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Preface
This book is about Rust, a programming language that empowers you to build all kinds of software systems, ranging from low-level embedded software to dynamic web applications. Rust is fast, reliable, and safe. It offers performance and safety guarantees that reach or even surpass C and C++, while still being a modern language with a relatively low barrier of entry. Rust drive toward incremental improvements, combined with its active and friendly community, promises a great future for the language.
Rust is not a new language by design and doesn't try to reinvent the wheel. Rather, it's a language that has identified unique ideas, hidden away in research-prototype languages that never saw mass adoption. It brings those ideas together into a coherent composition and provides a practical language that lets you build safe software systems, while still being efficient.
Who this book is for
This book targets both beginner and intermediate programmers familiar with other imperative languages, but new to Rust. It assumes that you are familiar with at least one imperative programming language, such as C, C++, or Python. Knowing about functional programming is not a requirement, but it's good to have a general idea about it. We make sure to explain any concept or idea that we introduce from these languages, though.
What this book covers
Chapter 1, Getting Started with Rust, gives a brief history on Rust and the motivation behind its design, and covers basic language syntax. The chapter ends with an exercise covering all the language features.
Chapter 2, Managing Projects with Cargo, shows how Rust organizes large projects with its dedicated package manager. This serves as the basis for further chapters. It also covers editor integration with the Visual Studio Code editor.
Chapter 3, Tests, Documentation and Benchmarks, explores the built-in testing harness, writing unit tests, integration tests, and how to write documentation in Rust. We also cover the benchmarking facilities of Rust code. Later, as a final exercise, we build a complete crate with documentation and tests.
Chapter 4, Types, Generics, and Traits, explores Rust's expressive type system and goes on to explain various ways of using the type system by building a complex number library.
Chapter 5, Memory Management and Safety, starts with the motivation for memory management and the various pitfalls in conventional low-level programming languages related to memory. It then moves toward explaining Rust's unique compile-time memory management ideas. We also explain various smart pointer types in Rust.
Chapter 6, Error Handling, starts with the motivation for error handling and explores different models of error handling in other languages. The chapter then examine Rust's error-handling strategy and types, before exploring handling errors in non-recoverable situations. The chapter ends with a library implementing custom error types.
Chapter 7, Advanced Concepts, explores some of the concepts already introduced in previous chapters, in more detail. It provides details on the underlying model of some of the type system abstractions provided by Rust.
Chapter 8, Concurrency, explores Rust's concurrency models and APIs in the standard libraries and teaches you how to build highly concurrent programs with no data races.
Chapter 9, Metaprogramming with Macros, examines how you can write code to generate code using the powerful and advanced macro construct of Rust, and outlines the language's declarative and procedural macros by building both types of macros.
Chapter 10, Unsafe Rust and Foreign Function Interfaces, explores the unsafe mode of Rust and the APIs on offer for interoperating Rust with other languages. The examples includes both calling into Rust from other languages, such as Python, Node.js, and C, as well as covering how Rust can be called from other languages.
Chapter 11, Logging, explains why logging is an important practice in software development, answering why we need logging frameworks, and exploring the crates on offer in the Rust ecosystem that can be used to help integrate logging into the application.
Chapter 12, Network Programming in Rust Sync and Async I/O, gives a brief introduction to network programming. After going through the basics, the chapter covers building a Redis server that can talk to the official Redis client. Lastly, the chapter explains how to use the standard library networking primitives and the Tokio and futures crates.
Chapter 13, Building Web Applications with Rust, starts by exploring the HTTP protocol and builds a simple URL shortener server using the hyper crate, followed by building a URL shortener client using the reqwest crate. In the end, we explore actix-web, a high-performance Async web application framework to build a bookmarks API server.
Chapter 14, Interacting with Databases in Rust, starts with the motivation on the need for database backend applications and moves toward exploring the available crates in the Rust ecosystem to interact with various database backends, such as SQLite and PostgreSQL. The chapter also explores a type-safe ORM crate called diesel. Later, it covers how to integrate our bookmarks API server, built in the previous chapter, to integrate database support using diesel.
Chapter 15, Rust on the Web Using WebAssembly, explains what WebAssembly is and how it can be used by developers. We then move on to exploring the available crates in the Rust ecosystem, and build a live markdown-editor web application using Rust and WebAssembly.
Chapter 16, Building Desktop Applications with Rust, explains how to build desktop applications with Rust using the GTK framework. We'll build a simple hacker-news desktop client.
Chapter 17, Debugging, explores debugging Rust code with GDB and also shows how to integrate GDB with Visual Studio Code editor.
Getting the most out of this book
To really grasp the content of this book, it is recommended that you write out the example code and try fiddling with code to get familiar with the Rust's error messages, so they can guide you toward writing correct programs.
There isn't any specific hardware requirements for this book, and any system with a minimum of 1 GB of RAM and a fairly recent Linux operating system would be fine. All code examples and projects in this book were developed on a Linux machine running Ubuntu 16.04. Rust also offers first-class support for other OS platforms, including macOS, BSD, and recent versions of Windows, so all the code examples should compile and run fine on these platforms too.
Download the example code files
You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-RUST-Second-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository. Feel free to raise an issue on GitHub if you find any problems when compiling the code examples.
We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!
Conventions used
There are a number of text conventions used throughout this book.
CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The project resides in a folder named threads_demo in the Chapter08/ directory."
A block of code is set as follows:
fn main() {
println!("Hello Rust!");
}
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
[dependencies]
serde = "1.0.8"
crossbeam = "0.6.0"
typenum = "1.10.0"
Any command-line input or output is written as follows:
$ rustc main.rs
$ cargo build
Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."
Warnings or important notes appear like this.
Tips and tricks appear like this.
Get in touch
Feedback from our readers is always welcome.
General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.
Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.
Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.
If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.
Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!
For more information about Packt, please visit packt.com.
Getting Started with Rust
Learning a new language is like building a house – the foundation needs to be strong. With a language that changes the way you think and reason about your code, there's always more effort involved in the beginning, and it's important to be aware of that. The end result, however, is that you get to shift your thinking with these new-found concepts and tools.
This chapter will give you a whirlwind tour on the design philosophy of Rust, an overview of its syntax and the type system. We assume that you have a basic knowledge of mainstream languages such as C, C++, or Python, and the ideas that surround object-oriented programming. Each section will contain example code, along with an explanation of it. There will be ample code examples and output from the compiler, that will help you become familiar with the language. We'll also delve into a brief history of the language and how it continues to evolve.
Getting familiar with a new language requires perseverance, patience, and practice. I highly recommend to all readers that you manually write and don't copy/paste the code examples listed here. The best part of writing and fiddling with Rust code is the precise and helpful error messages you get from the compiler, which the Rust community often likes to call error-driven development. We'll see these errors frequently throughout this book to understand how the compiler thinks of our code.
In this chapter, we will cover the following topics:
What is Rust and why should you care?
" Rust is technology from the past came to save the future from itself. "
- Graydon Hoare
Rust is a fast, concurrent, safe, and empowering programming language originally started and developed by Graydon Hoare in 2006. It's now an open source language that's developed mainly by a team from Mozilla with collaboration from lots of open source folks. The first stable version, 1.0, was released in May 2015. The project began with the hope of mitigating memory safety issues that came up in gecko with the use of C++. Gecko is the browser engine that's used in Mozilla's Firefox browser. C++ is not an easy language to tame and has concurrency abstractions that can be easily misused. With gecko using C++, a couple of attempts were made (in 2009 and 2011) to parallelize its cascading style sheets (CSS) parsing code to leverage modern parallel CPUs. They failed, as the concurrent C++ code was too hard to maintain and reason about. With a large number of developers collaborating on the mammoth code base that gecko has, writing concurrent code with C++ is not a joyride. In the hope of incrementally removing the painful parts of C++, Rust was born and, with it, Servo, a new research project of creating a browser engine from scratch was initiated. The Servo project provides feedback to the language team by using the bleeding edge language features that, in turn, influences the evolution of the language. Around November 2017, parts of the Servo project, particularly the stylo project (a parallel CSS parser in Rust) started shipping to the latest Firefox release (Project Quantum), which is a great feat in such a short amount of time. Servo's end goal is to incrementally replace components in gecko with its components.
Rust is inspired by a multitude of languages, the notable ones being Cyclone (a safe dialect of C language) for its ideas on region-based memory management techniques; C++ for its RAII principle, and Haskell for its type system, error handling types, and typeclasses.
RAII stands for Resource Acquisition Is Initialization, a paradigm suggesting that resources must be acquired during the initialization of an object and must be released when their destructors are called or when they are deallocated.
The language has a very minimal runtime, does not need garbage collection, and prefers stack allocation by default over heap allocation (an overhead) for any value that's declared in a program. We'll explain all of this in Chapter 5, Memory Management and Safety. The Rust compiler, rustc, was originally written in Ocaml (a functional language) and became a self-hosting one in 2011 after being written in itself.
Self-hosting is when a compiler is built by compiling its own source code. This process is known as bootstrapping a compiler. Compiler its own source code acts as a really good test case for the compiler.
Rust is openly developed on GitHub at https://github.com/rust-lang/rust and continues to evolve at a fast pace. New features are added to the language through a community-driven Request For Comments (RFC) process where anybody can propose new language features. These are then described in detail in an RFC document. A consensus is then sought after for the RFC and if agreed upon, the implementation phase begins for the feature. The implemented feature then gets reviewed by the community, where it is eventually merged to the master branch after undergoing several tests by users in nightly releases. Getting feedback from the community is crucial for the language's evolution. Every six weeks, a new stable version of the compiler is released. Along with fast moving incremental updates, Rust also has this notion of editions, which is proposed to provide a consolidated update to the language. This includes tooling, documentation, its ecosystem, and to phase in any breaking changes. So far, there have been two editions: Rust 2015, which had a focus on stability, and Rust 2018, which is the current edition at the time of writing this book and focuses on productivity.
While being a general purpose multi-paradigm language, it is aiming for systems programming domain where C and C++ have been predominant. This means that you can write operating systems, game engines, and many performance critical applications with it. At the same time, it is also expressive enough that you can build high-performance web applications, network services, type-safe database Object Relational Mapper (ORM) libraries, and can also run on the web by compiling down to WebAssembly. Rust has also gained a fair share of interest in building safety-critical, real-time applications for embedded platforms such as the Arm's Cortex-M based microcontrollers, a domain mostly dominated by C at present. This gamut of applicability in various domains – which Rust exhibits quite well – is something that very rare to find in a single programming language. Moreover, established companies Cloudflare, Dropbox, Chuckfish, npm, and many more are already using it in production for their high-stakes projects.
Rust is characterized as a statically and strongly typed language. The static property means that the compiler has information about all of the variables and their types at compile time and does most of its checks at compile time, leaving very minimal type checking at runtime. Its strong nature means that it does not allow things such as auto-conversion between types, and that a variable pointing to an integer cannot be changed to point to a string later in code. For example, in weakly typed languages such as JavaScript, you can easily do something like two = "2"; two = 2 + two;. JavaScript weakens the type of 2 to be a string at runtime, thus storing 22 as a string in two, something totally contrary to your intent and meaningless. In Rust, the same code, that is, let mut two = "2"; two = 2 + two;, would get caught at compile time, throwing the following error: cannot add `&str` to `{integer}`. This property enables safe refactoring of code and catches most bugs at compile time rather than causing issues at runtime.
Programs written in Rust are very expressive as well as performant, in the sense that you can have most of the features of high-level functional style languages such as higher-order functions and lazy iterators, yet it compiles down to efficient code like a C/C++ program. The defining principles that underline many of its design decisions are compile-time memory safety, fearless concurrency, and zero cost abstractions. Let's elaborate on these ideas.
Compile time memory safety: The Rust compiler can track variables owning a resource in your program at compile time and does all of this without a garbage collector.
Resources can be memory address, a variable holding a value, shared memory reference, file handles, network sockets, or database connection handles.
This means that you can't have infamous problems with pointers use after free, double free, or dangling pointers at runtime. Reference types in Rust (types with & before them) are implicitly associated with a lifetime tag ('foo) and sometimes annotated explicitly by the programmer. Through lifetimes, the compiler can track places in code where a reference is safe to use, reporting an error at compile time if it's illegal. To achieve this, Rust runs a borrow/reference checking algorithm by using these lifetime tags on references to ensure that you can never access a memory address that has been freed. It also does this so that you cannot free any pointer while it is being used by some other variable. We will go into the details of this in Chapter 5, Memory management and Safety.
Zero-cost abstractions: Programming is all about managing complexity, which is facilitated by good abstractions. Let's go through a fine example of abstraction in both Rust and Kotlin (a language targeting Java virtual machines (JVM) that lets us write high-level code and is easy to read and reason about. We'll compare Kotlin's streams and Rust's iterators in manipulating a list of numbers and contrast the zero cost abstraction principle that Rust provides. The abstraction here is to be able to use methods that take other methods as arguments to filter numbers based on a condition without using manual loops. Kotlin is used here for its visual similarity with Rust. The code is fairly simple to understand and we aim to give a high-level explanation. We'll be glossing over the details in code as the whole point of this example is to understand the zero cost property.
First, let's look at the code in Kotlin (the following code can be run online: https://try.kotlinlang.org):
1. import java.util.stream.Collectors
2.
3. fun main(args: Array<String>) {
5. // Create a stream of numbers
6. val numbers = listOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10).stream()
7. val evens = numbers.filter { it -> it % 2 == 0 }
8. val evenSquares = evens.map { it -> it * it }
9. val result = evenSquares.collect(Collectors.toList())
10. println(result) // prints [4,16,36,64,100]
11.
12. println(evens)
13. println(evenSquares)
14. }
We create a stream of numbers (line 6) and call a chain of methods (filter and map) to transform the elements to collect only squares of even numbers. These methods can take a closure or a function (that is, it -> it * it at line 8) to transform each element in the collection. In functional style languages, when we call these methods on the stream/iterator, for every such call, the language creates an intermediate object to keep any state or metadata in regard to the operation being performed. As a result, evens and evenSquares will be two different intermediate objects that are allocated on the JVM heap. Allocating things on the heap incurs a memory overhead. That's the extra cost of abstraction we have to pay in Kotlin !
When we print the value of evens and evenSquares, we indeed get different objects, as show here:
java.util.stream.ReferencePipeline$Head@51521cc1
java.util.stream.ReferencePipeline$3@1b4fb997
The hex value after the @ is the object's hash code on the JVM. Since the hash codes are different, they are different objects.
In Rust, we do the same thing (the following code can be run online: https://gist.github.com/rust-play/e0572da05d999cfb6eb802d003b33ffa):
1. fn main() {
2. let numbers = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter();
3. let evens = numbers.filter(|x| *x % 2 == 0);
4. let even_squares = evens.clone().map(|x| x * x);
5. let result = even_squares.clone().collect::<Vec<_>>();
6. println!("{:?}", result); // prints [4,16,36,64,100]
7. println!("{:?}\n{:?}", evens, even_squares);
8. }
Glossing over the details, on line 2 we call vec![] to create a list of numbers on the heap, followed by calling into_iter() to make it a iterator/stream of numbers. The into_iter() method creates a wrapper Iterator type, IntoIter([1,2,3,4,5,6,7,8,9,10]), out of a collection (here, Vec <i32> is a list of signed 32 bit integers). This iterator type references the original list of numbers. We then perform filter and map transformations (lines 3 and 4), just like we did in Kotlin. Lines 7 and 8 print the type of evens and even_squares, as follows (some details have been omitted for brevity):
evens: | Filter { iter: IntoIter( <numbers> ) } |
even_squares: | Map { iter: Filter { iter: IntoIter( <numbers> ) }} |
The intermediate objects, Filter and Map, are wrapper types (not allocated on the heap) on the base iterator structure, which itself is a wrapper that holds a reference to the original list of numbers at line 2. The wrapper structures on lines 4 and 5 that get created on calling filter and map, respectively, do not have any pointer indirection in between and impose no heap allocation overhead, as was the case with Kotlin. All of this boils down to efficient assembly code, which would be equivalent to the manually written version using loops.
Fearless concurrency: When we said Rust is concurrent-safe, we meant that the language has Application Programming Interface (API) and abstractions that make it really easy to write correct and safe concurrent code. Contrasting this with C++, the possibility of making mistakes in concurrent code is quite high. When synchronizing data access to multiple threads in C++, you are responsible for calling mutex.lock() every time you enter the critical section, and mutex.unlock() when you exit this section:
// C++
mutex.lock(); // Mutex locked, good to go
// Do super critical stuff
mutex.unlock(); // We're done
Critical section: This is a group of instructions/statements that need to be executed atomically. Here, atomically means no other thread can interrupt the currently executing thread in the critical section, and no intermediate value is perceived by any thread during execution of code in the critical section.
In a large code base with many developers collaborating on the code, you might forget to call mutex.lock() before accessing the shared object from multiple threads, which can lead to data races. Others cases, you might forget to unlock the mutex and starve the other threads that want access to the data.
Rust has a different take on this. Here, you wrap your data in a Mutex type to ensuring synchronized mutable access to data from multiple threads:
// Rust
use std::sync::Mutex;
fn main() {
let value = Mutex::new(23);
*value.lock().unwrap() += 1; // modify
} // unlocks here automatically
In the preceding code, we were able to modify the data after calling lock() on value. Rust uses the notion of protecting the shared data itself and not code. The interaction with Mutex and the protected data is not independent, as is the case with C++. You cannot access the inner data without calling lock on the Mutex type. What about releasing the lock ? Well, calling lock() returns something called MutexGuard, which automatically releases the lock when the variable goes out of scope. It's one of the many safe concurrency abstractions Rust provides. We'll go into detail on them in Chapter 8, Concurrency. Another novel idea is the notion of marker traits, which validate and ensure synchronized and safe access to data in concurrent code at compile time. Traits are described in detail in Chapter 4, Types, Generics, and Traits. Types are annotated with marker traits called Send and Sync to indicate whether they are safe to send to threads or safe to share between threads, respectively. When a program sends a value to a thread, the compiler checks whether the value implements the required marker trait and forbids the usage of the value if it isn't the case. In this way, Rust allows you to write concurrent code without fear, where the compiler catches mistakes in multi-threaded code at compile time. Writing concurrent code is already hard. With C/C++, it gets even harder and more arcane. CPUs aren't getting more clock rates; instead, we have more cores being added. As a result, concurrent programming is the way forward. Rust makes it a breeze to write concurrent code and lowers the bar for many people to get into writing safe, concurrent code.
Rust also employs C++'s RAII idiom for resource initialization. This technique basically ties a resource's lifetime to objects' lifetimes, whereas the deallocation of heap allocated types is performed through the drop method, which is provided by the drop trait. This is automatically called when the variable goes out of scope. It also replaces the concept of null pointers with Result and Option types, which we'll go into detail in Chapter 6, Error Handling. This means that Rust doesn't allow null/undefined values in code, except when interacting with other languages through foreign function interfaces and when using unsafe code. The language also puts emphasis on composition over inheritance and has a trait system, which is implemented by data types and is similar to Haskell typeclasses, also known as Java interfaces on steroids. Traits in Rust are the backbone to many of its features, as we'll see in upcoming chapters.
Last but not least, Rust's community is quite active and friendly, and the language has comprehensive documentation, which can be found at https://doc.rust-lang.org. For the third year in a row (2016, 2017, and 2018), Stack Overflow's Developer Survey highlights Rust as the most-loved programming language, so it can be said that the overall programming community is very interested in it. To summarize, you should care about Rust if you aim to write high performing software with less bugs while enjoying many modern language features and an awesome community!
Installing the Rust compiler and toolchain
The Rust toolchain has two major components: the compiler, rustc, and the package manager, cargo, which helps manage Rust projects. The toolchain comes in three release channels:
Developers are encouraged to use the stable release channel. However, the nightly version enables bleeding edge features, and some libraries and programs require it. You can change to the nightly toolchain easily with rustup. We'll see how we can do that in a moment.
Using rustup.rs
Rustup is a tool to that installs the Rust compiler on all supported platforms. To make it easier for developers on different platforms to download and use the language, the Rust team developed rustup. It's a command-line tool written in Rust that provides an easy way to install pre-built binaries of the compiler and binary builds of the standard library for cross compiling needs. It can also install other components, such as the Rust source code, documentation, Rust formatting tool (rustfmt), Rust Language Server (RLS for IDEs), and other developer tools, and it runs on all platforms, including Windows.
From their official page at https://rustup.rs, the recommended way to install the toolchain is to run the following command:
curl https://sh.rustup.rs -sSf | sh
By default, the installer installs the stable version of the Rust compiler, its package manager, Cargo, and the language's standard library documentation so that it can be viewed offline. These are installed by default under the ~/.cargo directory. Rustup also updates your PATH environment variable to point to this directory.
The following is a screenshot of running the preceding command on Ubuntu 16.04:
If you need to make any changes to your installation, choose 2. However, the defaults are fine for us, so we'll go ahead and choose 1. Here's the output after the installation:
Rustup also has other capabilities, such as updating the toolchain to the latest version, which can be done by running rustup update. It can also update itself via rustup self update. It also provides directory-specific toolchain configuration. The default toolchain is set globally to whatever toolchain gets installed, which in most cases is the stable toolchain. You can view the default one by invoking rustup show. If you want to use the latest nightly toolchain for one of your projects, you can tell rustup to switch to nightly for that particular directory by running rustup override set nightly. If, for some reason, someone wants to use an older version of the toolchain or downgrade (say, the nightly build on 2016-06-03), rustup can also download that if we were to run rustup install nightly-2016-06-03, followed by setting the same using the override sub-command. More information on rustup can be found at https://github.com/rust-lang-nursery/rustup.rs.
Note: All of the code examples and projects in this book are based on compiler version rustc 1.32.0 (9fda7c223 2019-01-16).
Now, you should have everything you need to compile and run programs written in Rust. Let's get Rusty!
A tour of the language
For the fundamental language features, Rust does not stray far from what you are used to in other languages. At a high level, a Rust program is organized into modules, with the root module containing a main() function. For executables, the root module is usually a main.rs file and for libraries, a lib.rs file. Within a module, you can define functions, import libraries, define types, create constants, write tests and macros, or even create nested modules. We'll see all of them, but let's start with the basics. Here's a simple Rust program that greets you:
// greet.rs
1. use std::env;
2.
3. fn main() {
4. let name = env::args().skip(1).next();
5. match name {
6. Some(n) => println!("Hi there ! {}", n),
7. None => panic!("Didn't receive any name ?")
8. }
9. }
Let's compile and run this program. Write it to a file called greet.rs and run rustc with the file name, and pass your name as the argument. I passed the name Ferris, Rust's unofficial mascot, and got the following output on my machine:
Awesome! It greets Ferris. Let's get a cursory view of this program, line by line.
On line 1, we import a module called env from the std crate (libraries are called crates). std is the standard library for Rust. On line 3, we have our usual function main. Then, on line 4, we call the function args() from the env module, which returns an iterator (sequence) of arguments that has been passed to our program. Since the first argument contains our program name, we want to skip it, so we call skip and pass in a number, which is how many elements (1) we want to skip. As iterators are lazy and do not pre-compute things in Rust, we have to explicitly ask it to give the next element, so we call next(), which returns an enum type called Option. This can be either a Some(value) value or a None value because a user might forget to provide an argument.
On line 5, we use Rust's awesome match expression on the variable name and check whether it's a Some(n) or a None value. match is like the if else construct, but more powerful. On line 6, when it's a Some(n), we call println!(), passing in our inner string variable n (this gets auto-declared when using match expressions), which then greets our user. The println! call is not a function, but a macro (they all end with a !). Finally, on line 7, if it's a None variant of the enum, we just panic!() (another macro), which aborts the program, making it leave an error message.
The println! macro, as we saw, accepts a string, which can contain placeholders for items using the "{}" syntax. These strings are called format strings, while the "{}" in the string are called format specifiers. For printing simple types such as primitives, we can use the "{}" format specifier, whereas for other types, we use the "{:?}" format specifier. There are more details to this, though. When println! encounters a format specifier, that is, "{}", and a corresponding substitution value, it calls a method on that value, which returns a string representation of it. This method is part of a trait. For the "{}" specifier, it calls a method from the Display trait, whereas for "{:?}", it calls a method from the Debug trait. The latter is mostly used for debugging, while the former is for displaying a human readable output of data types. It is somewhat similar to the toString() method in Java. When developing, you usually need to print your data types for debugging. The cases where these methods are not available on a type when using the "{:?}" specifier, we then need to add a #[derive(Debug)] attribute over the type to get those methods. We'll explain attributes in detail in subsequent chapters, but expect to see this in future code examples. We'll also revisit the println! macro in Chapter 9, Metaprogramming with Macros.
Running rustc manually is not how you will do this for real programs, but it will do for these small programs in this chapter. In subsequent chapters, we will be using Rust's package manager to build and run our programs. Apart from running the compiler locally, another tool that can be used to run the code examples is the official online compiler called Rust playground, which can be found at http://play.rust-lang.org. Following is the screenshot from my machine:
The Rust playground also supports external libraries to be imported and to be used when trying out sample programs.
With the previous example, we got a high-level overview of a basic Rust program, but did not dive into all of the details and the syntax. In the following section, we will explain the language features separately and their syntax. The explanations that follow are here to give you enough context so that you can quickly get up and running in regard to writing Rust programs without going through all of the use cases exhaustively. To make it brief, each section also contains references to chapters that explain these concepts in more detail. Also, the Rust documentation page at https://doc.rust-lang.org/std/index.html will help you get into the details and is very readable with its built-in search feature. You are encouraged to proactively search for any of the constructs that are explained in the following sections. This will help you gain more context about the concepts you're learning about.
All of the code examples in this chapter can be found in this book's GitHub repository (PacktPublishing/Mastering-RUST-Second-Edition). For this chapter, they are in Chapter 1, Getting Started with Rust Directory – the same convention is followed for the rest of the chapters in this book.
Some of the code files are deliberately presented to not compile so that you can fix them yourselves with the help of the compiler.
With that said, let's start with the fundamental primitive types in Rust.
Primitive types
Rust has the following built-in primitive types:
signed | unsigned |
i8 | u8 |
i16 | u16 |
i32 | u32 |
i64 | u64 |
i128 | u128 |
Declaring variables and immutability
Variables allow us to store a value and easily refer to it later in code. In Rust, we use the let keyword to declare variables. We already had a glimpse of it in the greet.rs example in the previous section. In mainstream imperative languages such as C or Python, initializing a variable does not stop you from reassigning it to some other value. Rust deviates from the mainstream here by making variables immutable by default, that is, you cannot assign the variable to some other value after you have initialized it. If you need a variable to point to something else (of the same type) later, you need to put the mut keyword before it. Rust asks you to be explicit about your intent as much as possible. Consider the following code:
// variables.rs
fn main() {
let target = "world";
let mut greeting = "Hello";
println!("{}, {}", greeting, target);
greeting = "How are you doing";
target = "mate";
println!("{}, {}", greeting, target);
}
We declared two variables, target and greeting. target is an immutable binding, while greeting has a mut before it, which makes it a mutable binding. If we run this program, though, we get the following error:
As you can see from the preceding error message, Rust does not let you assign to target again. To make this program compile, we'll need to add mut before target in the let statement and compile and run it again. The following is the output when you run the program:
$ rustc variables.rs
$ ./variables
Hello, world
How are you doing, mate
let does much more than assign variables. It is a pattern-matching statement in Rust. In Chapter 7, Advanced Concepts, we'll take a closer look at let. Next, we'll look at functions.
Functions
Functions abstract a bunch of instructions into named entities, which can be invoked later by other code and help manage complexity. We already used a function in our greet.rs program, that is, the main function. Let's look at how we can define another one:
// functions.rs
fn add(a: u64, b: u64) -> u64 {
a + b
}
fn main() {
let a: u64 = 17;
let b = 3;
let result = add(a, b);
println!("Result {}", result);
}
In the preceding code, we created a new function named add. The fn keyword is used to create functions followed by its name, add, its parameters inside parentheses a and b, and the function body inside {} braces. The parameters have their type on the right, after the colon :. Return types in functions are specified using a ->, followed by the type, u64, which can be omitted if the function has nothing to return. Functions also have types. The type of our add function is denoted as fn(u64, u64) -> u64. They can also be stored in variables and passed to other functions.
If you look at the body of add, we don't need a return keyword to return a + b as in other languages. The last expression is returned automatically. However, we do have the return keyword available for early returns. Functions are basically expressions that return a value, which is a () (Unit) type by default, akin to the void return type in C/C++. They can also be declared within other functions. The use case for that is when you have a functionality within a function (say, foo) that is hard to reason as a sequence of statements. In this case, one can extract those lines in a local function, bar, which is then defined within the parent function, foo.
In main, we declared two variables, a and b, using the let keyword. As is the case with b, we can even omit specifying the type as Rust is able to infer types of variables in most cases by examining your code. This is also the case with the result, which is a u64 value. This feature helps prevent type signature clutter and improves the readability of code, especially when your types are nested inside several other types that have long names.
Rust's type inference is based on the Hindly Milner type system. It's a set of rules and algorithms that enable type inference in a programming language. It's an efficient type inference method that performs in linear time, making it practical to type check large programs.
We can also have functions that modify their arguments. Consider the following code:
// function_mut.rs
fn increase_by(mut val: u32, how_much: u32) {
val += how_much;
println!("You made {} points", val);
}
fn main() {
let score = 2048;
increase_by(score, 30);
}
We declare a score variable with 2048 as the value, and call the increase_by function, passing score and the value 30 as the second argument. In the increase_by function, we have specified the first parameter as mut val, indicating that the parameter should be taken as mutable, which allows the variable to be mutated from inside the function. Our increase_by function modifies the val binding and prints the value. Following is the output when running the program:
$ rustc function_mut.rs
$ ./function_mut
You made 2078 points
Next, let's look at closures.
Closures
Rust also has support for closures. Closures are like functions but have more information of the environment or scope in which they are declared. While functions have names associated with them, closures are defined without a name, but they can be assigned to a variable. Another advantage of Rust's type inference is that, in most cases, you can specify parameters for a closure without their type. Here's the the simplest possible closure: let my_closure = || ();. We just defined a no-parameter closure that does nothing. We can call this by invoking my_closure(), just like functions. The two vertical bars || hold the parameters for the closure (if any), such as |a, b|. Specifying the types of parameters (|a: u32|) is sometimes required when Rust cannot figure out the proper types. Like functions, closures can also be stored in variables and invoked later or passed to other functions. The body of the closure, however, can either have a single line expression or a pair of braces for multi-line expressions. A more involved closure would be as follows:
// closures.rs
fn main() {
let doubler = |x| x * 2;
let value = 5;
let twice = doubler(value);
println!("{} doubled is {}", value, twice);
let big_closure = |b, c| {
let z = b + c;
z * twice
};
let some_number = big_closure(1, 2);
println!("Result from closure: {}", some_number);
}
In the preceding code, we have defined two closures: doubler and big_closure. doubler doubles a value given to it; in this case, it is passed value from the parent scope or environment, that is, the function main. Similarly, in big_closure, we use the variable twice from its environment. This closure has multi-line expressions within braces and needs to end with a semi-colon to allow us to assign it to the big_closure variable. Later, we call big_closure, passing in 1, 2, and print some_number.
The major use case for closures are as parameters to higher-order functions. A higher-order function is a function that takes another function or closure as its argument. For example, the thread::spawn function from the standard library takes in a closure where you can write code you want to run in another thread. Another example where closures provide a convenient abstraction is when you have a function that operates on collection such as Vec and you want to filter the items based on some condition. Rust's Iterator trait has a method called filter, which takes in a closure as an argument. This closure is defined by the user and it returns either true or false, depending on how the user wants to filter the items in the collection. We'll get more in-depth with closures in Chapter 7, Advanced Concepts.
Strings
Strings are one of the most frequently used data types in any programming language. In Rust, they are usually found in two forms: the &str type (pronounced stir) and the String type. Rust strings are guaranteed to be valid UTF-8 encoded byte sequences. They are not null terminated as in C strings and can contain null bytes in-between them. The following program shows the two types in action:
// strings.rs
fn main() {
let question = "How are you ?"; // a &str type
let person: String = "Bob".to_string();
let namaste = String::from("नमस्ते"); // unicodes yay!
println!("{}! {} {}", namaste, question, person);
}
In the preceding code, person and namaste are of type String, while question is of type &str. There are multiple ways you can create String types. Strings are allocated on the heap, while &str types are usually pointers to an existing string, which could either be on stack, the heap, or a string in the data segment of the compiled object code. The & is an operator that is used to create a pointer to any type. After initializing the strings in the preceding code, we then use the println! macro to print them together using format strings. That's the very basics of strings. Strings are covered in detail in Chapter 7, Advanced Concepts.
Conditionals and decision making
Conditionals are also similar to how they're found in other languages. They follow the C-like if {} else {} structure:
// if_else.rs
fn main() {
let rust_is_awesome = true;
if rust_is_awesome {
println!("Indeed");
} else {
println!("Well, you should try Rust !");
}
}
In Rust, the if construct is not a statement, but an expression. In general programming parlance, statements do not return any value, but an expression does. This distinction means that if else conditionals in Rust always return a value. The value may be an empty () unit type, or it may be an actual value. Whatever remains in the last line inside the braces becomes the return value of the if else expression. It is important to note that both if and else branches should have the same return type. Also, we don't need parentheses around the if condition expression, as you can see in the preceding code. We can even assign the value of if else blocks to a variable:
// if_assign.rs
fn main() {
let result = if 1 == 2 {
"Wait, what ?"
} else {
"Rust makes sense"
};
println!("You know what ? {}.", result);
}
When assigning values that have been returned from an if else expression, we need to end them with a semicolon. For example, if { ... is an expression, while let is a statement that expects us to have a semicolon at the end. In the case of assignment, if we were to remove the else {} block from the preceding code, the compiler would throw an error, like so:
Without the else block, if the if condition evaluates to false, then the result will be (), and there would be two possible values for the result variable, that is, () and &str. Rust does not allow multiple types to be stored in one variable. So, in this case, we need both the if {} and else {} blocks returning the same types. Also, adding a semicolon in the conditional branches changes the meaning of the code. By adding a semicolon after the strings in the if block in the following code, the compiler would interpret it as you wanting to throw the value away:
// if_else_no_value.rs
fn main() {
let result = if 1 == 2 {
"Nothing makes sense";
} else {
"Sanity reigns";
};
println!("Result of computation: {:?}", result);
}
In this case, the result will be an empty (), which is why we had to change the println! expression slightly (the {:?}); this type cannot be printed out in the regular way. Now, for the more complex multi-valued decision making; Rust has another powerful construct called match expressions, which we'll look at next.
Match expressions
Rust's match expressions are quite a joy to use. It's basically C's switch statement on steroids and allows you to make decisions, depending on what value the variable has and whether it has advanced filtering capabilities. Here's a program that uses match expressions:
// match_expression.rs
fn req_status() -> u32 {
200
}
fn main() {
let status = req_status();
match status {
200 => println!("Success"),
404 => println!("Not Found"),
other => {
println!("Request failed with code: {}", other);
// get response from cache
}
}
}
In the preceding code, we have a req_status, function that returns a dummy HTTP request status code of 200, which we call in main and assign to status. We then match on this value using the match keyword, followed by the variable we want to check the value of (status), followed by a pair of braces. Within braces, we write expressions – these are called match arms. These arms represent the possible values that the variable being matched can take. Each match arm is written by writing the possible value of the variable, followed by a =>, and then the expression on the right. To the right, you can either have a single line expression or a multi-line expression within {} braces. When written in a single line expression, they need to be delimited with a comma. Also, every match arm must return the same type. In this case, each match arm returns a Unit type ().
Another nice feature or you can call guarantee of match expressions is that we have to match exhaustively against all possible cases of the value we are matching against. In our case, this would be listing all the numbers up until the maximum value of i32. However, practically, this is not possible, so Rust allows us to either ignore the rest of the possibilities by using a catch all variable (here, this is other) or an _ (underscore) if we want to ignore the value. Match expressions are a primary way to make decisions around values when you have more than one possible value and they are very concise to write. Like if else expressions, the return value of a match expression can also be assigned to a variable in a let statement when it's delimited with a semicolon, with all match arms returning the same types.
Loops
Repeating things in Rust can be done using three constructs, namely loop, while, and for. In all of them, we have the usual continue and break keywords, which allow you to skip and break out of a loop, respectively. Here's an example of using loop, which is equivalent to C's while(true):
// loops.rs
fn main() {
let mut x = 1024;
loop {
if x < 0 {
break;
}
println!("{} more runs to go", x);
x -= 1;
}
}
loop represents an infinite loop. In the preceding code, we simply decrement the value x until it hits the if condition x < 0, where we break out of the loop. An extra feature of using loop in Rust is being able to tag the loop block with a name. This can be used in cases where you have two or more nested loops and want to break out from any one of them and not just the loop immediately enclosing the break statement. The following is an example of using loop labels to break out of the loop:
// loop_labels.rs
fn silly_sub(a: i32, b: i32) -> i32 {
let mut result = 0;
'increment: loop {
if result == a {
let mut dec = b;
'decrement: loop {
if dec == 0 {
// breaks directly out of 'increment loop
break 'increment;
} else {
result -= 1;
dec -= 1;
}
}
} else {
result += 1;
}
}
result
}
fn main() {
let a = 10;
let b = 4;
let result = silly_sub(a, b);
println!("{} minus {} is {}", a, b, result);
}
In the preceding code, we are doing a very inefficient subtraction just to demonstrate the usage of labels with nested loops. In the inner 'decrement label, when dec equals 0, we can pass a label to break (here, this is 'increment) and break out of the outer 'increment loop instead.
Now, let's take a look at while loops. Nothing fancy here:
// while.rs
fn main() {
let mut x = 1000;
while x > 0 {
println!("{} more runs to go", x);
x -= 1;
}
}
Rust also has a for keyword and is similar to for loops used in other languages, but they are quite different in their implementation. Rust's for is basically a syntax sugar for a more powerful repetition construct known as iterators. We'll discuss them in more detail in Chapter 7, Advanced Concepts. To put it simply, for loops in Rust only work on types that can be converted into iterators. One such type is the Range type. The Range type can refer to a range of numbers, such as (0..10). They can be used in for loops like so:
// for_loops.rs
fn main() {
// does not include 10
print!("Normal ranges: ");
for i in 0..10 {
print!("{},", i);
}
println!(); // just a newline
print!("Inclusive ranges: ");
// counts till 10
for i in 0..=10 {
print!("{},", i);
}
}
Apart from the normal range syntax, that is, 0..10, which does not include 10, Rust also has inclusive range syntax 0..=10, which iterates all the way until 10, as can be seen in the second for loop. Now, let's move on to user-defined data types.
User-defined types
As the name says, user-defined types are types that are defined by you. These can be composed of several types. They may either be a wrapper over a primitive type or a composition of several user defined types. They come in three forms: structures, enumerations, and unions, or more commonly known as structs, enums, and unions. They allow you to easily express you data. The naming convention for user-defined types follows the CamelCase style. Structs and enums are more powerful than C's structs and enums, while unions in Rust are very close to C and are there mainly to interact with C code bases. We'll cover structs and enums in this section, while unions are covered in Chapter 7, Advanced Concepts.
Structs
In Rust, there are three forms of structs that we can declare. The simplest of them is the unit struct, which is written with the struct keyword, followed by its name and a semicolon at the end. The following code example defines a unit struct:
// unit_struct.rs
struct Dummy;
fn main() {
let value = Dummy;
}
We have defined a unit struct called Dummy in the preceding code. In main, we can initialize this type using only its name. value now contains an instance of Dummy and is a zero sized value. Unit structs do not take any size at runtime as they have no data associated with them. There are very few use cases for unit structs. They can be used to model entities with no data or state associated with them. Another use case is to use them to represent error types, where the struct itself is sufficient to understand the error without needing a description of it. Another use case is to represent states in a state machine implementation. Next, let's look at the second form of structs.
The second form of struct is the tuple struct, which has associated data. Here, the individual fields are not named, but are referred to by their position in the definition. Let's say you are writing a color conversion/calculation library for use in your graphics application and want to represent RGB color values in code. We can represent our Color type and the related items like so:
// tuple_struct.rs
struct Color(u8, u8, u8);
fn main() {
let white = Color(255, 255, 255);
// You can pull them out by index
let red = white.0;
let green = white.1;
let blue = white.2;
println!("Red value: {}", red);
println!("Green value: {}", green);
println!("Blue value: {}\n", blue);
let orange = Color(255, 165, 0);
// You can also destructure the fields directly
let Color(r, g, b) = orange;
println!("R: {}, G: {}, B: {} (orange)", r, g, b);
// Can also ignore fields while destructuring
let Color(r, _, b) = orange;
}
In the preceding code, Color(u8, u8, u8) is a tuple struct that was created and stored in white. We then access the individual color components in white using the white.0 syntax. Fields within the tuple struct can be accessed by the variable.<index> syntax, where the index refers to the position of the field in the struct, which starts with 0. Another way to access the individual fields of a struct is by destructuring the struct using the let statement. In the second part, we created a color orange. Following that, we wrote the let statement with Color(r, g, b) on the left-hand side and to the right we put our orange. This results in three fields in orange getting stored within the r, g, and b variables. The types of r, g, and b are also inferred automatically for us.
The tuple struct is an ideal choice when you need to model data that has less than four or five attributes. Anything more than that hinders readability and reasoning. For a data type that has more than three fields cases, it's recommended to use a C-like struct, which is the third form and the most commonly used one. Consider the following code:
// structs.rs
struct Player {
name: String,
iq: u8,
friends: u8,
score: u16
}
fn bump_player_score(mut player: Player, score: u16) {
player.score += 120;
println!("Updated player stats:");
println!("Name: {}", player.name);
println!("IQ: {}", player.iq);
println!("Friends: {}", player.friends);
println!("Score: {}", player.score);
}
fn main() {
let name = "Alice".to_string();
let player = Player { name,
iq: 171,
friends: 134,
score: 1129 };
bump_player_score(player, 120);
}
In the preceding code, structs are created in the same way as tuple structs, that is, by writing the struct keyword followed by the name of the struct. However, they start with braces and their field declarations are named. Within braces, we can write fields as field: type comma-separated pairs. Creating an instance of a struct is also simple; we write Player, followed by a pair of braces, which contains comma-separated field initializations. When initializing a field from a variable that has the same name as the field name, we can use the field init shorthand feature, which is the case with the name field in the preceding code. We can then access the fields from the created instance easily by using the struct.field_name syntax. In the preceding code, we also have a function called bump_player_score, which takes the struct Player as a parameter. Function arguments are immutable by default, so when we want to modify the score of the player, we need to change the parameter to mut player in our function, which allows us to modify any of its fields. Having a mut on the struct implies mutability for all of its fields.
The advantage of using a struct rather than a tuple struct is that we can initialize the fields in any order. It also allows us to provide meaningful names to the fields. As a side note, the size of a struct is simply the sum of its individual field members, along with any data alignment padding, if required. They don't have any extra metadata size overhead associated with them. Next, let's look at enumerations, also known as enums.
Enums
When you need to model something that can be of different kinds, enums are the way to go. They are created using the enum keyword, followed by the name of the enum, followed by a pair of braces. Within braces, we can write all the possibilities of the type, which are called variants. These variants can be defined with or without data contained in them, and the data contained can be any primitive type, structs, tuple structs, or even an enum. However, in the recursive case, where you have an enum, Foo, and also a variant which holds Foo, the variant needs to be behind a pointer (Box, Rc, and so on) type to avoid having recursively infinite type definitions. Because enums can also be created on the stack, they need to have a predetermined size, and infinite type definitions makes it impossible to determine the size at compile time. Now, let's take a look at how to create one:
// enums.rs
enum Direction {
N,
E,
S,
W
}
enum PlayerAction {
Move {
direction: Direction,
speed: u8
},
Wait,
Attack(Direction)
}
fn main() {
let simulated_player_action = PlayerAction::Move {
direction: Direction::N,
speed: 2,
};
match simulated_player_action {
PlayerAction::Wait => println!("Player wants to wait"),
PlayerAction::Move { direction, speed } => {
println!("Player wants to move in direction {:?} with speed {}",
direction, speed)
}
PlayerAction::Attack(direction) => {
println!("Player wants to attack direction {:?}", direction)
}
};
}
The preceding code defines two enum types: Direction and PlayerAction. We then create an instance of them by choosing any variant, such as Direction::N or PlayerAction::Wait using the double colon :: in between. Note that we can't have something like an uninitialized enum, and it needs to be one of the variants. Given an enum value, to see what variant an enum instance has, we use pattern matching by using match expressions. When we match on enums, we can directly destructure the contents of the variants by putting variables in place of fields such as direction in PlayerAction::Attack(direction), which in turn means that we can use them inside our match arms.
As you can see in our preceding Direction enum, we have a #[derive(Debug)] annotation. This is an attribute and it allows Direction instances to be printed using the {:?} format string in println!(). This is done by generating methods from a trait called Debug. The compiler tells us whether the Debug trait is missing and gives suggestions about how to fix it, and so we need the attribute there:
From a functional programmer's perspective, structs and enums are also known as Algebraic Data Types (ADTs) because the possible range of values they can represent can be expressed using the rules of algebra. For instance, an enum is called a sum type because the range of values that it can hold is basically the sum of the range of values of its variants, while a struct is called a product type because its range of possible values is the cartesian product of their individual fields' range of values. We'll sometime refer to them as ADTs when talking about them in general.
Functions and methods on types
Types without behavior can be limiting, and it's often the case that we want to have functions or methods on types so that we can return new instances of them rather than constructing them manually or so that we have the ability to the manipulate fields of a user-defined type. We can do this via impl blocks, which is read as providing implementations for a type. We can provide implementations for all user-defined types or any wrapper type. First, let's take a look at how to write implementations for a struct.
Impl blocks on structs
We can add behavior to our previously defined Player struct with two functionalities: a constructor-like function that takes a name and sets default values for the remaining fields in Person, and getter and setter methods for the friend count of Person:
// struct_methods.rs
struct Player {
name: String,
iq: u8,
friends: u8
}
impl Player {
fn with_name(name: &str) -> Player {
Player {
name: name.to_string(),
iq: 100,
friends: 100
}
}
fn get_friends(&self) -> u8 {
self.friends
}
fn set_friends(&mut self, count: u8) {
self.friends = count;
}
}
fn main() {
let mut player = Player::with_name("Dave");
player.set_friends(23);
println!("{}'s friends count: {}", player.name, player.get_friends());
// another way to call instance methods.
let _ = Player::get_friends(&player);
}
We use the impl keyword, followed by the type we are implementing the methods for, followed by braces. Within braces, we can write two kinds of methods:
Player::with_name("Dave");
let player = Player::with_name("Dave");
player.get_friends();
If we were to call get_friends with the associated method syntax, that is, Player::get_friends(), the compiler gives the following error:
The error is misleading here, but it indicates that instance methods are basically associated methods with self as the first parameter and that instance.foo() is a syntax sugar. This means that we can call it like this, too: Player::get_friends(&player);. In this invocation, we pass the method an instance of Player, that is, &self is &player.
There are three variants of instance methods that we can implement on types:
Our set_friends method is a &mut self method, which allows us to mutate the fields of player. We need the & operator before self, meaning that self is borrowed for the duration of the method, which is exactly what we want here. Without the ampersand, the caller would move the ownership to the method, which means that the value would get de-allocated after get_friends returns and we would not get to use our Player instance anymore. Don't worry if the terms move and borrowing does not make sense as we explain all of this in Chapter 5, Memory Management and Safety.
Now, onto implementations for enums.
Impl blocks for enums
We can also provide implementations for enums. For example, consider a payments library built in Rust, which exposes a single API called pay:
// enum_methods.rs
enum PaymentMode {
Debit,
Credit,
Paypal
}
// Bunch of dummy payment handlers
fn pay_by_credit(amt: u64) {
println!("Processing credit payment of {}", amt);
}
fn pay_by_debit(amt: u64) {
println!("Processing debit payment of {}", amt);
}
fn paypal_redirect(amt: u64) {
println!("Redirecting to paypal for amount: {}", amt);
}
impl PaymentMode {
fn pay(&self, amount: u64) {
match self {
PaymentMode::Debit => pay_by_debit(amount),
PaymentMode::Credit => pay_by_credit(amount),
PaymentMode::Paypal => paypal_redirect(amount)
}
}
}
fn get_saved_payment_mode() -> PaymentMode {
PaymentMode::Debit
}
fn main() {
let payment_mode = get_saved_payment_mode();
payment_mode.pay(512);
}
The preceding code has a method called get_saved_payment_mode(), which returns a user's saved payment mode. This can either be a Credit Card, Debit Card, or Paypal. This is best modeled as an enum, where different payment methods can be added as its variants. The library then provides us with a single pay() method to which we can conveniently provide an amount to pay. This method determines which variant of the enum it is and dispatches methods accordingly to the correct payment service provider, without the library consumer worrying about checking which payment method to use.
Enums are also widely used for modeling state machines, and when combined with match statements, they make state transition code very concise to write. They are also used to model custom error types. When enum variants don't have any data associated with them, they can be used like C enums, where the variants implicitly have integer values starting with 0, but can also be manually tagged with integer (isize) values. This is useful when interacting with foreign C libraries.
Modules, imports, and use statements
Languages often provide a way to split large code bases into multiple files to manage complexity. Java follows the convention of a single public class per .java file, while C++ provides us with header files and include statements. Rust is no different and provides us with modules. Modules are a way to namespace or organize code in a Rust program. To allow flexibility in organizing our code, there are multiple ways to create modules. Modules are a complex topic to understand and to make it brief for this section, we'll highlight only the important aspects about using them. Modules are covered in detail in Chapter 2, Managing Projects with Cargo. The following are the key takeaways about modules in Rust:
That was modules in brief. Some of the advanced aspects of modules are also covered in Chapter 7, Advanced Concepts. Next, let's look at the commonly used collection types that are available in the standard library.
Collections
It's often the case that your program has to process more than one instance of data. For that, we have collection types. Depending on what you want and where your data resides in memory, Rust provides many kinds of built-in types to store a collection of data. First, we have arrays and tuples. Then, we have dynamic collection types in the standard library, of which we'll cover the most commonly used ones, that is, vectors (list of items) and maps (key/value items). Then, we also have references to collection types, called slices, which are basically a view into a contiguous piece of data owned by some other variable. Let's start with arrays first.
Arrays
Arrays have a fixed length that can store items of the same type. They are denoted by [T, N], where T is any type and N is the number of elements in array. The size of the array cannot be a variable, but has to be a literal usize value:
// arrays.rs
fn main() {
let numbers: [u8; 10] = [1, 2, 3, 4, 5, 7, 8, 9, 10, 11];
let floats = [0.1f64, 0.2, 0.3];
println!("Number: {}", numbers[5]);
println!("Float: {}", floats[2]);
}
In the preceding code, we declared an array, numbers, which contains 10 elements for which we specified the type on the left. In the second array, floats, we specified the type as a suffix to the first item of the array, that is, 0.1f64. This is another way to specify types. Next, let's look at tuples.
Tuples
Tuples differ from arrays in the way that elements of an array have to be of the same type, while items in a tuple can be a mix of types. They are heterogeneous collections and are useful for storing distinct types together. They can also be used when returning multiple values from a function. Consider the following code that uses tuples:
// tuples.rs
fn main() {
let num_and_str: (u8, &str) = (40, "Have a good day!");
println!("{:?}", num_and_str);
let (num, string) = num_and_str;
println!("From tuple: Number: {}, String: {}", num, string);
}
In the preceding code, num_and_str is a tuple of two items, (u8, &str). We can also extract values from an already declared tuple into individual variables. After printing the tuple, we destructure it on the next line into the num and string variables, and their types are inferred automatically. That's pretty neat.
Vectors
Vectors are like arrays, except that their content or length doesn't need to be known in advance and can grow on demand. They are allocated on the heap. They can be created by either calling the Vec::new constructor or by using the vec![] macro:
// vec.rs
fn main() {
let mut numbers_vec: Vec<u8> = Vec::new();
numbers_vec.push(1);
numbers_vec.push(2);
let mut vec_with_macro = vec![1];
vec_with_macro.push(2);
let _ = vec_with_macro.pop(); // value ignored with `_`
let message = if numbers_vec == vec_with_macro {
"They are equal"
} else {
"Nah! They look different to me"
};
println!("{} {:?} {:?}", message, numbers_vec, vec_with_macro);
}
In the preceding code, we created two vectors, numbers_vec and vec_with_macro, in different ways. We can push elements to our vector using push() method and can remove elements using pop(). There are more methods for you to explore if you go to their documentation page: https://doc.rust-lang.org/std/vec/struct.Vec.html . Vectors can also be iterated using the for loop syntax as they also implement the Iterator trait.
Hashmaps
Rust also provides us with maps, which can be used to store key-value data. They come from the std::collections module and are named HashMap. They are created with the HashMap::new constructor function:
// hashmaps.rs
use std::collections::HashMap;
fn main() {
let mut fruits = HashMap::new();
fruits.insert("apple", 3);
fruits.insert("mango", 6);
fruits.insert("orange", 2);
fruits.insert("avocado", 7);
for (k, v) in &fruits {
println!("I got {} {}", v, k);
}
fruits.remove("orange");
let old_avocado = fruits["avocado"];
fruits.insert("avocado", old_avocado + 5);
println!("\nI now have {} avocados", fruits["avocado"]);
}
In the preceding code, we created a new HashMap called fruits. We then insert some fruits into our fruits map, along with their count, using the insert method. Following that, we iterate over the key value pairs using for loop, where in we take a reference to our fruit map by &fruits, because we only want read access to the key and value. By default, the value will be consumed by the for loop. The for loop in this case returns a two field tuple ((k ,v)). There are also seperate methods keys() and values() available to iterate over just keys and values, respectively. The hashing algorithm used for hashing the keys of the HashMap type is based on the Robin hood open addressing scheme, but can be replaced with a custom hasher depending on the use case and performance. That's about it.
Next, let's look at slices.
Slices
Slices are a generic way to get a view into a collection type. Most use cases are to get a read only access to a certain range of items in a collection type. A slice is basically a pointer or a reference that points to a continuous range in an existing collection type that's owned by some other variable. Under the hood, slices are fat pointers to existing data somewhere in the stack or the heap. By fat pointer, it means that they also have information on how many elements they are pointing to, along with the pointer to the data.
Slices are denoted by &[T], where T is any type. They are quite similar to arrays in terms of usage:
// slices.rs
fn main() {
let mut numbers: [u8; 4] = [1, 2, 3, 4];
{
let all: &[u8] = &numbers[..];
println!("All of them: {:?}", all);
}
{
let first_two: &mut [u8] = &mut numbers[0..2];
first_two[0] = 100;
first_two[1] = 99;
}
println!("Look ma! I can modify through slices: {:?}", numbers);
}
In the preceding code, we have an array of numbers, which is a stack allocated value. We then take a slice into the array numbers using the &numbers[..] syntax and store in all, which has the type &[u8]. The [..] at the end means that we want to take a full slice of the collection. We need the & here as we can't have slices as bare values – only behind a pointer. This is because slices are unsized types. We'll cover them in detail in Chapter 7, Advanced Concepts. We can also provide ranges ([0..2]) to get a slice from anywhere in-between or all of them. Slices can also be mutably acquired. first_two is a mutable slice through which we can modify the original numbers array.
To the astute observer, you can see that we have used extra pair of braces in the preceding code when taking slices. They are there to isolate code that takes mutable reference of the slice from the immutable reference. Without them, the code won't compile. These concepts will be made clearer to you in Chapter 5, Memory Management and Safety.
Note: The &str type also comes under the category of a slice type (a [u8]). The only distinction from other byte slices is that they are guaranteed to be UTF-8. Slices can also be taken on Vecs or Strings.
Next, let's look at iterators.
Iterators
An iterator is a construct that provides an efficient way to act on elements of collection types. They are not a new concept, though. In many imperative languages, they are implemented as objects that are constructed from collection types such as lists or maps. For instance, Python's iter(some_list) or C++'s vector.begin() are ways to construct iterators from an existing collection. The main motivation for iterators to exist in the first place is that they provide a higher level abstraction of walking through items of a collection instead of using manual for loops, which are very much prone to off by one errors. Another advantage is that iterators do not read the whole collection in memory and are lazy. By lazy, we mean that the iterator only evaluates or accesses an element in a collection when needed. Iterators can also be chained with multiple transformation operations, such as filtering elements based on a condition, and do not evaluate the transformations until you need them. To access these items when you need them, iterators provide a next() method, which tries to read the next item from the collection. This occurs when the iterator evaluates the chain of computation.
In Rust, an iterator is any type that implements the Iterator trait. This type can then be used in a for loop to walk over its items. They are implemented for most standard library collection types such as Vector, HashMap, BTreeMap, and many more and one can also implement it for their own types.
Note: It only makes sense to implement the Iterator trait if the type has a collection, such as semantics. For instance, it doesn't make sense to implement the iterator trait for a () unit type.
Iterators are frequently used whenever we are dealing with collection types in Rust. In fact, Rust's for loop is desugared into a normal match expression with next calls on the object being iterated over. Also, we can convert most collection types into an iterator by calling iter() or into_iter() on them. That's enough information on iterators – now, we can tackle the following exercise. We'll go deep into iterators and implement one ourselves in Chapter 7, Advanced Concepts.
Exercise – fixing the word counter
Armed with the basics, it's time to put our knowledge to use! Here, we have a program that counts instances of words in a text file, which is passed to it as an argument. It's almost complete, but has a few bugs that the compiler catches and a couple of subtle ones. Here's our incomplete program:
// word_counter.rs
use std::env;
use std::fs::File;
use std::io::prelude::BufRead;
use std::io::BufReader;
#[derive(Debug)]
struct WordCounter(HashMap<String, u64>);
impl WordCounter {
fn new() -> WordCounter {
WordCounter(HashMap::new());
}
fn increment(word: &str) {
let key = word.to_string();
let count = self.0.entry(key).or_insert(0);
*count += 1;
}
fn display(self) {
for (key, value) in self.0.iter() {
println!("{}: {}", key, value);
}
}
}
fn main() {
let arguments: Vec<String> = env::args().collect();
let filename = arguments[1];
println!("Processing file: {}", filename);
let file = File::open(filenam).expect("Could not open file");
let reader = BufReader::new(file);
let mut word_counter = WordCounter::new();
for line in reader.lines() {
let line = line.expect("Could not read line");
let words = line.split(" ");
for word in words {
if word == "" {
continue
} else {
word_counter.increment(word);
}
}
}
word_counter.display();
}
Go ahead and type the program into a file; try to compile and fix all the bugs with the help of the compiler. Try to fix one bug at a time and get feedback from the compiler by recompiling the code. The point of this exercise, in addition to covering the topics of this chapter, is to make you more comfortable with the error messages from the compiler, which is an important mental exercise in getting to know more about the compiler and how it analyzes your code. You might also be surprised to see how the compiler is quite smart in helping you removing errors from the code.
Once you are done fixing the code, here are some exercises for you to try so that you can flex your muscles a bit further:
Summary
We covered so many topics in this chapter. We got to know a bit about the history of Rust and the motivations behind the language. We had a brief walkthrough on its design principles and the basic features of the language. We also got a glimpse of how Rust provides rich abstractions through its type system. We learned how to install the language toolchain, and how to use rustc to build and run trivial example programs.
In the next chapter, we'll take a look at the standard way of building Rust applications and libraries using its dedicated package manager, and also set up our Rust development environment with a code editor, which will provide the foundation for all the subsequent exercises and projects in this book.
Managing Projects with Cargo
Now that we are familiar with the language and how to write basic programs, we'll level up towards writing practical projects in Rust. For trivial programs that can be contained in a single file, compiling and building them manually is no big deal. In the real world, however, programs are split into multiple files for managing complexity and also have dependencies on other libraries. Compiling all of the source files manually and linking them together becomes a complicated process. For large-scale projects, the manual way is not a scalable solution as there could be hundreds of files and their dependencies. Fortunately, there are tools that automate building of large-scale software projects—package managers. This chapter explores how Rust manages large projects with its dedicated package manager and what features it provides to the developer to enhance their development experience. We will cover the following topics:
As a final exercise, we'll create imgtool, a trivial command-line tool that can rotate images from the command line using a library, and use Cargo to build and run our program. We have a lot to cover, so let's dive in!
Package managers
"The key to efficient development is to make interesting new mistakes."
– Tom Love
A real-world software code base is often organized into multiple files and will have many dependencies, and that calls for a dedicated tool for managing them. Package managers are a class of command-line tools that help manage projects of a large size with multiple dependencies. If you come from a Node.js background, you must be familiar with npm/yarn or if you are from Go language, the go tool. They do all the heavy lifting of analyzing the project, downloading the correct versions of dependencies, checking for version conflicts, compiling and linking source files, and much more.
The problem with low-level languages like C/C++ is that they do not ship with a dedicated package manager by default. The C/C++ community have been using the GNU make tool for a long time, which is a language-agnostic build system and has arcane syntax, that puts off many developers. The problem with make is that it does not know what header files are included in your C/C++ sources, so they have to be manually given this information. It has no built-in support for downloading external dependencies, nor does it know about the platform you are running on. Fortunately, this is not the case with Rust as it ships with a dedicated package manager which has more context on the project being managed. What follows is a tour of Cargo, Rust's package manager, which makes it easy to build and maintain Rust projects. But first, we need to dig into Rust's module system a bit more.
Modules
Before we explore more about Cargo, we need to be familiar with how Rust organizes our code. We had a brief glimpse at modules in the previous chapter. Here, we will cover them in detail. Every Rust program starts with a root module. If you are creating a library, your root module is the lib.rs file. If you are creating an executable, the root module is any file with a main function, usually main.rs. When your code gets large, Rust lets you split it into modules. To provide flexibility in organizing a project, there are multiple ways to create modules.
Nested modules
The simplest way to create a module is by using the mod {} block within an existing module. Consider the following code:
// mod_within.rs
mod food {
struct Cake;
struct Smoothie;
struct Pizza;
}
fn main() {
let eatable = Cake;
}
We created an inner module named food. To create a module within an existing one, we use the mod keyword, followed by the name of the module, food, followed by a pair of braces. Within braces, we can declare any kind of item or even a nested module. Within our food module, we declared three structs: Cake, Smoothie, and Pizza. In main, we then create a Cake instance from the food module using the path syntax food::Cake. Let's compile this program:
Strange! The compiler does not see any Cake type being defined. Let's do what the compiler says and add use food::Cake:
// mod_within.rs
mod food {
struct Cake;
struct Smoothie;
struct Pizza;
}
use food::Cake;
fn main() {
let eatable = Cake;
}
We added use food::Cake;. To use any item from a module, we have to add a use declaration. Let's try again:
We get another error saying that Cake is private. This brings us to an important aspect about modules, providing privacy. Items within a module are private by default. To use any item from a module, we need to bring the item into scope. This is a two-step process. First, we need to make the item itself public by prefixing our item declaration with the pub keyword. Second, to use the item, we need to add a use statement, as we did previously with use food::Cake.
What comes after the use keyword is the item path in the module. The path to any item within a module is specified using the path syntax, which uses two double colons (::) between item names. The path syntax usually starts with the module name for importing items, though it is also used for importing individual fields of some types, such as enums.
Let's make our Cake public:
// mod_within.rs
mod food {
pub struct Cake;
struct Smoothie;
struct Pizza;
}
use food::Cake;
fn main() {
let eatable = Cake;
}
We added pub before our Cake struct and used it in the root module via use food::Cake. With those changes, our code compiles. It's not apparently clear now as to why one would need to create nested modules like so, but we'll get to see how they are used when we write tests in Chapter 3, Tests, Documentation, and Benchmarks.
File as a module
Modules can also be created as files. For instance, for a main.rs file in a directory named foo, we can create a module bar as a file in the same directory as foo/bar.rs. Then in main.rs, we need to tell the compiler of this module, that is, declare the module with mod foo;. This is an extra step when using file-based modules. To demonstrate using a file as a module, we have created a directory named modules_demo, which has the following structure:
+ modules_demo
└── foo.rs
└── main.rs
Our foo.rs contains a struct Bar, with its impl block:
// modules_demo/foo.rs
pub struct Bar;
impl Bar {
pub fn init() {
println!("Bar type initialized");
}
}
We want to use this module in main.rs. Our main.rs, has the following code:
// modules_demo/main.rs
mod foo;
use crate::foo::Bar;
fn main() {
let _bar = Bar::init();
}
We declare our module, foo, using mod foo;. We then use the Bar struct from the module by writing use crate::foo::Bar. Notice the crate prefix in use crate::foo::Bar; here. There are three ways to use an item from a module depending on the prefix you use:
Absolute imports:
Relative imports:
The third way to create modules, is to organize them as directories.
Directory as module
We can also create a directory that represents a module. This approach allows us to have submodules within modules as a file and directory hierarchy. Let's assume that we have a directory, my_program, that has a module named foo as a file foo.rs. It contains a type called Bar along with foo's functionality. Over time, the Bar APIs have grown in number and we wish to separate them as a submodule. We can model this use case with directory-based modules.
To demonstrate creating modules as directories, we have created a program in a directory named my_program. It has an entry point in main.rs and a directory named foo. This directory now contains a submodule within it named bar.rs.
Following is the structure of the directory my_program:
+ my_program
└── foo/
└── bar.rs
└── foo.rs
└── main.rs
To let Rust know about bar, we also need to create a sibling file named foo.rs alongside the directory foo/. The foo.rs file will contain mod declarations for any submodules created (here bar.rs) within the directory foo/.
Our bar.rs has the following content:
// my_program/foo/bar.rs
pub struct Bar;
impl Bar {
pub fn hello() {
println!("Hello from Bar !");
}
}
We have a unit struct Bar having an associated method hello. We want to use this API in main.rs.
Note: In the older Rust 2015 edition, submodules don't need a sibling foo.rs alongside the foo directory, and instead use a mod.rs file within foo to convey to the compiler that the directory is a module. Both of these approaches are supported in Rust 2018 edition.
Next, our foo.rs has the following code:
// my_program/foo.rs
mod bar;
pub use self::bar::Bar;
pub fn do_foo() {
println!("Hi from foo!");
}
We added a declaration of the module bar. Following that, we re-exported the item Bar from the module bar. This requires that Bar is defined as pub. The pub use part is how we re-export an item from a child module to be available from the parent module. Here, we used the self keyword to reference the module itself. Re-exports are mainly a convenience step when writing use statements, which helps remove the clutter when importing an item that is hidden away in nested submodules.
self is a keyword for relative imports. While it's encouraged to use absolute imports using crate, it is much cleaner to use self when re-exporting items from submodules in the parent module.
Finally main.rs uses both modules as:
// my_program/main.rs
mod foo;
use foo::Bar;
fn main() {
foo::do_foo();
Bar::hello();
}
Our main.rs declares foo and then imports the struct Bar. We then invoke the method do_foo from foo and also invoke hello on Bar.
There's more to modules than meets the eye and thus we cover some of the details about them in Chapter 7, Advanced Concepts. With modules explored, let's continue with Cargo.
Cargo and crates
When projects get large, a usual practice is to refactor code into smaller, more manageable units as modules or libraries. You also need tools to render documentation for your project, how it should be built, and what libraries it depends on. Furthermore, to support the language ecosystem where developers can share their libraries with the community, an online registry of some sort is often the norm these days.
Cargo is the tool that empowers you to do all these things, and https://crates.io is the centralized place for hosting libraries. A library written in Rust is called a crate, and crates.io hosts them for developers to use. Usually, a crate can come from three sources: a local directory, an online Git repository like GitHub, or a hosted crate registry like crates.io. Cargo supports crates from all of these sources.
Let's see Cargo in action. If you ran rustup, as described in the previous chapter, you will already have cargo installed, along with rustc. To see what commands are available to us, we can run cargo without any parameters:
It shows a list of common commands that we can use, along with some flags. Let's use the the new subcommand to create a new Cargo project.
Creating a new Cargo project
The cargo new <name> command creates a new project name as a directory. We can get more context on any subcommand by adding a help flag between cargo and the subcommand. We can view documentation for the new subcommand by running cargo help new, as shown in the following screenshot:
By default, cargo new creates a binary project; the --lib parameter has to be used when creating a library project. Let's try it out by typing cargo new imgtool and taking a look at the directory structure it creates:
Cargo has created some starter files, Cargo.toml and src/main.rs, with the function main printing Hello World!. For binary crates (executables), Cargo creates a src/main.rs file and for library crates it creates, src/lib.rs under the src/ directory.
Cargo also initializes a Git repository for new projects with the usual defaults, like preventing the target directory from being checked in with a .gitignore file, and checking in the Cargo.lock file for binary crates and ignoring it in library crates. The default Version Control System (VCS) that's used is Git, which can be changed by passing the --vcs flag to Cargo ( --vcs hg for mercurial). Cargo as of now supports Git, hg (mercurial), pijul (a version control system written in Rust), and fossil. If we want to modify this default behavior, we can pass --vcs none to instruct Cargo to not configure any vcs when creating our project.
Let's take a look at Cargo.toml for the project imgtool that we created. This file defines your project's metadata and dependencies. It's also known as the project's manifest file:
[package]
name = "imgtool"
version = "0.1.0"
authors = ["creativcoders@gmail.com"]
edition = "2018"
[dependencies]
This is the minimal Cargo.toml manifest file needed for a new project. It uses the TOML configuration language, which stands for Tom's Obvious Minimal Language. It is a file format that was created by Tom Preston-Werner. It is reminiscent of standard .INI files, but adds several data types to it, which makes it an ideal modern format for configuration files and simpler than YAML or JSON. We'll keep this file minimal for now and add things to it later.
Cargo and dependencies
For projects that depend on other libraries, the package manager has to find all of the direct dependencies in the project and also any indirect dependencies, and then compile and link them to the project. Package managers are not just a tool for facilitating dependency resolution; they should also ensure predictable and reproducible builds of a project. Before we cover building and running our project, let's discuss how Cargo manages dependencies and ensures repeatable builds.
A Rust project managed with Cargo has two files through which it does all its magic: Cargo.toml (introduced before) is the file where you, as the developer, write dependencies and their needed versions with SemVer syntax (like 1.3.*), and a lock file called Cargo.lock, which gets generated by Cargo upon building the project and that contains absolute versions (like 1.3.15) of all the immediate dependencies and any indirect dependencies. This lock file is what ensures repeatable builds in binary crates. Cargo minimizes the work it has to do by referring to this lock file for any further changes to the project. As such, it is advised that binary crates include the .lock file in their repository, while library crates can be stateless and don't need to include it.
Dependencies can be updated using the cargo update command. This updates all of your dependencies. For updating a single dependency, we can use cargo update -p <crate-name>. If you update the version of a single crate, Cargo makes sure to only update parts that are related to that crate in the Cargo.lock file and leaves other versions untouched.
Cargo follows the semantic versioning system (SemVer), where your library version is specified in the format of major.minor.patch. These can be described as follows:
For example, you might want to include the serialization library, serde, in your project. At the time of writing this book, the latest version of serde is 1.0.85 , and you probably only care about the major version number. Therefore, you write serde = "1" as the dependency (this translates to 1.x.x in SemVer format) in your Cargo.toml and Cargo will figure it out for you and fix it to 1.0.85 in the lock file. The next time you update Cargo.lock with the cargo update command, this version might get upgraded to whichever is the latest version in the 1.x.x match. If you don't care that much and just want the latest released version of a crate, you can use * as the version, but it's not a recommended practice because it affects the reproducibility of your builds as you might pull in a major version that has breaking changes. Publishing a crate with * as the dependency version is also prohibited.
