

Benefits of automated SQL Server installs

Benefit Example

Standardization Established, time-tested processes. Increasing predictability, consistency,
and best practice implementations.

Compliance Can make it easy to comply to operational standards required by various
organizations, such as DISA and PCI.

Faster to deploy Just a couple minutes to install! Being able to deliver systems faster can
even ease disaster recovery.

Fewer mistakes Avoid installing into Logs when you meant to choose Log.

Fewer one-offs Automation makes it so easy that no one is tempted to go around the
process.

Time-saver No need to retroubleshoot issues. Those problematic firewall settings are
addressed right within your code.

Requires up-front
consideration

Design it once and you’re set. Then installs are performed in a predefined,
optimized way.

Source control You can even keep your install configs in source control, leading to greater
accountability and understanding of point-in-time decisions because the
commit holds the documentation.

Higher-quality installs Less temptation to do it poorly. It’ll be a thorough install instead of a mini-
mum effort that works just for a single group.

Increased opportunities When things are easier, there are more possibilities. Perhaps you want to
create an environment where you throw away temporary virtual machines,
similar to Docker.

Flexibility Important if changes are required at short notice.

Less downtime The process was thought out, so no SQL files ended up on the C drive. This
means the drive is far less likely to fill up and go offline, leaving your cus-
tomers happier with your work.

Higher satisfaction Point-and-click installs are boring. Automated installs are thrilling.

On-demand installs Because the process is automated, you can set up something like Jenkins
or even a scheduled task to deploy instead of using the DBA’s time.

More secure When systems and processes are standardized, updating becomes easier
and more likely to occur.

Easier maintenance Got something to change really quickly? Because systems are standardized
and predictable, changing all of them at once is easy.

Learn dbatools in a
 Month of Lunches

AUTOMATING SQL SERVER TASKS WITH POWERSHELL COMMANDS

CHRISSY LEMAIRE
ROB SEWELL

JESS POMFRET
CLÁUDIO SILVA

FOREWORD BY ANNA HOFFMAN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: Mike Shepard
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Pamela Hunt
Proofreader: Katie Tennant

Technical proofreader: Karsten Strøbæk
Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes

ISBN 9781617296703
Printed in the United States of America

http://www.manning.com

 We dedicate this book to our loving and supportive wives.

v

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxiii
about the authors xxvi

1 Before you begin 1
1.1 Why data professionals can’t afford to ignore PowerShell 1

A SQL Server DBA first win with PowerShell 2

1.2 Automate it 3

1.3 What is dbatools? 4

1.4 Is this book for you? 5

1.5 How to use this book 6
The main chapters 6 ■ Hands-on labs 6 ■ Supplementary
materials 6 ■ Further exploration 6

1.6 Contacting us 6

1.7 Being immediately effective with dbatools 7

CONTENTSvi

2 Installing dbatools 8
2.1 Minimum requirements 8

Server 9 ■ Workstation 9 ■ Ports 10 ■ Execution policy 12

2.2 Signed software 13

2.3 Understanding installation paths 15

2.4 Installation methods 16
The PowerShell Gallery 16 ■ Trusting the PowerShell Gallery 17
Installing dbatools using the PowerShell Gallery, all users 18
PowerShell Gallery, local user 19 ■ PowerShell Gallery, offline
install 20

2.5 PowerShell Gallery alternatives 21
Downloading a zipped archive 21 ■ Additional methods 22

2.6 How to find and use commands, the help system, and
docs.dbatools.io 23

Get-Command 23 ■ Find-DbaCommand 23 ■ Get-Help 23
docs.dbatools.io 25

2.7 Updating 25
PowerShell Gallery 25 ■ Alternative methods 26

2.8 Hands-on lab 26

3 The dbatools lab 27
3.1 Why is a lab included in this book? 27

3.2 Two options for building a dbatools lab environment 28

3.3 Option 1: Windows lab 29
Installation media for our lab 29 ■ Building the lab 30
Configuration scripts 33 ■ Windows lab is ready for action 35

3.4 Option 2: Quick demo environments using containers 35
Running SQL Server in a container 36

4 A gentle introduction to dbatools commands 40
4.1 Getting started 40

4.2 Checking the SQL connection 41

4.3 First, getting help 41

4.4 Running your first dbatools command 43

4.5 The -SqlInstance parameter 45
Single instances 45 ■ Multiple instances 46

CONTENTS vii

4.6 The -SqlCredential parameter 48
Connecting to instances with SQL Server Authentication 49
Saving the credential to use SQL Server Authentication with multiple
commands 50 ■ Other methods of using credentials for SQL Server
Authentication 51 ■ Connecting to instances with a different
Windows account 52

4.7 The ComputerName parameter 54
Methods of listing the SQL services on multiple servers 56

4.8 The -Credential parameter 56
Listing services on a server using a different account at the command
line 56 ■ Listing services on a server using a different account with
a credential variable 57 ■ Listing SQL services by type 58

4.9 Bonus parameter: EnableException 59

4.10 Hands-on lab 59

5 Writing to SQL Server 60
5.1 Piping commands 60

5.2 Writing to a database 64
Importing from a CSV file to a database table 64 ■ Importing to a
database table from a dbatools command 68 ■ Creating the
database table first and then importing from a CSV file 70
Writing the results of other commands to a table 73 ■ Writing
the results of other commands to an Azure SQL Database 74

5.3 Copying tables, including their data 75
PowerShell splatting 76

5.4 Hands-on lab 78

6 Finding SQL Server instances on your network 79
6.1 Background 81

Finding an instance 81 ■ Finding instances using a list of targets 82
Finding SQL Servers in an Active Directory domain 85 ■ Finding SQL
Servers in your surrounding network 86

6.2 Working with detailed results 88

6.3 OS support 90

6.4 Hands-on lab 90

7 Inventorying your SQL estate 91
7.1 SQL features 92

7.2 Build 94

CONTENTSviii

7.3 Host information 95

7.4 Databases 96
Filtering databases returned from Get-DbaDatabase 97 ■ Filtering
databases returned from Get-DbaDatabase by last backup time 98

7.5 Putting it all together into a database 100

7.6 Hands-on lab 101

8 Registered Servers 102
8.1 Local Server Groups 104

Version-specific RegSrvr.xml files 105

8.2 Azure Data Studio 105

8.3 Central Management Server 107

8.4 Inventory organization 109
Importing advanced environment folder structures 110

8.5 Further integration 112
Adding new Registered Servers 112 ■ Copy, Export, Import 115
Moving Registered Servers 116 ■ Removing Registered Servers 117

8.6 Registered Server groups 117

8.7 Hands-on lab 118

9 Logins and users 119
9.1 Failed logins 120

9.2 Preventing login issues 124

9.3 Logins, users, and permissions source control 126

9.4 How was access gained? 128
Finding nested Active Directory group access 131

9.5 Hands-on lab 132

10 Backups 133
10.1 Creating backups 134

Azure 137 ■ Docker 139

10.2 Reading backup files 140

10.3 Backup history 141

10.4 Pruning old backup files 142

10.5 Testing your backups 142

10.6 Hands-on lab 144

CONTENTS ix

11 Restore 145
11.1 Limitations and considerations 145

11.2 Restore scenarios 146
File 147 ■ Directory 147 ■ Output T-SQL restore scripts 149

11.3 Restoring to custom data and log directories 149
No recovery 150 ■ Renaming a database 151 ■ Point-in-time
restores 152 ■ Restoring to a marked transaction 152
Recovering a corrupt database 153

11.4 Azure 154
Shared access signatures 154 ■ Access keys 154

11.5 Hands-on lab 155

12 Snapshots 156
12.1 Snapshots and SSMS 156

12.2 Application upgrade 157

12.3 When to use snapshots 158

12.4 Creating a snapshot 158

12.5 Upgrading 159

12.6 Rolling back the entire database from a snapshot 160

12.7 Restoring certain objects or data from a snapshot 161

12.8 Cleaning up 162

12.9 Reporting 162

12.10 Hands-on lab 163

13 Install and update SQL Server 164
13.1 Installing 164

Benefits of automated installs 165 ■ Local installs 167
Remote installs 168 ■ Customizing installation options 171
ConfigurationFile and Configuration 171 ■ Built-in
parameters 173

13.2 Updating 175

13.3 The importance of patching 176
Fear of breaking everything 176 ■ Burdensome process leads to
procrastination 177

13.4 How we make it easier 177

13.5 Hands-on lab 178

CONTENTSx

14 Preparing for disaster 179
14.1 Exporting an entire instance 180

Scripting options 184 ■ Setting scripting options 186
Excluding objects 187

14.2 Granular exports 187
Using Export-DbaScript 188

14.3 Special commands 190

14.4 Exporting server configurations (sp_configure) 191

14.5 Hands-on lab 192

15 Performing your first advanced SQL Server instance
migration, part 1 193
15.1 Databases 194

Backup and restore 195 ■ Detach and attach 197 ■ Staging
large databases for migration 198 ■ Other database migration
options 203

15.2 Hands-on lab 204

16 Performing your first advanced SQL Server instance
migration, part 2 205
16.1 Logins and groups 206

Which logins/groups are still needed? 208

16.2 SQL Agent objects: Jobs, operators, and more! 209

16.3 Linked servers 213

16.4 More migration fun 214

16.5 Hands-on lab 214

17 High availability and disaster recovery 215
17.1 Log shipping 215

Configuring log shipping with dbatools 216 ■ When log shipping
goes bad: Gathering errors with dbatools 217 ■ Cutting over to a
log shipped secondary database 218

17.2 Windows Server Failover Cluster (WSFC) 219

17.3 Availability groups 222
Creating an availability group with dbatools 222 ■ Explore
existing availability groups 225 ■ Managing existing AGs 227

17.4 Hands-on lab 228

CONTENTS xi

18 PowerShell and SQL Server Agent 229
18.1 Which to choose, CmdExec or PowerShell job steps? 231

18.2 Creating Agent jobs to run PowerShell and dbatools 232
Creating a SQL Server credential 234 ■ Creating a SQL Server
Agent proxy 235 ■ The PowerShell file 237

18.3 Creating the SQL Server Agent job with a CmdExec
job step 238

18.4 Tips 240
Using default parameter values 240 ■ Ensuring that the Agent job
fails when the PowerShell fails 241 ■ Logging 244 ■ Execution
policies 248

18.5 Hands-on lab 248

19 SQL Server Agent administration 249
19.1 Listing SQL Server Agent information 250

SQL Server Agent jobs 250 ■ SQL Server Agent alerts 253
Finding specific Agent jobs 256

19.2 Agent job results and history 258
Agent job results 258 ■ Time line 259

19.3 Hands-on lab 260

20 Creating and working with SQL Server Agent objects 261
20.1 SQL Server Agent job creation 261

Creating categories 262 ■ New schedule 263 ■ New proxy 264
Create a new operator 266 ■ Create a new Agent job 266 ■ The
job step 269

20.2 Bonus Agent job commands 270
Start-DbaAgentJob 271 ■ Get-DbaRunningJob 272
Get-DbaAgentJobHistory 273

20.3 Hands-on lab 273

21 Data masking 274
21.1 Getting started 275

21.2 A common approach 275

21.3 The better approach 276
Generating random data 276

CONTENTSxii

21.4 The process 277
Finding potential PII data 277 ■ Generating a configuration
file for masking 279 ■ Applying static data masking 282
Validating a data masking configuration file 283

21.5 Hands-on lab 284

22 DevOps automation 285
22.1 When should you use dbatools in DevOps? 286

22.2 DACPAC 287
Exporting a DACPAC from an existing database 287
Publishing a DACPAC 289 ■ DACPAC options 290

22.3 Running dbatools (and PowerShell) on a CI/CD system 294
Creating a task 295 ■ Ensuring the dbatools module is
available 295 ■ Understanding how to add parameters to
the script 295

22.4 Hands-on lab 297

23 Tracing SQL Server activity 298
23.1 SQL Server Trace and SQL Profiler 299

Converting traces to Extended Events 300

23.2 Extended Events 301
SSMS support 301 ■ dbatools support 302 ■ Finding Extended
Events 302 ■ Using templates 303 ■ Starting and stopping
Extended Event sessions 305 ■ Reading data 306 ■ Replicating
Extended Event sessions to multiple instances 308 ■ Cleanup 308

23.3 Hands-on lab 309

24 Security and encryption 310
24.1 Encrypting network connections 310

Certificate 311 ■ Forcing encryption 315

24.2 Extended protection for authentication 316

24.3 Hide an instance 318

24.4 Transparent data encryption (TDE) 319
Encrypting databases 319 ■ Decrypting databases 321

24.5 Database backup encryption 323
Prerequisites 324 ■ Backing up the database with a
certificate 325 ■ Checking encryption information from
the backup 325

CONTENTS xiii

24.6 Multilayered security 327
24.7 Hands-on lab 327

25 Data compression 328
25.1 Types of compression 328

25.2 How does rowstore data compression work? 329

25.3 Why use data compression? 330

25.4 It can’t all be rainbows and unicorns: Compression
drawbacks 330

25.5 What’s compressed? 331

25.6 What should we compress? 332

25.7 What makes a good candidate for compression? 333

25.8 dbatools, what should I compress? 333

25.9 Compressing objects the old-fashioned way 335

25.10 dbatools to the rescue! 336

25.11 Specifying the compression level 337

25.12 Advanced settings 338

25.13 Hands-on lab 339

26 Validating your estate with dbachecks 340
26.1 What dbachecks and dbatools have in common 340

26.2 Our first check 341

26.3 Viewing all available checks 343

26.4 Configuring the check parameters 343

26.5 Storing the output data in a database 346
Storing data 347 ■ Power BI dashboard 348 ■ Configuring
the connection 348

26.6 Hands-on lab 349

27 Working in the cloud 350
27.1 Connecting to Azure 350

27.2 Service principals and access tokens 352
Using Az.Accounts 353

27.3 Supported commands 353

27.4 The future 355

27.5 Hands-on lab 355

CONTENTSxiv

28 dbatools configurations and logging 356
28.1 Working with the configuration system 356

Checking existing configurations 356 ■ Getting a specific
configuration 357 ■ Getting just the value 358 ■ Changing a
configuration value 359 ■ Resetting to default configuration
values 359

28.2 Taking the configs with you 359

28.3 Using the logging system 360

28.4 Exploring logged activity 360
Ongoing logging 360

28.5 Hands-on lab 362

29 Never the end 363
29.1 Use dbatools 363

29.2 More PowerShell 364

29.3 Contribute to dbatools 364

29.4 Farewell 364

index 365

xv

foreword
There are over 20 million active installs of Microsoft SQL Server, with continued
growth month after month. The SQL Server/Azure Data Community also continues
to grow, currently with over 77,000 members across more than 40 countries. The
authors Chrissy LeMaire, Rob Sewell, Jess Pomfret, and Cláudio Silva have spent many
years being very active in this community—teaching, sharing, and empowering. They
have been part of the charge that turned a technology into a community.

 A couple of years ago, one of the authors and the creator of dbatools, Chrissy
LeMaire, came on my show, Data Exposed, to show data professionals how to automate
disaster recovery in SQL Server with dbatools. I was immediately struck by Chrissy’s
charisma and ability to take complex topics and make them simple. She also made it
clear that dbatools was built by and for the community and is free: “Instance migra-
tions and best practice implementations have never been safer, faster, or freer.” dba-
tools enables data professionals to automate SQL Server tasks with PowerShell. Not
only that, but dbatools also has a rich ecosystem of contributors, tests, and resources
to make sure you can learn, report bugs, and contribute.

 dbatools is something that all SQL Server professionals should consider learning,
and this book is the perfect way to learn, with its combination of knowledge transfer,
anecdotes, and hands-on labs. Microsoft is so confident in dbatools’ value that it has
sponsored the project through Microsoft’s Free and Open Source Software Fund. dba-
tools empowers you to leverage automation, so you can stop doing repetitive tasks and
sleep easily knowing you have the best practices implemented. In the process of learn-
ing dbatools, you’ll also become comfortable with PowerShell, which will help you

https://manning.box.com/s/wv10hhzvw83bv4y4phq3cd7jidabodjo

FOREWORDxvi

more generally as a technical professional whether you’re looking to work across data-
bases, data engineering, and applications, or across operating systems, or even across
on-premises and public cloud providers, like Microsoft Azure, which is covered in a
later chapter.

 In this book, you’ll first get oriented with dbatools and PowerShell, and you’ll set
up a lab environment where you can get hands-on for free with these tools and SQL
Server. I recommend following Chrissy, Rob, Jess, and Cláudio’s guidance of doing
one chapter a day (and practicing). With each chapter, you’ll not only become more
proficient in automation with dbatools and PowerShell, but you’ll also learn how to
manage SQL Server in a secure and scalable manner from some of the top SQL Server
experts in the world. I hope you enjoy this book.

—ANNA HOFFMAN

DATABASES PRODUCT MANAGEMENT, MICROSOFT

xvii

preface
In 2014, I was tasked with migrating a SQL Server instance that held a ton of Share-
Point databases. I dreaded the thought of performing such an involved process over
and over and figured a PowerShell solution must exist for this tedious task. After dis-
covering that there was no automated solution for migrating one SQL Server instance
to another, I set out on a journey that would change everything: creating the Power-
Shell scripts that would eventually become the dbatools module.

 Since then, an entire community has grown around dbatools. The dbatools mod-
ule has changed the way that database professionals work with SQL Server by not only
making their processes more efficient but also making their day-to-day work more
enjoyable and fun. It’s even recommended by PowerShell’s creator and Microsoft
Technical Fellow, Jeffrey Snover!

 For years, users asked if any dbatools books were available, and for years, the
answer was “not yet but that sounds like a great idea!” I knew I wanted to write for
Manning because they’re my favorite publisher, and initially, I thought the book
would be a Manning Deep Dive. I worked with the whole dbatools team to create a
table of contents and even asked Anna Hoffman if she’d write the foreword (she
agreed!).

 After a Twitter user suggested writing Learn dbatools in a Month of Lunches instead,
we realized that the Month of Lunches series was the perfect format; we all love the
series and recommend Learn PowerShell in a Month of Lunches to anyone who asks
where to begin with PowerShell.

PREFACExviii

 Learn dbatools in a Month of Lunches is a great first book to read about dbatools, and
we hope that you enjoy learning more about our toolkit. As a community, we’ve
worked hard to make PowerShell user friendly, approachable, and fun. As authors,
Rob, Jess, Cláudio, and I aimed to do the same with this book—you don’t even need
programming or scripting experience to get started.

 We also worked to ensure that the code in this book will work for years to come;
each commit to the dbatools repository will extract code from the book and run
Pester tests against live SQL Server instances to ensure exactly this happens.

 All code in this book has been tested against dbatools version 1.1.77 and later.
Chapter 2 will show you how to install the newest version. If you’ve got any questions,
feel free to get in touch with us at dbatools.io/bookforum.

—CHRISSY

https://www.manning.com/books/learn-dbatools-in-a-month-of-lunches

xix

acknowledgments
CHRISSY LEMAIRE: Even before I was married, I knew that I wanted to write a tech book
and dreamed of writing an acknowledgment thanking my wife. What I never imagined
was just how incredibly impactful the person I’d marry would be in my journey. With-
out my wife, Lu, it’s unlikely that I would have had enough personal stability or shoul-
der health to write dbatools, much less a book.

 Throughout the years, she has created space for me to flourish and build a great
life. She also helped keep the book on track, often sending me to my office to write a
chapter. Lu always cheerfully brings me whatever I need, whether it’s another blanket,
a Belgian beer, or a beautiful vegetable plate, thoughtfully arranged. So, thank you,
Lu, for helping me write this book and making my long-held dreams come true. C'est
toi pour moi, moi pour toi dans la vie.

 I’d also like to thank my best friend, Brandon Abshire, who has been with me on
my SQL Server journey since the beginning. Brandon taught me PowerShell and was
the first person ever to show me the power of SQL Management Objects (SMO). My
only regret is that we don’t still live in the same town, but I’m thankful that at least we
got the chance to grow up together.

 Working through the pandemic was near impossible, and any bit of productivity
was directly the result of my buddies in the Brain Trust. Thank you all for not only
sharing your lives with me but listening and providing support as I shared mine.

 Frances, your guidance has helped me become a better writer, perhaps even more
so than my formal schooling. Thank you so much; I will use all that I’ve learned for
years to come. A gigantic thank-you also goes out to my three amazing coauthors, Rob
Sewell, Cláudio Silva, and Jess Pomfret.

ACKNOWLEDGMENTSxx

 Rob, you’re my perfect presentation partner, and I always enjoy the calm and con-
fidence you bring to our sessions. Thank you for being such an integral part of my
career growth.

 Cláudio, thank you for your pivotal role in starting the dbatools community and
being the first person who offered to add your own code to dbatools. And thank you
for fixing all of my terrible T-SQL throughout the years, ha!

 Jess, I’m still floored that dbatools was your first foray into PowerShell; we’re so
lucky! Thank you for rallying through all the sprints that got us through to 1.0 and
accepting the role as co-maintainer. I look forward to seeing your career’s continued
meteoric rise.

ROB SEWELL: I never believed that I would ever be someone who would have their
name as an author for a book. Traci, my wonderful wife, was of a different opinion.
Her encouragement, support, unwavering belief in me, and everything that she does
to make my life have the space to be able to focus, as well as her never-ending accep-
tance of the time I spend in “my box,” have enabled me to be able to complete this.
Thank you, Traci. I love you.

 Chrissy, thank you so much for thinking of me all those years ago, reaching out to
me and asking me if I wanted to be involved in dbatools. Without doubt, dbatools has
changed my life, and you have changed my life also. My best presentations have been
given with you alongside me on the stage, and I cannot wait to walk off the stage into
the crowd or get everyone to applaud you again to see the look on your face. Your
knowledge and your willingness to share it is incomparable. Without you, dbatools
and this book would not be what they are today. You are amazing. I cannot wait to
stand on stage again and say, “We are not a couple, we each have our own wife!”

 Cláudio and Jess deserve special thanks, too: Cláudio for spotting all of the punctu-
ation that I miss! For your calm consideration and your wonderful caring, generous
nature, I thank you. Jess, you are so cool and collected, so clever and so willing to take
things on. Thank you for all of the times you have answered when I have reached out
with questions.

 Most thanks especially go to all of the contributors—far too many to name and
always willing and able to step in and give their own time, knowledge, and experience.
I salute you, I worship you, I thank you.

 William, Gianluca, and André, you three wonderful, gorgeous gentleman have had
such an impact on my life and on this book: thank you for all of the support and
friendship, for the times shooting the breeze, and for creating great solutions and
ideas that can be used. The next beer by the fire in Slovenia is on me.

JESS POMFRET: Writing these acknowledgments has probably been the hardest bit of
this book for me. I’m a strong believer that everything happens for a reason. However,
there have been many people along the way who have helped me get to this point!
English was my worst subject at school; I was even sent to lunchtime handwriting club
because no one could even read what I was writing. Who would have thought I’d
become an author!

ACKNOWLEDGMENTS xxi

 First, thanks must go to the rest of the authors for making this such a fun project to
be involved with. Chrissy, thank you for creating not only an amazingly useful tool but
such a welcoming community as well. I’ve learned and grown so much from being
involved in dbatools. Rob, I can’t thank you enough for all the support with dbatools,
dbachecks, and especially with my speaking endeavors. Cláudio, we joined this project
at the same time, and I’ve thoroughly enjoyed working with you on it. Thanks to all of
you for making this such a great adventure.

 Next up, my wife, Kelcie. Thanks for always having my back, putting up with my
terrible jokes, my inability to find things that are right in front of my nose, and my
impromptu dance parties—which always seem to happen when you’re in the middle
of doing something. Without your support, I definitely wouldn’t have had the energy
or focus required to get my chapters written.

 Finally, my thanks go to my parents for always supporting my dreams, however
crazy they were (like moving across the Atlantic at 19), and all the other people who
have helped me along the way. There are too many people to name, but so many have
had an impact: thank you all!

CLÁUDIO SILVA: Who knew that what started as a side project would lead to me being
one of the authors of a book?! What a ride! However, this would not have been possi-
ble, at all, without the support of my wife, Diana, and my daughter, Matilde. The time
that I was not available but you were always by my side; your unconditional support to
always go after my dreams and accept the challenges that I wasn’t always sure about,
but you always believed I would thrive—I love you!

 A tremendous shout-out needs to go out to all my teammates and authors with
whom I shared this wonderful chapter of my life!

 Chrissy, a huge thank-you goes to you! Who knew that back in 2015, a casual con-
versation about some lines of code at a TUGA IT conference would lead us to this
point of this wonderful project? Thanks for putting this project up, listening, and
being so supportive, welcoming, and inspirational! You rock!

 Rob, thank you for always being available to share your knowledge and vision
about so many things! I learned—and I’m sure I will continue learning—a lot from
you, sometimes just by reading/watching you.

 Jess, thank you for your fellowship and support. It’s always a pleasure to work with
you.

 Finally, a big thank-you, really, goes to everyone who was or is part of the dbatools
project: you people who keep feeding it, from the ones who take the time to open an
issue/feature request to the ones who keep sharing their knowledge and spreading
the dbatools word, and obviously everyone who wrote thousands of lines of documen-
tation and code!

ALL AUTHORS: dbatools wouldn’t be the amazing project that it is today without the
SQL Server and PowerShell communities. Together, we’ve changed the world of SQL
Server and brought joy and ease to countless people’s lives. From the bottom of our
hearts, thank you, every single person who has contributed to dbatools, whether it be

ACKNOWLEDGMENTSxxii

through code, documentation, tech support, code reviews, filing an issue, and even
buying this book. And an extra-special thanks goes to Shawn Melton for helping to
maintain dbatools while we were writing this book—without you, we’d be drowning in
unmerged PRs.

 Also, without the generous monetary contributions from Data Masterminds, we’d
be certless and testless. Your support helps us sleep easy at night knowing we’re
delivering a secure and well-tested module with every release. You have been big
believers in dbatools from the beginning, and we can’t thank you enough for your
ongoing support.

 Thank you, all the staff at Manning who helped guide us as we were writing this
book, and whose hard work produced this text.

 Thank you, Anna Hoffman, who wrote the foreword.
 And last but not least, thank you, all the reviewers: Amanda Debler, Arav Agarwal,

Arthur Zubarev, Ben McNamara, Cristian Antonioli, Danilo Zekovic, Darrin Bishop,
Foster Haines, Ian Stirk, Jan Vinterberg, Joseph Houghes, Luis Moux-Dominguez, Mar-
cus Brown, Odalia Zubarev, Paul Broadwith, Peter Bishop, Ranjit Sahai, Raushan
Kumar Jha, Ruben Vandeginste, Satej Kumar Sahu, Stanley Anozie, Stephen Goodman,
Steve Atchue, and Wayne Mather—your suggestions helped make this a better book.

xxiii

about this book
Who should read this book
This book is for SQL Server data professionals who want to learn more about dbatools
and PowerShell. It’s also helpful for automation engineers who are familiar with Power-
Shell but want a better understanding of SQL Server.

How this book is organized: A road map
In the first few chapters of this book, you’ll be introduced to dbatools as a whole, then
we’ll begin following the path of taking the steps DBAs may take when they inherit their
environment. From finding SQL Servers to inventorying, performing backups, prepar-
ing for disaster, then on to securing, optimization, and more. Here’s the rundown:

■ Chapter 1 introduces readers to the book, as well as to dbatools and automation.
■ Chapter 2 delves deeper into dbatools, including OS compatibility, installation,

updating, and getting help.
■ Chapter 3 will help you set up a lab where you can safely test dbatools commands.
■ Chapter 4 outlines the framework for executing dbatools commands with the

most commonly used parameters.
■ Chapter 5 walks you through writing data to SQL Server using dbatools, includ-

ing importing data from CSV files.
■ Chapter 6 details how to discover undocumented SQL Server instances

throughout your network.
■ Chapter 7 discusses how dbatools can help inventory your SQL Server estate,

including features, builds, databases, and more.

ABOUT THIS BOOKxxiv

■ Chapter 8 details using Registered Servers and dbatools to easily organize your
SQL Server estate.

■ Chapter 9 tells you all about managing SQL Server logins using dbatools.
■ Chapter 10 covers backup management, including easy, automated testing.
■ Chapter 11 will help you with restores, including restoring databases to a spe-

cific point in time and even marked transactions.
■ Chapter 12 discusses snapshots and how much more accessible they are when

using dbatools.
■ Chapter 13 walks you through installing and updating SQL Server on remote

systems, easily and all through the command line.
■ Chapter 14 describes how to effectively prepare for a disaster by using dbatools

to export logins, Agent jobs, and more.
■ Chapter 15, which provides the first part of performing advanced SQL Server

migrations, focuses primarily on databases.
■ Chapter 16, which provides the second part of performing advanced SQL

Server migrations, focuses on other migratable SQL Server features.
■ Chapter 17 gives an overview of dbatools support for high availability and disas-

ter recovery features including log shipping, Windows Server Failover Cluster,
and availability groups.

■ Chapter 18 begins a three-chapter series on SQL Server Agent by providing an
overall framework for working with SQL Server Agent and PowerShell.

■ Chapter 19 continues the Agent series by focusing on the administration of
SQL Server Agent using dbatools.

■ Chapter 20 finishes the Agent series by detailing how to create new Agent
objects at scale.

■ Chapter 21 discusses data masking in depth.
■ Chapter 22 describes how dbatools can help enable DevOps within your

organization.
■ Chapter 23 will help you better understand and manage Trace events and

Extended Events within SQL Server.
■ Chapter 24 covers security and encryption, which includes network and data-

base encryption.
■ Chapter 25 will walk you through compressing your data, saving space, and

reducing resource bottlenecks.
■ Chapter 26 gives an introduction to dbachecks, which helps you easily validate

your SQL Server estate using crowd-sourced checks.
■ Chapter 27 provides an overview of how dbatools can help when working in the

cloud.
■ Chapter 28 describes dbatools configuration and logging in depth.
■ Chapter 29 wraps up the book by providing additional resources for working

with PowerShell.

ABOUT THIS BOOK xxv

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have been removed from
the listings when the code is described in the text. Code annotations accompany many
of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches.
The complete code for the examples in the book is available for download from the
Manning website at https://www.manning.com/books/learn-dbatools-in-a-month-of-
lunches, and from GitHub at https://dbatools.io/bookcode.

liveBook discussion forum
Purchase of Learn dbatools in a Month of Lunches includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the author and other users. To access the forum, go to https://livebook.manning
.com/book/learn-dbatools-in-a-month-of-lunches/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches
https://www.manning.com/books/learn-dbatools-in-a-month-of-lunches
https://www.manning.com/books/learn-dbatools-in-a-month-of-lunches
https://dbatools.io/bookcode
https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches/discussion

xxvi

about the authors
CHRISSY LEMAIRE (SHE/HER) is a dual Microsoft MVP and GitHub Star.
She is a well-known speaker and the creator of several PowerShell
modules, including dbatools. Chrissy also holds an M.Sc. in systems
engineering and currently works as an automation engineer in
Europe.

ROB SEWELL (HE/HIM) is a passionate automator who has been recog-
nized as a dual MVP by Microsoft. He is a keen community sup-
porter and has organized, spoken at, and volunteered at many data
and PowerShell events all over the world.

JESS POMFRET (SHE/HER) is a data platform architect and a Microsoft
MVP. She started working with SQL Server in 2011 and loves automat-
ing processes with PowerShell. She also enjoys contributing to dba-
tools and dbachecks, two open source PowerShell modules that aid
DBAs with automating the management of SQL Server instances.

CLÁUDIO SILVA (HE/HIM) is a data platform architect, Microsoft MVP,
and contributor to open source projects such as dbatools and
dbachecks.

1

Before you begin

1.1 Why data professionals can’t afford to ignore PowerShell
Data is now one of the most valuable assets in the world, so data professionals need
a broad set of skills and are expected to be able to accomplish a wide number of
tasks, including the following and many more:

 Build SQL Server instances
 Develop extract, transform, and load (ETL) solutions
 Ensure SQL Server instances are correctly configured
 Monitor and respond to alerts
 Troubleshoot performance and access issues
 Perform OS and SQL upgrades
 Deploy changes to schemas
 Evaluate index usage and settings

In the process of performing our role, we interact with a ton of technologies: SQL
Server, virtualization (Hyper-V or VMware), operating systems (Windows or Linux),
containers, clusters (including Kubernetes clusters), networking, storage, Active
Directory, certificates, and the cloud, to name a few.

 In the majority of cases, we will be working with more than one SQL Server
instance—sometimes two, sometimes 10,000 or more.

 Although we can achieve pretty much everything via GUI consoles for any of
those technologies, the following two problems come immediately to mind with
this approach:

 The amount of time wasted
 The inconsistency of humans compared with machines

2 CHAPTER 1 Before you begin

This is best explained with a story.

1.1.1 A SQL Server DBA first win with PowerShell

When Rob became a SQL Server DBA, his first responsibility every morning was to
check that Agent jobs, numbering a little over 100 instances, had run successfully
across the SQL Server estate. He would start by connecting to the first instance in SQL
Server Management Studio (SSMS), clicking the SQL Server Agent, double-clicking
the Job Activity Monitor, and checking the Last Run column for the jobs, as shown in
figure 1.1.

This task would take him a minimum of 90 minutes. He had heard about PowerShell
and used it at home to reorder his digital photos into year and month folders, so he
asked his boss if he could use PowerShell to make this job easier. His boss said, “No,
this is the way we do it and have done it for many years,” and that wasn’t going to
change.

 Rob went on holiday, and, in his absence, his boss took responsibility for checking
the jobs. One particular job ran on the first of every month. When checking that
instance, his boss saw that all jobs had completed successfully on their last run; unfor-
tunately, it was the first of November, and that particular job had last run on the first
of October! It took a number of days before this discrepancy was noticed, and it
caused some disruption. When Rob came back from holiday, he was given the time to
write a PowerShell script to connect to all of the instances, fill a color-coded Excel file
(shown in figure 1.2), and save it to a shared drive.

Figure 1.1 The Job Activity Monitor

3Automate it

By automating the task, the time he spent performing his daily tasks went from at least
90 minutes each day to the time it takes to open the correct Excel sheet and scroll
through, looking for the red cells.

1.2 Automate it
There’s a popular saying in the automation community: “If you’re doing something
more than once, automate it!” Others argue that automation should occur the very
first time a task is completed, and we agree; automating a task requires time and
thought, which generally results in a greater chance the task will be done properly
and thoroughly. As a bonus, the script will be available the next time the task must be
completed. PowerShell, a scripting language that can interact with many technologies,
is an excellent tool for such automation.

 Humans are fallible; they get tired, distracted, or bored with repetitive tasks, but
this is where a computer excels. A script, like Rob’s PowerShell script, runs monoto-
nous tasks over and over, all day, without distraction and can also be scheduled to run
at antisocial times. A script also would not mistake 11/01/2018 with 10/01/2018, but
a human can!

 Another task in which computers thrive: dealing with repeatability—running that
script again and again, and performing the exact same task over and over. Humans,
unfortunately, are not so good at that.

 Another well-known saying is relevant at this point: “Use the right tool for the job.”
 We believe that it is better to write a script with good comments and headers that

will set up a particular scenario than to add a set of screenshots to a document for a

Figure 1.2 The color-coded Excel output from PowerShell

4 CHAPTER 1 Before you begin

human to follow. Documentation with too many assumptions can lead to mistakes,
whereas overdocumenting all of the steps will lead to large, unwieldy, hard-to-follow
documentation, which is difficult to maintain.

 Ultimately, learning PowerShell will prepare you for our inevitable (and fun!)
automation-rich future. PowerShell is everywhere—it’s now available on Windows,
Linux, macOS, Raspberry Pi—and it even helps power the cloud. Once you learn how
to use an automation tool like PowerShell, you can easily transition your skills to auto-
mate everything from Azure and SQL Managed Instances to Spotify and Slack. Power-
Shell will help empower you to become the automator and not the automated.

1.3 What is dbatools?
dbatools is an open source, cross-platform PowerShell toolkit for SQL Server DBAs,
originally created by PowerShell and SQL Server MVP Chrissy LeMaire. With more
than 215 contributors from the SQL Server, PowerShell, and C# communities, dba-
tools is designed and written by the people who use it in their everyday work. dbatools
includes solutions for common tasks like performing backups and restores, migra-
tions (see figure 1.3), and setting up availability groups. dbatools is designed to enable
SQL DBAs to reliably and repeatedly automate the usual daily tasks.

Often based on solutions found on popular blog posts, Stack Overflow, and Reddit,
dbatools commands automate and simplify so many of the tasks we’ve all had to do
multiple times. This means that you don’t need to remember the formula for calculat-
ing maximum memory settings or where you saved the T-SQL for converting a trace to
extended events (thank you, Jonathan Kehayias). dbatools also interacts with many
popular SQL Community tools created by data professionals like Ola Hallengren

Figure 1.3 A sample dbatools command, Start-DbaMigration

5Is this book for you?

(The Maintenance Solution we love), Glenn Berry (awesome diagnostic queries),
Adam Machanic (sp_whoisactive), Brent Ozar (First Responder Kit), and Marcin
Gminski (SQLWATCH).

 Where is Microsoft in all of this? Although the SQL tools team has its own module,
SqlServer (formerly SQLPS), Microsoft has been incredibly supportive of dbatools.
Not only do premier field engineers use and blog about dbatools, the SQL tools team
also allows us to include many of the bits that power SSMS.

1.4 Is this book for you?
dbatools helps make PowerShell easy for the data platform community because its pri-
mary audience is end users instead of developers. Now you no longer have to know
how to program PowerShell to work with SQL Server at scale; you can just run a few
commands that we built for you.

 Our focus in this book will be on PowerShell. However, it is less about showing you
how to write and develop PowerShell scripts and more about showing you how to
accomplish tasks, as shown in figure 1.4. We expect that you have some knowledge of
SQL Server and its administrative tasks, because we won’t be teaching SQL Server con-
cepts other than what is required to understand the PowerShell code.

If you don’t know how to use PowerShell just yet, we aim to help you not by teaching
PowerShell but by teaching you how to do your current job using PowerShell. If you use
the GUI and are hesitant about a future filled with automation and command-line tools,
our goal is to transform that hesitation into eagerness, confidence, and excitement.

 This book will serve as a learning guide, taking you from gathering information
about your estate to performing complex migrations with just a couple lines of code.

Figure 1.4 Learning PowerShell

6 CHAPTER 1 Before you begin

We will also give you the confidence to explore PowerShell and develop your own
solutions for administering SQL Server in your own estate and to use your increased
understanding of PowerShell with other technologies.

1.5 How to use this book
The idea here is that you will read one chapter each day. Each chapter should take
about 40 minutes to read, giving you time to practice what you just learned. We rec-
ommend reading just one chapter a day, rather than reading extra chapters. We think
you will benefit more spending that time practicing what you have learned and
cementing your knowledge and comfort with using dbatools and PowerShell.

1.5.1 The main chapters

Chapters 1 through 3 will help you become oriented with dbatools, PowerShell, and
to a lesser extent, SQL Server. Chapters 4 through 24 represent the primary content
of the book, so you can expect to finish in about a month. The chapters build upon
one another, so we recommend that you complete them in the order in which they’re
provided, even if you’re excited about a particular topic (like disaster recovery, woo!).

1.5.2 Hands-on labs

Many chapters provide a hands-on lab that will help you apply the commands you
learned about. These labs are not quizzes, so everything you need will be contained
within the book. If you find yourself stuck, however, you can visit the book’s forum at
dbatools.io/molforum, and we’ll be there to help you out.

1.5.3 Supplementary materials

The dbatools.io website is rich with content, including blog posts, videos, tutorials,
and more. You can also find the answers to all of the labs at dbatools.io/answers.

1.5.4 Further exploration

This book covers several areas within PowerShell and SQL Server but still touches just
the tip of the iceberg of Microsoft’s data platform. We personally spend a lot of our
time exploring fun, related technologies like Kubernetes and Power BI and think that
you may enjoy some of the same exploration as well.

 If this sounds appealing to you, we share a lot of our own technical adventures on
Twitter and suggest you follow us there: Chrissy is @cl, Rob is @sqldbawithbeard, Jess
is @jpomfret, and Cláudio is @ClaudioESSilva. For dbatools-only content, you can also
follow @psdbatools.

1.6 Contacting us
We love when people are excited about PowerShell, and we’re eager to help with your
questions. We hang out a lot in the SQL Community Slack in the #dbatools channel. You
can join over 17,000 SQL Server community members for a live chat at dbatools.io/ slack.

https://sqlcommunity.slack.com/join/shared_invite/zt-zsu0bnsk-zauP0i09BUR3LqGgup_4QA#/shared-invite/email
https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches/discussion
https://dbatools.io/
https://gist.github.com/potatoqualitee/6ec31e978f8467764f06ca431a37f612

7Being immediately effective with dbatools

 In addition to Slack and Twitter, you’ll likely find us at PowerShell, SQL Server,
and DevOps conferences around the world as well. If you’re into code livestreaming,
you can find us live coding at dbatools.io/live when the mood strikes.

1.7 Being immediately effective with dbatools
The great thing about dbatools is that most of the development work has been done
for you. A bunch of community members collectively invested thousands of hours to
build a standardized toolset that helps us manage our daily tasks. This also means you
can manage these same tasks by executing just a few commands.

 Like the authors of Learn PowerShell in a Month of Lunches, Travis Plunk, James Petty,
Tyler Leonhardt, Don Jones, and Jeffery Hicks, our primary goal in this book is for
you to be “immediately effective.” This means that a section may be initially light on
the details so that you can jump right in and accomplish some tasks. If necessary, we
will provide additional depth, theory, and nuances later in the chapter and in online
articles, or highlight it in a livestream.

https://www.twitch.tv/dbatools

8

Installing dbatools

In this chapter, we’ll cover minimum requirements, various installation methods,
and gotchas. Understanding how to install dbatools will not only enable you to use
our toolset, it will also enable you to install any other PowerShell module in the
PowerShell Gallery.

 The old saying, “Before you do anything, you have to do something first,” holds
true for installing dbatools and other PowerShell modules. Specifically, you may
have to execute the following two commands first:

 Set-ExecutionPolicy

 Set-PSRepository

If you have not yet modified your default execution policy, or trusted Microsoft’s
PowerShell Gallery using Set-PSRepository, we’ll help guide you through these
steps. If you are already familiar with the PowerShell Gallery and installing dba-
tools, feel free to skip to the next chapter.

2.1 Minimum requirements
We’re going to start with minimum requirements because not everyone can be on
the latest and greatest setup at work. It’s useful to know whether the old worksta-
tion we inherited can support dbatools. The good news is that the answer is most
likely yes!

 dbatools originally started as a migration module, so it was created with require-
ments that are as low as possible. This allows us to use dbatools in the older envi-
ronments that are most in need of migrations. Because of PowerShell’s flexibility,
dbatools also works in newer environments such as Azure, SQL Server on Linux,
and PowerShell on macOS.

9Minimum requirements

2.1.1 Server
Like SSMS, dbatools can connect to super-old versions of SQL Server. When creating
dbatools, we actually tried to make it work with SQL Server 7, but an environment that
supports SQL Server 7 is not an environment that supports PowerShell. Table 2.1 out-
lines the versions of SQL Server that we support.

You may notice that Azure SQL DB, Azure SQL Edge, and Azure Managed Instances
are not mentioned on this list. That’s because, at the time of writing, the extent of sup-
port for Azure within dbatools has not been evaluated and catalogued. We do build in
some support for Azure, which you can read more about in chapter 27.

 When it comes to PowerShell requirements on the target server, PowerShell is not
even needed for 75% of our commands. If you do use commands that connect to the
OS, such as Get-DbaDiskSpace, PowerShell remoting will need to be enabled. You can
read more about remoting at dbatools.io/secure.

2.1.2 Workstation
It’s important to note that, like SSMS and Azure Data Studio, we do not have to install
dbatools on every server. It is best to centralize administration to the DBA worksta-
tions and minimal servers that run scheduled tasks and Agent jobs.

 dbatools supports a wide variety of environments, but not every environment is
supported for every command. An approximate breakdown of command support by
operating system as of dbatools v1.0 is shown in table 2.2.

Table 2.1 SQL Server instance support

Version Commands supported

SQL Server 7 0%

SQL Server 2000 75%

SQL Server 2005 90%

SQL Server 2008, 2008 R2 93%

SQL Server 2012+ 100%

Azure SQL VM As per version above

Containers and Kubernetes 75%a

aAssuming Linux OS inside container

Table 2.2 OS support

OS Commands supported

Vista 0%

Windows Server 2008 0%

macOS (Intel) 78%

https://dbatools.io/secure/

10 CHAPTER 2 Installing dbatools

Although dbatools can run on older versions of PowerShell, we recommend version
5.1 and higher. Newer versions of PowerShell are faster and offer a number of security
features that are beneficial to enterprise environments. PowerShell Core is ultra fast
but has limitations that prevent some commands from working. As such, about 75% of
the commands in dbatools will work on PowerShell Core.

NOTE Throughout the book, we’ll try our best to highlight which commands
will not work on Linux and macOS. If there is no notation, then you can
assume the command should work on Windows, macOS, and Linux. A gen-
eral rule of thumb is that if a command uses SQL WMI (SQL Configuration
Manager) or has a -ComputerName parameter, it likely does not work on
Linux or macOS.

Installing newer versions of PowerShell is as simple as installing an update, specifically,
the Windows Management Framework from https://dbatools.io/wmf for v5.1 and
aka.ms/pscore6 for PowerShell Core. These shortlinks link to the installer packages
for Windows, Linux, and macOS.

2.1.3 Ports
As previously mentioned, we recommend running dbatools against remote servers
from a centralized workstation. This means that various network ports between the
machine running dbatools and the remote servers must be open and accessible.

 Table 2.3 lists the default ports required to support all commands within dbatools.
These are common ports that are generally approved to be used on enterprise networks.

macOS (ARM64) 78%

Linux (Intel) 78%

Linux (ARM64) 78%

Windows 7, 8, 10, 11 100%

Windows Server 2008 R2+ 100%

Azure VM Dependent on OS above

Table 2.3 Required ports

Protocol
Default

port
Sample command

Percentage of
commands

SQL Database Engine 1433 Get-DbaDatabase 62%

WS-Management 5985 or
5986

New-DbaClientAlias 25%

SQL WMI 135 Enable-DbaAgHadr 4%

Table 2.2 OS support (continued)

OS Commands supported

https://dbatools.io/wmf
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.2

11Minimum requirements

Note that if you change the default port for SQL, we support that, too.
 You probably recognize SQL Database Engine and SMB, but what about SQL WMI

and WS-Management?

SQL WMI
If you’re curious about SQL WMI, this is the protocol used by the SQL Server Config-
uration Manager. SQL Server Configuration Manager—and SQL WMI by extension—
is still available, even if the SQL services are not running. This means that the com-
mands that use SQL WMI can access and modify specific SQL Server properties, even
if the instance is offline.

 Figure 2.1 shows us updating the service account name and password for the
default SQL Server instance on the server SQL2014. If you’re curious, the equivalent
dbatools command for the functionality seen in this screenshot is Update-

DbaServiceAccount.

SMB 139 Invoke-DbaDbLogShipping 4%

SMB over IP 445 Get-DbaPfDataCollectorCounterSample <1%

Table 2.3 Required ports (continued)

Protocol
Default

port
Sample command

Percentage of
commands

Figure 2.1 Configuration Manager. Note the instance is offline but can still be modified.

12 CHAPTER 2 Installing dbatools

WS-MANAGEMENT

Of all of the listed ports, WS-Management is probably the least recognizable to SQL
Server pros. WS-Management is the protocol used by PowerShell remoting. Power-
Shell remoting allows commands to be executed against remote computers and is
implemented in commands such as Invoke-Command and Enter-PSSession, as high-
lighted in the next listing.

PS> Invoke-Command -ComputerName spsql01 -ScriptBlock { $Env:COMPUTERNAME }
SPSQL01

This protocol is exceptionally secure (see dbatools.io/secure) for the following reasons:

 By default, it allows connections only from members of the Administrators
group.

 It uses a single port: 5985 (HTTP) or 5986 (HTTPS).
 Regardless of the transport protocol used (HTTP or HTTPS), PowerShell

remoting always encrypts all communication after initial authentication with a
per-session AES-256 symmetric key.

 Initial authentication is NTLM, Kerberos, and Certificates, so no credentials are
ever exposed.

Check out our blog post at dbatools.io/secure to see why remoting is even safer than
logging in to a Windows server using the GUI.

2.1.4 Execution policy

Initially, we found execution policies (see sqlps.io/abexecpolicies) hard to under-
stand, and explaining them is a bit tricky. Most people believe execution policies are a
security mechanism, when they are really there for safety. But aren’t safety and security
the same thing? No.

 Execution policies are safety mechanisms that confirm your intention to run a
command or script. So, although they can’t prevent a hacker from hacking your com-
puter, they can prevent you from running a script by accident. That’s the difference
between safety and security.

 PowerShell’s default execution policy varies by operating system (OS), as shown in
table 2.4.

 You may find that when creating your own scripts, you are blocked by your execu-
tion policy. The most common suggestion is to set your policy to RemoteSigned. This
is the first command you must run if you have not yet modified your default execution
policy.

Listing 2.1 PowerShell remoting—note the connection to the remote machine, spsql01

https://dbatools.io/secure/
https://dbatools.io/secure/

13Signed software

Note that this setting will be effective only if your organization does not set the execu-
tion policy as a group policy.

 Execution policy precedence order determines which execution policy will be
used in a given session. Execution policy is processed in the following order:

1 Group Policy: MachinePolicy
2 Group Policy: UserPolicy
3 Execution Policy: Process (powershell.exe -ExecutionPolicy)
4 Execution Policy: CurrentUser
5 Execution Policy: LocalMachine

Later in your scripting career, you may do what we do and set your execution policy to
Bypass. This is convenient and no less secure than RemoteSigned, because it keeps the
lowered permissions isolated (sqlps.io/bypassvsunres) to just the current running
process.

2.2 Signed software
Like most enterprise software, dbatools is digitally signed. This means that you can
trust that the module came from us and that the PowerShell code has not been modi-
fied after publication. As of this writing, Chrissy, Rob, Jess, and Shawn Melton are the
only members with access to the code signing certificate and, therefore, the only four
members who make this guarantee.

Table 2.4 Default execution policy

Operating
system

Default Summary

Windows
7, 8, 10

Restricted
(sqlps.io/abexecpolrestricted)

Prevents PowerShell from running scripts such as .ps1
files, but not commands like Get-ChildItem.

Windows
Server

RemoteSigned
(sqlps.io/abexecpolresigned)

Prevents PowerShell from running downloaded,
unsigned scripts without first using Unblock-File.
You can still run all of the scripts you created.

Linux and
macOS

Unrestricted
(sqlps.io/abexecpolunres)

All unsigned scripts can run. Downloaded unsigned
scripts will prompt before running.

Try it now 2.1
Set your execution policy to RemoteSigned:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

https://stackoverflow.com/questions/50370658/bypass-vs-unrestricted-execution-policies
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.2#restricted
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.2#remotesigned
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.2#unrestricted

14 CHAPTER 2 Installing dbatools

 Earlier, you set your execution policy to RemoteSigned, but what exactly does this
mean? Let’s break it down:

 Remote—A script originating from a remote computer such as a website
 Signed—A script that has been signed by a trusted publisher

Basically, scripts that you create on your local machine do not have to be signed, but
scripts that originate from other machines must be digitally signed unless they are in
Trusted sites, as shown in figure 2.2 (sqlps.io/ietrustedsites).

The whole system behind signing, public key infrastructure, or PKI, is a bit out of
scope for this book, but it essentially breaks down as follows:

 We submitted multiple proofs of identity to a globally recognized certificate
authority.

 They performed various validations and granted us a globally recognized code
signing certificate.

 Microsoft requires that you explicitly trust our code signing certificate anyway,
and you will be prompted when installing our module from the PowerShell
Gallery.

Figure 2.2 Trusted sites

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-ie-internetexplorer-trustedsites

15Understanding installation paths

2.3 Understanding installation paths
Before proceeding to the installation methods, it is important to understand how
PowerShell auto-imports modules. Back in the early days, PowerShell would autoload
a ton of things when it started up. This gave the impression that PowerShell was slow,
especially when compared to the speediness of opening cmd.exe.

 One of the ways the PowerShell team addressed this issue was to add support for
module autoloading and $Env:PSModulePath. In the next listing, you can see com-
mon results for $Env:PSModulePath.

PS> $Env:PSModulePath -Split ";"
C:\Program Files\WindowsPowerShell\Modules\
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules\
C:\Users\dbatools\Documents\WindowsPowerShell\Modules\
C:\Program Files\Microsoft SQL Server\130\Tools\PowerShell\Modules\
C:\Program Files (x86)\Microsoft SQL Server\130\Tools\PowerShell\Modules\

You may be familiar with MS-DOS or Linux’s PATH variables, and $Env:PSModulePath
is similar. This environment variable tells PowerShell where to look for available
commands.

 Command names within modules contained in this path will autocomplete when
tabbed, but the module will not actually load until the command is executed or
parameter autocompletion is attempted. This allows PowerShell to launch quickly
while still providing an autocompleting index of commands.

TIP You may have heard the term Cmdlet, which is PowerShell-specific termi-
nology. As PowerShell in a Month of Lunches explains, PowerShell supports vari-
ous types of executable commands. This includes Cmdlets, which are written
in C#, and functions, which are written in pure PowerShell. Although the
dbatools module provides a mix of both Cmdlets and functions, they are all
essentially commands. Throughout the book, we’ll refer to all types of execut-
able commands simply as commands.

On a freshly installed Windows machine, modules will generally be loaded from the
following:

 C:\Windows\System32\WindowsPowerShell\v1.0\Modules
 C:\Program Files\WindowsPowerShell\Modules
 $home\Documents\WindowsPowerShell\Modules—user profile Documents

folder

Paths can vary by computer. Use the following code to evaluate your own $Env:PSModule-
Path, noting how -Split splits the path at each semicolon, making the output easier to
read.

Listing 2.2 Example results

16 CHAPTER 2 Installing dbatools

This auto-import is one of the primary reasons we don’t see explicit mentions of
Import-Module referenced as often anymore.

2.4 Installation methods
Because we want to ensure dbatools is available in as many environments as possible,
we offer several ways to install it. Our preferred method is the PowerShell Gallery, for
reasons we’ll outline shortly.

 The PowerShell Gallery is not only useful for online installs and updates, but it also
provides options for offline installs (dbatools.io/offline) as well.

2.4.1 The PowerShell Gallery

dbatools is a PowerShell module, which is basically a package full of code, DLLs, con-
figuration files, and more. In 2015, Microsoft introduced the PowerShell Gallery to
centralize the distribution of such PowerShell packages.

 Installing and updating PowerShell modules is a bit of an inception because you do
so using another PowerShell module, PowerShellGet. PowerShellGet is included in
Windows 10. PowerShellGet can also be installed manually on any machine using Power-
Shell 3.0 and later. If you find yourself in need of a manual install of PowerShellGet, visit
mng.bz/8lxg.

 The PowerShell Gallery is not only a centralized repository accessed via PowerShell
commands, but it is also an attractive and easy-to-use website that you can access at
powershellgallery.com, as shown in figure 2.3.

Try it now 2.2
Evaluate your own $Env:PSModulePath:

$Env:PSModulePath -Split ';'

Figure 2.3 Microsoft’s PowerShell Gallery

https://mng.bz/8lxg
https://www.powershellgallery.com/
https://dbatools.io/offline/

17Installation methods

If your workstation environment supports the PowerShell Gallery, that should be your
default for all PowerShell module installs. The Gallery provides a few basic security
checks and is the most convenient way to keep modules updated.

 In addition, modules delivered by PowerShell Gallery are streamlined for end
users. Unlike our GitHub repository, extra development-related files (such as hun-
dreds of unit and integration test files) are not included in the package. This means
that installs of dbatools from the PowerShell Gallery will be smaller both in size and
the number of files when compared to other installation methods.

2.4.2 Trusting the PowerShell Gallery

Earlier we mentioned that you’ll need to execute two commands before installing
dbatools. We’ve already covered Set-ExecutionPolicy, and now we’ll address
Set-PSRepository.

 Because of its focus on security and trust, Microsoft does not trust its own reposi-
tory by default; they leave you to be explicit about who you and your organization will
trust. If you trust Microsoft’s PowerShell Gallery like we do, you can avoid being
repeatedly prompted to approve PowerShell module installations by changing the
installation policy with the Set-PSRepository command shown in the next sidebar.

Once you execute this command (or any PowerShellGet command) for the first time,
you may be prompted to install NuGet, as shown in the next listing.

PS> Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

NuGet provider is required to continue
PowerShellGet requires NuGet provider version '2.8.5.201' or newer to
interact with NuGet-based repositories. The NuGet provider must be available
in 'C:\Program Files\PackageManagement\ProviderAssemblies' or
'C:\Users\manikb\AppData\Local\PackageManagement\ProviderAssemblies'. You
can also install the NuGet provider by running 'Install-PackageProvider
-Name NuGet -MinimumVersion 2.8.5.201 -Force'. Do you want PowerShellGet to
install and import the NuGet provider
now?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Go ahead and answer Yes. If you’re behind a corporate proxy and experience issues,
please visit dbatools.io/proxy for more information on proxy support.

Listing 2.3 Explicitly trusting PSGallery may prompt for a NuGet update

Try it now 2.3
Set the PowerShell Gallery to be trusted for installations:

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

https://spaghettidba.com/2017/12/19/recovering-the-psgallery-repository-behind-a-corporate-proxy/

18 CHAPTER 2 Installing dbatools

2.4.3 Installing dbatools using the PowerShell Gallery, all users

To install dbatools for all users on your computer, including the SQL Server Agent
service account, you must install dbatools using Run as Administrator. This will install
dbatools in C:\Program Files\WindowsPowerShell\Modules, as shown in the next
sidebar.

In the same way that Microsoft does not automatically trust its own repository, it also
does not automatically trust valid publisher certificates.

WARNING Importing dbatools after loading Microsoft’s SQL Server and
SQLPS module in the same session will cause strangeness to occur, including
unexpected output that may not match our examples. We recommend avoid-
ing this scenario if possible.

If your execution policy is AllSigned, you will also have to explicitly import dbatools to
get prompted to accept our publisher certificate. If you are prompted, press R to run
once, as shown next.

PS> Import-Module dbatools

Do you want to run software from this untrusted publisher?
File dbatools.Types.ps1xml is published by CN=dbatools,O=dbatools, L=Vienna,
S=Virginia, C=US and is not trusted on your system. Only run scripts from
trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is "D"): R

Once you accept our certificate, you can see our certificate in your Trusted Publishers
certificate store shown in figure 2.4. To access your certificate store, run certmgr from
PowerShell for a GUI interface.

 You can also use PowerShell to see this certificate, as depicted in the next sidebar.
Both approaches are valid and convey the same amount of information.

Listing 2.4 Explicitly trusting the dbatools code signing certificate

Try it now 2.4
Install dbatools for all users on a computer with PowerShellGet:

Install-Module -Name dbatools

Try it now 2.5
Use PowerShell to see the newly trusted certificate:

Get-ChildItem Cert:\CurrentUser\TrustedPublisher | Select-Object *

19Installation methods

2.4.4 PowerShell Gallery, local user

Many organizations (and DBAs) believe strongly in the principle of least privilege.
PowerShell natively enables you to restrict the availability of a PowerShell module to
certain users. Perhaps you have a shared workstation and require DBAs to only be able
to use dbatools. Maybe you will use only modules with an administrative account
instead of the normal user account that logs on to a workstation. To install dbatools
just for the account that is currently running PowerShell and install it in the user pro-
file documents folder $home\Documents\WindowsPowerShell\Modules, you can run
the following code.

Install-Module -Name dbatools -Scope CurrentUser

Each method of installing dbatools is perfectly valid. Installing the module with Scope
CurrentUser means that you do not need administrator privileges to perform installs
or updates of the module. The downside is that other users, such as SQL Server
Agents or other DBAs, will need to install their own copy of dbatools.

Listing 2.5 Installing dbatools to just a single account

Figure 2.4 The publicly available code signing certificate from dbatools

20 CHAPTER 2 Installing dbatools

2.4.5 PowerShell Gallery, offline install

Offline installs are often required for secure environments or when you need to install
dbatools to be used by a production SQL Server Agent because the SQL Server cannot
connect to the internet. For the offline install, some machine has to be online at some
point. This is true for both the PowerShell Gallery offline install and other methods,
such as saving the zip. You will need a machine that is connected to the internet and
has PowerShellGet.

This will save the module in the C:\temp directory in a folder called dbatools, as
shown in figure 2.5.

You will then need to move the dbatools folder to the secure machine. You may need
to zip and unzip it for transport. You will place the dbatools folder and all of its con-
tents in a folder in $ENV:PSModulePath. We recommend that you use one of the previ-
ously mentioned folders, shown in table 2.5.

Try it now 2.6
Saving the dbatools module on a computer that has PowerShellGet:

Save-Module -Name dbatools -Path C:\temp

Figure 2.5 dbatools
in temp directory

21PowerShell Gallery alternatives

If you’d like a detailed step-by-step for future reference, check out dbatools.io/offline.

2.5 PowerShell Gallery alternatives
When performing a Twitter poll for this book, we asked how people installed dba-
tools. A whopping 75% said the PowerShell Gallery, as shown in figure 2.6.

The next most popular answer was downloading the zip manually from our GitHub
repository, so we’ll cover that method, too.

2.5.1 Downloading a zipped archive

If it’s not clear yet, we love shortlinks, and our zip shortlink, dbatools.io/zip, makes it
very easy to remember where you can download the latest version of dbatools: right
from the master branch of our GitHub repository. When using this method to install
dbatools, be aware of the following two caveats:

 This version of the module will not be digitally signed.
 You’ll need to rename the directories.

Let’s take a closer look at these warnings.

Table 2.5 Module availability by folder

Folder Accounts module is available for

C:\Program Files\WindowsPowerShell\Modules All accounts on the machine

C:\Windows\System32\WindowsPowerShell\v1.0\Modules All accounts on the machine

$home\Documents\WindowsPowerShell\Modules Only $Env:USERNAME

Figure 2.6 Twitter poll results

https://dbatools.io/offline/
https://dbatools.io/zip

22 CHAPTER 2 Installing dbatools

NO DIGITAL SIGNATURE

When code is committed to GitHub, the files are modified in a way that invalidates
our digital signature. This means that you will not be able to set your execution policy
to anything stricter than RemoteSigned.

DIRECTORY RENAME

For dbatools to load properly, the unzipped directory, dbatools-master\dbatools-master,
should be renamed dbatools and placed in one of the directories in your $Env:PSMod-
ulePath, as shown in figure 2.7.

Once the zip file has been extracted, the directory has been renamed, and the mod-
ule is placed in the appropriate directory, it should work no differently than if it were
installed via Install-Module.

OFFLINE INSTALL

Offline installs are often required for secure environments. If you cannot use Save-
Module, using the zip installation works as well. As mentioned previously, if you’d like
a detailed step-by-step for future reference, you can visit dbatools.io/offline.

2.5.2 Additional methods

We also offer the ability to install and update via a few other methods, including Choc-
olatey! For details about additional installation methods, please visit dbatools.io/
install.

Figure 2.7 An unzipped directory,
placed in a valid module’s path. Note
the directory structure.

https://dbatools.io/download/
https://dbatools.io/download/
https://dbatools.io/download/
https://dbatools.io/offline/

23How to find and use commands, the help system, and docs.dbatools.io

2.6 How to find and use commands, the help system, and
docs.dbatools.io
We’ve got a lot of commands, which makes the toolset powerful but potentially over-
whelming. To ensure that you can find your way around dbatools, we offer a number
of different ways to find commands and functionality. We even include websites!

2.6.1 Get-Command

To find command names that match a pattern, you can use PowerShell’s built-in Get-
Command, shown here.

Get-Command *connection* -Module dbatools

2.6.2 Find-DbaCommand

You can also use our command, Find-DbaCommand, shown in the next listing, which
searches not only command names like Get-Command but command synopses and
descriptions as well.

Find-DbaCommand connection

You can even use tags. The -Tag parameter, shown in the following code sample,
which autocompletes, uses arbitrary tags applied by our team.

Find-DbaCommand -Tag Connection

Which command is best, Get-Command or Find-DbaCommand? It really depends on your
preference; because of the size of our toolset, we wanted to offer additional options,
and as a bonus, Find-DbaCommand helps automate building the raw code for docs
.dbatools.io.

2.6.3 Get-Help

We try to make PowerShell as accessible as possible, and part of that is providing solid
documentation for our end users. Documentation is so important to us that we have
tests that ensure the following items exist within every command:

 Synopsis
 Description
 Help for each parameter
 Examples

Listing 2.6 Finding command names that match Connection

Listing 2.7 Finding command descriptions and examples that match connection

Listing 2.8 Finding commands where the tag matches connection

https://docs.dbatools.io/
https://docs.dbatools.io/
https://docs.dbatools.io/

24 CHAPTER 2 Installing dbatools

We also created an attractive, categorized web interface, shown in figure 2.8, to help
navigate through our 500+ commands.

Once you’re finished installing, you may find yourself in need of documentation and
help. PowerShell makes getting help incredibly easy: use Get-Help, as shown in the
next listing.

Get-Help Test-DbaConnection

Listing 2.9 Getting help for Test-DbaConnection

Figure 2.8 dbatools.io/commands, supporting both search and categories

https://dbatools.io/commands/

25Updating

2.6.4 docs.dbatools.io

In addition to our commands index, we also offer an entire website dedicated to doc-
umentation. Every command has a web page at docs.dbatools.io, and the website is
updated with every release. See figure 2.9.

 You can access docs for each command by appending the command name to
dbatools.io (e.g., dbatools.io/Start-DbaMigration), or you can use Get-Help, this time
with the -Online parameter, as shown in the following code.

Get-Help Start-DbaMigration -Online

2.7 Updating
After installing, it is important to keep dbatools updated. During peak coding season,
we sometimes update multiple times per day (after thousands of tests pass, of course),
so updating should be a comfortable routine.

2.7.1 PowerShell Gallery

Updating dbatools and any PowerShell module is easiest when PowerShell Gallery is
used, as shown in the following code snippet.

Update-Module dbatools

Listing 2.10 Getting online help for Start-DbaMigration

Listing 2.11 Updating dbatools using the PowerShell Gallery

Figure 2.9 Docs website—note that the most recent version can be found in the upper-left.

https://dbatools.io/
https://docs.dbatools.io/Start-DbaMigration
https://docs.dbatools.io/

26 CHAPTER 2 Installing dbatools

NOTE If you installed dbatools without using the CurrentUser scope, you will
need to run the update as administrator.

2.7.2 Alternative methods

Updating dbatools using other methods is a far less automated process. It is basically a
delete and reinstall. We have attempted to ease this with Update-Dbatools, as shown
in the next listing, but it’s a big challenge, especially when DLL files are in use.

Update-Dbatools

If this command does not work for you, please revisit section 2.4 to delete and rein-
stall. If you find the DLLs are “stuck,” the command shown in the next code may be
necessary.

Get-Process *powershell* | Stop-Process

Now that you’ve got dbatools installed, it’s time to prep our lab.

2.8 Hands-on lab
Let’s practice what you just read in this chapter:

1 Find all commands that have DbaReg in their name.
2 Using Get-Help, find examples for the command Install-DbaInstance.

Listing 2.12 Updating dbatools using our native command

Listing 2.13 Kill all PowerShell-related processes

27

The dbatools lab

Now that you’ve installed dbatools, it’s time to connect to a nonproduction SQL
Server instance! If you don’t already have SQL Server installed, this chapter will
help you set up a lab where you can safely explore dbatools’s features and com-
mands. This will allow you to test examples and labs from this book without worry-
ing about causing any harm along the way.

Setting up a lab will give you the freedom to practice retrieving information as well
as test some more complicated scenarios such as setting up log shipping or migrat-
ing databases between SQL Server versions.

 By the end of this chapter, you’ll have an ideal SQL Server lab, either in Win-
dows or using Docker. The choice is up to you.

3.1 Why is a lab included in this book?
Considering the number of online tutorials available to help you set up a local SQL
Server instance, you may be wondering why we included a SQL Server lab in our
book. First, a dbatools book without a SQL Server lab would feel incomplete
because dbatools is not just about using PowerShell; it’s about using PowerShell
with SQL Server.

Do not test in production
You should always test scripts and commands in a nonproduction environment prior
to running them in production. We follow this rule ourselves and always use a number
of no-risk SQL Server instances to test our scripts.

The key to PowerShell is in its name: it’s powerful, and although dbatools has many
safeguards in place, we recommend using a nonproduction SQL Server instance to
learn and perfect your skills.

28 CHAPTER 3 The dbatools lab

SETTING YOUR EXPECTATIONS FOR THIS LAB We did not create this tutorial
intending for every example in the book to work verbatim. All of our exam-
ples were tested against live SQL Server instances, but many parameter values
are intended to be theoretical.

In addition, we had our own challenging experiences with some of the tutorials and
wanted to save you the headache. When Jess first got started with SQL Server and Power-
Shell, she wanted to build a lab and found the barriers to entry surprisingly high. She
read so many blog posts that walked her through creating multiple Hyper-V VMs, setting
up a domain controller, and changing network settings and IP addresses. And she did
all of this only to finally log in to a lab that couldn’t even connect to the internet to down-
load dbatools!

 This chapter was written with her experience in mind, with the goal of providing an
easier onboarding experience for those who are new to SQL Server and PowerShell.

NOTE Building the perfect lab is hard. We wish we could craft something that
was guaranteed to work in 100% of situations for 100% of our readers. In real-
ity, though, it is impossible to promise that every example and lab in this book
will work perfectly in your environment. What we can promise is that this chap-
ter will give you the foundation you need to start using dbatools right away.

3.2 Two options for building a dbatools lab environment
In recent years, Microsoft introduced containerized versions of SQL Server, which was
a game changer for setting up test environments. We use and recommend containers,
but we also continue to use and recommend SQL Server on Windows. Each platform has
its own advantages and disadvantages, which we’ll highlight throughout the chapter.

 For the first option, we’ll cover how to install two instances of SQL Server Developer
edition on Windows using dbatools. That’s right! We’ll be jumping straight into using
one of our most powerful commands to easily install SQL Server.

 With this option, you can explore all that dbatools has to offer because Windows
supports 100% of our commands. This includes commands that work with the regis-
try, such as New-DbaClientAlias and others that use SQL WMI (SQL Server Configu-
ration Manager) like Update-DbaServiceAccount. All of these will work on Windows
hosts.

 For the second option, we’ll take a look at how we can use containers to quickly cre-
ate demo environments on our local machine. Containers are really convenient
because they can be quickly destroyed and recreated.

 The downside is that the SQL Server containers we’ll use are Linux-based. This allows
us to use more than 75% of the dbatools commands, because the remaining commands
use technology that is available only on Windows at this time. The time-saving trade-off
is worth it in many scenarios, especially if we want to test an instance-to-instance migra-
tion, but we don’t want to clean the destination instance after every test.

29Option 1: Windows lab

3.3 Option 1: Windows lab
As we mentioned earlier, setting up a lab on a Windows machine will give us the ability
to test all of our dbatools commands. For the building blocks of our Windows lab, you
need to find a place where you have the ability and permission to install and configure
a SQL Server instance and, preferably, two SQL Server instances. This will allow us to
practice targeting multiple instances at once as well as migrating databases, logins,
and more between the instances.

 This could be your local machine, a spare virtual machine floating around at work,
or even a virtual machine running in a third-party cloud provider such as Azure. We
won’t need too many resources for the lab activities in this book because we are more
interested in learning about dbatools rather than running any high-performance work-
loads. Even a small VM with two cores and 8 GB of RAM will be plenty for our needs.

 Note that we will not be installing Hyper-V, Active Directory, or anything compli-
cated—we wanted to keep this lab as straightforward as possible.

3.3.1 Installation media for our lab
Once you’ve found a machine to use, we’re going to download the installation media
for both SQL Server 2017 and SQL Server 2019. Because we’re building a lab environ-
ment that won’t be used for production workloads, we can use the Developer edition
of SQL Server that is free. You can download both versions from Microsoft at
sqlps.io/sqlserverdown.

 When you have both versions downloaded, make a note of the path because we’ll
need that for the installation. If you have downloaded an ISO, you will need to mount
it to be able to install SQL Server from it. We are going to install both 2017 and 2019
versions, so we recommend mounting each ISO and then copying the files into a
folder, as shown in figure 3.1.

Figure 3.1 SQL Server 2019 installation media ready for our install

https://www.microsoft.com/en-us/sql-server/sql-server-downloads

30 CHAPTER 3 The dbatools lab

3.3.2 Building the lab

It’s now time to install some SQL Servers for our lab. We have several ways to accom-
plish this task. We’re all probably most familiar with double-clicking the setup.exe and
working through the GUI to install SQL Server. This is an easy way for us to see exactly
what we’re configuring and ensure we understand the different options. However, it
also means we have to rely on humans to document—or, more likely, remember—to
click the same box and enter the same values for each of our installs. Otherwise, we
will end up with a whole estate of slightly different SQL Server configurations.

 Chapter 13 will give you an in-depth look at how to install and update SQL Server
instances using Install-DbaInstance and Update-DbaInstance. But, for this chapter,
we’ll use Install-DbaInstance with simplified options as a way to slowly introduce the
command. The aim here is to get our lab built so we can start learning; we recommend
chapter 13 for when you want to install SQL Server in your production environment.

TIP All of the scripts to build our lab are available in our dbatools-lab reposi-
tory on GitHub, which you can find at sqlps.io/dbatoolslab. It’s a good idea to
clone, or copy, that repository from GitHub onto your lab machine. It has
everything you need to get your lab up and running in no time.

In listing 3.1, you can see the code we’ll use to get two SQL Server instances installed
with a basic configuration. This is from the 01_Install_Lab.ps1 file from the dbatools-
lab repository. You’ll need to run the script from an elevated prompt, so that you have
the authorization to install SQL Server. You can do this by right-clicking the Power-
Shell icon and choosing Run as Administrator. The script will also prompt you twice
for confirmation to ensure you do want to perform the installations.

SQL Server Installation media extracted into folders on Z: drive
Run PowerShell as Administrator

Install SQL Server 2019 as the default instance
PS> Install-DbaInstance -Version 2019 -SqlInstance dbatoolslab

➥ -Feature Engine -Path Z:\2019 -AuthenticationMode Mixed

Confirm
Are you sure you want to perform this action?
Performing the operation "Install 2019 from Z:\2019\setup.exe" on target

➥ "dbatoolslab".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

➥ (default is "Y"): Y

ComputerName : dbatoolslab
InstanceName : MSSQLSERVER
Version : 15.0
Port :
Successful : True
Restarted : False

Listing 3.1 Installing two SQL Server instances

https://github.com/dataplat/dbatools-lab

31Option 1: Windows lab

Installer : Z:\2019\setup.exe
ExitCode : 0
LogFile : C:\Program Files\Microsoft SQL Server\150\Setup

➥ Bootstrap\Log\Summary.txt
Notes : {}

Install SQL Server 2017 as a named instance
PS> Install-DbaInstance -Version 2017 -SqlInstance dbatoolslab\sql2017

➥ -Feature Engine -Path Z:\2017 -AuthenticationMode Mixed

Confirm
Are you sure you want to perform this action?
Performing the operation "Install 2017 from Z:\2017\setup.exe" on target

➥ "dbatoolslab".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

➥ (default is "Y"): y

ComputerName : dbatoolslab
InstanceName : sql2017
Version : 14.0
Port :
Successful : True
Restarted : False
Installer : Z:\2017\setup.exe
ExitCode : 0
LogFile : C:\Program Files\Microsoft SQL Server\140\Setup

➥ Bootstrap\Log\Summary.txt
Notes : {}

The output from Install-DbaInstance indicates that our installs were successful, and
it also provides the path for the Summary.txt file created by the installation process. If
you do have any issues during the install, this log file can be a goldmine of informa-
tion, explaining what went wrong.

Because our instances were successfully installed, we can connect to them in SQL
Server Management Studio (SSMS) using the names dbatoolslab for the 2019

Try it now 3.1
It’s time to try your hand at installing one or two—if you have the resources—SQL
Server instances using dbatools:

Install-DbaInstance -Version 2019 -SqlInstance dbatoolslab -Feature Engine

➥ -Path Z:\2019 -AuthenticationMode Mixed
Install-DbaInstance -Version 2017 -SqlInstance dbatoolslab\sql2017

➥ -Feature Engine -Path Z:\2017 -AuthenticationMode Mixed

Once the commands have completed, take a look at the log file. A wealth of informa-
tion is contained here, including all of the configuration parameters that were used
for the install.

Installs the 2019 default SQL Server instance

Installs the 2017 named SQL Server instance

32 CHAPTER 3 The dbatools lab

default instance and dbatoolslab\sql2017 to connect to our 2017 named instance.
This is shown in figure 3.2.

Now your instances are installed and ready to go with dbatools. Connect to your new
instance using Connect-DbaInstance as in the next listing.

PS> Connect-DbaInstance -SqlInstance dbatoolslab

If you are ever curious about the instances installed on a particular machine, you can
use Find-DbaInstance as shown in the next code snippet.

PS> Find-DbaInstance -ComputerName localhost

ComputerName InstanceName Port Availability Confidence ScanTypes
------------ ------------ ---- ------------ ---------- ---------
dbatoolslab SQL2017 60653 Available High Default
dbatoolslab MSSQLSERVER 1433 Available High Default

Listing 3.2 Connecting using Windows authentication

Listing 3.3 Using dbatools to find installed SQL Server instances

Figure 3.2 Two SQL Server instances,
one 2017 and one 2019, ready for action

33Option 1: Windows lab

3.3.3 Configuration scripts

Now that our instances are installed, we still have a little bit of configuration and setup
to make sure we have everything we need for our lab. For one thing, we don’t cur-
rently have any databases to work with—that’s pretty important. We’re also going to
want to create some objects to interact with when we’re learning about the many dba-
tools commands. We’ll create a linked server, some SQL Server logins, and a few SQL
Server Agent jobs to get us going.

INSTALL SSMS AND OTHER TOOLS WITH DBATOOLS-LAB SCRIPTS Along with the
installation script, there is also an 00_Install_Prereqs.ps1 script in the dbatools-
lab repository on GitHub that will install Chocolatey (a popular package man-
ager for Windows) as well as SSMS, Azure Data Studio (ADS), and a couple of
other useful tools.

If you ran the 00_Install_Prereqs.ps1 script from the dbatools-lab repository, you will
notice that it downloaded two backup files to the backup folder specified in the config
file. We’ll use dbatools to restore those databases to our SQL Server 2017 instance
using the code shown in the next listing.

PS> Restore-DbaDatabase -SqlInstance dbatoolslab\sql2017

➥ -Path C:\dbatoolslab\Backup\WideWorldImporters-Full.bak
PS> Restore-DbaDatabase -SqlInstance dbatoolslab\sql2017

➥ -Path C:\dbatoolslab\Backup\AdventureWorks2017-Full.bak

These databases are samples from Microsoft and will be perfect for our lab environ-
ment. dbatools doesn’t just deal in databases, though. Let’s also add a few SQL logins
and SQL Server Agent jobs so we can also target those with dbatools in some of the
other chapters. Again, all this code is within the dbatools-lab repo, or you can run the
following from the next code sample.

Create some SQL Logins
PS> $pw = (Get-Credential wejustneedthepassword).Password
PS> New-DbaLogin -SqlInstance dbatoolslab\sql2017 -Password $pw

➥ -Login WWI_ReadOnly
PS> New-DbaLogin -SqlInstance dbatoolslab\sql2017 -Password $pw

➥ -Login WWI_ReadWrite
PS> New-DbaLogin -SqlInstance dbatoolslab\sql2017 -Password $pw

➥ -Login WWI_Owner

Create database users
PS> New-DbaDbUser -SqlInstance dbatoolslab\sql2017 -Login WWI_ReadOnly

➥ -Database WideWorldImporters -Confirm:$false
PS> New-DbaDbUser -SqlInstance dbatoolslab\sql2017 -Login WWI_ReadWrite

➥ -Database WideWorldImporters -Confirm:$false

Listing 3.4 Using dbatools to restore two databases

Listing 3.5 Using dbatools to create test logins and jobs

34 CHAPTER 3 The dbatools lab

PS> New-DbaDbUser -SqlInstance dbatoolslab\sql2017 -Login WWI_Owner

➥ -Database WideWorldImporters -Confirm:$false

Add database role members
PS> Add-DbaDbRoleMember -SqlInstance dbatoolslab\sql2017

➥ -Database WideWorldImporters -User WWI_Readonly -Role db_datareader
PS> Add-DbaDbRoleMember -SqlInstance dbatoolslab\sql2017

➥ -Database WideWorldImporters -User WWI_ReadWrite -Role db_datawriter
PS> Add-DbaDbRoleMember -SqlInstance dbatoolslab\sql2017

➥ -Database WideWorldImporters -User WWI_Owner -Role db_owner

Create some SQL Server Agent jobs
PS> $job = New-DbaAgentJob -SqlInstance dbatoolslab\sql2017

➥ -Job 'dbatools lab job'

➥ -Description 'Creating a test job for our lab'
PS> New-DbaAgentJobStep -SqlInstance dbatoolslab\sql2017 -Job $Job.Name

➥ -StepName 'Step 1: Select statement'

➥ -Subsystem TransactSQL -Command 'Select 1'

add second job
PS> $job = New-DbaAgentJob -SqlInstance dbatoolslab\sql2017

➥ -Job 'dbatools lab - where am I'

➥ -Description 'Creating test2 job for our lab'
PS> New-DbaAgentJobStep -SqlInstance dbatoolslab\sql2017 -Job $Job.Name

➥ -StepName 'Step 1: Select servername'

➥ -Subsystem TransactSQL -Command 'Select @@ServerName'

Finally, we’ll also change a couple of sp_configure values on our SQL Server 2017
instance. This way our instances don’t match exactly, and it’ll make things a little
more interesting when we start to talk about migrations. In listing 3.6, we’re turning
on remote admin connections and also slightly adjusting the cost threshold for paral-
lelism. At this point, we’re not recommending these configuration changes; we’re
merely setting up our lab to be a little more real-world-like.

PS> Set-DbaSpConfigure -SqlInstance dbatoolslab\sql2017

➥ -Name RemoteDacConnectionsEnabled -Value 1
PS> Set-DbaSpConfigure -SqlInstance dbatoolslab\sql2017

➥ -Name CostThresholdForParallelism -Value 10

Listing 3.6 Using dbatools to configure SQL Server instances

Try it now 3.2
You now have some SQL Server instances installed, so it’s time to restore databases
and create some objects as seen in the code throughout this chapter:

Restore-DbaDatabase -SqlInstance dbatoolslab\sql2017

➥ -Path 'C:\dbatoolslab\Backup\WideWorldImporters-Full.bak'

Explore your lab through your SSMS or ADS. Check out the sample databases, and
ensure you can see the objects we created through PowerShell.

