

MEAP Edition
Manning Early Access Program

Podman in Action
 The next generation of container engines

Version 3

Copyright 2022 Manning Publications

For more information on this and other Manning titles go to

manning.com

©Manning Publications Co. To comment go to liveBook

https://www.manning.com/
https://livebook.manning.com/#!/book/podman-in-action/discussion

welcome

Thank you for purchasing the MEAP for Podman in Action. To get the most benefit from this
book, you should have some understanding of how processes work on a Linux machine. Being
able to work at the command line will be necessary. Having knowledge of Docker would be
beneficial, but is not required.

When I first started working on container technology 20 years ago, we did not even call
them containers, we called them sandboxes. I created a tool called the SELinux sandbox which
used security tools like SELinux, the mount namespace and cgroups to control desktop
applications access to the home directory, back in 2008. In 2013 when Docker was exploding
on the scene, I was tasked with leading a team of engineers at Red Hat to work with the
upstream Docker project. As soon as I started working on Docker, I recognized what a
breakthrough the technology was, but I thought there were problems with its design. I did not
like a centralized daemon running as root. There are better ways to run containers by taking
advantage of more core concepts of the OS and this led to the creation of Podman and other
container tools.

As we designed Podman we realized that the CLI and eventually the API had to match the
Docker CLI and API, and then extend the technologies to take advantage of what we had
learned from running containerized workloads over the years. With my background of 40
years of computer security, I wanted to take advantage of everything the OS provided to
secure the containers, and you will learn a lot of this in the book.

Throughout this book you will learn about howPodman works with the CoreOS to take
advantage of all of the features of the OS used to isolate containerized applications from each
other. This isolation is from a security point of view, as well as from resource constraints, and
convincing the applications that they are running on a dedicated system.

I believe this book is useful to developers building containerized applications as well as
administrators learning how to run these containerized tools, but also to engineers just looking
to learn about containers.

If you have a solid knowledge of Docker, you can skim over some of the chapters, and get
to the sections that cover some of the key differentiators of Podman

Thank you again for your interest and for purchasing the MEAP!

If you have any questions, comments, or suggestions, please share them in Manning’s

livebook discussion forum.

-Dan Walsh

https://livebook.manning.com/#!/book/how-to-read-java/discussion
https://livebook.manning.com/#!/book/podman-in-action/discussion
https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

brief contents

1 Podman: next generation container engine

PART 1 FOUNDATIONS

 2 Command line

 3 Volumes

 4 Pods

PART 2: DESIGN

 5 Customization and configuration files

 6 Rootless containers

PART 3: ADVANCED TOPICS

 7 Integration with SystemD

 8 Working with Kubernetes

 9 Podman as a service

PART 4: CONTAINER SECURITY

10 Security container isolation

11 Security considerations

APPENDIXES

A Podman-related container tools

B OCI runtimes

C Getting Podman

D Contributing to Podman

E Podman on macOS

F Podman on Windows

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

1
Podman: next generation container

engine

This chapter covers

• What is Podman

• Advantages of Podman over Docker

• Examples of using Podman

Starting this book is difficult, because so many people come into it with different expectations

and experiences. I think it is important to level set everyone one and define terminology. In

the container world terms like container orchestrator, container engine and most often

container runtime get used interchangeably and I believe this leads to confusion. Figure 1.1

puts different open source container projects into their category.

1

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.1 Different open source projects dealing with containers within their categories of orchestrators,

Engines and runtimes.

Container orchestrators are software projects and products which orchestrate containers

onto multiple different machines or nodes. These orchestrators communicate with container

engines to run containers. The primary container orchestrator is Kubernetes which was

originally designed to talk to the Docker daemon container engine, but using Docker is

becoming obsolete as Kubernetes primarily uses CRI-O or containerd as its container engine.

CRI-O and containerD are purpose built for running orchestrated Kubernetes containers. (CRI-

O is covered in appendix A).

The OCI container runtimes configure different parts of the Linux kernel and then finally

launch the containerized application. The two most commonly used container runtimes are

runc and crun. See appendix B to understand the differences between the OCI container

runtimes.

Container engines are primarily used for configuring containerized applications to run on a

single local node. They can be launched directly by users, administrators and developers. They

can also be launched out of SystemD unit files as boot as well as launched by container

orchestrators like Kubernetes. As I mentioned above CRI-O and containerd are container

engines used by Kubernetes to manage containers locally. They really are not intended to be

2

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

used directly by users. Docker and Podman are the primary container engines used by users

to develop, manage and run containerized applications on a single machine. Podman is seldom

used to launch containers for Kubernetes, and thus Kubernetes is not generally covered in this

book.

This book shows how you can use Podman as a local container engine to launch containers

on a single note, either locally or through a remote REST API.

Podman stands for Pod Manager. Pod is a concept popularized by the Kubernetes project.

A pod is one or more containers sharing the same namespaces and cgroups (resource

constraints). Pods are covered in Chapter 4. Podman runs individual containers as well as pods.

Figure 1.2 Podman’s logo, a group of Selkies, Ireleand’s concept of a mermaid. Selkies are half human and

half seal, and a group of them is called a pod.

The podman project describes Podman as “a daemonless container engine for developing,

managing, and running OCI Containers on your Linux System. Containers can either be run as

root or in rootless mode.”

Podman often is described with the simple line “alias docker=podman” because Podman

does almost everything that Docker can do with the same command line as Docker. But as you

learn in this book, Podman can do so much more. Understanding Docker is not critical to

understanding Podman, but is helpful.

NOTE The Open Container Initiative (OCI) is a standards body whose primary goal is creating open industry

standards around container formats and runtimes. See more at https://opencontainers.org.

The Podman upstream project resides at github.com in the containers project,

(https://github.com/containers/podman) along with other container libraries and container

management tools like Buildah and Skopeo reside. (See appendix A for a description of some

of these tools.)

3

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.3 https://github.com/containers containers is the developer site for Podman and other related

container tools.

Podman runs images with the newer OCI format, described in section 1.1.2, as well as the

legacy Docker (V2 and V1) format images. Podman runs any image available at container

registries like docker.io and quay.io as well as the hundreds of other container registries.

Podman pulls these images to a Linux host and launches them in the same way as Docker and

Kubernetes. Podman supports all of the OCI Runtimes like runc, crun, kata, and gvisord

(appendix B), just like Docker.

This book is intended for Linux administrators to help them understand the advantages of

using Podman as their primary container engine. You will learn how to configure your systems

as securely as possible, but still allow your users to work with containers. One of Podman’s

4

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers

©Manning Publications Co. To comment go to liveBook

primary use cases is to run containerized applications on single node environments, such as

edge devices. Podman along with systemd allow you to manage the entire lifecycle of the

application on nodes without human intervention. Podman’s goal is to run containers naturally

on a Linux box, taking advantage of all of the features of the Linux Platform.

NOTE Podman is available for many different Linux distributions and on Mac and Windows platforms. Please

refer to appendix C on how to get Podman on your platform.

Application developers are also an intended audience for this book. Podman is a great tool

for developers looking to containerize their applications in a secure manner. Podman allows

developers to create Linux containers on all Linux distributions. In addition Podman is available

on the Mac and Windows platforms where it can communicate with the Podman service running

within a VM or on a Linux box available on the network. Podman in action shows you how to

work with containers, build container images, and then convert their containerized applications

into either single node services to run on edge devices or into Kubernetes based micro services.

Podman and the container tools are open source projects with contributors from many

different companies, universities and organizations. Contributors come from all over the

world. The projects are always looking to add new contributors to improve them, please refer

to appendix D to see how you can join the effort.

Roadmap: In this chapter I first go over a brief overview of Containers and then I explain

some key features that make Podman a great tool for working with containers.

1.1 A brief overview of containers

Containers are just groups of processes running on a Linux system, which are isolated from

each other. Containers make sure that one group of processes do not interfere with other

processes on the system. Rogue processes can’t dominate system resources preventing other

processes from performing their task. Hostile containers prevented from attacking other

containers, stealing data or causing denial of service attacks. A final goal of containers is to

allow applications to be installed with their own versions of shared libraries that do not conflict

with applications requiring different versions of the same libraries. Allow applications to live in

a virtualized environment, with a feel that they own the entire system.

Containers are isolated via:

1. Resource constraints (cgroups)

The cgroup man page, cgroup (https://man7.org/linux/man-pages/man7/

cgroups.7.html). defines cgroups as:

Control groups, usually referred to as cgroups, are a Linux kernel feature which allow

processes to be organized into hierarchical groups whose usage of various types of resources

can then be limited and monitored.

Examples of resources controlled by Cgroups are:

a) The amount of memory that a group of processes can use.

b) The amount of CPU that processes can use.

c) The amount of network resources a process can use.

5

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html

©Manning Publications Co. To comment go to liveBook

The basic idea of cgroups is to control one group of processes from dominating certain

system resources in such a way that another group of processes can’t make progress on the

system.

2. Security constraints

Containers are isolated from each other using many security tools available in the kernel.

The idea is to block privilege escalation, and prevent a rogue group of processes from hostile

acts against the system. Examples:

a) Dropped Linux capabilities limit the power of root.

b) SELinux controls access to the file system.

c) Read-only access to kernel file systems.

d) SECCOMP to limit the system calls available in the kernel

e) User namespace to map one group of UIDs in the host to another, allowing access

to limited root environments.

Table 1.1 Gives further information and links to find out more information about some of

these security features.

6

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 1.1 Advances Linux Security features

Component Description Reference

Linux

Capabilities

Linux capabilities subdivide the power of

root into distinct capabilities

The capabilities man page is a good

overview of the capabilities available. man

capabilities

(https://bit.ly/3A3Ppeg)

SELinux Security Enhanced Linux (SELinux) is a

Linux Kernel mechanism which labels every

process and every file system object on the

system. SELinux Policy defines the rules on

how labeled processes interact with label

objects. The Linux Kernel enforces the

rules.

I wrote the SELinux Coloring Book which is a

fun way to help you understand SELinux.

(https://bit.ly/33plEbD)

If you really want to study the subject,

check out the SELinux notebook.

(https://bit.ly/3GxGhkm)

SECCOMP SECCOMP is a Linux Kernel Mechanism to

limit the number of syscalls to a group of

processes on the system. You can remove

potentially dangerous syscalls from being

called by the processes.

The seccomp man page is a good source of

additional information on SECCOMP.

man seccomp

(https://bit.ly/3rnnim1)

User

Namespace

The User Namespace allows you to have

Linux Capabilities within the group of UIDs

and GIDs assigned to the namespace, but

not have root capabilities on the host.

The user namespace is fully explained in

chapter 3.

3. Virtualization technologies (namespaces)

The Linux kernel has a concept called Namespaces which creates virtualized environments

where one set of processes sees one set of resources while another set of processes sees a

different set of resources. These virtualized environments eliminate processes' views into the

rest of the system giving the processes the feel of a Virtual Machine without the overhead.

Examples of namespaces are:

a) Network namespace, which eliminates the access to the host network, but gives

access to virtual network devices

b) Mount namespace, eliminates the view of all of the file system, except the

containers file system.

c) Pid namespace eliminates the view of other processes on the system, container

processes only see the processes within the container.

These container technologies have existed in the Linux Kernel for many years. Security

tools for isolating processes started in Unix back in the 1970s, SELinux in 2001. Namespaces

were introduced up around 2004 and cgroups around 2006.

7

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://en.wikipedia.org/wiki/Process_(computing)

©Manning Publications Co. To comment go to liveBook

NOTE Windows container images exist, but this book is concentrating on Linux based containers. Even when

running Podman on Windows, you are still working with Linux Containers. Podman on MAC is covered in

Appendix E. Podman on Windows is covered in Appendix F.

1.1.1 Container images: new way to ship software

Containers really didn’t take off until the Docker project introduced the concept of the container

image and a container registry. Basically they created a new way to ship software.

Traditionally installing multiple software applications on a Linux system has led to a

problem of dependency management. Before containers, you packaged software using

package managers like RPM, Debian Packages, etc. These packages are installed on a host

and share the content on the host including shared libraries. When developers test their code,

everything might work fine when run on their host machine. Then the quality engineering team

tests the software on a different machine with different packages and they see failures. Both

teams need to work together to generate the proper requirements. Finally the software is

shipped to customers who have many different configurations and software installed leading

to further breakage of the application.

Container images solve the dependency management problem by bundling all of the

software together into a unit. You ship all of the libraries, executables and configuration files

together. The software is isolated from the host, via container technology. In the container

image world, you ship all of the software needed to run your application. Usually the only part

of the host system that your application is going to interact with is the host kernel.

The developer, quality engineers and customer all run the exact same containerized

environment along with the application. This helps to guarantee consistency, and limit the

number of bugs caused by misconfiguration.

Containers are often compared to virtual machines, in that they both have the ability to

run multiple isolated applications on a single node. When using virtual machines, you need to

manage the entire virtual machines operating system as well as the isolated application. You

need to manage the lifecycle of the different kernel, init system, logging, security updates,

backups etc. The system also has to deal with the overhead of the entire running operation

system, not just the application. In the container world all you run is the containerized

application, no overhead and no additional OS management. In the diagram below you see

three applications running in three different virtual machines.

8

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.4 Physical machine running three applications in three virtual machines.

With virtual machines you end up needing to manage four operations systems. Whereas

with containers the three applications run with just their required user spaces. You end up

managing just one operating system. As you see in figure 1.3

9

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.5 Physical machine running three applications in three containerized applications.

CONTAINER IMAGES LEAD TO MICROSERVICES

Packing applications inside of container images allows the installation of multiple applications

on the same host with conflicting requirements. For example, one application might require a

different version of the c library then another, which prevents them from being installed at the

same time.

10

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.6 Traditional LAMP Stack (Linux + Apache + MariaDB+PHP/PERL Application) running on a server.

In containers they can have the correct c library within their container image with each

image potentially having different versions of the library specific to the container's application.

You can run applications from totally different distributions.

They make it easy to run multiple instances of the same application as you see below.

Container images encourage the packaging of a single service or application into a single

container. Containers allow you to easily wire multiple applications together via the network.

11

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.7 LAMP stack packaged individually into micro service containers. As containers communicate via

network, allows them to be easily moved to other VMs and makes reuse much easier.

Instead of designing monolithic applications where you have a web front end, a load

balancer, and a database, you can build three different container images and then wire them

together to build microservices. Microservices allow you and other users to experiment with

running multiple databases, web front ends and orchestrate them together. Containerized

microservices make the sharing and reuse of software possible.

1.1.2 Container image format

A container image consists of three components:

A directory tree containing all of the software required to run your application. The

directory is called a rootfs (root filesystem). The software is laid out like it was the root (/) of

a linux system.

A JSON file which describes the contents of the rootfs. The executable to be run within the

rootfs, the working directory, the environment variables to be used, the maintainer of the

executable and other labels to help identify the content of the image are defined in the image

JSON file.

You can see the JSON file using the podman inspect command. JSON file for the ubi8

image on registry.access.redhat.com.

12

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman inspect docker://registry.access.redhat.com/ubi8
{
…
 "created": "2022-01-27T16:00:30.397689Z", #A
 "architecture": "amd64", #B
 "os": "linux", #C
 "config": {
 "Env": [#D
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "container=oci"
],
 "Cmd": [#E
 "/bin/bash"
],
 "Labels": { #F
 "architecture": "x86_64",
 "build-date": "2022-01-27T15:59:52.415605",
 …
}

#A Date that the image was created

#B Architecture for this image

#C Operating system for this image

#D Environment variables that the developer of the image wants to be set within the container.

#E Default command to be executed when the container starts.

#F Labels to help describe the contents of the image. These fields can be free form and do not affect the way images

are run, but can be used to search for and describe the image.

Another JSON file called a manifest list, which links multiple images together to support

different architectures. This allows users on an arm64 machine to pull an image with the same

name as they would if they were on an amd64 machine. Podman pulls the image based on the

default architecture of the machine, using this manifest list. Skopeo is a tool which uses the

same underlying libraries as Podman and is available at github.com/containers/skopeo. (See

appendix A). Skopeo provides lower level output examining the structures of a container

image. In the following example use the skopeo command with the --raw option to examine

images manifest specification JSON file for the ubi8 image on registry.access.redhat.com.

13

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ skopeo inspect --raw docker://registry.access.redhat.com/ubi8
{
 "manifests": [
 {
 "digest":

"sha256:cbc1e8cea8c78cfa1490c4f01b2be59d43ddbbad6987d938def1960f64bcd02c", #A
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",#B
 "platform": {
 "architecture": "amd64",#C
 "os": "linux" #D
 },
 "size": 737
 },
 {
 "digest": #E

"sha256:f52d79a9d0a3c23e6ac4c3c8f2ed8d6337ea47f4e2dfd46201756160ca193308",
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
 "platform": {
 "architecture": "arm64",
 "os": "linux"
 },
 "size": 737
 },
…
}

#A Digest of the exact image that is pulled when the architecture and OS match

#B mediaType describes the type of the image,OCI,Docker …

#C The architecture of this image digest “amd64”

#D The OS of this image digest “Linux”

#E This stanza points to a different image for a different architecture “arm64”

Images use the Linux tar utility to pack the rootfs and the JSON files together. These images

are then stored on web servers called container registries. (docker.io, quay.io, artifactory …)

Container engines like Podman can copy these images to a host and unpack them onto the

file system. Then the engine merges the image’s JSONs file, along with the engine’s builtin

defaults and user input to create a new container JSON file, the OCI runtime specification. The

JSON file describes how to run the containerized application.

In the last step the container engine launches a small program called a container runtime,

runc, crun, kata, givisord, etc. The container runtime reads the container JSON and

instruments the containers kernels cgroups, security constraints and namespaces before finally

launching the primary process of the container.

1.1.3 Container standards

The Open Container Initiative (OCI) standards body defined the standard formats on how

container images are stored and defined. The OCI also defined the standard on how container

engines run containers. The OCI created the OCI Image Format which standardizes the format

of the container images and the images JSON file. They also created the OCI Runtime

Specification, which standardized the container's JSON file to be used OCI runtimes.

14

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

The OCI standards allow other container engines like Podman1 to follow the standards and

be able to work with all the images stored at container registries, and to run them in the exact

same way as all other container engines including Docker. (See figure 1.7)

1.2 Why Podman when you have Docker?

I often get asked the question, “Why do you need Podman when you already have Docker?”

Well one reason is that open source is all about choice. Operating systems have more than

one editor, more than one shell, more than one file system, and more than one internet web

browser. I believe that Podman’s design is fundamentally better than Docker’s, and brings

features that advance the security and use of containers.

Why have only one way to run containers?

One of Podman's advantages was that it was created long after Docker existed. Podman

developers look at ways to improve on Docker’s design from a totally different perspective.

Because Docker was written as open source, Podman shares some of the code and takes

advantage of new standards like the Open Container Initiative. Podman works with the open

source community to concentrate on developing new features.

In the rest of this section, I cover some of these improvements. Table 1.2 describes and

compares features available in Podman and Docker.

Table 1.2 Podman and Docker feature comparison

Feature Podman Docker Description

Support all OCI and Docker

images

 ✔ ✔ Pull & run container images from

container registries, ie quay.io, docker.io.

See chapter 2.

Launch OCI container engines ✔ ✔ Launch containers runc, crun,kata, gVisor

OCI Container engines See appendix B.

Simple command line

interface

 ✔ ✔ Podman and Docker share the same CLI.

See chapter 2.

Integration with systemd ✔ ✘ Podman supports running systemd inside

of the container. As well as many systemd

features. See chapter 7.

Fork/Exec Model ✔ ✘ Container is a child of the command

1 Other container engines include Buildah, CRI-O, Containerd and many others.

15

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Fully support user namespace ✔ ✘ Only Podman supports running containers

in separate user namespaces. See chapter

6.

Client Server Model ✔ ✔ Docker is a REST API daemon. Podman

supports REST API via systemd socket

activated service. See chapter 9.

Support docker-compose ✔ ✔ Compose scripts work against both REST

APIs. Podman’s works in rootless mode.

See chapter 9.

Support docker-py ✔ ✔ docker-py python bindings work against

both REST APIs. Podman’s works in

rootless mode. Podman also supports

podman-py, for running advanced

features.

See chapter 9.

Daemon-less ✔ ✘ The Podman command runs like a

traditional command line tool. While

Docker requires multiple root running

daemons.

Support Kubernetes like pods ✔ ✘ Podman supports running multiple

containers within the same pod. See

chapter 4.

Support Kubernetes yaml ✔ ✘ Podman can launch containers and pods

based on Kubernetes yaml. It can also

generate Kuberenetes.yaml from running

containers. See chapter 8.

Support docker swarm ✘ ✔ Podman believes the future for

orchestrated multi node containers is

Kubernetes and does not plan on

implementing Swarm.

Customizable registries ✔ ✘ Podman allows you to configure registries

for short name expansion. Docker is hard

coded to docker.io when you specify a

short name. See chapter 5.

16

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Customizable defaults ✔ ✘ Podman supports fully customizing all of

its defaults including security,

namespaces, volumes … See chapter 5.

Mac OS Support ✔ ✔ Podman and Docker support running

containers on a Mac via a VM running

linux. See appendix E.

Windows Support ✔ ✔ Podman and Docker support running

containers on a Windows WSL2 or a VM

running linux. See appendix F.

Linux Support ✔ ✔ Podman and Docker are supported on all

major linux distributions. See appendix C.

Containers aren’t stopped on

software upgrade.

 ✔ ✘ Podman is not required to remain running

when containers are running. Since the

Docker daemon is monitoring containers,

by default when it stops all containers

stop.

1.2.1 Rootless containers

Probably the most significant feature of Podman is its ability to run in rootless mode.

In many situations you do not want to give full root access to your users, but users and

developers still need to run containers and build container images. Requiring root access

prevents lots of security conscious companies from widespread adoption of Docker. Podman,

on the other hand, can run containers with no additional security features in linux

other than a standard login account

You can run the Docker client as a normal user by adding the user to the `docker` user

group (/etc/group), but I believe that granting this access is one of the most dangerous things

you can do on a Linux machine.

Access to the docker.socket allows you to gain full root access on the host by running the

following command. In the command you are mounting the entire host operating system “/”

on the /host directory within the container. The --privileged flag turns off all container

security, and then you chroot to /host. After the chroot, you are in a root shell at / of the

operating system, with full root privileges.

$ docker run -ti --name hacker --privileged -v /:/host ubi8 chroot /host

At this point you have full root privileges on the machine and you can do whatever you

want. When you are done hacking the machine, you can simply execute the docker rm

command to remove the container, and all records of what you did.

17

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ docker rm hacker

When Docker is configured with default file logging, all records of your launching the

container are erased. I believe this is far worse than setting up sudo without root, in that at

least with sudo, you have the chance to see that I ran sudo in your log files.

With Podman the processes running on the system are always owned by the user and have

no capabilities greater then a normal user. Even if you break out of the container, the process

is still running as your UID, and all action on the system are recorded in the audit logs. Users

of Podman can not simply remove the container and cover up their tracks.

See the rootless chapter for more information.

NOTE Docker now has the ability to run rootless similarly to Podman, but almost no one runs it that way.

Starting up multiple services in your home directory just to launch a single container has not caught on.

1.2.2 Fork/Exec Model

Figure 1.8 Docker client server architecture. Container is a direct descendant of containerD not the docker

client. Kernel sees no relationship between the client program and the container.

18

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Docker is built as a REST API Server. Fundamentally Docker is a client-server architecture

including multiple daemons. When a user executes the Docker client, they execute a command

line tool which connects to the Docker daemon. The Docker daemon then pulls images to its

storage and then connects to the containerd daemon which actually finally executes an OCI

Runtime which actually creates the container. The Docker daemon then is a communication

platform which communicates reads and writes stdin, stdout and stderr of the initial processa

(PID1) created in the container. The daemon relays all of the output back to the Docker client.

Users imagine that the container's processes are just children of the current session but there

is a lot of communication going on behind the scenes.

The bottom line is the Docker client communicates with the Docker Daemon, which then

communicates with the Containerd daemon, which finally launches an OCI Runtime like runc

to launch Pid1 of the container. There is a lot of complexity to running containers in this way,

and over the years failures in any of the Daemons have led to all containers shutting down,

and often difficult to diagnose what happen

Figure 1.9 Podman fork/exec architecture. User Launches Podman which executes OCI runtime which then

launches the container. Container is a direct descendant of Podman.

The core Podman engineering team come from an operating system background more

grounded in the Unix Philosophy.

Unix and C were designed with the fork/exec model of computing. Basically when you

execute a new program, a parent program like the bash shell, forks a new process and then

executes the new program as a child of the old program. Podman engineering thought that

they could make containers simpler by building a tool that pulls container images from a

19

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

container registry, configure container storage and then launch an OCI Runtime which starts

the container as a child of our container engine.

In the unix operating system, processes can share content via the file system, and inter

process communication (IPC) mechanisms. These features of the operating system enable

multiple container engines to share storage without requiring a daemon to be running to control

access and share content. The engines do not need to communicate together other than using

locking mechanisms provided by the operating systems file systems. Future chapters examine

the advantages and disadvantages of this mechanism.

1.2.3 Daemon-less

Podman is fundamentally different from Docker, because it is daemon-less. Podman can run

all of the same container images as Docker and launch containers with the same container

runtimes. But Podman does this without having multiple continuously root running daemons.

Imagine you have a web service that you want to run at boot time. The web service is

packaged up in a container, so you need a container engine. In the Docker case you need to

set it up to be running on your machine with each of the daemons running and accepting

connections. Next you launch the Docker client to start the web service. Now you have your

containerized application running as well as all of the Docker daemons. In the Podman case,

you use the Podman command to launch your container and Podman goes away. Your

container continues to run without the overhead of running the multiple daemons. Less

overheard is incredibly popular on low end machines like IOT devices and edge servers.

1.2.4 User Friendly Command Line

One of the great features of Docker is the simple command line interface. There have been

other container command lines like RKT, lxc and lxcd, but they have their own command

line interfaces. The Podman team realized early on that it wouldn’t gain market share if Podman

had its own command line interface. Docker was the dominant tool and almost everyone who

had played with containers had done it with its CLI. Also if you googled how to do something

with a container, invariably you get an example using the Docker command line. Right from

the start Podman had to match the Docker Command line. Quickly the motto began: if you

want to replace Docker with Podman, all you had to do was: alias docker=podman

With this command you can continue to type in your Docker commands, but Podman

actually runs your containers. If the Podman command line differs from Docker it is considered

a bug in Podman, and users demand Podman be fixed to make the tools match.

There are a few commands like `docker swarm` that Podman doesn't support, but for the

most part I believe Podman is a complete replacement for the Docker CLI.

Many distributions supply a package called podman-docker, which set’s up the alias from

docker to podman and links all of the man page. The alias means when you type `docker ps`,

the `podman ps` command runs. If you execute `man docker ps` the podman ps man pages

shows up.

20

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.10 Twitter Tweet about “alias docker=podman”

Back in 2018, Alan Moran tweeted that “I completely forgot that ~2 months ago I set up

“alias docker=`podman`” and it has been a dream. #nobigfatdaemons…”. Joe Thomson

responded “So, what reminded you?” and Alan Moran answered “docker help”. And podman

help showed up.

1.2.5 Support for REST API

Podman can be run as a socket activated REST API service. This allows remote clients to

manage and launch Podman containers. Podman supports the Docker API as well as the

Podman API for advanced Podman features. Through the use of the Docker API, Podman

supports docker-compose and other users of the docker-py python bindings. This means that

even if you built your infrastructure around using the Docker socket for launching containers,

you can simply replace Docker with the Podman service and continue to use your existing

scripts and tools. Chapter 9 covers the Podman service.

The Podman REST API also allows remote podman clients on Mac, Windows and Linux

systems to interact with Podman containers on a Linux machine. Appendix E and F covers

Podman use on Mac and Windows machines.

1.2.6 Integration with systemd

Systemd is the fundamental init system in the operating systems. The init process on a Linux

system, is the first process that is started by the kernel on boot. Therefore the init system is

the ancestor of all processes and can monitor them all. Podman wants to fully integrate the

running of containers with the init system. Users want to use systemd to start and stop

21

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

containers at boot time. Containers should work with socket activation, systemd notifications

to tell systemd when a container was fully activated, and be managed by systemd cgroups.

Basically containers work as services in systemd unit files. Many developers want to run

systemd within a container, in order to run multiple systemd defined services within a

container.

But the upstream Docker community disagreed and denied all pull requests which

attempted to integrate systemd into Docker. They believe that Docker should manage the

lifecycle of the container, they do not want to accommodate users who want to run systemd

in a container.

22

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.11 Docker employee badge at DockerCon EU

23

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

The upstream Docker community believed that the Docker daemon should be the controller

of processes, it should manage the lifecycle of containers, and start and stop them at boot

time, versus systemd. The problem is there are way more features in systemd then in Docker,

like startup ordering, socket activation, service ready notifications etc.

When Podman was designed, the developers wanted to make sure it fully integrated with

systemd. When you run systemd inside of a container, Podman sets up the container the way

systemd expects and allows it to simply run as pid1 of the container with limited privileges.

Podman allows you to run services within the container the same way they run them on a

system or in a VM, via systemd unit files. Podman supports socket activation, service

notifications and many other systemd unit file features. Podman makes it simple to generate

systemd unit files with best practices for running containers within a systemd service. See

chapter 7 on systemd integration.

The containers project, (https://github.com/containers) where Podman, container libraries,

and other container management tools reside want to embrace all features of the Operating

System, and want to fully integrate with it. Chapter 7 explains Podman integration with

systemd.

1.2.7 Pods

Figure 1.12 Two Pods running on a host. Each pod runs two different containers along with the infra container.

One advantage of Podman is actually described in its name, see chapter 4. Podman actually

stands for Pod Manager. Pod was a concept originated in the Kubernetes project. As the official

24

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers

©Manning Publications Co. To comment go to liveBook

Kubernetes documentation puts it: “A pod (as in a pod of seals, hence the logo, or pea pod) is

a group of one or more containers, with shared storage/network resources, and a specification

for how to run the containers.” Podman works with either a single container at a time like

Docker, or it can manage groups of containers together in a Pod. One of the design goals of

containers is to separate services into single containers, micro-services. Then you combine

containers together to build larger services. Pods allow you to group multiple services together

to form a larger service and be managed as a single entity. One of the goals of Podman is to

allow you to experiment with Pods.

Podman has the podman generate kube command which allows you to generate

Kubernetes yaml files from running containers and pods, as you can see in chapter 7. Similarly

it has the podman play kube command which allows you to play Kuberenetes yaml files and

generate pods and containers on your host. I like to suggest that Podman is for running pod’s

and containers on a single host, while Kubernetes is used to take your pods and containers

and run them on multiple machines, and all through your infrastructure.

Other projects, like KIND (https://kind.sigs.k8s.io/docs/user/rootless), are experimenting

with running pods with Podman under the guidance of Kubernetes.

1.2.8 Customizable Registries

Container engines like Podman support the concept of pulling images using short names, an

image name, like ubi8, without specifying the registry in which it resides,

registry.access.redhat.com. Complete image names include the name of the container

registry they were pulled from, registry.access.redhat.com/library/ubi8:latest. Table

1.3 shows the components of the image name broken out.

Table 1.3. Short name to container image name table

Name Registry Repo Name Tag

Short name ubi8

Complete name registry.access.redhat.com library ubi8 latest

Docker is hard coded to always pull from https://docker.io when using a short name. If you

want to pull an image from a different container registry, you have to fully specify the image.

In the following example I attempt to pull ubi8/httpd-24 and it fails, because the container

image is not on docker.io. The image is on registry.access.redhat.com.

docker pull ubi8/httpd-24
Using default tag: latest
Error response from daemon: pull access denied for ubi8/httpd-24, repository does not exist

or may require 'docker login': denied: requested access to the resource is denied

So if I want to use ubi8/httpd-24 I am forced to type the entire name including the registry.

docker pull registry.access.redhat.com/ubi8/httpd-24

25

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://kind.sigs.k8s.io/docs/user/rootless
https://docker.io/

©Manning Publications Co. To comment go to liveBook

The Docker engine enables docker.io to have advantage over other container registries, as

the preferred registry. Podman was designed to allow you to specify multiple registries, similar

to what you can do with dnf, yum, and apt tools for installing packages. You can even remove

docker.io totally from the list. If you attempt to pull ubi8/httpd-24 with Podman, Podman

presents you with a list of registries to choose from.

