

WebAssembly: The Definitive Guide

Safe, Fast, and Portable Code

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Brian Sletten

 WebAssembly: The Definitive Guide

 by
 Brian
 Sletten

 Copyright © 2022 Bosatsu Consulting, Inc.. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

 	
 Acquisitions Editor:
 Suzanne McQuade

 	
 Development Editor:
 Angela Rufino

 	
 Production Editor:
 Kate Galloway

 	
 Copyeditor:
 Piper Editorial Consulting, LLC

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 December 2021:
 First Edition

 Revision History for the Early Release

 	
 2020-11-05:
 First Release

 	
 2020-11-16:
 Second Release

 	
 2021-02-04:
 Third Release

 	
 2021-03-10:
 Fourth Release

 	
 2021-03-23:
 Fifth Release

 	
 2021-05-04:
 Sixth Release

 	
 2021-10-08:
 Seventh Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492089841
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 WebAssembly: The Definitive Guide, the cover image, and related trade
 dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author, and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-08977-3

Dedication

This book was born on a mountain of privilege during a period when many
people didn’t have the luxury of working from home. It is therefore
dedicated to the front line and essential workers who kept the lights
on during a dark time.

Preface

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

I believe WebAssembly is an ascendant technology that has the
potential to transform the entire software development industry in one
form or another. I do not believe WebAssembly is going to be
transformative because I am writing a book on the topic. I am writing
a book on it because I believe it will be transformative.

Presumably you are interested in the technology as well. The problem
is, I think I have less of an idea of who you are as a reader than
many authors do. If this were a book about a particular programming
language or a specific topic, there would be a self-selecting aspect
to the audience and I could proceed apace. But WebAssembly is a much
larger topic than most people realize and I am trying to paint a very
large picture with this book. Most of the other books that have been
published have focused on a single aspect of it and I can understand
why.

Some of you might think it is a technology for killing JavaScript. It
isn’t. Some of you may think it is about bringing applications to the
browser. It is that, but it is also so much more. It is useful on the
server side, in the video game world, as a plugin mechanism, in
support of serverless functions and edge computing, in embedded
systems, the blockchain, and many other topics we will investigate
together. This is the first attempt I know of to be this comprehensive
with the topic and I felt it was important and time to tell this more
complete version.

In the lead up to the publication of the book, I have mostly gotten
positive support and excitement from people I have spoken to about the
project. One limited form of pushback I have gotten is with respect to
the title. Some folks felt it was premature to have “The Definitive
Guide” for this new of a technology. That is a fair position to take,
but because I am trying describe an extremely big and encompassing
technical landscape, I thought it was reasonable. I hope by the end of
the book you agree.

All I ask is that you have an open mind and a bit of
patience. WebAssembly touches a lot languages, runtimes, and
operational environments. In addition to teaching you about the
low-level details, we will look at integrations with the dominant
programming languages in this space and several different use cases. I
have tried not to make too many assumptions about your background so I
have heavily annotated the text with breadcrumbs for further
exploration and discovery via footnotes. If you are a more advanced
developer just seeking details about WebAssembly, feel free to ignore
these and don’t take offense. I expect a rather wide audience will be
at least perusing this book and I want them to feel welcome too.

If you are on the junior side development-wise, this will be a
challenging book. But I have tried to make it possible for you to at
least see what is going on. Consider the various links and references
as a personal guide into a more sophisticated development
reality. Don’t get overwhelmed, just tackle things one at a time in
whatever order interests you or makes sense. There is no single way
into this industry and however you get there is legitimate.

At the end of the day, WebAssembly is going to allow us to basically
choose our programming languages and run them securely in just about
any computational surface area. We have been promised this before, but
I think this time it is more likely to come to fruition. Thank you for
giving me the opportunity to explain why.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/bsletten/wasm_tdg.

If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “WebAssembly The Definitive Guide by Brian Sletten(O’Reilly). Copyright 2022 Bosatsu Consulting, Inc., 978-1492089841.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://www.oreilly.com/catalog/catalogpage.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

At times, our own light goes out and is rekindled by a spark from another person. Each of us has cause to think with deep gratitude of those who have lighted the flame within us.

Albert Schweitzer

The myth of the sole author is persistent. I have huge communities of
people to thank for the production of this book and their assistance
to me along the way. On the other hand, I alone am responsible for any
errors, inaccuracies and problems.

I would like to start with the larger WebAssembly community. They have
done a remarkable job in designing this platform without overdesigning
it. It is a moving target and they are very busy juggling and
balancing a surplus of competing issues. Along the way, they have left
breadcrumbs to explain decisions and lay the foundations for the
future. I would like to call special attention to the contributions of
Lin Clark who has emerged as one of my favorite technical
communicators. Not only is she generous with her time, her cartoon
introductions to complex topics are among the most effective forms I
have encountered.

The O’Reilly community is a top notch organization. Everyone I have
encountered there current and past has been a solid representative of
the brand. I would like to thank Mike Loukides for his time in
discussing my much larger views and suggesting we start with
WebAssembly. My editors Zan McQuade and Angela Rufino have been
stalwart champions of the project with the absolute patience of
Job. Kate Galloway and her team helped me get it across the finish
line. I would like to issue a special thank you to Karen Montgomery
for the beautiful cover. My dogs’ groomer is especially fond of it as
you caught the essence of this ridiculously lovable breed of Norwich
Terriers. For those who have questioned the relevance, they are the
smallest working dog and, as I pitched it, small, fast and portable,
just like WebAssembly.

For insight into the various WebAssembly use cases, I interviewed
several members of the projects and companies I mention throughout. In
no particular order, I would like to express my gratitude to Tim
McCallum, Aaron Turner, Connor Hicks, Liam Randall, Kevin Hoffman,
Sasha Krsmanovic, Jérôme Laban, and Francois Tanguay.

The technical reviewers have honored me with the gift of their time
and feedback. I would like to thank Dr. Sam Bail, Taylor Poindexter,
Hannah Thoreson, Brooks Townsend, Jay Phelps, David Sletten, and the
incomparable Dr. Venkat Subramaniam.

I was given a venue to begin speaking professionally about WebAssembly
by Jay Zimmerman of the NoFluffJustStuff conference series back in
2017. He and I knew it was too soon, but we wanted to start the
conversation and I appreciate the opportunity. The rest of the
speakers and attendees of this remarkable technical carnival have
given me no end of inspiration and feedback for which I am so much the
richer.

My friends and family have encouraged and supported me in all things,
a debt I will never be able to repay. Noone has done moreso than my
wife and friend, Kristin. She and our dogs Loki and Freyja have made
this time home during the pandemic not only bearable, but richer than
my life on the road.

Thank you, all.

Chapter 1. Introduction

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

Extraordinary claims require extraordinary evidence.

Dr. Carl Sagan

This chapter will introduce WebAssembly and provide context for its
expansive reach. In some sense it is a culmination of the evolution of
the web over the last several decades. There is quite a bit of history
to cover to make sense of it all. If you are not a fan of history and
exposition, you can skip this chapter and go to directly to
Chapter 2, but I hope you don’t. I think it is important
to understand why this technology is so important and where it came from.

What WebAssembly Offers

One of the greatest skills an engineer can develop is the ability to
assess what a new technology brings to the table. As Dr. Fred Brooks
of the University of North Carolina reminds us, there are no “silver
bullets”1, everything has
tradeoffs. Complexity is often not eliminated with a new technology,
but is simply moved somewhere else. So when something does actually
change what is possible or how we do our work in a positive direction,
it deserves our attention and we should try to figure out why.

When trying to understand the implications of something new, I usually
start by trying to determine the motivation of those behind
it. Another good source of insight is where an alternative has fallen
short. What has come before and how does it influence this new
technology we are trying to decipher? As in art and music, we are
constantly borrowing good ideas from multiple sources, so to truly
understand why WebAssembly deserves our attention and what it
provides, we must first look at what has preceded it and how it makes
a difference.

In the paper that formally introduced the world to
WebAssembly2, the authors indicate that
the motivation was about rising to meet the needs of modern,
web-delivered software in ways that JavaScript alone could
not. Ultimately it was a quest to provide software that is:

	
safe

	
fast

	
portable

	
compact

In this vision, WebAssembly is centered at the intersection of
software development, the web, its history and how it delivers
functionality in a geographically-distributed space. Over time the
idea has expanded dramatically beyond this starting point to imagine a
ubiquitous, safe, performant computational platform that touches just
about every aspect of our professional lives as
technologists. WebAssembly will impact the worlds of client-side web
development, desktop and enterprise applications, server-side
functionality, legacy modernization, games, education, cloud
computing, mobile platforms, Internet of Things (IoT) ecosystems,
serverless and microservices initiatives and more. I hope to convince
you of this over the course of this book.

Our deployment platforms are more varied than ever so we need
portability at both the code and application levels. A common
instruction set or byte code target can make algorithms work across
various environments because we just need to map logical steps to how
they can be expressed on a particular machine
architecture. Programmers use application programmer interfaces (API)
such as OpenGL3,
POSIX4 or Win325 because they
provide the functionality to open files, spawn subprocesses or draw
things to the screen. They are convenient and reduce the amount of
code a developer needs to write, but they create a dependency on the
presence of libraries to provide the functionality. If the API is not
available in a target environment, the application will not run. This
was one of the ways Microsoft was able to use its strength in the
operating system marketplace to dominate in the application suite
space as well. On the other hand, open standards can make it easier to
port software into different environments.

Another issue with the runtime side of the software we are building is
that different hosts have different hardware capabilities (number of
cores, presence of GPUs) or security restrictions (whether files can
be opened or network traffic can be sent or received). Software often
adapts to what is available by using features-testing approaches to
determine what resources an application can take advantage of, but
this often complicates the business functionality. We simply cannot
afford the time and money to rewrite software for multiple platforms
constantly. We need better strategies for reuse. We also need this
flexibility without the complexity of modifying the code to support
the platform on which it will run. Making the code different for
different host environments increases its complexity and complicates
testing and deployment strategies.

After several decades, the value proposition of open source software
is clear. We gravitate toward valuable, reusable components written by
other developers as a means of satisficing6 our own needs. However, not
all available code is trustworthy and we open ourselves up to software
supply chain attacks when we execute untrusted bits we have downloaded
from the internet. We become vulnerable to the risks, business impacts
and personal costs of insecure software systems through phishing
attacks, data breaches, malware and ransomware.

Until now, JavaScript has been the only story to solve some of these
problems. When it is run in a sandboxed environment, it gives us some
manner of security. It is ubiquitous and portable. The engines have
gotten faster. The ecosystem has exploded into an avalanche of
productivity. Once you leave the confines of browser-based
protections, however, we still have security concerns. There is a
difference between JavaScript code running as a client and JavaScript
running on the server. The single-threaded design complicates
long-running or highly-concurrent tasks. Due to its origins as a
dynamic language, there are several classes of optimizations that are
available to other programming languages that are, and will remain,
unavailable as options to even the fastest and most modern JavaScript
runtimes.

Additionally, it is too easy to add JavaScript dependencies and not
realize how much baggage and risk is being pulled in
transitively. Developers who do not take the time to consider these
decisions carefully end up encumbering every aspect of upstream
software testing, deployment and use. Each of these scripts has to be
loaded and validated once it is all transferred over the network. This
slows down the time to use and makes everything feel sluggish. When a
dependent package is modified or removed, it has the potential to
disrupt enormous amounts of deployed software7.

There is a perception among casual observers that WebAssembly is an
assault on JavaScript, but that simply is not the case. Sure, you will
be able to avoid JavaScript if you want to, but it is mostly about
giving you options to solve problems in the language of your choice
without requiring a separate runtime or having to care what language
another piece of software is written in. It is already possible to use
a WebAssembly module without knowing how it was built. This is going
to increase the lifetime of business value we get out of our software
and yet simultaneously allow us to innovate in adopting new languages
without impacting everything else.

We have experienced several tools, languages, platforms and frameworks
over the course of the past several decades that have attempted to
solve these problems, but WebAssembly represents one of the
first times we are getting it right. Its designers are not attempting
to overspecify anything. They are learning from the past, embracing
the web and applying problem space thinking to what is ultimately a
hard and multi-dimensional problem. Let’s look at the formative
influences on this exciting new technology before we dive into it
further.

History of the Web

There is a running joke in the WebAssembly community8 that WebAssembly was “neither web nor
assembly”. While this is true on some levels, the name is suggestive
enough of what it provides. It is a target platform with a series of
instructions that are vaguely assemblysque9. Given that
WebAssembly modules are frequently going to be delivered over the web
as another type of URL-addressable resource justifies the inclusion of
the word “Web” in the name.

One of the main distinctions between “conventional software
development” and “web development” is the fact there is effectively no
installation required with the latter once you have a browser
available. This is an enormous game changer in terms of costs to
deliver and the ability to quickly turnaround new releases in the face
of bugs and feature requests. When couched in other cross-platform
technology ecosystems such as the internet and the web, it also makes
supporting multiple hardware and software environments much easier
too.

Sir Tim Berners-Lee, the inventor of the World Wide Web, worked at the
European Organization for Nuclear Research (CERN)10 where he submitted a proposal for interlinking
documents, images and data in the pursuance of CERN’s larger research
goals. Even though the impact is clear in hindsight, he had to
advertise his ideas internally several times before he was asked to
act upon them11. As an organization, CERN was
represented by dozens of research facilities around the world who sent
scientists with their own computers, applications and data. There was
no real capacity to force everyone to use the same operating systems
or platforms so he recognized the need for a technical solution to
solve the problem.

Prior to the web, there were services such as Archie12,
Gopher13 and
WAIS14, but he
imagined a more user-friendly platform that was ultimately engendered
as an application-level innovation at the top of the internet’s
layered architecture. He also took ideas from the Standard Generalized
Markup Language (SGML)15 as
the basis of the HyperText Markup Language (HTML).

The results of these designs quickly became the major mechanism for
delivering information, documentation and eventually application
functionality to the world. It did so without requiring the various
stakeholders to agree on specific technologies or platforms by
defining the exchange of standards. This included both how requests
were made and what was returned in response. Any piece of software
that understood the standards could communicate with any other piece
of software that did as well. This gives us freedom of choice and the
ability to evolve either side independent of the other.

Origins of JavaScript

The web’s interaction model is called HyperText Transfer Protocol
(HTTP). It is based upon a constrained set of verbs for exchanging
text-based messages. While it was a simple and effective model that
was easy to implement, it was quickly seen to be inadequate to the
task of interactive, modern applications because of inherent latencies
in returning to the server constantly. The idea of being able to send
code down to the browser has always been compelling. If it ran on the
user’s side of the interaction, not every activity would require a
return to the server. This would make web applications dramatically
more interactive, responsive and enjoyable to use. How to achieve this
was not entirely clear though. Which programming language would make
the most sense? How would we balance expressive power with shallow
learning curves so more individuals could participate in the
development process? Which languages performed better than others and
how would we protect sensitive resources on the client side from
malicious software?

Most of the innovation in the browser space was originally driven by
Netscape Communications Corp. Believe it or not, the Netscape Browser
was originally a paid piece of software,16 but their
larger interest was in selling server side software. By extending what
was possible on the client, they could create and sell more powerful
and lucrative server functionality.

At the time, Java was emerging from its beginnings as an embedded
language for consumer devices, but it did not yet have much of a track
record of success. It was a compelling idea as a simplified version of
C++ that ran on a virtual platform and was therefore inherently
cross-platform. As an environment designed to run software downloaded
over the network, it had security built in via language design,
sandboxed containers and fine-grained permission models.

Porting applications between various operating systems was tricky
business and the prospect of not needing to do so created a frenzy
around what the future of software development would be. Sun
Microsystems found itself in the enviable position of having a
solution to a perfect storm of problems and opportunities. Given this
potential, discussions were underway to bring Java to the browser, but
it was not clear what that deal would look like or when it would land.

As an Object-Oriented Programming (OOP) language Java contained
sophisticated language features such as threads and inheritance. There
was concern at Netscape that this might prove too difficult for
non-professional software developers to master, so they hired Brendan
Eich to create a “Scheme17 for the
browser”18 imagining an
easier, lightweight scripting language. Brendan had the freedom to
make some decisions about what he wanted to include in the language,
but was also under pressure to get it done as quickly as possible. A
language for interactive applications was seen as a crucial step
forward for this emerging platform and everyone wanted it
yesterday. As Sebastian Peyrott notes in the blog post just cited,
what emerged was “a premature lovechild of Scheme and
Self19, with Java
looks.”

Initially JavaScript in the browser was limited to simple interactions
such as dynamic menus, pop up dialogs and responding to button
clicks. These were significant advances over roundtrips to the server
for every action, but it was still a toy compared to what was possible
on desktop and workstation machines at the time.

The company I worked for during the early days of the web created the
first whole earth visualization environment involving terabytes of
terrain information, hyperspectral imagery and pulling video frames
from drone videos20. This of course required
Silicon Graphics workstations initially, but was eventually able to
run on PCs with consumer-grade graphics processing units (GPUs) within
a couple of years. Nothing like that was remotely possible on the web
back then, although, thanks to WebAssembly, that is no longer
true21.