35Option 2: Quick demo environments using containers

3.3.4 Windows lab is ready for action

At this point, we are ready to put our Windows lab to the test. We’ve installed a couple
of SQL Server instances, restored some databases, and created a few other objects.
This will give us the perfect area to work through the rest of the book, and we can be
confident that our learning is separate from our real environments.

3.4 Option 2: Quick demo environments using containers
So far, we’ve installed two instances on Windows, which gives us the ability to test 100%
of our dbatools commands because they are all supported in this environment. How-
ever, doing this can be a bit of an overkill if we just want to quickly test or perhaps demo
a few dbatools commands. In this scenario, we can use containers. A lot of us are already
using containers for most of our demo work because they provide a lightweight option
and the majority of dbatools commands are supported on containers running Linux
and SQL Server.

 Containers have become a big part of the IT industry in the last few years, and it’s
easy to see why when you look at the benefits they provide. We like to think of contain-
ers as the next step from virtual machines (VMs). With VMs, the operating system is
included within each machine, whereas with containers, the operating system is part
of what is virtualized. This means it’s not duplicated in each container, which makes
containers quicker to boot and much lighter in terms of size and the resources
needed to run.

Containers are perfect for lab environments. You can quickly destroy and recreate
them, so you can easily get back to your starting state. This creates a playground where
you can experiment and test whatever you need to, and when you’re done, you
destroy the container. The next time you want to test something, just fire up a fresh
container, and you’re ready to go. You never have to worry about trying to remember
what you’ve done so you can unwind and get back to the perfect clean slate.

 You need to consider some caveats when using containers, however, especially for
databases or situations where you would usually want to persist data. Because containers

Real-world container usage
We use containers to help ensure the code in this book works! Using PowerShell, Pes-
ter, and GitHub Actions, we set up a workflow that extracts all of the code from our
book. Then, we run tests to ensure that the extracted code is syntactically valid (unit
tests). Once all of those tests pass, we run the extracted code against a SQL Server
container to ensure that Linux-compatible dbatools commands work as expected (inte-
gration tests).

In addition, to ensure the code in this book continues to work as dbatools changes,
we also run these tests with each commit to the dbatools repository. This was one
of our favorite parts of the book-writing process. You can read more about it at
sqlps.io/dbatoolslabpester.

https://blog.robsewell.com/tags/#dbatoolslabpester

36 CHAPTER 3 The dbatools lab

are intended to be temporary, any data stored within the container is not persisted.
However, you can create and attach volumes to a container to enable data to be per-
sisted between containers. This is not a big concern for our lab environment, but some-
thing to keep in mind if you start using containers more.

 The easiest way to run containers on your local machine is to use Docker Desktop
(https:// www.docker.com/products/docker-desktop/). To get started, head over to
the Docker website and download Docker Desktop for your operating system. Once
this downloads, follow the prompts to install, and then you’re ready to run your first
container.

3.4.1 Running SQL Server in a container

We could take a couple of routes to get a SQL Server running in a container on our
laptop. We could pull down the latest SQL Server 2019 container image from Micro-
soft, create a container from this image locally, and then connect to the SQL Server
instance running on it. This will get you a shiny new SQL Server instance to play with,
but it will contain no databases or objects.

 This might be just what you need, but for the purpose of this book—and learning
dbatools—it would be useful to have some databases and objects to play with. Luckily
for us, the dbatools team has created some images based on the official SQL Server
2019 image that include just that. In this section of the chapter, we’ll pull those images
down, create some containers from them, and then connect to and explore the SQL
Server instances.

 The code in listing 3.7 pulls down two images and starts SQL Server containers
from them. That’s it! Three lines of code, and you’ll have two SQL Server instances
running on your machine, chock-full of objects to use in your testing.

 It is worth noting that if you haven’t already got the latest container images available
locally on your machine, Docker will pull them down from the remote container repos-
itory. However, that image will then be cached locally, so the next time you run the code
in the next listing, Docker will get that SQL Server instance up and running even faster.

PS> # create a shared network
PS> docker network create localnet

PS> # Expose engines and setup shared path for migrations
PS> docker run -p 1433:1433 --volume shared:/shared:z --name mssql1

➥ --hostname mssql1 --network localnet -d dbatools/sqlinstance
PS> docker run -p 14333:1433 --volume shared:/shared:z --name mssql

➥ --hostname mssql2 --network localnet -d dbatools/sqlinstance2

To prove that the instances are up and running, you can use docker ps to list all run-
ning containers. You can see in the following code snippet that both mssql1 and
mssql2 containers have a status of up X seconds, meaning they are both up and ready
for us to connect.

Listing 3.7 Running SQL Server 2019 containers

https://www.docker.com/products/docker-desktop/

37Option 2: Quick demo environments using containers

PS> docker ps
CONTAINER ID IMAGE COMMAND

➥ CREATED STATUS PORTS NAMES
d1f7bc2b6077 dbatools/sqlinstance2 "/bin/sh -c /opt/mss…"

➥ 18 seconds ago Up 20 seconds 0.0.0.0:14333->1433/tcp mssql2
fdcaa3cbb934 dbatools/sqlinstance "/bin/sh -c /opt/mss…"

➥ 25 seconds ago Up 26 seconds 0.0.0.0:1433->1433/tcp mssql1

In the results for listing 3.8, you can see the port mapping of 1433:1433 for the
mssql1 container. We defined this in our docker run command using the -p parame-
ter. This maps ports on your local machine to ports within the container. If you
already have a local install of SQL Server that is listening on port 1433 (the default
port for SQL Server instances), you can instead map a different port from your local
machine to 1433 on the container. Changing -p 1433:1433 to -p 14333:1433, as we
have done for mssql2, means that the container will listen locally on port 14333, but
then translate that to 1433 within the container.

 When we connect to a SQL Server instance in a container, we can use the dbatools
Connect-DbaInstance command, shown in listing 3.9. As with any connection to SQL
Server, if you are using the default port of 1433, you don’t have to specify the port in
the connection string. If you are using a different port, you should specify the port
after localhost, as demonstrated in listing 3.9.

 You’ll also notice we are using the -SqlCredential parameter for the connection,
which uses the sqladmin account and the password dbatools.IO. This is specified
within the image we pulled down. Using Get-Credential generates a pop-up for you
to enter the credentials securely. You could also save the credentials to a variable
within your PowerShell session and then reuse that going forward. This method is
shown in the second example in the next code listing.

Connect to SQL Server in a container listening on port 1433
PS> Connect-DbaInstance -SqlInstance localhost -SqlCredential sqladmin

Connect to SQL Server in a container listening on non standard port
PS> $cred = Get-Credential sqladmin
PS> Connect-DbaInstance -SqlInstance localhost:14333 -SqlCredential $cred

Listing 3.8 Viewing running containers using docker ps

Listing 3.9 Connecting to our container using dbatools

Simplify connecting to your container with an alias
To allow you to use your container name as your SQL Server instance name in con-
nection strings, instead of localhost, you can use an alias. Good news—dbatools
can help with this as well. The code in this tip shows how to create an alias of mssql1
for the container listening on the default port of 1433. Then we can specify mssql1
for the -SqlInstance parameter going forward.

38 CHAPTER 3 The dbatools lab

We can also connect to our containerized SQL Servers in SQL Server Management
Studio, as shown in figure 3.3. You can see two databases are available in the container,
and Ola’s maintenance solution is installed, giving us some SQL Server Agent jobs to
work with as well.

(continued)
PS> New-DbaClientAlias -ServerName localhost -Alias mssql1
PS> Connect-DbaInstance -SqlInstance mssql1 -SqlCredential sqladmin

ComputerName Name Product Version HostPlatform IsAzure...
------------ ---- ------- ------- ------------ -------...
mssql1 mssql1 Microsoft SQL Server 15.0.4138 Linux False ...

Figure 3.3 SSMS connected to our
two SQL Server 2019 containers

39Option 2: Quick demo environments using containers

MORE ON CONTAINERS

You now have two SQL Server instances running in containers on your local machine.
This is a great place to start: you have a basic environment to test dbatools, but there is
a lot more you can do with containers. To find out more, you can check out Chrissy’s
article on dbatools and Docker at dbatools.io/docker. Here, you are shown how to set
up availability groups using containers, and it also demonstrates instance-to-instance
migrations and exports for disaster recovery.

 For the really curious, you can see how we built the Docker images that were used
in this chapter. Like dbatools, the code is open source and available on GitHub at
sqlps.io/docker.

 Rob has also written a number of easy-to-use Jupyter Notebooks that will walk you
through more complicated examples of using containers and dbatools. These
notebooks are all available in the repository under the notebooks folder (see sqlps.io/
dbatoolslab).

 We also recommend reviewing Rob’s step-by-step blog post at sqlps.io/notebooks-
setup for getting .NET Notebooks set up and running. You can open the non-.NET
notebooks in the repository with ADS.

https://github.com/dataplat/docker
https://blog.robsewell.com/blog/jupyter%20notebooks/azure%20data%20studio/powershell/pwsh/dbatools/dbachecks/new-net-notebooks-are-here-powershell-7-notebooks-are-here/
https://blog.robsewell.com/blog/jupyter%20notebooks/azure%20data%20studio/powershell/pwsh/dbatools/dbachecks/new-net-notebooks-are-here-powershell-7-notebooks-are-here/
https://github.com/dataplat/dbatools-lab
https://github.com/dataplat/dbatools-lab
https://github.com/dataplat/dbatools-lab
https://github.com/dataplat/docker

40

A gentle introduction
 to dbatools commands

Now you should be all set up and ready to start working with dbatools. In this chap-
ter, you will learn about a few new commands and four of the common dbatools
parameters: -SqlInstance, -SqlCredential, -ComputerName, and -Credential.

 These parameters are particularly useful because they’re used in nearly every
command to connect to both local and remote servers. The primary goal of this
chapter is to get you comfortable with these common parameters. You will see them
used throughout this book and in all of the dbatools that you will write in the
future. Having consistent parameters throughout the entire module was a high pri-
ority for the 1.0 release of dbatools.

4.1 Getting started
As DBAs, it is in our nature to be wary; we want to understand what a tool is going
to do before we let it anywhere near our production environment. For this reason,
we’ll start with commands that are read-only.

 The first command that we have chosen to use is one that will help you check
that you are able to connect to the SQL Server instances. We figure that this is a
good place to start because if you can’t connect to the SQL Server instance, then
you will not be able to use any of the dbatools commands.

 We will also show you how to list the services on the host for SQL Server and
how to list the databases on an instance using dbatools. We have chosen these as
our starting point not only because they are common scenarios that you will want to
use, but also because they do not perform any changes.

41First, getting help

4.2 Checking the SQL connection
dbatools, like SQL Server Management Studio (SSMS) and any PowerShell command
that you run against a SQL Server, will be able to accomplish only what is available to
the user account running the PowerShell command. There is no magic involved here.
At both the operating system level and the SQL Server level, you will be able to per-
form only the actions that your user account has permissions to.

 Before we start doing anything, it is a good idea to check that the user account run-
ning the PowerShell process can connect to the SQL Server instance and that the SQL
Server instance is running before you start running other commands, as shown in fig-
ure 4.1. This is a bit like using the connect dialogue in SSMS.

When that connects, you know that, at the very least, SQL Server is running on that
instance, and the account being used has CONNECT permissions.

 Now we will translate that into a dbatools command. Right now, we are using this
command to teach you some of the common dbatools parameters. As you progress
with your dbatools and PowerShell learning, you will want to use this command to
check that you have a working connection prior to running any further commands so
that your results are not full of Failed to Connect errors.

 The dbatools command that you will use to accomplish a test connection is appro-
priately named Connect-DbaInstance. We’ll also explore Test-DbaConnection, which
not only connects to the database engine but performs a few other tests as well.

4.3 First, getting help
In our experience, some PowerShell users may not know that help is available not just
on Stack Overflow or in Slack but also within PowerShell itself. Because of this, we’ll
touch on Get-Help just once more.

 As you learned in chapter 2, you can use the Get-Help command to learn how to
use any PowerShell command, and we recommend that you remember to use Get-
Help every time you want to use a PowerShell command that is new to you.

Figure 4.1 SSMS’s familiar
Connection dialog box

42 CHAPTER 4 A gentle introduction to dbatools commands

 Although we won’t show the Get-Help example for every command throughout the
book, it’s still a good idea to use it for each new command that you run. Even though
we’ve been using PowerShell for years, Get-Help is our go-to command anytime we run
a new command. Get-Help -Examples is a particular favorite. Let’s find out how to use
Get-Help and Test-DbaConnection together, as shown in the next code sample.

PS> Get-Help Test-DbaConnection -Detailed

When you run the command in listing 4.1, you will see output similar to the text in fig-
ure 4.2.

In the synopsis, you can see that this command is for testing the SQL Server connec-
tion. The Parameters section shows the parameters available to this command.

Listing 4.1 Getting help for Test-DbaConnection

Figure 4.2 Getting help

43Running your first dbatools command

 As mentioned in chapter 2, dbatools, like SSMS, should be installed on as few serv-
ers as possible. This is to avoid performance impacts, reduce your attack surface, and
increase maintainability. Logging in to remote servers via Remote Desktop (RDP) is
actually considered unsafe by security professionals (see dbatools.io/secure). Not only
is it more convenient to connect remotely to servers, it’s more secure. dbatools
enables you to easily manage your entire estate from a centralized location.

4.4 Running your first dbatools command
Now we’re going to test the connection to your local SQL Server instance using Test-
DbaConnection, as shown in the next code listing. This command will also check the
connection for PowerShell remoting, which helps run commands targeted at the
operating system, such as Get-DbaDiskSpace.

PS> Test-DbaConnection -SqlInstance $Env:ComputerName

Note that when our commands reference $Env:ComputerName or localhost, it is
expected that each of these commands will be run against a test instance on localhost.

TIP $Env:ComputerName is a PowerShell default environment variable con-
taining the name of the current machine.

Now you will see output similar to the output in listing 4.3. If you have a successful con-
nection with the account running PowerShell to your local instance, then the Connect-
Success property will be true. Notice that the output returns much more than just
whether there was a successful connection.

ComputerName : DEVSQL
InstanceName : MSSQLSERVER
SqlInstance : DEVSQL
SqlVersion : 14.0.2002
ConnectingAsUser : AD\wdurkin
ConnectSuccess : True
AuthType : Windows Authentication
AuthScheme : NTLM
TcpPort : 1433
IPAddress : 172.16.11.162
NetBiosName : DEVSQL
IsPingable : True
PSRemotingAccessible : True

Listing 4.2 Testing SQL engine and PowerShell remote connectivity

Listing 4.3 Example output of Test-DbaConnection

The Windows name of the machine

The SQL Server instance—MSSQLSERVER
is a default instance.

The machine name returned from SQL

The SQL Server build version

The user account connecting to SQL

Was there a successful SQL connection?

The SQL authentication type used

The SQL authentication scheme used

The SQL TCP port of the instance

The IP address of the SQL Server instance

The
NetBIOS
name of
the SQL

Server
instance

The result of ICMP echo request to the SQL Server instance

The PowerShell Remoting status
of the SQL host operating system

https://dbatools.io/secure/

44 CHAPTER 4 A gentle introduction to dbatools commands

DomainName : AD.local
LocalWindows : 10.0.17134.0
LocalPowerShell : 6.1.0
LocalCLR :
LocalSMOVersion : 15.1.18068.0
LocalDomainUser : True
LocalRunAsAdmin : True
LocalEdition : Core

If you do not have a successful connection, then you will see something similar to the
error message in the next code snippet.

PS> Get-DbaDatabase -SqlInstance SQLDEV01
WARNING: [00:02:07][Get-DbaDatabase] Error occurred while establishing
connection to SQLDEV01 | A network-related or instance-specific error
occurred while establishing a connection to SQL Server. The server was not
found or was not accessible. Verify that the instance name is correct and
that SQL Server is configured to allow remote connections. (provider: SQL
Network Interfaces, error: 26 - Error Locating Server/Instance Specified)

This is exactly the same result you would have if you tried to connect in SSMS and
were unable to get a successful connection, as seen in figure 4.3.

Now that you have learned how to test the connection to your local default instance,
you might think that all you need to do is install dbatools on every machine with a SQL
Server instance and then use $Env:ComputerName. Although that would work, one of
the advantages of using PowerShell and dbatools is the ability to run commands against
multiple instances with a single command. Returning to the SSMS analogy, you can

Listing 4.4 SQL Server connection error, example failure

The domain name or workgroup the
SQL Server instance is joined to

The OS version number of the machine
running the dbatools command The PowerShell version used to run the dbatools command

The version of the common language runtime

The version of the SQL Server Management
Objects used

Is the local user account running the
dbatools command a domain user?

Is the process running the dbatools
command running in an elevated session?

The PowerShell edition of the process
running the dbatools command

Figure 4.3 Connection failure in SSMS

45The -SqlInstance parameter

connect to multiple remote SQL Server instances from a single laptop. How do you do
the same with dbatools? Let’s explore the -SqlInstance parameter.

4.5 The -SqlInstance parameter
You have learned your first common default dbatools parameter: -SqlInstance. A
PowerShell parameter follows the command name and is defined by the fact that it
starts with a hyphen. The parameter enables the user running the command to pro-
vide input or to select options.

Every dbatools command that needs to connect to a SQL Server instance has a param-
eter of -SqlInstance (yes, there are some that don’t, which we will also learn about).
To associate this to something that you are familiar with, it is, as you may expect, the
same information that you would enter into SSMS or put into a connection string. In
this section, we will show how to use this parameter with multiple instances and non-
default instances.

4.5.1 Single instances
Let’s begin with connecting to a single instance.

CHECKING A CONNECTION TO A SINGLE REMOTE DEFAULT INSTANCE

When you connect to a remote default instance in SSMS or Azure Data Studio (ADS), just
the name of the remote host is required. When connecting to a remote default
instance with dbatools, you only need to add the name of the remote host following
the -SqlInstance, as shown in the next code listing.

Connect-DbaInstance -SqlInstance PRODSQL01

CHECKING A CONNECTION TO A SINGLE REMOTE NAMED INSTANCE

If you want to test the connection to a named instance, then you can use the format
HOSTNAME\INSTANCENAME in exactly the same way as you would use for SSMS or
ADS, as shown next.

Listing 4.5 Connecting to a remote instance

The examples in this book will not refer to localhost
You will notice that throughout this book, our examples refer to remote servers, such
as sql01 or sql02. This is because we wanted to follow best practices, even in our
examples.

You may be aware that it is a best practice to avoid installing SQL SSMS on a pro-
duction server, and the same is true for dbatools. Although we provide this lab as an
optional guide, we will rarely use localhost within the examples and leave it up to
you to change the SQL Server instance name as necessary.

One exception to this rule is when we refer to Docker containers, because Docker is
often used in development environments on localhost.

46 CHAPTER 4 A gentle introduction to dbatools commands

PS> Connect-DbaInstance -SqlInstance PRODSQL01\SHAREPOINT

CHECKING A CONNECTION TO A SINGLE LOCAL DEFAULT INSTANCE

DBAs are used to using the . or localhost to represent the local hostname. When you
are running Test-DbaConnection against the local default instance, you can use the fol-
lowing values for the -SqlInstance parameter:

 $Env:ComputerName, as seen in the previous example
 The name of the machine (DEVSQL in the prior example)
 localhost

 .

CHECKING A CONNECTION TO A SINGLE LOCAL NAMED INSTANCE

For a local named instance, you can use the following:

 $Env:ComputerName\INSTANCENAME

 MACHINENAME\INSTANCENAME

 localhost\INSTANCENAME

You can even force the protocol you’d like to use by using it in the connection string,
just like you would in SSMS. For example, to force TCP to be used to connect to SQL-
PROD01, you would use TCP:SQLPROD01\SHAREPOINT.

4.5.2 Multiple instances
We have covered local and remote instances and named instances, but only for a sin-
gle instance. The -SqlInstance parameter is not limited to a single instance. You can
run dbatools commands against multiple instances in a number of ways. Let’s look at
some of the different methods that you can use, and will see us use, throughout this
book and in the reading you will do online.

TIP Nearly every dbatools command works against multiple instances. Which
one you will choose to use in the PowerShell that you write will sometimes
depend purely on personal preference. Other times, it is dictated by the task
that you are about to perform.

MULTIPLE INSTANCES PASSED AS AN ARRAY

If you just need to run a single command against a number of instances, perhaps
because someone has walked to your desk and asked, “Are the three PRODSQL
Server Instances working okay?,” you can just list the instance names separated by a
comma, as shown in the following code.

Listing 4.6 Connecting to a remote named instance

Try it now 4.1
Connect to a remote default instance using dbatools. Unless you have a host named
PRODSQL01 with a default instance, you should replace PRODSQL01 with the name
of the remote host.

47The -SqlInstance parameter

PS> Connect-DbaInstance -SqlInstance PRODSQL01, PRODSQL02, PRODSQL03\ShoeFactory

PIPING IN INSTANCE NAMES

Your preference might be to pipe the instances to the command, as shown in the fol-
lowing code snippet.

PS> "PRODSQL01", "PRODSQL02", "PRODSQL03\ShoeFactory" | Connect-DbaInstance

INSTANCES STORED IN A VARIABLE

To avoid repeating yourself, if you are going to run a number of dbatools commands
against the same instances, you can define a variable as a list of instances and then
provide that variable to the dbatools command, as shown in the following listing.

PS> $instances = "PRODSQL01", "PRODSQL02", "PRODSQL03\ShoeFactory"
PS> Connect-DbaInstance -SqlInstance $instances

Alternatively, your preference may be to pipe the variable to the command, like so.

PS> $instances = "PRODSQL01", "PRODSQL02", "PRODSQL03\ShoeFactory"
PS> $instances | Connect-DbaInstance

INSTANCES FROM A SEPARATE SOURCE

If you have a list of instances in a database, you might want to use that to be able to
gather the instances for a dbatools command. For example, if you are frequently
asked by a project manager, “Are all of my instances running?” you know the instances
are stored in a database with a reference to the project manager, and you know the
query to gather the instance names.

 You could copy and paste those instance names one by one into an SSMS connec-
tion window or add them to a folder in Central Management Server (CMS) and run a
query. To achieve the same result with dbatools, you can use the code in the following
listing.

Get Instance Names from database
PS> $instances = (Invoke-DbaQuery -SqlInstance ConfigInstance

➥ -Database DbaConfig -Query "SELECT InstanceName FROM

➥ Config.Instances C JOIN Project.People P ON C.InstanceID =

➥ P.InstanceID WHERE P.Name = 'Shawn Melton'").InstanceName
PS> $instances | Connect-DbaInstance

Listing 4.7 Connecting to multiple instances

Listing 4.8 Piping instances

Listing 4.9 Storing values in a variable

Listing 4.10 Piping values from a variable

Listing 4.11 Piping to the -SqlInstance parameter

48 CHAPTER 4 A gentle introduction to dbatools commands

You may notice that the instances variable is the result of some code being wrapped
in parentheses. Placing a command in parentheses and referencing a property that is
returned will remove the column heading from the output. This is used in listing 4.11
to ease readability. Another way to do this would be to remove the parentheses and
instead pipe the results and parse with the -ExpandProperty parameter in Select-
Object, as shown next.

PS> $instances = Invoke-DbaQuery -SqlInstance ConfigInstance

➥ -Database DbaConfig -Query "SELECT InstanceName FROM

➥ Config.Instances C JOIN Project.People P ON C.InstanceID =

➥ P.InstanceID WHERE P.Name = 'Shawn Melton'" | Select-Object

➥ -ExpandProperty InstanceName
PS> $instances | Connect-DbaInstance

Each approach is valid, but we recommend that you choose one way within your cod-
ing style and stick with it. This will help keep consistency throughout your project.

INSTANCES USING A NONDEFAULT PORT NUMBER

If you connect to your SQL Server instance using a port number, then this is provided
to the -SqlInstance parameter in the same way as you provide it to the SSMS Connec-
tion dialog box, as shown next.

PS> Connect-DbaInstance -SqlInstance "sqldev04,57689"

This is useful when the SQL browser service isn’t enabled, and your instance is on a
nondefault port. Pay particular attention here to the use of quotes, because they tell
PowerShell that the comma is part of the SQL Server instance name and not an array.
If you use Linux or macOS and are used to the host:port syntax, we support that syn-
tax as well, as shown in the next code snippet.

PS> Connect-DbaInstance -SqlInstance sqldev04:57689

Behind the scenes, we just translate sqldev04:57689 to Microsoft’s required syntax,
sqldev04,57689.

4.6 The -SqlCredential parameter
Before discussing the -SqlCredential parameter in depth, we’d like to highlight the
difference between -SqlCredential and -Credential. Back in the early days of
dbatools, we agreed as a team that -SqlCredential would be used to connect to a SQL
Server instance whereas -Credential would be used to connect to the operating system.
To outline this, we’ll borrow from table 2.3, minus the port column, as shown in table 4.1.

Listing 4.12 Using -ExpandProperty

Listing 4.13 Connecting to an instance using a nondefault port

Listing 4.14 Connecting to an instance using a nondefault port with a colon

49The -SqlCredential parameter

A little over 20 commands in dbatools use both -SqlCredential and -Credential
because they connect to both the SQL Database Engine and an OS component, such
as the Windows Registry or a shared drive. One such command is Test-DbaMaxMemory,
which uses -SqlCredential to get the maximum memory setting and -Credential to
calculate how many instances exist in total on the host server.

4.6.1 Connecting to instances with SQL Server Authentication

As previously mentioned, the -SqlCredential parameter is used to connect to the
database engine using alternative credentials, including SQL Server Authentication or
even multifactor authentication (MFA).

 In the next example, we will show how to connect to a SQL Server instance in dba-
tools using SQL Server Authentication. This is similar to providing a username and
password in the SSMS Connection dialog box and choosing SQL Server Authentica-
tion, as seen in figure 4.4.

You can do this with dbatools as well. You will need to use the -SqlCredential param-
eter. dbatools commands that connect to the SQL database engine will always have a
-SqlCredential parameter.

Table 4.1 -SqlCredential or -Credential

Protocol Sample command
Percentage

of commands
-SqlCredential
or -Credential

SQL Database
Engine

Get-DbaDatabase 62% -SqlCredential

WS-Management New-DbaClientAlias 25% -Credential

SQL WMI Enable-DbaAgHadr 4% -Credential

SMB over IP Get-DbaPfDataCollectorCounterSample <1% -Credential

Figure 4.4 SQL Server
Authentication dialog box
in SSMS

50 CHAPTER 4 A gentle introduction to dbatools commands

 This is especially helpful when some of the instances in your estate are not joined
to a domain or they are not joined to a domain that has trust with your primary
domain. It’s also useful testing the connection for applications that support only SQL
Server Authentication. In this case, you can test by providing the username for the
-SqlCredential parameter of the Connect-DbaInstance command, as shown in the
next code sample.

PS> Connect-DbaInstance -SqlInstance CORPSQL01 -SqlCredential devadmin

If you are using PowerShell 6+ or VS Code, you will be prompted for the password as
shown next.

PS> Connect-DbaInstance -SqlInstance CORPSQL01 -SqlCredential devadmin

PowerShell credential request
Enter your credentials.
Password for user devadmin:

Otherwise, it will look similar to the classic credential prompt as seen in figure 4.5.

4.6.2 Saving the credential to use SQL Server Authentication with
multiple commands

More often, you will be running more than one command against your SQL Server
instances. You don’t want to be entering the password for every command.

Listing 4.15 Using an alternative credential

Listing 4.16 Using an alternative credential in PowerShell 6+

Figure 4.5 Classic
credential prompt

51The -SqlCredential parameter

 In the same way as you saved the instances as a variable earlier, you can save your
credential in memory as a variable. You do this by passing a PSCredential object to
the -SqlCredential parameter. The most common way of doing this is to use the
Get-Credential command, illustrated in the next listing.

Get the credential and set it to a variable
PS> $cred = Get-Credential
Connect to the local machine using the credential
PS> Connect-DbaInstance -SqlInstance $Env:ComputerName -SqlCredential $cred

This should result in output similar to the following code.

PS> $cred = Get-Credential

PowerShell credential request
Enter your credentials.
User: devadmin
Password for user devadmin: **********

PS> Connect-DbaInstance -SqlInstance $Env:ComputerName -SqlCredential $cred

Name Product Version Platform IsAzure IsClustered ConnectedAs
---- ------- ------- -------- ------- ----------- ---------
SQLDEV Microsoft SQL Server 14.0.2027 NT x64 False False devadmin

You can see in the results that ConnectedAs B is shown as the devadmin user that we
provided to the -SqlCredential parameter.

4.6.3 Other methods of using credentials for SQL Server Authentication

Depending on how you store your credentials, you may be able to access them program-
matically. You can store credentials locally and securely using built-in PowerShell com-
mands like Export-CliXml or using community modules like Joel Bennett’s
BetterCredentials. For more information on stored credentials, visit dbatools.io/
credentials.

Listing 4.17 Assigning -Credential to a variable

Listing 4.18 Using Connect-DbaInstance and Get-Credential

B

Try it now 4.2
Create a credential variable using Get-Credential for a SQL account, and test the
connection of your user account to a remote default instance using dbatools. Take a
look at the ConnectedAs property in the output to see if you have successfully
connected.

https://dbatools.io/credentials/
https://dbatools.io/credentials/
https://dbatools.io/credentials/

52 CHAPTER 4 A gentle introduction to dbatools commands

 If you do choose to use stored credentials, then you will be able to use those
credentials in dbatools commands as long as you can convert them into a PSCredential
object. The way you achieve that will depend on the product you use to secure your
credentials, so providing a good example is troublesome. One method we have seen in
the wild enables you to return a credential from a database using a stored procedure.
The example in the next listing shows how that could be used with the -SqlCredential
parameter.

PS> $query = "EXEC GetPasswordFromPasswordStore @UserName='AD\dbatools'"
PS> $securepassword = ConvertTo-SecureString (Invoke-DbaQuery -SqlInstance

➥ VerySecure -Database NoPasswordsHere -Query $query) -AsPlainText -Force
PS> $cred = New-Object System.Management.Automation.PSCredential (

➥ "AD\dbatools", $securepassword)
PS> Test-DbaConnection -SqlInstance $Env:ComputerName -SqlCredential $cred

Note that the -Force parameter is required by ConvertTo-SecureString when con-
verting plain text to a SecureString. This is because passwords being transmitted as
plain text is frowned on and should be avoided if at all possible.

4.6.4 Connecting to instances with a different Windows account

dbatools also allows you to connect by using an alternative Windows account. To do
this, you can use -SqlCredential to specify the alternative account’s credentials, as
shown next.

PS> Connect-DbaInstance -SqlInstance SQLDEV01 -SqlCredential ad\sander.stad

This even works with Azure Active Directory (AAD) and Azure SQL Database, as
shown here.

Create a server connection
PS> $server = Connect-DbaInstance -SqlInstance dbatools.database.windows

➥ .net -SqlCredential dbatools@mycorp.onmicrosoft.com -Database inventory
Use server connection to query the database using our query command,

➥ Invoke-DbaQuery
PS> Invoke-DbaQuery -SqlInstance $server -Database inventory -Query

➥ "select name from instances"

And in dbatools 1.0, we even added support for multifactor authentication (MFA), as
shown in the next two code samples!

Listing 4.19 Converting a password to a credential

Listing 4.20 Connecting using an alternative Windows or Active Directory account

Listing 4.21 Connecting using AAD

53The -SqlCredential parameter

username is the application id, password is client secret
PS> Connect-DbaInstance -SqlInstance dbatools.database.windows.net

➥ -SqlCredential 52c1fbca-24ed-4353-bbf1-6dd52f535027 -Tenant

➥ ec46e088-2707-4b0a-ab0d-dee0b52fc5c8 -Database inventory

Name Product Version Platform IsAzure IsClustered ConnectedAs
---- ------- ------- -------- ------- ----------- -----------
tcp:dbatools.database.windows.net 12.0.1600 True

52c1fbca-etc@ec46e088-etc

Username is the application id, password is client secret
PS> $appcred = Get-Credential 52c1fbca-24ed-4353-bbf1-6dd52f535027

Establish a connection
PS> $server = Connect-DbaInstance -SqlInstance dbatools.database.windows

➥ .net -Database inventory -SqlCredential $appcred -Tenant

➥ 6b73c0ef-114d-43ad-94c9-85a4a82cde8b

Now that the connection is established, use it to perform a query
PS> Invoke-DbaQuery -SqlInstance $server -Database dbatools -Query

➥ "SELECT Name FROM sys.objects"

Name

sysrscols
sysrowsets
sysclones
sysallocunits
sysfiles1
sysseobjvalues
syspriorities
sysdbfrag
sysfgfrag
...

Alternatively, you can run the entire PowerShell process as another user. It is good
practice to log in to your workstation with a user account with minimal privileges and
in to programs with an account with elevated privileges (your alternative admin
account).

 To run PowerShell as a different user, right-click the PowerShell icon in the task
bar, hold Shift and right-click the PowerShell icon, and choose Run as Different User,
as illustrated in figure 4.6. For more information on alternative credentials, including
an in-depth discussion of Azure MFA, please visit dbatools.io/credentials.

Listing 4.22 Connecting using MFA

Listing 4.23 Performing a query using MFA

https://dbatools.io/credentials/

54 CHAPTER 4 A gentle introduction to dbatools commands

4.7 The ComputerName parameter
All dbatools commands that connect to a server use the -ComputerName parameter by
default. To associate this to something that you are familiar with, it is, as you may
expect, the same information that you would enter into a Remote Desktop connec-
tion. You can enter hostnames, fully qualified names, and IP addresses.

 You can pass one or multiple servers to the -ComputerName parameter in the same
way as you can with the -SqlInstance parameter. This means that you can list the SQL
Server Services on multiple servers.

 Connect-DbaInstance enables you to check the database engine. When another
admin asks you which SQL Server features are installed on a host, you can use Get-
DbaService. As will become commonplace when exploring PowerShell commands,
use Get-Help to understand the function of the command and the syntax, as shown
next.

PS> Get-Help Get-DbaService

Synopsis
Gets the SQL Server related services on a computer.

Description
Gets the SQL Server related services on one or more computers.

Listing 4.24 Get-Help for Get-DbaService

1. Right-click

2. Shift +
 right-click

3. Run as different user.

Figure 4.6 Running PowerShell as a different user

55The ComputerName parameter

Requires Local Admin rights on destination computer(s).

Syntax
Get-DbaService [[-ComputerName] <DbaInstanceParameter[]>] [-InstanceName
<String[]>] [-Credential <PSCredential>] [-Type <String[]>]
[-AdvancedProperties] [-EnableException] [<CommonParameters>]
Get-DbaService [[-ComputerName] <DbaInstanceParameter[]>] [-Credential
<PSCredential>] [-ServiceName <String[]>] [-AdvancedProperties]
[-EnableException] [<CommonParameters>]

Note that the description provides additional information about required privileges.

LOCALADMIN PERMISSIONS REQUIRED The account running the Get-DbaService
command or provided to the -Credential parameter must have local admin
permissions on the remote computer.

To find SQL-related services on a remote server, use the -ComputerName parameter, as
shown in the next listing.

PS> Get-DbaService -ComputerName CORPSQL

ComputerName : CORPSQL
ServiceName : MsDtsServer140
ServiceType : SSIS
InstanceName :
DisplayName : SQL Server Integration Services 14.0
StartName : NT Service\MsDtsServer140
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : MSSQLSERVER
ServiceType : Engine
InstanceName : MSSQLSERVER
DisplayName : SQL Server (MSSQLSERVER)
StartName : NT Service\MSSQLSERVER
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : SQLBrowser
ServiceType : Browser
InstanceName :
DisplayName : SQL Server Browser
StartName : NT AUTHORITY\LOCALSERVICE
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : SQLSERVERAGENT
ServiceType : Agent
InstanceName : MSSQLSERVER

Listing 4.25 Listing the SQL services on a remote server

The computer
name

The
name
of the

service

The type of service: Agent, Browser, Engine,
FullText, SSAS, SSIS, SSRS, or PolyBase

The name of the SQL Server
instance (if applicable)

56 CHAPTER 4 A gentle introduction to dbatools commands

DisplayName : SQL Server Agent (MSSQLSERVER)
StartName : NT Service\SQLSERVERAGENT
State : Stopped
StartMode : Manual

Note that when running this command locally, there is no requirement to use the
-ComputerName parameter, but it is required if it’s not local.

4.7.1 Methods of listing the SQL services on multiple servers

Your DBA manager asks you to identify all of the SQL Server features on a number of
hosts in your test cluster. You can pass hostnames to the -ComputerName parameter
using the same methods that you learned for the -SqlInstance parameter, as shown
here.

Computer Names as an array
PS> Get-DbaService -ComputerName SQL01, SQL02

Computer Names piped to a command
PS> "SQL01", "SQL02" | Get-DbaService

Computer Names stored in a variable
PS> $servers = "SQL01", "SQL02"
PS> Get-DbaService -ComputerName $servers

Computer Names stored in a variable and piped to a command
PS> $servers = "SQL01", "SQL02"
PS> $servers | Get-DbaService

4.8 The -Credential parameter
You may want to pass alternative credentials for connecting to the server as a different
user than the one that is running the PowerShell process. dbatools commands that
have a -ComputerName parameter will always have a -Credential parameter to enable
this.

4.8.1 Listing services on a server using a different account at the command line

In the same way as you learned with -SqlCredential, you can provide the username
with the -Credential parameter, and you will be prompted for the password, as
shown in the next code sample.

Listing 4.26 Listing SQL services on multiple servers

The display name of the service

The service account
The state of the service

The start mode of the service

Try it now 4.3
Find the SQL Server Services that are running on your local machine.

57The -Credential parameter

PS> Get-DbaService -ComputerName CORPSQL -Credential AD\wdurkin

PowerShell credential request
Enter your credentials.
Password for user AD\wdurkin:

4.8.2 Listing services on a server using a different account with a credential variable

When you use multiple commands, you do not want to keep typing the password. You
can also pass a PSCredential object to the -Credential parameter. One way of doing
this is to use the Get-Credential command, shown here.

PS> $cred = Get-Credential

PowerShell credential request
Enter your credentials.
User: AD\wdurkin
Password for user AD\wdurkin: **********

PS> Get-DbaService -ComputerName CORPSQL -Credential $cred

The in-console password prompt is a feature of PowerShell 6+. In earlier versions of
PowerShell, expect the classic credential prompt as seen in figure 4.7.

Listing 4.27 Listing services on a server using a different user

Listing 4.28 Listing services on a server using a variable with a different user

Figure 4.7 Classic
credential prompt

58 CHAPTER 4 A gentle introduction to dbatools commands

4.8.3 Listing SQL services by type

You can accomplish further tasks using Get-DbaService. To list all of the SQL services
of a certain type, you can use the -Type parameter, as shown in the next listing. This
can help you to answer questions such as, are all of the instances on that server using
the same service account (StartName) for the database engine?

 Let’s find out.

PS> Get-DbaService -ComputerName CORPSQL -Type Engine

ComputerName : CORPSQL
ServiceName : MSSQL$BOLTON
ServiceType : Engine
InstanceName : BOLTON
DisplayName : SQL Server (BOLTON)
StartName : NT Service\MSSQL$BOLTON
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : MSSQL$LONDON
ServiceType : Engine
InstanceName : LONDON
DisplayName : SQL Server (LONDON)
StartName : NT Service\MSSQL$LONDON
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : MSSQL$SQL2016
ServiceType : Engine
InstanceName : SQL2016
DisplayName : SQL Server (SQL2016)
StartName : NT Service\MSSQL$SQL2016
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : MSSQLSERVER
ServiceType : Engine
InstanceName : MSSQLSERVER
DisplayName : SQL Server (MSSQLSERVER)
StartName : NT Service\MSSQLSERVER
State : Stopped
StartMode : Manual

You can also use Get-DbaService to get the services for a single instance if you have
multi-instance SQL Servers. You do this using the -InstanceName parameter, shown
next.

Listing 4.29 Listing the database engine services on a remote server

59Hands-on lab

PS> Get-DbaService -ComputerName CORPSQL -InstanceName BOLTON

ComputerName : CORPSQL
ServiceName : MSSQL$BOLTON
ServiceType : Engine
InstanceName : BOLTON
DisplayName : SQL Server (BOLTON)
StartName : NT Service\MSSQL$BOLTON
State : Stopped
StartMode : Manual

ComputerName : CORPSQL
ServiceName : SQLAgent$BOLTON
ServiceType : Agent
InstanceName : BOLTON
DisplayName : SQL Server Agent (BOLTON)
StartName : NT Service\SQLAgent$BOLTON
State : Stopped
StartMode : Manual

4.9 Bonus parameter: EnableException
All of our commands except for one include the parameter -EnableException. This
is because, by default, “sea of red” PowerShell exceptions are disabled in favor of use-
ful and more attractive error messages. If you’re wondering about the single com-
mand that does not support -EnableException, it is Connect-DbaInstance, which
supports -DisableException instead.

 Exception handling is bit of an advanced topic, so we won’t cover it in this gentle
introduction. But in the event that you are an advanced programmer, we wanted to
make you aware of the way we handle exceptions. For more information about this
topic, please visit dbatools.io/exceptions.

 Now that you’ve learned how to run a few dbatools commands and you’ve learned
about four of our common parameters, let’s find all of the SQL Server instances on
your network.

4.10 Hands-on lab
Let’s use what you have read about in this chapter to get comfortable with dbatools
commands. Try the following tasks:

 List the SQL services on a computer.
 List the SQL services for a specific instance.
 Identify the user account that is running the SQL agent service.
 Write a command to return the databases without a log backup.
 Write a command to return the databases without a log backup in the last 30

minutes.
 Find any databases without a full backup on your test instance.

Listing 4.30 Listing the services for a specific instance

https://dbatools.io/placeholder/

60

Writing to SQL Server

In chapter 4, you were introduced to some of the common dbatools parameters.
You also learned how to gather information about databases on multiple instances.
This chapter will focus on saving data to the place where SQL Server DBAs feel
most comfortable keeping data: a table in a SQL Server database! You will learn a
number of ways to write data to a SQL Server table using dbatools. This chapter will
be good to keep in mind as you go through the book, because it’s likely you will
want to save your PowerShell output to a SQL Server database.

 But for now, let’s start with understanding PowerShell’s pipeline. The pipeline
in PowerShell is a feature that you need to be familiar with to use PowerShell effec-
tively. We are going to start with the pipeline because it enables us to write the out-
put of any PowerShell command to SQL Server.

5.1 Piping commands
One of PowerShell’s most powerful functionalities is the pipeline. The pipeline
enables you to easily pass output from one command to another without using a
cumbersome foreach. You have already seen this in action in chapter 4 with
$instances | Connect-DbaInstance. This takes the values in the $instances vari-
able and pipes them to Connect-DbaInstance.

 You may have also noticed that you did not need to specify the -SqlInstance
parameter for Connect-DbaInstance or Test-DbaConnection because the values
were piped or passed along the pipeline from the left-hand side to the next com-
mand on the right, as shown in figure 5.1.

 Imagine you are a DBA, and a release manager asks you for the names and sizes
of the databases on a particular instance. They also want to know when these

61Piping commands

databases were last backed up. You know that you can do that with Get-DbaDatabase,
so you run the following code.

PS> Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem

ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
SqlInstance : SQLDEV01
Name : Northwind
Status : Normal
IsAccessible : True
RecoveryModel : Full
LogReuseWaitStatus : LogBackup
SizeMB : 8.25
Compatibility : Version130
Collation : SQL_Latin1_General_CP1_CI_AS
Owner : sqladmin
Encrypted : False
LastFullBackup : 6/10/2019 12:00:00 AM
LastDiffBackup : 6/11/2019 12:00:00 AM
LastLogBackup : 6/11/2019 12:15:00 AM

ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
SqlInstance : SQLDEV01
Name : pubs
Status : Normal
IsAccessible : True
RecoveryModel : Full
LogReuseWaitStatus : LogBackup
SizeMB : 8.1875
Compatibility : Version130
Collation : SQL_Latin1_General_CP1_CI_AS
Owner : sa

Listing 5.1 Getting the databases on the instance

The parameter uses the values in the $instances variable.

The $instances variable is
passed down the pipeline.

Test-DbaConnection “knows”
to use the values for the
SqlInstance parameter.

Figure 5.1 Piping
commands

62 CHAPTER 5 Writing to SQL Server

Encrypted : False
LastFullBackup : 6/10/2019 12:01:00 AM
LastDiffBackup : 6/11/2019 12:01:00 AM
LastLogBackup : 6/11/2019 12:16:00 AM

You can copy the results from the PowerShell window and paste them into an email or
document, but you know that the release manager would prefer the information in an
easier-to-read format.

A lot of output isn’t required. The release manager asked only for the names, the
sizes, and the last time the databases were backed up. You can use Select-Object, or
its alias Select, to display only the properties that you require by piping the results of
the command Get-DbaDatabase to Select, as illustrated in the next code snippet.

PS> Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem |
Select Name, Size, LastFullBackup

Name Size LastFullBackup
---- ---- --------------
Northwind 8.25 6/10/2019 12:00:00 AM
pubs 8.18 6/10/2019 12:01:00 AM
db01 16 1/1/0001 12:00:00 AM
db02 16 1/1/0001 12:00:00 AM
db03 16 1/1/0001 12:00:00 AM
db04 16 1/1/0001 12:00:00 AM
db05 16 1/1/0001 12:00:00 AM
db06 16 1/1/0001 12:00:00 AM
db07 16 1/1/0001 12:00:00 AM
db08 16 1/1/0001 12:00:00 AM
db09 16 1/1/0001 12:00:00 AM

Now you get a result that the release manager will find much easier to use for their
report.

Listing 5.2 Getting specific properties on the instance

Easily export the results of a PowerShell command into the clipboard
You can export the results of a PowerShell command into the clipboard by piping to
the clip command. This works only on Windows:

Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem | clip

Try it now 5.1
Use Get-DbaDatabase and pipe to Select to get the names, size, and times of the
last full backup of the databases on your test instance. If you need to stop reading
and back up your databases, we understand!

63Piping commands

Now that you know about the clip command, we hope that you save time by using it.
Look at the example in the next listing. You can see that you are not limited to just
one pipe in your commands. You can carry on piping as long as there is an output
from the command.

PS> Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem |
Select Name, Size, LastFullBackup | clip

PowerShell enables you to save any data that you gather in a number of formats—
XML, JSON, text, CSV, and so on—with default commands. Suppose you want to save
the results that you gathered in listing 5.3 into a CSV file. PowerShell has a built-in
command that you can use to do this called Export-Csv, as shown in the next code
sample. The -NoTypeInformation parameter removes the #TYPE information header
from the CSV file output and is not required in PowerShell 6 or higher.

PS> Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem |
Select Name, Size, LastFullBackup |
Export-Csv -Path Databaseinfo.csv -NoTypeInformation

PS> Get-Content DatabaseInfo.csv
"Name","Size","LastFullBackup"
"Northwind","8.25","6/10/2019 12:00:00 AM"
"pubs","8.18","6/10/2019 12:01:00 AM"
"db01","16","1/1/0001 12:00:00 AM"
"db02","16","1/1/0001 12:00:00 AM"
"db03","16","1/1/0001 12:00:00 AM"
"db04","16","1/1/0001 12:00:00 AM"
"db05","16","1/1/0001 12:00:00 AM"
"db06","16","1/1/0001 12:00:00 AM"
"db07","16","1/1/0001 12:00:00 AM"
"db08","16","1/1/0001 12:00:00 AM"
"db09","16","1/1/0001 12:00:00 AM"

You may notice the use of the command Get-Content. This command returns a string
of objects containing the contents of a file. By default, it displays the results to the
screen.

 You can use the following two other built-in PowerShell commands to return infor-
mation in different formats:

 ConvertTo-Xml

 ConvertTo-Json

These require you to pipe to Out-File if you wish to save that information to disk. You
can pipe the results of any PowerShell command to Out-File to save the PowerShell
output to disk.

Listing 5.3 Getting specific properties on the instance to the clipboard

Listing 5.4 Getting specific properties on the instance and exporting to a CSV file

64 CHAPTER 5 Writing to SQL Server

Want to export to other data formats, including SQLite or Excel? You can find numer-
ous useful modules in the PowerShell Gallery at www.powershellgallery.com.

EXPORTING TO EXCEL As data professionals, we are often requested to return
information in Excel. We recommend that you look at the excellent Import-
Excel module written by Doug Finke. Despite its name, it does far more than
just import to Excel. You can install it from the PowerShell Gallery with
Install-Module -Name ImportExcel.

5.2 Writing to a database
Writing information to files is very useful, but, as DBAs, saving to a database table is
preferable because we can then use the data in Power BI or SSRS reports. An added
benefit of importing files to a database is that we’ll then be in control of availability
and backups!

5.2.1 Importing from a CSV file to a database table
A common request that DBAs frequently hear is, “Can you add the contents of this
CSV file into the database?”

 dbatools offers the following two ways to do this:

 Import-DbaCsv

 Import-Csv and Write-DbaDataTable

Which one should you use? It’s often a personal preference. We find that Import-
DbaCsv is better suited for larger CSV files because it is optimized to keep memory
usage low.

USING IMPORT-DBACSV

When you use Import-DbaCsv, it uses some streaming magic to move the data effi-
ciently between the disk and the SQL Server. The output from the command shows
table information, the number of rows copied, and even how quickly it copied them.
This information is useful when you are testing a script with a smaller amount of data
because you can extrapolate the time it will take to load the data in your production
environment.

PS> Get-ChildItem -Path E:\csvs\top.csv |
Import-DbaCsv -SqlInstance SQLDEV01 -Database tempdb -Table top

Listing 5.5 Importing CSV files to the SQL Server

Try it now 5.2
Get the database information using Get-DbaDatabase, and save it as a file. Try con-
verting it to CSV, XML, and JSON. Use the Get-DbaErrorLog command to save
today’s SQL error log to a file in different formats. You could also filter for certain
messages or logins.

65Writing to a database

ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
SqlInstance : SQLDEV01
Database : tempdb
Table : top
Schema : dbo
RowsCopied : 2450
Elapsed : 55.16 ms
RowsPerSecond : 44663
Path : E:\csvs\top.csv

You can even import multiple CSV files at once! Frequently, we find that we need to
import more than one CSV file. In the same way that you passed multiple instances to
-SqlInstance, you can pass multiple CSV files to Import-DbaCsv, as demonstrated
here.

PS> Get-ChildItem E:\csv\top*.csv |
Import-DbaCsv -SqlInstance SQLDEV01 -Database tempdb -AutoCreateTable

ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
SqlInstance : SQLDEV01
Database : tempdb
Table : top-tracks-lastfm-alltime
Schema : dbo
RowsCopied : 2450
Elapsed : 73.02 ms
RowsPerSecond : 33712
Path : E:\csv\top-tracks-lastfm-alltime.csv

ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
SqlInstance : SQLDEV01
Database : tempdb
Table : top-tracks-lastfm-year
Schema : dbo
RowsCopied : 1312
Elapsed : 65.41 ms
RowsPerSecond : 20160
Path : E:\csv\top-tracks-lastfm-year.csv

In listing 5.6, you can see that when the table name is not specified, the base name of
the CSV file will be used. If the table does not exist, -AutoCreateTable will create it
for you. This will save time up front, but the data types will not be precise. This poten-
tially means longer import times, especially for large datasets. You may also need to
transform the data types to be able to use the data effectively.

 We recommend that you prestage the tables by creating them before you run
Import-DbaCsv. To find out more about Import-DbaCsv, visit dbatools.io/csv.

Listing 5.6 Importing all CSV files to SQL Server

Autogenerated table name

The base name is the same
as the autogenerated table
name.

https://dbatools.io/placeholder/

66 CHAPTER 5 Writing to SQL Server

USING IMPORT-CSV WITH WRITE-DBADATATABLE

Import-Csv and Write-DbaDataTable are two commands that data professionals com-
monly use. Import-Csv is a powerful command that turns the text within CSV files to
objects, as shown in the following listing.

PS> Import-Csv -Path E:\csv\top-tracks.csv |
Select Rank, Plays, Artist, Title

Rank Play Artist Title
---- ---- ------ -----
1 130 Nizlopi Freedom
2 55 The Courteeners Bide Your Time
3 50 Paloma Faith Stargazer
4 44 Citizen Cope Pablo Picasso
5 42 William Fitzsimmons After Afterall
6 40 Birdy Nam Nam Abbesses
7 39 Glasvegas Geraldine
8 35 Adele Melt My Heart to Stone
9 33 Florence + the Machine Howl
10 20 Paolo Nutini Rewind

Generally, Import-Csv is piped right to Write-DbaDataTable, as seen next.

Import the CSV and write to the database
PS> Import-Csv -Path .\Databaseinfo.csv |
Write-DbaDataTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table Databases -AutoCreateTable

Here, we have used tempdb because we know that this database will exist. Please
remember that tempdb is recreated every time SQL is started, and, therefore, it is not
the place to store things permanently!

Listing 5.7 Importing a CSV file to a PowerShell object

Listing 5.8 Adding the contents of a CSV file to a SQL Server database

Try it now 5.3
Use other methods that you have learned to pass multiple CSV files to Import-
DbaCsv. Use Get-Help to determine how to specify alternative delimiters and what
to do when no header row exists.

Warning
Piping to Write-DbaDataTable is convenient and extremely fast for small batches,
but it slows down for larger datasets (similar to SQL’s RBAR concept). If you intend to
import a large dataset, use Import-DbaCsv or the following syntax instead:

67Writing to a database

So, what have we just done? Let’s look at the contents of the Databases table. You can
use Invoke-DbaQuery to execute a SQL query against a database, as shown in the next
code sample.

PS> $query = "Select * from Databases"
PS> Invoke-DbaQuery -SqlInstance SQLDEV01 -Database tempdb -Query $query

This will return results that match the contents of Databaseinfo.csv.

Invoke-DbaQuery will likely be one of the commands you’ll use the most, and we
encourage you to explore its features.

By using the -AutoCreateTable parameter, you have created a new table called Data-
bases because it did not already exist. You have also created three columns (Name,
Size, and LastFullBackup), which match the columns in the CSV file. What data types
are these columns?

Listing 5.9 Selecting from the newly created Databases table

PS> $csv = Import-Csv \\server\bigdataset.csv
PS> Write-DbaDataTable -SqlInstance sql2014

➥ -InputObject $csv -Database mydb-Table BigDataSet

This syntax can also be found using Get-Help Write-DbaDataTable -Examples.
For more information and alternative techniques, visit dbatools.io/rbar.

Tip
Which quote should we default to when creating strings, single or double? Actually,
this is a debated topic within the PowerShell community (see sqlps.io/singledouble-
quotes). Microsoft’s own PowerShell documentation at sqlps.io/abquotesrules
details the differences but does not prescribe one way or the other.

We always use double quotes unless literals are needed. A big reason for this is that
T-SQL queries use single quotes. When passing queries to Invoke-DbaQuery, wrap-
ping them in double quotes makes the most sense. Considering queries are such a
big part of our PowerShell experience, we continue to use double quotes in other
areas to remain consistent.

Try it now 5.4
Run a query against an instance using Invoke-DbaQuery, and examine the format
of the results. Run another query, set the results to a variable with $results =
Invoke-DbaQuery, and explore the variable.

http://ramblingcookiemonster.github.io/Single-Quotes-or-Double-Quotes/
http://ramblingcookiemonster.github.io/Single-Quotes-or-Double-Quotes/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules?view=powershell-7.2
https://dbatools.io/placeholder/

68 CHAPTER 5 Writing to SQL Server

 To find the data types of the column, you are going to need another command:
Get-DbaDbTable. This command returns information about the tables in a database.
You can use this to get the data types of the columns in a table as follows.

(Get-DbaDbTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table Databases).Columns | Select-Object Parent, Name, Datatype

This command combines two things you learned earlier: accessing the properties of a
PowerShell command’s result and piping them to Select-Object. The results look
like this:

PS:\> (Get-DbaDbTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table Databases).Columns | Select-Object Parent, Name, DataType

Parent Name DataType
------ ---- --------
[dbo].[Databases] Name nvarchar
[dbo].[Databases] Size nvarchar
[dbo].[Databases] LastFullBackup nvarchar

You can get even more detailed information by expanding the DataType column.

PS:\> (Get-DbaDbTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table Databases).Columns | Select-Object -First 1

➥ -ExpandProperty DataType

Name : nvarchar
SqlDataType : NVarCharMax
Schema :
MaximumLength : -1
NumericPrecision : 0
NumericScale : 0
XmlDocumentConstraint : Default
IsNumericType : False
IsStringType : True

The information here lets you know that the column was created as nvarchar(MAX).

5.2.2 Importing to a database table from a dbatools command
Instead of exporting the results to a CSV file and then importing them into a database
table, you can also import the output of any PowerShell command straight to a data-
base table. If you are following the examples, you will need to remove the Databases
table we created earlier, using Remove-DbaDbTable as shown in the next listing.

PS> Remove-DbaDbTable SqlInstance SQL01 -Database tempdb -Table databases

Listing 5.10 Getting the data types of the columns

Listing 5.11 Get detailed information about DataType

Listing 5.12 Dropping the newly created table

You will see that the data
types are all “nvarchar.”

69Writing to a database

Note that, like many commands in this book, the creation of Remove-DbaDbTable was
prioritized to ensure that dbatools in a Month of Lunches readers wouldn’t have to
execute awkward command-line code that is usually executed behind the scenes. If
you encounter a Command Not Found error for Remove-DbaDbTable, please update
to the latest version.

Get the Database information and write to the database
PS> Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem |
Select Name, Size, LastFullBackUp |
Write-DbaDataTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table Databases -AutoCreateTable

PS> $query = "Select * from Databases"
PS> Invoke-DbaQuery -SqlInstance SQLDEV01 -Query $query

➥ -Database tempdb

The data types of the columns in the autogenerated table look like those shown in the
next code sample.

PS> (Get-DbaDbTable -SqlInstance SQLDEV01

➥ -Database tempdb -Table Databases).Columns |
Select-Object Parent,Name, Datatype

Parent Name DataType
------ ---- --------
[dbo].[Databases] Name nvarchar
[dbo].[Databases] Size float
[dbo].[Databases] LastFullBackup datetime2

Listing 5.13 Adding the results of Get-DbaDatabase into a SQL Server database

Listing 5.14 Selecting data from the Databases table

Listing 5.15 The data types of the Databases table

Try it now 5.5
Now imagine that you’re the junior DBA who was asked to provide the name, size,
and last backup time of the user databases, but this time into a table in a database.
You know how to get the name, size, and last full backup using Get-DbaDatabase,
and you know how to put data into a database table with Write-DbaDataTable. Can
you write this command without looking at the answer?

Try it now 5.6
Select from the table using Invoke-DbaQuery, and observe that the results are the
same.

Still “nvarchar”

No longer “nvarchar”;
now “float”

No longer “nvarchar”;
now “datetime2”

70 CHAPTER 5 Writing to SQL Server

This time, Write-DbaDataTable has created columns with the data types of the incom-
ing object from Get-DbaDatabase. You can use this method with any dbatools com-
mand that outputs objects. You can even use it with many PowerShell commands from
other modules—both those included with PowerShell and those you add from the
PowerShell Gallery or write yourself.

5.2.3 Creating the database table first and then importing from a CSV file

It is important to remember that when you are using Write-DbaDataTable to create data-
base tables, the command will try to create columns with a matching data type of the
incoming object. If you want to explore the data types that will be created, you can use the
PowerShell command Get-Member, as shown in the next listing and figures 5.2 and 5.3.

Figure 5.2 The data types of the CSV file

Figure 5.3 The data types of the Database object

71Writing to a database

This will show the data types of the incoming objects. Examining the output of
Import-Csv and Get-DbaDatabase from the previous examples will show the differ-
ence and explain why the tables were created with different data types.

PS> Import-Csv -Path .\Databaseinfo.csv | Get-Member
PS> Get-DbaDatabase -SqlInstance SQLDEV01 -ExcludeSystem |
Select Name, Size, LastFullBackup | Get-Member

You can see in the first results for Import-Csv that the data types in the Definition col-
umn are all strings, whereas the results for Get-DbaDatabase are datetime, string,
and double. Using more accurate types is more efficient, both for PowerShell and for
SQL Server. If the object that you are returning from Get-Member does not have the
data types that you want, you’ll need to create the table manually first, as shown here.

Use tempdb
GO
CREATE TABLE [dbo].[Databases](

[Name] [nvarchar](7) NULL,
[Size] [float] NULL,
[LastFullBackup] [datetime2](7) NULL

) ON [PRIMARY]
GO

Then you can import the CSV file using the Write-DbaDataTable command as before,
but this time without the -AutoCreateTable parameter. That is not always true—we do
this here because you know for certain that the table is already created. When you use
Write-DbaDataTable in an automated solution where you do not know whether the
table has been created, then you can leave the -AutoCreateTable switch in. If a table
already exists with that name, then the command will not try to create a new one.

We know! We’re sorry—we fooled you. If you have followed these instructions pre-
cisely, you are now looking at results that look like the following.

PS> Import-Csv -Path .\Databaseinfo.csv |
Write-DbaDataTable -SqlInstance SQLDEV01

➥ -Database tempdb -Table Databases
WARNING: [15:25:47][Write-DbaDbTableData] Failed to bulk import to
[tempdb].[dbo].[Databases] | String or binary data would be truncated.

Listing 5.16 Getting the data types of the CSV file

Listing 5.17 Creating a Databases table with T-SQL

Listing 5.18 Good ol' string or binary data truncated

Try it now 5.7
Import the CSV file, Databaseinfo.csv, into the existing Database table in tempdb.

72 CHAPTER 5 Writing to SQL Server

You are getting the error because the width of the Name column is too small to allow
the NorthWind database name to be added. The error that you get is the infamous
8152 SQL error, which occurs when the source and the destination do not have
matching data types or lengths. The same error is presented, even for SQL2016 (since
SP2 CU6), SQL2017, and SQL2019 instances with the trace flag 460 enabled, which
allows the new Error message 2628 with more detail of the data that caused the error.
This makes it tricky to work out which cell is causing the failure, especially with large
datasets. We have the following PowerShell snippet to help with this problem.

$columns = ($datatable | Get-Member -MemberType Property).Name
foreach($column in $columns) {

$max = 0
foreach ($row in $datatable){

if($max -lt $row.$column.Length){
$max = $row.$column.Length

}
}
Write-Output "$column max length is $max"

}

You will need to pass a datatable object to the $datatable variable. To do this in this
example, you need to use the ConvertTo-DbaDataTable command. You can use this
with the CSV file you created as follows.

$datatable = Import-Csv -Path .\Databaseinfo.csv | ConvertTo-DbaDataTable
$columns = ($datatable | Get-Member -MemberType Property).Name
foreach($column in $columns) {

$max = 0
foreach ($field in $datatable){

if($max -lt $field.$column.Length){
$max = $field.$column.Length

}
}
Write-Output "$column max length is $max"

}

This will give the following output:

LastFullBackup max length is 19
Name max length is 9
Size max length is 4

By comparing the length of the data type in the table you created with the maximum
length of the datatable object, you can see that the Name column is the one that is caus-
ing the issue. You can then resolve this by altering the column’s data type, as shown next.

Listing 5.19 Getting the maximum length of columns in a datatable

Listing 5.20 Finding the maximum length of a column in the CSV file

73Writing to a database

use tempdb
GO

ALTER TABLE Databases ALTER COLUMN [Name] nvarchar(10)

Once you have altered the column length, the Write-DbaDataTable command will
succeed, as shown in the next listing.

PS> Import-Csv -Path .\Databaseinfo.csv |
Write-DbaDataTable -SqlInstance SQLDEV01

➥ -Database tempdb -Table Databases
PS> Invoke-DbaQuery -SqlInstance SQLDEV01

➥ -Query "select * from Databases" -Database tempdb

Name Size LastFullBackup
---- ---- --------------
Northwind 8.25 6/10/2019 12:00:00 AM
pubs 8.18 6/10/2019 12:01:00 AM
db01 16 1/1/0001 12:00:00 AM
db02 16 1/1/0001 12:00:00 AM
db03 16 1/1/0001 12:00:00 AM
db04 16 1/1/0001 12:00:00 AM
db05 16 1/1/0001 12:00:00 AM
db06 16 1/1/0001 12:00:00 AM
db07 16 1/1/0001 12:00:00 AM
db08 16 1/1/0001 12:00:00 AM
db09 16 1/1/0001 12:00:00 AM

In this section, you have learned how to import data into a SQL database table from a
CSV file and from a dbatools command with Write-DbaDataTable. When your input
object does not have suitable data types, you can precreate the table with more suitable
data types than nvarchar(MAX), which is the default. You have also seen the SQL error
message that you will get if the data length is greater than the column in the table, and
a snippet of PowerShell code that will identify which column is causing the issue.

5.2.4 Writing the results of other commands to a table

Using Write-DbaDataTable to add data to a database table is not limited to just CSV files
and dbatools commands. You can import the output from any PowerShell command into
a database table. For example, getting the currently running processes with PowerShell
can be achieved with the Get-Process command, and you can use Write-DbaDataTable
to add that to a table, as shown in the following code snippet.

PS> Get-Process | Select -Last 10 |
Write-DbaDataTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table processes -AutoCreateTable

Listing 5.21 Altering the column length

Listing 5.22 Importing a CSV file into an existing database table

Listing 5.23 Importing a sample of the running processes into a database table

74 CHAPTER 5 Writing to SQL Server

PS> (Get-DbaDbTable -SqlInstance SQLDEV01 -Database tempdb

➥ -Table processes).Columns | Select-Object Parent, Name, Datatype

Parent Name DataType
------ ---- --------
[dbo].[processes] Name nvarchar
[dbo].[processes] SI int
[dbo].[processes] Handles int
[dbo].[processes] VM bigint
[dbo].[processes] WS bigint
[dbo].[processes] PM bigint
[dbo].[processes] NPM bigint
[dbo].[processes] Path nvarchar
[dbo].[processes] Company nvarchar
[dbo].[processes] CPU nvarchar
[dbo].[processes] FileVersion nvarchar
[dbo].[processes] ProductVersion nvarchar
[dbo].[processes] Description nvarchar
[dbo].[processes] Product nvarchar
[dbo].[processes] __NounName nvarchar
[dbo].[processes] BasePriority int
[dbo].[processes] ExitCode int
[dbo].[processes] HasExited bit
[dbo].[processes] ExitTime datetime2
...

5.2.5 Writing the results of other commands to an Azure SQL Database

Imagine that you have been tasked with loading a database table with the current
virtual machines in an Azure resource group. You will need the Az module from the
PowerShell Gallery to gather this information. Log in to your Azure subscription with
the Connect-AzAccount command, which opens a login box.

NOTE If you are using VS Code, you can find this box behind the window, so
you will need to minimize VS Code to find it.

When you have finished the login process, you can get the information about the vir-
tual machines using the Get-AzVM command. As you have learned in this chapter, you
can then pipe the results of this command to Write-DbaDataTable to add this infor-
mation to a table in a database, as shown in the next code snippet.

Listing 5.24 Getting the data types

Try it now 5.8
As shown in the next listing, get the currently running processes, import them into a
database table, and examine the results. When you look at the data types of the
table, you can see that the command has successfully created suitable data types.

75Copying tables, including their data

Log in to Azure. If using VS Code, this will pop up underneath

➥ a VS Code window
PS> Connect-AzAccount

Account SubscriptionName TenantId Environment
------- ---------------- -------- -----------
dba@dbatools.io Microsoft Azure 7eb75625-3716-461e-bdb4... AzureCloud

PS> Get-AzVM -Status | Write-DbaDataTable -SqlInstance SQLDEV01

➥ -Database tempdb -Table AzureVMs -AutoCreateTable

Now that you’ve loaded the output of Get-AzVM into your database, let’s take a look at
selected columns, shown next.

PS> $query = "SELECT [Name]
,[Location]
,[PowerState]
,[StatusCode]
FROM [AzureVMs]"

PS> Invoke-DbaQuery -SqlInstance SQLDEV01

➥ -Query $query -Database tempdb

Name Location PowerState StatusCode
---- -------- ---------- ----------
big eastus VM deallocated OK
temp eastus VM deallocated OK
server centralus VM running OK
win10 centralus VM running OK

Notice the $query syntax. Many people are surprised that PowerShell supports multi-
line variable values, and we were, too! This is one of many ways that PowerShell tries to
be as user friendly as possible.

TIP You may notice that some fields are flattened and have only class names
as the string value. To get the actual values into a database, you would have to
use Select-Object -ExpandProperty. For more information on this topic,
please visit dbatools.io/rich.

We hope that this has given you lots of ideas for information that you can collect with
PowerShell and save to a SQL database.

5.3 Copying tables, including their data
Now that you have learned how to save the results of a PowerShell command to a data-
base table, you may be wondering about data. As a DBA, you may be given the task of
writing or rewriting a query and require some representative data. You will likely want
to have a copy of the table to be able to work with.

Listing 5.25 Loading Azure VM details into SQL Server

Listing 5.26 Checking your work

https://dbatools.io/placeholder/

76 CHAPTER 5 Writing to SQL Server

5.3.1 PowerShell splatting

Splatting is a brilliant word that always makes us smile. It is also an extremely useful
way of passing PowerShell parameters to a command in an easy-to-read and easy-to-
alter format.

TIP Visual Studio Code makes it extra easy to splat. Check out Rob’s article at
sqlps.io/splat to find out more.

Compare figure 5.4 and figure 5.5, each of which performs the same operation. The
first one is harder to read and also would be harder to use again with a different table.
The second one is easier to read, with the parameter values laid out below each other.
This is called splatting.

Imagine that you are required to perform some work on the Purchasing.PurchaseOrders
table in the WideWorldImporters database, and you want to have a copy of that table on
your local instance to work on. This can be achieved with Copy-DbaDbTableData, as shown
in the next listing.

PS> $copyDbaDbTableDataSplat = @{
SqlInstance = "SQLDEV01"
Database = "WideWorldImporters"
Table = '[Purchasing].[PurchaseOrders]'
Destination = "SQLDEV02,15591"

Listing 5.27 Using Copy-DbaDbTableData to copy table data

Figure 5.4 Copy-DbaDbTableData with parameters, conventional syntax

Figure 5.5 Copy-DbaDbTableData with parameters, splatting syntax

https://sqldbawithabeard.com/2018/03/11/easily-splatting-powershell-with-vs-code/

77Copying tables, including their data

DestinationDatabase = 'WIP'
DestinationTable = 'dbo.PurchaseOrders'
AutoCreateTable = $true

}
PS> Copy-DbaDbTableData @copyDbaDbTableDataSplat

SourceInstance : SQLDEV01
SourceDatabase : WideWorldImporters
SourceSchema : Purchasing
SourceTable : PurchaseOrders
DestinationInstance : SQLDEV02,15591
DestinationDatabase : WIP
DestinationSchema : dbo
DestinationTable : PurchaseOrders
RowsCopied : 2074
Elapsed : 77.01 ms

It’s as easy as that: 2074 rows copied in a few milliseconds, and the data is ready to
work with on your local machine, as shown in figure 5.6.

Figure 5.6 Comparing the data

78 CHAPTER 5 Writing to SQL Server

There is an important point to make: the command name is Copy-DbaDbTableData,
emphasis on data. If you use the -AutoCreateTable parameter, it does not copy the con-
straints, file groups, or indexes, as can be seen from the table definitions in figure 5.7.
If advanced table creation is required, you will need to precreate the table before
importing the data.

Now that you’ve learned how to write data to a SQL Server table, it’s time to find
undocumented SQL Servers in your domain.

5.4 Hands-on lab
 Copy a table from one database to a WIP database on your local instance, using

both -AutoCreateTable and a precreated table.
 Gather the SQL logins from a SQL Server to a database table with Get-

DbaLogin.
 Gather the services information into a table with Get-Service.
 Gather the file information into a table with Get-ChildItem.
 Add the information about the SQL Server Services for an instance into a table.
 Find a CSV file on your machine, and import it into a table.
 Get the information about the tables in a database, and import it into a table.

Figure 5.7 Incomplete table definitions may be created when using -AutoCreateTable.

79

Finding SQL Server
 instances on your network

Have you ever started a new job and, after asking for the list of SQL Servers you’ll
be managing, were given an incomplete list of IPs and backup locations? This hap-
pens to us all the time! This is one of the primary reasons we often start each new
job by scanning the network for undocumented SQL Server instances. It’s import-
ant to be aware of all SQL Server instances within a network so that they can all be
managed, backed up, and secured. Years ago, when Chrissy started working at a
security operations center, she was given an Excel spreadsheet with three IP
addresses. “Here are the servers you’ll be maintaining,” her manager told her.
Three SQL Server instances just seemed too small of a number for the size of the
network. Sure enough, after downloading five different SQL Server discovery tools,
she found about 40 more instances, 20 of which were not embedded and needed to
be actively maintained.

 Finding rogue SQL Servers can be challenging because of unmanaged server
sprawl, inconsistent network configurations, firewall settings, and more. Further, it
can be challenging because the database engine may use different ports, and SQL
Server as a whole comprises many components, such as Reporting Services and
Integration Services.

 When DBAs are given an incomplete view of their estate, there’s often a natural
progression of tasks that look like the following, depicted in figure 6.1. First, you
have to find your undocumented servers. Then, you can go to the next step of
inventorying your SQL Servers and centralizing your inventory for easier manage-
ment and standardization.

 This chapter addresses that base step: finding all of your SQL Server instances.
In this chapter, we’ll teach you how to find most, if not all, SQL Server instances on

80 CHAPTER 6 Finding SQL Server instances on your network

your network, and we’ll accomplish this using a single command written by three well-
known security professionals.

 The command, Find-DbaInstance, was originally created by Eric Gruber of the
well-known security firm, NetSPI. Scott Sutherland, also of NetSPI, then enhanced the
command and added his SQL Server security module, PowerUpSQL. We asked Scott
if he’d be willing to share it with dbatools, and he was kind enough to submit a pull
request on GitHub. Microsoft Security PFE and dbatools architect Friedrich Wein-
mann then ported Scott’s code to C# to increase performance.

 Having security researchers and professionals write these types of commands is
useful because it means that you will have the same abilities and techniques to find
rogue instances as attackers who may be looking to exploit SQL Server vulnerabilities.

FINDING SQL SERVER WEAKNESSES PowerUpSQL is a toolkit used for internal
penetration tests and red team engagements. Not only does PowerUpSQL
help find rogue SQL Server instances, it helps discover vulnerabilities and
misconfigurations. If you’d like to experiment with your SQL Server estate,
the module is free and open source. You can install it from the PowerShell
Gallery using Install-Module -Name PowerUpSQL.

Find-DbaInstance uses a variety of approaches to dig for SQL Servers. It even per-
forms UDP scans! And in addition to the database engine, it also tries to find other
components as well. Just like the database engine, other aspects like Analysis Services
and Integration Services should be backed up, patched, and managed as well.

General
management

Backup and restore

Centralize inventory

Inventory SQL Server instances

Find SQL Server instances in your estate

Figure 6.1 General progression of inheriting a SQL estate

81Background

 Once you find all of your SQL Server instances, you’ll want to know more about
them. In the next two chapters, we’ll show you how to do exactly this. Not only will we
help you inventory those instances, we’ll also show you how to add your complete col-
lection of SQL Server instances to a centralized system for long-term management.

6.1 Background
The first SQL Server scanner we’re aware of is the Microsoft tool, SQL Scan, which was
used to help remediate the SQL Slammer worm. Other command-line and GUI-based
scanners such as Microsoft Assessment and Planning Toolkit (http://dbatools.io/
msassessplantoolkit) and ApexSQL Discover (http://dbatools.io/apexsqldiscover)
entered the market in later years.

 In the past, we’ve had to use a mix of methods (see http://dbatools.io/sqlinstin-
ventory) and applications to ensure we’ve found all SQL Server instances on the net-
work. Our goal with Find-DbaInstance was to ensure that only one tool would be
required.

6.1.1 Finding an instance
Before we start, we want to note that Find-DbaInstance should be used only to find
undocumented and rogue instances; it should not be used as your daily inventory
source. This is because Find-DbaInstance performs deep, time-consuming probes.
Instead, consider relying on a prebuilt inventory source such as Registered Servers,
which we will cover in chapter 8.

 To find undocumented SQL Servers on your network on an ongoing basis,
consider setting up scheduled scans using Task Scheduler or even SQL Server Agent
(dbatools.io/agent).

WARNING ABOUT SCANNING Always obtain explicit permission from the owner
of the network you plan to scan. This is true not only for using Find-
DbaInstance, but for any tool that scans a network, including Microsoft
Assessment and Planning Toolkit (MAPS).

Find-DbaInstance is a powerful command that performs two primary tasks: discovery
and scan. Discovery finds the computers that the command will scan, and scan actually
probes for the SQL Server instance.

 Discovery types are different ways to create the collection of servers that will be
probed. You can then scan this collection of computers using various scan types. Each
scan type has a different approach to determining whether a SQL Server component
has been installed on a server.

TIP As mentioned earlier, the scans can be invasive and time consuming.
The first few examples we will give you were chosen because they are not
intrusive, yet they still are demonstrative of the capabilities of the command
and will give you results relatively quickly. We expect that you will be running
the examples in a lab environment; we’ll be running against the dbatoolslab
machine we built in chapter 3.

http://dbatools.io/msassessplantoolkit
http://dbatools.io/msassessplantoolkit
http://dbatools.io/msassessplantoolkit
http://dbatools.io/apexsqldiscover
http://dbatools.io/sqlinstinventory
http://dbatools.io/sqlinstinventory
https://dbatools.io/agent/

82 CHAPTER 6 Finding SQL Server instances on your network

6.1.2 Finding instances using a list of targets

Let’s jump right in and find all of the SQL Server instances installed on our lab com-
puter using the following code. If you followed along with chapter 3, we’ll expect at
least one instance to show up.

PS> Find-DbaInstance -ComputerName dbatoolslab

When specifying -ComputerName, no discovery is required because the computer to
probe, dbatoolslab, has been explicitly given. No -ScanType was specified, so default
scans will be performed. So, the code we just ran will attempt to do the following:

 Resolve the computer name in DNS
 Ping the computer
 Find all SQL Server Services using CIM/WMI
 Discover all instances via UDP and the SQL Server Browser
 Connect to the default TCP port (1433)
 Connect to the TCP port of each discovered instance
 Look up the service principal names for each instance

That means we essentially ran -ScanType Default, which runs all available scans
except for SqlConnect. This is because, by default, we want to avoid potentially failed
logins created by SqlConnect. If you choose to use SqlConnect like we do, we think
you’ll appreciate the results, but we don’t want to make that decision for you, espe-
cially as a default.

 When it comes to which computers you’ll scan, you can also search other comput-
ers by name as well. You can use a variety of sources to build your collection, including
text files or even Get-ADComputer, as shown in the next code sample. This method can
be especially useful when you’ve inherited a new batch of computers, know their
names, and want to get a quick inventory.

Pipe in computers from a text file
PS> Get-Content -Path C:\temp\serverlist.txt | Find-DbaInstance

Pipe in computers from Active Directory
PS> Get-ADComputer -Filter "*" | Find-DbaInstance

When using the Get-Content example in listing 6.2, make sure serverlist.txt lists just
one computer name per line.

FINDING INSTANCES USING THE SQL SERVER BROWSER

Now that you’ve found all of the SQL Servers on your lab computer, let’s search the
network. We’ll start with a simple example that uses the SQL Server Browser service.

Listing 6.1 Finding SQL Server instances on dbatoolslab

Listing 6.2 Finding SQL Server instances from lists of computers

83Background

For instances to be reported when searching using the SQL Server Browser, the fire-
wall on the server must allow UDP port 1434, the Browser service must be running,
and the SQL Server instance cannot be hidden (this is a setting in the Configuration
Manager).

 For technical reasons, the Browser discovery type is called DataSourceEnumeration.
This data source enumeration essentially asks the network for information about
instances that are advertised by the SQL Server Browser Windows service. It’s basically
the same as clicking the Browse for Servers tab in SQL Server Management Studio’s
Connect dialog box (figure 6.2).

Remember that -DiscoveryType collects the computers to scan, whereas -ScanType
performs the actual scan. Once the collection of servers is received from the Data-
SourceEnumeration discovery, the Browser scan then probes for more information, as
shown here.

Running this command took about 20 seconds in our lab
PS> Find-DbaInstance -DiscoveryType DataSourceEnumeration

➥ -ScanType Browser

ComputerName InstanceName Port Availability Confidence ScanTypes
------------ ------------ ---- ------------ ---------- ---------
SQLDEV01 SQL2008R2SP2 50348 Unknown Medium Browser
SQLDEV01 MSSQLSERVER 1433 Unknown Medium Browser
SQLDEV01 MIXER 50285 Unknown Medium Browser

Listing 6.3 Finding SQL Server instances on several computers

Figure 6.2 Discovery through
data source enumeration

84 CHAPTER 6 Finding SQL Server instances on your network

SQL2017 MSSQLSERVER 1433 Unknown Medium Browser
SQL2017 MIXER 49805 Unknown Medium Browser
SQL2016 MSSQLSERVER 1433 Unknown Medium Browser
SQL2016 VNEXT 49837 Unknown Medium Browser
SQL2016 SQLEXPRESS 49903 Unknown Medium Browser
SQL2016 STANDARDRTM 49950 Unknown Medium Browser
SQL2014 MSSQLSERVER 1433 Unknown Medium Browser
SQL2008 MSSQLSERVER 1433 Unknown Medium Browser
SQL2008 SQL2K8 49271 Unknown Medium Browser
SQL2000 1433 Unknown Medium Browser
SQLCLUSTER MSSQLSERVER 1433 Unknown Medium Browser
SQL2005 MSSQLSERVER 1433 Unknown Medium Browser

We can see that a number of SQL Server instances were found on the network. The
network told us that these SQL Server instances exist, but dbatools did not establish a
connection with the SQL Server. So, because we can’t say with 100% certainty that a
SQL Server exists at the endpoint, we decided as a team to rate the confidence level of
Browser results at Medium.

 We try our best to accurately discover SQL Server instances but can’t always guar-
antee the accuracy of the results. Because of this, we thought it would be beneficial to
add a confidence level to the results. Confidence levels are important when you want
to filter out results that have a higher likelihood of being inaccurate. In the event that
you want to return results with a maximum level of confidence, use the -Minimum-
Confidence High parameter. Table 6.1 highlights each of the scenarios that increase
our confidence levels.

By default, the minimum confidence level returned is Low. To change this value to a
higher (Medium, High) or lower (None) setting, use the -MinimumConfidence param-
eter. Our confidence with Browser results is Medium not because the list of servers
returned can change with each execution based on network saturation, server perfor-
mance, and other constraints (see http://dbatools.io/enumsqlserver), but because we
don’t explicitly test to confirm the results reported by the network.