With that in mind, let's take a look at the cargo build command, which is used to compile, link, and build our project. This command does the following for your project:
By default, cargo build creates a debug build of your project under the target/debug/ directory. A --release flag can be passed to create an optimized build for production code at the target/release/ directory. The debug build offers faster build time, shortening the feedback loop, while production builds are a bit slower as the compiler runs more optimization passes over your source code. During development, you need to have a shorter feedback time of fix-compile-check. For that, one can use the cargo check command, which results in even shorter compile times. It basically skips the code generation part of the compiler and only runs the source code through the frontend phase, that is, parsing and semantic analysis in the compiler. Another command is cargo run, which performs double duty. It runs cargo build, followed by running your program in the target/debug/ directory. For building/running a release version, you can use cargo run --release . On running Cargo run in our imgtool/ directory, we get the following output:
Running tests with Cargo
Cargo also supports running tests and benchmarks. In-depth testing and benchmarking is covered in Chapter 3, Tests, Documentation, and Benchmarks. In this section, we will go over a brief introduction on how to run tests using Cargo. We'll write tests for a library crate. To work our way through this section, let's create a crate by running cargo new myexponent --lib:
A library crate is similar to a binary crate. The difference is that instead of src/main.rs and a main function inside as an entry point, we have src/lib.rs with a trivial test function, it_works, which is marked with a #[test] annotation. We can run the it_works test function right away using cargo test and see it pass:
Now, let's try a bit of Test Driven Development (TDD) with Cargo. We will extend this library by adding a pow function ,with which the users of our library can calculate the exponent for a given number. We'll write a test for this function that initially fails and then fill in the implementation until it works. Here's the new src/lib.rs, featuring the pow function without any implementation:
// myexponent/src/lib.rs
fn pow(base: i64, exponent: usize) > i64 {
unimplemented!();
}
#[cfg(test)]
mod tests {
use super::pow;
#[test]
fn minus_two_raised_three_is_minus_eight() {
assert_eq!(pow(-2, 3), -8);
}
}
Don't worry about the details right now. We have created a single pow function that takes in a base as i64 and a positive exponent as usize, and returns a number that's been raised to the exponent. Under mod tests {, we have a test function called minus_two_raised_three_is_minus_eight that does a single assertion. The assert_eq! macro checks for the equality of the two values that were passed to it. If the left argument is equal to the right argument, the assertion passes; otherwise, it throws an error and the compiler reports the failed test. If we run cargo test, the unit tests obviously fails for pow invocation because we have an unimplemented!() macro invocation there:
In brief, unimplemented!() is just a convenient macro to mark unfinished code or code that you wish to implement later, but want the compiler to compile it anyway without giving a type error. Internally, this calls panic! with a message, "not yet implemented". It can be used in cases where you are implementing multiple methods of a trait. For instance, you start implementing one method, but you haven't planned on the implementation for other methods. When compiled, you would get compile errors for the other unimplemented methods if you just placed the function with an empty body. For these methods, we can place an unimplemented!() macro call inside them, just to make the type checker happy and compile for us, and offload the errors at runtime. We will look at more convenient macros like this in Chapter 9, Metaprogramming with Macros.
Now, let's fix this problem by implementing a quick and dirty version of the pow function and try again:
// myexponent/src/lib.rs
pub fn pow(base: i64, exponent: usize) -> i64 {
let mut res = 1;
if exponent == 0 {
return 1;
}
for _ in 0..exponent {
res *= base as i64;
}
res
}
Running Cargo test gives the following output:
This time, the test passes. Well, that's the basics. We'll do more testing in Chapter 3, Tests, Documentation, and Benchmarks.
Running examples with Cargo
To enable users to quickly get started with your crate, it's a good practice to communicate to users how to use your crate with code examples. Cargo standardize this practice, meaning that you can add an examples/ directory within your project root that can contain one or more .rs files, with a main function showing example usage of your crate.
The code under the examples/ directory can be run by using cargo run --examples <file_name>, where the filename is given without the .rs extension. To demonstrate this, we've added an example/ directory for our myexponent crate containing a file named basic.rs:
// myexponent/examples/basic.rs
use myexponent::pow;
fn main() {
println!("8 raised to 2 is {}", pow(8, 2));
}
Under the examples/ directory, we imported our pow function from our myexponent crate. The following is the output upon running cargo run --example basic:
Cargo workspace
Over the course of time, your project has gotten quite large. Now, you are thinking about whether you could split the common parts of your code as separate crates to help manage complexity. Well, a Cargo workspace allows you to do just that. The concept of workspaces is that they allow you to have crates locally in a directory that can share the same Cargo.lock file and a common target or output directory. To demonstrate this, we'll create a new project that incorporates Cargo workspaces. The workspace is nothing but a directory with a Cargo.toml file in it. It doesn't have any [package] section, but has a [workspace] section in it. Let's create a new directory called workspace_demo and add the Cargo.toml file like so:
mkdir workspace_demo
cd workspace_demo && touch Cargo.toml
We then add the workspace section to our Cargo.toml file:
# worspace_demo/Cargo.toml
[workspace]
members = ["my_crate", "app"]
Within [workspace], the members key is a list of crates within the workspace directory. Now, within the workspace_demo directory, we'll create two crates: my_crate, a library crate and app, a binary crate that uses my_crate.
To keep things simple, my_crate has a public API that simply prints a greeting message:
// workspace_demo/my_crate/lib.rs
pub fn greet() {
println!("Hi from my_crate");
}
Now, from our app crate, we have the main function, which calls the greet function of my_crate:
// workspace_demo/app/main.rs
fn main() {
my_crate::greet();
}
However, we need to let Cargo know about our my_crate dependency. As my_crate is a local crate, we need to specify it as a path dependency in the Cargo.toml file of app, like so:
# workspace_demo/app/Cargo.toml
[package]
name = "app"
version = "0.1.0"
authors = ["creativcoder"]
edition = "2018"
[dependencies]
my_crate = { path = "../my_crate" }
Now, when we run cargo build, the binary gets generated in the workspace_demo directory's target directory. Accordingly, we can add multiple local crates within the workspace_demo directory. Now, if we want to add a third-party dependency from crates.io, we need to add it in all of the crates where we need it. However, during cargo build, Cargo makes sure to only have a single version for that dependency in the Cargo.lock file. This ensures that third-party dependencies do not get rebuilt and duplicated.
Extending Cargo and tools
Cargo can also be extended to incorporate external tools for enhancing the development experience. It is designed to be as extensible as possible. Developers can create command-line tools and Cargo can invoke them via simple cargo binary-name syntax. In this section, we'll take a look at some of these tools.
Subcommands and Cargo installation
Custom commands for Cargo fall under the subcommand category. These tools are usually binaries from crates.io, GitHub, or a local project directory, and can be installed by using cargo install <binary crate name> or just cargo install when within a local Cargo project. One such example is the cargo-watch tool.
cargo-watch
Cargo-watch helps you shorten your fix, compile, run cycle by automatically building your project in the background whenever you make changes to your code. By default, this just runs Rust's type checker (the cargo check command) and does not undergo the code generation phase (which takes time) and shortens the compile time. A custom command can also be provided instead of cargo check using the -x flag.
We can install cargo-watch by running cargo install cargo-watch, and then within any Cargo project we can run it by invoking cargo watch. Now, whenever we make changes to our project, cargo-watch will run cargo check in the background and recompile the project for us. In the following code, we made a typo and corrected it, and cargo-watch recompiled the project for us:
This will be a very similar experience if you know about the watchman or nodemon packages from the Node.js ecosystem.
cargo-edit
The cargo-edit subcommand is used to automatically add dependencies to your Cargo.toml file. It can add dependencies of all kinds, including dev dependencies and build dependencies, and also lets you add a specific version of any dependency. It can be installed by running cargo install cargo-edit. This subcommand provides four commands: cargo add, cargo rm, cargo edit, and cargo upgrade.
cargo-deb
This is another useful community developed subcommand that can create Debian packages (.deb) for the easy distribution of Rust executables on Debian Linux. We can install it by running cargo install cargo-deb. We'll use this tool at the end of this chapter to package our imgtool command-line executable as a .deb package.
cargo-outdated
This command shows the outdated crate dependencies in your Cargo project. This can be installed by running cargo install cargo-outdated. Once installed, you can see the outdated crates (if any) by running cargo outdated within the project directory.
Now, the way these subcommands work seamlessly with Cargo is that developers create these binary crates with a naming convention, such as cargo-[cmd], and when you cargo install that binary crate, Cargo exposes the installed binary to your $PATH variable, which can then be invoked with cargo <cmd> . It's a simple and effective way that's been adopted by Cargo to extend itself with community developed subcommands. There are many other such extensions for Cargo. You can find a list of all community curated subcommands at https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands .
cargo install is also used to install any binary crates or executables/applications that are developed in Rust. They are installed in the /home/<user>/.cargo/bin/ directory by default. We'll use this to install our imgtool application—which we will build at the end of this chapter – to make it available system wide.
Linting code with clippy
Linting is a practice that helps maintain the quality of your library and have it adhere to standard coding idioms and practices. The de facto linting tool in the Rust ecosystem is clippy. Clippy provides us with a bunch of lints (about 291 at the time of writing this book) to ensure high quality Rust code. In this section, we'll install clippy and try it out on our libawesome library, add some dummy code to it, and see what suggestions we get from clippy. There are various ways of using clippy on your project, but we will use the cargo clippy subcommand way as that's simple. Clippy can perform analysis on code because it's a compiler plugin and has access to a lot of the compiler's internal APIs.
To use clippy, we need to install it by running rustup component add clippy. If you don't have it already, rustup will install it for you. Now, to demonstrate how clippy can point out bad style in our code, we have put some dummy statements within an if condition inside our pow function in the myexponent crate, as follows:
// myexponent/src/lib.rs
fn pow(base: i64, exponent: usize) -> i64 {
/////////////////// Dummy code for clippy demo
let x = true;
if x == true {
}
///////////////////
let mut res = 1;
...
}
With those lines added, by running cargo clippy in our myexponent directory, we get the following output:
Great! Clippy has found a common code style that is redundant, that is, checking for a Boolean value that is either true or false. Alternatively, we could have written the preceding if condition directly as if x {} . There are many more checks that clippy does, and some of them even point out potential mistakes in your code, such as https://rust-lang-nursery.github.io/rust-clippy/master/index.html#absurd_extreme_comparisons. To see all the available lints and various ways of configuring clippy, head over to https://github.com/rust-lang/rust-clippy.
Exploring the manifest file – Cargo.toml
Cargo heavily depends on the project's manifest file, the Cargo.toml file, to get all sorts of information for the project. Let's take a closer look at the structure of this file and what items it can contain. As you saw earlier, cargo new creates an almost empty manifest file, filled with just the necessary fields so that a project can be built. Every manifest file is divided into sections that specify the different properties of a project. We will take a look at the sections that are typically found in a moderate sized Cargo project's manifest file. Here's an imaginary Cargo.toml file from a larger application:
# cargo_manifest_example/Cargo.toml
# We can write comments with `#` within a manifest file
[package]
name = "cargo-metadata-example"
version = "1.2.3"
description = "An example of Cargo metadata"
documentation = "https://docs.rs/dummy_crate"
license = "MIT"
readme = "README.md"
keywords = ["example", "cargo", "mastering"]
authors = ["Jack Daniels <jack@danie.ls>", "Iddie Ezzard <iddie@ezzy>"]
build = "build.rs"
edition = "2018"
[package.metadata.settings]
default-data-path = "/var/lib/example"
[features]
default=["mysql"]
[build-dependencies]
syntex = "^0.58"
[dependencies]
serde = "1.0"
serde_json = "1.0"
time = { git = "https://github.com/rust-lang/time", branch = "master" }
mysql = { version = "1.2", optional = true }
sqlite = { version = "2.5", optional = true }
Let's go through the parts that we haven't explained yet, starting from the [package] section:
Next is [package.metadata.settings]. Typically, Cargo complains about all of the keys and sections that it doesn't know about, but the sections with metadata in them are an exception. They are ignored by Cargo, so they can be used for any configurable key/value pairs you need for your project.
The [features], [dependencies], and [build-dependencies] sections tie in together. A dependency can be declared by version number, as stated in SemVer's guidelines:
serde = "1.0"
This means that serde is a mandatory dependency and that we want the newest version, 1.0.*. The actual version will be fixed in Cargo.lock.
Using the caret symbol broadens the version ranges that Cargo is allowed to look for:
syntex = "^0.58"
Here, we're saying that we want the latest major version, 0.*.*, which must be at least 0.58.*.
Cargo also allows you to specify dependencies directly to a Git repository, provided that the repository is a project that was created by Cargo and follows the directory structure that Cargo expects. We can specify the dependency from GitHub like so:
time = { git = "https://github.com/rust-lang/time", branch = "master" }
This also works for other online Git repositories such as GitLab. Again, the actual version (or in the case of Git, changeset revision) will be fixed in Cargo.lock by the cargo update command.
The manifest also has two optional dependencies, mysql and sqlite:
mysql = { version = "1.2", optional = true }
sqlite = { version = "2.5", optional = true }
This means that the program can be built without depending on either. The [features] section contains a list of the default features:
default = ["mysql"]
This means that if you do not manually override the feature set when building your program, only mysql, and not sqlite, will be pulled in. An example use of features is when your library has certain optimization tweaks. However, this would be costly on an embedded platform, so the library author can release them as features, which will only be available on capable systems. Another example is when you are building a command-line application and also provide a GUI frontend as an extra feature.
That was a quick brief tour on how to describe a Cargo project using the Cargo.toml manifest file. There's quite a lot more to explore on how to configure your project with Cargo. Take a look at https://doc.rust-lang.org/cargo/reference/manifest.html for more information.
Setting up a Rust development environment
Rust has decent support for most code editors out there, whether it be vim, Emacs, intellij IDE, Sublime, Atom, or Visual Studio Code. Cargo is also well supported by these editors, and the ecosystem has several tools that enhance the experience, such as the following:
Among the aforementioned editors, the most mature IDE experience is provided by Intellij IDE and Visual Studio Code (vscode). We will cover setting up the development environment for vscode in this chapter as it is more accessible and lightweight. For vscode, the Rust community has an extension known as rls-vscode, which we'll install here. This extension is consists of the Rust language server (RLS), which uses many of the tools that we listed previously internally. We will be setting it up on Visual Studio Code 1.23.1 (d0182c341) with Ubuntu 16.04.
Installing vscode is beyond the scope of this book. You may look for your operating system's package repositories and go to https://code.visualstudio.com for more information on the same.
Let's actually open our imgtool application we created at the start of this chapter in vscode:
cd imgtool
code . # opens the current directory in vscode
Once we open our project, vscode recognizes our project automatically as a Rust project and gives us recommendations to download the vscode extension. It will look something like this:
If you don't get recommendations, you can always type Rust in the search bar on the top left. We can then click on Install and press Reload on the extension page, which restarts vscode and makes it available for use in our project:
Next time you open the main.rs file in the project and start typing, the extension will kick in and prompt you to install any missing toolchains related to Rust that you can click install. It then starts downloading that toolchain:
After a few minutes, the status will change, like so:
Now, we are good to go.
Note: Since RLS is still in its preview phase, you may experience RLS getting stuck when installing on its first go. By restarting vscode and reinstalling RLS again after removing it, it should work. If it doesn't, feel free to raise an issue on its GitHub page: rls-vscode.
With our imgtool project opened, let's see how RLS responds when we try to import a module:
As you can see, it performs auto completion for the items that are available in the fs module in the Rust standard library. Finally, let's take a look at how RLS handles formatting code for us. Let's put all of the code on the same line to demonstrate this:
Let's save the file. We can then use Ctrl + Shift + I or Ctrl + Shift + P and select Format Document. This will instantly format the document and run cargo check against your code once you hit Save:
For more information on other code editors, Rust has a page called https://areweideyet.com that lists the status of all editors, along with the categories, showing the extent of support they have for the language. Do check them out!
Now, let's continue to implement our imgtool application.
Building a project with Cargo – imgtool
We now have a fairly good understanding of how to manage projects using Cargo. To drive the concepts in, we will build a command-line application that uses a third-party crate. The whole point of this exercise is to become familiar with the usual workflow of building projects by using third-party crates, so we're going to skip over a lot of details about the code we write here. You are encouraged to check out the documentation of the APIs that are used in the code, though.
We'll use a crate called image from crates.io. This crate provides various image manipulation APIs. Our command-line application will be simple; it will take a path to an image file as its argument, rotate it by 90 degrees, and write back to the same file, every time when run.
We'll cd into the imgtool directory, which we created previously. First, we need to tell Cargo that we want to use the image crate. We can use the cargo add image@0.19.0 command to add the image crate with version 0.19.0 from the command line. Here's our updated Cargo.toml file:
[package]
name = "imgtool"
version = "0.1.0"
authors = ["creativcoder"]
edition = "2018"
[dependencies]
image = "0.19.0"
Then, we'll invoke cargo build. This pulls the image crate from crates.io and pulls its dependencies, before finally compiling our project. Once that is done, we are ready to use it in our main.rs file. For our app, we'll provide an image path as an argument. In our main.rs file, we want to read this image's path:
// imgtool/src/main.rs
use std::env;
use std::path::Path;
fn main() {
let image_path = env::args().skip(1).next().unwrap();
let path = Path::new(&image_path);
}
First, we read the argument that was passed to imgtool by invoking the args() function from the env module. This returns a string as a path to the image file. We then take the image path and create a Path instance out of it. Next comes the rotate functionality that comes from the image crate. Note that if you're running Rust 2015 edition, you will need an additional extern crate image; declaration on top of main.rs for you to be able to access the image crate's APIs. With Rust 2018 edition, this is not needed:
// imgtool/src/main.rs
use std::env;
use std::path::Path;
fn main() {
let image_path = env::args().skip(1).next().unwrap();
let path = Path::new(&image_path);
let img = image::open(path).unwrap();
let rotated = img.rotate90();
rotated.save(path).unwrap();
}
From the image crate, we use the open function to open our image and store it in img. We then call rotate90 on img. This returns an image buffer as rotated, which we just save back to the original image path by calling save and passing the path. Most of the function calls in the preceding code return a wrapper value called Result, and so we call unwrap() on Result values to tell the compiler that we don't care whether the function call failed, assuming that it has succeeded, and we just want to get the wrapped value from the Result type. We will learn about the Result type and proper error handling methods in Chapter 6, Error Handling. For the demo, under the project's asset folder, you will find an image of Ferris the crab (assets/ferris.png). Before running the code, we will see the following image:
Time to run our application with this image as an argument. Now, there are two ways you can run the imgtool binary and pass the image as an argument:
After running cargo run -- assets/ferris.png, we can see that Ferris has taken a tumble:
Great! Our application works. We can now install our tool by running cargo install inside our imgtool directory and then use it from anywhere in our terminal. Also, if you are on Ubuntu, we can use the cargo deb subcommand to create a deb package so that you can distribute it to other consumers. Running the cargo deb command produces the .deb file, as shown in the following screenshot:
Now, it's time for you to explore more in relation to the preceding code:
Summary
In this chapter, we got acquainted with the standard Rust build tool, Cargo. We took a cursory look at initializing, building, and running tests using Cargo. We also explored tools beyond Cargo that make developer experience smoother and more efficient, such as RLS and clippy. We saw how these tools can be integrated with the Visual Studio Code editor by installing the RLS extension. Finally, we created a small CLI tool to manipulate images by using a third-party crate from Cargo.
In the next chapter, we will be talking about testing, documenting, and benchmarking our code.
Tests, Documentation, and Benchmarks
In this chapter, we will continue with Cargo and learn how to write tests, how to document our code, and how to measure the performance of our code with benchmark tests. We'll then put those skills to use and build a simple crate that simulates logic gates, giving you an end- to-end experience of writing unit and integration tests, as well as documentation tests.
In this chapter, we'll cover the following topics:
Motivation for testing
"Things that are impossible just take longer." - Ian Hickson
Software systems are like machines with small cogs and gears. If any of the individual gears malfunctions, the machine as a whole is most likely to behave in an unreliable manner. In software, the individual gears are functions, modules, or any libraries that you use. Functional testing of the individual components of a software system is an effective and practical way of maintaining high quality code. It doesn't prove that bugs don't exist, but it helps in building confidence when deploying the code to production and maintaining the sanity of the code base when the project is to be maintained for a long time. Furthermore, large-scale refactoring in software is hard to do without unit tests. The benefits of the smart and balanced use of unit testing in software are profound. During the implementation phase, a well-written unit test becomes an informal specification for components of the software. In the maintenance phase, the existing unit tests serve as a harness against regressions in the code base, encouraging an immediate fix. In compiled languages like Rust, this gets even better as the refactors involved (if any) for regressions from unit tests are more guided due to helpful error diagnostics from the compiler.
Another good side effect of unit tests is that they encourage the programmer to write modular code that is mostly dependent on the input parameters, that is, stateless functions. It moves the programmer away from writing code that depends on a global mutable state. Writing tests that depend on a global mutable state are hard to write. Moreover, the act of simply thinking about writing tests for a piece of code helps the programmer figure out silly mistakes in their implementation. They also act as very good documentation for any newcomer trying to understand how different parts of the code base interact with each other.
The takeaway is that tests are indispensable for any software project. Now, let's look at how we can write tests in Rust, starting by learning about organizing tests!
Organizing tests
At a minimum, there are two kinds of tests that we usually write when developing software: unit tests and integration tests. They both serve different purposes and interact differently with the code base under test. Unit tests are always meant to be lightweight, testing individual components so that the developer can run them often, thus providing a shorter feedback loop, while integration tests are heavy and are meant to simulate real-world scenarios, making assertions based on their environment and specification. Rust's built-in testing framework provides us with sane defaults for writing and organizing these tests:
To write any of the aforementioned tests, there are some testing primitives we need to be familiar with.
Testing primitives
Rust's built-in testing framework is based on a bunch of primitives that are mainly composed of attributes and macros. Before we write any actual tests, it's important that we get familiar with how to use them effectively.
Attributes
An attribute is an annotation on an item in Rust code. Items are top-level language constructs in a crate such as functions, modules, structs, enums, and constant declarations, and other things that are meant to be defined only at the crate root. Attributes are usually compiler built-ins, but can also be created by users through compiler plugins. They instruct the compiler to inject extra code or meaning for the item that appears below them, or for the module if they apply to a module. We'll cover more on these in Chapter 7, Advanced Concepts. For the sake of keeping things in scope, we will talk about two forms of attributes here:
If we are creating a library crate, the crate root is basically lib.rs, whereas when creating a binary crate, the crate root would be the main.rs file.
There are also other forms of attributes such as #[cfg(test)] that are used when writing tests within a module. This attribute is added on top of test modules to hint to the compiler to conditionally compile the module, but only when code is compiled in test mode. Attributes are not just limited to being used in testing code; they are widely used in Rust. We'll get to see more of them in upcoming chapters.
Assertion macros
In testing, when given a test case, we try to assert the expected behavior of our software component on a given range of inputs. Languages usually provide functions called assertion functions to perform these assertions. Rust provides us with assertion functions, implemented as macros, that help us achieve the same thing. Let's take a look at some of the commonly used ones:
assert!(true);
assert!(a == b, "{} was not equal to {}", a, b);
let a = 23;
let b = 87;
assert_eq!(a, b, "{} and {} are not equal", a, b);
To compare the values within these assertion macros, Rust relies on traits. For example, the == inside assert!(a == b) actually turns into a method call, a.eq(&b), which returns a bool value. The eq method comes from the PartialEq trait. Most built-in types in Rust implement the PartialEq and Eq traits so that they can be compared. The details of these traits and the difference between PartialEq and Eq are discussed in Chapter 4, Types, Generics, and Traits.
For user-defined types, however, we need to implement these traits. Fortunately, Rust provides us with a convenient macro called derive, which takes one or more trait names to implement. It can be used by putting the #[derive(Eq, PartialEq)] annotation over any user-defined type. Notice the trait names within parentheses. Derive is a procedural macro that simply generates code for impl blocks for the type on which it appears and implements the trait's methods or any associated functions. We'll discuss these macros when we get to Chapter 9, Metaprogramming with Macros.
With that aside, let's start writing some tests!
Unit tests
In general, a unit test is a function that instantiates a small portion of an application and verifies its behavior independently from other parts of the code base. In Rust, unit tests are usually written within a module. Ideally, they should only aim to cover the module's functionality and its interfaces.
First unit test
The following is our very first unit test:
// first_unit_test.rs
#[test]
fn basic_test() {
assert!(true);
}
A unit test is written as a function and is marked with a #[test] attribute. There's nothing complex in the preceding basic_test function. We have a basic assert! call passing in true. For better organization, you may also create a child module called tests (by convention) and put all related test code inside it.
Running tests
The way we run this test is by compiling our code in test mode. The compiler ignores the compilation of test annotated functions unless it's told to build in test mode. This can be achieved by passing the --test flag to rustc when compiling the test code. Following that, tests can be run by simply executing the compiled binary. For the preceding test, we'll compile it in test mode by running this:
rustc --test first_unit_test.rs
With the --test flag, rustc puts a main function with some test harness code and invokes all your defined test functions as threads in parallel. All tests are run in parallel by default unless told to do so with the environment variable RUST_TEST_THREADS=1. This means that if we want to run the preceding test in single thread mode, we can execute with RUST_TEST_THREADS=1 ./first_unit_test.
Now, Cargo already has support for running tests, and all of this is usually done internally by invoking cargo test. This command compiles and runs the test annotated functions for us. In the examples that follow, we will mostly use Cargo to run our tests.
Isolating test code
When our tests grow in complexity, there may be additional helper methods that we might create that only gets used within the context of our test code. In such situations, it is beneficial to isolate the test-related code from the actual code. We can do this by encapsulating all of our test-related code inside a module and putting a #[cfg(test)] annotation over it.
The cfg in the #[cfg(...)] attribute is generally used for conditional compilation and not just limited to test code. It can include or exclude code for different architectures or configuration flags. Here, the configuration flag is test. You might remember that the tests in the previous chapter were already using this form. This has the advantage that your test code is only compiled and included in the compiled binary when you run cargo test, and otherwise ignored.
Say you want to programmatically generate test data for your tests, but there's no reason to have that code in the release build. Let's create a project by running cargo new unit_test --lib to demonstrate this. In lib.rs, we have defined some tests and functions:
// unit_test/src/lib.rs
// function we want to test
fn sum(a: i8, b: i8) -> i8 {
a + b
}
#[cfg(test)]
mod tests {
fn sum_inputs_outputs() -> Vec<((i8, i8), i8)> {
vec![((1, 1), 2), ((0, 0), 0), ((2, -2), 0)]
}
#[test]
fn test_sums() {
for (input, output) in sum_inputs_outputs() {
assert_eq!(crate::sum(input.0, input.1), output);
}
}
}
We can run these tests by running cargo test. Let's go through the preceding code. We generate known input and output pairs in the sum_inputs_outputs function, which is used by the test_sums function. The #[test] attribute keeps the test_sums function out of our release compilation. However, sum_inputs_outputs is not marked with #[test], and will get included in compilation if it's declared outside the tests module. By using #[cfg(test)] with a mod tests {} child module and encapsulating all the test code and its related functions inside this module, we get the benefit of keeping both the code and the resulting binary clean of the test code.
We also had our sum function defined as private without the pub visibility modifier, which means that unit tests within modules also allow you to test private functions and methods. Quite convenient!
Failing tests
There are also test cases where you will want your API methods to fail based on some input, and you want the test framework to assert this failure. Rust provides an attribute called #[should_panic] for this. Here's a test that panics and uses this attribute:
// panic_test.rs
#[test]
#[should_panic]
fn this_panics() {
assert_eq!(1, 2);
}
The #[should_panic] attribute can be paired with a #[test] attribute to signify that running the this_panics function should cause a non-recoverable failure, which is called a panic in Rust.
Ignoring tests
Another useful attribute for writing tests is #[ignore]. If your test code is exceedingly heavy, the #[ignore] annotation enables the test harness to ignore such test functions when running cargo test. You can then choose to individually run those tests by supplying an --ignored parameter to either your test runner or the cargo test command. Here's the code containing a silly loop that, when run using cargo test, is ignored by default:
// silly_loop.rs
pub fn silly_loop() {
for _ in 1..1_000_000_000 {};
}
#[cfg(test)]
mod tests {
#[test]
#[ignore]
pub fn test_silly_loop() {
::silly_loop();
}
}
Note the #[ignore] attribute over the test_silly_loop test function. Here's the output from the ignored test:
Note: A single test can also be run by supplying the test function name to Cargo, for example, cargo test some_test_func.
Integration tests
While unit tests can test the private interface of your crate and individual modules, integration tests are kind of like black box tests that aim to test the end-to-end use of the public interface of your crate from a consumer's perspective. In terms of writing code, there is not a lot of difference between writing integration tests and unit tests. The only difference lies in the directory structure and that the items need to be made public, which is already exposed by the developer as per the design of the crate.
First integration test
As we stated previously, Rust expects all integration tests to live in the tests/ directory. Files within the tests/ directory are compiled as if they are separate binary crates while using our library under test. For the following example, we'll create a new crate by running cargo new integration_test --lib, with the same function, sum ,as in the previous unit test, but now we have added a tests/ directory, which has an integration test function defined as follows:
// integration_test/tests/sum.rs
use integration_test::sum;
#[test]
fn sum_test() {
assert_eq!(sum(6, 8), 14);
}
We first bring the function sum in scope. Second, we have a function, sum_test , that calls sum and asserts on the return value. When we try to run cargo test, we are presented with the following error:
This error seems reasonable. We want the users of our crate to use the sum function, but in our crate we have it defined as a private function by default. So, after adding the pub modifier before the sum function and running cargo test, our test is green again:
Here's a view of the directory tree of our integration_test example crate:
.
├── Cargo.lock
├── Cargo.toml
├── src
│ └── lib.rs
└── tests
└── sum.rs
As an example of an integration test, this was very trivial, but the gist of it is that when we write integration tests, we use the crate that's being tested, like any other user of a library would use it.
Sharing common code
As is often the case with integration tests, there is some setup and teardown-related code that we might need to put in place before we can actually run our tests. You usually want them to be shared by all of the files in the tests/ directory. For sharing code, we can use modules by either creating them as a directory that shares common code, or use a module foo.rs and declare in our integration test files that we depend on it by putting a mod declaration. So, in our preceding tests/ directory, we added a common.rs module that has two functions called setup and teardown:
// integration_test/tests/common.rs
pub fn setup() {
println!("Setting up fixtures");
}
pub fn teardown() {
println!("Tearing down");
}
In both of our functions, we can have any kind of fixture-related code. Consider that you have an integration test that relies on the existence of a text file. In our function setup, we can create the text file, while in our functi0n teardown, we can clean up our resources by deleting the file.
To use these functions in our integration test code in tests/sum.rs, we put in the mod declarations like so:
// integration_test/tests/sum.rs
use integration_test::sum;
mod common;
use common::{setup, teardown};
#[test]
fn sum_test() {
assert_eq!(sum(6, 8), 14);
}
#[test]
fn test_with_fixture() {
setup();
assert_eq!(sum(7, 14), 21);
teardown();
}
We have added another function, test_with_fixture , that includes calls to setup and teardown. We can run this test with cargo test test_with_fixture. As you may have noticed from the output, we don't get to see our println! calls anywhere from within the setup or teardown functions. This is because, by default, the test harness hides or captures print statements within test functions to make the test results tidier, and only shows the test harness's outputs. If we want to view print statements within our tests, we can run the test with cargo test test_with_fixture -- --nocapture, which gives us the following output:
We can see our print statements now. We needed the -- in cargo test test_with_fixture -- --nocapture because we actually want to pass the --nocapture flag to our test runner. -- marks the end of arguments for cargo itself, and any argument following that is passed to the binary being invoked by cargo, which is our compiled binary with test harness.
That's about it for integration tests. At the end of this chapter, we'll create a project where we get to see both unit tests and integration tests work in tandem. Next, we'll learn about documenting Rust code, an overlooked but quite important part of software development.
Documentation
Documentation is a very crucial aspect of any open source software aiming for wide adoption by the programmer community. While your code, which should be readable, tells you how it works, the documentation should tell you about the why and how of the design decisions and example usage of the public APIs of your software. Well documented code with a comprehensive README.md page boosts the discoverability of your project many times over.
The Rust community takes documentation very seriously and has tools at various levels to make it easy to write documentation for code. It also makes it presentable and consumable for its users. For writing documentation, it supports the markdown dialect. Markdown is a very popular markup language and is the standard these days for writing docs. Rust has a dedicated tool called rustdoc that parses markdown doc comments, converts them to HTML, and generates beautiful and searchable documentation pages.
Writing documentation
To write documentation, we have special symbols for marking the start of documentation comments (doc comments hereafter). Docs are written in a similar fashion, the way we write comments, but they are treated differently compared to ordinary comments and are parsed by rustdoc. The doc comments are divided into two levels and use separate symbols to mark the start of the doc comment:
Within the doc comment, you can write docs using the usual markdown syntax. It also supports writing valid Rust code within backticks (```let a = 23;```), which becomes part of documentation tests.
The preceding notation for writing comments is actually a syntatic sugar for the #[doc="your doc comment"] attribute. These are called doc attributes. When rustdoc parses the /// or /** lines, it converts them into these doc attributes. Alternatively, you can also write docs using these doc attributes.
Generating and viewing documentation
To generate documentation, we can use the cargo doc command in our project directory. It generates docs in the target/doc/ directory with a bunch of HTML files and predefined stylesheets. By default, it generates docs for a crate's dependencies too. We can tell Cargo to ignore generating docs for dependencies by running cargo doc --no-deps.
To view the documentation, one can spawn a HTTP server by navigating inside the target/doc directory. Python's simple HTTP server can come in handy here. However, there's a better way to do this! Passing the --open option to cargo doc will open the documentation page directly in your default browser.
cargo doc can be combined with cargo watch to get a seamless experience in writing documentation and getting live feedback on the generated page for any documentation changes you do on your project.
Hosting documentation
After your documentation has been generated, you will need to host it somewhere for the public to view and use. There are three possibilities here:
As an added note, if your project's documentation spans more than two to three pages and requires a detailed introduction, then there's a better option to generate book-like documentation. This is done by using the mdbook project. For more information on that, check out their GitHub page at https://github.com/rust-lang-nursery/mdBook.
Doc attributes
We mentioned that the doc comments that we write get converted into doc attributes form. Apart from those, there are other doc attributes for documentation that can tweak the generated documentation page, and these are applied either at the crate level or at the item level. They are written like #[doc(key = value)]. Some of the most useful doc attributes are as follows:
Crate-level attributes:
#![doc(html_root_url = "https://docs.rs/slotmap/0.2.1")]: Allows you to set the URL for the documentation page.
Item-level attributes:
For more attributes like these ones, head over to https://doc.rust-lang.org/beta/rustdoc/the-doc-attribute.html.
Documentation tests
It's often a good practice to include code examples with any documentation for your crate's public APIs. There's a caveat in maintaining such examples, though. Your code might change and you might forget to update your examples. Documentation tests (doctests) are there to remind you to update your example code as well. Rust allows you to embed code in backticks within doc comments. Cargo can then run this example code that's been embedded within your documentation, and treats it as part of the unit test suite. This means that documentation examples run every time you run your unit tests, forcing you to update them. Quite amazing!
Documentation tests are also executed via Cargo. We have created a project called doctest_demo to illustrate documentation tests. In lib.rs, we have the following code:
// doctest_demo/src/lib.rs
//! This crate provides functionality for adding things
//!
//! # Examples
//! ```
//! use doctest_demo::sum;
//!
//! let work_a = 4;
//! let work_b = 34;
//! let total_work = sum(work_a, work_b);
//! ```
/// Sum two arguments
///
/// # Examples
///
/// ```
/// assert_eq!(doctest_demo::sum(1, 1), 2);
/// ```
pub fn sum(a: i8, b: i8) -> i8 {
a + b
}
As you can see, the difference between module-level and function-level doctests is not much. They are used in pretty much the same way. It is just that the module-level doctests show the overall usage of the crate, covering more than one API surface, while function-level doctests cover just the particular function over which they appear.
Documentation tests run with all the other tests when you run cargo test. Here's the output when we run cargo test in our doctest_demo crate:
Benchmarks
When business needs change and your program gets a requirement to perform more efficiently, the first step to take is to find out the areas that are slow in the program. How can you tell where the bottlenecks are? You can tell by measuring individual parts of your program on various expected ranges or on a magnitude of inputs. This is known as benchmarking your code. Benchmarking is usually done at the very last stage of development (but does not have to be) to provide insights on areas where there are performance pitfalls in code.
There are various ways to perform benchmark tests for a program. The trivial way is to use the Unix tool time to measure the execution time of your program after your changes. But that doesn't provide precise micro-level insights. Rust provides us with a built-in micro benchmarking framework. By micro benchmarking, we mean that it can be used to benchmark individual parts of the code in isolation and remains unbiased from external factors. However, it also means that we should not rely solely on micro benchmarks since the real world results can be skewed. Thus, a micro benchmark is often followed by profiling and macro benchmarking of the code. Nonetheless, micro benchmarking is often a starting point for improving the performance of your code as the individual parts contribute a lot to the overall running time of your program.
In this section, we will discuss the tool that Rust provides as a built in for performing micro benchmarks. Rust lowers the bar for writing benchmarking code right from the initial stages of development, rather than doing it as a last resort. The way you run benchmarks is similar to how tests are run, but uses the cargo bench command instead.
Built-in micro-benchmark harness
Rust's built-in benchmarking framework measures the performance of code by running it through several iterations and reports the average time taken for the operation in question. This is facilitated by two things:
Now, we'll write and run a simple benchmark test. Let's create a new Cargo project by running cargo new --lib bench_example. No changes to Cargo.toml are needed for this. The contents of src/lib.rs is as follows:
// bench_example/src/lib.rs
#![feature(test)]
extern crate test;
use test::Bencher;
pub fn do_nothing_slowly() {
print!(".");
for _ in 1..10_000_000 {};
}
pub fn do_nothing_fast() {
}
#[bench]
fn bench_nothing_slowly(b: &mut Bencher) {
b.iter(|| do_nothing_slowly());
}
#[bench]
fn bench_nothing_fast(b: &mut Bencher) {
b.iter(|| do_nothing_fast());
}
Note that we had to specify the internal crate test with the external crate declaration, along with the #[feature(test)] attribute. The extern declaration is needed for crates internal to the compiler. In future versions of the compiler, this might not be needed and you will be able to use them like normal crates.
If we run our benchmarks by running cargo bench, we will see the following:
Unfortunately, benchmark tests are an unstable feature, so we'll have to use the nightly compiler for these. Fortunately, with rustup, moving between different release channels of the Rust compiler is easy. First, we'll make sure that the nightly compiler is installed by running rustup update nightly. Then, within our bench_example directory, we will override the default toolchain for this directory by running rustup override set nightly. Now, running cargo bench will give the following output:
Those are nanoseconds per iteration, with the figure inside the parentheses showing the variation between each run. Our slower implementation was quite slow and variable in running time (as shown by the large +/- variation).
Inside our functions marked with #[bench], the parameter to iter is a closure with no parameters. If the closure had parameters, they would be inside ||. This essentially means that iter is passed a function that the benchmark test can run repeatedly. We print a single dot in the function so that Rust won't optimize the empty loop away. If the println!() was not there, then the compiler would have optimized away the loop to a no-op, and we would get false results. There are ways to get around this, and this is done by using the black_box function from the test module. However, even using that does not guarantee that the optimizer won't optimize your code. Now, we also have other third-party solutions for running benchmarks on stable Rust.
Benchmarking on stable Rust
The built-in benchmarking framework provided by Rust is unstable, but fortunately there are community developed benchmarking crates that work on stable Rust. One such popular crate that we'll explore here is criterion-rs. This crate is designed to be easy to use while at the same time providing detailed information on the benchmarked code. It also maintains the state of the last run, reporting performance regressions (if any) on every run. Criterion.rs generates more statistical reports than the built-in benchmark framework, and also generates helpful charts and graphs using gnuplot to make it understandable to the user.
To demonstrate using this crate, we'll create a new crate called cargo new criterion_demo --lib. We will add the criterion crate to Cargo.toml as a dependency under the dev-dependencies section:
[dev-dependencies]
criterion = "0.1"
[[bench]]
name = "fibonacci"
harness = false
We have also added a new section known as [[bench]], which indicates to cargo that we have a new benchmark test named fibonacci and that it does not use the built-in benchmark harness (harness = false), since we are using the criterion crate's test harness.
Now, in src/lib.rs, we have a fast and a slow version of a function that computes the nth fibonacci number (with initial values of n0 = 0 and n1 = 1):
// criterion_demo/src/lib.rs
pub fn slow_fibonacci(nth: usize) -> u64 {
if nth <= 1 {
return nth as u64;
} else {
return slow_fibonacci(nth - 1) + slow_fibonacci(nth - 2);
}
}
pub fn fast_fibonacci(nth: usize) -> u64 {
let mut a = 0;
let mut b = 1;
let mut c = 0;
for _ in 1..nth {
c = a + b;
a = b;
b = c;
}
c
}
fast_fibonacci is the bottom-up iterative solution to get the nth fibonacci number, whereas the slow_fibonacci version is the slow recursive version. Now, criterion-rs requires us to place our benchmarks inside a benches/ directory, which we created at the crate root. Within the benches/ directory, we have also created a file named fibonacci.rs, which matches our name under the [[bench]] in Cargo.toml. It has the following content:
// criterion_demo/benches/fibonacci.rs
#[macro_use]
extern crate criterion;
extern crate criterion_demo;
use criterion_demo::{fast_fibonacci, slow_fibonacci};
use criterion::Criterion;
fn fibonacci_benchmark(c: &mut Criterion) {
c.bench_function("fibonacci 8", |b| b.iter(|| slow_fibonacci(8)));
}
criterion_group!(fib_bench, fibonacci_benchmark);
criterion_main!(fib_bench);
There's quite a lot going on here! In the preceding code, we first declare our required crates and import our the fibonacci functions that we need to benchmark (fast_fibonacci and slow_fibonacci). Also, there is a #[macro_use] attribute above extern crate criterion, which means to use any macros from a crate, we need to opt for it using this attribute as they are not exposed by default. It's similar to a use statement, which is used to expose module items.
Now, criterion has this notion of benchmark groups that can hold related benchmark code. Accordingly, we created a function named fibonacci_benchmark, which we then pass on to the criterion_group! macro. This assigns a name of fib_bench to this benchmark group. The fibonacci_benchmark function takes in a mutable reference to a criterion object, which holds the state of our benchmark runs. This exposes a method called bench_function, which we use to pass in our benchmark code to run in a closure with a given name (above fibonacci 8). Then, we need to create the main benchmark harness, which generates code with a main function to run all of it by using criterion_main!, before passing in our benchmark group, fib_bench. Now, it's time to run cargo bench with the first slow_fibonacci function inside the closure. We get the following output:
We can see that the recursive version of our fibonacci function takes about 106.95 ns to run on average. Now, within the same benchmark closure, if we replace our slow_fibonacci with our fast_fibonacci and run cargo bench again, we'll get the following output:
Great! The fast_fibonacci version takes just 7.8460 ns to run on average. That's obvious, but the great thing about this is the detailed benchmark report, which also shows a human-friendly message: Performace has improved. The reason criterion is able to show this regression report is that it maintains the previous state of benchmark runs and uses their history to report changes in performance.
Writing and testing a crate – logic gate simulator
Armed with all of this knowledge, let's start things off with our logic gate simulation crate. We'll create a new project by running cargo new logic_gates --lib. Starting with primitive gates implemented as functions such as and, xor, and so on, we will write unit tests for these gates. Following that, we'll write integration tests by implementing a half adder that uses our primitive gates. During this process, we'll also get to write documentation for our crate.
First off, we'll start with some unit tests. Here's the initial crate code in its entirety:
//! This is a logic gates simulation crate built to demonstrate writing unit tests and integration tests
// logic_gates/src/lib.rs
pub fn and(a: u8, b: u8) -> u8 {
unimplemented!()
}
pub fn xor(a: u8, b: u8) -> u8 {
unimplemented!()
}
#[cfg(test)]
mod tests {
use crate::{xor, and};
#[test]
fn test_and() {
assert_eq!(1, and(1, 1));
assert_eq!(0, and(0, 1));
assert_eq!(0, and(1, 0));
assert_eq!(0, and(0, 0));
}
#[test]
fn test_xor() {
assert_eq!(1, xor(1, 0));
assert_eq!(0, xor(0, 0));
assert_eq!(0, xor(1, 1));
assert_eq!(1, xor(0, 1));
}
}
We have started with two logic gates, and and xor, which have been implemented as functions. We also have tests cases against those that fail when run because they haven't been implemented yet. Note that to represent bit 0 and 1, we are using a u8 as Rust does not have a native type to represent bits. Now, let's fill in their implementation, along with some documentation:
/// Implements a boolean `and` gate taking as input two bits and returns a bit as output
pub fn and(a: u8, b: u8) -> u8 {
match (a, b) {
(1, 1) => 1,
_ => 0
}
}
/// Implements a boolean `xor` gate taking as input two bits and returning a bit as output
pub fn xor(a: u8, b: u8) -> u8 {
match (a, b) {
(1, 0) | (0, 1) => 1,
_ => 0
}
}
In the preceding code, we just expressed the truth tables of the and and xor gates using match expressions. We can see how concise match expressions can be in expressing our logic. Now, we can run the tests by running cargo test:
All green! We are now ready to write integration tests by implementing a half adder using these gates. A half adder fits in perfectly as an integration test example as it tests the individual components of our crate while they're being used together. Under the tests/ directory, we'll create a file called half_adder.rs that includes the following code:
// logic_gates/tests/half_adder.rs
use logic_gates::{and, xor};
pub type Sum = u8;
pub type Carry = u8;
pub fn half_adder_input_output() -> Vec<((u8, u8), (Sum, Carry))> {
vec![
((0, 0), (0, 0)),
((0, 1), (1, 0)),
((1, 0), (1, 0)),
((1, 1), (0, 1)),
]
}
/// This function implements a half adder using primitive gates
fn half_adder(a: u8, b: u8) -> (Sum, Carry) {
(xor(a, b), and(a, b))
}
#[test]
fn one_bit_adder() {
for (inn, out) in half_adder_input_output() {
let (a, b) = inn;
println("Testing: {}, {} -> {}", a, b, out);
assert_eq!(half_adder(a, b), out);
}
}
In the preceding code, we import our primitive gate functions xor and and. Following that, we have something like pub type Sum = u8, which is known as a type alias. They are helpful in situations where you either have a type that is cumbersome to write every time or when you have types with complex signatures. It gives another name to our original type and is purely for readability and disambiguation; it has no implications in the way Rust analyzes those types. We then use the Sum and Carry in our half_adder_input_output function, which implements the truth table for the half adder. This is a convenient helper function to test our half_adder function that follows it. This function takes in two one-bit inputs and calculates the Sum and Carry from them before returning them as a tuple of (Sum, Carry). Further ahead, we have our one_bit_adder integration test function, in which we iterate over our half adder input output pairs and assert against the output of the half_adder. By running cargo test, we get the following output:
Great ! Let's also generate documentation for our crate by running cargo doc --open. The --open flag opens the page for us to view in a browser. To customize our documentation, we'll also add an icon to our crate docs page. To do this, we need to add the following attribute at the top of lib.rs:
#![doc(html_logo_url = "https://d30y9cdsu7xlg0.cloudfront.net/png/411962-200.png")]
After generation, the documentation page looks like this:
This is great! We have come a long way in our testing journey. Next, let's look at the aspect automating out test suites.
Continuous integration with Travis CI
It is often the case in large software systems that for every change to our code, we want both our unit and integration tests to run automatically. Moreover, in a collaborative project, the manual way is just not practical. Fortunately, Continuous Integration is a practice that aims to automate those aspects of software development. Travis CI is a public continuous integration service that allows you to run your project's tests automatically in the cloud, based on event hooks. One example of an event hook is when new commits are pushed.
Travis is generally used to automate running builds and tests and to report failed builds, but can also be used for creating releases and even deploying them in staging or production environments. We'll focus on one aspect of Travis in this section, performing automated runs of our tests for our project. GitHub already has integration with Travis that can run tests for new commits in our project. To make this happen, we need the following:
The first step is to go to https://travis-ci.org/ and log in with your GitHub credentials. From there, we can add our GitHub repository in Travis. Travis has good native support for Rust projects and keeps its Rust compiler continuously up to date. It provides a basic version of the .travis.yml file for Rust projects, which is as follows:
language: rust
rust:
- stable
- beta
- nightly
matrix:
allow_failures:
- rust: nightly
The Rust project recommends testing against beta and nightly channels too, but you may choose to target just a single version by removing the corresponding lines. This recommended setup runs the tests on all three versions, but allows the fast-moving nightly compiler to fail.
With this .travis.yml file in your repository, GitHub will inform Travis CI every time you push your code and run your tests automatically. We can also attach build status badges to our repository's README.md file, which shows a green badge when tests pass and a red badge in when tests fail.
Let's integrate Travis with our logic_gates crate. For this, we have to add a .travis.yml file at our crate root. The following is the contents of the .travis.yml file:
language: rust
rust:
- stable
- beta
- nightly
matrix:
allow_failures:
- rust: nightly
fast_finish: true
cache: cargo
script:
- cargo build --verbose
- cargo test --verbose
After pushing this to GitHub, we then need to enable Travis for our project on their page, as follows:
The preceding screenshot is from my TravisCI account. Now, we'll make a commit to our logic_gates repository by adding a simple README.md file to trigger the Travis build runner. While we do this, let's also add a build badge to our README.md file that will show the status of our repository to consumers. To do this, we'll click the build passing badge on the right:
This opens up a popup menu with the badge link:
We will copy this link and add it to the top in our README.md file as follows:
[](https://travis-ci.org/creativcoder/logic_gates)
You need to replace $USERNAME and $REPO_NAME with your details.
After this change and committing the README.md file, we will start to see the Travis build starting and succeeding:
Awesome! If you are feeling more ambitious, you can also try hosting the logic_gates crate's documentation on your repository's gh-pages branch on GitHub. You can do this by using the cargo-travis project, which is available at https://github.com/roblabla/cargo-travis\.
For an even more versatile CI setup that covers major platforms, you can use the template provided by the trust project, which is available at https://github.com/japaric/trust.
Finally, to publish your crate on crates.io, you can follow the directions given in Cargo's reference documentation: https://doc.rust-lang.org/cargo/reference/publishing.html.
Summary
In this chapter, we got acquainted with writing unit tests, integration tests, documentation tests, and benchmarks using both rustc and the cargo tool. We then implemented a logic gate simulator crate and got to experience the whole crate development workflow. Later, we learned how to integrate Travis CI for our GitHub project.
In the next chapter, we'll explore Rust's type system and how to use it to express proper semantics in our program at compile time.
Types, Generics, and Traits
Rust's type system is one of the striking features of the language. In this chapter, we'll go into detail on some of the notable aspects of the language such as traits, generics, and how to use them to write expressive code. We'll also explore some of the standard library traits that help with writing idiomatic Rust libraries. Expect lots of interesting material in this chapter!
We'll cover the following topics:
Type systems and why they matter
"Be conservative in what you send, be liberal in what you accept." - John Postel
Why do we need types in a language? That's a good question to ask as a motivation to understand type systems in programming languages. As programmers, we know that programs written for computers are represented in binary as combinations of 0s and 1s at the lowest level. In fact, the earliest computers had to be programmed manually in machine code. Eventually, programmers realized that this is very error-prone, tedious, and time-consuming. It's not practical for a human to manipulate and reason about these entities at the binary level. Later, during the 1950s, the programming community came up with machine code mnemonics, which turned into the assembly language we know of today. Following that, programming languages came into existence, which compiled down to assembly code and allowed programmers to write code that is human readable yet easy for computers to compile down to machine code. However, the languages that we humans speak can be quite ambiguous, so a set of rules and constraints needed to be put in place to convey what is possible and what is not in a computer program written in a human-like language, that is, the semantics. This brings us to the idea of types and type systems.
A type is a named set of possible values. For example, u8 is a type that can contain only positive values from 0 to 255. Types provide us with a way to bridge the gap between the lower-level representation and the mental model we create of these entities. Apart from this, types also provide us with a way to express intent, behavior, and constraints for an entity. They define what we can and cannot do with types. For example, it is undefined to add a value of a type string to a value of a type number. From types, language designers built type systems, which are sets of rules that govern how different types interact with one another in a programming language. They act as a tool for reasoning about programs and help ensure that our programs behave correctly and according to the specification. Type systems are qualified based on their expressiveness, which simply means the extent to which you can express your logic, as well as invariants in the program using only the type system. For example, Haskell, a high-level language, has a very expressive type system, while C, a low-level language, provides us with very few type-based abstractions. Rust tries to draw a fine line between these two extremes.
Rust's type system is inspired quite a bit by functional languages such as Ocaml and Haskell with their ADTs such as enums and structs, traits (akin to haskell typeclasses), and error handling types (Option and Result). The type system is characterized as a strong type system, which simply means that it performs more type checks at compile time rather than throwing them at runtime. Furthermore, the type system is static, which means that variables that are, for example, bound to an integer value, cannot be changed to point to a string later. These features enable robust programs that rarely break the invariants at runtime, with the cost that writing programs requires a bit of planning and thinking from the programmer. Rust tries to put more planning on your plate when designing programs, which can put off some programmers looking to prototype things fast. However, it is a good thing from the long-term perspective of maintaining software systems.
With that aside, let's start by exploring how Rust's type system enables code reuse.
Generics
From the dawn of high-level programming languages, the pursuit of better abstraction is something that language designers have always strived for. As such, many ideas concerning code reuse emerged. The very first of them was functions. Functions allow you to chunk away a sequence of instructions within a named entity that can be called later many times, optionally accepting any arguments for each invocation. They reduce code complexity and amplify readability. However, functions can only get you so far. If you have a function, say avg, that calculates the average of a given list of integer values and later you have a use case where you need to calculate the average for a list of float values too, then the usual solution is to create a new function that can average float values from the list of floats. What if you wanted to accept a list of double values too? We probably need to write another function again. Writing the same function over and over again that differs only by its arguments is a waste of precious time for programmers. To reduce this repetition, language designers wanted a way to express code so that the avg function can be written in a way that accepts multiple types, a generic function, and thus the idea of generic programming, or generics, was born. Having functions that can take more than one type is one of the features of generic programming, and there are other places that generics can be used. We'll explore all of them in this section.
Generic programming is a technique that is only applicable in the case of statically typed programming languages. They first appeared in ML, a statically typed functional language. Dynamic languages such as Python use duck typing, where APIs treat arguments based on what they can do rather than what they are, so they don't rely on generics. Generics are part of the language design feature that enables code reuse and the Don't repeat yourself (DRY) principle. Using this technique, you can write algorithms, functions, methods, and types with placeholders for types, and specify a type variable (with a single letter, which is usually T, K, or V by convention) on these types, telling the compiler to fill in the actual types later when any code instantiates them. These types are referred to as generic types or items. The single letter symbols such as T on type are called generic type parameters. They are substituted with concrete types such as u32 when you use or instantiate any generic item.
Note: By substitution, we mean that every time a generic item is used with a concrete type, a specialized copy of that code is generated at compile time with the type variable T, getting replaced with the concrete type. This process of generating specialized functions with concrete types at compile time is called monomorphization, which is the procedure of doing the opposite of polymorphic functions.
Let's look at some of the existing generic types from the Rust standard library.
The Vec<T> type from the standard library is a generic type that is defined as follows:
pub struct Vec<T> {
buf: RawVec<T>,
len: usize,
}
We can see that the type signature of Vec contains a type parameter T after its name, surrounded by a pair of angle brackets < >. Its member field, buf, is a generic type as well, and so the Vec itself has to be generic. If we don't have T on our generic type Vec<T>, even though we have a T on its buf field, we get the following error:
error[E0412]: cannot find type `T` in this scope
This T needs to be part of the type definition for Vec. So, when we denote a Vec, we always refer to it by using Vec<T> when denoting generically or by using Vec<u64> when we know the concrete type. Next, let's look at how to create our own generic types.
Creating generic types
Rust allows us to declare many things as generics such as structs, enums, functions, traits, methods, and implementation blocks. One thing that they have in common is that the generic type parameters are separated by and enclosed within a pair of < > brackets. Within them, you can put any number of comma-separated generic type parameters. Let's go through how you might create generics, starting by looking at generic functions.
Generic functions
To create a generic function, we place the generic type parameter immediately after the function name and before the parenthesis, like so:
// generic_function.rs
fn give_me<T>(value: T) {
let _ = value;
}
fn main() {
let a = "generics";
let b = 1024;
give_me(a);
give_me(b);
}
In the preceding code, give_me is a generic function with <T> after its name, and the value parameter is of type T. In main, we can call this function with any argument. During compilation, our compiled object file will contain two specialized copies of this function. We can confirm this in our generated binary object file by using the nm command, like so:
nm is a utility from the GNU binutils package for viewing symbols from compiled object files. By passing nm our binary, we pipe and grep for the prefix of our give_me function. As you can see, we have two copies of the function with random IDs appended to them to distinguish them. One of them takes a &str and the other a i32, because of two invocations with different arguments.
Generic functions are a cheap way to give the illusion of polymorphic code. I say illusion because after compilation, it is all duplicated code with concrete types as parameters. They come with a downside though, which is an increase in the size of the compiled object file due to code duplication. This is proportional to the number of concrete types that are used. In later sections, when we get to traits, we'll see the true form of polymorphism, trait objects. Still, polymorphism through generics is preferred in most cases because it has no runtime overhead, as is the case with trait objects. Trait objects should only be used when generics don't cater to the solution and cases where you need to store a bunch of types together in a collection. We'll see those examples when we get to trait objects. Next, we'll look at how we can make our structs and enums generic. We'll only explore how to declare them first. Creating and using these types are covered in the later sections.
Generic types
Generic structs: We can declare tuple structs and normal structs generically like so:
// generic_struct.rs
struct GenericStruct<T>(T);
struct Container<T> {
item: T
}
fn main() {
// stuff
}
Generic structs contain the generic type parameter after the name of the struct, as shown in the preceding code. With this, whenever we denote this struct anywhere in our code, we also need to type the <T> part together with the type.
Generic enums: Similarly, we can create generic enums as well:
// generic_enum.rs
enum Transmission<T> {
Signal(T),
NoSignal
}
fn main() {
// stuff
}
Our Transmission enum has a variant called Signal, which holds a generic value, and a variant called NoSignal, which is a no value variant.
Generic implementations
We can also write impl blocks for our generic types too, but it gets verbose here because of the extra generic type parameters, as we'll see. Let's implement a new() method on our Container<T> struct:
// generic_struct_impl.rs
struct Container<T> {
item: T
}
impl Container<T> {
fn new(item: T) -> Self {
Container { item }
}
}
fn main() {
// stuff
}
Let's compile this:
The error message cannot find our generic type T. When writing an impl block for any generic type, we need to declare the generic type parameter before using it within our type. T is just like a variable—a type variable—and we need to declare it. Therefore, we need to modify the implementation block a bit by adding <T> after impl, like so:
impl<T> Container<T> {
fn new(item: T) -> Self {
Container { item }
}
}
With that change, the preceding code compiles. The previous impl block basically means that we are implementing these methods for all types T, which appear in Container<T>. This impl block is a generic implementation. Therefore, every concrete Container that ever gets generated will have these methods. Now, we could have also written a more specific impl block for Container<T> by putting any concrete type in place of T. This is what it would look like:
impl Container<u32> {
fn sum(item: u32) -> Self {
Container { item }
}
}
In the preceding code, we implemented a method called sum, which is only present on Container<u32> types. Here, we don't need the <T> after impl because of the presence of u32 as a concrete type. This is another nice property of impl blocks, which allows you to specialize generic types by implementing methods independently.
Using generics
Now, the way we instantiate or use generic types is also a bit different than their non-generic counterparts. Any time we instantiate them, the compiler needs to know the concrete type in place of T in their type, signature, which gives it the type information to monomorphize the generic code. Most of the time, the concrete type is inferred based on the instantiation of the type or by calling any method that takes a concrete type in the case of generic functions. In rare cases, we need to help the compiler by specifically typing out the concrete type in place of the generic type by using the turbofish (::<>) operator. We'll see how that is used in a moment.
Let's look at the case of instantiating Vec<T>, a generic type. Without any type signature, the following code does not compile:
// creating_generic_vec.rs
fn main() {
let a = Vec::new();
}
Compiling the preceding code, gives the following error:
This is because the compiler doesn't know what type a would contain until we specify it manually or call one of its methods, thereby passing in a concrete value. This is shown in the following snippet:
// using_generic_vec.rs
fn main() {
// providing a type
let v1: Vec<u8> = Vec::new();
// or calling method
let mut v2 = Vec::new();
v2.push(2); // v2 is now Vec<i32>
// or using turbofish
let v3 = Vec::<u8>::new(); // not so readable
}
In the second code snippet, we specified the type of v1 to be a Vec of u8, and it compiles fine. Another way, as with v2, is to call a method that accepts any concrete type. After the push method call, the compiler can infer that v2 is a Vec<i32>. The other way to create the Vec is to use the turbofish operator, as is the case with v3 binding in the preceding code.
The turbofish operator in generic functions appears right after the function name and before the parenthesis. Another example of this is the generic parse function from the std::str module. parse can parse values from a string, and many types are able to parse from it, such as i32, f64, usize, and so on, so it's a generic type. So, when using parse, you really need to use the turbofish operator, like so:
// using_generic_func.rs
use std::str;
fn main() {
let num_from_str = str::parse::<u8>("34").unwrap();
println!("Parsed number {}", num_from_str);
}
Something to take note of is that only types that implement the FromStr interface or trait can be passed to the parse function. u8 has an implementation of FromStr, and so we were able to parse it in the preceding code. The parse function uses the FromStr trait to limit types that can be passed to it. We'll get to know how we can mix generics and traits after we're done exploring traits.
With the idea of generics under our belt, let's focus on one of the most ubiquitous features in Rust, traits!
Abstracting behavior with traits
From a polymorphism and code reuse perspective, it is often a good idea to separate shared behavior and common properties of types from themselves in code and only have methods that are unique to themselves. In doing so, we allow different types to relate to each other with these common properties, which allows us to program for APIs that are more general or inclusive in terms of their parameters. This means that we can accept types that have those shared properties while not being restricted to one particular type.
In object-oriented languages such as Java or C#, interfaces convey the same idea, where we can define shared behavior that many types can implement. For example, instead of having multiple sort functions, which take in a list of integer values, and other functions that take in a list of string values, we can have a single sort function that can take a list of items that implement the Comparable or Comparator interface. This allows us to pass anything that is Comparable to our sort function.
Rust also has a similar yet powerful construct known as traits. There are many forms of traits in Rust, and we'll look at most of them and the ways we can interact with them briefly. Also, when traits are mixed with generics, we can restrict the range of parameters that we can pass to our APIs. We'll see how that happens when we learn more about trait bounds.
Traits
A trait is an item that defines a set of contracts or shared behavior that types can opt to implement. Traits are not usable by themselves and are meant to be implemented by types. Traits have the power to establish relationships between distinct types. They are the backbone to many language features such as closures, operators, smart pointers, loops, compile-time data race checks, and much more. Quite a few of the high-level language features in Rust boil down to some type calling a trait method that it implements. With that said, let's look at how we can define and use a trait in Rust!
Let's say we are modeling a simple media player application that can play audio and video files. For this demo, we'll create a project by running cargo new super_player. To convey the idea of traits and to make this simple, in our main.rs file, we have represented our audio and video media as tuple structs with the name of the media as a String, like so:
// super_player/src/main.rs
struct Audio(String);
struct Video(String);
fn main() {
// stuff
}
Now, at the very minimum, both the Audio and Video structs need to have a play and pause method. It's a functionality that's shared by both of them. It's a good opportunity for us to use a trait here. Here, we'll define a trait called Playable with two methods in a separate module called media.rs, like so:
// super_player/src/media.rs
trait Playable {
fn play(&self);
fn pause() {
println!("Paused");
}
}
We use the trait keyword to create a trait, followed by its name and a pair of braces. Within the braces, we can provide zero or more methods that any type implementing the trait should fulfill. We can also define constants within traits, which all of the implementers can share. The implementer can be any struct, enum, primitive, function, closure, or even a trait.
You may have noticed the signature of play; it takes a reference to a symbol, self, but does not have a body, and ends with a semicolon. self is just a type alias to Self, which refers to the type on which the trait is being implemented. We'll cover these in detail in Chapter 7, Advanced Concepts. This means that the methods within the traits are like an abstract method from Java. It is up to the types to implement this trait and define the function according to their use case. However, methods declared within a trait can also have default implementations, as is the case with the pause function in the preceding code. pause does not take self, and so it's akin to a static method that does not require an instance of the implementer to invoke it.
We can have two kinds of methods within a trait:
Now, we'll implement the preceding Playable trait on our Audio and Video types, like so:
// super_player/src/main.rs
struct Audio(String);
struct Video(String);
impl Playable for Audio {
fn play(&self) {
println!("Now playing: {}", self.0);
}
}
impl Playable for Video {
fn play(&self) {
println!("Now playing: {}", self.0);
}
}
fn main() {
println!("Super player!");
}
We write trait implementations with the impl keyword followed by the trait name, followed by the for keyword and the type we want to implement the trait for, followed by a pair of braces. Within these braces, we are required to provide the implementations of methods, and optionally override any default implementation that exists in the trait. Let's compile this:
The preceding error highlights an important feature of traits: traits are private by default. To be usable by other modules or across crates, they need to be made public. There are two steps to this. First, we need to expose our trait to the outside world. To do that, we need to prepend our Playable trait declaration with the pub keyword:
// super_player/src/media.rs
pub trait Playable {
fn play(&self);
fn pause() {
println!("Paused");
}
}
After we have exposed our trait, we need to use the use keyword to bring the trait into scope in the module we want to use the trait in. This will allow us to call its methods, like so:
// super_player/src/main.rs
mod media;
struct Audio(String);
struct Video(String);
impl Playable for Audio {
fn play(&self) {
println!("Now playing: {}", self.0);
}
}
impl Playable for Video {
fn play(&self) {
println!("Now playing: {}", self.0);
}
}
fn main() {
println!("Super player!");
let audio = Audio("ambient_music.mp3".to_string());
let video = Video("big_buck_bunny.mkv".to_string());
audio.play();
video.play();
}
With that, we can play our audio and video media:
This is very far from any actual media player implementation, but our aim was to explore the use case for traits.
Traits can also specify in their declaration that they depend on other traits; this is a feature known as trait inheritance. We can declare inherited traits like so:
// trait_inheritance.rs
trait Vehicle {
fn get_price(&self) -> u64;
}
trait Car: Vehicle {
fn model(&self) -> String;
}
struct TeslaRoadster {
model: String,
release_date: u16
}
impl TeslaRoadster {
fn new(model: &str, release_date: u16) -> Self {
Self { model: model.to_string(), release_date }
}
}
impl Car for TeslaRoadster {
fn model(&self) -> String {
"Tesla Roadster I".to_string()
}
}
fn main() {
let my_roadster = TeslaRoadster::new("Tesla Roadster II", 2020);
println!("{} is priced at ${}", my_roadster.model, my_roadster.get_price());
}
In the preceding code, we declared two traits: a Vehicle (a more general) trait and a Car (more specific) trait, which depends on Vehicle. Since TeslaRoadster is a car, we implemented the Car trait for it. Also, notice the body of the method new on TeslaRoadster, which uses Self as the return type. This is also substituted for the TeslaRoadster instance that we return from new. Self is just a convenient type alias for the implementing type within the trait's impl blocks. It can also be used to create other types, such as tuple structs and enums, and also in match expressions. Let's try compiling this code:
See that error? In its definition, the Car trait specifies the constraint that any type that implements the trait must also implement the Vehicle trait, Car: Vehicle. We did not implement Vehicle for our TeslaRoadster, and Rust caught and reported it for us. Therefore, we must implement the Vehicle trait like so:
// trait_inheritance.rs
impl Vehicle for TeslaRoadster {
fn get_price(&self) -> u64 {
200_000
}
}
With that implementation satisfied, our program compiles fine with the following output:
Tesla Roadster II is priced at $200000
The underscore in 200_200 in the get_price method is a handy syntax to create readable numeric literals.
As an analogy to object-oriented languages, traits and their implementations are similar to interfaces and classes that implement those interfaces. However, it is to be noted that traits are very different from interfaces:
The many forms of traits
In the preceding examples, we had a glimpse of the simplest form of trait. But there's more to traits than meets the eye. As you start interacting with traits in bigger code bases, you will encounter different forms of them. Depending on the complexity of the program and the problem to be solved, the simple form of traits might not be suitable. Rust provides us with other forms of traits that model the problem well. We'll take a look at some of the standard library traits and try to classify them so that we have a good idea when to use what.
Marker traits
Traits defined in the std::marker module are called marker traits. These traits don't have any method, and simply have their declaration with their name with an empty body. Examples from the standard library include Copy, Send, and Sync. They are called marker traits because they are used to simply mark a type as belonging to a particular family for to gain some compile time guarantees. Two such examples from the standard library are the Send and Sync traits that are auto-implemented by the language for most types whenever appropriate, and convey which values are safe to send and share across threads. We'll get to know more about them in Chapter 8, Concurrency.
Simple traits
This is the simplest form a trait definition could possibly be. We already discussed this as an introduction to traits:
trait Foo {
fn foo();
}
An example from the standard library would be the Default trait, which is implemented for types that can be initialized with a default value. It is documented at https://doc.rust-lang.org/std/default/trait.Default.html.
Generic traits
Traits can also be generic. This is useful in scenarios where you want to implement a trait for a wide variety of types:
pub trait From<T> {
fn from(T) -> Self;
}
Two such examples are is the From<T> and Into<T> traits, which allow from conversion from a type to a type T and vice versa. Their use becomes prominent when these traits are used as trait bounds in function parameters. We'll see what trait bounds are and how they work in a moment. However, generic traits can get quite verbose when they are declared with three or four generic types. For those cases, we have associated type traits.
Associated type traits
trait Foo {
type Out;
fn get_value(self) -> Self::Out;
}
These are a better alternative to generic traits due to their ability to declare associated types within the trait, like the Out type in the declaration of Foo in the preceding code. They have a less verbose type signature. The advantage of them is that, in the implementation, they allow us to declare the associated type once and use Self::Out as the return type or parameter type in any of the trait methods or functions. This removes the redundant specification of types, as is the case with generic traits. One of the finest examples of associated type traits is the Iterator trait, which is used for iterating over the values of a custom type. Its documentation can be found at https://doc.rust-lang.org/std/iter/trait.Iterator.html. We'll dig deeper into iterators when we get to Chapter 8, Advanced Topics.
Inherited traits
We already saw these traits in our trait_inheritance.rs code example. Unlike types in Rust, traits can have an inheritance relationship, for instance:
trait Bar {
fn bar();
}
trait Foo: Bar {
fn foo();
}
In the preceding snippet , we declared a trait, Foo, that depends on a super trait, Bar. The definition of Foo mandates implementing Bar whenever you are implementing Foo for your type. One such example from the standard library is the Copy trait, which requires the type to also implement the Clone trait.