There was simply no confusing real software development with web
development. As we have noted, though, one of the nice things about
the separation of concerns between the client and the server was that
the client could evolve independently of the server. While Java and
the Java Enterprise model came to dominate the backend, JavaScript
evolved in the browser and eventually became the dominant force that
it is.

Evolution of the Web Platform

As Java applets and JavaScript became available in the Netscape
browser, developers began to experiment with dynamic pages,
animations and more sophisticated user interface components. For
years these were still just toy applications, but the vision had
appeal and it was not difficult to imagine where it could eventually
lead.

Microsoft felt the need to keep up, but was not overly interested in
directly supporting their competitors’ technologies. They (rightly)
felt that this web development might eventually upend their operating
system dominance. When they released Internet Explorer with scripting
support, they called it JScript to avoid legal issues and
reverse-engineered Netscape’s interpreter. Their version supported
interaction with Windows-based Component Object Model (COM) components
and had other twists that made it easy to write incompatible scripts
between the browsers. Their initial support of the efforts to
standardize JavaScript as ECMAScript waned for a while and eventually
the Browser Wars22 began. This was a
frustrating time for developers that ultimately involved
anti-competitive lawsuits against Microsoft by the U.S. government.

As Netscape’s fortunes waned, Internet Explorer began to dominate the
browser space and cross-platform innovation subsided for a while even
as JavaScript went through the standardization process. Java applets
became widely used in some circles but they ran in a sandboxed
environment so it was trickier to use them as the basis for driving
dynamic web page activity. You could certainly use Sun’s graphics and
user interface APIs to do productive and fun things, but they ran in a
separate memory space than the HTML Document Object Model
(DOM)23. They were
incompatible and had different programming and event models. User
interfaces did not look the same between the sandboxed elements and
the web elements. It was over all a wholly unsuitable development
experience.

Other non-portable technologies such as ActiveX became popular in the
Microsoft web development space. Macromedia’s Flash became Adobe’s
Flash and had a short but active period of popularity for about a
decade. The problems remained with all of these secondary options,
however. The memory spaces were walled off from each other and the
security models were less robust than anyone had hoped. The engines
were new and under constant development so bugs were common. ActiveX
provided code-signing protections, but no sandboxing so rather
terrifying attacks became possible if certificates could be forged.

Firefox emerged from Mozilla as a viable competitor from the ashes of
Netscape. It and Google’s Chrome eventually became suitable
alternatives to Internet Explorer. Each camp had its adherents, but
there was a growing interest in solving the incompatibilities between
them. The introduction of choice in the browser space forced each of
the vendors to work harder and do better to outshine each other as a
means of achieving technical dominance and attracting market share.

As a result JavaScript engines got significantly faster. Even though
HTML 4 was still “quirky” and painful to use across browsers and
platforms, it was starting to be possible to isolate those
differences. The combination of these developments and a desire to
work within the structures of the standards-based environments
encouraged Jesse James Garrett24 to imagine a
different approach to web development. He introduced the term Ajax
which stood for the combination of a set of standards: Asynchronous
JavaScript and XML. The idea was to let data from backend systems flow
into the frontend applications which would respond dynamically to the
new inputs. By working at the level of manipulating the DOM rather
than having a separate, sandboxed user interface space, browsers could
become universal application consumers in web-based client-server
architectures.

The long-suffering HTML 5 Standardization process had begun during
this period as well in an attempt to improve consistency across
browsers, introduce new input elements and metadata models and provide
hardware-accelerated 2D graphics and video elements among other
features. The convergence of the Ajax style, the standardization and
maturation of ECMAScript as a language, easier cross-browser support
and an increasingly feature-rich web-based environment caused an
explosion of activity and innovation. We have seen innumerable
JavaScript-based application frameworks come and go, but there was a
steady forward momentum in terms of what was possible. As developers
pushed the envelope, the browser vendors would improve their engines
to allow the envelopes to be pushed further still. It was a virtuous
cycle that ushered in new visions of the potential for safe, portable,
zero-installation software systems.

As other obstacles and limitations were removed, this strange little
language at the heart of it all became increasingly a high inertia
drag on forward motion. The engines were becoming world class
development environments with better tools for debugging and
performance analysis. New programming paradigms such as the
Promise-based25
style allowed better modularized and asynchronous-friendly application
code to achieve powerful results in JavaScript’s notoriously
single-threaded environment. But the language itself was incapable of
the kinds of optimizations that were possible in other languages such
as C or C++. There were simply limits on what was going to be possible
from a language-performance perspective.

The web platform standards continued to advance with the development
and adoption of technologies such as WebGL26 and WebRTC27. Unfortunately, JavaScript’s
performance limitations made it ill-suited to extend the browsers with
features involving low-level networking, multi-threaded code and
graphics and streaming video codecs.

The platform’s evolution required the painful slog of the W3C member
organizations to decide what was important to design and build and
then roll it out in the various browser implementations. As people
became ever more interested in using the web as a platform for
heavier-weight, interactive applications, this process was seen as
increasingly untenable. Everything either had to be written (or
re-written) in JavaScript or the browsers had to standardize the
behavior and interfaces which could take years to realize new
advancements.

It was for these and other reasons that Google began to consider an
alternative approach to safe, fast and portable client side web
development.

Native Client (NaCl)

In 2011, Google released a new open source project called Native
Client (NaCl). The idea was to provide near-native speed execution of
code in the browser while running in a limited privilege sandbox for
safety reasons. You can think of it a bit like ActiveX with a real
security model behind it. The technology was a good fit for some of
Google’s larger goals such as supporting ChromeOS and moving things
away from desktop applications into web applications. It was not
initially meant necessarily to extend the capabilities of the open web
for everyone.

The uses cases were mainly to support browser-based delivery of
computationally-intensive software such as:

	
games

	
audio and video editing systems

	
scientific computing and CAD systems

	
simulations

The initial focus was on C and C++ as source languages, but because it
was based upon the LLVM28 compiler toolchain, it would be possible
to support additional languages that could generate the LLVM
Intermediate Representation (IR)29. This will be a recurring theme in our transition to
WebAssembly as you will see.

There were two forms of distributable code here. The first was the
eponymous NaCl which resulted in “nexe” modules that would target a
specific hardware architecture (e.g. ARM or x86-64) and could only be
distributed through the Google Play store. The other was a portable
form called PNaCl30 that would be
expressed in LLVM’s Bitcode format making it target independent. These
were called “pexe” modules and would need to be transformed into a
native architecture in the client’s host environment.

The technology was successful in the sense that the performance
demonstrated in browser was only minimally off of native execution
speeds. By using software fault isolation (SFI) techniques, they
created the ability to download high performance, secure code from the
web and run it in browsers. Several popular games such as Quake and
Doom were compiled to this format to show what was ultimately
possible. The problem was that the NaCl binaries would need to be
generated and maintained for each target platform and would only run
in Chrome. They also ran in an out-of-process space so they could not
directly interact with other Web APIs or JavaScript code.

While running in limited privilege sandboxes was achievable, it did
require static validation of the binary files to ensure that they did
not attempt to invoke operating system services directly. The
generated code had to follow certain address boundary-alignment
patterns to make sure they did not violate allocated memory spaces.

As indicated above, the PNaCl modules were more portable. The LLVM
infrastructure could generate either the NaCl native code or the
portable Bitcode without modifying the original source. This was a
nice outcome, but there is a difference between code portability and
application portability. Applications require the APIs that they rely
upon to be available in order to work. Google provided an application
binary interface (ABI) called the Pepper APIs31 for low-level services such as 3D graphics libraries,
audio playback, file access (emulated over IndexedDB or LocalStorage) and
more. While PNaCl modules could run in Chrome on different platforms
because of LLVM, they could only run in browsers that provided
suitable implementations of the Pepper APIs. While Mozilla had
originally expressed interest in doing so, they eventually decided
they wanted to try a different approach that came be known as asm.js.
NaCl deserves a tremendous amount of credit for moving the industry in
this direction, but it was ultimately too fiddly and too Chrome-specific
to carry the open web forward. Mozilla’s attempt was more successful
on that front even if it did not provide the same level of performance
that the native client approach did.

asm.js

The asm.js32 project was at least partially motivated by an
attempt to bring a better gaming story to the web. This soon expanded
to include a desire to allow arbitrary applications to be delivered
securely to browser sandboxes without having to substantively modify
the existing code.

As we have previously discussed, the browser ecosystem was already
advancing to make 2D and 3D graphics, audio handling,
hardware-accelerated video and more available in standards-based,
cross-platform ways. The idea was that operating within that
environment would allow applications to use any of those features
which were defined to be invoked from JavaScript. The JavaScript
engines were efficient and had robust sandboxed environments that had
undergone significant security audits so no one felt like starting from
scratch there. The real issue remained the inability to optimize
JavaScript ahead-of-time (AoT) so runtime performance could be
improved even further.

Because of its dynamic nature and lack of proper integer support,
there were several performance obstacles that could not meaningfully
be managed until the code was loaded into the browser. Once that
happened, Just-in-Time (JIT) optimizing compilers are able to speed
things up nicely, but there were still inherent issues like
slow bounds-checked array references. While JavaScript in its entirety
could not be optimized ahead-of-time, a subset of it could be.

The exact details of what that means are not super relevant to our
historical narrative, but the end result is. asm.js also used the
LLVM-based clang33 front-end parser via the
Emscripten34
toolchain. Compiled C and C++ code is very optimizable
ahead-of-time so the generated instructions can be made very fast
through existing optimization passes. LLVM represents a clean, modular
architecture so pieces of it can be replaced including the backend
generation of machine code. In essence, the Emscripten team could
reuse the first two stages (parsing and optimization) and then emit
this subset of JavaScript as a custom backend. Because the output was
all “just JavaScript”, it would be much more portable than the
NaCl/PNaCl approach. The tradeoff unfortunately was in performance. It
represented a significant improvement over straight JavaScript, but
was not nearly as performant as Google’s approach. It was good enough
to amaze developers though. Beyond the modest performance
improvements, however, the mere fact that you could deploy existing C
and C++ applications into a browser with reasonable
performance and virtually no code changes was compelling. While there
were extremely compelling demos involving the Unity
engine35, let’s look at a simple
example. “Hello, World!” seems like a good place to start.

#include <stdio.h>
int main() {
 printf("Hello, world!\n");
 return 0;
}

Notice there is nothing unusual about this version of the classic
program. If you stored it in a file called hello.c, the emscripten
toolchain would allow you to emit a file called a.out.js which can
be run directly in Node.js36 or, via some scaffolding, in a browser.

brian@tweezer ~/s/w/ch01> emcc hello.c
brian@tweezer ~/s/w/ch01> node a.out.j
Hello, world!

Pretty cool, no?

There’s only one problem.

brian@tweezer ~/s/w/ch01> ls -lah a.out.js
-rw-r--r-- 1 brian staff 119K Aug 17 19:08 a.out.js

At 119 kilobytes that is an awfully large hello world program! A quick
look at the native executable might give you a sense of what is going
on.

brian@tweezer ~/s/w/ch01> clang hello.c
brian@tweezer ~/s/w/ch01> ls -lah a.out
-rwxr-xr-x 1 brian staff 48K Aug 17 19:11 a.out

Why is our supposedly optimized JavaScript program close to three
times bigger than the native version? It is not just because as a
text-based file JavaScript is more verbose. Look at the program again:

#include <stdio.h> [image: 1]
int main() {
 printf("Hello, world!\n"); [image: 2]
 return 0;
}

	[image: 1]

	The header identifies the source for standard IO-related function definitions.

	[image: 2]

	The reference to the printf() function will be satisfied by a dynamic library loaded at runtime.

If we look at the symbols defined in the compiled executable using
nm, we will see that the definition of the printf() function is
not contained in the binary37. It is marked “U” for
“undefined”.

brian@tweezer ~/s/w/ch01> nm -a a.out
0000000100002008 d __dyld_private
0000000100000000 T __mh_execute_header
0000000100000f50 T _main
 U _printf
 U dyld_stub_binder

When clang generated the executable it left a placeholder reference
to the function that it expects to be provided by the operating
system. There is no standard library available in this way for a
browser, at least not in the dynamically-loadable sense, so that
library function and anything it needs also need to be
provided. Additionally, this version cannot talk directly to the
console in a browser, so it will need to be given hooks to call into a
function such as the browser’s console.log() functionality. In order
to work in the browser the functionality has to be shipped with the
application which is why it ends up being so big.

This highlights nicely the difference between portable code and
portable applications, another common theme in this book. For now, we
can marvel that it works at all, but there is a reason this book is
not called “asm.js : The Definitive Guide”. It was a remarkable
stepping stone that demonstrated it was possible to generate
reasonably performant sandboxed JavaScript code from various
optimizable languages. The JavaScript itself could be optimized
further as well in ways that the superset could not. By being able to
generate this subset through LLVM-based toolchains and a custom
backend, the level of effort was much smaller than it might otherwise
have been.

asm.js represents a nice fallback position for browsers that do not
support the WebAssembly standards, but it is now time to set the stage
for the subject of the book.

Rise of WebAssembly

With NaCl, we found a solution that provided sandboxing and
performance. With PNaCl, we also found platform portability but not
browser portability. With asm.js, we found browser portability and
sandboxing, but not the same level of performance. We also were
limited to dealing with JavaScript which meant we could not extend the
platform with new features (e.g. efficient 64-bit integers) without
first changing the language itself. Given that this was governed
by an international standards organization, this was unlikely to be an
 approach with quick turnarounds.

Additionally, JavaScript has certain issues with how browsers loaded
and validated it from the web. The browser has to wait until it
finishes downloading all of the referenced files before it starts to
validate and optimize them (while further optimizations will require
us to wait until the application is already running). Given what we
have already said about how developers encumber their applications
with ridiculously large amounts of transitive dependencies, the
network transfer and load-time performance of JavaScript is another
bottleneck to overcome beyond the established run-time issues.

After seeing what was possible with these partial solutions, there
became a strong appetite for high-performance, sandboxed, portable
code. Various stakeholders in the browser, web standard and JavaScript
environments felt a need for a solution that worked within the
confines of the existing ecosystem. There had been a tremendous amount
of work to get the browsers as far as they had gotten. It was entirely
possible to create dynamic, attractive and interactive applications
across operating system platforms and browser implementations. With
just a bit more effort it seemed possible to merge these visions
together into a unifying, standards-based approach.

It was under these circumstances in 2015 that none other than Brendan
Eich, the creator of Javascript, announced that work had begun on
WebAssembly38. He
highlighted a few specific reasons for the effort and called it a
“binary syntax for low-level safe code, initially co-expressive with
asm.js, but in the long run able to diverge from JS’s semantics, in
order to best serve as common object-level format for multiple
source-level programming languages.”

He continued: “Examples of possible longer-term divergence: zero-cost
exceptions, dynamic linking, call/cc. Yes, we are aiming to develop
the Web’s polyglot-programming-language object-file format.”

As to why these various parties were interested in this, he offered
this justification: “asm.js is great, but once engines optimize for
it, the parser becomes the hot spot — very hot on mobile
devices. Transport compression is required and saves bandwidth, but
decompression before parsing hurts.”

And finally, perhaps the most surprising part of the announcement was
who was to be involved: “A W3C Community Group, the WebAssembly CG,
open to all. As you can see from the github logs, WebAssembly has so
far been a joint effort among Google, Microsoft, Mozilla and a few
other folks. I’m sorry the work was done via a private github account
at first, but that was a temporary measure to help the several big
companies reach consensus and buy into the long-term cooperative game
that must be played to pull this off.”

In short order, other companies such as Apple, Adobe, AutoCAD, Unity,
and Figma got behind the effort. Inexplicably, this vision that
had started decades before and had involved no end of conflict and
self-interest was transforming into a unified initiative to finally
bring us a safe, fast, portable and web-compatible runtime
environment.

There was no end to the potential confounding complexities involved in
shepherding this platform into existence. It was not entirely clear
exactly what should be specified upfront. Not every language supported
threads natively. Not every language uses exceptions. C/C++ and Rust
were examples of languages that had runtimes that did not require
garbage collection. The devil is always in the details, but the will
to collaborate was there. And, as they say, where there is a will,
there is a way.

Over the next year or so, the CG became a W3C Working Group (WG) which
was tasked with defining actual standards. They made a series of
decisions to define a Minimum Viable Product (MVP) WebAssembly
platform that would be supported by all major browser
vendors. Additionally, the Node.js community was excited as this could
provide a solution to the drudgery of managing native libraries for
the portions of Node applications that needed to be written in a
lower-level language. Rather than having dependencies on Windows,
Linux and macOS libraries, a Node.js application could have a WebAssembly
library that could be loaded into the V8 environment and converted to
native assembly code on-the-fly. Suddenly WebAssembly seemed poised to
move beyond the goals of deploying code in browsers, but let’s not get
ahead of ourselves. We have the rest of this book to tell you that
part of the story.