Table 6.1 Confidence

Confidence Description

High Established SQL connection

High Found SQL Server service

Medium SQL Server Browser reply

Medium TCP connection and SPN confirmation

Low TCP connection only

Low SPN only

None Computer found, but no trace of SQL Server

http://dbatools.io/enumsqlserver

85Background

 Browser -ScanType performs scans using native calls available in the .NET Frame-
work. This means that any computer with .NET installed can find at least some SQL
Server instances. Behind the scenes, we just use a method you can run right from
PowerShell, without dbatools or SQL Server Management Studio installed.

This code is not a dbatools command but rather a .NET method, and this is the exact
code we are executing under the hood.

 Note that security organizations, like DISA (Defense Information Systems Agency)
in the United States, explicitly recommend disabling the SQL Server Browser service
for systems that do not need it, such as those that are not running named instances. If
your organization complies with DISA’s Security Technical Implementation Guides,
the browser scan may return fewer SQL Servers than expected.

 Searching by browser is good enough when you’ve got nothing else, but if possible,
DataSourceEnumeration shouldn’t be your only discovery source. Nevertheless, we
think it’s good to have as part of an overall, holistic approach.

6.1.3 Finding SQL Servers in an Active Directory domain

You can also find SQL Servers in an Active Directory domain using data stored in
Active Directory itself. The Domain discovery type uses service principal names (SPN)
to find SQL Servers that are registered with Active Directory.

 SQL Server can automatically register itself on startup, and DBAs can also register
SQL services using the setspn.exe command or Set-DbaSpn. Nevertheless, not all
instances may be found because there are a number of reasons why a SQL Server
might not have an SPN, including permissions issues or policies. Because of this, the
discovery type is not 100% reliable. Like DataSourceEnumeration, however, we think
it’s good to have as part of a multipronged discovery approach.

When running this code, the nearest Domain controller is contacted and queried.
Once results are received, Find-DbaInstance will then check the Windows services to
confirm that SQL Server is running, as shown in the next code listing. This requires
permission to the Windows server running each of the SQL Server instances.

Try it now 6.1
Use this .NET code from within PowerShell to see how many SQL Servers it detects:

PS> [System.Data.Sql.SqlDataSourceEnumerator]::Instance.GetDataSources()

Try it now 6.2
Try finding SQL Servers listed in your Active Directory domain:

PS> Find-DbaInstance -DiscoveryType Domain

86 CHAPTER 6 Finding SQL Server instances on your network

ComputerName InstanceName Port Availability Confidence ScanTypes
------------ ------------ ---- ------------ ---------- ---------
sqlserver.ad.local MSSQLSERVER 1433 Unknown Medium Default
sql01.ad.local SQLEXPRESS 49752 Available High Default
sql01.ad.local MSSQLSERVER 1433 Available High Default
sql2008.ad.local SQL2K8 49271 Available High Default
sql2008.ad.local MSSQLSERVER 1433 Available High Default
sql2014.ad.local MSSQLSERVER 1433 Available High Default
sql2017.ad.local SSRS 0 Unknown High Default
sql2017.ad.local MSSQLSERVER 1433 Available High Default
sql2017.ad.local MIXER 49805 Available High Default
win10.ad.local 1433 Unknown Medium Default

If you want to search other Active Directory domains (such as Dev/Test) and your cur-
rent credentials are not trusted, you can use -DomainController and -Credential as
shown in the next code sample.

PS> $splatFindInstance = @{
DiscoveryType = "Domain"
DomainController = "dc.devad.local"
Credential = "devad\admin"

}
PS> Find-DbaInstance @splatFindInstance

Running this command will prompt you to enter the password for devad\admin, then
conduct the discovery and perform the service scans as devad\admin. This means you
will connect to both the domain controller and the resulting computers as
devad\admin. Note that Credential is not your SQL Server login but rather an
account with access to the Windows server running SQL.

6.1.4 Finding SQL Servers in your surrounding network

You can also search segments of your network or even your entire network. This is an
especially useful method for finding rogue SQL Server instances that are not joined to
your Active Directory domain. To be found, the server does not have to be a part of
the domain; it just has to exist on the network.

 By default, dbatools can figure out a range of IP addresses to scan by using infor-
mation from each of your network adapters. For example, if your computer has an IP
address of 192.168.0.77 and a subnet of 255.255.255.0, Find-DbaCommand will search
192.168.0.0 through 192.168.0.255. Depending on the size of your network, using the
IpRange default may take hours or even days.

PS> Find-DbaInstance -DiscoveryType IPRange

Listing 6.4 Results

Listing 6.5 Using an alternative username and password

Listing 6.6 Don’t try it now

87Background

Instead of defaulting to a presumably large range of IP addresses to scan, consider
providing Find-DbaInstance with explicit, more manageable ranges by using the
-IpAddress parameter. This parameter accepts a CIDR notation (http://dbatools.io/
cidrnotation) for both IPv4 and IPv6.

Note that this option can still take hours if you’re scanning a large range of comput-
ers, especially if many are offline or unresolvable. You can expect to wait three to 30
seconds per offline computer, depending on your scan type. All that said, if you have
the time, using the default IP range will give you the most complete result set possible.

GETTING THE MOST ACCURATE RESULTS

So far, we’ve run most of our commands with default scan types (you may recall the
Browser section used -ScanType Browser). The full list of scan type values include All,
Browser, Default, DNSResolve, SPN, Ping, SqlConnect, SqlService, and TCPPort.

 The -All parameter is great because it is extremely thorough, and it will give the
most accurate results because it uses all scans possible. The -All parameter can also
be not so great if your account does not have access to the discovered SQL Server
instances, and the security team sends alerts for failed logins. If you’d prefer running
fewer scans, tables 6.2 and 6.3 can help you decide which scans are appropriate for
your environment.

Table 6.2 Scan types and descriptions

Method Description

All All scan types in this table.

Browser Discover all instances via the SQL Server Browser service.

Default All scan types in this table except SqlConnect.

DNSResolve Resolve the computer name in DNS.

Ping Ping the computer.

SPN Look up the SPNs for each instance.

SqlConnect Connect to the default TCP port (1433); use -SqlCredential to
log in as an alternative user.

Try it now 6.3
Scan a local IP for SQL Servers using your own IP ranges:

Specify just one IP
PS> Find-DbaInstance -DiscoveryType IPRange -IpAddress 172.20.0.77

Specify a range
PS> Find-DbaInstance -DiscoveryType IPRange -IpAddress 172.20.0.1/24

http://dbatools.io/cidrnotation
http://dbatools.io/cidrnotation
http://dbatools.io/cidrnotation

88 CHAPTER 6 Finding SQL Server instances on your network

Each scan type relies on specific ports not being blocked at the firewall. Here are the
ports that, when enabled, will help return the most accurate results.

Note that Find-DbaInstance is intended to find instances that are actually installed.
We do not search for indiscriminate SQL binaries that may be part of an instance that
was partially uninstalled.

6.2 Working with detailed results
Something very cool about PowerShell is that, oftentimes, you can find a bunch of prop-
erties if you dig a little deeper. Returning fewer properties by default can speed up com-
mands and make output visually appealing. The same is true for Find-DbaInstance. By
default, we return six columns, but nearly 20 are available! Let’s take a closer look at the
next listing.

PS> Find-DbaInstance -ComputerName SQLDEV01 | Select *

MachineName : SQLDEV01
ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
FullName : SQLDEV01
SqlInstance : SQLDEV01
Port : 1433
TcpConnected : True
SqlConnected : False

SqlService Find all SQL Services using Windows CIM/WMI; use -Credential
to run as an alternative user.

TCPPort Connect to the TCP port of each discovered instance.

Table 6.3 Authentication usage and ports

Method Required authentication Protocol and port

All None All listed below

Browser None UDP 1434, TCP 138

DNSResolve None UDP 53, TCP 53

Ping None ICMP

SPN None Multiple; if AD works, you’re set

SqlConnect SQL or Windows TCP 1433 or other

SqlService Windows TCP 135

Listing 6.7 Expanding all properties

Table 6.2 Scan types and descriptions (continued)

Method Description

89Working with detailed results

DnsResolution : System.Net.IPHostEntry
Ping : True
BrowseReply : SQLDEV01\MSSQLSERVER
Services : {SqlService (ServiceName = "MSSQLSERVER", SQLServiceTyp...
SystemServices : {SqlService (ServiceName = "SQLBrowser", SQLServiceType...
SPNs :
PortsScanned : {SQLDEV01:1433 - True}
Availability : Available
Confidence : High
ScanTypes : Default
Timestamp : 7/16/2019 2:35:54 AM

Some properties, like ComputerName, are simple strings, but others like DnsResolution,
SystemServices, and even Timestamp can be further expanded using Select -Expand-
Property, as shown next.

PS> Find-DbaInstance -ComputerName SQLDEV01 |
Select -ExpandProperty DnsResolution

HostName Aliases AddressList
-------- ------- -----------
SQLDEV01.ad.local {} {::1, 192.168.0.10}
SQLDEV01.ad.local {} {::1, 192.168.0.10}
SQLDEV01.ad.local {} {::1, 192.168.0.10}

In our opinion, the most useful when it comes to newly discovered instances is
Services, shown here, which gives detailed information about each of the SQL
services that were found.

PS> Find-DbaInstance -ComputerName SQLDEV01 |
Select -ExpandProperty Services

ComputerName : SQLDEV01
ServiceName : MSSQL$SQL2008R2SP2
ServiceType : Engine
InstanceName : SQL2008R2SP2
DisplayName : SQL Server (SQL2008R2SP2)
StartName : LocalSystem
State : Running
StartMode : Automatic

ComputerName : SQLDEV01
ServiceName : SQLAgent$SQL2008R2SP2
ServiceType : Agent
InstanceName : SQL2008R2SP2
DisplayName : SQL Server Agent (SQL2008R2SP2)
StartName : ad\sqlserver
State : Stopped
StartMode : Disabled

Listing 6.8 Expanding the specific property, DnsResolution

Listing 6.9 Expanding the specific property, Services

90 CHAPTER 6 Finding SQL Server instances on your network

This information can be used to find specific services, such as Agent or Reporting
Services.

6.3 OS support
Find-DbaInstance runs on Windows, macOS, and Linux, but not all scan types are
universally supported. Table 6.4 provides an easy reference.

Note that any “Unsupported” is a limitation on both the client and the host. So, if
you’re running dbatools on Windows and attempting to connect to a Linux host, if
the third row says “Unsupported,” the SQL Server will not be discovered. For instance,
you won’t be able to use the Browser scan type from a Linux client even if you’re scan-
ning a Windows host, because of the “Unsupported” under macOS/Linux.

FOUND A SQL SERVER BUT CAN'T LOG IN? If you find a SQL Server instance but
do not have a login, you can use Reset-DbaAdmin to create a new sysadmin
login if the server is running on Windows. Reset-DbaAdmin requires Windows
administrator access and uses Microsoft’s recommended approach (http://
dbatools.io/msregainaccess) to regain access. This command takes about 20
seconds to execute and restarts the SQL Service.

Now that you’ve learned how to find SQL Servers on your network, it’s time to begin
building your estate inventory.

6.4 Hands-on lab
Let’s practice what you just read in this chapter. See if you can complete the following
tasks:

1 Find SQL Servers in your domain with computers with “SQL” in the name.
2 Find only Reporting Services.
3 Find a SQL Server on a nondefault port (not 1433).

Remember, you can find answers at dbatools.io/answers. And now that you’ve found
your instances, it’s time to inventory your SQL Server estate.

Table 6.4 Operating system support

Type Windows macOS/Linux

Domain/SPN Supported Supported

TcpPort Supported Supported

Browser Supported Unsupported

SqlConnect Supported Unsupported

SqlService Supported Unsupported

http://dbatools.io/msregainaccess
http://dbatools.io/msregainaccess
http://dbatools.io/msregainaccess
https://gist.github.com/potatoqualitee/6ec31e978f8467764f06ca431a37f612

91

Inventorying
 your SQL estate

In the previous chapter, you learned how to find all of the SQL Server instances on
your network. Now it’s time to gather essential information about each of those
servers and create an inventory of it.

 Creating inventories lets you provide access to reports for members of the orga-
nization without having to grant access to your SQL instances. Keeping your inven-
tory up to date will help to speed up the planning of migrations and upgrades in
particular, because knowing what features are in use can keep upgrades properly
planned and on track.

 DBAs are often expected to just know the configuration of every host, instance,
and database in their estate. If you have only a handful of instances, this may be
possible, but for hundreds or thousands, it is unlikely.

 In this chapter, we will show you how to use dbatools to build an inventory of
the things we’re often expected to know, such as the following:

Armed with this information, you will be able to answer ad hoc questions about a
host, an instance, or a database. Combine this knowledge with the skills you
learned in chapters 5 and 6, and you will be able to document your entire estate in
a SQL database.

 Feature usage  Build information  Host (server) information
 Databases  Jobs  Application logins
 Disk space trends  Installation date  Port configuration
 Edition  Last backup date  Last database integrity check
 Suspect pages  Instance configuration

(is xp_cmdshell enabled?)
 Centralized error messages

92 CHAPTER 7 Inventorying your SQL estate

INVENTORYING IN DEPTH Years ago, Microsoft’s Kendal Van Dyke created a
PowerShell-based SQL Server inventorying tool called SQL Power Doc. SQL
Power Doc is, according to Van Dyke, a “collection of Windows PowerShell
scripts and modules that discover, document, and diagnose SQL Server
instances and their underlying Windows OS & machine configurations.” To
explore this toolset, check out the repository at sqlps.io/sqlpowerdoc, and
visit SQL Shack’s article “Using SQL Power Doc to Discover, Diagnose and
Document SQL Server” at sqlps.io/sqlpowerdocddd.

You’ll also have the beginnings of a baseline (see sqlps.io/baseline): basically, a start-
ing point for comparison, which can help with capacity planning, determining trends,
and troubleshooting (because it’s easy to see what’s changed recently).

7.1 SQL features
We’ll begin with finding and documenting your SQL Server features. As a DBA, you
may be asked which SQL Server features have been installed on a host. This is espe-
cially true during audits, because unused features can needlessly expand your attack
surface and increase the amount of time it takes to patch your instances.

 One way to find feature usage is to use SQL Server’s built-in feature report generator.
In figure 7.1, you can see an example of such a report, called the SQL Server Discovery
Report. HTML output is automatically generated when setup.exe is executed and stored
in %ProgramFiles%\MicrosoftSQL Server\nnn\Setup Bootstrap\Log\<last Setup Session>.

You can also create the Discovery Report manually using the same setup.exe with the
/Action=RunDiscovery flag (dbatools.io/validatesqlinstall), as shown in the next
code listing.

PS> cd "C:\Program Files\Microsoft SQL Server\140\Setup Bootstrap\SQL2017"
PS> .\setup.exe /Action=RunDiscovery

Listing 7.1 Running the SQL Server Discovery Report from the command line

Figure 7.1 SQL Server Discovery Report and location

https://github.com/kendalvandyke/sqlpowerdoc
https://www.sqlshack.com/using-sql-power-doc-to-discover-diagnose-and-document-sql-server/
https://www.sqlservercentral.com/steps/5-reasons-you-must-start-capturing-baseline-data
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/validate-a-sql-server-installation?view=sql-server-2017

93SQL features

Those reports are pretty and useful, but generating them took a number of steps.
First, we had to log in to the machine, then we had to find the setup file, and then
finally, we ran the commands. Imagine if you needed to do this, not just for one
server, but for 10 or 10,000 hosts.

 Generating feature reports across a vast SQL Server estate provides an exceptional
use case for remoting and automation, and we’ve created a command, Get-DbaFeature,
which does just that. Get-DbaFeature makes it easy to log in to hundreds of Windows
servers and gather all of the features they are using—and it takes just one line of code!

COMMUNITY INSPIRATION As with many dbatools commands, Get-DbaFeature
was based on a blog post. In this case, community member Dave Mason cre-
ated an excellent tutorial with sample code at sqlps.io/discover, and we
couldn’t help but wrap the blog’s code into a dbatools command.

You learned in chapter 4 that you can pass multiple values to the -ComputerName
parameter. To gather the SQL feature information about your hosts in your estate, you
can run the command in the next code snippet. Note that, as of this writing, Get-
DbaFeature works only on Windows hosts.

PS> Get-DbaFeature -ComputerName $sqlinstances

The screenshot in figure 7.2 shows that the command returns the information about
every instance on the host (MIRROR is a named instance).

Now that you’ve got your features collected, let’s gather more detailed SQL Server
build information.

Listing 7.2 Gathering SQL feature information about Windows hosts

Figure 7.2 Results returned as objects instead of a web page

https://itsalljustelectrons.blogspot.com/2018/04/SQL-Server-Discovery-Report.html

94 CHAPTER 7 Inventorying your SQL estate

7.2 Build
As a DBA, it is important for you to know the specific build version of an instance.
Knowing precisely what build your instance is using is vital when an application is sup-
ported on only a particular version of SQL. Understanding whether your instances are
supported by Microsoft and compliant with your organization’s stipulations is an
expected requirement for all DBAs. When you are asked this question about an
instance, you can use Get-DbaBuildReference to get that information.

 Let’s say a project manager walks up to your desk and asks you what version of SQL
is running on SQLDEV01. You can easily switch to your PowerShell session and run
the following single command to find out.

PS> Get-DbaBuildReference -SqlInstance SQLDEV01

SqlInstance : SQLDEV01
Build : 11.0.6607
NameLevel : 2012
SPLevel : SP3
CULevel : CU10
KBLevel : {4025925, 4019090}
BuildLevel : 11.0.6607
SupportedUntil : 10/9/2018 12:00:00 AM
MatchType : Exact
Warning :

Less than a quarter of a second after pressing Enter, you can tell them all the informa-
tion they need. You will save so much time doing this, and with practice it will soon
become muscle memory.

 The build reference uses a JSON database that is included in the dbatools module.
Considering Microsoft’s aggressive release cycle for patches, be sure to keep this index
updated by keeping dbatools updated, or using the -Update parameter, as shown next.

PS> Get-DbaBuildReference -Update

This build database is used in a variety of ways within dbatools. Not only does it help
power Get-DbaBuildReference, it is also the data source for our ultra speedy, JavaScript-
based SQL build reference website at dbatools.io/builds. We even used it to create a
compliance-checker command called Test-DbaBuild and shown in the next code sam-
ple. Test-DbaBuild makes it easy for you to ensure that your SQL Servers are at a specific
patch level, including the latest.

PS> Test-DbaBuild -SqlInstance SQLDEV01 -Latest

Listing 7.3 Getting the build information about an instance

Listing 7.4 Updating the build information file

Listing 7.5 Checking build compliance

dbatools.io/builds

95Host information

Test-DbaBuild provides detailed build information, the most interesting being Com-
pliant. This result makes it easy to determine whether a server is noncompliant and
needs to be updated.

Build : 14.0.3192
BuildLevel : 14.0.3192
BuildTarget : 14.0.3208
Compliant : False
CULevel : CU15
CUTarget :
KBLevel : 4505225
MatchType : Exact
MaxBehind :
NameLevel : 2017
SPLevel : RTM
SPTarget :
SqlInstance : SQLDEV01
SupportedUntil : 10/12/2027 12:00:00 AM
Warning :

You have gathered the information about the SQL features and versions that are
installed across your estate, but you want more. Let’s take a closer look at the SQL
Server’s host operating system.

7.3 Host information
It is important to be able to identify the version of the operating system that your
instances are running for compliance reasons and also during an incident. Imagine that
you are part of the team responding to a significant incident affecting an important sys-
tem for your company. You are on a conference call with many other colleagues or in
the special Slack chat room, and someone asks, “How many logical processors does this
host have?” You can use Get-DbaComputerSystem, as shown in the following listing.

PS> Get-DbaComputerSystem -ComputerName SQLDEV01

ComputerName : SQLDEV01.ad.local
Domain : ad.local
DomainRole : Member Server
IsHyperThreading : True
IsSystemManagedPageFile : False
Manufacturer : Microsoft Corporation
Model : Virtual Machine
NumberLogicalProcessors : 4
NumberProcessors : 1
PendingReboot : False
ProcessorCaption : Intel64 Family 6 Model 63 Stepping 2
ProcessorMaxClockSpeed : 2397

Listing 7.6 Results showing noncompliance

Listing 7.7 Getting information about the host operating system

96 CHAPTER 7 Inventorying your SQL estate

ProcessorName : Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz
SystemFamily :
SystemType : x64-based PC
TotalPhysicalMemory : 16.00 GB

Now you’ve got information that will help assist with troubleshooting by allowing you to
quickly understand the resource profile of your host server. Get-DbaComputerSystem
once helped us discover that a host, which was expected to have 16 GB of RAM, had only
6 GB, which was ultimately determined to be the source of resource contention.

 Oftentimes, we also need to know details about the operating system running on a
remote host. This knowledge can help us determine a number of things, including
which of our servers still need to be updated to the latest version or how many licenses
are required for a specific edition of Windows. To gather detailed operating system
information from a host, use the Get-DbaOperatingSystem command, as shown here.

PS> Get-DbaOperatingSystem -ComputerName SQL2016N1.ad.local

ComputerName : SQL2016N1.ad.local
Manufacturer : Microsoft Corporation
Organization :
Architecture : 64-bit
Version : 10.0.14393
OSVersion : Microsoft Windows Server 2016 Datacenter
LastBootTime : 2019-06-23 06:51:07.794
LocalDateTime : 2019-06-27 22:35:27.836
PowerShellVersion : 5.1
TimeZone : (UTC+00:00) Dublin, Edinburgh, Lisbon, London
TotalVisibleMemory : 2.56 GB
ActivePowerPlan : Balanced
LanguageNative : English (United States)

Getting used to running dbatools commands at the command line will enable you to
quickly and easily provide information when speed is of the essence. You also want to
gather that information about your entire estate and probably, because you are a
DBA, store it in a database.

7.4 Databases
Of course, databases are important, too! When you are required to gather informa-
tion about your databases, you can use Get-DbaDatabase, as shown next.

PS> Get-DbaDatabase -SqlInstance SQLDEV01

You will get more information than just the names of the databases. Take a look at the
default results for a single database shown in the following code listing.

Listing 7.8 Getting information about another host operating system

Listing 7.9 Listing the databases on an instance

97Databases

ComputerName : SQLDEV01
InstanceName : MSSQLSERVER
SqlInstance : SQLDEV01
Name : dbatoolsBestPractices_SQL1
Status : Normal
IsAccessible : True
RecoveryModel : Full
LogReuseWaitStatus : Nothing
SizeMB : 16
Compatibility : Version130
Collation : Latin1_General_CI_AS
Owner : ad\spservice
Encrypted : False
LastFullBackup : 10/05/2018 07:15:50
LastDiffBackup : 08/06/2018 00:01:25
LastLogBackup : 08/06/2018 08:11:03

There is much more that you can do with this command than simply list all of data-
bases on an instance and get the information about them. You can return the informa-
tion for a single database using the -Database parameter with the name of the
database. This parameter also accepts a comma-delimited list of databases to return
information for multiple databases, as shown next.

PS> $splatDatabase = @{
SqlInstance = "SQLDEV01"
Database = "WideWorldImporters", "AdventureWorks"

}
PS> Get-DbaDatabase @splatDatabase

As with all dbatools (and, indeed, PowerShell) commands, look at the examples in
Get-Help to expand your learning.

7.4.1 Filtering databases returned from Get-DbaDatabase

Some of your instances may hold dozens or even hundreds of databases, but most of
the time, you’ll need information from only a small subset. When you are asked for
information about only a fraction of your databases, you want to filter the information

Listing 7.10 Output of listing the databases on an instance

Listing 7.11 Getting information about multiple databases

The Windows hostname of the server

The name of the instance

The SQL Server name (SELECT @@SERVERNAME)

The database
name

The database status: Emergency,
Normal, Offline, Recovering,
Restoring, Standby, and Suspect

Specifies whether the
database is accessible

The recovery model
of the database

The type of operation
on which the reuse of
transaction log space
is waiting

The size of the database
in megabytes

The compatibility level of the database

The collation of the database

The user account that is the database owner

The encryption state of the database

The time of the last full backup of the database

The time of the last differential backup of the database

The time of the last log backup of the database

98 CHAPTER 7 Inventorying your SQL estate

returned. You can use a number of parameters to filter the results returned from
Get-DbaDatabase.

 For example, when you need information only about the system databases, use the
-ExcludeUser switch parameter. When user databases are all that you require, use the
-ExcludeSystem switch parameter. We use these switches on a regular basis, especially
when we’re working with backups or conducting audits because different rules usually
apply to user and system databases.

7.4.2 Filtering databases returned from Get-DbaDatabase by last backup time

The information returned from the Get-DbaDatabase command includes the times of
the last backups. This data can help quickly identify which backups are out of date.
You can even use it in the dreaded scenario of having to find a database that has never
been backed up.

 Full backups are required to recover data in the event of a disaster, and you can use
dbatools to quickly list all of the databases without a full backup using the -NoFull-
Backup parameter, as seen in the next listing.

PS> Get-DbaDatabase -SqlInstance SQLDEV01 -NoFullBackup

If your organizational policy requires that all databases have a full backup within the
last 30 days, see the following code snippet to see how to easily find this information.

PS> $date = (Get-Date).AddDays(-30)
PS> Get-DbaDatabase -SqlInstance SQLDEV01 -NoFullBackupSince $date

You can also use -NoLogBackup and -NoLogBackupSince to filter databases by the time
of their last log backup in the same way. These parameters not only check for no log
backups, they also filter out any databases that use the SIMPLE recovery model,
because log backups are not required for those databases. This helps reduce the noise
in your returned data. Knowing which databases have not had log backups in a spe-
cific period can also help you better manage your storage capacity requirements—
transaction logs grow pretty much until a disk is out of space.

Listing 7.12 Getting databases without a full backup

Listing 7.13 Getting databases without a full backup in the last 30 days

Try it now 7.1
Make sure to find the databases on instances that don’t have a log backup. Of
course, it would be remiss of us not to mention that if those databases require a log
backup, it would be a better use of your time to back them up rather than to carry on
reading!

99Databases

When a user leaves the organization, you may need to identify the databases that the
user owns and alter that user. Get-DbaDatabase enables you to filter the databases by
the user account that owns the database. As you learned in previous chapters, you can
run dbatools commands against multiple instances. The next example shows gather-
ing instance names using a SQL query and passing them to Get-DbaDatabase.

Gather all of the instances from the estate
PS> $splatInvokeQuery = @{

SqlInstance = "ConfigInstance"
Database = "Instances"
Query = "SELECT InstanceName FROM Config"

}
PS> $SqlInstances = (Invoke-DbaQuery @splatInvokeQuery).InstanceName
Find databases owned by the user
PS> Get-DbaDatabase -SqlInstance $instances -Owner ad\g.sartori

You can even inventory your entire estate for object ownership, as shown in the next
listing! This is an essential command to run as part of your outprocessing procedures.
Once an employee or organizational member has left the company, it is important to
reassign the ownership of their objects.

PS> Find-DbaUserObject -SqlInstance sql2017, sql2005

ComputerName : SQL2017
InstanceName : MSSQLSERVER
SqlInstance : SQL2017
Type : Database
Owner : ad\claudio.silva
Name : agroupdb
Parent : sql2017

ComputerName : SQL2017
InstanceName : MSSQLSERVER
SqlInstance : SQL2017
Type : Proxy
Owner : ad\smoore
Name : CopyBackupProxy
Parent : sql2017

ComputerName : SQL2017
InstanceName : MSSQLSERVER
SqlInstance : SQL2017
Type : Credential
Owner : ad\s.bizzotto
Name : PowerShell Proxy Account
Parent : sql2017

Listing 7.14 Returning databases that are owned by a particular user

Listing 7.15 Returning all object owners

100 CHAPTER 7 Inventorying your SQL estate

ComputerName : SQL2017
InstanceName : MSSQLSERVER
SqlInstance : SQL2017
Type : Credential
Owner : ad\w.s.melton
Name : PowerShell Proxy Account
Parent : sql2017

ComputerName : SQL2005
InstanceName : MSSQLSERVER
SqlInstance : SQL2005
Type : Endpoint
Owner : ad\sander.stad
Name : Mirroring
Parent : sql2005

If you’d like to return the objects assigned to a specific user, pipe the results to Where-
Object and search on Owner.

7.5 Putting it all together into a database
Taking each of the commands that you learned earlier in this chapter, you can finally
gather information and store it in a database. In chapter 5, you learned about Write-
DbaDataTable, so to gather the information about all of the instances that you found
with Find-DbaInstance in chapter 6, you can run the script shown next on a regular
basis.

Our central instance
PS> $sqlconfiginstance = "ConfigInstance"

A comma delimited list of Host names
PS> $sqlhosts = "SQLDEV01", "sql1"

A comma-delimted list of SQL instances
PS> $sqlinstances = "SQLDEV01","sql1","SQLDEV01\SHAREPOINT", "sql1\DW"

Create DBAEstate database if not existing
PS> New-DbaDatabase -SqlInstance $sqlconfiginstance -Name DBAEstate

Put information about the SQL hosts into the DBAEstate database
PS> $splatWriteDataTable = @{

SqlInstance = $sqlconfiginstance
Database = "DBAEstate"
AutoCreateTable = $true

}
PS> Get-DbaFeature -ComputerName $sqlhosts |
Write-DbaDataTable @splatWriteDataTable -Table Features

PS> Get-DbaBuildReference -SqlInstance $sqlinstances |
Write-DbaDataTable @splatWriteDataTable -Table SQLBuilds

Listing 7.16 Bringing it all together

101Hands-on lab

PS> Get-DbaComputerSystem -ComputerName $sqlhosts |
Write-DbaDataTable @splatWriteDataTable -Table ComputerSystem

PS> Get-DbaOperatingSystem -ComputerName $sqlhosts |
Write-DbaDataTable @splatWriteDataTable -Table OperatingSystem

PS> Get-DbaDatabase -SqlInstance $sqlinstances |
Write-DbaDataTable @splatWriteDataTable -Table Database

PS> Find-DbaUserObject -SqlInstance $sqlinstances |
Write-DbaDataTable @splatWriteDataTable -Table UserObject

In this chapter, you have learned how to use dbatools to gather information about one
or many hosts or SQL instances at the command line. This practice will be useful in
your daily life for answering “walk-up” questions and during incident resolution. You
have also seen how to load the data about your entire estate into database tables.

 As DBAs ourselves, we will end this chapter with a statement about using the right
tool for the right job. PowerShell is excellent at gathering information from multiple
hosts around your estate, but it’s not the best tool for processing large amounts of
data. SQL is much better at doing that, so you will probably want to use the database
tables created in the earlier example to create a database that will be better suited to
relational querying rather than the flat tables that we have created here. These tables
would be perfect for staging tables, with a follow-up process in SQL to transform and
load the data as required. This is outside of the scope of this book, but we feel it is an
excellent learning opportunity.

7.6 Hands-on lab
Let’s practice what you just read about in this chapter. See if you can complete the fol-
lowing tasks:

 Test compliance of multiple instances against the latest build available.
 Search for objects owned by “sa.”

Unsure of the answers? You can check your work at dbatools.io/answers.

https://gist.github.com/potatoqualitee/6ec31e978f8467764f06ca431a37f612

102

Registered Servers

Our favorite way to organize servers within a SQL Server estate is by using Registered
Servers (http://dbatools.io/registerservers), which is an instance inventory system
introduced in SQL Server 2005. Registered Servers is our preferred inventory system
because it has all of the basic features we need, such as grouping, authentication, and
aliases, and it’s included in SQL Server at no additional cost. This means we don’t have
to procure an inventory system each time we begin working in a new environment.

 Registered Servers supports SQL Server 2000 instances and later and can sup-
port the Database Engine, Analysis Services, Integration Services, and Reporting
Services. We prefer to use this feature as a simplified inventory tool for the Data-
base Engine, because it enables us to pipe servers from Get-DbaRegServer into
almost any dbatools command. This ability makes it astoundingly easy to execute a
command against every single instance in our SQL estate.

 If you’ve got a lot of SQL Server instances, keeping track of them can be a daunting
task. In the old days, we used custom web applications, Excel, or even Notepad to keep
track of each instance. Registered Servers can help monitor your SQL Server instances,
but they can still be rather tedious because they require a ton of clicking. Fortunately,
dbatools turns those clicks into commands that make management fast and easy.

Try it now 8.1
Open SQL Server Management Studio, and explore the Registered Servers dialog
box. You can find this by clicking View > Registered Servers.

Don’t see the Azure Data Studio Group? Azure Data Studio is a new addition to
the classic Registered Servers tab and was introduced in SQL Server Management
Studio (SSMS) 18. If you use an earlier version of SSMS or do not have Azure Data
Studio installed on the computer running SSMS, you will not see this tab.

http://dbatools.io/registerservers

103

“Registered Servers” is the overarching name for three different types of repositories
that store server connection information and enable multiserver queries (http://
dbatools.io/execregisterserv), which allow you to execute T-SQL queries against many
servers at once. dbatools supports all three of the following types of repositories:

 Local Server Groups
 Azure Data Studio
 Central Management Server

The ability to work with Local Server Groups was actually added just for this book! An
entire chapter about Central Management Server alone was unexciting, so we added
support for Local Server Groups and Azure Data Studio. What’s even cooler is that
this also changed the way we fundamentally connect to SQL Server, which allowed us
to add support for all authentication types that are supported by SQL Server Manage-
ment Studio.

 Figure 8.1 shows an example of what the Registered Servers window looks like in
our environments. You’ll see that we do not use a flat list but, rather, divide our servers
into groups such as containers, cloud, onprem, Production, and Test.

Figure 8.1 Registered
Servers in SSMS 18

http://dbatools.io/execregisterserv
http://dbatools.io/execregisterserv
http://dbatools.io/execregisterserv

104 CHAPTER 8 Registered Servers

Imagine being able to select all servers or just a specific group and run one query or
command against all of them, as shown in the following listing. This is useful on a day-
to-day basis, but it can be a lifesaver during audits that require DBAs to prove their sys-
tems are secure by running prebuilt queries in front of an auditor!

PS> Get-DbaRegServer | Invoke-DbaQuery -Query "SELECT @@VERSION"

Let’s take a closer look at each of the three available Registered Server repositories.
Note that because of the graphical nature of Registered Servers, this chapter will have
several screenshots to help orient you with the way it works.

8.1 Local Server Groups
The first type of Registered Server we’ll look at are Local Server Groups. We like using
Local Server Groups because they are flexible and allow us to securely store connection
credentials. The downside, however, is that the inventory list cannot be shared with
other database administrators. Local Server Groups support a variety of credentials,
including SQL Server authentication and Azure Active Directory, as shown in figure 8.2.

Listing 8.1 Running a query against every server in our inventory

Figure 8.2 New server
registration in Local
Server Groups

105Azure Data Studio

Credential passwords are encrypted and stored within RegSrvr.xml.

8.1.1 Version-specific RegSrvr.xml files

All data in Local Server Groups is stored locally on your hard drive in a file called
RegSrvr.xml, deep in the $home\AppData\Roaming\Microsoft\ directory. Several
instances of RegSrvr.xml can exist on one machine, as shown in figure 8.3.

 Until SSMS 18, Microsoft used version-specific locations for the .xml file. This
meant that each version of SSMS had a different collection of SQL Servers. Under-
standably, this led to a bit of confusion when we modified our Registered Servers
using dbatools but did not see them in older versions of SSMS.

Now, with SSMS 18 and, presumably, future versions, Microsoft has standardized the
location of RegSrvr.xml. If you aren’t seeing your Registered Servers in SSMS, please
upgrade to the latest version of SQL Server Management Studio. You can see in the
next listing how dbatools can access servers that are stored in Local Server Groups.

PS> Get-DbaRegServer

Name ServerName Group Description Source
---- ---------- ----- ----------- ------
dockersql1 macmini Node 1 test AG Local...
dockersql2 macmini,14333 Node 2 test AG Local...
sql01 sql01 onprem Azure...
azure sql db dbatools.database.windows.net cloud Azure...

8.2 Azure Data Studio
Azure Data Studio (http://dbatools.io/ads), or ADS, is a cross-platform database
management tool aimed at developers. Although the name suggests “cloud-only,”
Azure now means both on-premises and cloud, and, similarly, ADS works with both
on-premises SQL Servers and SQL Servers that are in the cloud, as can be seen in fig-
ure 8.4.

Listing 8.2 Accessing local Registered Servers with dbatools

Try it now 8.2
Create a local Registered Server using SSMS, and then use Get-DbaRegServer to
see the newly created Registered Server.

Figure 8.3 dbatools uses
the indicated location to
store multiple RegSrvr.xml
files on one machine.

http://dbatools.io/ads

106 CHAPTER 8 Registered Servers

Unlike SSMS, ADS runs on macOS and Linux. So, if your primary workstation is not
Windows, this is the SQL management tool for you. Even if you’re on Windows, ADS has
some really cool features that you’ll enjoy, primarily, Jupyter Notebooks, which manag-
ers and conference audiences love. Like SSMS, ADS also supports Registered Servers.

 If you’ve installed ADS and registered a server connection, a file called set-
tings.json will be created in the $home\AppData\azuredatastudio\ directory. SSMS 18
will pick up on this and add it to your Registered Server list.

 If this file does not exist, then Azure Data Studio will not appear in your SSMS
Registered Servers tab. Azure Data Studio stores encrypted credentials (http://
dbatools.io/adsencrycreds) in the Credential Manager, which is tied to both a specific
user and a specific computer.

 Our Registered Server commands provide valid -SqlInstance sources, as can be
seen in the next code snippet.

PS> Get-DbaRegServer -Name sql01 | Get-DbaDatabase |
Backup-DbaDatabase

SqlInstance Database Type TotalSize DeviceType Start Dura...
----------- -------- ---- --------- ---------- ----- ----...
sql01 master Full 3.71 MB Disk 2019-11-25 11:27:38 00:0...

Listing 8.3 Accessing local Registered Servers

Figure 8.4 Register a connection in Azure Data Studio.

http://dbatools.io/adsencrycreds
http://dbatools.io/adsencrycreds
http://dbatools.io/adsencrycreds

107Central Management Server

sql01 model Full 2.45 MB Disk 2019-11-25 11:27:39 00:0...
sql01 msdb Full 14.08 MB Disk 2019-11-25 11:27:40 00:0...
sql01 test Full 2.45 MB Disk 2019-11-25 11:27:40 00:0...

Although ADS supports MFA (multifactor authentication), dbatools does not support
multifactor authentication with Azure Data Studio Registered Servers. The servers will
appear in the list, but when you attempt to connect, the connection will be made
using basic Windows Authentication. This is because ADS implements MFA with inter-
active GUI elements that we do not currently support.

USING THE GET-DBAREGISTEREDSERVER ALIAS A couple commands in dbatools
have an associated alias, including Get-DbaRegServer. You can also use Get-
DbaRegisteredServer, which is an alias of Get-DbaRegServer.

To use MFA within dbatools, check out the examples for Connect-DbaInstance.

8.3 Central Management Server
The Central Management Server, or CMS, was introduced in SQL Server 2008 and is
intended to keep a centralized repository of SQL Servers for multiple DBAs within an
organization. Unlike Local Server Groups, CMS supports only the Database Engine.
The Central Management Server shines most when your organization uses Windows
Authentication and has multiple DBAs to share the inventory. The Central Manage-
ment Server is highly integrated with SSMS but ultimately resides in msdb, so it’s also
part of SQL Server itself, as can be seen in figure 8.5.

Try it now 8.3
Use Get-Help -Name Connect-DbaInstance -Examples for Connect-DbaIn-
stance.

Figure 8.5 Register a Central Management Server in SSMS.

108 CHAPTER 8 Registered Servers

Creating groups and servers is straightforward (http://dbatools.io/ssmscms), though
you may find yourself frustrated by the lack of authentication options, which include
only Active Directory Integrated and Windows Authentication, as shown in figure 8.6.
This is likely because storing SQL login credentials is pretty much credential sharing,
which is an ill-advised security practice.

Currently, if you’d like to use alternative credentials or login methods within SSMS, as
shown in the next code sample, you will have to stick with regular local Registered
Servers or Azure Data Studio. dbatools is not impacted by this limitation because we
offer the option to attach a -SqlCredential to any command for any server.

PS> $cred = Get-Credential sqladmin
PS> Get-DbaRegserver -SqlInstance dbainstance |
Backup-DbaDatabase -SqlCredential $cred

Listing 8.4 Using alternative credentials to connect to the remote machine

Figure 8.6 New Server Registration in Central Management Server

http://dbatools.io/ssmscms

109Inventory organization

In listing 8.4, servers are gathered from the CMS instance dbainstance, and all of
their databases are backed up by an administrator who has logged in as the SQL login
sqladmin.

 CMS is available in all editions of SQL Server, including the freely available SQL
Server Express. This allows you to centralize your inventory for all of your DBAs with-
out incurring additional costs.

To connect to the Central Management Server using dbatools, use the -SqlInstance
parameter with Get-DbaRegServer as shown here.

PS> Get-DbaRegServer -SqlInstance dbainstance

Name ServerName Group Description
---- ---------- ----- -----------
Dynamics dynsql01 Production\HR Dedicated to Dynami...
System Center scsql01 Production\Infra SCCM clustered inst...
vCenter vcsql01 Production\Infra Contact Frank for m...
VDI Cluster vdisql01\vdi Production\Infra SQL 2008 cluster ...
SharePoint Cluster spsql01 Production\Web Nodes: spsql01n1, s...
sql2012cluster sql2012cluster Test\SQL 2012 Developer edition ...
sql2014 sql2014 Test\SQL 2014 Enterprise Edition ...
sql2016 sql2016 Test\SQL 2016 SP1, so the good st...
sql2017\exp sql2017\exp Test\SQL 2017 Express test for mi...
sql2017 sql2017 Test\SQL 2017 Enterprise edition ...

In listing 8.5, dbainstance is the SQL Server that holds the CMS repository.

8.4 Inventory organization
If you are new to Registered Servers and wonder how to organize your inventory,
there is no set standard, so the decision is all yours. Some examples of inventory
group design that we’ve seen or used at some point follow:

Listing 8.5 Connecting to the CMS

Where does CMS belong?
Once, while hanging out in the SQL Server Community Slack (http://dbatools.io/
slack), someone asked what type of SQL Server should be designated as the Central
Management Server. A few people responded saying they have a dedicated manage-
ment instance, and that is how ours is set up as well: one server is dedicated to all
DBA tasks, including the hosting of CMS.

You may also find that you prefer Local Server Groups. A Twitter poll conducted for
this chapter suggests that more than 60% of our followers prefer Local Server Groups
over CMS. This is likely due to the authentication and engine limitations of CMS.

http://dbatools.io/slack
http://dbatools.io/slack
http://dbatools.io/slack

110 CHAPTER 8 Registered Servers

 Environment
– Production
– Staging
– Test

 Department
– HR
– Accounting

 Version
– SQL Server 2005
– SQL Server 2012

 Edition
– Express
– Enterprise

 Location

Even within the same organization, servers may be organized into different groups at
different times, depending on the company’s needs. In particular, we often find that
organizing by Version and Edition can be especially useful during migrations. You can
even include one SQL Server in multiple groups, so adding one server to both the
Version and Edition groups is possible. Once the migrations are complete, we then
move those servers back their Department folder.

8.4.1 Importing advanced environment folder structures

Already have a CSV file with a list of servers? You can easily import it using Add-
DbaRegServer, as shown in the following code listing. You need only the ServerName
column, but you can also import the Name, Description, and Group columns, as well
as others. Group even supports subgroups.

PS> Import-Csv -Path C:\temp\regservers.csv

ServerName Name Description Group
---------- ---- ----------- -----
sql2017 SQL Server 2017 Older version Test\Dev\Old
sql2019 SQL Server 2019 The newest SQL Test\Dev
sqlcluster SQL Server Cluster Prod FCI Prod

PS> Import-Csv -Path C:\temp\regservers.csv |
Import-DbaRegServer -SqlInstance sql2016

Name ServerName Group Description Source
---- ---------- ----- ----------- ------
SQL Server 2017 sql2017 Test\Dev\Old Older version Central Manag...
SQL Server 2019 sql2019 Test\Dev The newest SQL Central Manag...
SQL Server Cluster sqlcluster Prod Prod FCI Central Manag...

Listing 8.6 Importing complex structures using CSV

111Inventory organization

We try to be as flexible as possible and offer a number of different ways to import and
manage new servers and even server groups, which will be detailed shortly.

 Once you’ve created your estate, which likely includes groups, we also offer ways to
filter by these groups, as can be seen in the next code listing. This allows to you exe-
cute commands against a limited number of specific servers. For example, you may
want to run resource-intensive queries during the day and limit them just to the serv-
ers where the local time is not within business hours.

PS> Get-DbaRegServer -SqlInstance sql2016 -Group Test\Dev

Name ServerName Group Description Source
---- ---------- ----- ----------- ------
SQL Server 2017 sql2017 Test\Dev Older version Central Management S...
SQL Server 2019 sql2019 Test\Dev The newest SQL Central Management S...

PS> Get-DbaRegServer -SqlInstance sql2016 -ExcludeGroup Test\Dev

Name ServerName Group Description Source
---- ---------- ----- ----------- ------
SQL Server Cluster sqlcluster Prod Prod FCI Central Management Servers

Get-DbaRegServer accepts an array of strings that you can use to include or exclude
as many groups as you wish.

GETTING REGISTERED SERVERS IN BOTH LOCAL SERVER GROUPS AND CMS
To replicate the results seen in figure 8.1, add both -SqlInstance and -IncludeLocal,
as shown here.

PS> Get-DbaRegServer -SqlInstance dbainstance -IncludeLocal

This command gets all Registered Servers found in the Central Management Server
on dbainstance, as well as the servers registered in Local Server Groups and Azure
Data Studio. You can then use this information to run commands or queries against
the resulting servers.

Listing 8.7 Filtering Registered Servers by group

Listing 8.8 Getting a list of all Registered Servers

Try it now 8.4
Ever wanted to see the database details for every database on every one of your SQL
Server instances? After adding all of your managed SQL Server instances to Registered
Servers, use that information to get details about all of your databases as follows:

Get-DbaRegServer | Get-DbaDatabase | Out-GridView -Passthru | Select *

Note that the Out-GridView command is natively available in Windows PowerShell
or within the Microsoft.PowerShell.ConsoleGuiTools module on PowerShell 7+.

112 CHAPTER 8 Registered Servers

8.5 Further integration
dbatools has more than 10 commands that help you easily manage Registered Servers
and Registered Server groups, as shown in table 8.1.

We’ve covered the Get-DbaRegServer command in depth and will now touch on Add-
DbaRegServer and other available commands a bit more.

8.5.1 Adding new Registered Servers

If you’re setting up your inventory for the first time, or adding a new server to your
estate, you’ll also want to add it as a Registered Server. Adding new Registered Servers
is supported by Local Server Groups and the Central Management Server. To add a
new connection to Azure Data Studio, you must use ADS itself.

 We tried to make adding a Registered Server as simple as possible. In SSMS, all you
need to add is a server name, and the same is true with dbatools, as shown next.

PS> Add-DbaRegServer -ServerName sql2017

Like SSMS, we automatically fill in the Registered Server Name field when it is not pro-
vided by -Name. Because -SqlInstance was not specified, listing 8.9 adds a Registered
Server to the Local Server Groups. See figure 8.7 for a visualization of this process.

 Adding to the Central Management Server is just as straightforward, but this time,
we must specify the CMS server using -SqlInstance, as shown in the next code

Table 8.1 Registered Server commands

Command Synopsis Example usage

Get-DbaRegServer Gets a list of Registered
Servers

Execute a query or command against multiple
servers.

Add-DbaRegServer Adds one or more
Registered Servers

Easily add a Registered Server from the
command line or a CSV file.

Import-DbaRegServer Imports Registered
Servers from disk

Import previously exported groups to a new
server.

Export-DbaRegServer Exports Registered
Servers to disk

Export a server list to disk to be later imported
or as a disaster recovery backup.

Copy-DbaRegServer Copies all servers from
one CMS to another

Useful when migrating a CMS to a new version
of SQL Server.

Move-DbaRegServer Moves Registered
Servers to another group

Useful for moving servers in bulk.

Remove-DbaRegServer Deletes one or more
Registered Servers

Useful for deleting servers in bulk, instead of
removing them one by one.

Listing 8.9 Adding a Registered Server to Local Server groups

113Further integration

sample. Both Local Server Groups and the CMS support Groups and will automati-
cally create them if they do not exist.

PS> $splatRegServer = @{
SqlInstance = "sqldb01"
Group = "OnPrem"
ServerName = "sql01"

}
PS> Add-DbaRegServer @splatRegServer

Listing 8.10 Adding a Central Management Server in the OnPrem group

Figure 8.7 Screenshot of the SSMS equivalent of listing 8.9

114 CHAPTER 8 Registered Servers

Groups are useful in helping you organize larger estates but are not required. If you
do not add a Registered Server to a group, it will just go to the root of Local Server
Groups or the CMS.

 If you’d like to organize by groups, you may have noticed in earlier examples that
we support nested groups. To add nested groups (think of them like subfolders), use a
backslash (\), as shown here.

PS> $splatRegServer = @{
SqlInstance = "sqldb01"
Group = "OnPrem\Accounting"
ServerName = "sql01"

}
PS> Add-DbaRegServer @splatRegServer

The command in listing 8.11 automatically creates both the OnPrem and the
Accounting groups if they do not exist. It will then add sql01 to the Accounting folder.

We tried to make adding Registered Servers as flexible as possible, so you have a num-
ber of ways you can do it. One of the coolest ways is to use Connect-DbaInstance, as
shown next. This allows you to keep credentials for servers that require alternative
authentication.

PS> $splatConnect = @{
SqlInstance = "dockersql1,14333"
SqlCredential = "sqladmin"

}
PS> Connect-DbaInstance @splatConnect | Add-DbaRegServer

➥ -Description = "Container for AG tests"

In listing 8.12, a connection attempt will be made to the Docker instance, and once
established, the Docker instance will then be added to Local Server Groups, complete
with credentials for SQL authentication. See the result in figure 8.8.

Listing 8.11 Adding a Central Management Server to a nested group

Listing 8.12 Registering SQL Server on a Linux instance

The CMS can’t also be a Registered Server... mostly
For reasons unknown, Microsoft does not allow adding the CMS itself to the list of
its Registered Servers. There is a workaround, however. Simply add the CMS with a
slightly different name, such as the fully qualified domain name (server versus
server.ad.local), or explicitly specify the port. Although this is not a supported config-
uration, we have not experienced any adverse effects.

Alternatively, you can use the -IncludeSelf parameter when using Get-DbaReg-
Server, which adds the CMS itself to the returned Registered Server collection.

115Further integration

8.5.2 Copy, Export, Import

Our Copy, Export, and Import commands currently support only the Central Manage-
ment Server. Copying servers is useful when migrating to a new server. Imports and
exports are useful for disaster recovery, where the original server is no longer available
and Registered Servers must be restored from disk.

Copy from one server to another
PS> Copy-DbaRegServer -Source sql2008 -Destination sql01

Export CMS list to an XML file
PS> $splatExportRegServer = @{

Listing 8.13 Using Copy, Export, and Import

Figure 8.8 Screenshot of the SSMS equivalent of listing 8.12

116 CHAPTER 8 Registered Servers

SqlInstance = "sql2008"
Path = "C:\temp"
OutVariable = file

}
PS> Export-DbaRegServer @splatExportRegServer

Import CMS list from an XML file
PS> Import-DbaRegServer -SqlInstance sql01 -Path $file

These examples show various ways to migrate data from sql2008 to sql01. You may
already be familiar with the export/import function, because it was one of the most
popular ways to migrate CMS Registered Servers in SSMS, as shown in figure 8.9.

8.5.3 Moving Registered Servers
In the event that you need to move things around, perhaps after a migration or due to
an organizational change, you can easily move registered servers from group to group
using Move-DbaRegServer, as shown in the next listing.

PS> Move-DbaRegServer -Name 'Web SQL Cluster' -Group HR\Prod

Listing 8.14 Moving a Registered Server to a new group

Figure 8.9 Exporting the
Central Management Server
in SSMS

117Registered Server groups

In listing 8.14, one Registered Server, Web SQL Cluster, is moved from its current
group (it can be any group) to the Prod group within the HR group.

 You may also want to move your servers in batches, perhaps because you’ve
changed the layout of your Registered Server groups. Doing this in SSMS is a muliti-
step, exhausting process. But with dbatools, you can execute a single command and
pipe in multiple servers to move them all at once, as seen next.

PS> Get-DbaRegServer | Where Name -match HR |
Move-DbaRegServer -Group HR\Prod

In this listing, all Registered Servers matching the phrase “HR” will be moved to the
Prod group within the HR group.

8.5.4 Removing Registered Servers

In the event that you decommission servers and remove them from your Registered
Server groups, dbatools makes it easy to remove Registered Servers as well, as shown
in the following code sample.

PS> Remove-DbaRegServer -ServerName sql01

In listing 8.16, the Registered Server sql01 has been removed. You can also remove
multiple servers using piping. If you do not wish to confirm each removal, use the
PowerShell convention -Confirm:$false, as shown here.

PS> Get-DbaRegServer -ServerName sql2016, sql01 |
Remove-DbaRegServer -Confirm:$false

8.6 Registered Server groups
Similarly, Registered Server groups are also supported by dbatools, as shown in table 8.2.

Listing 8.15 Moving multiple Registered Servers to a new group

Listing 8.16 Removing a single Registered Server

Listing 8.17 Removing multiple Registered Servers

Table 8.2 Registered Server group commands

Command Synopsis Example usage

Get-DbaRegServerGroup Gets a list of Registered
Server groups

Execute a command or query
against a group of servers.

Add-DbaRegServerGroup Adds one or more Registered
Server groups

Easily add a server to a specific
group.

118 CHAPTER 8 Registered Servers

As we mentioned earlier, managing Registered Servers (and Registered Server
groups) can be rather tedious because it requires a ton of clicking, but dbatools makes
it easy.

8.7 Hands-on lab
Let’s use what you have read about in this chapter to accomplish the following tasks:

 Add a couple servers to Local Server Groups.
 Find all of the jobs currently running in your estate using Get-DbaRegServer

and Get-DbaRunningJob.

Move-DbaRegServerGroup Moves Registered Server
group to another group

Move a group of servers to the
root of your Registered Servers or
within another group.

Remove-DbaRegServerGroup Deletes one or more
Registered Server groups

Helps delete groups, including the
Registered Servers they contain.

Table 8.2 Registered Server group commands (continued)

Command Synopsis Example usage

119

Logins and users

After finding your SQL Server instances in chapter 6, creating an inventory in
chapter 7, and adding them to a Registered Server or Central Management Server
in chapter 8, you are now ready to deal with users and logins. Ensuring that our
business users and applications can successfully connect to the databases that they
require is a good way to address issues before they happen. This reduces the time a
DBA has to spend resolving issues after they cause problems, or prevent them
altogether.

 In this chapter, we are going to show how you can simplify the work that is
required to administer instance logins and database users by following some com-
mon DBA stories around logins. This chapter will take a bit of a different path,
because it’s told as a story. We thought that for logins, seeing real-world scenarios
would be the most effective way to teach this topic. And by following along with
these scenarios, you will learn how to do the following:

 Read the error log to find the issue.
 Create new logins and users.
 Identify and repair orphaned users.
 Sync logins across availability group replicas.
 Use source control to control user account changes.
 Export a T-SQL script of your users.
 Identify the way that a user gained access via nested Active Directory groups.

That’s a lot to learn, so let’s get started with our first scenario!

120 CHAPTER 9 Logins and users

9.1 Failed logins
In this story, an application owner reports that they cannot connect to the database,
and the login failure is obscured by the connecting application. They report that the
application returns “Login failed” to the user, and the application logs have an entry
that reads “Can’t connect to the database.”

 In this case, we want to find more detailed information about the generic error
coming from the application. Although we have a number of ways to do this using
tools such as Event Viewer or SQL Server Management Studio (SSMS), we created a
command that helps find information quickly in the SQL error log: Get-DbaErrorLog.
In the next code listing, we report only the errors that occurred within the past 5 min-
utes, when the login failure occurred.

PS> $splatGetErrorLog = @{
SqlInstance = "SQL01"
After = (Get-Date).AddMinutes(-5)

}
PS> Get-DbaErrorLog @splatGetErrorLog | Select LogDate, Source, Text

8/20/2020 11:10:03 PM Logon Error: 18456, Severity: 14, State: 5.
8/20/2020 11:10:03 PM Logon Login failed for user 'Factory'. Reason...
8/20/2020 11:11:05 PM Logon Error: 18456, Severity: 14, State: 5.
8/20/2020 11:11:05 PM Logon Login failed for user 'Factory'. Reason...
8/20/2020 11:11:25 PM Logon Error: 18456, Severity: 14, State: 5.
8/20/2020 11:11:25 PM Logon Login failed for user 'Factory'. Reason...

The results in listing 9.1 show a number of login failures for “Factory,” indicating that
the user has not been added. You can easily add a new user with the New-DbaLogin
command, which supports both SQL logins and Windows logins. New-DbaLogin also
automatically detects what type of user is being added.

 SQL logins will prompt for a password, whereas Windows logins will not. This is
helpful because, with SQL logins, passwords are required because they are managed
within SQL Server. Windows logins are managed outside of SQL Server by Windows or
Active Directory, and no password is required during the creation of the new login.

 You can see the password prompt in action in the following code snippet where a
SQL login is being added, whereas listing 9.3 adds a Windows login, which does not
prompt for a password.

If you use Windows PowerShell, you will receive a credential pop-up
If you use PowerShell Core, you'll be prompted at the console
PS> New-DbaLogin -SqlInstance SQL01 -Login Factory
Enter a new password for the SQL Server login(s): **********

Listing 9.1 Getting error log entries for the last 5 minutes

Listing 9.2 Creating a new SQL login

Prompts for a
password for the
new SQL login

121Failed logins

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : Factory
LoginType : SqlLogin
CreateDate : 8/20/2020 11:15:03
LastLogin :
HasAccess : True
IsLocked : False
IsDisabled : False
MustChangePassword : False

New-DbaLogin especially shines when you have to add a new login to every server in
your estate, such as an auditing group. In the next listing, we use Get-DbaRegistered-
Server together with New-DbaLogin to do just that.

PS> $servers = Get-DbaRegisteredServer
PS> New-DbaLogin -SqlInstance $servers -Login ad\factoryauditors

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : base\factoryauditors
LoginType : WindowsUser
CreateDate : 8/22/2020 11:17:03
LastLogin :
HasAccess : True
IsLocked :
IsDisabled : False
MustChangePassword : False

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Name : base\factoryauditors
LoginType : WindowsUser
CreateDate : 8/22/2020 11:17:03
LastLogin :
HasAccess : True
IsLocked :
IsDisabled : False
MustChangePassword : False

ComputerName : SQL03
InstanceName : MSSQLSERVER
SqlInstance : SQL03
Name : base\factoryauditors
LoginType : WindowsUser

Listing 9.3 Adding Windows logins to multiple servers at once

122 CHAPTER 9 Logins and users

CreateDate : 8/22/2020 11:17:04
LastLogin :
HasAccess : True
IsLocked :
IsDisabled : False
MustChangePassword : False

You can even add multiple SQL logins at once without having to type the password
multiple times by using Get-Credential, as shown next.

PS> $servers = Get-DbaRegisteredServer
PS> $cred = Get-Credential factoryuser1
PS> $splatNewLogin = @{

SqlInstance = $servers
Login = $cred.UserName
SecurePassword = $cred.Password

}
PS> New-DbaLogin @splatNewLogin

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : factoryuser1
LoginType : SqlLogin
CreateDate : 8/20/2020 11:20:07
LastLogin :
HasAccess : True
IsLocked : False
IsDisabled : False
MustChangePassword : False

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Name : factoryuser1
LoginType : SqlLogin
CreateDate : 8/20/2020 11:20:07
LastLogin :
HasAccess : True
IsLocked : False
IsDisabled : False
MustChangePassword : False

Continuing with our story, you have created the login, but the application owner
reports that they still cannot log in, even with the correct username and password.
Returning to the error log; this time you see the following message: “Login failed for
user ‘Factory’. Reason: Failed to open the explicitly specified database ‘WideWorld-
Importers.’”

Listing 9.4 Adding SQL logins to multiple servers at once

The credential has been
saved in the $cred variable.

123Failed logins

We can check whether the database user exists in the WideWorldImporters database
with Get-DbaDbUser, as demonstrated here.

PS> Get-DbaDbUser -SqlInstance SQL01

➥ -Database WideWorldImporters | Select Name

Name

dbo
guest
INFORMATION_SCHEMA
Factory
sys

As you can see, the user exists in the database B, which suggests that the database
user has been orphaned. Orphaned users exist when a database is moved to another
instance and that user does not have a login in the new instance. Orphans can also
occur when an availability group fails over to a server where the login has not yet been
created.

 You can also get orphaned users if you create a login for a database user, but the
Security Identifier (SID) is different. This is exactly what we did with our first attempt
at resolving the error. How do we know that we have an orphaned user? This is con-
firmed in the error log shown in the code sample where we connect the instance and
return all orphaned users with the Get-DbaDbOrphanUser command.

PS> Get-DbaDbOrphanUser -SqlInstance SQL01

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
DatabaseName : WideWorldImporters
User : Factory

The results show that the user Factory B is an orphaned user in the database Wide-
WorldImporters C. This matches the errors that you are seeing in the error log.

Listing 9.5 Checking whether the user exists

Listing 9.6 Checking whether orphaned users exist on the instance

Try it now 9.1
The companion command New-DbaDbUser creates users in databases. Use Get-
Help New-DbaDbUser to find the correct syntax to create a database user account
and add it to a database.

B

B
C

124 CHAPTER 9 Logins and users

 Before dbatools, resolving this problem was usually a painful process that had to be
looked up every time. Now we can just remember the predictable name of the com-
mand that repairs orphaned database users, Repair-DbaDbOrphanUser.

 In the following listing, we’ll repair all orphaned users in all databases. We do this
by not specifying any additional parameters, such as -Database.

PS> Repair-DbaDbOrphanUser -SqlInstance SQL01

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
DatabaseName : WideWorldImporters
User : Factory
Status : Success

After running the Repair-DbaDbOrphanUser command, the issue has now been
resolved B, and the application owner can log in successfully.

 Let’s summarize the process we just went through, because you can follow this
same process whenever you encounter failed logins that you suspect are due to
orphaned users, such as when a migration was just performed. Orphaned users are
commonly created after databases with SQL users are migrated between servers.

 When a user reports an error in an application related to a database login failure, the
first step is to check the SQL error log for login failures with Get-DbaErrorLog. Then
check the logins and users with Get-DbaLogin and Get-DbaDbUser to look for a matching
username. In our case, the user isn’t orphaned because it doesn’t even exist! So we create
a new login with New-DbaLogin, but the application is still failing. The next step would
be to check for orphaned users. Identify orphaned users with Get-DbaDbOrphanUser, and
then, as we did here, repair these orphaned users with Repair-DbaDbOrphanUser.

9.2 Preventing login issues
Even better than fixing a problem is preventing it from happening in the first place.
You can take a number of mitigating steps to prevent missing logins or orphaned
users. First, you can add documentation to ensure that when a new replica is added,
all users are added correctly. You can also use Infrastructure as Code (IaC) to consis-
tently deploy all aspects of the availability group or, in SQL Server 2019 and later, you
can use contained databases in availability groups (sqlps.io/containeddbag).

 Although we love documentation, there’s no guarantee that the person perform-
ing the migration will read it. And IaC is ideal but not always possible due to limita-
tions of current business processes.

 We often use a different method to ensure that all of the users are synced across all
of the replicas. This method, which schedules an Agent job to frequently sync the
users onto each of the replicas, is particularly useful when you aren’t using SQL Server
2019 and have applications that can create users.

Listing 9.7 Repairing the orphaned user

B

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/contained-databases-with-always-on-availability-groups-sql-server?view=sql-server-ver15

125Preventing login issues

 The following script ensures that every replica has all of the users. Keep in mind, it
doesn’t remove any users from any instance, though; it only ensures that they exist and
contain the correct properties, such as password or SID.

PS> try {
Since this is running as an Agent job, use $ENV:ComputerName
to get the hostname of the server the job runs on
$splatGetAgReplica = @{

SqlInstance = $ENV:ComputerName
EnableException = $true

}
$replicas = (Get-DbaAgReplica $splatGetAgReplica).Name

}
catch {

Ensure SQL Agent shows a failed job
Write-Error -Message $_ -ErrorAction Stop

}

foreach ($replica in $replicas) {
Write-Output "For this replica $replica"
$replicastocopy = $replicas | Where-Object { $_ -ne $replica }
foreach ($replicatocopy in $replicastocopy) {
Write-Output "We will copy logins from $replica to $replicatocopy"

$splatCopyLogin = @{
Source = $replica
Destination = $replicatocopy
ExcludeSystemLogins = $true
EnableException = $true

}

try {
$output = Copy-DbaLogin @splatCopyLogin

} catch {
$error[0..5] | Format-List -Force | Out-String
Ensure SQL Agent shows a failed job
Write-Error -Message $_ -ErrorAction Stop

}
if ($output.Status -contains 'Failed') {

$error[0..5] | Format-List -Force | Out-String
Ensure SQL Agent shows a failed job
Write-Error -Message "At least one login failed.

➥ See log for details." -ErrorAction Stop
}

}
}

By creating a scheduled SQL Agent job to run this script on one of the replicas, you
are creating a system that will automatically update itself without requiring input from

Listing 9.8 Syncing users across an availability group

126 CHAPTER 9 Logins and users

the DBA. If a new login or user is created by the application, it will be synced across all
of the replicas. And if a new replica is added to the cluster, it will have all of the users
synced to it.

Now that we understand more about managing logins and users with dbatools, we can
move on to a method of tracking any changes that have been made to the users, log-
ins, and permissions on our instances.

9.3 Logins, users, and permissions source control
When dealing with an incident, how many times have you heard a user say, “It used to
work before” or “It worked yesterday”? dbatools can help provide you with a list of the
users, logins, and permissions from yesterday with Export-DbaLogin, which you can
use for differential comparisons, because it exports users, logins, and permissions to
disk. Export-DbaLogin is also ideal for nightly login backups and has even saved us a
number of times after a login was inadvertently dropped by an authorized user.

 This command creates a file that you can use on a different instance to recreate
the logins and users, if the databases exist on the instance. When you need to export
this sort of detail, you have a lot to consider. For instance, you often need more than
just the username and password. You’ll also need properties such as the default data-
base, default language, password expiration, server permissions, database permissions,
and more. Export-DbaLogin exports all of this for you, in SQL format, right to disk, as
can be seen in the next code listing.

 Nightly file exports will enable you to source control your logins and to see what
has changed and when it was changed. We suggest that you automate and source con-
trol the code to create your logins.

PS> Export-DbaLogin -SqlInstance SQL01

WARNING: [23:57:23][Export-DbaLogin] Skipping ##MS_PolicyEventProc...
WARNING: [23:57:23][Export-DbaLogin] Skipping ##MS_PolicyTsqlExecu...
WARNING: [23:57:23][Export-DbaLogin] NT Service\MSSQLSERVER is ski...
WARNING: [23:57:23][Export-DbaLogin] NT SERVICE\SQLSERVERAGENT is ...
WARNING: [23:57:23][Export-DbaLogin] NT SERVICE\SQLTELEMETRY is sk...
WARNING: [23:57:23][Export-DbaLogin] NT SERVICE\SQLWriter is skipp...
WARNING: [23:57:23][Export-DbaLogin] NT SERVICE\Winmgmt is skipped...

Listing 9.9 Exporting logins on an instance

Try it now 9.2
Listing 9.8, which uses Copy-DbaLogin, will not update any existing logins. Examine
the help for Copy-DbaLogin, and write the code to copy all of the logins from
instance1 to instance2, then drop and recreate any existing logins. The -Full param-
eter of Get-Help will show the examples and the descriptions for the parameters.

D

127Logins, users, and permissions source control

WARNING: [23:57:23][Export-DbaLogin] Skipping disabledsa

Directory: C:\Users\sqldba\Documents\DbatoolsExport

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 8/20/2020 11:57 PM 522 SQL01-2020082023...

At marker B, you can see that a file named Instance-Date-login.sql is created in a Dba-
Tools Export directory in the Documents folder C for the user running the com-
mand. The yellow warnings are advising you that the local accounts that cannot be
replicated on another machine are being ignored D. If you open this file, you can see
that it contains the T-SQL to recreate the logins and users on the instance, as can be
seen in figure 9.1. Notice that not only are the logins created, but they’re also added
to the appropriate server roles.

Source control enables you to track and manage changes to code or, more specifically,
flat files. If you have installed Git from sqlps.io/installgit, you can initialize a Git repos-
itory in a directory, as shown here.

PS> git init

Initialized empty Git repository in C:/Users/sqldba/sourcerepo/SqlPermission/

Scheduling this PowerShell code to run every night will source control your logins on
the machine where the code is run, as illustrated in the following code snippet. This is
a good starting place and does not require you to use any authentication to a remote
repository. You can view it as a time machine for your logins.

Listing 9.10 Initializing a Git repository

C

B

Figure 9.1 Exporting the login file

https://git-scm.com/downloads

128 CHAPTER 9 Logins and users

PS> $date = Get-Date
PS> $path = "$home\sourcerepo\SqlPermission"
PS> $file = "Factory.sql"
PS> Export-DbaLogin -SqlInstance SQL01 -Path $path -FilePath $file
PS> Set-Location $path
PS> git add $file
PS> git commit -m "The Factory users update for $date"

Now you can track how your logins have changed. You can use source control as a
time machine to see what the permissions looked like on a particular day.

 If your users encounter new login issues, you can use your source control folder to
compare the differences in the script between the time it worked and the time it was
reported as broken, as depicted in figure 9.2. We recommend using Visual Studio
Code.

Click on the source control icon (the one with the number 6 in figure 9.2), and open
the source control viewer. In figure 9.2, you can see that the previous night’s commit
shows that the db_datawriter permissions have been removed. You know this because
they are highlighted in red. With this knowledge, you can investigate the reason for
the permissions being removed, but you also have the T-SQL to recreate the logins
and permissions as they were yesterday. This means that, if required and approved,
you can reset the permissions to the time when “It worked yesterday” because you
have the T-SQL scripts available for the point in time that the Export-DbaLogin script
was run.

9.4 How was access gained?
You identify that a previous change was responsible for the permission change that
removed the db_datawriter permissions and was performed by a user called Brett
Miller. Your manager asks you how Brett was able to perform this change. You can
gather further details using Get-DbaUserPermission, as shown in listing 9.12.

Listing 9.11 Exporting logins daily

Figure 9.2 Comparing SQL login permissions

129How was access gained?

 Get-DbaUserPermission provides a detailed audit of permissions, both at the
instance level and the database level, which helps us understand which permissions
are in use and perhaps identify unexpected missing or excessive permissions. Ideally,
the output of Get-DbaUserPermission will help us find specific permissions that
allowed Brett to make unexpected changes.

PS> Get-DbaUserPermission -SqlInstance SQL01 -Database WideWorldImporters |
Select SqlInstance, Object, Type, Member, RoleSecurableClass | Format-Table

SqlInstance Object Type Member RoleSecur...
----------- ------ ---- ------ ---------...
SQL01 SERVER SERVER LOGINS dbachecks sysadmin
SQL01 SERVER SERVER LOGINS Factory None
SQL01 SERVER SERVER LOGINS ad\FactoryProcesss None
SQL01 SERVER SERVER LOGINS ad\FactoryAdmins None
SQL01 SERVER SERVER LOGINS ad\sqlsvc sysadmin
SQL01 SERVER SERVER LOGINS ad\dbateam sysadmin
SQL01 SERVER SERVER SECURABLES sqldba SERVER
SQL01 SERVER SERVER SECURABLES dbachecks SERVER
SQL01 SERVER SERVER SECURABLES Factory SERVER
SQL01 SERVER SERVER SECURABLES ad\FactoryProcesss SERVER
SQL01 SERVER SERVER SECURABLES ad\FactoryAdmins SERVER
SQL01 SERVER SERVER SECURABLES ad\sqlsvc SERVER
SQL01 SERVER SERVER SECURABLES ad\dbateam SERVER
SQL01 WideWorl.. DB ROLE MEMBERS dbo db_owner
SQL01 WideWorl.. DB ROLE MEMBERS Factory db_datare...
SQL01 WideWorl.. DB ROLE MEMBERS Factory db_datawr...
SQL01 WideWorl.. DB ROLE MEMBERS ad\FactoryProcesss db_datare...
SQL01 WideWorl.. DB ROLE MEMBERS ad\FactoryProcesss db_datawr...
SQL01 WideWorl.. DB ROLE MEMBERS ad\FactoryAdmins db_owner

This output is useful, but can be a bit overwhelming in the PowerShell console. Using
an application such as Excel can help make it easier to see what’s going on. The
ImportExcel module, which you learned about in chapter 5, is a fantastic module that
is able to perform many tasks with Excel documents.

 To take it a step further, you can take your exports to the next level by using the
ImportExcel module to color-code output, which makes it easier to visualize permis-
sions. You can use ImportExport to colorize the rows by server login, server-level per-
missions, database role members, and database-level permissions. You can also use it
to help highlight the sysadmin and db_owner members because they will have addi-
tional permissions. The code to do this is shown next.

PS> $splatExportExcel = @{
Path = "C:\temp\FactoryPermissions.xlsx"

Listing 9.12 Getting the permissions on the instance

Listing 9.13 Getting the permissions on the instance into Excel

B

130 CHAPTER 9 Logins and users

WorksheetName = "User Permissions"
AutoSize = $true
FreezeTopRow = $true
AutoFilter = $true
PassThru = $true

}

PS> $excel = Get-DbaUserPermission -SqlInstance SQL01

➥ -Database WideWorldImporters | Export-Excel @splatExportExcel

PS> $rulesparam = @{
Address = $excel.Workbook.Worksheets["User Permissions"].Dimension.Address
WorkSheet = $excel.Workbook.Worksheets["User Permissions"]
RuleType = "Expression"

}

PS> Add-ConditionalFormatting @rulesparam

➥ -ConditionValue 'NOT(ISERROR(FIND("sysadmin",$G1)))'

➥ -BackgroundColor Yellow -StopIfTrue

PS> Add-ConditionalFormatting @rulesparam

➥ -ConditionValue 'NOT(ISERROR(FIND("db_owner",$G1)))'

➥ -BackgroundColor Yellow -StopIfTrue

PS> Add-ConditionalFormatting @rulesparam

➥ -ConditionValue 'NOT(ISERROR(FIND("SERVER LOGINS",$E1)))'

➥ -BackgroundColor PaleGreen

PS> Add-ConditionalFormatting @rulesparam

➥ -ConditionValue 'NOT(ISERROR(FIND("SERVER SECURABLES",$E1)))'

➥ -BackgroundColor PowderBlue

PS> Add-ConditionalFormatting @rulesparam

➥ -ConditionValue 'NOT(ISERROR(FIND("DB ROLE MEMBERS",$E1)))'

➥ -BackgroundColor GoldenRod

PS> Add-ConditionalFormatting @rulesparam

➥ -ConditionValue 'NOT(ISERROR(FIND("DB SECURABLES",$E1)))'

➥ -BackgroundColor BurlyWood

PS> Close-ExcelPackage $excel

Let’s go through listing 9.13 step by step.
 First, we specify the destination filename B, FactoryPermissions.xlsx. Although the

file’s extension is .xlsx, Microsoft Excel does not need to be installed on the machine
running this code. Exporting (but not viewing) is all taken care of by PowerShell.

 After getting the user permissions with Get-DbaUserPermission for the Wide-
WorldImporters database, the results are then piped to Export-Excel using the
-PassThru parameter, and saved in the variable $excel C. Next, conditional format-
ting is added, depending on the values in the E and G columns. Finally, the Excel
package is closed D. This process gives you an Excel file that looks like the one shown
in figure 9.3.

C

D

131How was access gained?

This file enables you to see the permissions in one page, including logins on the
server, server-level permissions that have been granted to the logins, the members of
each database role, members of the server-level sysadmin role, database-level
db_owner role, and database permissions granted to each database user.

 Your manager is pleased with the Excel file, but it does not answer their question
about how Brett got access. You work closely with the Factory Admins group and con-
firm with them that they do not have a team member called Brett Miller. So, how did
he gain access?

9.4.1 Finding nested Active Directory group access

In a corporate environment, you will find that users are members of Active Directory
groups that are members of groups, that are members of groups that are given access
to securables. You need to understand how Brett was able to make a change to your
database user permissions, but his specific user account was not found within the out-
put of Get-DbaUserPermission. This likely means he is a part of a group that has
access to the SQL Server, and that specific group was granted the permissions we’re
looking for.

 The dbatools command Find-DbaLoginInGroup, shown in the next listing, can
help us figure this out. This command accesses Active Directory and works on Linux,
as long as your Linux workstation is configured appropriately (which is out of scope
for this book).

Figure 9.3 Listing permissions

132 CHAPTER 9 Logins and users

PS> Find-DbaLoginInGroup -SqlInstance SQL01 -Login "ad\bmiller"

SqlInstance : SQL01
Login : ad\bmiller
DisplayName : Brett Miller
MemberOf : ad\DevOps
ParentADGroupLogin : ad\FactoryAdmins

Running this command shows that Brett is a member of the DevOps Active Directory
group, and the DevOps group is a member of the FactoryAdmins group, which has
been granted rights to access the SQL Server instance and the database. That explains
how Brett got access to make the change: via the nested group permissions.

 This same approach can be used each time you need to quickly figure out how a data-
base user was able to make a particular change to a system. You can even schedule these
two commands to run each night to get an ongoing, auditable trail of permissions.

NOTE Although we have learned here that we can create a new user quickly at
the command line during incident resolution, we can also use this command
to ensure consistent user account creation, for example, when creating non-
production user accounts.

In this chapter, you have learned several dbatools commands that you can use to
administer SQL Server logins and users. You have seen a solution that uses ImportExcel
to create an Excel file that less technical users find useful. In our experience, you’ll have
many opportunities within your daily work to apply this knowledge to other
requirements, using the processes we discussed, such as validating user permissions
following a database deployment.

9.5 Hands-on lab
With this lab, you’ll reinforce the following concepts you’ve learned in this chapter:

 Read the error log on your local instance to familiarize yourself with the output.
 Create a new SQL login.
 Create a new database user.
 Export the users on your instance to a file.
 Set up a local Git repository, and save the output of Export-DbaLogin.
 Get all of the user permissions on your instance, and export them to an Excel

spreadsheet.

Listing 9.14 Determining how Brett gained access

133

Backups

It’s hard to overstate just how important backups are to data professionals. Not only
can backups help businesses recover from data loss, they can even stop a business
from going under in the event of a disaster.

 Data is always at risk of loss, whether through accidental deletion, intentional
sabotage, natural disasters, malware, or other threats. That is why well-developed
backup and backup-testing plans are arguably one of the most important aspects of
business continuity.

 Backups can also help us evolve and accelerate our day-to-day operations. They
can be used to provide a way for developers to easily reset databases to a known
state and can be integrated into DevOps practices as part of automated testing
pipelines. They also help us when we perform side-by-side migrations or need to
rebuild an entire server.

 dbatools can help simplify managing all three types of SQL Server backups,
defined in table 10.1.

Table 10.1 Backup types

Backup type Description Example schedule

Full Backs up the entire database. Weekly

Differential Backs up database changes since the last full backup was
performed.

Daily

Log Backs up the transaction log; in addition to enabling point-in-
time restores, transaction log backups keep your log files
reasonable in size.

At least hourly

134 CHAPTER 10 Backups

In this chapter, you’ll learn how to easily create, manage, and test backups across your
entire SQL Server estate using dbatools backup-related commands, which work with all
versions of SQL Server from SQL Server 2000 all the way through Azure. You can then
use these backups for automated disaster recovery, which we’ll cover in chapter 14.

 You’ll learn how to create backups on-premises, in Azure, and in Docker. We’ll also
cover how to easily test your backups using Test-DbaLastBackup.

10.1 Creating backups
We consider creating and testing backups as two of the most important tasks that a
DBA can perform. When we inherit a SQL Server environment, backups are the first
thing we look for, create, and schedule if they are missing or not meeting the business
requirements or expectations.

SCHEDULING AND MANAGING BACKUPS dbatools does not provide an all-
encompassing backup scheduling and management package. For that, we
recommend Ola Hallengren’s Maintenance Solution, which can be found
at ola.hallengren.com. You can install Ola’s scripts using Install-
DbaMaintenanceSolution.

We try to make using dbatools (and, thus, PowerShell) as simple as possible by default,
while also providing the flexibility to expand the command usage to suit your needs.
This allows you to ease into using dbatools as you grow your PowerShell skill set. To
create backups for every database on an instance, for example, you need to know only
the SQL Server instance name, as demonstrated in the next listing.

PS> Backup-DbaDatabase -SqlInstance sql01

The code in listing 10.1 creates full backups of all databases on sql01 and saves them
to the SQL Server instance’s default backup directory. Because a backup file name was
not specified, the filename for each database will be automatically generated using
the database name and the current date and time.

 If you’d prefer to add an explicit path to control where the backups are stored, you
can use the -Path parameter, as seen in listing 10.2. This allows you to back up files to
centralized storage or a larger local disk, as long as the SQL Server service account has
write permissions to the specified path. We prefer to back up to centralized storage (a
fileshare that stores all the other backups), then back up that centralized storage to an
off-site location. This helps make your SQL Server estate more resilient to data loss
and, specifically, ransomware attacks.

Note: the SQL Server service account must have write permissions
to \\nas\sqlbackups

Listing 10.1 Backing up an entire instance

Listing 10.2 Backing up an entire instance to a specific path

https://ola.hallengren.com/

135Creating backups

PS> Backup-DbaDatabase -SqlInstance sql01 -Path \\nas\sqlbackups

SqlInstance Database Type TotalSize DeviceType Start
----------- -------- ---- --------- ---------- -----
SQL01 AdventureWorks Full 183.09 MB Disk 2020-10-25 14:32:47...
SQL01 master Full 4.39 MB Disk 2020-10-25 14:33:30...
SQL01 model Full 2.58 MB Disk 2020-10-25 14:33:32...
SQL01 msdb Full 16.08 MB Disk 2020-10-25 14:33:34...

By default, limited output is displayed by the backup command. Similar to SharePoint
lists, which have a default view and do not show all of the information available,
PowerShell can also show limited information by default. This helps keep command
output tidy and unintimidating. The information is still available and can be used for
further actions once the command completes. If you’d like to see all of the informa-
tion, you can pipe the results of the command to Select-Object *.

 Consider the code in our first “Try it now.” Here, we back up a single database
using the -Database parameter and compress it using the -CompressBackup parame-
ter. Then we expand the results to show all fields using Select-Object *.