$ podman pull ubi8/httpd-24
? Please select an image:
 registry.fedoraproject.org/ubi8/httpd-24:latest
 ▸ registry.access.redhat.com/ubi8/httpd-24:latest
 docker.io/ubi8/httpd-24:latest
 quay.io/ubi8/httpd-24:latest

Once you make your decision, Podman records the short name alias and no longer prompts

and uses the previously selected registry.

Podman supports lots of other features like blocking registries, only pulling signed images,

setting up image mirrors, and specifying hard coded short names, so that specify short names

map directly to the long names. (See chapter 5)

1.2.9 Multiple transports

Podman supports many different container image sources and targets called transports (See

table 1.4). Podman can pull images from container registries and from local containers storage,

but also supports images stored in OCI format, OCI Tar format, legacy Docker tar format,

directory format, and even directly from the Docker daemon. Podman commands can easily

run images from each of the formats.

26

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 1.4 Podman supported transports

Transport Description

container registry

(docker)

References a container image stored in a remote container image registry, web site.

Registries store and share container images. For example, docker.io, quay.io.

oci A container image compliant with the Open Container Image Layout Specification.

The manifest and layer tarballs as individual files are located in the local directory.

dir A container image, compliant with the Docker image layout, similar to the `oci`

transport but stores the files using the legacy “docker” format.

docker-archive A container image in Docker image layout which is packed into a TAR archive.

oci-archive A container image compliant with the Open Container Image Layout Specification

which is packed into a TAR archive.

docker-daemon An image stored in the Docker daemon's internal storage.

container-storage A container image located in a local storage. Podman defaults to using container-

storage for local images.

1.2.10 Complete customizability

Container engines tend to have lots of builtin constants, like the namespaces they run with,

whether or not SELinux is enabled, which capabilities containers run with. With Docker most

of these values are hard coded and can not be changed by default. Podman, on the other hand,

has a very customizable configuration.

Podman has it’s builtin defaults but defines three locations for its configuration files to be

stored:

• /usr/share/containers/containers.conf, which is where a distribution can define the

changes that the distribution likes to use.

• /etc/containers/containers.conf, where they can set up their system overrides.

• $HOME/.config/containers/containers.conf, which can be specified only in rootless

mode.

The configuration files allow you to configure Podman to run the way you want by default.

You can even run with more security by default if you choose.

27

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

1.2.11 User Namespace support

Podman is fully integrated with the user namespace. Rootless mode relies on user namespaces,

to allow for multiple UIDs to be assigned to a user. User namespace provides isolation between

users on a system, so that you can have multiple rootless users running containers with

multiple uids, all isolated from each other.

User namespace can be used to isolate containers from each other. Podman makes it

simple to launch multiple containers, each one with a unique user namespace. The kernel then

isolates the processes from host users as well as each other based on UID separation.

Docker only supports running containers in a single separate user namespace meaning all

containers run within the same user namespace. Root in one container is the same as root in

another container. It does not support running each container in a different user namespace,

this means containers attack each other from a user namespace perspective. Even though

Docker supports this mode, almost no one runs containers with Docker in a separate user

namespace.

1.3 When not to use Podman

Like Docker, Podman is not a container orchestrator. Podman is a tool for running container

workloads on a single host in either rootless or rootful mode. Higher level tools are required if

you want to orchestrate running containers on multiple machines.

I believe the best tool for doing this now is Kubernetes. Kubernetes won the container

orchestrator war when it comes to mind share. Docker has an orchestrator called Swarm,

which had some popularity, but now seems to be out of favor. Because the Podman team

believes that Kubernetes is the way to go for containers on multiple machines, Podman does

not support swarm functionality.

Podman has been used for different orchestrators and is used for GRID/HPC computing and

even open source developers have added it under Kubernetes front ends.

1.4 Summary

• Containers technology has been around for many years, but the introduction of

container images and container registries, allows developers a better way to ship

software

• Podman is an excellent container engine suitable for almost all of your single node

container projects. It is useful for developing, building and running containerized

applications

• Podman is as simple to use as Docker, with the exact same command line interface

• Podman supports a REST API, which allows remote tools and languages including

Docker-compose to work with Podman containers.

• Podman includes such notable features over Docker like user namespace support,

multiple transports, customizable registries, integration with systems, fork/exec model,

out-of-the-box rootless mode

• Podman is a more secure way to run containers.

28

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

2
Command line

This chapter covers

• The Podman command line

• Running an OCI application

• Differences between containers and images

• Building an OCI Based Image

Podman is an excellent tool for running and building containerized applications. In this chapter,

you’ll get started by building a simple web application to demonstrate commonly used features

of the Podman command line.

If you don’t have Podman installed on your machine, you can jump to appendix C, Getting

Podman, and then return here. This chapter assumes that Podman 4.1 or newer is already

installed. Older versions of Podman probably work fine, but all examples were tested with

Podman 4.1.

The example base image I use is the registry.access.redhat.com/ubi8/httpd-24

image.

NOTE Universal Base Images (UBI) can be used anywhere, but container software that is maintained and

vetted by Red Hat, and when run on a Red Hat based operating system, is fully supported. There are hundreds

of Apache images which work similarly to this image, that you can also try out.

Chapter 2 shows how Podman is a great tool for working with containers. In this chapter I

walk you through running the scenario you might use to build a containerized application. You

launch a container, modify its contents, create an image and ship it to a registry. Then it

explains how you can do this in an automated way, to maintain the security of your container

image. Through it all you get exposed to many of the Podman command line interfaces, and

get a good understanding of how to work with Podman.

29

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

If you are an experienced Docker user, you probably just want to skim through this chapter.

You will know a lot of it, but there are many interesting features that Podman has like the

ability to mount container images (section 2.2.10) and different transports (section 2.2.4.1).

NOTE Podman is an open source project under heavy development. Podman is packaged and provided on

many different Linux distributions as well as Mac and Windows. These distributions might be shipping older

versions of Podman without some of the current features covered in this book. Some examples in this book

assume Podman v4.1 or later. If an example does not work, please attempt to update your version of Podman

to the latest version. Refer to appendix C for further information on how to get Podman.

Let's start by running our first container.

2.1 Working with containers

There are thousands of different container images sitting at container registries.

Developers/Administrators/Quality Engineers and general users primarily use the podman run

command to pull down and run/test/explore these container images. In order to start building

out containerized applications, the first thing you need to do is start working with a base image.

In our examples you pull and run the registry.access.redhat.com/ubi8/httpd-24 image

to container storage in your home directory and start exploring inside the container.

2.1.1 Exploring containers

In this section you will examine a typical podman command, step by step. You will execute the

podman run command which reaches out to the registry.access.redhat.com container

registry and begins pulling down the image and storing it locally in your home directory.

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash

Now I will break down the command that you just executed. By default the podman run

command executes the containerized command in the foreground until the container exits. In

this case you end up at a bash prompt running within the container and showing the bash-

4.4$ prompt.When you exit this bash prompt, Podman stops the container.

In this example you used two options -t and -i, as -ti, which tells Podman to hook up to

the terminal. Connecting to the input, output and error stream of the bash process within the

container to your screen. This allows you to interact within the container.

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash

The --rm option tells Podman to delete the container as soon as the container exits, freeing

up all of the container’s storage.

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash

Next specify the container image, registry.access.redhat.com/ubi8/httpd-24, that

you are working with. The Podman command reaches out to the container registry at

registry.access.redhat.com and begins copying down the ubi8/httpd-24:latest image.

30

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Podman copies multiple layers (Called blobs) as shown below and stores them in the local

container storage. You see the progress as the image layers are pulled down. Some images

are rather large and can take a long time while being pulled down. If you later run a different

container on the same image, Podman skips the pulling image step since you already have the

correct image in local container storage.

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash
Trying to pull registry.access.redhat.com/ubi8/httpd-24:latest... #A
Getting image source signatures
Checking if image destination supports signatures
Copying blob 296e14ee2414 skipped: already exists #B
Copying blob 356f18f3a935 skipped: already exists #B
Copying blob 359fed170a21 [========================>---------] 11.8MiB / 16.2MiB #B
Copying blob 226cafc3a0c6 [=====>----------------------------] 10.1MiB / 61.1MiB #B

#A Contact with the registry

#B Layer pulling is skipped

Finally you specify the executable to be run within the container, in this case bash.

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash
…
bash-4.4$

NOTE Images almost always have default commands that they execute. You only have to specify a command

if you want to override the default application that the image runs with. In the case of

registry.access.redhat.com/ubi8/httpd-24 image, it runs the Apache web server.

While inside the bash shell of container cat /etc/os-release file and notice you are

probably in a different OS or a different version versus the /etc/os-release outside of the

container. Explore around in the container and notice how different it is from your host

environment.

bash-4.4$ grep PRETTY_NAME /etc/os-release
PRETTY_NAME="Red Hat Enterprise Linux 8.4 (Ootpa)"

On my host on a different terminal the same command outputs

$ grep PRETTY_NAME /etc/os-release
PRETTY_NAME="Fedora Linux 35 (Workstation Edition Prerelease)"

Back inside the container you notice that there are a lot fewer commands available.

bash-4.4$ ls /usr/bin | wc -l
525

Whereas on the host you see:

$ ls -l /usr/bin | wc -l
3303

Execute the ps command to see what processes are running inside of the container.

31

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ ps
PID TTY TIME CMD
1 pts/0 00:00:00 bash
2 pts/0 00:00:00 ps

You only see two processes. The bash script and the ps command. Needless to say, on my

host machine, there are hundreds of processes running. (Including these two processes.)

You can further explore the inside of the container, to gain an understanding of what is

going on within a container.

When you are done, you exit the bash script and the container shuts down. Since you ran

with the --rm option, Podman removes all of the container storage and deletes the container.

The container image remains in container/storage.

Now that you have explored the inner workings of a container, it is time to start working

with the default application within the container.

2.1.2 Running the containerized application

In the previous example you pulled and ran bash within a containerized application, but you

did not run the application that the developer intended us to run. In this next example you are

going to run the actual application, by removing the command and running with a couple of

new options.

First remove the -ti and the --rm options, since you want the container to remain running

when the podman command exits. You are not a shell running within the container

interactively since it is just running the containerized web service.

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24
37a1d2e31dbf4fa311a5ca6453f53106eaae2d8b9b9da264015cc3f8864fac22

The first option to notice is the -d (--detach) option which tells Podman to launch the

container and then detach from it. Basically run the container in the background. The Podman

command actually exits and leaves the container running. Chapter 6 goes much deeper into

what is going on behind the scenes.

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24

The -p (--publish) option tells Podman to publish or bind the container port 8080 to the

host port 8080 when the container is running. With the -p option, the field before the colon

refers to the host port, while the port after the colon refers to the container port. In this case

you see that the ports are the same. If you specify only one port, Podman considers this port

a container port, and randomly picks a host port on which the container port is bound. You can

use the podman port command to discover which ports are bound to a container.

$ podman port myapp
8080/tcp -> 0.0.0.0:8080 #A

#A Shows that port 8080/tcp inside of the container is bound to all of the host networks (0.0.0.0) at port 8080.

By default containers are created within their own network namespace, meaning they are not

bound to the host network but to their virtualized network. Suppose I execute the container

without the -p option. In that case the Apache server within the container binds to the network

32

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

interface within the container's network namespace, but Apache is not bound to the host

network.

Only processes within the container are able to connect to port 8080 to communicate with

the webserver. By executing the command with the -p option Podman connects the port from

inside of the container to the host network at the specified port. The connection allows external

processes like a web browser to be able to read from the web service.

The -p option can map port numbers inside of the container to different port numbers

outside of the container.

NOTE If you are running containers in rootless mode, covered in chapter 3, Podman users are by default not

permitted to bind to ports < 1024 by the kernel. Some containers want to bind to lower ports like port 80,

which is allowed inside of the container but -p 80:80 fails since 80 is less than 1024. Using -p 8080:80 causes

Podman to bind the host’s port 8080 to port 80 within the container. The upstream Podman repo contains

troubleshooting information on problems like binding to ports less than 1024 and many

others. https://github.com/containers/podman/blob/main/troubleshooting.md

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24

In the example name the container myapp using the --name myapp option. Specifying a

name makes it easier to find the container and it allows you to specify a name that can then

be used for other commands. For example, podman stop myapp. If you don’t specify a name,

Podman automatically generates a unique container name along with a container ID. All of the

Podman commands that interact with containers can use either the name or the ID.

$ podman run -d --name myapp -p 8080:8080 registry.access.redhat.com/ubi8/httpd-24

When the podman run command completes, the container is running. Since this container

is running in detached mode, Podman prints out the container id and exits, but the container

remains running.

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24
37a1d2e31dbf4fa311a5ca6453f53106eaae2d8b9b9da264015cc3f8864fac22

Now that the container is running you can launch a web browser to communicate with the

web server inside of the container at localhost port 8080.

$ web-browser localhost:8080

33

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.1 Web browser window connecting to the ubi8/httpd-24 container running in Podman.

Congratulations, you have launched your first containerized application.

Now imagine you want to start another container, you can just execute a similar command

with a couple of changes.

$ podman run -d -p 8081:8080 --name myapp1 registry.access.redhat.com/ubi8/httpd-24
fa41173e4568a8fa588690d3177150a454c63b53bdfa52865b5f8f7e4d7de1e1

Notice you need to change the name of the container to myapp1, otherwise the podman

run command fails with the myapp name because the container previously existed. Also you

need to change the -p option to use 8081 for the host port, because the previous container,

myapp, is currently running and is bound to port 8080. The second container isn’t allowed to

bind to port 8080 until the first container exits.

$ podman run -d -p 8081:8080 --name myapp1 registry.access.redhat.com/ubi8/httpd-24

The podman create command is almost identical to the podman run command. The create

command pulls the image if it is not in container storage and configures the container

information to make it ready to run, but never executes the container. It is often used together

with the podman start command described in section 2.1.4. You might want to create a

container and then later use a systemd unit file to start and stop the container.

34

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

FAVORITE PODMAN RUN OPTIONS

• --user USERNAME Tells Podman to run the container as a specific user defined in the

image. By default Podman will run the container as root, unless the container image

specifies a default user.

• --rm automatically remove the container when it exits

• --tty -(t) allocates a pseudo-tty and attaches it to the standard input of the container.

• --interactive (-i) connects stdin to the primary process of the container. These

options give you an interactive shell within the container.

Use the man podman-run command for information about all options.

NOTE There are dozens of podman run options available, allowing you to change security features,

namespaces, volumes, and so on. Some of these I use and explain throughout the book. Refer to the podman-

run man page for a description of all of the options. Most of the podman create options defined in table 2.1

are also available for podman run.

You see the container is up and running, now it is time to stop the container to get to the

next step.

2.1.3 Stopping containers

You have two containers running and have tested them by running a web browser against

them. In order to continue the development, by actually adding some content to the web page,

you can stop the containers using the podman stop command.

$ podman stop myapp

The stop command stops the container started with the previous podman run command.

When stopping a container, Podman examines the running container and sends a stop

signal, usually SIGTERM to the primary process (pid1) of the container and then by default

waits ten seconds for the container to stop. The stop signal tells the primary process within

the container to exit gracefully. If the container doesn’t stop within 10 seconds Podman sends

the SIGKILL signal to the process forcing the container to stop. The ten second wait gives the

processes in the container time to cleanup and commit changes.

The default stop signal can be changed for a container using the podman run --stop-signal

option. Sometimes the primary or init process of a container ignores SIGTERM. For example

containers which use SystemD as the primary process inside of a container. SystemD ignores

SIGTERM and specifies that it be shuts down using the SIGRTMIN+3 (signal #37) signal. The

stop signal can be embedded in container images as I describe in the podman build section

2.3.

Some containers ignore the SIGTERM stop signal, which means you have to wait 10 seconds

for the container to exit. If I know the container ignores the default stop signal and I don’t

care about the container cleaning up, I can just add the option -t 0 option to podman stop to

send the SIGKILL signal right away.

$ podman stop -t 0 myapp1
myapp1

35

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Podman has a similar command podman kill, which sends the specified kill signal. The

podman kill command can be useful when you want to send signals into the container without

actually wanting to stop the container.

FAVORITE PODMAN STOP OPTIONS

• --timeout (-t) sets the timeout, -t 0 sends the SIGKILL without waiting for the

container to stop.

• --latest (-l) is a useful option to allow you to stop the last created container rather

than having to use the container name or container id. Most Podman commands that

require you to specify a container name or id, also accept the --latest option. Only

available on Linux machines.

• --all tells Podman to stop all running containers. Similarly to --latest, Podman

commands which require a container name or container id parameter, also take the --

all option.

2.1.4 Use the man podman-stop command for information about all options.

Eventually, your system has lots of stopped containers, sometimes you need to restart them,

for example if the system was rebooted. Another common use case is to first create a container

and later start it. The next section explains how to start a container.

2.1.5 Starting containers

Now that the container you created was stopped, you might want to start it back up again

using the following command:

$ podman start myapp
myapp #A

#A Start command prints the names of the containers that were started.

The podman start command starts one or more containers.

This command will output container id, indicating that your container is up and running.

You can now reconnect to it with a web browser. One common use case for podman start is

to start a container after a reboot, to start all of the containers that were stopped during

shutdown.

FAVORITE PODMAN START OPTIONS

• --all starts all of the stopped containers in container storage.

• --attach attaches your terminal to the output of the container.

• --interactive (-i) attaches the terminal input to the container.

Use the man podman-start command for information about all options.

After you’ve been using Podman for a while, and pulled down and run many different

container images, you might want to figure out which containers are running. Or which

containers you have in local storage. You need to be able to list these containers.

36

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

2.1.6 Listing containers

You can list the running containers and all of the containers that were previously created. Use

the podman ps command to list containers.

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
b1255e94d084 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-http... 6 minutes

ago Up 4 minutes ago 0.0.0.0:8080->8080/tcp myapp

Notice the podman ps command by default lists the running containers. Use the --all option

to see all of the containers.

$ podman ps --all
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
b1255e94d084 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-http... 9 minutes

ago Up 8 minutes ago 0.0.0.0:8080->8080/tcp myapp
3efee4d39965 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-http... 7 minutes

ago Exited (0) 3 minutes ago 0.0.0.0:8081->8080/tcp myapp1

FAVORITE PODMAN PS OPTIONS

• --all tells Podman to list all containers rather than just running containers.

• --quiet tells Podman to only print the container ids

• --size tells Podman to return the amount of disk space currently used for each

container other than the images they are based on.

Use the man podman-ps command for information about all options.

Now that you know all of the containers you have on the system, you might want to inspect

their internals.

2.1.7 Inspecting containers

To fully understand a container, sometimes you want to know which image a container was

based on, or what environment variables a container gets by default or what are the security

settings used for a container. The podman ps command gives us some data about the

containers, but if you want to really examine information about the container, then you can

use the podman inspect command.

The podman inspect command can also be used to inspect images, networks, volumes and

pods. The podman container inspect command is also available and specific to containers.

But most users just type the shorter podman inspect command.

37

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman inspect myapp
[

{
"Id": "240271ae90480d3836b1477e5c0b49fbd3883846ca474e3f6effdfb271f4ff54",
"Created": "2021-09-27T05:27:47.163828842-04:00",
"Path": "container-entrypoint",
"Args": [
 "/usr/bin/run-httpd"

],
…
]

As you can see the podman inspect command outputs a large json file, 307 lines on my

machine. All of this information is eventually handed down the the OCI runtime to launch the

container. When using the inspect command, it is often better to pipe its output to less or

grep to find particular fields you are interested in. Or you can use the format option.

If you want to to examine the command executed when you start the container, execute:

$ podman inspect --format '{{ .Config.Cmd }}' myapp #A
[/usr/bin/run-httpd]
#A Inspect is displaying data from the OCI Image Specification.

Or if you wanted to see the stop signal:

$ podman inspect --format '{{ .Config.StopSignal }}' myapp
15 #A
#A The default stop signal for all containers is 15 (SIGTERM)

FAVORITE PODMAN INSPECT OPTIONS

• --latest (-l) is handy in that it allows you to quickly inspect the last created container

rather than specifying the container name or container id.

• --format is useful as you see above to extract particular fields out of the json.

• --size adds the amount of disk space the container is using. Gathering this information

takes a long time, so it is not done by default.

Use the man podman-inspect command for information about all options.

After you inspect a container, you might realize that you no longer need that container

taking up storage, so you need to remove it.

2.1.8 Removing containers

If you are done using a container, you often want to remove the container to free up disk

space, or to reuse the container name. Remember you started a second container called

myapp1, you no longer need it so you can remove it. Make sure to stop the container (section

2.1.3) before removing it. Then use the podman rm command to remove container:

$ podman rm myapp1
3efee4d3996532769356ffea23e1f50710019d4efc704d39026c5bffd6aa18be

FAVORITE PODMAN RM OPTIONS

• --all option is useful if you want to remove all of your containers

• --force option tells Podman to stop all of the running containers when removing.

38

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Use the man podman-rm command for information about all options.

Now that you understand a few commands it is time to start modifying the running

container.

2.1.9 Execing into a container

Often when a container is running, you might want to start another process within the container

to debug/examine what is going on, or in some cases modify some of the content that the

container is using.

Imagine you wanted to go into your container and modify the web page that it is showing.

You can exec into the container using the podman exec command. You use the --interactive

(-i) option to allow us to execute commands within the container. You need to specify the

name of the container myapp and finally execute the bash script while in the container. If you

stopped the myapp container you need to restart it, since podman exec only works on running

containers.

In the example below you exec’d a bash process into the container to create the

/var/www/html/index.html file. I write HTML content that causes the containerized website to

display the bolded Hello World.

 $ podman exec -i myapp bash -c 'cat > /var/www/html/index.html' << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
_EOF

Execing back into the container a second time you can see that the file was successfully

modified. This shows that modifications to a container via exec, are permanent to the

container, and will remain even if you stopped and restarted the container. Key difference

between podman run and podman exec is that run will create a new container off of an image

with processes running inside, while exec starts processes inside of existing containers.

$ podman exec myapp cat /var/www/html/index.html
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
Now let's connect a web browser to the container to see if the content has changed.

$ web-browser localhost:8080

39

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.2 Web browser window connecting to the ubi8/httpd-24 container running in Podman with update

Hello World HTML.

FAVORITE PODMAN EXEC OPTIONS

• --tty connects a tty to the exec session

• --interactive,-i option tells Podman to run in interactive mode, meaning you can interact

with an exec'd program like a shell.

Use the man podman-exec command for information about all options.

Now that you have created an application you might want to share it with others. First you

need to commit the container to an image.

2.1.10 Creating an image from a container

Developers often run containers from a base image to create a new container environment.

Once they are done, they pack this environment into a container image to be able to share it

with other users. Those users can then use Podman to launch the containerized application.

The way you do this with Podman is to commit the container to an OCI image.

First stop or pause the container to make sure nothing gets modified while you are

committing it.

$ podman stop myapp

Now you can execute the podman commit command to take your application container,

myapp, and commit it creating a new image named myimage.

$ podman commit myapp myimage
Getting image source signatures
Copying blob e39c3abf0df9 skipped: already exists
Copying blob 8f26704f753c skipped: already exists
Copying blob 83310c7c677c skipped: already exists
Copying blob 654b3bf1361e skipped: already exists
Copying blob 9e816183404c done

Copying config e38084bb8a done
Writing manifest to image destination
Storing signatures
e38084bb8a76104a7cac22b919f67646119aff235bb1cfcba5478cc1fbf1c9eb

Now you can continue running the existing container myapp by calling podman start, or

you can create a new container based on myimage.

$ podman run -d --name myapp1 -p 8080:8080 myimage
0052cb32c8e63b845ac5dfd5ba176b8204535c2c6cafa3277453424de601263f

40

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

NOTE Using the podman commit command to create an image, is not commonly used. The entire process of

building container images can be scripted and automated using podman build. Explained in section 2.3.

FAVORITE PODMAN COMMIT OPTIONS

• --pause pauses a running container during the commit. Notice I stopped the container

before doing the commit. I could have simply paused it. The podman pause and podman

unpause commands allow you to pause and unpause containers directly.

• --change option allows you to commit instructions on how to use the image. The

instructions are CMD, ENTRYPOINT, ENV, EXPOSE, LABEL, ONBUILD, STOPSIGNAL,

USER, VOLUME, WORKDIR. These instructions match up with the directives in the

Containerfile or Dockerfile.

Use the man podman-commit command for information about all options.

NOTE You have examined a few of the Podman container commands. There are many more. Use the podman-

container(1) man pages to explore all of them as well as a full description of commands specified in this

section.

$ man podman container

Now that you have committed your container to an image, it is time to show how Podman

can work with images.

Table 2.1 Podman container commands.

Command Man Page Description

attach podman-container-attach(1) Attach to a running container

checkpo

int

podman-container-checkpoint(1) Checkpoint a container

cleanup podman-container-cleanup(1) Cleanup network and mount points of a container

commit podman-container-commit(1) Commit a container into an image

cp podman-container-cp(1) Copy files/folder into and out of containers

create podman-container-create(1) Create a new container

diff podman-container-diff(1) Inspect changes in a containers file system

exec podman-container-exec(1) Run a process in a container

exists podman-container-exists(1) Check if a container exists

export podman-container-export(1) Export container's filesystem as a tar archive

init podman-container-init(1) Init a container

inspect podman-container-inspect(1) Display detailed information on a container

kill podman-container-kill(1) Send a signal to containers in container

List

(ps)

podman-container-list(1) List all of the containers

41

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

logs podman-container-logs(1) Fetch logs for a container

mount podman-container-mount(1) Mount a container's root filesystem

pause podman-container-pause(1) Pause container

port podman-container-port(1) List port mappings for a container

prune podman-container-prune(1) Remove all non running containers

rename podman-container-rename(1) Rename an existing container

restart podman-container-restart(1) Restart a container

restore podman-container-restore(1) Restore a checkpointed container

rm podman-container-rm(1) Remove a container

run podman-container-run(1) Run a command in a new container

runlabe

l

podman-container-runlabel(1) Execute the command described by an image label

start podman-container-start(1) Start a container

stats podman-container-stats(1) Display statistics for a container

stop podman-container-stop(1) Stop a container

top podman-container-top(1) Display running process in container

unmount podman-container-unmount(1) Unmount a container's root filesystem

unpause podman-container-unpause(1) Unpause all the containers in a pod

wait podman-container-wait(1) Wait for a container to exit

2.2 Working with container images

In the previous section you tried basic operations with containers, including inspecting and

committing to a container image. In this section you will try working with container images,

learn how they differ from containers, and how to share them through container registries.

2.2.1 Difference between a container and an image

One of the problems with computer programming is that the same names are constantly used

for different purposes. In the “container world“ there is no more overused term than

“container”. Often container refers to the running processes launched by Podman. But

container can also refer to container data as the non-running objects sitting in container

storage. As you saw in the previous section podman ps --all, shows running and non-running

containers.

Another example is the term namespace which is used in many different ways. I often get

confused when people talk about namespaces within Kubernetes. Some people hear the term

and think of “virtual clusters”, but when I hear it, I think of Linux namespaces used with the

Pods and Containers.

Similarly, `image` can refer to a VM Image , a Container image, OCI Image or a Docker

image stored at a container registry.

42

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://en.wikipedia.org/wiki/Linux_namespaces

©Manning Publications Co. To comment go to liveBook

I think of containers as executing processes within an environment or something that is

prepared to be run. In contrast, images are committed `containers`, which are prepared to

be shared with others. Other users/systems can use these images to create new containers.

Container images are just committed containers. The OCI defines the format of an image.

Podman uses the https://github.com/containers/image library for all of its interaction with

images. Container images can be stored in different types of storage or transports, as

container/image refers to them. These transports can be Container Registries, Docker

Archives, OCI Archives, docker-daemon as well as containers/storage. I cover transports later

in section 2.2.4.1.

In the context of Podman, I usually refer to images as the content stored locally in a

container storage or in container registries like docker.io and quay.io. Podman uses the

https://github.com/containers/storage library for handling locally stored images. Let's take a

closer look at it.

The container/storage library provides the concept of a storage container. Basically storage

containers are intermediate storage content that hasn’t been committed yet. Think of this as

files on disk and some JSON describing the content. Podman has its own datastore of data

related to a Podman container. Podman needs to deal with multiple users of its containers at

the same time. It relies on file system locking provided by containers/storage to make sure

hundreds of Podman executables can reliably share the same datastore.

When you commit a container to storage, Podman copies the container storage to the

image storage. Images are stored in a series of layers. Every commit creates a new layer.

I like to think of an image like a wedding cake. In our example above you used the

ubi8/httpd-24 image which is two layers, the base layer is ubi8, and then the image provided

added the httpd package and a few others to create the ubi8/httpd-24. Now when you commit

your container in the previous section, Podman adds another layer on top of the ubi8/httpd-

24 image called myimage.

Figure 2.3 Wedding cake display showing the images making up our HelloWorld application.

43

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/image
https://github.com/containers/storage
https://github.com/containers/storage
https://github.com/containers/storage
https://github.com/containers/storage

©Manning Publications Co. To comment go to liveBook

One handy Podman command for showing the layers of an image is the podman image tree

command.

$ podman image tree myimage
Image ID: 2c7e43d88038
Tags: [localhost/myimage:latest]
Size: 461.7MB
Image Layers
├── ID: e39c3abf0df9 Size: 233.6MB
├── ID: 42c81bd2b468 Size: 20.48kB Top Layer of: [registry.access.redhat.com/ubi8:latest]
├── ID: 51a7beaa0b88 Size: 57.43MB
├── ID: 519e681b5702 Size: 170.6MB Top Layer of: [registry.access.redhat.com/ubi8/httpd-

24:latest]
└── ID: bc3dcdefdac3 Size: 69.63kB Top Layer of: [localhost/myimage:latest

localhost/myapp:latest]

You can see that the image myimage consists of five layers.

Another useful Podman command, podman image diff, allows you to see the actual files

and directories that have been changed (C), added (A), or deleted (D) compared to another

image or the lower layer:

44

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman image diff myimage ubi8/httpd-24
C /etc/group
C /etc/httpd/conf
C /etc/httpd/conf/httpd.conf
C /etc/httpd/conf.d
C /etc/httpd/conf.d/ssl.conf
C /etc/httpd/tls
C /etc
C /etc/httpd
A /etc/httpd/tls/localhost.crt
A /etc/httpd/tls/localhost.key
...

Images are just TAR diffs of software applied on lower level images. Container content is

an uncommitted layer of software. Once a container is committed, you can create other

containers on top of your image. You can also share the image with others so that they can

create other containers on your image.

Now let's look at all of the images in your container storage.

2.2.2 Listing images

In the container section you were working with images and used command podman images to

list the images in local storage.

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Let’s look at the different fields in the default output. Table 2.1 describes the different fields

and data available with the podman images command.

Table 2.2 Default fields listed by the podman images command

Heading Description

Repository Complete name of the image

TAG Version (tag) of the image. Image tagging is covered in section 2.2.6.

IMAGE ID Unique identifier of the image. It is generated by Podman as a SHA256 hash of the

image's JSON configuration object.

CREATED Elapsed time since the image was created. Images are sorted by this field by default.

SIZE The amount of storage being used by the image.

You will use the podman images command throughout this section.

45

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

NOTE Over time the amount of storage used by all of the images you pull grows. I have seen many instances

where users have run out of disk space. You should monitor the size of images and containers removing them

when you are no longer using them. Use the man podman-system-prune command for more information

on cleaning up.

FAVORITE PODMAN IMAGES OPTIONS

• --all option is useful for listing all images. By default, podman images lists only the

currently in use images. When an image is replaced by a newer image with the same

tag, the previous image is tagged as <none><none>. These images are called dangling

images. I cover dangling images in the 2.3.1 Podman build.

Use the man podman-images command for information about all options.

Similarly to containers, you often want to examine the configuration information associated

with an image by inspecting it.

2.2.3 Inspecting images

In the previous sections I mentioned a couple of commands to examine images. I used the

podman image diff to examine files/directories created or deleted between images. I also

showed you a way to see the image hierarchy or wedding cake layers of images using the

podman image tree command.