1 You can read more about this idea of trade-offs here: https://en.wikipedia.org/wiki/No_Silver_Bullet
2 “Bringing the Web up to Speed with WebAssembly” was published in 2017 and is available here: http://dx.doi.org/10.1145/3062341.3062363
3 For many years, OpenGL was the defining standard for portable 3D graphics applications. These days it is being supplanted by more modern APIs such as Vulkan and Metal, but you can learn more about the standards here: https://www.opengl.org
4 The Portable Operating System Interface (POSIX) is a collection of IEEE standards for defining common application functionality so that it works across multiple operating systems: https://en.wikipedia.org/wiki/POSIX
5 Win32 is one part of a larger collection of APIs that provide developers with access to common functionality available from the Windows operating systems: https://en.wikipedia.org/wiki/Windows_API
6 This technique allows a decision maker to establish a minimum criteria for deciding when his or her needs are being met. The goal is not to find a perfect solution, but one that is acceptable given the situation at hand: https://en.wikipedia.org/wiki/Satisficing
7 The Wikipedia page on npm highlights several cases where broken dependencies have had large impacts: https://en.wikipedia.org/wiki/Npm_(software)#Notable_breakages
8 Best anyone can tell it was https://twitter.com/jfbastien who first said it, but even he is not sure.
9 Assembly language is a low-level programming language usually associated with a particular machine’s processor architecture and instruction set: https://en.wikipedia.org/wiki/Assembly_language
10 The name comes from the French “Conseil européen pour la recherche nucléaire”. Its many exciting projects are detailed at their homepage: https://home.cern
11 On his own time!
12 Archie was an early search engine for helping people find files on ftp servers: https://en.wikipedia.org/wiki/Archie_(search_engine)
13 Gopher was an exciting precursor to the HTTP-based web we have become dependent upon: https://en.wikipedia.org/wiki/Gopher_(protocol)
14 Wide Area Information Server (WAIS) was another early system for searching for and requesting text information in distributed systems: https://en.wikipedia.org/wiki/Wide_area_information_server
15 SGML is an ISO standard for defining structured, declarative documents that served as the basis HTML, DocBook, and LinuxDoc: https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
16 I bought a license for Netscape 1.0 Silicon Graphics IRIX at the time. I still have the CD floating around some place for… historical reasons.
17 Scheme is a fairly lightweight version of Lisp you can read more about here: https://en.wikipedia.org/wiki/Scheme_(programming_language)
18 There is a nice summary of the early history of JavaScript here: https://auth0.com/blog/a-brief-history-of-javascript/
19 Self is an object-oriented programming language that influenced JavaScript’s prototype-based inheritance. You can find more about it here: https://en.wikipedia.org/wiki/Self_(programming_language)
20 Autometric had a wild background involving Paramount Pictures, the Trinitron tube, and helping NASA decide where to land on the moon! They have since been purchased by Boeing, but some details are available here: https://en.wikipedia.org/wiki/Autometric
21 Google Earth now runs in the browser: https://www.google.com/earth
22 While browser vendors tend to work together more closely on standards these days, for a while they competed fiercely. This time period is discussed here: https://en.wikipedia.org/wiki/Browser_wars
23 The DOM is the tree structure of a web page or application that is rendered by the browser. It is often sent in a declarative textual form from server to client as HTML, but JavaScript is able to manipulate it in the browser. More details can be found here: https://en.wikipedia.org/wiki/Document_Object_Model
24 You can learn more about Jesse here: https://en.wikipedia.org/wiki/Jesse_James_Garrett
25 Promises (or futures) allow developers relatively simple programming models while still providing concurrent-enabled applications: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
26 WebGL brought a similar model of 3D graphics from the OpenGL world to the web: https://en.wikipedia.org/wiki/WebGL
27 WebRTC provides mechanisms for establishing permissioned access to cameras and microphones as well as encrypted peer-to-peer connections https://en.wikipedia.org/wiki/WebRTC
28 LLVM does not stand for anything but it is an extremely influential toolchain you should know more about. We will mention it frequently in this book. More details can be found here: https://llvm.org
29 Normally software is compiled to a binary, executable form. The IR allows it to exist in a parsed, structure form for the purposes of optimization among other reasons.
30 Pronounced “pinnacle”.
31 Because, NaCl… get it?
32 Details about asm.js are available here: https://asmjs.org
33 Clang is an LLVM compiler toolsuite for C, C++, and Objective-C: https://clang.llvm.org
34 We will learn more about Emscripten over the course of the book, but if you are curious: https://emscripten.org
35 Getting a zero-installation gaming experience in the browser is driving much of this innovation. You can see an example of the Unity engine using WebGL in the browser here: https://beta.unity3d.com/jonas/AngryBots/
36 Node.js is an extremely popular server-side JavaScript environment that we will discuss more in Chapter 8.
37 nm is a Unix command to display the symbol table of an executable file.
38 The text of the announcement about WebAssembly is available here: https://brendaneich.com/2015/06/from-asm-js-to-webassembly/

Chapter 2. “Hello, World!” (Sort of)

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

How does it, um-- how does it work?

King Arthur

Part of the difficulty in teaching people about WebAssembly is that
there are many places to start. If they are a C/C++ developer, that
might be a reasonable place to start the frame the discussion. If they
are a Rust developer, that would be. But you can also talk about the
mechanics of WebAssembly independent of the languages you use to
generate it. In this chapter, I am going take that approach. We are
going to learn low-level details incrementally over the next few
chapters before we start to build up to the connection to higher level
languages. These details will seem simplistic and confounding
initially, but we are looking at the basic mechanisms which is
ultimately not where you will be working. Let’s begin by considering
why we cannot start where most programming books do.

In Chapter 1, I introduced the first program most
people write in a new programming language or technology when I
discussed asm.js. We call that program a “Hello, World!” example in
a nod to the first program used in Kernighan and Ritchie’s seminal
book, The C Programming Language. Many quality programming
books1 begin with that
example because it gives the reader a taste of what is going on
without delving too far down into the details. It is fun, empowering
and a good way to make sure the reader has her tools set up correctly.

Example 2-1. The typical “Hello, World!” program as expressed in C.

#include <stdio.h>

int main() {
 printf("Hello, World!\n");
 return 0;
}

Unfortunately, WebAssembly has no way of printing to the console, so
we cannot start that way.

Wait, what?

I will give you a moment to digest that sentence, perhaps re-reading
it a few times to make sure it says what you think it says.

Convinced? Confused?

Yes, it is fair to say that there is no way for WebAssembly to print
to the console, read a file or open a network connection… unless you
give it a way to do so.

If you examine Example 2-1, you will get a hint about what
the issue is. In order for that program to work, it needs a working
copy of the printf() function which can be found in the standard
library. Part of what makes C programs so portable, is the existence
of standard libraries such as this on a variety of
platforms. So-called Portable Operating System Interface
(POSIX)2 libraries extend
these common features beyond printing to the console to include file
manipulation, signal handling, message passing and more. An
application will write to an API such as POSIX, but the executable
will need either a static or a dynamic library that provides the
behavior of the invoked methods suitable for running in the target
platform. This will be in the native executable format for the
operating system you are planning to use.

This is why I say that WebAssembly makes code portable, but we will
need something else to help us make applications portable. We will
revisit this topic throughout the book, but for now it is enough for
you to know that there is no direct way for WebAssembly to write to
the console.

I promise you we will honor Kernighan and Ritchie in
Chapter 5 by running that exact program. First, however,
we are going to learn about a human-friendly format for WebAssembly
and how the low-level instructions interact with the stack machine. I
still want you to have a “Hello, World!” experience here, however, so
we will pick something else to write and run that is not too
challenging but still legitimate. It is “Hello, World!” (sort of).

WebAssembly Text Format (Wat)

We have mentioned that the binary format (Wasm) is designed to make it
faster to transfer, load and verify WebAssembly modules. We will
introduce modules more formally in Chapter 3, but for now
just think of them as units of deployment like libraries or Jar files
in Java. There is also a text format that describes the behavior of a
module that is easier for humans to read. While there is nothing
stopping you from writing code in the text format by hand, you are
unlikely to do so. This format is sometimes also referred to as Wast
in writing but that was the original name. Many tools support both
flavors and people often confuse the two. We will stick with Wat and
its suffix of .wat.

In Example 2-2 we see a fully-formed, valid Wasm module
expressed in Wat. This Lisp-like format has functions expressed via
their signatures and a collection of stack machine instructions. The
WebAssembly abstract machine is a virtual stack machine, a concept I
will explain further below. Most compiled software is turned into the
executable format of a particular hardware architecture. If you are
targeting an Intel x86 machine, the behavior will be converted from a
high level language into a series of instructions that will run on
that chip. Without some kind of emulator, it will not run anywhere
else. Platforms such as Java and .NET have an intermediate byte code
representation that will be interpreted by a runtime environment that
has been ported to various platforms. WebAssembly instructions are
more like that, but involve manipulation of a stack through a small
set of instructions. Ultimately, these instructions will be mapped to
a particular chip’s instructions when it executes in a WebAssembly
host.

Example 2-2. A simple WebAssembly text file.

(module
 (func $how_old (param $year_now i32) (param $year_born i32) (result i32) [image: 1]
 get_local $year_now
 get_local $year_born
 i32.sub)

 (export "how_old" (func $how_old)) [image: 2]
)

	[image: 1]

	The internal function $how_old

	[image: 2]

	The exported function how_old

The function shown here is called $how_old and it is not visible
outside of this module until we explicitly export it. Note the name
distinction. The internal name starts with a $. The exported version
does not. It simply executes the inner function if someone calls
it externally.

This module has one function defined that takes two integer parameters
and returns another integer. As defined in the Minimum Viable Product
(MVP) 3,
WebAssembly is a 32-bit environment. That restriction is being relaxed
over time as you will see. By the time this book is available, it is
likely that 64-bit Wasm environments will be available in some
form. That being said, WebAssembly supports 32- and 64-bit integers
(known as i32 and i64) and 32- and 64-bit floating point numbers
(known as f32 and f64). That is it.

At this level, there are no strings, objects, dictionaries, or other
data types you would expect. Please do not worry, we will address how
to overcome these issues later, but this is among the reasons why we
are not doing a typical “Hello, World!” application. There are no
strings! It is easier just to deal with numbers until we introduce
some more ideas. So, in the spirit of this style of program, we are
showing you enough to see it work without overwhelming you.

The purpose of this inner function is to calculate how old someone is
based upon what year they were born and what year it currently is. At
this point, you may not be surprised to hear that WebAssembly has no
concept of dates nor any ability to request the current time by
default. I am expecting that you are wondering what exactly
WebAssembly can do! Happily, it can do math. If you give it the
current year and the year someone was born, it can absolutely subtract
the one from the other and produce a result. Please do not be
underwhelmed, we are just isolating things to be clear about what is
being provided by which part of the system.

As you may know, a stack is a convenient and widely-used data
structure in the software world. It is often described as being like a
stack of trays in a cafeteria. The workers will place clean trays on
top of any other trays. Customers will take one from the top.

Consider an empty stack as shown in Figure 2-1. We say we
push something to the top of the stack and pop it off of the top
of the stack. We only ever manipulate this location, so this is not an
appropriate data structure if you need to traverse a list. At the same
time, there is only one place to look for the things we are interested
in, so we do not need to specify locations, indices or keys. It is a
fast and efficient structure to manipulate.

[image: An empty stack]
Figure 2-1. An empty stack

Look back to the list of instructions in our function in
Example 2-2. The first one is get_local. The WebAssembly
host environment will retrieve the value of the parameter named
$year_now and then push it to the stack. Assuming the current year
is 2021, the result is shown in Figure 2-2.

[image: A stack with one value]
Figure 2-2. A stack with one value

At this point, the WebAssembly host environment will advance to the
second instruction. It is also a get_local instruction and will
retrieve the value of the parameter named $year_born and push it to
the stack. The stack will now have two values on it, but the top of
the stack points to the newest value pushed. Assuming the person who
invoked the function was born in 2000, the stack will look like
Figure 2-3.

[image: A stack with two values]
Figure 2-3. A stack with two values

The execution environment will press on as there is another
instruction. This one is i32.sub. It represents the arithmetic
subtraction of one i32 value from another. As it needs two values to make
sense, it will consult the top two values on the stack by popping them
off resulting in an empty stack looking again like
Figure 2-1. It then subtracts the second parameter from the
first and pushes the result back to the top of the stack. The result
is seen in Figure 2-4.

[image: The result of the substraction pushed back to the stack]
Figure 2-4. The result of the subtraction pushed back to the stack

At this point, there are no more instructions to execute and we are
left with a single value at the top of the stack. In
Example 2-2 we see that our function defines an i32 return
value. Whatever is at the top of the stack will be returned as the
result of invoking the function.

This may seem like a lot of work to add two numbers, but consider that
we have expressed a mathematical sequence of events in a
platform-neutral way. When the code is ultimately converted to native
instructions in a runtime host, the values will be loaded into CPU
registers and an instruction will add them together using the
mechanics of the CPU’s instruction set. We do not have to worry about
the details or idiosyncracies of target platforms, but the conversion
process will be fast and easy to conduct when it is time. Before that
happens, however, we need to convert our text format to its binary
representation.

Converting Wat to Wasm

Anyone who has been a programmer for more than a short time will
notice all manner of potential problems with our implementation. We do
not handle the case of someone inverting the parameters so that the
function would return a negative number. In the interest of keeping
the example simple, we are simply ignoring these realities. While this
is not a super exciting function, we have investigated the mechanics
of expressing some basic behavior via WebAssembly’s native text
format. The next step is to turn it into its binary executable
form. You have several options for doing this, but we will focus on
two approaches.

The first does not require you to install anything. In fact, you can
go ahead and invoke your function to see it work! If you go to
https://webassembly.github.io/wabt/demo/wat2wasm/index.html you will
see a multi-panel site. The upper left corner represents a .wat
file. The upper right corner represents an annotated hex dump of the
compiled .wat file. The lower left corner represents JavaScript code
to invoke the behavior using the API we will introduce more fully
later. The lower right corner represents the output from executing the
code.

Copy and paste the code from Example 2-2 into the upper left
panel labeled WAT. This will cause the text format to be converted
into the binary format. Assuming you do not have any typos, you will
also be able to download the binary format by pressing the Download
button on that same panel. Do not worry about doing that yet.

Now, copy the code from Example 2-3 into the lower left
panel. This will invoke the WebAssembly JavaScript API available in
most modern browsers (and Node.js). We will discuss it more later, but
for now we are retrieving the bytes of the binary module (available
here via the wasmModule variable) and getting a reference to the
how_old function so we can call it. As you can see, this function
can be invoked like any other JavaScript function. The result of doing
so will be printed out via console.log() to the lower right panel.

Example 2-3. Some JavaScript to invoke our function

const wasmInstance = new WebAssembly.Instance(wasmModule, {});
const { how_old } = wasmInstance.exports;
console.log(how_old(2021, 2000));

If everything goes well, you should see something like the screen shot
in Figure 2-5. Try changing the dates for the current year
and birth year parameters and make sure that our math is correct.

[image: Converting a WebAssembly text file into a binary file and executing it]
Figure 2-5. Converting a WebAssembly text file into a binary file and executing it

At this point, you can download the binary version of the file. By
default it will be called test.wasm but you can rename it to
whatever you like. We will call it hello.wasm.

Another option you have to generate this binary form is to use the
WebAssembly Binary Toolkit (WABT)4 Consult Appendix A for
instructions on installing WABT and other tools we will be using
throughout the book.

Included with this installation is a command called wat2wasm. It
does what the name says and converts the text file to the binary
format.

brian@tweezer ~/g/w/s/ch02> wat2wasm hello.wat
brian@tweezer ~/g/w/s/ch02> ls -alF
total 24
drwxr-xr-x 5 brian staff 160 Sep 13 12:54 ./
drwxr-xr-x 3 brian staff 96 Sep 13 12:05 ../
-rw-r--r-- 1 brian staff 76 Sep 13 12:07 hello.c
-rw-r--r-- 1 brian staff 45 Sep 13 12:54 hello.wasm
-rw-r--r-- 1 brian staff 200 Sep 13 12:52 hello.wat

Look closely. Your eyes are not deceiving you. It does not do a whole
lot, but the binary format is only 45 bytes long! I used to do a lot
more Java programming and have had class names that were longer than
that. We need a way of executing our function now that we are not in a
browser. This is easy enough to do with the JavaScript API in Node.js,
but we will use a different approach to show off a range of choices.

Running Wasm in a Repl

Another tool I show you how to install in Appendix A is
wasm3, 5 a WebAssembly
interpreter written in C. It allows you to run Wasm modules and
functions either on the command line or via an interactive mode
conventionally called a “repl”6 by the cool kids.

Once I execute the following command, I am given a wasm3
prompt. I pointed it to my Wasm file so there is only one
function I can call, but if there were other exported functions in
the module, they would be available too.

brian@tweezer ~/g/w/build> wasm3 --repl $HOME/hello.wasm
wasm3> how_old 2021 2000
Result: 21
wasm3> how_old 2021 1980
Result: 41
wasm3> $how_old 2021 2000
Error: function lookup failed ('$how_old')
wasm3> how_old 1980 2021
Result: 4294967255
wasm3>

Notice that I am only able to invoke the exported functions, not the
inner functions. Also notice that we will fail poorly if we invert the
order of parameters as anticipated. When you are building Wasm modules
with higher level languages, those will make it easier to do the right
thing (although it is certainly possible to write this error-checking
by hand in .wat files, life is too short for that kind of
nonsense). To get out of the repl, you can simply type CTRL-C or
CTRL-D.

