backing_queue_module setting, which specifies an Erlang module that provides
the queue operations, such as initialization and management of the message store,
message processing in the queue (in-memory or on disk), queue purging, and so on.
The default implementation is provided by the rabbit_variable_queue module
that uses rabbit_msg_store to store transient and persistent messages on the disk.
To do so, rabbit_msg_store uses the utilities that are provided by the rabbit_file
and file_handle_cache modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[219]

Networking component
The networking component is initialized during the boot process by calling the
boot() method from the rabbit_direct and rabbit_networking modules. The
first module starts the rabbit_direct_client_sup supervisor process to handle
direct connections to the broker, while the second module starts rabbit_tcp_
client_sup to handle the TCP client connections. The rabbit_tcp_client_sup
also creates a rabbit_connection_sup supervisor that, on the other hand, creates
a rabbit_reader process to process the connections and a helper_sup process
(represented by the rabbit_connection_helper_sup module) to create channel
supervisors. After that, a TCP listener supervisor is started for each TCP/SSL listener
interface. For each TCP/SSL listener supervisor, two child processes are created
(their specifications are provided in the init() method of the rabbit_listener_
sup method), as follows:

•	 A tcp_listener process that accepts connections on a specified port
•	 A tcp_acceptor_sup process that creates a number of child acceptor

processing to handle incoming socket connections from the tcp_listener
process

The following diagram provides an overview of the interaction between the
processes that are involved in accepting and processing a TCP connection in the
message broker over a single interface:

rabbit_listener_sup

creates
acceptor

rabbit_acceptorrabbit_acceptorrabbit_acceptor

rabbit_acceptor_suprabbit_listener

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[220]

Once an acceptor receives a client connections, it calls the start_client() method
for TCP connections or the start_ssl_client() method for SSL connections from
the rabbit_networking module to process the incoming connection. The new
connection is sent to the rabbit_reader process that starts reading the AMQP
messages from the connection. It also provides the semantics to parse the messages
and create channel-level processes by means of the helper_sup process. The
following diagram provides an overview of the process subtree, originating from the
rabbit_tcp_client_sup supervisor:

rabbit_tcp_client_sup

rabbit_connection_sup

rabbit_channel_sup

queue_collector rabbit_channel_sup_sup

rabbit_writer rabbit_channel_sup rabbit_limiter

helper_sup rabbit_reader

Other components
There are other components provided by the message broker; we briefly covered
most of them when we were discussing the boot process of the message broker. In
short, these components include the following:

•	 Alarm handler module that triggers memory alarms in case of excessive
memory consumption; its implementation is provided by the rabbit_alarm
module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[221]

•	 RabbitMQ plugin registry that provides a service to register plugin modules
to the message broker and retrieve information about the plugin modules
from the various components of the broker; its implementation is provided
by the rabbit_registry module.

•	 Statistics event manager that enables gathering of statistics from the message
broker; its implementation is provided by the rabbit_event module.

•	 Node monitoring provides a mechanism to monitor addition and removal
of nodes from a cluster and also track the current cluster status; its
implementation is provided by the rabbit_node_monitor module.

•	 Memory monitoring provides a mechanism for central collection of statistics
that are related to memory consumption in the broker; each queue sends
information to the memory monitor upon changes in the queue contents.
This allows the memory monitor to track the statistics about the overall
memory consumption; its implementation is provided by the rabbit_
memory_monitor module.

•	 Custom garbage collection process allows components to force Erlang
garbage collection for processes that are running in the message broker.
garbage collection, in particular, is forced when a memory alarm is triggered;
its implementation is provided by the background_gc module.

Developing plug-ins for RabbitMQ
Having seen how the message broker works, it is time to see how to write a plugin for
RabbitMQ. It should be stressed again that a poorly written plugin can result in the
crashing of the entire broker, therefore, you should be careful when implementing a
plugin for the message broker that is intended to be used in production.