Try it now 10.1
Create a single, compressed database backup using the -CompressBackup
parameter, then use Select-Object * to see all available output:

Backup-DbaDatabase -SqlInstance sql01 -Database pubs -CompressBackup |
Select-Object *

BackupComplete : True
BackupFile : pubs_202112121657.bak
BackupFilesCount : 1
BackupFolder : S:\backup
BackupPath : S:\backup\pubs_202112121657.bak
DatabaseName : pubs
Notes :
Script : BACKUP DATABASE [pubs] TO DISK =

N'S:\backup\pubs_202112121657.bak' WITH NOFORMAT,
NOINIT, NOSKIP, REWIND, NOUNLOAD, STATS = 1

Verified : False
ComputerName : workstation
InstanceName : MSSQLSERVER
SqlInstance : WORKSTATION
AvailabilityGroupName :
Database : pubs
UserName : ad\sqldba
Start : 12/12/2021 4:57:00 PM
End : 12/12/2021 4:57:00 PM
Duration : 00:00:00
Path : {S:\backup\pubs_202112121657.bak}
TotalSize : 3.77 MB
CompressedBackupSize : 3.77 MB

136 CHAPTER 10 Backups

Now you have a better idea of the output that you can work with and further process if
desired. For instance, you can create a script that will attempt another backup if
BackupComplete is false, or you can calculate the total space used by all backups.

WORKING WITH SQL SERVER EXPRESS LIMITATIONS SQL Server Express does not
include SQL Server Agent. This means that a different solution is required to
schedule backups of important databases. Consider using Task Scheduler
with dbatools. We’ve created scheduled backups of SQL Express databases
using this method and have found it to be a suitable solution.

When setting up automatic seeding with availability groups or testing your backup
performance, you may find yourself needing to back up a database to the NUL device.
Backing up to NUL is supported in dbatools and can be accomplished using the com-
mand shown next. Note that the BackupFileName is NUL.

PS> Backup-DbaDatabase -SqlInstance sql01 -Database pubs -BackupFileName NUL

Alternatively, if you do not want to immediately back up the database, but you do want
the T-SQL code to perform backups at a later time, you can use the -OutputScriptOnly
parameter. You can also use Get-DbaDatabase to find databases that match certain
criteria and create backup scripts only for those databases. This can be seen in the

Listing 10.3 Backing up to the NUL device

(continued)
CompressionRatio : 1
Type : Full
BackupSetId : 3313
DeviceType : Disk
Software : Microsoft SQL Server
FullName : {S:\backup\pubs_202112121657.bak}
FileList : {@{FileType=D; LogicalName=pubs;

PhysicalName=D:\mssqlpubs.mdf},
@{FileType=L; LogicalName=pubs_log;
PhysicalName=D:\mssqlpubs_log.ldf}}

Position : 1
FirstLsn : 42000000031200001
DatabaseBackupLsn : 42000000019200001
CheckpointLsn : 42000000031200001
LastLsn : 42000000033600001
SoftwareVersionMajor : 15
IsCopyOnly : False
LastRecoveryForkGUID : 1bb67654-499c-496a-aeb0-b0de6ad75291
RecoveryModel : FULL
KeyAlgorithm :
EncryptorThumbprint :
EncryptorType :

137Creating backups

following code listing, which creates backup scripts for databases with names that include
the word “factory,” such as PastaFactory. Note that the match is case-insensitive.

PS> $bigdbs = Get-DbaDatabase -SqlInstance sql01 | Where Name -match factory
PS> $bigdbs | Backup-DbaDatabase -Path \\nas\sqlbackups -OutputScriptOnly

Remember, you can also pipe these results to clip, Set-Clipboard, or Out-File to
use or store elsewhere for a later date. We also support encrypted backups, and we’ll
cover that in chapter 24.

10.1.1 Azure

dbatools provides extensive support for backing up databases directly to Azure Stor-
age using native SQL Server functionality. Azure is an ideal option for off-site storage,
and off-site storage of backups is a proven solution for recovering from data loss
caused by ransomware attacks.

 You can use two methods for backing up directly to Azure: access keys and shared
access signatures. Although we recommend using shared access signatures because it’s
more flexible and Microsoft recommends it, we do our best to support a wide range of
scenarios, and dbatools developer Stuart Moore has made it possible for dbatools to
support both methods. Each of these is managed by creating a corresponding SQL
Server credential, then using that credential to back up your database to Azure blobs.

SHARED ACCESS SIGNATURES

Shared access signatures (SAS) are time-restricted tokens that allow you to securely
back up databases to Azure storage resources using native SQL Server functionality.
You can read more about shared access signatures at sqlps.io/sas.

 One of the most painful parts of shared access signatures is figuring out the exact
signature required for your SQL Server credential. Microsoft doesn’t make this easy
because most documentation adds an extra character (“?”) that makes the SAS invalid
within SQL Server. For our memory and yours, we’ll use this chapter to remind our-
selves to remove the leading question mark from any SAS provided. See the next list-
ing for an example of an SAS.

sv=2019-10-10&st=2020-10-20T20%3A00%3A50Z&se=2030-10

➥ -21T20%3A00%3A00Z&sr=c&sp=racwxl&sig=REsaQ4RYVx%2F5jEckVLTtAIWNoyu7T%2Fy%2

➥ BhstNHAmykW0%3D

When creating a SQL Server credential, the -Identity must be the phrase SHARED
ACCESS SIGNATURE, though it is not case-sensitive, so shared access signature is also
valid. In addition, the -Name must be the URL to the container in your storage

Listing 10.4 Outputting backup scripts for databases including the word “factory”

Listing 10.5 Example shared access signature

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/enable-sql-server-managed-backup-to-microsoft-azure?view=sql-server-ver15&tabs=azure-cli#enable-and-configure-includesssmartbackupincludesss-smartbackup-mdmd-with-default-settings

138 CHAPTER 10 Backups

account, for example, https://STORAGEACCOUNTNAME.blob.core.windows.net/
CONTAINERNAME.

 To perform a backup to Azure, acquire a SAS using the Az.Storage PowerShell
module, Azure Storage Explorer, or the Azure Portal, then execute the code in listing
10.5. Chrissy prefers getting SASs from the Azure Storage Explorer GUI when testing,
whereas Rob prefers using New-AzStorageBlobSASToken within the Az.Storage Power-
Shell module in production and within DevOps pipelines.

 When executing the code in the following code listing, paste in the SAS when
prompted by Get-Credential. This allows you to securely paste and use the password.
Note that the username in the Get-Credential prompt won’t be used. What we really
care about is the password. This “trick” works for passing SecureStrings to all Power-
Shell commands, and not just those within dbatools.

PS> $splatCredential = @{
 SqlInstance = "sql01"
 Name = "https://acmecorp.blob.core.windows.net/backups"
 Identity = "SHARED ACCESS SIGNATURE"
 SecurePassword = (Get-Credential).Password
}
PS> New-DbaCredential @splatCredential

PS> $splatBackup = @{
 SqlInstance = "sql01"
 AzureBaseUrl = "https://acmecorp.blob.core.windows.net/backups/"
 Database = "mydb"
 BackupFileName = "mydb.bak"
 WithFormat = $true
}
PS> Backup-DbaDatabase @splatBackup

The example in listing 10.6 will result in a backup being created at acmecorp
.blob.core.windows.net/backups/mydb.bak. You do not need to specify a credential
for Backup-DbaDatabase because SQL Server associates the -AzureBaseUrl with the
-Name of the credential when the -Identity is SHARED ACCESS SIGNATURE.

ACCESS KEYS

Within dbatools, access keys are considered legacy credentials because SAS is the rec-
ommended method. Because SQL Server 2012 and 2014 do not support SAS, dba-
tools added support for them as well. If your SQL Server instances require you to use
access keys, the next code snippet shows an approximate format of an access key.

XYZ8dB1R4c/L7VVkqK5KloLWhBTA0EBoA6kNwPYbyCf2LtoinlQpbmt14N1lmwdgP9eyHcFgsNMHl

➥JZQuYBTOg==

Listing 10.6 Creating a SAS credential and backing up to Azure

Listing 10.7 Example access key

139Creating backups

Backing up to Azure using access keys is very similar to the method used to back up
using SASs. To perform a backup to Azure using access keys, you can acquire the key
using Azure Storage Explorer, the Azure Portal, or Get-AzStorageAccountKey within
the Az.Storage PowerShell module, then execute the code in listing 10.8.

 Like with SASs, you’ll need to create a SQL Server credential and then use that cre-
dential when performing the backup. Unlike with SASs, you can -Name the SQL
Server credential whatever you wish, though you do need to follow a specific format
for the -Identity. Specifically, you must ensure that the identity matches the storage
account name, which is the first segment of your Azure Blob Storage’s base URL, as
shown in table 10.2.

Once you have your access key, use this naming guideline to create a SQL Server cre-
dential, as demonstrated in the following code listing. After the credential is created,
you must supply the credential name to the -AzureCredential.

PS> $splatCredential = @{
 SqlInstance = "sql01"
 Name = "AzureAccessKey"
 Identity = "acmecorp"
 SecurePassword = (Get-Credential).Password
}
PS> New-DbaCredential @splatCredential

PS> $splatBackup = @{
 SqlInstance = "sql01"
 AzureCredential = "AzureAccessKey"
 AzureBaseUrl = "https://acmecorp.blob.core.windows.net/backups/"
 Database = "mydb"
}
PS> Backup-DbaDatabase @splatBackup

This will create a backup within the acmecorp.blob.core.windows.net/backups/ blob
storage.

10.1.2 Docker
Backups can easily be taken within SQL Server on Linux using dbatools. SQL Server
on Linux is often accessed via a Docker container, which commonly publishes the

Table 10.2 Example credential identities

Example Azure storage URL Corresponding credential identity

acmecorp.blob.core.windows.net acmecorp

dbatools.blob.core.windows.net dbatools

pubsinc.blob.core.windows.net pubsinc

Listing 10.8 Creating an access key and backing up to Azure

140 CHAPTER 10 Backups

container’s SQL Server port to a local port other than 1433. dbatools supports con-
necting to specific ports using both colons and commas, as shown in the next code
sample.

PS> Backup-DbaDatabase -SqlInstance localhost:14433 -SqlCredential sqladmin

➥ -BackupDirectory /tmp

dbatools automatically transforms localhost:14433 to a format that SQL Server under-
stands: localhost,14433. This means you do not have to use quotes around the Sql
instance name. Passing an instance name with a comma in it without quotes would result
in PowerShell interpreting the instance as an array (two instances) and creating an error.

 When creating a backup within Docker, remember that the path is relative to the
SQL Server, not your own workstation. So, in the example in listing 10.9, the backup
will be created within the container in the /tmp directory.

 If you have shared a Windows folder with Docker, you can also back up to this
shared folder by using the mount point within the container. Say you have shared the
Windows folder S:\backups and mounted it as /shared/backups. You’d use the follow-
ing code to back up to S:\backups using the /shared/backups path within Docker.

PS> Backup-DbaDatabase -SqlInstance localhost:14433 -SqlCredential sqladmin

➥ -BackupDirectory /shared/backups

This is a behavior native to Docker, but we wanted to highlight it in case you were curi-
ous as to the support for this scenario.

10.2 Reading backup files
We also offer commands that help you manage backup files, such as Read-DbaBackup-
Header.

If you find an old backup and want to know details, you can get information like the
original server name, the create date, the database version, the file list, and more.
Interestingly enough, access to a SQL Server is required to read a backup header.
When we first created the command, we attempted to parse it using the filesystem, but
ultimately, using built-in SQL Server functionality was the safest and fastest method.

Listing 10.9 Backing up databases using an alternative port

Listing 10.10 Backing up to a shared folder

Try it now 10.2
Find all dbatools commands with backup in the name:

Get-Command -Module dbatools -Name *backup*.

141Backup history

 With that said, the next listing shows how you can read a header by reading the file
from SQL Server, using a file path that is accessible by the SQL Server service account.

PS> Read-DbaBackupHeader -SqlInstance sql01 -Path

➥ \\nas\sql\backups\mydb.bak

We use this command both within other PowerShell commands and ad hoc, right at
the command line, to discover details about the backup to see if it’s the one we’re
hoping to use.

 Another command we use a lot when working with backups is Get-DbaBackupIn-
formation, shown in the next code snippet. This command scans a set of backup files
and builds a set (think full, differential, and logs) that can be piped to Restore-
DbaBackup. This method is helpful when you have a directory full of backup files and
want dbatools to figure out what will get you to the latest version of your database that
is available within the backups.

PS> Get-DbaBackupInformation -SqlInstance sql01 -Path

➥ \\nas\sql\backups\sql01

10.3 Backup history
Each time you perform a backup, information about the backup is stored in a few
tables within msdb. Over the years, we’ve found ourselves digging into these tables
when we needed detailed information for diagnostics.

 We use this backup information in a variety of ways within dbatools. Primarily, we
use it to speed up restores, because it’s a lot faster to query a SQL table than it is to
read a file header. After realizing how useful this functionality was for our tools, we
took the super-long T-SQL query we were using and made it accessible using the dba-
tools command, Get-DbaDbBackupHistory. The command in the following code list-
ing gets all available backup history for the pubs database.

PS> Get-DbaDbBackupHistory -SqlInstance sql01 -Database pubs

You can even use the -Last parameter to easily gather the last full, diff, and log
backup chains for all databases on your server, as seen here.

PS> Get-DbaDbBackupHistory -SqlInstance sql01 -Last

Listing 10.11 Reading detailed information from a backup

Listing 10.12 Creating a backup set from a bunch of backups

Listing 10.13 Getting database backup history

Listing 10.14 Getting the last backups of all databases

142 CHAPTER 10 Backups

In the next chapter, about database restores, we’ll see how to use this command to
help recover from database corruption. How cool is that? There’s a whole lot more to
this command, too. If you’d like more information, Stuart Moore wrote in depth
about our database backup command at sqlps.io/history.

10.4 Pruning old backup files
Another command available in dbatools is Find-DbaBackup, which helps find backups
in a directory that are older than X days old. This command is useful when you need
to clean up old backups. Just find the backups, then pipe them to Remove-Item, as
shown next.

PS> Find-DbaBackup -Path \\nas\sql\backups -BackupFileExtension bak

➥ -RetentionPeriod 90d | Remove-Item -Verbose

If you’d like to find old transaction log backups, simply change -BackupFileExtension
to trn, as shown here.

PS> Find-DbaBackup -Path \\nas\sql\backups -BackupFileExtension trn

➥ -RetentionPeriod 90d | Remove-Item -Verbose

For more information about backing up and restoring, check out Stuart Moore’s 31-
day series at sqlps.io/backup. Stuart wrote most of our backup and restore commands.

10.5 Testing your backups
For data professionals, valid backups of our data is perhaps the single most important
thing to have. Perhaps the two most critical tasks for a DBA is to back up their data-
bases and to regularly test those backups. dbatools simplifies testing backups down to
a single command, which we hope will encourage everyone to regularly test their
backups.

 This section will focus on a single command, Test-DbaLastBackup, which ensures
SQL Server native backups are restorable, and the restored data is sound. This is great
not only for verifying that your backups work; it also makes it easy to prove to auditors
that backups are tested regularly.

DBATOOLS SUPPORTS ONLY NATIVE SQL SERVER BACKUPS If you use third-party
products to back up your databases, Test-DbaLastBackup likely won’t work as
expected. Although we are open to pull requests from external vendors, our
core team has decided to support only native SQL Server backups, because it is
the only backup format we use and recommend. Please visit sqlps.io/limitations
for more information.

Listing 10.15 Finding and removing old backup files

Listing 10.16 Finding and removing old transaction log backup files

https://stuart-moore.com/day-9-limitations-of-dbatools-restore-dbadatabase/
https://stuart-moore.com/day-15-dbatools-and-backup-history-31-days-of-dbatools-backup-and-restores/
https://stuart-moore.com/31-days-of-backup-and-restore-with-dbatools/

143Testing your backups

When we created Test-DbaLastBackup, we took a list of best practices and codified
them into a routine, which follows:

 Logs in to a SQL Server and gathers a list of all databases
 Gets a list of the most recent full, diff, and log backups for each of the databases
 Restores the full chain of backups to the destination server (local or remote) with

a new name and new filenames (to prevent conflicts with the original database)
 Performs a DBCC CHECKDB
 Drops the test database, and reports success or failure

You can perform your test restores against the same machine, but we recommend you
offload that task and its accompanying resource usage to another server. This will
keep the load of your production SQL Servers down.

DEDICATED SQL SERVER FOR DISASTER RECOVERY If you are using SQL Server
2019 and Software Assurance, check with your licensing representative,
because you’re likely entitled to a matching SQL Server edition license for disas-
ter recovery. We’ve even written a blog post that can help guide you when build-
ing a dedicated backup server. For more information, visit dbatools.io/
dedicated-server.

Let’s say that you want to test your backups on sql01 and sql02, but you want to offload
the testing to sqltest, which has two large, dedicated drives for SQL files: R:\ for data
and L:\ for logs. You also want to store the results in an efficient table for processing
within Power BI. This is all possible with the following three commands:

1 Invoke-DbaQuery and some T-SQL to create the table.
2 Test-DbaLastBackup to test the restores.
3 Write-DbaDataTable to store the results in SQL Server.

To accomplish this task, run the commands shown here.

PS> $query = "CREATE TABLE dbo.lastbackuptests (
 SourceServer nvarchar(255),
 TestServer nvarchar(255),
 [Database] nvarchar(128),
 FileExists bit,
 Size bigint,
 RestoreResult nvarchar(4000),
 DbccResult nvarchar(4000),
 RestoreStart datetime,
 RestoreEnd datetime,
 RestoreElapsed nvarchar(128),
 DbccStart datetime,
 DbccEnd datetime,
 DbccElapsed nvarchar(128),
 BackupDates nvarchar(4000),
 BackupFiles nvarchar(4000))"

Listing 10.17 Creating a table, testing the backups, and writing the results

https://dbatools.io/dedicated-server/
https://dbatools.io/dedicated-server/
https://dbatools.io/dedicated-server/

144 CHAPTER 10 Backups

PS> Invoke-DbaQuery -SqlInstance sqltest -Database dbatools -Query $query

PS> $splatTestBackups = @{
 SqlInstance = "sql01", "sql02"
 Destination = "sqltest"
 DataDirectory = "R:\"
 LogDirectory = "L:\"
}
PS> Test-DbaLastBackup @splatTestBackups | Write-DbaDataTable -SqlInstance

➥ sqltest -Table dbatools.dbo.lastbackuptests

Now you can schedule the last command to run on a regular basis and then process
your results using Power BI or a similar data visualization tool.

 In this chapter, you’ve learned how to back up your SQL Server databases to a vari-
ety of destinations, and you’ve also learned how to test your backups. Now let’s see all
that we can do with restores.

10.6 Hands-on lab
 Back up all databases on your SQL Server to a nondefault path.
 Back up a database, and pipe the results directly to Read-DbaBackupHeader.
 Find transaction log (trn) backups older than 21 days using Find-DbaBackup.

145

Restore

In the previous chapter, we talked about how important backups are, but we’d
argue that restores are equally important. When there’s a disaster, you need to
quickly and (hopefully) easily restore your databases. PowerShell is the perfect
solution, because it simplifies bulk actions.

 Restores are fundamental for migrations, disaster recovery, continuous
integration/continuous deployment (CI/CD), and even testing to ensure restores
comply with governmental regulations. This chapter will cover the multitude of ways
to effectively use our restore commands both for simplified restores and advanced
ones as well. You’ll learn how to do the following:

 Restore an entire instance
 Create scripts that ease disaster recovery
 Quickly recover from database corruption
 Restore from Azure

By the end of this chapter, you’ll feel more relaxed knowing you can easily restore
an entire instance’s worth of database backups with a single command. And you’ll
be ready to save the organization in the event of a disaster or unexpected event.

11.1 Limitations and considerations
We designed our primary restore command, Restore-DbaDatabase, to be as flexible
as possible. If you can do it in SQL Server Management Studio (SSMS) or with
T-SQL, you can do it in dbatools. We handle restores using built-in SQL Server
functionality, so if it’s not possible in SQL Server, we can’t support it. For instance, if
you have a backup that is a newer version than the destination SQL Server version,

146 CHAPTER 11 Restore

we can’t restore it. dbatools also can’t decrypt an encrypted database without the
required key.

 One scenario supported by Microsoft that we don’t offer a command for is restor-
ing the master database. Although you can go through a torturous routine, like the
one described in Microsoft Docs at sqlps.io/systemdbrestore, to restore your master
database, we were unable to automate this routine with 100% reliability across all sce-
narios, and ultimately, we decided it wasn’t safe enough to add to dbatools.

READ MORE ABOUT LIMITATIONS AND DESIGN DECISIONS The primary author of
our backup/restore suite, Stuart Moore, wrote an entire article dedicated to
discussing the limitations of our backup and restore commands. In it, he talks
about some of the decisions behind why we don’t support third-party back-
ups, built-in multithreading, restoring master, and more. Read all about it at
sqlps.io/limitations.

dbatools can restore some system databases, however, and you can see some of them
in table 11.1.

And now let’s dive into user-database restores.

11.2 Restore scenarios
We have a ton of ways to restore a database, and with each of these scenarios, it’s
important to keep in mind the following:

 The path to the backup file is relative to the SQL Server instance and not your
own computer.

 The SQL Server service account must have access to the backup file to success-
fully perform a restore.

Now let’s look at progressively complex ways of restoring a database.

Table 11.1 System database restore support within dbatools

Database Support Description

master No Although it is technically possible to restore the master database, doing
so is very involved, specific for each system, and, ultimately, not a good
candidate for universal automation.

msdb Yes msdb can easily be restored, but we recommend restoring it only to the
same server in disaster recovery scenarios. If you do choose to restore
msdb to a different server, you must ensure that the SQL Server build
matches at both the source and the destination.

tempdb No tempdb is recreated each time SQL Server starts, cannot be backed up,
and, consequently, cannot be restored.

model Yes The model database can be easily restored to other servers as long as
the SQL Server build matches at both the source and the destination.

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-the-master-database-transact-sql?view=sql-server-ver15
https://stuart-moore.com/day-9-limitations-of-dbatools-restore-dbadatabase/

147Restore scenarios

11.2.1 File
When restoring a database, the most common scenario is restoring a single full
backup. Restoring a single full backup is useful when you’ve got a sizable outage win-
dow and want to move a database to a new server (such as test-to-production or even
production-to-production). We’ve performed quick one-off restores of a single file
after failed application upgrades as well. To restore a full backup to SQL Server, you
can specify the -Path, as seen in the next code snippet.

PS> Restore-DbaDatabase -SqlInstance sql01 -Path S:\backups\pubs.bak

ComputerName : sql01
InstanceName : MSSQLSERVER
SqlInstance : sql01
BackupFile : S:\backups\pubs.bak
BackupFilesCount : 1
BackupSize : 2.84 MB
CompressedBackupSize : 2.84 MB
Database : pubs
Owner : sqladmin
DatabaseRestoreTime : 00:00:01
FileRestoreTime : 00:00:01
NoRecovery : False
RestoreComplete : True
RestoredFile : pubs.mdf,pubs_log.ldf
RestoredFilesCount : 2
Script : {RESTORE DATABASE [pubs] FROM DISK = N'S:\backups\

➥ pubs.bak' WITH FILE = 1, MOVE N'pubs'
TO N'D:\MSSQL15.MSSQLSERVER\MSSQL\DATA\

➥ pubs.mdf', MOVE
N'pubs_log' TO N'D:\MSSQL15.MSSQLSERVER\MSSQL\DATA\

➥ pubs_log.ldf', NOUNLOAD, STATS = 10}
RestoreDirectory : D:\MSSQL15.MSSQLSERVER\MSSQL\DATA
WithReplace : False

You can also pipe in files from Get-ChildItem, as shown here.

PS> Get-ChildItem \\nas\backups\mydb.bak |
Restore-DbaDatabase -SqlInstance sql01

Remember, like with T-SQL, the path to the backup file is relative to the SQL Server
instance and not your own computer.

11.2.2 Directory

Restoring databases from a directory of backups is one of our favorites and a scenario
that is commonly used by the dbatools community, because it works so well in environ-
ments using Ola Hallengren’s Maintenance Solution (sqlps.io/ola), which is a free and

Listing 11.1 Restoring from a file

Listing 11.2 Restoring from a file that’s piped in

https://ola.hallengren.com/

148 CHAPTER 11 Restore

open source solution for backups and integrity checks, as well as index and statistics
maintenance. When designing the command, we knew PowerShell’s pipeline was crazy
powerful, so we thought, “What if you could just pipe in a bunch of files, then the com-
mand would examine the restore header to figure out what needs to be restored?” Stu-
art figured out how to do just that and added it right into Restore-DbaDatabase.

 Check out listing 11.3, which gets a list of all user databases; backs them up with
one full, one diff, and three logs; and stores all of the files in C:\temp\sql. Then it per-
forms directory listing and stores the output to $files. Then, it magically restores all
fulls, diffs, and logs to the same server, overwriting the existing databases, because
-WithReplace was specified.

 If a database exists, dbatools will not overwrite it unless you specify -WithReplace.
So, you can rest easy, knowing that we do not overwrite by default, and you’ll just get a
warning if you try.

 This emulates a real-world restore scenario, where you’d restore a whole instance’s
worth of databases from a single directory for either disaster recovery or “offline”
migration scenarios.

Make a full backup, a diff backup, and three log backups
PS> New-Item -Path 'C:\temp\sql' -Type Directory -Force
PS> $splatGetDatabase = @{

SqlInstance = "sql01"
ExcludeDatabase = "tempdb", "master", "msdb"

}
PS> $dbs = Get-DbaDatabase @splatGetDatabase
PS> $dbs | Backup-DbaDatabase -Path C:\temp\sql -Type Full
PS> $dbs | Backup-DbaDatabase -Path C:\temp\sql -Type Diff
PS> $dbs | Backup-DbaDatabase -Path C:\temp\sql -Type Log
PS> $dbs | Backup-DbaDatabase -Path C:\temp\sql -Type Log
PS> $dbs | Backup-DbaDatabase -Path C:\temp\sql -Type Log

See files, set the variable to $files, restore all files
PS> Get-ChildItem -Path C:\temp\sql -OutVariable files
PS> $files | Restore-DbaDatabase -SqlInstance sql01 -WithReplace

Behind the scenes, Restore-DbaDatabase figures out all of the restore chains, pieces
them together, then performs the restore. It’s so good that you can pipe in two full
backups for the same database and it’ll only restore the most recent one.

Note that it takes time to read each backup header, so piping in thousands of files will
take a while to process. If you have thousands of files, we recommend filtering first

Listing 11.3 Restoring a database from full, diff, and logs stored in a directory

Easily kill connections
-WithReplace will automatically close a connection for you, as shown here:

Get-DbaProcess sql01 -Database testdb | Stop-DbaProcess

149Restoring to custom data and log directories

using Get-ChildItem and Where-Object and then piping once you have a reasonable
number of files.

11.2.3 Output T-SQL restore scripts

Sometimes, you just want to see or save the scripts that will be executed instead of
actually executing them. You may even want to save the T-SQL to source control for
disaster recovery. We’ve got you covered there, too, with the -OutputScriptOnly
parameter. Add -OutputScriptOnly to any Restore-DbaDatabase run to see the T-SQL,
as shown next.

PS> $splatRestoreDatabase = @{
SqlInstance = "sql01"
Path = "C:\temp\sql\full.bak"
WithReplace = $true
OutputScriptOnly = $true

}
PS> Restore-DbaDatabase @splatRestoreDatabase

By default, all of the text is dumped to screen, but you can pipe it to clip to save it to
your clipboard or pipe it to Out-File to save the output to disk.

11.3 Restoring to custom data and log directories
We assume sane defaults as often as possible, which helps make dbatools commands
convenient and enjoyable to use. The same is true with Restore-DbaDatabase: by
default, our restore command figures out the default data and log directories and
restores the databases to those directories. You’re probably familiar with these directo-
ries, as shown in figure 11.1.

Listing 11.4 Viewing the output script

Try it now 11.1
Pipe the output to the clipboard, and paste it into SQL Server Management Studio
(SSMS):

Restore-DbaDatabase -SqlInstance sql01 -Path "C:\temp\sql\full.bak"

➥ -OutputScriptOnly | clip

Now, save the output to C:\temp\restore.sql:

Restore-DbaDatabase -SqlInstance sql01 -Path "C:\temp\sql\full.bak"

➥ -OutputScriptOnly | Out-File C:\temp\restore.sql

150 CHAPTER 11 Restore

There may be times, however, that you want to restore databases to nondefault data and
log directories. This is a common scenario for databases that require dedicated drives
or directories. To restore to a specific data and log directory, use the -Destination-
DataDirectory and -DestinationLogDirectory parameters, as shown next.

PS> $splatRestoreDb = @{
SqlInstance = "sql01"
Path = "\\nas\sql01\mydb01.bak"
DestinationDataDirectory = "D:\data"
DestinationLogDirectory = "L:\log"

}
PS> Restore-DbaDatabase @splatRestoreDb

11.3.1 No recovery

Want to restore a chain of backups over time? You must use -NoRecovery to allow the
restores to continue; otherwise, the database is recovered and ready for action. We
support the WITH NORECOVERY scenario with the -NoRecovery parameter.

Listing 11.5 Restoring to a different directory

Figure 11.1 SQL Server’s
default directories

Easily restore databases with custom file locations
dbatools 1.1.0, released in July 2021, introduced a lot of new features, including a
new command to make restores with custom file locations easier. Get-DbaDbFile-
Mapping allows you to easily build a hash table from an existing database. Read more
by typing the following command in a PowerShell console:

Get-Help Get-DbaDbFileMapping -Detailed

151Restoring to custom data and log directories

 Nonrecovered databases are useful in high-availability scenarios such as availability
groups and log shipping. They are also useful when prepping for migrations, because
they allow you to restore most of a database, then just restore the logs once the migra-
tion is finalized. To leave your database in a restoring state, use the code shown here.

PS> $splatRestoreDb = @{
SqlInstance = "sql01"
NoRecovery = $true

}
PS> Restore-DbaDatabase @splatRestoreDb -Path C:\temp\sql\full.bak
PS> Restore-DbaDatabase @splatRestoreDb -Path C:\temp\sql\diff.bak

When it’s time to recover the database with the final backup file, use the -Continue
parameter as shown next.

PS> $splatRestoreDbFinal = @{
SqlInstance = "sql01"
Path = "C:\temp\sql\trans.trn"
Continue = $true

}
PS> Restore-DbaDatabase @splatRestoreDbFinal

Once this command is run, your database will be fully recovered and no longer ready
for additional backups to be restored.

11.3.2 Renaming a database

Renaming a database during a restore can be useful in a number of situations, like
renaming it to reflect that it’s in the test environment. For instance, you may want to
rename mydb to mydb_test.

 When renaming a database during a restore, you may be tempted to use only the
-DatabaseName parameter, but this will change only the name of the database, much
like right-clicking on a database and renaming it in SSMS. To rename the underlying
physical filenames as well, you want to use the -ReplaceDbNameInFile parameter, as
shown in the next listing.

PS> $splatRestoreDbRename = @{
SqlInstance = "sql01"
Path = "C:\temp\sql\pubs.bak"
DatabaseName = "Pestering"
ReplaceDbNameInFile = $true

}
PS> Restore-DbaDatabase @splatRestoreDbRename

Listing 11.6 Restoring full and diff backups with no recovery

Listing 11.7 Recovering a database with a final transaction log

Listing 11.8 Completely renaming a database

152 CHAPTER 11 Restore

Note that this does not rename the logical database name, because renaming the logi-
cal filenames is not supported at this time.

11.3.3 Point-in-time restores

One of most useful features of SQL Server backups is the ability to restore to a specific
point in time. This is useful for restoring mistakenly deleted data or restoring to a spe-
cific time of day. We’ve made point-in-time restores as straightforward as possible,
using the -RestoreTime parameter, which accepts the PowerShell datetime format.

 Imagine you have a folder at \\nas\sql\sql01\mydb with a full backup and a few log
backups. You can restore to a specific point in time by specifying \\nas\sql\sql01\mydb
as the -Path and providing the exact moment in time you’d like to restore to. You can
see this in action in the following code sample.

PS> $splatRestoreDbContinue = @{
SqlInstance = "sql01"
Path = "\\nas\sql\sql01\mydb"
RestoreTime = (Get-Date "2019-05-02 21:12:27")

}
PS> Restore-DbaDatabase @splatRestoreDbContinue

Considering how long it can potentially take to manually piece the backups together,
this method can save quite a bit on time and stress.

11.3.4 Restoring to a marked transaction

Did you know that since SQL Server 2008, you can mark transactions in the database
and use the marked transaction as a guide when performing a restore? We prefer this
method over restoring to a specific point in time: when restoring mistakenly deleted
data, it can be far more accurate, because we don’t have to know the exact time that a
transaction was executed. We suspect that most people haven’t seen this in action, so
we’ll include the T-SQL code as well, in the next listing.

MARKED TRANSACTIONS Read more about marked transactions at sqlps.io/
mark.

BEGIN TRANSACTION DeleteCandidates
WITH MARK N'Deleting a Job Candidate'

DELETE FROM pubs.dbo.employee
WHERE employeeid = 13

GO
COMMIT TRANSACTION DeleteCandidates

Listing 11.9 Restoring to a point in time

Listing 11.10 Creating a transaction mark

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-transaction-transact-sql?view=sql-server-ver15#d-marking-a-transaction
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-transaction-transact-sql?view=sql-server-ver15#d-marking-a-transaction
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-transaction-transact-sql?view=sql-server-ver15#d-marking-a-transaction

153Restoring to custom data and log directories

Note that any time you mark a transaction using WITH MARK, you must also name the
transaction. In listing 11.10, we named the transaction DeleteCandidates. We’ll use
this name as the -StopMark in the next listing.

Backup your database
PS> $splatRestoreDb = @{

SqlInstance = "sql01"
Database = "pubs"
FilePath = "C:\temp\full.bak"

}
PS> Backup-DbaDatabase @splatRestoreDb

Restore to the point right before the delete was executed
PS> $splatRestoreDbMark = @{

SqlInstance = "sql01"
Path = "C:\temp\full.bak"
StopMark = "DeleteCandidates"
StopBefore = $true
WithReplace = $true

}
PS> Restore-DbaDatabase @splatRestoreDbMark

If you’d like to stop right after the transaction, set -StopBefore to $false.

11.3.5 Recovering a corrupt database

One of the coolest features we automate is restoring corrupt pages from backup. In
our experience, corruption is most often caused by failing hardware, such as an unsta-
ble storage system. Restoring corrupt pages instead of the entire database can save you
a ton of time, especially if it’s a large database and a small bit of corruption. If page
restores are new to you, Microsoft has some really good docs (sqlps.io/restorepages)
that detail pages, including the limitations and restrictions. Restoring a corrupt page
first starts with a check for pages marked as suspect (suspected of corruption) using
Get-DbaSuspectPage.

Once you have a list of suspect pages, you pass it to the -PageRestore parameter of
Restore-DbaDatabase. In the next listing, we’ll restore all corrupt pages found in the
pubs database on sql01.

Listing 11.11 Restoring up to a transaction

Try it now 11.2
Check your entire estate for suspect pages with the following code:

Get-DbaRegisteredServer | Get-DbaSuspectPage

Or, check a single database for suspect pages like so:

Get-DbaSuspectPage -SqlInstance sql01 -Database pubs

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-pages-sql-server?view=sql-server-ver15

154 CHAPTER 11 Restore

PS> $corruption = Get-DbaSuspectPage -SqlInstance sql01 -Database pubs
PS> $splatRestoreDbPage = @{

SqlInstance = "sql01"
Path = "\\nas\backups\sql\pubs.bak"
PageRestore = $corruption
PageRestoreTailFolder = "c:\temp"

}
PS> Restore-DbaDatabase @splatRestoreDbPage

You’ll notice that the code references -PageRestoreTailFolder. This is a required
parameter when using -PageRestore--it specifies the folder where SQL Server will
back up the tail of the log.

11.4 Azure
In chapter 10, we backed up a couple databases to Azure using both shared access
signatures (SASs) and access keys. Now we’re going to learn how to restore those
backups.

11.4.1 Shared access signatures

Because you created the SAS credential in the previous chapter, you can simply specify
the path to the backup file in Azure, and it’ll be restored using that SAS credential.

PS> $splatRestoreDbFromAzure = @{
SqlInstance = "sql01"
Path = "https://acmecorp.blob.core.windows.net/backups/mydb.bak"

}
PS> Restore-DbaDatabase @splatRestoreDbFromAzure

If you chose to stripe your backups, dbatools can easily handle that too: just pass in all
the stripe addresses (this works for local backups as well), as shown here.

PS> $stripe = "https://acmecorp.blob.core.windows.net/backups/mydb-1.bak",
"https://acmecorp.blob.core.windows.net/backups/mydb-2.bak",
"https://acmecorp.blob.core.windows.net/backups/mydb-3.bak"
PS> $stripe | Restore-DbaDatabase -SqlInstance sql01

11.4.2 Access keys

Now we’ll discuss restoring a database using the access keys method outlined in chapter
10. Like Backup-DbaDatabase, Restore-DbaDatabase also uses the -AzureCredential
parameter to restore databases using access keys, as illustrated in the following code.

Listing 11.12 Restoring all corrupt pages found in pubs

Listing 11.13 Restoring a single backup from Azure using SAS

Listing 11.14 Restoring striped backup from Azure using SAS

155Hands-on lab

PS> $splatRestoreDbFromAzureAK = @{
SqlInstance = "sql01"
Path = "https://acmecorp.blob.core.windows.net/backups/mydb.bak"
AzureCredential = "AzureAccessKey"

}
PS> Restore-DbaDatabase @splatRestoreDbFromAzureAK

If you need more advanced scenarios for performing your restores, we recommend
reading Stuart Moore’s post at sqlps.io/complex for advanced restore magic. Actually,
even if you don’t need more advanced scenarios, we still recommend his multipart
series anyway, because it gives detailed insight directly from the author of the
commands.

11.5 Hands-on lab
 Back up all user databases in your test SQL Server instance. Perform one full

backup, one differential backup, and three log backups, and then restore the
entire folder back to your test instance, ensuring you use -WithReplace.

 Restore a single database, and move the data and log files to a new location.
 Restore a single database to a new name.

Listing 11.15 Restoring a single backup from Azure using an access key

https://sqlps.io/complex

156

Snapshots

Have you ever pressed F5 to execute a perfectly crafted update statement, only to
discover you didn’t highlight the where clause? Or perhaps you ran a whole script
when you meant to run only a select portion? If only SQL Server had a built-in
undo option. Well, good news—database snapshots can help here!

 In the previous two chapters, we talked about backups and restores. The first thing
to note about database snapshots is that they do not take the place of a solid backup
strategy. However, they can be really useful for rapid rollbacks in certain situations.

 We actually debated on whether to include this chapter because snapshots
aren’t the most popular SQL Server feature, likely due to their inaccessibility within
SQL Server Management Studio (SSMS). We hope that you’ll give snapshots a
chance if you don’t have experience with them because they can be incredibly use-
ful. We have relied on snapshots during our careers both for fast rollback scenarios
when things have gone wrong and for reporting on certain points in time.

12.1 Snapshots and SSMS
Snapshots are simply a read-only copy of a database at the point in time that the
snapshot was created. As time moves on and data in your source database changes,
the original pages are stored in a sparse file. This means that, initially, snapshots
use very little space at all. However, if you have an active database, it is vital to
ensure you have ample disk space to support the snapshot. A snapshot running out
of space is one of the biggest pitfalls when using this technology.

Snapshots and disk space
If a snapshot runs out of disk space, it will become suspect, and the only way out is
to drop it. This means the snapshot you took is totally useless if you run out of
space—not an ideal situation if you are relying on it for a fast recovery.

157Application upgrade

We mentioned earlier that snapshots aren’t a very popular SQL Server feature. Because
they aren’t built into SSMS, the only way to create a snapshot without dbatools is to man-
ually write T-SQL, as shown in figure 12.1, and while writing this T-SQL, you have to
explicitly specify all the database files that will be part of the snapshot. If you have a large
database, it’s possible you will have quite a few files to include in this statement.

As an aside: you may notice that, in figure 12.1, we’re logged in as sa. Although this is
considered a bad practice in production, in this case, we’re working with a Docker
container, and using the sa account within throwaway Docker containers is a common
practice.

12.2 Application upgrade
Let’s tell a story about how much easier dbatools can make snapshot creation. It’s a
Friday afternoon, and you’re drinking a cup of tea, coffee, or any beverage of choice,
while finishing up a few tasks before the weekend. Because it’s Friday afternoon, every

Because a snapshot holds the original copy of any pages that have been changed
since that snapshot, the maximum amount of space needed is equal to the size of
the source database at the point in time that the snapshot was taken.

When you take a snapshot, you need to make sure you check the free space on the
disk and ensure there is at least enough space to hold a full copy of the data at the
point you take the snapshot.

Figure 12.1 The only option (aside from using dbatools) to create a snapshot is to use T-SQL and specify all of
the data files.

158 CHAPTER 12 Snapshots

DBA knows to perform only low-risk tasks! But then, you get an email asking you to
urgently run a script as part of an application upgrade that you knew nothing about.
Obviously this scenario is just fiction—it’s more than likely you had plenty of time to
prepare and knew for weeks in advance that there would be this requirement.

 You look at the script, and it’s reasonably simple—a few updates to stored proce-
dures, a dropped table here or there. You also know you have a good backup strategy
in place, and if things go poorly, you can easily revert to a previous backup, and no
harm is done. Except, in this case, the database is huge—the amount of time to
restore the whole database does not fit in the amount of time left before you plan to
leave for the weekend.

HOW LONG WILL THAT RESTORE TAKE? Hopefully, after reading chapter 10,
you’re regularly testing your backups with Test-DbaLastBackup and storing
that data in a table. That way, you can quickly look up the last restore to see
exactly how long that took.

This is a perfect scenario for database snapshots to save the day.

12.3 When to use snapshots
As previously mentioned, database snapshots start off small because no data has
changed. As changes are made, the original pages are stored, in case we need them.
The more data that is changed, the bigger the snapshot will grow, and the longer it
will take to revert back to that snapshot if and when the time comes.

 One point to consider when deciding whether snapshots are a good fit for your use
case is to think about how much data will be changed. If you are running an upgrade
script, like in our example, this is going to result in a small amount of changed data,
compared to the total database size. This means snapshots would be a great tool for
this scenario.

 On the flip side, if you are truncating all data and rebuilding a database, the size of
the snapshot and the additional IO to maintain both the source database and the
snapshot will probably not be worth the benefits gained from using a snapshot.
Instead, in that case, you might use a full database backup.

12.4 Creating a snapshot
Creating a snapshot with dbatools is as easy as running the command in the next listing.

PS> New-DbaDbSnapshot -SqlInstance mssql1 -Database AdventureWorks

This is the quickest and easiest way to create a snapshot. The snapshot will be named
with the database name and a date suffix by default. The files for the snapshot will be
placed in the same folder as the source database data files.

Listing 12.1 Creating a database snapshot

159Upgrading

12.5 Upgrading
Now that you have a snapshot in place, the application upgrade feels a little less risky.
The application team has sent you the scripts to run for the upgrade process. Part of
the code, shown in figure 12.2, runs an ALTER PROCEDURE statement, which tweaks a
stored procedure to allow updates to the VacationHours column of the Employee
table.

As you’ll notice in figure 12.2, while reviewing the code, not only was an additional
property added to the SET command, but the WHERE clause is now commented out.
This is a very simple example of an application upgrade. In the real world, we’ve seen
upgrades that consists of thousands of lines of code to execute. You might guess what
happens next.

Try it now 12.1
Create a database snapshot for yourself, and explore the -Name and -Path parame-
ters to gain more control over the snapshot-creation process:

New-DbaDbSnapshot -SqlInstance mssql1 -Database AdventureWorks

➥ -Name AW_Snap -Path 'E:\Snapshots\'

Figure 12.2 Running the application upgrade code to update a stored procedure

160 CHAPTER 12 Snapshots

 You run the script and confirm the updates have been made. The application team
carries on with the rest of their work, and you go back to your easy Friday afternoon.
However, it’s not long before your phone rings: “Something doesn’t look right!” See
figure 12.3.

After some investigation, you discover the troublesome procedure and then create a
plan of action to resume service. At this point, to resolve this situation, you need to
restore the data to how it was before the upgrade started.

12.6 Rolling back the entire database from a snapshot
We already mentioned this is a large database, and you need to restore only one table
and redeploy the stored procedure code as it was before the upgrade. This is where
using database snapshots can save you a lot of time and effort. You also have two
options on how to recover in this situation: you can roll back the whole database, or
you can just pick out the parts you need.

 First, we’ll look at how to roll back the whole database to the exact state when the
snapshot was taken. This is the safest option because you know the data will be in a
consistent state across the whole database. dbatools makes this process easy, too!

WARNING Reverting to a database snapshot does break the LSN chain for
your database, so make sure to take that into consideration, and perhaps run
a new full database backup once you’re back in a good state.

It’s important to make sure no sessions are connected to the database before you run
the restore. In the next code listing, you can see an example of using Get-DbaProcess
and Stop-DbaProcess to kill any connected sessions before then using Restore-
DbaDbSnapshot to actually roll back the database.

PS> Get-DbaProcess -SqlInstance mssql1 -Database AdventureWorks |
Stop-DbaProcess

PS> $splatRestoreSnapshot = @{

Listing 12.2 Rolling back the database to the point the snapshot was taken

Figure 12.3 All of the employees have the same values for NationalIDNumber, birthdate, and VacationHours.

161Restoring certain objects or data from a snapshot

SqlInstance = "mssql1"
Snapshot = "AdventureWorks_20210530_071605"

}
PS> Restore-DbaDbSnapshot @splatRestoreSnapshot

At this point, because you rolled back the entire database, you have recovered both
the stored procedure and the table data from before the upgrade.

WARNING You can create multiple snapshots on a single database. However,
to restore the entire database from a snapshot, you can have only one snap-
shot, so clean up any you don’t need before attempting the restore. You can
quickly view and select multiple snapshots to clean up by using the -Passthru
parameter on Out-GridView to create a GUI pop-up, as shown next:

Get-DbaDbSnapshot -SqlInstance mssql1 | Out-GridView -Passthru |

➥ Remove-DbaDbSnapshot

12.7 Restoring certain objects or data from a snapshot
The second option we have when restoring from snapshots is to just pick certain objects
from the earlier version of the database. Because database snapshots are read-only
copies of the database from the past, you can browse the objects through SSMS or run
T-SQL against them as if they were a regular database, as shown in figure 12.4. You can
now restore just the affected data and code, instead of the full database.

 In the scenario that an application upgrade has gone wrong, it is easier to roll back
the whole database to the snapshot. As we’ve mentioned, this ensures our data is con-
sistent across all tables. However, in certain cases, where just a few rows are affected
and new data is still being written to the database, selecting only what you need from a
recent snapshot can be a huge time-saver. You can even use Copy-DbaDbTableData to
easily copy data from the snapshot back into the source database.

The name of the snapshot to
restore. This is displayed when the
snapshot is created, or you can find
it using Get-DbaDbSnapshot.

Try it now 12.2
Create a snapshot, drop a table, and then roll back the database to the snapshot:

New-DbaDbSnapshot -SqlInstance mssql1 -Database AdventureWorks

Remove-DbaDbTable -SqlInstance mssql1 -Database AdventureWorks

➥ -Table Production.BillOfMaterials

Get-DbaProcess -SqlInstance mssql1 -Database AdventureWorks |

➥ Stop-DbaProcess

Get-DbaDbSnapshot -SqlInstance mssql1 -Database AdventureWorks |

➥ Restore-DbaDbSnapshot

162 CHAPTER 12 Snapshots

12.8 Cleaning up
As we mentioned, a database snapshot starts off small and grows over time as data
within the database is changed, meaning that the snapshot must keep track of the
original page. You’ll experience a slight performance hit on write activity to the data-
base to keep the snapshot up to date. Therefore, it’s important to remove any snap-
shots you no longer need to both free up the space and reduce the overhead.

 You shouldn’t be surprised by this, but dbatools has simplified cleaning up snap-
shots as well. As you might remember, you can have more than one snapshot on a
database at one point, but you can clear all snapshots with just one line of code, as
shown in figure 12.3.

PS> Get-DbaDbSnapshot -SqlInstance mssql1 -Database AdventureWorks |
Remove-DbaDbSnapshot

12.9 Reporting
As we’ve seen, snapshots can be really useful to quickly roll back changes made to our
databases, but they offer other uses as well. Because database snapshots are a read-
only, static view of the source database, they are also great for reporting.

 One use case would be if the business needed to report on the state of the database
at the end of each day. If certain batch jobs run each night, you could add a step to
those to create a snapshot when the jobs complete. Using the -Name parameter of the
New-DbaDbSnapshot command, you can specify a certain naming convention, perhaps
like in figure 12.5, where each snapshot has the date appended to its filename.

Listing 12.3 Removing all snapshots on a database

Figure 12.4 Browse the snapshot using SSMS, or query with T-SQL.

163Hands-on lab

Having snapshots from subsequent nights will also allow you to compare certain data
over time as it was when each snapshot was taken.

12.10 Hands-on lab
 Create snapshots for multiple databases at once by using the -NameSuffix

parameter.
 Create a snapshot on a different drive from your database data files by using the

-Path parameter.
 Alter some data, and then roll it back by using your snapshot.
 Clean up all the snapshots you created to prepare for the next chapter.

Figure 12.5 Multiple snapshots taken
each day and labeled with a date stamp

164

Install and
 update SQL Server

Installing new SQL Servers can help you modernize your entire estate and prepare
a new standardized environment. Automated updates can help keep your estate
secure by streamlining the process.

 In this chapter, we’ll learn how to install and update SQL Server for Windows
from the command line. You’re probably familiar with installing SQL Server on-
premises using the GUI. If you are a developer, you may even have installed SQL
Server containers. Containers and SQL Server on Linux are basically automated
right out of the box, whereas Windows isn’t command-line first. For this reason,
dbatools focuses on automating the Windows-based installer.

 After working through this chapter, you will be able to easily deploy several SQL
Servers at once and update your entire SQL Server estate quickly, minimizing your
outage windows. We’ll begin by installing SQL Server in a simplified manner, then
progress to more customized installs. Once we’ve got installs figured out, we’ll
move on to automating your SQL Server patching using Update-DbaInstance.

13.1 Installing
When it comes to performing automated installations of SQL Server on Windows,
we have the following four common ways:

 PowerShell Desired State Configuration (sqlps.io/installpsdsc)—Also known as
DSC, Desired State Configuration allows you to build SQL Server instances
from templates in an environment that supports DSC push/pull servers.
DSC not only installs SQL Server, it also provides a straightforward manner
to manage prerequisites, such as adding firewall rules and installing .NET. It
can also perform postinstall actions, such as creating availability groups and
adding users. Ultimately, however, prerequisites are DSC’s downfall. One of

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server-with-powershell-desired-state-configuration?view=sql-server-ver15

165Installing

the biggest hurdles to DSC is that it requires infrastructure changes and an
understanding of another management platform (see sqlps.io/dscoverview).

 SQL Server SysPrep (sqlps.io/installsysprep)—Allows you to install SQL Server on
a Windows Server and redeploy it again and again. SysPrep has a number of lim-
itations, whereas DSC is the most powerful option. We do not use SQL Server
SysPrep and do not recommend it because you have easier, less limiting options.

 setup.exe (sqlps.io/installconfigfile) and ConfigurationFile.ini (sqlps.io/install-
cmd)—With this method, a ConfigurationFile.ini template can be easily gener-
ated using the installer GUI and reused later. We used this method regularly
before Install-DbaInstance was created.

 dbatools’ Install-DbaInstance—A new method that focuses on ease of use and
remote installs. This is now our preferred method, by far.

This chapter will cover only the dbatools command that installs SQL Server, Install-
DbaInstance. Install-DbaInstance (along with Update-DbaInstance) was created
by a fellow DBA, Kirill Kravtsov (nvarscar.wordpress.com), and was intended to be
straightforward yet flexible.

CONTINUOUS INTEGRATION/CONTINUOUS DEPLOYMENT (CI/CD) FOR SQL SERVER If
you’re a fan of these commands or want to know more about CI/CD for SQL
Server, check out Kirill’s PowerShell module, dbops (sqlps.io/dbops).

If you have advanced installation requirements or are interested in exploring DSC,
Microsoft MVP and coauthor of this book, Jess Pomfret (sqlps.io/jessdsc) has written
in depth about DSC for SQL Server. You can find Jess’s blog at jesspomfret.com.

13.1.1 Benefits of automated installs

Automated installs offer so many benefits, two of which are job satisfaction and total
euphoria. We experienced this euphoria ourselves and even wrote this chapter out of
order in an effort to ride the high of accomplishing a huge site-wide migration in very
little time using dbatools and PowerCLI (sqlps.io/powercli), the PowerShell module
that helps manage VMware virtualized environments. Table 13.1 lists the benefits that
we’ve experienced after automating our SQL Server installs.

Table 13.1 Benefits of automated installs

Benefit Example

Standardization Established, time-tested processes; increasing predictability, consistency,
and best practice implementations.

Compliance Can make it easy to comply to operational standards required by various
organizations, such as DISA and PCI.

Faster to deploy Just a couple minutes to install! Being able to deliver systems faster can
even ease disaster recovery.

https://docs.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server-using-sysprep?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server-using-a-configuration-file?view=sql-server-ver15
https://sqlps.io/installcmd
https://sqlps.io/installcmd
https://jesspomfret.com/category/powershell/dsc/
https://github.com/vmware/PowerCLI-Example-Scripts/tree/master/Scripts
https://jesspomfret.com/
https://github.com/dataplat/dbops
https://nvarscar.wordpress.com/

166 CHAPTER 13 Install and update SQL Server

A side effect of automated installs is that it can get you in the habit of automating and,
potentially, even testing, because testing and automation often go hand in hand. We’ve
found that the more we automate, the more we are pulled into the DevOps culture,
which emphasizes testing. You can see the progressive behavior of testing in notable
PowerShell-centric blogs, including our own at sqldbawithabeard.com, jesspomfret
.com, and dbatools.io/blog.

 In the PowerShell world, the Pester module (sqlps.io/pester) is often used to per-
form testing. We use it ourselves and recommend it because it’s very “PowerShelly” in
its syntax and has a high level of support from both Microsoft and the community. The
dbatools team used Pester extensively in another one of our SQL Server/PowerShell
module, dbachecks. We will be covering Pester and dbachecks in chapter 26, but if you’re
curious now, you can learn more about Pester on Rob’s blog at sqlps.io/robpester.

Fewer mistakes Avoid installing into logs when you meant to choose log.

Fewer one-offs Automation makes it so easy, no one is tempted to go around the process.

Time saver No need to retroubleshoot issues. Those problematic firewall settings are
addressed right within your code.

Requires up-front
consideration

Design it once, and you’re set. Then installs are performed in a predefined,
optimized way.

Source control You can even keep your install configs in source control, leading to greater
accountability and understanding of point-in-time decisions because the
commit holds the documentation.

Higher quality installs Less temptation to do it poorly. It’ll be a thorough install instead of a mini-
mum effort that just works for whatever group.

Increased opportunities When things are easier, there are more possibilities. Perhaps you want to
create an environment where you throw away temporary virtual machines,
sort of like Docker.

Flexibility Important if changes are required at short notice.

Less downtime The process was thought out, so no SQL files ended up on the C drive. This
means the drive is far less likely to fill up and go offline, leaving your custom-
ers happier with your work.

Higher satisfaction Point-and-click installs are boring. Automated installs are thrilling.

On-demand installs Because the process is automated, you can set up something like Jenkins
or even a scheduled task to deploy instead of using the DBA’s time.

More secure When systems and processes are standardized, updating becomes easier
and more likely to occur.

Easier maintenance Got something to change real quick? Because systems are standardized
and predictable, changing all of them at once is easy.

Table 13.1 Benefits of automated installs (continued)

Benefit Example

https://dbatools.io/blog/
https://jesspomfret.com/
https://jesspomfret.com/
https://jesspomfret.com/
https://sqldbawithabeard.com/
https://github.com/pester/Pester
https://blog.robsewell.com/tags/#pester

167Installing

13.1.2 Local installs

Just how easy is it? For local installs, only two parameters are required: the path to the
setup.exe and the version that you’d like to install, as can be seen in listing 13.1.

 This installation approach is not recommended for production (though testing is
probably okay) because it’s as default as can be: SQL Server is not only installed on the
C drive, but all default features, which you’re unlikely to need, are also installed. Still,
as an introduction, we wanted to show you how simple an install can be before walking
you through methods that we do recommend for production.

Mount SQL Server ISO to E:
Run PowerShell as Administrator
PS> Install-DbaInstance -Path E:\ -Version 2017

Confirm
Are you sure you want to perform this action?
Performing the operation "Install 2017 from E:\setup.exe" on
target "sql01.ad.local".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): y

ComputerName : sql01.ad.local
InstanceName : MSSQLSERVER
Version : 14.0
Port :
Successful : True
Restarted : False
Installer : E:\setup.exe
ExitCode : 0
LogFile : C:\Program Files\Microsoft SQL Server\140\Setup Bootstrap...
Notes : {}

Wonder what’s going on in the background? Like DSC, we basically automated the
setup.exe and ConfigurationFile.ini method of installing SQL Server. So unless
-ConfigurationFile is specified, we generate one for you (which includes optimized
tempdb settings!) and perform the required steps. With remote installs, we even copy
the generated file to the remote machine for you and perform the installation
remotely.

CREATE A DEDICATED INSTALLER ACCOUNT It’s good practice to have a dedi-
cated SQL Server install/setup account because you can give just that account
the delegation rights. Using dedicated installer accounts is not only a practice
accepted by security organizations such as the US Defense Information Sys-
tems Agency (DISA), it is also the recommended approach (sqlps.io/stigrec)
and even required (sqlps.io/stigreq) for some SQL Server versions to stay
compliant. This is because a DBA’s sysadmin privileges “puts data at risk of
unintended or unauthorized loss, modification, or exposure.”

Listing 13.1 Minimal local install

https://www.stigviewer.com/stig/ms_sql_server_2016_instance/2018-03-09/finding/V-79167
https://www.stigviewer.com/stig/microsoft_sql_server_2012_database_instance/2017-07-13/finding/V-41038

168 CHAPTER 13 Install and update SQL Server

13.1.3 Remote installs

Remote installs are SQL Server installations that are initiated against remote domain-
joined servers, all from one centralized machine. Remote installs are useful because
you no longer have to spend time logging in to each Windows Server, one by one, to
install SQL Server. It’s absolutely exhilarating when you realize you no longer have to
RDP into a server, load up the installer, then click Next, Next, Next. Now, you can just
log in to your administrative workstation and then issue the required PowerShell com-
mands to install SQL Server on remote machines.

NOT APPLICABLE TO STANDALONE MACHINES This particular section, Remote
installs, deals heavily with Active Directory and domain-joined servers. Many
commands will not work if your computer is not joined to a domain.

Our command even multithreads by default, meaning it installs SQL Server on all of
the machines specified, all at once (well, up to 50). Want to batch your installs to
reduce resource usage on your workstation? You can either run Install-DbaInstance
multiple times with collections of SQL Servers, or you can specify the -Throttle
parameter, and we’ll do it for you.

 At the same time, when installing SQL Server on a remote machine within your
Active Directory domain, the Kerberos double-hop issue (sqlps.io/doublehop) can be
a pain. Double-hop issues occur when a command traverses too many servers. So, a
single hop from your workstation to your SQL Server is fine, but your SQL Server call-
ing out to your file server is a double hop, which Kerberos prevents by default as a
security mechanism. Fortunately, we can address this security mechanism in a number
of ways. Table 13.2 outlines a few.

You may be tempted to just ease your permissions, but delegation is required for a
number of authentication operations, not just filesystem access. If you want to install
more than the Engine or want to set your service account to a domain login during

Table 13.2 Addressing Kerberos double-hop issues

Method Detail

Enable
delegation

Check out sqlps.io/doublehop for former PFE Ashley McGlone’s awesome article
about various ways to solve the double-hop issue, including some delegation magic.

CredSSP It’s gotten better over the years, but using CredSSP must be approached with caution.
It’s still considered an insecure method by many security teams, because older ver-
sions could leak plain-text passwords.

Copy and mount You can copy the ISO file using Copy-Item and UNC paths, then Mount-DiskImage
via Invoke-Command.

Ease
permissions

Add read-only permissions for everyone on the setup directory, allowing for anony-
mous read-only access to your file share.

Use DSC DSC does not have this issue because it runs as SYSTEM.

https://docs.microsoft.com/en-us/archive/blogs/ashleymcglone/powershell-remoting-kerberos-double-hop-solved-securely
https://docs.microsoft.com/en-us/archive/blogs/ashleymcglone/powershell-remoting-kerberos-double-hop-solved-securely

169Installing

install, delegation will be required. Fortunately, if you’ve got the appropriate permis-
sions, enabling delegation is straightforward when using the ActiveDirectory Power-
Shell module (sqlps.io/adpsmodule).

 Listing 13.2 demonstrates enabling delegation by doing the following:

 Getting the Active Directory object for the SQL Server
 Getting the Active Directory object for the file server
 Setting the file server’s AD property PrincipalsAllowedToDelegateToAccount

to the SQL Server’s AD object
 Clearing the SQL Server’s Kerberos tickets, making the setting effective

Note that waiting 15 minutes or restarting the SQL Server will also clear the necessary
Kerberos tickets. We prefer using KLIST PURGE because it’s immediately effective but
does not require a SQL Server restart.

The Active Directory module must be installed
Check out https://sqlps.io/ad for more information
PS> $sqlserver = Get-ADComputer -Identity sql01
PS> $shareserver = Get-ADComputer -Identity fs01
PS> Set-ADComputer -Identity $shareserver

➥ -PrincipalsAllowedToDelegateToAccount $sqlserver
Wait 15 minutes or execute the following, which clears system tickets
PS> Invoke-Command -ComputerName sql01

➥ -ScriptBlock { KLIST PURGE -LI 0x3e7 }

Once you’ve executed the KLIST PURGE, rebooted the SQL Servers, or allowed time for the
delegation cache to clear, the code in the next code snippet should run with no issues.

PS> Install-DbaInstance -SqlInstance sql01 -Path \\fs01\share\sqlinstall

➥ -Version 2017 -Feature Engine, FullText -Confirm:$false

ComputerName : sql01.ad.local
InstanceName : MSSQLSERVER
Version : 14.0
Port :
Successful : True
Restarted : False
Installer : \\fs01\share\sqlinstall\setup.exe
ExitCode : 0
LogFile : D:\MSSQL\140\Setup Bootstrap\Log\Summary.txt
Notes : {}

Because service accounts weren’t specified using the -EngineCredential, -Agent-
Credential, or -FTCredential parameters, Microsoft’s defaults (NT Service\MSSQL-
SERVER, NT Service\SQLSERVERAGENT, NT Service\MSSQLFDLauncher) are used.

Listing 13.2 Enabling delegation within an Active Directory domain

Listing 13.3 Installing SQL Server on a remote machine

https://docs.microsoft.com/en-us/archive/blogs/ashleymcglone/install-the-active-directory-powershell-module-on-windows-10

170 CHAPTER 13 Install and update SQL Server

 Want to change/update the service accounts in a secure manner once SQL Server
is installed? Just use Update-DbaServiceAccount. We actually recommend this postin-
stall update approach for the following two primary reasons:

 The passwords for the service account must be included in plain text at the com-
mand line on the remote machine when using -EngineCredential, -Agent-
Credential, -FTCredential, -ASCredential, -RSCredential, -ISCredential,
or -PBEngineCredential, leaving these credentials susceptible to logging.

 The passwords are logged in dbatools because the full command issued is
logged to verbose.

In listing 13.4, we securely change the service accounts for selected SQL services.
Which services? The ones you select using Out-GridView.

NOTE As mentioned in chapter 8, the Out-GridView command is natively
available in Windows PowerShell or within the Microsoft.PowerShell
.GraphicalTools module on PowerShell 7+.

We begin by using Get-Credential, which does not expose your service account pass-
word. Then we change the user account remotely using the secure method, SQL WMI
(just like SQL Server Configuration Manager).

PS> $cred = Get-Credential ad\sql01engine
PS> Get-DbaService -ComputerName sql01 | Out-GridView -Passthru |

Update-DbaServiceAccount -ServiceCredential $cred

Ultimately, updating the service accounts after the fact is safer and more secure, and
there are no downsides. It may even help if your organization has denied your request
for delegation, which sometimes happens in secure environments.

Listing 13.4 Changing SQL Server service accounts

The most secure service accounts
Consider using managed service accounts (sqlps.io/msftmsa), which automatically
rotate ultra-complex passwords, making it nearly impossible to crack. A managed ser-
vice account is an Active Directory account that is closely tied to a specific computer
account. Somehow—and you can read more about the details at sqlps.io/msftmsa—
this account’s 120-character password is rotated regularly (30 days by default) and
stays in sync with the computer account’s password.

John Martin’s MSSQLTips article at sqlps.io/msa includes a tutorial on setting up
managed service accounts for SQL Server. We were delighted when we first read the
article and saw that John used dbatools as part of his workflow, but we recommend
the article primarily because it is the most straightforward and useful that we’ve
found.

https://docs.microsoft.com/en-us/archive/blogs/askds/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting
https://docs.microsoft.com/en-us/archive/blogs/askds/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting
https://www.mssqltips.com/sqlservertip/5334/using-managed-service-accounts-with-sql-server/

171Installing

13.1.4 Customizing installation options

Now that you’re comfortable with basic installations of SQL Server both locally and
remotely, let’s get into some customized installs. Customized installs are required
when you want to change your install path (or any path, like data, log, tempdb) or
when you need to change collation, enable SQL authentication, and so on—basically,
any changes that are available in ConfigurationFile.ini and any changes that you’d
make using the setup GUI.

 Ideally, all of your automated installs should be customized because Microsoft’s
defaults do not all follow best practices. You can customize your automated install in
the following three ways:

 Using ConfigurationFile.ini
 Using a configuration hash table
 Using built-in, commonly used parameters such as -DataPath, -LogPath, and

-AdminAccount

Whichever method you wish to use is valid, so the choice is pure preference. Some
DBAs prefer the .ini method because they’ve worked with ConfigurationFile.ini for
decades, whereas others prefer seeing the variables presented in PowerShell syntax.

13.1.5 ConfigurationFile and Configuration

To facilitate all options available in ConfigurationFile.ini, we’ve added the -Configu-
rationFile and -Configuration parameters. -ConfigurationFile points to a pre-
created configuration file, whereas -Configuration is a hash table of options found
in ConfigurationFile.ini.

 The SQL Server Configuration file, which really drives our automated process, sup-
ports a ton of options and has been around helping SQL Server pros perform “unat-
tended installations” since version 2005. If you’ve ever performed an unattended install
in the past, you may recognize the sample contents of the ConfigurationFile.ini, as
shown here.

Try it now 13.1
Use Get-Help to see the complete list of parameters available in Install-
DbaInstance. Although we tried to implement the most commonly used parameters,
the options available may not be sufficient for your install. In this case, we
recommend using either -ConfigurationFile or -Configuration:

PS> Get-Help -Name Install-DbaInstance -Detailed |
Select -ExpandProperty Parameters

172 CHAPTER 13 Install and update SQL Server

;SQL Server 2017 Configuration File
[OPTIONS]
ACTION="Install"
INSTANCENAME="MSSQLSERVER"
INSTALLSHAREDDIR="C:\Program Files\Microsoft SQL Server"
INSTALLSHAREDWOWDIR="C:\Program Files (x86)\Microsoft SQL Server"

In listings 13.6 and 13.7, we’ll look at a practical example of how slightly different
options can help you install SQL Server in different environments, simply by using the
-Configuration parameter.

 The -Configuration parameter is basically a command-line ConfigurationFile
.ini. All valid parameters supported by ConfigurationFile.ini (sqlps.io/installfromcmd)
are supported by the parameter. The validity of these values depends on your SQL
Server version, so make sure you are using the right version in the reference.

 Generally, enterprise organizations have multiple domains for testing and produc-
tion. This helps ensure that changes pushed to production will work and won’t be
destructive, because they’ve been tested in two other environments. These environ-
ments tend to look mostly the same, though they may use different naming conven-
tions for domains, computers, and user accounts. The -Configuration parameter
allows us to provide different values to the Test domain, as can be seen in listing 13.7.

PS> $config = @{
SQLSYSADMINACCOUNTS = "AD\SQL Prod Admins"
SQLUSERDBDATADIR = "S:\Mounts\Data\MSSQL14.MSSQLSERVER\MSSQL\Data"
SQLUSERDBLOGDIR = "S:\Mounts\Log\MSSQL14.MSSQLSERVER\MSSQL\Data"
SQLTEMPDBDIR = "S:\Mounts\Tempdb\MSSQL14.MSSQLSERVER\MSSQL\Data"
SQLBACKUPDIR = "\\nas\sqlprod\backups"
TCPENABLED = "1"
NPENABLED = "0"
SQLSVCACCOUNT = "NT AUTHORITY\SYSTEM"
AGTSVCACCOUNT = "NT AUTHORITY\SYSTEM"
UPDATEENABLED = "True"
UPDATESOURCE = "\\nas\sql\2017\update"

}
PS> $splatInstallInst = @{

SqlInstance = "sql01"
Path = "E:\"
Version = "2017"
Feature = "Engine"
Configuration = $config

}
PS> Install-DbaInstance @splatInstallInst

Listing 13.5 Sample contents of SQL Server’s ConfigurationFile.ini

Listing 13.6 Production domain that uses the domain name AD and mounts on S

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server-from-the-command-prompt?view=sql-server-ver15#Install

173Installing

Note here that the SQL Service Account and Agent Account use NT AUTHORITY\SYSTEM,
as recommended earlier in the chapter.

PS> $config = @{
SQLSYSADMINACCOUNTS = "ADTEST\SQL Test Admins"
SQLUSERDBDATADIR = "T:\Mounts\Data\MSSQL14.MSSQLSERVER\MSSQL\Data"
SQLUSERDBLOGDIR = "T:\Mounts\Log\MSSQL14.MSSQLSERVER\MSSQL\Data"
SQLTEMPDBDIR = "T:\Mounts\Tempdb\MSSQL14.MSSQLSERVER\MSSQL\Data"
SQLBACKUPDIR = "\\nas\sqltest\backups"
TCPENABLED = "1"
NPENABLED = "0"

}
PS> $splatInstallInst = @{

SqlInstance = "sqltest01"
Path = "E:\"
Version = "2017"
Feature = "Engine"
Configuration = $config

}
PS> Install-DbaInstance @splatInstallInst

This setup uses the default NT SERVICE service accounts, which will work perfectly well
in domains that have not been hardened. You can also save this as a file, using -Save-
Configuration, store the file in source control, then point to it using -Configura-
tionFile when performing future installs, as shown in the next listing. Storing the
configuration file in source control allows you to keep track of changes over time and
can even be associated with the change management process.

PS> $splatInstallInst = @{
SqlInstance = "sql01"
Path = "E:\"
Version = "2017"
ConfigurationFile = "\\nas\sqlconfigs\sharepointprod.ini"

}
PS> Install-DbaInstance @splatInstallInst

Being able to use a configuration file allows you access to every option that Microsoft
offers, instead of being limited by our built-in, most commonly used parameters.

13.1.6 Built-in parameters

We included commonly changed attributes in the Configuration.ini and the GUI as
parameters as well. These are attributes such as the data root directory, user database
directory, log directory, admin account, and more, as shown in figure 13.1.

Listing 13.7 Test domain that uses the ADTEST domain and mounts on T

Listing 13.8 Using a configuration file

174 CHAPTER 13 Install and update SQL Server

These commonly modified attributes can be seen in the next code listing, which uses
a PowerShell splat and several available parameters. We recommend changing, at the
very least, all data paths and the administrator account.

PS> #Note the dollar sign here on $installparams
PS> $installparams = @{

Version = 2017
Feature = "Engine"
InstancePath = "T:\Mounts\Data"
DataPath = "T:\Mounts\Data\MSSQL14.MSSQLSERVER\MSSQL\Data"
LogPath = "T:\Mounts\Log\MSSQL14.MSSQLSERVER\MSSQL\Data"
TempPath = "T:\Mounts\Tempdb\MSSQL14.MSSQLSERVER\MSSQL\Data"
BackupPath = "\\nas\sqltest\backups"
AdminAccount = "ADTESTDEV\SQL Test Admins"
PerformVolumeMaintenanceTasks = $true
Verbose = $true

Listing 13.9 Installing SQL Server using parameters

Figure 13.1 Several commonly modified attributes as seen in the GUI. Whatever you usually change here, you’ll
want to change in your automated install.

175Updating

Confirm = $false
}
PS> #Note the at sign here @installparams
PS> Install-DbaInstance @installparams

POSTINSTALL

Earlier we mentioned that DSC performs postinstall actions such as creating AGs and
adding users. If you’re wondering whether dbatools can perform postinstall actions,
the answer is “absolutely.” Postinstall actions can include security lockdowns, perform-
ing migrations using Start-DbaMigration, installing Ola Hallengren’s SQL Server
Maintenance Solution (sqlps.io/ola) with Install-DbaMaintenanceSolution, or cre-
ating new availability groups using New-DbaAvailabilityGroup.

 In addition, as we mentioned earlier, if you choose to update the service accounts
after the fact, you can use Update-DbaServiceAccount to securely perform this
action. Of course, you can manually create availability groups or update your service
account after your initial install, but we recommend that you also automate your
postinstall procedures. This will keep your environment standardized and easier to
maintain.

13.2 Updating
Now that you’ve automated your installs, you are now ready to automate your SQL
Server patching as well! Keeping your SQL Servers patched and up to date is incredi-
bly important for your organization’s security posture. It can be a tedious task if you
don’t have an automated patching solution, such as Microsoft WSUS or SCCM, to per-
form automated updates. In the event that you do not have a centralized solution, or
if your automated process skips an update (it happens sometimes), dbatools offers a
command, Update-DbaInstance, which helps ease this process.

 Generally, when installing a patch manually, you’ll have to download it from micro-
soft.com, then copy the file to a shared network drive or to a remote server. Then
you’ll log in to each server, click the .exe file, and click Next a few times.

Update-DbaInstance allows you to bypass the second part of this process by perform-
ing remote installs that do not require interactive Remote Desktop logins or clicking

Try it now 13.2
Knowing how to find and save updates automatically for Update-DbaInstance can
help you further automate your patching process. Use Get-DbaKbUpdate to get
detailed information about KB4057119:

Get-DbaKbUpdate -Name KB4057119

Next, save KB4057119 to your local computer using Save-DbaKbUpdate:

Get-DbaKbUpdate -Name KB4057119 | Save-DbaKbUpdate -Path C:\temp

https://www.microsoft.com/
https://www.microsoft.com/
https://ola.hallengren.com/

176 CHAPTER 13 Install and update SQL Server

Next. Imagine if patching 20 computers was as easy as executing a single command
that points to 20 computers and a single file, as can be seen next.

PS> #Get all computer names from a text file
PS> $servers = Get-Content -Path C:\temp\servers.txt
PS> $splatUpdateInst = @{

ComputerName = $servers
Path = "\\nas\share\sqlserver2017-kb4498951-x64_b143d28a48204eb6.exe"

}
PS> Update-DbaInstance @splatUpdateInst

Although listing 13.10 specifies an .exe in the path, you can also just point to a direc-
tory. When a directory is provided as the -Path, Update-DbaInstance searches for a
file that matches the generic KB naming pattern. This allows admins to dump all of
their patches into one repository, and the command figures out the rest.

13.3 The importance of patching
It’s important to remain proactive in the patching process to reduce the chance that
an attacker can exploit a SQL Server–known vulnerability. Up to 50% of hacks
(sqlps.io/gethacked) in recent years are as a result of unpatched software. Back in
2003, a SQL Server worm known as SQL Slammer (sqlps.io/sqlslammer) slowed down
the entire internet by exploiting a SQL Server bug that had been patched by Microsoft
six months earlier.

 Considering the importance of patching, why aren’t companies doing it more
regularly? After speaking to others, it seems that the following two big issues are the
culprits:

 Fear of breaking everything.
 Burdensome processes lead to procrastination.

13.3.1 Fear of breaking everything

Many administrators have experienced applications being broken by the patching
process. This understandably leads to hesitation when aggressive patching schedules
are proposed. Fortunately, we can allay this fear by creating test environments.
Although creating such an environment does create additional work, automation with
commands like Install-DbaInstance can help reduce the additional workload. Vir-
tualization also helps keep test environments reasonably affordable, even for smaller
organizations. The whole DevOps process, including CI/CD and testing, is the ulti-
mate goal, but until then, organizations can start small by creating test environments
and automating patches.

Listing 13.10 Patching 20 SQL Servers at once

https://www.cnbc.com/2015/02/23/the-top-reason-companies-are-still-getting-hacked.html
https://en.wikipedia.org/wiki/SQL_Slammer

177How we make it easier

13.3.2 Burdensome process leads to procrastination

The manual patching process can be pretty boring. Like Install-DbaInstance,
patching SQL Server usually requires logging in to a server and pressing Next, Next,
Next. This tedium can demotivate members within an organization, and patches fall
behind. When patching is automated, there’s no dread because so many servers can
be patched at once.

13.4 How we make it easier
dbatools can simplify this process in the following ways:

 Making it faster and easier to find and download updates with Get-DbaKbUpdate
and Save-DbaKbUpdate

 Enabling remote patching
 Using some autodetect magic to determine which installed instance requires

which patch

By default, Update-DbaInstance updates all relevant SQL Server instances on a server.
If you’d like to update only a specific instance, use the -InstanceName parameter, as
shown in the next code sample. Similarly, you can use the -Version parameter to limit
upgrades to a certain major version of SQL Server.

PS> $splatUpdateInst = @{
ComputerName = "sqlcluster"
Version = "2017"
Type = "CumulativeUpdate"
Path = "C:\temp\sqlserver2017-kb4498951-x64_b143d28a48204eb6.exe"
InstanceName = "sqlexpress"

}
PS> Update-DbaInstance @splatUpdateInst

Sometimes, you can’t determine the patch type (service pack or cumulative update) auto-
matically. When that’s the case, you can tell the patcher which it is by using the -Type
parameter, as shown in listing 13.11. This command is so flexible, we simply don’t have time
to cover every scenario. To find out more, type Get-Help Update-DbaInstance
-Detailed.

 Also, if you ever find yourself needing to uninstall a patch because it caused incom-
patibilities or other issues, you can use Chrissy’s PowerShell module that helps man-
age all Microsoft KB updates, kbupdate (sqlps.io/kbupdate).

 Now that you’ve learned how to install and update SQL Server using dbatools,
we’ll explore how to recover from disasters using dbatools, after the following lab.

Listing 13.11 Patch only one specific instance on a multi-instance server

https://github.com/potatoqualitee/kbupdate

178 CHAPTER 13 Install and update SQL Server

13.5 Hands-on lab
Use what you have read in this chapter by trying the following tasks:

 Test what would happen if you performed an install using the -WhatIf parameter.
 Do the same with updating a remote instance.
 Get some examples for Update-DbaInstance using Get-Help.

179

Preparing for disaster

Disastrous data loss can be caused by a variety of factors, including data center fires,
severe weather, human error, or even intentional sabotage. The goal of disaster
recovery is to be prepared before these types of disasters strike, because your entire
SQL Server instance may no longer be accessible and would need to be rebuilt and
restored from the ground up.

 Typically, disaster recovery for SQL Server consists of the following four parts:

 Exporting and backing up all required items to disk
 Moving export files and backups off-site
 Testing imports and restores on a secondary server
 Importing and restoring all the required items from disk in the event that a

disaster occurs

Fortunately, dbatools makes this once-daunting task easy by simplifying the export
routine for essential SQL Server objects such as database restore scripts, logins, cre-
dentials, Agent jobs, schedules, linked servers, availability groups, and more.

 After exporting your items to files, you can easily save the files to version control
and test the restoration to another SQL Server instance on a regular basis. The pro-
cess is now so straightforward, we perform nightly exports and automate weekly tests.

High Availability or Disaster Recovery?
You may have heard the acronym “HADR” before. This refers to high availabil-
ity/disaster recovery. It’s important to note that these are two distinct topics.

High availability, or “HA,” deals with minor outages, and failover solutions such as
failover clustering or availability groups are automated. Ultimately, the goal is to
restore full system functionality in a short time.

180 CHAPTER 14 Preparing for disaster

In this chapter, we’ll be learning about how dbatools can help ease recovering your
SQL Server instance from a major disaster and drastically reduce your Recovery Time
Objective (RTO) (sqlps.io/drrto), or the time it takes to recover your environment.
You’ve already learned how to quickly install a new instance of SQL Server in chapter
13. Now you’ll learn how to prepare to quickly restore your items to a new instance
using Export-DbaInstance and Export-DbaScript, should the worst-case scenario
occur and your instance becomes unavailable.

14.1 Exporting an entire instance
You may have experience with migrating SQL Server instances from one server to
another. If so, you’ve considered what’s left to be migrated after the database restores
and login migrations are complete. When recovering an entire SQL Server instance
from disk, many of the same considerations must be made. It’s not just about restoring
databases from their latest backup: DR includes all of the objects listed in table 14.1.

Table 14.1 Objects to recover

Object Including but not limited to

Databases Database restore scripts

Logins Hashed passwords, roles, permis-
sions, and more

Linked server Server type, remote user

Credentials Identities and passwords

Database mail Profiles, accounts, settings

Agent jobs Schedules, categories, operators

Proxies Credentials and subsystems

Alerts Database, error number, severity

Replication settings Publishers, subscribers

Server configuration sp_configure desired values

Custom errors Message and language

Server roles Owner, securables

Central Management Server Description, authentication

(continued)
Disaster recovery, or “DR,” on the other hand, deals with major outages such as nat-
ural and man-made disasters. Disaster recovery consists of manual processes and
procedures to restore systems back to their original state. These processes are gen-
erally initiated by a person, and the general expectation is that DR will take longer to
recover the system than HA.

https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Time_Objective

181Exporting an entire instance

That’s a long list! Fortunately, dbatools enables you to export T-SQL scripts to recover
these objects with just one command: Export-DbaInstance.

TIP If you think this list looks familiar, you’re right! When Export-DbaInstance
was designed, we used Start-DbaMigration as the basis. One difference is that
Export-DbaInstance does not back up your databases. Rather, it creates the
scripts that make it easy to restore the last full, differential, and log files.

You can use this command to export all of the objects in table 14.1 into a set of T-SQL
scripts that you should store safely in a place that will be accessible in the case of a
disaster. We recommend that you use Azure DevOps repos so that you can store them
off-site and have access to them from any internet-connected machine.

 If Azure DevOps is not available to you, you need to consider another method of
storing these files that will not be affected by the disaster that renders your instance
unavailable. Take some time to consider the most suitable solution for your require-
ments. Should this scenario occur, you will want it to be as easy as possible to perform
your recovery.