Let’s review what we just did though. We expressed some arbitrary
functionality via an instruction set that targets an abstract
machine. We ran it in a browser. It should work with any of the major
browser on any of the major operating systems. Well, so should
JavaScript. But we have also run it in a C executable running in an
interactive mode on a macOS machine.

brian@tweezer ~/g/w/build> file wasm3
wasm3: Mach-O 64-bit executable x86_64

Here is it is running in the same application compiled as a Linux
binary:

brian@bbfcfm:~/g/w/build> wasm3 --repl $HOME/hello.wasm
wasm3> how_old 2021 2000
Result: 21
wasm3> ^C
brian@bbfcfm:~/g/w/build> file wasm3

wasm3: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
BuildID[sha1]=b5e98161d08d2d180d0725f973b338c2a340d015, for GNU/Linux
3.2.0, not stripped

There are actually several standalone WebAssembly environments written
in python, Rust, Scala, OCaml, Ruby and more. Our function should be
available and work in any of them.

Running Wasm in the Browser

For our next demonstration, I will show you how to invoke the
behavior in a browser using the JavaScript API. We will not introduce
the API just yet, but you will see a basic example. There are more
sophisticated ways of compiling the modules and parameterizing them,
but first we crawl, then we walk, then we run.

In Example 2-4, we see a reusable bit of code for
instantiating a WebAssembly module instance. The JavaScript API for
doing so is available in any environment supporting the WebAssembly
MVP, but there are other environments that do not require JavaScript
such as the wasm3 runtime we just used. This code, however, will
work in any WebAssembly-friendly browser7 or Node.js. Notice the use of
the Promise-based approach. If your JavaScript environment supports
async/await, you could obviously use those too.

Note

The code in Example 2-4 is not the preferred way of
instantiating WebAssembly modules if your browser supports the
streaming compilation function. We will use it for the time being just
so you can see the individual steps, but will address the preferred
approach later in the book.

Example 2-4. Instantiating a Wasm module in JavaScript

function fetchAndInstantiate(url, importObject) {
 return fetch(url).then(response =>
 response.arrayBuffer()
).then(bytes =>
 WebAssembly.instantiate(bytes, importObject)
).then(results =>
 results.instance
);
}

Once the function is available, it is easy enough to use from HTML. In
Example 2-5 you can see how that process works.

Example 2-5. Instantiating a Wasm module from a web page

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Hello, World! (Sort of)</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div class="container">
 <h1>Hello, World! (Sort of)</h1>
 I think you are years old.
 </div>

 <script>
 fetchAndInstantiate('hello.wasm').then(function(instance) {
	 var ho = instance.exports.how_old(2021,2000);
	 var ageEl = document.getElementById('age');
	 ageEl.innerText=ho;
 });
 </script>
 </body>
</html>

In this example, we establish a with an id of "age". It is
currently empty. We are going to fill it with the result of invoking
our WebAssembly function. There is nothing strange about the rest of
our HTML file. We include our reusable instantiation code in the
<head> element. Toward the bottom of this file we see an embedded
<script> element which calls the fetchAndInstantiate() function. It
passes in a local reference to the hello.wasm file so we will have
to serve that up over HTTP as well.

The function returns a Promise. When that resolves, we receive a
copy of the instantiated Wasm module instance and are able to invoke a
method exposed through the module’s exports section. Notice we are
passing in regular JavaScript numeric literals, but these will be just
fine to pass into the function. The number 21 is returned through
the invocation process and then stored in the innerText of the empty
 we noted earlier.

We need to serve the HTML, JavaScript and Wasm module over HTTP to run
in a browser. You can do that however you like, but with python3 (or
just python on non-Macs probably) you can start up a server and
specify which port to listen on.

brian@tweezer ~/g/w/s/ch02> python3 -m http.server 10003
Serving HTTP on :: port 10003 (http://[::]:10003/) ...

If you open up your browser and point it to
http://localhost:10003/index.html, you should see something along the
lines of Figure 2-6 in your browser. Feel free to change
the parameters in the embedded <script> element and verify that it
continues to work.

[image: Invoking an exported WebAssembly module function from JavaScript in a web page]
Figure 2-6. Invoking an exported WebAssembly module function from JavaScript in a web page

We obviously have a lot left to learn, but you have now seen the
equivalent of a “Hello, World!” example and hopefully understand the
basics of how WebAssembly can work.

1 And most WebAssembly tutorials!
2 https://en.wikipedia.org/wiki/POSIX
3 The details of the design decisions and their motivations for the basic WebAssembly functionality are documented here: https://github.com/WebAssembly/design/blob/master/MVP.md
4 Pronounced wabbit like that wascal, Bugs Bunny.
5 More information about the wasm3 runtime is available here: https://github.com/wasm3/wasm3
6 If you have never used an environment like this, you should check out: https://en.wikipedia.org/wiki/Read–eval–print_loop
7 You can see which browser environments support WebAssembly (or other features) here: https://caniuse.com/?search=WebAssembly

Chapter 3. WebAssembly Modules

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

A place for everything and everything in its place.

17th Century Proverb

An operating system runs a program usually contained in a compiled
form1. Each operating system has
its own format that defines where to start, what data is necessary,
and what the instructions are for the different advertised bits of
functionality actually are. WebAssembly is no different. In this
chapter we are going to look at how the behavior is packaged up and
how a host will know what to do with it.

It is possible that software engineers can spend their entire careers
ignoring how programs are loaded and executed throught this
process. Their world starts and stops at int main(int
argc, char **argv) or static void main(String []args) or even if __name__ == "__main__":. These are well-known entry points to programs in
C, Java, and Python thus this is where programmers assume
responsibility for the control flow. Prior to programs being launched
and after they exit, however, the operating system or programmatic
runtime needs to set up and tear down the executable structure. The
loader process needs to know where the instructions begin, how data
elements are initialized, what other modules or libraries need to be
loaded and more.

These details are generally defined by the nature of the
executable. On Linux, this is defined by the Executable and Linkable
Format (ELF)2, on
Windows, its the Portable Executable (PE) format3 and on macOS, it is
the Mach-O format4. These are obviously
platform-specific formats for native executables. More portable
systems like Java and .NET use an intermediate bytecode
representation, but there is still a defined structure and they serve
similar purposes.

One of the prime design considerations of the WebAssembly MVP was to
define the module structure so that WebAssembly hosts know what to
look for and validate as well as where to begin when executing a unit
of deployment.

In Chapter 2, you have already seen a more complicated
module structure than we will start with in this chapter. We will
introduce the sections incrementally and then show you some tools to
explore the structure of a WebAssembly module both textually and
visually. You have dealt briefly with the binary structure in the
previous chapter. It is compact and fast for transferring and
loading. You probably will not spend much time looking at the binary
details on a regular basis as your focus will be on the software side
of things. It is useful to be familiar with the module layout,
however, so let’s dig in.

Module Structure

The most basic WebAssembly module is an empty one. None of the
sections are required so it is possible to have a valid module such as
you see in Example 3-1.

Example 3-1. An empty, but valid, WebAssembly module.

(module)

Obviously it is not much to look at, but it is convertible to the
binary form. You will note in the following output that it at least
does not take up much room doing nothing.

brian@tweezer ~/g/w/s/ch03> wat2wasm empty.wat
brian@tweezer ~/g/w/s/ch03> ls -alF
total 16
drwxr-xr-x 4 brian staff 128 Dec 21 14:45 ./
drwxr-xr-x 4 brian staff 128 Dec 14 12:37 ../
-rw-r--r-- 1 brian staff 8 Dec 21 14:45 empty.wasm
-rw-r--r-- 1 brian staff 8 Dec 14 12:37 empty.wat

If you are visually-oriented, you might enjoy using the WebAssembly
Code Explorer that is available from the wasdk GitHub
repo5. You can either use the
explorer online6 or download and run an HTTP
server out of the cloned directory. In this case, I will use the
distributed Python 3 web server as I did earlier:

brian@tweezer ~/g/wasmcodeexplorer> python3 -m http.server 10003
Serving HTTP on :: port 10003 (http://[::]:10003/) ...

Again, for an empty module, it will not look like much yet, but once
we start adding some more elements to it, this will be a useful
summary. File formats are often identified by operating systems from
the first few bytes of the file7. They are often
called magic numbers. For WebAssembly, the bytes are \0asm encoded
as 0x00 0x61 0x73 0x6D representing hex values for the characters
a, s and m. This is followed by the version number 1
(represented by the bytes 0x01 0x00 0x00 0x00).

In Figure 3-1 you can see these
magic bytes as well as an indication that this is version 1 of the
WebAssembly file format highlighted as a yellowish orange series of
numbers on the left and the empty module structure on the right.

[image: An empty module]
Figure 3-1. An empty module visualized in the WebAssembly Code Explorer

For command line inspection of a module, you have several options, but
the wasm-objdump executable from the Wabt toolkit is quite
helpful. Please consult Appendix A for assistance in
installing the various tools discussed in this book.

If you run the command without a switch, it will complain. As you will
see momentarily, these make more of a difference when you have more
details to explore.

brian@tweezer ~/g/w/s/ch03> wasm-objdump empty.wasm
At least one of the following switches must be given:
 -d/--disassemble
 -h/--headers
 -x/--details
 -s/--full-contents

For now, we will just verify that our module is useless but valid by
using the details switch. This also indicates that we are dealing with
version 1 of the format as well.

brian@tweezer ~/g/w/s/ch03> wasm-objdump -x empty.wasm

empty.wasm:	file format wasm 0x1

Section Details:

Exploring Module Sections

There is a circular dependency problem with respect to the concepts we
are introducing. The module format must include support for all of the
various elements that comprise WebAssembly, but we will also not
introduce some of those elements until later chapters. We will focus
on the portions that we have seen primarily now with a promise to
revisit the other section elements soon.

The overall structure of the module is based upon a series of optional
numbered sections that each address a particular feature of
WebAssembly. In Table 3-1 we see a quick list of and
description of these sections.

Table 3-1. WebAssembly Module Sections

	Id
	Name
	Description

	0

	Custom

	Debugging or metadata information for third-party uses

	1

	Type

	Type definitions used in the modules

	2

	Import

	Imported elements used by a module

	3

	Function

	Type signatures associated with the functions in a module

	4

	Table

	Tables that define indirect, immutable references used by a module

	5

	Memory

	Linear memory structures used by a module

	6

	Global

	Global variables

	7

	Export

	Exported elements provided by a module

	8

	Start

	An optional start function to initiate a module

	9

	Element

	Elements defined by a module

	10

	Code

	The body of the functions defined by a module

	11

	Data

	The data elements defined by a module

	12

	Data Count

	The number of data elements defined by the module

Here is our example from Chapter 2 again for reference.

Example 3-2. A simple WebAssembly text file.

(module
 (func $how_old (param $year_now i32) (param $year_born i32) (result i32) [image: 1]
 get_local $year_now
 get_local $year_born
 i32.sub)

 (export "how_old" (func $how_old)) [image: 2]
)

	[image: 1]

	The internal function $how_old

	[image: 2]

	The exported function how_old

We converted it to its binary form with the wat2wasm tool. If we
attempt to interrogate the structure generated by this conversion, we
will see the following:

brian@tweezer ~/g/w/s/ch03> wasm-objdump -x hello.wasm

hello.wasm:	file format wasm 0x1

Section Details:

Type[1]:
 - type[0] (i32, i32) -> i32
Function[1]:
 - func[0] sig=0 <how_old>
Export[1]:
 - func[0] <how_old> -> "how_old"
Code[1]:
 - func[0] size=7 <how_old>

Notice there are quite a few more sections filled in compared to our
empty module. To start with, we have a Type section that defines a
single signature. It suggests a type that takes two i32s and returns
an i32. That is an appropriate signature for our how_old
method. The type is not given a name, but it can still be used to set
expectations and validate them with respect to function
configurations.

Next we have a Function section that links our type (type 0 from the
Type section) to a named function. Because we export our function to
make it available to our host environment or other modules, we see the
inner function <how_old> is being exported via the name
"how_old". Finally, we have a Code section which contains the
actual instructions of our only function.

Check out Figure 3-2 to see what our module looks like in
the WebAssembly Code Explorer.

[image: Hello, World! module]
Figure 3-2. Our Hello, World! module visualized in the WebAssembly Code Explorer

The red colors indicate section boundaries, but you can also get more
details by hovering over the various sections in the browser. The
purple bytes of the Export section, for instance, should indicated
the name of the exported function how_old if you place the mouse
over one of one of them. You can see the actual instructions by
hanging out over the green and blue bytes in the final Code section.

If you look closely back at Example 3-2 you will notice that
our variable names are not carried forth by default. The
wasm-objdump also highlights this fact. In order to do so for
debugging purposes, you will need to specify such during the
wat2wasm command.

brian@tweezer ~/g/w/s/ch03> wat2wasm hello.wat -o hellodebug.wasm --debug-names
brian@tweezer ~/g/w/s/ch03> wasm-objdump -x hellodebug.wasm

hellodebug.wasm:	file format wasm 0x1

Section Details:

Type[1]:
 - type[0] (i32, i32) -> i32
Function[1]:
 - func[0] sig=0 <how_old>
Export[1]:
 - func[0] <how_old> -> "how_old"
Code[1]:
 - func[0] size=7 <how_old>
Custom:
 - name: "name"
 - func[0] <how_old>
 - func[0] local[0] <year_now>
 - func[0] local[1] <year_born>

Notice that wat2wasm uses the Custom section to preserve the
function and local variable details. Other tools may use this section
for their own purposes, but this is how debugging information is
usually captured. In Figure 3-3 you can see that there are
more bytes in the module because of this Custom section.

[image: Hello, World! module with debugging details]
Figure 3-3. Our Hello, World! module with preserved debugging details visualized in the WebAssembly Code Explorer

Working with Modules

Once you understand the process of inspecting a WebAssembly module’s
static, binary structure, you will want to move on to working with
it in a more dynamic way. We have seen the basics of instantiating a
module via the JavaScript API in examples such as Example 2-4
but there are other things we can do as well.

Our code in Example 3-2 generates an Export section, but
as we saw in Table 3-1 there is also a potential
Import section for receiving elements from the hosting
environment. This can eventually include Memory and Table instances as
we will see in subsequent chapters, but for now we can import a
function to our module allowing us to communicate with a console
window from WebAssembly more directly. Please keep in mind we are
still sorting through low-level details and your day-to-day experiences
with these technologies will likely be at a higher level.

Take a look at Example 3-3. This is a new version of our
example so far that exports a second function. More importantly, it
also imports a function.

Example 3-3. A WebAssembly module that imports a function.

(module
 (func $log (import "imports" "log_func") (param i32)) [image: 1]

 (func $how_old (param $year_now i32) (param $year_born i32) (result i32) [image: 2]
 get_local $year_now
 get_local $year_born
 i32.sub)

 (func $log_how_old (param $year_now i32) (param $year_born i32) [image: 3]
 	get_local $year_now
	get_local $year_born
	call $how_old
	call $log
)

 (export "how_old" (func $how_old)) [image: 4]
 (export "log_how_old" (func $log_how_old)) [image: 5]
)

	[image: 1]

	Importing a function from the host that expects a single i32 parameter

	[image: 2]

	Our same $how_old function as before

	[image: 3]

	A new function that takes two parameters and then calls our imported function

	[image: 4]

	Exporting our old how_old function as before

	[image: 5]

	Exporting our new log_how_old function

As you see above, we have a new function we can call in our module,
but we cannot call it just yet. Our previous function is still
available and has not changed. Our new function calls the old function
to do the math but then expects there to be a function called
log_func available for it to invoke the result with. To clarify some
of the differences, let’s generate the .wasm output and then dump
the module structure.

brian@tweezer ~/g/w/s/ch03> wat2wasm hellolog.wat
brian@tweezer ~/g/w/s/ch03> wasm-objdump -x hellolog.wasm

hellolog.wasm:	file format wasm 0x1

Section Details:

Type[3]:
 - type[0] (i32) -> nil
 - type[1] (i32, i32) -> i32
 - type[2] (i32, i32) -> nil
Import[1]:
 - func[0] sig=0 <imports.log_func> <- imports.log_func
Function[2]:
 - func[1] sig=1 <how_old>
 - func[2] sig=2 <log_how_old>
Export[2]:
 - func[1] <how_old> -> "how_old"
 - func[2] <log_how_old> -> "log_how_old"
Code[2]:
 - func[1] size=7 <how_old>
 - func[2] size=10 <log_how_old>

For the first time, we have an entry for an Import section. It is
defined to have a type we have not seen yet. If you look in the Type
section, you will see we have three types specified now. One that
takes an i32 but does not return anything. Our existing type of two
i32 parameters and an i32 return value. And another new one that
takes two i32s and does not return anything.

The first of these types is defined in our import. We are expecting
the host environment to give us a function we can invoke that will
take an i32. The purpose of this function is to print out the
argument somehow, not to return anything so it does not need a return
type. We are expecting to find this function from the importObject
we have previously ignored on the JavaScript side. The second type is
the same as before. The third one takes the parameters to call our
$how_old function, but will then log the results so it also does not
need a return value. The Import and Function sections show you the
linkage between the functions and the signatures.