There is a public umbrella project that can be used as a starting point in writing
a new RabbitMQ plugin. The umbrella project groups a number of sample child
projects, which implement different types of plugins that you can use as an example.
Refer to Appendix, Contributing to RabbitMQ on tools for Erlang development. In
order to get the project from the RabbitMQ repository and check the child projects,
execute the following set of commands:

git clone https://github.com/rabbitmq/rabbitmq-public-umbrella.git
cd rabbitmq-public-umbrella
make co

www.it-ebooks.info

http://www.it-ebooks.info/

Internals

[222]

The rabbitmq_metronome can be used as a starting point as it provides a very basic
functionality to send a message to the metronome topic exchange every second. It
consists of an application class, a single process supervisor, and the actual process
that performs the logic of the plugin. For development purpose, you can create a link
from the plugins directory of your message broker to the root location of the plugin.
Then, you can build the plugin with the following command:

make

In order to test the plugin, you can start the message broker as shown in the
following:

make run-broker

Case Study: Developing a RabbitMQ
plugin for CSN
Now that the CSN team had a robust production system with a RabbitMQ cluster in
place, it decided to introduce an experimental plugin for message backup. The team
considered two options, as follows:

•	 Using a Redis database as a secondary message store
•	 Using a different disk storage location as a secondary message store

The team also decided to write a plugin to collect additional statistics from the
message broker, such as queue creation/deletion rates, message delivery times for
subscribers, and so on, that could be contributed to the RabbitMQ community.

Summary
At the end of our journey in the world of RabbitMQ, we took a deep dive into the
RabbitMQ components and discussed several key features such as Erlang behaviors
and process supervisors that lay the basis of the message broker. We discussed what
happens during the boot process of the message broker and how RabbitMQ interacts
with the outside world with the Mnesia database. Alongside, we briefly covered the
additional features that are provided by the RabbitMQ server. At the end of chapter,
we also discussed how to write plugins for RabbitMQ.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[223]

Exercises
1.	 What is a process supervisor in terms of Erlang?
2.	 What is an Erlang behavior? Name a few built-in behaviors.
3.	 What are the most essential components of the message broker?
4.	 How are AMQP connections handled internally in the message broker?
5.	 How does RabbitMQ store the messages and metadata?
6.	 Where are the RabbitMQ table definitions provided in the RabbitMQ

code base?
7.	 Where are the RabbitMQ type definitions provided in the RabbitMQ

code base?
8.	 How are the RabbitMQ plugins loaded?
9.	 Describe the plugin development process for RabbitMQ.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[225]

Contributing to RabbitMQ
An open-source project such as RabbitMQ has a large community that contributes to
the RabbitMQ system in different ways. In order to start contributing, one needs to
know what the community is like, the communication channels it has, and the type
of contribution that may lead to the advancement of the technology.

The topics that we will cover here are as follows:

•	 RabbitMQ community
•	 RabbitMQ repositories
•	 Points for contribution

RabbitMQ community
The RabbitMQ community is quite diverse—from developers using RabbitMQ in
their project on a daily basis, to contributors and enthusiasts creating plugins for
RabbitMQ and various types of integrations with message broker from external
systems. In order to be able to submit a code to be reviewed and make pull
requests for a project from the RabbitMQ ecosystem, you need to sign a contributor
agreement. The document is presented in the following URL: https://github.
com/rabbitmq/ca. An e-mail address is provided where you can send the signed
contributor agreement.

RabbitMQ repositories
The RabbitMQ repositories are located in GitHub—the message server, the plugins
that come with the RabbitMQ installation, and the additional tools—all of them in
one place.

www.it-ebooks.info

https://github.com/rabbitmq/ca
https://github.com/rabbitmq/ca
http://www.it-ebooks.info/

Contributing to RabbitMQ

[226]