 Using Azure DevOps, GitHub, GitLab, or a similar service will also have the benefit
of using source control, enabling you to identify and audit the changes made to the
instance, and, further, off-site storage will even help protect against ransomware
attacks.

 Exporting an entire instance requires the SQL Server to be online, so make sure to
perform your exports before a disaster occurs. To export your entire instance settings,
run the code in the next listing using your environment’s SQL Server instance and
destination path.

PS> Export-DbaInstance -SqlInstance sql01 -Path \\nas\backups\sql01

Backup devices Destination

Audits Properties and specifications

Endpoints Protocols, types, ports

Policy-Based Management Policies, categories, and conditions

Resource Governor Pools, classifier functions

Extended Events Properties, events, storage

User objects in system databases DBA scripts, maintenance solutions

Availability groups Databases, replicas

Listing 14.1 Exporting the entire instance

Table 14.1 Objects to recover (continued)

Object Including but not limited to

182 CHAPTER 14 Preparing for disaster

On our test laptop, this takes about 100 seconds to run. When you look in the folder,
you will see that a directory has been created with the name of the instance and a
timestamp. Take a look inside that directory, and see what is created. It is a good idea
to familiarize yourself with these files prior to needing them. You can use Get-
ChildItem to list the files in this directory, as shown next.

PS> Get-ChildItem .\sql01-11112019080741\

Directory: C:\git\InstanceExport\sql01-11112019080741

Mode LastWriteTime Length Name
----- ------------- ------ -----
-a---- 3/23/2021 4:15 PM 848 audits.sql
-a---- 3/23/2021 4:15 PM 342 auditspecs.sql
-a---- 3/23/2021 4:15 PM 304 backupdevices.sql
-a---- 3/23/2021 4:15 PM 1038 credentials.sql
-a---- 3/23/2021 4:15 PM 408 customererrors.sql
-a---- 3/23/2021 4:15 PM 2398 databases.sql
-a---- 3/23/2021 4:15 PM 2693 dbmail.sql
-a---- 3/23/2021 4:15 PM 511 endpoints.sql
-a---- 3/23/2021 4:15 PM 9969 extendedevents.sql
-a---- 3/23/2021 4:15 PM 9468 linkedservers.sql
-a---- 3/23/2021 4:15 PM 8593 logins.sql
-a---- 3/23/2021 4:15 PM 3673 policymanagement.sql
-a---- 3/23/2021 4:15 PM 11334 regserver.xml
-a---- 3/23/2021 4:15 PM 799 resourcegov.sql
-a---- 3/23/2021 4:15 PM 562 serverroles.sql
-a---- 3/23/2021 4:15 PM 1216 servertriggers.sql
-a---- 3/23/2021 4:15 PM 4176 sp_configure.sql
-a---- 3/23/2021 4:15 PM 67317 sqlagent.sql
-a---- 3/23/2021 4:15 PM 436792 userobjectsinsysdbs.sql

You can see, from the list of files created, that in 100 seconds you have created T-SQL
files for 15 different types of objects for your SQL Server instance that you can use to
recreate your instance in the case of disaster. Of course, as a DBA, you will want to
have a look in these files and examine their contents.

Listing 14.2 The exported files

Try it now 14.1
Run Export-DbaInstance -SqlInstance sql01 -Path C:\git\ExportInstance
on your machine.

Note: When running against localhost, you will need to run as Administrator for all
SQL WMI–based commands to work.

183Exporting an entire instance

PASSWORDS ARE EXPOSED It is very important to know that the passwords for
the user accounts for the linked servers and the secrets for the SQL Server
credentials are exposed in clear text. You need to consider this in association
with your business requirements for the safe storage of secrets, such as locked-
down permissions. You can see the clear-text password “dbatools.IO” for the
linked server login in linkedserver.sql.

If your business prohibits storing clear-text passwords to disk, you will want to
specify -Exclude LinkedServers, Credentials. If you are not allowed to
store hashed passwords to disk, you will also want to exclude Logins.

If you’re looking for a lightweight, cross-platform solution for database management, we
recommend Azure Data Studio (ADS) (aka.ms/azuredatastudio). Although it does not
offer all of the features of SQL Server Management Studio (SSMS), it has other worth-
while benefits, including support for native PowerShell and source control support.

 In Azure Data Studio, you can use CTRL+K, then CTRL+O to open a folder. Open
the folder for the exported instance in Azure Data Studio and click 1-sp_configure.sql.
You will see something similar to the output in figure 14.1.

 You can look through all of the files in this folder and see the T-SQL that has been
created for your instance. You can then add these scripts to your disaster recovery rou-
tine to enable you to recreate your instance settings.

https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-ver15

184 CHAPTER 14 Preparing for disaster

14.1.1 Scripting options

The scripts are created using the default SQL Management Object (SMO) options
chosen by Microsoft. After evaluating the SQL output, you may discover that the
export didn’t perfectly suit your needs. Perhaps the SQL syntax targets the wrong ver-
sion of SQL Server, or data compression objects weren’t exported. If you’re looking to
customize your export scripts, you’re in luck, because you can configure a number of
options—the same ones presented by SSMS, as shown in figure 14.2. To get an easy-to-
explore visual of the types of changes you can make to your export scripts, open SSMS
and go to Tools > Options > SQL Server Object Explorer > Scripting. You can modify
these same values within dbatools using the New-DbaScriptingOption command,
which generates an object that you can pass to the -ScriptingOption parameter of
Export-DbaInstance.

Figure 14.1 sp_configure.sql in Azure Data Studio

185Exporting an entire instance

First, you should examine the various scripting objects available to you, along with
their default settings, using the same code shown in the following listing.

PS> $options = New-DbaScriptingOption
PS> $options | Select *

FileName :
Encoding : System.Text.UnicodeEncoding
ScriptForCreateDrop : False
ScriptForAlter : False
DriWithNoCheck : False
IncludeFullTextCatalogRootPath : False
SpatialIndexes : False
ColumnStoreIndexes : False
BatchSize : 1
ScriptDrops : False
TargetServerVersion : Version140
TargetDatabaseEngineType : Standalone
TargetDatabaseEngineEdition : Unknown
~~~~~~~~~~~~
Output Truncated
~~~~~~~~~~~~
ScriptDataCompression : True
ScriptSchema : True
ScriptData : False
ScriptBatchTerminator : False
ScriptOwner : False

Listing 14.3 Scripting options

Figure 14.2 Scripting options in SSMS

186 CHAPTER 14 Preparing for disaster

14.1.2 Setting scripting options

When you are scripting out objects to create on another instance, you might not want
the script to attempt to create objects that already exist. For example, say that the
export generates the T-SQL code to create a sqladmin login, but the login already
exists on the destination server. The execution would error out and be all ugly. When
developing T-SQL, you would avoid this by using the IF NOT EXISTS syntax.

 In SSMS and dbatools, the option to check for object existence is set to false by
default. You can alter this setting by changing the value of the IncludeIfNotExists
property of the scripting object to false, as seen next.

PS> $options = New-DbaScriptingOption
PS> $options.IncludeIfNotExists = $true

You will ensure that the command uses these options by passing the $options object
to the -ScriptingOption parameter of Export-DbaInstance, as demonstrated in the
next listing.

Export-DbaInstance -SqlInstance sql01 -Path C:\git\ExportInstance

➥ -ScriptingOption $options

This will alter the T-SQL output that is created to include the IF NOT EXISTS state-
ment, and your code can run free of errors stating that the destination objects already
exist, as shown in the following code snippet.

IF NOT EXISTS (SELECT * FROM sys.server_audits WHERE name = N'STIG_Audit')
CREATE SERVER AUDIT [STIG_Audit]
TO FILE
(FILEPATH = N'S:\MSSQL\AUDITS\'

,MAXSIZE = 100 MB
,MAX_FILES = 5
,RESERVE_DISK_SPACE = OFF

)
WITH
(QUEUE_DELAY = 1000

,ON_FAILURE = CONTINUE
,AUDIT_GUID = 'bee53171-bd32-4b4b-b442-5ec0c320e37a'

)
ALTER SERVER AUDIT [STIG_Audit] WITH (STATE = ON)

Listing 14.4 Setting the IncludeIfNotExists option

Listing 14.5 Exporting an instance with scripting options

Listing 14.6 The server audit T-SQL with IF NOT EXISTS

187Granular exports

14.1.3 Excluding objects

You might not want to export all of the settings for your instance. If you’re using Export-
DbaInstance for dev/test restores, for instance, you may have already created all of the
logins you need on the destination domain, and thus, they do not need to be exported.

 Fortunately, Export-DbaInstance allows you to exclude any combination of the
object types. The -Exclude parameter allows you to exclude the objects seen in table 14.2.

Let’s say that your disaster recovery server has different hardware and your Resource
Governor settings would not be suitable for that server. You can exclude the Resource
Governor settings by executing the code shown next.

PS> $splatExportInstance = @{
SqlInstance = "sql01"
Path = "C:\git\ExportInstance"
Exclude = "ResourceGovernor"

}
PS> Export-DbaInstance @splatExportInstance

14.2 Granular exports
Export-DbaInstance wraps a number of dbatools commands into one easy-to-use
command. If you need a more granular experience, we offer that as well.

 In this section, we will show you how to script out specific objects that you hand-pick
yourself, basically replicating the behavior of SSMS’s “Script [object] as > CREATE To
> File...” You’ll also get some insight into how we created Export-DbaInstance, because
we used very similar commands.

Table 14.2 Exclude options

Databases Logins

AgentServer Credentials

LinkedServers SpConfigure

CentralManagementServer DatabaseMail

SysDbUserObjects SystemTriggers

BackupDevices Audits

Endpoints ExtendedEvents

PolicyManagement ResourceGovernor

ServerAuditSpecifications CustomErrors

ServerRoles AvailabilityGroups

ReplicationSettings

Listing 14.7 Exporting an instance with excluded objects

188 CHAPTER 14 Preparing for disaster

14.2.1 Using Export-DbaScript

Export-DbaScript allows you export T-SQL from commands that output SMO
objects, such as Get-DbaAgentJob or Get-DbaDbStoredProcedure. This is similar to
right-clicking in SSMS and “Script [object] as,” so anytime you find yourself wanting
to use SSMS’s functionality on more than one object, you’ll know how use dbatools
instead. See figure 14.3.

By default, the T-SQL output is exported to a file, similar to “Script [object] as > CRE-
ATE To > File…,” and shown in the next code listing.

PS> Get-DbaAgentJob -SqlInstance sql01 | Select-Object -First 1 |
Export-DbaScript

Directory: C:\Users\sqldba\Documents\DbatoolsExport

Mode LastWriteTime Length Name
----- ------------- ------ -----
-a--- 8/10/2020 10:13 PM 345 SQL01-20200810221308-s...

You can also export right to the console, similar to “Script [object] as > CREATE To >
New Query Editor Window…,” as shown in the following code sample.

PS> Get-DbaDbStoredProcedure -SqlInstance sql01 -Database master |
Where-Object Name -eq sp_MScleanupmergepublisher |
Export-DbaScript -Passthru

/*
Created by AD\dba using dbatools Export-DbaScript for objects on

Listing 14.8 Using Export-DbaScript with Get-DbaAgentJob

Listing 14.9 Exporting to console

Figure 14.3 Scripts stored procedure in SSMS.

189Granular exports

WORKSTATION at 08/10/2020 22:23:33
See https://dbatools.io/Export-DbaScript for more information

*/

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO

create procedure dbo.sp_MScleanupmergepublisher
as

exec sys.sp_MScleanupmergepublisher_internal

GO

PowerShell can even send it right to your clipboard, like “Script [object] as > CREATE
To > Clipboard,” shown next. Piping right to the clipboard is one of our favorite
things about PowerShell!

PS> Get-DbaAgentJob -SqlInstance sql01 | Select-Object -First 1 |
Export-DbaScript | clip

You may notice we repeatedly say CREATE. Want to DROP or add additional options
instead? We support that as well when Export-DbaScript is used in conjunction with
New-DbaScriptingOption.

 Say, for instance, you examine your disaster recovery runbook and realize that it does
not include the SQL Server Audits and audit specifications that have recently been cre-
ated. You can create the T-SQL files for these objects with an IF NOT EXISTS clause to
avoid errors for any existing audits or specifications with New-DbaScriptingOption, as
depicted in the next code listing.

PS> $options = New-DbaScriptingOption
PS> $options.includeifnotexists = $true
PS> $splatExportScript = @{

FilePath = "C:\git\export\sql01\audit.sql"
ScriptingOptionsObject = $options

}
PS> Get-DbaInstanceAudit -SqlInstance sql01 |
Export-DbaScript @splatExportScript

Directory: C:\git\sql01\export

Listing 14.10 Sending the output of Export-DbaScript to your clipboard

Listing 14.11 Scripting SQL Server Audit and audit specification

190 CHAPTER 14 Preparing for disaster

Mode LastWriteTime Length Name
----- ------------- ------ -----
-a---- 16/11/2019 14:59 563 audit.sql

PS> $splatExportScript = @{
FilePath = "C:\git\export\sql01\auditspec.sql"
ScriptingOptionsObject = $options

}
PS> Get-DbaInstanceAuditSpecification -SqlInstance sql01 |
Export-DbaScript @splatExportScript

Directory: C:\git\export\sql01

Mode LastWriteTime Length Name
----- ------------- ------ -----
-a---- 16/11/2019 14:59 563 auditspec.sql

You can do this with any SMO object that you get from dbatools. How can you tell
whether the results you see are SMO objects? One way is to use PowerShell’s Get-Member
command to see if the TypeName includes Microsoft.SqlServer.Management.Smo.

In the “Try It Now 14.2” code, you can see that Get-DbaAgentJob is an ideal command
to use with Export-DbaScript, whereas Get-DbaSpConfigure is not.

14.3 Special commands
While Export-DbaScript works for a majority of SMO objects, some object exports
have their own dedicated commands because they required additional considerations
or programming. Exporting the Login SMO object, for example, exports fake pass-
words and disables the login by default. This was a design decision by Microsoft that
resulted in the SQL Server team creating and sharing sp_help_revlogin in a Micro-
soft Support article to alleviate the burden of migrating logins. sp_help_revlogin
exports a hashed password and doesn’t disable the login, but it also does not copy per-
missions. Export-DbaLogin, on the other hand, exports hashed passwords, permis-
sions, and properties like language, and it doesn’t disable the login.

Try it now 14.2
Use Get-Member to see whether the TypeName for Get-DbaAgentJob includes
Microsoft.SqlServer.Management.Smo, then try Get-DbaSpConfigure:

PS> Get-DbaAgentJob -SqlInstance sql01 | Get-Member

TypeName: Microsoft.SqlServer.Management.Smo.Agent.Job

PS> Get-DbaSpConfigure -SqlInstance sql01 | Get-Member

TypeName: System.Management.Automation.PSCustomObject

191Exporting server configurations (sp_configure)

 Other special Export-Dba commands include the following:

 Export-DbaSpConfigure

 Export-DbaCredential

 Export-DbaLinkedServer

 Export-DbaLogin

 Export-DbaRepServerSetting

 Export-DbaSysDbUserObject

You can use any of these commands to export those objects to a T-SQL script. You saw
examples of Export-DbaLogin in chapter 9.

14.4 Exporting server configurations (sp_configure)
We saw in the earlier “Try it now 14.2” exercise that Get-DbaSpConfigure is not a can-
didate to be exported to Export-DbaScript. But, in the case of a disaster, you will
want to ensure that all of your sp_configures on the new instance match the settings
on your old instance. Use the Export-DbaSpConfigure command to export them, as
shown here.

PS> $splatExportSpConf = @{
SqlInstance = "sql01"
FilePath = "C:\git\ExportInstance\spconfigure.sql"

}
PS> Export-DbaSpConfigure @splatExportSpConf

With this file saved safely and available in the case of a disaster, you can then ensure
that your new instance has the same settings by exporting the updated settings, as
shown here.

PS> $splatExportSpConf = @{
SqlInstance = "sql01,15591"
SqlCredential = "sqladmin"
Path = "C:\git\ExportInstance\spconfigure.sql"

}
PS> Import-DbaSpConfigure @splatExportSpConf

[14:31:27][Import-DbaSpConfigure] Successfully executed EXEC sp_configure
'show advanced options' , 1; RECONFIGURE WITH OVERRIDE.
[14:31:27][Import-DbaSpConfigure] Successfully executed EXEC sp_configure
'recovery interval (min)' , 0;.
[14:31:27][Import-DbaSpConfigure] Successfully executed EXEC sp_configure
'allow updates' , 0;.
[14:31:27][Import-DbaSpConfigure] Successfully executed EXEC sp_configure
'user connections' , 0;.
[14:31:27][Import-DbaSpConfigure] Successfully executed EXEC sp_configure

Listing 14.12 Exporting sp_configure

Listing 14.13 Importing sp_configure

192 CHAPTER 14 Preparing for disaster

'locks' , 0;.
~~~~~~~~~~~~
Output Truncated
~~~~~~~~~~~~
[14:31:28][Import-DbaSpConfigure] Successfully executed EXEC sp_configure
'allow polybase export' , 0;.
[14:31:28][Import-DbaSpConfigure] Successfully executed EXEC sp_configure
'show advanced options' , 0;.
[14:31:28][Import-DbaSpConfigure] Successfully executed RECONFIGURE WITH
OVERRIDE.
WARNING: [14:31:28][Import-DbaSpConfigure] Some configuration options will
be updated once SQL Server is restarted.
[14:31:28][Import-DbaSpConfigure] SQL Server configuration options
migration finished.

You will notice that the output includes the warning that some of these options will
require SQL to be restarted.

YOU CAN IMPORT THE SP_CONFIGURE SETTINGS LIVE This chapter is about disas-
ter recovery, where you would not have access to the original or source
instance. You can use the Import-DbaSpConfigure with the -Source and
-Destination parameters to copy the settings from one instance to another.

In this chapter, you have learned how to use dbatools to export the configuration set-
tings for your instances into T-SQL files, as well as any other objects that you wish, for
use in a disaster recovery scenario. This will be useful for reducing the time that you
would have to spend recovering from any unfortunate situation where data and config-
uration loss have occurred. For more information on disaster recovery, visit dba-
tools.io/dr. It’s an in-depth article that even includes a video presentation and a demo!

14.5 Hands-on lab
Let’s practice what you just read about in this chapter. See if you can complete the fol-
lowing tasks:

 Export the configuration settings for an instance.
 Export all of the configuration settings except for Policy-Based Management

and the Resource Governor for an instance.
 Create T-SQL scripts for Extended Event objects.
 Create T-SQL scripts for the Agent jobs on an instance.

Unsure of the answers? You can check your work at dbatools.io/answers.

https://dbatools.io/dr/
https://dbatools.io/dr/
https://gist.github.com/potatoqualitee/6ec31e978f8467764f06ca431a37f612

193

Performing your first
 advanced SQL Server

 instance migration, part 1

Within the SQL Server community, simplified migrations sparked wide adoption of
not just dbatools but PowerShell as well. The videos showing instance-to-instance
migrations, such as sqlps.io/instmigration, resonated with DBAs. This video
revolved around our flagship command, Start-DbaMigration, which migrates one
entire SQL Server instance to another and can be as straightforward as the code
seen in the next listing.

PS> Start-DbaMigration -Source sql01 -Destination sql02 -BackupRestore

➥ -SharedPath \\nas\sql\migration

This command wraps a bunch of other Copy-Dba* commands and simplifies a com-
plex process that copies logins with all their properties and passwords; linked serv-
ers; and credentials with their passwords, Agent jobs, schedule, operators, and
more. But we know that SQL Server migrations are often not as simple or as quick
as the video shows.

 Migrating large databases using the backup and restore method, or even detach
and attach, can require long downtimes for the systems that rely on those data-
bases, while all of the data is moved. SQL Server instances that have existed for a
long time may have a large number of SQL Agent jobs, logins, linked servers, or
other objects that are no longer in use, and migrating those is unnecessary.

 Our book may not have an answer for all of these scenarios, but we aim to give
you insight into what’s going on behind the scenes and enable you to plan, test,
and execute your own complex migrations.

Listing 15.1 Using Start-DbaMigration to migrate one instance to another

https://www.youtube.com/watch?v=hg8tovMRX2k

194 CHAPTER 15 Performing your first advanced SQL Server instance migration, part 1

WARNING If possible, we recommend thoroughly testing these complex tasks
before implementing them on your systems. Scripting these scenarios with
dbatools enables you to keep the scripts so that you can repeat the same tasks
on your production instances by changing the values for instances.

Advanced migrations are a pretty big topic, so we’ve divided this topic into two chap-
ters. The first will cover database migrations, and the second will cover everything
else. In the database portion, we’ll cover the two most common scenarios: using
backup/restore or detach/attach to migrate your databases. Then we’ll cover an
option for migrating larger databases, by staging them ahead of the downtime.

15.1 Databases
When we begin to plan any migration, the most critical decision is probably going to
be choosing the best method for migrating our databases. Most other objects can be
scripted and recreated quickly, but our databases and the valuable data they include
need to be moved carefully and in a way that best meets our requirements.

 Table 15.1 shows most of the ways that Microsoft provides for migrating databases.
This section alone could be an entire book, but we’ll do our best to keep it concise.

Table 15.1 Database migration methods and dbatools support

Method Pros Cons Supported

Backup/
restore

 Well suited for many situations
 Solid and straightforward

 Moderate downtime Yes

Detach/
attach

 Well suited for many situations
 Solid and straightforward

 Labor intensive
 Drops some attributes
 Increased downtime

Yes

Log
shipping

 Ideal for large databases
 Solid, but more complex

 Doesn’t work on all editions Yes

Classic
mirroring

 Available in older versions  Edition dependent
 Deprecated in SQL 2012

Yes

Availability
groups

 Ideal for large databases
 Minimal downtime

 Edition dependent
 Can be complex
 Cap on number of databases

Yes

Import and
Export
Wizard

 Good for beginners  Extremely slow
 Can be messy and error prone
 Loses attributes and logins
 Increased downtime

No

Copy
Database
Wizard

 Good for beginners
 Decent for small migrations

 Prone to errors
 Drops some attributes

No

BACPAC  Solid, proven way to migrate
 Universally portable (to older

SQL versions, Azure, more)

 Complex
 Slow, especially for large databases
 Requires lots of disk space

Yes

195Databases

Luckily, we have many options available within dbatools, so we’ll highlight our options
and the pros and cons associated with each.

15.1.1 Backup and restore

The first and simplest option is to back up the database from the source and then
restore it to the destination. This is perfect for small databases where the amount of
time to take and restore backups is short and well within our allocated downtime win-
dow. To accomplish this with dbatools, we can use the Copy-DbaDatabase command.

 In the following listing, we have included the most straightforward options for
using this command. Here, we specify a source SQL Server instance, a destination,
and a shared path. The shared path must be somewhere the engine service accounts
of both SQL Server instances can access.

PS> $copySplat = @{
Source = "sql01"
Destination = "sql02"
Database = "WideWorldImporters"
SharedPath = "\\nas\sql\migration"
BackupRestore = $true

}
PS> Copy-DbaDatabase @copySplat

When setting the -SharedPath, ensure both the source and destination SQL Server
instance service accounts have the appropriate file/share permissions to the path.
Although you can find the service account in services.msc or the SQL Server Configura-
tion Manager, dbatools also provides this functionality in Get-DbaService, as shown here.

PS> Get-DbaService -ComputerName sql01 -Type Engine |
Select-Object ComputerName, InstanceName, StartName

Azure DB
Migration
Service

 Easy to seed and keep in sync
 Reduces migration downtime

 Azure firewall and networking
requirements

 Possible schema changes

No

Replication  Can move a subset of tables
 Works in a lot of places

 Requires close monitoring
 Goes down a lot

Not yet

Listing 15.2 Using Copy-DbaDatabase to back up and restore the source database

Listing 15.3 Finding the service account of a SQL Server instance

Table 15.1 Database migration methods and dbatools support (continued)

Method Pros Cons Supported

Specifies the source instance for your
migration; this is a required parameter.

Specifies the destination instance for your
migration; this is also a required parameter.

You can specify one or more databases
to migrate from source to destination.

Both source and destination instance
service accounts need to have access
to this path, because it’ll be used as
the backup and restore location.

Setting this flag means we’ll take a backup of the
source and then restore it to the destination.

196 CHAPTER 15 Performing your first advanced SQL Server instance migration, part 1

ComputerName InstanceName StartName
------------ ------------ ---------
sql01 MSSQLSERVER ad\svc.sqlservice
sql01 SQLEXPRESS NT Service\MSSQLSERVER

Note that because Get-DbaService (and all of our service commands) uses SQL WMI,
this command will work only on Windows. It’s important to highlight here that the NT
Service\MSSQLSERVER will likely make it harder for you to perform the migration
using a shared network drive—setting permissions is a challenge because it is not a
domain account. The other parameters we specified in listing 15.2 tell the command
that we’ll be using the -BackupRestore method, and we’ve specified a single database
to be migrated.

TRY IT OUT ON OUR DOCKER CONTAINERS In addition to the lab from chapter 3,
we also have a quick and easy migration test scenario available on dbatools.io/
docker. This chapter, like many others, will use hypothetical values in the
examples, but you can replace sql01 and sql02 with your own lab servers.

When using the backup and restore method, the default is for the backup to be
striped across three files. The team decided on this number after extensive testing
determined that it helped to improve the speed of migrations across the board. You
can control the number of backup files used with the -NumberFiles parameter.

 If we’re looking to migrate multiple databases at once, we could list multiple data-
bases for the -Database parameter used later in listing 15.5. However, if we’re looking
to migrate all the user databases from our source, we can use the -AllDatabases
switch as shown in the next code sample.

PS> $copySplat = @{
Source = "sql01"
Destination = "sql02"
AllDatabases = $true
SharedPath = "\\nas\sql\migration"
BackupRestore = $true

}
PS> Copy-DbaDatabase @copySplat

We could also break our current code, which is using Copy-DbaDatabase, into two dis-
tinct steps, using Backup-DbaDatabase and then Restore-DbaDatabase. You’ll
remember that to use the copy command, you need a shared path where both engine
service accounts have access. Note that Copy-DbaDatabase does keep a few more
properties intact than backup/restore, such as database ownership chaining, trustwor-
thiness, broker enabled, and read-only status.

 If you’d like to ensure that no connections can be made to your database on the
source server once the migration has finalized, you can use -SetSourceOffline. This

Listing 15.4 Using Copy-DbaDatabase and the -AllDatabases parameter

https://github.com/dataplat/docker
https://github.com/dataplat/docker
https://github.com/dataplat/docker

197Databases

will place the source database offline on the primary instance when using the Backup-
Restore method, preventing your applications and users from accidentally reading
and writing data on the wrong database.

If copying directly isn’t possible due to security restrictions or perhaps migrating to a
new domain, you can break this into two steps and copy the files from the backup
directory into a location they can be restored from. Chapters 10 and 11 go into all the
details on these commands, so we recommend reviewing those if you do go this route.

15.1.2 Detach and attach

The next migration option available, detach and attach, is syntactically similar to the
backup/restore method. In fact, the code from earlier requires only two small
changes. It’s important to note that this method generally requires additional down-
time to copy the files from source to destination, because it moves uncompressed
.mdf, .ndf, and .ldf files. With this in mind, it is a solid option for small databases or
situations where you have a large downtime window.

 To alter the code from listing 15.4 for our second method, we will first replace the
-BackupRestore switch with -DetachAttach. For this method, we don’t need a shared
path, so we can remove that parameter all together.

 The code in listing 15.5 shows how to migrate the WideWorldImporters database
using this method. When the -DetachAttach switch is used, the source database is
detached from the SQL Server instance. The files are then copied using an admin
share (e.g., \\servername\d$\SQLData) to the default data and log directories on the
destination, before being attached to the destination SQL Server instance. If this com-
mand fails, it will reattach the source database. Also, like the backup/restore method,
the source files are not removed, allowing for a quick rollback if needed.

Try it now 15.1
Copy a single-user database from one instance to another. Use the -SetSource-
Offline parameter to leave the source database offline after the migration. This will
ensure users can’t accidentally connect to the old SQL Server instance
postmigration:

PS> $copySplat = @{
Source = "sql01"
Destination = "sql02"
Database = "WideWorldImporters"
SharedPath = "\\nas\sql\migration"
BackupRestore = $true
SetSourceOffline = $true

}
PS> Copy-DbaDatabase @copySplat

198 CHAPTER 15 Performing your first advanced SQL Server instance migration, part 1

PS> $copySplat = @{
Source = "sql01"
Destination = "sql02"
Database = "WideWorldImporters"
DetachAttach = $true

}
PS> Copy-DbaDatabase @copySplat

Note that the -DetachAttach method uses UNC network access to admin shares
(\\sql01\d$\mssql) on the destination servers. This means that this method is sup-
ported only in Windows, and you will have to set the appropriate permissions.

 Many other parameters are available with the Copy-DbaDatabase command, and
we recommend reviewing the comment-based help to discover all the options avail-
able to you, illustrated in the next code sample.

Get-Help Copy-DbaDatabase -ShowWindow

If you perform the migration using the detach/attach method, you can use the -Reattach
parameter when using -DetachAttach to reattach the database on the source server.

Reattaching the source database is useful when repeatedly testing your detach/attach
migrations so that you don’t have to reattach manually.

15.1.3 Staging large databases for migration
The options we’ve laid out so far for migrating databases all presume that either our
databases are small or we have an extensive downtime window that will allow us to take
our databases offline for the entire time it takes to move the data. We know this isn’t
often the case, so we’ll now look at a way to stage our databases to minimize the down-
time window needed for the final cutover.

Listing 15.5 Using Copy-DbaDatabase and the -DetachAttach parameter

Listing 15.6 Read the built-in help in a separate window

The database will be detached
from this instance. Files will be moved to this destination

instance by using an admin share.

The specified database(s)
will be migrated.

The flag specifies the detach and attach
method to migrate databases.

Try it now 15.2
Copy a single-user database from one instance to another using the detach/reattach
method, then reattach it at the source:

PS> $copySplat = @{
Source = "sql01"
Destination = "sql02"
Database = "WideWorldImporters"
DetachAttach = $true
Reattach = $true

}
PS> Copy-DbaDatabase @copySplat

199Databases

 In this scenario, we have a database, or many databases, that would take too long to
complete the full backup and restore. The time to do the migration won’t fit within
our allowed downtime window, so we need to split this migration into two parts: first, a
staging step that will move most of the data to the destination, and then, a final
cutover step where the destination will be brought up to date with any changed data
and then brought online, ready to use.

 SQL Server backups are a complicated topic, so let’s have a quick recap on how
they work so we understand how this plan will come together. Also, refer back to chap-
ter 10, where we covered backups and dbatools, for more of a refresher.

 With SQL Server, we have several types of backups available to us when we’re creat-
ing our strategy for keeping our data safe. We’re going to look at how the three
described in table 15.2 can allow us to minimize that downtime window for migration.

At the end of the day, to complete our migration we need to copy all the data from
our source instance to our destination. This will take time, no matter how you design
your migration plan. The key here is that we can complete the majority of the heavy
lifting before we reach the downtime window. Moving as much data as possible before
we take the application down will allow us to keep our users and the business happy.

 To do this we’ll combine a full backup, which will act as our base, and then either a
differential backup, a transaction log backup, or some combination of those to migrate
the data changed since the full backup was taken. The key is that when we stage that full
backup on our destination instance, we don’t bring it fully online. Instead, we use the
NORECOVERY option to eave it ready and waiting for more restores to take place.

STEP 1: STAGE THE FULL BACKUP

The code in listing 15.7 should feel pretty familiar at this point. We’re again relying on
the Copy-DbaDatabase command, with a couple of new parameters added into the
mix. The -NoRecovery parameter means that this command takes a full backup of our
WideWorldImporters databases to the shared path and then restores that full backup
to the destination without fully bringing it online. The destination database is now
primed for more restore activity.

 The second new parameter we’ve added is -NoCopyOnly. This tells dbatools to take
a backup without using the COPY_ONLY flag. A copy-only backup is the default option for
this command because it doesn’t disrupt the regular backup chains on your system.
However, to restore differential or log backups on top of the full backup, we need to
restart the sequence.

Table 15.2 Backup types

Backup type Description

Full Backs up the entire database.

Differential Backs up database changes since the last full backup was performed.

Log Backs up the transaction log. In addition to enabling point-in-time restores,
transaction log backups keep your log files reasonable in size.

200 CHAPTER 15 Performing your first advanced SQL Server instance migration, part 1

WARNING Taking a full backup without the COPY_ONLY flag will disrupt your
regular recovery plan. It’s important to understand that if you need to
recover the source database premigration, you’ll need the backup chain cre-
ated from this new backup activity.

Another option here is to use the existing backup chain for your database.
Instead of running the Copy-DbaDatabase command to stage the full backup,
use Restore-DbaDatabase, and target your existing last full backup.

Once this code has run successfully, your environment should look similar to the
screenshot seen in figure 15.1.

PS> $copySplat = @{
Source = "sql01"
Destination = "sql02"
Database = "WideWorldImporters"
SharedPath = "\\nas\sql\migration"
BackupRestore = $true
NoRecovery = $true
NoCopyOnly = $true

}
PS> Copy-DbaDatabase @copySplat

The database on our source instance is still online and hosting the application workload,
but it has been copied to the destination instance—sql02, in this example—and left in
recovery. You can see in figure 15.1, after the database name, it lists (Restoring…).

Listing 15.7 Staging a full backup

Database in recovery,
ready for more restores

Figure 15.1 The database is in recovery on the destination instance.

201Databases

At this point, we’re ready for the actual migration window. The next part of the migra-
tion will be the final cutover and will result in downtime, so now we wait, leaving the
full backup prestaged on our destination instance. One thing to note is the longer the
timeframe between this full backup and the cutover date, the more changed data
there is likely to be. Try to time the staging of the full backup as close as you can so
that there isn’t too much data to move at cutover time.

STEP 2: APPLY THE CHANGES AND BRING THE DESTINATION ONLINE

Once the downtime window rolls around, it’s time for the final cutover of our migration.
We can now have the application taken down, collect the final changes made to the
source database, and copy them to the destination. With the first step, we’ve already
done the bulk of the work. The code in listing 15.8 will take a differential backup and
restore it, with recovery to the destination. We’ll also leave the source database offline—
this is a good practice because it ensures nothing is still connecting to the old database,
but if you need to roll back you can quickly bring it back online.

take a differential backup
PS> $diffSplat = @{

SqlInstance = "sql01"
Database = "WideWorldImporters"
Path = "\\nas\sql\migration"
Type = "Differential"

}
PS> $diff = Backup-DbaDatabase @diffSplat

Set the source database offline
PS> $offlineSplat = @{

SqlInstance = "sql01"
Database = "WideWorldImporters"
Offline = $true
Force = $true

}

Listing 15.8 Taking a differential backup and restoring the changes

Transaction log backups
If you have a large, busy database, it’s possible that the backup/restore of just the
changed data could start to take longer than your downtime window. In this case, you
could stage your full backup as we have already done, then also stage a differential
backup before the downtime window (use code similar to that in listing 15.8, but add
the -NoRecovery parameter and skip the Set-DbaDbState step!). Then, when it
comes to the downtime window, either take another differential backup, or apply your
transaction log backups to bring the database up to date.

Make sure you understand the options for using transaction log backups as part of
your migration strategy. You may want to look at using a tail-log backup as the final
step to ensure all changes have been copied over.

202 CHAPTER 15 Performing your first advanced SQL Server instance migration, part 1

PS> Set-DbaDbState @offlineSplat

restore the differential and bring the destination online
PS> $restoreSplat = @{

SqlInstance = "sql02"
Database = "WideWorldImporters"
Path = $diff.Path
Continue = $true

}
PS> Restore-DbaDatabase @restoreSplat

Once the code in listing 15.8 has run, your SQL Server instances should look like fig-
ure 15.2. Your database has been successfully migrated to the destination SQL Server
instance.

Now your users are no longer able to access the “old” database, and if a connection
works, we are guaranteed it’s on the new server. Our redirection techniques to the new
SQL Server instance generally depend on a number of factors. But DNS updates, load
balancer updates, AG listener updates, SQL client aliases, host file updates, connection
string updates, and application modifications have all been effective solutions.

Database set offline on the
source once it’s migrated

Database online and ready
on the destination instance

Figure 15.2 The database is now online on the destination SQL Server instance and offline
on the source.

203Databases

15.1.4 Other database migration options

These are just a few of the possibilities available to migrate databases from one instance
to another. The method you choose will be the one that fits your situation, and the best
way to determine this is through testing. To determine what works best for you, you’ll
need to weigh the pros and cons for each method as well as compare it to the amount
of flexibility or downtime allowed for the databases or applications involved.

 Several more complicated scenarios are available for migrating databases. These
are perfect for when it would take you longer to backup/restore or detach/attach
than you have available in your downtime window. This could be because either your
databases are large and the copy time would be extensive, or the downtime allowed by
the business is minimal due to the database supporting critical applications.

 You could, for example, set up log shipping and then, at migration time, cut over
to the secondary and tear down the log shipping setup. This can all be done with just
two commands, as highlighted in the next code listing.

Very Large Database Migration
PS> $params = @{

Source = "mssql1"
Destination = "mssql2"
Database = "Northwind"
SharedPath = "\\nas\sql\shipping"

Listing 15.9 Using log shipping for nearly no downtime during migration cutovers

Try it now 15.3
Migrate a database using this staging method. Copy the database to the destination
using the -NoRecovery and -NoCopyOnly parameters. Then take a differential or log
backup, and complete the migration using that.

Between staging the full backup and taking the differential, try creating a new table
or changing some data, and ensure that postmigration you can see it on the
destination SQL Server instance:

Create a table between staging the full backup
and cutting over to ensure it makes it across
PS> $tableSplat = @{

SqlInstance = "sql01"
Database = "WideWorldImporters"
Name = "MigrationTestTable"
ColumnMap = @{

Name = "test"
Type = "varchar"
MaxLength = 20
Nullable = $true

}
}
PS> New-DbaDbTable @tableSplat

204 CHAPTER 15 Performing your first advanced SQL Server instance migration, part 1

}
PS> Invoke-DbaDbLogShipping @params

Then cutover
Invoke-DbaDbLogShipRecovery -SqlInstance mssql2 -Database Northwind

You can also work with other infrastructure teams to accomplish the migration. One
of our dbatools contributors, Andy Levy, has written a great blog post on how he
worked with his storage team and dbatools, using Mount-DbaDatabase, to complete a
huge migration. You can read all the details at dbatools.io/xlmigration.

 You can also read about Chrissy’s experience with migrating an older application
at dbatools.io/oldapp. This article even includes decrypting encrypted stored proce-
dures for an application that was out of support and needed to be updated.

15.2 Hands-on lab
 Migrate the databases from one server to another.
 Migrate a database using a straightforward method, either backup/restore or

detach/attach.
 Migrate a database by staging a full backup; create a new table; then cut over,

and make sure you can see the new table.

https://dbatools.io/oldapp/
https://dbatools.io/xlmigration/

205

Performing your first
 advanced SQL Server

 instance migration, part 2

Now that we have a plan to migrate our databases, we need to consider the other
objects that are required for our new environment to work as expected. Just
expand all of the data trees throughout SQL Server Management Studio (SSMS) to
see how many components can potentially be migrated. We actually used SSMS as a
guide to visualize the things we’d need to migrate, outside of SSRS, SSAS, SSIS, and
other non-engine-related services.

 Some of these objects can be seen in table 16.1, which is limited to SQL Server
Database Engine, so SSRS, SSAS, SSIS, and so on are not mentioned. Ultimately,
this list covers most of the potential objects to be migrated but is not exhaustive.

Table 16.1 Objects to migrate within the SQL Server Database Engine and dbatools support

Object Support Notes

Agent Yes Includes jobs, alerts, operators, schedules, proxies,
categories, properties, and more

Audits Yes Includes audit specifications

Availability groups Yes Includes databases, replicas, and listeners

Backup devices Yes

Central Management
Server

Yes

Credentials Yes Includes passwords

Cryptographic providers No

Custom errors Yes

206 CHAPTER 16 Performing your first advanced SQL Server instance migration, part 2

That’s quite a list! But it is rare that all of these objects will need to be migrated. Some-
times, you need only databases, logins, and jobs.

 In this chapter, we’ll cover a few common migration commands and strategies,
including logins, SQL Agent, linked servers, and more.

16.1 Logins and groups
First things first: we’re going to need all our logins so that people and applications can
still authenticate. When we think about the ways to authenticate to our SQL Server, we
have local SQL Server logins, Active Directory logins, or Active Directory groups set
up with permissions at the server level and/or database level. dbatools can help us
migrate all of these to our new instance.

 To migrate all our logins, we’re going to use Copy-DbaLogin, which does exactly
what the name suggests. In the next listing, we have specified a list of logins to
migrate.

Table 16.1 Objects to migrate within the SQL Server Database Engine and dbatools support (continued)

Object Support Notes

Data collector Yes Includes collection sets, excludes configuration

Databases Yes Includes assemblies, properties

Database Mail Yes Includes profiles and accounts but not passwords yet

Extended events Yes Includes events, data storage, and properties

Linked servers Yes Includes passwords

Logins Yes Includes all properties and permissions, including SID,
passwords, default language, and more

Maintenance plans No Not planned, too hard

Master certificates Yes Great for TDE, backups, and availability groups

Policy management Yes Includes policies and conditions

Replication No Includes distribution database

Resource Governor Yes Includes resource pools and classifier functions

Service Broker No Includes event notifications

Server roles No

Server configuration Yes sp_configure

Startup procedures Yes

System triggers Yes

User objects in system dbs Yes Things like DBA maintenance stored procedures

207Logins and groups

PS> $copyLoginSplat = @{
Source = "sql01"
Destination = "sql02"
Login = "WWI_Owner","WWI_ReadWrite","WWI_ReadOnly",

➥ "ad\JaneReeves"
}
PS> Copy-DbaLogin @copyLoginSplat

Type Name Status Notes
---- ---- ------ -----
Login - WindowsUser ad\JaneReeves Successful
Login - SqlLogin WWI_Owner Successful
Login - SqlLogin WWI_ReadOnly Successful
Login - SqlLogin WWI_ReadWrite Successful

Here, we have three SQL logins and one Windows user, and all were successfully
migrated to the destination instance. dbatools does some wizardry behind the scenes
for this command: when the logins are copied, they maintain the SIDs and passwords
set on the source server. Copying the SID means that you don’t end up with orphaned
users in your destination database because of mismatching SIDs at the instance-versus-
database level.

 Note that although dbatools cannot decrypt a SQL login’s password, the password
hash is copied as is to the new server, and the login will continue to work as expected
with the old username and password.

As you have probably come to expect with dbatools, we have a lot of options via
parameters when using the Copy-DbaLogin command. So far, we have copied a spe-
cific list of logins, but we could also copy all the logins except any that are classed as
system logins. The code for this follows.

Listing 16.1 Copying a list of logins from the source to the destination

Capture command output into variables?
In the examples for this chapter, we have mostly seen the output of commands just
displayed in the console. As you’re going through these examples, you might want to
save the output to a variable so you can use it again. A common parameter—meaning
it’s available on all PowerShell functions—can accomplish this. Adding the -Out-
Variable parameter means the output will still be displayed in the console, but it’s
also saved to the specified variable.

PS> $dbSplat = @{
SqlInstance = "sql02"
ExcludeSystem = $true
OutVariable = "databases"

}
PS> Get-DbaDatabase @dbSplat

PS> $databases

Output will be saved to the specified
variable name databases.

The variable $databases will now be
an array that holds the same objects
output to the console.

208 CHAPTER 16 Performing your first advanced SQL Server instance migration, part 2

PS> $copyLoginSplat = @{
Source = "sql01"
Destination = "sql02"
ExcludeSystemLogins = $true

}
PS> Copy-DbaLogin @copyLoginSplat

Type Name Status Notes
---- ---- ------ -----
Login - SqlLogin Chrissy Successful
Login - SqlLogin Claudio Successful
Login - SqlLogin Jess Successful
Login - WindowsUser NT Service\MSSQL$SQL2017 Skipped System login
Login - WindowsUser NT SERVICE\SQLAgent$SQL2017 Skipped System login
Login - SqlLogin Rob Successful
Login - SqlLogin WWI_Owner Skipped Already exists

➥ on destination
Login - SqlLogin WWI_ReadOnly Skipped Already exists

➥ on destination
Login - SqlLogin WWI_ReadWrite Skipped Already exists

➥ on destination

It’s worth reviewing the output from this command because it notes the status for
each login found on the source and any notes if the login was skipped. You can see
that the service accounts were skipped because they are classified as system logins, and
the WWI_* accounts were skipped because we already copied them over. You can use
the -Force parameter if you want to copy the logins, even if they already exist—in that
case, they will be dropped on the destination and copied again from the source.

16.1.1 Which logins/groups are still needed?

We mentioned earlier that quite often at migration time, the source SQL Server
instance is littered with old logins that are no longer in use but haven’t been cleaned
up. Hopefully your application team will know exactly which logins are still needed,

Listing 16.2 Copying all logins from the source to the destination

Try it now 16.1
Copy over some logins from one instance to another. Look at all the options available
with Get-Help Copy-DbaLogin -ShowWindow, and test copying all logins except a
specified list by using the -ExcludeLogin parameter. This method can be useful if
you’re migrating most but not all databases, so the logins associated with the
databases not being migrated can be ignored:

PS> $copyLoginSplat = @{
Source = "sql01"
Destination = "sql02"
ExcludeLogin = "ad\JaneReeves"

}
PS> Copy-DbaLogin @copyLoginSplat

209SQL Agent objects: Jobs, operators, and more!

but sometimes it’s not so clear. To make sure we don’t miss migrating any important
logins, we could use an Extended Events session to capture any connections to the
SQL Server, collect a distinct list of logins/groups, and then copy them across with
Copy-DbaLogin, as shown in the following listing.

Import the Login Tracker XE template and start it up
Get-DbaXESessionTemplate -Template 'Login Tracker'|
Import-DbaXESessionTemplate -SqlInstance mssql2 |
Start-DbaXESession

Login via SSMS so that you capture at least one login
then run get a list of the files to read
$files = Get-DbaXESessionTargetFile -SqlInstance mssql2

➥ -Session 'Login Tracker'

Look at $files and make sure you have access to the path
Then stop the session so that you can read all files without issue
Stop-DbaXESession -SqlInstance mssql2 -Session 'Login Tracker'

Get a list of unique logins
$Logins = (Read-DbaXEFile -Path $files.Fullname).server_principal_name |
Select-Object -Unique

Migrate logins
Copy-DbaLogin -Login $Logins -Source -Destination

When we’ve used the Login Tracker Extended Event template for our own migra-
tions, we discovered that it tracks a majority of the active logins within 48 hours, but
for best results, the Extended Event should run for about 60 days prior to migration.
This allows you to capture logins that log in monthly or quarterly.

16.2 SQL Agent objects: Jobs, operators, and more!
The SQL Agent is also quite often a big part of any migration strategy, including all of
our jobs, operators, and alerts, among other things. Again, dbatools can help us
migrate all of these from one instance to another. Let’s start by looking at jobs.

 SQL Agent jobs are useful parts of our database environments, allowing us to sched-
ule the execution of T-SQL, SSIS packages, and even PowerShell. Quite often, jobs are
set up by DBAs to schedule maintenance jobs, backups, or checks and balances. They
can also be used by the business to encapsulate complex business logic to process data.
We all know that maintenance jobs are important, but the jobs containing business
logic are arguably even more so, making this a critical part of our migration strategy.

 We can view the jobs we have deployed on a SQL Server instance by using Get-
DbaAgentJob, as shown in listing 16.4. You can see a mixture of jobs here—some we’ll
want to migrate, and some we will opt to ignore. Some jobs were created by Install-
DbaMaintenanceSolution, which installs Ola Hallengren’s maintenance solution.

Listing 16.3 Tracking logins to migrate at a later date

210 CHAPTER 16 Performing your first advanced SQL Server instance migration, part 2

Whether you migrate these or install/configure fresh on the new system will depend
on how much you have customized them for your workload. In our case, we’ll skip
those for our SQL Agent job migration and instead focus on the jobs within the sql02
category.

PS> Get-DbaAgentJob -SqlInstance sql01 |

➥ select-Object SqlInstance, Name, Category

SqlInstance Name Category
----------- ---- --------
sql01 CommandLog Cleanup Database Maintenance
sql01 DatabaseBackup - SYSTEM_DATABASES - FULL Database Maintenance
sql01 DatabaseBackup - USER_DATABASES - DIFF Database Maintenance
sql01 DatabaseBackup - USER_DATABASES - FULL Database Maintenance
sql01 DatabaseBackup - USER_DATABASES - LOG Database Maintenance
sql01 DatabaseIntegrityCheck - SYSTEM_DATABASES Database Maintenance
sql01 DatabaseIntegrityCheck - USER_DATABASES Database Maintenance
sql01 dbatools lab job - where am I dbatoolslab
sql01 dbatools lab job dbatoolslab
sql01 IndexOptimize - USER_DATABASES Database Maintenance
sql01 LSAlert_sql01 Log Shipping
sql01 LSBackup_AdventureWorks Log Shipping
sql01 Output File Cleanup Database Maintenance
sql01 sp_delete_backuphistory Database Maintenance
sql01 sp_purge_jobhistory Database Maintenance
sql01 syspolicy_purge_history [Uncategorized (Local)]

To migrate SQL Agent jobs, it’ll probably be no surprise by now that we’ll be using
another Copy command—this time, Copy-DbaAgentJob—to migrate our jobs. This
command will also migrate our job categories if we’re using them and they don’t
already exist on the destination. You can see the code in the next listing to copy across
two specific jobs. If we left off the -Job parameter, the command would copy all SQL
Agent jobs across.

PS> $copyJobSplat = @{
Source = "sql01"
Destination = "sql02"
Job = 'dbatools lab job','dbatools lab job - where am I'
DisableOnSource = $true

}
Copy-DbaAgentJob @copyJobSplat

Type Name Status Notes
---- ---- ------ -----
Agent Job dbatools lab job Successful
Agent Job dbatools lab job - where am I Skipped Job is dependent

 ➥ on operator dba

Listing 16.4 Viewing all SQL Agent jobs on sql01

Listing 16.5 Migrating two SQL Agent jobs from sql01 to dbatoolslab

This job was
successfully migrated.

This job was not
migrated because
it depends on an
operator, which

must be migrated
first.

211SQL Agent objects: Jobs, operators, and more!

The output shown in listing 16.5 shows the status of the migration and any notes that
have been collected during the process. You can see that only one of our jobs was suc-
cessfully migrated. The second one, “dbatools lab job - where am I,” has a status of
skipped, and the Notes of the output explains that this is field because it is dependent
on the operator named dba. If our jobs are using SQL Server Agent operators for noti-
fications, we need to make sure to migrate those before we migrate the jobs.

 We’ll fix this with the code in listing 16.6, where we’ll first migrate the dba opera-
tor with Copy-DbaAgentOperator, and then we’ll rerun the Copy-DbaAgentJob code to
migrate the jobs. You can see in the output below each code snippet that the operator
is successfully migrated. Then, in the second part, the first job was skipped because it
already exists (we were able to migrate that on our first attempt), and then the second
one has now been copied across successfully.

PS> $copyJobOperatorSplat = @{
Source = "sql01"
Destination = "sql02"
Operator = 'dba'

}
PS> Copy-DbaAgentOperator @copyJobOperatorSplat

Type Name Status Notes
---- ---- ------ -----
Agent Operator DBA Successful

PS> $copyJobSplat = @{
Source = "sql01"
Destination = "sql02"
Job = 'dbatools lab job','dbatools lab job - where am I'
DisableOnSource = $true

}
Copy-DbaAgentJob @copyJobSplat

Type Name Status Notes
---- ---- ------ -----
Agent Job dbatools lab job Skipped Already exists

➥ on destination
Agent Job dbatools lab job - where am I Successful

One final component that we will cover migrating in this section is SQL Agent alerts.
These are really useful for alerting DBAs when something goes wrong. Nothing is
worse than a customer letting you know your transaction log is full. Instead, you can
configure SQL Agent alerts to email an operator, probably your DBA team, to let
them know an issue needs some attention.

 Most DBAs set up a few alerts, for example, any errors with severity of 16–25. These
might not be alerts you want to migrate because they are probably included in your

Listing 16.6 Migrating our missing operator and rerunning the the job migration

212 CHAPTER 16 Performing your first advanced SQL Server instance migration, part 2

SQL Server build process. However, you can also configure more custom alerts, for
example, looking for a certain string or message in the event log. These might be
good candidates for migration.

 In the next code snippet, you can see we are using Copy-DbaAgentAlert to copy
across our custom alert. Because this depends on a custom message, we’ll also need to
copy that across, and for that, we can use Copy-DbaCustomError.

PS> $copyMessageSplat = @{
Source = "sql01"
Destination = "sql02"
CustomError = 50005

}
Copy-DbaCustomError @copyMessageSplat

Type Name Status Notes
---- ---- ------ -----
Custom error 50005:'us_english' Successful

PS> $copyAlertSplat = @{
Source = "sql01"
Destination = "sql02"
Alert = 'FactoryApp - Custom Alert'

}
Copy-DbaAgentAlert @copyAlertSplat

Type Name Status Notes
---- ---- ------ -----
Agent Alert FactoryApp - Custom Alert Successful
Agent Alert Notification FactoryApp - Custom Alert Successful

As you can see, you have plenty of bits under the SQL Agent to consider when plan-
ning your SQL migration. We already mentioned how the databases are the most criti-
cal parts to move, but without your jobs, alerts, and operators, it’s likely you’ll be
missing a lot of necessary functionality.

In the next listing, we use the functionality of Out-GridView with the -Passthru
parameter to create a pop-up GUI to make selecting the jobs easier.

PS> Get-DbaAgentJob -SqlInstance sql01 |
Out-GridView -Passthru |
Copy-DbaAgentJob -Destination dbatoolslab

Listing 16.7 Migrating a custom error message and a SQL Agent alert

Listing 16.8 Easily copy one or more jobs using Out-GridView

Try it now 16.2
Copy multiple SQL Server Agent jobs from one instance to another.

213Linked servers

16.3 Linked servers
Linked servers allow us to create a window through to remote data sources, such as other
SQL servers or other OLE DB data sources. Linked servers do get quite a lot of negative
press. Depending on how they are configured, they can create security vulnerabilities
(e.g., if they use the saved credentials of a permissive account), and they don’t always lend
themselves to stellar performance. However, they are still quite prevalent in the real
world, and it’s worth checking out how dbatools helps make migrating these easy.

 As you probably guessed, we’re going to use a copy command to migrate linked
servers from one instance to another. This time we’ll be using Copy-DbaLinkedServer,
as shown in the following code sample. In our case, we have only one linked server, and
once again, the returned output shows the result and any notes that have been collected
in the process.

PS> $copyLinkedServerSplat = @{
Source = "sql01"
Destination = "sql02"

}
PS> Copy-DbaLinkedServer @copyLinkedServerSplat

Type Name Status Notes
---- ---- ------ -----
Linked Server ad\SQL2O17 Successful SQLNCLI

Linked servers can be set to use the current security context, or they can use saved SQL
credentials. If the connection is using a saved SQL connection, the credentials are
stored in a table with the password encrypted. dbatools uses a technique explained in
the post at sqlps.io/decryptlspwd to retrieve and decrypt the password. This means that,
postmigration, the linked server will just work without you having to reenter the cre-
dentials. Note that both the Copy-DbaLinkedServer and Copy-DbaCredential com-
mands require Windows registry access and, consequently, do not work on Linux.

 Note that the table where the passwords for these credentials are stored is accessi-
ble only when using the dedicated administrative connection (DAC). That means that
within the Copy-DbaLinkedServer, dbatools will try to use that DAC connection, so it
needs to be enabled for remote connections on your SQL Server instance for the pass-
words to be migrated with your linked servers.

Listing 16.9 Migrating all linked servers

Is the DAC enabled for remote connections on my SQL Server instance?
You can enable the DAC for remote connections with a global configuration setting
managed using sp_configure. You can check whether it’s currently configured with
dbatools, as shown next:

PS C:> Get-DbaSpConfigure -SqlInstance sql01

➥ -Name RemoteDacConnectionsEnabled

https://www.netspi.com/blog/technical/adversary-simulation/decrypting-mssql-database-link-server-passwords/

214 CHAPTER 16 Performing your first advanced SQL Server instance migration, part 2

16.4 More migration fun
We’ve covered quite a lot of options when it comes to migrating parts of your SQL
Server estate. It’s hard to believe, but you can migrate still more things with dbatools.
All of the dbatools commands that deal with migrations begin with the Copy verb, and
thanks to PowerShell’s handy Get-Command function, we can quickly list all of the
applicable dbatools commands for review, as shown here.

PS> Get-Command -Module dbatools -Verb Copy

16.5 Hands-on lab
 Migrate some of the logins from sql01 to sql02.
 Migrate some other objects available on sql01, such as a SQL Agent job with an

operator or a linked server.
 Connect to the sql02 instance (destination), and confirm everything expected

has been migrated successfully.

Listing 16.10 Viewing all the dbatools copy commands

(continued)
You can also set it with dbatools using the Set-DbaSpConfigure command as
follows:

PS C:> Set-DbaSpConfigure -SqlInstance sql01

➥ -Name RemoteDacConnectionsEnabled -Value 1

215

High availability
 and disaster recovery

High availability and disaster recovery (HADR) are complicated and important top-
ics when we’re talking about our databases. One of the core responsibilities of a
production DBA is ensuring that databases are available so applications and busi-
ness users can access them. SQL Server has several options we can implement to
improve the resiliency and availability of our data, including the following:

 Log shipping
 Windows Server Failover Clusters
 Availability groups

Throughout this chapter, we’ll demonstrate how dbatools can help simplify work-
ing with each of these HADR solutions, making them easier to configure and mon-
itor. First, let’s talk about log shipping.

17.1 Log shipping
Log shipping is the process of backing up the transaction log of the primary data-
base and copying those backups to one, or many, secondary copies to keep them in
sync. Since SQL Server 2000, this method has been one of the most simple and
effective options DBAs have to implement HADR solutions.

 In our experience, SQL Server Management Studio (SSMS) can fail during log
shipping deployments—even simple deployments! In response, we created a set of
commands to make this task much easier and, more important, reliable and robust.
This section will demonstrate how to implement log shipping, using a single
command.

216 CHAPTER 17 High availability and disaster recovery

17.1.1 Configuring log shipping with dbatools

dbatools has several functions to assist with setting up and monitoring log shipping
within your environment. First, we’ll look at Invoke-DbaDbLogShipping, which is the
function we’ll use to set up log shipping from a primary SQL Server instance to a sec-
ondary SQL Server instance.

 When you run Get-Help Invoke-DbaDbLogShipping, you can see nearly 85 param-
eters! This may feel overwhelming, but don’t panic: the command offers a lot of
parameters, but it also has a lot of the same defaults. Ultimately, only four parameters
are required for you to successfully set up log shipping.

 We must fulfill a couple of prerequisites before we can execute Invoke-DbaDbLog-
Shipping, as detailed in the help documentation for the command. The schedule for
log shipping is controlled by SQL Server Agent jobs on both the primary and secondary
instances, which, by default, run as the SQL Server Agent service account. Each of these
accounts needs read/write permissions to the backup destination (or copy destination
folders). These permissions must be set manually before the jobs will run successfully.

 Once we have the file permissions in place, we can set up log shipping for the
AdventureWorks database. In the following listing, we show how to set this up with
only four parameters. As mentioned previously, we have a lot of options for configura-
tion, but in this example, we’ll just use the defaults for most of them.

PS> $params = @{
SourceSqlInstance = "dbatoolslab\sql2017"
DestinationSqlInstance = "dbatoolslab"
Database = "AdventureWorks"
SharedPath= "\\dbatoolslab\logship"

}
PS> Invoke-DbaDbLogShipping @params

The database AdventureWorks does not exist on instance dbatoolslab.
Do you want to initialize it by generating a full backup?
[Y] Yes [N] No [?] Help (default is "Yes"): y

PrimaryInstance : dbatoolslab\SQL2017
SecondaryInstance : dbatoolslab
PrimaryDatabase : AdventureWorks
SecondaryDatabase : AdventureWorks
Result : Success
Comment :

Log shipping is now configured, and because we didn’t specify timings, the SQL
Server Agent jobs are set up to both perform log backups on the primary and copy/
restore them to the secondaries every 15 minutes. In figure 17.1, you can see how the
dbatools lab looks after running the code in listing 17.1. The secondary database is in

Listing 17.1 Setting up log shipping with Invoke-DbaDbLogShipping

The shared path is used as the
backup destination and the
source for the copy jobs. If you
are seeing issues, check the
permissions on this share.

In this example, we’re relying on
dbatools to initialize the database
on the secondary replica, so we
get a prompt to confirm we can
take a full backup.

The output from the command shows it was successful.
If there are issues, dbatools will try to capture these to
display in the comment.

217Log shipping

a restoring state, and two jobs on the primary instance and three on the secondary
control shipping the transaction logs and keeping our secondary in sync.

17.1.2 When log shipping goes bad: Gathering errors with dbatools

When setting up or monitoring log shipping, we could encounter errors. Perhaps the
backup drive runs out of space so the backup fails, or perhaps a network issue means

Source database
Log shipping jobs
on primary

Secondary database
restoring

Log shipping jobs
on secondary

Figure 17.1 The database is in recovery on the destination instance.

Try it now 17.1
Set up log shipping for a couple of databases, and then add some objects and data
to the source instance so there will be data to look for when we cut over later in the
chapter:

PS> $params = @{
SourceSqlInstance = "dbatoolslab\sql2017"
DestinationSqlInstance = "dbatoolslab"
Database = "AdventureWorks","WideWorldImporters"
SharedPath= "\\dbatoolslab\logship"

}
PS> Invoke-DbaDbLogShipping @params

218 CHAPTER 17 High availability and disaster recovery

some of the pieces involved can’t communicate. Unfortunately, log shipping isn’t the
easiest process to troubleshoot through SSMS. For example, when we look at the job
history, sometimes it’s not obvious what has happened, much less what has gone
wrong. Fortunately, we have a dbatools command to help us collect errors so that we
can resolve log shipping issues quickly and get things back up and running.

 In the next code listing, we can see what happens if we set up log shipping without
first configuring the file-level permissions. Running Get-DbaDbLogShipError shows
that we had access issues and even details the path that couldn’t be accessed.

PS> Get-DbaDbLogShipError -SqlInstance dbatoolslab\sql2017, dbatoolslab |
Select-Object SqlInstance, LogTime, Message

SqlInstance LogTime Message
----------- ------- -------
dbatoolslab\SQL2017 10/10/2021 5:45:01 AM Could not delete old log backu...
dbatoolslab\SQL2017 10/10/2021 5:45:01 AM Access to the path '\\dbatools...

17.1.3 Cutting over to a log shipped secondary database

We mentioned earlier that log shipping backs up the transaction log of the primary
database and copies those backups to other servers. You may want to cut over to a sec-
ondary server for many reasons, such as a disaster occurring in your primary data cen-
ter or even after completing a migration that involves log shipping. dbatools simplifies
this failover with the command Invoke-DbaDbLogShipRecovery.

 In the following code sample, Invoke-DbaDbLogShipRecovery is used to bring the
secondary replica online. The command performs some checks before bringing the
secondary database online and ensures that the last transaction log has been shipped
across and restored to what will become the primary database.

PS> $logShipSplat = @{
SqlInstance = "dbatoolslab"
Database = "AdventureWorks"

}
PS> Invoke-DbaDbLogShipRecovery @logShipSplat

ComputerName : dbatoolslab
InstanceName : MSSQLSERVER
SqlInstance : dbatoolslab
Database : AdventureWorks
RecoverResult : Success
Comment :

Listing 17.2 Setting up log shipping with Invoke-DbaDbLogShipping

Listing 17.3 Cutting over to the secondary replica

219Windows Server Failover Cluster (WSFC)

One thing to note is that dbatools does not take the primary replica offline—in a
disaster recovery situation, that database wouldn’t be accessible anyway, but it’s some-
thing to keep in mind if you are using log shipping in a migration scenario. However,
you could always add a call to Set-DbaDbState to set the databases offline after you
cut over.

17.2 Windows Server Failover Cluster (WSFC)
Windows Server Failover Cluster (WSFC) is a technology that can help increase the
availability of our SQL Servers. Failover Clusters can serve as the base for either a
Failover Cluster Instance (FCI) or an Always On availability group (AG). This section
will highlight dbatools commands that help simplify WSFC monitoring without having
to install the FailoverCluster module or use the Failover Cluster GUI manager. You
can even run these commands easily against remote servers.

INSTALLING MORE COMPLEX SCENARIOS WITH DBATOOLS dbatools can also help
if you are looking to install SQL Server as a Failover Cluster Instance. More
details are available in the GitHub discussion, “Using Install-DbaInstance
to Install (and Even Uninstall) a SQL Server Failover Cluster Instance”
(sqlps.io/installfci).

The commands in this section will help you understand the setup of your clusters and
make managing them much easier. Quite often, you’ll be given a virtual cluster name
but not the underlying servers, or vice versa. dbatools will help you to get the informa-
tion you need easily.

 As we’ve seen a few times, we can get a list of commands by using Get-Command. In
the next listing, we pass in the pattern *wsfc* and specify that the commands should
come from the dbatools module.

PS> Get-Command *wsfc* -Module dbatools

CommandType Name Version Source
----------- ---- ------- ------

Listing 17.4 Viewing all the commands that help us manage WSFC

Try it now 17.2
If you set up log shipping earlier in the chapter, now’s the time to simulate disaster!
Cut over to your secondary database, and make sure the data you added has made
it across successfully:

PS> $logShipSplat = @{
SqlInstance = "dbatoolslab"
Database = "AdventureWorks","WideWorldImporters"

}
Invoke-DbaDbLogShipRecovery @logShipSplat

https://github.com/dataplat/dbatools/discussions/7447

220 CHAPTER 17 High availability and disaster recovery

Function Get-DbaWsfcAvailableDisk 1.1.50 dbatools
Function Get-DbaWsfcCluster 1.1.50 dbatools
Function Get-DbaWsfcDisk 1.1.50 dbatools
Function Get-DbaWsfcNetwork 1.1.50 dbatools
Function Get-DbaWsfcNetworkInterface 1.1.50 dbatools
Function Get-DbaWsfcNode 1.1.50 dbatools
Function Get-DbaWsfcResource 1.1.50 dbatools
Function Get-DbaWsfcResourceType 1.1.50 dbatools
Function Get-DbaWsfcRole 1.1.50 dbatools
Function Get-DbaWsfcSharedVolume 1.1.50 dbatools

We get a lot of commands returned, and they are all get commands, so they will collect
information for us. We recommend you read the help for each of these and test them
against your clusters so you can see all the valuable information that dbatools will help
you to extract. In this chapter, we’ll focus on three of the most useful commands.

NOTE As the name suggests, these Windows Server Failover Cluster commands
work only on Windows.

First up, let’s find the nodes that make up our cluster by using Get-DbaWsfcNode. The
only parameter required for this command is -ComputerName, though you can also
provide an alternative Windows credential with the -Credential parameter.

 -ComputerName can be either the name of one of the nodes or the hostname of the
virtual cluster. The results list all of the nodes of that cluster, as shown here.

PS> Get-DbaWsfcNode -ComputerName sql1

ClusterName : clsdbatools
ClusterFqdn : clsdbatools.dbatools.io
Name : sql1
PrimaryOwnerName :
PrimaryOwnerContact :
Dedicated :
NodeHighestVersion : 533888
NodeLowestVersion : 533888

ClusterName : clsdbatools
ClusterFqdn : clsdbatools.dbatools.io
Name : sql2
PrimaryOwnerName :
PrimaryOwnerContact :
Dedicated :
NodeHighestVersion : 533888
NodeLowestVersion : 533888

In this example, two distinct nodes are returned. The next command we’ll run is Get-
DbaWsfcRole, which tells us about the roles that exist within our cluster.

Listing 17.5 Viewing the nodes that make up our WSFC

221Windows Server Failover Cluster (WSFC)

 In the next code sample, we can see three roles are returned. The first is an avail-
ability group called dbatoolsag, and the other two are standard roles that are
returned for all clusters.

Get-DbaWsfcRole -ComputerName sql1 -Credential ad\dba

ClusterName : clsdbatools
ClusterFqdn : clsdbatools.dbatools.io
Name : dbatoolsag
OwnerNode : sql1
State :

ClusterName : clsdbatools
ClusterFqdn : clsdbatools.dbatools.io
Name : Available Storage
OwnerNode : sql2
State :

ClusterName : clsdbatools
ClusterFqdn : clsdbatools.dbatools.io
Name : Cluster Group
OwnerNode : sql1
State :

Want to dive deeper and see the resources that make up that availability group role?
You can do just that with the command Get-DbaWsfcResource. In the following list-
ing, we can see the details and states for our file share witness and IP address as well as
the availability group.

PS> Get-DbaWsfcResource -ComputerName sql1 |
Select-Object ClusterName, Name, State, Type, OwnerGroup, OwnerNode |
Format-Table

ClusterName Name State Type OwnerGroup OwnerNode
----------- ---- ----- ---- ---------- ---------
clsdbatools dbatoolsag Online SQL Server Ava.. dbatoolsag sql1
clsdbatools Cluster IP Address Online IP Address Cluster Group sql1
clsdbatools Cluster Name Online Network Name Cluster Group sql1
clsdbatools File Share Witness Online File Share Wit.. Cluster Group sql1

Listing 17.6 Viewing the roles on our WSFC using an alternative credential

Listing 17.7 Viewing the resource details for our WSFC

Try it now 17.3
As we’ve mentioned, we have a lot of other WSFC commands to test out. Have a look
at some of the others, and see what interesting information you can discover about
your clusters. For example, you could use Get-DbaWsfcDisk to look at information
relating to your clustered disks:

Get-DbaWsfcDisk -ComputerName sql

222 CHAPTER 17 High availability and disaster recovery

17.3 Availability groups
Setting up and managing availability groups (AGs) is complex and requires great
attention to detail. Fortunately, we’ve codified all of the manual, tedious steps
required to set up and manage availability groups—not just in Windows, but in
Docker and Linux as well. As we work through this section of the chapter, you’ll end
up having two options to get a working availability group, and we’ll target the lab envi-
ronment we created in chapter 3.

 Availability groups are the newest and, by now, probably the most common HA
solution for SQL Server. Using an availability group allows us to send the transactions
in a database to another database, perhaps far away in another datacenter. This fea-
ture came out in SQL Server 2012 and has seen many improvements over the versions
since then. Availability groups are also available in Standard Edition, although there
are some restrictions compared to Enterprise Edition AGs. We have many options
when configuring these, so we recommend a wander through the Microsoft documen-
tation (sqlps.io/aoag) to refresh your memory and work through the optimal configu-
ration for your own environment.

17.3.1 Creating an availability group with dbatools

Most AGs that we have seen in production so far have been based on WSFC, which means
certain prerequisites are required before creating the availability group. We’re not
going to go into the details for building that base cluster here, because there are a lot
of design decisions you’ll want to make based on your environment and setup, but we’d
recommend reading up on them at sqlps.io/fciaoag to learn all about your options.

NOTE If you don’t want to build your
own WSFC, skip to the “Availability group
based on containers” section to see how
to get an availability group running in
your lab environment without a cluster.

AVAILABILITY GROUP BASED ON WSFC
If you have your WSFC up, you’ll want to
install SQL Server on both nodes; look for a
check box in the SQL Server Configuration
Manager to Enable Always On availability
groups, highlighted in figure 17.2.

 dbatools offers a command to enable this
setting as well. You can see in the next listing
that we can enable that check box with the
command Enable-DbaAgHadr. Note, like
when enabling HA using the GUI, changing
this setting using dbatools will also require a
restart of your SQL engine service.

Figure 17.2 Enabling Always On availability
groups

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/failover-clustering-and-always-on-availability-groups-sql-server?view=sql-server-ver15

223Availability groups

Enable-DbaAgHadr -SqlInstance dbatoolslab, dbatoolslab\sql2017

Our WSFC and SQL Server instances are now ready to create an availability group. As
mentioned previously, this process can be complicated, but with dbatools, it’s just one
command: New-DbaAvailabilityGroup.

 Let’s run Get-Help New-DbaAvailabilityGroup -ShowWindow and look at the
description for the command shown in the next code snippet. It not only shows how
to use -ShowWindow but also provides a solid outline of what happens when you run
the command.

DESCRIPTION
Automates the creation of Availability Groups.
* Checks prerequisites.
* Creates Availability Group and adds primary replica.
* Grants cluster permissions if necessary.
* Adds secondary replica if supplied.
* Adds databases if supplied.
* Performs backup/restore if seeding mode is manual.
* Database has to be in full recovery mode (so at least one backup has be
en taken) if seeding mode is automatic.

* Adds listener to primary if supplied.
* Joins secondaries to Availability Group.
* Grants endpoint connect permissions to service accounts.
* Grants CreateAnyDatabase permissions if seeding mode is automatic.
* Returns Availability Group object from primary.

NOTES:
- If a backup/restore is performed, the backups will be left intact on

 ➥ the network share.
- If you're using SQL Server on Linux and a fully qualified domain name

 ➥ is required, please use the FQDN to create a proper endpoint.

The examples in the help are also worth reviewing because this command offers a lot
of options and parameters.

 In the next listing, we are relying on a lot of the default values for the configura-
tion settings. In this example, a two-node availability group will be created, and the
AdventureWorks database will be added using the backup/restore method and a
shared path. Note that prior to this step, we’ve set the proper read/write permissions
for the SQL Server Service account on our \\sql1\backup path.

PS> $agSplat = @{
Primary = "sql1"
Secondary = "sql2"

Listing 17.8 Enabling Always On availability groups with dbatools

Listing 17.9 Description from Get-Help New-DbaAvailabilityGroup

Listing 17.10 Creating an availability group with dbatools

The SQL Server instance that will make
up the primary replica of our AG.

The SQL Server instance that
will make up the secondary
replica of our AG.

224 CHAPTER 17 High availability and disaster recovery

Name = "agpoc01"
Database = "AdventureWorks"
ClusterType = "Wsfc"
SharedPath = "\\sql1\backup"

}
PS> New-DbaAvailabilityGroup @agsplat

ComputerName : sql1
InstanceName : MSSQLSERVER
SqlInstance : sql1
LocalReplicaRole : Primary
AvailabilityGroup : agpoc01
PrimaryReplica : sql1
ClusterType :
DtcSupportEnabled :
AutomatedBackupPreference : Secondary
AvailabilityReplicas : {sql1, sql2}
AvailabilityDatabases : {AdventureWorks}
AvailabilityGroupListeners : {}

This is a pretty simple AG, but it’s created, complete with a database, in just one step.
If you have the IP address and permissions into AD to create a computer object for a
listener, you can also add that in this command. Check out the help and examples for
the parameters needed for this scenario.

AVAILABILITY GROUP BASED ON CONTAINERS

If you don’t have a cluster ready to go, don’t fret—there is still an option for you to get
an availability group up and running in your lab. If you remember back to chapter 3
when we discussed building a dbatools lab, we had an option to use Jupyter Notebooks
to easily run SQL Server instances off of containers. Well, one of these notebooks is all
about availability groups!

 We recommend downloading the notebooks and following along with 00-Create-
Containers and then 03AvailabilityGroups from here: dbatools.io/labnotdotnet. Once
you get through these two, you should have something that looks like figure 17.3.

 You can see we’ve ended up with two replicas and three databases involved in our
AG. It’s a great setup for a simple lab environment, and we’ll use it going forward to
review some other dbatools AG-related commands.

Friendly
name for

the AG

Database that will be added
to the AG, once it’s created

Default cluster type is none; we’re
specifying that it will be built on
top of a WSFC.

Shared path that will be used to back up/restore the database as it’s added
to the AG. The engine account for both instances will need access.

Try it now 17.4
Download the Jupyter Notebooks from our repository, and walk through getting an
availability group set up in your environment. This will be useful for the rest of the
chapter.

https://github.com/dataplat/dbatools-lab/tree/development/notebooks/NotDotNet

225Availability groups

17.3.2 Explore existing availability groups

Once our availability groups have been created, dbatools has many options for getting
information about them and managing them. First, let’s explore the available Get
commands that allow us to retrieve all the information we might need.

Let’s look at Get-DbaAvailabilityGroup. This will get us some good overall informa-
tion about our availability groups. The simplest way to run it is shown in the following
listing. We’re just asking for all AGs on the primary instance. In our case, there is only

Instance names are a little strange
because these are containers.

Figure 17.3 Availability group running on containers in our lab

Save a connection to a container instance for easy use
When using containers, we are restricted to using SQL authentication, so we must
use the -SqlCredential parameter for every command. We can make this easier in
a few ways. In these examples, we’re creating a connection object and then reusing
that for each new call.

PS> $sql1 = Connect-DbaInstance -SqlInstance "sql01,15592"

➥ -SqlCredential sa
PS> $sql1

ComputerName Name Product Version HostPlatform...
------------ ---- ------- ------- ------------...
sql01 sql01,15592 Microsoft SQL Server 15.0.2000 Linux ...

226 CHAPTER 17 High availability and disaster recovery

one—but if there are multiples, you could use the -AvailabilityGroup parameter to
specify a certain one.

PS> Get-DbaAvailabilityGroup -SqlInstance $sql1

ComputerName : sqlsp0100
InstanceName : MSSQLSERVER
SqlInstance : sqlsp0100
LocalReplicaRole : Primary
AvailabilityGroup : ACME_01
PrimaryReplica : sqlsp0100
ClusterType : None
DtcSupportEnabled : False
AutomatedBackupPreference : Secondary
AvailabilityReplicas : {sqlsp0100, sqlsp0200}
AvailabilityDatabases : {AdventureWorks, Northwind}
AvailabilityGroupListeners : {}

We can also get more information about the specific parts that make up our AG. We
have three commands that all work very similarly. To get replica information, we’ll use
Get-DbaAgReplica, as shown next. Again, we’re just passing in the SQL Server
instance we’re interested in.

PS> Get-DbaAgReplica -SqlInstance $sql1 | Select-Object SqlInstance,
AvailabilityGroup, Name, Role, AvailabilityMode, FailoverMode

SqlInstance : sqlsp0100
AvailabilityGroup : ACME_01
Name : sqlsp0100
Role : Primary
AvailabilityMode : AsynchronousCommit
FailoverMode : Manual

SqlInstance : sqlsp0100
AvailabilityGroup : ACME_01
Name : sqlsp0200
Role : Secondary
AvailabilityMode : AsynchronousCommit
FailoverMode : Manual

Listing 17.11 Getting general information about availability groups

Listing 17.12 Getting information about the availability group replicas

The SqlInstance we specified
when we called the function

The role of the SqlInstance—in this
case, we’ve connected to the primary.

The friendly name of our AG

Because we’re using containers, we’ve not
used a cluster for this. If we were using a
WSFC, it would list wsfc here.

List of the replicas
involved in the AG

List of the databases
involved in the AGIf we configured a listener for the

AG, it would be listed here.

The role of the AG; you
can see the first instance
is our primary, and we
also have one secondary.

The commit mode; this is how transactions are synchronized. We are currently in
AsynchronousCommit mode, which means the AG won’t wait for the transaction
to commit on the secondary before committing on the primary.

FailoverMode is set to
manual; this allows

us to control when a
failover happens.

227Availability groups

If we had a listener set up, we could view more information with Get-DbaAgListener.
In our current setup, we will see no results.

17.3.3 Managing existing AGs
In the final section for this chapter, we’ll quickly cover some useful commands that
dbatools offers to help us manage our AGs. The first will help us with controlling
failovers. This is useful when there is planned maintenance or some activity where you
need to fail the AG over from the primary node to a secondary node. You can manage
this through SSMS, but it’s even easier with dbatools.

 If you’re using a WSFC for our AG and operating in synchronous commit mode, you
can invoke a failover as shown in the following listing. This will cause a failover only if
your AG is in sync and there will be no data loss. In our container example, or if you’re
in a disaster situation where you’ve lost the primary replica and are accepting that some
data loss is okay to get back up and running, you can add the -Force parameter.

PS> Invoke-DbaAgFailover -SqlInstance $sql2 -AvailabilityGroup ACME_01

You can also use two commands for controlling the data synchronization of your avail-
ability groups: Suspend-DbaAgDbDataMovement to stop, and then Resume-DbaAgDb-
DataMovement to get it going again. This method can also be useful for patching or
maintenance when you need to take one of your replicas offline. Note that when data
movement is suspended, the transaction log on your primary database will grow
because any transactions that haven’t been sent to the secondary will be saved until
data movement is resumed again. We can suspend data movement, as shown in the
following code snippet. Again, we are specifying the SQL Server instance and the
availability group name.

PS> Suspend-DbaAgDbDataMovement -SqlInstance $sql1

➥ -AvailabilityGroup ACME_01

If we look at the AG dashboard again in SSMS, shown in figure 17.4, we can see errors
and warnings that our databases aren’t in sync, and icons on the databases also show
they are in a paused state.

Listing 17.13 Failing over the AG to a secondary replica with no data loss

Listing 17.14 Suspending data movement to the secondary replica

Try it now 17.5
As with Get-DbaAgReplica and Get-DbaAgListener, there is also a command for
Get-DbaAgDatabase, which, as you might have guessed, will provide more information
about the databases in the AG. Give it a go now and see what you get:

PS> Get-DbaAgDatabase -SqlInstance $sql1

228 CHAPTER 17 High availability and disaster recovery

Once the maintenance is complete, we can resume data movement again with a simi-
lar command. Depending on how many transactions have been stored to send to the
secondary, it might take a little while for the AG dashboard to go back to green and
display us in sync again.

PS> Resume-DbaAgDbDataMovement -SqlInstance $sql1

➥ -AvailabilityGroup ACME_01

17.4 Hands-on lab
 If you have a WSFC handy, run the New-DbaAvailabilityGroup command to

set up an availability group.
 If not, run through the Jupyter Notebooks to get an availability group set up

and running on containers.
 Once your AG is set up, explore it with Get-DbaAgReplica and Get-DbaAgData-

base.
 Cause a failover with Invoke-DbaAgFailover.
 Suspend data movement, and then resume it with Suspend-DbaAgDbDataMove-

ment and Resume-DbaAgDbDataMovement.

Listing 17.15 Resuming data movement to the secondary replica

Warnings that you’re not in sync

Databases have a paused icon.

Figure 17.4 Data movement suspended for all the databases in our AG.

229

PowerShell
 and SQL Server Agent

As we discussed in chapter 1, the manual administration of SQL Server Agent jobs
can be very time consuming, especially when you have many instances to adminis-
ter. This chapter provides all of the tools you’ll need to administrate your SQL
Server Agent estate efficiently. You will learn how to gather all of the information
about your SQL Server Agents, how to find a particular job in your estate easily, and
how to retrieve and display the Agent job results and history.