To provide elements via the importObject we will need some HTML code
with something like what is shown in Example 3-4:

Example 3-4. An HTML file to instantiate our module with a method to call through the importObject

<!doctype html>

<html>
 <head>
 <meta charset="utf-8">
 <title>WASM Import test</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <script>
 var importObject = {
 imports: {
 log_func: function(arg) {
 console.log("You are this old: " + arg + " years.");
 }
 }
 };

 fetchAndInstantiate('hellolog.wasm', importObject).then(
 function(instance) {
 console.log(instance.exports.log_how_old(2021, 2000));
 }
);
 </script>
 </body>
</html>

Compare the import statement in Example 3-3 to this object
structure. Notice the presences of an imports namespace with a
function called log_func. That is the structure our import
statement specifies.

The $log_how_old function pushes its two parameters to the top of
the stack and then invokes our previous function with the call
$how_old instruction. Keep in mind that function subtracts one
parameter from the other and then returns the result on the top of the
stack. At this point, we do not have to re-push that value to the
stack, we can simply invoke our imported function that we named
$log. The result of the previous function will be the parameter for
this new invocation. Take a moment to make sure you understand the
relationship between parameters, return values and functions.

If you copy the utils.js file from the previous chapter (it provides
our fetchAndInstantiate() function8) and then serve this all up over
HTTP as we have done previously, you can load the new HTML file in
your browser. You will not see anything initially because our
log_func simply dumps its argument to console.log(). If you view the
console in your browser’s developer tools, however, you should see
something such as in Figure 3-4.

[image: Calling imported JavaScript functions from WebAssembly]
Figure 3-4. The results of calling our new function with an imported JavaScript function.

If you change the importObject to look like Example 3-5 and then
reload the HTML file in your browser, you will no longer see a message
on the console, you should see an alert pop up with the message
instead. Obviously there has been no change to our WebAssembly code,
we simply passed a different function in from the JavaScript side of
things and therefore see a different result. We will see much more
complicated interactions as we delve deeper into the topic, but
hopefully you are starting to see how WebAssembly and JavaScript code
can interact via the Import and Export sections.

Example 3-5. The same WebAssembly module can be instantiated with a different method to call

 var importObject = {
 imports: {
 log_func: function(arg) {
 alert("You are this old: " + arg + " years.");
 }
 }
 };

Instantiating modules and invoking their functions are going to be
your primary interaction with them via the JavaScript API, but there
is additional behavior available to you. If you wanted to know what
methods a module imports or exports, you can use the JavaScript API to
interrogate a loaded module. Rather than invoking the
fetchAndInstantiate() method from utils.js, if you change the HTML
to have the code shown in Example 3-6, you will see the results in
Figure 3-5.

Example 3-6. We can do more with the JavaScript API including streaming compilation

 WebAssembly.compileStreaming(fetch('hellolog.wasm'))
 .then(function(mod) {
 var imports = WebAssembly.Module.imports(mod);
 console.log(imports[0]);
 var exports = WebAssembly.Module.exports(mod);
 console.log(exports);
 }
);

[image: Interrogating the module structure via the JavaScript API]
Figure 3-5. Interrogating the module structure via the JavaScript API.

Once we learn a few more concepts and start to get into a higher level
language for expressing our behavior, the full power of WebAssembly
will start to be evident9.

So far we have been using a block of code in a
file called utils.js that looked like what you see in
Example 3-7. For simple modules, this is fine, but the larger
your modules get, there are some built in latencies that can be
eliminated. Performance is not just about run-time performance, it is
also about load-time performance.

Example 3-7. The simple way we have been instatiating modules

function fetchAndInstantiate(url, importObject) {
 return fetch(url).then(response =>
 response.arrayBuffer()
).then(bytes =>
 WebAssembly.instantiate(bytes, importObject)
).then(results =>
 results.instance
);
}

The issue above is that even though we are using promises to avoid
blocking the main thread, we are reading the module into an
ArrayBuffer first and then instantiating it. We are in essence
waiting until all of the network transfer is done before compiling the
module. One of the first post-MVP capabilities added was the ability
to support compilation while the bytes were still being pulled across
the network. The module format structure lends itself to this
optimization so it is a shame not to use it.

While there is no Right Way for how to instantiate your modules
(e.g. you may wish to instantiate multiple instances of modules in
some scenarios), the majority of the time, the code in
Example 3-8 is a slightly more efficient way to do so.

Example 3-8. The recommended way to instantiate modules most of the time

(async () => {
 const fetchPromise = fetch(url);
 const { instance } = await WebAssembly.instantiateStreaming(fetchPromise);
 // Use the module
 const result = instance.exports.method(param1, param2);
 console.log(result);
})();

Notice above that we are not creating the ArrayBuffer, we are
passing the Promise from the fetch() method into the
instantiateStreaming() method on the WebAssembly object. This
allows the baseline compiler to start to compile functions as
they are appearing across the network. In most cases, the code
compilation will happen faster than the network transfer so that by
the time you finish downloading the code, it should be validated and
ready to use. When JavaScript finishes downloading, that is usually
when the validation process begins, so we see an improvement in
startup time.

There is not a formalized method for caching WebAssembly modules yet,
but this too will become an unobtrusive way of improving startup
time. Cache controls and other Web artifact-handling will avoid the
need to redownload modules more often than necessary (e.g. if they
have been updated).

Future ES6 Module Integration

While it is obviously useful to be able to work through the JavaScript
API as we have seen, it is low-level and repetitive which is why we
put it in a reusable utility script file. In the future, we expect it
will be even easier to use WebAssembly modules from HTML because they
will be available as ES6 modules.

This is a bit tricky because of the need for top-level asynchronous
handling and how graphs of modules are loaded in three phases for
construction, instantiation, and evaluation. There are slight
differences between the binary WebAssembly and JavaScript-based module
validation processes, when compilation happens, and how module
environment records are traversed and linked.

There is a proposal to add support to the platform to smooth over
these differences. At the time of writing, this is in “Stage 2” of the
proposal process10. Lin
Clark has a nice walkthrough of the complexity here:
https://www.youtube.com/watch?v=qR_b5gajwug.

The goal is to introduce a declarative form that would look something
like what you see in Example 3-9.

Example 3-9. Proposed declarative form for loading WebAssembly Modules

import {something} from "./myModule.wasm";

something();

Not only will this have the benefit of simplifying the instantiation
of WebAssembly modules, it will also facilitate their participation in
graphs of JavaScript module dependencies. Developers will have an
easier time intermixing behavior expressed in multiple languages as
complete solutions if there are not distinctions to how they are
managed as dependencies.

The proposal has a clean design and good support, but it involves a
careful choreography across the HTML spec, the ES6 module spec,
implementations, JavaScript bundlers, and the larger Node.js
community. I suspect that it will not be much longer before we see
some forward motion on this proposal.

Now that we have looked at the structural elements of a WebAssembly
binary, you should feel comfortable inspecting your own and third
party modules either manually or programmatically. The next step is to
look at the more dynamic elements of WebAssembly modules. We will
start by focusing on Memory instances as the means of emulating the
power of contiguous blocks of memory in a more conventional
programming runtime.

1 I am ignoring scripting languages for the purpose of this discussion, but the engine that runs the scripts is still going to be some kind of compiled executable.
2 Linux file format for executable programs: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
3 Windows file format for executable programs: https://en.wikipedia.org/wiki/Portable_Executable
4 macOS file format for executable programs: https://en.wikipedia.org/wiki/Mach-O
5 GitHub Repo for exploring binary WebAssembly modules: https://github.com/wasdk/wasmcodeexplorer
6 Online WebAssembly Code Explorer: https://wasdk.github.io/wasmcodeexplorer/
7 Many of the common formats (including WebAssembly) can be seen here: https://en.wikipedia.org/wiki/List_of_file_signatures
8 Keep in mind we are still using the method to instantiate modules that is not recommended. One thing at a time!
9 Until then, if you want to explore further, the API is documented here: https://webassembly.github.io/spec/js-api/
10 If you are interested in the low-level proposal details you can find them here: https://webassembly.github.io/esm-integration/js-api/index.html#esm-integration

Chapter 4. WebAssembly Memory

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

Perhaps one day this too will be pleasant to remember.

Virgil

If WebAssembly is going to behave like a regular runtime environment,
it needs a way to allocate and free memory for its data handling
activities. In this chapter we will introduce you to how it emulates
this behavior for efficiency but without the risk of typical memory
manipulation problems seen with languages like C and C++ (even if that
is what we are running). As we are potentially downloading arbitrary
code over the Internet this is an important safety consideration.

The entire concept of computation usually involves some
form of data processing. Whether we are spell-checking a document,
manipulating an image, doing machine learning, sequencing proteins,
playing video games, watching movies or simply crunching numbers in a
spreadsheet, we are generally interacting with arbitrary blocks of
data. One of the most crucial performance considerations in these
systems is how to get the data where it needs to be in order to
interrogate or transform it somehow.

Central Processing Units (CPUs) work the fastest when data is
available in a register1
or an on-chip cache. Obviously these are very small containers so
large datasets are never going to be loaded onto the CPU in their
entirety. We have to spend some effort moving data into and out of
memory. The cost of waiting for the data to be loaded to one of these
locations is an eternity in CPU clock time. This is one of the reasons
they have gotten so complex. Modern chips have all manner of
multi-pipeline, predictive branching, and instruction rewriting
available to keep the chip busy while we are reading from a network
into main memory, from there into multi-level caches and finally where
it needs to be used.

Traditional programs have usually had stack memory to manage
short-term variables of small or fixed sizes. They use heap-based
memory for longer-term, arbitrarily-sized blocks of data. These are
generally just different areas of the memory allocated to a program
that are treated differently. Stack memory gets overwritten frequently
by the ebb and flow of functions being called during execution. Heap
memory is used and cleaned up when it is no longer needed. If a
program runs out of memory it can ask for more but it must be
reasonably judicious about how it uses it.2
These days virtual paging systems and cheaper memory make it entirely
likely that a typical computer might have tens of gigabytes of
memory. Being able to quickly and efficiently access individual bytes
of potentially large data sets is a major key to decent software
runtime performance.

WebAssembly programs need a way to simulate these blocks of memory
without actually giving unfettered access to the privacy of our
computer’s memory. Fortunately, there is a good story to tell here
that balances convenience, speed, and safety. It starts with making it
possible for JavaScript to access invidual bytes in memory, but will
expand beyond JavaScript to be a generic way of sharing memory between
host environments and WebAssembly modules.

TypedArrays

JavaScript has traditionally not been able to provide convenient
access to individual bytes in memory. This is why time-sensitive,
low-level functionality is often provided by the browser or some kind
of plug-in. Even Node.js applications often have to implement some
functionality in a language that handles memory manipulation better
than JavaScript can. This complicates the situation as JavaScript is
an interpreted language and you would need an efficient mechanism for
switching control flow back and forth between interpreted, portable
code and fast compiled code. This also makes deployments trickier
because one part of the application is inherently portable and one
needs native library support on different operating systems.

There is usually a tradeoff in software development: Languages are
either fast or they are safe. When you needed raw speed you might
choose C or C++ as they provide very few runtime checks in the use and
manipulation of data in memory. As a consequence, they are very
fast. When you want safety you might pick a language with run-time
boundary checks on array references. The downside of the speed trade
off is that things are either slow or the burden of memory
management falls to the programmer. Unfortunately, it is extremely
easy to mess up by forgetting to allocate space, reusing freed memory
or failing to deallocate the space when you are done. This is one of
the reasons why applications written in these fast languages are often
buggy, crash easily and serve as the source for many security
vulnerabilities3.

Garbage-collected languages such as Java and JavaScript free
developers from many of the burdens of managing memory but often incur
a performance burden at runtime as a tradeoff. A piece of the runtime
must constantly look for unused memory and release it. The performance
overhead makes many such applications unpredictable and therefore
unsuitable for embedded applications, financial systems, or other
time-sensitive use cases.

Allocating memory is not a huge issue as long as what is created is a
suitable size for what you want to put in it. The tricky part is
knowing when to clean up. Obviously freeing memory before a program is
done with it is bad, but failing to do so when it is no longer needed
is inefficient and you might run out of memory. Languages such as Rust
strike a nice balance of convenience and safety. The compiler forces
you to communicate your intentions more clearly, but when you do, it
can be more effective in cleaning up after you.

How this is all managed at runtime is often one of the defining
characteristics of a language and its runtime. As such, not every
language requires the same level of support. This is one of the
reasons WebAssembly’s designers did not overspecify features such as
garbage collection in the MVP.

JavaScript is a flexible and dynamic language, but it has not
historically made it easy or efficient to deal with individual bytes
of large data sets. This complicates the use of low-level libraries as
the data has to be copied into and out of JavaScript native formats
which is inefficient. The Array class stores JavaScript objects
which means it has to be prepared to deal with arbitrary types. Many
of Python’s flexible containers are also similarly flexible and
bloated4. Fast traversal
and manipulation of memory through pointers is a product of the
uniformity of the data types in contiguous blocks. Bytes are the
minimum addressable unit, particularly when dealing with images,
videos and sound files.

Numerical data requires more effort. A 16-bit integer takes up two
bytes. A 32-bit integer, four. Location 0 in a byte array might
represent the first such number in an array of data, but the second
one will start at location 4.

JavaScript added TypedArray interfaces to address these issues,
initially in the context of improving WebGL performance. These are
portions of memory available through ArrayBuffer instances that can
be treated as homogenous blocks of particular data types. The memory
available is constrained to the ArrayBuffer instance but it can be
stored internally in a format that is convenient to pass to native
libraries.

In Example 4-1 we see the basic functionality of creating a
typed array of 32-bit unsigned integers.

Example 4-1. Ten 32-bit integers created in a Uint32Array.

var u32arr = new Uint32Array(10);
u32arr[0] = 257;
console.log(u32arr);
console.log("u32arr length: " + u32arr.length);

The output of the invocation should look like this:

Uint32Array(10) [257, 0, 0, 0, 0, 0, 0, 0, 0, 0]
u32arr length: 10

As you can see, this works as you would expect an array of integers
to. Keep in mind that these are 4-byte integers (thus the 32 in the
type name). In Example 4-2, we retrieve the underlying
ArrayBuffer from the Uint32Array and print it out. This shows us
that its length is 40. Next we wrap the buffer with a Uint8Array
representing an array of unsigned bytes and print out its contents and
length.

Example 4-2. Accessing the 32-bit integers as a buffer of 8-bit bytes.

var u32buf = u32arr.buffer;
var u8arr = new Uint8Array(u32buf);
console.log(u8arr);
console.log("u8arr length: " + u8arr.length);

The code produces the following output:

ArrayBuffer { byteLength: 40 }
Uint8Array(40) [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …]
u8arr length: 40

The ArrayBuffer represents the raw underlying bytes. The TypedArray
is an interpreted view of those bytes based upon the specified type
size. So when we initialized the Uint32Array with a length of 10,
that meant ten 32-bit integers which requires 40 bytes to
represent. The detached buffer is set to be this big so that it can
hold all ten integers. The Uint8Array treats each byte as an individual
element due to its size definition.

If you check out Figure 4-1 you will hopefully see what is
going on. The first element (position 0) of the Uint32Array is
simply the value 257. This is an interpreted view of the underlying
bytes in the ArrayBuffer. The Uint8Array directly reflects the
underlying bytes of the buffer. The bit patterns at the bottom of the
diagram reflect the bits per byte for the first two bytes.

[image: Representing the value 257.]
Figure 4-1. Representing the value 257.

It may surprise you that there are 1s in the first two bytes. This is
due to a confusing notion called endianess that shows up when we
store numbers in memory5. In this case, a little
endian system stores the least significant bytes first (the 1s). A
big endian system would store the 0s first. In the grand scheme of
things, it does not matter how they are stored, but different systems
and protocols will pick one or the other. You just need to keep track
of which format you are seeing.

As indicated earlier, TypedArray classes were introduced initially
for WebGL but since then, they have been adopted by other APIs
including Canvas2D, XMLHttpRequest2, File, Binary WebSockets and
more. Notice these are all lower level, performance-oriented I/O and
visualization APIs that have to interface with native libraries. The
underlying memory representation can be passed between these layers
efficiently. It is for these reasons that they are useful for
WebAssembly Memory instances as well.

WebAssembly Memory Instances

A WebAssembly Memory is an underlying ArrayBuffer (or
SharedArrayBuffer as we will see later) associated with a
module. The MVP limits a module to having a single instance at the
moment, but this is likely to change before long. A module may create
its own Memory instance or it may be given one from its host
environment. These instances can be imported or exported just like we
have done with functions so far. There is also an associated Memory
section in the module structure that we skipped over in the
Chapter 3 because we had not covered the concept yet. We
will fix that omission now.

In Example 4-3 we have a Wat file that defines a Memory
instance and exports it as the name "memory". This represents a
continguous block of memory constrained to a particular ArrayBuffer
instance. It is the beginning of our ability to emulate C/C++-like
homogenous arrays of bytes in memory. Each instance is made up of one
or more 64 kilobyte blocks of memory pages. In the example, we
initialize it to a single page but allow it to grow up to 10 pages for
a total of 640 kilobytes which ought to be enough for
anyone6. You
will see how to increase the available memory momentarily. For now, we
are just going to write the bytes 1, 1, 0, and 0 to the beginning of
the buffer. The i32.const instruction loads a constant value onto
the stack. We want to write to the beginning of our buffer so we use
the value 0x0. The data instruction is a convenience for
initializing portions of our Memory instance.