Using traits with generics – trait bounds
Now that we have a decent idea about generics and traits, we can explore ways in which we can combine them to express more about our interfaces at compile time. Consider the following code:
// trait_bound_intro.rs
struct Game;
struct Enemy;
struct Hero;
impl Game {
fn load<T>(&self, entity: T) {
entity.init();
}
}
fn main() {
let game = Game;
game.load(Enemy);
game.load(Hero);
}
In the preceding code, we have a generic function, load, on our Game type that can take any game entity and load it in our game world by calling init() on all kinds of T. However, this example fails to compile with the following error:
So, a generic function taking any type T cannot know or assume by default the init method exists on T. If it did, it wouldn't be generic at all, and would only be able to accept types that have the init() method on them. So, there is a way that we can let the compiler know of this and constrain the set of types that load can accept using traits. This is where trait bounds come into the picture. We can define a trait called Loadable and implement it on our our Enemy and Hero types. Following that, we have to put a couple of symbols beside our generic type declaration to specify the trait. We call this a trait bound. The changes to the code are as follows:
// trait_bounds_intro_fixed.rs
struct Game;
struct Enemy;
struct Hero;
trait Loadable {
fn init(&self);
}
impl Loadable for Enemy {
fn init(&self) {
println!("Enemy loaded");
}
}
impl Loadable for Hero {
fn init(&self) {
println!("Hero loaded");
}
}
impl Game {
fn load<T: Loadable>(&self, entity: T) {
entity.init();
}
}
fn main() {
let game = Game;
game.load(Enemy);
game.load(Hero);
}
In this new code, we implement Loadable for both Enemy and Hero and we also modified the load method as follows:
fn load<T: Loadable>(&self, entity: T) { .. }
Notice the : Loadable part. This is how we specify a trait bound. Trait bounds allow us to constrain the range of parameters that a generic API can accept. Specifying a trait bound on a generic item is similar to how we specify types for variables, but here the variable is the generic type T and the type is some trait, such as T: SomeTrait. Trait bounds are almost always needed when defining generic functions. If one defines a generic function that takes T without any trait bounds, we cannot call any of the methods since Rust does not know what implementation to use for the given method. It needs to know whether T has the foo method or not to monomorphize the code. Take a look at another example:
// trait_bounds_basics.rs
fn add_thing<T>(fst: T, snd: T) {
let _ = fst + snd;
}
fn main() {
add_thing(2, 2);
}
We have a method, add_thing, that can add any type T. If we compile the preceding snippet, it does not compile and gives the following error:
It says to add a trait bound Add on T. The reason for this is that the addition operation is dictated by the Add trait, which is generic, and different types have different implementations that might even return a different type altogether. This means that Rust needs our help to annotate that for us. Here, we need to modify our function definition like so:
// trait_bound_basics_fixed.rs
use std::ops::Add;
fn add_thing<T: Add>(fst: T, snd: T) {
let _ = fst + snd;
}
fn main() {
add_thing(2, 2);
}
We added the : Add after T and with that change, our code compiles. Now, there are two ways to specify trait, bounds depending on how complex the type signature gets when defining generic items with trait bounds:
In-between generics:
fn show_me<T: Display>(val: T) {
// can use {} format string now, because of Display bound
println!("{}", val);
}
This is the most common syntax to specify trait bounds on generic items. We read the preceding function as follows show_me is a method that takes any type that implements the Display trait. This is the usual syntax used to declare the trait bound when the length of the type signature of the generic function is small. This syntax also works when specifying trait bounds on types. Now, let's look at the second way to specify trait bounds.
Using where clauses:
This syntax is used when the type signature of any generic item becomes too large to fit on a line. For example, there is a parse method in the standard library's std::str module, which has the following signature:
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>
where F: FromStr { ... }
Notice the where F: FromStr part. This tells us that our F type must implement the FromStr trait. The where clause decouples the trait bound from the function signature and makes it readable.
Having seen how to write trait bounds, it's important to know where can we specify these bounds. Trait bounds are applicable in all of the places where you can use generics.
Trait bounds on types
We can specify trait bounds on types too:
// trait_bounds_types.rs
use std::fmt::Display;
struct Foo<T: Display> {
bar: T
}
// or
struct Bar<F> where F: Display {
inner: F
}
fn main() {}
However, trait bounds on types are discouraged as it places restrictions on types themselves. Generally, we want types to be as generic as possible, allowing us to create instances using any type, and instead place restrictions on their behavior using traits bounds in functions or methods.
Trait bounds on generic functions and impl blocks
This is the most common place where trait bounds are used. We can specify trait bounds on functions and also on generic implementations, as shown in the following example:
// trait_bounds_functions.rs
use std::fmt::Debug;
trait Eatable {
fn eat(&self);
}
#[derive(Debug)]
struct Food<T>(T);
#[derive(Debug)]
struct Apple;
impl<T> Eatable for Food<T> where T: Debug {
fn eat(&self) {
println!("Eating {:?}", self);
}
}
fn eat<T>(val: T) where T: Eatable {
val.eat();
}
fn main() {
let apple = Food(Apple);
eat(apple);
}
We have a generic type Food and a specific food type Apple that we put into a Food instance and bind to variable apple. Next, we call the generic method eat, passing apple. Looking at the signature of eat, the type T has to be Eatable. To make apple eatable, we implement the Eatable trait for Food, also specifying that our type has to be Debug to make it printable to the console inside our method. This is a dumb example but demonstrates the idea.
Using + to compose traits as bounds
We can also specify multiple trait bounds to a generic type using the + symbol. Let's take a look at the impl block for the HashMap type from the standard library:
impl<K: Hash + Eq, V> HashMap<K, V, RandomState>
Here, we can see that K, denoting the type of the HashMap key, has to implement the Eq trait, as well as the Hash trait.
We can also combine traits to create a new trait, that represents all of them:
// traits_composition.rs
trait Eat {
fn eat(&self) {
println!("eat");
}
}
trait Code {
fn code(&self) {
println!("code");
}
}
trait Sleep {
fn sleep(&self) {
println!("sleep");
}
}
trait Programmer : Eat + Code + Sleep {
fn animate(&self) {
self.eat();
self.code();
self.sleep();
println!("repeat!");
}
}
struct Bob;
impl Programmer for Bob {}
impl Eat for Bob {}
impl Code for Bob {}
impl Sleep for Bob {}
fn main() {
Bob.animate();
}
In the preceding code, we created a new trait Programmer, that is a composition of three traits, Eat Code and Sleep. In this way, we have put constraints on the type, so that if a type T implements Programmer, it has to implement all the other traits. Running the code produces the following output:
eat
code
sleep
repeat!
Trait bounds with impl trait syntax
The other syntax for declaring trait bounds is the impl trait syntax, which is a recent addition to the compiler. Using this syntax, you can also write a generic function with trait bounds like this:
// impl_trait_syntax.rs
use std::fmt::Display;
fn show_me(val: impl Display) {
println!("{}", val);
}
fn main() {
show_me("Trait bounds are awesome");
}
Instead of specifying T: Display, we directly use impl Display. This is the impl trait syntax. This provides advantages in cases where we want to return a complex or unrepresentable type, such as a closure from a function. Without this syntax, you had to return it by putting it behind a pointer using the Box smart pointer type, which involves heap allocation. Closures under the hood are implemented as structs that implement a family of traits. One of these traits is the Fn(T) -> U trait. So, using the impl trait syntax, it's now possible to write functions where we can write something like this:
// impl_trait_closure.rs
fn lazy_adder(a:u32, b: u32) -> impl Fn() -> u32 {
move || a + b
}
fn main() {
let add_later = lazy_adder(1024, 2048);
println!("{:?}", add_later());
}
In the preceding code, we created a function, lazy_adder, that takes in two numbers and returns a closure that adds two numbers. We then call lazy_adder, passing in two numbers. This creates a closure in add_later but does not evaluate it. In main, we called add_later in the println! macro. We can even have this syntax in both places, like so:
// impl_trait_both.rs
use std::fmt::Display;
fn surround_with_braces(val: impl Display) -> impl Display {
format!("{{{}}}", val)
}
fn main() {
println!("{}", surround_with_braces("Hello"));
}
surround_with_braces takes in anything that is Display and returns a string surrounded with {}. Here, both our return types are impl Display.
The extra braces are there to escape the brace itself, as {} has a special meaning in string formatting for string interpolation.
The impl trait syntax for trait bounds is mostly recommended to be used as return types from functions. Using it in parameter position means that we can't use the turbofish operator. This can cause API incompatibility if some dependent code uses the turbofish operator to invoke one of your crate's methods. It should only be used when we don't have a concrete type available to us, as is the case with closures.
Exploring standard library traits
Rust's standard library has a lot of built-in traits. Most of the syntatic sugar in Rust is due to traits. These traits also provide a nice baseline upon which crate authors can provide an idiomatic interface to their libraries. In this section, we'll explore some of the abstractions and conveniences of the standard library traits that enhance the experience for a crate author and the consumer. We'll base our exploration from a library author's perspective and create a library that provides support for complex number types. This example serves well to introduce the common traits you have to implement if you are creating a crate of your own.
We'll create a new project by running cargo new complex --lib. To start with, we need to represent our complex number as a type. We'll use a struct for this. Our complex number struct has two fields: the real and imaginary part of a complex number. Here's how we have defined it:
// complex/src/lib.rs
struct Complex<T> {
// Real part
re: T,
// Complex part
im: T
}
We're making it generic over T, as re and im can both be a float or an integer value. For this type to be of any use, we want ways to create instances of it. The usual way to do this is to implement the associated method new, where we pass the values for re and im. What if we also wanted to initialize a complex value with defaults (say re = 0, im = 0) ? For this, we have a trait called Default. Implementing Default is very simple for a user-defined type; we can just put a #[derive(Default)] attribute over the Complex structure to automatically implement the Default trait for it.
Note: Default can only be implemented for structs, enums, or unions whose members and fields themselves implement Default.
Now, our updated code with the method new and the Default annotation looks like this:
// complex/src/lib.rs
#[derive(Default)]
struct Complex<T> {
// Real part
re: T,
// Complex part
im: T
}
impl<T> Complex<T> {
fn new(re: T, im: T) -> Self {
Complex { re, im }
}
}
#[cfg(test)]
mod tests {
use Complex;
#[test]
fn complex_basics() {
let first = Complex::new(3,5);
let second: Complex<i32> = Complex::default();
assert_eq!(first.re, 3);
assert_eq!(first.im, 5);
assert!(second.re == second.im);
}
}
We also added a simple initialization test case at the bottom under the tests module. The #[derive(Default)] attribute functionality is implemented as a procedural macro that can automatically implement traits for the type on which it appear. This auto-deriving requires that the fields of any custom type, such as a struct or an enum, also implement the Default trait themselves. Deriving a trait using them is only applicable to structs, enums, and unions. We'll look at how to write our own deriving procedural macros in Chapter 9, Metaprogramming with Macros. Also, the function new is not really a special constructor function (if you are familiar with languages with constructors), but just a conventional name adopted by the community as a method name to create new instances of types.
Now, before we get into more complex trait implementations, we need to auto-derive some more built-in traits that will help us implement more high-level functionality. Let's look at some of them:
With those explanations out of the way, we'll add auto-derives for these built-in traits, like so:
#[derive(Default, Debug, PartialEq, Copy, Clone)]
struct Complex<T> {
// Real part
re: T,
// Complex part
im: T
}
Next, let's enhance our Complex<T> type more so that we have better ergonomics in terms of its use. Some additional traits we'll implement (in no particular order) are as follows:
Let's start with the implementation of the Add trait. It is documented at https://doc.rust-lang.org/std/ops/trait.Add.html, and the trait is declared like so:
pub trait Add<RHS = Self> {
type Output;
fn add(self, rhs: RHS) -> Self::Output;
}
Let's go through it line by line:
OK, let's try implementing this. Here's the code, along with the tests:
// complex/src/lib.rs
use std::ops::Add;
#[derive(Default, Debug, PartialEq, Copy, Clone)]
struct Complex<T> {
// Real part
re: T,
// Complex part
im: T
}
impl<T> Complex<T> {
fn new(re: T, im: T) -> Self {
Complex { re, im }
}
}
impl<T: Add<T, Output=T>> Add for Complex<T> {
type Output = Complex<T>;
fn add(self, rhs: Complex<T>) -> Self::Output {
Complex { re: self.re + rhs.re, im: self.im + rhs.im }
}
}
#[cfg(test)]
mod tests {
use Complex;
#[test]
fn complex_basics() {
let first = Complex::new(3,5);
let second: Complex<i32> = Complex::default();
}
fn complex_addition() {
let a = Complex::new(1,-2);
let b = Complex::default();
let res = a + b;
assert_eq!(res, a);
}
}
Let's dig into the impl block for Complex<T>:
impl<T: Add<T, Output=T> Add for Complex<T>
The impl block for Add seems more complex. Let's go through this piece by piece:
Then comes the From trait. It would be convenient if we could also construct Complex types from a built-in primitive type such as a two-element tuple, where the first element is the real part and the second is the imaginary part. We can do this by implementing the From trait. This trait defines a from method, giving us a general way to do conversions between types. Its documentation can be found at https://doc.rust-lang.org/std/convert/trait.From.html.
Here's the trait definition:
pub trait From<T> {
fn from(self) -> T;
}
This is a bit simpler than the previous one. It's a generic trait, where T specifies what type to convert from. When we implement this, we just need to substitute the T with the type we want to implement it for and implement the from method. Then, we can use the method on our type. Here's an implementation that converts our Complex value into a two-element tuple type, which is natively known to Rust:
// complex/src/lib.rs
// previous code omitted for brevity
use std::convert::From;
impl<T> From<(T, T)> for Complex<T> {
fn from(value: (T, T)) -> Complex<T> {
Complex { re: value.0, im: value.1 }
}
}
// other impls omitted
#[cfg(test)]
mod tests {
// other tests
use Complex;
#[test]
fn complex_from() {
let a = (2345, 456);
let complex = Complex::from(a);
assert_eq!(complex.re, 2345);
assert_eq!(complex.im, 456);
}
}
Let's look at the impl line for this one. This is similar to the Add trait, except that we don't have to constrain our generic by any special output type, since From does not have that:
impl<T> From<(T, T)> for Complex<T> {
fn from(value: (T, T)) -> Complex<T> {
Complex { re: value.0, im: value.1 }
}
}
The first <T> is a declaration of the generic type T, and the second and third are the uses of it. We are creating it from a (T, T) type.
Finally, to be able to let the users view the complex type as in mathematical notation, we should implement the Display trait. It's documented at https://doc.rust-lang.org/std/fmt/trait.Display.html, and here's the trait's type signature:
pub trait Display {
fn fmt(&self, &mut Formatter) -> Result<(), Error>;
}
The following code shows the implementation of Display for the Complex<T> type:
// complex/src/lib.rs
// previous code omitted for brevity
use std::fmt::{Formatter, Display, Result};
impl<T: Display> Display for Complex<T> {
fn fmt(&self, f: &mut Formatter) -> Result {
write!(f, "{} + {}i", self.re, self.im)
}
}
#[cfg(test)]
mod tests {
// other tests
use Complex;
#[test]
fn complex_display() {
let my_imaginary = Complex::new(2345,456);
println!("{}", my_imaginary);
}
}
The Display trait has an fmt method, which takes in a Formatter type that we write into using the write! macro. Like before, because our Complex<T> type uses a generic type for both the re and im fields, we need to specify that it also must satisfy the Display trait.
Running cargo test -- --nocapture, we get the following output:
We can see that our complex type is printed in a readable format as 2345 + 456i and that all of our tests are green. Next, let's look at the idea of polymorphism and how Rust traits model this.
True polymorphism using trait objects
Rust allows a true form of polymorphism through special forms of types implementing a trait. These are known as trait objects. Before we explain how Rust achieves polymorphism using trait objects, we need to understand the idea of dispatch.
Dispatch
Dispatch is a concept that emerged from the object-oriented programming paradigm, mainly in the context of one of its features called polymorphism. In the context of OOP, when APIs are generic or take parameters implementing an interface, it here has to figure out what method implementation to invoke on an instance of a type that's passed to the API. This process of method resolution in a polymorphic context is called dispatch, and invoking the method is called dispatching. In mainstream languages that support polymorphism, the dispatch may happen in either of the following ways:
Let's explore trait objects next.
Trait objects
Now, up until this point, we have mostly seen traits being used in a static dispatch context, where we specified trait bounds in generic APIs. However, we also have another way to create polymorphic APIs, where we can specify parameters as something that implements a trait rather than a generic or a concrete type. This form of type, specified as implementing a trait API, is known as a trait object. Trait objects are similar to C++ virtual methods. A trait object is implemented as a fat pointer and is an unsized type, which means that they can only be used behind references (&). We explain unsized types in Chapter 7, Advanced Concepts. A trait object fat pointer has the first pointer pointing points to the actual data associated with the object while the second pointer to a virtual table (vtable), which is a structure holding one function pointer per method for the object, at a fixed offset.
Trait objects are Rust's way of performing dynamic dispatch where we don't have the actual concrete type information. Method resolution is done by hopping down to the vtable and invoking the appropriate method. One of the use cases for trait objects is that they allow you to operate on a collection that can have multiple types, but with an extra pointer indirection at runtime. To illustrate this, consider the following program:
// trait_objects.rs
use std::fmt::Debug;
#[derive(Debug)]
struct Square(f32);
#[derive(Debug)]
struct Rectangle(f32, f32);
trait Area: Debug {
fn get_area(&self) -> f32;
}
impl Area for Square {
fn get_area(&self) -> f32 {
self.0 * self.0
}
}
impl Area for Rectangle {
fn get_area(&self) -> f32 {
self.0 * self.1
}
}
fn main() {
let shapes: Vec<&dyn Area> = vec![&Square(3f32), &Rectangle(4f32, 2f32)];
for s in shapes {
println!("{:?}", s);
}
}
As you can see, the elements of shapes are of type &dyn Area, a type that is represented as a trait. The trait object is represented by dyn Area, denoting that it's a pointer to some implementation of the Area trait. A type in the form of a trait object allows you to store different types within a collection type such as Vec. In the preceding example, Square and Rectangle were converted into trait objects implicitly because we pushed a reference to them. We can also make a type, a trait object by casting it manually. This is an advanced case, though, and is used when the compiler cannot cast the type as a trait object by itself. Do note that we can only create trait objects of types whose sizes we know at compile time. A dyn Trait is an unsized type and can only be created as a reference. We can also create trait objects by putting them behind other pointer types such as Box, Rc, Arc, and so on.
In the older Rust 2015 edition, trait objects are referred to as just the name of the trait, for a trait object dyn Foo , it is represented as Foo. This syntax is confusing and it deprecated in the latest 2018 edition.
In the following code, we are illustrating the use of dyn Trait as a parameters in functions:
// dyn_trait.rs
use std::fmt::Display;
fn show_me(item: &dyn Display) {
println!("{}", item);
}
fn main() {
show_me(&"Hello trait object");
}
Traits, along with generics, provide both kinds of code reuse, either through monomorphization (early binding) or through runtime polymorphism (late binding). The decision on when to use which depends on the context and the needs of the application in question. Often, error types are taken toward the dynamic dispatch train as they are supposed to be code paths that rarely get executed. Monomorphization can be handy for small use cases, but the downside to it is that it introduces code bloat and duplication, which affects the cache line and increases binary size. However, of these two options, static dispatch should be preferred unless there is a hard constraint on binary size.
Summary
Types are one of the most beautiful aspects of any statically typed language. They allow you to express so much at compile time. This chapter might not be the most advanced in this book, but the content was probably the heaviest. We now have a working knowledge of the different ways to reuse code. We also got to know about the mighty traits and how Rust's standard library makes heavy use of them.
In the next chapter, we'll learn about how programs use memory and how Rust provides compile-time memory management.
Memory Management and Safety
Memory management is a fundamental concept to understand for anyone working with a low-level programming language. Low-level languages don't come with automatic memory reclamation solutions like a built-in garbage collector, and it's the responsibility of the programmer to manage memory that's used by the program. Having knowledge of where and how memory gets used in a program enables programmers to build efficient and safe software systems. A lot of bugs in low-level software are due to improper handling of memory. At times, it's the programmer's mistake. The other times, it's the side effect of the programming language used, such as C and C++, which are infamous for a lot of memory vulnerability reports in software. Rust offers a better, compile-time solution to memory management. It makes it hard to write software that leaks memory unless you explicitly intend to! Programmers who have done a fair amount of development with Rust eventually come to the realization that it discourages bad programming practices and directs the programmer toward writing software that uses memory safely and efficiently.
In this chapter, we go into the nitty-gritty details of how Rust tames the memory that's used by resources in a program. We'll give a brief introduction to processes, memory allocation, memory management, and what we mean by memory safety. Then, we'll go through the memory safety model provided by Rust and understand the concepts that enable it to track memory usage at compile time. We'll see how traits are used to control where types reside in memory and when they get freed. We'll also delve into various smart pointer types that provide abstractions to manage resources in the program.
The topics that are covered in this chapter are as follows:
Programs and memory
"If you’re willing to restrict the flexibility of your approach, you can almost always do something better."
– John Carmack
As a motivation to understand memory and its management, it's important for us to have a general idea of how programs are run by the operating system and what mechanisms are in place that allow it to use memory for its requirements.
Every program needs memory to run, whether it's your favorite command-line tool or a complex stream processing service, and they have vastly different memory requirements. In major operating system implementations, a program in execution is implemented as a process. A process is a running instance of a program. When we execute ./my_program in a shell in Linux or double-click on my_program.exe on Windows, the OS loads my_program as a process in memory and starts executing it, along with other processes, giving it a share of CPU and memory. It assigns the process with its own virtual address space, which is distinct from the virtual address space of other processes and has its own view of memory.
During the lifetime of a process, it uses many system resources. First, it needs memory to store its own instructions, then it needs space for resources that are demanded at runtime during instruction execution, then it needs a way to keep track of function calls, any local variables, and the address to return to after the last invoked function. Some of these memory requirements can be decided ahead at compile time, like storing a primitive type in a variable, while others can only be satisfied at runtime, like creating a dynamic data type such as Vec<String>. Due to the various tiers of memory requirements, and also for security purposes, a process's view of memory is divided into regions known as the memory layout.
Here, we have an approximate representation of the memory layout of a process in general:
This layout is divided into various regions based on the kind of data they store and the functionality they provide. The major parts we are concerned with are as follows:
How do programs use memory?
So, we know that a process has a chunk of memory dedicated for its execution. But, how does it access this memory to perform its task? For security purposes and fault isolation, a process is not allowed to access the physical memory directly. Instead, it uses a virtual memory, which is mapped to the actual physical memory by the OS using an in-memory data structure called pages, which are maintained in page tables. The process has to request memory from the OS for its use, and what it gets is a virtual address that is internally mapped to a physical address in the RAM. For performance reasons, this memory is requested and processed in chunks. When virtual memory is accessed by the process, the memory management unit does the actual conversion from virtual to physical memory.
The whole series of steps through which memory is acquired by a process from the OS is known as memory allocation. A process requests a chunk of memory from the OS by using system calls, and the OS marks that chunk of memory in use by that process. When the process is done using the memory, it has to mark the memory as free so other processes can use it. This is called de-allocation of memory. Major operating system implementations provide abstractions through system calls (such as brk and sbrk in Linux), which are functions that talk directly to the OS kernel and can allocate memory requested by the process. But these kernel-level functions are very low-level, so they are further abstracted by system libraries such as the glibc library, which is C's standard library in Linux including the implementation of the POSIX APIs, facilitating low-level interactions with the OS from the C language.
POSIX is an acronym for Portable Operating System Interface, a term coind by Richard Stallman. It is a set of standards that emerged with the need to standardize what functionality, a Unix-like operating system should provide, what low level APIs they should expose to languages such as C, what command-line utilities they should include, and many other aspects.
Glibc also provides a memory allocator API, exposing functions such as malloc, calloc, and realloc for allocating memory and the free function for de-allocating memory. Even though we have a fairly high-level API for allocating/de-allocating memory, we still have to manage memory ourselves when using low-level programming languages.
Memory management and its kinds
The RAM in your computer is a limited resource and is shared by all running programs. It's a necessity that when a program is done executing its instructions, it is expected to release any memory used so that the OS can reclaim it and hand it to other processes. When we talk about memory management, a prominent aspect we care about is the reclamation of used memory and how that happens. The level of management required in deallocating used memory is different in different languages. Up until the mid-1990s, the majority of programming languages relied on manual memory management, which required the programmer to call memory allocator APIs such as malloc and free in code to allocate and deallocate memory, respectively. Around 1959, John McCarthy, the creator of Lisp, invented Garbage Collectors (GC), a form of automatic memory management and Lisp was the first language to use one. A GC runs as a daemon thread as part of the running program and analyzes the memory that is no longer being referenced by any variable in the program and frees it automatically at certain points in time along with program execution.
However, low-level languages don't come with a GC as it introduces non-determinism and a runtime overhead due to the GC thread running in the background, which in some cases pauses the execution of the program. This pause sometimes reaches to a milisecond of latency. This might violate the hard time and space constraints of system software. Low-level languages put the programmer in control of managing memory manually. However, languages such as C++ and Rust take some of this burden off from programmers, through type system abstractions like smart pointers, which we'll cover later in the chapter.
Given the difference between languages, we can classify the memory management strategies that are used by them into three buckets:
Approaches to memory allocation
At runtime, memory allocations in a process happens either on the stack or on the heap. They are storage locations that are used to store values during the execution of the program. In this section, we'll take a look at both of these allocation approaches.
The stack is used for short-lived values whose sizes are known as compile time, and is the ideal storage location for function calls and their associated context, which needs to go away once the function returns. The heap is for anything that needs to live beyond function calls. As mentioned in Chapter 1, Getting Your Feet Wet, Rust prefers stack allocation by default. Any value or instance of a type that you create and bind to a variable gets stored on the stack by default. Storing on the heap is explicit and is done by using smart pointer types, which are explained later in this chapter.
The stack
Any time we call a function or a method, the stack is used for allocating space for values that are created within the function. All of the let bindings in your functions are stored in the stack, either as values themselves or as pointers to memory locations on the heap. These values constitute the stack frame for the active function. A stack frame is a logical block of memory in the stack that stores the context of a function call. This context may include function arguments, local variables, return addresses, and any saved register's values that need to be restored after returning from the function. As more and more functions get called, their corresponding stack frames are pushed onto the stack. Once a function returns, the stack frame corresponding to the function goes away, along with all values declared within that frame.
These values are removed in the reverse order of their declaration, following the Last In First Out (LIFO) order.
Allocation on the stack is fast because allocating and deallocating memory here requires just one CPU instruction: incrementing/decrementing the stack frame pointer. The stack frame pointer (esp) is a CPU register that always points to the top of the stack. The stack frame pointer keeps on updating as functions get called, or when they return. When a function returns, its stack frame is discarded by restoring the stack frame pointer to where it was before entering the function. Using stacks is a temporary memory allocation strategy, but it is reliable in terms of releasing used memory because of its simplicity. However, the same property of a stack makes it unsuitable for cases where we need longer living values beyond the current stack frame.
Here's a piece of code to roughly illustrate how the stack gets updated in a program during function calls:
// stack_basics.rs
fn double_of(b: i32) -> i32 {
let x = 2 * b;
x
}
fn main() {
let a = 12;
let result = double_of(a);
}
We'll represent the state of the stack for this program by an empty array []. Let's explore the stack contents by doing a dry run of this program. We'll use [] to also represent stack frames within our parent stack. When this program is run, the following are the sequence of steps that happens:
There are more details to this, though. We just gave a very high level overview of a function call and its interaction with the stack memory. Now, if all we had were local values staying valid only for the lifetime of the function call, it would be very limiting. While the stack is simple and powerful, to be practical, a program also needs longer-living variables, and for that we need the heap.
The heap
The heap is for the more complicated and dynamic memory allocation requirements. A program might allocate on the heap at some point and may release it at some other point, and there need not be a strict boundary between these points, as is the case with stack memory. In the case of stack allocation, you get deterministic allocation and deallocation of values. Also, a value in the heap may live beyond the function where it was allocated and it may later get deallocated by some other function. In that case, the code fails to call free, so it may not get deallocated at all, which is the worst case.
Different languages use the heap memory differently. In dynamic languages such as Python, everything is an object and they are allocated on the heap by default. In C, we allocate memory on the heap using manual malloc calls, while in C++, we allocate using the new keyword. To deallocate memory, we need to call free in C and delete in C++. In C++, to avoid manual delete calls, programmers often use smart pointer types such as unique_ptr or shared_ptr. These smart pointer types have deconstructor methods, which get invoked when they go out of scope internally, calling delete. This paradigm of managing memory is called the RAII principle, and was popularized by C++.
RAII stands for Resource Acquisition Is Initialization; a paradigm suggesting that resources must be acquired during initialization of objects and must be released when they are deallocated or their destructors are called.
Rust also has similar abstractions to how C++ manages heap memory. Here, the only way to allocate memory on the heap is through smart pointer types. Smart pointer types in Rust implement the Drop trait, which specifies how memory used by the value should be deallocated, and are semantically similar to deconstructor methods in C++. Unless someone writes their own custom smart pointer type, you never need to implement Drop on their types. More on the Drop trait in a separate section.
To allocate memory on the heap, languages rely on dedicated memory allocators, which hide all the low-level details like allocating memory on aligned memory, maintaining free chunks of memory to reduce system call overheads, and reducing fragmentation while allocating memory and other optimizations. For compiling programs, the compiler rustc itself uses the jemalloc allocator, whereas the libraries and binaries that are built from Rust use the system allocator. On Linux, it would be the glibc memory allocator APIs. Jemalloc is an efficient allocator library for use in multithreaded environments and it greatly reduces the build time of Rust programs. While jemalloc is used by the compiler, it's not used by any applications that are built with Rust because it increases the size of the binary. So, compiled binaries and libraries always use the system allocators by default.
Rust also has a pluggable allocator design, and can use the system allocator or any user implemented allocator that implements the GlobalAlloc trait from the std::alloc module. This is often implemented by the #[global_allocator] attribute, which can be put on any type to declare it as an allocator.
Note: If you have a use case where you want to use the jemalloc crate for your programs too, you can use the https://crates.io/crates/jemallocator crate.
In Rust, most dynamic types with sizes not known in advance are allocated on the heap. This excludes primitive types. For instance, creating a String internally allocates on the heap:
let s = String::new("foo");
String::new allocates a Vec<u8> on the heap and returns a reference to it. This reference is bound to the variable s, which is allocated on the stack. The string in the heap lives for as long as s is in scope. When s goes out of scope, the Vec<u8> is deallocated from the heap and its drop method is called as part of the Drop implementation. For rare cases where you need to allocate a primitive type on the heap, you can use the Box<T> type, which is a generic smart pointer type.
In the next section, let's look at the pitfalls when using a language such as C that doesn't have all the comforts of automatic memory management.
Memory management pitfalls
In languages with a GC, dealing with memory is abstracted away from the programmer. You declare and use the variables in your code, and how they get deallocated is an implementation detail you don't have to worry about. A low-level system programming language such as C/C++, on the other hand, does nothing to hide these details from the programmer, and provides nearly no safety. Here, programmers are given the responsibility of deallocating memory via manual free calls. Now, if we look at the majority of Common Vulnerabilities & Exposure (CVEs) in software related to memory management, it shows that we humans are not very good at this! Programmers can easily create hard-to-debug errors by allocating and deallocating values in the wrong order, or may even forget to deallocate used memory, or cast pointers illegally. In C, nothing stops you from creating a pointer out of an integer and dereferencing it somewhere, only to see the program crash later. Also, it's quite easy to create vulnerabilities in C because of the minimal compiler checks.
The most concerning case is freeing heap allocated data. The heap memory is to be used with care. Values in the heap can possibly live forever during the lifetime of the program if not freed, and may eventually lead to the program being killed by the Out Of Memory (OOM) killer in the kernel. At runtime, a bug in the code or mistake from the developer can also cause the program to either forget to free the memory, or access a portion of memory that is outside the bounds of its memory layout, or dereference a memory address in the protected code segment. When this happens, the process receives a trap instruction from the kernel, which is what you see as a segmentation fault error message, followed by the process getting aborted. As such, we must ensure that processes and their interactions with memory need to be safe! Either we as programmers need to be critically aware of our malloc and free calls, or use a memory safe language to handle these details for us.
Memory safety
But what do we mean by a program being memory safe? Memory safety is the idea that your program never touches a memory location it is not supposed to, and that the variables declared in your program cannot point to invalid memory and remain valid in all code paths. In other words, safety basically boils down to pointers having valid references all of the time in your program, and that the operations with pointers do not lead to undefined behavior. Undefined behavior is the state of a program where it has entered a situation that has not been accounted for in the compiler's because the compiler specification does not clarify what happens in that situation.
An example of undefined behavior in C is accessing out of bound and uninitialized array elements:
// uninitialized_reads.c
#include <stdio.h>
int main() {
int values[5];
for (int i = 0; i < 5; i++)
printf("%d ", values[i]);
}
In the preceding code, we have an array of 5 elements and we loop and print the values in the array. Running this program with gcc -o main uninitialized_reads.c && ./main gives me the following output:
4195840 0 4195488 0 609963056
On your machine, this could print any value, or might even print an address of an instruction, which can be exploited. This is an undefined behavior where anything can happen. Your program might crash immediately, which is the best case scenario as you get to know it then and there. It may also continue to work, clobbering any internal state of the program that might later give faulty outputs from the application.
Another example of memory safety violation is the iterator invalidation problem in C++:
// iterator_invalidation.cpp
#include <iostream>
#include <vector>
int main() {
std::vector <int> v{1, 5, 10, 15, 20};
for (auto it=v.begin();it!=v.end();it++)
if ((*it) == 5)
v.push_back(-1);
for (auto it=v.begin();it!=v.end();it++)
std::cout << (*it) << " ";
return 0;
}
In this C++ code, we create a vector of integers v and we are trying to iterate using an iterator called it in the for loop. The problem with the preceding code, is that we have an it iterator pointer to v, while at the same time we iterate and push to v.
Now, because of the way vectors are implemented, they internally reallocate to some other place in memory if their size reaches their capacity. When this happens, this would render the it pointer pointing to some garbage value, which is called the iterator invalidation problem, because the pointer is now pointing to invalid memory.
Another example of memory unsafety are buffer overflows in C. The following is a simple piece of code to demonstrate this idea:
// buffer_overflow.c
int main() {
char buf[3];
buf[0] = 'a';
buf[1] = 'b';
buf[2] = 'c';
buf[3] = 'd';
}
This compiles fine and even runs without errors, but the last assignment went over the allocated buffer and might have overwritten other data or instructions in the address. Also, specially crafted malicious input values, adapted to the architecture and environment, could yield arbitrary code execution. These kind of errors have happened in actual code in less obvious ways and has led to vulnerabilities affecting businesses worldwide. On recent versions of gcc compilers, this is detected as a stack smash attack where gcc halts the program by sending a SIGABRT (abort) signal.
Memory safety bugs lead to memory leaks, hard crashes in the form of segmentation faults, or in the worst case, security vulnerabilities. To create correct and safe programs in C, a programmer has to be discrete in correctly placing free calls when they are done using the memory. Modern C++ safeguards against some of the problems associated with manual memory management by providing smart pointer types, but this does not completely eliminate them. Languages based on virtual machines (Java's JVM being the most prominent example) use garbage collection to eliminate whole classes of memory safety issues. While Rust doesn't have a built-in GC, it relies on the same RAII built into the language and makes freeing used memory automatic for us based on the scope of variables and is much more safer than C or C++. It provides us with several fine-grained abstractions that you can choose according to your needs and pay only for what you use. To see how all of this works in Rust, let's explore the principles that helps Rust provide compile-time memory management to programmers.
Trifecta of memory safety
The concepts that we will explore next are the core tenets of Rust's memory safety and its zero cost abstraction principle. They enable Rust to detect memory safety violations in a program at compile time, provide automatic freeing of resources when their scope ends, and much more. We call these concepts ownership, borrowing, and lifetimes. Ownership is kind of like the core principle, while borrowing and lifetimes are type system extensions to the language, enforcing and sometimes relaxing the ownership principle in different contexts in code to ensure compile-time memory management. Let's elaborate on these ideas.
Ownership
The notion of a true owner of a resource in a program differs across languages. Here, by resource, we collectively refer to any variable holding a value on the heap or the stack, or a variable holding an open file descriptor, a database connection socket, a network socket, and similar things. All of them occupy some memory from the time they exist until the time they are done being used by the program. An important responsibility of being the owner of a resource is to judiciously free the memory used by them, as not being able to perform deallocations at proper places and times can lead to memory leaks.
When programming in dynamic languages such as Python, it's fine to have multiple owners or aliases to a list object where you can add to or remove items from the list using one of the many variables pointing to the object. The variables don't need to care about freeing the memory used by the object because the GC takes care of this and will free the memory once all references to the object are gone.
For compiled languages such as C/C++, before smart pointers were a thing, libraries had an opinionated take on whether the callee or the caller of an API was responsible for deallocating the memory after the code is done with a resource. These opinions existed because ownership is not enforced by the compiler in these languages. There's still a possibility of goofing up by not using smart pointers in C++. It's totally fine in C++ to have more than one variable pointing to a value on the heap (though we advise against it), and that is called aliasing. The programmer runs into all sorts of ill effects with the flexibility of having multiple pointers or aliases to a resource, one being the iterator invalidation problem in C++, which we explained previously. Specifically, problems arise when there is at least one mutable alias to a resource among other immutable aliases in a given scope.
Rust, on the other hand, tries to bring proper semantics regarding the ownership of values in a program. The ownership rule of Rust states the following principles:
The takeaway is that values in Rust have a single owner, that is, the variables that created them. The principle is quite simple, but the implications of it are what surprises programmers coming from other languages. Consider the following code, which demonstrates the ownership principle in its most basic form:
// ownership_basics.rs
#[derive(Debug)]
struct Foo(u32);
fn main() {
let foo = Foo(2048);
let bar = foo;
println!("Foo is {:?}", foo);
println!("Bar is {:?}", bar);
}
We create two variables, foo and bar, that points to a Foo instance. As someone familiar with mainstream imperative languages that allow multiple owners to a value, we expect this program to compile just fine. But in Rust, we get the following error upon compilation:
Here, we created a Foo instance and assigned it to the foo variable. According to the ownership rule, foo is now the owner of the Foo instance. In the next line, we then assign foo to bar. On executing the second line in main, bar becomes the new owner of the Foo instance and the older foo is now an abandoned variable, which cannot be used anywhere after the move. This is evident from the println! call on the third line. Rust moves values pointed to by a variable by default any time we assign it to some other variable or read from the variable. The ownership rule prevents you from having multiple points of access for modifying the value, which can lead to use after free situations, even in single threaded contexts with languages that permit multiple mutable aliases for values. The classic example is the iterator invalidation problem in C++. Now, to analyze when a value goes out of scope, the ownership rule also takes into account the scope of variables. Let's understand scopes next.
A brief on scopes
Before we go further into ownership, we need to get a brief idea of scopes, which might be familiar to you already if you know C, but we'll recap it here in the context of Rust, as ownership works in tandem with scopes. So, a scope is nothing but an environment where variables and values come into existence. Every variable you declare is associated with a scope. Scopes are represented in code by braces {}. A scope is created whenever you use a block expression, that is, any expression that starts and ends with braces {}. Also, scopes can nest within each other and can access items from the parent scope, but not the other way around.
Here's some code that demonstrates multiple scopes and values:
// scopes.rs
fn main() {
let level_0_str = String::from("foo");
{
let level_1_number = 9;
{
let mut level_2_vector = vec![1, 2, 3];
level_2_vector.push(level_1_number); // can access
} // level_2_vector goes out of scope here
level_2_vector.push(4); // no longer exists
} // level_1_number goes out of scope here
} // level_0_str goes out of scope here
To help with this explanation, will assume that our scopes are numbered, starting from 0. With this assumption, we have created variables that have the level_x prefix in their name. Let's run through the preceding code, line by line. As functions can create new scopes, the main function introduces a root scope level 0 with a level_0_str defined within it. Inside the level 0 scope, we create a new scope, level 1, with a bare block {}, which contains the variable level_1_number. Within level 1, we create another block expression, which becomes level 2 scope. In level 2, we declare another variable, level_2_vector, to which we push level_1_number, which comes from the parent scope,that is, level 1. Finally, when the code reaches the end of }, all of the values get destructed and the respective scopes come to an end. Once the scope ends, we cannot use any values defined within them.
Scopes are an important property to keep in mind when reasoning about the ownership rule. They are also used to reason about borrowing and lifetimes, as we'll see later. When a scope ends, any variable that owns a value runs code to deallocate the value and itself becomes invalid for use outside the scope. In particular, for heap allocated values, a drop method is placed right before the end of the scope }. This is akin to calling the free function in C, but here it's implicit and saves the programmer from forgetting to deallocate values. The drop method comes from the Drop trait, which is implemented for most heap allocated types in Rust and makes automatic freeing of resources a breeze.
Having learned about scopes, let's look at an example similar to the one we previously saw in ownership_basics.rs, but this time, let's use a primitive value:
// ownership_primitives.rs
fn main() {
let foo = 4623;
let bar = foo;
println!("{:?} {:?}", foo, bar);
}
Try compiling and running this program. You might be in for a surprise as this program compiles and runs just fine. What gives? In the program, the ownership of 4623 does not move from foo to bar, but bar gets a separate copy of 4623. It appears that primitive types are treated specially in Rust, where they get copied instead of moved. This means that there are different semantics of ownership depending on what types we use in Rust, which brings us to the concept of move and copy semantics.
Move and copy semantics
In Rust, variable bindings have move semantics by default. But what does this really mean? To understand that, we need to think about how variables are used in a program. We create values or resources and assign them to variables to easily refer to them later in our program. These variables are names that point to the memory location where the value resides. Now, operations with variables such as reading, assignment, addition, passing them to functions, and so on can have different semantics or meaning around how the value being pointed to by the variable is accessed. In statically typed languages, these semantics are broadly classified as move semantics and copy semantics. Let's define both.
Move semantics: A value that gets moved to the receiving item when accessed through a variable or reassigning to a variable exhibits move semantics. Rust has move semantics by default due to its affine type system. A highlighting part of affine type systems is that values or resources can only be used once, and Rust exhibits this property with the ownership rule.
Copy semantics: A value that gets copied (as in a bitwise copy) by default when assigned or accessed through a variable or passed to/returned from a function exhibits copy semantics. This means that the value can be used any number of times and each value is completely new.
These semantics are familiar to people from the C++ community. C++ has copy semantics by default. Move semantics were added later with the C++11 release.
Move semantics in Rust can be limiting at times. Fortunately, a type's behavior can be changed to follow copy semantics by implementing the Copy trait. This is implemented by default for primitives and other stack-only data types and is the reason why the previous code using primitives works. Consider the following snippet that tries to make a type Copy explicitly:
// making_copy_types.rs
#[derive(Copy, Debug)]
struct Dummy;
fn main() {
let a = Dummy;
let b = a;
println!("{}", a);
println!("{}", b);
}
On compiling this, we get the following error:
Interesting! It appears that Copy depends on the Clone trait. This is because Copy is defined in the standard library as follows:
pub trait Copy: Clone { }
Clone is a super trait of Copy, and any type implementing Copy must also implement Clone. We can make this example compile by adding the Clone trait beside Copy in the derive annotation:
// making_copy_types_fixed.rs
#[derive(Copy, Clone, Debug)]
struct Dummy;
fn main() {
let a = Dummy;
let b = a;
println!("{}", a);
println!("{}", b);
}
The program works now. But it's not quite clear of the differences between Clone and Copy. Let's differentiate them next.
Duplicating types via traits
The Copy and Clone traits convey the idea of how types gets duplicated when they are used in code.
Copy
The Copy trait is usually implemented for types that can be completely represented on the stack. This is to say that they don't have any part of themselves that lives on the heap. If that were the case, Copy would be a heavy operation as it would also have to go down the heap to copy the values. It directly affects how the = assignment operator works. If a type implements Copy, an assignment from one variable to another would copy the data implicitly.
Copy is an auto trait that is implemented automatically on most stack data types such as primitives and immutable references, that is, &T. The way Copy duplicates types is very similar to how the memcpy function works in C, which is used to copy values bitwise. Copy for user-defined types is not implemented by default as Rust wants to be explicit about copying and the developer has to opt in to implement the trait. Copy also depends on the Clone trait when anyone wants to implement Copy on their types.
Types that don't implement Copy are Vec<T>, String, and mutable references. To make copies of these values, we use the more explicit Clone trait.
Clone
The Clone trait is for explicit duplication and comes with a clone method that a type can implement to obtain a copy of itself. The Clone trait is defined like so:
pub trait Clone {
fn clone(&self) -> Self;
}
It has a method called clone that takes an immutable reference to the receiver, that is, &self, and returns a new value of the same type. User defined types or any wrapper types that need to provide the ability to duplicate themselves should implement the Clone trait by implementing the clone method.
But unlike Copy types where assignment implicitly copies the value, to duplicate a Clone value, we have to explicitly call the clone method. The clone method is a more general duplication mechanism and Copy is a special case of it, which is always a bitwise copy. Items such as String and Vec that are heavy to copy, only implements the Clone trait. Smart pointer types also implement the Clone trait where they just copy the pointer and extra metadata such as the reference count while pointing to the same heap data.
This is one of those examples of being able to decide how we want to copy types, and the Clone trait gives us that flexibility.
Here's a program that demonstrates using Clone to duplicate a type:
// explicit_copy.rs
#[derive(Clone, Debug)]
struct Dummy {
items: u32
}
fn main() {
let a = Dummy { items: 54 };
let b = a.clone();
println!("a: {:?}, b: {:?}", a, b);
}
We added a Clone in the derive attribute. With that, we can call clone on a to get a new copy of it.
Now, you are probably wondering when you should one implement either of these types. The following are a few guidelines.
When to implement Copy on a type:
Small values that can be represented solely in the stack as follows:
When to implement Clone on a type:
Now that we know the basics of Copy and Clone, let's move on to see how ownership affects various places in code.
Ownership in action
Apart from the let binding example, there are other places where you will find ownership in effect, and it's important to recognize these and the errors the compiler gives us.
Functions: If you pass parameters to functions, the same ownership rules are in effect:
// ownership_functions.rs
fn take_the_n(n: u8) { }
fn take_the_s(s: String) { }
fn main() {
let n = 5;
let s = String::from("string");
take_the_n(n);
take_the_s(s);
println!("n is {}", n);
println!("s is {}", s);
}
The compilation fails in a similar way:
String does not implement the Copy trait, so the ownership of the value is moved inside the take_the_s function. When that function returns, the scope of the value comes to an end and drop is called on s, which frees the heap memory used by s. Therefore, s cannot be used after the function call anymore. However, since String implements Clone, we can make our code work by adding a .clone() call at the function call site:
take_the_s(s.clone());
Our take_the_n works fine as u8 (a primitive type) implements Copy.
This is to say that, after passing move types to a function, we cannot use that value later. If you want to use the value, we must clone the type and send a copy to the function instead. Now, if we only need read access to variable s, another way we could have made this code work is by passing the string s back to main. This looks something like this:
// ownership_functions_back.rs
fn take_the_n(n: u8) { }
fn take_the_s(s: String) -> String {
println!("inside function {}", s);
s
}
fn main() {
let n = 5;
let s = String::from("string");
take_the_n(n);
let s = take_the_s(s);
println!("n is {}", n);
println!("s is {}", s);
}
We added a return type to our take_the_s function and return the passed string s back to the caller. In main, we receive it in s. With this, the last line of code in main works.
Match expressions: Within a match expression, a move type is also moved by default, as shown in the following code:
// ownership_match.rs
#[derive(Debug)]
enum Food {
Cake,
Pizza,
Salad
}
#[derive(Debug)]
struct Bag {
food: Food
}
fn main() {
let bag = Bag { food: Food::Cake };
match bag.food {
Food::Cake => println!("I got cake"),
a => println!("I got {:?}", a)
}
println!("{:?}", bag);
}
In the preceding code, we create a Bag instance and assign it to bag. Next, we match on its food field and print some text. Later, we print the bag with println!. We get the following error upon compilation:
As you can clearly read, the error message says that bag has already been moved and consumed by the a variable in the match expression. This invalidates the variable bag for any further use. We'll see how to make this code work when we get to the concept of borrowing.
Methods: Within an impl block, any method with self as the first parameter takes ownership of the value on which the method is called. This means that after you call the method on the value, you cannot use that value again. This is shown in the following code:
// ownership_methods.rs
struct Item(u32);
impl Item {
fn new() -> Self {
Item(1024)
}
fn take_item(self) {
// does nothing
}
}
fn main() {
let it = Item::new();
it.take_item();
println!("{}", it.0);
}
Upon compilation, we get the following error:
take_item is an instance method that takes self as the first parameter. After its invocation, it is moved inside the method and deallocated when the function scope ends. We cannot use it again later. We'll make this code work when we get to the borrowing concept.
Ownership in closures: A similar thing happens with closures. Consider the following code snippet:
// ownership_closures.rs
#[derive(Debug)]
struct Foo;
fn main() {
let a = Foo;
let closure = || {
let b = a;
};
println!("{:?}", a);
}
As you can already guess, the ownership of Foo is moved to b inside the closure by default on assignment, and we can't access a again. We get the following output when compiling the preceding code:
To have a copy of a, we can call a.clone() inside the closure and assign it to b or place a move keyword before the closure, like so:
let closure = move || {
let b = a;
};
This will make our program compile.
Note: Closures take values differently depending on how a variable is used inside the closure.
With these observations, we can already see that the ownership rule can be quite restrictive as it allows us to use a type only once. If a function needs only read access to a value, then we either need to return the value back again from the function or clone it before passing it to the function. The latter might not be possible if the type does not implement Clone. Cloning the type might seem like an easy thing to get around the ownership principle, but it defeats the whole point of the zero-cost promise as Clone always duplicates types always, possibly making a call to the memory allocator APIs, which is a costly operation involving system calls.
With move semantics and the ownership rule in effect, it soon gets unwieldy to write programs in Rust. Fortunately, we have the concept of borrowing and reference types that relax the restrictions imposed by the rules but still maintains the ownership guarantees at compile time.
Borrowing
The concept of borrowing is there to circumvent the restrictions with the ownership rule. Under borrowing, you don't take ownership of values, but only lend data for as long as you need. This is achieved by borrowing values, that is, taking a reference to a value. To borrow a value, we put the & operator before the variable & is the address of operator . We can borrow values in Rust in two ways.
Immutable borrows: When we use the & operator before a type, we create an immutable reference to it. Our previous example from the ownership section can be re-written using borrowing:
// borrowing_basics.rs
#[derive(Debug)]
struct Foo(u32);
fn main() {
let foo = Foo;
let bar = &foo;
println!("Foo is {:?}", foo);
println!("Bar is {:?}", bar);
}
This time, the program compiles, as the second line inside main has changed to this:
let bar = &foo;
Notice the & before the variable foo. We are borrowing foo and assigning the borrow to bar. bar has a type of &Foo, which is a reference type. Being an immutable reference, we cannot mutate the value inside Foo from bar.
Mutable borrows: Mutable borrows to a value can be taken using the &mut operator. With mutable borrows, you can mutate the value. Consider the following code:
// mutable_borrow.rs
fn main() {
let a = String::from("Owned string");
let a_ref = &mut a;
a_ref.push('!');
}
Here, we have a String instance declared as a. We also create a mutable reference to it with b using &mut a. This does not move a to b,- only borrows it mutably. We then push a '!' character to the string. Let's compile this program:
We have an error. The compiler says that we cannot borrow a mutably. This is because mutable borrows require the owning variable itself to be declared with the mut keyword. This should be obvious, as we can't mutate something that's behind an immutable binding. Accordingly, we'll change our declaration of a to this:
let mut a = String::from("Owned string");
This makes the program compile. Here, a is a stack variable that points to a heap allocated value, and a_ref is a mutable reference to the value owned by a. a_ref can mutate the String value but it cannot drop the value, as it's not the owner. The borrow becomes invalid if a is dropped before the line that takes a reference.
Now, we add a println! at the end of the previous program to print the modified a:
// exclusive_borrow.rs
fn main() {
let mut a = String::from("Owned string");
let a_ref = &mut a;
a_ref.push('!');
println!("{}", a);
}
Compiling this gives us the following error:
Rust forbids this, thus borrowing the value immutably as a mutable borrow with a_ref already is present in the scope. This highlights another important rule with borrowing. Once a value is borrowed mutably, we cannot have any other borrows of it. Not even an immutable borrow. Having explored borrowing, let's highlight the exact borrowing rules in Rust.
Borrowing rules
Similar to the ownership rule, we also have borrowing rules that maintain the single ownership semantics with references, too. These rules are as follows:
The borrowing rules in Rust are analyzed by a component of the compiler called the borrow checker. The Rust community amusingly calls dealing with borrowing errors as fighting the borrow checker.
Now that we're familiar with the rules, let's see what happens if we go against the borrow checker by violating them.
Borrowing in action
Rust's error diagnostics around the borrowing rules are really helpful when we go against the borrow checker. In the following few examples, we'll see them in various contexts.
Borrowing in functions: As you saw previously, moving ownership when making function calls does not make much sense if you are only reading the value, and is very limiting. You don't get to use the variable after you call the function. Instead of taking parameters by value, we can take them by references. We can fix the previous code example that was presented in the ownership section to pass the compiler without cloning, like so:
// borrowing_functions.rs
fn take_the_n(n: &mut u8) {
*n += 2;
}
fn take_the_s(s: &mut String) {
s.push_str("ing");
}
fn main() {
let mut n = 5;
let mut s = String::from("Borrow");
take_the_n(&mut n);
take_the_s(&mut s);
println!("n changed to {}", n);
println!("s changed to {}", s);
}
In the preceding code, take_the_s and take_the_n now take mutable references. With this, we needed to modify three things in our code. First, the variable binding will have to be made mutable:
let mut s = String::from("Borrow");
Second, our function changes to the following:
fn take_the_s(n: &mut String) {
s.push_str("ing");
}
Third, the call site would also need to change to this form:
take_the_s(&mut s);
Again, we can see that everything in Rust is explicit. Mutability is very visible in Rust code for obvious reasons, especially when multiple threads come into play.
Borrowing in match: In match expressions, a value is moved by default in the match arms, unless it's a Copy type. The following code, which was presented in the previous section on ownership, compiles by borrowing in match arms:
// borrowing_match.rs
#[derive(Debug)]
enum Food {
Cake,
Pizza,
Salad
}
#[derive(Debug)]
struct Bag {
food: Food
}
fn main() {
let bag = Bag { food: Food::Cake };
match bag.food {
Food::Cake => println!("I got cake"),
ref a => println!("I got {:?}", a)
}
println!("{:?}", bag);
}
We made a slight change to the preceding code, which might be familiar to you from the ownership section. For the second match arm, we prefixed a with ref. The ref keyword is a keyword that can match items by taking a reference to them instead of capturing them by value. With this change, our code compiles.
Returning a reference from a function: In the following code example, we have a function that tries to return a reference to a value declared within the function:
// return_func_ref.rs
fn get_a_borrowed_value() -> &u8 {
let x = 1;
&x
}
fn main() {
let value = get_a_borrowed_value();
}
This code fails to pass the borrow checker, and we are met with the following error:
The error message says that we are missing a lifetime specifier. That doesn't help much in regards to explaining what is wrong with our code. This is where we need to acquaint ourselves with the concept of lifetimes, which we will cover in the next section. Before that, let's expound on the kind of functions that we can can have based on borrowing rules.
Method types based on borrowing
The borrowing rules also dictate how inherent methods on types are defined and also instance methods from traits. The following are how they receive the instance, presented by least restrictive to most restrictive:
In the case of user defined types, the same kind of borrowing applies also to its field members.
Note: Unless you're deliberately writing a method that should move or drop self at the end, always prefer immutable borrowing methods that is, having &self as the first parameter.
Lifetimes
The third piece in Rust's compile time memory safety puzzle is the idea of lifetimes and the related syntactic annotation for specifying lifetimes in code. In this section, we'll explain lifetimes by stripping them down to the basics.
When we declare a variable by initializing it with a value, the variable has a certain lifetime, beyond which it is invalid to use it. In general programming parlance, the lifetime of a variable is the region in code in which the variable points to a valid memory. If you have ever programmed in C, you should be acutely aware of the case with lifetimes of variables: every time you allocate a variable with malloc, it should have an owner, and that owner should reliably decide when that variable's life ends and when the memory gets freed. But the worst thing is, it's not enforced by the C compiler; rather, it's the programmer's responsibility.
For data allocated on the stack, we can easily reason by looking at the code and figure out whether a variable is alive or not. For heap allocated values, though, this isn't clear. Lifetimes in Rust is a concrete construct and not a conceptual idea as in C. They do the same kind of analysis that a programmer does manually, that is, by examining the scope of value and any variable that references it.
When talking about lifetimes in Rust, you only need to deal with them when you have a reference. All references in Rust have an implicit lifetime information attached to them. A lifetime defines how long the reference lives in relation to the original owner of the value and also the extent of the scope of the reference. Most of the time, it is implicit and the compiler figures out the lifetime of the variables by looking at the code. But in some cases, the compiler cannot and then it needs our help, or better said, it asks you to specify your intent.
So far, we have been dealing with references and borrowing quite easily in the previous code examples, but let see what happens when we try to compile the following code:
// lifetime_basics.rs
struct SomeRef<T> {
part: &T
}
fn main() {
let a = SomeRef { part: &43 };
}
This code is very simple. We have a SomeRef struct, which stores a reference to a generic type, T. In main, we create an instance of the struct, initializing the part field with a reference to an i32, that is, &43.
It gives the following error upon compilation:
In this case, the compiler asks us to put in something called a lifetime parameter. A lifetime parameter is very similar to a generic type parameter. Where a generic type T denotes any type, lifetime parameters denote the region or the span where the reference is valid to be used. It's just there for the compiler to fill in with the actual region information later when the code is analyzed by the borrow checker.
A lifetime is purely a compile time construct that helps the compiler to figure out the extent to which a reference can be used within a scope, and ensures that it follows the borrowing rules. It can keep track of things like the origin of references and whether they outlive the borrowed value. Lifetimes in Rust ensure that a reference can't outlive the value it points to. Lifetimes are not something that you as a developer will use, but it's for the compiler to use and reason about validity of references.
Lifetime parameters
For cases where the compiler can't figure out the lifetime of values by examining the code, we need to tell Rust by using some annotations in code. To distinguish from identifiers, lifetime annotations are denoted by a quirky symbol of prefixing a letter with '. So, to make our previous example compile with a parameter, we have added a lifetime annotation on our StructRef, like so:
// using_lifetimes.rs
struct SomeRef<'a, T> {
part: &'a T
}
fn main() {
let _a = SomeRef { part: &43 };
}
A lifetime is denoted by a ', followed by any sequence of valid identifiers. But, by convention, most lifetimes used in the Rust code uses 'a, 'b and 'c as lifetime parameters. If you have multiple lifetimes on a type, you can use longer descriptive lifetime names such as 'ctx, 'reader, 'writer, and so on. It is declared at the same place and in the same way as generic type parameters.
We saw examples where the lifetimes acted as a generic parameter for resolving valid references later, but there's a lifetime that has a concrete value. It is shown in the following code:
// static_lifetime.rs
fn main() {
let _a: &'static str = "I live forever";
}
The static lifetime means that these references are valid for the entire duration of the program. All literal strings in Rust have a lifetime of 'static and they go to the data segment of the compiled object code.
Lifetime elision and the rules
Any time there's a reference in a function or a type definition, there's a lifetime involved. Most of the time, you don't need to use explicit lifetime annotation is you code as the compiler is smart to infer them for you as a lot of information is already available at compile time about references.
In other words, these two function signatures are identical:
fn func_one(x: &u8) → &u8 { .. }
fn func_two<'a>(x: &'a u8) → &'a u8 { .. }
In the usual case, the compiler has elided the lifetime parameter for func_one and we don't need to write it as func_two.
But the compiler can elide lifetimes only in restricted places and there are rules for elision. Before we talk about these rules, we need to talk about input and output lifetimes. These are only discussed when functions that take references are involved.
Input lifetime: Lifetime annotations on function parameters that are references are referred to as input lifetimes.
Output lifetimes: Lifetime annotations on function return values that are references are referred to as output lifetimes.
It's import to note that any output lifetime originates from input lifetimes. We cannot have a output lifetime that is independent and distinct from the input lifetime. It can only be a lifetime that is smaller than or equal to the output lifetime.
The following are the rules that are followed when eliding lifetimes:
But sometimes in ambiguous situations, the compiler doesn't try to assume things. Consider the following code:
// explicit_lifetimes.rs
fn foo(a: &str, b: &str) -> &str {
b
}
fn main() {
let a = "Hello";
let b = "World";
let c = foo(a, b);
}
In the preceding code, RefItem stores a reference to any type, T. In this case, the lifetime of the return value isn't obvious as there are two input references involved. But, sometimes, the compiler is not able to figure out the lifetimes of references, and then it needs our help and asks us to specify lifetime parameters. Consider the following code, which does not compile:
The preceding program doesn't compile because Rust is unable to figure out the lifetime of the return value and it needs our help here.
Now, there are various places where we have to specify lifetimes when Rust cannot figure them out for us:
Lifetimes in user defined types
If a struct definition has fields that are reference to any type, we need to explicitly specify how long those references will live. The syntax is similar to that of function signatures: we first declare the lifetime names on the struct line, and then use them in the fields.
Here's what the syntax looks like in its simplest form:
// lifetime_struct.rs
struct Number<'a> {
num: &'a u8
}
fn main() {
let _n = Number {num: &545};
}
The definition of Number lives as long as the reference for num.
Lifetime in impl blocks
When we create impl blocks for structs with references, we need to repeat the lifetime declarations and definitions again. For instance, if we made an implementation for the struct Foo we defined previously, the syntax would look like this:
// lifetime_impls.rs
#[derive(Debug)]
struct Number<'a> {
num: &'a u8
}
impl<'a> Number<'a> {
fn get_num(&self) -> &'a u8 {
self.num
}
fn set_num(&mut self, new_number: &'a u8) {
self.num = new_number
}
}
fn main() {
let a = 10;
let mut num = Number { num: &a };
num.set_num(&23);
println!("{:?}", num.get_num());
}
In most of these cases, this is inferred from the types themselves and then, we can omit the signatures with <'_> syntax.
Multiple lifetimes
Just like generic type parameters, we can specify multiple lifetimes if we have more than one reference that has different lifetimes. However, it can quickly become hairy when you have to juggle with more than one lifetime in your code. Most of the time, we can get away with just one lifetime in our structs or any of our functions. But there are cases where we'll need more than one lifetime annotations. For example, say we are building a decoder library that can parse binary files according to a schema and a given encoded stream of bytes. We have a Decoder object, which has a reference to a Schema object and a reference to a Reader type. Our Decoder definition will then look something like this:
// multiple_lifetimes.rs
struct Decoder<'a, 'b, S, R> {
schema: &'a S,
reader: &'b R
}
fn main() {}
In the preceding definition, it is quite possible that we get Reader from the network while the Schema is local, and so their lifetimes in code can be different. When we provide implementations for this Decoder, we can specify relations with it by lifetime subtyping, which we will explain next.
Lifetime subtyping
We can specify relation between lifetimes that specifies whether two references can be used in the same place. Continuing with our Decoder struct example, we can specify the lifetimes' relations with each other in the impl block, like so:
// lifetime_subtyping.rs
struct Decoder<'a, 'b, S, R> {
schema: &'a S,
reader: &'b R
}
impl<'a, 'b, S, R> Decoder<'a, 'b, S, R>
where 'a: 'b {
}
fn main() {
let a: Vec<u8> = vec![];
let b: Vec<u8> = vec![];
let decoder = Decoder {schema: &a, reader: &b};
}
We specified the relation in the impl block using the where clause as: 'a: 'b . This is read as the lifetime 'a outlives 'b or in other words 'b should never live longer than 'a.
Specifying lifetime bounds on generic types
Apart from using traits to constrain the types that can be accepted by a generic function, we can also constrain generic type parameters using lifetime annotations. For instance, consider we have a logger library where the Logger object is defined as follows:
// lifetime_bounds.rs
enum Level {
Error
}
struct Logger<'a>(&'a str, Level);
fn configure_logger<T>(_t: T) where T: Send + 'static {
// configure the logger here
}
fn main() {
let name = "Global";
let log1 = Logger(name, Level::Error);
configure_logger(log1);
}
In the preceding code, we have a Logger struct with its name and a Level enum. We also have a generic function called configure_logger that takes a type T that is constrained with Send + 'static. In main, we create a logger with a 'static, string "Global", and call configure_logger passing it.
Along with the Send bound, which says that this thread can be sent to threads, we also say that the type must live as long as the 'static lifetime. Let's say we were to use a Logger that references a string of shorter lifetimes, like so:
// lifetime_bounds_short.rs
enum Level {
Error
}
struct Logger<'a>(&'a str, Level);
fn configure_logger<T>(_t: T) where T: Send + 'static {
// configure the logger here
}
fn main() {
let other = String::from("Local");
let log2 = Logger(&other, Level::Error);
configure_logger(&log2);
}
This will fail with the following error:
The error message clearly say, that the borrowed value must be valid for the static lifetime, but we have passed it a string, which has a lifetime called 'a from main, which is a shorter lifetime than 'static.
With the concept of lifetimes under our belt, let's revisit pointer types in Rust.
Pointer types in Rust
Our tale about memory management would be incomplete if we didn't include pointers in the discussion, which are the primary way to manipulate memory in any low level language. Pointers are simply variables that point to memory locations in the process's address space. In Rust, we deal with three kinds of pointers.
References – safe pointers
These pointers are already familiar to you from the borrowing section. References are like pointers in C, but they are checked for correctness. They can never be null and always point to some data owned by any variable. The data they point to can either be on the stack or on the heap, or the data segment of the binary. They are created using the & or the &mut operator. These operators, when prefixed on a type T, create a reference type that is denoted by &T for immutable references and &mut T for mutable references. Let's recap on these again:
Raw pointers
These pointers have a quirky type signature of being prefixed with a *, which also happens to be the dereference operator. They are mostly used in unsafe code. One needs an unsafe block to dereference them. There are two kinds of raw pointers in Rust:
As an added note, a reference can be cast to a raw pointer, as shown in the following code:
let a = &56;
let a_raw_ptr = a as *const u32;
// or
let b = &mut 5634.3;
let b_mut_ptr = b as *mut T;
However, we can't cast a &T to a *mut T, as it would violate the borrowing rules that allow only one mutable borrow.
For mutable references, we can cast them to *mut T or even *const T, which is called pointer weakening, as we go from a more capable pointer &mut T to a less capable *const T pointer. For immutable references, we can only cast them to *const T.
However, dereferencing a raw pointer is an unsafe operation. We'll see how raw pointers are useful when we get to Chapter 10, Unsafe Rust and Foreign Function Interfaces.
Smart pointers
Managing raw pointers is highly unsafe and developers need to be careful about a lot of details when using them. Uninformed usage may lead to issues such as memory leaks, dangling references, and double frees in large code bases in non-obvious ways. To alleviate from these issues, we can use smart pointers, which were popularized by C++.
Rust also has many kinds of smart pointers. They are called smart because they also have extra metadata and code associated with them that gets executed when they are created or destroyed. Being able to automatically free the underlying resource when a smart pointer goes out of scope is one of the major reasons to use smart pointers.
Much of the smartness in smart pointers comes from two traits, called the Drop trait and the Deref trait. Before we explore the available smart pointer types in Rust, let's understand these traits in detail.
Drop
This is the trait we've been referring to quite a few times which does all the magic of automatically freeing up the resources that are used when a value goes out of scope. The Drop trait is akin to what you would call an object destructor method in other languages. It contains a single method, drop, which gets called when the object goes out of scope. The method takes in a &mut self as parameter. Freeing of values with drop is done in last in, first out. That is, whatever was constructed the last, gets destructed first. The following code illustrates this:
// drop.rs
struct Character {
name: String,
}
impl Drop for Character {
fn drop(&mut self) {
println!("{} went away", self.name)
}
}
fn main() {
let steve = Character {
name: "Steve".into(),
};
let john = Character {
name: "John".into(),
};
}
The output is as follows:
The drop method is an ideal place for you to put any cleanup code for your own structs, if needed. It's especially handy for types where the cleanup is less clearly deterministic, such as when using reference counted values or garbage collectors. When we instantiate any Drop implementing value (any heap allocated type), the Rust compiler inserts drop method calls after every end of scope, after compilation. So, we don't need to manually call drop on these instances. This kind of automatic reclamation based on scope is inspired by the RAII principle of C++.
Deref and DerefMut
To provide similar behavior as normal pointers, that is, to be able to dereference the call methods on the underlying type being pointed to, smart pointer types often implement the Deref trait, which allows us to use the * dereferencing operator with these types. While Deref gives you read-only access, there is also DerefMut, which can give you a mutable reference to the underlying type. Deref has the following type signature:
pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;
}
If defines a single method called Deref that takes self by reference and returns a immutable reference to the underlying type. This combined with the deref coercion feature of Rust, reduces a lot of code that you have to write. Deref coercion is when a type automatically gets converted from one type of reference to some other reference. We'll look at them in Chapter 7, Advanced Concepts.
Types of smart pointers
Some of the smart pointer types from the standard library as follows:
Box<T>
The generic type Box in the standard library gives us the simplest way to allocate values in the heap. It's simply declared as a tuple struct in the standard library, and wraps any type given to it and puts it on heap. If you're familiar with the concept of boxing and unboxing from other languages, such as Java where you have Boxed integers as the Integer class, this provides a similar abstraction. The ownership semantics with Box type depends on the wrapped type. If the underlying type is Copy, the Box instance becomes copy, otherwise it moves by default.
To create a heap allocated value of type T using a Box, we simply call the associated new method, passing in the value. Creating the Box value wrapping a type T gives back the Box instance, which is a pointer on the stack that points to T, which is allocated on the heap. The following example shows how to use Box:
// box_basics.rs
fn box_ref<T>(b: T) -> Box<T> {
let a = b;
Box::new(a)
}
struct Foo;
fn main() {
let boxed_one = Box::new(Foo);
let unboxed_one = *boxed_one;
box_ref(unboxed_one);
}
In our main function, we created a heap allocated value in boxed_one by calling Box::new(Foo).
The Box type can be used in the following situations:
// recursive_type.rs
struct Node {
data: u32,
next: Option<Node>
}
fn main() {
let a = Node { data: 33, next: None };
}
On compiling, we are presented with this error:
We cannot have this definition of the Node type because next has a type that refers to itself. If this definition is allowed, there is no end for the compiler to analyze our Node definition as it will keep evaluating it until it hits out of memory. This is better illustrated with the following snippet:
struct Node {
data: u32,
next: Some(Node {
data: u32,
next: Node {
data: u32,
next: ...
}
})
}
This evaluation of the Node definition will keep on continuing until the compiler runs out of memory. Also, as every piece of data needs to have a statically known size at compile time, this is a non-representable type in Rust. We need to make the next field something that has a fixed size. We can do this by putting next behind a pointer because pointers are always fixed size. If you see the error message, the compiler, we'll use the Box type Our new Node definition changes like so:
struct Node {
data: u32,
next: Option<Box<Node>>
}
The Box type is also used when defining recursive types that need to be hidden behind a Sized indirection. So, an enum consisting of a variant with a reference to itself could use the Box type to tuck away the variant in the following situations:
Reference counted smart pointers
The ownership rule allows only one owner to exist at a time in a given scope. However, there are cases where you need to share the type with multiple variables. For instance, in a GUI library, each of the child widgets needs to have a reference to its parent container widget for things like communicating to layout the child widget based on resize events from the user. While lifetimes allow you to reference the parent node from the child nodes by storing the parent as a &'a Parent (say), it's often limited by the lifetime 'a of the value. Once the scope ends, your reference is invalid. In such cases, we need more flexible approaches, and that calls for using reference counting types. These smart pointer types provide shared ownership of values in the program.
Reference counting types enables garbage collection at a granular level. In this approach, a smart pointer type allows you to have multiple references to the wrapped value. Internally, the smart pointer keeps a count of how many references it has given out and are active using a reference counter (hereby refcount), which is just an integral value. As variables that reference the wrapped smart pointer value go out of scope, the refcount value decrements. Once all of the references to the object are gone and the refcount reaches 0, the value is deallocated. This is how reference counted pointers work in general.
Rust provides us with two kinds of reference counting pointer types:
Let's explore the single threaded variant here. We'll take a visit to its multi-threaded counterparts in Chapter 8, Concurrency.