 We have waited to talk fully about the SQL Server Agent until this chapter (and the
next two) for a couple of reasons. We wanted you to have some knowledge about dba-
tools commands and be comfortable with their structure at the command line before
discussing scheduling them with SQL Server Agent. As we discussed in chapter 1, we
considered the order of the chapters as if we were DBAs starting to look at a new estate.

 SQL Server Agent is the heart of scheduled task management in SQL Server,
providing invaluable built-in functionality for DBAs to manage essential tasks such
as backups, integrity checks, data imports, and more. It’s basically the Windows
Task Scheduler of SQL Server that enables DBAs to run code on demand or auto-
matically via a schedule. SQL Server Agent uses the msdb database to store its infor-
mation and is available in all editions except for Express.

 Running PowerShell scripts within SQL Server Agent is extremely useful, but it
does have a few caveats. Because of this, we are going to dedicate an entire chapter
to running PowerShell scripts within SQL Server Agent in an effort to save you time
and prevent needless headaches. If you’ve spent any time in SQL Server Manage-
ment Studio (SSMS), you’re likely very familiar with the SQL Server Agent tree
view, as seen in figure 18.1.

 This chapter will cover creating SQL Server Agent jobs that run PowerShell
scripts, especially scripts that use dbatools, and the steps that you need to take to

230 CHAPTER 18 PowerShell and SQL Server Agent

ensure that the SQL Server Agent jobs run without errors and report failures when
you expect them to.

 Agent jobs can run a variety of tasks through subsystems that help the Agent interact
with other components, such as the operating system, PowerShell, Analysis Services,
Integration Services, and Replication. The list of available subsystems, or “job step
types,” can be viewed in the Job Step Properties tab, as shown in figures 18.2 and 18.3.

 Considering PowerShell runs on Linux and SQL Server runs on Linux, you may be
wondering if you can run PowerShell-based SQL Server Agent jobs on SQL on Linux.
The answer at the time of this writing is no, unfortunately.

Figure 18.1 Good ol’ SQL Server Agent

Figure 18.2 A list of SQL Server Agent subsystems on Windows, including PowerShell

231Which to choose, CmdExec or PowerShell job steps?

Although SQL Server Agent on Linux certainly has its uses, SQL Server Agent on Win-
dows is where it really shines, primarily because of its support for PowerShell and run-
ning external processes. Check out table 18.1, which displays some example tasks it
can do for you.

18.1 Which to choose, CmdExec or PowerShell job steps?
You have seen that SQL Server supports the PowerShell subsystem, so you may be expect-
ing us to show how you can create PowerShell job steps to run dbatools commands. Sur-
prisingly, however, dbatools cannot be run as part of a SQL Server Agent PowerShell job

Table 18.1 Sample SQL Server Agent job tasks

Topic Example tasks that can be scheduled

Database backups Full, differential, and log backups

Database restores Restore to test and development environments or test backups

Database maintenance Index reorganization, integrity checks

Disaster recovery Nightly exports of logins, instance configurations

Audits Log file compression and offload

Syncs Availability group login and job sync

Imports CSV import/export, SSIS tasks

ETL Data warehouse processing

Instance migration Schedule an entire instance migration

Inventory Keep a centralized database up to date

Health checks Daily checks with dbachecks.io

Monitoring Monitor performance issues with sqlwatch.io

Figure 18.3 SQL Server Agent on Linux has strong support for replication but little else.

https://sqlwatch.io/
https://github.com/dataplat/dbachecks

232 CHAPTER 18 PowerShell and SQL Server Agent

step because the PowerShell step type places you in the sqlps.exe host (sqlps.io/
dbatoolsagent) with the SQL Server PowerShell provider (sqlps.io/abproviders) as your
current working directory. This results in a conflict because dbatools and the SQL Server
provider are basically trying to do the same thing but with different libraries. The SQLPS
host, which is used by the SQL SERVER Agent PowerShell job step, can’t load many
external modules and can be using a different version of PowerShell than the version
installed on the host.

 For all of these reasons and following years of trial and error, we recommend that
you use a job step of type Operating system (CmdExec) for any SQL Server Agent jobs
where you are going to use PowerShell.

NOTE For more detail about Windows Task Scheduler vs. SQL Server Agent,
and the PowerShell subsystem vs. the CmdExec subsystem, visit dbatools.io/
agent.

One of the biggest reasons we recommend CmdExec is because it’s far more reliable.
This is both because the PowerShell version will be predictable and your code will not
require workarounds, such as using Microsoft.PowerShell.Core\FileSystem::, to ensure
UNC paths work as expected. The SQLPS host that runs the PowerShell subsystem just
isn’t as complete or functional as it needs to be. See table 18.2 for a comparison.

Another upside to CmdExec not being bound by the PowerShell version is that you
can install or upgrade the version of PowerShell you are using. This means that you
can use PowerShell 7 or upgrade earlier operating systems’ PowerShell version to Win-
dows PowerShell 5.1.

18.2 Creating Agent jobs to run PowerShell and dbatools
Setting up the Agent to support PowerShell steps is a bit more complicated than set-
ting up pure T-SQL steps. The trade-off, however, is that you can do more within SQL
Server Agent because you have far fewer limitations with PowerShell as compared to
with T-SQL. To create a SQL Server Agent job to run dbatools (and any other Power-
Shell) steps, you need to perform the following:

 Create a Windows-based login in SQL Server.
 Create a SQL Server credential.
 Create the Agent proxy.

Table 18.2 PowerShell vs. CmdExec job steps

PowerShell job step CmdExec job step

sqlps.exe powershell.exe or pwsh.exe via cmd.exe

Version varies by SQL Server version Version is always the system version

Doesn’t always (rarely?) work as expected Works as expected

https://blog.pythian.com/dbatools-sql-agent/
https://blog.pythian.com/dbatools-sql-agent/
https://blog.pythian.com/dbatools-sql-agent/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_providers?view=powershell-7.2
https://dbatools.io/agent/
https://dbatools.io/agent/
https://dbatools.io/agent/

233Creating Agent jobs to run PowerShell and dbatools

 Ensure dbatools is available to the account.
 Create the PowerShell .ps1 file and save it.
 Create the job and CmdExec job step.

You have learned many of these steps individually already. In chapter 9, you learned to
create a login. Chapter 2 showed how to install dbatools for a specific user or for all
users, as shown in figure 18.4. You can use that knowledge to create the requirements
listed earlier.

In the next couple of chapters, you will learn how to create a credential, a proxy, a job,
and a job step, but for now we will focus on important concepts to remember when
working with PowerShell within SQL Server Agent.

 To simplify the presentation of these concepts, we’ll rely on SSMS visuals, because
this interface is familiar to most of us. Again, we’re focusing on concepts because using
Agent with PowerShell has a few frustrating caveats that we’d like to highlight for every-
one, even DBAs who have been using SQL Server Agent for years. The information
within this chapter is basically a list of things we’ve learned along the way, as we’ve
deployed PowerShell within SQL Server Agent throughout our own SQL Server estates.

Figure 18.4 Installing dbatools in a directory that is available in the default path and accessible to all
users

Try it now 18.1
See the modules that are available to all users by exploring C:\Program Files\
WindowsPowerShell\Modules.

234 CHAPTER 18 PowerShell and SQL Server Agent

18.2.1 Creating a SQL Server credential

SQL Server Agent supports running jobs as alternative logins by using SQL Server cre-
dentials and SQL Server Agent proxies. Supporting credentials in this fashion helps
avoid Kerberos double-hop issues that we covered in chapter 13.

 SQL Server credentials are different from SQL Server logins. When looking for an
easy way to explain them, we found Microsoft’s straightforward definition
(sqlps.io/sqlcred) to be the easiest to understand:

A credential is a record that contains the authentication information (credentials) required
to connect to a resource outside SQL Server. This information is used internally by SQL
Server. Credentials are used to connect to resources that the SQL Server service account does
not have access to. They can be used to access file shares in other domains or on Azure, for
example, or when a stored procedure needs to access a resource in a different domain.

Credentials allow you to run processes and jobs as other accounts, instead of relying
on the permissions of the SQL Server Agent service account. This alternative user
could be granted read/write permissions to a network share, for instance, or it could
be given more restrictive read-only access to various databases. Credentials can be
found in SSMS in the Object Explorer, under Security, as demonstrated by figure 18.5.

When creating a credential, we recommend that you use an Active Directory domain
service account that is dedicated to running jobs or is dedicated to a specific task, such
as performing environment refreshes or data warehouse tasks. We recommend using
a domain account because domain accounts simplify user management and can grant
access to multiple network resources that are on the same domain. Using dedicated
credentials also enables your organization to abide by the principle of least privilege,
which runs code with only the access it needs.

Figure 18.5 A sample SQL Server credential

Try it now 18.2
See which credentials currently exist on your SQL Server by opening SSMS and
clicking to Server > Security > Credentials.

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/credentials-database-engine?view=sql-server-ver15

235Creating Agent jobs to run PowerShell and dbatools

In figure 18.6, we’re creating a credential named PowerShell Service Account and
associating it with the domain account ad\powershell.

You want to avoid using your personal account or any user account for both security
and account management reasons.

18.2.2 Creating a SQL Server Agent proxy

By default, SQL Server Agent jobs run as the SQL Server Agent service account.
You’ve probably seen the proxies leaf in the SQL Server Agent tree in SSMS, as shown
in figure 18.7.

 In previous chapters, you have seen that by default a job step runs under the security
context of the SQL Server Agent service account. Each job step can also be modified to
run under the context of a SQL Server Agent proxy account (sqlps.io/agentproxy),

Figure 18.6 Creating a SQL Server credential with the Active Directory account ad\powershell

https://docs.microsoft.com/en-us/sql/ssms/agent/create-a-sql-server-agent-proxy?view=sql-server-ver15

236 CHAPTER 18 PowerShell and SQL Server Agent

as long as the proxy has been created and it has been associated with the job step’s
subsystem.

To enable the SQL Server Agent job to be successful, you will also need to ensure that
the account that is running the job step (either the SQL Server service account or the
one associated with the proxy) has access to all resources required for the task. This
includes the PowerShell script file described next, network shares, other SQL
instances, and the PowerShell modules on the host. To put it simply, whatever your
script needs to accomplish, this account needs the required permissions to do it.

 If you are using a proxy, ensure it has been granted rights to the appropriate sub-
system. In figure 18.9, we’ve created a proxy account with the PowerShell service
account credential and associated it with only the CmdExec subsystem, because that’s
our preferred method for the reasons listed in the CmdExec column in figure 18.2.

 With the proxy set up and all permissions granted, you can then create your Power-
Shell script.

Figure 18.7 A SQL Server Agent proxy

Figure 18.8 The drop-down list for Run As contains both the default SQL Server Agent service account
credential and a user-created credential.

237Creating Agent jobs to run PowerShell and dbatools

18.2.3 The PowerShell file

Our preferred method of running PowerShell in a SQL Server Agent job step requires
creating a PowerShell script file and saving it to the filesystem. Storing and running
scripts from the filesystem simplifies script management, because files are far easier to
edit when they are stored on disk. The syntax for accessing scripts is also much easier
than escaping PowerShell code directly within the CmdExec job step.

 The Windows account for which you have created a credential must have permis-
sions to access the directory and execute the file. You can choose to store the scripts in
a central share that all of your instances have access to, or you can store your Power-
Shell scripts on the filesystem of the SQL instance. The decision is yours, and you
should make it only after a conversation with all the required teams in your organiza-
tion, such as DBAs, security, and Windows admin.

Figure 18.9 This proxy account is associated with the PowerShell credential and enabled only for
CmdExec.

238 CHAPTER 18 PowerShell and SQL Server Agent

IMPORTANT If you are using Failover Cluster Instances, ensure you store the
file in a location that both nodes can access.

Whichever choice you make, we recommend that you store your scripts in source con-
trol and deliver them to the location automatically. We have used Azure DevOps, TFS,
Jenkins, and Octopus Deploy to do this.

18.3 Creating the SQL Server Agent job with a CmdExec job step
As you learned earlier, SQL Server Agent jobs consist of steps that execute actions. So
a nightly dev restore job may have three steps: backup, restore, and verify. When creat-
ing each of these job steps, you will need to select the SQL Server Agent proxy that was
created earlier. In figure 18.10, the step is running as the PowerShell proxy account
seen in figure 18.7. Most often, all of the job steps will use the same proxy, but it is not
required. You may, for example, have one account that can read from a source system
but need another account to write to a destination system. You would need to create a
proxy account for each account and then define each job step to use the correct proxy.

Figure 18.10 A SQL Server Agent job step using the Run as PowerShell proxy account and the
PowerShell command for the database restore script

239Creating the SQL Server Agent job with a CmdExec job step

This job step is running the command powershell.exe -File S:\scheduled\dbre-
store.ps1. This spawns a CmdExec process (cmd.exe) that then spawns a power-
shell.exe process, which will run the script. If you have PowerShell 7 installed on the
host, you can replace powershell.exe with pwsh.exe.

The previous job step command was powershell.exe -File S:\scheduled\dbbackup
.ps1, and the next step would run powershell.exe -File S:\scheduled\dbverify
.ps1. Depending on your team’s preferences, you can also create just one step that
runs all three processes in one script.

 This process consists of multiple parts: the service account, the credential, the
proxy account, the PowerShell script file, and maybe also source control and CI/CD.
Because of this, we strongly encourage you to add relevant information to the SQL
Server Agent job description, as shown in figure 18.11, because this will make life

Try it now 18.3
Mimic CmdExec by starting up cmd.exe and running powershell.exe with the -File
or -Command parameter.

Figure 18.11 The description for the SQL Server Agent job should include information to help the
team quickly support it.

240 CHAPTER 18 PowerShell and SQL Server Agent

easier for future you. The time spent troubleshooting issues will be vastly reduced for
the expenditure of a couple of minutes to add the description.

 With the Agent step(s) created, you’re ready to use PowerShell in SQL Server
Agent.

18.4 Tips
Some approaches we use within our own PowerShell scripts that run within SQL
Server Agent follow.

18.4.1 Using default parameter values

$PSDefaultParameterValues is an automatic variable that was introduced in Power-
Shell 3.0. It is a hashtable that can set defaults for any command that you run. In its
simplest form, setting a default parameter value looks like the following listing.

PS> $PSDefaultParameterValues["Get-DbaDatabase:SqlInstance"] = "sql01"

If the format is a bit intimidating, just copy and paste, and replace as needed. That’s what
we do. Basically, it’s $PSDefaultParameterValues["CommandName:ParameterName"] =
"default value".

 According to Microsoft (dbatools.io/abparamdefaults), $PSDefaultParameter-
Values enables you to specify custom default values for any command, and these cus-
tom default values will be used unless you specify another value. This is particularly
helpful when you must specify the same value nearly every single time. Table 18.3 con-
tains some default parameter values to consider when scheduling scripts.

Even when you’re not scheduling tasks, $PSDefaultParameterValues continue to be
useful. We have used it to set persistent -SqlCredential parameter values when work-
ing with Docker. We have also used it to set the default proxy and -ProxyUseDefault-
Credentials for Invoke-WebRequest. Default parameter values are used extensively
within dbachecks to ensure Pester tests fail.

Listing 18.1 Setting sql01 as the default value

Table 18.3 Default parameter values to consider

Parameter Default value Reason

-Verbose $true Creates more output to help debug and see results

-Confirm $false Prevents prompting that would lead to an infinite wait

-EnableException $true Forces the Agent to fail on dbatools commands

-ErrorAction Stop Forces the Agent to fail on other commands

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_parameters_default_values?view=powershell-7.2&viewFallbackFrom=powershell-6

241Tips

18.4.2 Ensuring that the Agent job fails when the PowerShell fails

When you run a SQL Server Agent job with a CmdExec job step, you want the Agent
job to fail when the PowerShell returns an error. By default, this will not happen
because the job step does not return an exit code that the SQL Server Agent will trans-
late as a failure. For example, figure 18.12 shows a successful Agent job run at first
glance with the green ticks, but closer examination shows that the PowerShell script
failed.

We have used this image to show two issues. First, as you can see by reading the quoted
text, the Agent job succeeded. As far as any DBA looking at the result of the job is con-
cerned, there is no issue. It is for this reason that you need to perform the extra cod-
ing so that the Agent job will fail when expected. Secondly, the error message that is in
the log for the job states the following:

The term Copy-DbaLogin is not recognized as the name of a cmdlet, function, script file, or
operable program. Check the spelling of the name, or if a path was included, verify that the
path is correct and try again.

Figure 18.12 This Agent job was not as successful as it appears.

242 CHAPTER 18 PowerShell and SQL Server Agent

This is a commonly reported error, and the reason for it is the dbatools module can-
not be imported. If you receive this error, revisit chapter 2, and ensure that dbatools is
available to the user.

 Once dbatools has been successfully imported, you will need to add the parameter
-EnableException. dbatools, by default, manages all of the errors for you so that you
are not faced with a sea of red when errors occur. The -EnableException parameter
returns those errors causing the jobs to fail as expected.

 As you read earlier, you can easily add -EnableException to every dbatools
command in your script. You just set the value once at the top of the script. Because
dbatools uses a consistent PowerShell prefix in its naming convention, we can limit
-EnableException to only dbatools commands by limiting it to any command that
contains -Dba in the name, as shown next.

PS> $PSDefaultParameterValues['*-Dba*:EnableException'] = $true

To ensure that the correct exit code is passed from all PowerShell commands, you
must place them inside a try/catch block. This is a good PowerShell scripting prac-
tice anyway, and by controlling the code paths, you can make sure the Agent jobs fail
as you expect. You should also ensure that the Agent job fails if the results of the com-
mand are not as expected and that you write code to provide the correct exit code.

powershell.exe -Command "try { Get-DbaDatabase -SqlInstance doesntexist

➥ -ErrorAction Stop} catch { Write-Error

➥ 'Failure getting databases from server doesntexist' }"

Imagine that you had a default instance (like a model database) on which you created
all of the logins (and other objects) that you wanted on all of your instances. You also
want to create an Agent job on every instance to automate this procedure. You will
only need to add a new login to your model instance, and the Agent jobs will ensure
that all of the instances have the new login added. You know from chapter 9 that you
can use Copy-DbaLogin to do this, but you want to write a SQL Server Agent job that is
robust and either succeeds, or, if it fails, makes it clear that the step failed. The follow-
ing steps will help you accomplish this task:

 Setting PSDefaultParameterValues
 Placing the code in the try block
 Using a catch block with information and the correct exit code for failure
 Checking the results of the code and responding with success or failure

Listing 18.2 Setting -EnableException for all dbatools commands

Listing 18.3 A try/catch block

243Tips

We’ve already covered $PSDefaultParameterValues, so let’s take a look at the next
code listing, which shows more detailed error handling with customized error mes-
sage output using a combination with try/catch.

EnableException for all dbatools commands and ErrorAction Stop for all

➥ commands so that the catch block is hit.
$PSDefaultParameterValues["*-Dba*:EnableException"] = $true
$PSDefaultParameterValues["*:EnableException"] = "Stop"

Copy Logins from default instance to current instance
try {

$splatCopyLogin = @{
Source = "SQL2019N5"
Destination = "SQL2019N7"
Login = "dbachecks", "SartoriSauce", "ad\SqlAdmins"

}
$results = Copy-DbaLogin @splatCopyLogin

}
catch {

$errormsg = $_.Exception.GetBaseException()
Write-Output "There was an error - $errormsg"
$results
[System.Environment]::Exit(1)

}

#Check the results
If ($results.Status -in "Successful","Skipped") {

Write-Output "There was an failure - $results"
[System.Environment]::Exit(1)

}
else {

Write-Output "$results"
[System.Environment]::Exit(0)

}

In listing 18.4, the line of code that copies the logins B will be familiar and is inside a
try block. You are not limited to a single line of code. You can place any number of
lines of PowerShell code within the try block if you are performing more complex
tasks. This will most often be the code that you are used to writing on the command
line or in small scripts already.

 If an error occurs when running that code, the catch block C is invoked and
writes to the output stream. It returns the base exception of the error, which gives a
cleaner output, returns the results for more information, and exits, using the correct
exit code to fail the Agent job. This causes the job to fail properly, as demonstrated in
figure 18.13.

 To be certain that the script has successfully achieved what was expected, the
results of the command are checked to make sure that the status includes either Suc-
cessful or Skipped D. If there is no match, the script exits with the correct exit code

Listing 18.4 Detailed error handling

B

C

D

E

244 CHAPTER 18 PowerShell and SQL Server Agent

to fail the Agent job and writes the results. Finally, if the script did not fail and the
results are as expected, the results are written to the output stream, a successful exit
code is provided E, and the Agent job succeeds. Once the code is written and stored
in source control, save the file in a suitable directory.

 Writing your code like this will take you a little more time in the beginning, but the
benefit of writing more robust code and having your Agent jobs fail when you expect
them to fail will save a lot of time for the future you.

18.4.3 Logging

By default, the logging in SQL Server Agent can be brief, because it truncates the out-
put generated by each job step. You have ways around this. If you want to use the built-
in SQL Server Agent functionality, you can change the job step property to include
the step output in the history. When using PowerShell, you can also use PowerShell
transcripts to save the history to files outside of the SQL Server Agent history.

BUILT-IN PROPERTY

If you want richly detailed messages, you can use the built-in SQL Server Agent func-
tionality that is available in the Advanced properties of each job step. This check box
is selected in figure 18.14.

Figure 18.13 This job now fails as expected.

245Tips

If enough output is created by the executed script, setting this property will result in
multiple lines in the job’s history, as can be seen in figure 18.15.

One potential downside of keeping detailed records is that it can bloat your msdb
database, so you must be sure to maintain your job history. This can be done a num-
ber of ways. If you’d like to use SSMS, right-click on the SQL Server Agent icon, and
click Properties. Then click History. Figure 18.16 should then appear.

Figure 18.14 Ensure that the Include Step Output In History check box is selected for each step.

Figure 18.15 Detailed logging, as seen in SQL Server Management Studio 17

246 CHAPTER 18 PowerShell and SQL Server Agent

Alternatively, you can limit the history rows and job history rows using Set-DbaAgent-
Server in dbatools, as shown in the next listing.

PS> $splatSetAgent = @{
SqlInstance = "sql1"
MaximumHistoryRows = 10000
MaximumJobHistoryRows = 100

}
PS> Set-DbaAgentServer @splatSetAgent

-MaximumHistoryRows applies to the entire Agent engine, whereas -MaximumJob-
HistoryRows applies to individual jobs. Determining the best numbers to specify
depends on your current environment. The defaults work well for most of our needs.

START-TRANSCRIPT

Start-Transcript is a native PowerShell command that transcribes the console win-
dow output to a text file, as shown here.

PS> $date = Get-Date -Format FileDateTime
PS> Start-Transcript -Path "\\loggingserver\sql01\filelist-$date.txt"
PS> Get-ChildItem -Path C:\
PS> Stop-Transcript

Running the code in listing 18.6 results in the output shown in figure 18.17.
 We used a unique filename because, by default, Start-Transcript overwrites the

destination file. If you’d like all of your output to go into one file and not overwrite
previous results, use the -NoClobber parameter.

Listing 18.5 Using dbatools to manage job history

Listing 18.6 Writing a transcript

Figure 18.16 Using the Agent properties to delete old records

247Tips

Figure 18.17 Sample output of Start-Transcript

Try it now 18.4
Use Start-Transcript to write to a file named daily-filelist.txt without overwriting
the currently existing file.

248 CHAPTER 18 PowerShell and SQL Server Agent

18.4.4 Execution policies

Sometimes, a PowerShell-based job step can run literally forever. After some digging,
we discovered that the system settings or antivirus utility had an issue with the signed
module we were using, namely, dbatools. To fix this, we simply set the execution policy
for the command to Bypass in the Command box, as seen in figure 18.18.

Bypassing a safety mechanism may seem concerning, but as we discovered in chapter
2, it is an effective setting when used in the appropriate circumstances, such as this
one.

18.5 Hands-on lab
Try the following tasks:

 Create a basic SQL Server Agent task with a CmdExec subsystem that runs a
PowerShell script that performs Get-ChildItem C:\.

 Add extra logging by setting Include Step Output in History on the job step.

Figure 18.18 The execution policy has been set to Bypass within a job step.

249

SQL Server
 Agent administration

Now that you’re familiar with how the SQL Server Agent engine and PowerShell
can best work together, we’ll discuss how dbatools can help you manage SQL
Server Agent. As we discussed in chapter 1, the manual administration of SQL
Server Agent jobs can be very time consuming, especially when you have many
instances or many jobs to administer. This chapter provides all of the tools you
need to administer your SQL Server Agent estate efficiently. You’ll learn how to
gather all of the information about your SQL Server Agents, how to find a particu-
lar job in your estate easily, and how to retrieve and display the Agent job results
and history.

 DBAs are used to examining and administering the SQL Server Agent using
SQL Server Management Studio (SSMS). dbatools enables you to perform the
same tasks at the command line. Using the command line makes it easier to man-
age multiple objects or instances at once.

 Figure 19.1 shows the view of the SQL Server Agent, which we have used to pro-
vide an order for the information in this section. It also demonstrates that there is
no easy way to gather information about the objects on multiple instances in the
same view with SSMS because the SQL Server Agent information is located under
each node in the instance in Object Explorer.

 We will start in a manner that should be becoming familiar to you now: by gath-
ering information about your SQL Server Agent.

250 CHAPTER 19 SQL Server Agent administration

19.1 Listing SQL Server Agent information
Other teams and managers frequently ask DBAs to provide information about the
estates that they manage, and SQL Server Agent jobs are an essential part of providing
services to a business. Scheduling backups, database maintenance, and data load pro-
cesses are common use cases for SQL Server Agent jobs, and being able to gather
information quickly about these processes when questions are asked will save a DBA
time. The first question will often be about the Agent jobs themselves, and it is also
the first folder in the Object Explorer under SQL Server Agent, so let us begin there.

19.1.1 SQL Server Agent jobs

As a DBA, you often want to know which Agent jobs are on a particular instance. Imag-
ine that you are a junior DBA, and during a discussion about a system, the senior DBA
asks you, “What jobs are running on that instance?”

Figure 19.1 SQL Server Agent in SSMS

251Listing SQL Server Agent information

 We think that by chapter 19, you may be able to guess the name of the command!
It’s Get-DbaAgentJob. As your familiarity with PowerShell grows, the names and
parameters for new commands become more evident, but remember that you can
always use the lessons that you learned in chapter 2 to avoid guessing the names in
dbatools or any other PowerShell module. The authors do so daily.

You now know that the command is Get-DbaAgentJob, and you can see in the next
listing that the syntax is familiar, but don’t forget the lessons learned in chapter 2 and
chapter 4. You can use Get-Help to understand how to use new commands—again,
the authors do so every day, and so should you.

 In the next listing, we’ll get the information about the SQL Server Agent jobs on a
single instance.

PS> Get-DbaAgentJob -SqlInstance sql01

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : DatabaseBackup - SYSTEM_DATABASES - FULL
Category : Database Maintenance
OwnerLoginName : sqladmin
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 12/10/2019 01:00:39
LastRunOutcome : Succeeded
HasSchedule : True
OperatorToEmail :
CreateDate : 12/04/2019 12:28:18

If the conversation about that instance continued, and there were hundreds of SQL
Server Agent jobs, it would be beneficial to filter them. It might be that you are inter-
ested in the jobs that are running against a particular database—the most significant
database on that instance because you are considering the workload. To filter the
results to show only the jobs running against that database, you would run the code in
the next snippet. This will return only the Agent jobs with T-SQL steps that reference
that database by filtering for the database named dbachecks.

Listing 19.1 Getting Agent jobs on a single instance

Try it now 19.1
Use Get-Command and Find-DbaCommand to find all of the commands in the dbatools
module that interact with the SQL Server Agent.

Tells us the name of the Agent job

The category that
the job belongs to

The owner of the job

The run status

Shows whether the Agent is enabled

The last run date, no
matter the outcome

The last run outcome

Shows whether the job is associated with a schedule

252 CHAPTER 19 SQL Server Agent administration

PS> Get-DbaAgentJob -SqlInstance SQL01 -Database dbachecks

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : Gather dbachecks
Category : dbachecks
OwnerLoginName : ad\gsartori
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 02/01/2020 16:09:39
LastRunOutcome : Succeeded
HasSchedule : False
OperatorToEmail :
CreateDate : 02/01/2020 16:05:30

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : Process dbachecks
Category : dbachecks
OwnerLoginName : ad\gsartori
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 02/01/2020 16:09:50
LastRunOutcome : Succeeded
HasSchedule : False
OperatorToEmail :
CreateDate : 02/01/2020 16:07:18

Using Get-DbaAgentJob with the -Database parameter is very useful for instances
with a large number of jobs. However, it will filter only on T-SQL job steps. Readers
should be aware that the default database is master, and people do not always config-
ure job steps to use a specific database. You may find that if you filter by a user data-
base, you will not return all of the jobs that interact with the database you have
specified. You should plan to verify that the results of this command are as you would
expect them.

Listing 19.2 Getting Agent jobs for a single database

Try it now 19.2
The Get-DbaAgentJob command has a -Category parameter. Use that to find all
the jobs on an instance in a category. You can use the Get-DbaAgentJobCategory
command to list the categories.

253Listing SQL Server Agent information

19.1.2 SQL Server Agent alerts

Another function of the SQL Server Agent is to fire an alert. An alert is an automated
response given when the application log has an event written to it, a performance
counter exceeds a threshold, or a Windows Management Instrumentation (WMI)
event is triggered. It is common for DBAs to set up alerts for SQL Server error log
entries with a severity of 17 and above to notify them about severe issues with the
instance. Table 19.1 shows details of various severity levels.

Let’s view all of the alerts on a single instance with Get-DbaAgentAlert, as shown in
the following listing.

PS> Get-DbaAgentAlert -SqlInstance SQL01

ComputerName : SQL01
SqlInstance : SQL01
InstanceName : MSSQLSERVER
Name : Severity 017
ID : 41
JobName :
AlertType : SqlServerEvent
CategoryName : [Uncategorized]
Severity : 17
IsEnabled : True
DelayBetweenResponses : 60
LastRaised : 2019-12-28 09:39:33.000
OccurrenceCount : 1

ComputerName : SQL01
SqlInstance : SQL01

Table 19.1 SQL Server error log severity levels

Severity level Meaning

17 Insufficient resources

18 Nonfatal internal error detected

19 SQL Server error in resource

20 SQL Server fatal error in current process

21 SQL Server fatal error in database (dbid) process

22 SQL Server fatal error: table integrity suspect

23 SQL Server fatal error: database integrity suspect

24 Hardware error

25 (no description)

Listing 19.3 Getting the list of Agent alerts

B

254 CHAPTER 19 SQL Server Agent administration

InstanceName : MSSQLSERVER
Name : Severity 018
ID : 42
JobName :
AlertType : SqlServerEvent
CategoryName : [Uncategorized]
Severity : 18
IsEnabled : True
DelayBetweenResponses : 60
LastRaised : 0001-01-01 00:00:00.000
OccurrenceCount : 0

Get-DbaAgentAlert answers the question, “What alerts are enabled on this instance?”
Listing 19.3 shows how you can also identify the last time that an alert was raised B.

 You can expect that a follow-up question might be, “When was the last time there
was an alert?” In T-SQL, you can identify the alerts that have been triggered by filter-
ing on the last_occurrence_date column. You do this by selecting the column from
the table where the column is not zero, as seen in the next code sample.

SELECT name FROM msdb..sysalerts WHERE last_occurrence_date <> 0

You have to do a little more work when you do this with PowerShell because of the
default value for LastRaised. As you saw in listing 19.3, it is a peculiar date C! To be
able to filter on the LastRaised property, you need to create a DateTime object, which
you will use to filter the alerts, and finally, you will select the required property. You
will get the alerts filter where the property is not equal to the datetime object, and
then select the property, as shown here.

PS> $NotRaised = Get-Date -Date '01-01-0001 00:00:00'
Get-DbaAgentAlert -SqlInstance SQL01 |
Where-Object LastRaised -ne $NotRaised

ComputerName : SQL01
SqlInstance : SQL01
InstanceName : MSSQLSERVER
Name : Severity 017
ID : 41
JobName :
AlertType : SqlServerEvent
CategoryName : [Uncategorized]
Severity : 17
IsEnabled : True
DelayBetweenResponses : 60
LastRaised : 2019-12-28 09:39:33.000
OccurrenceCount : 1

Listing 19.4 Using T-SQL to get the name of existing alerts that had an occurrence

Listing 19.5 Getting alerts that had occurrences

C

255Listing SQL Server Agent information

SQL SERVER OPERATORS

When discussing the alerts that exist on a system, you will also be interested in who will
receive the alert. Notifying the correct people or systems responsible for any given
type of alert is important, and operators enable this functionality.

 An operator has an email sent when a SQL Server raises an alert. SQL Server oper-
ators are objects that represent the user accounts or groups that are going to receive
the alerts. The email address for an operator is the destination email address for the
email sent when the alert is raised.

 When you need to list the operators for one or many instances, you can use Get-
DbaOperator. Hopefully, by now, you can actually predict the syntax that will be used.
Let’s list all of the operators on an instance, as shown next.

PS> Get-DbaAgentOperator -SqlInstance SQL01

ComputerName : SQL01
SqlInstance : SQL01
InstanceName : MSSQLSERVER
Name : DBA Team
ID : 1
IsEnabled : True
EmailAddress : dbateam@ad.local
LastEmail : 2019-12-28 09:39:33.000

Listing 19.6 shows a single operator for this instance, named DBA Team B. You can
see that it is enabled C and has an email address of dbateam@ad.localD. You can
also see the last time an operator had an email sent E.

SQL SERVER PROXIES

A SQL Server proxy account restricts the security context in which a SQL Server
Agent job runs to the privileges of a credential that maps to a Windows user account.
DBAs are then able to set up accounts that can run the Agent job but do not have fur-
ther administrative permissions on the instance. As a DBA, you will want to list the
proxies on an instance and identify the credentials linked to the proxies. This is often
required when you need to understand which account requires access to a resource,
such as a network share or a SQL database.

You can use a dbatools command to map the proxies to the credential. Instead of
walking you through this, we are going to ask you to use the lessons you have learned
so far in the book.

Listing 19.6 Getting Agent operators

B

C
D

E

Try it now 19.3
Use Find-DbaCommand to find the dbatools command to list the proxies. Use Get-
Help to find how to use the command to list the operators, and then list the proxies
on your instance.

256 CHAPTER 19 SQL Server Agent administration

19.1.3 Finding specific Agent jobs

A large number of instances comes with a large number of Agent jobs. Other profession-
als expect a comprehensive knowledge of the estate the DBA administers, but remem-
bering which instance has a particular job can be tricky, even for the best. dbatools
enables you to give the illusion of having that knowledge with the Find-DbaAgentJob
command.

 Suppose that your company is responsible for processing data for a client who has
many factories. The client is going to change the location of the FTP site that they use
to transfer data to your company. You are the DBA, and the project manager asks you
to provide the SQL Server instances that are processing that data and the Agent job
names so that you can organize updating the jobs to use the new location. Let’s find
those Agent jobs with Find-DbaAgentJob, as shown in the following listing.

PS> $instances = "SQL01","SQL02","SQL03","SQL04","SQL05"
PS> Find-DbaAgentJob -SqlInstance $instances -JobName *FTP*

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Name : Load data from PastaFactory FTP
Category : DataLoad
OwnerLoginName : OldSa
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 03/01/2020 09:40:44
LastRunOutcome : Succeeded
DateCreated : 03/01/2009 21:40:44
HasSchedule : True
OperatorToEmail :
CreateDate : 03/01/2009 21:40:44

ComputerName : SQL05
InstanceName : MSSQLSERVER
SqlInstance : SQL05
Name : Load data from SauceFactory FTP
Category : DataLoad
OwnerLoginName : OldSa
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 03/01/2020 08:40:44
LastRunOutcome : Succeeded
DateCreated : 03/01/2009 21:42:18
HasSchedule : True
OperatorToEmail :
CreateDate : 03/01/2009 21:42:18

Listing 19.7 Finding Agent jobs with FTP in their name on multiple instances

257Listing SQL Server Agent information

You will notice in listing 19.7 that when searching with Find-DbaAgentJob, the search
term has a * before and after the search term. The * is a wildcard symbol, the same as
%, if you are used to T-SQL.

 In large estates with a large team supporting the SQL Server estate, it is easy to lose
track of the status of Agent jobs. You want to know that your Agent jobs that back up
your databases have a schedule, for example, or that after a maintenance window,
someone had reenabled a vital data-loading Agent job. You can use additional param-
eters for Find-DbaAgentJob to easily find these jobs.

 You are a senior DBA, and you want to quickly ensure that all of the jobs that will
check the integrity of your production databases have a schedule so that you have
peace of mind before your annual vacation. The next listing shows an example of the
results that you will receive if there is a single Agent job without a schedule. You can
quickly set the schedule for the one missing job and go on vacation happily.

PS> $splatFindAgentJob = @{
SqlInstance = 'SQL01','SQL02','SQL03','SQL04','SQL05'
JobName = "*Integrity*"
IsNotScheduled = $true

}
PS> Find-DbaAgentJob @splatFindAgentJob

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : DatabaseIntegrityCheck - USER_DATABASES
Category : Database Maintenance
OwnerLoginName : OldSa
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 27/12/2019 07:34:56
LastRunOutcome : Succeeded
DateCreated : 04/12/2019 12:28:18
HasSchedule : False
OperatorToEmail :
CreateDate : 04/12/2019 12:28:18

Now that you know how to return information about the Agent on your estate, the
most crucial information that you will want to retrieve is the Agent job results.

Listing 19.8 Finding Agent jobs without a schedule

Try it now 19.4
Use Get-Help to find the parameters to use for disabled jobs and jobs without
notifications.

258 CHAPTER 19 SQL Server Agent administration

19.2 Agent job results and history
Why have we ordered this chapter in this way? We can hear people shouting that the
results of the Agent jobs are the most important aspect. Why have we chosen to discuss
it later in the chapter?

 The msdb database holds information about the Agent job outcomes and can have
a significant amount of data in it. With any large dataset, you will want to filter the
results as early as possible to improve performance. With T-SQL, you would do this
with a WHERE clause, and the SQL engine will, as long as there are indexes that can fil-
ter for that clause, return only the rows that match.

 PowerShell does not work in the same way. You can use Where-Object in the pipe-
line to filter output as we discussed in chapter 5, but PowerShell will get all of the
results and then pass them through the pipeline to the Where-Object.

 We recommend that you filter the results so that they are easier to manage and
quicker to provide meaningful information. One way that you can do this is to use
Get-DbaAgentJob to filter by job name or category as described in the SQL Server
Agent jobs section (section 19.1.1). Another method is to use Find-DbaAgentJob to
filter by time with the -Since parameter.

19.2.1 Agent job results
When you arrive at work in the morning, the first, most crucial information that you
want to see as a DBA is the results of last night’s Agent jobs. If you have a large estate,
you probably already have a monitoring system or report set up to provide this infor-
mation. Let’s return to the earlier scenario with Agent jobs that had the FTP site altered.
In the morning, after the change overnight, you would want to know that the jobs had
succeeded. You use the following code to find the FTP jobs and select the outcome.

PS> Find-DbaAgentJob -SqlInstance $instances -JobName *ftp* |
Select SqlInstance, JobName, LastRunDate, LastRunOutcome

SqlInstance JobName LastRunDate LastRunOutcome
----------- ------- ----------- --------------
SQL02 Load data from PastaFactory FTP 03/01/2020 04:38:12 Succeeded
SQL03 Load data from PizzaFactory FTP 03/01/2020 04:38:13 Succeeded
SQL04 Load data from SausageFactory... 03/01/2020 04:38:14 Succeeded
SQL05 Load data from SauceFactory... 03/01/2020 04:38:15 Succeeded

You are happy with that result because it shows that all of the FTP jobs have suc-
ceeded, but you also want to check that the jobs used the correct FTP site, the new
one. You want to check the job history, as follows.

PS> $midnight = [datetime]::Today
PS> Find-DbaAgentJob -SqlInstance $instances -JobName *ftp* |
Get-DbaAgentJobHistory -StartDate $midnight

Listing 19.9 Returning the last run and outcome for jobs with FTP in their name

Listing 19.10 Returning the history of all jobs with FTP in their name

259Agent job results and history

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Job : Load data from PastaFactory FTP
StepName : (Job outcome)
RunDate : 03/01/2020 04:38:12
StartDate : 2020-01-03 04:38:12.000
EndDate : 2020-01-03 04:38:12.000
Duration : 12456 ms
Status : Succeeded
OperatorEmailed :
Message : The job succeeded. The last step to run was step 1 (Lo...

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Job : Load data from PastaFactory FTP
StepName : Load from FTP
RunDate : 03/01/2020 14:38:12
StartDate : 2020-01-03 14:38:12.000
EndDate : 2020-01-03 14:58:12.000
Duration : 12456 ms
Status : Succeeded
OperatorEmailed :
Message : Executed as user: ad\sqlsvc. Connecting to FTP site ft...

When you examine the Message property, you see that the output of the job shows
that the new FTP site, ftp.pastafactory.it, has been used. You can also see the duration
of each job step.

 You can use Get-DbaAgentJobHistory to return the history of Agent jobs.
Remember that this can be a significant amount of data. We strongly recommend that
you filter the jobs whose history you want to retrieve before piping to Get-
DbaAgentJobHistory and that you understand and use the -StartDate and -EndDate
parameters to filter the results.

19.2.2 Time line

It is useful to visualize the run times of Agent jobs to ensure that they are not compet-
ing for resources because they are running at the same time. Marcin Gminski has
enabled this for you. You will need to pipe four commands together to do this. Let’s
get the Agent job history for an instance for the last three days and create an HTML
report to show the times and duration as follows.

PS> $threeDaysAgo = [datetime]::Today.AddDays(-3)
PS> Find-DbaAgentJob -SqlInstance sql01 |
Get-DbaAgentJobHistory -StartDate $threeDaysAgo |
ConvertTo-DbaTimeline |
Out-File -FilePath c:\temp\jobs.html -Encoding ASCII

Listing 19.11 Generating a report for the Agent job history for the last three days

260 CHAPTER 19 SQL Server Agent administration

You have gathered all the Agent jobs on the instance, got the history of the jobs for
the last three days, converted that to a time line, and exported it to a file. It is essential
to notice that the file encoding needs to be specified as ASCII for this to work. To
examine the results and identify any issues, you open the file in a browser, as shown in
figure 19.2.

We think that this is not only useful but beautiful, too!
 You have learned a lot about administering SQL Server Agent in this chapter, from

gathering the information about the Agent and all of its properties to searching for
jobs and returning the outcome and the detailed history. Finally, you learned how to
create a time line for Agent job runs. The next chapter will concentrate on creating
and altering Agent jobs and the best way we have found to run dbatools commands via
the SQL Server Agent.

19.3 Hands-on lab
Try the following tasks

 Find jobs that have been disabled.
 Find jobs that have failed.

Figure 19.2 SQL Server Agent job time line

261

Creating and
 working with SQL

 Server Agent objects

In the previous chapter, you learned how to filter and retrieve information about a
SQL Server Agent. The responsibility of DBAs for a SQL Server Agent includes the
creation and alteration of SQL Server Agent objects. This chapter will provide you
with all of the tools to do this easily.

 Now that you are learning how useful and powerful dbatools is, you will also
want to know how to schedule the running of dbatools scripts with SQL Server
Agent jobs, and we will show you the most stable and robust method that we use to
do this.

20.1 SQL Server Agent job creation
In the previous chapter, you used Find-DbaCommand to find all of the dbatools com-
mands that interact with the Agent. Let’s search for all of the commands that you
can use to create or alter Agent objects. The PowerShell command Get-Command
returns commands you can filter by a module such as dbatools with the -Module
switch, by verb with the -Verb switch, and by noun with the -Noun switch. As you
can see in the next listing, the verbs that we use to create, alter, and remove are New,
Set, and Remove.

PS> Get-Command -Module dbatools -Verb New, Set, Remove -Noun *Agent*

CommandType Name Version Source
----------- ---- ------- ------
Function New-DbaAgentAlertCategory 1.1.50 dbatools
Function New-DbaAgentJob 1.1.50 dbatools
Function New-DbaAgentJobCategory 1.1.50 dbatools

Listing 20.1 Finding commands that create, alter, or remove Agent objects

262 CHAPTER 20 Creating and working with SQL Server Agent objects

Function New-DbaAgentJobStep 1.1.50 dbatools
Function New-DbaAgentProxy 1.1.50 dbatools
Function New-DbaAgentSchedule 1.1.50 dbatools
Function Remove-DbaAgentAlertCategory 1.1.50 dbatools
Function Remove-DbaAgentJob 1.1.50 dbatools
Function Remove-DbaAgentJobCategory 1.1.50 dbatools
Function Remove-DbaAgentJobStep 1.1.50 dbatools
Function Remove-DbaAgentSchedule 1.1.50 dbatools
Function Set-DbaAgentAlert 1.1.50 dbatools
Function Set-DbaAgentJob 1.1.50 dbatools
Function Set-DbaAgentJobCategory 1.1.50 dbatools
Function Set-DbaAgentJobOutputFile 1.1.50 dbatools
Function Set-DbaAgentJobOwner 1.1.50 dbatools
Function Set-DbaAgentJobStep 1.1.50 dbatools
Function Set-DbaAgentSchedule 1.1.50 dbatools
Function Set-DbaAgentServer 1.1.50 dbatools

You can find commands for any PowerShell module, not just for dbatools, with this
method. You have filtered the verbs by New, Set, and Remove, and the nouns for any
that contain Agent.

NOTE You may notice that we don’t have any commands that help manage
multiserver administration. We don’t use multiserver functionality ourselves,
and because of this, we have no plans to create commands that manage mas-
ter servers (MSX) and target servers (TSX), but we’re open to contributions
from the community if there is interest.

You now know all of the commands that you need to create a new SQL Server Agent
job. We will work through them and then put them together and write a new Agent
job to run dbatools scripts. This includes the following:

 Creating an Agent category
 Creating an Agent schedule
 Creating an Agent proxy
 Creating an Agent job
 Creating an Agent job step

20.1.1 Creating categories

Organizing SQL Server Agent jobs or alerts into categories enables easier administra-
tion for DBAs. Creating the same category on all of your instances will be a common
task. In the following code listing, we’ll create a new category for SQL Server Agent
jobs on an instance.

PS> New-DbaAgentJobCategory -SqlInstance SQL01 -Category PastaFactory

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01

Listing 20.2 Creating a new job category

263SQL Server Agent job creation

Name : PastaFactory
ID : 110
CategoryType : LocalJob
JobCount : 0

Always remember that the dbatools -SqlInstance parameter can take multiple SQL
Server instances, as you learned in chapter 4, so you can create Agent job categories
on all of the instances that you need to. The default type of category created is a local
job category B, as can be seen in listing 20.2. If you use multiserver job administra-
tion, you can use the parameter -CategoryType with the value MultiServerJob.

20.1.2 New schedule

The SQL Server Agent is a task scheduler, which you use to schedule your Agent jobs
to run at the frequency that you require. The most common frequency is to run a job
daily. Let’s create a schedule for running Agent jobs every day, just after midnight,
using the following code.

PS> $schedulesplat = @{
FrequencyType = "Daily"
SqlInstance = "SQL01"
Schedule = "Daily-Midnight"
Force = $true
StartTime = "000327"
FrequencyInterval = "Everyday"

}
PS> New-DbaAgentSchedule @schedulesplat

This code creates a new schedule, and you will note the -StartTime parameter B.
You supply this parameter with the time that the job will start in the 24-hour format,
HHMMSS. To avoid any contention of resources, we recommend providing a time
that is not a round number, like 000000 or 223000, to avoid contending with sched-
uled tasks created by other admins, both SQL and otherwise.

 Of course, we know that not every Agent job that you create will require a job that runs
daily. In the next listing, we’ll create a job schedule that runs on the first of every month.

PS> $schedulesplat = @{
FrequencyType = "Monthly"
SqlInstance = "SQL01"

Listing 20.3 Creating an Agent schedule for jobs to run daily at midnight

Listing 20.4 An Agent schedule for a job to run on the first of the month

B

Try it now 20.1
Creating a category for SQL Server job alerts is similar to creating them for jobs. Try
creating a new alert category for your instance with New-DbaAgentAlertCategory.

B

264 CHAPTER 20 Creating and working with SQL Server Agent objects

Schedule = "Monthly-1st-Midnight"
Force = $true
StartTime = "000248"
FrequencyInterval = 1

}
PS> New-DbaAgentSchedule @schedulesplat

Some jobs that we create as DBAs run every few minutes or hours, which requires sev-
eral different combinations of parameters for New-DbaAgentSchedule. We recom-
mend that for this command, you take a good look at the help when you use it. Even
the authors can’t remember all of the combinations!

 The industries that we work for can require that jobs run only during the work day.
There is not much point rolling up the sales data every 15 minutes if your sales team is
asleep! In the next listing, we create a new schedule for every 15 minutes during the
working week starting at 7 a.m. and finishing at 6 p.m. for the jobs across our estate
that process data and aggregate it. You have to use two extra parameters to do this:
-FrequencySubdayType and -FrequencySubdayInterval.

PS> $schedulesplat = @{
FrequencyType = "Weekly"
FrequencyInterval = "Weekdays"
SqlInstance = "SQL01"
Schedule = "WorkingWeek-Every-15-Minute"
Force = $true
StartTime = "070036"
EndTime = "180000"
FrequencySubdayInterval = 15
FrequencySubdayType = "Minutes"

}
PS> New-DbaAgentSchedule @schedulesplat

You use -FrequencySubdayType to set how frequently you want the job to run—you can
use seconds, minutes, and hours, as you would expect. If you have a job that needs to run
at a frequency that doesn’t easily or obviously fit into those parameters, you can use the
type Time. It is no surprise that -FrequencySubdayInterval is the number of periods
between executions of the job. We hope that it is obvious that for a -FrequencySubdayType
of Seconds, Minutes, or Hours, this will be a number. For the -FrequencySubdayType of
Time, you can provide a 24-hour format timespan, of HHMMSS. When you are required
to schedule a job every 6 hours and 33 minutes, you can use 063300. Okay, it might not
happen very often, but if that question comes up, you know the answer now.

20.1.3 New proxy

With a category and a schedule for the Agent job, you will next need the proxy to run
the Agent job. You create the proxy for a credential, as we explained in the previous
chapter.

Listing 20.5 Creating an Agent schedule to run every 15 minutes during the week

265SQL Server Agent job creation

 Proxies enable DBAs to provide the least privileges possible to perform a task. Let’s
create a credential and a proxy to run Agent jobs for processing the data for our facto-
ries, as shown in the next code sample. This proxy will be able to run only CmdExec
steps.

create credential object for the user for the credential
PS> $credential = Get-Credential -Message "Enter the Username and
Password for the credential"
Create a new SQL credential
PS> $credsplat = @{

SqlInstance = "SQL01"
SecurePassword = $credential.Password
Name = "FactoryProcess"
Identity = $credential.UserName

}
PS> New-DbaCredential @credsplat

Create a new Proxy
PS> $proxysplat = @{

SqlInstance = "SQL01"
ProxyCredential = "FactoryProcess"
Name = "FactoryProcess"
Description = "Proxy account to run the Factory processing using the

ad\FactoryProcesss account"
SubSystem = "CmdExec"

}

PS> New-DbaAgentProxy @proxysplat
Windows PowerShell credential request.
Enter the Username and Password for the credential
User: ad\FactoryProcesss
Password for user ad\FactoryProcesss: **********

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : FactoryProcess
Identity : ad\FactoryProcesss
CreateDate : 06/01/2020 14:14:46
MappedClassType : None
ProviderName :

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
ID : 5
Name : FactoryProcess
CredentialName : FactoryProcess
CredentialIdentity : ad\FactoryProcesss

Listing 20.6 Creating a new credential and associated Agent proxy

266 CHAPTER 20 Creating and working with SQL Server Agent objects

Description : Proxy account to run the Factory processing using
the ad\FactoryProcesss account

Logins : {}
ServerRoles : {}
MsdbRoles : {}
SubSystems : {CmdExec}
IsEnabled : True

You will have to provide the password for the ad\FactoryProcess account when you run
this code, or, as we discussed in chapter 4, you can provide it in another secure man-
ner, such as retrieving it from a secret management solution like Azure Key Vault.

 Now you have all of the requirements to create a new Agent job to run your dba-
tools commands. Before you learn the best method to do this, we will cover the basics
of creating a new Agent job.

20.1.4 Create a new operator

If we want to receive notifications when a job has completed or alerts have been
raised, we need to create an operator, which later can be assigned to our job. Let’s cre-
ate an operator named DBA Team that will receive a notification by email that will
arrive on operator@dbateam.com mailbox, as shown in the next listing.

PS> $operatorSplat = @{
SqlInstance = "SQL01"
Operator = "DBA Team"
EmailAddress = "operator@dbateam.com"

}
PS> New-DbaAgentOperator @operatorSplat

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : DBA Team
ID : 1
IsEnabled : True
EmailAddress : operator@dbateam.com
LastEmail : 0001-01-01 00:00:00.000

20.1.5 Create a new Agent job

Writing scripts to create new SQL Server Agent jobs reduces the risk of manual errors
and enables automation. For our client with the factories, we need to create an Agent
job to run every three hours that will process the clients’ sales data and aggregate it.
We’ve used the New-DbaAgentSchedule command to create a new schedule called
WorkingWeek-Every-3-Hours for scheduling this job already, and in the following list-
ing, we’ll create a new Agent job and associate it with the needed schedule.

Listing 20.7 Creating a new Agent operator

267SQL Server Agent job creation

PS> $jobsplat = @{
SqlInstance = "SQL01"
Description = "This Job processes all of the Italian factories sales

data in the FactorySales database and creates all of the aggregations.
Contact G Sartori for questions."

Category = "PastaFactory"
EmailOperator = "DBA Team"
Job = "Factory Data Processing"
Schedule = "WorkingWeek-Every-3-Hours"
EventLogLevel = "OnFailure"
EmailLevel = "OnFailure"
OwnerLogin = "ad\FactoryProcesss"

}
PS> New-DbaAgentJob @jobsplat

ComputerName : SQL01
InstanceName : MSSQLSERVER
SqlInstance : SQL01
Name : Factory Data Processing
Category : PastaFactory
OwnerLoginName : ad\FactoryProcesss
CurrentRunStatus : Idle
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 01/01/0001 00:00:00
LastRunOutcome : Unknown
HasSchedule : True
OperatorToEmail : DBA Team
CreateDate : 06/01/2020 14:35:09

Parent : [SQL01]
Category : PastaFactory
CategoryType : 1
CurrentRunRetryAttempt : 0
CurrentRunStatus : Idle
CurrentRunStep : 0 (unknown)
DateCreated : 06/01/2020 14:35:09
DateLastModified : 06/01/2020 14:35:09
DeleteLevel : Never
Description : This Job processes all of the Italian factories
sales data in the FactorySales database and creates all of the
aggregrations. Contact G Sartori or the current DBA lead for questions.
EmailLevel : OnFailure
EventLogLevel : OnFailure
HasSchedule : True
HasServer : True
HasStep : False
IsEnabled : True

So, we’ve created the job, but right now, it is useless! The missing part of the puzzle is
the job steps. For the job that processes the factories’ sales data, we’ll need to add job

Listing 20.8 Creating a new Agent job

268 CHAPTER 20 Creating and working with SQL Server Agent objects

steps to run the T-SQL to call the relevant stored procedures for each of the factories.
This is accomplished using the next code.

PS> $stepcommand = 'EXEC Process_Factory_Sales @Factory="Pasta"'
PS> $stepsplat = @{

StepId = 1
Subsystem = "TransactSql"
SqlInstance = "SQL01"
StepName = "Process Pasta Factory Data"
OnSuccessAction = "GoToNextStep"
Job = "Factory Data Processing"
Command = $stepcommand
OnFailAction = "QuitWithFailure"
Database = "FactorySales"

}
PS> New-DbaAgentJobStep @stepsplat

PS> $stepcommand = 'EXEC Process_Factory_Sales @Factory="Pizza"'
PS> $stepsplat = @{

StepId = 2
Subsystem = "TransactSql"
SqlInstance = "SQL01"
StepName = "Process Pizza Factory Data"
OnSuccessAction = "GoToNextStep"
Job = "Factory Data Processing"
Command = $stepcommand
OnFailAction = "QuitWithFailure"
Database = "FactorySales"

}
PS> New-DbaAgentJobStep @stepsplat

PS> $stepcommand = 'EXEC Process_Factory_Sales @Factory="Sausage"'
PS> $stepsplat = @{

StepId = 3
Subsystem = "TransactSql"
SqlInstance = "SQL01"
StepName = "Process Sausage Factory Data"
OnSuccessAction = "GoToNextStep"
Job = "Factory Data Processing"
Command = $stepcommand
OnFailAction = "QuitWithFailure"
Database = "FactorySales"

}
PS> New-DbaAgentJobStep @stepsplat

PS> $stepcommand = 'EXEC Process_Factory_Sales @Factory="Sauce"'
PS> $stepsplat = @{

StepId = 4
Subsystem = "TransactSql"
SqlInstance = "SQL01"
StepName = "Process Sauce Factory Data"
OnSuccessAction = "QuitWithSuccess"

Listing 20.9 Creating a new Agent job step

269SQL Server Agent job creation

Job = "Factory Data Processing"
Command = $stepcommand
OnFailAction = "QuitWithFailure"
Database = "FactorySales"

}
PS> New-DbaAgentJobStep @stepsplat

As you may know from creating Agent job steps via the GUI or T-SQL, you can control
how the job can proceed through the job steps using the -OnSuccessAction and
-OnFailAction parameters. It is essential to specify the -StepId parameter when cre-
ating multiple job steps because, by default, the job step is created as the first job step.
That means that if you do not specify the job step, the last job step you generate will
be the first. You can see this in action in listing 20.9 and can confirm that your steps
are in order by executing Get-DbaAgentJobStep, as shown in the next listing.

PS> $splatGetJobStep = @{
SqlInstance = "SQL01"
Job = "Factory Data Processing"

}
PS> Get-DbaAgentJobStep @splatGetJobStep | Format-Table

ComputerName InstanceName SqlInstance AgentJob Name SubS...
------------ ------------ ----------- -------- ---- ----...
SQL01 MSSQLSERVER SQL01 Factory Data... Pasta Fa... Tran...
SQL01 MSSQLSERVER SQL01 Factory Data... Pizza Fa... Tran...
SQL01 MSSQLSERVER SQL01 Factory Data... Sausage ... Tran...
SQL01 MSSQLSERVER SQL01 Factory Data... Sauce Fa... Tran...

Now that you have learned how to create all the relevant parts of a SQL Server Agent
job, we can move on to scheduling dbatools scripts using the SQL Server Agent.

20.1.6 The job step

You learned in chapter 17 that the best job step type for PowerShell is CmdExec. You
also learned the process to write robust and stable code for your Agent jobs. To use
PowerShell to run the file that you saved, we’ll call powershell.exe as shown here.

powershell.exe -File S:\scheduled\pastaprocess.ps1

Listing 20.10 Creating a new Agent schedule

Listing 20.11 Calling a PowerShell file

Try it now 20.2
Add a new agent job step to a job with New-DbaAgentJobStep, and use the -Insert
parameter to add the step between the first and second job steps.

270 CHAPTER 20 Creating and working with SQL Server Agent objects

Depending on the location of the file, the path can either be a local path on the
instance running the Agent job or a UNC file share. Remember to ensure that you
have the correct permissions and access for the proxy account from the SQL Server
instance running the Agent job.

 As the following code listing demonstrates, you can now bring all that you have
learned in this chapter to create a SQL Server Agent job to run the PowerShell script
that will copy the logins.

PS> $jobname = "Copy logins from model"
PS> $jobsplat = @{

SqlInstance = "SQL02"
Category = "DBA-Model"
Description = "Copies logins from the model instance to this instance"
OwnerLogin = "ad\DBA"
Job = $jobname
EmailOperator = "DBA Team"
Schedule = "Daily-Midnight"
EventLogLevel = "OnFailure"
EmailLevel = "OnFailure"
Force = $true

}
PS> New-DbaAgentJob @jobsplat

PS> $command = "powershell.exe -File C:\AgentScripts\CopyFromModel.ps1"
PS> $stepsplat = @{

SqlInstance = "SQL02"
Subsystem = "CmdExec"
Command = $command
StepName = "Copy Logins"
Job = $jobname
ProxyName = "PowerShell Proxy"
Flag = "AppendAllCmdExecOutputToJobHistory"

}
PS> New-DbaAgentJobStep @stepsplat

You may notice an extra parameter called -Flag passed to New-DbaAgentJobStep B.
Passing the value AppendAllCmdExecOutputToJobHistory will add the output from
the script to the Agent job history.

 Once you’ve created and executed your jobs, you can view their history by using
Get-DbaAgentJobHistory, as shown in listing 20.16.

20.2 Bonus Agent job commands
Now that you’ve created a new job, we’ll cover three additional commands that we
find super useful when working with SQL Server Agent.

Listing 20.12 Creating a new Agent job and job step

B

271Bonus Agent job commands

20.2.1 Start-DbaAgentJob

One of our favorite applications for this is starting backup jobs across a couple
instances right before a big migration. In the next listing, we’ll start some factory data
processing on two SQL Server instances. This saves us a ton of time because we don’t
have to manually traverse each SQL Server in SSMS, then right-click and start the
desired jobs.

PS> $splatGetJob = @{
SqlInstance = "SQL02", "SQL2017N20"
Job = "Factory Data Processing"

}
PS> Get-DbaAgentJob @splatGetJob | Start-DbaAgentJob

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Name : Factory Data Processing
Category : PastaFactory
OwnerLoginName : ad\DBA
CurrentRunStatus : Executing
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 8/21/2020 4:14:02 AM
LastRunOutcome : Succeeded
HasSchedule : False
OperatorToEmail :
CreateDate : 8/21/2020 12:15:40 AM

ComputerName : SQL2017N20
InstanceName : MSSQLSERVER
SqlInstance : SQL2017N20
Name : Factory Data Processing
Category : PastaFactory
OwnerLoginName : ad\DBA
CurrentRunStatus : Executing
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 8/21/2020 4:14:02 AM
LastRunOutcome : Succeeded
HasSchedule : False
OperatorToEmail :
CreateDate : 8/21/2020 12:15:40 AM

You’ll notice the output is returned immediately and the CurrentRunStatus is Exe-
cuting. If you’d like to wait until the job has completed to return the result, use -Wait
and -WaitPeriod.

Listing 20.13 Starting Agent jobs

272 CHAPTER 20 Creating and working with SQL Server Agent objects

20.2.2 Get-DbaRunningJob

To easily see every job currently running across your estate, use Get-DbaRunningJob.
This is one of our favorite commands because it quickly gives us an idea of what’s
going on with running jobs, especially when it’s used with Get-DbaRegisteredServer
as shown in the next code listing.

PS> Get-DbaRegisteredServer | Get-DbaRunningJob

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Name : Factory Data Processing
Category : PastaFactory
OwnerLoginName : ad\DBA
CurrentRunStatus : Executing
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 8/21/2020 4:14:02 AM
LastRunOutcome : Succeeded
HasSchedule : False
OperatorToEmail :
CreateDate : 8/21/2020 12:15:40 AM

ComputerName : SQL2017N20
InstanceName : MSSQLSERVER
SqlInstance : SQL2017N20
Name : DatabaseBackup - USER_DATABASES - DIFF
Category : Database Maintenance
OwnerLoginName : ad\DBA
CurrentRunStatus : Executing
CurrentRunRetryAttempt : 0
Enabled : True
LastRunDate : 8/21/2020 1:00:00 AM
LastRunOutcome : Succeeded
HasSchedule : False
OperatorToEmail :
CreateDate : 8/21/2020 12:15:40 AM

Of course, you can also do this using explicitly specified servers, as shown next.

PS> Get-DbaRunningJob -SqlInstance SQL02, SQL2017N20

Because the results are Agent job objects, you can pipe them to other commands,
such as Stop-DbaAgentJob. We saved ourselves with this in an emergency, when some
resource-intensive jobs were accidentally kicked off during peak hours.

Listing 20.14 Finding all running jobs using Registered Servers

Listing 20.15 Finding all running jobs using -SqlInstance

273Hands-on lab

20.2.3 Get-DbaAgentJobHistory

And now you can view your Agent job history, as shown here.

PS> $splatGetJobHist = @{
SqlInstance = "SQL02"
Job = "Copy logins from model"

}
PS> Get-DbaAgentJobHistory @splatGetJobHist

ComputerName : SQL02
InstanceName : MSSQLSERVER
SqlInstance : SQL02
Job : Copy logins from model
StepName : Copy Logins
RunDate : 07/01/2020 09:49:50
StartDate : 2020-01-07 09:49:50.000
EndDate : 2020-01-07 09:51:33.000
Duration : 00:01:43
Status :
OperatorEmailed :
Message : Succeeded -

Type Name Status Not...
---- ---- ------ ---...
Login - SqlLogin dbachecks Skipped Alr...
Login - SqlLogin SartoriSauce Successful
Login - SqlLogin PastaFactory Successful
Login - WindowsGroup ad\DBA Team Successful

Note that this command queries your msdb database, and if you have a large number
of rows, the results may take a moment to return.

 You have learned a lot in this chapter. You can use this knowledge to schedule any
of the dbatools commands and scripts that you read in this book or on blog posts, or
write yourself.

20.3 Hands-on lab
Try the following tasks:

 Create a schedule that runs jobs every day at 6 a.m.
 View the job history on multiple SQL instances.
 Find all jobs that are currently running within your estate.
 Use Get-Help Start-DbaAgent with the -Parameter parameter to get more

information about -Wait and -WaitPeriod.

Listing 20.16 Getting the Agent history

274

Data masking

Data protection is heavily regulated in many countries, and failing to protect cer-
tain types of data may break national and international laws, such as the GDPR in
the European Union and HIPAA in the United States. For these laws and many
additional reasons, one of the most important duties of a DBA is preventing data
leaks.

 SQL Server implements many security principles, like authentication and
authorization, to help protect data from unauthorized access, but these measures
can be bypassed when databases are moved from production to other environ-
ments, such as development and testing, or when databases are given to vendors for
troubleshooting.

 To reduce the potential for data breaches when sharing databases that contain
sensitive data, we must consider protecting data privacy by replacing any personally
identifiable information (PII) with fabricated data, while also keeping the resulting
data meaningful to the consuming applications or test suites. PII includes, but is not
limited to, name, birth date, passport number, home address, and phone number.

 In this chapter, we will focus on static data masking. This is the process of perma-
nently replacing sensitive data at rest with new values by updating the data in our
database.

NOTE SQL Server has a feature called Dynamic Data Masking, which
replaces data in transit, so the actual data is not modified. This is not what
dbatools offers, so it won’t be covered here. To reiterate, data masking in
the dbatools context is about the anonymization of the data, also known as
static data masking, which is the process of replacing sensitive data in its
entirety.

275A common approach

First, we’ll share the options that dbatools offers to help identify and mask our data.
Then, we’ll show how we would generate masking configurations and apply them
against a database that contains PII. Finally, we’ll demonstrate how these configura-
tions can be saved to make the process easily repeatable. Easily repeatable processes
not only increase the chances that you’ll protect your data each time it’s exported, but
they also make it possible to automate within a CI/CD pipeline.

 In this chapter, we will address a few key dbatools commands, as shown in table 21.1.

21.1 Getting started
You can find the commands dbatools offers for dealing with this topic by executing
the command shown next.

Find-DbaCommand DataMasking

21.2 A common approach
Sometimes, if we’re lucky, the development team that designs the database also cre-
ates scripts to run some update statements to scramble the data. However, other times,
the dev teams don’t create these scripts at all, or we are required to work with third-
party software that also lacks this functionality. In these cases, we may not be familiar
with the database schema, but we still want to mask the data before handing over a
copy of the database to others.

 One common approach to this problem is to update data based on a simple pat-
tern or several patterns. So, for instance, you might use a T-SQL script to update the
values of two columns, such as the following:

Table 21.1 Key data masking commands

Command Description

Get-DbaRandomizedValue Generates random values for various data types

Get-DbaRandomizedType Displays a dictionary of randomized types and subtypes (e.g.,
internet and email) available within our masking suite

Invoke-DbaDbPiiScan Helps figure out which columns may potentially contain PII

New-DbaDbMaskingConfig Simplifies the generation of data masking configuration files

Invoke-DbaDbDataMasking Masks data by using randomized values determined by a config-
uration file and a randomizer framework

Test-DbaDbDataMaskingConfig Tests masking configuration files to ensure they are valid and
consumable

Listing 21.1 Finding command names that contain DataMasking

276 CHAPTER 21 Data masking

 All “T” chars will become “D,” so if we had a “Tom” on the FirstName column,
these will become “Dom.”

 Phone numbers will be doubled, and then the first nine digits of that number
will be used in place of the original. The phone number “987654321,” for
example, would become “197530864.”

You can see a simple T-SQL based example of this in the next listing.

UPDATE dbo.Person
SET FirstName = REPLACE(FirstName, 'T', 'D').

PhoneNumber = LEFT(PhoneNumber*2, 9)

The data will be easy to reverse if you know the pattern, of course. Although this may
be convenient for our developers, it’s also convenient for bad actors who are eager to
steal our data. Further, if the data changes over time, these patterns may fail or not
apply to new data. If the database is upgraded and gets new tables with new sensitive
data, you would have to validate the new entries one by one to determine whether
they are PII data that should be masked.

21.3 The better approach
Instead of the previously mentioned, simple update approach, we should aim to
replace the real data with entirely fabricated data. dbatools makes it easy to create ran-
domly generated data and use that new data to update any records containing PII. This
is an easier and more sustainable approach to masking the data. Also, because we don’t
use fixed patterns, it’s much harder (or even impossible) to reverse engineer the data.

21.3.1 Generating random data

Within dbatools, we use a mix of two approaches to generate random data, depending
on the pattern of the data that you want to mask. For simple SQL Server data types,
like the types shown in table 21.2, we just generate a new random value.

For more complicated or specific types of data, such as data formatted as emails, first
names, IP addresses, and phone numbers, dbatools relies on the Bogus framework
(sqlps.io/bogus), which is a well-known “fake data” generator for .NET. We’ve even

Listing 21.2 Simple masking of phone number and first name

Table 21.2 Sample data types

Type Description

Number int, tinyint, smallint, bigint

Dates time, smalldatetime, datetime, datetime2

Text char, varchar, nvarchar

https://github.com/bchavez/bogus

277The process

brought the functionality of the Bogus framework to PowerShell within the Get-
DbaRandomizedValue command, which allows you to easily generate random data ad
hoc, as shown next.

PS> # Generate a random datetime value for the year 2021
PS> $splatGetRandValueDT = @{

Datatype = "datetime"
Min = "2021-01-01"
Max = "2021-12-31 23:59:59"

}
PS> Get-DbaRandomizedValue @splatGetRandValueDT

PS> # Generate a random IP value
PS> $splatGetRandValueIP = @{

RandomizerType = "Internet"
RandomizerSubType = "IP"

}
PS> Get-DbaRandomizedValue @splatGetRandValueIP

In the first command in listing 21.3, we passed a valid SQL Server data type to the
-Datatype parameter, which then returned a random value for that type. In the second,
more advanced example, we specified the -RandomizerType and -RandomizerSubType
parameters, which then generated an IP address. This was accomplished by specifying
Internet as the primary type and IP as the subtype.

 In addition to “faking” IP addresses, our masking commands can generate numerous
randomized data combinations that help create fabricated data. To see the extensive list
of options, you can use both Get-DbaRandomizedType and Get-DbaRandomizedValue to
see what’s available.

21.4 The process
Now that you know a little more about the way dbatools generates randomized data,
let’s look how we use those techniques to help simplify the masking of data.

21.4.1 Finding potential PII data

When attempting to mask our own data, we realized that finding PII data using T-SQL
or SSMS was a tedious, manual process. In response, we created the command
Invoke-DbaDbPiiScan, which makes it easy to find most PII data. The approach used

Listing 21.3 Generating random data ad hoc

Try it now 21.1
Explore the Get-DbaRandomizedType command by running it with and without
parameters. Check which options you have, then use some of these combinations to
run the Get-DbaRandomizedValue command again to generate different random
data.

278 CHAPTER 21 Data masking

in this command was to both examine column name hints and perform pattern recog-
nition within the data. You can see just how easy it is to find PII data with Invoke-
DbaDbPiiScan in the next code listing.

PS> Invoke-DbaDbPiiScan -SqlInstance mssql1 -Database AdventureWorks

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Database : AdventureWorks
Schema : SalesLT
Table : Customer
Column : EmailAddress
PII-Category : Communication
PII-Name : E-mail
FoundWith : KnownName
MaskingType : Internet
MaskingSubType : Email
Pattern : {(\w*)(?i)(email|e-mail|mail)(\w*),

^(?:(?!invalid).)*email(?!\w*ID)}

You can see that, within the example in listing 21.4, the PII data of Email subtype was
discovered by the column name.

 In the event that Invoke-DbaDbPiiScan can’t determine likely PII data by the col-
umn name, it uses pattern matching instead. We can observe pattern matching in
action when we change the column name EmailAddress to a less-obvious name, such
as EAddress. In the following code snippet, we see that Invoke-DbaDbPiiScan no lon-
ger finds the PII by using the column name but rather by matching a preset regular
expression pattern.

PS> Invoke-DbaDbPiiScan -SqlInstance mssql1 -Database AdventureWorks

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Database : AdventureWorks
Schema : SalesLT
Table : Customer
Column : EAddress
PII-Category : Communication
PII-Name : E-mail
FoundWith : Pattern
MaskingType : Internet
MaskingSubType : Email
Country : All

Listing 21.4 Example output of Invoke-DbaDbPiiScan

Listing 21.5 Example output of finding results using patterns

The category in which this table data belongs

The name of the PII data type

The way it was found—KnownName
file in this case; can also be from the
Pattern file

The masking type

The masking subtype
The pattern used to infer
that, given the column
name, the data will likely
contain email addresses

B

C
D

E

279The process

CountryCode : All
Pattern : \b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,6}\b
Description :

Within the results, we can see that the data within a column named EAddress B
matched a pattern C of an email that was checked by using the regular expression F.
The regular expression pattern helped to infer that the masking type was Internet D
and the masking subtype was Email E.

 By default, Invoke-DbaDbPiiScan samples the first 100 records to determine the
type of data it contains. If you want to include more or fewer rows to try to find the
pattern recognition, you can leverage the -SampleCount parameter to specify a differ-
ent amount of records to be analyzed, as shown next.

PS> Invoke-DbaDbPiiScan -SqlInstance mssql1 -Database AdventureWorks

➥ -SampleCount 200

We’ve found that sampling as few as 10 rows works well enough, but higher sampling
rates return more accurate results. The downside to sampling a higher number of
rows is that the analysis will take more time to complete. That amount of time is
dependent on the type of data and the resources available to process the sampling.

21.4.2 Generating a configuration file for masking

Now that you know how to identify which tables and columns have PII data, you’ll
likely want to save the results of this test so that you can repeat the masking process on
a regular basis. You can do this using the New-DbaDbMaskingConfig command, which
generates a human-readable file that is easy to modify. But, before we check the JSON
file structure generated by New-DbaDbMaskingConfig, let’s explore some of the
parameters available to run the command and understand how it works.

WARNING As of the time of this writing, not all column and data types are
supported (e.g., user-defined data types). Use Get-Help New-DbaDbMasking-
Config for the most up-to-date documentation and limitations.

When using New-DbaDbMaskingConfig, you may want to generate a file based on all
columns of all tables, or you can decide to be more granular and specify which
table(s) and/or column(s) you want to include on your file. For this, you will use the
-Table and -Column parameters, as demonstrated in the following listing, which will
generate a file named mssql1.AdventureWorks.DataMaskingConfig.json under the
D:\temp folder.

PS> New-DbaDbMaskingConfig -SqlInstance mssql1 -Database AdventureWorks

➥ -Table Address -Column City, PostalCode -Path D:\temp

Listing 21.6 Modifying the sampling count Invoke-DbaDbPiiScan

Listing 21.7 Generating a new masking config file

F

280 CHAPTER 21 Data masking

The -Table parameter on each of the masking commands is expecting only the table
name, without a schema, meaning that if the fully qualified name of your table is Per-
son .Address, you only need to specify Address. The contents are, again, easy to both
read and modify as shown here.

{
"Name": "AdventureWorks",
"Type": "DataMaskingConfiguration",
"Tables": [

{
"Name": "Address",
"Schema": "Person",
"Columns": [

{
"Name": "City",
"ColumnType": "nvarchar",
"CharacterString": null,
"MinValue": 15,
"MaxValue": 30,
"MaskingType": "Address",
"SubType": "City",
"Format": null,
"Separator": null,
"Deterministic": false,
"Nullable": false,
"KeepNull": true,
"Composite": null,
"Action": null,
"StaticValue": null
},
{
"Name": "PostalCode",
"ColumnType": "nvarchar",
"CharacterString": null,
"MinValue": 8,
"MaxValue": 15,
"MaskingType": "Address",
"SubType": "Zipcode",
"Format": null,
"Separator": null,
"Deterministic": false,
"Nullable": false,
"KeepNull": true,
"Composite": null,
"Action": null,
"StaticValue": null
}

],
"HasUniqueIndex": true,
"FilterQuery": null

}
]

}

Listing 21.8 Generating a new masking config file

281The process

You can use this file on an ongoing basis to mask data within the City and PostalCode
columns within the Address table.

DEFINING DETERMINISTIC COLUMNS

dbatools also supports setting columns as deterministic. This means that if a raw value
appears more than once, the same masked value can also be used. To make a column
deterministic, you need to edit your configuration file.

 First, search for the column name you want to change, then update the value of
the Deterministic value from false to true. Using a portion of the example in list-
ing 21.8, we’ll update the City column to be deterministic, shown next.

{
"Name": "City",
"ColumnType": "nvarchar",
"CharacterString": null,
"MinValue": 15,
"MaxValue": 30,
"MaskingType": "Address",
"SubType": "City",
"Format": null,
"Separator": null,
"Deterministic": true,
"Nullable": false,
"KeepNull": true,
"Composite": null,
"Action": null,
"StaticValue": null
},

As you can see in listing 21.9 B, the Deterministic property has been changed to true.
This means that all instances of a specific city name will be changed to the same masked
value. As an example, all instances of Los Angeles will be changed to Provincetown, and
all instances of San Diego will be changed to Seattle.

Listing 21.9 Making the City column deterministic

B

Note
You may be wondering if deterministic masking makes your database less secure,
and the answer is no, as Sander Stad describes in his article, “Deterministic Masking
with dbatools” at sqlps.io/sandermasking:

“… because the masking command does not rely on any particular key to regenerate
the value. Every value that needs to be replaced will get a random new value. This
value is then put in the dictionary and basically has no reference to the old value.”

Sander is a Microsoft MVP and the primary creator of the data masking suite. He has
blogged extensively about data masking at sqlstad.nl, and his book, Practical Data
Masking for SQL Server, is available from Leanpub at sqlps.io/maskingbook.

https://www.sqlstad.nl/powershell/deterministic-masking-with-dbatools/
https://www.sqlstad.nl/
https://leanpub.com/practialdatamaskingforsqlserver

282 CHAPTER 21 Data masking

Ultimately, the decision to use deterministic masking comes down to your require-
ments. We often find that very normalized databases likely won’t need deterministic
masking because everything revolves around a primary key, essentially making the
data naturally deterministic. Denormalized databases, on the other hand, may benefit
from deterministic masking. If your report developer requires the same proportions
of data, such as X amount of Y comes from Z city, this would be a good use case for
deterministic masking.

 Another good use case for deterministic masking would be keeping masked, but
known, CI/CD values for testing purposes. Although deterministic replacements are
tracked only per each run, you can export the resulting mask dictionary for later use.
This operation is useful but out of scope for this book.

21.4.3 Applying static data masking

Now that you’ve learned how to generate a configuration file and potentially identify
and set deterministic columns, it’s time to use the configuration file to mask data
within your database using the Invoke-DbaDbDataMasking command. Before we dive
into the PowerShell code, let’s look at some raw AdventureWorks data that has not yet
been masked, shown in figure 21.1.

And now, it’s finally time to mask our data using Invoke-DbaDbDataMasking, as shown
in the next listing.

PS> Invoke-DbaDbDataMasking -SqlInstance mssql1 -Database dbatools

➥ -FilePath "D:\temp\mssql1.AdventureWorks.DataMaskingConfig.json"

An output example of the execution of the command is shown in the next code sample.

ComputerName : mssql1
InstanceName : MSSQLSERVER

Listing 21.10 Applying static data masking to your table

Listing 21.11 Example output of Invoke-DbaDbDataMasking

Figure 21.1 Table data before static data masking

283The process

SqlInstance : mssql1
Database : AdventureWorks
Schema : SalesLT
Table : Address
Columns : {City, PostalCode}
Rows : 450
Elapsed : 00:00:10
Status : Successful

If we check our table again, as depicted in figure 21.2, now we will see that the data for
the City and PostalCode columns is different.

It’s so rewarding to actually see these changed results each time we mask our own
data. We encourage you to use this against your own databases to see just how easy it is
to introduce a whole new layer of security without any additional cost.

21.4.4 Validating a data masking configuration file

As we’ve seen earlier in the chapter, editing JSON files is easy. But JSON formatting is
sensitive, so if you make changes often, the possibility of typos and mistypes increases,
which can cause problems. We’ve encountered this scenario ourselves and ended up
creating a command that makes it easier to validate a data masking configuration file’s
JSON structure.

Using this command to validate your JSON files along the way can help save frustra-
tion from unexpected parsing issues.

Figure 21.2 Table data after static data masking

Try it now 21.2
Use the Test-DbaDbDataMaskingConfig to check whether a configuration file is
valid. Delete a chunk of the content, save it, and run again so you can see the error
message.

284 CHAPTER 21 Data masking

21.5 Hands-on lab
Try the following tasks:

 Check whether a specific database table has any column that contains potential
PII data.

 Generate a data masking configuration file for a selection of tables and
columns.

 Mask the data using the data-masking configuration file generated.

285

DevOps automation

The previous chapters have given you a grounding in dbatools in various areas that
relate to a classic database administrator’s role. This chapter will show some exam-
ples of ways that you can use dbatools within a DevOps process. First, though, we
need to define DevOps. You can find a hundred different definitions and under-
standings of the term, but we like this one from Microsoft (sqlps.io/whatdevops):

A compound of development (Dev) and operations (Ops), DevOps is the union of people,
processes, and technology to continually provide value to customers.

The quote resonates with us because we believe that being able to continually provide
value to customers requires people and processes and technology. dbatools is not going to
be able to solve DevOps for you, but it is a tool (technology) that you (a person) can
use within your processes to provide that value.