Sometimes you want to examine the configuration of an image. You use the podman image

inspect command for this. The podman inspect command can also be used to inspect images,

but the names can conflict with containers, so I like to use the specific image command.

$ podman image inspect myimage
[

{
"Id": "3b8fcf9081b4c4e6c16d763b8d02684df0737f3557a1e03ebfe4cc7cd6562135",
"Digest":

"sha256:ff49aa6253ae47569d5aadbd73d70e7d0431bcf3a2f57b1b56feecdb531029a3",
"RepoTags": [
 "localhost/myimage:latest"

],
"RepoDigests": [
"localhost/myimage@sha256:ff49aa6253ae47569d5aadbd73d70e7d0431bcf3a2f57b1b56feecdb53
1029a3"
],

…
]

As you can see this command outputs a large json array, 153 lines in the example above.

It includes the data used for the OCI Image specification. When you create a container from

an image, this information is used as one of the inputs to create the container.

When using the inspect command, it is often better to pipe its output to less or grep to

find particular fields you are interested in. Or you can use the --format option.

If you want to to examine the default command to be executed from this image, execute:

$ podman image inspect --format '{{ .Config.Cmd }}' myimage
[/usr/bin/run-httpd]

46

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Or if you wanted to see the stop signal:

$ podman image inspect --format '{{ .Config.StopSignal }}' myimage

As you can see, nothing is output, meaning the developer of the application did not specify

a STOPSIGNAL. When you build a container off of this image, the STOPSIGNAL is the default,

15, unless you override it via the command line.

FAVORITE PODMAN IMAGE INSPECT OPTION

• --format is useful as you see above to extract particular fields out of the json.

Use the man podman-image-inspect command for information about the command.

Once you are happy with a container and commit it to an image, the next step is to share

it with others or maybe run it on another system. You need to push the image out to other

types of container storage, usually a container registry.

2.2.4 Pushing images

In Podman, you use the podman push command to copy an image and all of its layers out of

container storage and push it to other forms of container image storage like a container

registry. Podman supports a few different types of container storage, which it calls transports.

CONTAINER TRANSPORTS

Podman uses the https://github.com/containers/image library for pulling and pushing images.

I describe the containers/image project as a library for copying images between different types

of container storage. One storage, as you have seen, is containers/storage.

When pushing an image, the [destination] is specified using transport:ImageName format.

If no transport is specified, the `docker` (container registry) transport is used by default.

One of the novel things that Docker did, as I explained above, was invent the Container

Registry concept. Basically a web server that contains container images. The docker.io,

quay.io, Artifactory, web servers are all examples of container registries. The Docker

engineering team defined a protocol for pulling and pushing these images from the container

registries, which I refer to as the Container registry or “docker” transport.

When I want to run a container of an image, I can fully specify the image name including

the transport like the command below.

$ podman run docker://registry.access.redhat.com/ubi8/httpd-24:latest echo hello
hello

For Podman, docker:// transport is the default, it can be skipped for convenience:

$ podman run registry.access.redhat.com/ubi8/httpd-24:latest echo hello
hello

The myimage image that you created in the previous section was created locally, which

means it doesn’t have a registry associated with it. By default, locally created images have

the localhost registry associated with them. You can see the images in the containers/storage

using the podman images command, explained below.

47

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/image
https://github.com/containers/image

©Manning Publications Co. To comment go to liveBook

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

If the image has a remote registry associated with it - e.g.,

registry.access.redhat.com/ubi8,it can be pushed without specifying the [destination]

field. On the contrary, since localhost/myimage does not have a registry associated with it,

remote registry needs to be specified - e.g., quay.io/rhatdan.

$ podman push myimage quay.io/rhatdan/myimage
Getting image source signatures
Copying blob 164d51196137 done
Copying blob 8f26704f753c done
Copying blob 83310c7c677c done
Copying blob 654b3bf1361e [==================>-------------------] 82.0MiB / 162.7MiB
Copying blob e39c3abf0df9 [================>---------------------] 100.0MiB / 222.8MiB

NOTE Before executing the podman push command, I logged into the quay.io/rhatdan account using podman

login, which is covered in the next section.

After the push command is finished, the image becomes available for the pull for other

users, given they have access to this container registry.

Table 2.2 describes the supported transports for different types of container’s storage.

48

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 2.3 Podman supported transports

Transport Description

container registry

(docker)

Default transport. References a container image stored in a remote

container image registry. Container registry is a place for storing and

sharing container images. For example, docker.io, quay.io.

oci References a container image, compliant with the Open Container Image

Layout Specification. The manifest and layer tarballs as individual files are

located in the local directory.

dir References a container image, compliant with the Docker image layout. It

is very similar to the `oci` transport but stores the files using the legacy

“docker” format. As a non-standardized format, primarily useful for

debugging or noninvasive container inspection.

docker-archive References a container image in Docker image layout which is packed into

a TAR archive.

oci-archive References an image compliant with the Open Container Image Layout

Specification which is packed into a TAR archive. It is very similar to the

`docker-archive` transport, but stores an image in OCI Format.

docker-daemon References an image stored in the Docker daemon's internal storage.

Since the Docker daemon requires root privileges, Podman has to be run

by root user.

container-storage References an image located in a local container storage. It is not a

transport, but more of a mechanism for storing images. It can be used to

convert other transports into container-storage. Podman defaults to using

container-storage for local images.

You want to push your image to a container registry, but if you try to push it, the container

registry rejects your push, since you have not provided login authorization information. You

need to execute podman login, to create the authorization.

2.2.5 podman login (Logging into a container registry)

In the previous section, I pushed the image to my container registry by executing:

$ podman push myimage quay.io/rhatdan/myimage

49

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

But I left out a key step - logging into a container registry using correct credentials. This is

a necessary step for pushing a container image. It is also required for pulling a container image

from a private registry.

For this section to follow along, you need to set up an account at a container registry. There

are a lot of container registries available. The https://quay.io and https://docker.io registries

both provide free accounts and storage. Your company might have a private registry where

you can also get an account.

For the examples, I continue to use my account rhatdan at quay.io. Login to get your

credentials.

$ podman login quay.io
Username: rhatdan
Password:
Login Succeeded!

Notice the Podman command prompts me for my Username and Password at the registry.

The podman login command has options to pass the username/password information on the

command line to avoid the prompt, allowing you to automate the login process.

To store authentication information for the user, podman login command creates an

auth.json file. By default this is stored in the /run/user/$UID/containers/auth.json file.

cat /run/user/3267/containers/auth.json
{
 "auths": {

 "quay.io": {
 "auth": "OBSCURED-BASE64-PASSWORD"

 }
 }
}

The auth.json file contains your registry password in a base64 encoded string, there is no

cryptography involved. Therefore the auth.json file needs to be protected. Podman defaults

to storing the file in /run because it is a temporary file system and is destroyed when you log

out or the system is rebooted. The /run/user/$UID/containers directory is not accessible by

other users on the system.

It is possible to override the location by specifying option --auth-file. Alternatively, you

can use the REGISTRY_AUTH_FILE environment variable to modify its location. If both are

specified the --auth-file option is used. All container tools use this file to access the container

registry.

It is possible to run the podman login command multiple times to login to multiple

registries storing the login information in the same authorization file with a different stanza.

NOTE Podman supports other mechanisms to store the password information. These are called credential

helpers.

After you are done using the registry, you can log out of a registry executing podman

logout. This command deletes the cached credentials stored in the auth.json file.

50

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://quay.io/
https://docker.io/

©Manning Publications Co. To comment go to liveBook

$ podman logout quay.io
Removed login credentials for quay.io

FAVORITE PODMAN LOGIN AND LOGOUT OPTIONS

• --username (-u) tells Podman username to use when logging into the registry,

otherwise the command prompts.

• --authfile tells Podman to store the authorization file in a different location. You can

also use the REGISTRY_AUTH_FILE environment variable to change the location.

• --all allows you to logout of all of the registries.

Use the man podman-login and man podman-logout commands for information about all

options.

Notice when you pushed the image to a container registry, you sort of renamed myimage

to quay.io/rhatdan/myimage.

$ podman push myimage quay.io/rhatdan/myimage

It’d be nice to just have the local image named quay.io/rhatdan/myimage, in which case

you could have just executed.

$ podman push quay.io/rhatdan/myimage

In the next section, you learn how to add names to images.

2.2.6 Tagging images

Earlier in this chapter I pointed out that locally created images get created with a localhost

registry. Images get created with the localhost registry when you commit a container to an

image or if you use podman build to build an image. Podman has a mechanism to add

additional names to images, Podman calls these names tags. The command is podman tag.

Using the podman images command, check to local image name:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

You want the final image that you plan on shipping to be referred to as

quay.io/rhatdan/myimage, you add that name with the following podman tag command:

$ podman tag myimage quay.io/rhatdan/myimage

Now run podman images again to examine the images, you see the new name

quay.io/rhatdan/myimage. Notice that the localhost/myimage and

quay.io/rhatdan/myimage have the same IMAGE ID, 2c7e43d88038.

51

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Since the images have the same image ID they are the same image with multiple names.

Now you can interact directly with quay.io/rhatdan/myimage. First you need to log back in

to quay.io.

$ podman login --username rhatdan quay.io
Password:
Login Succeeded!

Now push without requiring the destination name.

$ podman push quay.io/rhatdan/myimage
Getting image source signatures
…
Storing signatures

Much simpler.

Let's tag previously used image with a version 1.0:

$ podman tag quay.io/rhatdan/myimage quay.io/rhatdan/myimage:1.0

Once again examine the images, notice that myimage now has three different names/tags.

All three have the same IMAGE ID, 2c7e43d88038.

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Now you can push the 1.0 version of the myimage (application) to the registry.

$ podman push quay.io/rhatdan/myimage:1.0
Getting image source signatures
Copying blob 8f26704f753c skipped: already exists
Copying blob e39c3abf0df9 skipped: already exists
Copying blob 654b3bf1361e skipped: already exists
Copying blob 83310c7c677c skipped: already exists
Copying blob 164d51196137 [--------------------------------------] 0.0b / 0.0b
Copying config 2c7e43d880 [--------------------------------------] 0.0b / 4.0KiB
Writing manifest to image destination
Storing signatures

Users can pull either the latest image or the 1.0 version. Later when you build version 2.0

of your application, you can store both images at the registry. You can run both version 1.0

and 2.0 of your application on the host at the same time.

Use a web browser (Firefox, Chrome, Safari, Internet Explorer, Microsoft Edge …) to look

at the images at quay.io. You can see 1.0 and the latest image

52

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ web-browser quay.io/repository/rhatdan/myimage?tab=tags

Figure 2.4 List of myimage tags on quay.io. https://quay.io/repository/rhatdan/myimage?tab=tags

53

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://quay.io/repository/rhatdan/myimage?tab=tags

©Manning Publications Co. To comment go to liveBook

NOTE Contrary to common sense, the tag latest does not refer to the most up-to-date image in the repository.

It is just another tag with no magic involved. Even worse, because it is being used as a default tag for images

pushed without tag, it could refer to any random version of an image. There could be newer images in the

container registry then your local containers storage with this tag. Thus, it is always better to refer to the specific

version of the image you want to use, rather than relying on the latest.

Now that you have pushed your image to a container registry, you may want to free up

storage from your home directory by removing the images.

2.2.7 Removing images

Over time, images can take up a lot of disk space. Thus, it will be a good idea to remove no

longer used images.

Let's list local images first:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

You use the podman rmi command to remove local images:

$ podman rmi localhost/myimage
Untagged: localhost/myimage:latest

Listing the local images again, you see that the command didn’t actually remove the image

but only the localhost tag to the image. Podman still has two references to the same image id,

the actual content of the image has not been removed. None of the disk space was freed up.

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

You can remove the other tags using a short name (see 2.2.8.1). Podman uses the short

name and finds the first name in local storage that matches the shortname without a registry

and removes it, which is why I need to remove it twice, to get rid of both images. Tags other

than latest need to be specified explicitly.

$ podman rmi myimage
Untagged: quay.io/rhatdan/myimage:latest
$ podman rmi myimage:1.0
Untagged: quay.io/rhatdan/myimage:1.0
Deleted: 2c7e43d88038669e8cdbdff324a9f9605d99697215a0d21c360fe8dfa8471bab

It is only when the last tag is removed the actual disk space is reclaimed.

54

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Alternatively you can try removing the images by specifying the image id.

$ podman rmi 14119a10abf4
Error: unable to delete image

"2c7e43d88038669e8cdbdff324a9f9605d99697215a0d21c360fe8dfa8471bab" by ID with more
than one tag ([quay.io/rhatdan/myimage:1.0 quay.io/rhatdan/myimage:latest]): please
force removal

But that fails, because there are multiple tags for the same image. Adding the --force

option removes the image and all of its tags:

$ podman rmi 14119a10abf4 --force
Untagged: quay.io/rhatdan/myimage:1.0
Untagged: quay.io/rhatdan/myimage:latest
Deleted: 2c7e43d88038669e8cdbdff324a9f9605d99697215a0d21c360fe8dfa8471bab

As your images size and quantity grow and more containers are created it becomes harder

to figure out which images are no longer needed. Podman has another useful command:

podman image prune for removing all “dangling” images. Dangling images are images that no

longer have a tag associated with them or a container using them. The prune command also

has the --all option which removes all images that are currently not in use by any containers

including dangling images.

$ podman image prune -a
WARNING! This command removes all images without at least one container associated with

them.
Are you sure you want to continue? [y/N] y
6d633c2626113fb4e5aa75babb2af39268948497893f7bb5b4c2043d7a986ba0
B9097177b416944cabdcfcab0e74a319223ad1acaed38ac57a262b2421732355

NOTE Having no containers running,podman image prune command removes all of the local images. This

frees up all of the disk space in the home directory. You can use the podman system df command to show all

of the storage in your home directory used by podman.

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE

FAVORITE PODMAN IMAGE PRUNE OPTIONS

• --all tells Podman to remove all images, freeing up all storage. Note images which have

containers running on them are not removed.

• --force tells Podman to stop and remove any containers that are running on them and

remove any images that are dependent on the image you are attempting to remove

Use the man podman-image-prune command for information about all options.

Images pushed to the registry could also be pulled for various reasons, including but not

limited to sharing your applications with others, testing other versions, getting back removed

local versions, working on a new version of an image, etc.

55

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

2.2.8 Pulling images

Although you previously removed all local images, you have to start from scratch and you can

use previously pushed at quay.io/rhatdan/myimage.

Podman has the podman pull command to pull images from container registries

(transports) into local container storage:

$ podman pull quay.io/rhatdan/myimage
Trying to pull quay.io/rhatdan/myimage:latest…
Getting image source signatures
Copying blob dfd8c625d022 done
Copying blob e21480a19686 done
Copying blob 68e8857e6dcb done
Copying blob 3f412c5136dd done
Copying blob fbfcc23454c6 done
Copying config 2c7e43d880 done
Writing manifest to image destination
Storing signatures
2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae

Does the output look familiar? You probably remember similar output of the podman run

command from the section 2.1.2:

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24
Trying to pull registry.access.redhat.com/ubi8/httpd-24:latest…
Getting image source signatures
Checking if image destination supports signatures
Copying blob 296e14ee2414 skipped: already exists
Copying blob 356f18f3a935 skipped: already exists
Copying blob 359fed170a21 done
Copying blob 226cafc3a0c6 done
Writing manifest to image destination
Storing signatures
37a1d2e31dbf4fa311a5ca6453f53106eaae2d8b9b9da264015cc3f8864fac22

Many Podman commands implicitly execute the podman pull command if the required

image is not present locally.

So, executing podman images shows the image back in container storage, ready to be used

for containers:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage latest 2c7e43d88038 2 days ago 462 MB

Up until now you have been typing the image with the full names as

registry.access.redhat.com/ubi8/httpd-24 or quay.io/rhatdan/myimage, but if you are

like me and not a great typist, this can be a pain. What you need is a way to refer to the

images via short names.

SHORT NAMES AND CONTAINER REGISTRIES

When Docker first hit the scene they defined an image reference as a combination of the

container registry where the image was stored, the repository, image name and a tag or

version of the image.

56

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

In our examples we have been using quay.io/rhatdan/myimage. In table 2.4 you can see

this image name breakdown, note that the latest tag was used implicitly as the image version

wasn't specified.

Table 2.4 Container image name table

Registry Repository Name Tag

quay.io rhatdan myimage latest

The Docker command line has internally set docker.io registry as the only registry, thus making

every short image name refer to images at docker.io. There is also a special repository library,

which is used for certified images.

So, rather than typing

docker pull docker.io/library/alpine:latest

You can just execute

docker pull alpine

Conversely, if you want to pull an image from a different registry, you need to specify the

full name of the image:

docker pull registry.access.redhat.com/ubi8/httpd-24:latest

Table 2.4 shows the difference between the image name used in a short name versus the

fully specified image name.

Table 2.5 Short name to container image name table

Registry Repo Name Tag

 alpine

docker.io library alpine latest

Since I am lazy and hate to type extra characters, I almost always use short names.

With Podman, the developers did not want to hard code one registry, docker.io, into the

tool. Podman allows distributions, companies and you to control which registries to use and to

be able to configure multiple registries. At the same time, Podman provides support for the

easier to use short names.

Podman usually comes with multiple registries defined, controlled by the distribution that

packaged Podman.

You can use the podman info command to see what registries are defined for your Podman

installation:

57

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman info
…
registries:
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - docker.io
 - quay.io

The list of registries can be modified in the registries.conf file, which is described in chapter

5, section 6.2.1.

Let's discuss security side of things using these commands:

$ podman pull rhatdan/myimage
$ podman pull quay.io/rhatdan/myimage

From a security perspective, it is always better to specify the full image name when pulling

it from a registry. That way Podman guarantees that it pulls from the specified registry.

Imagine you are attempting to pull rhatdan/myimage. Using the search order above, there is

a chance that someone could set up an account on docker.io/rhatdan, and trick you into

mistakenly pulling docker.io/rhatdan/myimage.

To help protect against this, on the first pull of an image Podman prompts you to select an

exact image from the list of found images in configured registries.

$ podman create -p 8080:8080 ubi8/httpd-24
? Please select an image:
 registry.fedoraproject.org/ubi8/httpd-24:latest
 ▸ registry.access.redhat.com/ubi8/httpd-24:latest
 docker.io/ubi8/httpd-24:latest
 quay.io/ubi8/httpd-24:latest

Once you have selected and pulled an image successfully, Podman records the shortname

mapping. In the future when you run a container with this short name, Podman uses the short

name mapping to pick the correct registry and does not prompt.

Linux distributions also ship mappings of the most commonly used short names as they

want you to pull from their supported registries. You can find these short name configuration

files in the /etc/containers/registries.conf.d directory on the Linux host. Companies can

also drop short name alias files in this directory.

$ cat /etc/containers/registries.conf.d/000-shortnames.conf
[aliases]
 # centos
 "centos" = "quay.io/centos/centos"
 # containers
 "skopeo" = "quay.io/skopeo/stable"
 "buildah" = "quay.io/buildah/stable"
 "podman" = "quay.io/podman/stable"
…

58

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

FAVORITE PODMAN PULL OPTIONS

• --arch tells Podman to pull an image for a different architecture. For example on my

x86_64 machine I can pull an arm64 image. By default podman pull pulls images for

the native architecture.

• --quiet (-q) tells Podman to not print out all of the progress information. It just

prints the image id, when it completes.

Use the man podman-pull command for information about all options.

I have mentioned a few images up til now in this book, but there are thousands and

thousands of images available. You need a mechanism to be able to search through these

images for the perfect match.

2.2.9 Searching for images

You might not know the name of a particular image that you want to run or use as a base for

your own image.

Podman provides a command podman search, which allows you to search container

registries, for matching names:

$ podman search registry.access.redhat.com/httpd
INDEX NAME DESCRIPTION

redhat.com registry.access.redhat.com/rhscl/httpd-24-rhel7 Apache HTTP 2.4
Server

redhat.com registry.access.redhat.com/ubi8/httpd-24 Platform for running
Apache httpd 2.4 or bui...

redhat.com registry.access.redhat.com/rhscl/varnish-6-rhel7 Varnish available as
container is a base pla...

…

In this example we are searching for images that include the string httpd in their name on

the repository registry.access.redhat.com.

FAVORITE PODMAN SEARCH OPTIONS

• --no-trunc tells Podman to show the full description of the image.

• --format allows you to customize which fields are displayed by Podman.

Use the man podman-search command for information about all options.

Up until now you have seen several ways of managing and manipulating container images,

including inspecting, pushing, pulling and searching for them. But you have only been able to

look at the contents of an image by running it as a container. One way to simplify the process

is to mount a container image.

2.2.10 Mounting images

Often you might want to examine the contents of a container image, and one way to do this is

to launch a shell inside of a running container from the image. The problem with this is that

the tools you use to examine the container image might not be available within the container.

There is also a security risk that the application in the container is malicious, making use of

this container undesirable.

59

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

To help with these problems, Podman provides the podman image mount command to

mount an image's root filesystem in a read-only mode without creating a container from it.

Mounted image becomes immediately available on the host system, allowing you to examine

its contents.

Let's try mounting the image we pulled previously:

$ podman mount quay.io/rhatdan/myimage
Error: cannot run command "podman mount" in rootless mode, must execute `podman unshare`

first

The reason for this error is that rootless mode does not allow mounting images. You need

to enter a user namespace and separate mount namespace. Chapter 5 explains how most

rootless Podman commands enter the user namespace and mount namespace when they

execute. For now, it is enough to know that the podman unshare command enters the user

and mount namespace and will shut down when you execute the exit command of your shell..

NOTE The name unshare comes from the Linux system call unshare. (man 2 unshare). Linux also includes an

unshare tool (man 1 unshare) which allows you to create namespaces by hand. Another low level tool called

nsenter, namespace enter (man 1 nsenter), allows you to join processes to different namespaces. Podman

unshare uses the same Kernel features. It simplifies the process of creating and configuring namespaces and

inserting processes into the namespaces.

The podman unshare command leaves you at a # prompt, where you can actually mount

an image:

$ podman unshare

Mount the image and save the location of the mounted file system in an environment

variable:
mnt=$(podman image mount quay.io/rhatdan/myimage)

Now you can actually examine the content of the image. Let's print the contents of a file

on the terminal:.

cat $mnt/var/www/html/index.html
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>

When you are done, unmount the image and exit the unshare session:

podman image unmount quay.io/rhatdan/myimage
exit

NOTE You have examined about a half of the podman image subcommands, arguably the most used ones.

Refer to the Podman man pages for full explanation of these and other subcommands of the podman image

command:

60

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ man podman-image

Now you have a better understanding of containers and images. The next important step

is updating your image. The main reasons for this are the need to update your application and

availability of new versions for the base image you use. You can build scripts to manually run

the commands to build the image, but luckily Podman optimized the experience.

2.3 Building images

So far you have been working with images, which were already created and uploaded to a

container registry. The process of creating a container image is called building.

When building container images, you manage not only your application, but also the image

content used by this application. In the days prior to containers, you shipped applications as

an RPM or DEB package, and then it was up to the distribution to make sure the other parts of

the OS were kept up to date and secure. But in the container world the container image

includes the application along with a subset of the OS. It is the developers responsibility to

keep all of the image contents up to date and secure.

A co-worker of mine, Scott McCarty(@fatherlinux), has a saying that

“container images don’t age like wine, but more like cheese.

As the image gets older it gets stinky.”

What it means is that if the developer doesn’t keep up with the security updates ,the

number of vulnerabilities in the image will grow at an alarming rate.

Luckily for developers, Podman has a special mechanism for helping you with image

building for your applications. The podman build command uses the

https://github.com/quay.io/buildah tool as a library to build container images, Buildah is

covered in appendix A.

The podman build uses a special text document called Containerfile or Dockerfile to

automate the building of container images. This document lists the commands in order you

would call on the command line to assemble an image.

NOTE The concept of a Dockerfile and its syntax, was originally created for the Docker tool, developed by

Docker, inc. Podman defaults to using Containerfile for the name, which uses the exact same syntax.

Dockerfile is supported as well for legacy purposes. The Docker build command does not support Containerfile

by default, but can use the Containerfile. You can specify the -f option. # docker build -f

Containerfile .

2.3.1 Format of a Containerfile/Dockerfile

Containerfiles take many directives, I break these down into two categories, adding content to

the container image and describing and documenting how to use the image.

ADDING CONTENT TO AN IMAGE

Recall back in section 1.1.2 that I described a container image as a directory on disk that looks

like root on a linux system. This directory is called a rootfs. Several of the directives in a

Container job is to add content to this rootfs. This rootfs eventually contains all of the content

used to create your container image.

61

https://livebook.manning.com/#!/book/podman-in-action/discussion
mailto:smccarty@redhat.com
https://github.com/quay.io/buildah

©Manning Publications Co. To comment go to liveBook

Every Containerfile must include a FROM line. The FROM line specifies the image that the

new image is based off of, often called a base image. The podman build command supports a

special image name `scratch` which means to start your image with no content. When

Podman sees the FROM scratch directive, it just allocates space in containers/storage for an

empty rootfs, then COPY can be used to populate the rootfs. More often the FROM directive uses

an existing image. For example FROM registry.access.redhat.com/ubi8, causes Podman

to pull the ubi8 image from the registry.access.redhat.com container registry and copy it

to container storage. This podman build pulls the image the same as the podman pull

command which you learned about in section 2.2.8. When the image is pulled Podman uses

container storage to mount the image on the rootfs directory, using a copy on write file system

like overlayfs, where the other directives can start to add content. This image becomes the

base layer of the rootfs.

The COPY directive is often used to copy files, directories or tar balls off of the local host

into the newly created rootfs.

The RUN directive is one of the most commonly used Containerfile directives. RUN tells

Podman to actually run a container on the image. Package management tools like dnf/yum

and apt-get are run to install packages from distributions onto your new image. The RUN

directive runs any command within the container image as a container. The podman build

command runs the commands with the same security constraints as the podman run command.

As an example, imagine you want to add the ps command to a container image. Create a

directive like the following. The RUN command executes a container which updates all of the

packages from the base image, then installs the procps-ns package, which includes the ps

command. Finally the containerized command executes yum to clean up after itself, so cruft is

removed from the container image.

RUN yum -y update; yum -y install procps-ng; yum -y clean all

Adding content to the container image is only half of what you need to do when creating a

container image, you also need to describe and document how the image will be used when

other users download and run your image.

DOCUMENTING HOW TO USE THE IMAGE

Recall back in section 1.1.2 I also described the JSON file that included the image specification,

this specification describes how the container image is to be run, the command, which user to

run it with and other requirements of the image. The Containerfile also supports many

directives which tells Podman how to run containers, these include:

The ENTRYPOINT and CMD directives instrument the image with the default command to be

executed when users execute the image with Podman run. CMD is the actual command to run,

ENTRYPOINT can cause the entire image to execute as a single command.

The ENV directive sets up the default environment variables to run when podman runs a

container on the image.

The EXPOSE directive records the network ports for podman to expose in containers based

on the image. If you execute podman run --publish-all …, Podman looks inside of the image

for the EXPOSE network ports and connects them to the host.

62

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 2.5 explains the directives used in a Containerfile to add content to a container image.

Table 2.6 Containerfile directives that update the image

Directive Examples Explanation

FROM quay.io/rhatdan/myimage Sets the base image for subsequent instructions. Containerfiles

must have FROM as its first instruction. The FROM may appear

multiple times within a single Containerfile in order to create

multiple build stages.

ADD start.sh /usr/bin/start.sh Copies new files, directories or remote file URLs to the

filesystem of the container at a specified path.

COPY start.sh /usr/bin/start.sh Copies files to the filesystem of the container at a specified

path.

RUN dnf -y update Executes commands in a new layer on top of the current image

and commits the results. The committed image is used for the

next step in the Containerfile.

VOLUME /var/lib/mydata Creates a mount point with the specified name and marks it as

holding externally-mounted volumes from the native host or

from other containers. For more on volumes, check Chapter 3.

Table 2.6 explains the directives used in a Containerfile to populate the OCI Runtime

specifications with information that tells container engines like Podman information about the

image how to run the image.

63

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 2.7 Containerfile directives that define the OCI Runtime Specification

Directive Examples Explanation

CMD /usr/bin/start.sh Specifies the default command to run when launching a container off this

image. If CMD is not specified the parent image’s CMD is inherited. Note: RUN

and CMD are very different. RUN runs the commands during the build process,

while CMD is only used when a user launches the image without specifying a

command.

ENTRYPOINT “/bin/sh -c”

Allows you to configure a container to run as an executable. The ENTRYPOINT

instruction is not overwritten when arguments are passed to podman run. This

allows arguments to be passed to the entrypoint, for instance, podman run

<image> -d passes the -d argument to the ENTRYPOINT.

ENV foo=”bar” Adds an environment variable to be used during both the image build and

container execution.

EXPOSE 8080 Announces the port that containerized applications will be exposing. Does not

actually map or open any ports.

LABEL Description=”Web

browser which displays

Hello World”

Adds metadata to an image.

MAINTAINER Daniel Walsh Sets the Author field for the generated images.

STOPSIGNAL SIGTERM Sets the default stop signal sent to the container to exit. The signal can be a

valid unsigned number or a signal name in the format SIGNAME.

USER apache Sets the user name (or UID) and group name (or GID) to use for any of RUN,

CMD and ENTRYPOINT specified after it.

ONBUILD Adds a trigger instruction to the image to be executed at a later time, when

the image is used as the base for another build.

WORKDIR /var/www/html Sets the working directory for any following RUN, CMD, ENTRYPOINT and COPY

directives. Directory will be created if it doesn't exist.

There is much more information on Containerfiles in the containerfile(5) man page.

64

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

COMMITTING THE IMAGE

When podman build completes processing of the Containerfile, it commits the image. This is

using the same code as podman commit which you learned about in section 2.1.9. Basically

Podman TARs up all of the differences between the new content in the rootfs and the base

image, pulled down by the FROM directive. Podman also commits the JSON file and saves this

as an image in container storage.

TIP Use the --tag option to name the new image that you are creating with podman build. This

tells Podman to add the specified tag or name to the image in container storage in the same way as the

podman tag command.

Now you want to take the steps used to build out containerized applications and automate

them using a Containerfile and Podman build.

2.3.2 Automating the building of our application

First you create a directory to put your Containerfile in and any other content for the container

image. The directory is called a context directory.

mkdir myapp

Next you create the index.html file you plan to use in the containerized application in the

myapp directory.

$ cat > myapp/index.html << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
_EOF
Next you create a simple Containerfile to build your application in the myapp directory.

The first line of the Containerfile is the FROM directive to pull the ubi8/httpd-24
image that you are treating as your base image. Then you add a COPY command to copy
the index.html file into the image. The COPY directive tells Podman to copy the
index.html file out of the context directory (./myapp) and copy it to the
/var/www/htmll/index.html file within the image.

$ cat > myapp/Containerfile << _EOF
FROM ubi8/httpd-24
COPY index.html /var/www/html/index.html
_EOF

Finally, you use podman build to build my containerized application. You specify the --tag

(-t) to name the image quay.io/rhatdan/myimage. You also need to specify the context

directory ./myapp.

65

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman build -t quay.io/rhatdan/myimage ./myapp
STEP 1/2: FROM ubi8/httpd-24
STEP 2/2: COPY index.html /var/www/html/index.html
COMMIT quay.io/rhatdan/myimage
--> f81b8ace4f1
Successfully tagged quay.io/rhatdan/myimage:latest
F81b8ace4f134d08cedb20a9156ae727444ae4d4ec1ceb3b12d3aff23d18128b

When the podman build command completes it commits the image and tags (-t) it with

the quay.io/rhatdan/myimage name. Which is now ready to be pushed to the container registry

using the podman push command.

Now you can set up a CI/CD system or even a simple cron job to regularly build and replace

myapplication:

$ cat > myapp/automate.sh << _EOF
#!/bin/bash
podman build -t quay.io/rhatdan/myimage ./myapp
podman push quay.io/rhatdan/myimage
_EOF
$ chmod +x myapp/automate.sh

Add some test scripts as well to make sure your application works the way it was designed,

before replacing the previous version.