Rc<T>
When we interact with an Rc type, the following changes happen to it internally:
Using reference counted containers gives us more flexibility in the implementation: we can hand out copies of our value as if it were a new copy without having to keep exact track of when the references go out of scope. That doesn't mean that we can mutably alias the inner values.
Rc<T> is mostly used via two methods:
Rc internally keeps two kinds of references: strong (Rc<T>) and weak (Weak<T>). Both keep a count of how many references of each type have been handed out, but only when the strong reference count reaches zero so that the values get deallocated. The motivation for this is that an implementation of a data structure may need to point to the same thing multiple times. For instance, an implementation of a tree might have references to both the child nodes and the parent, but incrementing the counter for each reference would not be correct and would lead to reference cycles. The following diagram illustrates the reference cycle situation:
In the preceding diagram, we have two variables, var1 and var2, that reference two resources, Obj1 and Obj2. Along with that, Obj1 also has a reference to Obj2 and Obj2 has a reference to Obj1. Both Obj1 and Obj2 have reference count of 2 when var1 and var2 goes out of scope, the reference count of Obj1 and Obj2 reaches 1. They won't get freed because they still refer to each other.
The reference cycle can be broken using weak references. As another example, a linked list might be implemented in such a way that it maintains links via reference counting to both the next item and to the previous. A better way to do this would be to use strong references to one direction and weak references to the other.
Let's see how that might work. Here's a minimal implementation of possibly the least practical but best learning data structure, the singly linked list:
// linked_list.rs
use std::rc::Rc;
#[derive(Debug)]
struct LinkedList<T> {
head: Option<Rc<Node<T>>>
}
#[derive(Debug)]
struct Node<T> {
next: Option<Rc<Node<T>>>,
data: T
}
impl<T> LinkedList<T> {
fn new() -> Self {
LinkedList { head: None }
}
fn append(&self, data: T) -> Self {
LinkedList {
head: Some(Rc::new(Node {
data: data,
next: self.head.clone()
}))
}
}
}
fn main() {
let list_of_nums = LinkedList::new().append(1).append(2);
println!("nums: {:?}", list_of_nums);
let list_of_strs = LinkedList::new().append("foo").append("bar");
println!("strs: {:?}", list_of_strs);
}
The linked list is formed of two structs: LinkedList provides a reference to the first element of the list and the list's public API, and Node contains the actual elements. Notice how we're using Rc and cloning the next data pointer on every append. Let's walk through what happens in the append case:
The debug output from println! confirms this:
nums: LinkedList { head: Some(Node { next: Some(Node { next: None, data: 1 }), data: 2 }) }
strs: LinkedList { head: Some(Node { next: Some(Node { next: None, data: "foo" }), data: "bar" }) }
This is a rather functional form of this structure; every append works by just adding data at the head, which means that we don't have to play with references and actual list references can stay immutable. That changes a bit if we want to keep the structure this simple but still have a double-linked list, since then we actually have to change the existing structure.
You can downgrade an Rc<T> type into a Weak<T> type with the downgrade method, and similarly a Weak<T> type can be turned into Rc<T> using the upgrade method. The downgrade method will always work. In contrast, when calling upgrade on a weak reference, the actual value might have been dropped already, in which case you get a None.
So, let's add a weak pointer to the previous node:
// rc_weak.rs
use std::rc::Rc;
use std::rc::Weak;
#[derive(Debug)]
struct LinkedList<T> {
head: Option<Rc<LinkedListNode<T>>>
}
#[derive(Debug)]
struct LinkedListNode<T> {
next: Option<Rc<LinkedListNode<T>>>,
prev: Option<Weak<LinkedListNode<T>>>,
data: T
}
impl<T> LinkedList<T> {
fn new() -> Self {
LinkedList { head: None }
}
fn append(&mut self, data: T) -> Self {
let new_node = Rc::new(LinkedListNode {
data: data,
next: self.head.clone(),
prev: None
});
match self.head.clone() {
Some(node) => {
node.prev = Some(Rc::downgrade(&new_node));
},
None => {
}
}
LinkedList {
head: Some(new_node)
}
}
}
fn main() {
let list_of_nums = LinkedList::new().append(1).append(2).append(3);
println!("nums: {:?}", list_of_nums);
}
The append method grew a bit; we now need to update the previous node of the current head before returning the newly created head. This is almost good enough, but not quite. The compiler doesn't let us do invalid operations:
We could make append take a mutable reference to self, but that would mean that we could only append to the list if all the nodes' bindings were mutable, forcing the whole structure to be mutable. What we really want is a way to make just one small part of the whole structure mutable, and fortunately we can do that with a single RefCell.
use std::cell::RefCell;
// rc_3.rs
#[derive(Debug)]
struct LinkedListNode<T> {
next: Option<Rc<LinkedListNode<T>>>,
prev: RefCell<Option<Weak<LinkedListNode<T>>>>,
data: T
}
// rc_3.rs
fn append(&mut self, data: T) -> Self {
let new_node = Rc::new(LinkedListNode {
data: data,
next: self.head.Clone(),
prev: RefCell::new(None)
});
match self.head.Clone() {
Some(node) => {
let mut prev = node.prev.borrow_mut();
*prev = Some(Rc::downgrade(&new_node));
},
None => {
}
}
LinkedList {
head: Some(new_node)
}
}
}
Whenever we're using RefCell borrows, it's a good practice to think carefully that we're using it in a safe way, since making mistakes there may lead to runtime panics. In this implementation, however, it's easy to see that we have just the single borrow, and that the closing block immediately discards it.
Apart from shared ownership, we can also get shared mutability at runtime with Rust's concept of interior mutability, which are modeled by special wrapper smart pointer types.
Interior mutability
As we saw previously, Rust protects us at compile time from the pointer aliasing problem by allowing only a single mutable reference at any given scope. However, there are cases where it becomes too restrictive, making code that we know is safe not pass the compiler because of the strict borrow checking. For these situations, one of the solutions is to move the borrow checking from compile time to runtime, which is achieved with interior mutability. Before we talk about the types that enable interior mutability, we need to understand the concept of interior mutability and inherited mutability:
Interior mutability allows for bending the borrowing rules a bit, but it also puts the burden on the programmer to ensure that no two mutable borrows are present at runtime. These types offload the detection of multiple mutable references from compile time to runtime and undergo a panic if two mutable references to a value exist. Interior mutability is often used when you want to expose an immutable API to users, despite having mutable parts to the API internally. The standard library has two generic smart pointer types that provide shared mutability: Cell and RefCell.
Cell<T>
Consider this program, where we have a requirement to mutate bag with two mutable references to it:
// without_cell.rs
use std::cell::Cell;
#[derive(Debug)]
struct Bag {
item: Box<u32>
}
fn main() {
let mut bag = Cell::new(Bag { item: Box::new(1) });
let hand1 = &mut bag;
let hand2 = &mut bag;
*hand1 = Cell::new(Bag {item: Box::new(2)});
*hand2 = Cell::new(Bag {item: Box::new(2)});
}
But, of course, this does not compile due to the borrow checking rules:
We can make this work by encapsulating the bag value inside a Cell. Our code is updated as follows:
// cell.rs
use std::cell::Cell;
#[derive(Debug)]
struct Bag {
item: Box<u32>
}
fn main() {
let bag = Cell::new(Bag { item: Box::new(1) });
let hand1 = &bag;
let hand2 = &bag;
hand1.set(Bag { item: Box::new(2)});
hand2.set(Bag { item: Box::new(3)});
}
This works as you would expect, and the only added cost is that you have to write a bit more. The additional runtime cost is zero, though, and the references to the mutable things remain immutable.
The Cell<T> type is a smart pointer type that enables mutability for values, even behind an immutable reference. It provides this capability with very minimal overhead and has a minimal API:
RefCell<T>
If you need Cell-like features for non-Copy types, there is the RefCell type. It uses a read/write pattern similar to how borrowing works, but moves the checks to runtime, which is convenient but not zero-cost. RefCell hands out references to the value, instead of returning things by value as is the case with the Cell type. Here's a sample program that
// refcell_basics.rs
use std::cell::RefCell;
#[derive(Debug)]
struct Bag {
item: Box<u32>
}
fn main() {
let bag = RefCell::new(Bag { item: Box::new(1) });
let hand1 = &bag;
let hand2 = &bag;
*hand1.borrow_mut() = Bag { item: Box::new(2)};
*hand2.borrow_mut() = Bag { item: Box::new(3)};
let borrowed = hand1.borrow();
println!("{:?}", borrowed);
}
As you can see, we can borrow bag, mutably from hand1 and hand2 even though they are declared as immutable variables. To modify the items in bag, we called borrow_mut on hand1 and hand2. Later, we borrow it immutably and print the contents.
The RefCell type provides us with the following two borrowing methods:
Now, if we try to call both of the methods in the same scope: by changing the last line in the preceding code to this:
println!("{:?} {:?}", hand1.borrow(), hand1.borrow_mut());
We get to see the following upon running the program:
thread 'main' panicked at 'already borrowed: BorrowMutError', src/libcore/result.rs:1009:5
note: Run with `RUST_BACKTRACE=1` for a backtrace.
A runtime panic ! This is because of the same ownership rule of having exclusive mutable access. But, for RefCell this is checked at runtime instead. For situations like this, one has to explicitly use bare blocks to separate the borrows or use the drop method to drop the reference.
Note: The Cell and RefCell types are not thread safe. This simply means that Rust won't allow you to share these types in multiple threads.
Uses of interior mutability
In the previous section, the examples on using Cell and RefCell were simplified, and you most probably won't need to use them in that form in real code. Let's take a look at some actual benefits that these types would give us.
As we mentioned previously, the mutability of a binding is not fine-grained; a value is either immutable or mutable, and that includes all of its fields if it's a struct or an enum. Cell and RefCell can turn an immutable thing into something that's mutable, allowing us to define parts of an immutable struct as mutable.
The following piece of code augments a struct with two integers and a sum method to cache the answer of the sum and return the cached value if it exists:
// cell_cache.rs
use std::cell::Cell;
struct Point {
x: u8,
y: u8,
cached_sum: Cell<Option<u8>>
}
impl Point {
fn sum(&self) -> u8 {
match self.cached_sum.get() {
Some(sum) => {
println!("Got from cache: {}", sum);
sum
},
None => {
let new_sum = self.x + self.y;
self.cached_sum.set(Some(new_sum));
println!("Set cache: {}", new_sum);
new_sum
}
}
}
}
fn main() {
let p = Point { x: 8, y: 9, cached_sum: Cell::new(None) };
println!("Summed result: {}", p.sum());
println!("Summed result: {}", p.sum());
}
The following is the output of this program:
Summary
Rust takes a low-level systems programming approach to memory management, promising C-like performance, sometimes even better. It does this without requiring a garbage collector through its use of ownership, lifetimes, and borrow semantics. We covered a whole lot of ground here in a subject that's probably the heaviest to grasp for a new Rustacean. That's what people familiar with Rust like to call themselves, and you are getting close to becoming one! Getting fluent in this shift of thinking of ownership at compile time takes a bit of time, but the investment in learning these concepts pays off in the form of reliable software with a small memory footprint.
Our next chapter will concern how fallible situations are handled in Rust. See you there!
Error Handling
In this chapter, we'll take a look at how fallible and unexpected situations are handled in Rust, gain an understanding of the error handling with errors as types, and look at how to design interfaces that compose well with error types. We aim to cover the first two error scenarios as they are under our control and languages generally provide mechanisms for handling these errors. If fatal errors occur, our program gets aborted by the operating system kernel and so we don't have much control over them.
In this chapter, we will cover the following topics:
Error handling prelude
"From then on, when anything went wrong with a computer, we said it had bugs in it."
- Grace Hopper
Writing programs that behave well under expected conditions is a good start. It's when a program encounters unexpected situations where it gets really challenging. Proper error handling is an important but often overlooked practice in software development. Most error handling, in general, falls into three categories:
Programming in the real world often entails dealing with errors. Examples include malicious input to a web application, connection failures in network clients, filesystem corruption, and integer overflow errors in numerical applications. In the event of there being no error handling, the program just crashes or is aborted by the OS when it hits an unexpected situation. Most of the time, this is not the behavior we want our programs to exhibit in unexpected situation. Consider, for example, a real-time stream processing service that fails to receive messages from clients at some point in time due to a failure in parsing messages from a client who is sending malformed messages. If we have no way to handle this, our service will abort every time we have parsing errors. This is not good from a usability perspective and is definitely not a characteristic of network applications. The ideal way for the service to handle this situation is to catch the error, act upon it, pass the error log to a log-aggregation service for later analysis and continue receiving messages from other clients. That's when a recoverable way of handling errors comes into the picture, and is often the practical way to model error handling. In this case, the language's error handling constructs enable programmers to intercept errors and take action against them, which saves the program from being aborted.
Two paradigms that are quite popular when approaching error handling are return codes and exceptions. The C language embraces the return code model. This is a very trivial form of error handling, where functions use integers as return values to signify whether an operation succeeded or failed. A lot of C functions return a -1 or NULL in the event of an error. For errors when invoking system calls, C sets the global errno variable upon failure. But, being a global variable, nothing stops you from modifying the errno variable from anywhere in the program. It's then for the programmer to check for this error value and handle it. Often, this gets really cryptic, error-prone, and is not a very flexible solution. The compiler does not warn us if we forget to check the return value either, unless you use a static analysis tool.
Another approach to handling errors is via exceptions. Higher-level programming languages such as Java and C# use this form of error handling. In this paradigm, code that might fail should be wrapped in a try {} block and any failure within the try{} block must be caught in a catch {} block (ideally, with the catch block immediately after the try block). But, exceptions also have their downsides. Throwing an exception is expensive, as the program has to unwind the stack, find the appropriate exception handler, and run the associated code. To avoid this overhead, programmers often adopt the defensive code style of checking for exception-throwing code and then proceeding forward. Also, the implementation of exceptions is flawed in many languages, because it allows ignorant programmers to swallow exceptions with a catch all block with a base exception class such as a throwable in Java, thereby resulting in a possibly inconsistent state in the program if they just log and ignore the exception. Also, in these languages, there is no way for a programmer to know by looking at the code whether a method could throw an exception, unless they are using methods with checked exceptions. This makes it hard for programmers to write safe code. Due to this, programmers often need to rely on the documentation (if it exists at all) of methods to figure out whether they could throw an exception.
Rust, on the other hand, embraces type-based error handling, which is seen in functional languages such as OCaml and Haskell, and at the same time also appears similar to C's returning error code model. But in RUST, the return values are proper error types and can be user-defined, The language's type system mandates handling error states at compile time. If you know Haskell, it is quite similar to its Maybe and Either types; Rust just has different names for them, that is, Option and Result for recoverable errors. For non-recoverable errors, there's a mechanism called panic, which is a fail-hard error handling strategy and it is advisable to use it as a last resort when there is a bug or violation of an invariant in the program.
Why did Rust choose this form of error handling? Well, as we have already said, exceptions and their associated stack unwinding have an overhead. This goes against Rust's central philosophy of zero runtime costs. Secondly, exception-style error handling, as it is typically implemented, allows ignoring these errors via catch-all exception handlers. This creates the potential for program state inconsistency, which goes against Rust's safety tenet.
With the prelude aside, let's dig into some recoverable error handling strategies!
Recoverable errors
As we have already said, the majority of error handling in Rust is done via two generic types, Option and Result. They act as wrapper types in the sense that it is recommended that APIs that can fail return the actual values by putting them inside these types. These types are built with a combination of enums and generics. As an enum, they get the ability to store a success state and an error state, while generics allow them to specialize at compile time so that they store any value in either state. These types also come with a lot of convenient methods (commonly known as combinators) implemented on them, allowing you to consume, compose, or transform the inner values easily. One thing to note about the Option and Result types is that they are ordinary types from the standard library in the sense that they aren't compiler built-ins that are treated differently by the compiler. Anyone can create a similar error abstraction using the power of enums and generics. Let's start exploring them by first looking at the simplest one, that is, Option.
Option
In languages that have the notion of nullable values, there is a defensive code style that programmers adopt to perform operations on any value that can possibly be null. Taking an example from Kotlin/Java, it appears something like this:
// kotlin pseudocode
val container = collection.get("some_id")
if (container != null) {
container.process_item();
} else {
// no luck
}
First, we check that container is not null and then call process_item on it. If we forget the null safety check, we'll get the infamous NullPointerException when we try to invoke container.process_item() – you only get to know this at runtime when it throws the exception. Another downside is the fact that we can't deduce right away whether container is null just by looking at the code. To save against that, the code base needs to be sprinkled with these null checks, which hinder its readability to a great extent.
Rust does not have the notion of null values, which is infamously quoted as being the billion-dollar mistake by Tony Hoare, who introduced null references in the ALGOL W language back in 1965. In Rust, APIs that might fail and want to indicate a missing value are meant to return Option. This error type is suitable when any of our APIs, along with a succeeding value, want to signify the absence of a value. To put it simply, it's quite analogous to nullable values, but here, the null check is explicit and is enforced by the type system at compile time.
Option has the following type signature:
pub enum Option<T> {
/// No value
None,
/// Some value `T`
Some(T),
}
It's an enum with two variants and is generic over T. We create an Option value by using either let wrapped_i32 = Some(2); or let empty: Option<i32> = None;.
Operations that succeed can use the Some(T) variable to store any value, T, or use the None variable to signify that the value is null in the case of a failed state. Though we are less likely to create None values explicitly, when we need to create a None value, we need to specify the type on the left, as Rust is unable to infer the type from the right-hand side. We could have also initialized it on the right, as None::<i32>; using the turbofish operator, but specifying the type on the left is identified as idiomatic Rust code.
As you may have noticed, we didn't create the Option values through the full syntax, that is, Option::Some(2), but directly as Some(2). This is because both of its variants are automatically re-exported from the std crate (Rust's standard library crate) as part of the prelude module (https://doc.rust-lang.org/std/prelude/). The prelude module contains re-exports of most commonly used types, functions, and any modules from the standard library. These re-exports are just a convenience that's provided by the std crate. Without them, we would have to write the full syntax every time we needed to use these frequently used types. As a result, this allows us to instantiate Option values directly through the variants. This is also the case with the Result type.
So, creating them is easy, but what does it look like when you are interacting with an Option value? From the standard library, we have the get method on the HashMap type, which returns an Option:
// using_options.rs
use std::collections::HashMap;
fn main() {
let mut map = HashMap::new();
map.insert("one", 1);
map.insert("two", 2);
let value = map.get("one");
let incremented_value = value + 1;
}
Here, we create a new HashMap map of &str as the key and i32 as the value, and later, we retrieve the value for the "one" key and assign it to the value . After compiling, we get the following error message:
Why can't we add 1 to our value? As someone familiar with imperative languages, we expect map.get() to return an i32 value if the key exists or a null otherwise. But here, value is an Option<&i32>. The get() method returns an Option<&T>, and not the inner value (a &i32) because there is also the possibility that we might not have the key we are looking for and so get can return None in that case. It gives a misleading error message, though, because Rust doesn't know how to add an i32 to a Option<&i32>, as no such implementation of the Add trait exists for these two types. However, it indeed exists for two i32's or two &i32's.
So, to add 1 to our value, we need to extract i32 from Option. Here, we can see Rust's explicit error handling behavior spring into action. We can only interact with the inner i32 value after we check whether map.get() is a Some variant or a None variant.
To check for the variants, we have two approaches; one of which is pattern matching or if let:
// using_options_match.rs
use std::collections::HashMap;
fn main() {
let mut map = HashMap::new();
map.insert("one", 1);
map.insert("two", 2);
let incremented_value = match map.get("one") {
Some(val) => val + 1,
None => 0
};
println!("{}", incremented_value);
}
With this approach, we match against the return value of map.get() and take actions based on the variant. In the case of None, we simply assign 0 to incremented_value. Another way we could have done this is by using if let:
let incremented_value = if let Some(v) = map.get("one") {
v + 1
} else {
0
};
This is recommended for cases where we are only interested in one variant of our value and want to do a common operation for other variants. In those cases, if let is much cleaner.
Unwrapping: The other, less safe, approach is to use unwrapping methods on Option, that is, the unwrap() and the expect() methods. Calling these methods will extract the inner value if it's a Some, but will panic if it's a None. These methods are recommended only when we are really sure that the Option value is indeed a Some value:
// using_options_unwrap.rs
use std::collections::HashMap;
fn main() {
let mut map = HashMap::new();
map.insert("one", 1);
map.insert("two", 2);
let incremented_value = map.get("three").unwrap() + 1;
println!("{}", incremented_value);
}
Running the preceding code panics, showing the following message because we unwrapped a None value as we don't have any value for the three key:
thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', libcore/option.rs:345:21
note: Run with `RUST_BACKTRACE=1` for a backtrace.
Between the two, expect() is preferred because it allows you to pass a string as a message to be printed upon panic, and shows the exact line number in your source file where the panic happened, whereas unwrap() does not allow you to pass debug messages as arguments and shows a line number in the standard library source file where the unwrap() method of Option is defined, which is not very helpful. These methods are also present on the Result type.
Next, let's look at the Result type.
Result
Result is similar to Option, but with the added advantage of storing arbitrary error values with more context on the error, instead of just None. This type is suitable when we want the user to know why an operation failed. Here's the type signature of Result:
enum Result<T, E> {
Ok(T),
Err(E),
}
It has two variants, both of which are generic. Ok(T) is the variant we use for the success state putting in any value, T, while Err(E) is what we use in the error state putting in any error value, E. We can create them like so:
// create_result.rs
fn main() {
let my_result = Ok(64);
let my_err = Err("oh no!");
}
However, this does not compile, and we receive the following error message:
As Result has two generic variants and we gave the concrete type for only the Ok variant for my_result; it doesn't know the concrete type of E. This is similar for the my_err value. We need to specify concrete types for both, like so:
// create_result_fixed.rs
fn main() {
let _my_result: Result<_, ()> = Ok(64);
// or
let _my_result = Ok::<_, ()>(64);
// similarly we create Err variants
let _my_err = Err::<(), f32>(345.3);
let _other_err: Result<bool, String> = Err("Wait, what ?".to_string());
}
In the first case of creating values of the rgw Ok variant, we used () to specify the type, E, of the Err variant. In the second part of the snippet, we created values of the Err variant in a similar way, this time specifying a concrete type for the Ok variant. We can use underscores to ask Rust to infer types for us in obvious cases.
Next, we'll see how we can interact with Result values. Many file manipulation APIs in the standard library return a Result type, because there can be different reasons for failure such as file not found, directory does not exists, and permission errors. These can be put into the Err variant to let the user know of the exact cause. For the demo, we'll try to open a file, read its contents into a String, and print the contents, as shown in the following snippet:
// result_basics.rs
use std::fs::File;
use std::io::Read;
use std::path::Path;
fn main() {
let path = Path::new("data.txt");
let file = File::open(&path);
let mut s = String::new();
file.read_to_string(&mut s);
println!("Message: {}", s);
}
This is how the compiler responds:
We created a new file by calling open from File, providing our path to data.txt, which doesn't exist. When we call read_to_string on file, and try to read it into s, we get the preceding error. Examining the error message, it appears that file has a type of Result<File, Error>. From its documentation, the open method is defined like so:
fn open<P: AsRef<Path>>(path: P) -> Result<File>
To astute observers, there may be a source of confusion, as it looks like Result is missing the generic E type for the error variant, but it's simply hidden away by a type alias. If we look at the type alias definition in the std::io module, it is defined as follows:
type Result<T> = Result<T, std::io::Error>;
So, it is type aliased with a common error type of std::io::Error. This is because a lot of APIs in the standard library use this as an error type. This is another benefit of type aliases, where we can extract common parts from our type signature. Putting that tip aside, to be able to call the read_to_string method on our file, we need to extract the inner File instance, that is, perform pattern matching on variants. By doing this, the preceding code changes, as follows:
// result_basics_fixed.rs
use std::fs::File;
use std::io::Read;
use std::path::Path;
fn main() {
let path = Path::new("data.txt");
let mut file = match File::open(&path) {
Ok(file) => file,
Err(err) => panic!("Error while opening file: {}", err),
};
let mut s = String::new();
file.read_to_string(&mut s);
println!("Message: {}", s);
}
Here, we made two changes. First, we made the file variable mutable. Why? Because the function signature of read_to_string is as follows:
fn read_to_string(&mut self, buf: &mut String) -> Result<usize>
The first parameter being &mut self means that the instance we are calling this method on needs to be mutable because reading the file changes, internal pointers of the file handle. Secondly, we handled both the variants, where, in the Ok case, we return the actual File object if everything was good, but crash when we get an Err value and display an error message.
With this change, let's compile and run this program:
This panics because we don't have a file named data.txt in our directory. Try creating a file with the same name with any arbitrary text in it and run this program again to see it succeed. First, though, let's do something about that warning. Warnings are always a sign of poor code quality, and we ideally want to have none of them. The warning is there because File::read_to_string (a method from the Read trait) returns a value of type Result<usize>. Rust warns you whenever a return value from a function call is ignored. Here, the usize value in Result<usize> tells us how many bytes were read into the string.
We have two ways of handling this warning:
For cases where we don't care about the value, we can use the second approach and so the read_to_string line changes as follows:
let _ = file.read_to_string(&mut s);
With that change, the code compiles without warnings. However, you should handle the return value and try not to use the catch all underscore variable.
Combinators on Option/Result
As Option and Result are wrapper types, the only way to safely interact with their inner values is either through pattern matching or if let. This paradigm of using matching and then acting on the inner values is a very common operation and, as such, it becomes very tedious having to write them every time. Fortunately, these wrapper types come with lots of helper methods, also known as combinators, implemented on them that allow you to manipulate the inner values easily.
These are generic methods and there are many kinds depending on the use case. Some methods act on success values, such as Ok(T)/Some(T), while some of them act on failed values, such as Err(E)/None. Some methods unwrap and extract the inner value, while some preserve the structure of the wrapper type modifying just the inner values.
Note: In this section, when we talk about success values, we are commonly referring to Ok(T)/Some(T) variants and when we talk about failed values, we are referring to Err(T)/None variants.
Common combinators
Let's look at some of the useful combinators that are available for both the Option and Result types:
map: This method allows you to transform the success value, T, to another value, U. The following is the type signature of map for the Option type:
pub fn map<U, F>(self, f: F) -> Option<U>
where F: FnOnce(T) -> U {
match self {
Some(x) => Some(f(x)),
None => None,
}
}
The following is the signature for the Result type:
pub fn map<U, F>(self, f: F) -> Option<U>
where F: FnOnce(T) -> U {
match self {
Ok(t) => Ok(f(t)),
Err(e) => Err(e)
}
}
This method's type signature can be read as follows: map is a generic method over U and F, and takes self by value. It then takes a parameter, f, of type F and returns an Option<U>, where F is constrained by the FnOnce trait, which has an input parameter, T, and a return type of U. Phew! That was quite a mouthful.
Let's make this simpler to understand. There are two parts to understand about the map method. First, it takes a parameter as self, which means the value on which this method is called is consumed after the call. Second, it takes in a parameter, f, of type F. This is a closure that's provided to map, which tells it how to do the conversion from T to U. The closure is generically represented as F and the where clause says that F is FnOnce(T) -> U. This is a special type of trait that is only applicable to closures and hence has a function like the signature of (T) -> U . The FnOnce prefix just means that this closure takes ownership of the input parameter, T, signifying that we can only call this closure once with T as T will be consumed upon invocation. We'll look into closures in more depth in Chapter 7, Advanced Concepts. The map method does nothing if the value is a failed value.
Using combinators
Using the map method is simple:
// using_map.rs
fn get_nth(items: &Vec<usize>, nth: usize) -> Option<usize> {
if nth < items.len() {
Some(items[nth])
} else {
None
}
}
fn double(val: usize) -> usize {
val * val
}
fn main() {
let items = vec![7, 6, 4, 3, 5, 3, 10, 3, 2, 4];
println!("{}", items.len());
let doubled = get_nth(&items, 4).map(double);
println!("{:?}", doubled);
}
In the preceding code, we have a method called get_nth that gives us the nth element from Vec<usize> and returns None if it couldn't find one. We then have a use case where we want to double the value. We can use the map method on the return value of get_nth, passing in the double function we defined previously. Alternatively, we could have provided a closure written inline, like the following:
let doubled = get_nth(&items, 10).map(|v| v * v);
This is quite a concise way to chain operations! This is less verbose than using match or if let.
The preceding explanation of the map method is very much applicable to the next set of methods that we'll look at, so we'll skip explaining their type signature as it would be too noisy for us to go through every one of them. Instead, we'll just explain briefly the functionality that's provided by these methods. You are encouraged to read and become familiar with their type signature by referring to their documentation:
There are many more that are unique to the Option and Result types.
Converting between Option and Result
We also have methods where one wrapper type can be converted into another, depending on how you want to compose those values with your APIs. They become really handy in situations where we are interacting with third-party crates, where we have a value as an Option, but the crate's method we are using accepts a Result as a type, as follows:
Early returns and the ? operator
This is another pattern that is quite common when we interact with Result types. The pattern goes as follows: when we have a success value, we immediately want to extract it, but when we have an error value, we want to make an early return and propagate the error to the caller. To illustrate this pattern, we will use the following snippet, which uses the usual match expression to act on the Result type:
// result_common_pattern.rs
use std::string::FromUtf8Error;
fn str_upper_match(str: Vec<u8>) -> Result<String, FromUtf8Error> {
let ret = match String::from_utf8(str) {
Ok(str) => str.to_uppercase(),
Err(err) => return Err(err)
};
println!("Conversion succeeded: {}", ret);
Ok(ret)
}
fn main() {
let invalid_str = str_upper_match(vec![197, 198]);
println!("{:?}", invalid_str);
}
The ? operator abstracts this pattern, making it possible to write the bytes_to_str method in a more concise way:
// using_question_operator.rs
use std::string::FromUtf8Error;
fn str_upper_concise(str: Vec<u8>) -> Result<String, FromUtf8Error> {
let ret = String::from_utf8(str).map(|s| s.to_uppercase())?;
println!("Conversion succeeded: {}", ret);
Ok(ret)
}
fn main() {
let valid_str = str_upper_concise(vec![121, 97, 89]);
println!("{:?}", valid_str);
}
This operator becomes even nicer if you have a sequence of Result/Option returning method calls, where a failure in each operator should mean a failure of the whole. For instance, we could write the whole operation of creating a file and writing to it as follows:
let _ = File::create("foo.txt")?.write_all(b"Hello world!")?;
It works pretty much as a replacement for the try! macro, which does the same thing as before ? was implemented in the compiler. Now, ? is a replacement for that, but there are some plans to make it more generic and usable for other cases, too.
Bonus tip: The main function also allows you to return Result types. Specifically, it allows you to return types that implement the Termination trait. This means that we can also write main as follows:
// main_result.rs
fn main() -> Result<(), &'static str> {
let s = vec!["apple", "mango", "banana"];
let fourth = s.get(4).ok_or("I got only 3 fruits")?;
Ok(())
}
Next, let's move on to dealing with non-recoverable errors.
Non-recoverable errors
When code that's in the execution phase encounters a bug, or one of its variants is violated, it has the potential to corrupt the program state in unexpected ways if it's ignored. These situations are deemed non-recoverable because of their inconsistent program state, which may lead to faulty outputs or unexpected behavior later. This means that a fail-stop approach is the best way to recover from them so as to not harm other parts or systems indirectly. For these kinds of cases, Rust provides us with a mechanism called panic, which aborts the thread on which it is invoked and does not affect any other threads. If the main thread is the one facing the panic, then the program aborts with a non-zero exit code of 101. If it's a child thread, the panic does not propagate to the parent thread and halts at the thread boundary. A panic in one thread does not affect the other threads and is isolated, except in cases where they corrupt a mutex lock on some shared data; it is implemented as a macro by the same panic! mechanism.
When panic! is called, the panicking thread starts unwinding the function call stack, starting from the place at which it was invoked, all the way until the entry point in the thread. It also generates a stack trace or a backtrace for all functions that are invoked in this process, just like exceptions. But in this case, it does not have to look for any exception handlers, as they don't exist in Rust. Unwinding is the process of moving up the function call chain while cleaning up or freeing resource, from each function call stack. These resources can be stack allocated or heap allocated. Stack allocated resources automatically get released once the function ends. For variables pointing to heap allocated resources, Rust calls the drop method on them, which frees up the memory used by the resource. This cleanup is necessary to avoid memory leaks. Apart from code calling panic explicitly, Result/Option error types also call panic if any code does unwrap on failed values, that is, Err/None. panic is also the choice that's used for failing assertions in unit tests, and it's encouraged to fail tests with panics by using the #[should_panic] attribute.
In the case of single-threaded code having panics on the main thread, unwinding doesn't provide much of a benefit, as the operating system reclaims all the memory after the process aborts. Fortunately, there are options to turn off unwinding in panic, which may be required on platforms such as embedded systems, where we have a single main thread doing all the work and where unwinding is an expensive operation that isn't of much use.
To figure out the sequence of calls that led to the panic, we can view the backtrace from the thread by running any panicking program and setting the RUST_BACKTRACE=1 environment variable from our command-line shell. Here's an example where we have two threads, where both of them panic:
// panic_unwinding.rs
use std::thread;
fn alice() -> thread::JoinHandle<()> {
thread::spawn(move || {
bob();
})
}
fn bob() {
malice();
}
fn malice() {
panic!("malice is panicking!");
}
fn main() {
let child = alice();
let _ = child.join();
bob();
println!("This is unreachable code");
}
alice spawns a new thread using thread::spawn and calls bob within the closure. bob calls malice, which in turn panics. main also calls bob, which panics.
Here's the output of running this program:
We join the thread by calling join() and expect everything to go fine in our child thread, which is definitely not the case. We get two backtraces, one for the panic that happened in the child thread and the other from calling bob in the main thread.
If you need more control over how unwinding in panics is handled in a thread, you can use the std::panic::catch_unwind function. Even though it's recommended to handle errors via the Option/Result mechanism, you can use this method to handle fatal errors in worker threads; you can do this by restoring any violated invariants, letting the workers die, and restarting them. However, catch_unwind doesn't prevent the panic – it only allows you to customize the unwind behavior associated with panic. panic with catch_unwind is not recommended as a general error handling method for Rust programs.
The catch_unwind function takes a closure and handles any panics that happen inside it. Here's its type signature:
fn catch_unwind<F: FnOnce() -> R + UnwindSafe, R>(f: F) -> Result<R>
As you can see, the return value of catch_unwind has an additional constraint, UnwindSafe. This means that the variables in the closure must be exception-safe, which most types are, but notable exceptions are mutable references (&mut T). A value is exception safe if exception-throwing code cannot lead to the value being left in an inconsistent state. This means that the code inside the closure must not panic!() itself.
Here's a simple example that uses catch_unwind:
// catch_unwind.rs
use std::panic;
fn main() {
panic::catch_unwind(|| {
panic!("Panicking!");
}).ok();
println!("Survived that panic.");
}
Here's the output after running the preceding program:
As you can see, catch_unwind does not prevent the panic from happening; it just stops the unwinding associated with the panicking thread. Note again that catch_unwind is not the recommended method for error management in Rust. It is not guaranteed to catch all panics, such as panics that abort the program. Catching panic unwinding is necessary in situations where Rust code is communicating with other languages such as C, where unwinding to C code is an undefined behavior. In those cases, the programmer has to handle the unwind and do what C expects by returning an error code. The program can then resume the unwind by using the resume_unwind function from the same panic module.
For rare cases where the default unwinding behavior of panic can get too expensive, such as when writing programs for microcontrollers, there's a compiler flag that can be configured to turn all panics into aborts. To do that, your project's Cargo.toml needs to have the following attribute under the profile.release section:
[profile.release]
panic = "abort"
User-friendly panics
As we saw in the preceding code, panic messages and backtraces can be very cryptic, but it does not have to be like that. If you are an author of a command-line tool, human_panic is a crate from the community that replaces verbose, cryptic panic messages with human-readable messages. It also writes the backtrace to a file to allow it to be reported to the tool author by users. More information about human_panic can be found on the project repository page: https://github.com/rust-clique/human-panic.
Custom errors and the Error trait
A non-trivial project that has varied functionality is often spread across modules. With an organization, it's more informative to provide module-specific error messages and information for the user. Rust allows us to create custom error types that can help us achieve more granular error reports from our application. Without custom errors that are specific to our project, we might have to use existing error types in the standard library, which may not be relevant to our API's operations and will not give precise information to users if things go wrong with an operation in our module.
In languages that have exceptions, such as Java, the way you create custom exceptions is by inheriting from the base Exception class and overriding its methods and member variables. While Rust doesn't have type-level inheritance, it has trait inheritance and provides us with the Error trait that any type can implement, making the type a custom error type. This type can now be composed with existing standard library error types when using a trait object such as Box<dyn Error> as the return type of functions returning Result for the Err variant. Here's the type signature of the Error trait:
pub trait Error: Debug + Display {
fn description(&self) -> &str { ... }
fn cause(&self) -> Option<&dyn Error> { ... }
}
To create our own error type, the type must implement the Error trait. If we look at the trait's definition, it also requires that we implement the Debug and Display traits for our type. The description method returns a string slice reference, which is a human-readable form describing what the error is about. The cause method returns an optional reference to another Error trait object, representing a possible lower-level reason for the error. The cause method from custom error types allows you to get information on the chain of errors right from the source, making precise logging of the error possible. For instance, let's take an HTTP query as an example of a fallible operation. Our hypothetical library has a get method that can perform GET requests. The query might fail due to a lot of different reasons:
If it were the first case, we might imagine three levels of errors, chained together by the cause fields:
The cause method comes in handy when the developer wants to know the root cause of a failure.
Now, to demonstrate integrating a custom error type in to a project, we have created a crate called todolist_parser using cargo, which exposes an API to parse a list of todos from a text file. The parsing of todos can fail in different ways, such as file not found, an empty todo, or because it contains non-text characters. We'll use a custom error type to model these situations. Under src/error.rs, we have defined the following error types:
// todolist_parser/src/error.rs
use std::error::Error;
use std::fmt;
use std::fmt::Display;
#[derive(Debug)]
pub enum ParseErr {
Malformed,
Empty
}
#[derive(Debug)]
pub struct ReadErr {
pub child_err: Box<dyn Error>
}
// Required by error trait
impl Display for ReadErr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Failed reading todo file")
}
}
// Required by error trait
impl Display for ParseErr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Todo list parsing failed")
}
}
impl Error for ReadErr {
fn description(&self) -> &str {
"Todolist read failed: "
}
fn cause(&self) -> Option<&dyn Error> {
Some(&*self.child_err)
}
}
impl Error for ParseErr {
fn description(&self) -> &str {
"Todolist parse failed: "
}
fn cause(&self) -> Option<&Error> {
None
}
}
As of now, we are modelling two errors, which are very basic:
Following that, we implement the Error trait and the required super traits, Display and Debug. lib.rs contains the required parsing methods, as well as the declaration of the TodoList struct, as shown in the following code:
// todolist_parser/src/lib.rs
//! This crate provides an API to parse list of todos
use std::fs::read_to_string;
use std::path::Path;
mod error;
use error::ParseErr;
use error::ReadErr;
use std::error::Error;
/// This struct contains a list of todos parsed as a Vec<String>
#[derive(Debug)]
pub struct TodoList {
tasks: Vec<String>,
}
impl TodoList {
pub fn get_todos<P>(path: P) -> Result<TodoList, Box<dyn Error>>
where
P: AsRef<Path>, {
let read_todos: Result<String, Box<dyn Error>> = read_todos(path);
let parsed_todos = parse_todos(&read_todos?)?;
Ok(parsed_todos)
}
}
pub fn read_todos<P>(path: P) -> Result<String, Box<dyn Error>>
where
P: AsRef<Path>,
{
let raw_todos = read_to_string(path)
.map_err(|e| ReadErr {
child_err: Box::new(e),
})?;
Ok(raw_todos)
}
pub fn parse_todos(todo_str: &str) -> Result<TodoList, Box<dyn Error>> {
let mut tasks: Vec<String> = vec![];
for i in todo_str.lines() {
tasks.push(i.to_string());
}
if tasks.is_empty() {
Err(ParseErr::Empty.into())
} else {
Ok(TodoList { tasks })
}
}
We have two top-level functions, read_todos and parse_todos, which are invoked by the get_todos method of TodoList.
We have an example usage of TodoList under examples/basics.rs, as follows:
// todolist_parser/examples/basics.rs
extern crate todolist_parser;
use todolist_parser::TodoList;
fn main() {
let todos = TodoList::get_todos("examples/todos");
match todos {
Ok(list) => println!("{:?}", list),
Err(e) => {
println!("{}", e.description());
println!("{:?}", e)
}
}
}
If we run our basics.rs example via the cargo run --example basics command, we get the following output:
If you look at the error value being printed, it wraps the actual cause of error within the ReadErr value.
Rust has decent built-ins for defining custom error types. If you're writing your own crates, you should define your own error types to make debugging easier. However, implementing the Error trait for all of your types can often become redundant and time-consuming. Fortunately, we have a crate from the Rust community called failure (https://github.com/rust-lang-nursery/failure), which automates the creation of custom error types, along with the necessary implementation of traits that are auto-derived through the use of procedural macros. If you are feeling more ambitious, you are encouraged to refactor this library to use the failure crate.
Summary
In this chapter, we have learned that, error handling in Rust is explicit: operations that can fail have a two-part return value via the Result or Option generic types. You must handle errors in some way, either by unpacking the Result/Option values with a match statement, or by using combinator methods. Unwrapping should be avoided on error types. Instead, use combinators or match expressions to take appropriate action or propagate the error to the caller by using the ? operator. It is okay to panic when programming errors are so fatal that recovery would be impossible. Panics are mostly non-recoverable, which means that they crash your thread. Their default behavior is unwinding, which can be expensive and can be turned off if programs don't want this overhead. It is advised to be as descriptive as possible when communicating errors, and authors are encouraged to use custom error types in their crates.
In the next chapter, we'll cover some of the advanced aspects of the language and explore more of the guts of the type system.
Advanced Concepts
Quite a few concepts we learned in the previous chapters really deserve close attention so we can appreciate the design of Rust. Learning these advanced topics will also help you further when you need to understand complex code bases. These concepts are also helpful when you want to create libraries that provide idiomatic Rust APIs.
We'll cover the following topics in this chapter:
Type system tidbits
"An algorithm must be seen to be believed"
– Donald Knuth
Before we go into more dense topics in this chapter, we'll first discuss some of the type system tidbits in statically typed programming languages in general, with focus on Rust. Some of these topics may already be familiar to you from Chapter 1, Getting Started with Rust, but we're going to dig into the details here.
Blocks and expressions
Despite being a mix of statements and expressions, Rust is primarily an expression-oriented language. This means that most constructs are expressions that return a value. It's also a language that uses C-like braces {}, to introduce new scope for variables in a program. Let's get these concepts straight before we talk more about them later in this chapter.
A block expression (hereby referred as blocks) is any item that starts with { and ends with }. In Rust, they include if else expressions, match expressions, while loops, loops, bare {} blocks, functions, methods, and closures, and all of them return a value which is the last line of the expression. If you put a semicolon in the last expression, the block expressions default to a return value of the unit () type.
A related concept to blocks is the scope. A scope is introduced whenever a new block is created. When we a new block and create any variable bindings within it, the bindings are confined to that scope and any reference to them is valid only within the scope bounds. It's like a new environment for variables to live in, isolated from the others. Items such as functions, impl blocks, bare blocks, if else expressions, match expressions, functions, and closures introduce new scope in Rust. Within a block/scope, we can declare structs, enums, modules, traits and their implementations, and even blocks. Every Rust program starts with one root scope, which is the scope introduced by the main function. Within that, many nested scopes can be created. The main scope becomes the parent scope for all inner scopes declared. Consider the following snippet:
// scopes.rs
fn main() {
let mut b = 4;
{
let mut a = 34 + b;
a += 1;
}
b = a;
}
We used a bare block {}, to introduce a new inner scope and created a variable a. Following the end of the scope, we are trying to assign b to the value of a, which comes from the inner scope. Rust throws a compile time error saying cannot find value `a` in this scope . The parent scope from main does not know anything about a as it comes from the inner scope. This property of scopes is also used sometimes to control how long we want a reference to be valid, as we saw in Chapter 5, Memory Management and Safety.
But the inner scope can access values from their parent scope. Because of that, it is possible to write 34 + b within our inner scope.
Now we come to expressions. We can benefit from their property of returning a value and that they must be of the same type in all branches. This results in very concise code. For example, consider this snippet:
// block_expr.rs
fn main() {
// using bare blocks to do multiple things at once
let precompute = {
let a = (-34i64).abs();
let b = 345i64.pow(3);
let c = 3;
a + b + c
};
// match expressions
let result_msg = match precompute {
42 => "done",
a if a % 2 == 0 => "continue",
_ => panic!("Oh no !")
};
println!("{}", result_msg);
}
We can use bare blocks to chunk several lines of code together and assign the value at the end with an implicit return of the a + b + c expression to precompute as shown previously. Match expressions can also assign and return values from their match arms directly.
Note: Being similar to the switch statement in C, match arms in Rust do not suffer from the case fall through side effect that results in lots of bugs in C code.
The C switch case requires every case statement within the switch block to have a break if we want to bail out after running the code in that case. If the break is not present, any case statement following that is also executed, which is called the fall-through behavior. A match expression, on the other hand, is guaranteed to evaluate only one of the match arms.
If else expressions provide the same conciseness:
// if_expr.rs
fn compute(i: i32) -> i32 {
2 * i
}
fn main() {
let result_msg = "done";
// if expression assignments
let result = if result_msg == "done" {
let some_work = compute(8);
let stuff = compute(4);
compute(2) + stuff // last expression gets assigned to result
} else {
compute(1)
};
println!("{}", result);
}
In statement-based languages such as Python, you would write something like this for the preceding snippet:
result = None
if (state == "continue"):
let stuff = work()
result = compute_next_result() + stuff
else:
result = compute_last_result()
In the Python code, we had to declare result beforehand, followed by doing separate assignments in the if else branch. Rust is more concise here, with the assignment being done as a result of the if else expression. Also, in Python, you can forget to assign a value to a variable in either of the branches and the variable may be left uninitialized. Rust will report at compile time if you return and assign something from the if block and either miss or return a different type from the else block.
As an added note, Rust also supports declaring uninitialized variables:
fn main() {
let mut a: i32;
println!("{:?}", a); // error
a = 23;
println!("{:?}", a); // fine now
}
But they need to be initialized before we use them. If an uninitialized variable is attempted to be read from later, Rust will forbid that and report at compile time that the variable must be initialized:
Compiling playground v0.0.1 (file:///playground)
error[E0381]: use of possibly uninitialized variable: `a`
--> src/main.rs:7:22
|
7 | println!("{:?}", a);
| ^ use of possibly uninitialized `a`
Let statements
In Chapter 1, Getting Started with Rust, we briefly introduced let, which is used to create new variable bindings—but let is more than that. In fact, let is a pattern-matching statement. Pattern matching is a construct mostly seen in functional languages such as Haskell and allows us to manipulate and make decisions about values based on their internal structure or can be used to extract values out of algebraic data types. We had already
let a = 23;
let mut b = 403;
Our first line is let in its simplest form and it declares an immutable variable binding, a. In the second line, we have mut after the let keyword for b . mut is part of the let pattern, which binds b mutably to i32 types in this case. mut enables b to bind again to some other i32 type. Another keyword that's seen less frequently with let is the ref keyword. Now, we generally use the & operator to create a reference/pointer to any value. The other way to create a reference to any value is to use the ref keyword with let. To illustrate ref and mut, we have a snippet:
// let_ref_mut.rs
#[derive(Debug)]
struct Items(u32);
fn main() {
let items = Items(2);
let items_ptr = &items;
let ref items_ref = items;
assert_eq!(items_ptr as *const Items, items_ref as *const Items);
let mut a = Items(20);
// using scope to limit the mutation of `a` within this block by b
{
// can take a mutable reference like this too
let ref mut b = a; // same as: let b = &mut a;
b.0 += 25;
}
println!("{:?}", items);
println!("{:?}", a); // without the above scope
// this does not compile. Try removing the scope
}
Here, items_ref is a reference created using the usual & operator. The next line also creates the items_ref reference to the same items value using ref. We can confirm, with the assert_eq! call following it, that the two pointer variables point to the same items value. The cast to *const Items is used to compare whether two pointers point to the same memory location, where *const Items is a raw pointer type to Items. Additionally, by combining ref and mut as shown in the second to last part of the code, we can get a mutable reference to any owned value other than the usual way of doing so with the &mut operator. But we have to use an inner scope to modify a from b.
Languages using pattern matching are not just limited to having identifiers on the left hand side of `=` but can additionally have patterns referring to the structure of types. So, another convenience let provides us with is the ability to extract values from fields of an algebraic data type, such as a struct or enum as new variables. Here, we have a snippet that demonstrates this:
// destructure_struct.rs
enum Food {
Pizza,
Salad
}
enum PaymentMode {
Bitcoin,
Credit
}
struct Order {
count: u8,
item: Food,
payment: PaymentMode
}
fn main() {
let food_order = Order { count: 2,
item: Food::Salad,
payment: PaymentMode::Credit };
// let can pattern match inner fields into new variables
let Order { count, item, .. } = food_order;
}
Here, we created an instance of Order, which is bound to food_order. Let's assume we got food_order from some method call and we want to access the count and item values. We can extract the individual fields, count and item, directly using let. count and item become new variables that hold the corresponding field values from the Order instance. This is technically called the destructuring syntax of let. The way the variables get destructured depends on whether the value on the right is an immutable reference, mutable reference, or an owned value or by how we reference it on the left-hand side using the ref or mut patterns. In the previous code, it was captured by the value because food_order owns the Order instance and we matched the members on the left-hand side without any ref or mut keyword. If we want to destructure the members by immutable reference, we would put an & symbol before food_order or use ref or mut alternatively:
let Order { count, item, .. } = &food_order;
// or
let Order { ref count, ref item, .. } = food_order;
The first style is generally preferred as it's concise. If we want to have a mutable reference, we have to place &mut after making food_order itself mutable:
let mut food_order = Foo { count: 2,
item: Food::Salad,
payment: PaymentMode::Credit };
let Order { count, item, .. } = &mut food_order;
Fields that we don't care about can be ignored by using the .., as shown in the code. Also, a slight restriction of let destructuring is that we are not free to choose the mutability of individual fields. All variables must have the the same mutability—either all are immutable or all are mutable. Note that ref isn't generally used to declare variable bindings and is mostly used in match expressions in cases where we want to match against a value by reference because the & operator does not work within match arms, as demonstrated here:
// match_ref.rs
struct Person(String);
fn main() {
let a = Person("Richard Feynman".to_string());
match a {
Person(&name) => println!("{} was a great physicist !", name),
_ => panic!("Oh no !")
}
let b = a;
}
If we want to use the inner value from Person struct by an immutable reference, our intuition would say to use something like Person(&name) in the match arm to match by reference. But we get this error upon compilation:
This gives us a misleading error because &name is creating a reference out of name (& is an operator) and the compiler thinks that we want to match against Person(&String) but the a value is actually Person(String). So, in this case ref has to be used to destructure it as a reference. To make it compile, we change it accordingly to Person(ref name) on the left-hand side.
The destructuring syntax is also applicable to enum types as well:
// destructure_enum.rs
enum Container {
Item(u64),
Empty
}
fn main() {
let maybe_item = Container::Item(0u64);
let has_item = if let Container::Item(0) = maybe_item {
true
} else {
false
};
}
Here, we have maybe_item as a Container enum. Combining if let and pattern matching, we can conditionally assign the value to has_item variable using the if let <destructure pattern> = expression {} syntax.
The destructuring syntax can be used in function parameters as well. For example, in the case of custom types, such as a struct when used in a function as arguments:
// destructure_func_param.rs
struct Container {
items_count: u32
}
fn increment_item(Container {mut items_count}: &mut Container) {
items_count += 1;
}
fn calculate_cost(Container {items_count}: &Container) -> u32 {
let rate = 67;
rate * items_count
}
fn main() {
let mut container = Container {
items_count: 10
};
increment_item(&mut container);
let total_cost = calculate_cost(&container);
println!("Total cost: {}", total_cost);
}
Here, calculate_cost function has a parameter that's destructured as a struct with fields bound to the items_count variable. If we want to destructure mutably, we add the mut keyword before the member field as is the case with the increment_item function.
Refutable patterns: Refutable pattern are let patterns where the left-hand side and the right-hand side are not compatible for pattern matching and, in those cases one has to use the exhaustive match expression instead. Up until now, all forms of let patterns we've seen were irrefutable patterns. Irrefutable means that they're able to properly match against the value on the right side of '=' as a valid pattern.
But sometimes, pattern matching with let may fail because of invalid patterns, for example, when matching an enum Container that has two variants:
// refutable_pattern.rs
enum Container {
Item(u64),
Empty
}
fn main() {
let mut item = Container::Item(56);
let Container::Item(it) = item;
}
Ideally, we expect it to store 56 as the value, after being destructured from item. If we try compiling this, we get the following:
The reason this match does not succeed is because Container has two variants, Item(u64) and Empty. Even though we know that item contains the Item variant, let patterns can't rely on this fact, because if item is mutable, some code can assign an Empty variant there later, which would render the destructure an undefined operation. We have to cover all possible cases. Destructuring directly against a single variant violates the semantics of exhaustive pattern matching and hence our match fails.
Loop as an expression
In Rust, a loop is also an expression that returns () by default when we break out of it. The implication of this is that loop can also be used to assign value to a variable with break. For example, it can be used in something like this:
// loop_expr.rs
fn main() {
let mut i = 0;
let counter = loop {
i += 1;
if i == 10 {
break i;
}
};
println!("{}", counter);
}
Following the break keyword, we include the value we want to return and this gets assigned to counter variable when the loop breaks (if at all). This is really handy in cases where you assign the value of any variable within the loop after breaking from the loop and need to use it afterward.
Type clarity and sign distinction in numeric types
While mainstream languages differentiate between numeric primitives such as an integer, a double, and a byte, a lot of newer languages such as Golang have started adding distinction between signed and unsigned numeric types too. Rust follows in the same footsteps by distinguishing signed and unsigned numeric types, providing them as separate types altogether. From a type-checking perspective, this adds another layer of safety to our programs. This allows us to write code that exactly specifies its requirements. For example, consider a database connection pool struct:
struct ConnectionPool {
pool_count: usize
}
For languages that provide a common integer type that incorporates both signed and unsigned values, you would specify the type of pool_count as an integer, which can also store negative values. It does not make sense for pool_count to be negative. With Rust, we can specify this clearly in code by using an unsigned type instead, such as u32 or usize.
One more aspect to note about primitive types is that Rust does not perform automatic casts when mixing signed and unsigned types in arithmetic operations. You have to be explicit about this and cast the value manually. An example of an unintended auto cast in C/C++ would be the following:
#include <iostream>
int main(int argc, const char * argv[]) {
uint foo = 5;
int bar = 6;
auto difference = foo - bar;
std::cout << difference;
return 0;
}
The preceding code prints 4294967295. Here, the difference won't be -1 on subtracting foo and bar; instead C++ does its own thing without the programmer's consent. int (signed integer) is auto cast to uint (unsigned integer) and wraps to a maximum value of uint being 4294967295. This code continues to run without complaining about underflow here.
Translating the same program in Rust, we get the following:
// safe_arithmetic.rs
fn main() {
let foo: u32 = 5;
let bar: i32 = 6;
let difference = foo - bar;
println!("{}", difference);
}
Following will be the output:
Rust won't compile this, showing an error message. You have to explicitly cast either of the values according to your intent. Also, if we perform overflow/underflow operations on two unsigned or signed types, Rust will panic!() and abort your program when you build and run in debug mode. When built in release mode, it does a wrapping arithmetic.
By wrapping arithmetic, we mean that adding 1 to 255 (a u8) will result in 0.
Panicking in debug mode is the right thing to do here because if such arbitrary values are allowed to propagate to other parts of code, they can taint your business logic and introduce further hard-to-track bugs in the program. So, a fail-stop approach is better in these cases where the user accidentally performs an overflow/underflow operation and this gets caught in debug mode. When the programmer wants to allow wrapping semantics on arithmetic operations, then they may choose to ignore the panic and proceed to compile in release mode. That's another aspect of safety that the language provides you.
Type inference
Type inference is useful in statically typed languages as it makes the code easier to write, maintain, and refactor. Rust's type system can figure out types for fields, methods, local variables, and most generic type arguments when you don't specify them. Under the hood, a component of the compiler called the type checker uses the Hindley Milner type inference algorithm to decide what the types of local variables should be. It is a set of rules about establishing types of expressions based on their usage. As such, it can infer types based on the environment and the way a type is used. One such example is the following:
let mut v = vec![];
v.push(2); // can figure type of `v` now to be of Vec<i32>
With only the first line initializing the vector, Rust's type checker is unsure of what the type for v should be. It's only when it reaches the next line, v.push(2), that it knows that v is of the type, Vec<i32>. Now the type of v is frozen to Vec<i32>.
If we added another line, v.push(2.4f32);, then the compiler will complain of type mismatch as it already had inferred it from the previous line to be of Vec<i32>. But sometimes, the type checker cannot figure out types of variables in complex situations. But with some help from the programmer, the type checker is able to infer types. For example, for the next snippet, we read a file foo.txt, containing some text and read it as bytes:
// type_inference_iterator.rs
use std::fs::File;
use std::io::Read;
fn main() {
let file = File::open("foo.txt").unwrap();
let bytes = file.bytes().collect();
}
Compiling this gives us this error:
The collect method on iterators is basically an aggregator method. We'll look at iterators later in this chapter. The resulting type it collects into can be any collection type. It can either be LinkedList, VecDeque, or Vec. Rust does not know what the programmer intends and, due to such ambiguity, it needs our help here. We made the following change for the second line in main:
let bytes: Vec<Result<u8, _>> = file.bytes().collect();
Calling bytes() returns Result<u8, std::io::Error>. After adding some type hint as to what to collect into (here, Vec), the program compiles fine. Note the _ on the Result error variant. It was enough for Rust to hint that we need a Vec of Result of u8. The rest, it is able to figure out—the error type in Result needs to be of std::io::Error type. It was able to figure that out because there is no such ambiguity here. It gets the information from the bytes() method signature. Quite smart!
Type aliases
Type aliases are a feature not unique to Rust. C has the typedef keyword, while Kotlin has typealias for the same. They are there to make your code more readable and remove the type signature cruft that often piles up in statically typed languages, for example, if you have an API from your crate where you return a Result type, wrapping a complex object as depicted below:
// type_alias.rs
pub struct ParsedPayload<T> {
inner: T
}
pub struct ParseError<E> {
inner: E
}
pub fn parse_payload<T, E>(stream: &[u8]) -> Result<ParsedPayload<T>, ParseError<E>> {
unimplemented!();
}
fn main() {
// todo
}
As you can see, for some of the methods, such as parse_payload, the type signature gets too large to fit in a line. Also, having to type Result<ParsedPayload<T>, ParseError<E>> every time they are used becomes cumbersome. What if we could refer to this type by a simpler name? This is the exact use case type aliases serve. They enable us to give another (desirably simpler) name to types with a complex type signature.
So, we can give an alias to the return type of parse_payload as follows:
// added a type alias
type ParserResult<T, E> = Result<ParsedPayload<T>, ParseError<E>>;
// and modify parse_payload function as:
pub fn parse_payload<T, E>(stream: &[u8]) -> ParserResult<T, E> {
unimplemented!();
}
This makes it more manageable if we later want to change the actual inner types. We can type alias any simple types too:
type MyString = String;
So, now we can use MyString anywhere we use String. But this doesn't mean that MyString is of a different type. During compilation, this just gets substituted/expanded to the original type. When creating type aliases for generic types, the type alias also needs a generic type parameter (T). So aliasing Vec<Result<Option<T>>> becomes the following:
type SomethingComplex<T> = Vec<Result<Option<T>>>;
Let's assume you have a lifetime in your type, as in SuperComplexParser<'a>:
struct SuperComplexParser<'s> {
stream: &'a [u8]
}
type Parser<'s> = SuperComplexParser<'s>;
When creating type aliases for them, we need to specify the lifetime as well, as is the case with the Parser type alias.
With those type system niceties out of the way, let's talk about strings again!
Strings
In Chapter 1, Getting Started with Rust, we mentioned that strings are of two types. In this section, we'll give a clearer picture on strings, their peculiarities, and how they differ from strings in other languages.
While other languages have a pretty straightforward story on string types, the String type in Rust is one of the tricky and uneasy types to handle. As we know, Rust places distinction on whether a value is allocated on the heap or on the stack. Due to that, there are two kinds of strings in Rust: owned strings (String) and borrowed strings (&str). Let's explore both of them.
Owned strings – String
The String type comes from the standard library and is a heap-allocated UTF-8 encoded sequence of bytes. They are simply Vec<u8> under the hood but have extra methods that are applicable to only strings. They are owned types, which means that a variable that holds a String value is its owner. You will usually find that String types can be created in multiple ways, as shown in the following code:
// strings.rs
fn main() {
let a: String = "Hello".to_string();
let b = String::from("Hello");
let c = "World".to_owned();
let d = c.clone();
}
In the preceding code, we created four strings in four different ways. All of them create the same string type and have the same performance characteristics. The first variable, a, creates the string by calling the to_string method, which comes from the ToString trait with the string literal, "Hello". A string literal such as "Hello" by itself also has a type of &str. We'll explain them when we get to borrowed versions of strings. We then create another string, b, by calling the from method, which is an associated method on String. The third string c, is created by calling a trait method, to_owned, from the ToOwned trait, which is implemented for &str types—literal strings. The fourth string, d, is created by cloning an existing string, c. The fourth way of creating strings is an expensive operation , which we should avoid as it involves copying the underlying bytes by iterating over them.
As String is allocated on heap, it can be mutated and can grow at runtime. This means that strings have an associated overhead when manipulating them because they might possibly get reallocated as you keep adding bytes to them. Heap allocation is a relatively expensive operation but, fortunately, the way allocation happens for Vec (doubled every capacity limit), means this cost is amortized over usage.
Strings also have a lot of convenient methods in the standard library. Following are the important ones:
This is, of course, a non-exhaustive list. A complete list of all the operations can be found at https://doc.rust-lang.org/std/string/struct.String.html.
Here's an example that uses all of the aforementioned methods:
// string_apis.rs
fn main() {
let mut empty_string = String::new();
let empty_string_with_capacity = String::with_capacity(50);
let string_from_bytestring: String = String::from_utf8(vec![82, 85, 83,
84]).expect("Creating String from bytestring failed");
println!("Length of the empty string is {}", empty_string.len());
println!("Length of the empty string with capacity is {}",
empty_string_with_capacity.len());
println!("Length of the string from a bytestring is {}",
string_from_bytestring.len());
println!("Bytestring says {}", string_from_bytestring);
empty_string.push('1');
println!("1) Empty string now contains {}", empty_string);
empty_string.push_str("2345");
println!("2) Empty string now contains {}", empty_string);
println!("Length of the previously empty string is now {}",
empty_string.len());
}
With String explored, let's look at the borrowed version of strings known as string slices or the &str type.
Borrowed strings – &str
We can also have strings as references called string slices. These are denoted by &str (pronounced as stir), which is a reference to a str type. In constrast to the String type, str is a built-in type known to the compiler and is not something from the standard library. String slices are created as &str by default—a pointer to a UTF-8 encoded byte sequence. We cannot create and use values of the bare str type, as it represents a contiguous sequence of UTF-8 encoded bytes with a finite but unknown size. They are technically called unsized types. We'll explain unsized types later in this chapter.
str can only be created as a reference type. Let's assume we try to create a str type forcibly by providing the type signature on the left:
// str_type.rs
fn main() {
let message: str = "Wait, but why ?";
}
We'll be presented with a confusing error:
It says: all local variables must have a statically known size. This basically means that every local variable we define using a let statement needs to have a size as they are allocated on the stack and the stack has a fixed size. As we know, all variable declarations go on the stack either as values themselves or as pointers to heap allocated types. All stack-allocated values need to have a proper size known and, due to this, str cannot be initialized.
str basically means a fixed-sized sequence of strings that's agnostic to the location where it resides. It could either be a reference to a heap-allocated string, or it could be a &'static str string residing on the data segment of the process that lives for the entire duration of the program, which is what the 'static lifetime denotes.
We can, however, create a borrowed version of str, as in &str, which is what gets created by default when we write a string literal. So string slices are only created and used behind a pointer—&str. Being a reference, they also have different lifetimes associated with them based on the scope of their owned variable. One of them is of 'static lifetime, which is the lifetime of string literals.
String literals are any sequence of characters you declare within double quotes. For example, we create them like so:
// borrowed_strings.rs
fn get_str_literal() -> &'static str {
"from function"
}
fn main() {
let my_str = "This is borrowed";
let from_func = get_str_literal();
println!("{} {}", my_str, from_func);
}
In the preceding code, we have a get_str_literal function that returns a string literal. We also create a string literal my_str in main. my_str and the string returned by get_str_literal has the type, &'static str. The 'static lifetime annotation denotes that the string stays for the entire duration of the program. The & prefix says that it's a pointer to the string literal, while str is the unsized type. Any other &str type you encounter are borrowed string slices of any owned String type on the heap. The &str types, once created, can't be modified as they are created immutable by default.
We can also take a mutable slice to the string, and the type changes to &mut str, though it's uncommon to use them in this form except with a few methods in the standard library. The &str type is the recommended type to be used when passing strings around, either to functions or to other variables.
Slicing and dicing strings
All strings in Rust are guaranteed to be UTF-8 by default, and indexing on string types in Rust does not work as you would use them in other languages. Let's try accessing the individual characters of our string:
// strings_indexing.rs
fn main() {
let hello = String::from("Hello");
let first_char = hello[0];
}
On compiling this, we get the following error:
That's not a very helpful message. But it refers to something called the Index trait. The Index trait is implemented on collection types whose elements can be accessed by the indexing operator [] using index type as a usize value. Strings are valid UTF-8-encoded byte sequences and a single byte does not equate to a single character. In UTF-8, a single character may also be represented by multiple bytes. So, indexing does not work on strings.
Instead, we can have slices of strings. This can either be done as follows:
// string_range_slice.rs
fn main() {
let my_str = String::from("Strings are cool");
let first_three = &my_str[0..3];
println!("{:?}", first_three);
}
But, as is the case with all indexing operation, this panics if the start or the end index is not on a valid char boundary.
Another way to iterator over all characters of a string is to use the chars() method, which turns the string into an iterator over its characters. Let's change our code to use chars instead:
// strings_chars.rs
fn main() {
let hello = String::from("Hello");
for c in hello.chars() {
println!("{}", c);
}
}
The chars method returns characters of the string at proper Unicode boundaries. We can also call other iterator methods on this to either skip or get a range of characters.
Using strings in functions
It's idiomatic and performant to pass string slices to functions. Here's an example:
// string_slices_func.rs
fn say_hello(to_whom: &str) {
println!("Hey {}!", to_whom)
}
fn main() {
let string_slice: &'static str = "you";
let string: String = string_slice.into();
say_hello(string_slice);
say_hello(&string);
}
To the astute observer, the say_hello method also worked with a &String type. Internally, &String automatically coerces to &str, due to the type coercion trait Deref implemented for &String to &str. This is because String implements Deref for the str type.
Here, you can see why I stressed the point earlier. A string slice is an acceptable input parameter not only for actual string slice references but also for String references! So, once more: if you need to pass a string to your function, use the string slice, &str.
Joining strings
Another source of confusion when dealing with strings in Rust is when concatenating two strings. In other languages, you have a very intuitive syntax for joining two strings. You just do "Foo" + "Bar" and you get a "FooBar". Not quite the case with Rust:
// string_concat.rs
fn main() {
let a = "Foo";
let b = "Bar";
let c = a + b;
}
If we compile this, we get the following error:
The error message is really helpful here. The concatenation operation is a two step process. First, you need to allocate a string and then iterate over both of them to copy their bytes to this newly allocated string. As such, there's an implicit heap allocation involved, hidden behind the + operator. Rust discourages implicit heap allocation. Instead, the compiler suggests that we can concatenate two string literals by explicitly making the first one an owned string. So our code changes, like so:
// string_concat.rs
fn main() {
let foo = "Foo";
let bar = "Bar";
let baz = foo.to_string() + bar;
}
So we made foo a String type by calling the to_string() method. With that change, our code compiles.
The main difference between both String and &str is that &str is natively recognized by the compiler, while String is a custom type from the standard library. You could implement your own similar String abstraction on top of Vec<u8>.
When to use &str versus String ?
To a programmer coming to Rust, often the confusion is around which one to use. Well, the best practice is to use APIs that take a &str type when possible, as when the string is already allocated somewhere, you can save copying and allocation costs just by referencing that string. Passing &str around your program is nearly free: it incurs nearly no allocation costs and no copying of memory.
Global values
Apart from variable and type declarations, Rust also allows us to define global values that can be accessed from anywhere in the program. They follow the naming convention of every letter being uppercase. These are of two kinds: constants and statics. There are also constant functions, which can be called to initialize these global values. Let's explore constants first.
Constants
The first form of global values are constants. Here's how we can define one:
// constants.rs
const HEADER: &'static [u8; 4] = b"Obj\0";
fn main() {
println!("{:?}", HEADER);
}
We use the const keyword to create constants. As constants aren't declared with the let keyword, specifying types is a must when creating them. Now, we can use HEADER where we would use the byte literal, Obj\. b"" is a convenient syntax to create a sequence of bytes of the &'static [u8; n] type, as in a 'static reference to a fixed-sized array of bytes. Constants represent concrete values and don't have any memory location associated with them. They are inlined wherever they are used.
Statics
Statics are proper global values, as in they have a fixed memory location and exist as a single instance in the whole program. These can also be made mutable. However, as global variables are a breeding ground for the nastiest bugs out there, there are some safety mechanisms in place. Both reading and writing to statics has to be done inside an unsafe {} block. Here's how we crate and use statics:
// statics.rs
static mut BAZ: u32 = 4;
static FOO: u8 = 9;
fn main() {
unsafe {
println!("baz is {}", BAZ);
BAZ = 42;
println!("baz is now {}", BAZ);
println!("foo is {}", FOO);
}
}
In the code, we've declared two statics BAZ and FOO. We use the static keyword to create them along with specifying the type explicitly. If we want them to be mutable, we add the mut keyword after static. Statics aren't inlined like constants. When we read or write the static values, we need to use an unsafe block. Statics are generally combined with synchronization primitives for any kind of thread-safe use. They are also used to implement global locks and when integrating with C libraries.
Generally, if you don't need to rely on singleton property of statics and its predefined memory location and just want a concrete value, you should prefer using consts. They allow the compiler to make better optimizations and are more straightforward to use.
Compile time functions – const fn
We can also define constant functions that evaluate their argument during compile time. This means that a const value declaration can have a value that's from an invocation of a const function. const functions are pure functions and must be reproducible. This means that they cannot take mutable arguments to any type. They also cannot include operations that are dynamic such as a heap allocation. They can be called in non-const places where they act just like normal functions. But when they are called in const contexts, they are evaluated at compile time. Here's how we define a const function:
// const_fns.rs
const fn salt(a: u32) -> u32 {
0xDEADBEEF ^ a
}
const CHECKSUM: u32 = salt(23);
fn main() {
println!("{}", CHECKSUM);
}
In the code, we defined a const function, salt, that takes a u32 value as parameter and does a xor operation with the hex value, 0xDEADBEEF. Const functions are quite useful for operations that can be performed at compile time. For instance, let's say you are writing a binary file parser and you need to read the first four bytes of the file as an initialization and validation step for the parser. The following code demonstrates how we can do this entirely at runtime:
// const_fn_file.rs
const fn read_header(a: &[u8]) -> (u8, u8, u8, u8) {
(a[0], a[1], a[2], a[3])
}
const FILE_HEADER: (u8,u8,u8,u8) = read_header(include_bytes!("./const_fn_file.rs"));
fn main() {
println!("{:?}", FILE_HEADER);
}
In the code, the read_header function receives a file as a bytes array using the include_bytes! macro, which also reads the file at compile time. We then pull 4 bytes out of it and return it as a four-element tuple. Without the const function, all this would be done at runtime.