Example 4-3. Creating and exporting a Memory instance in a WebAssembly module.

(module
 (memory (export "memory") 1 10)
 (data (i32.const 0x0) "\01\01\00\00")
)

If we compile this file to its binary representation with wat2wasm
and then invoke wasm-objdump we see some new details we have not yet
encountered:

brian@tweezer ~/g/w/s/ch04> wasm-objdump -x memory.wasm

memory.wasm:	file format wasm 0x1

Section Details:

Memory[1]:
 - memory[0] pages: initial=1 max=10
Export[1]:
 - memory[0] -> "memory"
Data[1]:
 - segment[0] memory=0 size=4 - init i32=0
 - 0000000: 0101 0000

There is a configured Memory instance in the Memory section
reflecting our initial size of one page and maximum size of ten
pages. We see that it is exported as "memory" in the Export
section. We also see the fact that the Data section has initialized
our memory instance with the four bytes we wrote into it.

Now we can use our exported memory by importing it into some
JavaScript in the browser. For this example, we are going to load the
module and fetch the Memory instance. We then display the buffer
size in bytes, the number of pages, and what is currently in the memory
buffer.

Example 4-4. Display Memory details in the browser.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Memory</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div class="container">
 <h1>Memory</h1>
 <div>Your memory instance is bytes.</div>
 <div>It has this many pages: .</div>
 <div>Uint32Buffer[0] = .</div>
 <div>Uint8Buffer[0-4] = .</div>
 </div>

 <button id="expand">Expand</button>

 <script>
 <!-- Shown below -->
 </script>
 </body>
</html>

The basic structure of our HTML file is show in
Example 4-4. We have a series of elements that will be
populated with the details via a function called showDetails() that
will take a reference to our memory instance.

In Example 4-5 we see the JavaScript for our <script>
element above. First look at the fetchAndInstantiate() call. It
behaves in the same way we have seen before in terms of loading the
module. Here we get a reference to the Memory instance through the
exports section. We attach an onClick() function for our button
that we will address momentarily.

Finally, we call the showDetails() function and pass in our mem
variable. This function will retrieve the underlying ArrayBuffer and
references to our various elements to display the details. The
buffer’s length is stored in the innerText field of our first
. The number of pages is this length divided by 64KB to indicate
the number of pages. We then wrap the ArrayBuffer with a
Uint32Array which allows us to fetch our memory values as 4-byte
integers. The first element of this is shown in the next . We
also wrap our ArrayBuffer in Uint8Array and show the first four
bytes. After our discussion above, the details shown in
Figure 4-2 should not surprise you.

Example 4-5. The JavaScript code for our example.

function showDetails(mem) {
 var buf = mem.buffer;
 var memEl = document.getElementById('mem');
 var pagesEl = document.getElementById('pages');
 var firstIntEl = document.getElementById('firstint');
 var firstBytesEl = document.getElementById('firstbytes');

 memEl.innerText=buf.byteLength;
 pagesEl.innerText=buf.byteLength / 65536;

 var i32 = new Uint32Array(buf);
 var u8 = new Uint8Array(buf);

 firstIntEl.innerText=i32[0];
 firstBytesEl.innerText= "[" + u8[0] + "," + u8[1] + "," +
 u8[2] + "," + u8[3] + "]";
};

fetchAndInstantiate('memory.wasm').then(function(instance) {
 var mem = instance.exports.memory;

 var button = document.getElementById("expand");
 button.onclick = function() {
 try {
 mem.grow(1);
 showDetails(mem);
 } catch(re) {
 alert("You cannot grow the Memory any more!");
 };
 };
 showDetails(mem);
});

[image: Showing the details of our Memory]
Figure 4-2. Showing the details of our Memory.

The onClick() function calls a method on the Memory instance to
grow the allocated size by one page of memory. This causes the
original ArrayBuffer to become detached from the instance and the
existing data is copied over. If we are successful, we reinvoke the
showDetails() function and extract the new ArrayBuffer. If the
button is pressed once, you should see that the instance now
represents two pages of memory representing 128KB of memory. The data
at the beginning should not have changed.

If you press the button too many times, the number of allocated pages
will exceed the maximum specified amount of ten pages. At this point,
it is no longer possible to expand the memory and a RangeError will
be thrown. Our example will pop up an alert window when this happens.

Using the WebAssembly Memory API

The grow() method we used in the previous example is part of the
WebAssembly JavaScript API that the MVP expects all host environments
to provide. We can expand our use of this API and go the other
direction. We can create a Memory instance in JavaScript and then
make it available to a module. Keep in mind the current limit of one
instance per module.

In subsequent chapters we will see more elaborate uses of memory, but
we will want to use a higher level language than Wat to do anything
serious. For now we will keep our example on the simpler side but
still try to expand beyond what we have seen.

We will start with the HTML so you can see the whole workflow and then
we will dive into the details of the new module. In
Example 4-6 you can see that we are using a similar HTML
structure to what we have used so far. There is a <div> element with
the id of "container" into which we will place a series of Fibonacci
numbers7. If you are not
familiar with these numbers, they are very important in a lot of
natural systems and you are encouraged to investigate them on your
own. The first two numbers are defined to be "0" and "1". The
subsequent numbers are set to the sum of the previous two. So the
third number will be "1" (0 + 1). The fourth number will be "2" (1

1). The fifth number will be "3" (2 + 1), etc.

Example 4-6. Creating a Memory in JavaScript and importing it to the module.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Fibonacci</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div id="container"></div>

 <script>
 var memory = new WebAssembly.Memory({initial:10, maximum:100});

 var importObject = {
 js: { mem: memory }
 };

 fetchAndInstantiate('memory2.wasm', importObject).then(function(instance) {
	 var fibNum = 20;
	 instance.exports.fibonacci(fibNum);
	 var i32 = new Uint32Array(memory.buffer);

	 var container = document.getElementById('container');

	 for(var i = 0; i < fibNum; i++) {
	 container.innerText += `Fib[${i}]: ${i32[i]}\n`;
	 }
 });

 </script>
 </body>
</html>

The actual calculation is written in Wat and shown in
Example 4-7 but before we get there, we see the creation of
the Memory instance on the first line of the <script> element. We
are using the JavaScript API but the intent is the same as our use of
the (memory) element in Example 4-3. We create an initial
size of one page of memory and a maximum size of ten pages. In this
case, we will never need more than the one page but you now see how to
do it. The Memory instance is made available to the module via the
importObject. As you will see momentarily, the function in the Wasm
module will take a parameter indicating how many Fibonacci numbers to
write into the Memory buffer. In this example, we will pass in a
parameter of 20.

Once our module is instantiated, we call its exported fibonacci()
function. We have access to the memory variable from above, so we
can retrieve the underlying ArrayBuffer directly after the function
invocation completes. Because Fibonacci numbers are integers, we wrap
the buffer in a Uint32Array instance so we can iterate over the
individual elements. As we retrieve the numbers, we do not have to
worry about the fact that they are 4-byte integers. Upon reading each
value, we extend the innerText of our "container" element with a
string version of the number.

The calculation shown in Example 4-7 is going to be
significantly more complicated than any Wat we have seen so far, but
by approaching it in pieces you should be able to figure it out.

Example 4-7. Fibonacci calculations expressed in Wat.

(module
 (memory (import "js" "mem") 1) [image: 1]
 (func (export "fibonacci") (param $n i32) [image: 2]
 (local $index i32) [image: 3]
 (local $ptr i32) [image: 4]

 (i32.store (i32.const 0) (i32.const 0)) [image: 5]
 (i32.store (i32.const 4) (i32.const 1))

 (set_local $index (i32.const 2)) [image: 6]
 (set_local $ptr (i32.const 8))

 (block $break [image: 7]
 (loop $top [image: 8]
 (br_if $break (i32.eq (get_local $n) (get_local $index))) [image: 9]
 (i32.store [image: 10]
 (get_local $ptr)
 (i32.add
 (i32.load (i32.sub (get_local $ptr) (i32.const 4)))
 	 (i32.load (i32.sub (get_local $ptr) (i32.const 8)))
)
)
	(set_local $ptr (i32.add (get_local $ptr) (i32.const 4))) [image: 11]
	(set_local $index (i32.add (get_local $index) (i32.const 1)))
	(br $top) [image: 12]
)
)
)
)

	[image: 1]

	The Memory is imported from the host environment.

	[image: 2]

	The fibonacci function is defined and exported.

	[image: 3]

	$index is our number counter.

	[image: 4]

	$ptr is our current position in the Memory instance.

	[image: 5]

	The i32.store function writes a value to the specified location in the buffer.

	[image: 6]

	The $index variable is advanced to 2 and the $ptr is set to 8.

	[image: 7]

	We define a named block to return to in our loops.

	[image: 8]

	We define a named loop in our block.

	[image: 9]

	We break out of our loop when the $index variable equals the $n parameter.

	[image: 10]

	We write the sum of the previous two elements to current location of $ptr.

	[image: 11]

	We advance the $ptr variable by 4 and the $index variable by 1.

	[image: 12]

	We break to the top of our loop.

Hopefully the numeric notes attached to Example 4-7 make
sense, but given its complexity, it warrants a quick discussion. This
is a stack-based virtual machine so all of the instructions involve
manipulating the top of the stack. In <1> we import the memory
defined in the JavaScript. It represents the default allocation of one
page which should be enough for now. While this is a correct
implementation, it is not an overly safe implementation. Bad inputs
could mess up the flow, but we will be more concerned with that after
we introduce higher-level language support where it is easier to
handle those details.

The exported function is defined to take a parameter $n representing
the number of Fibonacci numbers to calculate.8 We use two local
variables defined at points <3> and <4>. The first represents
which number we are working on and it defaults to 0. The second will
act as a pointer in memory. It will serve as the index into the
Memory buffer. Remember, i32 data values represent 4 bytes so
every advance of $index will involve advancing $ptr by 4. We do
not have the benefit of TypedArrays on this side of the interaction
so we have to handle these details ourselves. Again, higher-level
languages will shield us from many of these details.

By definition, the first two Fibonacci numbers are 0 and 1, so we
write those into the buffer. i32.store writes an integer value to a
location. It expects to find those values on the top of the stack, so
the next two parts of the statement invoke the i32.const instruction
which pushes the specified values to the top of the stack. First, an
offset of 0 indicates we want to write to the beginning of the
buffer. The second one pushes the number 0 to the stack to indicate
the value we want to write in position 0. The next line repeats the
process for the next Fibonacci number. The i32 from the previous
line takes up 4 bytes so we write value 1 to position 4.

The next step is to iterate over the remaining numbers which are each
defined as the sum of the previous two. This is why we need to start
the process with the two we just wrote. We advance our $index
variable to 2 so we will need $n - 2 iterations of the loop. We have
written two i32 integers so we advance our $ptr to 8.

Wat references several WebAssembly instructions that you will be
introduced to over the course of the book. Here you can see some of
the looping constructs. We define a block at position <7> and give
it a label of $break. The next step introduces a loop with an entry
point called $top. The first instruction in the loop checks to see
if $n and $index are equal indicating we have handled all of our
numbers. If so, it will break out of the loop. If not, it proceeds.

The i32.store instruction at position <10> writes to the $ptr
location. The values of variables are pushed to the top of the stack
with the get_local. The value to write there is the addition of the
the values of the previous two numbers. i32.add expects to find its
two addends at the top of the stack as well. So we load the integer
location that is four less than $ptr. This represent $n - 1. We
then load the integer stored at location of $ptr minus 8 which
represents $n - 2. i32.add pops these addends off the top of the
stack and writes their sum back to the top. The stack now contains
this value at the top and the location of the current $ptr value
which is what the i32.store is expecting.

The next step advances $ptr by four since we have now written
another Fibonacci number to the buffer. We advance $n by one and
then break to the top of the loop and repeat the process. Once we have
written $n numbers to the buffer, the function returns. It does not
need to return anything as the host environment has access to the
Memory buffer and can read the results out directly with
TypedArrays as we saw earlier.

The result of loading our HTML into the browser and displaying the
first twenty Fibonacci numbers is shown in Figure 4-3.

[image: Reading the Fibonacci sequence from the +Memory+ instance.]
Figure 4-3. Reading the Fibonacci sequence from the Memory instance.

This level of detail would be annoying to deal with regularly, but
fortunately you will not have to. It is important to understand how
things work at this level though and how we can emulate continguous
blocks of linear memory for efficient processing.

Strings At Last!

One final discussion before we move on is about how we can finally add
strings to our repertoire! There are many more tools coming in later
chapters of the book to make things even easier, but we can take
advantage of some conveniences in Wat to write strings into Memory
buffer and read them out on the JavaScript side.

In Example 4-8 you can see a very simple module that exports
a one page Memory instance. It then uses a data instruction to
write a sequence of bytes into a location in the module’s memory. It
starts at location 0 and writes the bytes in the subsequent string. It
is a convenience to not have to convert the multibyte strings into
their component bytes although you certainly can if you like. This
string has a Japanese sentence and then its translation in
English.9

Example 4-8. A simple use of strings in Wat

(module
 (memory (export "memory") 1)
 (data (i32.const 0x0) "私は横浜に住んでいました。I used to live in Yokohama.")
)

Once we compile the Wat to Wasm, we see that we have a new populated
section in our module. You can see this with the wasm-objdump
command.

brian@tweezer ~/g/w/s/ch04> wasm-objdump -x strings.wasm

strings.wasm:	file format wasm 0x1

Section Details:

Memory[1]:
 - memory[0] pages: initial=1
Export[1]:
 - memory[0] -> "memory"
Data[1]:
 - segment[0] memory=0 size=66 - init i32=0
 - 0000000: e7a7 81e3 81af e6a8 aae6 b59c e381 abe4
 - 0000010: bd8f e382 93e3 81a7 e381 84e3 81be e381
 - 0000020: 97e3 819f e380 8249 2075 7365 6420 746f I used to
 - 0000030: 206c 6976 6520 696e 2059 6f6b 6f68 616d live in Yokoham
 - 0000040: 612e

The Memory, Export and Data sections are filled in with the details of
our strings written to memory. The instance is intialized this way so
when a host environment reads from the buffer, the strings will
already be there.

In Example 4-9 you see that we have one for our
Japanese sentence and one for our English sentence. To extract the
individual bytes, we can wrap a Uint8Array around the Memory
instance buffer that we have imported from the module. Notice that we
only wrap the first 39 bytes. These bytes are decoded to a UTF-8
string via a TextDecoder instance and then we set the innerText
of the designated for the Japanese sentence. We then wrap a
separate Uint8Array around the portion of the buffer starting at
position 39 and including the subsequent 26 bytes.

Example 4-9. Reading strings from an imported Memory instance

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Reading Strings From Memory</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div>
 <div>Japanese: </div>
 <div>English: </div>
 </div>
 <script>
 fetchAndInstantiate('strings.wasm').then(function(instance) {
	 var mem = instance.exports.memory;

	 var bytes = new Uint8Array(mem.buffer, 0, 39);
 var string = new TextDecoder('utf8').decode(bytes);
 var japanese = document.getElementById('japanese');
	 japanese.innerText = string;

	 bytes = new Uint8Array(mem.buffer, 39, 26);
	 string = new TextDecoder('utf8').decode(bytes);
 var english = document.getElementById('english');
	 english.innerText = string;
 });

 </script>
 </body>
</html>

In Figure 4-4 we see the successful results of reading the
bytes out of the buffer and rendering them as UTF-8 strings.

[image: Reading strings from the +Memory+ instance.]
Figure 4-4. Reading strings from the Memory instance.

As cool as these results are, how did we know how many bytes to wrap
and in which location to look for the strings? A little detective work
can help. A capital letter “I” is represented as 49 in
hexadecimal. The output from wasm-objdump above gives us the offset
in the Data segment for each byte. We see the value 49 for the first
time on the row that begins with 0000020:. The 49 represents the
seventh byte over so the second sentence begins as position 27 which
is 2 * 16 + 7 in decimal, so, 39. The Japanese string represents the
bytes between 0 and 39. The English string begins at position 39.

But, wait a minute! It turns out we miscounted on the English sentence
and we were off-by-one. This seems like a troublesome and error-prone
amount of effort to get strings out of a WebAssembly module. Even
doing things the hard way at this low-level can be handled better. We
will write out the locations of the strings first so we do not have to
figure it out on our own.

Look at Example 4-10 to see how we can be more
sophisticated. We have two data segments now. The first writes the
starting position and length of the first string followed by the same
information for the second one. Because we are using the same buffer
for the indices and the strings, we have to be careful about
locations.

As our strings are not very long, we can use single bytes as offsets
and lengths. This is probably not a good strategy in general, but it
will show off some additional flexibility. So, we write out the value
4 and the value 27. This represents an offset of 4 bytes and a length
of 39. The offset is 4 because we have these four numbers (as single
bytes) at the beginning of the buffer and will need to skip over them
to get to the strings. As you now know, 27 is hexadecimal for 39, the
length of the Japanese string. The English sentence will begin at
index 4 + 39 = 43 which is 2b in hexadecimal (2 * 16 + 11) and is 27
bytes long which is 1b in hexadecimal (1 * 16 + 11).