Getting the sources
The RabbitMQ repositories are located in GitHub at https://github.com/
rabbitmq. You have to first install Git in order to be able to check the RabbitMQ
sources and build the various components of the broker. In order to clone the
RabbitMQ server repository, you can navigate to a proper directory and execute it
from your Git command client:

git clone https://github.com/rabbitmq/rabbitmq-server rabbitmq-server

Building the RabbitMQ server
After you have cloned the RabbitMQ server repository, you can build the message
broker using the GNU Make utility from the root source directory (depending on the
operating system of your choice, you may have to download and install either GNU
make or a port of the utility for the particular operating system). It is easier if you
build RabbitMQ under a Linux distribution such as Ubuntu (we are using Ubuntu
12.04 for the sample build). However, before you are able to build the message
server, you need to install the libxslt and xsltproc libraries that provide utilities
for XSLT (Extensible Stylesheet Language Transformations) processing that is used
by the RabbitMQ server and the erlang-nox and erlang-dev packages that provide
additional Erlang tools used by RabbitMQ:

sudo apt-get install libxml2-dev libxslt1-dev xsltproc erlang-nox
erlang-dev

You also need to install OpenSSL on your distribution, in case it isn't already
installed. Make sure that you are also using a proper version of Erlang, Git, and
Python for your operating system—otherwise your build may fail at some point—for
this particular example, we are using Erlang/OTP 18 [erts-7.1], Git version 2.6.3, and
Python 2.7.1. In order to build the message server, go to the local RabbitMQ server
repository and use the make utility, as follows:

cd rabbitmq-server make

The above command calls the default target as defined in Makefile that supplies the
build targets for RabbitMQ, it uses the erlang.mk utility that provides utilities to
build Erlang applications using make. However, the erlang.mk utility has limited
support for Windows (at the time of writing, MSYS2 support was just introduced
and there is still no support for Cygwin). You can download MSYS2 from https://
msys2.github.io/. Then, install the make and diffutils packages as follows:

pacman -S make
pacman -S diffutils

www.it-ebooks.info

https://github.com/rabbitmq
https://github.com/rabbitmq
https://msys2.github.io/
https://msys2.github.io/
http://www.it-ebooks.info/

Appendix

[227]

You also need to download xsltproc (32 bit or 64 bit) — you can use the following link:

http://www.zlatkovic.com/pub/libxml/

Copy the contents of the bin directory from the ZIP file to the usr\bin directory of
MSYS2 (you may need to download and extract additional libraries; try to run the
xsltproc tool from the command line in order to make sure it runs fine. During the
build of the server, you may receive the following error:

error: rabbitmq-components.mk must be updated!

In order to provide a workaround for it, open the rabbitmq-components.mk file and
go to the following code snippet:

$(verbose) cmp -s rabbitmq-components.mk \
$(UPSTREAM_RMQ_COMPONENTS_MK) || \
(echo $(UPSTREAM_RMQ_COMPONENTS_MK))
(echo "error: rabbitmq-components.mk must be updated!" 1>&2; \
 false)

Change it to the following (in order to skip the validation due to different end-of-line
characters on Unix and Windows):

check-rabbitmq-components.mk:true

The reason for doing this is that the cmp utility by RabbitMQ, in order to verify the
contents of the rabbitmq-components.mk file, does not respect line endings and
the check fails (since the already existing rabbitmq-components.mk file from the
repository has Linux-style line endings, while the generated one has Windows-style
line endings).

After you have built the RabbitMQ server, you will notice that the Erlang source files
from the src directory are compiled to beam files in the ebin directory. You can now
run an instance of the RabbitMQ server that uses a temporary Mnesia database using
the run target:

make run-broker

This is particularly useful if you are developing plugins for RabbitMQ and want to
test them. If you want to rebuild the server, you can first execute the clean target in
order to remove the artifacts from the old build:

make clean

www.it-ebooks.info

http://www.zlatkovic.com/pub/libxml/
http://www.zlatkovic.com/pub/libxml/
http://www.it-ebooks.info/

Contributing to RabbitMQ

[228]

You can build distributable RabbitMQ packages for all the supported platforms by
running the following:

make packages

You can also build a RabbitMQ package for a particular platform only. In order to
build a Debian package, you can run:

make package-deb

To build a package for Windows, run the following:

make package-windows

You may need to install additional packages along the process, as follows:

sudo apt-get install tofrodos
sudo apt-get install xmlto
sudo apt-get install elinks