Dynamic statics using the lazy_static! macro
As we have seen, global values can only be declared for types that are non-dynamic in their initialization and have a known size on the stack at compile time. For example, you can't create a HashMap as a static value because it requires a heap allocation. Fortunately, we can have HashMap and other dynamic collection types such as Vec as global statics too, using a third-party crate called lazy_static. This crate exposes the lazy_static! macro, which can be used to initialize any dynamic type that's accessible globally from anywhere in the program. Here's a snippet of how to initialize a Vec that can be mutated from multiple threads:
// lazy_static_demo
use std::sync::Mutex;
lazy_static! {
static ref ITEMS: Mutex<Vec<u64>> = {
let mut v = vec![];
v.push(9);
v.push(2);
v.push(1);
Mutex::new(v)
}
}
Items declared within the lazy_static! macro are required to implement the Sync trait. This means if we want a mutable static, we have to use a multithreaded type such as Mutex or RwLock instead of RefCell. We'll explain these types when we get to Chapter 8, Concurrency. We'll be using this macro frequently in future chapters. Head over to the crate repository to learn more about using lazy_static.
Iterators
We glimpsed iterators in Chapter 1, Getting Started with Rust. To recap, an iterator is any ordinary type that can walk over elements of a collection type in one of three ways: via self, &self, or &mut self. They are not a new concept and mainstream language such as C++ and Python have them already though that in Rust, they can appear surprising at first due to their form as an associated type trait. Iterators are used quite frequently in idiomatic Rust code when dealing with collection types.
To understand how they work, let's look at the definition of the Iterator trait from the std::iter module:
pub trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;
// other default methods omitted
}
The Iterator trait is an associated type trait which mandates the two items, to be defined for any implementing type. First is the associated type, Item, which specifies what item the iterator yields. Second is the next method, which is called every time we need to read a value from the type being iterated over. There are also other methods that we've omitted here, as they have default implementations. To make a type iterable, we only need to specify the Item type and implement the next method and all other methods with default implementations become available for the type. In this way, iterators are a really powerful abstraction. You can see the full set of default methods at: https://doc.rust-lang.org/std/iter/trait.Iterator.html.
The Iterator trait has a sibling trait called IntoIterator, which is implemented by types that want to convert in to an iterator. It provides the into_iter method that takes the implementing type via self and consumes the elements of the type.
Let's implement the Iterator trait for a custom type. Identify what you want to iterate over in your data type if it's not a collection. Then, create a wrapper struct holding any state of the iterator. Often, we' will find iterators being implemented for some wrapper type that references the collection type's element either by ownership or by an immutable or mutable reference. The methods to convert a type in to an iterator are also named conventionally:
The type that implements the Iterator trait can be used in a for loop and under the hood, the next method of the item gets called. Consider the for loop as shown in the following:
for i in 0..20 {
// do stuff
}
The preceding code would get de-sugared as follows:
let a = Range(..);
while let Some(i) = a.next() {
// do stuff
}
It' will repeatedly call a.next() until it matches a Some(i) variant. When it matches None, the iteration stops.
Implementing a custom iterator
To understand iterators more thoroughly, we'll implement an iterator that generates prime numbers up to a certain limit that's customizable by the user. First, let's clarify the API expectations that we'll need from our iterator:
// custom_iterator.rs
use std::usize;
struct Primes {
limit: usize
}
fn main() {
let primes = Primes::new(100);
for i in primes.iter() {
println!("{}", i);
}
}
So, we have a type called Primes that we can instantiate with the new method, providing the upper bound on the number of primes to generate. We can call iter() on this instance to convert it in to an iterator type, which can then be used in a for loop. With that said, let's add the new and iter methods on it:
// custom_iterator.rs
impl Primes {
fn iter(&self) -> PrimesIter {
PrimesIter {
index: 2,
computed: compute_primes(self.limit)
}
}
fn new(limit: usize) -> Primes {
Primes { limit }
}
}
The iter method takes the Primes type via &self and returns a PrimesIter type containing two fields: index, which stores the index in the vector, and a computed field that stores the pre-computed primes in a vector. The compute_primes method is defined as follows:
// custom_iterator.rs
fn compute_primes(limit: usize) -> Vec<bool> {
let mut sieve = vec![true; limit];
let mut m = 2;
while m * m < limit {
if sieve[m] {
for i in (m * 2..limit).step_by(m) {
sieve[i] = false;
}
}
m += 1;
}
sieve
}
This function implements the sieve of the eratosthenes algorithm for efficiently generating prime numbers up to a given limit. Next, there's the definition of the PrimesIter struct along with its Iterator implementation:
// custom_iterator.rs
struct PrimesIter {
index: usize,
computed: Vec<bool>
}
impl Iterator for PrimesIter {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
loop {
self.index += 1;
if self.index > self.computed.len() - 1 {
return None;
} else if self.computed[self.index] {
return Some(self.index);
} else {
continue
}
}
}
}
In the next method, we loop and get the next prime number if the value at self.index is true in the self.computed Vec. If we went past the elements in our computed Vec, then we return None to signify that we are done. Here's the complete code with the main function that generates 100 prime numbers:
// custom_iterator.rs
use std::usize;
struct Primes {
limit: usize
}
fn compute_primes(limit: usize) -> Vec<bool> {
let mut sieve = vec![true; limit];
let mut m = 2;
while m * m < limit {
if sieve[m] {
for i in (m * 2..limit).step_by(m) {
sieve[i] = false;
}
}
m += 1;
}
sieve
}
impl Primes {
fn iter(&self) -> PrimesIter {
PrimesIter {
index: 2,
computed: compute_primes(self.limit)
}
}
fn new(limit: usize) -> Primes {
Primes { limit }
}
}
struct PrimesIter {
index: usize,
computed: Vec<bool>
}
impl Iterator for PrimesIter {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
loop {
self.index += 1;
if self.index > self.computed.len() - 1 {
return None;
} else if self.computed[self.index] {
return Some(self.index);
} else {
continue
}
}
}
}
fn main() {
let primes = Primes::new(100);
for i in primes.iter() {
print!("{},", i);
}
}
We get the following output:
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
Great! Apart from Vec, there are a lot of types that implement the Iterator trait in the standard library, such as HashMap, BTreeMap, and VecDeque.
Advanced types
In this section, we'll look at some of the advanced types in Rust. Let's first start with unsized types.
Unsized types
Unsized types are categories of types that are first encountered if one tries to create a variable of the type, str. We know that we can create and use string references only behind references such as &str. Let's see what error message we get if we try to create a str type:
// unsized_types.rs
fn main() {
let a: str = "2048";
}
We get the following error upon compilation:
By default, Rust creates a reference type of str as 'static str. The error message mentions that all local variables—values that live on the stack—must have a statically known size at compile time. This is because the stack memory is finite and we cannot have infinite- or dynamic-sized types. Similarly, there are other instances of types that are unsized:
Function types
Functions in Rust also have a concrete type and they differ in terms of their argument types and also in their arity, as in how many arguments they take, as in the example:
// function_types.rs
fn add_two(a: u32, b: u32) -> u32 {
a + b
}
fn main() {
let my_func = add_two;
let res = my_func(3, 4);
println!("{:?}", res);
}
Functions in Rust are first class citizens. This means they can be stored in variables or passed to other functions or returned from functions. The preceding code declares a function add_two, which we store in my_func and later invoke with 3 and 4.
Function types are not to be confused with Fn closures as they both have fn as their type signature prefix.
Never type ! and diverging functions
We used a macro called unimplemented!(), which helps in letting the compiler ignore any unimplemented function and to compile our code. This works because the unimplemented macro returns something called a never type, denoted by !.
Unions
For interoperability with C code, Rust also supports the union type, which maps directly to a C union. Unions are unsafe to read from. Let's see an example of how to create and interact with them:
// unions.rs
#[repr(C)]
union Metric {
rounded: u32,
precise: f32,
}
fn main() {
let mut a = Metric { rounded: 323 };
unsafe {
println!("{}", a.rounded);
}
unsafe {
println!("{}", a.precise);
}
a.precise = 33.3;
unsafe {
println!("{}", a.precise);
}
}
We created a union type, Metric, that has two fields rounded and precise, and represents some measurement. In main, we initialize an instance of it in the a variable.
We can only initialize one of the variables, otherwise the compiler complains with the following message:
error: union expressions should have exactly one field
--> unions.rs:10:17
|
10 | let mut a = Metric { rounded: 323, precise:23.0 };
We also had to use unsafe blocks to print fields of our union. Compiling and running the previous code gives us the following output:
323
0.000000000000000000000000000000000000000000453
33.3
As you can see, we get a garbage value for the uninitialized field, precise. At the time of writing this book, union types only allow Copy types as their fields. They share the same memory space with all of their fields, exactly like C unions.
Cow
Cow is a smart pointer type that provides two versions of strings. It stands for Clone on Write. It has the following type signature:
pub enum Cow<'a, B> where B: 'a + ToOwned + 'a + ?Sized, {
Borrowed(&'a B),
Owned(<B as ToOwned>::Owned),
}
First, we have the two variants:
This type is suitable for cases where one needs to avoid allocations where it's not needed. A real world example is the JSON parser crate called serde_json.
Advanced traits
In this section, we'll discuss some of the advanced traits that are important to know when we are dealing with complex code bases.
Sized and ?Sized
The Sized trait is a marker trait that represents types whose sizes are known at compile time. It is implemented for most types in Rust except for unsized types. All type parameters have an implicit trait bound of Sized in their definition. We can also specify optional trait bounds using the ? operator before a trait, but the ? operator with traits only works for marker traits as the time of writing this book. It may be extended to other types in future.
Borrow and AsRef
These are special traits that carry the notion of able to construct a out of any type.
ToOwned
This trait is meant to be implemented for types that can be converted in to an owned version. For example, the &str type has this trait implemented for String. This means the &str type has a method called to_owned() on it that can convert it in to a String type, which is an owned type.
From and Into
To convert one type into another, we have the From and Into traits. The interesting part about both of these traits is that we only need to implement the From trait and we get the implementation of the Into trait for free, because of the following impl:
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, U> Into<U> for T where U: From<T> {
fn into(self) -> U {
U::from(self)
}
}
Trait objects and object safety
Object safety is a set of rules and restrictions that does not allow trait objects to be constructed. Consider the following code:
// object_safety.rs
trait Foo {
fn foo();
}
fn generic(val: &Foo) {
}
fn main() {
}
We get the following error upon compilation:
This brings us to the idea of object safety, which is a set of restrictions that forbids creating a trait object from a trait. In this example, since our type doesn't have a self reference, it's not possible to create a trait object out of it. In this case, to convert any type into a trait object, methods on the type need to be an instance—one that takes self by reference. So, we change our trait method declaration, foo, to the following:
trait Foo {
fn foo(&self);
}
This makes the the compiler happy.
Universal function call syntax
There are times when you are using a type that has the same set of methods as one of its implemented traits. In those situations, Rust provides us with the uniform function call syntax that works for calling methods that are either on types themselves or come from a trait. Consider the following code:
// ufcs.rs
trait Driver {
fn drive(&self) {
println!("Driver's driving!");
}
}
struct MyCar;
impl MyCar {
fn drive(&self) {
println!("I'm driving!");
}
}
impl Driver for MyCar {}
fn main() {
let car = MyCar;
car.drive();
}
The preceding code has two methods with the same name, drive. One of them is an inherent method and the other comes from the trait, Driver. If we compile and run this, we get the following output:
I'm driving
Well, what if we wanted to call the Driver trait's drive method? Inherent methods on types are given higher priority than other methods with the same name. To call a trait method, we can use the Universal Function Call Syntax (UFCS).
Trait rules
Traits also have special properties and restrictions, which are important to know about when you are using them.
An important property of the type system in the context of traits is the trait coherence rule. The idea of trait coherence is that there should be exactly one implementation of a trait on a type that implements it. This should be quite obvious since, with two implementations there would be ambiguity in what to choose between the two.
Another rule that might confuse many about traits is the orphan rule. The orphan rule, in simple words, states that we cannot implement external traits on external types.
To word it in another way, either the trait must be defined by you if you are implementing something on an external type, or your type should be defined by you when you are implementing an external trait. This rules out the possibility of having conflicts in overlapping trait implementations across crates.
Closures in depth
As we know already, closures are a fancier version of functions. They are also first-class functions, which means that they can be put into variables or can be passed as an argument to functions or even returned from a function. But what sets them apart from functions is that they are also aware of the environment they are declared within and can reference any variable from their environment. The way they reference variables from their environment is determined by how the variable is used inside the closure.
A closure, by default, will try to capture the variable in the most flexible way possible. Only when the programmer needs a certain way of capturing the value will they coerce to the programmer's intent. That won't make much sense unless we see different kinds of closures in action. Closures under the hood are anonymous structs that implement three traits that represent how closures access their environment. We will look at the three traits (ordered from least restrictive to most restrictive) next.
Fn closures
Closures that access variables only for read access implement the Fn trait. Any value they access are as reference types (&T). This is the default mode of borrowing the closures assumes. Consider the following code:
// fn_closure.rs
fn main() {
let a = String::from("Hey!");
let fn_closure = || {
println!("Closure says: {}", a);
};
fn_closure();
println!("Main says: {}", a);
}
We get the following output upon compilation:
Closure says: Hey!
Main says: Hey!
The a variable was still accessible even after invoking the closure as the closure used a by reference.
FnMut closures
When the compiler figures out that a closure mutates a value referenced from the environment, the closure implements the FnMut trait. Adapting the same code as before, we have the following:
// fn_mut_closure.rs
fn main() {
let mut a = String::from("Hey!");
let fn_mut_closure = || {
a.push_str("Alice");
};
fn_mut_closure();
println!("Main says: {}", a);
}
The previous closure adds the "Alice" string to a. fn_mut_closure mutates its environment.
FnOnce closures
Closures that take ownership of the data they read from their environment get implemented with FnOnce. The name signifies that this closure can only be called once and, because of that, the variables are available only once. This is the least recommended way to construct and use closures, because you cannot use the referenced variables later:
// fn_once.rs
fn main() {
let mut a = Box::new(23);
let call_me = || {
let c = a;
};
call_me();
call_me();
}
This fails with the following error:
But there are use cases where FnOnce closures are the only applicable closures. One such example is the thread::spawn method in the standard library used for spawning new threads.
Consts in structs, enums, and traits
Structs, enums, and traits definitions can also be provided with constant field members. They can be used in cases where you need to share a constant among them. Take, for example, a scenario where we have a Circle trait that's is meant to be implemented by different circular shape types. We can add a PI constant to the Circle trait, which can be shared by any type that has an area property and relies on value of PI for calculating the area:
// trait_constants.rs
trait Circular {
const PI: f64 = 3.14;
fn area(&self) -> f64;
}
struct Circle {
rad: f64
}
impl Circular for Circle {
fn area(&self) -> f64 {
Circle::PI * self.rad * self.rad
}
}
fn main() {
let c_one = Circle { rad: 4.2 };
let c_two = Circle { rad: 75.2 };
println!("Area of circle one: {}", c_one.area());
println!("Area of circle two: {}", c_two.area());
}
We can also have consts in structs and enums:
// enum_struct_consts.rs
enum Item {
One,
Two
}
struct Food {
Cake,
Chocolate
}
impl Item {
const DEFAULT_COUNT: u32 = 34;
}
impl Food {
const FAVORITE_FOOD: &str = "Cake";
}
fn main() {
}
Next, let's look at some of the advanced aspects of modules.
Modules, paths, and imports
Rust provides us with a lot of flexibility in terms of how we organize our project, as we saw in Chapter 2, Managing Projects with Cargo. Here, we'll go into some of the advanced aspects of modules and different ways to introduce more privacy in our code.
Imports
We can do nested imports of items from modules. This helps in reducing the taken up by imports. Consider the following code:
// nested_imports.rs
use std::sync::{Mutex, Arc, mpsc::channel};
fn main() {
let (tx, rx) = channel();
}
Re-exports
Re-exports allows one to selectively expose items from a module. We were already using the convenience of reexports when we used the Option and Result types. Re-exports also helps in reducing the import path one has to write if the module is created a nested directory containing many submodules.
For example, here we have a sub module named bar.rs from a cargo project we created called reexports:
// reexports_demo/src/foo/bar.rs
pub struct Bar;
The Bar is a publicly exposed struct module under src/foo/bar.rs. If the user wants to use Bar in their code, they will have to write something like the following:
// reexports_demo/src/main.rs
use foo::bar::Bar;
fn main() {
}
The above use statement is quite verbose. When you have a lot of nested sub-modules in your project, this gets awkward and redundant. Instead, we can reexport Bar from the bar module all of the way to our crate root, like so, in our foo.rs:
// reexports_demo/src/foo.rs
mod bar;
pub use bar::Bar;
To re-export, we use the pub use keyword. Now we can easily use Bar as well as using foo::Bar.
By default, Rust recommends absolute imports within root modules. Absolute imports are done starting with the crate keyword, whereas relative imports are done using the self keyword. When re-exporting sub-modules to their parent modules, we might benefit from relative imports, as using absolute imports becomes long and redundant.
Selective privacy
The privacy of items in Rust starts at the module level. As a library author, to expose things to users from a module, we use the pub keyword. But there are items that we only want to expose to other modules within the crate, but not to the users. In such cases, we can use the pub(crate) modifier for the item, which allows the item to be exposed only within the crate.
Consider the following code:
// pub_crate.rs
fn main() {
}
Advanced match patterns and guards
In this section, we'll take a look at some of the advanced usage of match and let patterns. First, let's look at match.
Match guards
We can also use match guards on arms (if code > 400 || code <= 500) to match on a subset of values. They start with an if expression.
Advanced let destructure
We have the following complex data that we want to match against:
// complex_destructure.rs
enum Foo {
One, Two, Three
}
enum Bar(Foo);
struct Dummy {
inner: Bar
}
struct ComplexStruct {
obj: Dummy
}
fn get_complex_struct() -> ComplexStruct {
ComplexStruct {
obj: Dummy { inner: Bar(Foo::Three) }
}
}
fn main() {
let a = get_complex_struct();
}
Casting and coercion
Casting is a mechanism of downgrading or upgrading a type to some other type. When the casting happens implicitly, it is called coercion. Rust also allows for casting types at various levels. The very obvious candidates are primitive numeric types. You may have the need to cast a u8 type to promote to u64 or to truncate i64 to i32. To perform trivial casts, we use the as keyword, like so:
let a = 34u8;
let b = a as u64;
It's not only primitive types—casting is supported at higher-level types too. We can also cast a reference of a type to its trait object, if it implements that particular trait. So we can do something like the following:
// cast_trait_object.rs
use std::fmt::Display;
fn show_me(item: &Display) {
println!("{}", item);
}
fn main() {
let a = "hello".to_string();
let b = &a;
show_me(b);
// let c = b as &Display;
}
There are other classes of casting supported by various pointer types:
There is also another explicit and unsafe version of casting called transmutes and, because it's unsafe, it is very dangerous to use when you are unaware of the consequences. When used ignorantly, it leads you into situations similar to one where you create a pointer from an integer in C.
Types and memory
In this section, we'll touch on some aspects and low-level details of types in programming languages that are important to know if you are someone writing systems software and care about performance.
Memory alignment
This is one of those aspects of memory management that you will rarely have to care about unless performance is a strict requirement. Due to data access latency between memory and the processor, when the processor accesses data from memory, it does so in a chunk and not byte by byte. This is to help reduce the number of memory accesses. This chunk size is called the memory access granularity of the CPU. Usually, the chunk sizes are one word (32 bit), two word, four word, and so on, and they depend on the target architecture. Due to this access granularity, it is desired that the data resides in memory which is aligned to a multiple of the word size. If that is not the case, then the CPU has to read and then perform left or right shifts on the data bits and discard the unneeded data to read a particular value. This wastes CPU cycles. In most cases, the compiler is smart enough to figure out the data alignment for us, but in some cases, we need to tell it. There are two important terms we need to understand:
Data types in all programming languages have both a size and an alignment. The alignment of primitive types is equal to their size. So, usually, all primitive types are aligned and the CPU has no problem doing an aligned read for these. But when we create custom data types, compilers usually insert padding between our struct fields if they are not aligned to allow the CPU to access memory in an aligned manner.
Having known about data type size and alignment, let's explore the std::mem module from the standard library that allows us to introspect data types and their sizes.
Exploring the std::mem module
In regard to types and their size in memory, the mem module from the standard library provides us with convenient APIs to inspect sizes and alignment of types and functionalities for initializing raw memory. Quite a few of these functions are unsafe and must only be used when the programmer knows what they are doing. We'll restrict our exploration to these APIs:
Being generic, these methods are meant to be called using the turbofish ::<> operator. We are not actually giving these methods a type as a parameter; we're just explicitly calling them against a type. If we were skeptical about the zero-cost claims of some of the preceding generic types, we could use these functions to check the overhead. Let's take a look at some sizes of types in Rust:
// mem_introspection.rs
use std::cell::Cell;
use std::cell::RefCell;
use std::rc::Rc;
fn main() {
println!("type u8: {}", std::mem::size_of::<u8>());
println!("type f64: {}", std::mem::size_of::<f64>());
println!("value 4u8: {}", std::mem::size_of_val(&4u8));
println!("value 4: {}", std::mem::size_of_val(&4));
println!("value 'a': {}", std::mem::size_of_val(&'a'));
println!("value \"Hello World\" as a static str slice: {}", std::mem::size_of_val("Hello World"));
println!("value \"Hello World\" as a String: {}", std::mem::size_of_val("Hello World").to_string());
println!("Cell(4)): {}", std::mem::size_of_val(&Cell::new(84)));
println!("RefCell(4)): {}", std::mem::size_of_val(&RefCell::new(4)));
println!("Rc(4): {}", std::mem::size_of_val(&Rc::new(4)));
println!("Rc<RefCell(8)>): {}", std::mem::size_of_val(&Rc::new(RefCell::new(4))));
}
Another observation that's important to notice, is the size of various pointers. Consider the following code:
// pointer_layouts.rs
trait Position {}
struct Coordinates(f64, f64);
impl Position for Coordinates {}
fn main() {
let val = Coordinates(1.0, 2.0);
let ref_: &Coordinates = &val;
let pos_ref: &Position = &val as &Position;
let ptr: *const Coordinates = &val as *const Coordinates;
let pos_ptr: *const Position = &val as *const Position;
println!("ref_: {}", std::mem::size_of_val(&ref_));
println!("ptr: {}", std::mem::size_of_val(&ptr));
println!("val: {}", std::mem::size_of_val(&val));
println!("pos_ref: {}", std::mem::size_of_val(&pos_ref));
println!("pos_ptr: {}", std::mem::size_of_val(&pos_ptr));
}
We create pointers to a Coordinate struct in a bunch of different ways and we print their sizes by casting them as different kind of pointers. Compiling and running the code above, gives us the following output:
ref_: 8
ptr: 8
val: 16
pos_ref: 16
pos_ptr: 16
This clearly shows that trait objects and references to traits are fat pointers double the size of a normal pointer.
Serialization and deserialization using serde
Serialization and deserialization are important concepts to understand for any kind of application needs to transfer or store data in a compact manner. Serialization is the process by which an in-memory data type can be converted into a sequence of bytes, while deserilization is the opposite of that, meaning it can read data. Many programming languages provide support for converting a data structure into a sequence of bytes. The beautiful part about serde is that it generates the serialization of any supported type at compile time, relying heavily on procedural macros. Serialization and deserialization is a zero cost operation with serde most of the time.
In this demo, we'll explore the serde crate to serialize and deserialize a user defined type. Let's create a new project by running cargo new serde_demo with the following contents in Cargo.toml:
# serde_demo/Cargo.toml
[dependencies]
serde = "1.0.84"
serde_derive = "1.0.84"
serde_json = "1.0.36"
Following are the contents in main.rs:
serde_demo/src/main.rs
use serde_derive::{Serialize, Deserialize};
#[derive(Debug, Serialize, Deserialize)]
struct Foo {
a: String,
b: u64
}
impl Foo {
fn new(a: &str, b: u64) -> Self {
Self {
a: a.to_string(),
b
}
}
}
fn main() {
let foo_json = serde_json::to_string(Foo::new("It's that simple", 101)).unwrap();
println!("{:?}", foo_json);
let foo_value: Foo = serde_json::from_str(foo_json).unwrap();
println!("{:?}", foo_value);
}
To serialize any native data type to a JSON-like format, we simply need to put a derive annotation over our types, which is the case of for our struct, Foo.
serde supports a lot of serializers implemented as crates. Popular examples are serde_json, bincode and TOML. More supported formats can be found at: https://github.com/TyOverby/bincode. These serialization implementors, such as the serde_json crate, provide methods such as to_string to convert
Summary
In this chapter, we covered quite a bit of detail on some of the advanced aspects of Rust's type system. We got to know the various traits that make writing ergonomic Rust code. We also saw advanced pattern matching constructs. In the end, we looked at the serde crate that is blazing fast in performing data serialization. The next chapter will be about how to do multiple things at the same time using concurrency.
Concurrency
Modern day software is rarely written to perform tasks sequentially. It is more important today to be able to write programs that do more than one thing at a time and do it correctly. As transistors keep getting smaller, computer architects are unable to scale CPU clocks frequency due to quantum effects in the transistors. This has shifted focus more towards building concurrent CPU architectures that employ multiple cores. With this shift, developers need to write highly concurrent applications to maintain performance gains that they had for free when Moore's law was in effect.
But writing concurrent code is hard and languages that don't provide better abstractions make the situation worse. Rust attempts to make things better and safer in this space. In this chapter, we will go through the concepts and primitives that enable Rust to provide fearless concurrency to developers, allowing them to easily express their programs in a way that can safely do more than one thing at a time.
The topics covered in this chapter are as follows:
Program execution models
"An evolving system increases its complexity unless work is done to reduce it."
- Meir Lehman
In the early 1960s, before multitasking was even a thing, programs written for computers were limited to a sequential execution model, where they were able to run instructions one after the other in chronological order. This was mainly due to limitations in how many instructions the hardware could process during that time. As we shifted from vacuum tubes to transistors, then to integrated chips, the modern day computer opened up possibilities to support multiple points of execution in programs. Gone are the days of sequential programming model where computers had to wait for an instruction to finish before executing the next one. Today, it's more common for computers to be able to do more than one thing at a time and do it correctly.
The modern day computer models a concurrent execution model, where a bunch of instructions can execute independently of each other with overlapping time periods. In this model, instructions need not wait for each other and run nearly at the same time, except when they need to share or coordinate with some data. If you look at the modern day software, it does many things that appear to happen at the same time, as in the following examples:
These are some really compelling examples that propel the need to model our program as concurrent processes. But what does concurrency really mean? In the next section, let's define that.
Concurrency
The ability of a program to manage more than one thing at a time while giving an illusion of them happening at the same time is called concurrency, and such programs are called concurrent programs. Concurrency allows you to structure your program in a way that it performs faster if you have a problem that can be split into multiple sub-problems. When talking about concurrency, another term called parallelism is often thrown in the discussion, and it is important we know the differences as the usage of these terms often overlap. Parallelism is when each task runs simultaneously on separate CPU cores with non-overlapping time periods. The following diagram illustrates the difference between concurrency and parallelism:
To put it another way, concurrency is about structuring your program to manage more than one thing at a time, while parallelism is about putting your program on multiple cores to increase the amount of work it does in a period of time. With this definition, it follows that concurrency when done right, does a better utilization of the CPU while parallelism might not in all cases. If your program runs in parallel but is only dealing with a single dedicated task, you aren't gaining much throughput. This is to say that we gain the best of both worlds when a concurrent program is made to run on multiple cores.
Usually, the support for concurrency is already provided at the lower levels by the operating system, and developers mostly program against the higher level abstractions provided by programming languages. On top of the low level support, there are different approaches to concurrency.
Approaches to concurrency
We use concurrency to offload parts of our program to run independently. At times, these parts may depend on each other and are progressing towards a common goal or they may be embarrassingly parallel, which is a term used to refer to problems that can be split into independent stateless tasks, for instance, transforming each pixel of an image in parallel. As such, the approaches used to make a program concurrent depend on what level we are leveraging concurrency and the nature of the problem we are trying to solve. In the next section, let's discuss the available approaches to concurrency.
Kernel-based
With multitasking being the norm these days, modern operating systems need to deal with more than one processes. As such, your operating system kernel already provides primitives for writing concurrent programs in one of the following forms:
Note: The implementation of threads and processes differ between operating systems. Under Linux, they are treated the same by the kernel, except that threads don't have their own process control block entry in the kernel and they share the address space with their parent process and any other child threads.
User-level
Process- and thread-based concurrency are limited by how many of them we can spawn. A lighter and more efficient alternative is to use user space threads, popularly known as green threads. They first appeared in Java with the code name green and the name has stuck since then. Other languages such as Go (goroutines), and Erlang also have green threads. The primary motivation in using green threads is to reduce the overhead that comes with using process- and thread-based concurrency. Green threads are very lightweight to spawn and use less space than a thread. For instance, in Go, a goroutine takes only 4 KiB of space compared to the usual 8MB by a thread.
User space threads are managed and scheduled as part of the language runtime. A runtime is any extra bookeeping or managing code that's executed with every program you run. This would be your garbage collector or the thread scheduler. Internally, user space threads are implemented on top of native OS threads. Rust had green threads before the 1.0 version, but they were later removed before the language hit stable release. Having green threads would have steered away Rust's guarantee and its principle of having no runtime costs.
User space concurrency is more efficient, but hard to get right in its implementation. Thread-based concurrency, however, is a tried and tested approach and has been popular since multi-process operating systems came into existence and it's the go- to approach for concurrency. Most mainstream languages provide threading APIs that allows users to create threads and easily offload a portion of their code for independent execution.
Leveraging concurrency in a program follows a multi-step process. First, we need to identify parts of our problem that can be run independently. Then, we need to look for ways to co-ordinate threads that are split into multiple sub-tasks to accomplish a shared goal. In the process, threads might also need to share data and they need synchronization for accessing or writing to shared data. With all of the benefits that concurrency brings with it, there are a new set of challenges and paradigms that developers need to care and plan for. In the next section, let's discuss the pitfalls of concurrency.
Pitfalls
The advantages of concurrency abound, but it brings a whole lot of complexity and pitfalls that we have to deal with. Some issues when writing concurrent programs code are as follows:
A set of operations is atomic if they execute together in an indivisble manner. For a set of operations to be atomic, it must not be pre-empted in the middle of its execution. It must execute completely or not at all.
If two threads try to update a value at a memory location at the same time, they might end up overwriting each other's values and only one of the updates will ever be written to memory or the value might not get updated at all. This is a classic example of a race condition. Both threads are racing to update the value without any co-ordination with each other. This leads to other issues such as data races.
// Thread A
Node get(List list) {
if (list.head != NULL) {
return list.head
}
}
// Thread B
list.head = NULL
We have two threads, A and B, that act on a linked list. Thread A tries to retrieve the head of the list. For doing this safely, it first checks the head of the list is not NULL and then returns it. Thread B sets the head of the list to a NULL value. Both of these run at nearly the same time and might get scheduled by the OS in different order. For instance, in one of the execution instances, the point where Thread A runs first and asserts that list.head, is not NULL. Right after that, Thread A is preempted by the OS and Thread B is scheduled to run. Now, Thread B sets list.head to NULL. Following that, when Thread A gets the chance to run, it will try to return list.head which is a NULL value. This would result in a segmentation fault when list.head is read from. In this case, memory unsafety happens because ordering is not maintained for these operations.
There is a common solution to the previously mentioned problems—synchronizing or serializing access to shared data or code or ensuring that the threads run critical sections atomically. This is done using synchronization primitives such as a mutex, semaphores, or conditional variables. But even using these primitives can lead to other issues such as deadlocks.
Deadlocks: Apart from race conditions, another issue that threads face is getting starved of resources while holding a lock on a resource. Deadlock is a condition where a Thread A holding a resource a and waiting for resource b. Another Thread B is holding a resource b and is waiting for resource a. The following diagram depicts the situation:
Deadlocks are hard to detect but they can be solved by taking locks in the correct order. In the preceding case, if both Thread A and Thread B try to take the lock first, we can ensure that the locks are released properly.
With the advantages and pitfalls explored, let's go through the APIs that Rust provides to write concurrent programs.
Concurrency in Rust
Rust's concurrency primitives rely on native OS threads. It provides threading APIs in the std::thread module in the standard library. In this section, we'll start with the basics on how to create threads to perform tasks concurrently. In subsequent sections, we'll explore how threads can share data with each other.
Thread basics
As we said, every program starts with a main thread. To create an independent execution point from anywhere in the program, the main thread can spawn a new thread, which becomes its child thread. Child threads can further spawn their own threads. Let's look at a concurrent program in Rust that uses threads in the simplest way possible:
// thread_basics.rs
use std::thread;
fn main() {
thread::spawn(|| {
println!("Thread!");
"Much concurrent, such wow!".to_string()
});
print!("Hello ");
}
In main, we call the spawn function from the thread module which takes a no parameter closure as an argument. Within this closure, we can write any code that we want to execute concurrently as a separate thread. In our closure, we simply print some text and return String. Compiling and running this program gives us the following output:
$ rustc thread_basics.rs
$ ./thread_basics
Hello
Strange! We only get to see "Hello" being printed. What happened to println!("Thread"); from the child thread ? A call to spawn creates the thread and returns immediately and the thread starts executing concurrently without blocking the instructions after it. The child thread is created in the detached state. Before the child thread has any chance to run its code, the program reaches the print!("Hello"); statement and exits the program when it returns from main. As a result, code within the child thread doesn't execute at all. To allow the child thread to execute its code, we need to wait on the child thread. To do that, we need to first assign the value returned by spawn to a variable:
let child = thread::spawn(|| {
print!("Thread!");
String::from("Much concurrent, such wow!")
});
The spawn function returns a JoinHandle type, which we store in the child variable. This type is a handle to the child thread, which can be used to join a thread—in other words, wait for its termination. If we ignore the JoinHandle type of a thread, there is no way to wait for the thread. Continuing with our code, we call the join method on the child before exiting from main as in the following:
let value = child.join().expect("Failed joining child thread");
Calling join blocks the current thread and waits for the child thread to finish before executing any line of code following the join call. It returns a Result value. Since we know that this thread does not panic, we call expect to unwrap the Result type giving us the string. Joining the thread can fail if a thread is joining itself or gets deadlocked, and, in that case, it returns an Err variant with the value that was passed to the panic! call though, in this case, the returned value is of the Any type which must be downcasted to a proper type. Our updated code is as follows:
// thread_basics_join.rs
use std::thread;
fn main() {
let child = thread::spawn(|| {
println!("Thread!");
String::from("Much concurrent, such wow!")
});
print!("Hello ");
let value = child.join().expect("Failed joining child thread");
println!("{}", value);
}
Here's the output of the program:
$ ./thread_basics_join
Hello Thread!
Much concurrent, such wow!
Great ! We wrote our first concurrent hello world program. Let's explore other APIs from the thread module.
Customizing threads
We also have APIs that can be used to configure threads by setting their properties such as the name or their stack size. For this, we have the Builder type from the thread module. Here's a simple program that creates a thread and spawns it using the Builder type:
// customize_threads.rs
use std::thread::Builder;
fn main() {
let my_thread = Builder::new().name("Worker Thread".to_string())
.stack_size(1024 * 4);
let handle = my_thread.spawn(|| {
panic!("Oops!");
});
let child_status = handle.unwrap().join();
println!("Child status: {}", child_status);
}
In the preceding code, we use the Builder::new, method followed by calling the name and stack_size methods to add a name to our thread and its stack size respectively. We then call spawn on my_thread, which consumes the builder instance and spawns the thread. This time, within our closure, we panic! with an "Oops" message. Following is the output of this program:
$ ./customize_threads
thread 'Worker Thread' panicked at 'Oops!', customize_threads.rs:9:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.
Child status: Err(Any)
We get to see that the thread has the same name we gave it - "Worker Thread". Also, notice the "Child status" message that's returned as an Any type. Values returned from panic call in a thread are returned as an Any type and must be downcasted to a specific type. That's all on the basics of spawning threads.
But the threads we spawned in the preceding code examples aren't doing much. We use concurrency to solve problems that can be split into multiple sub-tasks. In simple cases, these sub-tasks are independent of each other such as applying a filter to each pixel of an image in parallel. In other situations, the sub-tasks running in threads might want want to co-ordinate on some shared data.
They might also be contributing to a computation whose end result depends on the individual results from the threads, for instance, downloading a file from multiple threads in blocks and communicating it to a parent manager thread. Other problems might be dependent on a shared state such as an HTTP client sending a POST request to a server that has to update the database. Here, the database is the shared state common to all threads. These are some of the most common use cases of concurrency and it's important that threads are able to share or communicate data back and forth between each other and with their parent thread.
Let's step up the game a bit and look at how we can access existing data from parent threads within child threads.
Accessing data from threads
A thread that doesn't communicate or access data from the parent thread is not much. Let's take a very common pattern of using multiple threads to concurrently access items in a list to perform some computation. Consider the following code:
// thread_read.rs
use std::thread;
fn main() {
let nums = vec![0, 1, 2, 3, 4];
for n in 0..5 {
thread::spawn(|| {
println!("{}", nums[n]);
});
}
}
In the preceding code, we have 5 numbers in values and we spawn 5 threads where each one of them accesses the data in values. Let's compile this program:
Interesting ! The error makes sense if you think about it from a borrowing perspective. nums comes from the main thread. When we spawn a thread, it is not guaranteed to exit before the parent thread and may outlive it. When the parent thread returns, the nums variable is gone and Vec it's pointing to is freed. If the preceding code was allowed by Rust, the child thread could have accessed nums which might have some garbage value after main returns and it would have undergone a segmentation fault.
If you look at the help message from from the compiler, it suggests us to move or capture nums inside the closure. This way the referenced a nums variable from main is moved inside closure and it won't be available in the main thread.
Here's the code that uses the move keyword to move the value from the parent thread in its child thread:
// thread_moves.rs
use std::thread;
fn main() {
let my_str = String::from("Damn you borrow checker!");
let _ = thread::spawn(move || {
println!("In thread: {}", my_str);
});
println!("In main: {}", my_str);
}
In the preceding code, we are trying to accessed my_str again. This fails with the following error:
As you can see from the preceding error message, with move, you don't get to use the data again, even if we are only reading my_str from our child thread. Here too, we are saved by the compiler. If the child thread frees the data and we access my_str from main, we'll access a freed value which is a use after free issue.
As you saw, the same rules of ownership and borrowing work in multi-threaded contexts too. This is one of the novel aspects of its design that doesn't require additional constructs to enforce correct concurrent code. But, how do we achieve the preceding use case of accessing data from threads? Because threads are more likely to outlive their parent, we can't have references in threads. Instead, Rust provides us with synchronization primitives that allow us to safely share and communicate data between threads. Let's explore these primitives. These types are usually composed in layers depending on the needs and you only pay for what you use.
Concurrency models with threads
We mainly use threads to perform a task that can be split into sub-problems, where the threads might need to communicate or share data with each other. Now, using the threading model as the baseline, there are different ways to structure our program and control access to shared data. A concurrency model specifies how multiple threads interact with instructions and data shared between them and how they make progress over time and space (here, memory).
Rust does not prefer any opinionated concurrency model and frees the developer in using their own models depending on the problem they are trying to solve through third party crates. So, other models of concurrency exist that includes the actor model implemented as a library in the actix crate. There are other models too, such as the work stealing concurrency model implemented by the rayon crate. Then, there is the crossbeam crate, which allows concurrent threads to share data from their parent stack frame and are guaranteed to return before the parent stack is deallocated.
There are two popular built-in concurrency models with which Rust provides us: sharing data with synchronization and sharing data by message passing.
Shared state model
Using shared state to communicate values to a thread is the most widely used approach, and the synchronization primitives to achieve this exist in most mainstream languages. Synchronization primitives are types or language constructs that allow multiple threads to access or manipulate a value in a thread-safe way. Rust also has many synchronization primitives that we can wrap around types to make them thread-safe.
As we saw in the previous section, we cannot have shared access to any value from multiple threads. We need shared ownership here. Back in Chapter 5, Memory Management and Safety, we introduced the Rc type. that can provide shared ownership of values. Let's try using this type with our previous example of reading data from multiple threads:
// thread_rc.rs
use std::thread;
use std::rc::Rc;
fn main() {
let nums = Rc::new(vec![0, 1, 2, 3, 4]);
let mut childs = vec![];
for n in 0..5 {
let ns = nums.clone();
let c = thread::spawn(|| {
println!("{}", ns[n]);
});
childs.push(c);
}
for c in childs {
c.join().unwrap();
}
}
This fails with the following error:
Rust saves us here too. This is because an Rc type is not thread-safe as mentioned previously, as the reference count update operation is not atomic. We can only use Rc in single-threaded code. If we want to have the same kind of shared ownership across multi-threaded contexts, we can use the Arc type, which is just like Rc, but has atomic reference counting capability.
Shared ownership with Arc
The preceding code can be made to work with the multi-threaded Arc type as follows:
// thread_arc.rs
use std::thread;
use std::sync::Arc;
fn main() {
let nums = Arc::new(vec![0, 1, 2, 3, 4]);
let mut childs = vec![];
for n in 0..5 {
let ns = Arc::clone(&nums);
let c = thread::spawn(move || {
println!("{}", ns[n]);
});
childs.push(c);
}
for c in childs {
c.join().unwrap();
}
}
In the preceding code, we simply replaced the wrapper of the vector from Rc to the Arc type. Another change is that, before we reference nums from a child thread, we need to clone it with Arc::clone(), which gives us an owned Arc<Vec<i32>> value that refers to the same Vec. With that change, our program compiles and provides safe access to the shared Vec, with the following output:
$ rustc thread_arc.rs
$./thread_arc
0
2
1
3
4
Now, another use case in multi-threaded code is to mutate a shared value from multiple threads. Let's see how to do that next.
Mutating shared data from threads
We'll take a look at a sample program where five threads push data to a shared Vec. The following program tries to do the same:
// thread_mut.rs
use std::thread;
use std::sync::Arc;
fn main() {
let mut nums = Arc::new(vec![]);
for n in 0..5 {
let mut ns = nums.clone();
thread::spawn(move || {
nums.push(n);
});
}
}
We have the same nums wrapped with Arc. But we cannot mutate it, as the compiler gives the following error:
This doesn't work as cloning Arc hands out immutable reference to the inner value. To mutate data from multiple threads, we need to use a type that provides shared mutability just like RefCell. But similar to Rc, RefCell cannot be used across multiple threads. Instead, we need to use their thread-safe variants such as the Mutex or RwLock wrapper types. Let's explore them next.
Mutex
When safe mutable access to a shared resource is required, the access can be provided by the use of mutex. Mutex is a portmanteau for mutual exclusion, a widely used synchronization primitive for ensuring that a piece of code is executed by only one thread at a time. A mutex in general is a guard object which a thread acquires to protect data that is meant to be shared or modified by multiple threads. It works by prohibiting access to a value from more than one thread at a time by locking the value. If one of the threads has a lock on the mutex type, no other thread can run the same code until the thread that holds the lock is done with it.
The std::sync module from the standard library contains the Mutex type allowing one to mutate data from threads in thread-safe manner.
The following code example shows how to use the Mutex type from a single child thread:
// mutex_basics.rs
use std::sync::Mutex;
use std::thread;
fn main() {
let m = Mutex::new(0);
let c = thread::spawn(move || {
{
*m.lock().unwrap() += 1;
}
let updated = *m.lock().unwrap();
updated
});
let updated = c.join().unwrap();
println!("{:?}", updated);
}
Running this works as expected. But, this won't work when multiple threads try to access the value as Mutex doesn't provide shared mutability. To allow a value inside a Mutex to be mutated from multiple threads, we need to compose it it the Arc type. Let's see how to do that next.
Shared mutability with Arc and Mutex
Having explored the basics of Mutex in single threaded contexts, we'll revisit the example from the previous section. The following code modifies a value using a Mutex wrapped in an Arc from the multiple threads:
// arc_mutex.rs
use std::sync::{Arc, Mutex};
use std::thread;
fn main() {
let vec = Arc::new(Mutex::new(vec![]));
let mut childs = vec![];
for i in 0..5 {
let mut v = vec.clone();
let t = thread::spawn(move || {
let mut v = v.lock().unwrap();
v.push(i);
});
childs.push(t);
}
for c in childs {
c.join().unwrap();
}
println!("{:?}", vec);
}
In the preceding code, we created a Mutex value in m. We then spawn a thread. The output on your machine may vary.
Calling lock on a mutex will block other threads from calling lock until the lock is gone. As such, it is important that we structure our code in such a way that the is granular. Compiling and running this gives the following output:
$ rustc arc_mutex.rs
$ ./arc_mutex
Mutex { data: [0,1,2,3,4] }
There is another similar alternative to Mutex, which is the RwLock type that is more aware on the kind of lock you have on your type, and can be more performant when reads are more often than writes. Let's explore it next.
RwLock
While Mutex is fine for most use cases, for some multi-threaded scenarios, reads happen more often than writes from multiple threads. In that case, we can use the RwLock type, which also provides shared mutability but can do so at a more granular level. RwLock stands for Reader-Writer lock. With RwLock, we can have many readers at the same but only one writer in a given scope. This is much better than a Mutex which agnostic of the kind of access a thread wants. Using RwLock
RwLock exposes two methods:
Here's a sample program that demonstrates using the RwLock instead of Mutex:
// thread_rwlock.rs
use std::sync::RwLock;
use std::thread;
fn main() {
let m = RwLock::new(5);
let c = thread::spawn(move || {
{
*m.write().unwrap() += 1;
}
let updated = *m.read().unwrap();
updated
});
let updated = c.join().unwrap();
println!("{:?}", updated);
}
But RwLock on some systems such as Linux, suffers from the writer starvation problem. It's a situation when readers continually access the shared resource, and writer threads never get the chance to access the shared resource.
Communicating through message passing
Threads can also communicate with each other through a more high level abstraction called message passing. This model of thread communication removes the need to use explicit locks by the user.
The standard library's std::sync::mpsc module provides a lock-free multi-producer, single-subscriber queue, which serves as a shared message queue for threads wanting to communicate with one another. The mpsc module standard library has two kinds of channels:
Channels can be used to send data from one thread to another. Let's look at asynchronous channels first.
Asynchronous channels
Here is an example of a simple producer-consumer system, where the main thread produces the values 0, 1, ..., 9 and the spawned thread prints them:
// async_channels.rs
use std::thread;
use std::sync::mpsc::channel;
fn main() {
let (tx, rx) = channel();
let join_handle = thread::spawn(move || {
while let Ok(n) = rx.recv() {
println!("Received {}", n);
}
});
for i in 0..10 {
tx.send(i).unwrap();
}
join_handle.join().unwrap();
}
We first call the channel method. This returns two values, tx and rx. tx is the transmitter end, having type Sender<T> and rx is the receiver end having type Receiver<T>. Their names are just a convention and you can name them anything. Most often, you will see code bases use these names as they are concise to write.
Next, we spawn a thread that will receive values from the rx side:
let join_handle = thread::spawn(move || {
// Keep receiving in a loop, until tx is dropped!
while let Ok(n) = rx.recv() { // Note: `recv()` always blocks
println!("Received {}", n);
}
});
We use a while let loop. This loop will receive Err when tx is dropped. The drop happens when main returns.
In the preceding code, first, to create the mpsc queue, we call the channel function, which returns to us Sender<T> and Receiver<T>.
Sender<T> is a Clone type, which means it can be handed off to many threads, allowing them to send messages into the shared queue.
The multi producer, single consumer (mpsc) approach provides multiple writers but only a single reader. Both of these functions return a pair of generic types: a sender and a receiver. The sender can be used to push new things into the channel, while receivers can be used to get things from the channel. The sender implements the Clone trait while the receiver does not.
With the default asynchronous channels, the send method never blocks. This is because the channel buffer is infinite, so there's always space for more. Of course, it's not really infinite, just conceptually so: your system may run out of memory if you send gigabytes to the channel without receiving anything.
Synchronous channels
Synchronous channels have a bounded buffer and, when it's full, the send method blocks until there's more space in the channel. The usage is otherwise quite similar to asynchronous channels:
// sync_channels.rs
use std::thread;
use std::sync::mpsc;
fn main() {
let (tx, rx) = mpsc::sync_channel(1);
let tx_clone = tx.clone();
let _ = tx.send(0);
thread::spawn(move || {
let _ = tx.send(1);
});
thread::spawn(move || {
let _ = tx_clone.send(2);
});
println!("Received {} via the channel", rx.recv().unwrap());
println!("Received {} via the channel", rx.recv().unwrap());
println!("Received {} via the channel", rx.recv().unwrap());
println!("Received {:?} via the channel", rx.recv());
}
The synchronous channel size is 1, which means that we can't have more than one item in the channel. Any send call after the first send will block in such a case. However, in the preceding code, we don't get blocks (at least, the long ones) as the two sending threads work in the background and the main thread gets to receive it without being blocked on the send call. For both these channel types, the recv call returns an Err value if the channel is empty.
thread-safety in Rust
In the previous section, we saw how the compiler stops us from sharing the data. If a child thread accesses data mutably, it is moved because Rust won't allow it to be used in the parent thread as the child thread might deallocate it, leading to a dangling pointer dereference in the main thread. Let's explore the idea of thread-safety and how Rust's type systems achieves that.
What is thread-safety?
thread-safety is the property of a type or a piece of code that, when executed or accessed by multiple threads, does not lead to unexpected behavior. It refers to the idea that data is consistent for reads while being safe from corruption when multiple threads write to it.
Rust only protects you from data races. It doesn't aim to protect against deadlocks as they are difficult to detect. It instead offloads this to third-party crates such as the parking_lot crate.
Rust has a novel approach to protecting against data races. Most of the thread-safety bits are already embedded in the spawn method's type signature. Let's look at its type signature:
fn spawn<F, T>(f: F) -> JoinHandle<T>
where F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static
That's a scary-looking type signature. Let's make it less scary by explaining what each of the parts mean.
spawn is a generic function over F and T and takes a parameter, f, and returns a generic type called JoinHandle<T>. Following that, the where clause specifies multiple trait bounds:
As we know, Send is a marker trait. It is just used as a type-level marker that implies that the value is safe to be sent across threads; most types are Send. Types that don't implement Send are pointers, references, and so on. In addition, Send is an auto trait or an automatically derived trait whenever applicable. Compound data types such as a struct implement Send if all of the fields in a struct are Send.
Traits for thread-safety
Thread-safety is the idea that, if you have data that you want to data from multiple threads, any read or write operation on that value does not lead to inconsistent results. The problem with updating a value, even with a simple increment operation such as a += 1 is that it roughly translates in to a three-step process—load increment store. Data that can be safely updated is meant to be wrapped in thread-safe types such as Arc and Mutex to ensure that we have data consistency in a program.
In Rust, you get compile-time guarantees on types that can be safely used and referenced within a thread. These guarantees are implemented as traits, which are the Send and Sync trait.
Send
A Send type is safe to send to multiple threads. This implies that the type is a move type. Types that aren't Send are pointer types such as &T, unless T is Sync.
The Send trait has the following type signature in the standard library's std::marker module:
pub unsafe auto trait Send { }
There are three important things to notice in its definition: first, it's a marker trait without any body or item. Second, it's prefixed with the auto keyword as it is implemented implicitly for most types when appropriate. Thirdly, it's an unsafe trait because Rust wants to make the developer sure that they opt in explicitly and ensure that their type has thread-safe synchronization built in.
Sync
The Sync trait has a similar type signature:
pub unsafe auto trait Sync { }
This trait signifies that types that implement this trait are safe to be shared between threads. If something is Sync then a reference to it in other words, &T is Send. This means that we can pass references to it to many threads.
Concurrency using the actor model
Another model of concurrency that is quite similar to the message passing model is the actor model. The actor model became popular with Erlang, a functional programming language popular in the telecom industry, known for its robustness and distributed by default nature.
The actor model is a conceptual model that implements concurrency at the type level using entities called actors. It was first introduced by Carl Eddie Hewitt in 1973. It removes the need for locks and synchronization and provides a cleaner way to introduce concurrency in a system. The actor model consists of three things:
In Rust, we have the actix crate that implements the actor model. The actix crate, uses the tokio and futures crate which we'll cover in Chapter 12, Network Programming in Rust. The core objects to that crate is the Arbiter type which is simply a thread which spawns an event loop underneath and provides a handle to the event loop as an Addr type. Once created, we can use this handle to send messages to the actor.
In actix, creation of actor follows a simple step of creating a type, defining a message and implementing the handler for the message for the actor type. Once that is done, we can create the actor and spawn them into one of the created arbiters.
Each actor runs within an arbiter.
When we create an actor, they don't execute right away. It's when we put these actors into arbiter threads, they then start executing.
To keep the code example simple and to show how to setup actors and run them in actix, we'll create a actor that can add two numbers. Let's create a new project by running cargo new actor_demo with the following dependencies in Cargo.toml:
# actor_demo/Cargo.toml
[dependencies]
actix = "0.7.9"
futures = "0.1.25"
tokio = "0.1.15"
Our main.rs contains the following code:
// actor_demo/src/main.rs
use actix::prelude::*;
use tokio::timer::Delay;
use std::time::Duration;
use std::time::Instant;
use futures::future::Future;
use futures::future;
struct Add(u32, u32);
impl Message for Add {
type Result = Result<u32, ()>;
}
struct Adder;
impl Actor for Adder {
type Context = SyncContext<Self>;
}
impl Handler<Add> for Adder {
type Result = Result<u32, ()>;
fn handle(&mut self, msg: Add, _: &mut Self::Context) -> Self::Result {
let sum = msg.0 + msg.0;
println!("Computed: {} + {} = {}",msg.0, msg.1, sum);
Ok(msg.0 + msg.1)
}
}
fn main() {
System::run(|| {
let addr = SyncArbiter::start(3, || Adder);
for n in 5..10 {
addr.do_send(Add(n, n+1));
}
tokio::spawn(futures::lazy(|| {
Delay::new(Instant::now() + Duration::from_secs(1)).then(|_| {
System::current().stop();
future::ok::<(),()>(())
})
}));
});
}
In the preceding code, we have created an actor named Adder. This actor can send and receive messages of type Add. This is a tuple struct that encapsulates two numbers to be added. To allow Adder to receive and process Add messages, we implement the Handler trait for Adder parameterized over the Add message type. In the Handler implementation, we print the computation being performed and return the sum of the given numbers.
Following that, in main, we first create a System actor by calling its run method which takes in a closure. Within the closure, we start a SyncArbiter with 3 threads by calling its start method. This create 3 actors ready to receive messages. It returns a Addr type which is a handle to the event loop to which we can send messages to the Adder actor instance. We then send 5 messages to our arbiter address addr. As the System::run is an parent event loop that runs forever, we spawn a future to stop the System actor after a delay of 1 second. We can ignore the details of this part of the code as it is simply to shutdown the System actor in an asynchronous way.
With that said, let's take this program for a spin:
$ cargo run
Running `target/debug/actor_demo`
Computed: 5 + 6 = 10
Computed: 6 + 7 = 12
Computed: 7 + 8 = 14
Computed: 8 + 9 = 16
Computed: 9 + 10 = 18
Similar to the actix crate, there are other crates in the Rust ecosystem that implements various concurrency models suitable for different use cases.
Other crates
Apart from actix, we have a crate named rayon which is a work stealing based data parallelism library that makes it dead simple to write concurrent code.
Another notable crate to mention is the crossbeam crate which allows one to write multi-threaded code that can access data from its parent stack frame and are guaranteed to terminate before the parent stack frame goes away.
parking_lot is another crate that provides a faster alternative to concurrency primitives present in the standard library. If you have a use case where the standard library Mutex or RwLock is not performant enough, then you can use this crate to gain significant speedups.
Summary
It is quite astonishing that the same ownership principle that prevents memory safety violations in single-threaded contexts also works for multithreaded contexts in composition with marker traits. Rust has easy and safe ergonomics for integrating concurrrency in your application with minimal runtime cost. In this chapter, we learned how to use the threads API provided by Rust's standard library and got to know how copy and move types work in the context of concurrency. We covered channels, the atomic reference counting type, Arc, and how to use Arc with Mutex and also explored the actor model of concurrency.
In the next chapter, we'll dive into metaprogramming which is all about generating code from code.
Metaprogramming with Macros
Metaprogramming is a concept that changes the way you look at instructions and data in a program. It allows you to generate new code by treating instructions like any other piece of data. Many languages have support for metaprogramming, for example, Lisp's macros, C's #define construct, and Python's metaclasses. Rust is no different and provides many forms of metaprogramming, which we'll explore in this chapter.
In this chapter, we will look at the following topics:
What is metaprogramming?
"Lisp isn't a language, it's a building material."
– Alan Kay
Any program, regardless of the language used, contains two entities: data and instructions that manipulate the data. The usual flow of a program is mostly concerned with manipulating data. The issue with instructions, though, is that once you write them, it's like they've been carved into stone, and so they are non-malleable. It would be more enabling if we could treat instructions as data and generate new instructions using code. Metaprogramming provides exactly that!
It's a programming technique where you can write code that has the ability to generate new code. Depending on the language, it can be approached in two ways: at runtime or at compile time. Runtime metaprogramming is available in dynamic languages such as Python, Javascript, and Lisp. For compiled languages, it's not possible to generate instructions at runtime because these languages perform the ahead of time compilation of programs. However, you have the option of generating code at compile time, which is what C macros provide. Rust also provides compile time code generation capabilities, and these are more capable and sound than C macros.
In many languages, metaprogramming constructs are often denoted by the umbrella term macros, which for some languages are a built-in feature. For others, they are provided as a separate compilation phase. In general, a macro takes an arbitrary sequence of code as input and outputs valid code that can be compiled or executed by the language, along with other code. The input to the macro doesn't need to be a valid syntax and you are free to define your own custom syntax for the macro input. Also, how you invoke a macro and the syntax for defining them is different across languages. For instance, C macros works at the preprocessor stage, which reads tags starting with #define and expands them before forwarding the source file to the compiler. Here, expanding means generating code by substituting inputs that are provided to the macro. Lisp, on the other hand, provides function-like macros that are defined with defmacro (a macro itself), which takes the name of the macro being created and one or more parameters, and returns new Lisp code. However, C and Lisp macros lack a property that's referred to as hygiene. They are non-hygienic in the sense that they can capture and interfere with code outside the macro upon expansion, which can lead to unexpected behavior and logical errors when the macro is invoked at certain places in the code.
To demonstrate the problem with a lack of hygiene, we'll take the example of a C macro. These macros simply copy/paste code with simple variable substitutions and are not context aware. Macros written in C are not hygienic in the sense that they can refer to variables defined anywhere, as long as those variables are in scope at the macro invocation site. For instance, the following is a macro SWITCH defined in C that can swap two values, but ignorantly modifies other values in doing so:
// c_macros.c
#include <stdio.h>
#define SWITCH(a, b) { temp = b; b = a; a = temp; }
int main() {
int x=1;
int y=2;
int temp = 3;
SWITCH(x, y);
printf("x is now %d. y is now %d. temp is now %d\n", x, y, temp);
}
Compiling this with gcc c_macros.c -o macro && ./macro gives the following output:
x is now 2. y is now 1. temp is now 2
In the preceding code, unless we declare our own temp variable inside the SWITCH macro, the original temp variable in main is modified by the expansion of the SWITCH macro. This unhygienic nature makes C macros unsound and brittle, and can easily make a mess unless special precautions are taken, such as using a different name for the temp variable within the macro.
Rust macros on the other hand are hygienic and also more context aware than just performing simple string substitution and expansion. They are aware of the scope of the variables that have been referenced within the macro and do not shadow any identifiers that have already been declared outside. Consider the following Rust program, which tries to implement the macro we used previously:
// c_macros_rust.rs
macro_rules! switch {
($a:expr, $b:expr) => {
temp = $b; $b = $a; $a = temp;
};
}
fn main() {
let x = 1;
let y = 2;
let temp = 3;
switch!(x, y);
}
In the preceding code, we created a macro called switch! and later invoked that in main with two values, x and y. We'll skip explaining the details in the macro definition, as we will cover them in detail later in this chapter.
However, to our surprise, this doesn't compile and fails with the following error:
From the error message, our switch! macro doesn't know anything about the temp variable that's declared in main. As we can see, Rust macros don't capture variables from their environment as they work differently compared to C macros. Even if it would have, we will be saved from modification as temp is declared immutable in the preceding program. Neat!
Before we get into writing more macros like these in Rust, it's important to have an idea of when to use a macro-based solution for your problem and when not to!
When to use and not use Rust macros
One of the advantages of using macros is that they don't evaluate their arguments eagerly like functions do, which is one of the motivations to use macros other than functions.
By eager evaluation, we mean that a function call like foo(bar(2)) will first evaluate bar(2) and then pass its value to foo. Contrary to that, this is a lazy evaluation, which is what you see in iterators.
A general rule of thumb is that macros can be used in situations where functions fail to provide the desired solution, where you have code that is quite repetitive, or in cases where you need to inspect the structure of your types and generate code at compile time. Taking examples from real use cases, Rust macros are used in a lot of cases, such as the following:
At the same time, macros should be used sparingly as they make the code difficult to maintain and reason about, as they work at the meta level and not many developers will be comfortable using them. They make the code harder to read and from a maintainability perspective, readability should always be preferred. Also, heavy use of macros can result in performance penalties due to a lot of duplicate code generation, which affects the CPU instruction cache.
Macros in Rust and their types
Rust macros do their magic of code generation before the program compiles to a binary object file. They take input, known as token trees, and are expanded at the end of the second pass of parsing during Abstract Syntax Tree (AST) construction. These are pieces of jargon from the compiler world and need some explanation, so let's do that. To understand how macros work, we need to be familiar with how source code is processed by the compiler to understand a program. This will help us in understanding how a macro processes its input and the error messages they emit when we use them incorrectly. We'll only cover parts that are relevant to our understanding of macros.
First, the compiler reads the source code byte by byte and groups characters into meaningful chunks, which are called tokens. This is done by a component of the compiler that's generally referred to as the tokenizer. Therefore, an a + 3 * 6 expression gets converted to "a", "+", "3", "*", "6", which is a sequence of tokens. Other tokens can be the fn keyword, any identifier, braces {} (), an assignment operator =, and so on. These tokens are called token trees in macro parlance. There are also tokens trees such as "(", ")", "}","{", which can group other tokens. Now, at this stage, the token sequences by themselves don't convey any meaning on how to process and interpret the program. For that, we need a parser.
A parser converts this flat stream of tokens into a hierarchical structure that guides the compiler on how to interpret the program. The token trees are passed on to the parser, which constructs an in-memory representation of the program called the Abstract Syntax Tree. For instance, our sequence of tokens, a + 3 * 6, which is an expression, can be evaluated with the value 20 when a is 2.
However, the compiler doesn't know how to evaluate this expression correctly unless we separate the precedence of operators (that is, * comes before +) and represent them with a tree structure, as shown in the following diagram:
When we have represented the expression as a tree structure in code so that multiplication happens before addition, we can do a post order traversal of this tree to correctly evaluate the expression. So, given that explanation, where does our macro expansion fit here? Rust macros are parsed at the end of the second phase of Abstract Syntax Tree construction, which is a phase where name resolution happens. Name resolution is the stage where variables that are defined in the expression are looked up for their existence in the scope. In the preceding expression, name resolution will happen for the a variable. Now, if the a variable in our preceding expression was assigned a value from a macro invocation such as let a = foo!(2 + 0);, then the parser goes on to expand the macro before proceeding to the name resolution. The name resolution phase catches errors in the program, such as using a variable that is not in scope. However, there are more complex cases than this.
This entails Rust macros being context aware and, depending on what your macro expands into, they can only appear in supported places, as defined in the language's grammar. For example, you cannot write a let statement at the item level, that is, within a module.
Grammar defines valid ways to write programs, just like grammar in a spoken language guides construction of meaningful sentences. For those who are curious, Rust's grammar is defined at https://doc.rust-lang.org/grammar.html.
One instance of macros that we've seen several times already is the println! macro. It is implemented as a macro because it allows Rust to check at compile time that its arguments are valid and that the string interpolation variables that have been passed to it are correct in number. Another advantage of using a macro for printing strings is that it allows us to pass as many arguments to println! as possible, which would not have been possible if it were implemented as a regular function. This is because Rust does not support variadic arguments for functions. Consider the following example:
println("The result of 1 + 1 is {}", 1 + 1);
println!("The result of 1 + 1 is {}");
As you already know, the second form will fail at compile time because it's missing an argument that matches the format string. This is reported at compile time. In this way, it is far safer than C's printf function, which can lead to memory vulnerabilities such as the format string attack. Other feature of the println! macro is that we can customize how we want to print values within strings:
// print_formatting.rs
use std::collections::HashMap;
fn main() {
let a = 3669732608;
println!("{:p}", &a);
println!("{:x}", a);
// pretty printing
let mut map = HashMap::new();
map.insert("foo", "bar");
println!("{:#?}", map);
}
In the preceding code, we can print the memory address and hexadecimal representation of the value stored in a via "{:p}" and "{:x}", respectively. These are called format specifiers. We can also print non-primitive types in more of a JSON-like format with the "{:#?}" format specifier within println!. Let's compile and run our preceding program:
error[E0277]: the trait bound `{integer}: std::fmt::Pointer` is not satisfied
--> print_formatting.rs:7:22
|
7 | println!("{:p}", a);
| ^ the trait `std::fmt::Pointer` is not implemented for `{integer}`
Ok, we have an error. As you may have noticed, in the first println! macro call, we are trying to print the address of a using the "{:p}" specifier, but the variable we mentioned is a number. We need to pass a reference such as &a to the format specifier. With that change, the preceding program compiles. All of this formatting and checking for proper values for string interpolation happens at compile time, thanks to the implementation of macros as part of the parsing phase.
Types of macros
There are different forms of macros in Rust. Some allow you to call them like functions, while others allow you to conditionally include code, depending on compile-time conditions. Another class of macros allows you to implement traits on methods at compile time. They can be broadly divided into two forms:
Creating your first macro with macro_rules!
Let's start with declarative macros first by building one using the macro_rules! macro. Rust already has the println! macro, which is used to print things to the standard output. However, it doesn't have an equivalent macro for reading input from the standard input. To read from the standard input, you have to write something like the following:
let mut input = String::new();
io::stdin().read_line(&mut input).unwrap();
These lines of code can be easily abstracted away with a macro. We'll name our macro scanline!. Here's the code that shows us how we want to use this macro:
// first_macro.rs
fn main() {
let mut input = String::new();
scanline!(input);
println!("{:?}", input);
}
We want to be able to create a String instance and just pass it to scanline!, which handles all the details of reading from standard input. If we compile the preceding code by running rustc first_macro.rs, we get the following error:
error: cannot find macro `scanline!` in this scope
--> first_macro.rs:5:5
|
5 | scanline!(input);
| ^^^^^^^^
error: aborting due to previous error
rustc cannot find the scanline! macro, because we haven't defined it yet, so let's do that:
// first_macro.rs
use std::io::stdin;
// A convenient macro to read input as string into a buffer
macro_rules! scanline {
($x:expr) => ({
stdin().read_line(&mut $x).unwrap();
$x.trim();
});
}
To create the scanline! macro, we use the macro_rules! macro, followed by the macro name scanline!, followed by a pair of braces. Within the braces, we have things that look similar to match arms. These are called matching rules. Every matching rule consists of three parts. The first is the pattern matcher, that is, the ($x:expr) part, followed by a =>, and then the code generation block, which can be delimited either with (), {}, or even []. A matching rule has to end with a semicolon when there is more than one rule to match.
In the preceding code, the notation on the left, ($x:expr), within parentheses is the rules, where $x is a token tree variable that needs to have a type specified after the colon :, which is an expr token tree type. Their syntax is similar to how we specify parameters in functions. When we invoke the scanline! macro with any token sequence as input, it gets captured in $x and is referred to by the same variable within the code generation block on the right. The expr token type means that this macro can only accept things that are expressions. We'll cover other kinds of token types that are accepted by macro_rules! in a moment. In the code generation block, we have multi-line code to generate, so we have a pair of braces, which are there to account for multi-line expressions. The matching rule ends with a semicolon. We can also omit braces if we have a single line of code that needs to be generated. The generated code we want is as follows:
io::stdin().read_line(&mut $x).unwrap();
Notice that read_line accepts something that doesn't look like a proper mutable reference to some identifier, that is, it's a &mut $x . The $x gets substituted with an actual expression that we pass to our macro on invocation. That's it; we just wrote our first macro! The complete code is as follows:
// first_macro.rs
use std::io;
// A convenient macro to read input as string into a buffer
macro_rules! scanline {
($x:expr) => ({
io::stdin().read_line(&mut $x).unwrap();
});
}
fn main() {
let mut input = String::new();
scanline!(input);
println!("I read: {:?}", input);
}
In main, we first create our input string, which will store our input from the user. Next, our scanline! macro is invoked where we pass the input variable. Within this macro, this is then referred to as $x, as we saw in the preceding definition. With the invocation of scanline, when the compiler sees the invocation, it replaces that with the following:
io::stdin().read_line(&mut input).unwrap();
Here's the output on running the preceding code with an input string of Alice from the standard input:
$ Alice
I read: "Alice\n"
Following code generation, the compiler also checks whether the generated code makes any sense. For example, if we were to invoke scanline! with some other item that is not accounted for in the matching rules (say, passing an fn keyword, such as scanline!(fn)), we would get the following error:
Also, even if we pass an expression (say, 2), which is valid to pass (as it's also an expr ) to this macro but doesn't make sense in this context, Rust will catch this and report as follows:
This is neat! Now, we can also add multiple matching rules to our macro. So, let's add an empty rule that covers the case where we just want scanline! to allocate the String for us, read from stdin, and return the string back. To add a new rule, we modify the code like so:
// first_macro.rs
macro_rules! scanline {
($x:expr) => ({
io::stdin().read_line(&mut $x).unwrap();
});
() => ({
let mut s = String::new();
stdin().read_line(&mut s).unwrap();
s
});
}
We added an empty match rule, () => {}. Within the braces, we generate a bunch of code where we first create a String instance in s, call read_line, and pass &mut s. Finally, we return s to the caller. Now, we can call our scanline! without a pre-allocated String buffer:
// first_macro.rs
fn main() {
let mut input = String::new();
scanline!(input);
println!("Hi {}",input);
let a = scanline!();
println!("Hi {}", a);
}
It's also important to note that we cannot invoke this macro anywhere outside functions. For instance, the scanline! invocation at the root of a module will fail, as it is invalid to write a let statement within a mod {} declaration.
Built-in macros in the standard library
Apart from println!, there are other useful macros in the standard library that are implemented using the macro_rules! macro. Knowing about them will help us appreciate the places and situations where using a macro is a cleaner solution, while not sacrificing readability.
Some of these macros are as follows:
If you want to explore the full set of macros that are available in the standard library, they can be found at https://doc.rust-lang.org/std/#macros.
macro_rules! token types
Before we build more complex macros, it's important to become familiar with the valid inputs that macro_rules! can take. Since macro_rules! work at the syntactic level, it needs to provide users, a handle to these syntactic elements, and distinguish what can and cannot be included within a macro and how we can interact with them.
The following are some important token tree types that you can pass into a macro as input:
{ silly; things; }
This block includes the statements silly and things.
These do not have to be one-liners, of course. The main function could be a single item, even if it spanned several lines.
This is useful in cases where you need to capture the path of some type so that you can use it later in code generation, such as when aliasing complex types with paths.