The second data segment starts at position 0x4 because we need to
skip over those offsets and lengths.

Example 4-10. A more sophisticated use of strings in Wat

(module
 (memory (export "memory") 1)
 (data (i32.const 0x0) "\04\27\2b\1b")
 (data (i32.const 0x4) "私は横浜に住んでいました。I used to live in Yokohama.")
)

In Example 4-11 we see the other side of reading the strings
out. It is certainly more complicated now, but it is also less manual
as the module tells us exactly where to look. Another option when
using TypedArrays is a DataView which allows you to pull arbitrary
data types out of the Memory buffer. They do not need to be
homogenous like the normal Typed Arrays (e.g. Uint32Array).

Example 4-11. Reading our indexed strings from the Memory buffer

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Reading Strings From Memory</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div>
 <div>Japanese: </div>
 <div>English: </div>
 </div>
 <script>
 fetchAndInstantiate('strings2.wasm').then(function(instance) {
	 var mem = instance.exports.memory;

	 var dv = new DataView(mem.buffer);
	 var start = dv.getUint8(0);
	 var end = dv.getUint8(1);

	 var bytes = new Uint8Array(mem.buffer, start, end);
	 var string = new TextDecoder('utf8').decode(bytes);
 var japanese = document.getElementById('japanese');
	 japanese.innerText = string;

	 start = dv.getUint8(2);
	 end = dv.getUint8(3);

	 bytes = new Uint8Array(mem.buffer, start, end);
	 string = new TextDecoder('utf8').decode(bytes);
 var english = document.getElementById('english');
	 english.innerText = string;
 });

 </script>
 </body>
</html>

We therefore wrap the exported Memory buffer with a DataView
instance and read in the first two bytes by calling the getUint8()
function once at location 0 and once at location 1. These represent
the location and offset in the buffer for the Japanese string. Other
than no longer using hard-coded numbers, the rest of our previous code
is the same. Next we read out the two bytes at location 2 and 3
representing the location and length of the English sentence. This too
is converted to a UTF-8 string and updated correctly this time as seen
in Figure 4-5.

[image: Reading indices and strings from the +Memory+ instance.]
Figure 4-5. Reading indices and strings from the Memory instance.

As a homework assignment, try creating an even more flexible approach
that tells you how many strings there are to read and what their
locations and lengths are. The JavaScript to read it in can be made
into a loop and the whole process should be more flexible.

There is more to know about Memory instances as you shall see later,
but for now, we have covered enough of the basics of WebAssembly that
trying to do anything more sophisticated by hand in Wat will be too
painful. Thus, it is time to use a higher-level language like C!

1 A register is an on-chip memory location that usually feeds an instruction what it needs to execute.
2 My first computer, an Atari 800, started off with only 16 kilobytes of memory. It was a big to-do the day my dad came home with a 32 kilobyte expansion card!
3 Ryan Levick has an interesting discussion about this topic in his discussion of Microsoft’s interest in Rust: https://youtu.be/NQBVUjdkLAA
4 The numpy library helps solve this by reimplementing homogenous storage in C arrays and having compiled forms of the mathematical functions to run on those structures.
5 This is a reference to “Gulliver’s Travels” by Jonathan Swift: https://en.wikipedia.org/wiki/Endianness
6 Nice try, but, no, Bill Gates never said it!
7 Learn more about these crazy numbers here: https://en.wikipedia.org/wiki/Fibonacci_number
8 As a thought exercise, what could $n potentially be set to before our i32 data type would overflow? How could you address that?
9 It’s true!

Chapter 5. Using C/C++ and WebAssembly

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

The C Programming Language — A language which combines the flexibility of assembly language with the power of assembly language.

Anonymous

This begins a bit of a turning point in our discussion. Up until now
we have been focusing exclusively on WebAssembly and its immediate
group of related tools and technologies. As we have seen, this is a
useful way to explore what the platform offers, but it is an
inefficient way to think about developing new software. Higher level
programming languages have long elevated our profession beyond the
inertial details of working with low-level instruction sets. It is
simply easier and more efficient to express logic in
syntactically-clean and semantically-rich languages.

To really appreciate what WebAssembly is providing, we need to
consider one of the many source languages that compiles down to
it. The point is that not every problem is suitably expressed in
JavaScript so having the option to use another language for its
performance, clarity of expression or to simply reuse existing code is
appealing.

The C language1 is
one of the most important and widely-used programming languages in the
world. I started playing around with it in high school on my Atari ST
computer. I had read about it in Computer Language magazine and a
friend gave me a copy of the seminal, eponymously named book The C
Programming Language by Brian Kernighan and the late, great Dennis
Ritchie2.

There is an immense amount of software available in C and much of it
can simply be recompiled to WebAssembly. We will discuss porting
existing libraries in Chapter 6, but for now we
will learn a little C and how we can use it to improve some of the
efforts we have tried so far.

Using C Functions

A C function is like a JavaScript function in many ways. It has its
own lexical structure, it is not attached to a larger unit like a
class or a struct. It may or may not take parameters. It can only
return a single value and does not support exceptions, however, so
error-handling is often a little more primitive than in C++, Java, or
JavaScript.

In Example 5-1 there is a C implementation of our age
calculating function from Chapter 2. Notice how much
simpler it is to follow what is going on. This example even has some
basic error-handling to deal with the case of bad parameters where the
birth year is bigger than the current year. Barring the appearance of
a time-traveling visitor from the future, that should not happen and
we should handle it. Higher level languages are just easier for humans
to use to express the logic of our business requirements.

Example 5-1. A simple C program.

#include <stdio.h>

int howOld(int currentYear, int yearBorn) {

 int retValue = -1;

 if(yearBorn <= currentYear) {
 retValue = currentYear - yearBorn;
 }

 return retValue;
}

int main() {
 int age = howOld(2021, 2000);

 if(age >= 0) {
 printf("You are %d!\n", age);
 } else {
 printf("You haven't been born yet.");
 }
}

Unfortunately, computers do not understand these higher level
languages so we need to convert them to a binary machine
representation for execution. If you have only ever done JavaScript
programming, this process may be slightly foreign. As an interpreted
language, you write JavaScript and simply run it. As with everything,
there are tradeoffs. What is convenient for developers is often
significantly slower at run time and C and C++ have long held the
mantle on performance3.

Given its maturity and importance to our industry, there are many
excellent commercial and open source C compilers. This includes the
GNU/Linux C Compiler (gcc) and LLVM’s clang compiler. We are going
to focus on the latter for reasons that will be clear shortly. You
will want to install LLVM as described in Appendix A to
run the following. Even on macOS which uses clang by default, not
all of the commands will work out of the box without LLVM’s
WebAssembly support installed.

In its simplest form, we can convert our C program to an executable as
follows:

brian@tweezer ~/g/w/s/ch05> clang howold.c
brian@tweezer ~/g/w/s/ch05> ls -laF
total 112
drwxr-xr-x 4 brian staff 128 Feb 14 14:35 ./
drwxr-xr-x 6 brian staff 192 Feb 14 14:32 ../
-rwxr-xr-x 1 brian staff 49456 Feb 14 14:35 a.out*
-rw-r--r-- 1 brian staff 343 Feb 14 14:36 howold.c

For historical reasons, the executable generated is called
a.out. You will see how to change that later. For now, we can
execute the program:

brian@tweezer ~/g/w/s/ch05> ./a.out
You are 21!

This works because the executable generated has been turned into a
suitable format that macOS knows how to run. It is a Mach-O
executable that targets the Intel x86 instruction set on a 64-bit
platform.

brian@tweezer ~/g/w/s/ch05> file a.out
a.out: Mach-O 64-bit executable x86_64

This program will not run on a Windows or Linux machine. Without their
new emulation layer, it will not even run on Apple’s new ARM-based
machines. This is because a CPU has an instruction set that involves
loading values into registers, invoking functionality on the CPU and
storing results in memory. Re-running clang to produce Assembly
language output instead of a binary executable shows you what this
looks like for this architecture:

brian@tweezer ~/g/w/s/ch05> clang -S howold.c

This produces the file shown in Example 5-2.

Example 5-2. Assembly language generated for our simple application

	.section	__TEXT,__text,regular,pure_instructions
	.build_version macos, 11, 0	sdk_version 11, 1
	.globl	_howOld ## -- Begin function howOld
	.p2align	4, 0x90
_howOld: ## @howOld
	.cfi_startproc
%bb.0:
	pushq	%rbp
	.cfi_def_cfa_offset 16
	.cfi_offset %rbp, -16
	movq	%rsp, %rbp
	.cfi_def_cfa_register %rbp
	movl	%edi, -4(%rbp)
	movl	%esi, -8(%rbp)
	movl	$-1, -12(%rbp)
	movl	-4(%rbp), %eax
	cmpl	-8(%rbp), %eax
	jg	LBB0_2
%bb.1:
	movl	-8(%rbp), %eax
	subl	-4(%rbp), %eax
	movl	%eax, -12(%rbp)
LBB0_2:
	movl	-12(%rbp), %eax
	popq	%rbp
	retq
	.cfi_endproc
 ## -- End function
	.globl	_main ## -- Begin function main
	.p2align	4, 0x90
_main: ## @main
	.cfi_startproc
%bb.0:
	pushq	%rbp
	.cfi_def_cfa_offset 16
	.cfi_offset %rbp, -16
	movq	%rsp, %rbp
	.cfi_def_cfa_register %rbp
	subq	$16, %rsp
	movl	$0, -4(%rbp)
	movl	$2000, %edi ## imm = 0x7D0
	movl	$2021, %esi ## imm = 0x7E5
	callq	_howOld
	movl	%eax, -8(%rbp)
	cmpl	$0, -8(%rbp)
	jl	LBB1_2
%bb.1:
	movl	-8(%rbp), %esi
	leaq	L_.str(%rip), %rdi
	movb	$0, %al
	callq	_printf
	jmp	LBB1_3
LBB1_2:
	leaq	L_.str.1(%rip), %rdi
	movb	$0, %al
	callq	_printf
LBB1_3:
	movl	-4(%rbp), %eax
	addq	$16, %rsp
	popq	%rbp
	retq
	.cfi_endproc
 ## -- End function
	.section	__TEXT,__cstring,cstring_literals
L_.str: ## @.str
	.asciz	"You are %d\n!"

L_.str.1: ## @.str.1
	.asciz	"You haven't been born yet."

.subsections_via_symbols

As you can see it is much more verbose than our C program. High level
constructs like function calls, loops, and conditional checks require
many lower level instructions to express. We will need an actual Intel
x86 chip to run on, or at least an emulated one. At some level,
however, this is conceptually similar to the Wat files we have seen
in previous chapters.

The main reason we are discussing clang as our example C compiler is
because it has a modern, pluggable architecture based on the LLVM
project4. This is incredibly important in the modern world of
increasing numbers of competing instruction sets (e.g. X86, ARM,
RISC-V), new programming languages (e.g. Rust, Julia, Swift), and an
overall desire to reuse common optimizations regardless of source
language.

In Figure 5-1 you can see this as a three part
process. Source code is parsed by a front-end processing step. This is
going to be language-specific. The output of this step is an
intermediate representation (IR), an instruction set of a hypothetical
but not real machine. It captures the expressed logic in a format that
can be manipulated by the optimization layer. This process involves
applying one or more transformations that should have the effect of
making the code faster or more efficient based purely on the expressed
logic. Loops may be unrolled5, unused code
may be eliminated, expressions involving constants may be evaluated by
the compiler so they do not need to be evaluated at runtime, and
more. The final step emits a native set of instructions targeting a
specific run time. For our purposes, that was obviously the Mach-O
x86 64-bit architecture.

[image: The LLVM pluggable compiler architecture]
Figure 5-1. The LLVM pluggable compiler architecture

Any one of these layers may be swapped out for something else. As I
mentioned above, languages such as Rust, Julia and Swift use the LLVM
infrastructure. This keeps language authors from having to start from
scratch every time. They need to write new front end parsers, but can
leverage much of the existing optimization and backend work. Compiler
researchers can develop new optimizations and test them in isolation
before making them available for use on the IR of arbitrary input
languages. For our purposes, the backend is the most important
swappable layer. On Linux or Windows, native versions of the same
first two layers could be used but there would also be a
machine-specific backend.

You can usually generate a different backend than the native runtime
of your computer through a process known as cross-compiling. This is
useful for targeting embedded systems that may not have a developer
toolchain installed. This is also useful in continuous integration and
delivery systems so you can target multiple platforms from the same
build environment. Otherwise you might need a separate build
environment for every target platform.

The Emscripten toolchain was developed for asm.js work and was based
upon LLVM and clang so it only had to emit the optimizable subset of
JavaScript to allow C programs to run in the browser. When the
WebAssembly instruction set and platform were ultimately defined, in
essence, they merely had to add a WebAssembly backend to emit that
instead. We will introduce this toolchain in the next chapter, but
hopefully you are getting the picture of how higher level languages
can be compiled to a common form that can then be further transformed
into an efficient native representation.

Our LLVM installation should natively support WebAssembly as a
backend. To double-check, try the following:

brian@tweezer ~/g/w/s/ch05> llc --version
LLVM (http://llvm.org/):
 LLVM version 11.0.1
 Optimized build.
 Default target: x86_64-apple-darwin20.2.0
 Host CPU: skylake

 Registered Targets:
 aarch64 - AArch64 (little endian)
 aarch64_32 - AArch64 (little endian ILP32)
 aarch64_be - AArch64 (big endian)
 arm - ARM
 arm64 - ARM64 (little endian)
 arm64_32 - ARM64 (little endian ILP32)
 nvptx - NVIDIA PTX 32-bit
 nvptx64 - NVIDIA PTX 64-bit
 ppc32 - PowerPC 32
 ppc64 - PowerPC 64
 ppc64le - PowerPC 64 LE
 r600 - AMD GPUs HD2XXX-HD6XXX
 riscv32 - 32-bit RISC-V
 riscv64 - 64-bit RISC-V
 wasm32 - WebAssembly 32-bit
 wasm64 - WebAssembly 64-bit
 x86 - 32-bit X86: Pentium-Pro and above
 x86-64 - 64-bit X86: EM64T and AMD64
 xcore - XCore

I have edited the supported target list for length (it is much
longer!), but still wanted to show that most of the major platforms
are supported. To simplify our immediate usage, I am going to replace
the standalone main() functionality in the program with just the
age calculation function as below.

Example 5-3. Just the howOld function.

int howOld(int currentYear, int yearBorn) {

 int retValue = -1;

 if(yearBorn <= currentYear) {
 retValue = currentYear - yearBorn;
 }

 return retValue;
}

To compile this to WebAssembly, we can use the following:

brian@tweezer ~/g/w/s/ch05> clang --target=wasm32 -nostdlib -Wl,--no-entry ↵
-Wl,--export-all howold2.c -o howold.wasm

The --target=wasm32 directive targets the 32-bit WebAssembly
platform. The -nostdlib tells it not to link against a standard
library because we are not initially planning on running the function
in a location where it will be directly available (i.e. a
browser). The --not-entry and --export-all directives tell the
linker not to expect a main() function and keep all of the functions
for export purposes. Without the latter hint the optimization
processes might eliminate unused functions as technically nothing is
calling them. The -o howold.wasm names the output file.

What we are left with is a working Wasm module that we know how to
explore and use from earlier chapters. There is quite a lot of new
noise in the file, but the basics remain the same. We have our types,
functions, memory as well as a variety of memory management details
that we will ignore for now.

brian@tweezer ~/g/w/s/ch05> wasm-objdump -x howold.wasm

howold.wasm:	file format wasm 0x1

Section Details:

Type[2]:
 - type[0] () -> nil
 - type[1] (i32, i32) -> i32
Function[2]:
 - func[0] sig=0 <__wasm_call_ctors>
 - func[1] sig=1 <howOld>
Table[1]:
 - table[0] type=funcref initial=1 max=1
Memory[1]:
 - memory[0] pages: initial=2
Global[7]:
 - global[0] i32 mutable=1 - init i32=66560
 - global[1] i32 mutable=0 <__dso_handle> - init i32=1024
 - global[2] i32 mutable=0 <__data_end> - init i32=1024
 - global[3] i32 mutable=0 <__global_base> - init i32=1024
 - global[4] i32 mutable=0 <__heap_base> - init i32=66560
 - global[5] i32 mutable=0 <__memory_base> - init i32=0
 - global[6] i32 mutable=0 <__table_base> - init i32=1
Export[9]:
 - memory[0] -> "memory"
 - func[0] <__wasm_call_ctors> -> "__wasm_call_ctors"
 - func[1] <howOld> -> "howOld"
 - global[1] -> "__dso_handle"
 - global[2] -> "__data_end"
 - global[3] -> "__global_base"
 - global[4] -> "__heap_base"
 - global[5] -> "__memory_base"
 - global[6] -> "__table_base"
Code[2]:
 - func[0] size=2 <__wasm_call_ctors>
 - func[1] size=134 <howOld>
Custom:
 - name: "name"
 - func[0] <__wasm_call_ctors>
 - func[1] <howOld>
Custom:
 - name: "producers"

In Example 5-4 we use our new module to calculate an age
based on an HTML input range setting. This is obviously not a function
we would have to write in C, but we are keeping it simple
momentarily. We have a range <input> element whose maximum value is
set to the current year once the WebAssembly module is loaded. We
arbitrarily set the minimum value to 100 years in the past. We have a
function called updateLabels to set the values on our elements when
the value changes and another to re-calculate someone’s age when the
slider value changes. The listener function calls into our module
with the currentYear and the current value of the slider to
calculate the difference.