Let’s take a look at the images that were built:
$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage latest f81b8ace4f13 2 minutes ago 462 MB
<none> <none> 2c7e43d88038 2 days ago 462 MB
registry.access.redhat.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB

Notice the old version of quay.io/rhatdan/myimage, IMAGE ID 2c7e43d88038, still exists

in container storage but now has a REPOSITORY and TAG of <none> <none>. Images like

these are called dangling images. Since I have created a new version of

quay.io/rhatdan/myimage with the podman build command, the previous image loses that

name. You can still use the Podman commands with the image id, or if the new image doesn’t

work, simply use podman tag to rename the old image back to quay.io/rhatdan/myimage. If

the new image works correctly then you can remove the old image with podman rmi. These

<none><none> images tend to build up over time wasting space, but you can periodically use

the podman image prune command to remove them.

The podman build could really use a chapter or even a book to itself. People build images

in thousands of different ways using the commands briefly described above.

FAVORITE PODMAN BUILD OPTION

• --tag specifies the image tag or name for the image. Remember that you can always

add additional names after you create the image with the podman tag command you

used in section 2.2.6.

Use the man podman-build command for information about all options.

66

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 2.8 Podman image commands.

Command Man Page Description

build podman-image-build(1) Build an image using instructions from Containerfiles

diff podman-image-diff(1) Inspect changes in image’s file system

exists podman-image-exists(1) Check if a image exists

history podman-image-history(1) Show history of a specified image

import podman-image-import(1) Import a tarball to create a filesystem image

inspect podman-image-inspect(1) Display the configuration of an image

list podman-image-list(1) List all of the images

load podman-image-load(1) Load image(s) from a tarball

mount podman-image-mount(1) Mount an image’s root filesystem

prune podman-image-prune(1) Remove unused images

pull podman-image-pull(1) Pull an image from a registry

push podman-image-push(1) Push an image to a registry

rm podman-image-rm(1) Remove an image

save podman-image-save(1) Save image(s) to an archive

scp podman-image-scp(1) Securely copy images to other containers/storage

search podman-image-search(1) Search registry from an image

sign podman-image-sign(1) Sign an image

tag podman-image-tag(1) Add an additional name to a local image

tree podman-image-tree(1) Prints layer hierarchy of an image in a tree format

trust podman-image-trust(1) Manage container image trust policy

unmount podman-image-unmount(1) Unmount a image's root filesystem

untag podman-image-untag(1) Remove a name from a local image

2.4 Summary

• Podman’s simple command line interface makes working with containers easy

• Podman run, stop, start, ps, inspect, rm, and commit are all commands for working

with containers

• Podman pull, push, login, rmi are tools for working with images and sharing them via

container registries

• Podman build is a great command for automating the build of container images

• Podman’s command line is based on the Docker CLI and supports them exactly, allowing

us to tell people to just alias docker=podman

• Podman has additional commands and options to support more advanced concepts like

podman image mount

67

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

3
Volumes

This chapter covers

• Using volumes to isolate data from the containerized application.

• Sharing content from your host into containers via volumes

• Using volumes with the user namespace and SELinux

• Embedding volumes into container images

• Exploring different types of volumes and the volumeman volume commands

Up until now the containers you have been working with include all of their content within the

container image. As I described in chapter 1, the only thing required to be shared with

traditional containers is the Linux kernel. There are several reasons why you need to isolate

application data from the application, including the following:

• Avoid embedding actual data for applications such as databases.

• Use the same container image to run multiple different environments.

• Reduce overhead and improve storage read/write performance, since volumes write

directly to the file system, while containers use the overlay or fuse-overlayfs file system

to mount their layers. Overlay is a layered file system, meaning that the kernel needs

to copy the previous layer entirely in order to create a new layer. And fuse-overlay

switches each read and write from kernel space to user space and back. All of this

creates quite an overhead.

• Share content available via network storage.

NOTE Bind mounts remount parts of the file hierarchy in a different location on the file system. The

files and directories in the bind mount are the same as the original. Bind mounts are explained in the man

mount command. A bind mount allows the same content to be accessible in two places, without any

additional overhead. It is important to understand that "bind" does not copy the data or create new data.

68

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Supporting volumes also adds complexity, especially around security. A lot of the security

features of containers prevent the container processes from gaining access to the file system

outside of the container image. In this chapter you will discover the ways that Podman allows

you to work around these obstacles.

3.1 Using volumes with containers

Let’s go back to your containerized application. Up until now you have simply embedded the

web application data into your container file system directly. Recall in chapter 2 (section 2.1.8),

you used the podman exec command to modify the “Hello World” index.html data within the

container:

$ podman exec -i myapp bash -c 'cat > /var/www/html/index.html' << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
_EOF

You have made the containerized image more flexible by allowing users to supply their own

content for the web service or perhaps to update the web service on the fly. At the same time,

while this method is possible, it is error-prone and not scalable. It is where volumes come in

handy.

Podman allows you to mount host file system content into containers using the podman run

command via the --volume (-v) option.

The --volume HOST-DIR:CONTAINER-DIR option tells Podman to bind mount HOST-DIR in

the host to CONTAINER-DIR in the container. Podman supports other kinds of volumes as well,

but in this section I am going to focus on bind mount volumes.

It is possible to mount both files or directories in a single option. Changes of the content

on the host will be seen inside the container. Similarly, if container processes change the

content inside the container, then the changes are seen on the host.

Let’s look at an example. Create a directory, “html,” in your home directory and then create

a new html/index.html file in it:

$ mkdir html
$ cat > html/index.html << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Goodbye World</h1>
 </body>
</html>
_EOF

Now launch a container with the option -v ./html:/var/www/html:

69

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman run -d -v ./html:/var/www/html:ro,z -p 8080:8080 quay.io/rhatdan/myimage
94c21a3d8fda740857abc571469aaaa181f4db27a464ceb6743c4a37fb875772

Now, notice extra fields :ro,z in the --volume option. The ro option tells Podman to mount

the volume in read-only mode. The read only mount means processes within the container

cannot modify any content under /var/www/html, While processes on the host are still able to

modify the content. Podman defaults all volume mounts to read-write mode. The z option tells

Podman to re-label the content to a shared label for use by SELinux, more on this in section

3.1.2.2

Now that you have launched the container, open a web browser and navigate to

localhost:8080 to make sure the changes have taken place.

$ web-browser localhost:8080

Figure 3.1 Web browser window connecting to the myimage Podman container with volume mounted

Goodbye World HTML.

Now you can shut down and remove the container you just created. Removing the container

does not affect the content at all. The following command removes the latest (--latest)

container, yours. The --force option tells Podman to stop the container and then remove it.

$ podman rm --latest --force

Finally, remove the content with this command:

$ rm -rf html

NOTE The --latest option is not available on MAC and Windows. You must specify the container name

or ID. Remote mode will be explained in chapter 9. Podman on MAC And Windows is explained in appendix E

and F.

3.1.1 Named volumes

In the first volume example, you created a directory on disk and then mounted it into the

container. Similarly, you can take any existing file or directory and mount it into a container,

as long as you have read access to it.

Another mechanism for persisting Podman containers data is named volume. You can

create one of these with the podman volume create command. In the following example you

create a volume named webdata:

70

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman volume create webdata
webdata

Podman defaults to create local named volumes, with storage allocated in the container

storage directories. You can inspect the volume and look for its mount point using the following

command:

$ podman volume inspect webdata
[
 {
 "Name": "webdata",
 "Driver": "local",
 "Mountpoint": "/home/dwalsh/.local/share/containers/storage/volumes/webdata/_data",
 "CreatedAt": "2021-10-11T14:10:48.741367132-04:00",
 "Labels": {},
 "Scope": "local",
 "Options": {}
 }
]

Podman actually creates a directory in your local container storage,

/home/dwalsh/.local/share/containers/storage/volumes/webdata/_data, to store

the content of the volume. You can create content from the host in this directory.

$ cat > /home/dwalsh/.local/share/containers/storage/volumes/webdata/_data/index.html <<
_EOL

<html>
 <head>
 </head>
 <body>
 <h1>Goodbye World</h1>
 </body>
</html>
_EOL

Now you can run the myimage application using this volume.

$ podman run -d -v webdata:/var/www/html:ro,z -p 8080:8080 quay.io/rhatdan/myimage
0c8eb612831f8fe22438d73d801e5bb664ec3b1d524c5c10759ee0049061cb6b

Now refresh the web browser to ensure the file created in the host directory is displaying

"Goodby World".

Figure 3.2 Web browser window connecting to the myimage Podman container with the named volume

mounted.

71

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Named volumes can be used for more than one container at a time. And they will stay

around even after the container is removed.

If you are done with the named volume and container, you can first stop the container

without waiting for the processes to finish:

$ podman stop -t 0 0c8eb61283

Then remove the volume with the podman volume rm command. Note the --force option

which tells Podman to remove the volume and all containers that rely on the volume:

$ podman volume rm --force webdata

Now you can make sure the volume is gone by executing the volume list command.

$ podman volume list

If a named volume doesn't exist prior to executing the podman run command, it will be

created automatically. In the following example you specify webdata1 for the name of the

named volume, then list the volumes:

$ podman run -d -v webdata1:/var/www/html:ro,z -p 8080:8080 quay.io/rhatdan/myimage
58ccaf37958496322e34cd933cd4dd5a61ab06c5ba678beb28fdc29cfb81f407
$ podman volume list
DRIVER VOLUME NAME
local webdata1

Of course, this volume is empty. Remove the webdata1 volume and container:

$ podman volume rm --force webdata1

Podman also supports other types of volumes. It uses the concept of volume plugins so

third-parties can provide volumes; check out the podman-volume-create man pages for more

information.

Podman has other interesting volume features. The podman volume export command

exports all of the content of a volume into an external tar archive. This archive can be copied

to other machines used to recreate the volume on another machine with the podman volume

import command.

Now that you understand the handling of volumes, it is time to dig deeper into volume

options.

3.1.2 Volume mount options

You have been using volume mount options throughout this chapter. The ro option tells

Podman to mount the volume read-only and the lowercase z option tells Podman to re-label

the content in a way that multiple containers can read and write it.

$ podman run -d -v ./html:/var/www/html:ro,z -p 8080:8080 quay.io/rhatdan/myimage

Podman supports some other interesting volume options.

72

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

THE U VOLUME OPTION

Sometimes when you run a rootless container, you need a volume to be owned by the user of

the container. Imagine if your application needed to allow the webserver to write to the

volume. In your container, Apache Web Server process (httpd) runs by user apache

(UID==60). The html directory in your home directory is owned by you, so it is owned by root

inside the container. The kernel does not allow a process running as UID==60 inside the

container to make changes to a directory owned by root. You need to set the ownership of the

volume to UID==60.

In rootless containers the UIDs of the container are actually offset by the user namespace.

My user namespace mapping looks like this:

$ podman unshare cat /proc/self/uid_map
 0 3267 1
 1 100000 65536

The UID==0 inside the container is actually my UID 3267, and UID 1==100000, UID

2==100001… UID60==100059, meaning I need to set the ownership of the html directory to

100059.

I can do this fairly simply. With the podman unshare command, as follows:

$ podman unshare chown 60:60 ./html

Now everything works. One problem with this is that I need to do some mental gymnastics

in order to figure out which UID the container will run with.

Many container images exist with the default UID defined in them. The mariadb image is

another example of this, it runs with the mysql user, UID=999.

$ podman run docker.io/mariadb grep mysql /etc/passwd
mysql:x:999:999::/home/mysql:/bin/sh

If you created a volume to be used for the database, you need to figure out what UID=999

mapped to within the user namespace. On my system this is UID=100998.

Podman supplies the U command option for just this exact situation. The U option tells

Podman to recursively change ownership (chown) the source volume to match the default UID

that the container executes with.

Try it out by first creating the directory for the database. Notice the directory in the home

directory is owned by your user.

$ mkdir mariadb
$ ls -ld mariadb/
drwxrwxr-x. 1 dwalsh dwalsh 0 Oct 23 06:55 mariadb/

Now run the mariadb container with the --user mysql and bind mount the ./mariadb

directory to /var/lib/mariadb with the :U option. Notice that the directory is now owned by

the mysql user:

$ podman run --user mysql -v ./mariadb:/var/lib/mariadb:U docker.io/mariadb ls -ld
/var/lib/mariadb

drwxrwxr-x. 1 mysql mysql 0 Oct 23 10:55 /var/lib/mariadb

73

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

If you look at the mariadb directory on the host again, you will see that it is now owned by

UID 100998, Or whatever UID 999 maps to within your user namespace.

$ ls -ld mariadb/
drwxrwxr-x. 1 100998 100998 0 Oct 23 06:55 mariadb/

User namespace is not the only security mechanism you need to work around with rootless

containers. SElinux, while great for container security, can cause some problems when working

with volumes.

THE SELINUX VOLUME OPTIONS

In my opinion SELinux is the best mechanism for protecting the file system from hostile

container processes. Over the years, several container escapes have been thwarted by

SELinux. SElinux is covered in detail in chapter 10, Section 10.8.

As I explained previously, volumes leak files from the OS into the container, and from an

SELinux point of view these files and directories must be labeled correctly, or the kernel blocks

access.

The lowercase z command option that you have been using in this chapter tells Podman to

recursively re-label all content in the source directory with a label that can be read and written

by all containers from an SELinux point of view.

If the volume is not going to be used by more than one container, re-labeling with the

lowercase z option isn’t what you want. If a different hostile container escapes confinement,

it might be able to get access to this data and read-write it. Podman provides an uppercase Z

option that tells Podman to recursively relabel the content in such a way that only the processes

within the container are able to read-write the content.

In both previous cases you re-labeled the content of the directory. Relabeling works great

as long as the directory is specified for use by containers. Sometimes you might want to use

a container to examine content in a system-specific directory. Say you wanted to run a

container that examined all of the logs in /var/log or examined all of your home directories

/home/dwalsh.

NOTE Using this option on a home directory can have disastrous effects on the system, because it

recursively re-labels all content in the in directory as if the data was private to a container. Other confined

domains would be prevented from using the mislabeled data.

For these cases, you need to disable SElinux enforcement for container separation to allow

the containers to use the volume. Podman provides the command option, --security-opt

label=disable, to disable SELinux support for a single container, basically running the

container with an “unconfined” label from an SELinux perspective.

$ podman run --security-opt label=disable -v /home/dwalsh:/home/dwalsh -p 8080:8080
quay.io/rhatdan/myimage

Table 3.1 lists and describes all of the mount options available in Podman.

74

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 3.1 Volume mount options

Volume option Description

nodev Prevent container processes from using character or block devices on the volume.

noexec Prevent container processes from direct execution of any binaries on the volume.

nosuid Prevent SUID applications from changing their privilege on the volume.

O Mount the directory from the host as a temporary storage using the overlay file

system. Modifications to the mount point are destroyed when the container finishes

executing. This option is useful for sharing the package cache from the host into the

container to allow speeding up builds.

[r]shared|

[r]slave|

[r]private|

[r]unbindable

Specify mount propagation mode. Mount propagation controls how changes to

mounts are propagated across mount boundaries.

private (default) - any mounts done inside container will not be visible on host and

vice versa

shared - mounts done under that volume inside container will be visible on host and

vice versa.

slave - mounts done on host under that volume will be visible inside container but not

the other way around.

unbindable -is an unbindable version of private mode.

Prefix r stands for recursive. Meaning that any mounts underneath the mount point

will also be treated the same way.

rw|ro Mount a volume in read-only (ro) or read-write (rw) mode. By default, read-write is

implied.

U Use the correct host UID and GID based on the UID and GID within the container.

Use with caution because this will modify the host filesystem.

z|Z Relabel file objects on the shared volumes. Choose the z option to label volume

content as shared among multiple containers. Choose the Z option to label content

as unshared and private.

For more information, see man pages for mount and mount_namespaces(7).

Most of the time the simple --volume option is powerful enough for mounting volumes into

containers. Over time the requests for new mount options grew too complex, so a new option

called --mount was added.

75

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

3.1.3 podman run --mount command option

The podman run --mount option is a much closer option to the underlying Linux mount

command. It allows you to specify all of the mount options that the mount command

understands; Podman passes them down directly to the kernel.

The only mount types currently supported are bind, volume, image, tmpfs, and devpts.

(For more information, see the podman-mount(1) man page for more information.)

Volumes and Mounts are excellent ways to keep data separate from the container image.

In most cases the Container image should be treated as read-only, and any data that needs

to be written or is not specific to the application should be stored outside of the container

image via volumes. In a lot of cases you will get much better performance keeping your data

separate, because read and writes will not have the overhead of the copy-on-write file system.

These mounts also make it easier to use the same container images with different data.

Table 3.2 Podman volume commands.

Command Man Page Description

create podman-volume-create(1) Create a new volume

exists podman-volume-exists(1) Check if a volume exists

export podman-volume-export(1) Export the contents of a volume into a tar ball

import podman-volume-import(1) Untar a tarball into a volume

inspect podman-volume-inspect(1) Display detailed information on a volume

list podman-volume-list(1) List all of the volumes

prune podman-volume-prune(1) Remove all unused volumes

rm podman-volume-rm(1) Remove one or more volumes

3.2 Summary

• Volumes are useful for separating the data used by a container from the application

inside an image

• Volumes mount parts of the file system into a container's environment, which means

security concerns like SELinux and user namespace need to be modified to allow access

76

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

4
Pods

This chapter covers

• An introduction to pods

• Managing multiple containers within a Pod

• Using Volumes with Pods

Podman stands for Pod Manager. Pod is a concept popularized by the Kubernetes project, It is

a group of one or more containers working together for a common purpose and sharing the

same namespaces and cgroups (resource constraints). Additionally, Podman ensures that on

SELinux machines all container processes within a pod share the same SELinux labels, this

means that they can all work together from an SELinux point of view.

4.1 Running Pods

Podman pods, just like Kubernetes pods, always include a container called the infra container,

sometimes called the pause container (not to be confused with the rootless pause container,

mentioned in section 5.2). The infra container only holds open the namespaces and cgroups

from the kernel, allowing containers to come and go within the pod. When Podman adds a

container to a pod, it adds the container process to the cgroups and namespaces. Notice that

the infra container has a container monitor process conmon monitoring it. Every container

within a pod has its own conmon.

Conmon is a lightweight C program that monitors the container until it exits, allowing the

Podman executable to exit and reconnect to the container.

Conmon does the following when monitoring the container:

77

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

1. Conmon executes the OCI runtime, handing it the path to the OCI spec file as well as

pointing to the container layer mount point in containers/storage. The mount point is

called the rootfs.

2. Conmon monitors the container until it exits and reports its exit code back.

3. Conmon handles when the user attaches to the container, providing a socket to

stream the container’s STDOUT and STDERR.

4. The STDOUT and STDERR are also logged to a file for podman logs.

Figure 4.1 Podman pod launches conmon with the infra container, which will hold cgroups and linux

namespaces.

NOTE The infra container (pause container) is similar to the rootless pause container while its only purpose is

to hold open the namespaces and cgroups while containers come and go. But each Pod will have a different

infra container.

Podman pods also support init containers. These containers run before the primary

containers in the pods are executed. An example of an init container might be a database

initialization on a volume; then the primary container can use the database. Podman supports

the following two classes of init containers:

• Once: Only runs the first time the pod is created

• Always: Runs every time the pod is started.

78

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.2 Podman next launches any init containers with conmon. The init containers examine the infra

container and join its cgroups and namespaces.

The Primary container runs the application.

79

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.3 Podman waits until the init containers complete before launching the primary containers with their

conmon into the pod.

Pods also support additional containers, these are often called sidecar containers. Sidecar

containers often monitor the primary container, or modify the environment where the primary

container runs.

The Kubernetes documentation, https://kubernetes.io/docs/concepts/workloads/pods,

describes pods with sidecar containers as:

A Pod can encapsulate an application composed of multiple co-located containers that are tightly

coupled and need to share resources. These co-located containers form a single cohesive unit of

service—for example, one container serving data stored in a shared volume to the public, while a

separate sidecar container refreshes or updates those files. The Pod wraps these containers, storage

resources, and an ephemeral network identity together as a single unit.

If you want to dive deeper into sidecar containers there are good articles at this website

https://www.magalix.com/blog/the-sidecar-pattern.

80

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://kubernetes.io/docs/concepts/workloads/pods/

©Manning Publications Co. To comment go to liveBook

Figure 4.4 Podman can launch additional containers called sidecar containers.

NOTE While pods can support more than one sidecar container, I recommend that you only use one. There is

a real temptation for people to abuse this capability especially in Kubernetes. But it can use up more resources

and become unwieldy.

A big advantage of pods is that you can manage them as discrete units. Starting a pod

starts all of the containers within it, and stopping the pod stops all of the containers.

4.1.1 Creating a pod

In this section, you are going to create a pod where you have the myimage application as the

primary container within the pod. You will also add a second container to the pod, a sidecar

container which will update the web content that is used by your application, to show two

containers working together within a pod.

You can create a pod named mypod using the podman pod create command, as

demonstrated in the following command:

$ podman pod create -p 8080:8080 --name mypod --volume ./html:/var/www/html:z
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

81

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

The podman pod create command has many of the same options as the podman container

create command. When you create a container within a Pod, the container inherits these

options as their default.

Notice that similar to the previous examples, you are binding the pod to port -p

8080:8080.

$ podman pod create -p 8080:8080 --name mypod --volume ./html:/var/www/html:z

Because the containers within the pod share the same network namespace, this port

binding is shared by all of the containers. The kernel allows only one process to listen on port

8080. Lastly, notice that the directory ./html was volume mounted, --volume

./html:/var/www/html:z, into the pod.

$ podman pod create -p 8080:8080 --name mypod --volume ./html:/var/www/html:z

The :z parameter causes Podman to relabel the content of the directory. Podman will

automatically volume mount this directory into every container that joins the pod. Containers

in Pods share the same SELinux label, which means they can share the same volumes.

Figure 4.5 Podman creates network namespace and binds port 8080 within container to port 8080 on the

host, using slirp4netns. Podman creates the infra container with the /var/www/html directory from the host

into the container, and joins the cgroups and network namespace.

82

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

4.1.2 Adding a container to a pod

You can create a container within a pod using the podman create command. You add the

quay.io/rhatdan/myimage container to the pod with the --pod mypod option.

$ podman create --pod mypod --name myapp quay.io/rhatdan/myimage
Cec045acb1c2be4a6e4e88e21275076fb1de5519a25fb5a55f192da70708a640

Figure 4.6 because the pod does not have any init containers, the first container myapp is launched into the

pod.

When you add the first container to the pod, Podman reads the information associated with

the infra container and adds the volume mount to the myapp container and then joins it to the

namespaces held by the infra container.

The next step you will add the sidecar container to the pod. The sidecar container will be

updating the index.html file in the /var/www/html volume, adding a new time stamp every

second.

Create a simple bash script to update the index.html used by the myapp container called

html/time.sh. You can create it in the ./html directory so that it will be available to processes

within the pod.

83

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ cat > html/time.sh << _EOL
#!/bin/sh
data() {
 echo "<html><head></head><body><h1>"; date;echo "Hello World</h1></body></html>"
 sleep 1
}
while true; do
 data > index.html
done
_EOL

Make sure that it is executable. You can do this on Linux with the chmod command.

$ chmod +x html/time.sh

Now create the second container named time (--name time), this time using a different

image, ubi8. Containers within pods can use totally different images, even images from

different distributions. Recall that container images only share the host kernel by default.

$ podman create --pod mypod --name time --workdir /var/www/html ubi8 ./time.sh
Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/000-shortnames.conf)
Trying to pull registry.access.redhat.com/ubi8:latest…
…
1be0b2fae53029d518e75def71c0d6961b662d0e8b4a1082edea5589d1353af3

Remember the concept of short names was covered in chapter 2. You can type the long

name, registry.access.redhat.com/ubi8, but that is a lot of typing. Luckily for us, the short

name ubi8 already had an alias map to its long name, meaning you do not need to select it

from the list of registries. Podman shows you where it found the alias for the long name in the

output.

$ podman create --pod mypod --name time --workdir /var/www/html ubi8 ./time.sh
Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/000-shortnames.conf)

You also used the --workdir command option to set the default directory for the container

to /var/www/html. When the container starts, the ./time.sh it will run in the workdir and is

actually /var/www/html/time.sh.

$ podman create --pod mypod --name time --workdir /var/www/html ubi8 ./time.sh

Because this container is going to be run within the mypod pod, it will inherit the -v

./html:/var/www/html option from the pod, meaning the ./html/time.sh command in the

host directory is available to every container within the pod.

84

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.7 Finally Podman launches the sidecar container named time.

Podman examines the infra container and mounts the /var/www/html volume and joins the

namespaces, when it launches the sidecar container.

Now it is time to start the pod, and see what happens.

4.1.3 Starting a pod

You can start the pod with the podman pod start command.

$ podman pod start mypod
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

Use the podman ps command to see which containers the pod started.

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
b9536ea4a8ab localhost/podman-pause:4.0.3-1648837314 14 minutes ago Up

5 seconds ago 0.0.0.0:8080->8080/tcp 8920b1ccd8b0-infra
a978e0005273 quay.io/rhatdan/myimage:latest /usr/bin/run-http... 14 minutes ago

Up 5 seconds ago 0.0.0.0:8080->8080/tcp myapp
be86937986e9 registry.access.redhat.com/ubi8:latest ./time.sh 13 minutes

ago Up 5 seconds ago 0.0.0.0:8080->8080/tcp time

85

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Notice now that three containers have started. The infra container is based on the

k8s.gcr.io/pause image, our application based on quay.io/rhatdan/myimage:latest , and the

update container based on the registry.access.redhat.com/ubi8:latest image.

When the ubi8 sidecar container starts it begins modifying the index.html via the time.sh

script. Since the myapp container shares the volume mount /var/www/html it can see the

changes in /var/www/html/index.html file.

Launch your favorite web browser and navigate to http://localhost:8080 to verify the

application is working.

Figure 4.8 The web-browser communicates with myapp running in a pod.

A couple of seconds later hit the refresh button.

Figure 4.9 The web-browser shows that the content in myapp has been changed by the second container

running in the pod.

Notice the date changes, indicating that the sidecar container is running and updating the

data used by the myapp web server running within the primary container.

FAVORITE PODMAN POD START OPTIONS

• --all tells Podman to start all pods.

• --latest, -l tells Podman to start the last pod created. (Not available on MAC and

Windows)

Now that you demonstrated the application running within a pod, you might want to stop

the application.

86

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

4.1.4 Stopping a pod

Now that you see the application ran successfully, you can stop the pod with the podman pod

stop command, as follows:

$ podman pod stop mypod
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

Use the podman ps command to make sure that Podman stopped all of the containers within the

pod.
$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

FAVORITE PODMAN POD STOP OPTIONS

• --all tells Podman to stop all pods.

• --latest, -l tells Podman to stop the latest started pod.

• --timeout, -t tells Podman to set the timeout when attempting to stop the containers

within a pod.

Now that you have created, run, and stopped the pod, let's start to examine it. First you

can list all of the pods on your system.

4.1.5 Listing pods

You can list Pods with the podman pod list command:

$ podman pod list
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
790fefe97b28 mypod Exited 22 minutes ago b9536ea4a8ab 3

FAVORITE PODMAN POD LIST OPTIONS

• --ctr* tells Podman to list container information within pods.

• --format tells podman to change the output of pods.

Now that you are done with the demonstration time to cleanup the pods and containers.

4.1.6 Removing pods

In a later chapter, I will show you how you can generate Kubernetes YAML files to allow you

to launch your pod on other systems using Podman or within Kubernetes. But for now, you can

remove a pod with the podman pod rm command.

Before you do this, list --all the containers on the system. Using the --format option to

show only the ID, Image and Pod ID, you will see three containers that make up your pod.

$ podman ps --all --format "{{.ID}} {{.Image}} {{.Pod}}"
b9536ea4a8ab k8s.gcr.io/pause:3.5 790fefe97b28
a978e0005273 quay.io/rhatdan/myimage:latest 790fefe97b28
be86937986e9 registry.access.redhat.com/ubi8:latest 790fefe97b28

Now you can remove the pod with the following command:

$ podman pod rm mypod
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

87

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Make sure it is gone:.

$ podman pod ls
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS

Good, it looks like your pod is gone. Verify that Podman removed all of the containers by

running the following command to verify:

$ podman ps -a --format "{{.ID}} {{.Image}}"

The system is fully cleaned up.

FAVORITE PODMAN POD RM OPTIONS

• --all tells Podman to remove all the pods.

• --force tells Podman to first stop all running containers before attempting to remove

them. Otherwise Podman will only remove non running pods.

88

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 4.1 Podman pod commands.

Command Man Page Description

create podman-pod-create(1) Create a new pod

exists podman-pod-exists(1) Check if a pod exists

inspect podman-pod-inspect(1) Display detailed information on a pod

kill podman-pod-kill(1) Send a signal to containers in pod

list podman-pod-list(1) List all of the pods

logs podman-pod-logs(1) Fetch logs for pod with one or more containers

pause podman-pod-pause(1) Pause all the containers in a pod

prune podman-pod-prune(1) Remove all stopped pods and their containers

restart podman-pod-restart(1) Restart a pod

rm podman-pod-rm(1) Remove one or more pods

stats podman-pod-stats(1) Display statistics for the containers in a pods

start podman-pod-start(1) Start a pod

stop podman-pod-stop(1) Stop a pod

top podman-pod-top(1) Display running process in the pod

unpause podman-pod-unpause(1) Unpause all the containers in a pod

4.2 Summary

• Pods are a way to group containers together into more complex applications, sharing

namespace and resource constraints

• Pods share most of the options that containers use and when you add a container to a

Pod, it shares these options with all containers in the Pod

89

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

5
Customization and configuration

files

This chapter covers

• Using Podman configuration files based on libraries used

• Configuring storage.conf file

• Using registries.conf and policy.json files for configuration

• Using containers.conf file to configure other defaults

• Using system configuration files to allow non-root users namespace access

Container engines like Podman have dozens of hard-coded defaults built into them. These

defaults determine many aspects of the functional and non-functional behavior of Podman,

such as network and security settings. Podman developers try to pick the maximum amount

of security but still allow most containers to run successfully. Similarly I want as much isolation

from the host as possible.

The security defaults include which Linux capabilities to use, which SELinux labels to set,

the set of syscalls available to the containers. There are defaults for resource constraints like

memory usage and maximum processes allowed within a container. Other defaults include

local path for storing images, list of container registries, and even system configuration to

allow rootless mode to work. The Podman developers wanted to allow users to have ultimate

control over these defaults, so the container engine configuration files provide a mechanism

to customize the way Podman and other container engines run.

The problem with defaults is that these are best-guess estimates from developers. While

most users run Podman in default configuration, sometimes there is a need to change the

configuration. Every environment does not have the same configuration, and you might want

to default certain machines to different levels of security, different registry configurations.

Even rootless users might need different configurations than rootful users.

90

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

In this chapter, I show you how to customize different parts of Podman and explain where

to find more information about all of the different knobs available to you.

As you have learned in previous chapters, Podman uses multiple libraries to perform

different tasks when working with containers. Table 5.1 describes the different libraries that

Podman uses.

Table 5.1 Container libraries used by Podman

Library Description

containers/storage Defines the storage of container images and other basic storage used by

container engines.

containers/image Defines the mechanisms used to move container images from different types

of storage. Usually used between container registries and local container

storage.

containers/common Defines all of the default configuration options for container engines, not

defined in containers/storage or containers/image.

containers/buildah As explained in chapter 2, it is used for building container images into local

storage using rules defined in a Containerfile or Dockerfile. For more

information on buildah see appendix B

Each of these libraries have separate configuration files that are used to set the default settings

for the particular library, with the exception of Buildah. The container engines, Podman and

Buildah share the containers/common configuration file containers.conf, described in section

5.3.

Note

All of the non-system configuration files used by Podman use the TOML format. TOML's syntax consists of name =

"value" pairs, [section names], and # comments. The format of TOML can be simplified to:

[table]

option = value

[table.subtable1]

option = value

[table.subtable2]

 option = value

See https://toml.io for a more complete explanation of the TOML language.

91

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

When configuring Podman, usually one of the first concerns is about where you are going

to store your containers and images.

5.1 Configuration files for storage

Podman uses the github.com/containers/storage library, which provides methods for storing

file system layers, container images, and containers. Configuration of this library is done using

the storage.conf configuration file, which can be stored in multiple different directories.