To support the analysis of the RabbitMQ sources and development of RabbitMQ
plug-ins, you can use various utilities. The Erlide is an Eclipse plugin that provides
Erlang development tools in the IDE: http://erlide.org/. You can also use the
xref utility that is provided as part of the OTP toolset in order to analyze module
dependencies. For example, after you have compiled the RabbitMQ sources with
the make utility, you can use xref to see the modules in which a specified module
depends (go to the ebin directory with the compiled beam files for the RabbitMQ
server). For example, the rabbitmq_sup module, which creates a process supervisor
for other processes that are running in the broker, does not have any dependencies
(the undefined array from the result is empty — it includes information about the
used modules), as shown in the following:

xref:m(rabbit_sup).

The output from the preceding invocation is as follows:

[{deprecated,[]},{undefined,[]},{unused,[]}]

If we do the same for the rabbit module, which boots the RabbitMQ server, we will
see a number of dependencies:

xref:m(rabbit).

The output from the previous invocation looks like the following:

[{deprecated,[]},
 {undefined,[{{rabbit,alarms,0},{rabbit_misc,const,1}},
 {{rabbit,alarms,0},{rabbit_misc,with_exit_handler,2}},

www.it-ebooks.info

http://erlide.org/
http://www.it-ebooks.info/

Appendix

[229]

 {{rabbit,boot_error,2},{rabbit_misc,format,2}},
 {{rabbit,boot_error,2},{rabbit_nodes,diagnostics,1}},
 {{rabbit,erts_version_check,0},
 {rabbit_misc,version_compare,3}},
 {{rabbit,force_event_refresh,1},
 {rabbit_amqqueue,force_event_refresh,1}},
 …
{unused,[]}]

Another useful utility is the module_info built-in function that allows you to
retrieve detailed information about a module. The following example retrieves the
information about the rabbitmq_sup module:

rabbit_sup:module_info().

The output of the preceding information about the module that includes the
information about exported functions, module attributes, and other information for
the module is as follows:

[{module,rabbit_sup},
 {exports,[{start_child,1},
 {start_child,2},
 {start_child,3},
 {start_supervisor_child,1},
 {start_supervisor_child,3},
 {start_restartable_child,1},
 {start_delayed_restartable_child,1},
 {start_delayed_restartable_child,2},
 {stop_child,1},
 {init,1},
 {module_info,0},
 {module_info,1},
 {start_restartable_child,2},
 {start_supervisor_child,2},
 {start_link,0}]},
 {attributes,[{vsn,[57416127534960432714786320802993587506]},
 {behaviour,[supervisor]}]},
 {compile,[{options,[{d,use_specs},
 {d,'INSTR_MOD',gm},
 {outdir,"/home/openjdk/rabbitmq-server/ebin"},
 {i,"/home/openjdk/rabbitmq-server/deps/rabbit_
common/include"},
 {i,"/home/openjdk/rabbitmq-server/include"},
 warn_obsolete_guard,warn_shadow_vars,
 warn_export_vars,debug_info,

www.it-ebooks.info

http://www.it-ebooks.info/

Contributing to RabbitMQ

[230]

 warnings_as_errors]},
 {version,"6.0.1"},
 {time,{2015,11,14,13,35,5}},
 {source,"/home/openjdk/rabbitmq-server/src/rabbit_sup.
erl"}]},
 {native,false},
 {md5,<<"+1\361\245v\327TcBt\275\300\250\326\3052">>}]

For detailed information on the output of module_info, you can refer to Erlang
User's Guide.