 Overall, though, DevOps means different things to different people, which is
why you’ll often find varying definitions. In a conversation with PowerShell MVP
and DevOps engineer Chris Gardner, Chris said, “I see a DevOps engineer as kind of a
one-size-fits-all title, but the actual work involved will vary.”

 Chocolatey solutions engineer Stephen Valdinger followed, saying, “DevOps
isn’t something you do, but rather, it’s a way of doing things. What works for us
here may not work for you there, so you adjust.” He then went on to say that
DevOps is a way of working that reduces time to introduce changes, while at the
same time making changes traceable, accountable, and revertable. That’s where
dbatools and PowerShell come in. We provide tools that help you move away from
nonrepeatable GUI-based changes to machine-readable definition files, also known
as Infrastructure as Code, a core tenant of DevOps.

https://azure.microsoft.com/en-us/overview/what-is-devops/

286 CHAPTER 22 DevOps automation

 In this chapter, you will learn how to extract and publish databases, and use the
knowledge that you have gathered from the entire book, to create PowerShell tasks
for use in CI/CD tools for your DevOps processes.

22.1 When should you use dbatools in DevOps?
What does DevOps look like in a database scenario? The possibilities are numerous,
and the exact ones that you will use depend on your team’s specific needs. But the fol-
lowing list from devart (sqlps.io/dataops) gives a good idea of what the implementa-
tion of DevOps within a database team could look like:

 Development
– Creating a new table in a development DB

 Continuous integration
– Building a DB from a scripts folder
– Creating tSQLt tests on a test DB
– Running unit tests
– Formatting a SQL file

 Continuous delivery
– Defining a package name and version
– Publishing a package to a local repository
– Deploying a package to a database
– Generating synchronizing reports
– Syncing a test DB with a production DB
– Publishing a package to a NuGet feed
– Changes successfully deployed in production

 Operation
– Monitoring server performance

And the great news is that dbatools and PowerShell can be used for each of these
tasks. PowerShell can be used noninteractively, so it is a perfect tool to help automate
your process because it can be repeated without human intervention. Further,
because it’s code, it’s traceable, accountable, and revertible.

 To kick off this chapter about how we can help your DevOps goals, we’ll start with
the most common method of automating database deployments: the SQL Server DAC
package. Then, we’ll show you how to integrate DACPACs into a continuous integra-
tion and continuous delivery (CI/CD) platform. This will enable you to perform
many of the tasks in the list we mentioned earlier. Although we don’t outline how to
perform every task, knowing how to perform one allows you to just replace some code
and perform all of them.

https://www.devart.com/dbforge/sql/database-devops/

287DACPAC

22.2 DACPAC
Managing changes to database schemas and data can be challenging, but it’s neces-
sary throughout the software development lifecycle. Before the creation of modern-
day database management tools, we’d record the CREATE, READ, UPDATE, or DELETE
statements and use them to manually update the database. As you can imagine, this
was a headache of a solution that left us vulnerable to mistakes.

 To solve this problem, database professionals made the move to declarative data-
base development, which autogenerates deployment scripts. A number of products do
this, including a free component created by Microsoft known as the data-tier applica-
tion component package, or DACPAC.

 DACPACs are artifacts (like zip files filled with SQL files) that define all of the
objects associated with a database and are created when a database project is built in
Visual Studio or Azure Data Studio (ADS). Developers can use DACPACs to quickly
return to the same version of a database. Teams that release database changes can also
use DACPACs to deploy a consistent version of the database through both production
and test environments.

 This deployment process typically includes four steps, each of which can be per-
formed using dbatools. First, you need to export your changes to a DACPAC file.
Then, you’ll likely want to set options such as “I want to exclude logins.” Once you’ve
set your options, you’ll have to create a profile, and finally, you’ll publish the changes.
You can accomplish this using the following:

 Export-DbaDacPackage

 New-DbaDacOption

 New-DbaDacProfile

 Publish-DbaDacPackage

These commands can be used within the development and deployment processes for
databases and are most useful when you want to test against the schema but not real-
world data. DACPACs are usually created by a build process, either manually within
ADS or SQL Server Management Studio (SSMS), or within a pipeline using the com-
mand line with SqlPackage, DacFx, or dbatools.

 A BACPAC, which is like a DACPAC with data included, can also be created from
an existing database. This is particularly useful when you want to test against data
from production databases.

 In the next section, we’ll start with the first step in the DACPAC process: exporting
a DACPAC.

22.2.1 Exporting a DACPAC from an existing database

Imagine the following situation, which we have experienced during our consultations:
a company encounters an issue with a live database and assigns the issue to a developer
to investigate and suggest mitigation options. The developer has been working on some
new features and is unsure of the current schema within the production database, so

288 CHAPTER 22 DevOps automation

they ask you for a DACPAC that represents it. Although it should be possible to do this
from the deployment system, this may take time and require a lot of processing. To
speed up the resolution of the issue, you may wish to create the DACPAC directly from
the production system. You can export a DACPAC from an existing database with
Export-DbaDacPackage, as shown next.

PS> $splatExportDacPac = @{
SqlInstance = "sql01:15595"
Database = "Factory"
FilePath = "C:\temp\ProdFactory_20201230.dacpac"

}
PS> Export-DbaDacPackage @splatExportDacPac

Database : Factory
Elapsed : 8.69 s
Path : C:\temp\ProdFactory_20201230.dacpac
Result : Extracting schema (Start)

Gathering database credentials
Gathering database options
Gathering generic database scoped configuration option
Gathering users
Gathering roles
Gathering application roles
Gathering role memberships
Gathering filegroups
Gathering full-text catalogs
Gathering assemblies
Gathering certificates
Gathering asymmetric keys
Gathering symmetric keys
Gathering encrypted symmetric keys
Gathering schemas
~~~~~~~~~~~~
Output Truncated
~~~~~~~~~~~~
Gathering credentials
Gathering logins
Gathering server audits
Extracting schema (Complete)

SqlInstance : sql01:15595

This command has created a DACPAC named ProdFactory_20201230.dacpac from
the Factory database on the production instance. Listing 22.1 shows sample output
that includes how long it took, where the file was saved and if there were any errors.
The command has connected to the production database named Factory and has
extracted the schema from the database and created a DACPAC. You can now pass
that DACPAC to the developer. The next step will be for them to create a database
using the DACPAC so that they can investigate the issue.

Listing 22.1 Exporting a DACPAC from the production database

289DACPAC

22.2.2 Publishing a DACPAC

Imagine that you are a developer who needs to investigate and mitigate an issue in the
production database. You need to create the database with the exact schema of the
production database, and you have been given the DACPAC.

 You can use the Publish-DbaDacPackage command to create the database from
the DACPAC. The DACPAC contains the schema of the production database, and
publishing the DACPAC creates the database if it does not exist or incrementally
updates the database so that the schema matches the schema in the DACPAC.

 As a developer, you might use your local development instance or maybe a con-
tainer. We recommend Andrew Pruski’s SQL Server container series, which you can
find at sqlps.io/containers, to learn about creating SQL Server containers.

 The command in the next listing will create a database named FactoryIssue on the
developer container using the provided DACPAC. You can then run this command as
many times as you like, and it will return the database back to the same schema. This
process can also be used within your deployment pipeline to deploy the database
changes through the environments using your CI/CD tooling.

PS> $splatExportDacPac = @{
SqlInstance = "sql01:15595"
Database = "Factory"
Path = "C:\temp\ProdFactory_20201230.dacpac"

}
PS> Export-DbaDacPackage @splatExportDacPac

ComputerName : sql01
SqlInstance : sql01:15595
Database : Factory
Dacpac : C:\temp\ProdFactory_20201230.dacpac
PublishXml :
Result : Initializing deployment (Start)

Initializing deployment (Complete)
Analyzing deployment plan (Start)
Analyzing deployment plan (Complete)
Updating datbase (Start)
Gathering roles
Gathering application roles
Gathering role memberships
Gathering filegroups
Gathering full-text catalogs
Gathering assemblies
Gathering certificates

Listing 22.2 Publishing a DACPAC from the production database

Try it now 22.1
Export a DACPAC from a database on your instance.

https://dbafromthecold.com/2017/03/15/summary-of-my-container-series/

290 CHAPTER 22 DevOps automation

Gathering asymmetric keys
Gathering symmetric keys
Gathering encrypted symmetric keys
Gathering schemas
~~~~~~~~~~~~
Output Truncated
~~~~~~~~~~~~
Gathering credentials
Gathering logins
Gathering server audits
Extracting schema (Complete)

PS> $splatPublishDacPac = @{
SqlInstance = $developercontainer
Database = "FactoryIssue"
Path = "C:\temp\ProdFactory_20201230.dacpac"

}
PS> Publish-DbaDacPackage @splatPublishDacPac

The output in listing 22.2 shows the output that you receive when you run the com-
mand. It has the details of the host, instance, database, filename, and the result. The
result shows the deployment of the database. In this example, you can see that it ini-
tializes the deployment, analyzes the plan, scripts the actions, and then creates the
database. After creating the database, it creates the database users and then the tables,
views, indexes, and other objects in the database schema contained in the DACPAC.

You now know how to extract a DACPAC from an existing database and use it to
publish the schema to a new database. You have many options for configuring this
process.

22.2.3 DACPAC options

The options for exporting and publishing DACPACs are great enough to be a book all
by themselves, but we have only part of a chapter to explore them. Because of this, we
will focus on the most common options we’ve used. Let’s start with two simple exam-
ples for publishing and exporting DACPACs. We’ll return to the database the devel-
oper created earlier in our story and focus in on the users. In figure 22.1, you can see
a number of users from the Production environment.

 You can see there are users called FactoryApi and Production3rdPartyAccount.
These are users from the production system that are not likely to exist in the develop-
ment environment. Because of this, you want to configure the deployment to exclude
them. You will have to provide the developer with the dbatools code to deploy the
database without the users included.

Try it now 22.2
Using the DACPAC that you created in the previous “Try it now,” publish the DACPAC
to a new database on your instance.

291DACPAC

You can use the New-DbaDacOption command to create a configuration that will
exclude those users from the database and use that with the Publish-DbaDacPackage
command. You can alter 83 DeployOptions, like CreateNewDatabase and DoNotAlter-
ReplicatedObjects. For this example, as shown in the next listing, you will use the
ExcludeObjectTypes option and exclude Users, RoleMembership, and Logins,
because these will not exist on the development environment.

PS> $dacoptions = New-DbaDacOption -Type DACPAC -Action Publish
PS> $dacoptions.DeployOptions.ExcludeObjectTypes = "Users","RoleMembership"

➥ ,"Logins"
PS> $splatPublishDacPacNoUsers = @{

SqlInstance = $developercontainer
Database = "FactoryIssue"
FilePath = "C:\temp\ProdFactory_20201230.dacpac"

Listing 22.3 Publishing a DACPAC without the production users

Figure 22.1 The developer’s
database has the production
users in it.

292 CHAPTER 22 DevOps automation

DacOption = $dacoptions
}
PS> Publish-DbaDacPackage @splatPublishDacPacNoUsers

When you run this code, it will create a DACPAC options configuration that excludes
the Users, RoleMembership, and Logins from the deployment. This configuration,
shown in figure 22.2, will be used to create a database that matches the schema of the
DACPAC (the production database schema) and does not include the production
users.

In addition to enabling a developer to create a database that matches the production
schema, you can use code like listing 22.3 to deploy your databases within your CI/CD
processes. Some examples of why you’d want to deploy your databases within your
CI/CD processes include automatically testing your application against new changes
or synchronizing reports with production data.

 Using code to define the options for extracting or publishing DACPACs is an
excellent method of ensuring that the database is deployed with the same configura-
tion each time. Within your pipeline to deploy your database code changes to the pro-
duction database, the code will usually be deployed to many environments prior to
reaching the production environment.

 These pipelines will have automated build and test environments, user acceptance
environments, quality assurance environments, and staging environments (we find
these will have a myriad of different names and naming conventions). Each one of these
environments may need to have the database configuration deployed with a different

Figure 22.2 The developer’s
database has no production users in it.

293DACPAC

set of options. Database projects use a publish profile for this purpose, and dbatools can
create publish profiles and use them for deployment as well. These profiles can then be
included within the source-controlled code for the database project.

 To replace the example in listing 22.3, where you excluded the users and logins
from the published database, you can create a publish profile and use that for deploy-
ment. To ensure that the users and logins are excluded, you will need to set the follow-
ing properties:

 IgnoreUserLoginMappings

 IgnorePermissions

 ExcludeObjectTypes

 ExcludeLogins

 ExcludeUsers

 IgnoreUserSettingsObjects

Now that you know about them, you can use these options to publish to your develop-
ment environment using your own requirements. But first, let’s create a publish pro-
file that addresses the task at hand: excluding the users and logins from the published
database using the code shown here.

PS> $splatNewDacProfile = @{
SqlInstance = "sql01"
Database = "Factory"
Path = "c:\temp"
PublishOptions = @{

IgnoreUserLoginMappings = $true
IgnorePermissions = $true
ExcludeObjectTypes = 'Users;RoleMembership;Logins'
ExcludeLogins = $true
ExcludeUsers = $true
IgnoreUserSettingsObjects = $true

Listing 22.4 Creating a publish profile

Try it now 22.3
If you’re wondering how we figured out this list, we did it using PowerShell! First, we
explore all of the objects available from New-DbaDacOption:

New-DbaDacOption -Action Publish | Get-Member

After seeing the results, DeployOptions looks likely to contain the options we’re
looking for. Let’s expand them:

New-DbaDacOption -Action Publish | Select -ExpandProperty DeployOptions

If you’d like more information about different options, you can find it at sqlps.io/
publish.

https://docs.microsoft.com/en-gb/sql/tools/sqlpackage/sqlpackage-publish?view=sql-server-ver15#properties-specific-to-the-publish-action
https://docs.microsoft.com/en-gb/sql/tools/sqlpackage/sqlpackage-publish?view=sql-server-ver15#properties-specific-to-the-publish-action
https://docs.microsoft.com/en-gb/sql/tools/sqlpackage/sqlpackage-publish?view=sql-server-ver15#properties-specific-to-the-publish-action

294 CHAPTER 22 DevOps automation

}
}
PS> New-DbaDacProfile @splatNewDacProfile

ConnectionString : Data Source=sql01;Integrated Security=True;MultipleAc...
Database : Factory
FileName : c:\temp\sql01-Factory-publish.xml
SqlInstance : sql01

Note the FileName column, which contains the path to the publish profile file, which
you can save in source control. The file is just an XML file that should look something
similar to the the following XML code.

<?xml version="1.0" ?><Project ToolsVersion="14.0"

➥ xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<TargetDatabaseName>Factory</TargetDatabaseName>
<TargetConnectionString>Data Source=sql01;Integrated Security=True;
MultipleActiveResultSets=False;Encrypt=False;
TrustServerCertificate=False</TargetConnectionString>
<ProfileVersionNumber>1</ProfileVersionNumber>
<IgnorePermissions>True</IgnorePermissions>
<IgnoreUserSettingsObjects>True</IgnoreUserSettingsObjects>
<ExcludeUsers>True</ExcludeUsers>
<ExcludeLogins>True</ExcludeLogins>
<IgnoreUserLoginMappings>True</IgnoreUserLoginMappings>
<ExcludeObjectTypes>Users;RoleMembership;Logins</ExcludeObjectTypes>

</PropertyGroup>
</Project>

22.3 Running dbatools (and PowerShell) on a CI/CD system
Teams use a significant number of toolsets to deploy changes. Some of the most popu-
lar ones that we have seen when consulting include these:

 GitHub Actions
 Azure DevOps
 Jenkins
 Octopus Deploy
 Bamboo
 Team City
 GitLab
 CircleCI

All of these toolsets have a unique benefit for people like you who know dbatools
(and, therefore, PowerShell): they all have the ability to run PowerShell scripts. This
means that you can take the knowledge that you have learned from this book and

Listing 22.5 Viewing the XML output of New-DbaDacProfile

295Running dbatools (and PowerShell) on a CI/CD system

apply it quickly and easily to create the pipeline or process that will meet the require-
ments of your team.

22.3.1 Creating a task

A task in the CI/CD process is like an additional job step. An example would be copy-
ing users to the CI/CD system, creating new databases, or hydrating current data-
bases. Your method for adding a new task to your CI/CD process should involve some
consideration.

 First, you should understand what the task is required to achieve and if any avail-
able plugins accomplish your goals. This can be time consuming to figure out,
bceause a huge number of plugins exist for various CI/CD system, but many are made
with a limited scope to solve the author’s specific scenario. If you find that’s the case
for your CI/CD plugins environment, we suggest using dbatools, likely within a Power-
Shell plugin. What’s really cool is, once you know how to use PowerShell within one
CI/CD system, you’ll understand the concepts for pretty much all the others.

 Once you have decided to use dbatools, you can then write the script that will
achieve the task. If your process requires that you restore a database, apply data mask-
ing, deploy the changes, and create the correct logins/users, for example, you can use
your learning from chapter 11, chapter 20, this chapter, and chapter 9 to create the
scripts to do this.

22.3.2 Ensuring the dbatools module is available

The CI/CD toolsets mentioned in this chapter normally use an agent to run the tasks
for the pipeline. The terminology and the exact methodology may be slightly differ-
ent for each one, but some basic principles will apply: you’ll need a plugin to accom-
plish your goals, and you’ll also need dbatools to exist on the CI/CD server. As we
learned in chapter 2, you’ll also need to ensure that the user account for the process
has access to the dbatools module.

22.3.3 Understanding how to add parameters to the script

Different tooling and different team processes require different methods to achieve
them. Whichever method you use, you will need to understand two things: how the
parameters/variables are stored, and how they are referenced within the PowerShell
that you write. You have to examine the documentation for the toolset to understand
this correctly. This will often be different for sensitive variables and parameters com-
pared to usual ones. In Azure DevOps, for example, you can find the documentation
at sqlps.io/args.

 If you are required to restore a different backup for each environment that your
pipeline uses, you can write the dbatools script to restore the database and save it as
restoredatabase.ps1 in the deploymentscript directory in your codebase, as shown in
the following code listing.

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/utility/powershell?view=azure-devops#call-powershell-script-with-multiple-arguments

296 CHAPTER 22 DevOps automation

Param($SqlInstance, $BackupFile)
Restore-DbaDatabase -SqlInstance $SqlInstance -Path $BackupFile -WithReplace

This script uses a Param block to allow parameters to be passed in to the script so that
the same code can be used with different values.

 Azure DevOps pipelines can be defined as YAML code. For each environment
within your pipeline, your requirement is to restore a different database backup.
Teams will do this to ensure that the data in the database is compliant with regulations
preventing production data in nonproduction environments or to ensure that auto-
mated testing does not take too long. In your Azure DevOps pipeline code, you will
define a task as follows.

- task: PowerShell@2
inputs:

targetType: 'filePath'
filePath: $(System.DefaultWorkingDirectory)\deploymentscripts\

 ➥ restoredatabase.ps1
arguments: > # Use this to avoid newline characters in multiline string

-SqlInstance "SQL01\Test"
-BackupFile "\\BackupHost\SQLDeploymentBackups\Factory_Test.bak"

displayName: 'Restore the test factory database'

When the pipeline runs this task, it will run the dbatools code in the restoredatabase.ps1
script with the value SQL01\Test for the SQL instance parameter and \\BackupHost\
SQLDeploymentBackups\Factory_Test.bak for the backup file. This will restore that
backup file on the Test instance of SQL01 and replace the database if it exists, ensuring
a clean known state for the database prior to running the rest of the pipeline.

 You can then use the same script to restore a different backup for a different envi-
ronment. You may have a staging environment where you perform a “dry run” of the
deployment using a database of a similar size and data complexity to the production
database running on similar hardware. You can add the YAML to that pipeline to restore
the database for that environment using the same dbatools script file, as shown next.

- task: PowerShell@2
inputs:

targetType: 'filePath'
filePath: $(System.DefaultWorkingDirectory)\deploymentscripts\

 ➥ restoredatabase.ps1
arguments: > # Use this to avoid newline characters in multiline string

-SqlInstance "SQL02\Staging"
-BackupFile "\\BackupHost\SQLDeploymentBackups\Factory_Staging.bak"

displayName: 'Restore the staging factory database'

Listing 22.6 DevOps pipeline script for restoring a database

Listing 22.7 Restoring a database to the Test environment

Listing 22.8 Restoring a database to the Staging environment

297Hands-on lab

This time, you have used the same script, restoredatabase.ps1, but have passed in the
values for the staging instance and backup. This enables you to change the script in a
single place and have those changes reflected in every environment, easily reducing
complexity.

 In this chapter, you have learned how to extract and publish database DACPAC
files and how to use the knowledge that you have gathered from the entire book to
create PowerShell tasks for use in CI/CD tools for your DevOps processes. In the next
chapter, we will return to administration for your SQL estate and talk about how to
trace activity on an instance with dbatools.

22.4 Hands-on lab
Try the following tasks:

 Explore New-DbaDacOption with different -Type and -Action parameters using
Get-Member.

 Use your experience with looping or pipes to export more than one profile.

298

Tracing
SQL Server activity

As DBAs, we often need to trace activity on our SQL Server instances. We might do
this for on-demand tasks, such as collecting requests that take an unexpected and
extended amount of time to execute. We may also have multiple proactive traces
that collect data to check as needed, such as finding specific deadlock events that
we need to analyze.

 For years, SQL Server DBAs have relied on (and loved) SQL Server Profiler and
Trace to trace SQL Server activity. Then SQL Server 2012 SP1 introduced an
Extended Events engine that covered 100% of SQL Server Trace events, and Micro-
soft encouraged everyone to move from traces to Extended Events. Compared to
traces, Extended Events are much more lightweight and even provide more
detailed results.

 Many SQL Server professionals have resisted the switch from Profiler to Extended
Events, and we understand: see “So why do people keep using Trace/Profiler?” at
dbatools.io/xevents. When we first started working with Extended Events, we found
that creating new Extended Events could be pretty challenging when using SQL
Server Management Studio (SSMS). Eventually, however, we realized that leveraging
T-SQL scripts and automation made our experiences with Extended Events a whole
lot better.

 We’re excited to present this chapter, because we’ve worked hard to make
Extended Events as easy as possible to set up and manage, not just for one SQL
Server instance but for many. But we also understand that some readers may not be
ready yet to make the jump, and because of this, we’ll dedicate part of this chapter
to Profiler as well.

 After reading this chapter, you will understand how dbatools can help to work
with traces and then create, read, and manage Extended Events across your estate.

https://dbatools.io/xevents/

299SQL Server Trace and SQL Profiler

23.1 SQL Server Trace and SQL Profiler
Traces are performed by the SQL Server Engine, and Profiler is a user interface that
helps to create, manage, and read the data produced by a trace. Running SQL Profiler
may have a big performance impact because the events are synchronously processed
and filtered by the tool.

 SQL Server Trace and Profiler have been deprecated by Microsoft. But, as of this
writing, both are still available in recent versions of SQL Server and SSMS. Even
though traces are deprecated, we know that not everyone can run modern versions of
SQL Server, and we aim to make all DBAs’ lives easier. Considering how painful it can
be to manage traces across multiple servers, this chapter will highlight just how useful
PowerShell can be, even when working with older technologies.

First, let’s see which commands are available for traces. We can use the command
Find-DbaCommand -Tag Trace or refer to table 23.1.

ConvertTo-DbaXESession is the most powerful (and coolest) of these commands, but
let’s take a look at the basics first.

 Imagine you’re required to ensure all of your SQL Servers are running a specific
security trace. This has happened to us in the past, and Get-DbaTrace was a lifesaver.
We used it with Get-DbaRegisteredServer to easily check whether the trace was run-
ning our entire estate. You can, too, using the code in the following listing.

Table 23.1 Profiler commands

Command Description

ConvertTo-DbaXESession Uses a slightly modified version of sp_SQLskills_ConvertTraceToEx-
tendedEvents.sql to convert traces to Extended Events

Get-DbaTrace Gets a list of trace(s) from specified SQL Server instances

Read-DbaTraceFile Reads SQL Server trace files

Remove-DbaTrace Stops and closes the specified trace, and deletes its definition from
the server

Start-DbaTrace Starts SQL Server Trace

Stop-DbaTrace Stops SQL Server Trace

Try it now 23.1
Check to see whether your servers are running any traces. You’ll likely see a default
trace on at least one or more SQL instances:

PS> Get-DbaTrace -SqlInstance sql01, sql02, sql03

300 CHAPTER 23 Tracing SQL Server activity

PS> Get-DbaRegisteredServer | Get-DbaTrace

BufferCount : 2
BufferSize : 1024
ComputerName : mssql1
DroppedEventCount :
EventCount : 436
FilePosition : 1048576
Id : 1
InstanceName : MSSQLSERVER
IsDefault : True
IsRollover : True
IsRowset : False
IsRunning : True
IsShutdown : False
LastEventTime : 1/4/2022 4:51:42 PM
MaxFiles : 5
MaxSize : 20
Path : L:\MSSQL\Log\log_35.trc
ReaderSpid :
SqlInstance : mssql1
StartTime : 1/2/2022 10:44:13 AM
Status : 1
StopTime :

We also used these two commands, along with Out-GridView and Start-DbaTrace, to
start any required traces that have been stopped, as shown in the next code.
Out-GridView is natively available in Windows PowerShell or within the Microsoft
.PowerShell.ConsoleGuiTools module on PowerShell 7+.

PS> Get-DbaRegisteredServer | Get-DbaTrace |
Out-GridView -PassThru | Start-DbaTrace

Similar methods can also be used to stop and remove traces by piping to Stop-
DbaTrace or Remove-DbaTrace. We’ve found the ability to stop or remove traces en
masse useful when performing cleanups of old traces that were unexpectedly running
and potentially taking up needed resources.

23.1.1 Converting traces to Extended Events

One of our favorite commands, ConvertTo-DbaXESession, converts traces to Extended
Events. It’s basically a wrapper for a stored procedure named sp_SQLskills

_ConvertTraceToExtendedEvents, which was created by Jonathan Kehayias at SQLskills.
 This command makes it easy to just pipe it in and convert each trace into its equiv-

alent Extended Event. This means you can easily convert all of your favorite trace tem-
plates to Extended Event templates. Using Extended Events instead of traces not only

Listing 23.1 Viewing all traces within your estate

Listing 23.2 Viewing, selecting, and starting specific traces

301Extended Events

puts you on a Microsoft-supported path, but it also uses fewer resources on your serv-
ers, because Extended Events internals are far more efficient than Tracing internals.

 In the next listing, SQL Server’s default trace is converted into an Extended Event,
and that resulting Extended Event is immediately started. We chose this particular
trace as an example because it’ll likely be available and ready to convert (unless it was
previously disabled).

PS> Get-DbaTrace -SqlInstance sql2014 | Where-Object Id -eq 1 |
ConvertTo-DbaXESession -Name 'Converted Default Trace' |
Start-DbaXESession

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Name : Converted Default Trace
Status : Running
StartTime : 1/4/2022 4:54:13 PM
AutoStart : False
State : Existing
Targets : {package0.event_file}
TargetFile : {L:\MSSQL\Log\Converted Default Trace.xel}
Events : {sqlserver.database_file_size_change,

sqlserver.database_mirroring_state_change,
sqlserver.errorlog_written,
sqlserver.full_text_crawl_started...}

MaxMemory : 4096
MaxEventSize : 0

Now that you can convert all your favorite traces in your template library, you’re set up
for success when migrating from traces to Extended Events.

23.2 Extended Events
Extended Events are game-changing when it comes to traceability. Being able to
quickly create or import an Extended Event to collect data can mean the difference
between catching or missing specific events that help analyze problematic situations.
Extended Events are also the only way to trace some features, including Always On,
Columnstore, in-memory databases, and others. Extended Events offer far more trace-
able events, too. In SQL Server 2019, for example, Extended Events already had
nearly 10 times more events available than SQL Profiler. In this section, we’ll show
how SSMS and PowerShell can work together to make Extended Events not only
approachable but the preferred method of analyzing SQL Server events.

23.2.1 SSMS support

When Extended Events were first introduced, they were not easily accessible through
SSMS. Therefore, the adoption rate was low. Over time, support and adoption has

Listing 23.3 Converting a default trace and the resulting Extended Event

302 CHAPTER 23 Tracing SQL Server activity

improved, first, through the introduction of a GUI to create and manage sessions, and
then, more recently, through the addition of the XEvent Profiler. XEvent Profiler pro-
vides immediate, real-time access to basic events, which was one of the main reason
folks tended to revert to Profiler.

Since the introduction of XEvent Profiler, we found ourselves using Trace and Profiler
less and less because it’s easy to access, and the two sessions tend to answer most of our
quick questions. We suspect you’ll find the same as well.

23.2.2 dbatools support

Extended Events also provide a powerful API and are extensively supported by Power-
Shell, well beyond what the Trace T-SQL stored procedures have to offer. We use this
API within dbatools to make it easy to manage Extended Events at the command line.

23.2.3 Finding Extended Events

Imagine being able to see every Extended Event that exists within your estate. This
process would require a painful number of clicks in SSMS, but dbatools requires just
one or two commands, which are shown next.

PS> Get-DbaRegServer | Get-DbaXESession

Listing 23.4 Seeing all of your estate’s Extended Events

Try it now 23.2
New versions of SQL Server have a couple of Extended Events sessions created and
started by default. Open up SSMS, and verify which Extended Events sessions you
currently have on your SQL Server instance. You can check this by connecting to an
instance and finding the Sessions folder node under Management > Extended
Events. In SSMS 17.3 and later, you will also find XEvent Profiler at the root of the
SSMS tree node. Click XEvent Profiler > Standard to start a new session and watch
the live output as it’s displayed.

Try it now 23.3
Our goal with the dbatools subset of Extended Events commands was to encourage
everyone to start using Extended Events, if they weren’t already. After researching
and finding out why many people were resistant to the change, we created a number
of commands specifically intended to help address those concerns. As of this writing,
we offer 30 commands to help manage Extended Events. To see a list of these com-
mands along with a synopsis, run the following code from your PowerShell console:

PS> Find-DbaCommand -Tag ExtendedEvent

303Extended Events

Remember, if the output feels a bit overwhelming, you can always pipe your results to
Out-GridView and view them within the grid results. You can also filter your results by
looking for specific sessions by name, as demonstrated here.

PS> Get-DbaXESession -SqlInstance mssql1 -Session telemetry_xevents

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Name : telemetry_xevents
Status : Running
StartTime : 12-Jul-21 6:54:39 PM
AutoStart : True
State : Existing
Targets : {package0.ring_buffer}
TargetFile : {}
Events : {qds.query_store_db_diagnostics, sqlserver.always_encrypt

ed_query_count, sqlserver.auto_stats,
sqlserver.column_store_index_build_low_memory...}

MaxMemory : 4096
MaxEventSize : 0

From these results, we can see that we have a session named telemetry_xevents B,
which is running C and which starts when the SQL instance starts AutoStart D.

23.2.4 Using templates

One of the easiest ways to start collecting data on a SQL Profiler session is to rely on
existing templates. SSMS offers a number of templates that have a predefined set of
events that can provide a jump-start for creating a session that exactly suits our needs.
As you can see highlighted in figure 23.1, Extended Event templates contain Profiler
Equivalents templates. This means that if you were using the Profiler templates, you
can start your trace with the same definition as before.

Listing 23.5 Viewing existing dbatools' Extended Events sessions

B
C

D

Figure 23.1 Extended
Events templates

304 CHAPTER 23 Tracing SQL Server activity

dbatools also provides more than 40 templates that were built by both Microsoft and
SQL Server community members. In the following code listing, you can see two exam-
ples of the templates we provide.

PS> Get-DbaXESessionTemplate

Category : Everyday Extended Events
Compatibility : 2012
Description : Captures query for reads > 15 seconds and writes > 15

seconds.
Name : 15 Second IO Error
Source : Jes Borland

Category : System Monitoring
Compatibility : 2012
Description : Similar to the 'Default Trace' that exists in the SQL Trace

system. Use this template to track general activity on your
system. The difference between this template and the
'Default Trace' is that this template does not include
security audit events. If you would like to audit your
system you should use the SQL Server Audit feature.

Name : Activity Detail Tracking
Source : Microsoft

Using these templates, you can easily create Extended Event sessions on one or more
SQL Server instances. To accomplish this, simply pipe the output of Get-DbaXE-
SessionTemplate to the Import-DbaXESessionTemplate command, as shown next.

PS> Get-DbaXESessionTemplate -Template 'Deprecated Feature Usage' |
Import-DbaXESessionTemplate -SqlInstance mssql1 |
Start-DbaXESession

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Name : Deprecated Feature Usage
Status : Running
StartTime : 1/5/2022 12:35:47 AM
AutoStart : False
State : Existing
Targets : {package0.event_file}
TargetFile : {L:\Log\Deprecated Feature Usage}
Events : {sqlserver.deprecation_announcement,

sqlserver.deprecation_final_support}
MaxMemory : 4096
MaxEventSize : 0

You can see that Deprecated Feature Usage B is now in a Running state C.

Listing 23.6 Viewing existing dbatools' Extended Events templates

Listing 23.7 Importing an Extended Event template

B
C

305Extended Events

 If you have your own XML templates you’d like to import to one or more servers,
the next listing shows how you can also use Import-DbaXESessionTemplate to import
custom XML templates that have been saved to disk.

PS> Get-ChildItem 'C:\temp\Login Tracker.xml' |
Import-DbaXESessionTemplate -SqlInstance mssql1

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Name : Login Tracker
Status : Stopped
StartTime :
AutoStart : False
State : Existing
Targets : {package0.event_file}
TargetFile : {L:\MSSQL\Log\Login Tracker}
Events : {sqlserver.sql_statement_starting}
MaxMemory : 4096
MaxEventSize : 0

Note that the name of the session will be the name of the XML file, unless the -Name
parameter is specified.

 Ultimately, when we create new Extended Event sessions, we default to using tem-
plates. In the event there’s no suitable template for our needs, we use SSMS and
export that new session template to our library. dbatools includes the command New-
DbaXESession, but considering that we can trace more than 1,800 events, we find it’s
just easier to use the GUI or a template.

23.2.5 Starting and stopping Extended Event sessions

By default, when Extended Event sessions are imported, they are created in a stopped
state. You can start any Extended Event by using Start-DbaXESession and specifying
a -Session, or you can pipe the results of Get-DbaXESession to Start-DbaXESession.
The next listing shows how to start an Extended Event session by specifying the name.

PS> Start-DbaXESession -SqlInstance mssql1 -Session "Query Timeouts"

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Name : Query Timeouts
Status : Running
StartTime : 5/5/2021 11:02:47 AM
AutoStart : False
State : Existing
Targets : {package0.pair_matching}

Listing 23.8 Importing an Extended Event template from an XML template

Listing 23.9 Starting an Extended Event session named Query Timeouts

B

306 CHAPTER 23 Tracing SQL Server activity

TargetFile : {}
Events : {sqlserver.sql_statement_completed,

sqlserver.sql_statement_starting}
MaxMemory : 4096
MaxEventSize : 0

Stopping a session works the same way, but this time, you’ll use Stop-DbaXESession,
as shown here.

PS> Stop-DbaXESession -SqlInstance mssql1 -Session "Query Timeouts"

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Name : Query Timeouts
Status : Stopped
StartTime :
AutoStart : False
State : Existing
Targets : {package0.pair_matching}
TargetFile : {}
Events : {sqlserver.sql_statement_completed,

sqlserver.sql_statement_starting}
MaxMemory : 4096
MaxEventSize : 0

You may notice a -Status parameter in listings 23.9 and 23.10 that shows the current
status B of the session after we run the command.

23.2.6 Reading data

SQL Profiler makes it easy to read both live and saved traces. Unfortunately, the Pro-
filer GUI is not very user friendly and, unlike Extended Events, does not allow filter-
ing or group data. As mentioned before, Extended Events also have a GUI, but, in this
case, it is integrated on SSMS, so we can also watch live data (as it happens) or read
past events. We can also read Extended Events data using two key commands: Watch-
DbaXESession and Read-DbaXEFile.

Listing 23.10 Stopping an Extended Event session named Query Timeouts

B

You can run a session for a specific amount of time
Built-in on the Start-DbaXESession, we have a parameter named -StopAt that, as
the name implies, will stop the session that is being started at a specific datetime.
This is useful when you want to run a session for a delimited time, and you accom-
plish it by creating an Agent job that will stop the session based on the -StopAt value
that was introduced. For example, if you want to run a session just for 30 minutes,
you can execute the following code:

PS> Start-DbaXESession -SqlInstance mssql1 -Session 'Query Timeouts'

➥ -StopAt (Get-Date).AddMinutes(30)

307Extended Events

WATCHING LIVE EXTENDED EVENT DATA AS IT HAPPENS

The command Watch-DbaXEsession allows you to watch live data collected by an
Extended Event session. The data returned is a PowerShell object, which makes it easy
to pipe to commands like Where-Object or Select-Object for further filtering. Prior
to executing the code in listing 23.11, the standard XEvent Profiler session was started
in SSMS, as shown in figure 23.2.

This created an Extended Events session called QuickSessionStandard, which we will
not only watch but also filter the results using PowerShell syntax.

PS> Watch-DbaXESession -SqlInstance mssql1 -Session QuickSessionStandard |
Where-Object client_app_name -match dbatools

name : sql_batch_completed
timestamp : 1/5/2022 12:26:37 PM +00:00
batch_text : SELECT 'dbatools is opening a new connection'
callstack :
client_app_name : dbatools PowerShell module - dbatools.io
client_hostname :
client_pid : 2044
data_stream :
database_id : 1
database_name : master
event_sequence : 1073
nt_username : AD\sqldba
...

This command runs infinitely until you press CTRL+C or until the session is stopped.

Listing 23.11 Watching results as they happen

Figure 23.2 XEvent Profiler

308 CHAPTER 23 Tracing SQL Server activity

 We’ve found this command to be useful when we’re debugging our own applica-
tions, including dbatools itself. Although Extended Events provide their own
advanced filtering functionality, we sometimes prefer using PowerShell syntax because
it’s faster to change a Where-Object clause than it is to modify a filter using the SSMS
interface.

POSTMORTEM ANALYSIS

Another existing option on the SQL Profiler is the ability to save the results to a table,
or even to a trace file that you can open later. Using the Extended Events, you can
define different data storage types. If you want to mimic the SQL Profiler when saving
to a file, you must use the event_file type within your Extended Event session. With
this method, even after the session is stopped, the data is kept on a XEL file on the
server. This means you will use SSMS to read from the stopped session or use dbatools’
Read-DbaXEFile command to achieve the same result, as shown next.

PS> Read-DbaXEFile -Path C:\temp\deadocks.xel

You can also use the same PowerShell syntax to further filter on the spot when
needed.

23.2.7 Replicating Extended Event sessions to multiple instances

You can also copy any Extended Events from one server to another by using Copy-
DbaXESession. The biggest benefit to using the copy method instead of the
import/export method is that it’s faster. The copy method uses pure T-SQL, and no
XML shredding is required by the SQL engine. We recommend using this method,
shown in the next listing, if your network experiences high latency.

PS> $splatCopyXESession = @{
Source = "mssql1"
Destination = "mssql2", "mssql3"
XeSession = "Login Tracker"

}
PS> Copy-DbaXESession @splatCopyXESession

23.2.8 Cleanup

If you have created a temporary session to collect some more specific data, or if
there’s a session with more events that can consume more disk space and you no lon-
ger need it, you may want to remove it from the instance. For that, check the Remove-
DbaXESession command.

Listing 23.12 Reading a XEL file

Listing 23.13 Copying the Login Tracker session to multiple servers

309Hands-on lab

23.3 Hands-on lab
Try the following tasks:

 Find sessions with a stopped status.
 Create a session from a template, and run it just for five minutes.
 Find the file location of the system_health session.

310

Security and encryption

As the focus on security has grown within the IT industry, the security features sup-
ported within SQL Server have also grown, well beyond the basics of authentica-
tion, authorization, permissions, and securables. SQL Server network encryption
between the instance and the client has been available since SQL Server 2000,
whereas newer features such as encrypting data at rest and column encryption were
introduced in SQL Server 2008 and SQL Server 2016, respectively. With modern
versions of SQL Server, you can encrypt the following:

 Backups
 Network traffic between the instance and the client
 Entire databases
 Specific columns

SQL Server also supports enforcing Extended Protection and hiding your SQL
Server instances, each of which helps to reduce your attack surface.

 If your organization is required to comply with security standards such as CIS
benchmarks or DISA STIGs, dbatools can help; we built many of the commands as
we went through our own audits—and as we wrote this book! In this chapter, we
will take a a closer look at these commands, which can help to secure your SQL
Server estate.

24.1 Encrypting network connections
You’re probably familiar with visiting secure (HTTPS) websites that have been
encrypted. SQL Server can also encrypt traffic between the server and the client,
and, like HTTPS, uses PKI (Public Key Infrastructure) certificates. Setting up

311Encrypting network connections

proper encryption on your server helps to secure data in transit and also helps secure
the authentication process for SQL logins.

 To encrypt connections, you must perform the following steps:

 Obtain and install an appropriate certificate.
 Set the SQL Server to use the certificate.
 Enable and, preferably, force encrypted connections.

Enabling encrypted connections isn’t trivial, but dbatools helps to simplify the process
where possible. Overall, we’ve been impressed with the ease of enabling encryption
for SQL Server connections. Even in older environments like those running Windows
Server 2008 R2, we’ve had no issues with our clients connecting to SQL Server. When
it’s configured properly, we just flip the switch, and it works with everything from
SharePoint to SQL Server Management Studio (SSMS) to dbatools and more.

24.1.1 Certificate

SQL Server uses the TLS (Transport Layer Security) cryptographic protocol to
encrypt the data across a network between the SQL Server instance and the client
applications. If you decide to encrypt your SQL Server connections, you will need to
obtain a certificate that meets specific conditions. Many conditions are available, so we
won’t list them all here, but we will highlight a few of the most important ones along
the way.

NOTE Before SQL Server 2016, Secure Sockets Layer (SSL) was the protocol
used. This is now discontinued, and instead, TLS is used. TLS is basically a
newer version of SSL with a number of security fixes. To read more about the
TLS certificate requirements for SQL Server, visit our Microsoft docs
shortlink at sqlps.io/certreq.

To explain how TLS will help SQL Server communications be more secure, we’ll refer
to Microsoft’s documentation (sqlps.io/certreq):

TLS can be used for server validation when a client connection requests encryption. If the
instance of SQL Server is running on a computer that has been assigned a certificate from a
public certification authority, identity of the computer and the instance of SQL Server is
vouched for by the chain of certificates that lead to the trusted root authority. Such server
validation requires that the computer on which the client application is running be
configured to trust the root authority of the certificate that is used by the server.

Prior to setting up your SQL Server to use a certificate, you must first obtain and
install a certificate that can be used with SQL Server. This certificate will enable SQL
Server to communicate securely with all clients, including applications, SSMS, and
dbatools.

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine?view=sql-server-ver15#certificate-requirements
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine?view=sql-server-ver15#certificate-requirements

312 CHAPTER 24 Security and encryption

OBTAINING AND INSTALLING A NEW CERTIFICATE

If your SQL Server is part of an Active Directory domain with its own certificate author-
ity, you can use the command New-DbaComputerCertificate to generate a computer
certificate that is appropriate for SQL Server’s use, as shown in the next listing.

PS> $splatCert = @{
ComputerName = "sql1"
Dns = "sql1.ad.local", "sql1"

}
PS> New-DbaComputerCertificate $splatCert

ComputerName : SQL1
Store : LocalMachine
Folder : My
Name : SQL Server
DnsNameList : {sql1.ad.local, sql1}
Thumbprint : B2B04E493D5699C7CC1A30087445A7C8CAD44842
NotBefore : 1/9/2022 12:08:37 AM
NotAfter : 1/9/2024 12:08:37 AM
Subject : CN=sql1.ad.local
Issuer : CN=ad-DC1-CA, DC=ad, DC=local
Algorithm : sha256RSA

This will both create and install your certificate in the appropriate certificate store.
For this command to work, your user account must have permission within Active
Directory to create new certificates. If your organization has locked down this policy
due to separation of duties, dbatools can also help you generate a certificate signing
request (CSR) and give it to your PKI administrator for approval. Generating a CSR is
also useful when your certificate authority is an external third party such as DigiCert.

PS> $splatCSR = @{
ComputerName = "sql1"
Dns = "sql1.ad.local", "sql1"

}
PS> New-DbaComputerCertificateSigningRequest $splatCSR

Directory: C:\Users\sqldba\Documents\DbatoolsExport\sql1.ad.local

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 1/9/2022 12:23 AM 529 request.inf
-a---- 1/9/2022 12:23 AM 1018 sql1.ad.local.csr

In this example, you would give the file sql1.ad.local.csr to your security administrator.
The request.inf file is also provided for those who are interested in knowing more
about the certificate attributes, but you can safely ignore it unless you are curious.

Listing 24.1 Creating and installing a new SQL Server network certificate

Listing 24.2 Creating a CSR

313Encrypting network connections

 Once you receive a certificate back, follow the instructions provided by the certifi-
cate administrator to finish importing your certificate to the Local Machine\My certif-
icate store.

GETTING A LIST OF CERTIFICATES THAT SQL SERVER CAN USE

With the certificate imported on the server, it is now possible to configure the SQL
Server instance to use this certificate for encryption. To confirm that your certificate
has been installed properly, use the Get-DbaComputerCertificate command to get a
list of all certificates that can be used with SQL Server, as shown in the next listing.

PS> Get-DbaComputerCertificate -ComputerName sql1

ComputerName : SQL1
Store : LocalMachine
Folder : My
Name : SQL Server
DnsNameList : {sql1.ad.local, sql1}
Thumbprint : B2B04E493D5699C7CC1A30087445A7C8CAD44842
NotBefore : 1/9/2022 12:08:37 AM
NotAfter : 1/9/2024 12:08:37 AM
Subject : CN=sql1.ad.local
Issuer : CN=ad-DC1-CA, DC=ad, DC=local
Algorithm : sha256RSA

Once you have identified the certificate you would like to use, take note of the certifi-
cate’s thumbprint. You will need this shortly.

SETTING THE CERTIFICATE

Next, you must tell SQL Server to use the certificate. If you first prefer to see the pro-
cess visually, you can use the SQL Server Configuration Manager utility by performing
the following steps, depicted in figure 24.1:

 Open SQL Server Configuration Manager.
 Navigate to SQL Server Network Configuration.
 Right-click and select Protocols for <INSTANCENAME>.
 Click the Certificate tab.
 Select the desired certificate from the drop-down list and click Apply.
 If the service account is a nonprivileged account, you must grant the account

read access to the certificate’s private key in the registry.

Listing 24.3 Getting a list of certificates that SQL Server can use

Try it now 24.1
We offer the command Test-DbaComputerCertificateExpiration to detect
whether any of your SQL Server certificates are about to expire. Try running this com-
mand across your estate.

314 CHAPTER 24 Security and encryption

dbatools can help you achieve the same configuration with just one command, Set-
DbaNetworkCertificate, as shown next.

PS> $splatSetCertificate = @{
SqlInstance = "sql1"
Thumbprint = "1245FB1ACBCA44D3EE9640F81B6BA14A92F3D6E2"

}
PS> Set-DbaNetworkCertificate @splatSetCertificate

As shown in the next code snippet, you can also pipe in the results from the command
Get-DbaComputerCertificate, which we learned about earlier in listing 24.3.

PS> Get-DbaComputerCertificate | Out-GridView -PassThru |
Set-DbaNetworkCertificate -SqlInstance sql1

Set-DbaNetworkCertificate not only sets the specified certificate, it also goes a step
further and adds permissions for the service account to read the certificate’s private
key. If ever you don’t have access to dbatools and end up using the Configuration

Listing 24.4 Setting a SQL Server certificate using a thumbprint

Listing 24.5 Setting the SQL Server certificate using a pipe

Figure 24.1 Setting a
certificate in SQL Server
Configuration Manager

315Encrypting network connections

Manager, make sure you keep this in mind. It’s tripped us up in the past, and SQL
Server failed to start because it did not have read permissions to the certificate.

24.1.2 Forcing encryption

As mentioned previously, configuring SQL Server to use an encrypted connection is a
multistep process. In the previous section, we saw how to set the certificate; this was
step one. For the second step, we also need to configure the ForceEncryption setting.

 With this setting, we can force all client/server communication to be encrypted,
and clients that cannot support encryption (e.g., legacy drivers) are denied access. To
achieve this, we need to set the ForceEncryption option to Yes.

IMPORTANT Recent versions of Microsoft’s SQL
Server Client .NET Library have changed con-
nection default behavior. If you encounter the
error “The target principal name is incorrect” or
“The certificate chain was issued by an authority
that is not trusted,” refer to our GitHub discus-
sion at sqlps.io/trustcert.

You can check or change this setting by using the
SQL Server Configuration Manager utility. Navi-
gate to SQL Server Network Configuration, and
then right-click and select Protocols for your
instance, as shown in figure 24.2.

 On the Flags tab, you can see the current configuration, shown in figure 24.3. If it’s
set to No, you can select Yes in the Force Encryption box.

Figure 24.3 Force Encryption setting

Figure 24.2 Check a protocol’s
properties in SQL Server Configuration
Manager

https://github.com/dataplat/dbatools/discussions/7680

316 CHAPTER 24 Security and encryption

As with many other manual tasks we’ve discussed, this requires lots of clicks as we nav-
igate through menus and submenus to accomplish the configuration. This process is
very time consuming, and in addition, we have to remember that we need to perform
these actions within the server. This also means we need to connect to the server using
an RDP (Remote Desktop Protocol) session. It’s exhausting just reading all of the steps,
and we haven’t even taken any action. Now imagine doing this on a bunch of servers.

 The good news is that dbatools has commands to modify this setting, not only to
enable (Enable-DbaForceNetworkEncryption) and disable (Disable-DbaForceNet-
workEncryption) but also to get (Get-DbaForceNetworkEncryption) the current con-
figuration. Even better, all of these commands work remotely. This means you can
check and/or change a setting from a central point and without the need to open a
Remote Desktop session to each and every one of the servers.

After you get the current configuration and assuming you have it set to No, you can
use Enable-DbaForceNetworkEncryption to change the setting to Yes, as shown in the
following code.

PS> Enable-DbaForceNetworkEncryption -SqlInstance sql1

Once your SQL Server instance has been restarted, your new settings will be in effect
and your connections will be encrypted. Although all encryption has a performance
impact, network encryption’s impact is negligible, and you will likely not see any
difference.

24.2 Extended protection for authentication
To make your SQL Server connections even more secure, you can set SQL Server to
use Extended Protection for Authentication. Note this statement from “Redmond
Magazine” (http://mng.bz/KxB4):

“Extended Protection essentially protects against a very specific type of attack where legitimate
client credentials are used to connect to a service or server from an unsecure location.”

This feature of the network components is implemented by the operating system, and
it helps to secure connections to a SQL Server that is a part of an Active Directory
domain. If you want to force your SQL Server to accept connections only from clients

Listing 24.6 Setting the Force Encryption option to Yes

Try it now 24.2
Check the current configured value for your Force Encryption setting using both SQL
Server Configuration Manager and dbatools. Sometimes, you may find that SQL
Server Configuration Manager disappears from your Start menu. If this is the case,
you can also find it in Computer Management by expanding Services and Applica-
tions, then selecting SQL Server Management Configuration Manager.

http://mng.bz/KxB4

317Extended protection for authentication

using operating systems that are protected by Extended Protection, you need to
change the default value, which is Off (disabled). The Off value is used when working
with older or unpatched operating systems, but it is the less secure setting. If you are
in a mixed environment, where some operating systems support Extended Protection
and some do not, you can use the Allowed value. The Required value is the most
secure option, because it will accept connections only from protected applications on
protected operating systems.

 The Extended Protection setting, like the two settings mentioned earlier, is also
configurable through SQL Server Configuration Manager, where it appears under the
Advanced tab. See figure 24.4.

To set this using dbatools, you will use the Set-DbaExtendedProtection command, as
shown in the next listing.

PS> Set-DbaExtendedProtection -SqlInstance sql1 -Value Required

In the event that you encounter any SPN issues, consider using our three SPN com-
mands to troubleshoot: Get-DbaSpn, Set-DbaSpn, and Test-DbaSpn, as illustrated here.

PS> Test-DbaSpn -ComputerName sql1

Cluster : False
ComputerName : sql1.ad.local

Listing 24.7 Setting the Extended Protection option to Required

Listing 24.8 Testing to ensure all SPNs are properly set for SQL Server

Figure 24.4 The Extended Protection setting

318 CHAPTER 24 Security and encryption

DynamicPort : False
Error : None
InstanceName : MSSQLSERVER
InstanceServiceAccount : ad\sqlserver
IsSet : True
Port : 1433
RequiredSPN : MSSQLSvc/sql1.ad.local
SqlProduct : SQL Server 2019 Developer Edition (64-bit)
TcpEnabled : True
Warning : None

...

Even if you do not choose to use Extended Protection, these SPN commands are
invaluable for getting Kerberos connections to work within SQL Server. If you find
that your SQL Server is missing an SPN, you can easily add it using the Set-DbaSpn
command. The next code sample shows how this can be done.

PS> Test-DbaSpn -ComputerName sql1 |
Where-Object isSet -eq $false |
Set-DbaSpn

24.3 Hide an instance
The SQL Server Browser service is used to enumerate existing SQL Server Database
Engine services installed on a server. This allows your clients to probe a server to find
any running named instances of SQL Server, allowing them to connect using the
name instead of having to specify a port.

 Many security policies consider SQL Server Browser a security risk and require that
organizations stop and disable the service. Although it can be argued that “security
through obscurity” is not secure at all, some security standards, such as DISA STIGs,
require the Browser service to be disabled and, further, all SQL Server instances must
be marked as hidden.

 If your organization requires you to hide an instance, Enable-DbaHideInstance
makes it easy. The following listing shows how you can set the Hide Instance configu-
ration to True.

PS> Enable-DbaHideInstance -SqlInstance sql1

Note that once you hide an instance or disable SQL Server Browser, you can access
any named SQL Server instances that are not set to use TCP port 1433 only by specify-
ing the port. Similarly, if you run SQL Server as a default instance or on the default
port, disabling the Browser and hiding the instance will have no impact. As a

Listing 24.9 Setting all required SPNs for all instances on a server

Listing 24.10 Setting the Hide Instance option to True

319Transparent data encryption (TDE)

reminder, you can connect to nonstandard ports using dbatools by specifying the port
in the -SqlInstance parameter, as shown next.

PS> Connect-DbaInstance -SqlInstance sql01:12345
This also works but note you must use single or double quotes
PS> Connect-DbaInstance -SqlInstance "sql01,12345"
Or use a colon without quotes and we'll translate it for you
PS> Connect-DbaInstance -SqlInstance sql01:12345

24.4 Transparent data encryption (TDE)
Data at rest is particularly vulnerable to anyone who has physical access to your serv-
ers. Unencrypted database files and backups can be easily copied and attached or
restored to new SQL Servers, giving attackers easy access to data. Transparent data
encryption (TDE) was created to address this issue by performing real-time I/O
encryption and decryption.

 Like everything, TDE has its pros and cons, but overall it provides “defense in
depth” and helps comply with industry regulations.

TIP “Defense in depth” is a security strategy where a series of controls are lay-
ered to provide the best possible protection for your systems. These layers can
include physical controls, restricted access to the data center, and technical
controls, such as TDE.

24.4.1 Encrypting databases

Encrypting a database using TDE requires four steps, as outlined in table 24.1, in
order.

You can perform the last two steps easily in SSMS by right-clicking the database > Tasks >
Manage Database Encryption. There you will be presented with the image shown in
figure 24.5.

 dbatools has made it incredibly easy using a wrapper command called Start-
DbaDbEncryption. This command encrypts all (or some) user databases on an
instance, while also backing up all required keys and certificates.

Listing 24.11 Connecting to SQL Server using an alternative port

Table 24.1 Steps for Encrypting a database using TDE

Step Database Action

1 Master Ensure a database master key exists.

2 Master Ensure a database certificate or asymmetric key exists.

3 Target database Create a database encryption key.

4 Target database Enable database encryption.

320 CHAPTER 24 Security and encryption

By default in dbatools, databases are encrypted using database certificates, but newer
versions of SQL Server also support using asymmetric keys that are stored in an Exten-
sible Key Management (EKM) module. EKM offers some impressive features, but at
the time of writing, support within dbatools is limited. It’s likely we’ll add these fea-
tures in a future release, but for now, we will focus on using TDE with certificates.

 Listing 24.12 shows how to easily encrypt all user databases in your instance while
backing up the required keys and certificates. Backing up your keys and certificates
requires a password, which we don’t want to paste in plain-text format. To get around
that, we’ll use a SecureString, which can be extracted from Get-Credential.
Because we’ll only use the Password property, and the username property is dis-
carded, you can use anything for the username.

Figure 24.5 Managing
database encryption in
SSMS

Warning
TDE essentially disables instant file initialization (IFI) and also impacts the perfor-
mance of backups when compression is used. TDE also places an additional load on
tempdb, which can impact the performance of all databases within the instance.
Overall, Microsoft docs say that encryption and decryption are scheduled on back-
ground threads, and there’s an estimated overall performance impact of 3%–5%.

In addition, full backups cannot be performed while the databases are encrypting,
though log backups will continue to work. You can encrypt about 10 TB in a day for
direct attached NVMe or about 1 TB on a SAN, and the same is true for decryption.
Of course, this time can vary based on server load and resources available, including
max throughput of storage, latency of storage, and available CPU cores.

If users report that the system is slower than expected, you can suspend encryption
with Suspend-DbaDbEncryption and then resume at a better time with Resume-
DbaDbEncryption.

321Transparent data encryption (TDE)

PS> $masterkeypass = (Get-Credential nobody).Password
PS> $certbackuppass = (Get-Credential nobody).Password
PS> $splatEncrypt = @{

SqlInstance = "sql1"
MasterKeySecurePassword = $masterkeypass
BackupSecurePassword = $certbackuppass
BackupPath = "/tmp"
AllUserDatabases = $true

}
PS> Start-DbaDbEncryption @splatEncrypt

Alternatively, you may want to encrypt just a few databases while also backing up all
keys and certificates. To do this, you’ll pipe in the databases you want to encrypt from
Get-DbaDatabase, as shown in the next listing. This is useful when you’d like to
encrypt specific databases or if you’re encrypting all user databases and recently cre-
ated new databases.

PS> $masterkeypass = (Get-Credential nobody).Password
PS> $certbackuppass = (Get-Credential nobdody).Password
PS> $splatdbEncrypt = @{

MasterKeySecurePassword = $masterkeypass
BackupSecurePassword = $certbackuppass
BackupPath = "/tmp"

}
PS> Get-DbaDatabase -SqlInstance sql1 -Database db1, db2, db3 |

Start-DbaDbEncryption @splatdbEncrypt

To see a list of all encrypted databases, you can use the -Encrypted parameter with
Get-DbaDatabase, as shown next.

Get-DbaDatabase -SqlInstance mssql1 -Encrypted

Note that once you enable encryption, it may take some time for your database to be
fully encrypted, and it will be fully available to your users the entire time. It’s worth
mentioning again that full backups cannot be performed while the databases are
encrypting, though log backups will continue to work.

24.4.2 Decrypting databases

Fully decrypting a database that’s been encrypted by TDE requires the three steps
shown in table 24.2.

 With Stop-DbaDbEncryption, decrypting all user databases on an instance is even
easier. Just specify your SQL Server instance, and Stop-DbaDbEncryption will disable

Listing 24.12 Encrypting all databases on an instance

Listing 24.13 Encrypting select databases on an instance

Listing 24.14 Getting only databases with TDE enabled

322 CHAPTER 24 Security and encryption

encryption on all databases and then remove the encryption key, as illustrated in the
following listing. As mentioned earlier, without the step of removing the encryption
key, the database will not actually be decrypted.

PS> Stop-DbaDbEncryption -SqlInstance sql1

Decrypting all databases on an instance is useful when changing your encryption strat-
egy. For example, your organization may decide to move from using TDE to encrypt-
ing the underlying storage and backups instead.

IMPORTANT Note that this command waits for decryption to complete in
order to remove the encryption key after, so it can run for an extended
period of time. Decrypting takes about the same amount of time that it took
to encrypt the database.

If you would prefer to disable encryption on select databases, use the Disable-
DbaDbEncryption command, as shown here.

PS> Disable-DbaDbEncryption -SqlInstance sql1 -Database db1, db2, db3

Also, note that TDE will not encrypt the following system databases: master, model,
msdb, and resource (a hidden, read-only database that contains system objects). It
will, however, automatically encrypt tempdb once you encrypt at least one user data-
base. It does this to prevent your encrypted data from being leaked in temporary table
data stored in tempdb. It will also likely have a performance impact on all other data-
bases within the SQL Server instance.

 If you plan to use TDE and would like greater control over the encryption process,
we do offer individual commands that will give you that control. Initially, we were
going to create a table here, but there were so many, it’d take up a couple pages! So
instead, you can refer to our database encryption suite at dbatools.io/encrypt.

Table 24.2 Steps for decrypting a database encrypted by TDE

Step Database Action

1 Target database Disable database encryption.

2 Target database Wait until decryption finishes.

3 Target database Remove the database encryption key.

Listing 24.15 Disabling encryption on specific databases on an instance

Listing 24.16 Disabling encryption on specific databases on an instance

https://dbatools.io/placeholder/

323Database backup encryption

24.5 Database backup encryption
When a database is encrypted by TDE, your backups will be automatically encrypted
as well. According to our nonscientific polling on Twitter, shown in figure 24.6, this
actually isn’t a very well-known fact.

But even if you don’t use TDE, you can still encrypt your SQL Server backups. Encrypt-
ing your backups will prevent them from being restored to SQL Servers that do not
have the appropriate certificate or asymmetric key that’s capable of decrypting the
database. This is particularly useful when you store your backups in a shared location,
such as an unencrypted—or even encrypted—SAN, or if you’re sending them off to
the cloud. Permissions on network shares aren’t often as locked down as they could be,
and encrypting backups provides an additional layer of protection. As table 24.3 high-
lights, creating encrypted backups requires an initial setup but is pretty easy after that.

If you restore your backups to the same server, no additional steps are required. If you
need to restore to another SQL Server, three prerequisites exist, as shown in table 24.4.

Table 24.3 Creating encrypted backups

Step Database Action

1 Master Ensure a database master key exists.

2 Master Ensure a database certificate or asymmetric key exists.

3 Target database Specify that certificate and the desired encryption type
when backing up your database.

Table 24.4 Restoring encrypted backups to remote SQL Servers

Step Database Action

1 Source master Back up the master certificate.

2 Destination master Create a master key.

3 Destination master Restore the master certificate.

Figure 24.6 Nonscientific
poll about TDE encryption

324 CHAPTER 24 Security and encryption

In chapter 10, we talked about database backup basics, and now we’ll jump into
encrypted backups, which, after the initial setup, are pretty straightforward.

NOTE SQL Server offers two ways to encrypt a backup file: certificate and
asymmetric key. There are no discernible performance differences, but asym-
metric keys appear to offer more security and features while also introducing
more complexity. At the time of this writing, however, dbatools supports only
certificate-encrypted backups.

24.5.1 Prerequisites

As mentioned earlier, you will need to create a database master key in the master
database, along with a database certificate. Creating a master key requires a complex
password.

WARNING It is worth reminding that you should save your password and cer-
tificate backups in a secure place where you can access them. You don’t want
to lose the certificate used for backups because that would mean you can’t
restore your encrypted database backups!

This password will be used by New-DbaDbMasterKey to generate the key used to sign the
certificate. To generate a new database certificate, we use the New-DbaDbCertificate
command by giving it a name (-Name parameter) that we will use when running the back-
ups of the database.

 As you’ll see in the following listing, we’ll be setting a $securepass variable by
using the Get-Credential command. This is a secure way of generating SecurePass-
word strings because the password is never sent in plain text through the command
line.

PS> $securepass = (Get-Credential doesntmatter).Password
PS> $params = @{

SqlInstance = "sql1"
Database = "master"
SecurePassword = $securepass

}
PS> New-DbaDbMasterKey @params
PS> Backup-DbaDbMasterKey @params

The key backup is important, because it’ll be needed to decrypt the certificate we’re
about to create. If you ever lose this key, you will need to ensure that all of your certif-
icates are backed up, because that will be the only way to recover your certificate if the
key is lost and recreated.

 Now that we have created and backed up the key, let’s create and back up a certifi-
cate in the master database, as shown in the next code snippet. After reading up a bit,
you may be tempted to create a certificate using a password, but in newer versions of

Listing 24.17 Creating and backing up a master key and database certificate

325Database backup encryption

SQL Server, encrypted backups can only be made using certificates that are encrypted
by the master key.

PS> $splatCert = @{
SqlInstance = "sql1"
Database = "master"

}
PS> New-DbaDbCertificate @splatCert -Name BackupCert

Just add to the previous splat!
PS> $splatCert.EncryptionPassword = $securepass
PS> Backup-DbaDbCertificate @splatCert -Certificate BackupCert

We discussed disaster recovery in chapter 14, and now that we have a certificate to
back up and restore our encrypted backups, these need to be part of our disaster
recovery plan, because they’ll be required when restoring a backup on a different
SQL Server instance. Like the password used before, save these .key, .cer, and .pvk files
in a secure place, too. With that said, make sure you update your procedure and docu-
mentation to take these steps into consideration as well.

24.5.2 Backing up the database with a certificate

With the master certificate in place, we can use it along with the -EncryptionAlgorithm
parameter when running the Backup-DbaDatabase command. The supported values
for the -EncryptionAlgorithm parameter are AES128, AES192, AES256, or TRIPLE DES.
Larger keys are more secure but have a greater impact on CPU when performing back-
ups and restores. In general, all of the aforementioned algorithms are acceptable in
most cases, unless regulation within your industry calls for a specific algorithm. The next
code listing shows how we can take a backup with encryption using the AES192 algorithm
and the BackupCert that was previously created.

PS> $backupparam = @{
SqlInstance = "sql1"
Database = "master"
FilePath = "c:\backups"
EncryptionAlgorithm = "AES192"
EncryptionCertificate = "BackupCert"

}

PS> Backup-DbaDatabase @backupparam

24.5.3 Checking encryption information from the backup

To find out whether a backup is encrypted, you can use the Test-DbaBackupEncrypted
command. This command uses Read-DbaBackupHeader to figure out whether the

Listing 24.18 Creating and backing up a master key and database certificate

Listing 24.19 Backing up a database with encryption

326 CHAPTER 24 Security and encryption

backup is encrypted. It also provides information about how the backup was
encrypted—from TDE or explicitly using a certificate. The backup tested in the
following listing has been encrypted by TDE, as can be seen in the TDEThumbprint
column B.

PS> $splatReadBackup = @{
SqlInstance = "sql1"
FilePath = "C:\backups\myEncryptedDatabaseBackup.bak"

}
PS> Test-DbaBackupEncypted @splatReadBackup

ComputerName : sql1
InstanceName : MSSQLSERVER
SqlInstance : sql1
FilePath : c:\backups\myEncryptedDatabaseBackup.bak
BackupName :
Encrypted : True
KeyAlgorithm :
EncryptorThumbprint :
EncryptorType :
TDEThumbprint : 0xEF9CB9F92B8E812A7A11A34FEEA5049DF95D705B
Compressed : True

The backup tested next looks a little different, because it was explicitly encrypted
using a certificate and specified algorithm during the backup process.

PS> $splatReadBackup = @{
SqlInstance = "sql1"
FilePath = "S:\backups\myDatabaseBackup.bak"

}
PS> Test-DbaBackupEncypted @splatReadBackup

ComputerName : sql1
InstanceName : MSSQLSERVER
SqlInstance : sql1
FilePath : S:\backups\myDatabaseBackup.bak
BackupName :
Encrypted : True
KeyAlgorithm : aes_192
EncryptorThumbprint : 168
EncryptorType : CERTIFICATE
TDEThumbprint :
Compressed : True

Specifically, KeyAlgorithm B, EncryptorThumbprint C, and EncryptorType D
prove that the backup is encrypted.

Listing 24.20 Testing a backup encrypted by TDE

Listing 24.21 Testing a backup encrypted by a certificate

B

B
C

D

327Hands-on lab

24.6 Multilayered security
To keep our SQL Servers and the data they hold secure, we’re going to need to think
about security on many levels. This includes physical security, operating system secu-
rity, and SQL Server security. As shown in this chapter, dbatools can help simplify the
implementation of encryption, both for connections and data at rest. This added level
of protection will give you peace of mind that your environment is safe and secure.

24.7 Hands-on lab
Try the following tasks:

 Hide your SQL Server instance.
 Verify whether you have any databases that are using TDE.
 Check whether one of your backups is encrypted.

328

Data compression

When troubleshooting SQL Server performance issues, I/O-related issues are often
at the top of the suspect list. If your workload is I/O intensive—meaning it reads
and writes a lot of data—you’ll often discover bottlenecks that lead to poor perfor-
mance. The easy fix is to improve the hardware by either adding more resources or
getting faster disks. If this isn’t an option, then data compression could be just the
tool you need in your toolbox.

 Data compression has been around since SQL Server 2008, and, barring a few
enhancements to add compression for additional datatypes, no major changes to
how the technology works have been made. However, the most impactful change
came with SQL Server 2016 SP1 when the feature was made available in all editions
of SQL Server. Previously, it was an Enterprise-only feature. This change opened
the door for a greater audience to take advantage of data compression. Data com-
pression also isn’t going anywhere anytime soon. It’s supported in Azure for both
Azure SQL Databases and Azure SQL Managed Instances.

25.1 Types of compression
Three types of compression are available within SQL Server: rowstore compression,
columnstore compression, and backup compression.

 This chapter will focus on rowstore data compression because dbatools has some
commands that help make managing this easy. Rowstore compression is a great
option for storing our transactional (OLTP)-type relational data in a way that saves
space and improves I/O performance. However, it’s worth quickly mentioning the
other two options because they also can provide benefits when managing SQL
Server.

329How does rowstore data compression work?

 The second option for applying compression to your data is using columnstore
technology, which was introduced in SQL Server 2012. This method is more appropri-
ate for large data-warehouse-type relational datasets. Data stored in a columnstore
index is physically stored in columns, instead of pages, which greatly increases the
compression rate. This is partly because columns are more likely to store the same
value, making the compression process we’ll talk about shortly even more effective.

 All columnstore tables and indexes, by default, are stored using columnstore compres-
sion. If you have certain columnstore objects that are not accessed often, you can also
further compress these by applying columnstore archive compression. Applying and
managing columnstore compression is currently out of scope for dbatools, but keep
your eyes open because new features are being added all the time.

 The final type of compression available to us in SQL Server is backup compression.
With the previous two options, the target of compression has been data within our
database; here we’re applying compression to a backup of our data. Backup compres-
sion also came out in SQL Server 2008, so it has been around for a while. Backup com-
pression is useful when we’re taking backups. Not only does it significantly reduce the
footprint of our backup on disk; it can actually improve backup performance because
of the reduction in I/O. Backup compression is impressive; in our lab, backing up a
3 GB WideWorldImporters database without compression averaged 14 seconds. With
compression, that average fell to 6 seconds.

25.2 How does rowstore data compression work?
Before we get into the dbatools magic that makes managing data compression so easy,
it’s worth understanding a bit more about this technology and why it might be useful
to us. For tables and indexes, we have three options when it comes to data compres-
sion. The first one, the default, is to do nothing—don’t apply any compression to the
data, and it’ll just be stored on 8 Kb pages on our disk as it always has been.

 The second option is to apply row compression. This option actually changes the
physical storage format of the data, allowing fixed-length datatypes to use variable-
length storage. For example, if you have a column that is defined as a bigint and you
aren’t using compression, it will take 8 bytes of storage per row, no matter whether

Backup compression and dbatools
dbatools also supports backup compression. Back in chapter 10, we introduced
Backup-DbaDatabase, which has a -CompressBackup parameter that will apply
backup compression to your SQL Server backups. Backup compression can be set
as a configuration property at the instance level. You can use dbatools to see what
it’s currently set as or to set it:

PS> Get-DbaSpConfigure -SqlInstance mssql1 -Name DefaultBackupCompression

PS> Set-DbaSpConfigure -SqlInstance mssql1 -Name DefaultBackupCompression

➥ -Value 1

330 CHAPTER 25 Data compression

you’re storing 1 or 9,223,372,036,854,775,807, the max value for a bigint. How-
ever, by applying row compression, the value in the field uses only the bytes it needs.
9,223,372,036,854,775,807 still needs 8 bytes, but 1 now requires only 1 byte of stor-
age. This doesn’t sound like much, but over millions of rows with multiple columns
that could benefit from row compression, the GBs of savings add up quickly.

 The next step, and final option available to us, is to use page compression. This
further compresses our data, first applying row compression and then adding on two
more layers (prefix and dictionary compression) where, to put it simply, common pat-
terns are removed from the pages and stored instead at the beginning of the page and
then replaced by pointers within the pages. For example, if the city field in your
address table contains Akron for the majority of your customers, you store that value
only once, and all the rows on that page point back to it.

NOTE If you are interested in a deeper dive into the internals of compression,
and to further understand how the data changes on the data pages, check out
Jess’s blog: dbatools.io/jesscompression.

25.3 Why use data compression?
Ultimately, the key here is that using data compression makes storing data in SQL
Server more efficient (for most data types). More data can be stored per page, which
takes up less space on disk, and also in memory when that data is read into SQL Server
to be used. Increasing the amount of data per page means that our database will need
fewer total pages to store the same amount of data.

 We can clearly see this by reviewing the number of pages required to store the Per-
son data when using different levels of compression. You can see in figure 25.1 that, as
we move down the results, we increase the compression levels and decrease the num-
ber of pages needed to store the same data.

25.4 It can’t all be rainbows and unicorns: Compression drawbacks
Using data compression offers a lot of benefits, but we do need to weigh these against
the downsides. When our data is compressed, it takes a little more CPU to decompress
that data to use. When data is needed to filter, join, sort, or be returned for a query,
the engine must reconstitute the data before it can be used.

 With row compression, the first level of compression, we get some space savings
while incurring only a small amount of CPU cost. Applying page compression greatly
increases the space savings—but with that comes an increase in CPU costs.

Figure 25.1 The same data uses fewer pages as you change from no compression, to row,
and then to page compression.

https://jesspomfret.com/data-compression-internals/

331What’s compressed?

 In our experience, more SQL Servers have performance bottlenecks from I/O-
related issues than because they are CPU bound. Therefore, most of the time, data
compression has a positive impact on SQL Server performance.

 As with everything, it’s important to test these changes within your own environ-
ments to determine how to best use data compression. We’ll look at how dbatools can
help with this decision a little later on.

25.5 What’s compressed?
When we think about data compression in our environment, the first questions are
probably going to be these: What is the current state of our environment? Are we using
data compression? What kind of data compression? How much space is it taking to store
our data? We can answer all four of these questions with Get-DbaDbCompression, as
shown in the next listing.

PS> Get-DbaDbCompression -SqlInstance mssql1 -Database AdventureWorks

In listing 25.1, we get results returned for each partition of every index (clustered and
nonclustered) and heap in the AdventureWorks database. These results tell us the cur-
rent compression applied to each partition as well as information on the size and
number of rows. The next listing contains a sample result.

PS> Get-DbaDbCompression -SqlInstance mssql1 -Database AdventureWorks

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Database : AdventureWorks
Schema : dbo
TableName : AWBuildVersion
IndexName : PK_AWBuildVersion_SystemInformationID
Partition : 1
IndexID : 1
IndexType : ClusteredIndex
DataCompression : None
SizeCurrent : 8.00 KB
RowCount : 1

Listing 25.1 Getting compression and size information for a database

Listing 25.2 Example output of Get-DbaDbCompression

The Windows name of the machine

The SQL Server instance—MSSQLSERVER is a default instance.

The machine name returned from SQL

The database name

The schema of the object

The table name The index name;
this will be empty
if it’s a heap.

The partition number; if the index is partitioned,
there will be a result per partition because they
can be compressed separately.

The ID for the index

The type of index: ClusteredIndex,
NonClusteredIndex, or Heap

The current level of compression

The current size of the partition
The number of rows in the partition

332 CHAPTER 25 Data compression

When we plan to make changes to our current data compression levels, it’s a good
starting point to take a look at the output of the Get-DbaDbCompression command
and perhaps even export it so you can compare back against that initial state.

25.6 What should we compress?
We now understand what data compression is and the benefits of using it. We’ve also
discovered the current state of our environment, so we know what is already com-
pressed. It’s now time to think about what we could and what we should compress.

 Data compression can be applied to most of the data stored in our databases.
Entire tables, either stored as heaps or with a clustered index, can be compressed, as
well as nonclustered indexes. If our tables are partitioned, we can even compress indi-
vidual partitions—this means that we could use page compression on partitions that
are accessed less frequently, while leaving more active partitions with either row or no
compression. This allows us to balance costs against benefits to get the best perfor-
mance we can.

 There are some exceptions: we can’t compress memory-optimized tables or tables
with sparse columns. Also, the maximum row size in SQL Server is 8060 bytes. If apply-
ing compression puts us over that limit (from the metadata associated with how to
decompress the data again), we also can’t apply compression to that object.

Using Group-Object to summarize large result sets
The output from Get-DbaDbCompression often contains a lot of results. To get some
high-level information about the overall compression state of your database, you can
use Group-Object. This works similarly to grouping in T-SQL. The following snippet
groups the results by the compression level and displays the number of partitions
and total size of all objects with that compression level:

PS> $splatProperties = @{
Property =

@{N="Data Compression Type"; E={$_.Name}},
@{N="Number Of Objects"; E={$_.Count}},
@{l='SizeMB'; e={'{0:n0}' -f (($_.Group.SizeCurrent |
Measure-Object -Sum).Sum/1MB)}}

}

PS> Get-DbaDbCompression -SqlInstance mssql1 -Database AdventureWorks |
Group-Object DataCompression |
Select-Object @splatProperties

Try it now 25.1
Use Get-DbaDbCompression to look at a database and explore the results. Try using
Group-Object to summarize how many objects are currently compressed using row
and/or page compression. You can also use the -ExcludeDatabase parameter to
get compression information for all databases on an instance except certain ones:

PS> Get-DbaDbCompression -SqlInstance mssql1 -ExcludeDatabase TestDatabase

333dbatools, what should I compress?

 So far we’ve talked only about what we could compress. How do we decide what we
should compress and whether we should use row or page compression? We’ve already
mentioned the CPU cost involved in decompressing the data for use. How do we balance
the disk space and I/O savings we want to enjoy with the CPU cost to use that data?

25.7 What makes a good candidate for compression?
As you can probably already guess, this is a complicated subject, and we could easily
write a book just about this one question. When we plan out our strategy for what we
should compress, we should consider two main aspects: first, the structure and type of
data we have, and second, how that data is used.

 If we remember, row compression works well for fixed-length data types. There-
fore, if we have a lot of these in our tables, it’ll be more effective than if we had only
variable-length data types. Page compression works by removing duplicates from our
data pages, so if we have a lot of repeating data values, we’re likely to see more bene-
fits than if every field in every row had unique data in it.

 Then we need to think about workload. If we don’t update our data often, but we
do a lot of scans (meaning every page for that object has to be read from disk into
memory), then page compression will be really effective. It makes sense: if we have to
read every page, it sure is nice if there are a lot fewer of them because we’ve com-
pressed all that data onto fewer pages.

 If this seems complicated, and a lot of work, don’t panic—the SQL Server Tiger
Team has written an amazing T-SQL script that takes all of these things into consider-
ation. What’s even better is that dbatools is able to execute that code for us and suggest
where we should apply compression that would see benefits that outweigh the costs.

25.8 dbatools, what should I compress?
So far we’ve learned enough about data compression to know it’s going to save us disk
space and improve I/O performance. We now just need to realize those benefits with-
out causing CPU contention on our SQL Servers. We also know that to do this, we
need to really understand our data and workload to get this as close to right as possi-
ble. Luckily for us, dbatools has a Test-DbaDbCompression command, shown in the
next listing, that does all that for us.

PS> Test-DbaDbCompression -SqlInstance mssql1 -Database AdventureWorks

By running the code in listing 25.3, dbatools will evaluate both the structure and work-
load of our database. A built-in stored procedure in SQL Server called sp_estimate
_data_compression_savings looks at how well our data will compress and predicts
the space savings we should expect from applying row or page compression. The
Tiger Team script that dbatools uses combines the output of running this against
every object, plus workload information from looking at index usage stats.

Listing 25.3 Evaluating the best compression to apply per object

334 CHAPTER 25 Data compression

A sample result is shown in the following code sample. You can see the clustered index
of the Customer table is recommended to be page compressed. By applying page
compression, we’ll see an almost 18% savings in size, and due to the workload (high
number of scans, low number of updates), the benefits of page compression will not
be outweighed by the costs. You can see that the PercentScan is 100%, meaning that
looking at the index usage of this table, all of the times it has been accessed have been
to scan the table, making it a perfect candidate for page compression.

ComputerName : mssql1
InstanceName : MSSQLSERVER
SqlInstance : mssql1
Database : AdventureWorks
Schema : Sales
TableName : Customer
IndexName : PK_Customer_CustomerID
Partition : 1
IndexID : 1
IndexType : CLUSTERED
PercentScan : 100
PercentUpdate : 0
RowEstimatePercentOriginal : 82
PageEstimatePercentOriginal : 68
CompressionTypeRecommendation : PAGE
SizeCurrent : 984.00 KB
SizeRequested : 808.00 KB
PercentCompression : 17.89

Listing 25.4 Example output of Test-DbaDbCompression

Warning
The index usage stats are collected from SQL Server DMVs that are reset when SQL
Server is restarted. Therefore, the longer SQL Server has been up, the more likely the
index stats represent the entire workflow. You can use Get-DbaUptime to check how
long your instance has been up:

Get-DbaUptime -SqlInstance mssql1

The Windows name of the machine

The SQL Server instance; MSSQLSERVER is a default instance. The machine name returned from SQL

The database name

The schema of the object

The table name

The index name; this will
be empty if it’s a heap.

The partition number; if the index is partitioned,
there will be a result per partition because they
can be compressed separately.

The ID for
the index

The type of index: CLUSTERED,
NONCLUSTERED, or HEAP

The percentage of scan operations relative
to the total operations on that object

The percentage of update operations relative
to the total operations on that object

If using row compression, the estimated size
of the object as a percentage of current size

If using page compression, the
estimated size of the object as
a percentage of current size

The recommended compression
type to apply. This could be 'PAGE',
'ROW', 'NO_GAIN' or '?'.

The current size of the object

The estimated size of the object if the
recommended compression is applied,
in this case, page level

The percent in space savings from compressing
this object to the recommended level

335Compressing objects the old-fashioned way

dbatools has done all of the heavy lifting now, working out how best to compress each
object in your database. All you have to do is apply that compression. Let’s take a
quick look at how we do that without dbatools, before tying this chapter all together
and letting dbatools compress everything to the recommended level.