Linux distributions often provide a /usr/share/containers/storage.conf file, which can be

overridden by creating /etc/containers/storage.conf file. Rootless users can store their

configuration in the $XDG_CONFIG_HOME/containers/storage.conf file, if the

$XDG_CONFIG_HOME environment variable is not set then the file

$HOME/.config/containers/storage.conf is used. Most users will never change the storage.conf

file, but in a few situations, advanced users need to do some customizations. The most

common reason for changes is to relocate the container's storage.

NOTE When using Podman in remote mode, for example on a MAC or Windows box, the podman service uses

the storage.conf files located in the Linux box. To modify them, you need to enter the VM. When using Podman

machine, execute the podman machine ssh command to enter the VM. See appendix E and F for more

information.

Podman reads only one storage.conf and ignores all subsequent ones. Podman first

attempts to use the storage.conf from your home directory, next goes the

/etc/storage/storage.conf, and finally, if both files do not exist, Podman reads the

/usr/share/containers/storage.conf file.

You can see the storage.conf file that your Podman command is using with the podman

info command.

$ podman info --format '{{ .Store.ConfigFile }}'
/home/dwalsh/.config/containers/storage.conf

5.1.1 Storage location

By default rootless Podman is configured to store your images in the

$HOME/.local/share/containers/storage directory. Default rootful storage location is

/var/lib/containers/storage.

Sometimes you need to change this default location. Perhaps you don’t have enough disk

space in /var or in the user’s home directory, so you want to store your images on a different

disk. The storage.conf file calls the storage location the graphroot and it can be overridden in

/etc/containers/storage.conf for rootful containers.

In this section you modify the location of the graph driver to /var/mystorage.

First become root and make sure the /etc/containers/storage.conf file exists. If it does not

exist, just copy the /usr/share/containers/storage.conf file into it.

$ sudo cp /usr/share/containers/storage.conf /etc/containers/storage.conf

92

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

NOTE Some distributions just ship the /etc/containers/storage.conf.

Now make a backup and open /etc/containers/storage.conf file for editing.

$ sudo cp /etc/containers/storage.conf /etc/containers/storage.conf.orig
$ sudo vi /etc/containers/storage.conf

Set the graphdriver variable graphroot = "/var/lib/containers/storage" to graphroot =

"/var/mystorage", and save the file.

You storage.conf file should include this:

$ grep -B 1 graph /etc/containers/storage.conf
Primary Read/Write location of container storage
graphroot = "/var/mystorage"

Execute podman info to see if the change took place.

$ sudo podman info
…
Store:
 configFile: /etc/containers/storage.conf
...
 graphDriverName: overlay
 graphOptions:
 overlay.mountopt: nodev,metacopy=on
 graphRoot: /var/mystorage
...
 volumePath: /var/mystorage/volumes

Notice in the storage section, that the graphRoot is now /var/mystorage, all images and

containers will be stored in this directory.

Now run the podman info command in rootless mode, the storage location does not

change. It is still /home/dwalsh/.local/share/containers/storage.

$ podman info
store:
 configFile: /home/dwalsh/.config/containers/storage.conf
 containerStore:
 number: 27
 paused: 0
 running: 0
 stopped: 27
 graphDriverName: overlay
 graphOptions: {}
 graphRoot: /home/dwalsh/.local/share/containers/storage

You can create a $HOME/.config/containers/storage.conf and change it there, but this does

not scale well for systems with multiple users. The key rootless_storage_path allows you to

change the location for all users on your system.

This time uncomment and modify the rootless_storage_path line:

$ sudo vi /etc/containers/storage.conf

Modify the rootless_storage_path line in storage.conf from:

93

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

rootless_storage_path = "$HOME/.local/share/containers/storage"

To:

rootless_storage_path = "/var/tmp/$UID/var/mystorage"

Save the storage.conf file. When you are done it should look like this:

$ grep -B 3 rootless_storage_path /etc/containers/storage.conf
Storage path for rootless users

rootless_storage_path = "/var/tmp/$UID/var/mystorage"

Now run podman info to see the changes. Notice that the graphRoot now points at the

/var/tmp/3267/var/mystorage directory.

$ podman info
…
store:
 configFile: /home/dwalsh/.config/containers/storage.conf
...
 graphOptions: {}
 graphRoot: /var/tmp/3267/var/mystorage

Container/storage supports expanding of environment variables $HOME and $UID for this

path.

To revert changes, copy and restore the original storage.conf file.

$ sudo cp /etc/containers/storage.conf.orig /etc/containers/storage.conf

Note

If you are running on an SELinux system and change the default location of storage. You need to inform SELinux

about it, using the semanage command below to tell SELinux to label the new location as if it was in the old location.

And then change the labeling on disk using the restorecon command.. You can do this with the following commands:

sudo semanage fcontext -a -e /var/lib/containers/storage /var/mystorage

 sudo restorecon -R -v /var/mystorage

In rootless mode you need to do the following:

sudo semanage fcontext -a -e $HOME/.local/share/containers/storage /var/tmp/3267/var/mystorage

sudo restorecon -R -v /var/tmp/3267/var/mystorage

Sometimes you might want to change the storage driver, or more likely the configuration

of the storage driver.

94

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

5.1.2 Storage drivers

Recall the wedding cake image from chapter 2.2. This image shows that images are often

made of multiple layers. These layers are stored on disk by the container/storage library but

when you are running a container on them, each layer needs to be mounted on the previous

layer.

Figure 5.1 Layered images stacked on one another are reassembled and mounted using container/storage.

Container/storage uses a Linux Kernel file system concept called a layered file system to

do this. Podman, using container/storage, supports multiple different types of layered file

systems. In Linux these file systems are called Copy-On-Write (COW) file systems. In

containers/storage these different file system types are called drivers. By default Podman uses

the overlay storage driver.

NOTE Docker supports two types of overlay drivers, overlay and overlay2. Overlay2 was an improvement over

overlay, and no one uses the original overlay driver any more. In contrast, Podman uses the newer overlay2

driver and just calls it overlay. You can select the overlay2 driver in Podman, but this is just an alias for overlay.

Table 5.2 lists all of the storage drivers that Podman and containers/storage supports. I

recommend that you just stick to the overlay driver, since this is the driver the vast majority

of the world uses.

95

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 5.2 Container storage drivers

Storage Drivers Description

overlay (overlay2) Default driver, and I heavily recommend its use.

Based on the Linux kernel overlay file system.

Overlay and overlay2 are exactly the same. It is the

most tested driver which the overwhelming majority

of users use.

vfs Simplest driver, it creates full copies of each lower

layer up onto the next layer. It works everywhere but

it is slow and very disk intensive.

devmapper Was heavily used when Docker first became

popular, before the overlay driver was available.

reallocates the size of each layer at a maximum

size. Not recommended any longer.

aufs Was never merged into the upstream kernel,so it is

only available on a few Linux distributions.

btrfs Allows storage on btrfs snapshots based on the

btrfs file system. Some users have had success

using this file system.

zfs Uses the zfs file system which is a proprietary file

system, and not available on most distributions.

OVERLAY STORAGE OPTIONS

The overlay driver has some interesting customization options. These options are located in

the storage.conf [storage.options.overlay] table.

There are several advanced options available for configuring the overlay driver. I just want

to quickly mention a few to describe use cases.

The mount_program option allows you to specify an executable to use instead of the kernel

overlay driver. Podman usually ships with the fuse-overlayfs executable, which provides a Fuse

(User Space) overlay driver. Podman automatically fails over to the fuse-overlayfs

mount_program if it is installed on systems where rootless native overlay is not supported.

Most kernels support native overlay, however there are use cases where you might want to

configure the mount_program. The fuse-overlayfs has advanced features that are not currently

supported in the native overlay.

Podman is quickly being adopted by the High Performance Computing (HPC) community.

The HPC community does not allow rootful containers, and in a lot of cases allows workloads

96

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

to run only with a single UID. This means that some HPC systems do not allow users

namespaces with multiple UIDs. Since many images come with multiple UIDs, Podman added

an ignore_chown_errors option to containers/storage to allow images with files with different

UIDs to be flattened into a single UID. Table 5.3 lists all of the current storage options

supported by container storage.

Table 5.3 Container storage drivers

Storage Drivers Description

ignore_chown_errors Ignore chowning file UIDs for rootless containers with a single UID. No entry in

/etc/subuid.

mount_program Path to an helper program to use for mounting the file system instead of using

kernel overlay to mount it. Older kernels did not support rootless overlay.

mountopt Comma separated list of mount options to be passed to the kernel. Defaults:

"nodev,metacopy=on"

skip_mount_home Do not create a not create PRIVATE bind mounts on the storage home directory.

inode Maximum number of inodes in a container image.

size Maximum size of a container image.

force_mask Permissions mask for new files and directories in an image.

Values:

"private": sets all file system objects to 0700. No other users on the system can

access the files.

"shared": it is equivalent to 0755. Everyone on the system read, access and

execute files in image. Useful for sharing container storage with other users.

NOTE: All files within the image are made readable and executable by any user

on the system. Even /etc/shadow within your image is now readable by any

user.

When "force_mask" is set the original permission mask is stored in xattrs and

the "mount_program" like /usr/bin/fuse-overlayfs" presents the xattr

permissions to processes within containers.

97

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Note

You have examined a few of the storage.conf fields. There are many more. Use the containers-storage.conf man page

to explore all of them. https://github.com/containers/storage/blob/main/docs/containers-storage.conf.5.md

$ man containers-storage.conf

Now that you know about configuring the container storage, the next configuration to look

at is container registry access.

5.2 Configuration files for registries

Podman uses the github.com/containers/image library for pulling and pushing container

images, usually from container registries. Podman uses the registries.conf configuration file to

specify registries and the policy.json file for signature verification of images. As with the

container storage storage.conf, most users never modify these files and just use the

distribution defaults.

5.2.1 registries.conf

The registries.conf configuration file is a system-wide configuration file for container image

registries. Podman uses the $HOME/.config/containers/registries.conf if it exists; otherwise it

uses /etc/containers/registries.conf.

NOTE When using Podman in remote mode, for example on a MAC or Windows box, registries.conf files are

stored in the Linux box on the server side. You need to ssh into the linux box to make the changes. With

Podman machine, you can execute podman machine ssh. See appendix E and F for more information.

The main key value to use with the registries.conf file is unqualified-search-

registries.

This field specifies an array of host[:port] registries to try when pulling via short-names, in

order.

If you specify only one registry in the unqualified-search-registries option, Podman will

work similarly to Docker and force a single registry on the user.

In this exercise you are going to modify the default search registries to be used by Podman.

First you need to make a backup of /etc/containers/registries.conf file and then remove

docker.io and add example.com.

$ sudo cp /etc/containers/registries.conf /etc/containers/registries.conf.orig
$ sudo vi /etc/containers/registries.conf

Modify the following line:

unqualified-search-registries = ["registry.fedoraproject.org",
"registry.access.redhat.com", "docker.io", "quay.io"]

To:

98

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/storage/blob/main/docs/containers-storage.conf.5.md

©Manning Publications Co. To comment go to liveBook

unqualified-search-registries = ["registry.fedoraproject.org",
"registry.access.redhat.com", "example.com", "quay.io"]

Save the file. And execute podman info to verify the changes.

$ podman info
registries:
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - example.com
 - quay.io

Now if you attempt to pull via a unknown shortname you should see the following prompt

$ podman pull foobar
? Please select an image:
 ▸ registry.fedoraproject.org/foobar:latest
 registry.access.redhat.com/foobar:latest
 example.com/foobar:latest
 quay.io/foobar:latest

Now copy back the original to registries.conf file.

$ sudo cp /etc/containers/registries.conf.orig /etc/containers/registries.conf

Table 5.4 describes all of the options available in registries.conf files.

99

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 5.4 Container registries.conf global fields

Fields Description

unqualified-search-registries An array of host[:port] registries to try when pulling an unqualified

image, in order.

short-name-mode Determines how Podman should handle short-names.

Values:

enforcing: If one unqualified-search registry, use it. If 2 or more

Podman running in a terminal,prompt the user to select one of the

search registries otherwise error.

permissive: Behaves as enforcing but does not lead to an error if no

terminal just uses each entry in unqualified-search registries until

success.

disabled: Use all unqualified-search registries without prompting.

credential-helpers An array of default credential helpers used as external credential

stores. Note that "containers-auth.json" is a reserved value to use

auth files as specified in containers-auth.json(5).

The credential helpers are set to ["containers-auth.json"] if none are

specified.

Another interesting thing you can configure in registries.conf is the ability to block users from

pulling from a container registry.

BLOCKING PULLING FROM CONTAINER REGISTRIES.

In this next example, you configure registries.conf to block pulls from docker.io. The

registries.conf file has a specific [[registry]] table entry that can specify how to handle

individual container registries. You can add this table multiple times, once per registry.

$ sudo vi /etc/containers/registries.conf

Add

[[registry]]
Location = "docker.io"
blocked=true

Save the file. Examine the settings using podman info.

100

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman info
…
registries:
 Docker.io:
 Blocked: true
 Insecure: false
 Location: docker.io
 MirrorByDigestOnly: false
 Mirrors: null
 Prefix: docker.io
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - docker.io
 - quay.io

Now attempt to pull an image from docker.io.

$ podman pull docker.io/ubuntu
Trying to pull docker.io/library/ubuntu:latest…
Error: initializing source docker://ubuntu:latest: registry docker.io is blocked in

/etc/containers/registries.conf or /home/dwalsh/.config/containers/registries.conf.d

This demonstrates that administrators have the ability to block content from specific

registries.

NOTE

Copy back the original registries.conf in order to pull from docker.io for the rest of this book.

$ sudo cp /etc/containers/registries.conf.orig /etc/containers/registries.conf

Table 5.5 describes the sub options available for the [[registry]] table in the registries.conf

file.

101

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 5.5 [[registry]] table fields.

Fields Description

location Name of the registry/repository to apply the filters on.

prefix Select the specified configuration when attempting to pull an image that is matched by

the specific prefix.

insecure If true, unencrypted HTTP as well as TLS connections with untrusted certificates are

allowed.

blocked If true, pulling images with matching names is forbidden.

Some users work on systems that are fully isolated from the internet, but still need to use

applications that rely on images from the internet. For example if you have an application that

expects to use registry.access.redhat.com/ubi8/httpd-24:latest, but has no access to

registry.access.redhat.com on the internet. You can download the image and put it onto an

internal registry and then configure registries.conf with a mirror registry. If you configure an

entry in registries.conf that looks like this.

[[registry]]
location="registry.access.redhat.com"
[[registry.mirror]]
location="mirror-1.com"

Then your users can use the podman pull command

$ podman pull registry.access.redhat.com/ubi8/httpd-24:latest

Podman actually pulls mirror-1.com/ubi8/httpd-24:latest, but they will not notice the

difference.

Note

You have examined a few of the registries.conf fields. There are many more. Use the containers-registries.conf(5) man

page to explore all of them.

$ man containers-registries.conf

https://github.com/containers/image/blob/main/docs/containers-registries.conf.5.md

Now that you know how to configure storage and registries, it is time to look at how to

configure all of the options that are central to Podman.

102

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/image/blob/main/docs/containers-registries.conf.5.md

©Manning Publications Co. To comment go to liveBook

5.3 Configuration files for engines

Podman and other container engines use the github.com/containers/common library for

handling the default settings not related to container storage or container registries. These

configuration settings come from the containers.conf file

Podman reads the following files if they exist:

Table 5.6 containers.conf files read by both rootful and rootless podman

File Description

/usr/share/containers/containers.conf Usually shipped with the distribution defaults

/etc/containers/containers.conf System administrator can use this file to set and

modify different defaults

/etc/containers/containers.conf.d/*.conf Some package tools might drop additional

default files into this directory, sorted

numerically.

When running in rootless mode, Poman also reads these files if they exists:

Table 5.7 containers.conf files read by rootless podman

File Description

$HOME/.config/containers/containers.conf Users can create this file, to override system

defaults.

$HOME/.config/containers/containers.conf.d/*.conf Users can also drop files here, if they want, sorted

numerically.

Unlike storage.conf and registries.conf, containers.conf files are merged together, they do not

fully override previous versions. Individual fields can override the same field in the higher level

containers.conf file. Podman does not require any containers.conf file to exist, since it has

built-in defaults. Most systems come with only the distribution default overrides in

/usr/share/containers/containers.conf

NOTE Podman supports the CONTAINERS_CONF environment variable, which forces Podman to use the target

of the $CONTAINER_CONF. All other containers.conf files are ignored. This is useful for testing environments

or to make sure that no one has customized the Podman defaults.

103

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Containers.conf currently supports five different tables, as shown in table 5.5. You need to

be careful that you modify the options within the correct table.

Table 5.8 Containers.conf tables

table Description

[containers] Configuration on how to run individual containers. Examples are the

namespaces to stick containers in, whether or not SELinux is enabled, default

environment variables for containers.

[engine] Default configurations for Podman to use. Examples are default logging

system,paths to OCI Runtimes to use, and the location of conmon.

[service_destinations] Remote connection data for use with podman --remote. Remote service is

covered in chapter 9.

[secrets] Information about the secrets plugin driver to use for containers.

[network] Special configuration for network configuration. Default network name,

location of cni plugins and default subnets.

Many users of Podman want to change the default ways that it launches containers in an

environment. I previously explained how the HPC community wants to use Podman to run their

workloads, but they are very specific about the volumes that get added to containers, which

environment variables are added, and which namespaces are enabled.

Perhaps you want all of your containers to have the same environment variables set. Let’s

try an example. Run podman to show the default environment in the ubi8 image.

$ podman run --rm ubi8 printenv
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
container=oci
HOME=/root
HOSTNAME=ba4acf180386

NOTE When using Podman in remote mode, for example on a MAC or Windows box. Most of the settings of

the containers.conf files are used from the Linux box on the server side. A containers.conf file in the users

home directory is used for storing connection data, which is covered in chapter 9. Remote Clients MAC and

Windows Appendix E and F.

Now lets create an env.conf file in the home directory with the env=“[foo=bar]” set.

104

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ mkdir -p $HOME/.config/containers/containers.conf.d
$ cat << _EOF > $HOME/.config/containers/containers.conf.d/env.conf
[containers]
env=["foo=bar"]
_EOF

Run any container and you see the foo=bar environment set.

$ podman run --rm ubi8 printenv
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
container=oci
foo=bar
HOME=/root
HOSTNAME=406fc182d44b

I use containers.conf when configuring Podman to run within a container. Many users want

to run Podman within a container for CI/CD systems or for just testing out newer versions of

Podman then their distribution enables. When lots of people were opening issues because they

were having a hard time running it, I decided to try to set up a default image

quay.io/podman/stable to help them get it done. While creating that image, I realized that a

lot of the Podman defaults did not work well when running it within a container so I used

containers.conf to change those settings. You can see my containers.conf file at this link:

https://github.com/containers/podman/blob/main/contrib/podmanimage/stable/containers.c

onf

You can see the contains.conf by actually running the image.

$ podman run quay.io/podman/stable cat /etc/containers/containers.conf
[containers]
netns="host"
userns="host"
ipcns="host"
utsns="host"
cgroupns="host"
cgroups="disabled"
log_driver = "k8s-file"
[engine]
cgroup_manager = "cgroupfs"
events_logger="file"
runtime="crun"

Here was what I was thinking while writing this file. First I decided that since Podman is

running inside of a container, I disable all of the cgroups and namespaces other than the mount

and user namespace. If users set cgroups or configured namespaces, then the container run

by Podman in a container follows the parents Podman’s rules.

[containers]
netns="host"
userns="host"
ipcns="host"
utsns="host"
cgroupns="host"
cgroups="disabled"

105

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/podman/blob/main/contrib/podmanimage/stable/containers.conf
https://github.com/containers/podman/blob/main/contrib/podmanimage/stable/containers.conf

©Manning Publications Co. To comment go to liveBook

The default log_driver, event logger and cgroup manager on a lots of distributions is

journald and systemd respectively, but inside of the container, systemd and journald are not

running, so the container engine needs to use the file system

[containers]
log_driver = "k8s-file"
[engine]
cgroup_manager = "cgroupfs"
events_logger="file"

Finally use the OCI runtime crun rather than runc, mainly because crun is a lot smaller

than runc.

[engine]
runtime="crun"

Now attempt to run a container within a container. A trick needed to make this work is to

run the podman/stable image with --user podman, this causes the Podman inside of the

container to run in rootless mode. Since the podman/stable image uses the fuse-overlay driver

within the container you also need to add the /dev/fuse device.

$ podman run --device /dev/fuse --user podman quay.io/podman/stable podman run ubi8-micro
echo hi

Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/000-shortnames.conf
Trying to pull registry.access.redhat.com/ubi8:latest…
Getting image source signatures
Copying blob sha256:5368f457acd16b337e2b150741f727c46f886c69eea1a4d56d0114c88029ed87
...
hi

Note

You examined a few of the containers.conf fields. There are many more. Use the container.conf(5) man page to

explore all of them.

$ man containers.conf

https://github.com/containers/common/blob/main/docs/containers.conf.5.md

I have finished covering the configuration tools specific to container tools like Podman, but

there are still some system configuration files that Podman needs.

5.4 System configuration files

When you run rootless Podman, you are using the /etc/subuid and /etc/subgid files to specify

the UID ranges for your containers. As I explained in section 3.1.2.1, (User namespace),

Podman reads the /etc/subuid and /etc/subgid files for UID and GID ranges allocated for your

user account. Podman then launches /usr/bin/newuidmap and /usr/bin/newgidmap which

verifies the range of UIDs and GIDs that Podman specified are actually allocated to you. In

certain cases you need to modify these files to add UIDs. Tools like useradd automatically

106

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/common/blob/main/docs/containers.conf.5.md

©Manning Publications Co. To comment go to liveBook

update the /etc/subuid and /etc/subgid when you add new users to your system. For example

when I installed my laptop useradd set up my user account to use UID 3267 and added the

mapping dwalsh:100000:65536 to /etc/subuid and /etc/subgid. Figure 5.2 shows what

containers based on this mapping look like on my system.

Figure 5.2 User namespace mapping for containers.

NOTE You want to keep the ranges of UIDs unique for each user and not to overlap with any system UIDs.

Podman and the system do not verify that there is no overlap. If two different users had the same UIDs in their

range, the processes in the containers are allowed to attack each other from the User Namespace perspective.

This is a manual process to verify. The useradd tool automatically selects unique ranges.

As the subuid(5) and subgid(5) man pages explain, each line in /etc/subuid and /etc/subgid

contains a user name and a range of subordinate user ids, or gids respectively, that the user

is allowed to use. The entry is specified with three fields delimited by colons (“:”). These fields

are:

• Login name or UID

• Numerical subordinate user ID or group ID

• Numerical subordinate user ID or group ID count

Newer versions of the operating system, specifically the packages that ship

/usr/bin/newuidmap and /usr/bin/newgidmap, are gaining the ability to share the contents of

these files via the network from an LDAP Server. On Fedora, these executables are shipped in

the shadow-utils package. Versions 4.9 or later have this feature.

107

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Tip: Changes to /etc/subuid and /etc/subgid may not be immediately reflected in the

login users account.

This is a common issue from users who modify these files after they have already run Podman. But remember when

Podman first runs it launches the podman pause process in the user namespace and then all other containers join

this Podman processes user namespace. In order to get the new user namespace to take effect you must execute the

podman system migrate command, which stops the podman pause process, and recreates the user

namespace.

5.5 Summary

• Podman has multiple configuration files based on the libraries that it uses

• Configuration files are shared between the rootful and the rootless environments

• The storage.conf is used to configure containers/storage. Configuring storage

driver as well as the location where containers and their images are to be stored

• The registries.conf and policy.json files are used to configure the

 container/image library, primarily the access to container registries, short names, and

mirror sights

• The containers.conf file used to configure all of the other defaults used within Podman

• System configuration files “/etc/subuid”, “/etc/subgid” are used to configure the user

namespace required for running rootless Podman

108

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

6
Rootless containers

This chapter covers

• Why rootless mode is more secure

• How Podman works with the user and mount namespace

• The architecture of Podman running in rootless mode

I take a deep dive into what is going on when running Podman in a rootless mode. I believe it

is helpful to understand what is happening when you run rootless containers and learn about

the issues that running in rootless mode can cause.

With the introduction of containerized applications over the last few years, certain highly

secure environments were not able to take advantage of the new technology.

High performance computing (HPC) systems run the fastest computers in the world. These

tend to be national labs and universities and deal with high security information. They handle

some of the most secure data in the world and expressly forbid the use of rootful containers.

HPC systems deal with huge data sets, like artificial intelligence, nuclear weapons, global

weather patterns, medical research, etc. These systems tend to have thousands of shared

computers. These systems need to be locked down, because of their multi-user shared

environments. HPC computing believes that root running daemons are too insecure. If a rogue

container process breaks out of confinement and gains root access, it can access highly

sensitive data. Administrators of HPC environments couldn’t use open container initiative

(OCI) containers until Podman came along. The HPC community is now working to move to

rootless Podman.

Similarly large financial company administrators do not allow users and developers access

to root on their shared computer systems, out of concern for the financial data involved. The

largest financial firms in the world were having difficulty fully adopting OCI containers.

109

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 6.1 Multiple users' workloads sharing the same root running daemon is inherently insecure.

Bottom line: allowing users on a shared computing system to run container workloads

accessing the same root running daemon, is too insecure. Running each user’s containers in

rootless mode under different users accounts is more secure.

110

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Figure 6.2 Each workload running within their unique user space is more secure.

Linux was designed from the ground up with a separation between privileged mode and

unprivileged mode, root, and rootless. In Linux almost all tasks run without being privileged.

Privileged operations are only required for modifications to the core operating system. Almost

all applications that run in containers, web servers, databases, and user tools run without

requiring root. The applications do not modify core parts of the system.

Sadly most of the images that you find on container registries are built to require root

privileges or at least start as root and then drop privileges.

In the corporate world, administrators are very reluctant to give out root access to their

users. If you receive a corporate laptop from your employer, usually you are not granted any

root access. Administrators need to control what is installed on their systems, because of scale.

Administrators need to be able update hundreds to thousands of machines at the same time,

so controlling what is in the OS is critical. If someone else is administering your machine, they

need to control who gets root access.

As a security person I still flinch a little when I see sudo without a password. When I first

started working with Docker, I was shocked that it was encouraging the use of the docker

group, giving users full root access on the host, without password. The holy grail of hackers is

to get a root exploit; this means that they gain full control over the system.

Bottom line is that if you have a container escape, as bad as that is, you are better off in

rootless mode: The hackers have control over only non-privileged processes, as opposed to a

111

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

root exploit where they have full control over the system and all of the data (ignoring other

security mechanisms like SELinux).

Podman's design goals include the ability to run as many workloads as possible without

being root and to push the core OS to make it easier for you to run in this more secure mode.

6.1 How does rootless Podman work?

Have you ever wondered what happens behind the scenes of a rootless Podman container? In

chapter 2 all of the podman examples were running in rootless mode. Let’s take a look at what

happens under the hood of rootless Podman containers. I'll explain each component and then

break down all of the steps involved.

NOTE Some of this section is copied and rewritten from the:

“What happens behind the scenes of a rootless Podman container?”

Blog (https://www.redhat.com/sysadmin/behind-scenes-podman), written by myself and

coworkers Mathew Heon and Giuseppe Scrivano.

First, let’s first clear out all storage so you can get a fresh environment, and then run a

container on quay.io/rhatdan/myimage. (Remember: the podman rmi --all --force

command removes all images and containers from storage.)

$ podman rmi --all --force
Untagged: registry.access.redhat.com/ubi8/httpd-24:latest
Untagged: registry.access.redhat.com/ubi8-init:latest
Untagged: localhost/myimage:latest
Untagged: quay.io/rhatdan/myimage:latest
Deleted: d2244a4379d6f1981189d35154beaf4f9a17666ae3b9fba680ddb014eac72adc
Deleted: 82eb390304938f16dd707f32abaa8464af8d4a25959ab342e25696a540ec56b5
Deleted: 8773554aad01d4b8443d979cdd509e7b8fa88ddbc966987fe91690d05614c961

Now that you have a clean system, you need to retrieve the application image,

quay.io/rhatdan/myimage, from the container registry that you pushed it to in chapter 2. In

the following command re-create the application on your machine. The following Podman

command pulls the image back from the container registry and starts the myapp container on

your host.

$ podman run -d -p 8080:8080 --name myapp quay.io/rhatdan/myimage
Trying to pull quay.io/rhatdan/myimage:latest…
…
2f111737752dcbf1a1c7e15e807fb48f55362b67356fc10c2ade24964e99fa09

Now, let’s dig deep into what just happened when you ran a rootless Podman container.

The first thing that happens when you run a rootless container is that Podman needs to set

up the user namespace. In the next section, I explain why, and how it works.

6.1.1 Images contain content owned by multiple user identifiers (UIDs)

In Linux user identifiers (UIDs) and group identifiers (GIDs) are assigned to processes and

stored on file system objects. The file system objects also have permission values assigned to

112

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://www.redhat.com/sysadmin/behind-scenes-podman

©Manning Publications Co. To comment go to liveBook

the file system objects. Linux controls the processes’ access to the file system based on these

UIDs and GIDs. This access is called discretionary access control (DAC). When you log in to a

Linux machine, your rootless user processes run with a single UID, say 1000, but container

images usually come with multiple different UIDs in their image layers. Let’s examine the UIDs

needed to run our image. In this example you examine all of the UIDs defined within the

container image, by running another container.

In the command below, you launch a container with the quay.io/rhatdan/myimage

image. You need to run the container as root (--user=root) inside the container to examine

every file within the image.

$ podman run --user=root --rm quay.io/rhatdan/myimage -- bash -c "find / -mount -printf
\”%U=%u\n\” | sort -un" 2>/dev/null

Since this is only a temporary container, you use the --rm option to make sure the container

is removed when it finishes running. The container runs a bash script which finds all of the

UIDs and USERs associated with every file/directory in the container. The script pipes the

output to sort to show unique entries and redirects stderr to /dev/null to eliminate any errors.

$ podman run --user=root --rm quay.io/rhatdan/myimage -- bash -c "find / -mount -printf
\”%U=%u\n\” | sort -un" 2>/dev/null

0=root
48=apache
1001=default
65534=nobody

As you can see from the output our container image uses four different UIDs shown in table

6.1.

Table 6.1 Unique UIDs required to run the container image

UID Name Description

0 root Owns most of the content within the container image.

48 apache Owns all of the Apache content.

1001 default Default user which the container runs as.

65634 nobody Assigned to any UID that is not mapped into the container.

In order for you to pull a container image to your homedir, Podman needs to store at least

three different UIDs: 0, 48, 1001. Since the Linux kernel prevents non-privileged accounts

from using more than a single UID, you are prevented from creating files with different UIDs.

You need to take advantage of the user namespace.

113

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

USER NAMESPACE

Linux supports the concept of user namespaces, which is a mapping of UID/GIDs from the host

to different UIDs and GIDs inside the namespace. Here is how the man page describes it:

$ man user namespaces
…
User namespaces isolate security-related identifiers and attributes, in
particular, user IDs and group IDs (see credentials(7)), the root directory, keys(see
keyrings(7)), and capabilities (see capabilities(7)). A process's user and group IDs
can be different inside and outside a user namespace. In particular, a process can have
a normal unprivileged user ID outside a user namespace while at the same time having a
user ID of 0 inside the namespace; in other words, the process has full privileges for
operations inside the user namespace, but is unprivileged for operations outside the
namespace.

Since your container requires more than one UID, the Podman process first creates and

enters a user namespace where it has access to more UIDs. Podman must also mount several

file systems in order to run a container. These mount commands are not allowed outside a

user namespace (along with a mount namespace).

Figure 6.3 User namespace mapping for containers.

When I created my system, I used the useradd program to create my account. Useradd

assigned me, 3267 as my UID and GID, defined in /etc/passwd and /etc/group. Useradd also

allocated UID 100000-1065535 additional UIDs and GIDs for me defined in /etc/subuid and

/etc/subgid. Let’s see the content of these files:

114

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ cat /etc/subuid
dwalsh:100000:65536
Testuser:165536:65536
$ cat /etc/subgid
dwalsh:100000:65536
Testuser:165536:65536

Cat these files on your system you’ll see something similar. On my system I also have a

testuser account and you see that useradd also added UIDs/GIDs for that user, starting right

after my allocation.