Points for contribution
You can write for the RabbitMQ discussion lists if you are willing to contribute
a plug-in for RabbitMQ (it may turn out that someone else is already writing
or has already written about a similar plug-in). If you are eager to contribute to
the RabbitMQ code base, you may start by first forking the particular RabbitMQ
repository and writing good unit tests for the features that are not sufficiently
covered by tests. After that, you can prepare a pull request for the particular
RabbitMQ repository and incorporate a feedback on your changes. Another thing is
improvements in the source code—although Erlang sources are quite concise, it isn't
impossible to put some code here and there—if you do this then you can contribute
by preparing a pull request with improvements; however, first you need to make
sure that someone else is not working on the same issue by checking the issue list for
the corresponding RabbitMQ project in GitHub.

www.it-ebooks.info

http://www.it-ebooks.info/

[231]

Index
A
AMQP 0-9-1 protocol (Advanced Message

Queuing Protocol) 8
AMQP transactions 100-103
authentication

about 188, 189
LDAP backend, configuring 190-193
security considerations 194

authorization 194
Axis2 Transport RabbitMQ

AMQP feature 123

B
boot component

about 212
core_intialized 212
external_infrastructure 212
final steps 212
kernel_ready 212
routing_ready 212

boot process
core_initialized group 214
external_infrastructure group 213
final boot steps 214
kernel_ready group 214
routing_ready group 214

C
case studies

Corporate Social Network (CSN) 17
CSN administration 63, 64
CSN high availability 105
CSN initial design 41, 42

CSN integration 134
CSN, scaling 81
CSN security 204
RabbitMQ plugin development,

for CSN 222
client high availability

about 104
client reconnections 104
load balancing 104

clustering
benefits 67

clustering, RabbitMQ
connecting, to cluster 75-80
nodes, adding to cluster 70-73
nodes, removing from cluster 74
RAM-only nodes, adding to cluster 73
simple cluster, creating 69, 70

core_initialized group steps, boot process
about 214
delegate_sup 214
guid_generator 214
rabbit_epmd_monitor 214
rabbit_memory_monitor 214
rabbit_node_monitor 214

D
data types, Erlang

atoms 172
binaries 172
bit strings 172
booleans 172
floats 172
funs 172
integers 172
lists 172

www.it-ebooks.info

http://www.it-ebooks.info/

[232]

maps 172
pids 172
ports 172
records 172
references 172
tuples 172

default exchange 9
DN (Distinguished Name) pattern 193
Docker 132

E
Enterprise messaging

defining 2-6
factors 2, 7
patterns 7
solutions 7
use cases 6

EPMD (Erlang Port Mapper Daemon) 177
Erlang REPL (Read-Eval-Print-Loop)

shell 170
Erlang, troubleshooting

about 169
Erlang crash dump 177, 178
Erlang primer 169-176

Erlide
about 228
URL 228

event_queue queue 79
exchange types, RabbitMQ

direct exchange 9
fanout exchange 9
headers exchange 9
topic exchange 9

external_infrastructure group steps,
boot process

codec_correctness_check 213
database 213
database_sync 213
file_handle_cache 213
rabbit_alarm 213
worker_pool 213

F
Federation plugin

about 90
enabling 90-96

final boot steps, boot process
background_gc 214
direct_client 214
log_relay step 214
networking 214
notify_cluster 214

G
generic loopback interface, for Windows

reference 198

H
Hadoop 129
high availability

about 84
benefits 84
considerations 84

high availability support,
in RabbitMQ 85, 86

high level architecture, RabbitMQ 207-211
HiPE (High Performance Erlang) 140

I
integration testing

RabbitMQ applications 133, 134

K
kernel_ready group steps, boot process

rabbit_event 214
rabbit_registry 214

L
LDAP authentication 195-197
LDAP (Lightweight Directory Access

Protocol) server 189
Linux

installing 16

M
magic cookie 68
message delivery

issues 182
message router 39, 40

www.it-ebooks.info

http://www.it-ebooks.info/

[233]

messaging patterns 19-23
mirrored queue 86-90
MongoDB 129
monit

about 158
installing 158

monitoring, RabbitMQ instances
case study 162
management UI 154-156
monit 158
Munin 159-161
Nagios 156, 157