In contrast to the first example, let x = 1 wouldn't be accepted by expr.
As you can see, the insides of the token tree do not have to make semantic sense; they just have to be a sequence of tokens. Specifically, what does not match this are two or more tokens not enclosed in braces (such as 1 + 2). This is the most general sequence of code or tokens macro_rules! can capture.
No semantic checking that the type is actually a type is done in the macro expansion phase, so "u33" is accepted just as well as "u32". However, once the code gets generated and goes to the semantic analysis phase, the type is checked, giving an error message of error: expected type, found `u33`. This is used when you are generating code to create a function or implementing methods of a trait on a type.
Repetitions in macros
Apart from token tree types, we also need a way to repeatedly generate certain parts of our code. One of the practical examples from the standard library is the vec![] macro, which relies on repetition to give an illusion of variadic arguments, and allows you to create Vecs in any of the following manners:
vec![1, 2, 3];
vec![9, 8, 7, 6, 5, 4];
Let's see how vec! does this. Here's vec's macro_rules! definition from the standard library:
macro_rules! vec {
($elem:expr; $n:expr) => (
$crate::vec::from_elem($elem, $n)
);
($($x:expr),*) => (
<[_]>::into_vec(box [$($x),*])
);
($($x:expr,)*) => (vec![$($x),*])
}
By ignoring the details to the right of => and focusing on the last two matching rules on the left-hand side, we can see something new in these rules:
($($x:expr),*)
($($x:expr,)*)
These are repeating rules. The repeating pattern rule follows:
Repeaters can also include extra literal characters that can be part of the repetition. In the case of vec!, there is the comma character, which we need to support to distinguish each element in Vec in the macro invocation.
In the first matching rule, the comma character is after X. This allows for expressions such as vec![1, 2, 3,].
The second matching rule has the comma inside X after the elements. This is a typical case and will match sequences such as 1, 2, 3. We needed two rules here because the first rule cannot account for cases such as where we don't have the trailing comma, which is the common case. Also, the patterns in vec! use *, which implies that vec![] is also an allowed invocation of the macro. With +, it wouldn't be.
Now, let's look at how the captured repetition rule is forwarded on the right-hand side in the code generation block. In the second matching rule, the vec! macro just forwards them into a Box type using an identical syntax:
($($x:expr),*) => (<[_]>::into_vec(box [$($x),*]));
The only difference we can see between the token tree variable declaration on the left-hand side and the usage on the right-hand side is that the right-hand side does not include the type (expr) of the token variable. The third matching rule just piggybacks on the second rule's code generation block and calls vec![$($x),*], thus changing the comma placement and calling it again. This means that we can also call a macro within a macro, which is a really powerful feature. All of this can get pretty meta-level and you should aim for simpler maintainable macros as much as possible.
Now, let's take a look at how to build a macro that uses repetitions.
A more involved macro – writing a DSL for HashMap initialization
Armed with the knowledge of repetitions and token tree types, let's build something practical using repetitions in macro_rules!. In this section, we'll build a crate that exposes a macro that allows you to create HashMaps such as the following:
let my_map = map! {
1 => 2,
2 => 3
};
This is more concise and readable compared to manually calling HashMap::new(), followed by one or more insert calls. Let's create a new cargo project by running cargo new macro_map --lib with the initial block for macro_rules!:
// macro_map/lib.rs
#[macro_export]
macro_rules! map {
// todo
}
Since we want the users to use our macros, we need to add a #[macro_export] attribute on this macro definition. Macros are private by default in a module, which is similar to other items. We'll call our macro map! and since we are building our own syntax to initialize HashMap, we'll go with the k => v syntax, where k is the key and v is the value in our HashMap. Here's our implementation within map! {}:
macro_rules! map {
( $( $k:expr => $v:expr ),* ) => {
{
let mut map = ::std::collections::HashMap::new();
$(
map.insert($k, $v);
)*
map
}
};
}
Let's understand the matching rule here. First, we'll examine the inner part, which is ( $k:expr => $v:expr ). Let's denote this part of the rule as Y. So, Y captures our key k and value v literals as expr with a => in between them. Surrounding Y, we have ($(Y),*), which denotes the repetition of Y zero or more times, delimited by a comma. On the right of the matching rule within braces, we first create a HashMap instance. Then, we write the repeaters $()*, which have our map.insert($k, $v) code fragment within them, which will be repeated the same number of times as in our macro input.
Let's quickly write a test for that:
// macro_map/lib.rs
#[cfg(test)]
mod tests {
#[test]
fn test_map_macro() {
let a = map! {
"1" => 1,
"2" => 2
};
assert_eq!(a["1"], 1);
assert_eq!(a["2"], 2);
}
}
By running a cargo test, we get the following output:
running 1 test
test tests::test_map_macro ... ok
Nice! Our test passes and we can now initialize HashMaps in a convenient way using our shiny new map! macro!
Macro use case – writing tests
Macros are used quite a lot when writing test cases for unit tests. Let's say you were writing a HTTP client library and you would like to test your client on various HTTP verbs such as GET or POST and on a variety of different URLs. The usual way you would write your tests is to create functions for each type of request and the URL. However, there's a better way to do this. Using macros, you can cut down your testing time by many folds by building a small DSL to perform the tests, which is readable and can also be type checked at compiled time. To demonstrate this, let's create a new crate by running cargo new http_tester --lib, which contains our macro definition. This macro implements a small language that's designed for describing simple HTTP GET/POST tests to a URL. Here's a sample of what the language looks like:
http://duckduckgo.com GET => 200
http://httpbin.org/post POST => 200, "key" => "value"
The first line makes a GET request to duckduckgo.com, and expects a return code of 200 (Status Ok). The second one makes a POST request to httpbin.org, along with form parameters "key"="value" with a custom syntax. It also expects a return code of 200. This is very simplistic but sufficient for demonstration purposes.
We'll assume that we already have our library implemented and will use a HTTP request library called reqwest. We'll add a dependency on reqwest in our Cargo.toml file:
# http_tester/Cargo.toml
[dependencies]
reqwest = "0.9.5"
Here's lib.rs:
// http_tester/src/lib.rs
#[macro_export]
macro_rules! http_test {
($url:tt GET => $code:expr) => {
let request = reqwest::get($url).unwrap();
println!("Testing GET {} => {}", $url, $code);
assert_eq!(request.status().as_u16(), $code);
};
($url:tt POST => $code:expr, $($k:expr => $v:expr),*) => {
let params = [$(($k, $v),)*];
let client = reqwest::Client::new();
let res = client.post($url)
.form(¶ms)
.send().unwrap();
println!("Testing POST {} => {}", $url, $code);
assert_eq!(res.status().as_u16(), $code);
};
}
#[cfg(test)]
mod tests {
#[test]
fn test_http_verbs() {
http_test!("http://duckduckgo.com" GET => 200);
http_test!("http://httpbin.org/post" POST => 200, "hello" => "world", "foo" => "bar");
}
}
Within the macro definition, we just match on the rules, which is where GET and POST are treated as literal tokens. Within the arms, we create our request client and assert on the status code that's returned by the input, which is provided to the macro. The POST test case also has a custom syntax for providing query parameters such as key => value, which is collected as an array in the params variable. This is then passed to the form method of the reqwest::post builder method. We'll explore the request library more when we get to Chapter 13, Building Web Applications in Rust.
Let's run cargo test and see the output:
running 1 test
test tests::test_http_verbs ... ok
Take a moment to think about what the benefit of using a macro here is. This could be implemented as a #[test] annotated function call as well, but the macro has a few benefits, even in this basic form. One benefit is that the HTTP verb is checked at compile time and our tests are now more declarative. If we try to invoke the macro with a test case that is not accounted for (say, HTTP DELETE), we'll get the following error:
error: no rules expected the token `DELETE`
Apart from using them for enumerating tests cases, macros are also used to generate Rust code based on some outside environmental state (such as database tables, time and date, and so on). They can be used to decorate structures with custom attributes, generating arbitrary code for them at compile time, or to create new linter plugins for making additional static analysis that the Rust compiler itself does not support. A great example is the clippy lint tool, which we've used already. Macros are also used to generate code that invokes native C libraries. We'll see how that happens when we get to Chapter 10, Unsafe Rust and Foreign Function Interfaces.
Exercises
If you are already finding macros empowering, here are some exercises for you to try so that you can tinker with macros some more:
language = HELLO recipient;
recipient = <String>;
For instance, the following strings would be acceptable in this language:
HELLO world!
HELLO Rustaceans!
Make the macro generate code that outputs a greeting that's directed to the recipient.
Procedural macros
Declarative macros can become tedious to read and maintain when your code generation logic becomes complex, as you need to write your logic with its own DSL to manipulate tokens. There are better, more flexible ways than using macro_rules!. For complex problems, you can leverage procedural macros as they are better suited to writing something non-trivial. They are suitable for cases where you need full control of code generation.
These macros are implemented as functions. These functions receive the macro input as a TokenStream type and return the generated code as a TokenStream after undergoing any transformation at compile time. To mark a function as a procedural macro, we need to annotate it with the #[proc_macro] attribute. At the time of writing this book, procedural macros come in three forms, which are categorized by how they are invoked:
At the time of writing this book, the procedural macro API is very limited on what can be done with a TokenStream, so we need to use third-party crates such as syn and quote to parse the input as a Rust code data structure, which can then be analyzed according to your needs for code generation. Also, procedural macros need to be created as a separate crate with the special crate attribute of proc-macro = true, which is specified in Cargo.toml. To use the macro, we can depend on the macro in the same way as other crates by specifying it under dependencies in Cargo.toml and importing the macro with use statements.
Among all three forms, derive macros are the most widely used form of procedural macros. We'll take a deep dive into them next.
Derive macros
We already saw that we can write #[derive(Copy, Debug)] on any struct, enum, or union type to get the Copy and Debug traits implemented for it, but this auto-derive feature is limited only to a few built-in traits in the compiler. With derive macros or macros 1.1, you get the ability to derive your own custom trait on any struct or enum or union type, thereby reducing the amount of boilerplate code that you would have written by hand. This may seem like a niche use case, but it is the most used procedural macro form, which high performance crates such as serde and diesel use. The derive macros only apply to data types such as structs, enums, or unions. Creating a custom derive macro for implementing a trait on a type requires the following steps:
Only functions that have the proc_macro_derive attribute are allowed to be exported from this crate.
However, all of this is a bit vague until we see it in real code. So, let's build our own derive macro crate. The macro that we are going to build will be able to convert any given struct to a dynamic map of key values, such as BTreeMap<String, String>. The choice of BtreeMaps is just to have a sorted iteration on the fields, which is not the case with HashMap, though you can use hashmaps too.
We'll also make use of two crates, syn and quote, which will allow us to parse our code into a convenient data structure that we can examine and manipulate. We'll build three crates for this project. First, we'll create a binary crate by running cargo new into_map_demo, which uses our library crate and the derive macro crate. The following are the dependencies in our Cargo.toml file:
# into_map_demo/Cargo.toml
[dependencies]
into_map = { path = "into_map" }
into_map_derive = { path = "into_map_derive" }
The preceding into_map and into_map_derive crates are specified as local to this crate as path dependencies. However, we don't have them yet, so let's create them in the same directory by running the following commands:
Now, let's examine our main.rs, which contains the following initial code:
// into_map_demo/src/main.rs
use into_map_derive::IntoMap;
#[derive(IntoMap)]
struct User {
name: String,
id: usize,
active: bool
}
fn main() {
let my_bar = User { name: "Alice".to_string(), id: 35, active: false };
let map = my_bar.into_map();
println!("{:?}", map);
}
In the preceding code, we have our User struct annotated with #[derive(IntoMap)]. #[derive(IntoMap)] will invoke our procedural macro from the into_map_derive crate. This does not compile as we don't have the IntoMap derive macro implemented yet. However, this shows us how we want to use the macro as a consumer of this crate. Next, let's see what we have in our into_map crate's lib.rs file:
// into_map_demo/into_map/src/lib.rs
use std::collections::BTreeMap;
pub trait IntoMap {
fn into_map(&self) -> BTreeMap<String, String>;
}
Our lib.rs file simply contains an IntoMap trait definition with a single method named into_map that takes a reference to self and returns a BTreeMap<String, String>. We want to derive the IntoMap trait for our User struct through our derive macro.
Let's examine our into_map_derive crate next. In this crate, we have the following dependencies in Cargo.toml:
# into_map_demo/into_map_derive/src/Cargo.toml
[lib]
proc-macro = true
[dependencies]
syn = { version = "0.15.22", features = ["extra-traits"] }
quote = "0.6.10"
into_map = { path="../into_map" }
As we mentioned previously, we annotate the [lib] section with the proc-macro attribute set to true. We also use syn and quote as they help us parse Rust code from the TokenStream instance. The syn crate creates an in-memory data structure called the AST, which represents a piece of Rust code. We can then use this structure to examine our source code and extract information programmatically. The quote crate is a complement to the syn crate in the sense that it allows you to generate Rust code within the provided quote! macro, and also allows you to substitute values from syn data types. We also depend on the into_map crate, from where we bring the IntoMap trait into scope within our macro definition.
The code we want this macro to generate will look something like the following:
impl IntoMap for User {
fn into_map(&self) -> BTreeMap<String, String> {
let mut map = BTreeMap::new();
map.insert("name".to_string(), self.name.to_string());
map.insert("id".to_string(), self.id.to_string());
map.insert("active".to_string(), self.active.to_string());
map
}
}
We want to implement the into_map method on our User struct, but we want it to be generated automatically for us. This is something that is quite tedious to hand code for cases where we have a struct with lots of fields. Derive macros are tremendously helpful in such cases. Let's look at an implementation.
At a high level, the code generation in the into_map_derive crate is divided into two phases. In the first phase, we iterate over the fields of the struct and collect code for inserting items into the BTreeMap. The generated insert code tokens will look something like this:
map.insert(field_name, field_value);
This will be collected into a vector. In the second phase, we take all of the generated insert code tokens and expand them into another token sequence, which is the impl block for the User struct.
Let's start by exploring the implementation in lib.rs:
// into_map_demo/into_map_derive/src/lib.rs
extern crate proc_macro;
use proc_macro::TokenStream;
use quote::quote;
use syn::{parse_macro_input, Data, DeriveInput, Fields};
#[proc_macro_derive(IntoMap)]
pub fn into_map_derive(input: TokenStream) -> TokenStream {
let mut insert_tokens = vec![];
let parsed_input: DeriveInput = parse_macro_input!(input);
let struct_name = parsed_input.ident;
match parsed_input.data {
Data::Struct(s) => {
if let Fields::Named(named_fields) = s.fields {
let a = named_fields.named;
for i in a {
let field = i.ident.unwrap();
let insert_token = quote! {
map.insert(
stringify!(#field).to_string(),
self.#field.to_string()
);
};
insert_tokens.push(insert_token);
}
}
}
other => panic!("IntoMap is not yet implemented for: {:?}", other),
}
Whew, that's a lot of strange looking code! Let's go through this line by line. First, we have our into_map_derive function annotated with the #[proc_macro_derive(IntoMap)] attribute. We can give any name this function, though. This function receives a TokenStream as input, which will be our User struct declaration. We then create an insert_tokens list to store our input tokens, which is part of the actual code generation. We'll explain that in a moment.
We then call the parse_macro_input! macro from the syn crate, passing the input token stream. This gives us back a DeriveInput instance in the parsed_input variable. parsed_input represents our User struct definition as a token data structure. From that, we pull out the struct name with the parsed_input.ident field. Next, we match on the parsed_input.data field, which returns what kind of item it is: struct, enum, or union.
To keep our implementation simpler, we are only implementing the IntoMap trait for structs, so we match only when our parsed_input.data is a Data::Struct(s). The inner s is, again, a struct that represents the items that constitute a struct definition. We are interested in what fields s has, particularly named fields, so we use an if let to specifically match for that. Inside the if block, we get a reference to all the fields of our struct and then iterate over them. For each field, we generate an insert code for our btree map using the quote! macro from the quote crate:
map.insert(
stringify!(#field).to_string(),
self.#field.to_string()
);
insert_tokens.push(insert_token);
Notice the #field symbol. Within the quote! macro, we can have template variables that will be substituted with their value in the generated code. In this case, #field gets replaced with whatever field is present in our struct. First, we convert #field to a string literal by using the stringify! macro, which is an Ident type from the syn crate. We then push this generated chunk of code into the insert_tokens vec.
Following that, we come to our final phase of code generation:
let tokens = quote! {
use std::collections::BTreeMap;
use into_map::IntoMap;
impl IntoMap for #struct_name {
/// Converts the given struct into a dynamic map
fn into_map(&self) -> BTreeMap<String, String> {
let mut map = BTreeMap::new();
#(#insert_tokens)*
map
}
}
};
proc_macro::TokenStream::from(tokens)
}
Here, we are finally generating our final impl block for our struct. Within the quote! block, whatever we write will be generated exactly as written, including the indentation and code comments. First, we do the imports of the BtreeMap type and the IntoMap trait. Then, we have the IntoMap implementation. Within that, we create our map, and just expand out the insert_tokens that we collected in the first phase of code generation. Here, the outer #()* repeater tells the quote! macro to repeat the same code zero or more times. For iterable items such as our insert_tokens, this will repeat all the items within it. This generates code for inserting the field name and field value from the struct into the map. Finally, we take the whole implementation code that's stored in the tokens variable and return this as a TokenStream by calling TokenStream::from(tokens). That's it! Let's try this macro in main.rs:
// into_map_demo/src/main.rs
use into_map_derive::IntoMap;
#[derive(IntoMap)]
struct User {
name: String,
id: usize,
active: bool
}
fn main() {
let my_bar = User { name: "Alice".to_string(), id: 35, active: false };
let map = my_bar.into_map();
println!("{:?}", map);
}
Running cargo run gives us the following output:
{"active": "false", "id": "35", "name": "Alice"}
Great! It works. Next, let's look at how we can debug macros.
Debugging macros
When developing complex macros, most of the time you need ways to analyze how your code expands to the inputs you gave to the macro. You can always use println! or panic! at the places you want to see the generated code, but it's a very crude way to debug it. There's are better way, though. The Rust community provides us with a subcommand called cargo-expand. This subcommand was developed by David Tonlay at https://github.com/dtolnay/cargo-expand, who is also the author of the syn and quote crates. This command internally calls the nightly compiler flag -Zunstable-options --pretty=expanded, but the design of the subcommand was done in such a way that it doesn't require you to manually switch to the nightly tool chain as it finds and switches to it automatically. To demonstrate this command, we'll take the example of our IntoMap derive macro and observe what code it generated for us. By switching into the directory and running cargo expand, we get the following output:
As you can see, the impl block at the bottom is what was generated by the IntoMap derive macro. cargo-expand also includes pretty printed syntax highlighted output. This command is a must-have tool for someone writing complex macros.
Useful procedural macro crates
As procedural macros can be distributed as crates, a lot of emerging helpful macro crates are available, which can be found at crates.io. Using them can greatly reduce the boilerplate you need to write for generating Rust code. Some of them are as follows:
Summary
In this chapter, we covered the metaprogramming abilities of Rust and looked at many kinds of macros. The most frequently used macro is macro_rules!, which is a declarative macro. Declarative macros work at the abstract syntax tree level, which means that they do not support arbitrary expansions, but require that the macro expansions are well-formed in the AST. For more complex use cases, you can use procedural macros where you get complete control of manipulating the input and generating the desired code. We also looked at ways to debug macros using the cargo subcommand cargo-expand.
Macros are indeed a powerful tool, but not something that should be used heavily. Only when the more usual mechanisms of abstraction such as functions, traits, and generics do not suffice for the problem at hand should we turn to macros. Also, macros make the code less readable for newcomers to a code base and should be avoided. Having said that, they are quite useful in writing test case conditions and are widely used by developers.
In the next chapter, we'll get a glimpse of another side of Rust, the unsafe bits, which are less recommended but unavoidable if you want to interoperate Rust with different languages.
Unsafe Rust and Foreign Function Interfaces
Rust is a language that has two modes: safe mode (the default) and unsafe mode. In safe mode, you get all sorts of safety features to protect you from serious mistakes, but there are times when you're required to shake off the safety harness provided by the compiler and get that extra level of control. One use case is interfacing with other languages, such as C, which can be very unsafe. In this chapter, you will get to know what sort of extra work is required when Rust has to interact with other languages and how unsafe mode is used to facilitate and make this interaction explicit.
In this chapter, we will cover the following topics:
What is safe and unsafe really?
“You are allowed to do this, but you had better know what you are doing.”
- A Rustacean
When we talk about safety in programming languages, it is a property that spans different levels. A language can be memory-safe, type-safe, or it can be concurrent-safe. Memory safety means that a program doesn't write to a forbidden memory address and it doesn't access invalid memory. Type safety means that a program doesn't allow you to assign a number to a string variable and that this check happens at compile time, while concurrent-safe means that the program does not lead to race conditions when multiple threads are executing and modifying a shared state. If a language provides all of these levels of safety by itself, then it is said to be safe. To put it more generally, a program is deemed safe if, in all possible executions of the program and for all possible inputs, it gives correct outputs, does not lead to crashes, and does not clobber or corrupt its internal or external state. With Rust in safe mode, this is indeed true!
An unsafe program is one that violates an invariant at runtime or triggers an undefined behavior. These unsafe effects may be local to a function, or may have propagated later as a global state in the program. Some of them are inflicted by programmers themselves, such as logic errors, while some of them are due to the side effects of the compiler implementation that's used, and sometimes from the language specification itself. Invariants are conditions that must always be true during the execution of the program in all code paths. The simplest example would be that a pointer pointing to an object on the heap should never be null within a certain section of code. If that invariant breaks, code that is dependent on that pointer might dereference it and undergo a crash. Languages such as C/C++ and languages based on them are unsafe because quite a few operations are categorized as an undefined behavior in the compiler specification. An undefined behavior is an effect of hitting a situation in a program for which the compiler specification does not specify what happens at lower levels, and you are free to assume that anything can happen. One example of undefined behavior is using an uninitialized variable. Consider the following C code:
// both_true_false.c
int main(void) {
bool var;
if (var) {
fputs("var is true!\n");
}
if (!var) {
fputs("var is false!\n");
}
return 0;
}
The output of this program is not the same with all C compiler implementations because using an uninitialized variable is an undefined operation. On some C compilers with some optimizations enabled, you may even get the following output:
var is true
var is false
Having your code take unpredictable code paths like this is something you don't want to see happen in production. Another example of undefined behavior in C is writing past the end of an array of size n. When the write happens to n + 1 offset in memory, the program may either crash or it may modify a random memory location. In the best case scenario, the program would crash immediately and you would get to know about this. In the worst case scenario, the program would continue running but may later corrupt other parts of the code and give faulty results. Undefined behaviors in C exist in the first place to allow compilers to optimize code for performance and go with the assumption that a certain corner case never happens and to not add error-checking code for these situations, just to avoid the overhead associated with error handling. It would be great if undefined behavior could be converted to compile time errors, but detecting some of these behaviors at compile time sometimes becomes resource intensive, and so not doing so keeps the compiler implementation simple.
Now, when Rust has to interact with these languages, it knows very little about how function calls and how types are represented at lower levels in these languages and because undefined behavior can occur at unexpected places, it sidesteps from all of these gotchas and instead provides us with a special unsafe {} block for interacting with things that come from other languages. In unsafe mode, you get some extra abilities to do things, which would be considered undefined behavior in C/C++. However, with great power comes great responsibility. A a developer who uses unsafe in their code has to be careful of the operations that are performed within the unsafe block. With Rust in unsafe mode, the onus is on you. Rust places trust in the programmer to keep operations safe. Fortunately, this unsafe feature is provided in a very controlled manner and is easily identifiable by reading the code, because unsafe code is always annotated with the unsafe keyword or unsafe {} blocks. This is unlike C, where most things are likely to be unsafe.
Now, it's important to mention that, while Rust offers to protect you from major unsafe situations in programs, there are also cases where Rust can't save you, even if the program you wrote is safe. These are the cases where you have logical errors such as the following:
The unsafe feature of Rust is also needed for situations where the programmer knows better than the compiler and has to implement some of the tricky parts in their code, where the compile-time ownership rules become too restrictive and get in the way. For instance, let's say there's a case where you need to convert a sequence of bytes into a String value and you know that your Vec<u8> is a valid UTF-8 sequence. In this case, you can directly use the unsafe String::from_utf_unchecked method instead of the usual safe String::from_utf8 method to bypass the extra overhead in checking for valid UTF-8 in the from_utf8 method and can gain a bit of speedup. Also, when doing low-level embedded system development or any program that interfaces with the operating system kernel, you need to switch to unsafe mode. However, not everything requires unsafe mode and there are a few select operations that the Rust compiler sees as unsafe. They are as follows:
Some of the memory-safety guarantees are relaxed in the aforementioned situations, but the borrow checker is still active in these operations and all the scoping and ownership rules still apply. The Rust reference about unsafety at https://doc.rust-lang.org/stable/reference/unsafety.html distinguishes between what is considered undefined and what is not unsafe. To easily distinguish this when you are performing the aforementioned operations, Rust requires you to use the unsafe keyword. It allows only a handful of places to be marked as unsafe, such as the following:
Unsafe functions and blocks
Let's look at unsafe functions and blocks, starting with unsafe functions:
// unsafe_function.rs
fn get_value(i: *const i32) -> i32 {
*i
}
fn main() {
let foo = &1024 as *const i32;
let _bar = get_value(foo);
}
We defined a get_value function that takes in a pointer to an i32 value, which simply returns the pointed value back by dereferencing it. In main, we are passing foo to get_value, which is a reference to an i32 value that 1024 cast to *const i32. If we try running this, the compiler says the following:
As we already said, we need an unsafe function or block to dereference a raw pointer. Let's go with the first suggestion and add unsafe before our function:
unsafe fn get_value(i: *const i32) -> i32 {
*i
}
Now, let's try running this again:
Interesting! We got rid of the error on our get_value function, but now another error is shown at the call site in main. Calling an unsafe function requires us to wrap it within an unsafe block. That's because unsafe functions, apart from Rust's unsafe functions, can also be functions in other languages that are declared in extern blocks. These might or might not return values that the caller expects or a totally malformed value. As such, we need the unsafe block when calling unsafe functions. We modify our code to invoke get_value within an unsafe block like so:
fn main() {
let foo = &1024 as *const i32;
let bar = unsafe { get_value(foo) };
}
unsafe blocks are expressions, so we remove the semi-colon after get_value, and instead move it outside the unsafe block so that our return value from get_value gets assigned to bar. With that change, our program compiles.
Unsafe functions behave like regular functions, except that the aforementioned operations are allowed in it and that declaring your function as unsafe makes it non-callable from regular, safe functions. However, we could have written get_value the other way around:
fn get_value(i: *const i32) -> i32 {
unsafe {
*i
}
}
This looks similar to before but contains a significant change. We moved the unsafe keyword from the function signature to an inner unsafe block. The function now does the same unsafe operation but wraps it inside a function that appears just like a regular safe function. Now, this function can be called without requiring unsafe blocks on the caller side. This technique is often used to provide interfaces from libraries that look safe, even though they are doing unsafe operations internally. Obviously, if you do this, you should take special care that the unsafe blocks are correct. There are quite a lot of APIs in the standard library that use this paradigm of tucking away operations within unsafe blocks while providing a safe API on the surface. For example, the insert method on the String type, which inserts a character, ch, at a given index, idx, is defined like so:
// https://doc.rust-lang.org/src/alloc/string.rs.html#1277-1285
pub fn insert(&mut self, idx: usize, ch: char) {
assert!(self.is_char_boundary(idx));
let mut bits = [0; 4];
let bits = ch.encode_utf8(&mut bits).as_bytes();
unsafe {
self.insert_bytes(idx, bits);
}
}
First, it does an assertion if the idx passed to it lies at the start or the end of a UTF-8 encoded code-point sequence. Then, it encodes the ch passed to it as a sequence of bytes. Finally, it calls an unsafe method, insert_bytes, in an unsafe block, passing in idx and bits.
There are many such APIs in the standard library that have similar implementations where they rely on an unsafe block internally, either to gain speedups or when they need mutable access to individual parts of a value because ownership gets in the way.
Now, if we call our get_value function from our previous snippet, with a number as an argument, and cast it to a pointer, you can already guess what's going to happen:
unsafe_function(4 as *const i32);
Running this gives us the following output:
This is an obvious segmentation fault message! The takeaway from this observation is that the unsafe function, even though appearing safe on the outside, can be ignorantly or intentionally misused if the user supplies a malformed value. Therefore, if there is the need to expose an unsafe API from your library where the safety of your operations is dependent on user-supplied arguments, the author should document this clearly to ensure they are not passing an invalid value and mark the function with unsafe rather than using unsafe blocks internally.
Safe wrapper functions behind unsafe blocks should not really be exposed to consumers and instead are to be used mostly to hide implementation details in libraries, as is the case with many standard library API implementations. If you're not certain that you have managed to create a safe wrapper around the unsafe part, you should mark the function as unsafe.
Unsafe traits and implementations
Apart from functions, traits can also be marked as unsafe. It isn't obvious why we would need unsafe traits. One of the primary motivations for unsafe traits existing in the first place is to mark types that cannot be sent to or shared between threads. This is achieved via the unsafe Send and Sync marker traits. These types are also auto traits, which means that they are implemented for most types in the standard library whenever appropriate. However, they are also explicitly opted out for certain types, for instance, the Rc<T>. An Rc<T> does not have an atomic reference counting mechanism and if it were to implement Sync and later be used in multiple threads, then we might end up with the wrong reference counts on the type, which could lead to early frees and dangling pointers. Making Send and Sync unsafe puts the onus on the developer to only implement it, that is, if they have proper synchronization in place for their custom types. Send and Sync are marked as unsafe because it's incorrect to implement them for types that have no clear semantics on how types behave when mutated from multiple threads.
Another motivation for marking traits as unsafe is to encapsulate operations that are likely to have an undefined behavior by a family of types. As we've already mentioned, traits, by their nature, are used to specify a contract that implementing types must hold. Now, let's say your types contain entities from FFI boundaries, that is, a field that contains a reference to a C string, and you have many of these types. In this case, we can abstract away the behavior of such types by using an unsafe trait and then we can have a generic interface that takes types that implement this unsafe trait. One such example from Rust's standard library is the Searcher trait, which is an associated type of the Pattern trait,which is defined at https://doc.rust-lang.org/std/str/pattern/trait.Pattern.html. The Searcher trait is an unsafe trait that abstracts the notion of searching an item from a given byte sequence. One of the implementers of Searcher is the CharSearcher struct. Marking it as unsafe removes the burden on the Pattern trait to check for valid slices on valid UTF-8 byte boundaries and can give you some performance gains in string matching.
With the motivation for unsafe traits covered, let's look at how we can define and use unsafe traits. Marking a trait as unsafe doesn't make your methods unsafe. We can have unsafe traits that have safe methods. The opposite is also true; we can have a safe trait that can have unsafe methods within it, but that doesn't signify that the trait is unsafe. Unsafe traits are denoted in the same way as functions by simply prepending them with the unsafe keyword:
// unsafe_trait_and_impl.rs
struct MyType;
unsafe trait UnsafeTrait {
unsafe fn unsafe_func(&self);
fn safe_func(&self) {
println!("Things are fine here!");
}
}
trait SafeTrait {
unsafe fn look_before_you_call(&self);
}
unsafe impl UnsafeTrait for MyType {
unsafe fn unsafe_func(&self) {
println!("Highly unsafe");
}
}
impl SafeTrait for MyType {
unsafe fn look_before_you_call(&self) {
println!("Something unsafe!");
}
}
fn main() {
let my_type = MyType;
my_type.safe_func();
unsafe {
my_type.look_before_you_call();
}
}
In the preceding code, we have all kinds of variations with unsafe traits and methods. First, we have two trait declarations: UnsafeTrait, which is an unsafe trait and SafeTrait, which is safe. We also have a unit struct called MyType, which implements them. As you can see, unsafe traits require the unsafe prefix to implement MyType, letting the implementer know that they have to uphold the contracts that are expected by the trait. In the second implementation of the SafeTrait on MyType, we have an unsafe method that we need to call within the unsafe block, as we can see in the main function.
In the following sections, we'll be exploring a handful of languages and how Rust interoperates with them. All of the related APIs and abstractions that Rust provides to communicate safely back and forth between languages is colloquially termed the Foreign Function Interface (FFI). As part of the standard library, Rust provides us with built-in FFI abstractions. Wrapper libraries on top of these provide seamless cross-language interaction.
Calling C code from Rust
First, we'll take a look at an example of calling C code from Rust. We'll create a new binary crate from which we'll call our C function that's defined in a separate C file. Let's create a new project by running cargo new c_from_rust. Within the directory, we'll also add our C source, that is, the mystrlen.c file, which has the following code inside it:
// c_from_rust/mystrlen.c
unsigned int mystrlen(char *str) {
unsigned int c;
for (c = 0; *str != '\0'; c++, *str++);
return c;
}
It contains a simple function, mystrlen, which returns the length of a string passed to it. We want to invoke mystrlen from Rust. To do that, we'll need to compile this C source into a static library. There's one more example in the upcoming section, where we cover linking dynamically to a shared library. We'll use the cc crate as a build dependency in our Cargo.toml file:
# c_from_rust/Cargo.toml
[build-dependencies]
cc = "1.0"
The cc crate does all the heavy lifting of compiling and linking our C source file with our binary with correct linker flags. To specify our build commands, we need to put a build.rs file at the crate root, which has the following contents:
// c_from_rust/build.rs
fn main() {
cc::Build::new().file("mystrlen.c")
.static_flag(true)
.compile("mystrlen");
}
We created a new Build instance and passed the C source filename with the static flag set to true before giving a name to our static object file to the compile method. Cargo runs the contents of any build.rs file before any project files get compiled. Upon running code from build.rs, the cc crate automatically appends the conventional lib prefix in C libraries, so our compiled static library gets generated at target/debug/build/c_from_rust-5c739ceca32833c2/out/libmystrlen.a.
Now, we also need to tell Rust about the existence of our mystrlen function. We do this by using extern blocks, where we can specify items that come from other languages. Our main.rs file is as follows:
// c_from_rust/src/main.rs
use std::os::raw::{c_char, c_uint};
use std::ffi::CString;
extern "C" {
fn mystrlen(str: *const c_char) -> c_uint;
}
fn main() {
let c_string = CString::new("C From Rust").expect("failed");
let count = unsafe {
mystrlen(c_string.as_ptr())
};
println!("c_string's length is {}", count);
}
We have a couple of imports from the std::os::raw module that contain types that are compatible with primitive C types and have names close to their C counterparts. For numeric types, a single letter before the type says whether the type is unsigned. For instance, the unsigned integer is defined as c_uint. In our extern declaration of mystrlen, we take a *const c_char as input, which is equivalent to char * in C, and return a c_uint as output, which maps to unsigned int in C. We also import the CString type from the std::ffi module, as we need to pass a C-compatible string to our mystrlen function. The std::ffi module contains common utilities and types that make it easy to perform cross language interactions.
As you may have noticed, in the extern block, we have a string, "C", following it. This "C" specifies that we want the compiler's code generator to confirm to the C ABI (cdecl) so that the function-calling convention follows exactly as a function call that's done from C. An Application Binary Interface (ABI) is basically a set of rules and conventions that dictate how types and functions are represented and manipulated at the lower levels. The function-calling convention is one aspect of an ABI specification. It's quite analogous to what an API means for a library consumer. In the context of functions, an API specifies what functions you can call from the library, while the ABI specifies the lower-level mechanism by which a function is invoked. A calling convention defines things such as whether function parameters are stored in registers or on the stack, and whether the caller clears the register/stack state or the caller when the function returns, and other details. We could have also ignored specifying this, as "C" (cdecl) is the default ABI in Rust for items that are declared in an extern block. The cdecl is a calling convention that's used by most C compilers for function calls. There are also other ABIs that Rust supports such as fastcall, cdecl, win64, and others, and these need to be put after the extern block based on what platform you are targeting.
In our main function, we use a special version of a CString string from the std::ffi module because strings in C are null terminated, while Rust one's aren't. CString does all the checks for us to give us a C-compatible version of strings where we don't have a null 0 byte character in the middle of the string and ensures that the ending byte is a 0 byte. The ffi module contains two major string types:
Since we want to pass a string from the Rust side to the function we just defined, we used the CString type here. Following that, we call mystrlen in an unsafe block, passing in the c_string as a pointer. We then print the string length to standard output.
Now, all we need to do is run cargo run. We get the following output:
The cc crate automatically figures out the correct C compiler to call. In our case, on Ubuntu, it automatically invokes gcc to link our C library. Now, there are a couple of improvements to be made here. First, it is awkward that we have to be in an unsafe block to call the function as we know it's not unsafe. We know our C implementation is sound, at least for this small function. Second, we will panic if CString creation fails. To solve this, we can create a safe wrapper function. In a simplistic form, this just means creating a function that calls the external function inside an unsafe block:
fn safe_mystrlen(str: &str) -> Option<u32> {
let c_string = match CString::new(str) {
Ok(c) => c,
Err(_) => return None
};
unsafe {
Some(mystrlen(c_string.as_ptr()))
}
}
Our safe_mystrlen function returns an Option now, where it returns None if CString creation fails and, following that, calls mystrlen wrapped in an unsafe block, which is returned as Some. Calling safe_mystrlen feels exactly like calling any other Rust function. If possible, it's recommended to make safe wrappers around external functions, taking care that all exceptional cases happening inside the unsafe block are handled properly so that library consumers don't use unsafe in their code.
Calling Rust code from C
As we stated in the previous section, when Rust libraries expose their functions to other languages using the extern block, they expose the C ABI (cdecl) by default. As such, it becomes a very seamless experience of calling Rust code from C. To C, they appear just like regular C functions. We'll take a look at an example of calling Rust code from a C program. Let's create a cargo project for this by running cargo new rust_from_c --lib.
In our Cargo.toml file, we have the following items:
# rust_from_c/Cargo.toml
[package]
name = "rust_from_c"
version = "0.1.0"
authors = ["Rahul Sharma <creativcoders@gmail.com>"]
edition = "2018"
[lib]
name = "stringutils"
crate-type = ["cdylib"]
Under the [lib] section, we specified the crate as cdylib, which indicates that we want a dynamically loadable library to be generated, which is more commonly known as a shared object file (.so) in Linux. We specified an explicit name for our stringutils library, and this will be used to create the shared object file.
Now, let's move on to our implementation in lib.rs:
// rust_from_c/src/lib.rs
use std::ffi::CStr;
use std::os::raw::c_char;
#[repr(C)]
pub enum Order {
Gt,
Lt,
Eq
}
#[no_mangle]
pub extern "C" fn compare_str(a: *const c_char, b: *const c_char) -> Order {
let a = unsafe { CStr::from_ptr(a).to_bytes() };
let b = unsafe { CStr::from_ptr(b).to_bytes() };
if a > b {
Order::Gt
} else if a < b {
Order::Lt
} else {
Order::Eq
}
}
We have a single function, compare_str. We prepend it with the extern keyword to expose it to C, followed by specifying the "C" ABI for the compiler to generate code appropriately. We also need to add a #[no_mangle] attribute, as Rust adds random characters to function names by default to prevent the clashing of names of types and functions across modules and crates. This is called name mangling. Without this attribute, we won't be able to call our function by the name compare_str. Our function lexicographically compares two C strings passed to it and returns an enum, Order, accordingly, which has three variants: Gt (Greater than), Lt (Less than), and Eq (Equal). As you may have noticed, the enum definition has a #[repr(C)] attribute. Because this enum is being returned to the C side, we want it to be represented in the same way as a C enum. The repr attribute allows us to do that. On the C side, we will get a uint_32 type as the return type of this function as enums variants are represented as 4 bytes in Rust, as well as in C. Do note that at the time of writing this book, Rust follows the same data layout for enums that have associated data as it does for C enums. However, this may change in the future.
Now, let's create a file called main.c that uses our exposed function from Rust:
// rust_from_c/main.c
#include <stdint.h>
#include <stdio.h>
int32_t compare_str(const char* value, const char* substr);
int main() {
printf("%d\n", compare_str("amanda", "brian"));
return 0;
}
We declared the prototype of our compare_str function, just like any normal prototype declaration. Following that, we called compare_str in main, passing in our two string values. Do note that if we were passing strings that were allocated on the heap, we would need to also free it from the C side. In this case, we are passing a C string literal that goes to the data segment of the process, and so we don't need to do any free calls. Now, we'll create a simple Makefile that builds our stringutils crate and also compiles and links with our main.c file:
# rust_from_c/Makefile
main:
cargo build
gcc main.c -L ./target/debug -lstringutils -o main
We can now run make to build our crate and then run main by first setting our LD_LIBRARY_PATH to where our generated libstringutils.so resides. Following that, we can run main like so:
$ export LD_LIBRARY_PATH=./target/debug
$ ./main
This gives us an output of 1, which is the value of the Lt variant from the Order enum on the Rust side. The takeaway from this example is that when you are invoking a Rust function from C/C++ or any other language that has a supported ABI in Rust, we cannot pass Rust-specific data types to the FFI boundary. For instance, passing Option or Result types, that ha've associated data with them is meaningless, as C cannot interpret and extract values out of them, as it has no way of knowing about that. In such cases, we need to pass primitive values as return types from functions to the C side or convert our Rust type to some format that C can understand.
Now, consider our previous case of calling C code from Rust. In the manual way, we needed to write extern declarations for all of our APIs that have been declared in header files. It would be great if this could be automated for us. Let's see how we can do that next!
Using external C/C++ libraries from Rust
Given the amount of software written over the last three decades, a lot of system software is written in C/C++. It's more likely that you may want to link to an existing library written in C/C++ for use in Rust, as rewriting everything in Rust (though desirable) is not practical for complex projects. But at the same time, writing manual FFI bindings for these libraries is also painful and error-prone. Fortunately, there are tools for us to automatically generate bindings to C/C++ libraries. For this demo, the required code on the Rust side is much simpler than the previous example of calling C/C++ code from Rust, as, this time, we'll use a neat crate called bindgen that automatically generates FFI bindings from C/C++ libraries. Bindgen is the recommended tool if someone wants to integrate a complex library with lots of APIs. Writing these bindings manually can be very error-prone and bindgen helps us by automating this process. We'll use this crate to generate bindings for a simple C library, levenshtein.c, which can be found at https://github.com/wooorm/levenshtein.c, which is used to find the minimum edit distance between two strings. The edit distance is used in a wide variety of applications, such as in fuzzy string matching, natural language processing, and in spell checkers. Anyway, let's create our cargo project by running cargo new edit_distance --lib.
Before we use bindgen, we need to install a few dependencies as bindgen needs them:
$ apt-get install llvm-3.9-dev libclang-3.9-dev clang-3.9
Next, in our Cargo.toml file, we'll add a build dependency on bindgen and the cc crate:
# edit_distance/Cargo.toml
[build-dependencies]
bindgen = "0.43.0"
cc = "1.0"
The bindgen crate will be used to generate bindings from the levenshtein.h header file, while the cc crate will be used to compile our library as a shared object so that we can use it from Rust. Our library-related files reside in the lib folder at the crate root.
Next, we'll create our build.rs file, which will be run before any of our source files are compiled. It will do two things: first, it will compile levenshtein.c to a shared object (.so) file, and second, it will generate bindings to the APIs defined in the levenshtein.h file:
// edit_distance/build.rs
use std::path::PathBuf;
fn main() {
println!("cargo:rustc-rerun-if-changed=.");
println!("cargo:rustc-link-search=.");
println!("cargo:rustc-link-lib=levenshtein");
cc::Build::new()
.file("lib/levenshtein.c")
.out_dir(".")
.compile("levenshtein.so");
let bindings = bindgen::Builder::default()
.header("lib/levenshtein.h")
.generate()
.expect("Unable to generate bindings");
let out_path = PathBuf::from("./src/");
bindings.write_to_file(out_path.join("bindings.rs")).expect("Couldn't write bindings!");
}
In the preceding code, we tell Cargo that our library search path is our current directory and that the library we are linking against is called levenshtein. We also tell Cargo to rerun code in build.rs if any of our files in our current directory change:
println!("cargo:rustc-rerun-if-changed=.");
println!("cargo:rustc-link-search=.");
println!("cargo:rustc-link-lib=levenshtein");
Following that, we create a compilation pipeline for our library by creating a new Build instance and provide the appropriate C source file for the file method. We also set the output directory to out_dir and our library name to the compile method:
cc::Build::new().file("lib/levenshtein.c")
.out_dir(".")
.compile("levenshtein");
Next, we create a bindgen Builder instance, pass our header file location, call generate(), and then write it to a bindings.rs file before calling write_to_file:
let bindings = bindgen::Builder::default().header("lib/levenshtein.h")
.generate()
.expect("Unable to generate bindings");
Now, when we run cargo build, a bindings.rs file will be generated under src/. As we mentioned previously, it's good practice for all libraries that are exposing FFI bindings to provide a safe wrapper. So, under src/lib.rs, we'll create a function named levenshtein_safe that wraps the unsafe function from bindings.rs:
// edit_distance/src/lib.rs
mod bindings;
use crate::bindings::levenshtein;
use std::ffi::CString;
pub fn levenshtein_safe(a: &str, b: &str) -> u32 {
let a = CString::new(a).unwrap();
let b = CString::new(b).unwrap();
let distance = unsafe { levenshtein(a.as_ptr(), b.as_ptr()) };
distance
}
We import the unsafe function from bindings.rs, wrap it within our levenshtein_safe function, and call our levenshtein function in an unsafe block, passing C-compatible strings. It's time to test our levenshtein_safe function. We'll create a basic.rs file in an examples/ directory in our crate root, which has the following code:
// edit_distance/examples/basic.rs
use edit_distance::levenshtein_safe;
fn main() {
let a = "foo";
let b = "fooo";
assert_eq!(1, levenshtein_safe(a, b));
}
We can run this with cargo run --example basic and we should see no assertion failures as the value should be 1 from the levenshtein_safe call. Now, it's a recommended naming convention for these kind of crates to have the suffix sys appended to them, which only houses FFI bindings. Most crates on crates.io follow this convention. This was a whirlwind tour on how to use bindgen to automate cross-language interaction. If you want similar automation for reverse FFI bindings, such as Rust in C, there is also an equivalent project called cbindgen at https://github.com/eqrion/cbindgen, which can generate C header files for Rust crates. For instance, Webrender uses this crate to expose its APIs to other languages. Given the legacy of C, it's the lingua franca of programming languages and Rust has first-class support for it. A lot of other languages also call into C. This implies that your Rust code can be called from all other languages that target C. Let's make other languages talk to Rust.
Creating native Python extensions with PyO3
In this section, we'll see how Python can also call Rust code. The Python community has always been a heavy user of native modules such as numpy, lxml, opencv, and so on, and most of them have their underlying implementations in either C or C++. Having Rust as an alternative to native C/C++ modules is a major advantage both in terms of speed and safety for a lot of Python projects out there. For the demo, we'll build a native Python module that's implemented in Rust. We'll be using pyo3, a popular project that provides Rust bindings for the Python interpreter and hides all the low-level details, thus providing a very intuitive API. The project is on GitHub at https://github.com/PyO3/pyo3. It supports both Python 2 and Python 3 versions. pyo3 is a fast-moving target and only works on nightly at the time of writing this book. So, we'll use a specific version of pyo3, that is, 0.4.1, along with a specific nightly version of the Rust compiler.
Let's create a new cargo project by running cargo new word_suffix --lib. This library crate will expose a Python module called word_suffix, which contains a single function, find_words, which accepts a comma-separated string of words and returns all the words in that text that end with a given suffix. Once we build our module, we'll be able to import this module like a normal Python module.
Before we go ahead with the implementation, we'll need to switch to a specific nightly Rust toolchain for this project, that is, rustc 1.30.0-nightly (33b923fd4 2018-08-18). We can override the toolchain to use this specific nightly version for this project by running rustup override set nightly-2018-08-19 in our current directory (word_suffix/).
To start things off, we'll specify our dependencies in our Cargo.toml file:
# word_suffix/Cargo.toml
[package]
name = "word_suffix"
version = "0.1.0"
authors = ["Rahul Sharma <creativcoders@gmail.com>"]
[dependencies]
pyo3 = "0.4"
[lib]
crate-type = ["cdylib"]
We added our only dependency here on pyo3. As you can see, in the [lib] section, we specified the crate-type as cdylib, which means that the generated library is similar to a C shared library (.so in linux), which Python already knows how to call.
Now, let's start the implementation in our lib.rs file:
// word_suffix/src/lib.rs
//! A demo python module in Rust that can extract words
//! from a comma seperated string of words that ends with the given suffix
#[macro_use]
extern crate pyo3;
use pyo3::prelude::*;
/// This module is a python module implemented in Rust.
#[pymodinit]
fn word_suffix(_py: Python, module: &PyModule) -> PyResult<()> {
module.add_function(wrap_function!(find_words))?;
Ok(())
}
#[pyfunction]
fn find_words(src: &str, suffix: &str) -> PyResult<Vec<String>> {
let mut v = vec![];
let filtered = src.split(",").filter_map(|s| {
let trimmed = s.trim();
if trimmed.ends_with(&suffix) {
Some(trimmed.to_owned())
} else {
None
}
});
for s in filtered {
v.push(s);
}
Ok(v)
}
First, we imported our pyo3 crate, along with all the Python-related types from the prelude module. Then, we defined a word_suffix function, annotating it with the #[pymodinit] attribute. This becomes our Python module, which we can import in any .py file. This function receives two arguments. The first argument is Python, a marker type that is required for most Python related operations in pyo3. This is used to indicate that a particular operation modifies the Python interpreter state. The second argument is a PyModule instance, which represents a Python module object. Through this instance, we then add our find_words function, wrapped inside the wrap_function macro by calling add_function. The wrap_function macro does some manipulation to the provided Rust function to convert it into a Python-compatible function.
Next, is our find_words function, which is the important piece here. We wrap it with a #[pyfunction] attribute, which performs conversions on the argument and return type of our function so that it's compatible with a Python function. Our find_words implementation is simple. First, we create a vector, v, to hold the list of filtered words. Then, we filter our src string by splitting on ",", followed by a filter and map operation. The split(",") call returns an iterator on which we call the filter_map method. This method receives a closure as an argument containing the split word s. We first remove any white space from our s by calling s.trim(), followed by checking whether it ends_with our provided suffix string. If it does, it converts trimmed to an owned String wrapping in Some; otherwise, it returns None. We then iterate over all the filtered words (if any), push them to our v, and return it.
With that explanation out of the way, it's time to build our Python module. To do that, we have pyo3-pack: another tool from the same pyo3 project that automates the whole process of making a native Python module. This tool also has the ability to publish the built packages to the Python Package Index (PyPI). Let's install pyo3-pack by running cargo install pyo3-pack. Now, we can generate the package as a Python wheel (.whl), followed by installing the package locally using pyo3-pack develop. But before we do that, we need to be in a Python virtual environment, since the py3-pack develop command requires that.
We can create our virtual environment by running the following code:
virtualenv -p /usr/bin/python3.5 test_word_suffix
We are using Python 3.5 here. After that, we need to activate our environment by running the following code:
source test_word_suffix/bin/activate
If you don't have pip or virtualenv installed, you can install them by running the following code:
sudo apt-get install python3-pip
sudo pip3 install virtualenv
Now, we can run pyo3-pack develop, which creates the wheel files for both Python 2 and Python 3 versions and also installs them locally inside our virtual environment.
Now, we'll create a simple main.py file in our word_suffix directory and import this module to see if we can use our module:
# word_suffix/main.py
import word_suffix
print(word_suffix.find_words("Baz,Jazz,Mash,Splash,Squash", "sh"))
Running it via python main.py, we get the following output:
Great! This was a very simple example, though. For complex cases, there are lots of details that you need to know about. To explore more about pyo3, head over to their excellent guide at https://pyo3.rs.
Creating native extensions in Rust for Node.js
There are times when the performance of JavaScript in the Node.js runtime is not enough, so developers reach out to other low-level languages to create native Node.js modules. Often, C and C++ are used as the implementation language for these native modules. Rust can also be used to create native Node.js modules via the the same FFI abstractions that we saw for C and Python. In this section, we'll explore a high-level wrapper for these FFI abstractions, called the neon project, which was created by Dave Herman from Mozilla.
The neon project is a set of tools and glue code that makes the life of Node.js developers easier, allowing them to write native Node.js modules in Rust and consume them seamlessly in their JavaScript code. The project resides at https://github.com/neon-bindings/neon. It's partially written in JavaScript: there's a command-line tool called neon in the neon-cli package, a JavaScript-side support library, and a Rust-side support library. Node.js itself has good support for loading native modules, and neon uses that same support.
In the following demo, we will be building a native Node.js module in Rust as an npm package, exposing a function that can count occurrences of a given word in a chunk of text. We will then import this package and test the exposed function in a main.js file. This demo requires Node.js (version v11.0.0) to be installed, along with its package manager, npm (version 6.4.1). If you don't have Node.js and npm installed, head over to https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-16-04 to set them up. After you are done installing them, you need to install the neon-cli tool using npm by running the following command:
npm install --global neon-cli
Since we want this tool to be available globally to create new projects from anywhere, we pass the --global flag. The neon-cli tool is used to create a Node.js project with skeleton neon support included. Once it is installed, we create our project by running neon new native_counter, which prompts for basic information for the project, as shown in the following screenshot:
Here's the directory structure this command created for us:
native_counter tree
.
├── lib
│ └── index.js
├── native
│ ├── build.rs
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
├── package.json
└── README.md
The project structure neon created for us is the same npm package structure that we get with the usual lib directory and package.json. In addition to the Node.js package structure, it has also created a cargo project for us under the native directory with some initial code in it. Let's see what the contents of this directory are, starting with Cargo.toml:
# native_counter/native/Cargo.toml
[package]
name = "native_counter"
version = "0.1.0"
authors = ["Rahul Sharma <creativcoders@gmail.com>"]
license = "MIT"
build = "build.rs"
exclude = ["artifacts.json", "index.node"]
[lib]
name = "native_counter"
crate-type = ["dylib"]
[build-dependencies]
neon-build = "0.2.0"
[dependencies]
neon = "0.2.0"
The prominent thing to note is the [lib] section, which specifies the crate type as dylib, which means we require Rust to create a shared library. There is also an autogenerated build.rs file at the root level, which does some initial build environment configuration by calling neon_build::setup() inside it. Next, we'll remove the existing code in our lib.rs file and add the following code:
// native_counter/native/src/lib.rs
#[macro_use]
extern crate neon;
use neon::prelude::*;
fn count_words(mut cx: FunctionContext) -> JsResult<JsNumber> {
let text = cx.argument::<JsString>(0)?.value();
let word = cx.argument::<JsString>(1)?.value();
Ok(cx.number(text.split(" ").filter(|s| s == &word).count() as f64))
}
register_module!(mut m, {
m.export_function("count_words", count_words)?;
Ok(())
});
First, we import the neon crate, along with the macros and all the items from the prelude module. Following that, we define a function, count_words, which takes in a FunctionContext instance. This contains information in JavaScript regarding the active function that's invoked, such as the argument list, length of arguments, the this binding, and other details. We expect the caller to pass two arguments to our count_words function. Firstly, the text, and secondly, the word to search for in the text. These values are extracted by calling the argument method on the cx instance and passing in the respective index to it. We also use the turbofish operator to ask it to give a value of the JsString type. On the returned JsString instance, we call the value method to get a Rust String value.
After we're done extracting the arguments, we split our text with white space and filter only the chunks that contain the given word before calling count() on the iterator chain to count the number of matched occurrences:
text.split(" ").filter(|s| s == &word).count()
count() returns usize. However, we need to cast usize to f64 because of the Into<f64> trait bound on our number method on cx. Once we do that, we wrap this expression with a call to cx.number(), which creates a JavaScript-compatible JsNumber type. Our count_words method returns a JsResult<JsNumber> type, as accessing the arguments might fail and returning a proper JavaScript type might also fail. This error variant in the JsResult type represents any exception that's thrown from the JavaScript-side.
Next, we register our count_words function with the register_module! macro. This macro gets a mutable reference to a ModuleContext instance, m. Using this instance, we export our function by calling the export_function method, passing in the name of the function as string and the actual function type as the second parameter.
Now, here's our updated index.js file's contents:
// native_counter/lib/index.js
var word_counter = require('../native');
module.exports = word_counter.count_words;
As index.js is the root of an npm package, we require our native module and must export the function directly at the root of the module using module.exports. We can now build our module using the following code:
neon build
Once the package has been built, we can test it by creating a simple main.js file in the native_counter directory with the following code:
// native_counter/main.js
var count_words_func = require('.');
var wc = count_words_func("A test text to test native module", "test");
console.log(wc);
We'll run this file by running the following code:
node main.js
This gives us an output of 2. That concludes our awesome journey on making Rust and other languages talk to each other. It turns out that Rust is quite smooth at this interaction. There are rough edges in cases where other languages don't understand Rust's complex data types, but this is to be expected, as every language is different in its implementation.
Summary
Rust provides us with convenient FFI abstractions to interface with different languages and has first-class support for C, as it exposes the C ABI (cdecl) for functions marked as extern. As such, it's a good candidate for bindings for a lot of C/C++ libraries. One of the prominent examples of this is the SpiderMonkey JavaScript engine that's implemented in C++, which is used in the Servo project. The Servo engine calls into C++ using the bindings that are generated via the bindgen crate.
But, when we are interacting with cross-language boundaries, the language constructs and data representation that one language has don't need to match with the other language. As such, we need to put extra annotations, along with unsafe blocks, in Rust code to let the compiler know of our intent. We saw this when we used the #[repr(C)] attribute. The Foreign Function Interface (FFI), like many other Rust features, is zero-cost, which means that a minimal runtime cost is incurred when linking to code from other languages. We took a look at Python and Node.js, which have nice wrapper crates for these low-level FFI abstractions. For languages that don't have such wrappers, interfacing with other languages is always possible by using the bare FFI APIs that Rust's standard library provides.
The aim up until this chapter was to cover the topics that are core to the language, and I hope you are up to speed with most of the core language features. The remaining chapters will cover case studies of various Rust frameworks and crates, and will be heavily oriented toward applying Rust to practical projects.
Logging
Logging is an important, yet overlooked, practice in the software development life cycle. It is often integrated as an afterthought on facing the consequences of latent invalid states and errors that accumulate over time in software systems. Any moderate sized project should have logging support from the initial days of development.
In this chapter, we'll get to know why setting up logging in an application is important, the need for a logging framework, how to approach logging, and what crates are available in the Rust ecosystem to enable programmers to leverage the power of logging in their applications.
In this chapter, we will cover the following topics:
What is logging and why do we need it?
"Generally, a program should say nothing unless and until it has something to say." - Kernighan and Plauger
Before we talk about the importance of logging, let's define the term so that we have a better context for it. Logging is the practice of making an application record its activity at runtime to any output, where the individual record is called an event log or simply a log. This is often associated with a timestamp describing when the event occurred. The event could be anything that changes the state of the program internally or externally. Logs help you in gaining insights on an application's runtime behavior over the course of time, or in getting more context on the application state when debugging a bug. They also find their use in generating analytics reports for business purposes. This is to say that the degree of utility logging provides to a user depends mainly on the application and consumers' needs.
Now, in an application without any kind of logging integration, there are limited options for us to know about the behavior of our program at runtime. We could use external utilities such as htop in Linux to monitor our program, but this gives us a view of the program from the outside and provides limited information regarding the internals.
Information from within a program while it's running is useful for debugging purposes or can be used for runtime performance analysis. In the case of fatal failures in our program, we can get to know about the whereabouts of our program when it crashes. At the very least, the program will leave a stack trace, thus providing a bit of context on where the program went wrong. However, there are classes of bugs and events that do not cause immediate problems but later turn into fatal errors, especially in long running systems. In these cases, event logs can help quickly narrow down the issue in the program. That's where adding logging capabilities to a program becomes tremendously helpful.
Systems that benefit greatly from logging and need to rely on event logs are web services, network servers, stream processing services, and similar long running systems. In these systems, individual event logs combined with subsequent logs over the course of time, when ingested and put into analysis by a log aggregation service, can provide useful statistics about the system.
For a commercial application such as a shopping website, you can leverage log analytics to get business insights, leading to better sales. In network servers, you can find useful activity logs to track any malicious attempts made to the server such as a distributed denial of service (DDoS) attack. Developers can assess the performance of their web API endpoints by getting request-response latency figures from the collected API request logs.
Logs also serve as an important debugging context and can minimize the time that's taken in performing root cause analysis during a debugging session, where you have time constraints to fix issues that happen in production.
Sometimes, logging is the only way to do this because debuggers are not always available or applicable. This is usually the case in distributed systems and multi-threaded applications. Anyone who has done a fair amount of development within these systems is quite aware of why logging is such an important part of the software development pipeline.
There are three broad categories of users who benefit greatly from the practice of application logging:
Being a functional component in software development practices, and providing great value in the long run, integrating logging in a system demands dedicated frameworks, and we'll see why in the next section.
The need for logging frameworks
We now know why logs are important. The next question however is how do we integrate logging capabilities in our application? The simplest and most straightforward way to get your application to log events is to have a bunch of print statements sprinkled in code at the required places. This way, we easily get our event logs to the standard output on our Terminal console, which gets our job done, but there's more to be desired. In quite a few cases, we also want our logs to persist for analysis at a later point in time. So, if we want to collect the output from our print statements to a file, we have to look for additional ways such as piping the output to a file using the shell output redirection facility, which is basically plumbing a different set of tools to get to the goal of getting logs from our application to different outputs. As it turns out, there are limitations to this approach.
You don't get to filter or turn off your print statements for cases where you don't need to log for a particular module. For that, you either have to comment them out or remove them and redeploy your services. Another limitation is that when your logging commands become large, you have to write and maintain shell scripts for collecting logs for multiple outputs. All of this gets unwieldy and less maintainable very quickly. Using a print statement is a quick and dirty logging practice and is not a very scalable solution. What we need is a better and more customizable architecture for application logging. The scalable and cleaner way is to have a dedicated logger that removes all of these limitations, and that is why logging frameworks exist. In addition to basic logging needs, these frameworks also provide additional features such as log file rotations when reaching a certain size limit, setting logging frequency, granular log configuration per module, and much more.
Logging frameworks and their key features
There are a wide variety of logging frameworks offered by mainstream languages. Some notable ones to mention include Log4j from Java, Serilog from C#, and Bunyan from Node.js. From the time of proliferation of these frameworks, and from their use cases, there are similarities in what features a logging framework should provides to its users. The following are the most desirable properties that logging frameworks should have:
Some of these names might differ slightly across frameworks, but the priorities they signify are mostly the same. In major logging frameworks, these levels are set by the logger during its initialization and any subsequent logging invocations check for the set level and filters out the logs accordingly. For example, a Logger object with the call to Logger.set_level(INFO) would allow all logs using levels above Info to be logged, while ignoring Debug and Trace logs.
Depending on these features, there are differences in how logging frameworks approach logging. Let's explore them next.
Approaches to logging
When integrating logging in an application, we need to decide what information to log and how granular it should be. If there are too many logs, we lose the ability of easily finding relevant information in the sea of noise and if there's not enough log messages, we risk missing that one important event. We also need to think about how to organize information in our log message so that it becomes easier to search and analyze it later. These questions lead to logging frameworks that are broadly divided into two categories: unstructured logging and structured logging.
Unstructured logging
The usual way to approach logging is the practice of logging events as plain strings and shoving any fields from required values into the log message by converting them into strings. This form of logging is called unstructured logging as the information in the log message doesn't have any predefined structure or order. Unstructured logging serves well for most use cases, but it has its downsides too.
After collecting log messages, a common use case with them is to be able search for them for a particular event at a later point in time. However, the retrieval of unstructured logs from a collection of logs can be a pain. The problem with unstructured log messages is that they don't have any predictable format and it becomes quite resource heavy for a log aggregation service to sift through all of the raw log messages using simple text matching queries. You need to write regular expressions that match on a chunk of text or grep them from the command line to get that particular event. With an increasing amount of logs, this approach eventually becomes a bottleneck in getting useful information from log files. The other approach is to log messages that have a predefined structure and for that we have structured logging.
Structured logging
Structured logging is a scalable and better alternative to unstructured logging. As the name suggests, structured logging defines a structure and formatting to your log messages and every log message is guaranteed to have this format. The advantage of this is that it becomes very easy for log aggregation services to build a search index and present any particular event to the user, regardless of the amount of messages they have. There are quite a few structured logging frameworks such as Serilog in C# that provide support for structured logging. These frameworks provide a plugin-based log output abstraction called Sinks. Sinks are how you direct where you want your logs to be sent. A Sink can be your Terminal, a file, a database, or a log aggregation service such as logstash.
Structured logging frameworks know how to serialize a certain object and can do so in a proper format. They also automate the formatting of log messages by providing hierarchical log outputs, depending on which component the log is emitted from. The downside to structured logging is that it can be a bit time-consuming to integrate it into your application as you have to decide on the hierarchy and the format of your logs beforehand.
It's often a trade-off when choosing between structured logging and unstructured logging. Complex projects that log heavily can benefit from structured logging as they can get semantic and efficiently searchable logs from their modules, while small to moderate size projects can make do with unstructured logging. Ultimately, it's the application's needs that should decide how you integrate logging in your application. In the next section, we'll explore a couple of unstructured logging frameworks as well as structure logging frameworks in Rust that you can use for getting your application to log events.
Logging in Rust
Rust has quite a few flexible and extensive logging solutions. Like popular logging frameworks in other languages, the logging ecosystem here is split into two parts:
This separation of concerns between the logging API and the underlying mechanism by which logs go to an output is done so that developers don't need to change their log statements in code and can easily swap the underlying logging implementation on an as-needed basis.
log – Rust's logging facade
The log crate comes from the rust-lang nursery organization on GitHub and is managed by the community at https://github.com/rust-lang-nursery/log. It provides separate macros for logging at different log levels such as error!, warn!, info!, debug!, and trace!, in the order of the most priority to the least priority. These macros are major points of interaction for consumers of this crate. They internally call the log! macro in this crate, which does all the bookkeeping such as checking for the log level and formatting log messages. The core component of this crate is the log trait that other backend crates implement. The trait defines operations that are required for a logger and has other APIs, such as for checking whether logging is enabled or for flushing any buffered logs.
The log crate also provides a maximum log level constant called STATIC_MAX_LEVEL, which can be configured project wide at compile time. With this constant, you can set the log level of an application statically using cargo feature flags, which allows for the compile time filtering of logs for the application and all of its dependencies. These level filters can be set in Cargo.toml separately for debug and release builds: max_level_<LEVEL> (debug) and release_max_level_<LEVEL> (release). In binary projects, you can specify the dependency on the log crate with compile time log levels as follows:
[dependencies]
log = "0.4.6", features = ["release_max_level_error", "max_level_debug"] }
It's a good practice to set this constant to a desired value as, by default, the level is set to Off. It also allows the log macros to optimize away any log invocations at disabled levels. Libraries should only link to the log crate and not any logger implementation crate as binary crates should have control over what to log and how to log it. Using this crate solely in your application won't produce any log output as you need to use logging crates such as env_logger or log4rs along with it.
To see the log crate in action, we'll build a library crate by running cargo new user_auth --lib and adding log as a dependency in our Cargo.toml file:
# user_auth/Cargo.toml
[dependencies]
log = "0.4.6"
This crate simulates a dummy user sign-in API. Our lib.rs file has a User struct, which has a method called sign_in:
// user_auth/lib.rs
use log::{info, error};
pub struct User {
name: String,
pass: String
}
impl User {
pub fn new(name: &str, pass: &str) -> Self {
User {name: name.to_string(), pass: pass.to_string()}
}
pub fn sign_in(&self, pass: &str) {
if pass != self.pass {
info!("Signing in user: {}", self.name);
} else {
error!("Login failed for user: {}", self.name);
}
}
}
In the sign_in method, we have a couple of log invocations on whether the sign in succeeded or failed. We'll use this library crate together with a binary crate thats creates a User instance and calls the sign_in method. Since depending on the log crate itself won't produce any log output, we'll use the env_logger as the logging backend for this example. Let's explore env_logger first.
The env_logger
env_logger is a simple logging implementation that allows you to control logs to stdout or stderr through the RUST_LOG environment variable. The values of this environment variable are comma-separated logger strings that correspond to module names and log levels. To demonstrate env_logger, we'll create a new binary crate by running cargo new env_logger_demo and specifying dependencies for log, env_logger, and our user_auth library, which we created in the previous section. Here's our Cargo.toml file:
# env_logger_demo/Cargo.toml
[dependencies]
env_logger = "0.6.0"
user_auth = { path = "../user_auth" }
log = { version = "0.4.6", features = ["release_max_level_error", "max_level_trace"] }
Here's our main.rs file:
// env_logger_demo/src/main.rs
use log::debug;
use user_auth::User;
fn main() {
env_logger::init();
debug!("env logger demo started");
let user = User::new("bob", "super_sekret");
user.sign_in("super_secret");
user.sign_in("super_sekret");
}
We create our User instance and call sign_in, passing in our password. The first sign in attempt is a failed one, which will get logged as an error. We can run it by setting the RUST_LOG environment variable, followed by cargo run:
RUST_LOG=user_auth=info,env_logger_demo=info cargo run
We set the logs from the user_auth crate to info and the levels above it, while logs from our env_logger_demo crate are set to debug and above.
Running this gives us the following output:
The RUST_LOG accepts the RUST_LOG=path::to_module=log_level[,] pattern, where path::to_module specifies the logger and should be a path to any module with the crate name as the base. The log_level is any of the log levels that are defined in the log crate. [,] at the end indicates that we can optionally have as many of these logger specifications separated by a comma.
An alternative way to run the preceding program is by setting the environment variable within the code itself using the set_var method from the env module in the standard library:
std::env::set_var("RUST_LOG", "user_auth=info,env_logger_demo=info cargo run");
env_logger::init();
This produces the same output as before. Next, let's take a look at a more complex and highly configurable logging crate.
log4rs
The log4rs crate, as the name suggests, is inspired by the popular log4j library from Java. This crate is much more powerful than env_logger and allows for granular logger configuration via YAML files.
We'll build two crates to demonstrate integrating logging via the log4rs crate. One will be a library crate, cargo new my_lib --lib, and the other will be our binary crate, cargo new my_app, which uses my_lib. A cargo workspace directory, called log4rs_demo, contains both of our crates.
Our my_lib crate has the following contents in the lib.rs file:
// log4rs_demo/my_lib/lib.rs
use log::debug;
pub struct Config;
impl Config {
pub fn load_global_config() {
debug!("Configuration files loaded");
}
}
It has a struct called Config with a dummy method called load_global_config, which logs a message at the debug level. Next, our my_app crate contains the following contents in the main.rs file:
// log4rs_demo/my_app/src/main.rs
use log::error;
use my_lib::Config;
fn main() {
log4rs::init_file("config/log4rs.yaml", Default::default()).unwrap();
error!("Sample app v{}", env!("CARGO_PKG_VERSION"));
Config::load_global_config();
}
In the preceding code, we initialize our log4rs logger via the init_file method, passing in the path to the log4rs.yaml config file. Next, we log a dummy error message, thus printing the app version. Following that, we call load_global_config, which logs another message. The following is the content of the log4rs.yaml configuration file:
# log4rs_demo/config/log4rs.yaml
refresh_rate: 5 seconds
root:
level: error
appenders:
- stdout
appenders:
stdout:
kind: console
my_lib_append:
kind: file
path: "log/my_lib.log"
encoder:
pattern: "{d} - {m}{n}"
loggers:
my_lib:
level: debug
appenders:
- my_lib_append
Let's go through this line by line. The first line, refresh_rate, specifies the time interval after which log4rs reloads the configuration file to account for any changes that are made to this file. This means that we can modify any value in our YAML file and log4rs will dynamically reconfigure its loggers for us. Then, we have the root logger, which is the parent of all loggers. We specify the default level as error and the appender as stdout, which is defined below it.