Within a user namespace, I have access to UIDs 3267 (my UID) as well as UIDs

100000,100001,100002,...,165535, for a total of 65537 UIDs. A root user can modify the

/etc/subuid and /etc/subgid files to increase or decrease this number.

The useradd command starts at UID 100000 in order to allow you to have around 99000

regular users plus 1000 UIDs reserved for system services on a Linux system. The kernel

supports more than 4 billion UIDs (2^32=4294967296). Since useradd allocates 65537 per

user, Linux can support more than 60000 users. The 65536 (2^16) number was picked because

up until the Linux kernel 2.4, this was the maximum number of users on a Linux system. Let’s

look deeper into the User Namespace.

Every process on a Linux system is in namespaces, including the init process, systemd.

These are the host namespaces. Therefore every process is in a user namespace. You can see

the user namespace mapping for your process by examining the /proc file system. The

/proc/PID/uid_map and /proc/PID/gid_map contains the user namespace mappings for each

process on the OS. /proc/self/uid_map contains the UID map of the current process.

$ cat /proc/self/uid_map
 0 0 4294967295

The mapping means that UIDs starting at UID 0 are mapped to UID 0 for a range of

4294967295 UIDs.

Another way of looking at this mapping is:

UID 0->0, 1->1,...3267->3267,...,4294967294->4294967294.

Basically there is no mapping, so root is root. And my UID 3267 is mapped to 3267--itself.

Now let’s enter the user namespace and see what is mapped. Podman has a special

command podman unshare which allows you to enter a user namespace without launching a

container. It allows you to examine what is going on within the user namespace, while still

running as a regular process on your system.

In the following command, I run podman unshare to launch the cat /proc/self/uid_map

within the default user namespace for my account:

$ podman unshare cat /proc/self/uid_map
 0 3267 1
 1 100000 65536

The mappings show that UID 0 is mapped to UID 3267 (my UID) for a range of 1. Then

UID 1 is mapped to UID 100000 for a range of 65536 UIDS.

115

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Any UID that is not mapped to the user namespace is reported within the user namespace

as the nobody user. You saw this earlier when you searched for the UIDs within the container

image.

$ podman run --user=root --rm quay.io/rhatdan/myimage -- bash -c "find / -mount -exec stat
-c %u=%U {} \; | sort -un" 2>/dev/null

0=root
48=apache
1001=default
65534=nobody
If you look at / on the host, you see it is owned by the real root.
$ ls -l -ld /
dr-xr-xr-x. 18 root root 242 Sep 21 22:32 /

If you examine the same directory within the user namespace, you see it as owned by the

nobody user.

$ podman unshare ls -ld /
dr-xr-xr-x. 18 nobody nobody 242 Sep 21 22:32 /

Since the host’s UID 0 is not mapped into the user namespace, the kernel reports the UID

as the nobody user. Processes within the user namespace have access to only nobody files

based on only the “other” or "world" permissions. In the example that follows, you launch a

bash script that shows the user is root within the user namespace but sees /etc/passwd as

owned by the user nobody. You can read the file with the grep command because /etc/passwd

is world readable. But the touch command fails because even root cannot modify files owned

by UIDs not mapped to the user namespace.

$ podman unshare bash -c "id ; ls -l /etc/passwd; grep dwalsh /etc/passwd; touch
/etc/passwd"

uid=0(root) gid=0(root) groups=0(root),65534(nobody)
-rw-r--r--. 1 nobody nobody 2942 Sep 28 07:08 /etc/passwd
dwalsh:x:3267:3267:Dan Walsh:/home/dwalsh:/bin/bash
touch: cannot touch '/etc/passwd': Permission denied

Looking at your home directory on the host versus inside of the user namespace, you see

that the same files are reported as being owned by your UID.

$ ls -ld /home/dwalsh
drwx------. 365 dwalsh dwalsh 24576 Sep 28 07:30 /home/dwalsh

Within the user namespace, they are owned by root.

$ podman unshare ls -ld /home/dwalsh
drwx------. 365 root root 24576 Sep 28 07:30 /home/dwalsh

Podman by default maps your UID to root within the user namespace. Podman defaults to

root because, as I specified at the beginning of this chapter, the majority of container images

assume they start with root.

One last example. Create a directory and a file within the directory while in the user

namespace and use the chown command to change the contents UIDs to 1:1..

$ podman unshare bash -c "mkdir test;touch test/testfile; chown -R 1:1 test"

116

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Outside the user namespace, you see the testfile is owned by UID 100000:

$ ls -l test
total 0
-rw-r--r--. 1 100000 100000 0 Sep 28 07:53 testfile

When you create the testfile and chown it to UID/GID 1:1 within the user namespace, the

on-disk owner is actually UID 100000/100000. Remember within the user namespace, UID 1

is mapped to UID 100000, so when you create a UID 1 file within the user namespace, the OS

actually creates UID 100000.

If you attempt to remove the file outside of the user namespace, you get an error:

$ rm -rf test
rm: cannot remove 'test/testfile': Permission denied

Outside the user namespace, you have access to only your UID, you don’t have access to

the additional UIDs.

NOTE In chapter 3 section 3.1.2.1, I showed how this can be problematic with container volumes, and discuss

ways that you can handle it.

Re-entering the user namespace, you can remove the file.

$ podman unshare rm -rf test

Hopefully you are starting to get a feel for the user namespace; the podman unshare

command makes it easy to explore your system within the user namespace and understand

what is happening in rootless containers.

When running a rootless container, Podman needs more than just to run as root, it also

needs access to some of the special powers of root called Linux capabilities.

In Linux, the root processes actually are not all equally powerful. Linux breaks root

privileges into a series of Linux capabilities. A root process with all Linux capabilities is all-

powerful. A root process without Linux capabilities is not allowed to manipulate a lot of the

system; for example, it cannot read non-root files unless those files have permission flags

which allow all UIDs on the system to read (world-readable).

Let’s see how capabilities work with the user namespace:

$ man capabilities
...
DESCRIPTION
For the purpose of performing permission checks, traditional UNIX implementations

distinguish two categories of processes: privileged processes (whose effective user
ID is 0, referred to as superuser or root), and unprivileged processes (whose
effective UID is nonzero). Privileged processes bypass all kernel permission checks,
while unprivileged processes are subject to full permission checking based on the
process's credentials (usually: effective UID, effective GID, and supplementary
group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated with
superuser into distinct units, known as capabilities, which can be independently
enabled and disabled. Capabilities are a per-thread attribute.

117

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Linux currently has around 40 capabilities. Examples are CAP_SETUID and CAP_SETGID,

which allow processes to change their UIDs and GIDs. CAP_NET_ADMIN allows you to manage

the network stack.

Another capability called CAP_CHOWN allows processes to change the UID/GID of files on

disk. In the preceding example, where you chowned the test directory to 1:1, you used the

CAP_CHOWN capability within the user namespace.

$ podman unshare bash -c "mkdir test;touch test/testfile; chown -R 1:1 test"

When you run within a user namespace you are using namespaced capabilities. The root

user within your user namespace has these capabilities beyond the UIDs/GIDs defined within

the namespace. Processes with the namespaced capability, CAP_CHOWN, are allowed to chown

files owned within your user namespace to UIDs that are also within the user namespace. If a

process within a user namespace attempts to chown a file not mapped to the user namespace,

owned by the nobody user, the process is denied permission. Likewise, a process attempting

to chown a file with a UID not defined within the user namespace also gets denied.

Similarly the CAP_SETUID capability only allows processes to change UIDs to UIDs defined

within the user namespace.

When Podman runs a container it needs to mount several file systems for the container. In

Linux the CAP_SYS_ADMIN capability is required for mounting file systems. From a security

point of view, mounting file systems can be a dangerous thing to do on Linux. The kernel adds

additional controls on which types of file systems can be mounted and requires your user

namespaced processes to also be in a unique mount namespace. In a later chapter, you see

how Podman limits the number of Linux capabilities available to the namespaced root within a

container.

MOUNT NAMESPACE

Mount namespaces allow processes within them to mount file systems where the mount points

are not seen by processes outside the mount namespace. Inside a mount namespace you can

mount a tmpfs on /tmp, which blocks the processes within the namespaces view of /tmp.

Outside the mount namespace, processes still see the original mount and files within /tmp,

they do not see your mount.

In rootless containers Podman needs to mount the content in the container images, as well

as /proc, /sys, devices from /dev, and some tmpfs file systems. For that, Podman needs to

create a mount namespace.

$ man mount namespaces
…
Mount namespaces provide isolation of the list of mount points seen by the processes in

each namespace instance. Thus,the processes in each of the mount namespace instances
see distinct single-directory hierarchies.

When you execute the podman unshare command you are actually entering a different

mount namespace as well as a different user namespace.

You can examine a process's namespaces by listing the /proc/self/ns/ directory, as follows:

$ ls -l /proc/self/ns/user /proc/self/ns/mnt
lrwxrwxrwx. 1 dwalsh dwalsh 0 Sep 28 09:17 /proc/self/ns/mnt -> 'mnt:[4026531840]'
lrwxrwxrwx. 1 dwalsh dwalsh 0 Sep 28 09:17 /proc/self/ns/user -> 'user:[4026531837]'

118

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Notice that when I enter the user namespace and mount namespace the identifiers change:

$ podman unshare ls -l /proc/self/ns/user /proc/self/ns/mnt
lrwxrwxrwx. 1 root root 0 Sep 28 09:17 /proc/self/ns/mnt -> 'mnt:[4026533087]'
lrwxrwxrwx. 1 root root 0 Sep 28 09:17 /proc/self/ns/user -> 'user:[4026533086]'

In the following test, you can create a file on /tmp and then attempt to bind mount it onto

/etc/shadow. Outside the namespaces, the kernel rightly prevents me from mounting the file,

as you can see in the following output:

$ echo hello > /tmp/testfile
$ mount --bind /tmp/testfile /etc/shadow
mount: /etc/shadow: must be superuser to use mount.

Once you enter the user namespace and mount namespace, your namespaced process can

successfully mount over the /etc/shadow file. You can see when you run the following
command that /etc/shadow is actually modified:

$ podman unshare bash -c "mount -o bind /tmp/testfile /etc/shadow; cat /etc/shadow"
hello

Once you exit the unshare, everything is back to normal.

USER NAMESPACE + MOUNT NAMESPACE

As you saw above, when you over-mounted the /etc/shadow file, you might trick some setuid

applications like /bin/su or /bin/sudo into giving you full root. The reason rootless users are

not allowed to mount file systems, was to prevent this type of attack.

As you have seen, the separate mount namespace prevents you from affecting the host’s

view of the system, anything you mount is seen only within the mount namespace. Within the

user namespace, the container already has a namespaced root. Attacks on your mount points

can be escalated to root only within the user namespace, not real root on the host.

Containerized processes can not gain setuid to real root or any other UID not mapped into the

user namespace.

Even with the namespaces, the Linux kernel only allows you to mount certain file systems

types. Many file system types are too dangerous to allow for rootless users, because they gain

access to sensitive parts of the kernel. I work with file system kernel engineers to see if there

are ways to lock down other file system types which could be allowed to be mounted in rootless

mode, without affecting the security of the system.

As of kernel 5.13, the kernel engineers added native overlay mounts to the list of allowed

mounts. The file system types currently allowed are listed in table 6.2.

119

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table 6.2 File system mounts currently supported in rootless mode

Mount type Description

bind Used heavily in rootless containers. Because rootless users are not allowed to create

devices, Podman bind mounts /dev on the host into the container. Podman also uses bind

mounts to obscure content within the host file system from containers. Bind mounting

/dev/null over files in /proc and /sys. Volume mounts, described in chapter 3, also use

bind mounts.

binderfs Filesystem for the Android binder IPC mechanism. Not supported by Podman.

devpts Virtual filesystem mounted at /dev/pts. Contains device files used for terminal emulators

cgroupfs Kernel file system used to manipulate cgroups, rootless containers can use cgroupfs to

manipulate cgroups in cgroups V1. On v1 this is not supported.Mounted at

/sys/fs/cgroups.

FUSE Used to mount container images using the fuse-overlayfs in rootless mode. Prior to kernel

5.13 this was the only way to use an overlay file system in rootless mode.

procfs Mounted at /proc within the container. You can examine processes within the container.

mqueue Implements the POSIX message queues API. Podman mounts this file system at

/dev/mqueue.

overlayfs Used for mounting the image. Performs better in than fuse-overlayfs file system. In certain

use cases it provides benefits over native overlay like nfs home directories.

ramfs Dynamically resizable ram-based Linux filesystem, currently not used with Podman.

sysfs Mounted at /sys.

tmpfs Used to obscure kernel file system directories from containers in /proc and /sys.

6.2 Rootless Podman under the covers

Now that you have some understanding of how the user namespace and mount namespace

work and why they are needed, let's dig deeper into what Podman does when it runs a

container.

The first time you run a Podman container after logging in, Podman reads the /etc/subuid

and /etc/subgid files, looking for your username or UID. Once Podman finds the entry, it uses

the contents as well as your current UID/GID to generate a user namespace for you.

120

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Podman then launches the podman pause process to hold open the user and mount

namespace (figure 6.4).

Figure 6.4 Podman launches the pause process to hold open the user and mount namespaces.

Users commonly report that after they run Podman containers, they see a podman process

still running when they run the following command:

$ ps -e | grep podman
 2541 ? 00:00:00 podman pause

Subsequent running of the Podman commands joins the namespaces of the podman pause

process. Podman does this to avoid race conditions when user namespaces are coming up and

going down. The pause process remains running until you log out. You can also execute the

podman system migrate command to remove it. The pause process's role is to keep the user

namespace alive, as all rootless containers must be run in the same user namespace. If they

were not, sharing content and other namespaces (like sharing the network namespace from

another container) is impossible.

NOTE I often have users report that when changing the /etc/subuid and /etc/subgid file, their containers

don’t reflect the changes right away. Since the pause process was launched with the previous user namespace

settings, it needs to be removed. Executing the podman system migrate command restarts the pause process

within the user namespace.

You can kill the pause process at any time, but Podman recreates it on the next run.

By default each rootless user has their own user namespace, and all of their containers run

within the same user namespace. You can subdivide the user namespace and run containers

with different user namespaces, but realize, by default, you only have 65k UIDs to work with.

121

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Running multiple containers in different User namespaces is much easier to do when running

rootful containers.

Now that the user namespace and mount namespace are created, Podman creates storage

for the container's image and sets up a mount point to start storing the image.

6.2.1 Pulling the image

Figure 6.5 Podman pulls an image off of a container registry and stores it in the container storage.

When pulling the image, Podman checks if the container image quay.io/rhatdan/myimage

exists in local container storage. If it does, then Podman sets up the container network (more

about this in the next section). However, if the container image does not exist, Podman uses

the containers/image library to pull the image. Here are the steps Podman does while pulling

the image:

122

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

1. Resolve IP address for the registry, quay.io.

2. Connect to the IP address via the HTTPS port (443).

3. Begin pulling the manifest, all layers and the config of the image using the HTTP

protocol.

4. Find the multiple layers or blobs of quay.io/rhatdan/myimage

5. Copy all layers simultaneously from the container registry to the host.

As each layer is copied to the host, Podman uses the containers/storage library to

reassemble the layers in order, creating an overlay mount point for each of them on top of

the previous one in ~/.local/share/containers/storage. If there is no previous layer, it creates

the initial layer.

Next, containers/storage untars the contents of the layer into the new storage layer. As

the layers are untarred, containers/storage chowns the UID/GIDs of files in the tarball into the

home directory. Podman takes advantage of the user namespace CAP_CHOWN as explained in

previous sections. Remember that Podman fails to create content if the UID or GID specified

in the tar file was not mapped into the user namespace.

6.2.2 Creating a container

Once the containers/storage library finishes downloading the image and creating the storage,

Podman creates a new container based on the image. Podman adds the container to Podman’s

internal database. Podman tells containers/storage to create writable space on disk and use

the default storage driver, usually overlayfs, to mount this space as a new container layer. The

new container layer acts as the final read/write layer and is mounted on top of the image.

NOTE Rootful containers default to using native Linux overlay mounts. In rootless mode, on kernel versions

newer than 5.13 or a kernel with the rootless overlay feature backported (RHEL 8.5 kernels or later also have

this feature), use the native overlay mounts. On older kernels Podman uses the fuse-overlayfs executable to

create the layer. In Podman overlay and overlay2 are the same drivers.

At this point Podman needs to configure the network inside of the network namespace.

123

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

6.2.3 Setting up the network

Figure 6.6 Podman creates a network namespace and launches slirp4netns to relay network connections.

In rootless Podman, you cannot create full, separate networking for containers, because

rootless processes are not allowed to create network devices and modify the firewall rules.

Rootless Podman uses slirp4netns, https://github.com/rootless-containers/slirp4netns, to

configure the host network and simulate a VPN for the container. slirp4netns provides user-

mode networking ("slirp") for unprivileged network namespaces..

NOTE In rootful containers, Podman uses the CNI plugins to configure networking devices. In rootless mode,

even though the user is allowed to create and join a network namespace, they are not allowed to create

network devices. The slirp4netns program emulates a virtual network, in order to connect host networking to

the container networking. More advanced networking setup requires rootful containers.

Remember in our original example you specified the 8080:8080 port mapping, as follows:

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24

Podman configures the slirp4netns program to listen on the host network at port 8080 and

allow the container process to bind to port 8080. The slirp4netns command creates a tap device

that is injected inside the new network namespace, where the container lives. Each packet is

read back from slirp4netns and emulates a TCP/IP stack in user space. Each connection outside

the container network’s namespace is converted in a socket operation that the unprivileged

user can do in the host network’s namespace.

124

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

NOTE Linux TAP devices create a user space network bridge. In user space TAP Devices can simulate network

devices inside of a network namespace. Processes within the namespace interact with the network device.

Packets read/written from the network device are routed via the TUN/TAP device to the user space program,

slirp4netns.

Now that the storage and network is configured, Podman is ready to finally start the

container process.

6.2.4 Starting the container monitor - conmon

Figure 6.7 Podman launches the container monitor which launches the OCI Runtime.

Podman now executes conmon (container monitor) for the container, telling it to use its

configured OCI runtime, usually, crun or runc. It also executes the podman container

cleanup $CTRID command when the container exits.

Conmon is described in chapter 4 section 1.

125

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

6.2.5 Launching the OCI runtime

Figure 6.8 conmon launches the OCI Runtime which configures the kernel

The OCI runtime reads the OCI spec file and configures the kernel to run the container.

OCI Runtimes do the following:

126

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

1. Set up the additional namespaces for the container.

2. Configure cgroups V2 (cgroups V1 is not supported for rootless containers).

3. Set up the SELinux label for running the container.

4. Load the /usr/share/containers/seccomp.json seccomp rules into the kernel.

5. Set the environment variables for the container.

6. Bind mounts any volumes onto the paths in the rootfs.

7. Switch the current / to the rootfs /.

8. Fork the container process.

9. Execute any OCI hook programs, passing them the rootfs as well as the container’s

PID 1.

10. Execute the command specified by the imagee.

11. Exit the OCI runtime, leaving conmon to monitor the container.

And finally, conmon reports the success back to Podman.

Figure 6.9 Podman and OCI Runtime exit leaving container running with conmon monitoring it, and

slirp4netns providing the network

The Podman command now exits because it ran in --detach (-d) mode.

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24

127

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

NOTE If later you want Podman to interact with the detached container you use the podman attach command

which connects to the conmon socket. Conmon allows Podman to interact with the container process through

the STDIN, STDOUT, and STDERR file descriptors which conmon has been monitoring.

6.2.6 The containerized application runs until completion

The application process can exit on its own or you can stop the container by executing the

podman stop command.

$ podman stop myapp

When the container process exits, the kernel sends a SIGCHLD to the conmon process. In

turn, conmon does the following:

1. Records the container’s exit code.

2. Closes the container’s logfile.

3. Closes the Podman command’s STDOUT/STDERR.

4. Executes the podman container cleanup $CTRID command.

5. Exits itself.

The podman container cleanup command takes down the slirp4netns network and

unmounts all of the container mount points. If you specify the --rm option, the container is

entirely removed - layers are removed from containers/storage, and the container definition

removed from the DB.

6.3 Summary

• Running rootless containers is more secure then running rootful containers

• The user namespace gives ordinary users the ability to manipulate more than one UID

and is key to running containers

• The mount namespace allows Podman to mount file systems within the user namespace

• Podman uses slirp4netns for providing network access to containers

• Podman launches conmon process to monitor the container

128

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Appendix A
Podman-related container tools

This appendix describes the three tools that use containers/storage and containers/image

libraries.

These tools address following functionalities:

1. Moving container images between different container registries and storage

2. Building container images

3. Testing, developing, and running containers in production on a single node

4. Running containers in production at scale

As the original creator of Podman, I recognized the need for specialized tools, each

performing specific functionality rather than a one-size-fits-all monolithic solution.

From a security perspective, each of these four categories requires different security

constraints. Containers running in production need to be run in a more secure environment

than ones running in development and testing. Moving container images between registries

requires no privileged access to the host you are running the command on, only remote access

to the registries. You get the least secure system with a monolithic daemon. If my containers

need more access during builds, then in production they get the same access as during builds.

Another critical problem with a monolithic daemon is that it prevents experimentation with

the tools and doesn't allow them to go their own way. One example of this is when we proposed

a change to the Docker daemon to allow users to pull different types of OCI content off of

container registries, and this change was denied as it had little to do with docker containers.

Similarly when the monolithic daemon is modified for one product, it can negatively impact

features of another one which is using this daemon. It could cause performance degradation

or down right breakage. This happened when Kubernetes was being developed, since it relied

on the Docker daemon as the container engine. But since Docker is monolithic and being

developed for many other projects a lot of its changes affected Kubernetes, leading to

instability of it. It was obvious that Kubernetes needed a dedicated container engine for its

workloads and in December 2020 it was announced that Kubernetes will eventually use the

newly developed standard the container runtime interface, CRI

129

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

(https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/) to

improve interaction between orchestrators and different container runtimes.

I wrote another coloring book (https://red.ht/3gfVlHF) illustrated by Máirín Duffy (@marin)

describing the container tools talked about in this appendix based on superheroes.

Figure A.1 The container Coloring Book (https://docs.fedoraproject.org/en-US/fedora-

silverblue/_attachments/container-commandos.pdf)

130

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://red.ht/3gfVlHF
https://docs.fedoraproject.org/en-US/fedora-silverblue/_attachments/container-commandos.pdf
https://docs.fedoraproject.org/en-US/fedora-silverblue/_attachments/container-commandos.pdf

©Manning Publications Co. To comment go to liveBook

Finally, sometimes there are conflicting interests or release schedules in play. Having

separate, independent tools allows releases to be deployed independently from all the others

at their own pace to guarantee new features to their customers.

Four projects were created for the distinct functions described in table A.1.

Table A.1 Primary container tools based on containers/storage and containers/image.

Command Description

Skopeo Performs various operations on container images and image repositories.

(https://github.com/containers/skopeo)

Buildah Facilitates a wide range of operations on container images.

(https://github.com/containers/buildah)

Podman All-in-one management tool for pods, containers, and images.

(https://github.com/containers/podman)

CRI-O OCI-based implementation of the Kubernetes Container Runtime Interface.

(https://github.com/cri-o/cri-o)

As you have already learned a great deal about Podman, you know now why it is included in

this list. Podman is an excellent tool for understanding and developing containers as well as

pods and images. It encapsulates everything that Docker CLI does but without locking

everything under one central daemon. Because Podman works without a daemon and uses the

operating system for sharing data, other tools can work with the same data stores and libraries.

131

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/skopeo
https://github.com/containers/buildah
https://github.com/containers/podman
https://github.com/cri-o/cri-o

©Manning Publications Co. To comment go to liveBook

Figure A.2 Skopeo, Buildah and Podman work together by sharing the same containers/storage images and

containers/image library for pulling and pushing images.

The rest of this appendix describes the rest of the tools, starting with Skopeo.

A.1 Skopeo

While using container engines like Docker or Podman, if you want to inspect a container image

in a registry, you are required to pull this image from the registry to your local storage. Only

then can you examine it. The issue is that this image can be huge, and after inspecting it, you

might realize that it wasn’t what you expected and you wasted time pulling it. Because the

protocol used to pull the image and inspect it is just a web protocol, a simple tool, Skopeo,

was created to just pull the image's detailed information and display it on the screen. Skopeo

is the Greek word for remote viewing.

132

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Execute the following skopeo inspect command to examine the image detailed

information in JSON form:

$ skopeo inspect docker://quay.io/rhatdan/myimage
{
 "Name": "quay.io/rhatdan/myimage",
 "Digest":
"sha256:fe798c1576dc7b70d7de3b3ab7c72cd22300b061921f052279d88729708092d8",
 "RepoTags": [
 "Latest",
 "1.0"
],
…

Skopeo was extended to also copy images off of registries. Eventually Skopeo became the

tool for copying images between different types of storage (transports). These types of storage

became the transports defined in table A.2.

133

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table A.2 Podman supported transports

Transport Description

container registry

(docker)

Default transport. References a container image stored in a remote

container image registry. Container registry is a place for storing and

sharing container images. For example, docker.io, quay.io.

oci References a container image, compliant with the Open Container Image

Layout Specification. The manifest and layer tarballs as individual files are

located in the local directory.

dir References a container image, compliant with the Docker image layout. It

is very similar to the `oci` transport but stores the files using the legacy

“docker” format. As a non-standardized format, primarily useful for

debugging or noninvasive container inspection.

docker-archive References a container image in Docker image layout which is packed into

a TAR archive.

oci-archive References an image compliant with the Open Container Image Layout

Specification which is packed into a TAR archive. It is very similar to the

`docker-archive` transport, but stores an image in OCI Format.

docker-daemon References an image stored in the Docker daemon's internal storage.

Since the Docker daemon requires root privileges, Podman has to be run

by root user.

container-storage References an image located in a local container storage. It is not a

transport, but more of a mechanism for storing images. It can be used to

convert other transports into container-storage. Podman defaults to using

container-storage for local images.

Other container engines and tools wanted to use the functionality developed in Skopeo to copy

images, so Skopeo was split in two. The command line, Skopeo, and the underlying library

containers/image. Splitting functionality into a separate library made it possible to build

other container tools, including Podman.

The skopeo copy command is very popular for copying images between different types of

container storage. One difference compared to Podman and Buildah, as you’ll see in section

E2, is that Skopeo forces users to specify the transport for the source and destination. Podman

and Buildah default to using the docker or containers-storage transport, depending on the

context and command. In the following example, you are copying an image from a container

134

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

registry using the docker transport and storing the image locally using the container-storage

transport.

$ skopeo copy docker://quay.io/rhatdan/myimage containers-storage:quay.io/rhatdan/myimage
Getting image source signatures
Copying blob dfd8c625d022 done
Copying blob 68e8857e6dcb done
Copying blob e21480a19686 done
Copying blob fbfcc23454c6 done
Copying blob 3f412c5136dd done
Copying config 2c7e43d880 done
Writing manifest to image destination
Storing signatures

Another command many Skopeo users use is skopeo sync, which lets you synchronize

images between container registries and local storage.

Skopeo is mainly used for infrastructure projects to help provision multiple container

registries, for example copying images from a public registry to a private one. Table A.2

describes the most popular commands used with skopeo.

Table A.2 Primary Skopeo commands and their description.

Command Description

skopeo copy Copy an image (manifest, filesystem layers, signatures) from one location to

another.

skopeo delete Mark the image name for later deletion by the registry's garbage collector.

skopeo inspect Return low-level information about image-name in a registry.

skopeo list-tags List tags in the transport-specific image repository.

skopeo login Login to a container registry (Same as Podman Login).

skopeo logout Logout of a container registry (Same as Podman Logout).

skopeo manifest

digest

Compute a manifest digest for a manifest-file and write it to standard output.

skopeo sync Synchronize images between container registries and local directories.

One of the first tools to take advantage of the containers/image library was Buildah.

135

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

A.2 Buildah

As you learned in section chapter 1, section 1.1.2, creating a container image means creating

a directory on disk and adding content to it to make it look like the root, “/”, directory on a

Linux machine, called a rootfs. Originally the only way to do this was with docker build using

a Dockerfile. While Dockerfiles and Containerfiles are excellent ways to create recipes for

your container images, a low-level building block tool which allowed other ways to build

container images was needed. One which allows breaking the image build process into

individual commands, letting you to use other more powerful scripting tools and languages

other than Containerfile to build images. We created a tool called Buildah (https://buildah.io)

to serve this purpose.

Buildah was designed to be that simple tool to build container images. It’s built on top of

the container/storage and container/image libraries, just like Podman and Skopeo. It has a lot

of similar functionality to Podman. You can pull images, push images, commit images, even

run containers on images. What mainly differs Podman and Buildah is the underlying concept

of a container. Podman container is a long-lived one, "running" container, while Buildah

container is just a temporary one, "working" container, which will be used to create an OCI

image.

NOTE Buildah is a Linux only tool, not available on Mac or Windows. However Podman embeds Buildah

in the podman build command. Podman on Mac and Windows uses the buildah code on the server side,

allowing those platforms to build using Containerfles and Dockerfiles. See appendix E and F for more

information.

Buildah was designed to take the steps that were defined in a Dockerfile and make them

available at the command line. Buildah wanted to simplify building a container image by

allowing you to use all of the tools available within the OS to populate the image. You can add

data to this directory via standard Linux tools, like cp, make, yum install, etc. Then commit

the rootfs into a tarball, add some JSON to describe what the creator of the image wanted the

image to do, and finally push this to a container registry. Basically, Buildah breaks down the

steps you learned about in a Containerfile into individual commands that you can execute from

a shell.

136

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://buildah.io/

©Manning Publications Co. To comment go to liveBook

NOTE The name Buildah is a play on the way I pronounce builder. If you ever heard me speak, you’d

notice I have a strong Boston accent. When the core team asked what I wanted to call the tool, I said I don’t

care, just call it builder. And they heard Buildah. :^)

The first step when building a new container image is to pull a base image. In a Containerfile

this is done with the FROM instruction.

A.2.1 Creating a working container from a base image

The first command to look at is buildah from. It is equivalent to the Containerfiles FROM

instruction. When executing buildah from IMAGE, it pulls the specified image from the

container registry, saves it in a local container storage and creates a working container based

on this image. As mentioned previously, this container is similar to a Podman container, except

that it exists temporarily only to become a container image. In the following example, a

working container is created based on an ubi8-init image:

$ buildah from ubi8-init
Resolved "ubi8-init" as an alias (/etc/containers/registries.conf.d/000-shortnames.conf)
Trying to pull registry.access.redhat.com/ubi8-init:latest… #A
Getting image source signatures
Checking if image destination supports signatures
Copying blob adffa6963146 done
Copying blob 29250971c1d2 done
Copying blob 26f1167feaf7 done
Copying config 4b85030f92 done
Writing manifest to image destination
Storing signatures
ubi8-init-working-container #B

#A pulls image from container registry

#B outputs new container name

Notice that the buildah from output looks the same as the podman pull output, except for

the last line, which outputs the container name, ubi8-init-working-container. If you run

the buildah from command again, you get a second container name.

$ buildah from ubi8-init
ubi8-init-working-container-1

Buildah keeps track of its containers and generates each one by incrementing a counter.

Of course you can override the container name with the --name option.

Next, you will add content to this container image.

A.2.2 Adding data to a working container

Buildah has two commands buildah copy and buildah add for copying the contents of a file,

URL, or directory into the container's working directory. They map to the same functionality

as the Containerfile’s COPY and ADD instructions.

137

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

NOTE It is somewhat confusing to have two commands that do almost the same thing. In most cases,

I recommend that you just use buildah copy and COPY inside of a Containerfile. The main difference between

the two is that copy only copies local files and directories off of the host into the container image. The add

command supports the use of URLs to pull remote content and insert it into your container. The add command

also supports taking tar and zip files and expanding them when copied into the container image.

The syntax of the buildah copy command requires you to specify the name of the

container previously created by the buildah from command, followed by the source and

optionally, destination. If destination is not provided, source data will be copied into the

container's working directory. Destination directory will be created if it doesn't exist yet.