MSYS2
reference 226

Mule ESB
about 116
project, creating 116-122

Munin 159-161

N
Nagios 156
nagios-plugins-rabbitmq GitHub

repository 156
networking component 219, 220

O
OASIS 8
OpenLDAP

URL 190
Oracle RDBMS 127, 128

P
patterns, Enterprise Messaging

point-to-point 7
publish-subscribe 7
request-response 7

penetration testing 203, 204
performance tuning, RabbitMQ instances

about 137-139
acknowledgements 145
alarms 147
case study 162
client tuning 149
clustering 142
connection heartbeats 142

faster runtime execution 140
high availability 143
maximum frame size of messages 141
maximum number of channels 141
memory usage 139, 140
message persistence 144
message routing 145
message size 141
Mnesia transaction logs 145
network tuning 148
performance testing 149-153
publisher confirms 145
QoS prefetching 143
queue creation 145
queue deletion 146
queue message TTL 146
transactions 145

persistence component
about 217
message persistence component 218
metadata persistence 217

pid (proportional-integral-derivative) 176
plug-in loader component 215
plug-ins, RabbitMQ

developing 221
point-to-point communication 23-28
publisher confirms

about 103
enabling 103

publish-subscribe communication 29-33
pull-style communication 9
Puppet 131
push-style communication 9

R
RabbitMQ

about 8, 9
bindings 8
clustering support 68
comparing, with message brokers 162
comparing, with other technologies 11
design patterns 19
exchanges 8
features 10
high availability support 85, 86
high level architecture 207-211

www.it-ebooks.info

http://www.it-ebooks.info/

[234]

installing 11-16
messaging patterns 19-23
plug-ins, developing 221
queues 8
upgrading 62
URL 11
virtual hosts 8

RabbitMQ applications
integration testing 133, 134
testing 133
unit testing 133

RabbitMQ community
about 225
URL 225

RabbitMQ components
boot component 212, 213
networking component 219, 220
other components 220, 221
overview 212
persistence component 217
plug-in loader component 215
recovery component 216, 217

RabbitMQ deployment options
about 130, 131
Docker 132
Puppet 131
Vagrant 133

RabbitMQ installation files
RABBITMQ_BASE 46
RABBITMQ_CONFIG_FILE 46
RABBITMQ_LOG_BASE 46

RabbitMQ instances
administering 43-46
backup 55
bindings, administering 52
broker metadata, backing up 56
broker metadata, restoring 57, 58
exchanges, administering 50, 51
managing 59-62
monitoring 154
performance tuning 137
permissions, administering 50
policies, administering 52-54
queues, administering 51
components, administering 46, 47
RabbitMQ database, administering 55
restore 56

users, administering 47, 48
vhosts, administering 49

RabbitMQ instances, configuring
about 58
environment variables, setting up 58
RabbitMQ configuration file, modifying 59

RabbitMQ integrations 130
RabbitMQ logs

inspecting 167-169
rabbitmq_management_agent plug-in 72
RABBITMQ_NODE_IP_ADDRESS 58
RABBITMQ_NODENAME 59
RABBITMQ_NODE_PORT 59
RabbitMQ nodes

starting/stopping issues 179-181
RabbitMQ repositories

about 225
RabbitMQ server, building 226-230
reference 226
sources, obtaining 226

RABBITMQ_SERVICENAME 59
RabbitMQ SSL

URL 201
recovery component

about 216
boot process 216

reliable delivery
about 98, 99
AMQP transactions 100
publisher confirms 103

request-reply communication 34-38
routing_ready group steps, boot process

empty_db_check 214
mirrored_queues 214
recovery 214

runtime errors, Erlang
exit errors 174
regular errors 174
throw errors 174

S
sample 171
sample-key binding key 111
sample-queue 110, 111
sample-queue-spring queue 113
sample-queue-spring routing key 113

www.it-ebooks.info

http://www.it-ebooks.info/

[235]

sample-spring-exchange 113
sample-topic-exchange 111
SASL methods

AMQPLAIN 190
EXTERNAL 190
PLAIN 190
RABBIT-CR-DEMO 190

SASL (Simple Authentication and Security
Layer) 188

secure communication
about 198-201
EXTERNAL SSL authentication 203
secure cluster communication 203
with management interface 201-203

security
authentication 188
authorization 194
penetration testing 203, 204
secure communication 198
threats, types 185