Next, we have the appenders section. Appenders are places where logs go. We have specified two appenders: stdout, which is of console type, and my_lib_append, which is a file appender, which includes information about the path of the file and the log pattern to use under the encoder section.
Next, there is the section of loggers where we can define loggers based on the crates or modules with different levels. We defined a logger called my_lib, which corresponds to our my_lib crate, with the debug level and appender as my_lib_append. This means that any logs from the my_lib crate will go to the my_lib.log file, as specified by the my_lib_append appender.
By running cargo run in the log4rs_demo directory, we get the following output:
That was a brief intro to log4rs. If you want to explore more on configuring these logs, head over to the documentation page at https://docs.rs/log4rs.
Structured logging using slog
All of the aforementioned crates are quite useful and are ideal for most use cases, but they do not support structured logging. In this section, we'll see how structured logging can be integrated into our application using the slog crate, one of the few popular structured logging crates in the Rust ecosystem. For this demo, we'll create a new project by running cargo new slog_demo, which simulates a shooting game.
We'll need the following dependencies in our Cargo.toml file:
# slog_demo/Cargo.toml
[dependencies]
rand = "0.5.5"
slog = "2.4.1"
slog-async = "2.3.0"
slog-json = "2.2.0"
The slog framework is ideal for moderate to big projects where there is lot of interplay between modules as it helps to integrate detailed logs for the long-term monitoring of events. It works on the idea of providing hierarchical and composable logging configuration in the application and allows for semantic event logging. There are two important concepts under slog that you need to be aware of to successfully use the crate: Loggers and Drains. Logger objects are used to log events while a Drain is an abstraction specifying a place where the log messages go and how they get there. This can be your standard output, a file, or a network socket. Drains are similar to what you would call a Sink in the Serilog framework in C#.
Our demo simulates game events from dummy game entities based on their actions. The entities have a parent-child relationship in the game, where we can attach the hierarchical logging capability in them quite easily with slog framework's structural logging configuration. We'll get to know about this when we see the code. At the root level, we have the Game instance, for which we can define a root logger to provide a baseline context in our log messages, such as the game name and version. So, we'll create a root logger attached to the Game instance. Next, we have the Player and Enemy types, which are child entities to the Game. These become child loggers of the root logger. Then, we have weapons for both the enemy and the player, which become the child logger for the player and the enemy logger. As you can see, setting up slog is a bit more involved than the previous frameworks we looked at.
Along with slog as the base crate, we'll also use the following crates in our demo:
Let's take a look at our main.rs file:
// slog_demo/main.rs
#[macro_use]
extern crate slog;
mod enemy;
mod player;
mod weapon;
use rand::Rng;
use std::thread;
use slog::Drain;
use slog::Logger;
use slog_async::Async;
use std::time::Duration;
use crate::player::Player;
use crate::enemy::Enemy;
pub trait PlayingCharacter {
fn shoot(&self);
}
struct Game {
logger: Logger,
player: Player,
enemy: Enemy
}
impl Game {
fn simulate(&mut self) {
info!(self.logger, "Launching game!");
let enemy_or_player: Vec<&dyn PlayingCharacter> = vec![&self.enemy, &self.player];
loop {
let mut rng = rand::thread_rng();
let a = rng.gen_range(500, 1000);
thread::sleep(Duration::from_millis(a));
let player = enemy_or_player[{
if a % 2 == 0 {1} else {0}
}];
player.shoot();
}
}
}
In the preceding code, we have a bunch of use statements, followed by our PlayingCharacter trait, which is implemented by our Player and Enemy structs. Our Game struct has a simulate method, which simply loops and randomly sleeps, thereby selecting at random either the player or the enemy before calling the shoot method on them. Let's continue down the same file:
// slog_demo/src/main.rs
fn main() {
let drain = slog_json::Json::new(std::io::stdout()).add_default_keys()
.build()
.fuse();
let async_drain = Async::new(drain).build().fuse();
let game_info = format!("v{}", env!("CARGO_PKG_VERSION"));
let root_log_context = o!("Super Cool Game" => game_info);
let root_logger = Logger::root(async_drain, root_log_context);
let mut game = Game { logger: root_logger.clone(),
player: Player::new(&root_logger, "Bob"),
enemy: Enemy::new(&root_logger, "Malice") };
game.simulate()
}
In main, we first create our drain using slog_json::Json, which can log messages as JSON objects, followed by passing it to another drain, Async, which will offload all log invocations to a separate thread. Then, we create our root_logger by passing in our drain with an initial context for our log messages using the convenient o! macro. In this macro, we simply print the name and version of our game using the CARGO_PKG_VERSION environment variable. Next, our Game struct takes our root logger and enemy and player instances. To the Player and Enemy instances, we pass a reference to the root_logger, using which they create their child loggers. Then, we call simulate on our game instance.
The following is the content of player.rs:
// slog_demo/src/player.rs
use slog::Logger;
use weapon::PlasmaCannon;
use PlayingCharacter;
pub struct Player {
name: String,
logger: Logger,
weapon: PlasmaCannon
}
impl Player {
pub fn new(logger: &Logger, name: &str) -> Self {
let player_log = logger.new(o!("Player" => format!("{}", name)));
let weapon_log = player_log.new(o!("PlasmaCannon" => "M435"));
Self {
name: name.to_string(),
logger: player_log,
weapon: PlasmaCannon(weapon_log),
}
}
}
Here, our new method on Player gets the root logger, to which it adds its own context with the o! macro. We also create a logger for weapon and pass the player logger to it, which add its own information such as the ID of the weapon. Finally, we return our configured Player instance:
impl PlayingCharacter for Player {
fn shoot(&self) {
info!(self.logger, "{} shooting with {}", self.name, self.weapon);
self.weapon.fire();
}
}
We also implement the PlayingCharacter trait for our Player.
Next is our enemy.rs file, which is identical to everything we had in player.rs:
// slog_demo/src/enemy.rs
use weapon::RailGun;
use PlayingCharacter;
use slog::Logger;
pub struct Enemy {
name: String,
logger: Logger,
weapon: RailGun
}
impl Enemy {
pub fn new(logger: &Logger, name: &str) -> Self {
let enemy_log = logger.new(o!("Enemy" => format!("{}", name)));
let weapon_log = enemy_log.new(o!("RailGun" => "S12"));
Self {
name: name.to_string(),
logger: enemy_log,
weapon: RailGun(weapon_log)
}
}
}
impl PlayingCharacter for Enemy {
fn shoot(&self) {
warn!(self.logger, "{} shooting with {}", self.name, self.weapon);
self.weapon.fire();
}
}
Then, we have our weapon.rs file, which contains two weapons that are used by the enemy and player instances:
// slog_demo/src/weapon.rs
use slog::Logger;
use std::fmt;
#[derive(Debug)]
pub struct PlasmaCannon(pub Logger);
impl PlasmaCannon {
pub fn fire(&self) {
info!(self.0, "Pew Pew !!");
}
}
#[derive(Debug)]
pub struct RailGun(pub Logger);
impl RailGun {
pub fn fire(&self) {
info!(self.0, "Swoosh !!");
}
}
impl fmt::Display for PlasmaCannon {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, stringify!(PlasmaCannon))
}
}
impl fmt::Display for RailGun {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, stringify!(RailGun))
}
}
That's all that is required for our game simulation. We can now run it by invoking cargo run. Here's the output on my machine:
As you can see, our game entities send log messages, which are then formatted and output as JSON with the help of slog and its drains. Similar to the JSON drain we used previously, there are many such drains that have been built by the community for slog. We can have a drain that outputs log messages directly to a log aggregation service, which knows how to handle JSON data and can easily index them for the efficient retrieval of logs. The pluggable and composable nature of slog makes it stand out from other logging solutions. With this demo, we have come to the end of the logging story in Rust. However, there are other more interesting logging frameworks for you to explore, and you can find them at http://www.arewewebyet.org/topics/logging/.
Summary
In this chapter, we learned about the importance of logging in software development and the ways of approaching it, including what characteristics to look for when choosing a logging framework. We also got to know about unstructured and structured logging, their pros and cons, and explored the available crates in the Rust ecosystem to integrate logging into our applications.
The next chapter will be about network programming, where we will explore the built-in facilities and crates that Rust provides to create efficient applications that communicate with one another.
Network Programming in Rust
In this chapter, we'll take a look at what Rust has to offer for network programming. We'll start by exploring existing networking primitives in the standard library by building a simple Redis clone. This will help us get familiar with the default synchronous network I/O model and its limitations. Next, we'll explain how asynchrony is a better approach when dealing with network I/O on a large scale. In the process, we'll get to know about the abstractions provided by the Rust ecosystem for building asynchronous network applications and refactor our Redis server to make it asynchronous using third-party crates.
In this chapter, we will cover the following topics:
Network programming prelude
"A program is like a poem: you cannot write a poem without writing it."
– E. W. Dijkstra
Building a medium through which machines can communicate with each other over the internet is a complicated task. There are different kinds of devices that communicate over the internet, running different OS and different versions of applications, and they need a set of agreed upon rules to exchange messages with one another. These rules of communication are called network protocols and the messages devices send to each other are referred to as network packets.
For the separation of concerns of various aspects, such as reliability, discoverability, and encapsulation, these protocols are divided into layers with higher-layer protocols stacked over the lower-layers. Each network packet is composed of information from all of these layers. These days, modern operating systems already ship with a network protocol stack implementation. In this implementation, each layer provides support for the layers above it.
At the lowest layer, we have the Physical layer and the Data Link layer protocol for specifying how packets are transmitted through wires across nodes on the internet and how they move in and out of network cards in computers. The protocols on this layer are the Ethernet and Token Ring protocols. Above that, we have the IP layer, which employs the concept of unique IDs, called IP addresses, to identify nodes on the internet. Above the IP layer, we have the Transport layer, which is a protocol that provides point-to-point delivery between two processes on the internet. Protocols such as TCP and UDP exist at this layer. Above the Transport layer, we have Application layer protocols such as HTTP and FTP, both of which are used to build rich applications. This allows for a higher level of communication, such as a chat application running on mobile devices. The entire protocol stack works in tandem to facilitate these kinds of complex interactions between applications running on computers, spread across the internet.
With devices connecting to each other over the internet and sharing information, distributed application architectures started to proliferate. Two models emerged: the decentralized model, popularly known as the peer-to-peer model, and the centralized model, which is widely known as the client-server model. The later is more common out of the two these days. Our focus in this chapter will be on the client-server model of building network applications, especially on the Transport layer.
In major operating systems, the Transport layer of the network stack is exposed to developers under a family of APIs named Sockets. It includes a set of interfaces, which are used to set up a communication link between two processes. Sockets allow you to communicate data back and forth between two processes, either locally or remotely, without requiring the developer to have an understanding of the underlying network protocol.
The Socket API's roots lie in the Berkley Software Distribution (BSD), which was the first operating system to provide a networking stack implementation with a socket API in 1983. It serve as the reference implementation for networking stacks in major operating systems today. In Unix-like systems, a socket follows the same philosophy of everything is a file and exposes a file descriptor API. This means that one can read and write data from a socket just like files.
Sockets are file descriptors (an integer) that point to a descriptor table of the process that's managed by the kernel. The descriptor table contains a mapping of file descriptors to file entry structures, which contains the actual buffer for the data that's sent to the socket.
The Socket API acts primarily at the TCP/IP layer. On this layer, the sockets that we create are categorized on various levels:
Now that we know more about sockets, let's explore the client-server model a bit more. In this model of networking, the usual flow of setting up two machines to communicate with each other follows this process: the server creates a socket and binds it to an IP address-port pair before specifying a protocol, which can be TCP or UDP. It then starts listening for connections from clients. The client, on the other hand, creates a connecting socket and connects to the given IP address and port. In Unix, processes can create a socket using the socket system. This call gives back a file descriptor that the program can use to perform read and write calls to the client or to the server.
Rust provides us with the net module in the standard library. This contains the aforementioned networking primitives on the Transport layer. For communicating over TCP, we have the TcpStream and TcpListener types. For communicating over UDP, we have the UdpSocket type. The net module also provides proper data types for representing IP addresses and supports both v4 and v6 versions.
Building network applications that are reliable involves several considerations. If you are okay with few of the packets getting dropped between message exchanges, you can go with UDP sockets, but if you cannot afford to have packets dropped or want to have message delivery in sequence, you must use TCP sockets. The UDP protocol is fast and came much later to cater to needs where you require minimal latency in the delivery of packets and can deal with a few packets being dropped. For example, a video chat application uses UDP, but you aren't particularly affected if a few of the frames drop from the video stream. UDPs are used in cases where you are tolerant of no delivery guarantees. We'll focus our discussion on TCP sockets in this chapter, as it's the most used protocol by the majority of network applications that need to be reliable.
Another factor to consider, is how well and efficient your application is able to serve clients. From a technical standpoint, this translates to choosing the I/O model of sockets.
I/O is an acronym for Input/Output, and in this context, it is a catch-all phrase that simply denotes reading and writing bytes to sockets.
Choosing between blocking and non-blocking sockets changes its architecture, the way we write our code, and how it scales to clients. Blocking sockets give you a synchronous I/O model, while non-blocking sockets let you do asynchronous I/O. On platforms that implement the Socket API, such as Unix, sockets are created in blocking mode by default. This entails the default I/O model in major network stacks following the synchronous model. Let's explore both of these models next.
Synchronous network I/O
As we said previously, a socket is created in blocking mode by default. A server in blocking mode is synchronous in the sense that each read and write call on the socket blocks and waits until it is complete. If another client tries to connect to the server, it needs to wait until the server is done serving the previous client. This is to say that until the TCP read and write buffers are full, your application blocks on the respective I/O operation and any new client connections must wait until the buffers are empty and full again.
The TCP protocol implementation contains its own read and write buffers on the kernel level, apart from the application maintaining any buffers of its own.
Rust's standard library networking primitives provide the same synchronous API for sockets. To see this model in action, we'll implement something more than an echo server. We'll build a stripped down version of Redis. Redis is a data structure server and is often used as an in-memory data store. Redis clients and servers speak the RESP protocol, which is a simple line-based protocol. While the protocol is agnostic of TCP or UDP, Redis implementations mostly use the TCP protocol. TCP is a stateful stream-based protocol with no way for servers and clients to identify how many bytes to read from the socket to construct a protocol message. To account for that, most protocols follow this pattern of using a length byte, followed by the same length of payload bytes.
A message in the RESP protocol is similar to most line-based protocols in TCP, with the initial byte being a marker byte followed by the length of the payload, followed by the payload itself. The message ends with a terminating marker byte. The RESP protocol supports various kinds of messages, ranging from simple strings, integers, arrays, and bulk strings and so on. A message in the RESP protocol ends with a \r\n byte sequence. For instance, a success message from the server to the client is encoded and sent as +OK\r\n (without quotes). + indicates a success reply, and then follows the strings. The command ends with \r\n. To indicate if a query has failed, the Redis server replies with -Nil\r\n.
Commands such as get and set are sent as arrays of bulk strings. For instance, a get foo command will be sent as follows:
*2\r\n$3\r\nget\r\n$3\r\nfoo\r\n
In the preceding message, *2 indicates that we have an array of 2 commands and is delimited by \r\n. Following that, $3 indicates that we have a string of length 3, i.e., the GET command followed by a $3 for the string foo. The command ends with \r\n. That's the basics on RESP. We don't have to worry about the low-level details of parsing RESP messages, as we'll be using a fork of a crate called resp to parse incoming byte streams from our client into a valid RESP message.
Building a synchronous redis server
To make this example short and easy to follow, our Redis clone will implement a very small subset of the RESP protocol and will be able to process only SET and GET calls. We'll use the official redis-cli that comes with the official Redis package to make queries against our server. To use the redis-cli, we can install Redis on Ubuntu by running apt-get install redis-server.
Let's create a new project by running cargo new rudis_sync and adding the following dependencies in our Cargo.toml file:
rudis_sync/Cargo.toml
[dependencies]
lazy_static = "1.2.0"
resp = { git = "https://github.com/creativcoder/resp" }
We have named our project rudis_sync. We depend on two crates:
To make the implementation easier to follow, rudis_sync has very minimal error-handling integration. When you are done experimenting with the code, you are encouraged to implement better error-handling strategies.
Let's start with the contents of our main.rs file:
// rudis_sync/src/main.rs
use lazy_static::lazy_static;
use resp::Decoder;
use std::collections::HashMap;
use std::env;
use std::io::{BufReader, Write};
use std::net::Shutdown;
use std::net::{TcpListener, TcpStream};
use std::sync::Mutex;
use std::thread;
mod commands;
use crate::commands::process_client_request;
type STORE = Mutex<HashMap<String, String>>;
lazy_static! {
static ref RUDIS_DB: STORE = Mutex::new(HashMap::new());
}
fn main() {
let addr = env::args()
.skip(1)
.next()
.unwrap_or("127.0.0.1:6378".to_owned());
let listener = TcpListener::bind(&addr).unwrap();
println!("rudis_sync listening on {} ...", addr);
for stream in listener.incoming() {
let stream = stream.unwrap();
println!("New connection from: {:?}", stream);
handle_client(stream);
}
}
We have a bunch of imports, followed by an in-memory RUDIS_DB hashmap that's declared in a lazy_static! block. We are using this as an in-memory database to store key and value pairs that are sent by clients. In our main function, we create a listening address in addr from the user-provided argument or use 127.0.0.1:6378 as the default. We then create a TcpListener instance by calling the associated bind method, passing the addr. This creates a TCP listening socket. Later, we call the incoming method on listener, which then returns an iterator of new client connections. For each client connection stream that is of the TcpStream type (a client socket), we call the handle_client function, passing in the stream.
In the same file, the handle_client function is responsible for parsing queries that are sent from the client, which would be one of the GET or SET queries:
// rudis_sync/src/main.rs
fn handle_client(stream: TcpStream) {
let mut stream = BufReader::new(stream);
let decoder = Decoder::new(&mut stream).decode();
match decoder {
Ok(v) => {
let reply = process_client_request(v);
stream.get_mut().write_all(&reply).unwrap();
}
Err(e) => {
println!("Invalid command: {:?}", e);
let _ = stream.get_mut().shutdown(Shutdown::Both);
}
};
}
The handle_client function receives the client TcpStream socket in the stream variable. We wrap our client stream in a BufReader, which is then passed as a mutable reference to the Decoder::new method from the resp crate. The Decoder reads bytes from the stream to create a RESP Value type. We then have a match block to check whether our decoding succeeded. If it fails, we print an error message and close the socket by calling shutdown() and requesting both the reader part and writer part of our client socket connection to be closed with the Shutdown::Both value. The shutdown method needs a mutable reference, so we call get_mut() before that. In a real-world implementation, you obviously need to handle this error gracefully.
If the decoding succeeds, we call process_client_request, which returns the reply to send back to the client. We write this reply to the client by calling write_all on the client stream. The process_client_request function is defined in commands.rs as follows:
// rudis_sync/src/commands.rs
use crate::RUDIS_DB;
use resp::Value;
pub fn process_client_request(decoded_msg: Value) -> Vec<u8> {
let reply = if let Value::Array(v) = decoded_msg {
match &v[0] {
Value::Bulk(ref s) if s == "GET" || s == "get" => handle_get(v),
Value::Bulk(ref s) if s == "SET" || s == "set" => handle_set(v),
other => unimplemented!("{:?} is not supported as of now", other),
}
} else {
Err(Value::Error("Invalid Command".to_string()))
};
match reply {
Ok(r) | Err(r) => r.encode(),
}
}
This function takes the decoded Value and matches it on the parsed query. In our implementation, we expect the client to send an array of bulk strings, so we match on the Value::Array variant of Value, using if let, and store the array in v. If we match as an Array value in the if branch, we take that array and match on the first entry in v, which will be our command type, that is, GET or SET. This is again a Value::Bulk variant that wraps the command as a string.
We take the reference to the inner string as s and match only if the string has a GET or SET as a value. In the case of GET, we call handle_get, passing the v array, and in the case of SET, we call handle_set. In the else branch, we simply send a Value::Error reply to the client with invalid Command as the description.
The value that's returned by both branches is assigned to the reply variable. It is then matched for the inner type r and turned into Vec<u8> by invoking the encode method on it, which is then returned from the function.
Our handle_set and handle_get functions are defined in the same file as follows:
// rudis_sync/src/commands.rs
use crate::RUDIS_DB;
use resp::Value;
pub fn handle_get(v: Vec<Value>) -> Result<Value, Value> {
let v = v.iter().skip(1).collect::<Vec<_>>();
if v.is_empty() {
return Err(Value::Error("Expected 1 argument for GET command".to_string()))
}
let db_ref = RUDIS_DB.lock().unwrap();
let reply = if let Value::Bulk(ref s) = &v[0] {
db_ref.get(s).map(|e| Value::Bulk(e.to_string())).unwrap_or(Value::Null)
} else {
Value::Null
};
Ok(reply)
}
pub fn handle_set(v: Vec<Value>) -> Result<Value, Value> {
let v = v.iter().skip(1).collect::<Vec<_>>();
if v.is_empty() || v.len() < 2 {
return Err(Value::Error("Expected 2 arguments for SET command".to_string()))
}
match (&v[0], &v[1]) {
(Value::Bulk(k), Value::Bulk(v)) => {
let _ = RUDIS_DB
.lock()
.unwrap()
.insert(k.to_string(), v.to_string());
}
_ => unimplemented!("SET not implemented for {:?}", v),
}
Ok(Value::String("OK".to_string()))
}
In handle_get(), we first check whether the GET command has no key present in the query and fails with an error message. Next, we match on v[0], which is the key for the GET command, and check whether it exists in our database. If it exists, we wrap it in Value::Bulk using the map combinator, otherwise we return a Value::Null reply:
db_ref.get(s).map(|e| Value::Bulk(e.to_string())).unwrap_or(Value::Null)
We then store it in a reply variable and return it as a Result type, that is, Ok(reply).
A similar thing happens in handle_set, where we bail out if we don't have enough arguments to the SET command. Next, we match on our key and value using &v[0] and &v[1] and insert it into RUDIS_DB. As an acknowledgement of the SET query., we reply with Ok.
Back in our process_client_request function, once we create the reply bytes, we match on the Result type and convert them into a Vec<u8> by calling encode(), which is then written to the client. With that walk-through out of the way, it's time to test our client with the official redis-cli tool. We'll run it by invoking redis-cli -p 6378:
In the preceding session, we did a few GET and SET queries with an expected reply from rudis_sync. Also, here's our output log from the rudis_server of our new connection(s):
But the problem with our server is that we have to wait until the initial client has finished being served. To demonstrate this, we'll introduce a bit of delay in our for loop that handles new client connections:
for stream in listener.incoming() {
let stream = stream.unwrap();
println!("New connection from: {:?}", stream);
handle_client(stream);
thread::sleep(Duration::from_millis(3000));
}
The sleep call simulates a delay in request processing. To see the latencies, we'll start two clients at almost the same time, where one of them makes a SET request and the other one makes a GET request on the same key. Here's our first client, which does the SET request:
Here's our second client, which does a GET request on the same key, foo:
As you can see, the second client had to wait for almost three seconds to get the second GET reply.
Due to its nature, the synchronous mode becomes a bottleneck when you need to process more than 100,000 (say) clients at the same time, with each client taking varying amounts of processing time. To get around this, you usually need to spawn a thread for handling each client connection. Whenever a new client connection is made, we spawn a new thread and offload the handle_client invocation from the main thread, allowing the main thread to accept other client connections. We can achieve this by using a single line change in our main function, like so:
for stream in listener.incoming() {
let stream = stream.unwrap();
println!("New connection from: {:?}", stream);
thread::spawn(|| handle_client(stream));
}
This removes the blocking nature of our server, but introduces the overhead of spawning a new thread every time a new client connection is received. First, there is an overhead of spawning threads and, second, the context switch time between threads adds another overhead.
As we can see, our rudis_sync server works as expected. But it will soon be bottlenecked by the amount of threads our machine can handle. This threading model of handling connections worked well until the internet began gaining a wider audience and more and more clients connecting to the internet became the norm. Today, however, things are different and we need highly efficient servers that can handle millions of requests at the same time. It turns out that we can tackle the problem of handling more clients on a more foundational level, that is, by using non-blocking sockets. Let's explore them next.
Asynchronous network I/O
As we saw in our rudis_sync server implementation, the synchronous I/O model can be a major bottleneck in handling multiple clients in a given period of time. One has to use threads to process more clients. However, there's a better way to scale our server. Instead of coping with the blocking nature of sockets, we can make our sockets non-blocking. With non-blocking sockets, any read, write, or connect operation, on the socket will return immediately, regardless of whether the operation completed successfully or not, that is, they don't block the calling code if the read and write buffers are partially filled. This is the asynchronous I/O model as no client needs to wait for their request completion, and is instead notified later of the completion or failure of the request.
The asynchronous model is very efficient compared to threads, but it adds more complexity to our code. In this model, because an initial read or write call on the socket is unlikely to succeed, we need to retry the interested operation again at a later time. This process of retrying the operation on the socket is called polling. We need to poll the sockets from time to time to see if any of our read/write/connect operations can be completed and also maintain state on how many bytes we have read or written so far. With large number of incoming socket connections, using non-blocking sockets entails having to deal with polling and maintenance of state.This soon blows up as a complex state machine. In addition to that polling is a very in-efficient operation. Even if we don't have any events on our sockets. There are better approaches, though.
On Unix-based platforms, polling mechanism on sockets is done through poll and select system calls, which are available on all Unix platforms. Linux has a better epoll API in addition to them. Instead of polling the sockets by ourselves, which is an inefficient operation, these APIs can tell us when the socket is ready to read or write. Where poll and select run a for loop on each requested socket, epoll runs in O(1) to notify any interested party of a new socket event.
The asynchronous I/O model allows you to handle a considerably larger amount of sockets than would be possible with the synchronous model, because we are doing operations in small chunks and quickly switching to serving other clients. Another efficiency is that we don't need to spawn threads, as everything happens in a single thread.
To write asynchronous network applications with non-blocking sockets, we have several high quality crates in the Rust ecosystem.
Async abstractions in Rust
The async network I/O is advantageous, but programming them in their raw form is hard. Fortunately, Rust provides us with convenient abstractions in the form of third-party crates for working with asynchronous I/O. It alleviates the developer from most of the complex state machine handling when dealing with non-blocking sockets and the underlying socket polling mechanism. Two of the lower-layer abstractions that are available as crates are the futures and mio crates. Let's understand them in brief.
Mio
When working with non-blocking sockets, we need a way to check whether the socket is ready for the desired operation. The situation is worse when we have thousands, or more, sockets to manage. We can use the very inefficient way of running a loop, checking for the socket state, and performing the operation once it's ready. But there are better ways to do this. In Unix, we had the poll system call, to which you give the list of file descriptors you want to be monitored for events. It was then replaced by the select system call, which improved things a bit. However, both select and poll were not scalable as they were basically for loops under the hood and the iteration time went up linearly as more and more sockets were added to its monitor list.
Under Linux, then came epoll, which is the current and most efficient file descriptor multiplexing API. This is used by most network and I/O applications that want to do asynchronous I/O. Other platforms have similar abstractions, such as kqueue in macOS and BSD. On Windows, we have IO Completion Ports (IOCP).
It is these low-level abstractions that mio abstracts over, providing a cross-platform, highly efficient interface to all of these I/O multiplexing APIs. Mio is quite a low-level library, but it provides a convenient way to set up a reactor for socket events. It provides the same kind of networking primitives such as the TcpStream type as the standard library does, but these are non-blocking by default.
Futures
Juggling with mio's socket polling state machine is not very convenient. To provide a higher-level API that can be used by application developers, we have the futures crate. The futures crate provides a trait named Future, which is the core component of the crate. A future represents the idea of a computation that is not immediately available, but might be available later. Let's look at its type signature of the Future trait to get more information about it:
pub trait Future {
type Item;
type Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error>;
}
A Future is an associated type trait that defines two types: an Item type representing the value that the Future will resolve to and an Error type that specifies what error type the future will fail with. They are quite similar to the Result type in the standard library, but instead of getting the result right away, they don't compute the immediately.
A Future value on its own cannot be used to build asynchronous applications. You need some kind of reactor and an event loop to progress the future toward completion. By design, the only way to have them succeed with a value or fail with an error is to poll them. This operation is represented by the single require method known as poll. The method poll specifies what should be done to progress the future. A future can be composed of several things, chained one after another. To progress a future, we need a reactor and an event loop implementation, and that is provided by the tokio crate.
Tokio
Combining both of the above mentioned abstractions, and along a work stealing scheduler, event loop and a timer implementation we have the tokio crate, which provides a runtime for driving these futures to completion. With the tokio framework, you can spawn many futures and have them run concurrently.
The tokio crate was born to provide a go-to solution for building robust and high-performance asynchronous networking applications that are agnostic of the protocol, yet provides abstractions for general patterns that are common in all networking applications. The tokio crate is technically a runtime consisting of a thread pool, and event loop, and a reactor for I/O events based on mio. By runtime, we mean that every web application developed with tokio will have the mentioned components above running as part of the application.
Futures in the tokio framework run inside a task. A task is similar to a user space thread or a green thread. An executor is responsible for scheduling tasks for execution.
When a future does not have any data to resolve or is waiting for data to arrive at the socket in case of a TcpStream client read, it returns a NotReady status. But, in doing this it also needs to register interest with the reactor to be notified again of any new data on the server.
When a future is created, no work is performed. For the work defined by the future to happen, the future must be submitted to an executor. In tokio, tasks are user-level threads that can execute futures. In its implementation of the poll method, a task has to arrange itself to be polled later in case no progress can be made. For doing this it has to pass its task handler to the reactor thread. The reactor in case of Linux is mio the crate.
Building an asynchronous redis server
Now that we're familiar with the asynchronous I/O solutions that the Rust ecosystem provides, it's time to revisit our Redis server implementation. We'll port our rudis_sync server to the asynchronous version using the tokio and futures crates. As with any asynchronous code, using futures and tokio can be daunting at first, and it can take time getting used to its API. However, We'll try to make things easy to understand here. Let's start by creating our project by running cargo new rudis_async with the following dependencies in Cargo.toml:
# rudis_async/Cargo.toml
[dependencies]
tokio = "0.1.13"
futures = "0.1.25"
lazy_static = "1.2.0"
resp = { git = "https://github.com/creativcoder/resp" }
tokio-codec = "0.1.1"
bytes = "0.4.11"
We are using a bunch of crates here:
Our initial code in main.rs follows a similar structure:
// rudis_async/src/main.rs
mod codec;
use crate::codec::RespCodec;
use lazy_static::lazy_static;
use std::collections::HashMap;
use std::net::SocketAddr;
use std::sync::Mutex;
use tokio::net::TcpListener;
use tokio::net::TcpStream;
use tokio::prelude::*;
use tokio_codec::Decoder;
use std::env;
mod commands;
use crate::commands::process_client_request;
lazy_static! {
static ref RUDIS_DB: Mutex<HashMap<String, String>> = Mutex::new(HashMap::new());
}
We have a bunch of imports and the same RUDIS_DB in a lazy_static! block. We then have our function main:
// rudis_async/main.rs
fn main() -> Result<(), Box<std::error::Error>> {
let addr = env::args()
.skip(1)
.next()
.unwrap_or("127.0.0.1:6378".to_owned());
let addr = addr.parse::<SocketAddr>()?;
let listener = TcpListener::bind(&addr)?;
println!("rudis_async listening on: {}", addr);
let server_future = listener
.incoming()
.map_err(|e| println!("failed to accept socket; error = {:?}", e))
.for_each(handle_client);
tokio::run(server_future);
Ok(())
}
We parse the string that's been passed in as an argument or use a default address of 127.0.0.1:6378. We then create a new TcpListener instance with addr. This returns us a future in listener. We then chain on this future by calling incoming on and invoke for_each on it which takes in a closure and call handle_client on it. This future gets stored as server_future.In the end, we call tokio::run passing in server_future. This creates a main tokio task and schedules the future for execution.
In the same file, our handle_client function is defined like so:
// rudis_async/src/main.rs
fn handle_client(client: TcpStream) -> Result<(), ()> {
let (tx, rx) = RespCodec.framed(client).split();
let reply = rx.and_then(process_client_request);
let task = tx.send_all(reply).then(|res| {
if let Err(e) = res {
eprintln!("failed to process connection; error = {:?}", e);
}
Ok(())
});
tokio::spawn(task);
Ok(())
}
In handle_client, we first split our TcpStream into a writer (tx) and reader (rx) half by first converting the stream to a framed future calling framed on RespCodec receives the client connection and converts it into a framed future by calling framed on RudisFrame. Following that, we call split on it, which converts the frame into a Stream and Sink future, respectively. This simply gives us a tx and rx to read and write from the client socket. However, when we read this, we get the decoded message. When we write anything to tx, we write the encoded byte sequence.
On rx, we call and_then passing the process_client_request function, which will resolve the future to a decoded frame. We then take the writer half tx, and call send_all with the reply. We then spawn the future task by calling tokio::spawn.
In our codec.rs file, we have defined RudisFrame, which implements Encoder and Decoder traits from the tokio-codec crate:
// rudis_async/src/codec.rs
use std::io;
use bytes::BytesMut;
use tokio_codec::{Decoder, Encoder};
use resp::{Value, Decoder as RespDecoder};
use std::io::BufReader;
use std::str;
pub struct RespCodec;
impl Encoder for RespCodec {
type Item = Vec<u8>;
type Error = io::Error;
fn encode(&mut self, msg: Vec<u8>, buf: &mut BytesMut) -> io::Result<()> {
buf.reserve(msg.len());
buf.extend(msg);
Ok(())
}
}
impl Decoder for RespCodec {
type Item = Value;
type Error = io::Error;
fn decode(&mut self, buf: &mut BytesMut) -> io::Result<Option<Value>> {
let s = if let Some(n) = buf.iter().rposition(|b| *b == b'\n') {
let client_query = buf.split_to(n + 1);
match str::from_utf8(&client_query.as_ref()) {
Ok(s) => s.to_string(),
Err(_) => return Err(io::Error::new(io::ErrorKind::Other, "invalid string")),
}
} else {
return Ok(None);
};
if let Ok(v) = RespDecoder::new(&mut BufReader::new(s.as_bytes())).decode() {
Ok(Some(v))
} else {
Ok(None)
}
}
}
The Decoder implementation specify how to parse incoming bytes into a resp::Value type, whereas the Encoder trait specifies how to encode a resp::Value to a stream of bytes to the client.
Our commands.rs file implementation is the same as the previous one so we'll skip going through that. With that said, let's try our new server by running cargo run:
With the official redis-cli client, we can connect to our server by running:
$ redis-cli -p 6378
Here's a session of running redis-cli against rudis_async server:
Summary
Rust is very well-equipped and suitable for providing higher-performance, quality, and security for network applications. While built-in primitives are well-suited to a synchronous application model, for asynchronous I/O, Rust provides rich libraries with well-documented APIs that help you build high-performance applications.
In the next chapter, we'll step up the network protocol stack and and learn how to build web applications with Rust.
Building Web Applications with Rust
In this chapter, we'll explore building web applications with Rust. We'll get to know the benefits of a static type system and the speed of a compiled language when building web applications with it. We'll also explore Rust's strongly typed HTTP libraries and build a URL shortener as an exercise. Following that, we'll look at a very popular framework called Actix-web and build a bookmark API server with it.
In this chapter, we will cover the following topics:
Web applications in Rust
"The most important property of a program is whether it accomplishes the intention of its user."
– C. A. R. Hoare
It's rare for a low-level language to enable developers to write web applications with it while providing thekind of high-level ergonomics that dynamic languages do. With Rust, it's quite the opposite. Developing web applications with Rust is a similar experience one might expect from dynamic languages such as Ruby or Python, due to its high-level abstractions.
Web applications developed in dynamic languages can only get you so far though. A lot of developers find to what, as their code base reaches about a 100,000 lines of code, they start seeing the brittle nature of dynamic languages. With every small change you make, you need to have tests in place to let you know what parts of the application are affected. As the application grows, it becomes a whack-a-mole situation in terms of testing and updating.
Building web applications in a statically typed language such as Rust is another level of experience. Here, you get compile-time checks on your code, thus reducing the amount of unit tests you have to write by a large amount. You don't have the overhead of a language runtime such as an interpreter either, as is the case with dynamic languages that run a GC along with your application. Web applications written in a statically typed language can be compiled as a single static binary that can be deployed with minimal setup needed. Besides, you get speed and accuracy guarantees from the type system and there is a lot of help from the compiler during code refactoring. Rust gives you all of these guarantees, along with the same high-level feel of dynamic languages.
Web applications primarily sit on the application layer protocol and speak the HTTP protocol. HTTP is a stateless protocol where each message is either a request or a response from the client or the server. A message in the HTTP protocol consists of a header and a payload. The header provides context for the kind of HTTP message, such as its origin or the length of the payload, while the payload contains the actual data. HTTP is a text-based protocol, and we generally use libraries to do the hard work of parsing strings as proper HTTP messages. These libraries are further used to build high-level abstractions on top of them, such as a web framework.
To speak HTTP in Rust, we have the hyper crate, which we'll explore next.
Typed HTTP with Hyper
The hyper crate can parse HTTP messages, and has an elegant design with focus on strongly typed APIs. It is designed as a type-safe abstraction for raw HTTP requests, as opposed to a common theme in HTTP libraries: describing everything as strings. For example, HTTP status codes in Hyper are defined as enums, for example, the type StatusCode. The same goes for pretty much everything that can be strongly typed, such as HTTP methods, MIME types, HTTP headers, and so on.
Hyper has both client and server functionality split into separate modules. The client side allows you to build and make HTTP requests with a configurable request body, headers, and other low-level configurations. The server side allows you to open a listening socket and attach request handlers to it. However, it does not include any request route handler implementation – that is left to web frameworks. It is designed to be used as a foundational crate to build higher-level web frameworks. It uses the same tokio and futures async abstractions under the hood and thus is very performant.
At its core, Hyper has the concept Service trait concept:
pub trait Service {
type ReqBody: Payload;
type ResBody: Payload;
type Error: Into<Box<dyn StdError + Send + Sync>>;
type Future: Future<Item = Response<Self::ResBody>, Error = Self::Error>;
fn call(&mut self, req: Request<Self::ReqBody>) -> Self::Future;
}
The Service trait represents a type that handles HTTP requests that are sent from any client and returns a Response, which is a future. The core API of this trait that types need to implement is the call method, which takes in a Request that's parameterized over a generic type Body and returns a Future that resolves to a Response, which is parameterized over the associated type ResBody. We don't need to manually implement this trait, as hyper includes a bunch of factory methods that can implement the Service trait for you. You simply need to provide a function that takes HTTP requests and returns responses.
In the following section, we'll explore both the client and server APIs of hyper. Let's start by exploring the server APIs by building a URL shortener from scratch.
Hyper server APIs – building a URL shortener
In this section, we'll build a URL shortener server that exposes a /shorten endpoint. This endpoint accepts a POST request, with the body containing the URL to be shortened. Let's fire up a new project by running cargo new hyperurl with the following dependencies in Cargo.toml:
# hyperurl/Cargo.toml
[dependencies]
hyper = "0.12.17"
serde_json = "1.0.33"
futures = "0.1.25"
lazy_static = "1.2.0"
rust-crypto = "0.2.36"
log = "0.4"
pretty_env_logger = "0.3"
We'll name our URL shortening server, hyperurl. A URL shortener service is a service that provides the functionality to create a shorter URL for any given URL. When you have a really long URL, it becomes tedious to share it with someone. A lot of URL shortening services exist today, such as bit.ly. If you have used Twitter, users use short URL in tweets quite often, to save space.
Here's our initial implementation in main.rs:
// hyperurl/src/main.rs
use log::{info, error};
use std::env;
use hyper::Server;
use hyper::service::service_fn;
use hyper::rt::{self, Future};
mod shortener;
mod service;
use crate::service::url_service;
fn main() {
env::set_var("RUST_LOG","hyperurl=info");
pretty_env_logger::init();
let addr = "127.0.0.1:3002".parse().unwrap();
let server = Server::bind(&addr)
.serve(|| service_fn(url_service))
.map_err(|e| error!("server error: {}", e));
info!("URL shortener listening on http://{}", addr);
rt::run(server);
}
In main, we create a Server instance and bind it to our loopback address and port string "127.0.0.1:3002". This returns a builder instance on which we call serve before passing in the function url_service which implements the Service trait. The function url_service maps a Request to a future of Response. service_fn is a factory function that has the following signature:
pub fn service_fn<F, R, S>(f: F) -> ServiceFn<F, R> where
F: Fn(Request<R>) -> S,
S: IntoFuture,
As you can see, F needs to be a Fn closure that
Our function url_service implements the Service trait. Next, let's see the code in service.rs:
// hyperurl/src/service.rs
use std::sync::RwLock;
use std::collections::HashMap;
use std::sync::{Arc};
use std::str;
use hyper::Request;
use hyper::{Body, Response};
use hyper::rt::{Future, Stream};
use lazy_static::lazy_static;
use crate::shortener::shorten_url;
type UrlDb = Arc<RwLock<HashMap<String, String>>>;
type BoxFut = Box<Future<Item = Response<Body>, Error = hyper::Error> + Send>;
lazy_static! {
static ref SHORT_URLS: UrlDb = Arc::new(RwLock::new(HashMap::new()));
}
pub(crate) fn url_service(req: Request<Body>) -> BoxFut {
let reply = req.into_body().concat2().map(move |chunk| {
let c = chunk.iter().cloned().collect::<Vec<u8>>();
let url_to_shorten = str::from_utf8(&c).unwrap();
let shortened_url = shorten_url(url_to_shorten);
SHORT_URLS.write().unwrap().insert(shortened_url, url_to_shorten.to_string());
let a = &*SHORT_URLS.read().unwrap();
Response::new(Body::from(format!("{:#?}", a)))
});
Box::new(reply)
}
This module exposes a single function url_service, which implements the Service trait. Our url_service method implements the method call by taking in a req of the Request<Body> type and returns a future that is behind a Box.
Next, is our shortener module:
// hyperurl/src/shortener.rs
use crypto::digest::Digest;
use crypto::sha2::Sha256;
pub(crate) fn shorten_url(url: &str) -> String {
let mut sha = Sha256::new();
sha.input_str(url);
let mut s = sha.result_str();
s.truncate(5);
format!("https://u.rl/{}", s)
}
Our shorten_url function takes in a URL to shorten as a &str. It then computes the SHA-256 hash of the URL and truncates it to a string of length five. This is obviously not how a real URL shortener works and is not a scalable solution either. However, it's fine for our demonstration purposes.
Let's take this for a spin:
Our server is running. At this point we can either send requests POST through curl. We'll do this the other way by building a command-line client for sending URLs to shorten this server.
While Hyper is recommended for complex HTTP applications, it's quite cumbersome every time to create a handler service, register it, and run it in a runtime. Often, for to build smaller tools such as a CLI application that needs to make a couple of GET requests, this becomes overkill. Fortunately, we have another opinionated wrapper over hyper called the reqwest crate. As the name suggests, it is inspired by Python's Requests library. We'll use this to build our hyperurl client that sends URL shorten requests.
hyper as a client – building a URL shortener client
Now that we have our URL shortener service ready, let's explore the client side of hyper. Although we can build a web UI that we can use for shortening URLs, we'll keep it simple and build a Command-Line Interface (CLI) tool. The CLI can be used to pass any URL that needs to be shortened. In response, we'll get back the shortened URL from our hyperurl server.
While hyper is recommended for building complex web applications, a lot of setup is involved every time you need to create a handler service, register it, and run it in a runtime instance. When building smaller tools, such as a CLI application that needs to make a few GET requests, all of these steps become overkill. Fortunately, we have a convenient wrapper crate over hyper called reqwest that abstracts hyper's client APIs. As the name suggests, it is inspired by Python's Requests library.
Let's create a new project by running cargo new shorten with the following dependencies in our Cargo.toml file:
# shorten/Cargo.toml
[dependencies]
quicli = "0.4"
structopt = "0.2"
reqwest = "0.9"
serde = "1"
To build the CLI tool, we'll use the quicli framework, which is a collection of high- quality crates that help build CLI tools. The structopt crate is used along with quicli, while the serde crate is used by the structopt crate for the derive macro. To make POST requests to our hyperurl server, we'll use the reqwest crate.
Our main.rs has the following code inside it:
// shorten/src/main.rs
use quicli::prelude::*;
use structopt::StructOpt;
const CONN_ADDR: &str = "127.0.0.1:3002";
/// This is a small CLI tool to shorten urls using the hyperurl
/// url shortening service
#[derive(Debug, StructOpt)]
struct Cli {
/// The url to shorten
#[structopt(long = "url", short = "u")]
url: String,
// Setting logging for this CLI tool
#[structopt(flatten)]
verbosity: Verbosity,
}
fn main() -> CliResult {
let args = Cli::from_args();
println!("Shortening: {}", args.url);
let client = reqwest::Client::new();
let mut res = client
.post(&format!("http://{}/shorten", CONN_ADDR))
.body(args.url)
.send()?;
let a: String = res.text().unwrap();
println!("http://{}", a);
Ok(())
}
With our hyperurl server still running, we'll open a new terminal window and invoke shorten with cargo run -- --url https://rust-lang.org:
Let's head over to a browser with the shortened URL, that is, http://127.0.0.1:3002/abf27:
Having explored hyper, let's get a bit more high level. In the next section, we'll explore Actix-web, a fast web application framework based on the actor model implementation in the actix crate. But, first let's talk about why we need web frameworks.
Web frameworks
Before we begin exploring actix-web, we need to get some motivation as to why we need web frameworks in the first place. The web, as many of us know, is a complex, evolving space. There are lots of details to take care of when writing web applications. You need to set up routing rules and authentication policies. On top of that, as applications evolve, there are best practices and similar patterns that one will have to repeat implementing, if you're not using a web framework.
It's quite tedious having to reinvent these foundational attributes of web applications every time you want to build a web application yourself. A concrete example is when you are providing different routes in your application. In a web application built from scratch, you would have to parse the resource path from the request, do some matching on it, and act on the request. A web framework automates the matching of routes and route handlers by providing DSLs to allow you to configure routing rules in a cleaner way. Web frameworks also abstract all the best practices, common patterns, and idioms around building web applications, and give developers a head start, allowing them to focus on their business logic rather than reinventing solutions for problems that has already been solved.
The Rust community has seen a lot of web frameworks in the works, lately such as Tower, Tide, Rocket, actix-web, Gotham, and so on. At the time of writing this book, the most feature-rich and active frameworks are Rocket and actix-web. While Rocket is quite concise and a polished framework, it requires a nightly version of the Rust compiler. This restriction will soon be removed, though, as the APIs that Rocket depends on get stabilized. Its direct competitor at the moment is actix-web, which runs on stable Rust and is quite close to the ergonomics that are provided by the Rocket framework. We will be covering actix-web next.
Actix-web basics
The Actix-web framework builds upon the actor model that's implemented by the actix crate, which we already covered in Chapter 7, Advanced Concepts. Actix-web advertises itself as a small, fast, and pragmatic HTTP web framework. It's primarily an asynchronous framework that relies internally on tokio and the futures crate but also provides a synchronous API and both of these APIs can be composed together seamlessly.
The entry point of any web application written using actix-web is the App struct. On an App instance, we can configure various route handlers and middlewares. We can also initialize our App with any state that we need to maintain across a request response. The route handlers that are provided on App implement the Handler trait and are simply functions that map a request to a response. They can also include request filters, which can forbid access to a particular route based on a predicate.
Actix-web internally spawns a number of worker threads, each with its own tokio runtime.
That's the basics out of the way, so let's dive right in, and go through the implementation of a REST API server using Actix-web.
Building a bookmarks API using Actix-web
We'll create a REST API server that allows you to store bookmarks and links to any blog or website that you wish to read later. We'll name our server linksnap. Let's create a new project by running cargo new linksnap. In this implementation, we won't be using a database for persistence for any link that is sent to our API, and will simply use an in-memory HashMap to store our entries. This means that every time our server restarts, all of the stored bookmarks will get removed. In Chapter 14, Interacting with Databases in Rust, we'll integrate a database with linksnap, which will allow us to persist bookmarks.
Under the linksnap/ directory, we have the following contents in Cargo.toml:
# linksnap/Cargo.toml
[dependencies]
actix = "0.7"
actix-web = "0.7"
futures = "0.1"
env_logger = "0.5"
bytes = "0.4"
serde = "1.0.80"
serde_json = "1.0.33"
serde_derive = "1.0.80"
url = "1.7.2"
log = "0.4.6"
chrono = "0.4.6"
We'll implement the following endpoints in our API server:
We have divided our server implementation into three modules:
An example flow of our app from the user request to the actor goes like this on the /links endpoint:
Let's go through the implementation, starting by looking at the contents in main.rs:
// linksnap/src/main.rs
mod links;
mod route_handlers;
mod state;
use std::env;
use log::info;
use crate::state::State;
use crate::route_handlers::{index, links, add_link, rm_link};
use actix_web::middleware::Logger;
use actix_web::{http, server, App};
fn init_env() {
env::set_var("RUST_LOG", "linksnap=info");
env::set_var("RUST_BACKTRACE", "1");
env_logger::init();
info!("Starting http server: 127.0.0.1:8080");
}
fn main() {
init_env();
let system = actix::System::new("linksnap");
let state = State::init();
let web_app = move || {
App::with_state(state.clone())
.middleware(Logger::default())
.route("/", http::Method::GET, index)
.route("/links", http::Method::GET, links)
.route("/add", http::Method::POST, add_link)
.route("/rm", http::Method::DELETE, rm_link)
};
server::new(web_app).bind("127.0.0.1:8080").unwrap().start();
let _ = system.run();
}
In main, we first call init_env, which sets up our environment for getting logs from the server, turns on the RUST_BACKTRACE variable for printing a detailed trace of any error, and initializes our logger by invoking env_logger::init().We then create our System actor which is the parent actor for all actors in the actor model. We then create our server state by calling State::init() and store it in state. This encapsulates our in-memory database actor type Db in state.rs. We'll go through this later.
We then create our App instance within a closure by calling App::with_state, thereby passing in our clone of our application state. The clone call on state is important here, as we need to have a single shared state across multiple actix worker threads. Actix-web internally spawns multiple threads with new App instances to handle requests, and each invocation of this state will have its own copy of the application state. If we don't share a reference to a single source of truth, then each App will have its own copy of the HashMap entries, which we don't want.
Next, we chain on our App with the method middleware by passing in a Logger. This will log any requests when a client hits one of our provisioned endpoints. We then add a bunch of route method calls. The route method takes an HTTP path as a string, an HTTP method, and a handler function that maps an HttpRequest to a HttpResponse. We'll explore handler functions later.
With our App instance configured and stored in web_app, we pass it to server::new(), followed by binding it to the address string "127.0.0.1:8080". We then call start to start the app in a new Arbiter instance, which is simply a new thread. According to actix, an Arbiter is a thread where actors are run and can access the event loop. Finally, we run our system actor by calling system.run(). The run method internally spins up a tokio runtime and starts all the arbiter threads.
Next, let's look at our route handlers in route_handlers.rs. This module defines all kinds of routes that are available in our server implementation:
// linksnap/src/route_handlers.rs
use actix_web::{Error, HttpRequest, HttpResponse};
use crate::state::{AddLink, GetLinks, RmLink};
use crate::State;
use actix_web::AsyncResponder;
use actix_web::FromRequest;
use actix_web::HttpMessage;
use actix_web::Query;
use futures::Future;
type ResponseFuture = Box<Future<Item = HttpResponse, Error = Error>>;
macro_rules! server_err {
($msg:expr) => {
Err(actix_web::error::ErrorInternalServerError($msg))
};
}
First, we have a bunch of imports followed by a couple of helper types defined. ResponseFuture is a convenient type alias for a boxed Future which resolves to an HttpResponse. We then have a helper macro named server_err!, which returns an actix_web::error type with the given description. We use this macro as a convenient way to return error whenver any of our client request processing fails.
Next, we have our simplest router handler for handling get requests on the / endpoint:
linksnap/src/route_handlers.rs
pub fn index(_req: HttpRequest<State>) -> HttpResponse {
HttpResponse::from("Welcome to Linksnap API server")
}
The index function takes an HttpRequest and simply returns a HttpResponse constructed from a string. The HttpRequest type can be parameterized over any type. By default, it is a (). For our route handlers, we have parameterized it over our State type. This State encapsulates our in-memory database, which is implemented as an actor. State is a wrapper over Addr<Db>, which is an address to our Db actor.
This is a reference to our in-memory database. We'll use this to send messages to our in-memory database to insert, remove, or get links. We'll explore those APIs later. Let's look at some other handlers that are in the same file:
// linksnap/src/route_handlers.rs
pub fn add_link(req: HttpRequest<State>) -> ResponseFuture {
req.json()
.from_err()
.and_then(move |link: AddLink| {
let state = req.state().get();
state.send(link).from_err().and_then(|e| match e {
Ok(_) => Ok(HttpResponse::Ok().finish()),
Err(_) => server_err!("Failed to add link"),
})
})
.responder()
}
Our add_link function handles POST requests for adding a link. This handler expects a JSON body of this format:
{
title: "Title of the link or bookmark",
url: "The URL of the link"
}
In this function, we first get the request body as JSON by calling req.json(). This returns a future. We then map any error originated from the json method to an actix compatible error using the from_err method. The json method can extract typed information from a request's payload, thereby returning a JsonBody<T> future. This T is inferred by the next method chain and_then as AddLink where we take the parsed value and send it to our Db actor. Sending a message to our actor can fail, so if this happens, we again match on the returned value. In the case of Ok, we reply with an empty HTTP response of success, otherwise we fail with our server_err! macro passing in an error description.
Next, we have our "/links" endpoint:
// linksnap/src/route_handlers.rs
pub fn links(req: HttpRequest<State>) -> ResponseFuture {
let state = &req.state().get();
state
.send(GetLinks)
.from_err()
.and_then(|res| match res {
Ok(res) => Ok(HttpResponse::Ok().body(res)),
Err(_) => server_err!("Failed to retrieve links"),
})
.responder()
}
The links handler simply sends a GetLinks message to the Db actor and returns the received response before sending it back to the client using the body method. We then have our rm_link handler, which is defined as follows:
// linksnap/src/route_handlers.rs
pub fn rm_link(req: HttpRequest<State>) -> ResponseFuture {
let params: Query<RmLink> = Query::extract(&req).unwrap();
let state = &req.state().get();
state
.send(RmLink { id: params.id })
.from_err()
.and_then(|e| match e {
Ok(e) => Ok(HttpResponse::Ok().body(format!("{}", e))),
Err(_) => server_err!("Failed to remove link"),
})
.responder()
}
To remove a link, we need to pass the link ID (an i32) as a query parameter. The rm_link method extracts the query parameters into a RmLink type using the convenient Query::extract method, which takes in the HttpRequest instance. Next, we get a reference to our Db actor and send an RmLink message to it with the ID. We return the reply as a string by constructing the HttpRespnse with the body method.
Here's our State and Db types in state.rs:
// linksnap/src/state.rs
use actix::Actor;
use actix::SyncContext;
use actix::Message;
use actix::Handler;
use actix_web::{error, Error};
use std::sync::{Arc, Mutex};
use crate::links::Links;
use actix::Addr;
use serde_derive::{Serialize, Deserialize};
use actix::SyncArbiter;
const DB_THREADS: usize = 3;
#[derive(Clone)]
pub struct Db {
pub inner: Arc<Mutex<Links>>
}
impl Db {
pub fn new(s: Arc<Mutex<Links>>) -> Db {
Db { inner: s }
}
}
impl Actor for Db {
type Context = SyncContext<Self>;
}
#[derive(Clone)]
pub struct State {
pub inner: Addr<Db>
}
impl State {
pub fn init() -> Self {
let state = Arc::new(Mutex::new(Links::new()));
let state = SyncArbiter::start(DB_THREADS, move || Db::new(state.clone()));
let state = State {
inner: state
};
state
}
pub fn get(&self) -> &Addr<Db> {
&self.inner
}
}
First, we have set our DB_THREADS to a value of 3 which we have chosen arbitrarily. We'll have a thread pool through which we'll be making requests to the in-memory database. In this case, we could have also used a normal actor, but since we'll be integrating it with our database in Chapter 14, Interacting with Databases in Rust, we have chosen the SyncArbiter thread.
Next, we have the Db struct definition that wraps the Links type in a thread safe wrapper of Arc<Mutex<Links>. We then implement the Actor trait on it, where in we specify the associated type Context as SyncContext<Self>.
We then have a State struct definition which is a Addr<Db>, i.e., a handle to an instance of the Db actor. We also have two methods on State - init which creates a new State instance and get which returns a reference to the handle to the Db actor.
Next, we have a bunch of message types that will be sent to our Db actor. Our Db is an actor and will receive three messages:
GetLinks: This is sent by the /links route handler to retrieve all links stored on the server. It is defined as follows:
// linksnap/src/state.rs
pub struct GetLinks;
impl Message for GetLinks {
type Result = Result<String, Error>;
}
impl Handler<GetLinks> for Db {
type Result = Result<String, Error>;
fn handle(&mut self, _new_link: GetLinks, _: &mut Self::Context) -> Self::Result {
Ok(self.inner.lock().unwrap().links())
}
}
First is the GetLinks message, which is sent to the Db actor from the /links route handler. To make this an actor message, we'll implement the Message trait for it. The Message trait defines an associated type Result, which is the type returned from the handler of the message. Next, we implement the Handler trait that is parameterized over the message GetLinks for the Db actor.
// linksnap/src/state.rs
pub struct GetLinks;
impl Message for GetLinks {
type Result = Result<String, Error>;
}
impl Handler<GetLinks> for Db {
type Result = Result<String, Error>;
fn handle(&mut self, _new_link: GetLinks, _: &mut Self::Context) -> Self::Result {
Ok(self.inner.lock().unwrap().links())
}
}
We implement the Message trait for it, which returns the string of all the links as the response.
AddLink: This is sent by the /add route handler on any new link that's sent by the client. It is defined as follows:
// linksnap/src/state.rs
#[derive(Debug, Serialize, Deserialize)]
pub struct AddLink {
pub title: String,
pub url: String
}
impl Message for AddLink {
type Result = Result<(), Error>;
}
impl Handler<AddLink> for Db {
type Result = Result<(), Error>;
fn handle(&mut self, new_link: AddLink, _: &mut Self::Context) -> Self::Result {
let mut db_ref = self.inner.lock().unwrap();
db_ref.add_link(new_link);
Ok(())
}
}
Th AddLink type performs a double duty. With the Serialize and Deserialize traits implemented, it acts as a type that can be extracted from the incoming json response body in the add_link route. Second, it also implements the Message trait, which we can send to our Db actor.
RmLink: This is sent by the /rm route handler. It is defined as follows:
// linksnap/src/state.rs
#[derive(Serialize, Deserialize)]
pub struct RmLink {
pub id: LinkId,
}
impl Message for RmLink {
type Result = Result<usize, Error>;
}
impl Handler<RmLink> for Db {
type Result = Result<usize, Error>;
fn handle(&mut self, link: RmLink, _: &mut Self::Context) -> Self::Result {
let db_ref = self.get_conn()?;
Link::rm_link(link.id, db_ref.deref())
.map_err(|_| error::ErrorInternalServerError("Failed to remove links"))
}
}
This is the message sent when one wants to remove a link entry. It takes the RmLink message and forwards it
We can insert a link with the following curl command:
curl --header "Content-Type: application/json" \
--request POST \
--data '{"title":"rust blog","url":"https://rust-lang.org"}' \
127.0.0.1:8080/add
To view the inserted links, we can issue:
curl 127.0.0.1:8080/links
To remove a link, given its Id, we can send a DELETE request using curl as:
curl -X DELETE 127.0.0.1:8080/rm?id=1
Summary
In this chapter, we explored a lot about building web applications with Rust and how easy it is to get started, given the high-quality crates that are available to us. Being a compiled language, web applications written in Rust are many times smaller than other frameworks that are written in dynamic languages. Most of the web framework space is dominated by interpreted dynamic languages that can hog a lot of CPU but aren't very resource-efficient. However, people use them because web applications are very convenient to write with them.
Web applications that are written with Rust take up a lot less space at runtime. Rust also takes up less memory during runtime, as no interpreter is needed, as is the case with dynamic languages. With Rust, you get the best of both worlds, that is, the same feel of dynamic languages while at the same time being performant, like C. This is a great deal for the web.
In the next chapter, we'll explore how Rust can talk to databases and add data persistence to our read_list server by using a type-safe Object Relational Mapper (ORM) library called diesel.
Interacting with Databases in Rust
In this chapter, we'll discuss on why databases are essential to modern applications. We'll cover a few crates that are available in the Rust ecosystem, which allows one to interact with databases. We'll then continue with our linksnap API server that we developed in the previous chapter and integrate database support into it through a convenient library. This will allow us to persist new bookmarks that are sent to our API.
In this chapter, we will cover the following topics:
Why do we need data persistence?
"Sometimes, elegant implementation is just a function. Not a method. Not a class. Not a framework. Just a function." - John Carmack
Modern applications these days are data-heavy. Data is the new oil, as many say. Database-backed services are everywhere, from social gaming to cloud storage, to e-commerce, to healthcare, and so on. All of these services need to store and retrieve data correctly. The data that they store, must be easy to retrieve and must have guarantees regarding consistency and durability.
Databases are the go-to solution for providing a robust foundation for building applications that are data-backed and that support the expectations of their users. Before we build anything involving databases with Rust, we need to get an idea of the basics. A database, in general, is a collection of tables. Tables are units of data organization.
Data that's been organized into tables is only applicable to relational databases. Other databases, such as NoSQL and graph-based databases, use a more flexible document model to store and organize data.
Data is organized into logical bodies called tables. Tables are usually representations of entities from the real world. These entities can have various attributes that take the place of columns in these tables. These entities can also have relations with other entities. A column in one table can refer to another column. Changes to any database is performed using a specific DSL called Structured Query Language (SQL). SQL queries also allow you to spread a query across multiple tables using query clauses such as JOIN. Those are the basics. A common pattern with a user interacting with database-backed applications is the CRUD pattern, which is short for Create, Read, Update, and Delete. These are the usual operations a user performs most of the time on a database through the application.
SQL is a declarative way to perform transactions on a database. A transaction is a group of modifications to a database that must happen atomically or not at all in case there are any failures midway. The naive way to write a database transaction in any application is through a raw SQL query. However, there's a better way to do this, and it's called Object Relational Mapping (ORM). This is a technique that's used to access a database using native language abstractions and types that map almost one to one with the SQL syntax and semantics. Languages provide higher-level libraries for speaking SQL, which allow you to write queries in their native language, which is then translated into a raw SQL query. In traditional object-oriented languages, your objects become SQL-speaking objects. These libraries are called object-relational mappers. Many of these libraries exist in mainstream languages such as Hibernate for Java, Active Record for Ruby, SQLAlchemy for Python, and so on. Using ORMs reduces the possibility of any errors occurring when you're using raw SQL queries. However, ORMs also suffer from not being able to map themselves completely to the language's object model with the database model. As such, ORM libraries should try to limit the amount of abstraction they provide for interacting with a database and leave some of the parts to raw SQL queries.
The Rust ecosystem provides quite a few high-quality solutions to manage and build persistent applications. We'll look at a couple of them in the following section.
SQLite
SQLite is a very lightweight embedded database. It does not require a special database management system for you to be able to use it. Databases created by SQLite are represented as files or as in memory database, and you don't need to connect to an external remote endpoint or a local socket connection to use a database. It serves a different target audience than traditional client-server database engines such as MySQL or PostgreSQL, and is the go-to solution for use cases where an application needs to store data locally but in a secure and efficiently retrievable manner. The Android platform is a heavy user of SQLite and allows mobile applications to store preferences or configurations for users within an application. It is also used by many desktop applications that need to store any kind of state with durability guarantees.
The Rust community provides us with a couple of options for connecting to and interacting with a SQLite database. We'll go with the rusqlite crate, which is available on crates.io at https://crates.io/crates/rusqlite. This crate supports SQLite version 3.6.8 and above. Its API cannot be considered an ORM, but can be considered a mid-level abstraction of what an ORM provides, as it helpfully hides many of the details of the actual SQLite API. In contrast to many other relational database systems, SQLite's type system is dynamic. This means that columns do not have types, but each individual value does. Technically, SQLite separates storage classes from data types, but this is mainly an implementation detail, and we can just think in terms of types without being too far from the truth.
The rusqlite crate provides the FromSql and ToSql traits for converting objects between SQLite and Rust types. It also provides the following implementations out of the box for most standard library types and primitives:
Description | SQLite | Rust |
The null value | NULL | rusqlite::types::Null |
1, 2, 3, 4, 6, or 8-byte signed integers | INTEGER | i32 (with possible truncation) and i64 |
8-byte IEEE floats | REAL | f64 |
UTF-8, UTF-16BE or UTF-16LE strings | TEXT | String and &str |
Bytestrings | BLOB | Vec<u8> and &[u8] |
With the basics of the rusqlite crate covered, let's see it in action.
We'll create a new project by running cargo new rusqlite_demo. Our program takes a properly formatted Comma Separated Values (CSV) list of book data from the standard input, stores it in SQLite, and then retrieves a subset of the data using a filter SQL query. First, let's create our table creation and deletion QueryNStrings and our Book struct, which will store the data retrieved from the query:
// rusqlite_demo/src/main.rs
use std::io;
use std::io::BufRead;
use rusqlite::Error;
use rusqlite::{Connection, NO_PARAMS};
const CREATE_TABLE: &str = "CREATE TABLE books
(id INTEGER PRIMARY KEY,
title TEXT NOT NULL,
author TEXT NOT NULL,
year INTEGER NOT NULL)";
const DROP_TABLE: &str = "DROP TABLE IF EXISTS books";
#[derive(Debug)]
struct Book {
id: u32,
title: String,
author: String,
year: u16
}
We have two constants, CREATE_TABLE and DROP_TABLE, defined, which contain raw SQL queries for creating a books table and deleting it, respectively. We then have the book struct, which contains the following fields:
Next, let's look at our main function:
// rusqlite_demo/src/main.rs
fn main() {
let conn = Connection::open("./books").unwrap();
init_database(&conn);
insert(&conn);
query(&conn);
}
First, we open our connection to our SQLite database by calling Connection::open and providing a path, "./books", to create the database in the current directory. Next, we call init_database(), passing a reference to conn, which is defined as follows:
fn init_database(conn: &Connection) {
conn.execute(CREATE_TABLE, NO_PARAMS).unwrap();
}
We then call the insert method, passing our conn. Finally, we call the query method, which queries our books database.
Here's our insert function method:
fn insert(conn: &Connection) {
let stdin = io::stdin();
let lines = stdin.lock().lines();
for line in lines {
let elems = line.unwrap();
let elems: Vec<&str> = elems.split(",").collect();
if elems.len() == 4 {
let _ = conn.execute(
"INSERT INTO books (id, title, author, year) VALUES (?1, ?2, ?3, ?4)",
&[&elems[0], &elems[1], &elems[2], &elems[3]],
);
}
}
}
In insert, we first get a lock on stdout and iterate over the lines. Each line is split with commas. Following that, we call execute on conn, passing in an insert query string. In the query string, we use the template variables ?1, ?2, and so on, whose corresponding values are taken from the elems vector. If the number of elements collected is up to 4, we insert the book using the raw SQL query and provide the corresponding values from the elems Vec for template variables.
Next, our query function is defined as follows:
fn query(conn: &Connection) {
let mut stmt = conn
.prepare("SELECT id, title, author, year FROM books WHERE year >= ?1")
.unwrap();
let movie_iter = stmt
.query_map(&[&2013], |row| Book {
id: row.get(0),
title: row.get(1),
author: row.get(2),
year: row.get(3),
})
.unwrap();
for movie in movie_iter.filter_map(extract_ok) {
println!("Found book {:?}", movie);
}
}
The query function takes in conn, on which we call prepare, passing in the raw SQL query string. Here, we're filtering books that are greater than a given year. We store this query in stmt. Next, we call query_map on this type, passing in a reference to an array that contains just the number 2013, which represents the year we want to filter the books against. As you can see, the API is a bit uneasy here. The second argument to query_map is a closure that is a Row type. Within the closure, we extract the respective fields from the row instance and construct a Book instance out of it. This returns an iterator, which we store in movie_iter. Finally, we iterate over our movie_iter, filtering any failed values using the extract_ok helper method. This is defined as follows:
fn extract_ok(p: Result<Book, Error>) -> Option<Book> {
if p.is_ok() {
Some(p.unwrap())
} else {
None
}
}
Then, we print the books. The full code is as follows:
// rusqlite_demo/src/main.rs
use std::io;
use std::io::BufRead;
use rusqlite::Error;
use rusqlite::{Connection, NO_PARAMS};
const CREATE_TABLE: &str = "CREATE TABLE IF NOT EXISTS books
(id INTEGER PRIMARY KEY,
title TEXT NOT NULL,
author TEXT NOT NULL,
year INTEGER NOT NULL)";
#[derive(Debug)]
struct Book {
id: u32,
title: String,
author: String,
year: u16,
}
fn extract_ok(p: Result<Book, Error>) -> Option<Book> {
if p.is_ok() {
Some(p.unwrap())
} else {
None
}
}
fn insert(conn: &Connection) {
let stdin = io::stdin();
let lines = stdin.lock().lines();
for line in lines {
let elems = line.unwrap();
let elems: Vec<&str> = elems.split(",").collect();
if elems.len() > 2 {
let _ = conn.execute(
"INSERT INTO books (id, title, author, year) VALUES (?1, ?2, ?3, ?4)",
&[&elems[0], &elems[1], &elems[2], &elems[3]],
);
}
}
}
fn init_database(conn: &Connection) {
conn.execute(CREATE_TABLE, NO_PARAMS).unwrap();
}
fn query(conn: &Connection) {
let mut stmt = conn
.prepare("SELECT id, title, author, year FROM books WHERE year >= ?1")
.unwrap();
let movie_iter = stmt
.query_map(&[&2013], |row| Book {
id: row.get(0),
title: row.get(1),
author: row.get(2),
year: row.get(3),
})
.unwrap();
for movie in movie_iter.filter_map(extract_ok) {
println!("Found book {:?}", movie);
}
}
fn main() {
let conn = Connection::open("./books").unwrap();
init_database(&conn);
insert(&conn);
query(&conn);
}
We also have a books.csv file in the same directory. We can run it by running:
cargo run < books.csv
Here's the output of the program upon running:
This is nowhere near a representative real-world database-backed application and is just for demonstrating the usage of the library. A real-world application wouldn't be reading from the standard input and the querying routines would have better error handling.
This was a brief demonstration of how to use a SQLite database with Rust by using the rusqlite crate. The API is not very strongly typed, but currently it's the only solution we've got. Next, we'll look at one of the big brothers of SQLite, which is the PostgreSQL database management system.
PostgreSQL
While SQLite is fine for prototyping and simpler use cases, a real relational database management system can make the life of a developer much easier. One such sophisticated database system is PostgreSQL. To integrate postgres in Rust, we have the postgres crate on crates.io. It's a native Rust client, meaning that it does not ride on a C library but implements the whole protocol in Rust. If the API looks familiar to the rusqlite crate, this is deliberate; the SQLite client's API is actually based on the postgres client.The postgres crate supports some of PostgreSQL's unique features, such as bit vectors, time fields, JSON support, and UUIDs.
In this section, we'll explore interacting with postgres by creating a sample program that initializes the postgres database and does a few inserts and queries on the database. We assume that you have already set up the database on your system. The PostgreSQL version used for the example is 9.5.
To install the PostgreSQL database system, the following DigitalOcean article is recommended: https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresql-on-ubuntu-16-04.