Following example copies local file html/index.html (created previously in Section 3.1 of

this book) into the /var/lib/www/html directory in the container:

$ buildah copy ubi8-init-working-container html/index.html /var/lib/www/html/

If you would like to use more advanced tools like package managers to add content to your

containers, Buildah supports running commands inside the containers.

A.2.3 Running commands in a working container

To run a command inside of the working container, you need to execute buildah run. Under

the hood, this command works exactly the same as RUN instruction - starts a new container

on top of the current one, executes specified command and commits the result back to the

working container. The syntax of buildah run requires you to specify the name of the working

container followed by the command. In the following example you install the httpd service

within the container:

$ buildah run ubi8-init-working-container dnf -y install httpd
Updating Subscription Management repositories.
Unable to read consumer identity
This system is not registered with an entitlement server. You can use subscription-manager

to register.
…
Complete!

To make sure you will have a running web server once running container is created, next

command enables the Apache HTTP Server service:

$ buildah run ubi8-init-working-container systemctl enable httpd.service
Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service →

/usr/lib/systemd/system/httpd.service.

Table A.3 shows the relationship between Containerfile instructions and Buildah commands.

138

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table A.3 Containerfile instructions mapped to Buildah commands

Instruction Command Description

ADD buildah add Add the contents of a file, URL, or a directory to the container.

COPY buildah copy Copies the contents of a file, URL, or directory into a container's

working directory.

FROM buildah from Creates a new working container, either from scratch or using a

specified image as a starting point.

RUN buildah run Run a command inside of the container.

A.2.4 Adding content to a working container directly from the host

Up until now, you’ve seen how Buildah can perform the same commands that you execute

within a Containerfile, but one of Buildah’s goals is to expose the container image rootfs directly

to the host. This allows you to use commands available on your host machine to add content

to the container image without requiring the commands to be present inside of the container

image.

The buildah mount command allows you to mount a working container's root filesystem

directly on your system and then use tools like cp, make, dnf, or even an editor to manipulate

the contents of the container's rootfs.

If you run buildah as root, you can simply execute the buildah mount command. But in

rootless mode, this isn’t allowed. Recall in chapter 2, section 2.2.10, where you learned about

the podman mount command, you must first enter the user namespace. Similarly, buildah

unshare command creates a shell running in the user namespace. Once you are in the user

namespace, you can mount the container. In the following example, using what you have

learned so far, you are going to use your host's command to add content to the container:

$ buildah unshare
mnt=$(buildah mount ubi8-init-working-container)
echo $mnt
/home/dwalsh/.local/share/containers/storage/overlay/133e1728eac26589b07984e3bdf31b5e318159

940c866d9e0493a1d08e1d2f6a/merged
grep dwalsh /etc/passwd >> $mnt/etc/passwd
exit

Now you can check if your changes were actually applied inside working container:

$ buildah run ubi8-init-working-container grep dwalsh /etc/passwd
dwalsh:x:3267:3267:Daniel J Walsh:/home/dwalsh:/bin/bash

After you are done with populating the content of the working container, it's time to specify

other instructions from the Containerfile, which describe your intentions as the container image

creator.

139

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

A.2.5 Configuring a working container

You probably noticed in table A.3 that there are a lot of Containerfile instructions that are

missing. Containerfile instructions like LABEL, EXPOSE, WORKDIR, CMD, and ENTRYPOINT are

used to populate the OCI Image Specification.

Now, using the buildah config command, you can add a port to expose (EXPOSE) and

mark a location inside container rootfs as a volume (VOLUME), which will be used as website

root directory:

$ buildah config --port=80 --volume=/var/lib/www/html ubi8-init-working-container

You can inspect the corresponding OCI Image Specification fields using the buildah

inspect command:

$ buildah inspect --format '{{ .OCIv1.Config.ExposedPorts }} {{ .OCIv1.Config.Volumes }}'
ubi8-init-working-container

map[80:{}] map[/var/lib/www/html:{}]

Table A.4 shows the relationship between Containerfile instructions and Buildah config

options. You can also refer to Table 2.5 for the extra information on these instructions.

140

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table A.4 Containerfile instructions mapped to Buildah config options.

Instruction Command Description

MAINTAINER --author Sets contact information of the image author.

CMD --cmd Sets a default command to run within a container.

ENTRYPOINT --entrypoint Sets a command for a container that will run as an executable. .

ENV --env Sets the environment variable for all subsequent instructions.

HEALTHCHECK --healthcheck Specifies a command to check if a container is still running.

LABEL --label Adds a key-value metadata.

ONBUILD --onbuild Sets a command to be run when the image is used as the base

for another image.

EXPOSE --port Specifies a port that container will listen on at a runtime.

STOPSIGNAL --stop-signal Sets the stop signal to be sent when the container is stopped.

USER --user Sets the user to be used when running the container and for all

subsequent RUN, CMD and ENTRYPOINT instructions.

VOLUME --volume Adds a mount point and marks it as a volume for external data.

WORKDIR --workingdir Sets the working directory for all subsequent RUN, CMD,

ENTRYPOINT, COPY and ADD instructions.

Once you have completed adding content to the Buildah container image and adding

configuration to the OCI Image Specification, you need to create an image from the working

container.

A.2.6 Creating an image from a working container

The working container you've been building so far can be used to create the OCI-compliant

image using the buildah commit command. This command works in the same way as the

podman commit command you learned about in chapter 2, section 2.1.9. Inputs for this

command are the working container name and an optional image tag, if tag is not specified,

the image will have no name..

141

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ buildah commit ubi8-init-working-container quay.io/rhatdan/myimage2
Getting image source signatures
Copying blob 352ba846236b skipped: already exists
Copying blob 3ba8c926eef9 skipped: already exists
Copying blob 421971707f97 skipped: already exists
Copying blob 9ff25f020d5a done
Copying config 5e47dbd9b7 done
Writing manifest to image destination
Storing signatures
5e47dbd9b7b7a43dd29f3e8a477cce355e42c019bb63626c0a8feffae56fcbf9

You can see the image using buildah images.

$ buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage2 latest 5e47dbd9b7b7 2 minutes ago 293 MB
registry.access.redhat.com/ubi8-init latest 4b85030f924b 5 weeks ago 253 MB

Because Podman and Buildah share the same container image storage, you can see the

same images with podman images.

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage2 latest 5e47dbd9b7b7 4 minutes ago 293 MB
registry.access.redhat.com/ubi8-init latest 4b85030f924b 5 weeks ago 253 MB

You can even run a Podman container on the image.

$ podman run quay.io/rhatdan/myimage2 grep dwalsh /etc/passwd
dwalsh:x:3267:3267:Daniel J Walsh:/home/dwalsh:/bin/bash

A.2.7 Pushing an image to a container registry

Similarly to Podman, Buildah has commands buildah login and buildah push, which allow

you to push images to container registries, shown in the following example.

NOTE You can also use podman login and podman push or even skopeo login and skopeo copy to

accomplish the same task.

$ buildah login quay.io
Username: rhatdan
Password:
Login Succeeded!
$ buildah push quay.io/rhatdan/myimage2
Getting image source signatures
Copying blob 3ba8c926eef9 done
Copying blob 421971707f97 done
Copying blob 9ff25f020d5a done
Copying blob 352ba846236b done
Copying config 5e47dbd9b7 done
Writing manifest to image destination
Copying config 5e47dbd9b7 done
Writing manifest to image destination
Storing signatures

142

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Congratulations, you have successfully built an OCI-compliant container image manually

by using simple shell commands rather than using a Containerfile.

Additionally, if you want to create an image using an existing Containerfile or Dockerfile,

you can use the buildah build command.

A.2.8 Building an image from Containerfiles

You can use the buildah build command to build an OCI-compliant image from a

Containerfile or a Dockerfile. Buildah includes a parser that understands the Containerfile

format and can perform all tasks using previously described commands automatically..

Let's use the Containerfile from section 2.3.2, chapter 2:

$ cat myapp/Containerfile
FROM ubi8/httpd-24
COPY index.html /var/www/html/index.html

You can build your container image using this Containerfile by executing the following

command:

$ buildah build ./myapp
STEP 1/2: FROM ubi8/httpd-24
Resolved "ubi8/httpd-24" as an alias (/home/dwalsh/.cache/containers/short-name-

aliases.conf)
Trying to pull registry.access.redhat.com/ubi8/httpd-24:latest
…
Getting image source signatures
Checking if image destination supports signatures
Copying blob adffa6963146 skipped: already exists
…
STEP 2/2: COPY html/index.html /var/www/html/index.html
COMMIT
Getting image source signatures
Copying blob 352ba846236b skipped: already exists
…
bbfcf76c994c738f8496c1f274bd009ddbc960334b59a74953691fff00442417

You probably notice that this output matches precisely the output of the podman build

command. This is because the podman build command uses Buildah.

A.2.9 Buildah as a library

Buildah was designed to not only be used as a command-line tool but also to be a Golang-

based library. Buildah is being used in a few different tools, such as Podman and the OpenShift

image builder. Buildah allows these tools to internally build OCI images. Every time you do a

podman build, you are executing the Buildah library code.

Having learned how to build container images using Buildah, copy images between

container storages using Skopeo, how to manage and run containers on the host using

Podman, let's talk about how all these tools are used in the Kubernetes ecosystem.

143

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

A.3 CRI-O: Container Runtime Interface for OCI Containers

When Kubernetes was being developed, it used Docker API internally to run containers.

Kubernetes relied on features of Docker that changed from release to release, sometimes

breaking Kubernetes. At the same time, CoreOS wanted their alternative container engine

called RKT (https://github.com/rkt/rkt) to work with Kubernetes. Kubernetes developers

decided then to split out the Docker functionality and use a new API called the Container

Runtime Interface, CRI. (https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-

in-kubernetes) This interface allows Kubernetes to use additional container engines besides

Docker.

When Kubernetes wants to pull a container image, it calls out to a remote socket via the

CRI and asks the listener to pull an OCI image for it. When it wants to launch a Pod/Container,

it calls out the socket and asks it to launch the container.

NOTE CoreOS was eventually acquired by Red Hat, and the RKT project has ended. Kubernetes has

deprecated Docker as a container runtime.

Red Hat saw the CRI as an opportunity to develop a new container engine, which they

ended up calling the Container Runtime Interface for OCI containers, CRI-O. (https://cri-

o.io/).

CRI-O is based on the same containers/storage and containers/image libraries as Skopeo,

Buildah and Podman, and can be used in conjunction with these tools. CRI-O's primary

objective is to replace the Docker service as the container engine for Kubernetes.

CRI-O is tied to Kubernetes releases. When a new version of Kubernetes is released, the

version numbers are synchronized. CRI-O is optimized for Kubernetes workloads, engineers

working on it understand what Kubernetes is trying to do and are making sure CRI-O does it

in the most efficient way possible. Since CRI-O has no other users, Kubernetes doesn’t have

to worry about breaking changes in CRI-O.

NOTE CRI-O is the core technology used with Red Hat’s OpenShift Kubernetes based product.

OpenShift uses Podman to install and configure CRI-O before Kubernetes starts running. OpenShift image

builder embeds Buildah functionality to allow users to build images within their OpenShift clusters.

144

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/rkt/rkt
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes
https://cri-o.io/
https://cri-o.io/

©Manning Publications Co. To comment go to liveBook

Appendix B
OCI runtimes

This appendix describes the primary OCI runtimes used with container engines like Podman.

As discussed in chapter 1, the OCI runtime (https://opencontainers.org) is the executable

launched by container engines, including Podman, used to configure the Linux kernel and

subsystems to run the kernel, it’s last step is to launch the container. The OCI runtime reads

the OCI runtime-specification JSON file and then configures the namespaces, security controls,

and cgroups, and eventually starts the container process

145

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://opencontainers.org/

©Manning Publications Co. To comment go to liveBook

Figure B.1. Podman executes the OCI Runtime to launch the container.

In this appendix you’ll learn the four main OCI Runtimes in use.

The --runtime option allows you to switch between different OCI runtimes. In the next

example you run the same container command twice, each time with a different runtime. In

the first command you run the container with a runtime, crun, that is defined in the

containers.conf, so you don’t need to specify the path to the runtime.

$ podman --runtime crun run --rm ubi8 echo hi #A
hi

#A The --runtime option tells Podman to use the crun OCI Runtime, rather than the default.

The default runtime is defined under the [containers] table in the containers.conf file on the

Linux machine.

146

https://livebook.manning.com/#!/book/podman-in-action/discussion

$ grep -iA 3 "Default OCI Runtime" /usr/share/containers/containers.conf
Default OCI runtime

#runtime = "crun" #A

#A Podman defaults to crun on most systems, on some older distributions like Red Hat Enterprise Linux, Podman

defaults to runc.

In the second example you use the full path of the OCI runtime, /usr/bin/runc.

$ podman --runtime /usr/bin/runc run –rm ubi8 echo hi
hi

If you want to permanently change the default OCI runtime, you can set the runtimes

option in the [engine] table in the containers.conf file in your home directory.

$ cat > ~/.config/containers/containers.conf << EOF
[engine]
runtime="runc"
EOF
$ podman --help | grep -- runc
 --runtime string Path to the OCI-compatible binary used to run containers.

(default "runc")`

NOTE The --runtime option is only available on Linux. Podman --remote and therefore Podman on a

MAC and Windows does not support the --runtime option, so you need to set the containers.conf file on the

server side.

See the podman(1) man page for more information. man podman.

OCI runtimes are continuously being developed and experimented with. You can expect

innovation to happen in this space going forward. The first container runtime developed and

the de facto standard is runc.

B.1 runc

Runc is the original OCI runtime. (https://github.com/opencontainers/runc). When the OCI

originally formed, Docker donated the runc to the OCI to serve as the default implementation

of an OCI runtime. The OCI continues to support and develop runc. It is written in Golang, and

also includes the libcontainer library, which is used in many container engines and Kubernetes.

On the runc website it states that runc, and all of the OCI runtimes, is a low-level tool not

designed to be used directly by the end user. It is recommended to be launched by container

engines like Podman or Docker.

Recall the container engine's job is to pull the container images to the host, configure and

mount the root file system (rootfs) to be used within the container, and finally to write the OCI

Runtime JSON file before launching the OCI Runtime.

The OCI runtime specification describes only the content of the JSON file used by OCI

runtimes. Because every OCI engine supports the runc command line, the other OCI runtimes

adopted the same CLI commands and options. This makes it easier for one runtime to replace

the other when launched by the container engine. Table B.1, shows the commands supported

by runc and therefore all OCI runtimes.

©Manning Publications Co. To comment go to liveBook

147

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table B.1: runc commands

Command Description

checkpoint Checkpoint a running container

create Creates a container

delete Deletes any resources held by the container often used with detached containers.

events Displays container events such as OOM notifications, CPU, memory, and IO usage

statistics.

init Initializes the namespaces and launches the process.

kill Sends the specified signal (default: SIGTERM) to the container’s init process.

List Lists containers started by runc with the given root.

pause Suspends all processes inside the container.

ps Displays the processes running inside a container.

restore Restores a container from a previous checkpoint.

resume Resumes all processes that have been previously paused.

run Creates and runs a container.

spec Creates a new specification file.

start Executes the user defined process in a created container

state Outputs the state of a container.

update Updates container resource constraints.

runc continues to be developed and has a very active community. The problem with runc is

that it is written in Golang. Golang was not designed to be a small, often-executed application

that needs to start quickly and fork/exec a command and exit quickly. Fork/Exec is a heavy

operation in Golang, and although runc attempts to work around this, it ultimately sacrifices

"a bit" of performance. The "a bit" can accumulate over time though, so crun performs much

better at scale.

148

https://livebook.manning.com/#!/book/podman-in-action/discussion

B.2 crun

runc, being written in Golang, is a very heavy executable, 12 megabytes in size. Golang is a

great language, but doesn’t take advantage of shared libraries. Golang executables take up

considerably more memory because of this. The size of runc causes it to be somewhat slower

loading during container start. Another problem with Golang, is that it does not support the

fork/exec model all that well. It is slower when compared to fork/exec in other languages, e.g.

C. This slowness is more important when you are starting and stopping hundreds or thousands

of containers, for example on a Kubernetes cluster. Container engines like Podman, also

written in Go, generally run for a much longer time so the startup time is not as important.

OCI runtimes like runc execute for a very short time and exit quickly.

Giuseppe Scrivano, a contributor to runc and Podman, understood these deficiencies in

runc, and wanted to write a compatible OCI runtime in the C language. He created a very

lightweight OCI runtime called crun.

crun describes itself as a fast and lightweight OCI runtime. crun supports all of the same

commands and options as runc. crun executable is many times smaller than runc. Execute the

du -s command to compare the sizes:

$ du -s /usr/bin/runc /usr/bin/crun
14640 /usr/bin/runc
392 /usr/bin/crun

crun, being written in C, supports fork and exec much better then Golang and therefore is

much quicker when launching a container.

This also makes it plugin easily to other libraries on the system, and there is some

experimentation to use crun as a library for processing the OCI Runtime JSON file and

launching different types of containers. For example WASM and Windows containers on linux.

Also crun has potential for launching KVM separated containers based on libkrun.

crun is now the default OCI Runtime used by Podman in Fedora and in Red Hat Enterprise

Linux 9. runc continues to be supported and is the default OCI runtime in Red Hat Enterprise

Linux 8.

crun and runc are the two primary OCI Runtimes for managing traditional containers that

use Namespace separation.

Both these projects work fairly closely together. When bugs or issues are found in either

OCI runtime, they are quickly fixed in both.

See the crun(1) man page for more information. man crun.

OCI Runtimes is also written to use VM separation, with the primary example of this being

Kata Containers.

B.3 kata

The Kata Container project (https://katacontainers.io) advertises itself as the following:

©Manning Publications Co. To comment go to liveBook

149

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

The speed of containers, the security of VMs

Kata Containers is an open source container runtime, building lightweight virtual machines

that seamlessly plug into the container's ecosystem.

Figure B.2 Kata Containers launches a lightweight Virtual Machine, which only runs the container.

150

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Kata Containers use VM technology for launching each container. It is very different from

launching a VM and running Podman within it. A standard VM has an init system which launches

all sorts of services, like logging systems, cron, etc. Whereas a Kata container launches a micro

OS, which runs only the container and its support services. As its only purpose is to launch the

container, when the container exits, this VM goes away.

I believe that running containers within VM/hypervisor separation gives you better security

separation compared to traditional container separation, where containers communicate

directly with the host kernel. A VM-separated container has to first break out of containment

inside of the VM, then figure a way to break out of the Hypervisor only then face the attacking

of the host kernel.

While VM-separated containers are more secure, this does come with some downsides.

There is a decent amount of overhead in starting a Kata container, configuring the hypervisor,

launching the kernel and other processes within the VM, and then finally the container. VM's

memory, CPU, and so on have to be preallocated and are difficult to change. Running Kata

within a VM in the cloud is often not allowed, or at least more expensive, because most of the

cloud vendors frown upon nested virtualization.

Finally and most importantly VM-separated containers by their very nature have difficulties

sharing content with other containers and the host operating system. The biggest issue is with

volumes.

While sharing content with the host machine in traditional containers is just a bind mount,

in VM-separate containers, bind mounts do not work. Since the processes on the host and in

the container are running with two different kernels, you need a network protocol to share

content. Kata containers originally used NFS and Plan 9 networked file systems.

Reading/writing data over these networked file systems is going to be considerably slower then

native files system reads and writes you get with a bind mount.

Virtiofs is a new file system that has the properties of a network file system, but lets virtual

machines access files on the host. It is able to show big improvements in speed over the

network based file systems, while still remaining under heavy development.

Kata containers have two different ways to be launched. Kata has traditionally OCI

command line, kata-runtime, based on the runc command supported by Podman. You can see

the paths defined in containers.conf, on the Linux machine, by searching for #kata.

$ grep -A 9 '^#kata' /usr/share/containers/containers.conf
#kata = [
"/usr/bin/kata-runtime",
"/usr/sbin/kata-runtime",
"/usr/local/bin/kata-runtime",
"/usr/local/sbin/kata-runtime",
"/sbin/kata-runtime",
"/bin/kata-runtime",
"/usr/bin/kata-qemu",
"/usr/bin/kata-fc",
#]

Bottom line on Kata containers is that you get better security with a performance overhead.

Depending on the workload you can choose the best OCI runtime for your application.

151

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

B.4 gVisor

The last OCI Runtime I cover in this appendix is gVisor. (https://gvisor.dev/)

The gVisor website advertises itself as an application kernel for containers that provides

efficient defense-in-depth anywhere.

gVisor includes an OCI runtime called runsc and works with Podman and other container

engines. The gVisor project calls itself an application kernel, written in Golang, that implements

a substantial portion of the Linux system call interface. It provides an additional layer of

isolation between running applications and the host operating system. Google engineering

wrote the original versions of gVisor and claim that the bulk of the containers that Google

Cloud run use the gVisor OCI runtime.

gVisor is somewhat similar to VM-isolated containers, in that gVisor is intercepting almost

all system calls from within the container and then processing them. gVisor describes itself as

an application kernel for containers written in Golang, limiting the access to the host kernel.

At the same time, it does not have the same issue of a nested virtualization as Kata.

However, gVisor introduces performance penalty with additional CPU cycles and higher

memory usage. This may introduce increased latency or reduced throughput or both. gVisor is

also an independent implementation of the system call surface, meaning that many of the

subsystems or specific calls are not as optimized as more mature implementations.

152

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://gvisor.dev/

©Manning Publications Co. To comment go to liveBook

Appendix C
Getting Podman

Podman is a great tool for working with containers, but how do you get it installed onto your

system? What packages are required to make it work? This appendix covers how to install or

build Podman on your system.

C.1 Installing Podman

Podman is available for almost all Linux distributions via their package managers. It is also

available on Mac, Windows and FreeBSD platforms. The official podman.io site,

https://podman.io/getting-started/installation, is regularly updated with new instructions on

how to install Podman for different distributions. Most of the content in this appendix originates

from this site.

153

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://podman.io/getting-started/installation

©Manning Publications Co. To comment go to liveBook

Figure C.1 Podman installation instructions web site

C.1.1 MacOS

BecausePodman is a tool for running Linux containers, you can use it on a MacOS desktop only

if you have access to a linux box, running either locally or remotely. To make this process

somewhat easier, Podman includes a command, podman machine to automatically manage

VMs.

HOMEBREW

The Mac client is available through Homebrew (https://brew.sh/):

$ brew install podman

Podman has the ability to install a VM and run a linux instance on your machine using the

podman machine command. On a Mac, you must execute the following commands to install

and start the Linux VM to successfully run containers locally.

$ podman machine init
$ podman machine start

154

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://brew.sh/

©Manning Publications Co. To comment go to liveBook

Optionally you can use the podman system connection command to set up ssh

connections to remote Linux machines running the podman service.

You can then verify the installation information using:

$ podman info

The Podman command is running natively on the MAC but communicating with an instance

of Podman running within the virtual machine.

C.1.2 Windows

Because Podman is a tool for running Linux containers, you can use it on a Windows desktop

only if you have access to a linux box, running either locally or remotely. On Windows, Podman

can also utilize the Windows Subsystem for Linux system.

WINDOWS REMOTE CLIENT

You can retrieve the latest Windows remote client on the

https://github.com/containers/podman/releases site.

Once installed you can configure the Windows remote client to connect to a Linux server

using the podman system connection command. Find out more about this process at

https://docs.podman.io/en/latest/markdown/podman-system-connection.1.html.

WINDOWS SUBSYSTEM FOR LINUX (WSL) 2.0

See Windows documentation on Installing WSL 2.0 and then pick a distribution that includes

Podman including many described below. Alternatively, podman machine init command can

bootstrap it all for you by automatically installing and configuring WSL, downloading and

provisioning Fedora Core VM on it and creating corresponding ssh connections for the Podman

remote client.

NOTE WSL 1.0 is not supported.

C.1.3 Arch Linux & Manjaro Linux

Arch Linux and Manjaro Linux use the pacman tool to install software.

$ sudo pacman -S podman

C.1.4 CentOS

Podman is available in the default Extras repos for CentOS 7 and in the AppStream repo for

CentOS 8 and Stream.

$ sudo yum -y install podman

C.1.5 Debian

The podman package is available in the Debian 11 (Bullseye) repositories and later.

$ sudo apt-get -y install podman

155

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://docs.podman.io/en/latest/markdown/podman-system-connection.1.html

©Manning Publications Co. To comment go to liveBook

C.1.6 Fedora

$ sudo dnf -y install podman

C.1.7 Fedora-CoreOS, Fedora SilverBlue

Podman comes preinstalled on these distributions. No need to install

C.1.8 Gentoo

$ sudo emerge app-emulation/podman

C.1.9 OpenEmbedded

Bitbake recipes for Podman and its dependencies are available in the meta-virtualization layer

(https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/)

Add the layer to your OpenEmbedded build environment and build Podman using:

$ bitbake podman

C.1.10 openSUSE

sudo zypper install podman

C.1.11 openSUSE Kubic

The openSUSE Kubic distribution has Podman built-in, no need to install

C.1.12 Raspberry Pi OS arm64

The Raspberry Pi OS uses the standard Debian’s repositories, so it is fully compatible with

Debian’s arm64 repository.

$ sudo apt-get -y install podman

C.1.13 Red Hat Enterprise Linux

RHEL7

Make sure you have a RHEL7 subscription, then enable the extras channel and install Podman.

$ sudo subscription-manager repos --enable=rhel-7-server-extras-rpms
$ sudo yum -y install podman

NOTE RHEL7 is no longer receiving updates to the Podman package except for security fixes.

RHEL8

Podman is included in the container-tools module, along with Buildah and Skopeo.

$ sudo yum module enable -y container-tools:rhel8
$ sudo yum module install -y container-tools:rhel8

156

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/

©Manning Publications Co. To comment go to liveBook

RHEL9 AND BEYOND

$ sudo yum install podman

C.1.14 Ubuntu

The podman package is available in the official repositories for Ubuntu 20.10 and newer.

$ sudo apt-get -y update
$ sudo apt-get -y install podman

C.2 Building from source code

I usually advise people to get the packaged versions of Podman, because successfully running

Podman on Linux requires having additional tools installed, such as conmon (container

monitor), containernetworking-plugins (Network configuration) and containers-common

(general configuration). While the process of building Podman from the source code is not that

complicated, the list of dependencies differs from one linux distribution to another. You can

always check the latest instructions on this page: https://podman.io/getting-

started/installation#building-from-scratch

C.3 Podman Desktop

There is also a GUI for browsing, managing, inspecting containers and images from different

container engines available at https://github.com/containers/podman-desktop. It can as well

connect to multiple engines at the same time and provides an unified interface. This is a

relatively new project under heavy development, so expect some rough edges.

To provide some background and context on this, Docker Inc in Sept 2021 announced that

they are going to be charging money for the previously free version of Docker Desktop on

macOS. The Docker announcement has caused a lot of people to look for the replacement.

C.4 Summary

• Podman is a tool for running Linux containers, so it runs only on Linux

• Podman is available in default package repositories of the most major Linux

distributions.

• Podman is available as a remote client on Macs and Windows which connects to either

local or remote Linux box

• Podman provides a special command for Linux VM management on macOS and

Windows.

• Podman can be built from source code, but requires many other tools to run

successfully.

• Podman Desktop is an alternative for a popular Docker Desktop.

157

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://podman.io/getting-started/installation#building-from-scratch
https://podman.io/getting-started/installation#building-from-scratch
https://github.com/containers/podman-desktop

©Manning Publications Co. To comment go to liveBook

Appendix D
Contributing to Podman

The number one thing that I love about Open Source is the community effort. It is great to be

able to contribute to a project and better yet, get people to contribute to your project. The

analogy I like to use comes from Grimms’ Fairy Tales, The Elves

(https://sites.pitt.edu/~dash/grimm039.html).

A shoemaker, through no fault of his own, had become so poor that he had only leather

enough for a single pair of shoes. He cut them out one evening, then went to bed, intending

to finish them the next morning. Having a clear conscience, he went to bed peacefully,

commended himself to God, and fell asleep. The next morning, after saying his prayers, he

was about to return to his work when he found the shoes on his workbench, completely

finished.

The story goes on to describe a couple of Elves that come by each night and finish the

shoes. I see this as the way Open Source works. Basically the people doing little contributions,

bug reporting, bug fixes, document fixes, feature requests and publicizing the project are all

the Elves. Sometimes I even go to bed and someone fixes a problem I was attempting to deal

with the night before. And sometimes the Elves grow up to be maintainers. Some small

contributions over time grow and these developers end up being core members of the Podman

team. Some we even hired.

D.1 Joining the community

Each small change helps make the project better. When I talk to college students about Open

Source, I tell them about the unique opportunities that they have, which were not around when

I was a student. They can make a contribution to a software project or product and then to list

them on their resume. When interviewing a student for an internship or a job, having a few

github.com contributions on a resume is very impressive.

Podman and the underlying technologies are always looking for new contributions. No

contribution is too small – from a spelling mistake in a man page up to a full blown feature.

You don’t have to be a software developer to contribute. We are always looking for help on

158

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://sites.pitt.edu/~dash/grimm039.html

©Manning Publications Co. To comment go to liveBook

documentation, web design for podman.io, as well as software. Many great ideas come from

users of the product. Just reporting a bug or reporting what you don’t like can lead to fresh

ideas that improve the project. I often ask people who have set up complicated environments

using Podman to blog about it so others can learn.

Figure D.1 Podman’s community page (https://podman.io/community)

Podman is an inclusive community, as are all of the github.com/containers projects. The

code of conduct statement for the containers project at

https://github.com/containers/common/blob/main/CODE-OF-CONDUCT.md states the

following:

“As contributors and maintainers of the projects under the https://github.com/containers repository,

and in the interest of fostering an open and welcoming community, we pledge to respect all people who

contribute through reporting issues, posting feature requests, updating documentation, submitting pull

requests or patches, and other activities to any of the projects under the containers umbrella.”

D.2 Podman on github.com

Issues, discussions and pull requests reside on the github.com/containers/podman repository.

As of this writing the project has over 1,200 forks and 12,000 stars. Bottom line: it is a very

active project.

159

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://podman.io/community
https://podman.io/community
https://github.com/containers/common/blob/main/CODE-OF-CONDUCT.md

©Manning Publications Co. To comment go to liveBook

Figure D.2 Podman’s github page github.com/containers/podman

You can also communicate directly with the core maintainers on IRC on the #podman

channel on libera.chat. The IRC channel is also linked to #podman:matrix.org

(https://matrix.to/#/#podman:matrix.org) on matrix and the Podman Discord

(https://discord.com/invite/x5GzFF6QH4) for web access.

There is also a low volume Mailing list that you can join by sending an email to podman-

join@lists.podman.io.

Finally you can follow @podman_io on twitter, or follow me @rhatdan.

160

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://matrix.to/#/
https://discord.com/invite/x5GzFF6QH4
mailto:podman-join@lists.podman.io
mailto:podman-join@lists.podman.io

©Manning Publications Co. To comment go to liveBook

Appendix E
Podman on macOS

This appendix covers

• Installing podman on a macOS

• Using podman machine init command to download a VM with Podman service

installed

• Using podman command to communicate with the Podman service running in the VM

• Starting or stopping the VM with the podman machine start/stop commands

Podman is a tool for launching Linux containers. Linux containers require a Linux kernel. As

much as I’d love to convince the world to move to the Linux Desktop like I do, most users

work on macOS and Windows operating systems. Perhaps even you. If you use the Linux

Desktop, hooray, and if you don't use a macOS machine, feel free to skip this appendix.

Because you did not skip this appendix, I think you want to create Linux containers without

having to SSH into a Linux box. You want to use native software development tools and keep

development locally.

One way would be to run Podman as a service on a Linux box and use the podman --

remote command to communicate with this service. Podman provides the podman system

connection command to configure how podman communicates with a Linux box. However,

the problem with this approach is that it is a meticulous process and requires a number of

manual steps. Please refer to this web page for an updated tutorial on this process:

https://github.com/containers/podman/blob/main/docs/tutorials/remote_client.md

A better way would be to use a new command, podman machine, which encapsulates all

these steps and improves your experience with managing a Linux box to be used for podman-

remote.