Shovel plugin 96, 97
SLA (service level agreement) 84
slogan 177
Spring AMQP

about 109, 110
RabbitAdmin class 110
RabbitTemplate class 110

Spring framework integration
about 109
Spring AMQP 109
Spring Integration 109
Spring XD (extreme data) 109

Spring integration 109, 113-115
Spring XD (extreme data) 109
subqueries, LDAP authentication

resource_access_query 195
tag_queries 195
vhost_access_query 195

T
test-destination-queue 114, 115
testing

about 133
RabbitMQ applications 133

test-queue 114, 115
threats types

about 185
authentication 186
authorization 186
message encryption 187
physical security 187
plugin security 187
proper client settings 187
secure communication between clients and

broker 186
secure communication between cluster

nodes 187
secure communication between remote

nodes 187
troubleshooting

about 165
general troubleshooting approach 165

troubleshooting approach
Erlang troubleshooting 169
IRC channel 169
RabbitMQ logs, inspecting 167-169
RabbitMQ mailing list 169
status of particular node, checking 166
top-down approach 165

TTL (time-to-live) 53
types of integrations

about 108
integration with databases 127
integration with ESBs 116
Spring framework 109

U
unit testing

RabbitMQ applications 133

V
Vagrant 133

W
Wireshark

URL 198
WSO2 122-126

www.it-ebooks.info

http://www.it-ebooks.info/

[236]

X
x-message-ttl parameter 146
XMPP (Extensible Messaging and Presence

Protocol) 8
xsltproc

reference 227

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning RabbitMQ

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

RabbitMQ Essentials
ISBN: 978-1-78398-320-9 Paperback: 182 pages

Hop straight into developing your own messaging
applications by learning how to utilize RabbitMQ

1.	 Refresh your knowledge of the basics of
message-orientated architecture and witness
how powerful RabbitMQ can be when building
your messaging applications.

2.	 Discover the strategies behind increasing
the scalability and fault tolerance of your
applications.

3.	 Gain a deep and practical understanding
of RabbitMQ through the journey of Clever
Coney Media, a fictitious company with
real-world problems.

RabbitMQ Cookbook
ISBN: 978-1-84951-650-1 Paperback: 288 pages

Over 70 practical recipes to help you develop
messaging applications using RabbitMQ with the
help of plenty of real-life examples

1.	 Create scalable distributed applications
with RabbitMQ.

2.	 Exploit RabbitMQ on both Web and
mobile platforms.

3.	 Deploy message services on cloud
computing platforms.

4.	 Full of screenshots and descriptions
with clear, step-by-step instructions and
practical examples.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Instant RabbitMQ Messaging
Application Development How-to
ISBN: 978-1-78216-574-3 Paperback: 54 pages

Build scalable message-based applications with
RabbitMQ

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how to build message-based applications
with RabbitMQ using a practical Node.js
ecommerce example.

3.	 Implement various messaging patterns
including asynchronous work queues, publish
subscribe and topics.

ZeroMQ
ISBN: 978-1-78216-104-2 Paperback: 108 pages

Use ZeroMQ and learn how to apply different
message patterns

1.	 Learn fundamental message/queue
design patterns.

2.	 Work with multi-threaded programs.

3.	 Work with multiple sockets.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Preface
	Chapter 1: Introducing RabbitMQ
	Enterprise messaging
	Use cases
	Solutions
	Patterns
	Point-to-point
	Publish-subscribe
	Request-response

	Understanding RabbitMQ
	Features
	Comparison with other technologies
	Installation
	Linux

	Case study: CSN (Corporate Social Network)
	Summary
	Exercises

	Chapter 2: Design Patterns with RabbitMQ
	Messaging patterns in RabbitMQ
	Point-to-point communication
	Publish-subscribe communication
	Request-reply communication
	Message router
	Case study: Initial design of the CSN
	Summary
	Exercises