Postgres comes with its command line tool called psql which can be used to run queries, examine tables, manage roles, view system information and much more. You can view the postgres version running on your system by running the following commands inside the psql prompt. First we'll launch psql by running:
$ sudo -u postgres psql
Once we are within the psql, we run the following command at the prompt:
postgres=# SELECT version();
Running the command above, gives the following output:
PostgreSQL 9.5.14 on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609, 64-bit
To make this example simpler, we'll reuse the same books data that we used in our rusqlite demo. We'll use the default "postgres" user in the following examples, with the password as "postgres". You'll need to adapt the following examples to match your new user. Let's fire up a new project by running cargo new postgres_demo. Here's our dependencies in Cargo.toml:
# postgres_demo/Cargo.toml
[dependencies]
postgres = "0.15.2"
serde = { version = "1.0.82"}
serde_derive = "1.0.82"
serde_json = "1.0.33"
Let's run through the code in main.rs:
// postgres_demo/src/main.rs
use postgres::{Connection, TlsMode};
const DROP_TABLE: &str = "DROP TABLE IF EXISTS books";
const CONNECTION: &str = "postgres://postgres:postgres@localhost:5432";
const CREATE_TABLE: &str = "CREATE TABLE IF NOT EXISTS books
(id SERIAL PRIMARY KEY,
title VARCHAR NOT NULL,
author VARCHAR NOT NULL,
year SERIAL)";
#[derive(Debug)]
struct Book {
id: i32,
title: String,
author: String,
year: i32
}
fn reset_db(conn: &Connection) {
let _ = conn.execute(DROP_TABLE, &[]).unwrap();
let _ = conn.execute(CREATE_TABLE, &[]).unwrap();
}
We have a bunch of string constants for connecting to the database and creating and deleting the books table. Next is our function main:
// postgres_demo/src/main.rs
fn main() {
let conn = Connection::connect(CONNECTION, TlsMode::None).unwrap();
reset_db(&conn);
let book = Book {
id: 3,
title: "A programmers introduction to mathematics".to_string(),
author: "Dr. Jeremy Kun".to_string(),
year: 2018
};
conn.execute("INSERT INTO books (id, title, author, year) VALUES ($1, $2, $3, $4)",
&[&book.id, &book.title, &book.author, &book.year]).unwrap();
for row in &conn.query("SELECT id, title, author, year FROM books", &[]).unwrap() {
let book = Book {
id: row.get(0),
title: row.get(1),
author: row.get(2),
year: row.get(3)
};
println!("{:?}", book);
}
}
Because we are not using an ORM here, and just a low-level interface, we'll need to unpack the values into the database query manually. Let's run this program:
Here's an output of the program, along with a psql query of the table to show the contents afterwards:
First, we list our database with the \dt command at the psql prompt. Following that, we use the query, that is, "select * from books".
That's the basics o interacting with PostgreSQL with Rust. Next, let's explore how we can make our database queries efficient by using the concept of connection pooling.
Connection pooling with r2d2
Opening and closing a database connection every time new transactions take place becomes a bottleneck really quickly. Typically, opening a database connection is an expensive operation. This is mostly because of the associated TCP handshake that's required to create socket connections on both sides. The overhead is even more expensive if the database is hosted on a remote server, which is usually the case. If we could reuse the connection for every subsequent request that gets sent to our database, we might reduce the latency a great deal. An efficient way to mitigate this overhead is to employ database connection pooling. When a process needs a new connection, it is given an existing connection from the pool of connections. When the process has completed the required operation with the database, this connection handle goes back to the pool to be used later.
In Rust, we have the r2d2 crate, which leverages traits to provide a generic way of maintaining connection pools for various databases. It provides various backends as sub-crates, and supports PostgreSQL, Redis, MySQL, MongoDB, SQLite, and a few other known database systems. The architecture of r2d2 consists of two parts: a generic part and a backend-specific part. The backend code attaches to the generic part by implementing r2d2's ManageConnection trait and by adding a connection manager for the specific backend. The trait is as follows:
pub trait ManageConnection: Send + Sync + 'static {
type Connection: Send + 'static;
type Error: Error + 'static;
fn connect(&self) -> Result<Self::Connection, Self::Error>;
fn is_valid(&self, conn: &mut Self::Connection) -> Result<(), Self::Error>;
fn has_broken(&self, conn: &mut Self::Connection) -> bool;
}
Looking at the trait definition, we need to specify a Connection type, which must be Send and 'static, and an Error type. We also have three methods: connect, is_valid, and has_broken. The connect method returns the Connection type that comes from the underlying backend crate; for instance, it would be the postgres::Connection type for the postgres backend. The Error type is an enum that specifies all the possible Error cases that may happen during either the connection phase or while checking the validity of the connection.
For demonstration purposes, we'll look at how we can use the r2d2 crate here by first checking out how to connect to PostgreSQL using a pool. We'll take the code from the previous section and modify it to use a connection pool, where we make SQL queries from 8 threads.
Here's the full code of a pooled and threaded implementation using r2d2-postgres backend crate:
// r2d2_demo/src/main.rs
use std::thread;
use r2d2_postgres::{TlsMode, PostgresConnectionManager};
use std::time::Duration;
const DROP_TABLE: &str = "DROP TABLE IF EXISTS books";
const CREATE_TABLE: &str = "CREATE TABLE IF NOT EXISTS books
(id SERIAL PRIMARY KEY,
title VARCHAR NOT NULL,
author VARCHAR NOT NULL,
year SERIAL)";
#[derive(Debug)]
struct Book {
id: i32,
title: String,
author: String,
year: i32
}
fn main() {
let manager = PostgresConnectionManager::new("postgres://postgres:postgres@localhost:5432",
TlsMode::None).unwrap();
let pool = r2d2::Pool::new(manager).unwrap();
let conn = pool.get().unwrap();
let _ = conn.execute(DROP_TABLE, &[]).unwrap();
let _ = conn.execute(CREATE_TABLE, &[]).unwrap();
thread::spawn(move || {
let book = Book {
id: 3,
title: "A programmers introduction to mathematics".to_string(),
author: "Dr. Jeremy Kun".to_string(),
year: 2018
};
conn.execute("INSERT INTO books (id, title, author, year) VALUES ($1, $2, $3, $4)",
&[&book.id, &book.title, &book.author, &book.year]).unwrap();
});
thread::sleep(Duration::from_millis(100));
for _ in 0..8 {
let conn = pool.get().unwrap();
thread::spawn(move || {
for row in &conn.query("SELECT id, title, author, year FROM books", &[]).unwrap() {
let book = Book {
id: row.get(0),
title: row.get(1),
author: row.get(2),
year: row.get(3)
};
println!("{:?}", book);
}
});
}
}
The code is fairly straight forward from the last example, except that we now spawn 8 threads to do a select query on our database. The pool size is configured to a value of 8, which means that the SELECT query threads get to do 8 queries concurrently by reusing the connections for any further requests.
Now up until this point, we have been mostly using raw SQL queries for interacting with databases from Rust. But, there's a more convenient strongly typed approach to interacting with databases through an ORM library called diesel. Let's explore that next.
Postgres and the diesel ORM
Writing a complex application using low-level database libraries with raw SQL queries is a recipe for a lot of mistakes. Diesel is an ORM (Object Relational Mapper) and a query builder for Rust. It makes heavy use of procedural macros. It detects most database interaction errors at compile time and is able to produce very efficient code in most cases, sometimes even beating low-level access with C. This is due to its ability to move checks that are typically made at runtime to compile time. At the time of writing, diesel supports PostgreSQL, MySQL, and SQLite out of the box.
We'll be integrating database support to the linksnap server that we developed in Chapter 13, Building Web Applications with Rust. We're going to use diesel to communicate with our postgres database in a type-safe manner. We'll copy the linksnap project from Chapter 13, Building Web Applications with Rust, and rename it linksnap_v2. We won't be going over the full source code walk-through—only the parts that affect the integration of the database with diesel. The rest of the code base is exactly the same as in the previous chapter.
The diesel project is built of many components. First, we have a command line tool called diesel-cli that automates the process of creation of database and performing any migration to the database if required.
Now, before we start implementing routines for talking to our database, we need to install the diesel-cli tool, which will set up our database and the tables inside it. We can install it by running the following command:
cargo install diesel_cli --no-default-features --features postgres
We are only using the postgres feature from this CLI tool and so the --features flag. Cargo will fetch and build diesel_cli and its dependencies, and install the binary to Cargo's default binary location for your user, which is usually ~/.cargo/bin/ directory.
Within our linksnap_v2 directory, we'll then add the connection URL to our database in a .env file that's located in the directory root with the following contents:
DATABASE_URL=postgres://postgres:postgres@localhost/linksnap
Our database in postgres is named linksnap, and both the username and password is postgres. This is in no way a secure way to access our database and it's recommended that you use the best security practices to set up your postgres database in a production environment.
We'll also need to add diesel as a dependency in our Cargo.toml file, along with the dotenv library. The dotenv crate handles local configuration via dotfiles. Here's our Cargo.toml file:
# linksnap_v2/Cargo.toml
[dependencies]
actix = "0.7"
actix-web = "0.7"
futures = "0.1"
env_logger = "0.5"
bytes = "0.4"
serde = "1.0.80"
serde_json = "1.0.33"
serde_derive = "1.0.80"
url = "1.7.2"
lazy_static = "1.2.0"
log = "0.4.6"
chrono = { version="0.4" }
diesel = { version = "1.3.3", features = ["extras", "postgres", "r2d2"] }
dotenv = "0.13.0"
Notice the features on the diesel crate where we use "postgres" and "r2d2". Next, we'll run diesel setup:
Creating migrations directory at: /home/creativcoder/book/Mastering-RUST-Second-Edition/Chapter14/linksnap_v2/migrations
This creates a diesel.toml file at the root directory with the following contents:
# linksnap_v2/diesel.toml
# For documentation on how to configure this file,
# see diesel.rs/guides/configuring-diesel-cli
[print_schema]
file = "src/schema.rs"
Diesel uses macros quite heavily to give us great features, such as extra safety and performance at compile time. To be able to do this, it needs compile-time access to the database. This is why the .env file is important. The diesel setup command automatically generates model types by reading the database and writing it to a file called schema.rs. The models are generally split into query and insert structs. Both use derive macros to generate model code for different use cases. In addition to this, a diesel-based application needs code to connect to the database and a set of database migrations to build up and maintain the database tables.
Now, let's add a migration that creates our table by running the following code:
diesel migration generate linksnap
This command generates a new migration with two empty up.sql and down.sql migration files:
Creating migrations/2019-01-30-045330_linksnap/up.sql
Creating migrations/2019-01-30-045330_linksnap/down.sql
The migration files are just plain SQL, so we can just put in our earlier CREATE TABLE command:
-- linksnap_v2/migrations/2019-01-30-045330_linksnap_db/up.sql
CREATE TABLE linksnap (
id SERIAL PRIMARY KEY,
title VARCHAR NOT NULL,
url TEXT NOT NULL,
added TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
)
The down.sql file should contain a corresponding DROP TABLE:
-- linksnap_v2/migrations/2019-01-30-045330_linksnap_db/down.sql
DROP TABLE linksnap
Once we do that, we have to run:
$ diesel migration run
This will create a schema.rs file by reading from the database:
// linksnap_v2/src/schema.rs
table! {
linksnap (id) {
id -> Int4,
title -> Varchar,
url -> Text,
added -> Timestamp,
}
}
The table! macro generates code for the linksnap table with id as the primary key. It also specifies the column names with id, title, url and added.
Now we can write a model for this table. In diesel, models can live in any visible module, but we'll go with the convention of putting them in src/models.rs. Here's its contents for our Link model:
// linksnap_v2/src/models.rs
use chrono::prelude::*;
use diesel::prelude::Queryable;
use chrono::NaiveDateTime;
use diesel;
use diesel::pg::PgConnection;
use diesel::prelude::*;
use crate::state::AddLink;
use crate::schema::linksnap;
use crate::schema::linksnap::dsl::{linksnap as get_links};
use serde_derive::{Serialize, Deserialize};
pub type LinkId = i32;
#[derive(Queryable, Debug)]
pub struct Link {
pub id: i32,
pub title: String,
pub url: String,
pub added: NaiveDateTime,
}
impl Link {
pub fn add_link(new_link: AddLink, conn: &PgConnection) -> QueryResult<usize> {
diesel::insert_into(linksnap::table)
.values(&new_link)
.execute(conn)
}
pub fn get_links(conn: &PgConnection) -> QueryResult<Vec<Link>> {
get_links.order(linksnap::id.desc()).load::<Link>(conn)
}
pub fn rm_link(id: LinkId, conn: &PgConnection) -> QueryResult<usize> {
diesel::delete(get_links.find(id)).execute(conn)
}
}
We have created a Link struct that can be used to query the database. It also has various methods that are invoked when we our server receives requests on the respective endpoints.
Next, the state.rs file contains diesel and postgres specific code:
// linksnap_v2/src/state.rs
use diesel::pg::PgConnection;
use actix::Addr;
use actix::SyncArbiter;
use std::env;
use diesel::r2d2::{ConnectionManager, Pool, PoolError, PooledConnection};
use actix::{Handler, Message};
use crate::models::Link;
use serde_derive::{Serialize, Deserialize};
use crate::schema::linksnap;
use std::ops::Deref;
const DB_THREADS: usize = 3;
use actix_web::{error, Error};
use actix::Actor;
use actix::SyncContext;
// Using this we create the connection pool.
pub type PgPool = Pool<ConnectionManager<PgConnection>>;
type PgPooledConnection = PooledConnection<ConnectionManager<PgConnection>>;
pub struct Db(pub PgPool);
// We define a get conn a convenient method to get
impl Db {
pub fn get_conn(&self) -> Result<PgPooledConnection, Error> {
self.0.get().map_err(|e| error::ErrorInternalServerError(e))
}
}
First we create a bunch of convenient aliases for our PostgreSQL connection pool. We have the same Db struct that wraps a PgPool type. The PgPool type is a ConnectionManager from the r2d2 module in diesel. On the Db struct, we also define the get_conn method, which returns a reference to a pooled connection.
Continuing down the same file:
// We then implement the Actor trait on the actor.
impl Actor for Db {
type Context = SyncContext<Self>;
}
pub fn init_pool(database_url: &str) -> Result<PgPool, PoolError> {
let manager = ConnectionManager::<PgConnection>::new(database_url);
Pool::builder().build(manager)
}
// This type is simply wraps a Addr what we
#[derive(Clone)]
pub struct State {
pub inner: Addr<Db>
}
impl State {
// The init method creates
pub fn init() -> State {
let database_url = env::var("DATABASE_URL").expect("DATABASE_URL must be set");
let pool = init_pool(&database_url).expect("Failed to create pool");
let addr = SyncArbiter::start(DB_THREADS, move || Db(pool.clone()));
let state = State {
inner: addr.clone()
};
state
}
pub fn get(&self) -> &Addr<Db> {
&self.inner
}
}
We have the familiar State type, but the init method is different here. It first creates accesses the DATABASE_URL environment variable and tries to make a pooled connection using the database_url in pool. We then start a SyncArbiter thread cloning the pool. Finally we return back the state instance to the caller.
Apart from that, we don't need to change much of our linksnap code base from the previous version. Let's take our new server for a spin. We'll insert a Link to our server using curl as:
curl --header "Content-Type: application/json" \
--request POST \
--data '{"title":"rust webpage","url":"https://rust-lang.org"}' \
127.0.0.1:8080/add
Now to confirm that this link made it to our postgres database, let's query for this entry from the psql prompt:
Great ! our curl request made it to the postgres database.
Diesel's barrier to entry is a tad high though, but the situation should improve as more and more examples and literature come along.
Summary
In this chapter, we took a quick look at a few ways to perform basic database interaction using Rust by using the low-level SQLite and PostgreSQL library crates. We saw how to augment database connectivity with a connection pool using r2d2. Finally, we made a small application with Diesel, a safe and performant ORM.
In the next chapter, we'll take a look at how Rust can be made to run on the web by using a bleeding edge technology called WebAssembly.
Rust on the Web with WebAssembly
Rust extends far beyond its system programming domain and can be made to run on the web as well. In this chapter, we'll explore one such technology for doing this, called WebAssembly. We'll go into the details of what exactly WebAssembly is, and how Rust can be made to run alongside JavaScript using this technology.Being able to run on web browsers unlocks a domain that enables Rust to be used by a much larger audience, that is, the community of web developers, and enables them to leverage the performance of a systems language in their applications. Later in this chapter, we'll explore the tools and libraries that offer WebAssembly support, and build a live markdown editor that invokes an API implemented in Rust for rendering markdown documents to an HTML page.
In this chapter, we will cover the following topics
What is WebAssembly?
"Be curious. Read widely. Try new things. I think a lot of what people call intelligence boils down to curiosity." – Aaron Swartz
WebAssembly is a suite of technologies and specifications that allows native code to run on the web by compiling down to a low-level programming language called wasm. From a usability perspective, it's a set of technologies that allows programs written in other non-web programming languages to run on web browsers. From a technical standpoint, WebAssembly is a virtual machine specification with a binary, load-time-efficient Instruction Set Architecture (ISA). Okay, that's jargon overload. Let's simplify this definition a bit. As we know, a compiler is a complex program that turns code written in a human-readable programming language into machine code consisting of zeroes and ones. However, this translation happens in a multi-step process. It does this in several phases of compilation where, in the end, it gets compiled to the assembly language that's specific to the machine. Following that, the machine-specific assembler encodes it to the machine code by following the rules specified in the ISA for the target machine. Here, the compiler is targeting a real machine. However, it doesn't always have to be a real machine. It can also be a virtual machine (VM) executing its own virtual instruction set on top of a real machine. One example of virtual machines are video game emulators such as the Gameboy emulator that runs on normal computers and emulates the Gameboy hardware. A WebAssembly virtual machine is similar to that! Here, the browser engine implements the WebAssembly virtual machine, which enables us to run wasm code alongside JavaScript.
An instruction set architecture or ISA defines how a computer executes instructions and what sort of operations it supports at the lowest level. This ISA doesn't have to always be for a real physical machine; it can also be defined for a virtual machine. Wasm is the ISA for WebAssembly virtual machines.
The past 5 years of increasing dependence on the web and its diverse range of applications has resulted in developers trying hard to transpile their code to JavaScript. This is because JavaScript is the most popular and is the only cross-platform technology on the web. One project, called asm.js, from Mozilla (a faster-typed subset of JavaScript) was the first effort to make the web more efficient and fast enough to meet growing demands. From asm.js and its founding principles and learned lessons, WebAssembly was born.
WebAssembly is a joint effort from the browser committee bodies of various major companies, namely Mozilla, Google, Apple, and Microsoft. Since early 2018, it has seen a tremendous rise in popularity as a compilation target for a wide variety of languages, ranging from C++ using the Emscripten toolchain, Rust using LLVM/Emscripten, TypeScript using AssemblyScript, and many others. As of 2019, all major browsers implement a WebAssembly virtual machine in their web browser engine.
WebAssembly has the name assembly in it, as it's a low-level programming language similar to assembly instructions. It has a limited set of primitive types, which makes the language simple to parse and run. It supports the following types natively:
It's less of a programming language that you will write daily, like JavaScript, but more of a compilation target for compilers. The WebAssembly platform and the ecosystem is currently focused on running this technology on the web, but it's not limited to the web in any way. If a platform implements the WebAssembly virtual machine specification as a program, a wasm program will be able to run on that virtual machine.
To support WebAssembly on any platform, a virtual machine needs to be implemented in the language that is supported by the platform. This is just like JVM's platform-agnostic code—write once, run faster, safe anywhere! But it's primary target, as of now, is the browser. Most web browsers come with a JavaScript parser that can parse .js files in their browser engines to enable all sorts of interactivity for the user. To allow the web to interpret wasm files too, these engines implement the WebAssembly VM within them, allowing browsers to interpret and run wasm code alongside JavaScript code.
A stark difference between parsing JavaScript and parsing WebAssembly code is that wasm code is an order of magnitude faster to parse because of its compact representation. Most of the initial page-load time on dynamic websites is spent on parsing JavaScript code, and using WebAssembly can provide a huge boost in performance for these websites. The goal of WebAssembly, however, is not to replace JavaScript, but to be a helping hand for JavaScript when performance matters.
WebAssembly's language comes in two formats, as per the specification, which is defined at https://webassembly.org/: the human-readable text format, .wat, which is suitable for viewing and debugging WebAssembly code before its final deployment, and the compact, low-level machine format called wasm. The .wasm format is the one that's interpreted and executed by the WebAssembly VM.
A WebAssembly program starts with a module. Within a module, you can define variables, functions, constants, and so on. Wasm programs are written as s-expressions. S-expressions are a concise way to represent programs via a nested sequence of parenthesis-delimited blocks. For instance, a single (1) is an s-expression that returns the value 1. Every s-expression in WebAssembly returns a value. Let's take a look at a very minimal WebAssembly program in the readable .wat format:
(module
(table 0 anyfunc)
(memory $0 1)
(export "memory" (memory $0))
(export "one" (func $one))
(func $one (; 0 ;) (result i32)
(i32.const 1)
)
)
In the preceding wat code, we have a parent s-expression block (module) that contains other nested s-expressions. Inside module, we have sections called table, memory, and export, and a func definition called $one, which returns an i32. We won't be going into the details of them, as that would digress us too far.
The important point to mention about wasm programs is that they are very efficient in their representation and can be sent and parsed much faster in browsers than JavaScript. Having said that, WebAssembly was designed with a focused set of goals and not to be a general-purpose programming language.
Design goals of WebAssembly
WebAssembly's design is the result of a joint collaboration between major browser vendors. Together, they aim to shape its design with the following goals in mind:
Getting started with WebAssembly
Though WebAssembly modules can be written by hand, it is not advisable to do so, as the code is hard to maintain and is not human-friendly. It is a pretty low-level language and, as a result, creating complex applications using raw wasm code can be challenging and time-consuming. Instead, it is often compiled to, or generated from, a variety of languages. Let's look at the available tools that we can use to explore the details of how WebAssembly programs are written and run.
Trying it out online
Before we discuss how WebAssembly is used as a compilation target across different language ecosystems, we can explore it online without requiring any kind of setup on our machine. Some tools that can be used to do this are as follows:
There are other tools online and community resources for you to explore, all of which you can find at https://github.com/mbasso/awesome-wasm.
Ways to generate WebAssembly
There are several compiler toolchain projects that can help developers compile their code from any language to wasm. Compiling native code has huge implications for the web. It means that most major performance-intensive code can now be run on the web. For instance, C++ code can be compiled to wasm using the emscripten LLVM backend. The emscripten project takes in the LLVM IR generated by the C++ compiler and converts it into WebAssembly modules in wasm format. There are also projects such as AssemblyScript, which convert TypeScript code into WebAssembly using another emscripten-like tool, called binaryen. Rust also supports emitting WebAssembly code by default using LLVM's native WebAssembly backend. Compiling to wasm with Rust is very simple. First, we need to add the wasm by running the following code:
rustup target add wasm32-unknown-unknown
Once that is done, we can compile any Rust program to wasm by running the following code:
cargo build --target=wasm32-unknown-unknown
This is the bare minimum that's needed to create a wasm file from a Rust crate, but it's a lot of hand holding from there. Fortunately, there are amazing projects being developed around the wasm and Rust ecosystem that allow for more higher-level, intuitive interaction with JavaScript and Rust, and vice versa. We'll explore one such project, called wasm-bindgen, and build a real-world web application soon.
Rust and WebAssembly
The ecosystem around Rust and WebAssembly is hurtling at quite a fast pace and it'll take time before the community agrees on a set of tools for building practical applications. Fortunately, some tools and libraries are emerging that give us a picture of what to expect as developers when building applications for the web in Rust using WebAssembly.
In this section, we'll explore a crate from the community called wasm-bindgen. This crate is pretty much a work in progress, as the WebAssembly specification itself is a work in progress, but nonetheless, it is quite feature-rich to explore what is possible.
Wasm-bindgen
wasm-bindgen is a crate that was developed by the rust-wasm team on GitHub. It allows Rust code to call JavaScript code and vice versa. Based on this library, other higher-level libraries have been built, such as the web-sys crate and the js-sys crate.
JavaScript by itself is what is defined by the ECMA standard, but the standard does not specify how it works on the web. JavaScript can support many hosts and the web happens to be one of them. The web-sys crate gives access to all of the JavaScript APIs on the web, that is, DOM APIs such as Window, Navigator, EventListener, and so on. The js-sys crate provides all of the base JavaScript objects that are specified in the ECMA standard specification, that is, functions, objects, numbers, and so on.
Since WebAssembly only supports numeric types, the wasm-bindgen crate generates shims to allow you to use native Rust types in JavaScript. For example, a struct in Rust is represented as an object on the JavaScript side, while a Promise object can be accessed as a Future on the Rust side. It does all of this by using the #[wasm-bindgen] attribute macro over function definitions.
To explore wasm-bindgen and how it interacts with JavaScript, we'll build something practical. We'll build a live markdown editor app that will allow you to write markdown and view the rendered HTML page. Before we start, though, we need to install the wasm-bindgen-cli tool that will generate shims for us, allowing us to conveniently use the exposed Rust functions from our library. We can install it by running:
cargo install wasm-bindgen-cli
Next, let's create a new project by running cargo new livemd with the following contents in Cargo.toml:
[package]
name = "livemd"
version = "0.1.0"
authors = ["Rahul Sharma <creativcoders@gmail.com>"]
edition = "2018"
[lib]
crate-type = ["cdylib"]
[dependencies]
wasm-bindgen = "0.2.29"
comrak = "0.4.0"
We have named our library livemd. Our library is of the cdylib type and is exposing a C interface because WebAssembly accepts a widely targetable dynamic C library interface, which most languages can compile to. Next, we'll also create a run.sh script at our directory root that will let us build and run our project and rerun it every time we change any of our code using cargo-watch. Here's the content of the run.sh file:
#!/bin/sh
set -ex
cargo build --target wasm32-unknown-unknown
wasm-bindgen target/wasm32-unknown-unknown/debug/livemd.wasm --out-dir app
cd app
yarn install
yarn run serve
Next is the implementation of the the markdown conversion code in lib.rs, in its entirety:
// livemd/src/lib.rs
use wasm_bindgen::prelude::*;
use comrak::{markdown_to_html, ComrakOptions};
#[wasm_bindgen]
pub fn parse(source: &str) -> String {
markdown_to_html(source, &ComrakOptions::default())
}
Our livemd crate exposes a single function named pars, which takes in the markdown text from the textarea tag on the web page (yet to be created) and returns the compiled HTML string by invoking the markdown_to_html function from the comrak crate. As you may have noticed, the parse method is annotated with the #[wasm_bindgen] attribute. This macro generates code for all kinds of lower-level conversions, and is required to expose this function to JavaScript. Using this attribute, we don't have to care about what kind of strings our parse method will take. Strings from JavaScript are different than strings in Rust. The #[wasm_bindgen] attribute handles this difference and the low-level details of converting the string from the JavaScript side before accepting it as a &str type for us. At the time of writing this book, there are some types that wasm-bindgen cannot convert, such as references and type definitions with lifetime annotation on them.
We then need to generate the wasm file for this crate. But before we do that, let's set up our app. In the same directory, we'll create a directory named app/ and initialize our project by running yarn init:
yarn init creates our package.json file. Apart from the usual fields, we'll specify scripts and dev-dependencies:
{
"name": "livemd",
"version": "1.0.0",
"description": "A live markdown editor",
"main": "index.js",
"license": "MIT",
"scripts": {
"build": "webpack",
"serve": "webpack-dev-server"
},
"devDependencies": {
"html-webpack-plugin": "^3.2.0",
"webpack": "^4.28.3",
"webpack-cli": "^3.2.0",
"webpack-dev-server": "^3.1.0"
}
}
We'll be using webpack to spin up our development web server. Webpack is a module bundler. A module bundler takes multiple JavaScript source files and bundles them into a single file, possibly minifying it for consumption on the web. To configure webpack so that we can bundle our JavaScript and wasm-generated code, we'll create a webpack config file in a file named webpack.config.js:
// livemd/app/webpack.config.js
const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');
module.exports = {
entry: './index.js',
output: {
path: path.resolve(__dirname, 'dist'),
filename: 'index.js',
},
plugins: [
new HtmlWebpackPlugin({
template: "index.html"
})
],
mode: 'development'
};
Next, in the same app/ directory, we'll create three files:
<!--livemd/app/index.html-->
<!DOCTYPE html>
<html>
<head>
<title>Livemd: Realtime markdown editor</title>
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css" rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Aleo" rel="stylesheet">
<link href="styles.css" rel="stylesheet">
</head>
<body class="container-fluid">
<section class="row">
<textarea class="col-md-6 container" id="editor">_Write your text here.._</textarea>
<div class="col-md-6 container" id="preview"></div>
</section>
<script src="index.js" async defer></script>
</body>
</html>
We have declared a <textarea> HTML element with an ID of editor. This will be shown on the left, and is where you can write your markdown. Next, we have a <div> element with an ID of preview, which will show the live rendered HTML content.
/* livemd/app/styles.css */
html, body, section, .container {
height: 100%;
}
#editor {
font-family: 'Aleo', serif;
font-size: 2rem;
color: white;
border: none;
overflow: auto;
outline: none;
resize: none;
-webkit-box-shadow: none;
-moz-box-shadow: none;
box-shadow: none;
box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, .6);
background-color: rgb(47,79,79);
}
#preview {
overflow: auto;
border: 5px;
border-left: 1px solid grey;
}
// livemd/app/index.js
import('./livemd').then((livemd) => {
var editor = document.getElementById("editor");
var preview = document.getElementById("preview");
var markdownToHtml = function() {
var markdownText = editor.value;
html = livemd.parse(markdownText);
preview.innerHTML = html;
};
editor.addEventListener('input', markdownToHtml);
// Kick off parsing of initial text
markdownToHtml();
}).catch(console.error);
The preceding code imports the livemd module, which returns a Promise instance. We then chain on the value that's produced by this promise by calling the then method, which takes an anonymous function, (livemd) => {}. This function receives the wasm module (we named it livemd). Within this method, we get the editor and preview HTML elements by their IDs. We then create a function called markdownToHtml, which takes the text from the editor element from its property value and passes it to the parse method from the livemd wasm module. This returns rendered HTML text as a string. We then set the innerHTML property of the preview element to this text. Next, to provide live feedback for any updates made by the user on any text changes in the editor element, we need to invoke this function. We can use the onInput event handler for this. To the editor element, we call the addEventListener method with the "input" event and pass this function as the handler. Finally, we invoke markdownToHtml to kick off the parsing and rendering of the text.
That's it—we have created our first web application that uses Rust under the hood and runs WebAssembly alongside JavaScript.
Note: This isn't an efficient implementation and there are lot of improvements that can be made. However, since we are learning about the tools here, it's okay for demonstration purposes.
Now, we need to compile our crate into WebAsssembly code, that is, as a wasm file, and generate a bundled JavaScript file. We have a script set up already, called run.sh. Here's the output on running our run.sh script:
The run.sh script first builds the livemd crate by running cargo build --target wasm32-unknown-unknown. Next, it invokes the wasm-bindgen tool, which optimizes our wasm file and outputs it in the app/ directory. Then, we run yarn install in our app directory, followed by yarn run serve, which starts our development server using the webpack-dev-server plugin.
If you face errors while running wasm-bindgen cli command, try updating the wasm-bindgen dependency in livemd/Cargo.toml by running:
cargo update -p wasm-bindgen
We also need to install the yarn package manager for hosting the web page on localhost. This can be done by running:
$ curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
$ echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
$ sudo apt-get update && sudo apt-get install yarn
From webpack's output, our development server is running at http://localhost:8080. Let's head over to our web browser and go to this address. Here's the output on my browser:
As you can see, we have our text in markdown format on the left-hand pane and it gets rendered on the right in real time as HTML. Under the hood, every bit of text we type on the left-hand side of this page gets converted into HTML text, which is generated by the livemd wasm module that we created.
We can also publish our livemd crate as an npm package. The wasm-pack project at https://github.com/rustwasm/wasm-pack provides all kinds of orchestration that's needed to build and ship npm modules written in Rust that have been compiled to WebAssembly.
Other WebAssembly projects
Apart from the wasm-bindgen crate and friends, there are other emerging frameworks and projects in the Rust community that are worth exploring.
Rust
Wasm-bindgen is not the only project that aims to create amazing development experiences. Some other projects in the Rust ecosystem are as follows:
Other languages
Other languages also have technologies that target WebAssembly, such as the following:
Summary
WebAssembly will have a huge impact on how web developers build their applications, allowing them to gain a lot of performance gains with little effort. It will allow for diversity in terms of application developers, thus allowing them to write web applications in their native language without worrying about learning other frameworks. WebAssembly is not meant to replace Javascript, but to serve as a high-performance language for running complex web applications on the web. The WebAssembly standard is constantly evolving and has a lot of exciting possibilities.
In this chapter, we learned about how Rust can compile down to wasm code and the available tooling that helps ship Rust code on the web. If you want to learn more about WebAssembly, head over to the excellent documentation at: https://developer.mozilla.org/en-US/docs/WebAssembly.
In the next chapter, we will learn a bit about GUI development and how to build desktop applications with Rust.
Building Desktop Applications with Rust
If your software only supports a terminal or command-line-based interface, your target audience is likely limited to only people who know how to use the command line. Providing a Graphical User Interface (GUI) for your software widens your target audience and gives users a friendly and intuitive interface so that they can use the software effortlessly. For building GUIs, most languages provide frameworks that consist of several native libraries that are composed together and can access the graphics and the I/O interfaces of the platform. This enables developers to easily build GUIs for their applications without worrying about the low-level details.
There are quite a few popular GUI frameworks targeting desktop platforms such as Qt, GTK+, and ImGUI, which are available for mainstream languages. At the time of writing this book, Rust doesn't have a mature ecosystem of GUI frameworks, but fortunately we have the convenient FFI mechanism through which it can piggyback onto the native GUI frameworks provided by languages such as C/C++. In this chapter, we'll go through one such crate that provides native bindings to the GTK+ framework for doing GUI development and build our own news reading desktop app.
In this chapter, we will cover the following topics:
Introduction to GUI development
"In programming, the hard part isn't about solving problems, but deciding what problems to solve."
– Paul Graham
The advent of GUI-based software started with GUI operating systems. The first GUI operating system was the Alto Executive, which ran on the Xerox Alto computer that was developed in 1973. Since then, many operating systems followed suit and came with their own GUI-based interface. Today, the most famous GUI-based operating systems are macOS, Windows, and Linux-based distributions such as Ubuntu and KDE. With users interacting with the OS via a visual point and click interface, demand for GUI-based applications increased and a lot of software started shipping with GUIs to provide users with a visual way of interacting with their software, similar to how they do with their OS. But the early days of GUI development were a lot of manual work and due to hardware constraints, different applications had specialized implementations and performance characteristics in their GUIs. Eventually, GUI frameworks started to proliferate, which provided developers with a common baseline and an abstraction layer from all the low-level details of the underlying OS, while also being cross-platform.
Before we build our app, it is important for us to have a brief idea about the general design guidelines that are followed in integrating a GUI or a frontend to an application. We'll be focusing our discussion from a Linux OS perspective, but there are similarities in the ideas on other platforms, too. A typical GUI application architecture is usually split into two components: the frontend and the backend. The frontend is the GUI thread or the main thread that the user interacts with. It is composed of interactive visual units called widgets that are contained in a parent container window. An example of a widget is a button that you click to perform a task, or a list view that can display multiple items in sequence. The GUI thread is mainly concerned with presenting visual information to the user and is also responsible for propagating any event that occurs when the user interacts with the widgets.
The backend is a separate thread and contains event handlers or event emitters for propagating state changes, and is mainly used for performing compute heavy tasks. Processing inputs from the GUI layer is often offloaded to background threads as performing compute heavy tasks on the main thread blocks the user from interacting with the application frontend, which is not a good user experience. Also, for maintainability and separation of concerns, it is often desirable that we keep the frontend and the backend separate.
Building a GUI-based application without a dedicated framework can be a very cumbersome process, as without them we might need to handle a lot of details in our application code. GUI frameworks abstract all the details for the developer, such as drawing the widgets and the windows to the video memory or GPU's frame buffer, reading events from input devices, re-drawing and refreshing windows, and much more. With that said, let's look at one such framework called the Gimp toolkit or GTK+, which is a very mature and cross-platform solution for building scalable GUI applications.
GTK+ framework
GTK+ (hereafter gtk) is a cross-platform GUI framework that was created in C. Being cross-platform, applications that are developed using gtk can run on all major platforms, such as Windows, Linux, or MacOS. The gtk project was originally created to develop GIMP, image manipulation software for Linux, and was later open sourced. gtk is also used by many other software projects, such as the Gnome desktop environment on many Linux distributions, which uses it for building its utility software. Architecture-wise, gtk is composed of several libraries that work together to handle various details that are needed to render and facilitate interaction with windows and widgets by the user in the application. Some of these components are as follows:
gtk also has an interface builder called Glade, which generates a gtk source code skeleton for rapid application development.
gtk uses the object-oriented model for representing widgets and windows. It leverages the GObject library to provide this abstraction. To use the gtk framework from Rust, we have the gtk-rs project, which contains many crates that follow the same naming convention as libraries that exist in gtk and provides native C bindings to these libraries. Among all the crates that the gtk-rs project contains, we'll be using the gtk crate to build our app.
The gtk crate provides the window and widget system for building GUIs and tries to model the same API as the native C library, though there are differences as Rust does not have an object-oriented type system. Widgets in the gtk crate are smart pointer types. To allow for flexibility when using the API, you can have many mutable references, similar to the one provided by interior mutability in Rust. Any non-trivial widget in gtk inherits from some base widget type. Rust supports this inheritance in widgets via the IsA<T> trait. For instance, the gtk::Label widget has an impl of impl IsA<Widget> for Label. Also, most widgets in gtk share functionality with each other—the gtk crate implements this with the idea of extension traits, such as the WidgetExt trait, for all widget types. Most widgets such as gtk::Button and gtk::ScrollableWindow implement the WidgetExt trait. A widget can also be downcast or upcast to other widgets in its hierarchy using the Cast trait. With that brief introduction aside, let's get into writing a desktop app in Rust.
Building a hacker news app using gtk-rs
We'll use the gtk crate to build a simple hacker news app that fetches the top 10 trending stories from the https://news.ycombinator.com/ website. Hacker News is a website focusing on digital technologies and tech news from around the world. To start with, we have created a basic wireframe model of our app:
At the very top, we have the app header bar, which has a Refresh button on the left that can update our stories on demand. A story is a news entry that's posted by users on the Hacker News website. The header bar also contains the app title at the center and the usual window controls on the right. Below that, we have our main scrollable window where our stories will be rendered vertically as a story widget. The story widget is made up of two widgets: a widget for displaying the story's name and its score, and another for rendering a link to the story that can be clicked on in the user's default browser. Pretty simple!
Note: As we are using the gtk crate, which binds to native C libraries, we need to install the developmental C libraries for the gtk framework. For Ubuntu and Debian platforms, we can install these dependencies by running the following:
sudo apt-get install libgtk-3-dev
Please refer to the gtk-rs documentation page at http://gtk-rs.org/docs/requirements.html for information on setting gtk up on other platforms.
To start things off, we'll create a new cargo project by running cargo new hews. We have creatively named our app Hews, which is short for H in hacker + ews from news.
The following are the dependencies that we'll need in our Cargo.toml file:
# hews/Cargo.toml
[dependencies]
gtk = { version = "0.3.0", features = ["v3_18"] }
reqwest = "0.9.5"
serde_json = "1.0.33"
serde_derive = "1.0.82"
serde = "1.0.82"
We are using a bunch of crates here:
To show news articles in our app, we'll fetch them by making HTTP requests to the official hacker news API, which is documented at https://github.com/HackerNews/API. We have divided our app into two modules. First, we have the app module, which contains all the UI-related functionality for rendering the app on-screen and handling UI state updates from the user. Second, we have the hackernews module, which provides APIs for fetching stories from the network. It runs in a separate thread so not block the GUI thread when network requests happen, which is a blocking I/O operation. From the hacker news API, a story is an item containing a news title and a link to the news, along with other properties such as how popular the story is and a list of comments on the story.
To make this example simpler and easier to follow, our app does not have proper error handling and includes many unwrap() calls, which is a bad practice from an error handling perspective. After you are done exploring the demo, you are encouraged to integrate a better error handling strategy in the app. With that said, let's go through the code step by step.
First, we'll look at the entry point of our app in main.rs:
// hews/src/main.rs
mod app;
mod hackernews;
use app::App;
fn main() {
let (app, rx) = App::new();
app.launch(rx);
}
In our main function, we call App::new(), which returns an App instance, along with rx, which is a mpsc::Receiver. To keep our GUI decoupled from network requests, all state updates in hews are handled asynchronously via channels. The App instance internally invokes mpsc::channel(), giving back tx and rx. It stores the tx with it and also passes it to the network thread, allowing it to notify the UI of any new story. Following the new method call, we invoke launch on app, passing in the rx, which is used to listen for events from the network thread in the GUI thread.
Next, let's go through our app module in the app.rs module, which handles most of the orchestration needed to render our app on-screen.
If you want to find out more about the widget explanation that follows, look for gtk-rs's excellent documentation at https://gtk-rs.org/docs/gtk/, where you can search for any widget and explore more about its properties.
First, we have our App struct, which is the entry point for all things GUI:
// hews/src/app.rs
pub struct App {
window: Window,
header: Header,
stories: gtk::Box,
spinner: Spinner,
tx: Sender<Msg>,
}
This struct contains a bunch of fields:
pub enum Msg {
NewStory(Story),
Loading,
Loaded,
Refresh,
}
Our app starts with the initial state as Loading when the fetch_posts method is called from the hackernews module. We'll see that later. NewStory is the state that occurs when a new story is fetched. Loaded is the state that occurs when all of the stories are loaded and Refresh is sent when the user wants to reload the stories.
Let's move on to the methods on the App struct. Here's our new method:
impl App {
pub fn new() -> (App, Receiver<Msg>) {
if gtk::init().is_err() {
println!("Failed to init hews window");
process::exit(1);
}
The new method first starts the gtk event loop using gtk::init(). If that fails, we exit, printing a message to the console:
let (tx, rx) = channel();
let window = gtk::Window::new(gtk::WindowType::Toplevel);
let sw = ScrolledWindow::new(None, None);
let stories = gtk::Box::new(gtk::Orientation::Vertical, 20);
let spinner = gtk::Spinner::new();
let header = Header::new(stories.clone(), tx.clone());
Then, we create our tx and rx channel endpoints for communicating between the network thread and the GUI thread. Next, we create our window, which is a TopLevel window. Now, multiple stories might not fit into our app window if the window is resized, so we need a scrollable window here. For that, we will create a ScrolledWindow instance as sw. However, a gtk ScrolledWindow accepts only a single child within it and we need to store multiple stories, which is a problem. Fortunately, we can use the gtk::Box type, which is a generic container widget that's used to lay out and organize child widgets. Here, we create a gtk::Box instance as stories with the Orientation::Vertical orientation so that each of our stories renders vertically on top of each other. We also want to show a spinner at the top of our scroll widget when the stories are being loaded, so we will create a gtk::Spinner widget and add it to stories to render it at the very top. We will also create our Header bar and pass a reference to stories as well as tx. Our header contains the refresh button and has a click handler, which needs the stories container to clear items within it, allowing us to load new stories:
stories.pack_start(&spinner, false, false, 2);
sw.add(&stories);
window.add(&sw);
window.set_default_size(600, 350);
window.set_titlebar(&header.header);
Next, we start composing our widgets. First, we add the spinner to stories. Then, we add the stories container widget to our scroll widget, sw, which is then added to our parent window. We also set the window size with set_default_size. We then set its title bar with set_titlebar, passing in our header. Following that, we attach a signal handler to our window:
window.connect_delete_event(move |_, _| {
main_quit();
Inhibit(false)
});
This will quit the app if we call main_quit(). The Inhibit(false) return type does not stop the signal from propagating to the default handler for delete_event. All widgets have a default signal handler. The signal handlers on the widgets in the gtk crate follow the naming convention of connect_<event> and take in a closure with the widget as their first parameter and the event object.
Next, let's look at the launch method on App, which is called in main.rs:
pub fn launch(&self, rx: Receiver<Msg>) {
self.window.show_all();
let client = Arc::new(reqwest::Client::new());
self.fetch_posts(client.clone());
self.run_event_loop(rx, client);
}
First, we enable the window widget, along with its child widgets. We make them visible by calling the show_all method as widgets in gtk are invisible by default. Next, we create our HTTP Client and wrap it in an Arc as we want to share it with our network thread. We then call fetch_posts, passing our client. Following that, we run our event loop by calling run_event_loop, passing in rx. The fetch_posts method is defined like so:
fn fetch_posts(&self, client: Arc<Client>) {
self.spinner.start();
self.tx.send(Msg::Loading).unwrap();
let tx_clone = self.tx.clone();
top_stories(client, 10, &tx_clone);
}
It starts our spinner animation by calling its start method, and sends the Loading message as the initial state. It then calls the top_stories function from the hackernews module, passing 10 as the number of stories to fetch and a Sender to notify the GUI thread of new stories.
After calling fetch_posts, we call the run_event_loop method on App, which is defined like so:
fn run_event_loop(&self, rx: Receiver<Msg>, client: Arc<Client>) {
let container = self.stories.clone();
let spinner = self.spinner.clone();
let header = self.header.clone();
let tx_clone = self.tx.clone();
gtk::timeout_add(100, move || {
match rx.try_recv() {
Ok(Msg::NewStory(s)) => App::render_story(s, &container),
Ok(Msg::Loading) => header.disable_refresh(),
Ok(Msg::Loaded) => {
spinner.stop();
header.enable_refresh();
}
Ok(Msg::Refresh) => {
spinner.start();
spinner.show();
(&tx_clone).send(Msg::Loading).unwrap();
top_stories(client.clone(), 10, &tx_clone);
}
Err(_) => {}
}
gtk::Continue(true)
});
gtk::main();
}
First, we get references to a bunch of objects that we'll use. Following that, we call gtk::timeout_add, which runs the given closure every 100 milliseconds. Within the closure, we poll on rx in a non-blocking way using try_recv() for events from the network or GUI thread. When we get a NewStory message, we call render_story. When we receive a Loading message, we disable the refresh button. In the case of the Loaded message, we stop our spinner and enable the refresh button so that the user can reload stories again. Finally, in the case of receiving a Refresh message, we start the spinner again and send the Loading message to the GUI thread itself, followed by calling the top_stories method.
Our render_story method is defined as follows:
fn render_story(s: Story, stories: >k::Box) {
let title_with_score = format!("{} ({})", s.title, s.score);
let label = gtk::Label::new(&*title_with_score);
let story_url = s.url.unwrap_or("N/A".to_string());
let link_label = gtk::Label::new(&*story_url);
let label_markup = format!("<a href=\"{}\">{}</a>", story_url, story_url);
link_label.set_markup(&label_markup);
stories.pack_start(&label, false, false, 2);
stories.pack_start(&link_label, false, false, 2);
stories.show_all();
}
The render_story method gets the Story instance as s and the stories container widget as arguments before creating two labels: title_with_score, which holds the story title along with its score, and link_label, which holds the link to the story. For the link_label, we will add a custom markup that contains an <a> tag with the URL. Finally, we put both these labels onto our stories container and call show_all at the end to make those labels visible on the screen.
Our Header struct and its methods, which we mentioned previously, are part of the App struct and are as follows:
// hews/src/app.rs
#[derive(Clone)]
pub struct Header {
pub header: HeaderBar,
pub refresh_btn: Button
}
impl Header {
pub fn new(story_container: gtk::Box, tx: Sender<Msg>) -> Header {
let header = HeaderBar::new();
let refresh_btn = gtk::Button::new_with_label("Refresh");
refresh_btn.set_sensitive(false);
header.pack_start(&refresh_btn);
header.set_title("Hews - popular stories from hacker news");
header.set_show_close_button(true);
refresh_btn.connect_clicked(move |_| {
for i in story_container.get_children().iter().skip(1) {
story_container.remove(i);
}
tx.send(Msg::Refresh).unwrap();
});
Header {
header,
refresh_btn
}
}
fn disable_refresh(&self) {
self.refresh_btn.set_label("Loading");
self.refresh_btn.set_sensitive(false);
}
fn enable_refresh(&self) {
self.refresh_btn.set_label("Refresh");
self.refresh_btn.set_sensitive(true);
}
}
This struct contains the following fields:
Header also has three methods:
Next, let's go through our hackernews module, which does all the heavy lifting of getting the stories as json from the API endpoint and parsing it as a Story instance using serde_json. Here's the first piece of content of hackernews.rs:
// hews/src/hackernews.rs
use crate::app::Msg;
use serde_json::Value;
use std::sync::mpsc::Sender;
use std::thread;
use serde_derive::Deserialize;
const HN_BASE_URL: &str = "https://hacker-news.firebaseio.com/v0/";
#[derive(Deserialize, Debug)]
pub struct Story {
pub by: String,
pub id: u32,
pub score: u64,
pub time: u64,
pub title: String,
#[serde(rename = "type")]
pub _type: String,
pub url: Option<String>,
pub kids: Option<Value>,
pub descendents: Option<u64>,
}
First, we have a declaration of the base URL endpoint, HN_BASE_URL, for the hackernews API that's hosted on firebase. Firebase is a real-time database from Google. Then, we have the Story struct declaration, annotated with the Deserialize and Debug traits. The Deserialize trait comes from the serde_derive crate, which provides a derive macro to convert any value into a native Rust type. We need it because want to be able to parse the incoming json reply from the network as a Story struct.
The Story struct contains the same fields as the ones that are found in the json reply from the stories endpoint. For more information on the json structure, refer to https://github.com/HackerNews/API#items. Also, among all our fields in the Story struct, we have one field named type. However, type is also a keyword in Rust for declaring type aliases and it's invalid for type to be a field of a struct, so we will name it _type instead. However, this wouldn't parse as our json reply as a field named type. To solve this conflict, serde provides us with a field-level attribute to allow us to parse values, even in the case of such conflicts when using the #[serde(rename = "type")] attribute on the field. The value of rename should match whatever the value is in the incoming json response's field name. Next, let's look at the set of methods that are provided by this module:
// hews/src/hackernews.rs
fn fetch_stories_parsed(client: &Client) -> Result<Value, reqwest::Error> {
let stories_url = format!("{}topstories.json", HN_BASE_URL);
let body = client.get(&stories_url).send()?.text()?;
let story_ids: Value = serde_json::from_str(&body).unwrap();
Ok(story_ids)
}
pub fn top_stories(client: Arc<Client>, count: usize, tx: &Sender<Msg>) {
let tx_clone = tx.clone();
thread::spawn(move || {
let story_ids = fetch_stories_parsed(&client).unwrap();
let filtered: Vec<&Value> = story_ids.as_array()
.unwrap()
.iter()
.take(count)
.collect();
let loaded = !filtered.is_empty();
for id in filtered {
let id = id.as_u64().unwrap();
let story_url = format!("{}item/{}.json", HN_BASE_URL, id);
let story = client.get(&story_url)
.send()
.unwrap()
.text()
.unwrap();
let story: Story = serde_json::from_str(&story).unwrap();
tx_clone.send(Msg::NewStory(story)).unwrap();
}
if loaded {
tx_clone.send(Msg::Loaded).unwrap();
}
});
}
Our only public function that's been exposed by this module is top_stories. This function takes a reference to Client, which comes from the reqwest crate, then a count parameter specifying how many stories to retrieve, and a Sender instance tx, which can send messages of type Msg, an enum. tx is used to communicate to the GUI thread about the state of our network request. Initially, the GUI starts in the Msg::Loading state, which keeps the refresh button disabled.
Within this function, we first clone our copy of the tx sender and then spawn a thread where we'll use this tx. We spawn a thread so not to block the UI thread when the network request is in progress. Within the closure, we call fetch_stories_parsed(). In this method, we first construct our /top_stories.json endpoint by concatenating it with HN_BASE_URL using the format! macro. We then make a request to the constructed endpoint to get a list of all stories. We call the text() method to convert the response into a json string. The returned json response is a list of story IDs, each of which can be used to make another set of requests, which gives us detailed information on the story as another json object. We then parse this response using serde_json::from_str(&body). This gives us a Value enum value, which is a parsed json array containing a list of story IDs.
So, once we have the story IDs stored in story_ids, we explicitly convert it into an array by calling as_array() and then we iter() on it and limit the stories we want by calling take(count), followed by calling collect() on it, which gives us back a Vec<Story>:
let story_ids = fetch_stories_parsed(&client).unwrap();
let filtered: Vec<&Value> = story_ids.as_array()
.unwrap()
.iter()
.take(count)
.collect();
Next, we check whether our filtered story ID is empty. If it is, we set the loaded variable to false:
let loaded = !filtered.is_empty();
The loaded boolean value is used to send a notification to the main GUI thread if any of our story was loaded. Next, if the filtered list is not empty, we iterate over our filtered stories and construct a story_url :
for id in filtered {
let id = id.as_u64().unwrap();
let story_url = format!("{}item/{}.json", HN_BASE_URL, id);
let story = client.get(&story_url)
.send()
.unwrap()
.text()
.unwrap();
let story: Story = serde_json::from_str(&story).unwrap();
tx_clone.send(Msg::NewStory(story)).unwrap();
}
We make get requests for each constructed story_url from the story id, take the json response, and parse it as a Story struct using the serde_json::from_str function. Following that, we send the story by wrapping it in Msg::NewStory(story) to the GUI thread using tx_clone.
Once we have sent all the stories, we send a Msg::Loaded message to the GUI thread, which enables the refresh button so that the user can reload the stories again.
All right! It's time for us to read popular news stories on our app. After running cargo run, we can see our stories being pulled and rendered in the window:
Upon clicking the link of any for the stories, hews will open in your default browser. That's about it. We've made our GUI application in Rust using very few lines of code. Now, it's time for you to explore and experiment with the app.
Exercise
Our app works great, but there are lots of ways we can improve it. If you are feeling ambitious, you can take a look at the following challenges:
Other emerging GUI frameworks
As we have already seen, the APIs exposed by the gtk crate can be a bit uncomfortable to write complex GUIs with. Fortunately, we have a wrapper crate called relm. The relm crate is inspired by the Elm language's architecture of Model-View-Update, which provides a simplistic approach for building reactive GUIs. Apart from relm, there are many other standalone GUI toolkits and crates in the works by the Rust community. One of the new and promising ones is Azul, which can be found at https://azul.rs/. It is a functional GUI framework that supports async I/O, along with features such as two-way data binding, which allows you to build reactive widgets and employs the principle of composition for building widgets, as opposed to the object-oriented model, which we explored in the gtk framework when building hews. As the rendering backend, Azul uses the performant Webrender rendering engine that's used in Servo from Mozilla.
Other notable mentions are conrod from the Piston Developers organization at https://github.com/PistonDevelopers/conrod, and imgui-rs at https://github.com/Gekkio/imgui-rs, which is a bindings library for the popular immediate mode ImGUI framework in C++.
Summary
That was a very brief tour of GUI development with Rust. This chapter gave us a glimpse into the current experience of developing GUI applications. At the time of writing, the experience isn't all that great, but there are emerging frameworks, such as Azul, that aim to take this experience to the next level.
The next chapter will be about finding and fixing bugs in your program using debuggers.
Debugging
This chapter will cover various approaches to debugging Rust programs. Rust programs, at the binary level, are very similar to C programs. This means that we can leverage the strong legacy of industry standard debuggers such as gdb and lldb that are used for debugging C/C++ programs and use the same tools to debug Rust code as well. In this chapter, we'll interactively walk through some basic debugging workflow and commands with gdb. We'll also cover integrating the gdb debugger with Visual Studio Code (vscode) editor and, later, give a quick overview of another debugger, called rr.
In this chapter, we will cover the following topics:
Introduction to debugging
"If debugging is the process of removing bugs, then programming must be the process of putting them in." - Edsger W. Dijkstra
Here's the situation: your program doesn't work, and you have no idea why. To fix this mysterious issue in your code, you have added several print statements and enabled trace logging, too. Still no luck. Worry not, for you are not alone! Every programmer has been there and has spent countless hours finding that one nasty bug that brought havoc into production.
Errors and deviations in software are referred to as bugs, and the act of removing them is termed debugging. Debugging is a controlled and systematic approach to examining the cause and effect of a fault in software. It's an essential skill to learn for anybody that's interested in gaining more insight into how their program behaves and runs. However, debugging is often not an easy task without the right tools, and the developer can lose track of what the actual bug is or might even be looking for bugs in the wrong place. The approaches we use to identify bugs in software can greatly affect the time taken to squash them and continue on a happy path. Depending on how complex a bug is, debugging is usually approached in one of the following ways:
The first two approaches are quite obvious, and so we don't need to go through them here. This leaves us with the third approach: debuggers. Debuggers as a tool are very simple to use, but they are not easy to understand and are often not introduced properly to programmers early in their careers. In the next section, we'll go through a step-by-step process of debugging a program written in Rust with gdb. But before that, let's get to know a little about debuggers.
Debuggers in general
Debuggers are programs that can inspect a program's internal state at runtime, provided that the program has been compiled – debug symbols included. They rely on process introspection system calls such as ptrace in Linux. They allow you to pause the execution of a program at runtime. To achieve this, they provide a feature called a breakpoint. A breakpoint represents a suspension point in a running program. A breakpoint can be put on any function or line of code in the program. Once the debugger hits the breakpoint, it pauses and waits for the user to input further instructions. At this point, the program is not running and is in the middle of its execution. Here, you can examine the state of variables, the active stack frames of a program, and other things such as the program counter and the assembly instructions. Debuggers also come with watchpoints, which are similar to breakpoints but work on variables. They trigger and stop the execution when the variable is read or written to.
To use a debugger on a program, we need some prerequisites, though. Let's discuss them next.
Prerequisites for debugging
A compiled program or object file is a sequence of zeros and ones that has no mapping of the original source from which it was compiled. To enable a program to be inspected by a debugger, we need to map the compiled binary instructions to the source file somehow. This is done by injecting extra bookkeeping symbols and instrumentation code during compilation, which the debugger can then latch onto. These symbols are maintained in a symbol table that contains information about the elements of the program, such as the names of variables, functions, and types. They follow a standard format called Debugging With Attributed Record Format (DWARF), which most standard debuggers know how to parse and understand. These symbols give developers the capability to examine the program, such as the ability to match the source code to the running binary, keeping information on call frames, register values the memory map of the program, and so on.
To debug our program, we need to compile it in debug mode. In debug mode, a compiled binary will include debugging symbols in the DWARF debugging format. Here, the binary gains a bit of size and runs more slowly because it has to update the debugging symbol table as it runs. When compiling C programs, you need to compile with the -g flag to tell the compiler to compile with debug symbols included. With Cargo, a debug build of the project is compiled by default in the target/debug/ directory, with debugging symbols included.
Note: You can also pass a -g flag to rustc when using a package manager other than Cargo.
Running the debugger is possible against a release build too, but the selection of operations is very limited. If you want to enable DWARF debugging symbols, even in release builds, you can configure that in Cargo.toml by modifying the profile.release section, like so:
[profile.release]
debug = true
With that said, let's dive into setting up gdb.
Setting up gdb
To get started with gdb, we first need to install it. Usually, it is installed by default on Linux systems, but if it isn't, refer to guides on the internet for setting it up on your machine. On Ubuntu, it's just a matter of running an installation command such as apt-get install gdb. We'll be using gdb version 7.11.1 for our demo here.
While gdb has amazing support for Rust programs, there are some Rust-specific things that it doesn't handle correctly, such as getting tidier output. The Rust toolchain, rustup, also installs wrappers for both gdb and lldb debuggers, rust-gdb and rust-lldb. It does this to account for some of the limitations in handling Rust code such as getting tidier output for mangled types and some pretty printing of user-defined types. Let's explore debugging a Rust program with gdb.
A sample program – buggie
We'll need a program to debug to experience gdb. Let's create a new project by running cargo new buggie. Our program will have a single function, fibonacci, which takes a position of n as usize, and gives us the nth Fibonacci number. This function assumes that the initial values of the Fibonacci numbers are 0 and 1. The following code is the program in its entirety:
1 // buggie/src/main.rs
2
3 use std::env;
4
5 pub fn fibonacci(n: u32) -> u32 {
6 let mut a = 0;
7 let mut b = 1;
8 let mut c = 0;
9 for _ in 2..n {
10 let c = a + b;
11 a = b;
12 b = c;
13 }
14 c
15 }
16
17 fn main() {
18 let arg = env::args().skip(1).next().unwrap();
19 let pos = str::parse::<u32>(&arg).unwrap();
20 let nth_fib = fibonacci(pos);
21 println!("Fibonacci number at {} is {}", pos, nth_fib);
22 }
Let's take this program for a spin:
We ran the program with 4 as the argument, but we can see a 0 as the output, which should have been 3. We have a bug here. While we could use the println! or dbg! macro to easily tackle this bug, we'll use gdb this time.
Before we run gdb, we need to plan our debugging session. This includes deciding where to look inside our program and what to look for. As a starting point, we'll examine the contents of the main function and then step into the fibonacci function. We'll set two breakpoints, one at main and another within fibonacci.
The gdb basics
We'll run our program again, this time with gdb using the rust-gdb wrapper by running rust-gdb --args target/debug/buggie 4. The --args flags are used to pass arguments to the program. Here, we pass the number 4. Here's the output from gdb:
After loading our program, gdb throws us into the (gdb) prompt. At this point, the program is not running—it's just been loaded. Let's take a quick look at the scope of gdb's features. Try using the help command (which displays high-level sections of commands) and the help all command(which displays a help message for all available commands):
Okay, so it seems that gdb can do a lot: there are 32 pages of these commands. Next, let's run the program and see the outcome by invoking run on the gdb prompt:
That's how our program runs within the context of gdb. As you can see, in the middle, we have the same faulty output of 0 for the fourth Fibonacci number. We'll debug this now. Let's clear the screen by pressing Ctrl + L. Let's also quit gdb by invoking q and start afresh by running rust-gdb --args target/debug/buggie 4.
As a starting point in our debugging session, and to see whether we are passing the correct number to our Fibonacci function, we'll add a breakpoint at the start of main, which is line 18 in our program. To add a breakpoint on that line, we'll run the following code:
(gdb) break 18
This gives us the following output:
Breakpoint 1 at 0x9147: file src/main.rs, line 18.
The gdb has now set a breakpoint on the same line that we requested, that is, 18. Let's run our program by invoking run:
(gdb) run
This gives us the following output:
(gdb) run
Starting program: /home/creativcoder/buggie/target/debug/buggie 4
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, buggie::main::h8018d7420dbab31b () at src/main.rs:18
18 let arg = env::args().skip(1).next().unwrap();
(gdb)
Our program is now paused at the breakpoint, awaiting its next instruction.
You'll see that the symbols from Rust are prefixed with their module and suffixed by some random IDs, for example, buggie::main::h8018d7420dbab31. Now, to view where we are in our program, we can run the list command to view the source code, or we can use a more visual TUI mode by running the following code:
(gdb) tui enable
This opens gdb with some nice feedback, along with our Command Prompt still on the bottom half:
As you can see, the TUI indicates that we have a breakpoint on the left, with the B+> symbol on line 18. We can scroll through the code listing in the TUI panel to view our entire source code.
Note: If the TUI screen renders incorrectly, you can type in refresh and it will redraw the panels and code listing afresh.
Now, we'll go through our program line by line. To do that, we have two available commands: next and step. The first is for running through the program line by line, while step allows you to jump within a function and go through the instructions within it line by line. We want to use next, which will take us to the next line 19, instead of stepping inside the details of Rust's standard library API calls. Run the following code:
(gdb) next
We have to do this two more times before we reach the Fibonacci function. We can run the last command by just pressing Enter on the keyboard. In this case, pressing Enter two times will run the next two lines of code. Now, we're right before the Fibonacci invocation:
Before we step inside the Fibonacci function, let's examine the pos variable to check that it's not some garbage or a 0. We can do this with the print command:
(gdb) print pos
$1 = 4
(gdb)
Okay, our pos is correct. Now, we are at line 20, which is right before our fibonacci invocation. Now, use the step command to walk inside the fibonacci function:
(gdb) step
We are now at line 6:
Next, let's step through the code line by line. While we are stepping through code in our Fibonacci function, we can examine the variables by using the info locals and info args commands:
(gdb) info locals
iter = Range<u32> = {start = 3, end = 4}
c = 0
b = 1
a = 1
(gdb) info args
n = 4
(gdb)
The preceding output shows the iter variable in the third iteration. The next line shows all the other variables being used in our function. We can see that, on every iteration, the c variable is being reassigned 0. This is because we have let c = a + b;, which shadows the c variable that was declared outside of the loop. Rust allows you to redeclare a variable with the same name. We have found our bug here.
We'll remove our bug by removing the redeclaration of c. The Fibonacci function changes to the following:
pub fn fibonacci(n: u32) -> u32 {
let mut a = 0;
let mut b = 1;
let mut c = 0;
for _ in 2..n {
c = a + b;
a = b;
b = c;
}
c
}
With that, let's take the program for another spin. This time, we'll run it without the gdb debugger:
We now have the correct output, that is, 2, for the fourth Fibonacci number. Those are the basics of using gdb to debug Rust code.
Similar to gdb, lldb is another debugger that is compatible with Rust.
Next, let's look at how to integrate gdb with a code editor.
Debugger integration with Visual Studio Code
Using debuggers from the command line is the usual way to debug your program. This is also an important skill, as you could easily wind up in a situation where your more advanced coding platform is not available. For instance, you may need to debug a program that is already running in production. Attaching to a running process is possible with both gdb and lldb, but you may not be able to attach to the running program from within your editor.
Nevertheless, in a typical development environment setting, you would use a code editor or an IDE, which is convenient if you can debug your program from the editor right away, without leaving your editor. In this way, you get a much smoother debugging experience and a faster feedback loop with editors that are properly integrated with debuggers. In this section, we'll look at how to integrate gdb with vscode.
To set up gdb with vscode, we need to install the Native Debug extension. With our vscode editor open, we'll press Ctrl + Shift + P and type install extension. Alternatively, you can select the extension icon at the bottom left, as shown in the following screenshot, and type native debug. By doing this, we get the page for the Native Debug extension:
We'll click on Install and wait for the installation to complete. Once the extension has been installed, we'll click on reload to restart Visual Studio Code. This enables any newly installed extension. Next up, we'll open our buggie directory inside vscode, click on the Debug menu at the top, and select Start Debugging, as shown in the following screenshot:
From here, we'll be asked to choose an environment, as follows:
The NativeDebug extension supports both gdb and lldb. We'll choose gdb from this menu. This will open up a new launch.json configuration file for configuring our debug session for this project. It's created in the same project root, under a directory called .vscode/. If it doesn't open, we can manually create the .vscode/ directory with a launch.json inside it. We'll fill this launch.json with the following configuration:
// buggie/.vscode/launch.json
{
"version": "0.2.0",
"configurations": [
{
"name": "Buggie demo",
"type": "gdb",
"request": "launch",
"target": "target/debug/buggie",
"cwd": "${workspaceRoot}",
"arguments": "4",
"gdbpath": "rust-gdb",
"printCalls": true
}
]
}
The launch.json file sets up important details for gdb and vscode, such as the target to invoke and the arguments to use. The other fields will be automatically populated for you in most cases. The only configuration that's specific to our project is as follows:
We'll save this file. Next, let's add a breakpoint to our program in the editor. We can do this by clicking on the left-hand side of the text area in vscode, as shown in the following screenshot:
In the preceding screenshot, if you hover over the left-hand side, you will see a faded red mark appear. We can click to the left of this to set our breakpoint, which will then show up as a red blip. Once we've done that, we'll press F5 to start gdb inside vscode. Once gdb runs and hits our breakpoint, our code editor will look something like this:
At the top center, we can see the usual controls, such as step over, step into, or to pause/stop the debugging in our code. On the left-hand pane, we can get information about the variables in the current stack frame. At the bottom left, we have information about our call stack. In the middle on the left, we can watch for any variable. In the preceding code, I added a watch to our c variable.
The program is now paused at line 9. We can also hover over our variables in the code to view their values, as shown in the following screenshot:
This is quite helpful. Those were the basics of using gdb with vscode. Next, let's go through a brief overview of another debugger that is very helpful in debugging multi-threaded code: the RR debugger.
RR debugger – a quick overview
Apart from gdb and lldb, rr is another powerful debugger that is quite helpful in debugging multi-threaded code which is harder to debug due to its non-determinism. Often, when debugging multi-threaded code, a certain section of code triggers a bug but fails to reproduce in subsequent executions of the program.
Bugs arising due to multi-threaded code are also referred to as heisenbugs.
The rr debugger can perform a reproducible debugging session for non-deterministic, multi-threaded code. It does this by recording the debugging session, which you can replay and track incrementally to close in on the issue. It does this by first saving the trace of the program to disk with all the required information to reproduce the program execution.
One of the limitations of rr is that it is only supported on Linux and on Intel CPUs as of now. To set up the rr debugger on Ubuntu 16.04, we'll pull the latest .deb package from https://github.com/mozilla/rr/releases. At the time of writing, the rr version is at 5.2.0. Having downloaded the deb package, we can then install rr by running the following code:
sudo dpkg -i https://github.com/mozilla/rr/releases/download/5.2.0/rr-5.2.0-Linux-x86_64.deb
Note: It's a prerequisite to install perf tools. You can install them as follows:
sudo apt-get install linux-tools-4.15.0-43-generic
Replace linux-tools-(version) as applicable for your kernel version. You can get the kernel version with the uname -a command on Linux. Another prerequisite is to set the sysctl flag in perf_event_paranoid from 3 to -1. It's recommended that you set this temporarily by running the following code:
sudo sysctl -w kernel.perf_event_paranoid=-1
With that done, let's quickly create a new project by running cargo new rr_demo and go through a debugging session with rr. We'll explore how to use the rr debugger for a sample program which demonstrates non-determinism. We'll depend on the rand crate, which we can add to the Cargo.toml file by running cargo add rand. We have the following code in our main.rs file:
// rr_demo/src/main.rs
use rand::prelude::*;
use std::thread;
use std::time::Duration;
fn main() {
for i in 0..10 {
thread::spawn(move || {
let mut rng = rand::thread_rng();
let y: f64 = rng.gen();
let a: u64 = rand::thread_rng().gen_range(0, 100);
thread::sleep(Duration::from_millis(a));
print!("{} ", i);
});
}
thread::sleep(Duration::from_millis(1000));
println!("Hello, world!");
}
This is a minimal, non-deterministic program that spawns 10 threads and prints them to stdout. To highlight the reproducibility aspect of rr, we'll spawn threads and sleep for a random duration.
First, we need to record the program's execution with rr. This is done by running the following code:
rr record target/debug/rr_demo
This gives us the following output:
On my machine, this records and stores the program execution trace at the following location:
rr: Saving execution to trace directory `/home/creativcoder/.local/share/rr/rr_demo-15'
The recorded file, rr_demo-15, might be named differently on your machine. We can now replay the recorded program by running the following code:
rr replay -d rust-gdb /home/creativcoder/.local/share/rr/rr_demo-15
The following is the session with gdb running under rr:
As you can see, the same sequence of numbers gets printed every time, as the program is being run from the recorded session in the previous run. This helps to debug a multi-threaded program where threads run out of order and might not reproduce the bug when you run your program next time.
Summary
In this chapter, we took a hands-on approach to debugging Rust code using existing debuggers with GNU's gdb. We also configured gdb with vscode, giving us a convenient click-based UI for debugging our code. Finally, we got a glimpse of how the rr debugger can make debugging multi-threaded code deterministic.
With this, we have come to the end of our programming journey with Rust.
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