In this chapter, you'll learn how to install Podman in macOS and then use the podman

machine commands to install, configure and manage the VM to allow you to use the native

Podman client to launch containers.

161

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/podman/blob/main/docs/tutorials/remote_client.md

©Manning Publications Co. To comment go to liveBook

E.1 Podman on macOS

The first step to launching Podman on a macOS is installing it. The macOS client is available

through Homebrew (https://brew.sh/).

NOTE Homebrew describes itself as ‘... the easiest and most flexible way to install the UNIX tools Apple

didn’t include with macOS.’

Homebrew is the best way to get open-source software installed on your macOS. If you do

not currently have Homebrew installed on your macOS, open a terminal and install it with the

following command at the prompt:

$ /bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Now run the following brew command to installs a trimmed down version of Podman, with

only --remote support, into the /opt/homebrew/bin directory:

$ brew install podman

If you don’t have access to a Linux VM or a remote Linux server, Podman allows you to

create a locally running VM using the podman machine command. It makes this easy by

creating and configuring a VM with a Podman service enabled.

NOTE If you have an existing Linux machine, you can use the podman system connection commands

to set up connections to those machines.

E.1.1 Using podman machine

The podman machine commands allow you to pull a VM from the internet, start it, stop or

remove it. This VM is pre-configured with the Podman service. Additionally, this command

creates the ssh connection and adds this information to the podman system connection

datastore greatly simplifying the process of setting up a podman-remote environment. Table

E.1, lists all of the podman machine subcommands used to manage the lifecycle of the Podman

virtual machine.

162

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://brew.sh/

©Manning Publications Co. To comment go to liveBook

Table E.1 Podman machine commands

Command Description

init Initialize a new virtual machine

list List virtual machines

rm Remove a virtual machine

ssh Ssh into a virtual machine. It is useful for entering the virtual machine and running the

native Podman commands. Some Podman commands are not supported remotely, and

you might want to change some configurations inside the VM.

start Start a virtual machine.

stop Stop a virtual machine. If you are not running containers, you might want to shut down

the VM to save system resources.

The first step is to initialize a new VM in your system using the podman machine init

command, described in the following section.

PODMAN MACHINE INIT

The podman machine init command downloads and configures a VM on your macOS system.

NOTE The VM is relatively large and takes a few minutes to download.

By default, it downloads the latest released fedora-coreos image

(https://getfedora.org/en/coreos) if it was not downloaded before.Fedora CoreOS is a minimal

operating system designed to run containers.

163

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://getfedora.org/en/coreos?stream=stable

©Manning Publications Co. To comment go to liveBook

Figure E.1 The podman machine init command pulling the VM and configuring the ssh connections

$ podman machine init
Downloading VM image: fedora-coreos-35.20211215.2.0-qemu.x86_64.qcow2.xz #A [=========>----

--] 111.0MiB / 620.7MiB
Downloading VM image: fedora-coreos-35.20211215.2.0-qemu.x86_64.qcow2.xz: done
Extracting compressed file #B

#A Podman finds and downloads the latest fedora-coreos qcow image onto your system.

#B After downloading the image, Podman decompresses the image and configure qemu to be ready to execute it and

configures the ssh connection in to the podman system connection datastore

Podman pre-configures the VM with the amount of memory, disk size, and CPUs for it to use.

These values can be configured using init subcommand options. Table E.2 describes these

options.

164

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table E.2 Podman machine init command options

Option Description

--cpus uint Number of CPUs (default 1)

--disk-size uint Disk size in GB (default 10). It is an important setting to consider since it

limits the number of containers and images allowed to be used within the

VM. If you have the space, I recommend increasing the field.

--image-path string Path to qcow image (default "testing"). Podman has two built-in Fedora

CoreOS images that it can pull, “testing” and “stable”. You can also select

other OS’s and VMs to download, but the VMs must support CoreOS/ignition

files. (https://coreos.github.io/ignition/).

--memory integer Memory in MB (default 2048). The virtual machine requires a certain amount

of memory to run and depending on the containers you want to run within

the VM, you might need more.

Once podman machine init finishes downloading and installing the VM, you can view the VM

with the podman machine list command. Notice the * indicates the default VM to be used.

The podman machine command currently only supports running one VM at a time.

$ podman machine list
NAME VM TYPE CREATED LAST UP CPUS MEMORY DISK SIZE
podman-machine-default* qemu 2 minutes ago 2 minutes ago 1 2.147GB 10.74GB

In the next section let’s examine the automatically created SSH connection.

PODMAN MACHINE SSH CONFIGURATION

The podman machine init command provides the OS with the Ignition config which includes

an SSH key for the core user. Then, Podman adds SSH connections on the client machine for

the rootless and rootful modes and configures the user account, adds required packages and

configurations within the VM. The SSH configuration allows for password-less SSH commands

to the core and root accounts from the client. The podman machine init command also

configures the podman system connection information (described in section 9.5.4, chapter 9).

The system connection database is configured for both the rootful user and the rootless user

within the VM. If no previous connections are present, the podman machine init command

will make the newly created connection a default one.

You can examine all of the connections using the podman system connection list

command. The default connection podman-machine-default is the rootless connection:

165

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://coreos.github.io/ignition/

©Manning Publications Co. To comment go to liveBook

$ podman system connection list
Name URI

 Identity Default
podman-machine-default ssh://core@localhost:50107/run/user/501/podman/podman.sock

/Users/danwalsh/.ssh/podman-machine-default true
podman-machine-default-root ssh://root@localhost:50107/run/podman/podman.sock

 /Users/danwalsh/.ssh/podman-machine-default false

Sometimes containers you want to execute require root privileges and can not run in

rootless modes. For this, you can modify the system connection to default to the rootful service

using the podman system connection default command:

$ podman system connection default podman-machine-default-root

View the connections again to confirm the default connection is now podman-machine-

default-root.

$ $ podman system connection list
Name URI

 Identity Default
podman-machine-default ssh://core@localhost:50107/run/user/501/podman/podman.sock

/Users/danwalsh/.ssh/podman-machine-default false
podman-machine-default-root ssh://root@localhost:50107/run/podman/podman.sock

 /Users/danwalsh/.ssh/podman-machine-default true
n-machine-default ssh://root@localhost:38243/run/podman/podman.sock

Now all Podman commands connect directly to the Podman service running within the root

account. Change the default connection back to the rootless user using the podman system

connection default command again

$ podman system connection default podman-machine-default

If you attempt to run a Podman container at this point it fails because the VM is not actually

running. You need to start the VM.

STARTING THE VM

After adding a VM and setting a specific connection as a default one, let's try running a various

podman command:

$ podman version
Cannot connect to Podman. Please verify your connection to the Linux system using `podman

system connection list`, or try `podman machine init` and `podman machine start` to
manage a new Linux VM

Error: unable to connect to Podman. failed to create sshClient: Connection to bastion host
(ssh://root@localhost:38243/run/podman/podman.sock) failed.: dial tcp [::1]:38243:
connect: connection refused

As the error points out, the VM is not running and must be started.

You start a single VM using the podman machine start command. Podman only supports

running one VM at a time. By default, the start command starts the default VM. If you have

multiple VMs and you want to start a different VM, you can specify the optional machine name.

166

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

$ podman machine start
INFO[0000] waiting for clients...
INFO[0000] listening tcp://127.0.0.1:7777
INFO[0000] new connection from @ to /run/user/3267/podman/qemu_podman-machine-default.sock
Waiting for VM …
macOShine "podman-machine-default" started successfully

You are now ready to begin running podman commands on the Linux box which runs the

Podman service. Run the podman version command to confirm the client and server are

configured correctly. If not, the Podman commands should instruct you on how to configure

the system.

$ podman version
Client:
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18.1
Built: Thu May 5 16:07:47 2022
OS/Arch: darwin/arm64
Server:
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18
Built: Fri May 6 12:16:38 2022
OS/Arch: linux/arm64

Now you can use the Podman commands that you learned in the previous chapters directly

on macOS. When you are done with the working with containers in the VM, you probably should

shut it down to save on resources.

NOTE Podman is supported on M1 Arm64 machines as well as the X86 platforms. Podman machine

init downloads the matching architecture VM, allowing you to build images for that architecture. Support for

building images on other architectures is being worked on as of this writing.

STOPPING THE VM

The podman machine stop command allows you to shut down all containers within the VM as

well as the VM itself:

$ podman machine stop

When you need to start using containers again, launch the VM with the podman machine

start command.

NOTE All of the podman machine commands work on Linux as well and allow you to test different

versions of Podman at the same time. Podman on Linux is the complete command, therefore you need to use

the --remote option to communicate with the Podman service running within the VM launched by the

podman machine. On non-linux platforms the --remote option is not required since the client is preconfigured

in --remote mode.

167

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

E.2 Summary

• Linux containers require a Linux kernel, meaning running containers on a macOS

requires a virtual machine running Linux

• Podman on a macOS is not running containers locally on the macOS. The Podman

command is actually communicating with the Podman service running on a Linux

machine

• The podman machine init pulls down and installs a Fedora CoreOS virtual machine

onto your platform which is running the Podman service

• The podman machine init command also sets up the SSH environment required to

allow the Podman remote client to communicate with the Podman server inside of the

VM

168

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Appendix F
Podman on Windows

This appendix covers

• Installing podman on Windows

• Using podman machine init command to create a Fedora-based WSL2 distribution

running Podman

• Using the podman command on Windows to communicate with the Podman service

running in the WSL2 instance

• Starting or stopping the WSL2 instance with the podman machine start/stop commands

Podman is a tool for launching Linux containers. Linux containers require a Linux kernel. As

much as I’d love to convince the world to move to the Linux Desktop like me, most users work

on Mac and Windows operating systems. Perhaps even you. If you use the Linux Desktop,

hooray, and if you don't use a Windows machine, feel free to skip this chapter.

Because you did not skip this chapter, I think you want to create Linux containers without

having to SSH into a Linux machine and create the container there. You want to use native

software development tools and keep their software local to their machines.

On Linux, Podman can be run as a service allowing remote connections to launch

containers. Then from another system, the podman --remote command can be used to

communicate with the remote Podman service to launch a container.

Further, you can use podman system connection to configure podman --remote to

communicate with a remote Linux machine running the Podman service over SSH without

providing a URL to every command. The problem with all of this is that someone has to

configure the remote machine with the correct version of the Podman service, and then you

have to configure the SSH session.

Realizing that this experience is not optimal for new users of Podman on a Windows

desktop, Podman added a new command, podman machine. The podman machine command

makes it easy to create and manage a WSL2 based Linux environment with Podman pre-

169

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

installed and configured. The Podman command on Windows is actually a thinned down

Podman command with only podman --remote support.

In this chapter, you'll learn how to install Podman onto your Windows machine and then

use the podman machine commands to install, configure and manage the WSL2 instance.

F.1 First Steps

The podman machine command on Windows accepts all the same commands as those used on

Linux and Mac with very similar behavior. Still, there are a few differences since the underlying

backend on Windows is based on Windows Subsystem for Linux (

https://docs.microsoft.com/en-us/windows/wsl/) instead of the VM as in the other operating

systems.

WSL v2 involves using the Windows Hyper-V hypervisor; however, unlike a standard VM -

based approach, WSL2 shares the same virtual machine and Linux kernel instance across every

Linux distribution instance installed by the user. As an example if you create two WSL2

distributions, and you run dmesg on each instance, you see the same output, since the same

Kernel is hosting both.

NOTE WSL V1 doesn’t work with Podman, you must upgrade your Windows machine to an OS version

that supports WSL V2. For x64 systems: Windows Version 1903 or higher, with Build 18362 or higher. For

ARM64 systems: Windows Version 2004 or higher, with Build 19041 or higher.

Running Podman with WSL2 enables efficient resource sharing between the host and all

running instances in exchange for less isolation. Keep in mind that the podman machine

command shares the same kernel with any other distributions you have running and be

cautious when manipulating any kernel level setting (network interfaces, netfilter policy, and

so on) in any distribution, because you may unintentionally impact containers executed by

Podman.

F.1.1 Prerequisites

Podman for Windows requires Windows 10 (Build 19041 or later) or Windows 11. As WSL v2

uses a hypervisor, your computer must have virtualization instructions enabled (e.g., Intel VT-

x or AMD-V). Additionally, the hypervisor requires Second Level Address Translation (SLAT)

support. Finally, your system must either have internet connectivity or an offline copy of all

software to be fetched by the Podman machine.

NOTE If at any time you experience the errors 0x80070003 or 0x80370102 (or any error indicating the

virtual machine can not be started), you most likely have virtualization disabled. Check your BIOS (or WSL2

instance) settings to verify VT-x/AMD-V/SWSL2 instance and SLAT are enabled.

While not required, installing Windows Terminal (as opposed to the standard CMD

command application or Powershell) is strongly recommended (future versions of Windows 11

include it by default). In addition to having modern terminal features like transparent cut and

170

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://docs.microsoft.com/en-us/windows/wsl/

©Manning Publications Co. To comment go to liveBook

paste and tiled screens, it also offers direct WSL and PowerShell integration, making it easy to

switch between environments. You can install it via the Windows store or via winget:

PS C:\Users\User> winget install Microsoft.WindowsTerminal

F.1.2 Installing Podman

Installing Podman is straightforward. Go to the podman site or the Podman Github repository

and download the latest Podman MSI Windows Installer in the releases section.

Figure F.1 Downloading and running the podman installer

After running the installer, open a terminal (use the wt command if you installed Windows

Terminal as recommended), and execute your first podman command:

171

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://github.com/containers/podman/releases

©Manning Publications Co. To comment go to liveBook

Figure F.2 Podman commands running within the Windows Terminal

AUTOMATIC WSL INSTALLATION

If WSL is not installed on your Windows system, Podman installs it for you. Simply execute the

podman machine init command (as described in F.2.1) to create your first machine instance,

and Podman prompts you for permission to install WSL. The WSL install process requires a

reboot but resumes execution of the machine creation process (Be sure to wait a few minutes

for the terminal to relaunch and install)

If you prefer a manual installation, refer to the WSL installation guide:

https://docs.microsoft.com/en-us/windows/wsl/install

172

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://docs.microsoft.com/en-us/windows/wsl/install

©Manning Publications Co. To comment go to liveBook

Figure F.3 The podman machine init starts the WSL Install

F.2 Using podman machine

The setup and use of the Linux environment is made easy through the use of podman machine

commands. On Windows, these commands create and manage a WSL2 distribution including

downloading a base Linux image and packages from the internet and setting everything up for

you. The WSL2 distribution is pre-configured with the Podman service, and ssh connection

configuration is automatically added to the podman system connection datastore. The final

result is the ability to easily run Podman commands on your Windows desktop as if it was a

Linux system. Table F.1 lists all of the podman machine commands used to manage the lifecycle

of the WSL2 backed Linux environment.

173

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table F.1 Podman machine commands

Command Description

init Initialize a new WSL2 based machine instance

list List WSL2 machines

rm Remove a WSL2 machine instance.

set Sets an updatable WSL machine setting

ssh Ssh into a WSL2 machine instance. Useful for entering the WSL2 instance and running

the native Podman commands. Some Podman commands are not supported remotely,

and you might want to change some configurations inside the WSL2 instance.

start Start a WSL2 machine instance.

stop Stop a WSL2 machine instance. If you are not running containers, you might want to

stop to save system resources.

After installing podman (see section F.1.2) The first step is to create a WSL2 machine instance

on your system using the podman machine init command, described in the following section.

F.2.1 Podman machine init

As shown in Fig F.5, you can use the podman machine init command to automate the

installation of a WSL2-based Linux environment which hosts a Podman service for running

containers

NOTE In addition to the base image, a number of packages must be downloaded and installed, which

can take several minutes to complete.

By default, podman machine init downloads a known compatible release of Fedora to

create the WSL2 instance (https://getfedora.org). Fedora is used since it is well integrated with

Podman and is the operating system used by most of the Podmaan core developers.

174

https://livebook.manning.com/#!/book/podman-in-action/discussion
https://getfedora.org/

©Manning Publications Co. To comment go to liveBook

Figure F.4 The podman machine init command creating the WSL2 distribution and configuring ssh

connections

The following shows the condensed output from running the podman machine init

command.

PS C:\Users\User> podman machine init
Downloading VM image: fedora-35.20211125-x86_64.tar.xz: done
Extracting compressed file
Importing operating system into WSL (this may take 5+ minutes on a new WSL install)...
Installing packages (this will take awhile)...
Fedora 35 - x86_64 5.5 MB/s | 79 MB 00:14
Complete!
Configuring system…
Generating public/private ed25519 key pair.
Machine init complete
To start your machine run:
 podman machine start

Table F.2 explains the init options that allow you to customize the default settings.

175

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Table F.2 Podman machine init command options

Option Description

--cpus uint Not used

--disk-size uint Not used

--image-path string On Windows, this option refers to the Fedora distribution number (e.g., 35).

As with Linux and Mac, you can also specify an arbitrary URL or filesystem

location with a custom image, but podman expects a Fedora-derived layout.

--memory integer Not used

--rootful Whether this machine instance should be rootful or rootless

NOTE The physical limits specified in the table above (CPU, memory, disk) are currently ignored on

Windows since the Windows Subsystem for Linux (WSL) backend dynamically resizes and shares resources

across distributions. If you need to constrain resources, you can configure those limits in your users' .wslconfig

file. However, they apply globally to all WSL2 distros, since they share the same underlying VM

F.2.2 Podman machine SSH configuration

The podman machine init command creates an account within the WSL2 instance. By default,

the user in Fedora is user@localhost. Podman configures SSH on the client machine and the

new user account and root within the WSL2 instance. The SSH configuration allows for

password-less SSH commands to the user and root accounts from the client. The podman

machine init command also configures the podman system connection information

(described in section 9.5.4, chapter 9). The system connection database is configured for both

the rootful user and the rootless user within the WSL2 instance. If you do not have any existing

connections, the podman machine init command creates and sets as a default one the

rootless user connection to your WSL2 instance.

You can examine all of the connections using the podman system connection list command. The
default connection podman-machine-default is the rootless connection:

PS C:\Users\User> podman system connection ls
Name URI Identity Default
podman-machine-default ssh://user@localhost:57051.. podman-machine-default true
podman-machine-default-root ssh://root@localhost:57051.. podman-machine-default false

Sometimes containers you want to execute require root privileges and can not run in

rootless modes. You can change the default connection to rootful by switching the
default mode for the created machine instance. Modify the default to rootful service
using the podman machine set command:

PS C:\Users\User> podman machine set --rootful

View the connections again to confirm the default is now podman-machine-default-root.

176

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

PS C:\Users\User> podman system connection ls
Name URI Identity Default
podman-machine-default ssh://user@localhost:57051.. podman-machine-default false
podman-machine-default-root ssh://root@localhost:57051.. podman-machine-default true

Now all Podman commands connect directly to the Podman service running within the root

account. Change the default connection back to the rootless user using the podman machine

set command again:

PS C:\Users\User> podman machine set --rootful=false

If you attempt to run a Podman container at this point it fails because the machine instance

is not actually running. You need to start the machine instance.

F.2.3 Starting the WSL2 instance

Attempting to execute the podman version command fails because the WSL2 instance is not

started:

PS C:\Users\User> podman version
Cannot connect to Podman. Please verify your connection to the Linux system using `podman

system connection list`, or try `podman machine init` and `podman machine start` to
manage a new Linux Linux VM

Error: unable to connect to Podman. failed to create sshClient: Connection to bastion host
(ssh://root@localhost:38243/run/podman/podman.sock) failed.: dial tcp [::1]:38243:
connect: connection refused

As the error points out, the virtualized Linux environment (the WSL2 machine instance) is

not running and must be started.

You start a single WSL2 instance using the podman machine start command. By default,

it starts the default WSL2 instance, podman-machine-default. If you have multiple WSL2

instances and want to start a different WSL2 instance, you can specify the optional machine

name for the podman machine start command.

PS C:\Users\User> podman machine start
Starting machine "podman-machine-default"
This machine is currently configured in rootless mode. If your containers
require root permissions (e.g. ports < 1024), or if you run into compatibility
issues with non-podman clients, you can switch using the following command:
 podman machine set --rootful
API forwarding listening on: npipe:////./pipe/docker_engine
Docker API clients default to this address. You do not need to set DOCKER_HOST.
Machine "podman-machine-default" started successfully

You are now ready to begin running podman commands on the host which communicate

with the Podman service running in the WSL2 instance. Run the podman version command

to confirm the client and server are configured correctly. If not, the Podman commands instruct

you on how to configure the system.

177

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

PS C:\Users\User> podman version
Client: Podman Engine
Version: 4.0.0-dev
API Version: 4.0.0-dev
Go Version: go1.17.1
Git Commit: bac389043f268e632c45fed7b4e88bdefd2d95e6-dirty
Built: Wed Feb 16 00:33:20 2022
OS/Arch: windows/amd64
Server: Podman Engine
Version: 4.0.1
API Version: 4.0.1
Go Version: go1.16.14
Built: Fri Feb 25 13:22:13 2022
OS/Arch: linux/amd64

Now you can use the Podman commands that you learned in the previous chapters directly

on Windows but understand that Podman on Windows is equivalent to podman --remote talking

remotely to the Podman service within the WSL2 instance.

F.2.4 Using Podman machine commands

After your machine instance is running, you can perform podman commands in your

PowerShell prompt as if running within Windows.

PS C:\Users\User> podman run ubi8-micro date
Thu Jan 6 05:09:59 UTC 2022

F.2.5 Stopping the WSL2 instance

When you are done using containers on your system, you might want to shut down the WSL2

instance to save on system resources. Use the podman machine stop command to shut down

all containers within the WSL2 instance as well as the WSL2 instance.

PS C:\Users\User> podman machine stop

When you need to start using containers again, launch the WSL2 instance with the podman

machine start command.

NOTE All of the podman machine commands work on Linux as well and allow you to test different

versions of Podman at the same time. Podman on Linux is the complete command, therefore you need to use

the --remote option to communicate with the Podman service running within the WSL2 instance launched

by the podman machine command. On non-linux platforms the --remote option is not required since the client

is preconfigured in --remote mode.

F.2.6 Listing machines

You can list the available machine instances using the podman machine ls command. The

values returned by this command on Windows reflect current active usage, as opposed to fixed

resource limits as is the case on Mac and Linux. Disk storage reflects the disk space currently

allocated to each machine instance. The CPU values convey the # of CPUs on the Windows

host (unless limited by WSL) repeated per machine instance. The returned memory values are

178

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

also repeated (with slight variation from sampling variance) and reflect the total amount of

memory used by the Linux Kernel for ALL distributions in use (since it is shared). In other

words, for total usage, you sum the disk sizes, but not memory and CPU.

PS C:\Users\User> podman machine ls
NAME VM TYPE CREATED LAST UP CPUS MEMORY DISK

SIZE
podman-machine-default wsl 3 days ago Running 4 528.4MB 845.2MB
other wsl 4 minutes ago Running 4 524.5MB 778MB

F.2.7 Using Podman at the WSL prompt

In addition to the podman machine ssh command, you can also access the podman machine

guest using the WSL prompt. If you are running Windows Terminal, the podman machine

guests (names prefixed by podman) are in the down arrow dropdown. Alternatively, you can

drop into a WSL shell from any PowerShell prompt by using the wsl command and specifying

the backing distribution name. For example, the default instance created by podman machine

init is named podman-machine-default.

You can use either approach to manage the guest and execute podman commands inside

a full-featured Linux shell environment.

PS C:\Users\User> wsl -d podman-machine-default
[root@WIN10PRO /]# podman version
Client: Podman Engine
Version: 4.0.1
API Version: 4.0.1
Go Version: go1.16.14

Built: Fri Feb 25 13:22:13 2022
OS/Arch: linux/amd64

F.2.8 Updating Fedora

Since the Windows machine implementation is based on Fedora and not Fedora CoreOS, fixes

and enhancements are not automatic. They must be explicitly initiated on the guest using

Fedora's package management command, DNF. Further, upgrading to a new version of Fedora

requires exporting any data you need to preserve and using podman machine init to create

a second machine instance (or replacing the existing one after a podman machine rm

command).

NOTE Currently it is difficult to run Fedora CoreOS inside of WSL, so it was decided to default to Fedora.

If Windows support for CoreOS changes in the future, podman machine will move to Fedora CoreOS.

As an example, to pull the latest packages for the version of Fedora running on the podman

guest perform the following command:

179

https://livebook.manning.com/#!/book/podman-in-action/discussion

©Manning Publications Co. To comment go to liveBook

PS C:\Users\User> podman machine ssh dnf upgrade -y
Warning: Permanently added '[localhost]:52581' (ED25519) to the list of known hosts.
Last metadata expiration check: 1:18:35 ago on Wed Jan 5 21:13:15 2022.
Dependencies resolved.
…
Complete!

F.2.9 Advanced Stopping and Restarting

Normally, to stop and restart Podman, use the respective podman machine stop and podman

machine start commands. Stopping the machine is the preferred approach since system

services can come to a clean stop. However, in some cases, you may wish to force a hard

restart of the WSL facilities, including the shared Linux kernel, which stays active even after a

machine stop. To kill all processes associated with a WSL distribution, use the wsl --

terminate <machine name> command. To shutdown the Linux kernel, killing all running

distributions, use the wsl --shutdown command. After these commands are issued, you can

use a standard podman machine start command to relaunch your instance.

PS C:\Users\User> wsl --shutdown
PS C:\Users\User> podman machine start
Starting machine…
Machine "podman-machine-default" started successfully

F.3 Summary

• Linux containers require a Linux kernel, meaning running containers on a Mac or

Windows platform requires a virtual machine running Linux.

• Podman on Windows is not running containers locally on Windows. The Podman

command is actually podman --remote communicating with the Podman service

running on a Linux machine backed by WSL2.

• The podman machine init pulls down and installs a virtual Linux environment onto

your platform which runs the Podman service

• The podman machine init command also sets up the SSH environment required to

allow the Podman remote client to communicate with the Podman server inside of the

WSL2 instance

• Podman on Windows with WSL, is the full Podman command. WSL is running the

Podman commands under the Linux kernel, even though it feels like it is running

natively on the Windows machine.

180

https://livebook.manning.com/#!/book/podman-in-action/discussion

	Podman in Action MEAP V03
	Copyright
	welcome
	brief contents
	Chapter 1: Podman: next generation container engine
	1.1 A brief overview of containers
	1.1.1 Container images: new way to ship software
	Container images lead to microservices
	1.1.2 Container image format
	1.1.3 Container standards

	1.2 Why Podman when you have Docker?
	1.2.1 Rootless containers
	1.2.2 Fork/Exec Model
	1.2.3 Daemon-less
	1.2.4 User Friendly Command Line
	1.2.5 Support for REST API
	1.2.6 Integration with systemd
	1.2.7 Pods
	1.2.8 Customizable Registries
	1.2.9 Multiple transports
	1.2.10 Complete customizability
	1.2.11 User Namespace support

	1.3 When not to use Podman
	1.4 Summary

	Chapter 2: Command line
	2.1 Working with containers
	2.1.1 Exploring containers
	2.1.2 Running the containerized application
	Favorite podman run options
	2.1.3 Stopping containers
	Favorite podman stop options
	2.1.4 Use the man podman-stop command for information about all options.
	2.1.5 Starting containers
	Favorite podman start options
	2.1.6 Listing containers
	Favorite podman ps options
	2.1.7 Inspecting containers
	Favorite podman inspect options
	2.1.8 Removing containers
	Favorite podman rm options
	2.1.9 Execing into a container
	Favorite podman exec options
	2.1.10 Creating an image from a container
	Favorite podman commit options

	2.2 Working with container images
	2.2.1 Difference between a container and an image
	2.2.2 Listing images
	Favorite podman images options
	2.2.3 Inspecting images
	Favorite podman image inspect option
	2.2.4 Pushing images
	Container transports
	2.2.5 podman login (Logging into a container registry)
	Favorite podman login and logout options
	2.2.6 Tagging images
	2.2.7 Removing images
	Favorite podman image prune options
	2.2.8 Pulling images
	Short names and container registries
	Favorite podman pull options
	2.2.9 Searching for images
	Favorite podman search options
	2.2.10 Mounting images

	2.3 Building images
	2.3.1 Format of a Containerfile/Dockerfile
	Adding content to an image
	Documenting how to use the image
	Committing the image
	2.3.2 Automating the building of our application
	Favorite podman build option

	2.4 Summary

	Chapter 3: Volumes
	3.1 Using volumes with containers
	3.1.1 Named volumes
	3.1.2 Volume mount options
	The U volume option
	The SELinux volume options
	3.1.3 podman run --mount command option

	3.2 Summary

	Chapter 4: Pods
	4.1 Running Pods
	4.1.1 Creating a pod
	4.1.2 Adding a container to a pod
	4.1.3 Starting a pod
	Favorite podman pod start options
	4.1.4 Stopping a pod
	Favorite podman pod stop options
	4.1.5 Listing pods
	Favorite podman pod list options
	4.1.6 Removing pods
	Favorite podman pod rm options

	4.2 Summary

	Chapter 5: Customization and configuration files
	5.1 Configuration files for storage
	5.1.1 Storage location
	5.1.2 Storage drivers
	Overlay storage options

	5.2 Configuration files for registries
	5.2.1 registries.conf
	Blocking pulling from container registries.

	5.3 Configuration files for engines
	5.4 System configuration files
	5.5 Summary

	Chapter 6: Rootless containers
	6.1 How does rootless Podman work?
	6.1.1 Images contain content owned by multiple user identifiers (UIDs)
	User namespace
	Mount namespace
	User namespace + mount namespace

	6.2 Rootless Podman under the covers
	6.2.1 Pulling the image
	6.2.2 Creating a container
	6.2.3 Setting up the network
	6.2.4 Starting the container monitor - conmon
	6.2.5 Launching the OCI runtime
	6.2.6 The containerized application runs until completion

	6.3 Summary

	Appendix A: Podman-related container tools
	A.1 Skopeo
	A.2 Buildah
	A.2.1 Creating a working container from a base image
	A.2.2 Adding data to a working container
	A.2.3 Running commands in a working container
	A.2.4 Adding content to a working container directly from the host
	A.2.5 Configuring a working container
	A.2.6 Creating an image from a working container
	A.2.7 Pushing an image to a container registry
	A.2.8 Building an image from Containerfiles
	A.2.9 Buildah as a library

	A.3 CRI-O: Container Runtime Interface for OCI Containers

	Appendix B: OCI runtimes
	B.1 runc
	B.2 crun
	B.3 kata
	B.4 gVisor

	Appendix C: Getting Podman
	C.1 Installing Podman
	C.1.1 MacOS
	Homebrew
	C.1.2 Windows
	Windows Remote Client
	Windows Subsystem for Linux (WSL) 2.0
	C.1.3 Arch Linux & Manjaro Linux
	C.1.4 CentOS
	C.1.5 Debian
	C.1.6 Fedora
	C.1.7 Fedora-CoreOS, Fedora SilverBlue
	C.1.8 Gentoo
	C.1.9 OpenEmbedded
	C.1.10 openSUSE
	C.1.11 openSUSE Kubic
	C.1.12 Raspberry Pi OS arm64
	C.1.13 Red Hat Enterprise Linux
	RHEL7
	RHEL8
	RHEL9 and beyond
	C.1.14 Ubuntu

	C.2 Building from source code
	C.3 Podman Desktop
	C.4 Summary

	Appendix D: Contributing to Podman
	D.1 Joining the community
	D.2 Podman on github.com

	Appendix E: Podman on macOS
	E.1 Podman on macOS
	E.1.1 Using podman machine
	Podman machine init
	Podman machine SSH configuration
	Starting the VM
	Stopping the VM

	E.2 Summary

	Appendix F: Podman on Windows
	F.1 First Steps
	F.1.1 Prerequisites
	F.1.2 Installing Podman
	Automatic WSL installation

	F.2 Using podman machine
	F.2.1 Podman machine init
	F.2.2 Podman machine SSH configuration
	F.2.3 Starting the WSL2 instance
	F.2.4 Using Podman machine commands
	F.2.5 Stopping the WSL2 instance
	F.2.6 Listing machines
	F.2.7 Using Podman at the WSL prompt
	F.2.8 Updating Fedora
	F.2.9 Advanced Stopping and Restarting

	F.3 Summary