	Chapter 3: Administration, Configuration, and Management
	Administering RabbitMQ instances
	Administering RabbitMQ components
	Administering users
	Administering vhosts
	Administering permissions
	Administering exchanges
	Administering queues
	Administering bindings
	Administering policies
	Administering the RabbitMQ database
	Full backup and restore
	Backing up and restoring the broker metadata

	Installing RabbitMQ plugins
	Configuring RabbitMQ instances
	Setting environment variables
	Modifying the RabbitMQ configuration file

	Managing RabbitMQ instances
	Upgrading RabbitMQ
	Case study: Administering CSN

	Summary
	Exercises

	Chapter 4: Clustering
	Benefits of clustering
	RabbitMQ clustering support
	Creating a simple cluster
	Adding nodes to the cluster
	Adding RAM-only nodes to the cluster
	Removing nodes from a cluster
	Connecting to the cluster

	Case study: scaling the CSN
	Summary
	Exercises

	Chapter 5: High Availability
	Benefits of high availability
	High availability support in RabbitMQ
	Mirrored queues
	Federation plugin
	Shovel plugin
	Reliable delivery
	AMQP transactions
	Publisher confirms

	Client high availability
	Client reconnections
	Load balancing

	Case study: introducing high availability in CSN
	Summary
	Exercises

	Chapter 6: Integrations
	Types of integrations
	Spring framework
	Spring AMQP
	Spring Integration

	Integration with ESBs
	Mule ESB
	WSO2

	Integration with databases
	Oracle RDBMS
	MongoDB
	Hadoop

	RabbitMQ integrations
	RabbitMQ deployment options
	Puppet
	Docker
	Vagrant

	Testing RabbitMQ applications
	Unit testing of RabbitMQ applications
	Integration testing of RabbitMQ applications

	Case study: Integrating CSN with external systems
	Summary
	Exercises

	Chapter 7: Performance Tuning
and Monitoring
	Performance tuning of RabbitMQ instances
	Memory usage
	Faster runtime execution
	Message size
	The maximum frame size of messages
	The maximum number of channels
	Connection heartbeats
	Clustering and high availability
	QoS prefetching
	Message persistence
	Mnesia transaction logs
	Acknowledgements, transactions and publisher confirms
	Message routing
	Queue creation/deletion
	Queue message TTL
	Alarms
	Network tuning
	Client tuning
	Performance testing

	Monitoring of RabbitMQ instances
	The management UI
	Nagios
	Monit
	Munin

	Comparing RabbitMQ with other message brokers
	Case Study : Performance tuning and monitoring of RabbitMQ instances in CSN
	Summary
	Exercises

	Chapter 8: Troubleshooting
	General troubleshooting approach
	Checking the status of a particular node
	Inspecting the RabbitMQ logs
	The RabbitMQ mailing list and IRC channel
	Erlang troubleshooting
	An Erlang Primer
	The Erlang crash dump

	Problems with starting/stopping RabbitMQ nodes
	Problems with message delivery
	Summary
	Exercises

	Chapter 9: Security
	Types of threats
	Authentication
	Configuring the LDAP backend
	Security considerations

	Authorization
	LDAP authentication

	Secure communication
	Secure communication with the management interface
	Secure cluster communication
	EXTERNAL SSL authentication

	Penetration testing
	Case study – securing CSN
	Summary
	Exercises

	Chapter 10: Internals
	High level architecture of RabbitMQ
	Overview of RabbitMQ components
	Boot component
	Plug-in loader component
	Recovery component
	Persistence component
	Metadata persistence
	Message persistence component

	Networking component
	Other components
	Developing plug-ins for RabbitMQ

	Case Study: Developing a RabbitMQ plugin for CSN
	Summary
	Exercises

	Appendix: Contributing to RabbitMQ
	RabbitMQ community
	RabbitMQ repositories
	Getting the sources
	Building the RabbitMQ server

	Points for contribution

	Index