25.9 Compressing objects the old-fashioned way
Data compression is applied to objects by rewriting the data on the pages. To accom-
plish this, you have to rebuild the object. In the next listing, you can see this using the
ALTER INDEX statement, with an option to set the DATA_COMPRESSION level.

USE [AdventureWorks]
GO
ALTER INDEX [PK_Customer_CustomerID]
ON [Sales].[Customer]
REBUILD PARTITION = ALL
WITH (DATA_COMPRESSION = PAGE)
GO

This can also be accomplished through the SQL Server Management Studio (SSMS)
GUI by right-clicking on the index, choosing Storage, and then Manage Compression
from the menu options, as shown in figure 25.2.

Listing 25.5 Using T-SQL to apply page compression to a table

Figure 25.2 Manage compression
using the GUI in SSMS.

336 CHAPTER 25 Data compression

This will pop up an SSMS wizard that will walk you through setting the compression
level for the index. In figure 25.3, you can see we have first selected Page compression
as the type, and after we press the Calculate button, the wizard displays the estimated
cost savings.

The Next button on this page allows you to either script out the ALTER INDEX state-
ment, very similar to what we saw in listing 25.5, or kick off the rebuild from the GUI.

 This is pretty straightforward compared to the work we’ve had to do to figure out
which type of compression to use. We could now go through each index, working
through this process of applying the recommended level of compression we got from
Test-DbaDbCompression. Wouldn’t it be easier if we could just apply the results we got
from dbatools in one go?

25.10 dbatools to the rescue!
As you hopefully know by now, dbatools is like a command-line SSMS that makes deal-
ing in multiples a piece of cake. Applying data compression is no different. Using
Set-DbaDbCompression, we can roll through our databases, applying data compres-
sion in one swoop. Why stop there? We could even apply compression to all databases
on a SQL Server, or even all databases on multiple SQL Servers!

 As we’ve learned by this point, it’s not been easy to determine the best compres-
sion to use per index, or even per partition across our database. Luckily for us, dba-
tools did the heavy lifting and determined the optimal compression level for each
object.

 By running the code in the following code snippet, dbatools will go through each
object one by one, applying the recommended compression level based on the same
Tiger Team algorithm discussed previously in the Test-DbaDbCompression command.

1 2

Figure 25.3 Setting the
compression level using
the GUI in SSMS

337Specifying the compression level

PS> Set-DbaDbCompression -SqlInstance mssql1 -Database AdventureWorks

dbatools has to redo a lot of the work we’ve already done. If we’re going to run Test-
DbaDbCompression to review the changes we’re about to make anyway and we save these
results to a variable, the changes can then be passed into the Set command, and dba-
tools will skip the effort of recalculating the recommended compression levels. As shown
in the next code listing, this is our preferred workflow when applying compression.

PS> $splatTestCompression = @{
SqlInstance = "mssql1"
Database = "AdventureWorks"

}
PS> $compressObjects = Test-DbaDbCompression @splatTestCompression

PS> ## Review the results in $compressObjects
PS> $splatSetCompression = @{

SqlInstance = "mssql1"
InputObject = $compressObjects

}
PS> Set-DbaDbCompression @splatSetCompression

25.11 Specifying the compression level
So far we’ve been compressing objects in our databases based on the recommended
compression levels using calculations from the Tiger Team script. You can also use dba-
tools if you want to apply a certain level of compression to the whole database or if you
want to target specific tables. Being able to target the whole database is useful if you
have no concerns with performance and want to get maximum space savings. We usu-
ally see this in nonproduction environments where performance is less of a concern.

 On the other hand, if you are looking for more control, you can use the -Table
parameter to apply compression only to specific tables. The Set-DbaDbCompression
command has a -CompressionType parameter to control this behavior. The default
value is Recommended, which will use the Tiger Team algorithm, but you can also pass
in either Row or Page to apply the specified compression level to the whole database.
The following listing shows us compressing the whole database using page compres-
sion and applying row compression to just the Employees table.

PS> $splatSetCompressionPage = @{
SqlInstance = "mssql1"
Database = "AdventureWorks"
CompressionType = "PAGE"

}

Listing 25.6 Applying compression to every object in the database

Listing 25.7 Passing the results from Test-DbaDbCompression to apply

Listing 25.8 Applying page compression to all objects in the database

338 CHAPTER 25 Data compression

PS> Set-DbaDbCompression @splatSetCompressionPage

PS> $splatSetCompressionRow = @{
SqlInstance = "mssql1"
Database = "AdventureWorks"
Table = "Employee"
CompressionType = "ROW"

}
PS> Set-DbaDbCompression @splatSetCompressionRow

25.12 Advanced settings
Applying data compression requires rebuilding indexes, so this can be a pretty inten-
sive operation and can take a while if you have a large database to compress. There-
fore, it’s best to apply compression during your maintenance windows to ensure no
performance impacts are felt during the work. The Set-DbaDbCompression command
has a couple of useful parameters to control this maintenance, so we can be sure we
don’t cause any slowdowns for our users.

 First, we can specify a -MaxRunTime, which allows us to specify a number of minutes
for dbatools to work on compressing our indexes before it stops. This means that
index rebuild commands will be kicked off, one after another, until we reach that
maximum runtime setting. At that point, no more will be executed. It’s worth noting,
however, that the currently running index rebuild will not be canceled when the time
limit is reached. Therefore, it’s important to anticipate that we could run over the
specified -MaxRunTime if a large index is kicked off just before the time runs out.

 The second useful parameter to mention is -PercentCompression, which allows
you more control over when the benefits of data compression outweigh the costs. The
default is 0, meaning any space saving is worth having (as long as the algorithm hasn’t
ruled it out based on workload!). You could increase this percentage to compress
fewer objects.

 In the next listing, we combine these two parameters, so we apply compression
only if the estimated space savings is higher than 25%, and after 60 minutes, no more
objects will be compressed.

Remove compression with dbatools
In the same way that we have applied compression to our database using Set-
DbaDbCompression, we can also remove it. The only thing we need to change from
listing 25.8 is to set the -CompressionType parameter to None. This works both for
the whole database or to target specific tables with the -Table parameter:

PS> $splatSetCompressionPage = @{
SqlInstance = "mssql1"
Database = "AdventureWorks"
CompressionType = "NONE"

}
PS> Set-DbaDbCompression @splatSetCompressionPage

339Hands-on lab

PS> Set-DbaDbCompression -SqlInstance mssql1 -Database AdventureWorks

➥ -MaxRunTime 60 -PercentCompression 25

As you can see, data compression is quite a tricky subject, but using dbatools can make
this easier. Hopefully this chapter has provided enough detail around data compres-
sion to understand how beneficial it could be in your environment. The good news is
that dbatools will do the heavy lifting for you, making you look like a superstar for sav-
ing space and increasing SQL Server performance.

25.13 Hands-on lab
 Collect and store the current compression levels of your database using Get-

DbaDbCompression.
 Review the compression suggestions from Test-DbaDbCompression. Remember,

if your lab hasn’t had much activity, the workload information will be limited.
 Compress a single table with page compression using the -Table parameter of

Set-DbaDbCompression.
 Apply the recommended compression suggestion to your entire database with

Set-DbaDbCompression.
 Rerun Get-DbaDbCompression, and compare your results to your earlier levels.

Review your space savings and compression changes.

Listing 25.9 Applying compression with some more advanced parameters

340

Validating your
 estate with dbachecks

For decades, most of the team writing this book had our own daily/weekly/monthly
checklists to validate our SQL Server environments. At least once each day, we’d
ensure that backups were scheduled and working as required. We’d check to see
whether all of our integrity checks passed. We’d even spend a lot of time keeping our
checklists up to date as our environment grew, and we learned more about managing
SQL Server. Some of us performed this validation manually, whereas others created
an automated routine that would perform the checks automatically.

 What we didn’t have for all those years was a single, community-wide checklist—
nor did we have have a free and open source framework to make our checks easier.
Not having those meant a lot of wasted time and repeated work!

 To address this problem, the SQL PowerShell community came together to cre-
ate crowdsourced checks using dbatools and Pester (sqlps.io/pester) tests. This
project became known as dbachecks.

26.1 What dbachecks and dbatools have in common
You may be wondering why we dedicated a chapter to dbachecks, a totally distinct
PowerShell module from dbatools, in a book about dbatools. We did so for a num-
ber of reasons, including the following:

 The dbatools team created dbachecks.
 dbachecks relies heavily on dbatools.
 dbachecks is basically an extension of dbatools.
 Many of the things we needed as DBAs but weren’t quite in scope for dba-

tools went into dbachecks.
 Most of us use dbachecks as often as we use dbatools.

https://github.com/pester/Pester

341Our first check

dbachecks uses dbatools to get a number of different configurations and properties,
and uses the Pester testing framework PowerShell module to check whether the results
align with our desired outcome.

 Pester makes it possible to create our own SQL Server tests using PowerShell, and,
as Rob likes to say, “If you can get it with PowerShell, you can test it with Pester.” With
the framework provided by dbachecks, it is now easy to create and share these tests
with the SQL Server community in a centralized repository.

 Like dbatools, you can install dbachecks right from the PowerShell Gallery. To
install dbachecks for your own user account, run the code shown here.

PS> Install-Module dbachecks -Scope CurrentUser

This will install dbachecks, as well as two modules it depends on: dbatools and
PSFramework. Compatible versions of Pester are included in Windows, but if you
need to install Pester manually, you must install version 4.10.1 or earlier, as seen in the
next listing.

PS> Install-Module Pester -RequiredVersion 4.10.1 -Scope CurrentUser

26.2 Our first check
Now that we have dbachecks installed, we can run our very first check. Because back-
ups are one of the things data professionals care about most, we’ll make that our first
check.

 Previously in chapter 10, we showed how dbatools can help with database backups,
and now, with dbachecks, we can run tests to ensure that our backups are running as
expected. To check whether our databases have been running full backups in the last
24 hours, we’ll use the primary workhorse command: Invoke-DbcCheck. This is the
command that performs all of the actual checks against both local and remote hosts.
In the following listing, we’ll run one check, LastFullBackup, against one SQL Server
instance, dbatoolslab.

PS> Invoke-DbcCheck -SqlInstance dbatoolslab -Check LastFullBackup

Pretty easy, right? We tried to make this tool as easy as possible for our framework to
be immediately useful. Ultimately, however, working with dbachecks can be as simple
or as complex an experience as you’d like.

 Regarding listing 26.3, you may also be wondering how we knew to specify the
LastFullBackup value for the -Check parameter. We’ll get into that shortly, but before

Listing 26.1 Installing dbachecks

Listing 26.2 Specifying a version when installing dbachecks

Listing 26.3 Checking for last full backup in the previous 24 hours

342 CHAPTER 26 Validating your estate with dbachecks

we do, let’s take a look at the output generated by executing the command shown
next.

PS> Invoke-DbcCheck -SqlInstance dbatoolslab -Check LastFullBackup

Pester v4.10.1
Executing all tests in 'C:\Program Files\WindowsPowerShell\Modules\
dbachecks\2.0.14\checks\Database.Tests.ps1' with Tags LastFullBackup

Executing script C:\Program Files\WindowsPowerShell\Modules\dbachecks
\2.0.14\checks\Database.Tests.ps1

Describing Last Full Backup Times

Context Testing last full backups on dbatoolslab
[-] Database AdventureWorks should have full backups less

than 1 days old on dbatoolslab 8ms
Expected the actual value to be greater than 2021-10-15T
16:57:48.8673943Z, because Taking regular backups is
extraordinarily important, but got
2021-10-10T05:35:19.0000000Z.
498: $psitem.LastBackupDate.ToUniversalTime() |
Should -BeGreaterThan (Get-Date).ToUniversalTime().AddDays(
- ($maxfull)) -Because "Taking regular backups is
extraordinarily important"
at <ScriptBlock>, C:\Program Files\WindowsPowerShell\Modules
\dbachecks\2.0.14\checks\Database.Tests.ps1: line 498

[+] Database master should have full backups less than 1 days
old on dbatoolslab 7ms

[+] Database model should have full backups less than 1 days
old on dbatoolslab 10ms
[+] Database msdb should have full backups less than 1 days
old on dbatoolslab 11ms

Tests completed in 1.73s
Tests Passed: 3, Failed: 1, Skipped: 0, Pending: 0, Inconclusive: 0

In the summary output B, you can see that three tests passed but one failed, and it
provides details on the database that doesn’t have a recent backup and why this is
important.

Listing 26.4 dbachecks output

Describe block of the Pester test tells us the
name of the current check we’re running.

The Context block of the Pester test tells us which
SQL Server we’re running the tests against.

The It block of the Pester test has the
details on what we tested and the result.

The [-] shows it was a failed test.

On a failed test, we get more details on why it failed.
We can see we should have had a backup since 2021-
10-15, but the last one was on 2021-10-10.

Pester allows you to add a because block to your
tests that tells us why we care that the test failed.

B

343Configuring the check parameters

26.3 Viewing all available checks
dbachecks currently provides over 130 tests, or checks, that help validate the health of
our SQL Server estates. This number has steadily increased over time as more SQL
Server DBAs have added their own checks to the toolset. The following code shows
how to get a list of all available checks by running Get-DbcCheck.

PS> Get-DbcCheck | Select-Object Group, UniqueTag

Group UniqueTag Description
----- --------- -----------
Agent DatabaseMailEnabled Tests that the Database Mail XPs configu...
Agent AgentServiceAccount Tests that the SQL Agent Account is runn...
Agent DbaOperator Tests that the specified (default blank)...
Agent FailsafeOperator Tests that the specified (default blank)...
Agent DatabaseMailProfile Tests that the specified (default blank)...
Agent AgentMailProfile Tests to see if the SQL Server Agent Ale...
Agent FailedJob Tests that enabled Agent Jobs last outco...
Agent ValidJobOwner Tests that all Agent Jobs have a Job Own...
Agent AgentAlert Tests that there are Agent Alerts set up...
Agent JobHistory Tests that the job history configuration...
Agent LongRunningJob Tests that any currently running agent j...
Agent LastJobRunTime Tests that the last duration of the agen...
Database DatabaseCollation Tests that the Database Collation matche...
Database SuspectPage Tests that there are 0 Suspect Pages for...
Database TestLastBackup Restores the last backup of a database o...
...

The command outputs more information by default, but we wanted to give a gentle
introduction to a list of all checks that are available. We’ll explore the functionality of
Get-DbcCheck further in listing 26.6.

26.4 Configuring the check parameters
Out of the box, dbachecks uses reasonable default values for each check. For exam-
ple, LastFullBackup tests to see whether a full backup has been completed in the past
24 hours. This is reasonable if you take full backups daily, but some organizations have
very different backup strategies. Luckily, dbachecks is flexible and allows users to cus-
tomize to match their requirements. For example, let’s say an organization has the fol-
lowing strategy:

Listing 26.5 dbachecks output

Try it now 26.1
Run two checks against one of your SQL Server instances, and see whether your
instance passes:

PS> Invoke-DbcCheck -SqlInstance dbatoolslab -Check LastGoodCheckDb,

➥ MaxMemory

344 CHAPTER 26 Validating your estate with dbachecks

 Full backups once a week
 Differential backups each night
 Transaction log backups (for databases in full recovery model) every four hours

This is pretty specific, but dbachecks is configurable enough to make this possible.
Most, if not all, checks have configuration options available, which allows you to shape
the dbachecks tests to be exactly what you’d expect in your environment.

 You can discover the configuration options available for each check using Get-
DbcCheck. The Config property, seen next, shows which options are available for the
LastFullBackup check.

PS> Get-DbcCheck -Tag LastFullBackup | Format-List

Group : Database
Type : Sqlinstance
UniqueTag : LastFullBackup
AllTags : LastFullBackup, LastBackup, Backup, DISA,

Varied, Database
Config : app.sqlinstance policy.backup.fullmaxdays

policy.backup.newdbgraceperiod skip.backup.readonly
skip.backup.secondaries

Description : Tests if the last full backup of a database is less
than the specified number of days (default 1) except
for offline databases and read-only databases
(read-only if specified) and databases created
recently (if specified).

If you guessed that we’ll need to modify policy.backup.fullmaxdays, you were right.

Before we make any changes, let’s first confirm the current value for policy.backup
.fullmaxdays. In the next listing, we expect to see a value of 1, which is the default
that is available out of the box.

Listing 26.6 Viewing the metadata for the LastFullBackup check

The group this check falls into; this check runs at the database level.

The type of check tells us what object should be passed in. Each check must have a unique tag;
this is how we’ll call an individual
check.

The check can also have more
tags, which allows us to run
multiple checks at once.

Config shows us the
properties that we can
control so the test will

check we’re in the exact
desired state.

Finally, we have
a description of

the check.

Split the config property into a list
The example in listing 26.6 shows the config property is returned as a space-
separated list. This isn’t the easiest to read, so you can use the Split method in
PowerShell to split the space and create a list:

PS> (Get-DbcCheck -Tag LastFullBackup).config.Split(' ')

app.sqlinstance
policy.backup.fullmaxdays
policy.backup.newdbgraceperiod
skip.backup.readonly
skip.backup.secondaries

345Configuring the check parameters

PS> Get-DbcConfig -Name policy.backup.fullmaxdays

Name Value Description
---- ----- -----------
policy.backup.fullmaxdays 1 Maximum number of days before Full...

To see all current configurations, run Get-DbcConfig without any additional parameters.
 Now that we’ve confirmed that policy.backup.fullmaxdays is set to 1, the next

code snippet shows how we can update that value to 7.

PS> Set-DbcConfig -Name policy.backup.fullmaxdays -Value 7

Name Value Description
---- ----- -----------
policy.backup.fullmaxdays 7 Maximum number of days before Full Backu...

We’ll also need to do the same to configure the settings for the differential and log
backup thresholds.

NOTE The configurations are set in the registry, so once they have been set
on the machine, they don’t need to be configured every time you run your
checks.

Once the configuration is set up, we can run all the LastBackup checks to make sure
our backup strategy is being met. This is shown in listing 26.9.

 We’ve taken a full backup since the last failed check, so that should be back in our
desired state. We’ve also specified Fails as the value for the -Show parameter on the
call of Invoke-DbcCheck, which reduces the amount of output we see because only
failed checks are highlighted.

PS> Set-DbcConfig -Name policy.backup.fullmaxdays -Value 7
PS> Set-DbcConfig -Name policy.backup.diffmaxhours -Value 24
PS> Set-DbcConfig -Name policy.backup.logmaxminutes -Value 240

PS> Invoke-DbcCheck -SqlInstance dbatoolslab -Check LastBackup -Show Fails

Pester v4.10.1
Executing all tests in 'C:\Program Files\WindowsPowerShell\Modules\
dbachecks\2.0.14\checks\Database.Tests.ps1' with Tags LastBackup

Listing 26.7 Confirming the value for policy.backup.fullmaxdays

Listing 26.8 Changing the config setting

Listing 26.9 Setting the config settings for full, diff, and t-log backups

Sets the configuration to check for a
differential backup within 24 hours/daily

Sets the configuration to check for
a full backup within 7 days

Sets the configuration to check for a log
backup within 240 minutes/4 hours

Uses
the -Show
parameter

to determine
how much

detail is
returned

346 CHAPTER 26 Validating your estate with dbachecks

Executing script C:\Program Files\WindowsPowerShell\Modules\dbachecks\
2.0.14\checks\Database.Tests.ps1

Describing Last Full Backup Times

Context Testing last full backups on dbatoolslab

Describing Last Diff Backup Times

Context Testing last diff backups on dbatoolslab

Describing Last Log Backup Times

Context Testing last log backups on dbatoolslab
[-] Database AdventureWorks log backups should be less than 240

minutes old on dbatoolslab 7ms
Expected the actual value to be greater than 2021-10-20T00:42:26
.6170000, because Taking regular backups is extraordinarily
important, but got 2021-10-10T08:00:01.0000000Z.564:
$psitem.LastLogBackupDate.ToUniversalTime() | Should -BeGreaterThan
$sqlinstancedatetime.AddMinutes(- ($maxlog) + 1)
-Because "Taking regular backups is extraordinarily important"
at <ScriptBlock>, C:\Program Files\WindowsPowerShell\Modules\
dbachecks\2.0.14\checks\Database.Tests.ps1: line 564

Tests completed in 2.33s
Tests Passed: 5, Failed: 1, Skipped: 0, Pending: 0, <7> Inconclusive: 0

Now that you’ve seen how to find and modify values for these three configuration
options, you can apply the same technique to all configuration options within dbachecks.
This will help you customize your checks to align with your organizational policies.

26.5 Storing the output data in a database
We’ve now seen how to run the checks, and we learned how to read and understand
the output. This is perfect for a few single checks that we want to verify on-demand,
but what you may find even more useful is collecting the results to analyze over time.

 dbachecks makes it easy to save the results of each check to a database, which
allows you to follow the check’s evolution over time. Being able to identify trends
helps you make decisions about what resources are needed for your estate, like more
storage or a bigger datatype for an identity column. In this section, we’ll learn how to
both store the output and identify trends over time with a Power BI dashboard.

No failed tests for the full
backup checks, so just the
headings appear in the
output.

A failed test, with
details, for our log

backup check

Try it now 26.2
Configure the full backup check configuration to meet your backup strategy needs,
and then run the checks against an instance. Read through the results you get from
dbachecks, and see if your backup strategy is being met:

PS> Set-DbcConfig -Name policy.backup.fullmaxdays -Value 7
PS> Invoke-DbcCheck -SqlInstance dbatoolslab -Check LastFullBackup

347Storing the output data in a database

26.5.1 Storing data

To store dbachecks output in a database, we first need to convert the output of our
tests to a format that SQL Server can understand. Within dbachecks, we use the
Convert-DbcResult command. Once the results have been converted, we can save
them to a specific database using Write-DbcTable, as shown in the following listing.

PS> $splatInvokeCheck = @{
SqlInstance = "dbatoolslab"
Check = "LastBackup"
Passthru = $true

}
PS> Invoke-DbcCheck @splatInvokeCheck |
Convert-DbcResult -Label dbatoolsMol |
Write-DbcTable -SqlInstance dbatoolslab -Database DatabaseAdmin

The -Label parameter used in the Convert-DbcResult command is optional but can
be useful when identifying and analyzing a specific set of results. If you’re curious about
the output, the results of our own tests from listing 26.10 can be seen in figure 26.1.

As you run these checks over time, you will get a good picture of what your environ-
ment looks like day to day and how it’s changing. Depending on the check, it can also
alert you to what needs to be addressed.

Listing 26.10 Running dbachecks and storing the results in a database

Results of the checks and failure
messages if the check failed

Figure 26.1 dbachecks results are stored in our database.

Try it now 26.3
Being able to easily store dbachecks data in a database is such a powerful feature.
Have a go for yourself. Run one, or a few checks, for yourself, and push them straight
into a database.

348 CHAPTER 26 Validating your estate with dbachecks

26.5.2 Power BI dashboard

With the PowerShell module, we also provide a Power BI dashboard (.pbix file) with
different visualizations to help us analyze the results of our checks. This dashboard
will point to our database and read the data from there. For that we can use the
Start-DbcPowerBi command to open the dashboard, as illustrated in the next code
snippet.

PS> Start-DbcPowerBi -FromDatabase

NOTE You will need to have Microsoft Power BI desktop installed to open the
dashboard.

26.5.3 Configuring the connection

When the dashboard opens, you will be prompted for the SqlInstance and Checks-
ResultDBName values, as shown in figure 26.2.

Next, click the Load button, and your data will appear, as shown in figure 26.3.

Listing 26.11 Opening the dbachecks Power BI dashboard

(continued)
PS> $splatInvokeCheck = @{

SqlInstance = "dbatoolslab"
Check = "LastBackup"
Passthru = $true

}
PS> Invoke-DbcCheck @splatInvokeCheck |
Convert-DbcResult -Label dbatoolsMol |
Write-DbcTable -SqlInstance dbatoolslab -Database DatabaseAdmin

Figure 26.2 Configure PowerBI to connect to the database where check results are stored.

349Hands-on lab

26.6 Hands-on lab
Try the following tasks:

 Check the documentation at sqlps.io/dbacheckslatest. We have lots of blog
posts from our contributors and users showing how to use it.

 Install dbachecks.
 Run a check to validate whether your MaxMemory setting is configured correctly.
 Explore all configurations and existing checks.

Figure 26.3 The PowerBI dbachecks dashboard gives us a good view of our estate.

https://dbachecks.readthedocs.io/en/latest/

350

Working in the cloud

To answer your burning cloud question: as of this writing, dbatools has limited sup-
port for cloud database services, and the support that we do provide is focused on
Microsoft Azure. This is primarily because most of the core programmers on the
dbatools team have access to Microsoft Azure, whereas our access to other cloud
providers is limited. We are, however, open to community contributions for other
cloud providers.

 If you have SQL Server installed on a virtual machine on any cloud provider,
including Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft
Azure, or other leading clouds, SQL Server will work pretty much like it does on-
premises. Specialized database services such as Amazon’s Relational Database Ser-
vice (RDS) or Microsoft’s Azure SQL Database and Managed Instances, however,
do not behave in entirely the same manner as on-premises and require specialized
programming to support them within PowerShell.

 We do have plans to provide more in-depth Azure SQL Database support, and
we’ll likely see this in an entirely new module that makes Microsoft’s Az.Sql as easy
and fun to use as dbatools. Until then, this chapter will outline some of the ways
that dbatools is currently being used in Microsoft Azure, and what we’ve done to
ensure you can use a few fundamental commands within our toolset.

27.1 Connecting to Azure
Azure SQL Database and Managed Instances support a number of ways to authenti-
cate with the target SQL Server instance, which you can see in the SQL Server Man-
agement Studio (SSMS) Connect to Server (shown in figure 27.1) and Azure Data
Studio (ADS) dialog boxes.

351Connecting to Azure

You use not only Active Directory and SQL Server Authentication but also Azure Active
Directory (AAD) Universal with multifactor authentication (MFA), AAD password, and
AAD integrated, giving you an incredible amount of authentication flexibility when
managing servers in Azure. What makes this extra useful is that these authentication
methods open up the possibility of managing SQL Server beyond interactive GUIs like
SSMS. With MFA, for instance, you can use managed identities and dbatools to securely
interact with a SQL Server instance within Azure Functions or a CI/CD pipeline.

 Let’s start with one of the most straightforward authentication methods: using
Azure Active Directory password. As seen in the next listing, connecting using Azure
Active Directory password just requires that you pass the instance address, target data-
base (if not master), and your AAD credential.

PS> $params = @{
SqlInstance = "myserver.database.windows.net"
Database = "mydb"
SqlCredential = "me@mydomain.onmicrosoft.com"

}
PS> $server = Connect-DbaInstance @params
PS> Invoke-DbaQuery -SqlInstance $server -Query "select 1 as test"

One thing you may notice that’s a little different is that, when connecting to Azure, we
create a $server object first and reuse that over and over. This is the recommended
way because it’ll save you from having to reauthenticate, and the commands will run
faster. We don’t tend to do this on-premises because SQL Server pooling keeps con-
nections fast enough. The one exception is when we connect to SQL Server contain-
ers, which require alternative credentials, so we reuse $server objects with containers
simply for convenience.

Listing 27.1 Connecting to a SQL Server instance using an AAD password

Figure 27.1 SSMS’s
Connect to Server dialog
box, showing different
ways to connect

352 CHAPTER 27 Working in the cloud

Much like when using integrated authentication on-premises, if you’re using Azure
Active Directory integrated authentication, you don’t have to pass a -SqlCredential
at all. Just pass servername.database.windows.net using the -SqlInstance parame-
ter and your database name to -Database, and you’re set.

27.2 Service principals and access tokens
Another way you can log in to Azure SQL Database and Managed Instances is to use
service principals and access tokens. Service principals and access tokens are useful
when SQL Authentication is not allowed, and they are used most often within CI/CD
pipelines, as no user account passwords are exposed.

 In terms of on-premises functionality, service principals can be thought of like ser-
vice accounts, and access tokens can be thought of as one-time passwords. To learn
more about service principals, you can visit Microsoft’s documentation using our
shortlink at sqlps.io/sqlapp.

 After creating your SQL service principal, you can use our New-DbaAzAccessToken
command to generate an access token as shown in the next listing. The -Credential
username is your application ID, and the password will be your application secret.

PS> $params = @{
Type = "RenewableServicePrincipal"
Tenant = "mytenant.onmicrosoft.com"
Credential = "ee590f55-9b2b-55d4-8bca-38ab123db670"

}
PS> $token = New-DbaAzAccessToken @params
PS> $params = @{

SqlInstance = "myserver.database.windows.net"
Database = "mydb"
AccessToken = $token

}
PS> $server = Connect-DbaInstance @params
PS> Invoke-DbaQuery -SqlInstance $server -Query "select 1 as test"

Again, note that we’ve created a reusable $server object, which is then used as the
-SqlInstance target.

Listing 27.2 Connecting to a SQL Server instance using an access token

Try it now 27.1
Discover all the ways to connect to SQL Server instances, both in the cloud and on-
premises, by checking out the examples for Connect-DbaInstance:

Get-Help Connect-DbaInstance -Examples

https://docs.microsoft.com/en-us/azure/azure-sql/database/application-authentication-get-client-id-keys?tabs=azure-powershell

353Supported commands

27.2.1 Using Az.Accounts

If your current workflow includes the use of Az.Accounts and Get-AzAccessToken, we
support that scenario as well, as demonstrated next.

PS> $azureAccount = Connect-AzAccount
PS> $azureToken = Get-AzAccessToken -ResourceUrl

➥ https://database.windows.net

PS> $params = @{
SqlInstance = "myserver.database.windows.net"
Database = "mydb"
AccessToken = $azuretoken

}

PS> $server = Connect-DbaInstance @params
PS> Invoke-DbaQuery -SqlInstance $server -Query "select 1 as test"

There is no benefit to one method over the other—it is simply a matter of preference
and convenience.

27.3 Supported commands
We’ve touched on Azure throughout the book and have seen how we can perform
backups and restores using Azure Blob Storage. Although we don’t have an exhaustive
index of commands that work in Azure at this time, we do plan to compile one at an
unknown date in the future. This list will then be used to denote Azure support on
our docs site, docs.dbatools.io, shown in figure 27.2, similar to the way we currently
show which commands are supported by Windows, Linux, and macOS.

After reviewing our GitHub issues and polling the community on Twitter, we’ve found
that dbatools is most often used to work directly with data in Azure. These commands,

Listing 27.3 Using an access token generated by Get-AzAccessToken

Figure 27.2 Once we
create the list, Azure
support signifiers will
likely show up here.

https://docs.dbatools.io/

354 CHAPTER 27 Working in the cloud

shown in table 27.1, work within Azure Automation Workbooks, Azure Functions,
Azure DevOps Agents, and GitHub Actions.

Note that this is not an exhaustive list, but rather, the most commonly used commands
at this time. With 600+ commands and counting within dbatools, it’s highly likely that
many more work, especially in Managed Instances.

 Import-DbaCsv is one of our favorite commands, so we’ve chosen this one to use as
an example. In the following code listing, a connection is made to the mydb database
on myserver.database.windows.net. Using that connection, customers.csv is imported
into an automatically created table named customer. Then a query is performed to
ensure that the data has been imported properly.

PS> $params = @{
Type = "RenewableServicePrincipal"
Tenant = "mytenant.onmicrosoft.com"
Credential = "ee590f55-9b2b-55d4-8bca-38ab123db670"

}
PS> $token = New-DbaAzAccessToken @params
PS> $params = @{

SqlInstance = "myserver.database.windows.net"
Database = "mydb"
AccessToken = $token

}

Table 27.1 Non-exhaustive list of commands that work in Azure

Command Description
Azure
SQL

Managed
Instance

Copy-DbaCredential Copies SQL Server Credentials, including
passwords

X

Copy-DbaDatabase Copies databases and a few key proper-
ties lost with backup/restore

X

Copy-DbaDbTableData Easily copies table data from one data-
base to another

X X

Import-DbaCsv Quickly imports data from CSV files X X

Invoke-DbaDbDataMasking Masks sensitive data X X

Invoke-DbaQuery Performs a query X X

Publish-DbaDacPackage Publishes DACPACs and BACPACs; often
used in software deployment

X X

Set-DbaLogin Sets properties for several logins at once X X

Write-DbaDataTable Bulk-writes data to a database table from
any type of PowerShell object

X X

Listing 27.4 Importing a CSV file to Azure SQL Database

355Hands-on lab

PS> $server = Connect-DbaInstance @params
PS> $params = @{

SqlInstance = $server
Database = "mydb"
Path = "C:\temp\customers.csv"
AutoCreateTable = $true

}
PS> Import-DbaCsv @params
PS> $params = @{

SqlInstance = $server
Database = "mydb"
Query = "select * from customers"

}
PS> Invoke-DbaQuery @params

This is the basic setup for all commands used against Azure SQL Database and Azure
Managed Instances.

27.4 The future
Soon, we plan to introduce an interactive pop-up window that will make it even easier
to connect to Azure SQL Database using MFA.

27.5 Hands-on lab
 Try a number of commands against Azure SQL Database, and let us know which

ones work for you at dbatools.io/issues.

https://github.com/dataplat/dbatools/issues

356

dbatools configurations
 and logging

After reading this book, we hope you feel more comfortable using dbatools to man-
age multiple SQL Server instances, databases, and features. You now know plenty of
commands and procedures to make your work life easier.

 In this penultimate chapter, we wanted to introduce you to one more feature
that can take your dbatools experience to the next level: the ability to change the
way the module works so you can adapt it to your needs. Think of it like our version
of Tools > Options, or File > Preferences. We offer similar options using the dba-
tools configuration system, which can change settings like date/time formatting
and connection timeouts.

 Throughout the chapter, we’ll walk you through the configuration commands
that can help manage your dbatools preferences, and we will also cover the logging
system to help you troubleshoot any issues you encounter.

28.1 Working with the configuration system
For most people reading this book, the default configuration values work well. Oth-
ers in specialized environments may need to modify their configuration settings to
ensure that PSRemoting uses SSL, for example. They may also need to change the
log retention settings to adhere to company policy.

 Before we change any configurations, however, we need to know what settings
are available. In this section, we will show how to get the current configured values
as well as how to interpret them. Then we’ll show you how to change them.

28.1.1 Checking existing configurations

To see a list of configuration settings along with their current values, use the Get-
DbatoolsConfig command, as shown in the next listing and figure 28.1.

357Working with the configuration system

Get-DbatoolsConfig

As you can see in figure 28.1, the dbatools configuration values are divided into
groups that we call Modules B. Here, we are just showing the first three groups, but
you’ll see several later in this chapter. Each configuration has a FullName C, a Value
D, and a Description E.

 You can leverage this division to filter your results, as shown in figure 28.2. For
that, you just need to use the -Module parameter, and you can press Tab or CTRL +
Spacebar to use the autocomplete functionality. This way, you will be able to see all dif-
ferent existing modules and choose one.

28.1.2 Getting a specific configuration

Let’s say we want to check the retention policy for logs generated by dbatools. In fig-
ure 28.2, we can see a module named Logging, which seems to describe what we’re
looking for. Let’s confirm by executing the code in the next listing.

Listing 28.1 Checking dbatools configurations and current values

1

2

3 4

Figure 28.1 A small excerpt of existing dbatools configurations

After type -Module,
press CTRL + Spacebar
to see the existing options.

Figure 28.2
Checking the
list of modules

358 CHAPTER 28 dbatools configurations and logging

PS> Get-DbatoolsConfig -Module Logging |
Select-Object FullName, Description

FullName Description
-------- -----------
logging.errorlogenabled B Governs, whether a log of recent err...
logging.errorlogfileenabled Governs, whether log files for error...
logging.maxerrorcount The maximum number of error records ...
logging.maxerrorfilebytes C The maximum size all error files com...
logging.maxlogfileage D Any logfile older than this will aut...
logging.maxmessagecount The maximum number of messages that ...
logging.maxmessagefilebytes The maximum size of a given logfile....
logging.maxmessagefilecount The maximum number of logfiles maint...
logging.maxtotalfoldersize This is the upper limit of length al...
logging.messagelogenabled Governs, whether a log of recent mes...
logging.messagelogfileenabled Governs, whether a log file for the ...

We can see in this listing that we have configurations that control whether logging is
enabled B and the maximum size for all error logs C. We can also see the configura-
tion that we are looking for, specifically, logging.maxlogfileage D.

NOTE We include a description for every single configuration. If you have
doubts whether a specific configuration FullName is the one you are search-
ing for, check the description for it.

Now that we know which configuration we want to work with, we can get more infor-
mation about it using Get-DbatoolsConfig, as shown here.

PS> Get-DbatoolsConfig -FullName logging.maxlogfileage

Module: logging

FullName Value Description
-------- ----- -----------
logging.maxlogfileage 7.00:00:00 Any logfile older than this will automa...

28.1.3 Getting just the value

Assuming that you don’t need to read the description and you already know the full
configuration name, you can leverage Get-DbatoolsConfigValue to get just the con-
figuration value without any other properties, as shown in the next code snippet.

PS> Get-DbatoolsConfigValue -FullName sql.connection.timeout

15

Listing 28.2 Getting all configurations belonging to the Logging module

Listing 28.3 Getting maxlogfileage’s configured value

Listing 28.4 Getting just the configuration value

359Taking the configs with you

You can use this code to get a value and assign it to a variable that you want to use
later.

 The -Fallback and -NotNull parameters may also be useful to you. -Fallback
makes it possible to retrieve a default value when the configuration doesn’t have one,
whereas -NotNull raises an error if a configuration value does not exist.

28.1.4 Changing a configuration value

After finding a specific configuration, you may decide to change its value. To do this,
you will use the Set-DbatoolsConfig command.

 Say you want to change the default timeout value (15 seconds) for a connection
attempt to a SQL Server instance to 30 seconds. This configuration appears under the
sql module group and has the FullName of sql.connection.timeout. Use the Full-
Name property from the Get-DbatoolsConfig command together with the -Value
parameter to set a new value for this configuration, as shown in the next listing.

Set-DbatoolsConfig -FullName sql.connection.timeout -Value 30

NOTE You can also use this command to create new configuration values valid
for your current session. Changes made by Set-DbatoolsConfig persist only
for the current session. To permanently persist your changes, use Register-
DbatoolsConfig.

28.1.5 Resetting to default configuration values

If you want to reset your configured values to their defaults, you can use the Reset-
DbatoolsConfig command. You can either specify a single configuration using the
-FullName parameter to reset a specific value to default, or you can reset all configura-
tions by piping in all of the configuration options from Get-DbatoolsConfig, as
shown in the following code sample.

PS> Get-DbatoolsConfig | Reset-DbatoolsConfig

28.2 Taking the configs with you
We provide two commands to help you save all of your configuration settings and
import them to another device. The command Export-DbatoolsConfig exports a
configuration file in JSON format, whereas you can use Import-DbatoolsConfig to
import the JSON file. Both have different parameters that allow you to export/import
everything, as shown in the next listing, or just certain settings based on the name or
the module they belong to. Don’t forget that you can use Get-Help to find your
options.

Listing 28.5 Changing the sql.connection.timeout value to 30

Listing 28.6 Resetting all dbatools configurations

360 CHAPTER 28 dbatools configurations and logging

Get-DbatoolsConfig |
Export-DbatoolsConfig -OutPath D:\temp\DbatoolsConfigExport.json

28.3 Using the logging system
For any tool, having a good logging system can be a lifesaver when problems arise. As
a team, we’ve dedicated a great deal of time to our logging system, ensuring it is easy
to use for both postanalysis and ongoing command executions. You can find where we
store our logs on your system by using your newly acquired knowledge about Get-
DbatoolsConfigValue, as shown here.

PS> Get-DbatoolsConfigValue -FullName path.dbatoolslogpath -OutVariable dir
PS> Get-ChildItem $dir

Directory: C:\Users\sqldba\AppData\Roaming\PowerShell\dbatools

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 12/14/2021 1:35 PM 7332 dbatools_11188_error_1.xml
-a---- 12/14/2021 1:37 PM 7320 dbatools_11188_error_2.xml
-a---- 12/14/2021 1:37 PM 7302 dbatools_11188_error_3.xml
-a---- 12/14/2021 1:37 PM 7320 dbatools_11188_error_4.xml
-a---- 12/14/2021 1:37 PM 7298 dbatools_11188_error_5.xml
-a---- 12/14/2021 1:38 PM 7890 dbatools_11188_error_6.xml
-a---- 12/14/2021 1:40 PM 149864 dbatools_11188_message_0.log
-a---- 12/12/2021 4:57 PM 86587 dbatools_12572_message_0.log
-a---- 12/16/2021 3:46 PM 14094 dbatools_14324_message_0.log
-a---- 12/16/2021 2:49 PM 7776 dbatools_16792_error_1.xml
-a---- 12/16/2021 2:49 PM 9306 dbatools_16792_message_0.log
-a---- 12/16/2021 3:03 PM 19852 dbatools_4560_message_0.log
-a---- 12/15/2021 11:50 AM 7341 dbatools_7320_message_0.log

But don’t worry, you won’t have to parse these .xml and .log files yourself; we’ve cre-
ated a command to help you do just that.

28.4 Exploring logged activity
The command Get-DbatoolsLog allows you to view the log entries generated by dba-
tools. Sometimes, after running a script with multiple commands, something may not
work as expected, and you will want to know exactly what went wrong. Checking the
generated logs will give you that insight.

28.4.1 Ongoing logging

Back in chapter 4, we introduced you to the -EnableException parameter in section
4.9, “Bonus parameter: EnableException.” You may remember that, by default, when

Listing 28.7 Exporting all dbatools configurations

Listing 28.8 Discovering detailed dbatools logging information

361Exploring logged activity

you run a dbatools command and it returns an error, we show the error message as an
easy-to-understand warning.

 Although this approach makes our module user friendly, it does add one extra step
for advanced PowerShell development. In the event that you would like to work with
the whole exception, perhaps to see more information or to use dbatools within a
try/catch block, you will use the -EnableException parameter, which can be found
in most of our commands. In figure 28.3, you can see the difference between not
using (1) or using (2) the -EnableException parameter.

As you can see, the first attempt returned a yellow warning message, whereas the sec-
ond returned a red PowerShell exception. No matter how you handle your excep-
tions, all of them are logged to our Enterprise-style logging system, which you can
easily explore using Get-DbatoolsLog.

 If you’d like to see the last error, for instance, you can use the -LastError parame-
ter. If that turns out not to be the error that you are trying to find, you can see all
errors using the -Errors parameter. You can even combine the -Errors parameter
with the -Last parameter to get a specific number of recent errors. See the next code
listing for an example of this process.

Get-DbatoolsLog -Errors -Last 5

If you’d like more information about the configuration system, we recommend read-
ing Cláudio’s article, “dbatools Advanced Configuration,” at dbatools.io/config.

Listing 28.9 Viewing last five errors logged on dbatools

1. Without the -EnableException parameter

2. With the -EnableException parameter

Figure 28.3 dbatools logging: the EnableException parameter

https://dbatools.io/configuration/

362 CHAPTER 28 dbatools configurations and logging

28.5 Hands-on lab
Try the following tasks:

 Confirm the actual value for the “batch separator” configuration.
 Export/import dbatools configurations related to the formatting module.
 Get the five most recent error messages logged by dbatools.

363

Never the end

We have arrived at the final chapter of Learn dbatools in a Month of Lunches. We hope
you have found this book useful and exciting. Above all, we hope that we’ve con-
vinced you that dbatools can simplify your life as a DBA, and spending a little time
learning how to work with dbatools will save an enormous amount of time in the
long run.

 The good news is that completing this book is really only the beginning! We’ve
provided 27 chapters discussing the most important use cases and our favorite
functions, but this only just scratches the surface of the 600+ commands available
in the dbatools module. Now that you’ve read the book, you not only know how to
apply the tools to the real-world use cases we describe, you also know enough to dis-
cover and implement new commands on your own.

 With the skills you’ve learned, you should be able to start relying on dbatools to
easily manage large estates of SQL Servers and to automate processes. But what if you
want more? Well, your learning journey can take you in a few different directions.

29.1 Use dbatools
We have found that the best way to really embrace dbatools and PowerShell is to
use them for tasks that we currently complete using SSMS or another tool. It may
take you a little longer the first time, but not only will you have a script for the sub-
sequent time you have to complete that task, you will also start to understand how
the PowerShell commands map to what you know in SSMS.

 Before long you’ll start turning to dbatools and PowerShell—instead of SSMS—
to answer questions and complete tasks. Trust us, we now struggle to remember
what life was like before dbatools!

364 CHAPTER 29 Never the end

29.2 More PowerShell
Many people have described dbatools as a gateway to PowerShell for DBAs. If you’re
interested in learning more about PowerShell as a scripting language and you’ve
enjoyed the format of this Month of Lunches book, we can highly recommend the
classic Learn PowerShell in a Month of Lunches, which has just been updated to its fourth
edition. The goal of Learn PowerShell is to create “well-rounded PowerShell script writ-
ers,” and you could easily combine those skills with your dbatools knowledge to create
excellent DBA PowerShell scripts and modules for your company.

 For a peek into Learn PowerShell in a Month of Lunches, check out
http://mng.bz/6XXG for free access to chapter 4, “Running Commands.”

 Other books we love are Lee Holmes’s PowerShell Cookbook (sqlps.io/pscookbook),
which contains a bunch of high-quality recipes, and Bruce Payette and Richard Sid-
daway’s Windows PowerShell in Action, Third Edition (sqlps.io/winpsinaction), which is
dense and advanced but explains not only the how but the why. Windows PowerShell in
Action is also the inspiration for our desire for Manning to be the publisher of the first
dbatools book.

29.3 Contribute to dbatools
Another way to continue your learning is to get involved with the dbatools community
and contribute to the dbatools module (see sqlps.io/contributing). Don’t let this
sound daunting; even if you’re still new to dbatools and PowerShell, you still have ways
to contribute.

 As you continue to learn about dbatools, it’s quite likely you’ll find yourself read-
ing a lot of our comment-based help and testing out commands. You’ll likely discover
examples that aren’t in the help, but that other people would find useful, so you could
contribute by adding those examples to the commands.

29.4 Farewell
However you continue your journey, we wish you good luck and happy PowerShelling!

https://www.oreilly.com/library/view/powershell-cookbook-4th/9781098101596/
https://www.manning.com/books/windows-powershell-in-action-third-edition
https://github.com/dataplat/dbatools/blob/development/contributing.md
http://mng.bz/6XXG

365

index

Symbols

$datatable variable 72
$instances variable 60
$options object 186
$securepass variable 324
$server object 351

A

Action=RunDiscovery flag 92
Active Directory

finding nested Active Direc-
tory Group access 131–132

finding SQL Server instances
on network 85–86

AdminAccount 171
ADS (Azure Data Studio) 33, 45,

105–107, 183, 287, 350
AgentCredential 169
AGs (availability groups)

222–228
creating 222–224

based on containers 224
based on WSFC 222–224

exploring existing 225–227
managing existing 227–228

All 87
AllDatabases switch 196
Allowed value 317
ALTER INDEX statement 335
ALTER PROCEDURE

statement 159
AutoCreateTable 67
AvailabilityGroup 226

Azure
Az.Accounts 353
backups 137–139

access keys 138–139
shared access

signatures 137–138
connecting to 350–352
restores 154–155

access keys 154–155
shared access

signatures 154
service principals and access

tokens 352–353
writing results of commands

to 74–75
AzureCredential 154

B

backup compression 329
Backup-Dbadatabase 325
BackupRestore 196–197
backups

creating 134–140
Azure 137–139
Docker 139–140

encryption 323–326
backing up database with

certificate 325
checking encryption

information from
backup 325–326

prerequisites for 324–325
history 141–142
instance migration 195–197

pruning old files 142
reading files 140–141
testing 142–144

C

catch block 242
Category 252
CategoryType 263
Central Management Server. See

CMS
certificates 311–315

listing of certificates that SQL
Server can use 313

obtaining and installing
312–313

setting 313–315
Check 341
ChecksResultDBName

value 348
Chocolatey 22
CI/CD systems, running

dbatools and PowerShell
on 294–297

adding parameters to
script 295–297

creating tasks 295
ensuring module is

available 295
clip 62
cloud database services

Az.Accounts 353
connecting to Azure 350–352
future of 355

INDEX366

cloud database services (continued)
service principals and access

tokens 352–353
supported 353–355

CmdExec
creating jobs with 238–240
PowerShell Agent job

steps vs. 231–232
CMS (Central Management

Server)
getting Registered Servers in

both Local Server Groups
and 111

overview 107–109
Column 279
columnstore compression 329
CompressBackup 135, 329
CompressionType 337
ComputerName 10, 54–56,

93, 220
Config property 344
Configuration 171–173
configuration system 356–359

changing values 359
checking existing

configurations 356–357
getting specific

configurations 357–358
getting values 358–359
importing configurations 359
resetting to default values 359

ConfigurationFile 171–173
ConfigurationFile.ini

template 165
Connect-DbaInstance 37, 50
ConnectedAs property 51
ConnectSuccess property 43
containers

creating availability groups
based on 224

demo environments
using 35–39

overview 39
running SQL Server in 36–39

Continue 151
Convert-DbcResult 347
ConvertTo-DbaDataTable 72
ConvertTo-DbaXESession 300
Copy 210
Copy commands

Copy-DbaAgentAlert 206
Copy-DbaAgentJob 211
Copy-DbaAgentOperator 205
Copy-DbaCredential 213
Copy-DbaCustomError 206
Copy-DbaDatabase 195

Copy-DbaDbTableData 76, 155
Copy-DbaLinkedServer 213
Copy-DbaLogin 207
Copy-DbaRegServer 109
Copy-DbaXESession 302

COPY_ONLY flag 199
Credential 55–56, 58, 220

listing services
by type 58
using different account at

command line 56
using different account with

credential variables 57
CSR (Certificate Signing

Request) 312
CSV files, importing from 64–68

creating table first 70–73
Import-Csv with Write-

DbaDataTable 66–68
Import-DbaCsv 64–65

D

DAC (dedicated administrative
connection) 213

DACPAC 287–294
exporting from existing

database 287–289
options 290–294
publishing 289–290

data compression
advanced settings 338–339
dbatools 336–337
drawbacks of 330–331
good candidates for 333
reasons for using 330
rowstore data

compression 329–330
specifying compression

level 337–338
types of 328–329
what is compressed 331–332
what should be

compressed 332–335
data masking

common approach 275–276
generating random data

276–277
process for 277–283

applying static data
masking 282–283

defining deterministic
columns 281–282

finding potential PII
data 277–279

generating configuration
file 279–282

validating data masking
configuration file 283

Database 97, 135, 252
DatabaseName 151
DataPath 171
datatable object 72
Datatype 277
DateTime 254
datetime format 152
dba operator 211
dbachecks

compared to dbatools 340–341
configuring parameters

343–346
making checks 341–343
storing output data in

databases 346–348
configuring

connection 348
Power BI dashboard 348
storing data 347–348

viewing all available
checks 343

dbatools
docs.dbatools.io 25
Extended Events 302
help system 23–24
installing

installation paths 15–16
minimum requirements

8–13
signed software 13–14
via Chocolatey 22
via PowerShell Gallery

16–21
via zipped archive 21–22

logging system 360
exploring activity 360–361
ongoing logging 360–361

purpose of book 5–6
running on CI/CD

system 294–297
adding parameters to

script 295–297
creating tasks 295
ensuring module is

available 295
shared access signatures 4–5
updating 25–26

via alternative methods 26
via PowerShell Gallery

25–26
when to use in DevOps 286

INDEX 367

dbatools commands
checking SQL connections 41
ComputerName 54–56
Credential 56–58

listing services using
different account at
command line 56

listing services using
different account with
credential variables 57

listing SQL services by
type 58

EnableException 59
finding 23–25

Find-DbaCommand 23
Get-Command 23

Get-Help 41–43
importing from 68–70
running 43–45
SqlCredential 48–53

connecting to instances
with different
Windows accounts
52–53

SQL Server
Authentication 49–52

SqlInstance 45–48
multiple instances 46–48
single instances 45–46

writing results of other
commands to Azure SQL
Database 74–75

writing results of other
commands to tables 73

dbatools lab
demo environments using

containers 35–39
options for building 28
reason for 27–28
Windows lab 29–35

building 30–32
configuration scripts 33–34
installation media 29

dedicated administrative
connection (DAC) 213

Desired State Configuration
(DSC) 164

Destination 192
DestinationDataDirectory 150
DestinationLogDirectory 150
detach and attach migration

option 197–198
DetachAttach 198
DetachAttach switch 197

Deterministic property 281
Deterministic value 281
DevOps automation

DACPAC 287–294
exporting from existing

database 287–289
options 290–294
publishing 289–290

running dbatools and
PowerShell on CI/CD
system 294–297
adding parameters to

script 295–297
creating tasks 295
ensuring module is

available 295
when to use dbatools in

DevOps 286
Disable-DbaDbEncryption 322
disaster recovery

availability groups 222–228
creating 222–224
exploring existing 225–227
managing existing 227–228

exporting entire
instance 180–187
excluding objects 187
scripting options 184–185
setting scripting

options 186
exporting server

configurations 191–192
granular exports 187–190
log shipping 215–219

configuring 216–217
gathering errors 217–218
secondary databases

218–219
special commands 190–191
WSFC 219–221

discovery types 81
docker run 37
Docker, creating backups

139–140
docs.dbatools.io 25
Domain discovery type 85
DSC (Desired State

Configuration) 164

E

EKM (Extensible Key
Management) 320

Enable-DbaAgHadr 222

EnableException 59, 242, 361
Encrypted 321
encryption

authentication 316–318
database backups

encryption 323–326
backing up database with

certificate 325
checking encryption

information from
backup 325–326

prerequisites for 324–325
hiding instances 318–319
network connections 310–316

certificates 311–315
force encryption 315–316

transparent data
encryption 319–322
decrypting databases

321–322
encrypting databases

319–321
EncryptionAlgorithm 325
EndDate 259
EngineCredential 169
Enter-PSSession 12
Errors 361
event_file type 308
Exclude 187
ExcludeDatabase 332
ExcludeLogin 208
ExcludeObjectTypes option 291
ExcludeSystem switch 98
ExcludeUser switch 98
Export commands

Export-DbaDacPackage
281–283

Export-DbaInstance 181
Export-DbaLogin 128
Export-DbaRegServer 110
Export-DbaScript 188–190
Export-DbaSpConfigure 191
Export-DbatoolsConfig 359

Extended Events 301–308
cleanup 308
converting traces to 300–301
dbatools support 302
finding 302–303
reading data 306–308

postmortem analysis 308
watching live data 307–308

replicating sessions to
multiple instances 308

SSMS support 301–302

INDEX368

Extended Events (continued)
starting and stopping

sessions 305–306
templates 303–305

Extensible Key Management
(EKM) 320

F

FailoverCluster module 219
Fallback 359
File 239
Find-DbaAgentJob 256
Find-DbaCommand

23, 251, 261
Flag 270
Force 52, 208, 227
force encryption 315–316
FrequencySubdayInterval 264
FrequencySubdayType 264
FTCredential 169
Full 126
FullName 359
FullName property 359

G

GCP (Google Cloud
Platform) 350

Get commands 225
Get-AzVM 74
Get-Command 23, 214,

251, 261
Get-Content 63
Get-Credential 51, 324
Get-DbaAgentJob 251
Get-DbaAgentJob-

Category 252
Get-DbaAgentJobHistory 273
Get-DbaComputer-

Certificate 313
Get-DbaDatabase

filtering results returned
by last backup
time 98–100

filtering results returned
from 97–98

Get-DbaDbCompression 332
Get-DBaDbOrphanUser 123
Get-DbaDbTable 68
Get-DbaDiskSpace 9
Get-DbaErrorLog 64
Get-DbaFeature 93

Get-DbaOperatingSystem 96
Get-DbaRandomizedType 277
Get-DbaRandomized-

Value 277
Get-DbaRegServer 112
Get-DbaRunningJob 272
Get-DbaService 55
Get-DbatoolsConfig 356
Get-DbaWsfcResource 221
Get-Help 23–24, 41–43
Get-Member 70, 190

H

HADR (high availability and
disaster recovery)

availability groups 222–228
creating 222–224
exploring existing 225–227
managing existing 227–228

log shipping 215–219
configuring 216–217
gathering errors 217–218
secondary databases

218–219
WSFC 219–221

help resources
docs.dbatools.io 25
Get-Help 23–24, 41–43

Hicks, Jeff 7
Holmes, Lee 364

I

IAC (Infrastructure as
Code) 124, 285

IF NOT EXISTS statement
186, 189

IFI (instant file
initialization) 320

Import commands
Import-Csv 66–68
Import-DbaCsv 64–65
Import-DbaRegServer

102, 110
Import-DbaSpConfigure

185–186
Import-DbatoolsConfig 359
Import-

DbaXESessionTemplate
304

Import-Module 16
IncludeIfNotExists property 186

IncludeSelf 114
Infrastructure as Code

(IAC) 124, 285
Install-DbaInstance 165
installing dbatools

installation paths 15–16
minimum requirements 8–13

execution policy 12–13
ports 10–12
server 9
workstation 9–10

signed software 13–14
via Chocolatey 22
via PowerShell Gallery 16–21

all users 18
local user 19
offline install 20–21
overview 16–17
trusting PowerShell

Gallery 17
via zipped archive 21–22

invalidated digital
signature 22

offline install 22
renaming directory 22

InstanceName 58, 177
instant file initialization

(IFI) 320
Invoke commands

Invoke-Command 12
Invoke-

DbaDbDataMasking 282
Invoke-

DbaDbLogShipRecovery
218

Invoke-DbaQuery 143
Invoke-DbcCheck 341

IpAddress 87

J

Job 210
Jones, Don 7

L

LastError 361
LastFullBackup value 341
LastRaised property 254
Learn PowerShell in a Month of

Lunches (Jones and
Hicks) 7

linked servers 213–214

INDEX 369

Local Server Groups 104–105
getting Registered Servers in

both CMS and 111
version-specific RegSrvr.xml

files 105
log shipping 215–219

configuring 216–217
gathering errors 217–218
secondary databases 218–219

Login Tracker Extended Event
template 209

logins
failed logins 120–124
finding nested Active

Directory Group
access 131–132

identifying how access was
gained 128–132

preventing issues 124–126
source control 126–128

LogPath 171

M

MAPS (Microsoft Assessment
and Planning Toolkit) 81

Message property 259
Microsoft.PowerShell.Graphical-

Tools module 170
migration, SQL Server

instance 194–214
MinimumConfidence 84
Module 357
Module switch 261
MSX (master servers) 262

N

Name 159, 305
New commands

New-DbaAgentSchedule 266
New-DbaAvailability-

Group 223
New-DbaAzAccessToken 352
New-DbaComputer-

Certificate 312
New-DbaDacOption 291
New-DbaDbCertificate 324
New-DbaDbMasking-

Config 279
New-DbaDbSnapshot 162
New-DbaLogin 120
New-DbaScriptingOption 184
New-DbaXESession 305

NoClobber 246
NoCopyOnly 203
NoFullBackup 98
nonrecovered databases

150–151
NoRecovery 150, 199
NotNull 359
NoTypeInformation 63
Noun switch 261
NT SERVICE service

accounts 173
NumberFiles 196

O

Off value 317
OnFailAction 269
Online 25
OnSuccessAction 269
Out-GridView 170
OutputScriptOnly 136, 149
OutVariable 207

P

PageRestore 153
Param block 296
PassThru 130
Passthru 161, 212
Password property 320
Path 159
PATH variables 15
Payette, Bruce 364
permissions 126–128
PII (personally identifiable

information) 274, 277–279
pipeline 60
point-in-time restores 152
Power BI 348
PowerShell

automation 3–4
learning more about 364
running on CI/CD

system 294–297
adding parameters to

script 295–297
creating tasks 295
ensuring module is

available 295
SQL Server Agent

CmdExec vs. PowerShell job
steps 231–232

creating jobs to run
232–238

ensuring job fails when
PowerShell fails
241–244

story of SQL Server DBA 2–3
why data professionals can't

afford to ignore 1–3
PowerShell Cookbook

(Holmes) 364
PowerShell Desired State

Configuration 164
PowerShell Gallery, installing

dbatools via 16–21
all users 18
local user 19
offline install 20–21
overview 16–17
trusting PowerShell

Gallery 17
PowerShell in Action (Payette

and Siddaway) 364
PowerShell splatting 76–78
PSCredential object 51–52
Publish-DbaDacPackage 289

R

RandomizerSubType 277
RandomizerType 277
RDP (Remote Desktop) 43
RDS (Relational Database

Service) 350
Read-DbaXEFile 306
Reattach 198
Recovery Time Objective

(RTO) 180
Registered Servers

adding new 112–114
Azure Data Studio 105–107
Central Management

Server 107–109
copying 115–116
exporting 115–116
groups 117–118
importing 115–116
inventory organization

109–111
Local Server Groups 104–105
moving 116–117
removing 117

RegSrvr.xml files 105
Remove-DbaXESession 308
Repair-DbaDbOrphanUser 124
ReplaceDbNameInFile 151
Required value 317
Reset-DbatoolsConfig 359

INDEX370

restores
Azure 154–155

access keys 154–155
shared access

signatures 154
considerations

regarding 145–146
instance migration 195–197
limitations of 145–146
restoring to custom data and

log directories 149–154
nonrecovered

databases 150–151
point-in-time restores 152
recovering corrupt

databases 153–154
renaming databases

151–152
restoring to marked

transactions 152–153
scenarios for 146–149

directories 147–149
single files 147
T-SQL restore scripts 149

snapshots
cleaning up 162
creating 158–159
reporting 162–163
restoring certain objects or

data from 161
rolling back entire database

from 160–161
upgrading 159–160
when to use 158

RestoreTime 152
rowstore data compression

328–330
RTO (Recovery Time

Objective) 180

S

SampleCount 279
SASs (shared access

signatures) 154
scan types 81
ScriptingOptions 184
Secure Sockets Layer (SSL) 311
security

encryption
authentication 316–318
database backups

encryption 323–326
hiding instances 318–319

network connections
310–316

transparent data
encryption 319–322

multilayered security 327
Select-Object 307
Set 153, 337
Set commands

Set-DbaDbCompression 337
Set-DbaExtended-

Protection 317
Set-DbaNetwork-

Certificate 314
Set-DbaSpConfigure 214
Set-DbaSpn 318
Set-DbatoolsConfig 359
Set-PSRepository 17
SetSourceOffline 197

setspn.exe 85
setup.exe 165
shared access signatures

(SASs) 154
Show 345
SID (Security Identifier) 123
Siddaway, Richard 364
signed software 13–14
Since 258
SMO (SQL Management

Object) 184
snapshots

application upgrade 157–158
cleaning up 162
creating 158–159
reporting 162–163
restoring certain objects or

data from 161
rolling back entire database

from 160–161
SSMS and 156–157
upgrading 159–160
when to use 158

Source 192
sp_configure values 34
Split 344
SPN (service principal

names) 85
SQL Management Object

(SMO) 184
SQL Profiler 299–301
SQL Server

activity tracing
Extended Events 301–308
SQL Server Trace and SQL

Profiler 299–301
checking connection 41

instances from separate
sources 47–48

instances stored in
variables 47

multiple instances passed
as array 46

piping in instance
names 47

to single local default
instance 46

to single local named
instance 46

to single remote default
instance 45

to single remote named
instance 45

using nondefault port
number 48

connecting to instances with
different Windows
accounts 52–53

copying tables 75–78
finding instances on

network 81–88
detailed results 88–90
in Active Directory

domain 85–86
in surrounding

network 86–88
OS support 90
overview 81
using list of targets 82–85
using SQL Server

Browser 82–85
installing 164–175

benefits of automated
installs 165–166

built-in parameters
173–175

ConfigurationFile and
Configuration
parameters 171–173

customizing installation
options 171

local installs 167
postinstall actions 175
remote installs 168–170

inventorying
build information 94–95
databases 96–100
feature usage 92–93
gathering information into

database 100–101
host information 95–96
Registered Servers 104–118

INDEX 371

SQL Server (continued)
listing services

by type 58
on multiple servers 56
using different account at

command line 56
using different account with

credential variables 57
patching 176–177

fear of breaking
everything 176

procrastination 177
piping commands 60–64
SQL Server Authentication

connecting to instances
with 49–50

using credentials for 50–52
updating 175–176
writing to databases 64–75

importing from CSV
files 64–68, 70–73

importing from dbatools
commands 68–70

writing results of other
commands 73–75

SQL Server Agent 235–236, 253,
255, 264–266

alerts 253–255
bonus job commands

270–273
Get-DbaAgentJob-

History 273
Get-DbaRunningJob 272
Start-DbaAgentJob 271

CmdExec vs. PowerShell job
steps 231–232

instance migration 209–212
job creation 232–238,

261–270
creating categories

262–263
creating jobs 266–269
creating operators 266
creating proxies 264–266
creating schedules 263–264
PowerShell file 237–238
running files 269–270
SQL Server Agent

proxies 235–236
SQL Server

credentials 234–235
with CmdExec job

step 238–240
job history 259–260

job results 258–259
listing information 250–257

finding specific jobs
256–257

SQL Server Agent
alerts 253–255

SQL Server Agent
jobs 250–252

proxies 235–236, 255,
264–266

tips for 240–248
default parameter

values 240
ensuring job fails when

PowerShell fails
241–244

execution policies 248
logging 244–247

SQL Server Browser 82–85
SQL Server credentials 234–235
SQL Server instance migration

databases 194–204
backup and restore

195–197
detach and attach 197–198
staging large

databases 198–203
groups 206–209
linked servers 213–214
logins 206–209
SQL Agent objects 209–212

SQL Server operators 255, 266
SQL Server SysPrep 165
SQL Server Trace 299–301
SQL WMI 11
sqladmin login 186
SqlCredential 37, 48–53,

225, 240
connecting to instances with

different Windows
accounts 52–53

SQL Server
Authentication 49–52

SqlInstance 37, 45–48, 60, 106,
109, 263, 319, 348, 352

multiple instances 46–48
single instances 45–46

SSL (Secure Sockets Layer) 311
SSMS (SQL Server Manage-

ment Studio) 2, 31, 41,
102, 120, 145, 156, 183,
205, 215, 229, 249, 287,
298, 311, 335, 350

Extended Events 301–302
snapshots and 156–157

staging large databases for
migration 198–203

applying changes and
bringing destination
online 201–203

staging full backup 199–201
Start-DbaAgentJob 271
Start-DbaDbEncryption 319
Start-DbcPowerBi 348
Start-Transcript 246–247
StartDate 259
StartTime 263
Status 306
StepId 269
Stop-DbaAgentJob 272
StopAt 306

T

T-SQL restore scripts 149
Table 279, 337
Tag 23
TDE (transparent data

encryption) 319–322
decrypting databases 321–322
encrypting databases 319–321

Test commands
Test-DbaBackup-

Encypted 325–326
Test-DbaBuild 94–95
Test-DbaComputerCertificate-

Expiration 313
Test-DbaConnection

24, 43–46, 61
Test-DbaDbCompression

333–337
Test-DbaDbDataMasking-

Config 277
Test-DbaLastBackup

136–138, 143
Test-DbaMaxMemory 49
Test-DbaSpn 317–318

Throttle 168
Time type 264
TLS (Transport Layer

Security) 311
TSX (target servers) 262
Type 58, 177

U

Update 94
users 126–128

INDEX372

V

Value 359
Verb switch 261
Version 177
VMs (virtual machines) 35

W

Watch-DbaXESession 306
WHERE clause 159, 258
Where-Object 307–308
Windows dbatools lab 29–35

building 30–32
configuration scripts 33–34

installation media 29
WMI (Windows Management

Instrumentation) 253
Write-DbaDataTable 66–68,

71, 143
WS-Management 12
WSFC (Windows Server Failover

Cluster) 219–224

ISBN-13: 978-1-61729-670-3

See first page

Register this print book to get free access to all ebook formats.
Visit manning.com/freebook

MANNING

“All SQL Server professionals
should learn dbatools. With its

combination of knowledge
transfer, anecdotes, and
hands-on labs, this book

 is the perfect way.”—From the Foreword by Anna
Hoffman, Databases Product

Management, Microsoft

“Excellent guide for dbatools
with lots of practical tips!

Required reading for anyone
 interested in dbatools.”

—Ruben Vandeginste, PeopleWare

“A must-have for any SQL
server developer.”

—Raushan Kumar Jha, Microsoft

“If you want to automate all
vital aspects of SQL Server, wait

no more! Learn dbatools in a
month, with guidance from the
best minds in the business.”
—Ranjit Sahai, RAM Consulting

F or SQL Server DBAs, automation is the key to efficiency.
Using the open-source dbatools PowerShell module, you
can easily execute tasks on thousands of database servers

at once—all from the command line. dbatools gives you over
500 pre-built commands, with countless new options for man-
aging SQL Server at scale. There’s nothing else like it.

Learn dbatools in a Month of Lunches teaches you how to
automate SQL Server using the dbatools PowerShell module.
Each 30-minute lesson introduces a new automation that will
make your daily duties easier. Following the expert advice of
dbatools creator Chrissy LeMaire and other top community
contributors, you’ll learn to script everything from backups
to disaster recovery.

WHAT’S INSIDE

• Performing instance-to-instance and customized
 migrations
• Automating security audits, best practices, and
 standardized configurations
• Administering SQL Server Agent including running
 PowerShell scripts effectively
• Bulk-importing many types of data into SQL Server
• Executing advanced tasks and increasing efficiency
 for everyday administration

For DBAs, accidental DBAs, and systems engineers who manage
SQL Server.

Chrissy LeMaire is a GitHub Star and the creator of dbatools.
Rob Sewell is a data engineer and a passionate automator. Jess
Pomfret and Cláudio Silva are data platform architects. All are
Microsoft MVPs.

SQL SERVER / POWERSHELL

 Learn
dbatools

IN A MONTH OF LUNCHES

lemaire • sewell • pomfret • silva
Foreword by Anna Hoffman

	Learn dbatools in a Month of Lunches
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the authors
	Chapter 1: Before you begin
	1.1 Why data professionals can’t afford to ignore PowerShell
	1.1.1 A SQL Server DBA first win with PowerShell

	1.2 Automate it
	1.3 What is dbatools?
	1.4 Is this book for you?
	1.5 How to use this book
	1.5.1 The main chapters
	1.5.2 Hands-on labs
	1.5.3 Supplementary materials
	1.5.4 Further exploration

	1.6 Contacting us
	1.7 Being immediately effective with dbatools

	Chapter 2: Installing dbatools
	2.1 Minimum requirements
	2.1.1 Server
	2.1.2 Workstation
	2.1.3 Ports
	2.1.4 Execution policy

	2.2 Signed software
	2.3 Understanding installation paths
	2.4 Installation methods
	2.4.1 The PowerShell Gallery
	2.4.2 Trusting the PowerShell Gallery
	2.4.3 Installing dbatools using the PowerShell Gallery, all users
	2.4.4 PowerShell Gallery, local user
	2.4.5 PowerShell Gallery, offline install

	2.5 PowerShell Gallery alternatives
	2.5.1 Downloading a zipped archive
	2.5.2 Additional methods

	2.6 How to find and use commands, the help system, and docs.dbatools.io
	2.6.1 Get-Command
	2.6.2 Find-DbaCommand
	2.6.3 Get-Help
	2.6.4 docs.dbatools.io

	2.7 Updating
	2.7.1 PowerShell Gallery
	2.7.2 Alternative methods

	2.8 Hands-on lab

	Chapter 3: The dbatools lab
	3.1 Why is a lab included in this book?
	3.2 Two options for building a dbatools lab environment
	3.3 Option 1: Windows lab
	3.3.1 Installation media for our lab
	3.3.2 Building the lab
	3.3.3 Configuration scripts
	3.3.4 Windows lab is ready for action

	3.4 Option 2: Quick demo environments using containers
	3.4.1 Running SQL Server in a container

	Chapter 4: A gentle introduction to dbatools commands
	4.1 Getting started
	4.2 Checking the SQL connection
	4.3 First, getting help
	4.4 Running your first dbatools command
	4.5 The -SqlInstance parameter
	4.5.1 Single instances
	4.5.2 Multiple instances

	4.6 The -SqlCredential parameter
	4.6.1 Connecting to instances with SQL Server Authentication
	4.6.2 Saving the credential to use SQL Server Authentication with multiple commands
	4.6.3 Other methods of using credentials for SQL Server Authentication
	4.6.4 Connecting to instances with a different Windows account

	4.7 The ComputerName parameter
	4.7.1 Methods of listing the SQL services on multiple servers

	4.8 The -Credential parameter
	4.8.1 Listing services on a server using a different account at the command line
	4.8.2 Listing services on a server using a different account with a credential variable
	4.8.3 Listing SQL services by type

	4.9 Bonus parameter: EnableException
	4.10 Hands-on lab

	Chapter 5: Writing to SQL Server
	5.1 Piping commands
	5.2 Writing to a database
	5.2.1 Importing from a CSV file to a database table
	5.2.2 Importing to a database table from a dbatools command
	5.2.3 Creating the database table first and then importing from a CSV file
	5.2.4 Writing the results of other commands to a table
	5.2.5 Writing the results of other commands to an Azure SQL Database

	5.3 Copying tables, including their data
	5.3.1 PowerShell splatting

	5.4 Hands-on lab

	Chapter 6: Finding SQL Server instances on your network
	6.1 Background
	6.1.1 Finding an instance
	6.1.2 Finding instances using a list of targets
	6.1.3 Finding SQL Servers in an Active Directory domain
	6.1.4 Finding SQL Servers in your surrounding network

	6.2 Working with detailed results
	6.3 OS support
	6.4 Hands-on lab

	Chapter 7: Inventorying your SQL estate
	7.1 SQL features
	7.2 Build
	7.3 Host information
	7.4 Databases
	7.4.1 Filtering databases returned from Get-DbaDatabase
	7.4.2 Filtering databases returned from Get-DbaDatabase by last backup time

	7.5 Putting it all together into a database
	7.6 Hands-on lab

	Chapter 8: Registered Servers
	8.1 Local Server Groups
	8.1.1 Version-specific RegSrvr.xml files

	8.2 Azure Data Studio
	8.3 Central Management Server
	8.4 Inventory organization
	8.4.1 Importing advanced environment folder structures

	8.5 Further integration
	8.5.1 Adding new Registered Servers
	8.5.2 Copy, Export, Import
	8.5.3 Moving Registered Servers
	8.5.4 Removing Registered Servers

	8.6 Registered Server groups
	8.7 Hands-on lab

	Chapter 9: Logins and users
	9.1 Failed logins
	9.2 Preventing login issues
	9.3 Logins, users, and permissions source control
	9.4 How was access gained?
	9.4.1 Finding nested Active Directory group access

	9.5 Hands-on lab

	Chapter 10: Backups
	10.1 Creating backups
	10.1.1 Azure
	10.1.2 Docker

	10.2 Reading backup files
	10.3 Backup history
	10.4 Pruning old backup files
	10.5 Testing your backups
	10.6 Hands-on lab

	Chapter 11: Restore
	11.1 Limitations and considerations
	11.2 Restore scenarios
	11.2.1 File
	11.2.2 Directory
	11.2.3 Output T-SQL restore scripts

	11.3 Restoring to custom data and log directories
	11.3.1 No recovery
	11.3.2 Renaming a database
	11.3.3 Point-in-time restores
	11.3.4 Restoring to a marked transaction
	11.3.5 Recovering a corrupt database

	11.4 Azure
	11.4.1 Shared access signatures
	11.4.2 Access keys

	11.5 Hands-on lab

	Chapter 12: Snapshots
	12.1 Snapshots and SSMS
	12.2 Application upgrade
	12.3 When to use snapshots
	12.4 Creating a snapshot
	12.5 Upgrading
	12.6 Rolling back the entire database from a snapshot
	12.7 Restoring certain objects or data from a snapshot
	12.8 Cleaning up
	12.9 Reporting
	12.10 Hands-on lab

	Chapter 13: Install and update SQL Server
	13.1 Installing
	13.1.1 Benefits of automated installs
	13.1.2 Local installs
	13.1.3 Remote installs
	13.1.4 Customizing installation options
	13.1.5 ConfigurationFile and Configuration
	13.1.6 Built-in parameters

	13.2 Updating
	13.3 The importance of patching
	13.3.1 Fear of breaking everything
	13.3.2 Burdensome process leads to procrastination

	13.4 How we make it easier
	13.5 Hands-on lab

	Chapter 14: Preparing for disaster
	14.1 Exporting an entire instance
	14.1.1 Scripting options
	14.1.2 Setting scripting options
	14.1.3 Excluding objects

	14.2 Granular exports
	14.2.1 Using Export-DbaScript

	14.3 Special commands
	14.4 Exporting server configurations (sp_configure)
	14.5 Hands-on lab

	Chapter 15: Performing your first advanced SQL Server instance migration, part 1
	15.1 Databases
	15.1.1 Backup and restore
	15.1.2 Detach and attach
	15.1.3 Staging large databases for migration
	15.1.4 Other database migration options

	15.2 Hands-on lab

	Chapter 16: Performing your first advanced SQL Server instance migration, part 2
	16.1 Logins and groups
	16.1.1 Which logins/groups are still needed?

	16.2 SQL Agent objects: Jobs, operators, and more!
	16.3 Linked servers
	16.4 More migration fun
	16.5 Hands-on lab

	Chapter 17: High availability and disaster recovery
	17.1 Log shipping
	17.1.1 Configuring log shipping with dbatools
	17.1.2 When log shipping goes bad: Gathering errors with dbatools
	17.1.3 Cutting over to a log shipped secondary database

	17.2 Windows Server Failover Cluster (WSFC)
	17.3 Availability groups
	17.3.1 Creating an availability group with dbatools
	17.3.2 Explore existing availability groups
	17.3.3 Managing existing AGs

	17.4 Hands-on lab

	Chapter 18: PowerShell and SQL Server Agent
	18.1 Which to choose, CmdExec or PowerShell job steps?
	18.2 Creating Agent jobs to run PowerShell and dbatools
	18.2.1 Creating a SQL Server credential
	18.2.2 Creating a SQL Server Agent proxy
	18.2.3 The PowerShell file

	18.3 Creating the SQL Server Agent job with a CmdExec job step
	18.4 Tips
	18.4.1 Using default parameter values
	18.4.2 Ensuring that the Agent job fails when the PowerShell fails
	18.4.3 Logging
	18.4.4 Execution policies

	18.5 Hands-on lab

	Chapter 19: SQL Server Agent administration
	19.1 Listing SQL Server Agent information
	19.1.1 SQL Server Agent jobs
	19.1.2 SQL Server Agent alerts
	19.1.3 Finding specific Agent jobs

	19.2 Agent job results and history
	19.2.1 Agent job results
	19.2.2 Time line

	19.3 Hands-on lab

	Chapter 20: Creating and working with SQL Server Agent objects
	20.1 SQL Server Agent job creation
	20.1.1 Creating categories
	20.1.2 New schedule
	20.1.3 New proxy
	20.1.4 Create a new operator
	20.1.5 Create a new Agent job
	20.1.6 The job step

	20.2 Bonus Agent job commands
	20.2.1 Start-DbaAgentJob
	20.2.2 Get-DbaRunningJob
	20.2.3 Get-DbaAgentJobHistory

	20.3 Hands-on lab

	Chapter 21: Data masking
	21.1 Getting started
	21.2 A common approach
	21.3 The better approach
	21.3.1 Generating random data

	21.4 The process
	21.4.1 Finding potential PII data
	21.4.2 Generating a configuration file for masking
	21.4.3 Applying static data masking
	21.4.4 Validating a data masking configuration file

	21.5 Hands-on lab

	Chapter 22: DevOps automation
	22.1 When should you use dbatools in DevOps?
	22.2 DACPAC
	22.2.1 Exporting a DACPAC from an existing database
	22.2.2 Publishing a DACPAC
	22.2.3 DACPAC options

	22.3 Running dbatools (and PowerShell) on a CI/CD system
	22.3.1 Creating a task
	22.3.2 Ensuring the dbatools module is available
	22.3.3 Understanding how to add parameters to the script

	22.4 Hands-on lab

	Chapter 23: Tracing SQL Server activity
	23.1 SQL Server Trace and SQL Profiler
	23.1.1 Converting traces to Extended Events

	23.2 Extended Events
	23.2.1 SSMS support
	23.2.2 dbatools support
	23.2.3 Finding Extended Events
	23.2.4 Using templates
	23.2.5 Starting and stopping Extended Event sessions
	23.2.6 Reading data
	23.2.7 Replicating Extended Event sessions to multiple instances
	23.2.8 Cleanup

	23.3 Hands-on lab

	Chapter 24: Security and encryption
	24.1 Encrypting network connections
	24.1.1 Certificate
	24.1.2 Forcing encryption

	24.2 Extended protection for authentication
	24.3 Hide an instance
	24.4 Transparent data encryption (TDE)
	24.4.1 Encrypting databases
	24.4.2 Decrypting databases

	24.5 Database backup encryption
	24.5.1 Prerequisites
	24.5.2 Backing up the database with a certificate
	24.5.3 Checking encryption information from the backup

	24.6 Multilayered security
	24.7 Hands-on lab

	Chapter 25: Data compression
	25.1 Types of compression
	25.2 How does rowstore data compression work?
	25.3 Why use data compression?
	25.4 It can’t all be rainbows and unicorns: Compression drawbacks
	25.5 What’s compressed?
	25.6 What should we compress?
	25.7 What makes a good candidate for compression?
	25.8 dbatools, what should I compress?
	25.9 Compressing objects the old-fashioned way
	25.10 dbatools to the rescue!
	25.11 Specifying the compression level
	25.12 Advanced settings
	25.13 Hands-on lab

	Chapter 26: Validating your estate with dbachecks
	26.1 What dbachecks and dbatools have in common
	26.2 Our first check
	26.3 Viewing all available checks
	26.4 Configuring the check parameters
	26.5 Storing the output data in a database
	26.5.1 Storing data
	26.5.2 Power BI dashboard
	26.5.3 Configuring the connection

	26.6 Hands-on lab

	Chapter 27: Working in the cloud
	27.1 Connecting to Azure
	27.2 Service principals and access tokens
	27.2.1 Using Az.Accounts

	27.3 Supported commands
	27.4 The future
	27.5 Hands-on lab

	Chapter 28: dbatools configurations and logging
	28.1 Working with the configuration system
	28.1.1 Checking existing configurations
	28.1.2 Getting a specific configuration
	28.1.3 Getting just the value
	28.1.4 Changing a configuration value
	28.1.5 Resetting to default configuration values

	28.2 Taking the configs with you
	28.3 Using the logging system
	28.4 Exploring logged activity
	28.4.1 Ongoing logging

	28.5 Hands-on lab

	Chapter 29: Never the end
	29.1 Use dbatools
	29.2 More PowerShell
	29.3 Contribute to dbatools
	29.4 Farewell

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