Example 5-4. Using the howOld function in HTML.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>How Old Are You?</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div id="container" class="container" style="width: 80%">
 <h1>How Old Are You?</h1>
 <label for="year" id="yearborn" class="form-label">Year Born</label>
 <input type="range" class="form-range" id="year" name="year" value="0"/>
 <div class="form-label">You are: </div>
 </div>

 <script>
 var d = new Date();
 var currentYear = d.getFullYear();
 var slider = document.getElementById("year");
 var yearBorn = document.getElementById("yearborn");
 var ageSpan = document.getElementById("age");

 fetchAndInstantiate('howold.wasm').then(function(instance) {
	 slider.setAttribute("min", currentYear - 100);
	 slider.setAttribute("max", currentYear);

	 var updateLabels = function(val, age) {
	 yearBorn.innerText = "Year Born: " + val;
	 ageSpan.innerText = age;
	 };

	 var listener = function() {
	 var age = instance.exports.howOld(currentYear, slider.value);
	 updateLabels(slider.value, age);
	 };

	 slider.onchange = listener;
	 slider.oninput = listener;
	 slider.value = "1972";

	 updateLabels(1972, 49);
 });
 </script>
 </body>
</html>

The rendered HTML should look something like Figure 5-2.

[image: Our HTML application for calculating someone's age.]
Figure 5-2. Our HTML application for calculating someone’s age.

Things Get Complicated

Now that you have seen the basics of using C with WebAssembly, the
reality is that we have not used much of the language. I have shown
you a simple example that passes a couple of numbers to a function
that only returns a single number. That is not substantially different
from what we have done so far.

More sophisticated C programs will have difficulty mapping quite so
simply to the amount of the platform you have been exposed to. There
is the issue we have raised already with respect to our “Hello,
World!” program: there is no printf() function available to the
program in the browser. There is also the issue of how C programs are
structured and how memory is allocated and cleaned up. The process of
linking the various compiled software files together is also
fundamentally different in this world we are exploring.

The good news is that most of these issues can be handled by tools and
the runtime platform. The bad news is that the details get rather
complicated quickly. If you have never done any C programming before,
there will be many new ideas. This book cannot teach you everything,
but I will try to highlight specific interactions between this
language and WebAssembly6.

Imagine a simple function that takes no parameters and returns the sum
of an array. Example 5-5 has just such an example. Bear with
me, I am keeping it arbitrarily simple for the moment. In this code we
have no parameters and the compiler can tell how big the array needs
to be because we initialize it with the first ten digits.

Example 5-5. A simple C function

int addArray() {
 int retValue = 0;
 int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 for(int i = 0; i < 10; i++) {
 retValue += array[i];
 }

 return retValue;
}

If we try to compile this program, we will probably run into a warning
because clang is expecting there to be a main() program. Remember,
this is how the operating system knows where to begin as we discussed
in Chapter 3. Because it cannot find a method with this
name it cannot link everything up into a standalone runtime.

brian@tweezer ~/g/w/s/ch05> clang simple.c -o simple.o
Undefined symbols for architecture x86_64:
 "_main", referenced from:
 implicit entry/start for main executable
ld: symbol(s) not found for architecture x86_64
clang-11: error: linker command failed with exit code 1 (use -v to see invocation)

No problem. This is an easy fix. We can simply tell clang to compile
the code but not link it with the -c option:

brian@tweezer ~/g/w/s/ch05> clang -c simple.c -o simple.o
brian@tweezer ~/g/w/s/ch05> ls -laF simple.*
-rw-r--r-- 1 brian staff 170 Feb 19 15:27 simple.c
-rw-r--r-- 1 brian staff 1060 Feb 19 15:43 simple.o

This has generated an object file that has the function definition in
it. The nm command7 shows us
what is in the compiled file:

brian@tweezer ~/g/w/s/ch05> nm -a simple.o
 U ___stack_chk_fail
 U ___stack_chk_guard
0000000000000000 T _addArray
 U _memcpy
00000000000000a0 s l___const.addArray.array

This might be confusing at first, but the idea should be clear enough
with some explanation. Our function, addArray() is defined as a text
segment symbol in the object file. The three items with a U symbol
type indicate that they are undefined. These particular symbols refer
to some buffer overflow protection methods linked in automatically for
safety reasons and a function to copy memory from one location to
another. The definitions of these functions will be required to make
the code executable, but this is what the linking stage and reusable
libraries like libc provide.

What we end up with is an incomplete executable, but a properly formed
binary representation of our function. If we provide a main() method
and link the executable, we can demonstrate how it works. In
Example 5-6, our function is called by our driver program.

Example 5-6. A main() method to invoke our function.

#include <stdio.h>

extern int addArray();

int main() {
 int sum = addArray();

 printf("The array sum is: %d\n", sum);
}

Notice we have to tell the compiler about the definition of
our addArray() function because it is not defined in this file. The
extern keyword provides a promise that there will be something with
this name that takes no arguments and returns an integer available. As
such, it is ok to assign the result of this function to an integer
variable called sum. This is then passed into the printf()
function where it is formatted as a human-friendly output message
indicating the accumulated sum.

To build the executable we compile the simplemain.c and simple.c
files and store the result in an executable called
simplemain. Because we did not include the -c option, it does
engage the linker. This no longer complains because we did provide a
definition for the main() method.

brian@tweezer ~/g/w/s/ch05> clang simplemain.c simple.c -o simplemain
brian@tweezer ~/g/w/s/ch05> ls -laF simplemain
-rwxr-xr-x 1 brian staff 49640 Feb 19 16:01 simplemain*
brian@tweezer ~/g/w/s/ch05> ./simplemain
The array sum is: 45

If we use the nm program on the final executable, you will notice
that we have provided everything we need to this time. The undefined
symbols will be expected to be provided by a dynamic library when the
program runs. They are excluded from the binary to keep the size down.

brian@tweezer ~/g/w/s/ch05> nm -a simplemain
 U ___stack_chk_fail
 U ___stack_chk_guard
0000000100008018 d __dyld_private
0000000100000000 T __mh_execute_header
0000000100003ea0 T _addArray
0000000100003e70 T _main
 U _memcpy
 U _printf
 U dyld_stub_binder

Now that we have a working program, let us return to our function
shown in Example 5-5. This works because we used a literal
syntax to initialize the array. We did not specify how big the array
needed to be because the compiler could figure it out. In memory it
has allocated enough memory to hold that many integers. This
allocation is done on the stack so that when we return from the
function there is no additional clean up necessary. We end up with a
sufficiently large location in memory to store our numbers to sum up
as shown in Figure 5-3.

[image: A C array is just a named portion of memory storing our data]
Figure 5-3. A C array is just a named portion of memory storing our data

What happens if we tell the compiler how big it needs to be but then
give it more numbers than that? In Example 5-7 we tell the
compiler we are only expecting five integers in the array but then
give it ten. This is known as a blivet in some
circles8. With the following discussion I am
hoping to show you how a compiler can help you come to a more correct
solution as you make edits to your code by providing feedback on your
mistakes. This happens well before we try to run the code which is
usually where we find problems in interpreted languages.

Example 5-7. A broken version of our function.

int addArray() {
 int retValue = 0;
 int array[5] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 for(int i = 0; i < 10; i++) {
 retValue += array[i];
 }

 return retValue;
}

Fortunately, this is also something easy for a compiler to detect. It
will point out that we are being silly and gives us a warning.

brian@tweezer ~/g/w/s/ch05> clang -c simple.c -o simple.o
 int array[5] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 ^
1 warning generated.

What happens if we want to return an array from our function? In
Example 5-8 we attempt this but quickly see that it will not
work.

Example 5-8. An unsuccessful attempt to return an array from a function.

int[] generateArray() {
 int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 return array;
}

Even though what we are doing seems reasonable, the compiler again
informs us that we are not doing it right.

brian@tweezer ~/g/w/s/ch05> clang -c simple2.c -o simple2.o
simple2.c:1:22: error: brackets are not allowed here; to declare an array, place the
brackets after the identifier
int[] generateArray() {
 ~~ ^
 []
simple2.c:1:20: error: function cannot return array type 'int []'
int[] generateArray() {
 ^
simple2.c:3:10: warning: incompatible pointer to integer conversion returning 'int [10]'
from a function with result type 'int' [-Wint-conversion]
 return array;
 ^~~~~
simple2.c:3:10: warning: address of stack memory associated with local variable 'array'
returned [-Wreturn-stack-address]
 return array;
 ^~~~~
2 warnings and 2 errors generated.

Array names are special variables in C. They are placeholders for the
address of a contiguous block in memory that stores these values. We
can introduce a pointer to an integer and assign it to the location of
the beginning of the array. In order to access the value at that
location, we must use the dereference operator, *.

In Example 5-9 you can see us define a pointer to an integer
and assign the array address to it. When we print out a, we use a
special formatting structure of %p to indicate this a memory
reference.

Example 5-9. Using a pointer to an array

#include <stdio.h>

void generateArray() {
 int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 int * a = array;
 printf("a is %p\n", a);
 printf("The first value is: %d\n", *(a));
 printf("The second value is: %d\n", *(a + 1));
 printf("The third value is: %d\n", *(a + 2));
}

int main() {
 generateArray();
}

The first value in the array is located at the beginning of
the array so we can access it with *a. The second integer is one
memory address over so we add one to the base of the array before
dereferencing it. The third value is two over.

Compiling our program and running it shows us the output we
expect. Your value for a as an address is unlikely to be the same,
but it should look similar.

brian@tweezer ~/g/w/s/ch05> clang simple3.c -o simple3
brian@tweezer ~/g/w/s/ch05> ./simple3
a is 0x7ffeef3a9720
The first value is: 0
The second value is: 1
The third value is: 2

The reason the compiler yelled at us with the code in
Example 5-8 is because you cannot return an array like we
tried. Instead, you have to return a pointer.

We try once again in Example 5-10 to return our array.

Example 5-10. Another unsuccessful attempt to return an array from a function.

#include <stdio.h>

int * generateArray() {
 int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 return array;
}

int main() {
 int * a = generateArray();
 printf("a is %p\n", a);
 printf("The first value is: %d\n", *a);
 printf("The second value is: %d\n", *(a + 1));
 printf("The third value is: %d\n", *(a + 2));
}

And once again, we fail.

brian@tweezer ~/g/w/s/ch05> clang simple4.c -o simple4
simple4.c:5:10: warning: address of stack memory associated with local variable
'array' returned [-Wreturn-stack-address]
 return array;
 ^~~~~
1 warning generated.

This time the compiler is telling us that we are returning a reference
to memory on the stack. If you remember what I said up above about
what happens when we return from the function. Our pointer is pointing
to memory that is going to be thrown away before we even get a chance
to use it.

This is why we need the ability to allocate memory on the heap. It
will be valid until we tell the C runtime that we do not need it
anymore. The easiest way to allocate memory on the heap is to use the
malloc() function.

We finally have a working code sample in Example 5-11. The
malloc() function is provided by the standard library so we include
another header with its definition. We need to tell this function how
much memory to allocate so we use some multiple of the size of an
integer. The good news is that we can also create arbitrarily large
arrays now. You can see here we have doubled the size to 20 and then
iterate over the numbers between 0 and 19 to fill our array. Finally
we return the result and capture it as an int * in the main()
method. This behaves just like our int * in Example 5-9
even though we are pointing to the heap now instead of the stack.

Example 5-11. A successful (but still flawed) attempt to return an array from a function

#include <stdio.h>
#include <stdlib.h>

int * generateArray() {
 int * array = (int *) malloc(sizeof(int) * 20);
 for(int i = 0; i < 20; i++) {
 array[i] = i;
 }

 return array;
}

int main() {
 int * a = generateArray();
 printf("a is %p\n", a);
 printf("The first value is: %d\n", *a);
 printf("The second value is: %d\n", *(a + 1));
 printf("The third value is: %d\n", *(a + 2));
}

Compiling and running our new program finally gives us some joy.

brian@tweezer ~/g/w/s/ch05> clang simple5.c -o simple5
brian@tweezer ~/g/w/s/ch05> ./simple5
a is 0x7fae22c059e0
The first value is: 0
The second value is: 1
The third value is: 2

Before you get too comfortable, however, there remains a flaw in our
program. Because we print out the results and quit, it is not a huge
issue, but it is the kind of issue that drives C programmers (and
their users) bonkers. We forgot to free up the memory we allocated! If
this were a server or a long-running programming and we called our
function many times, we might eventually run out of memory.

To solve the problem, we just need to call the free() function to
tell the runtime we are done with that memory. Once we do we cannot
touch it again. This highlights some of the many issues you need to
consider when writing programs in C.

	
Do not use memory before you have allocated it.

	
Do not create blivets with the memory you have allocated. Make sure they are big enough.

	
Do not forget to free your memory once you are done with it.

	
Do not use your memory after you have freed it.

Forgetting any one of these rules is likely to cause your program to
crash or run out of memory. If this seems like a big hassle, you will
appreciate languages such as Java, Python, and JavaScript that
alleviate some of these issues for you. The down side is that there is
usually a performance tradeoff which is why Rust is so compelling. It
gives you the speed of a language like C without the danger of a
language like C. We will introduce Rust in Chapter 10.

Until then, we need to figure out what all of this means for
WebAssembly.

C/C++ and WebAssembly

For this next section, I am going to be using a more complex
infrastructure based upon a sample project provided by Petter
Strandmark9 for using clang and
WebAssembly together. In the next chapter we will introduce the
Emscripten toolchain to make it easier to port existing code to
WebAssembly. Eventually, we will introduce the WebAssembly Services
Interface (WASI) to handle these details, but until then we need the
infrastructure to help us overcome the obstacles we have seen so far.

There are several pieces to this infrastructure but it is largely
self-contained and I think ultimately pretty clear. For reasons that
are not worth going into at the moment, we are going to use the C++
version of the clang compiler. We do not have time
to teach you C++ in this chapter as well so I am not going to focus on
too many specifics. There are cases where we need to make the C++ code
behave like C, however, so just stick with me on this one.

We will start with some C/C++ code. The two languages are quite
closely related, but C++ provides object-oriented programming features
that make it a little easier to model a domain using natural concepts
(e.g. orders, accounts, users, etc.) We are not going to focus on any
of these distinctions, however, which is why I keep referring to the
languages together. In Example 5-12 you can see some of the
functionality we are going to use. To keep things manageable, I am not
going to show you everything at this point.

Example 5-12. Some C/C++ functions for us to call

#include "nanolibc/libc.h"
#include "nanolibc/libc_extra.h"

#define WASM_EXPORT __attribute__((visibility("default"))) extern "C"

WASM_EXPORT int* get_memory_for_int_array(int size) {
 return new int[size];
}

WASM_EXPORT void free_memory_for_int_array(int* arr) {
 delete[] arr;
}

WASM_EXPORT void mergeSort(char *p, int length) {
 int c, d, swap;

 for(c = 0; c < length - 1; c++) {
 for(d = 0; d < length - c - 1; d++) {
 if(p[d] > p[d+1]) {
	swap = p[d];
	p[d] = p[d+1];
	p[d+1] = swap;
 }
 }
 }
}

WASM_EXPORT void reverse(unsigned char* p, int len) {
 for(int i = 0; i < len / 2; i++) {
 unsigned char temp = p[i];
 p[i] = p[len - i - 1];
 p[len - i - 1] = temp;
 }
}

The first thing that will jump out at you is the #include
statements. This code uses a very small implementation of the libc
library which provides us with working versions of malloc(),
free(), and even printf() (but hold that thought for a
moment). Header files in C/C++ allow us to advertise the signatures of
functions so the compiler knows what to expect.

As you see in Example 5-13 we have a collection of functions
available for us to link against. To make sure they are visible as C
functions, we use the extern "C" keyword to keep the C++ compiler
from mangling their names10.

Example 5-13. The header file for a small implementation of libc.

#ifndef _NANOLIB_C_H
#define _NANOLIB_C_H
#include <stdarg.h>
#include <stddef.h>

extern "C" {
 void* memcpy(void* dest, const void* src, size_t count);
 void* memset (void * dest, int value, size_t count);

 int puts (const char * str);
 int printf(const char* format, ...);
 int sprintf(char* buffer, const char* format, ...);
 int snprintf(char* buffer, size_t count, const char* format, ...);
 int vsnprintf(char* buffer, size_t count, const char* format, va_list va);

 void* malloc(size_t amount);
 void* realloc(void *ptr, size_t size);
 void* calloc(size_t num, size_t size);
 void free(void* mem);
}

#endif

Looking back at Example 5-12 we have a method called
get_memory_for_int_array() that takes a size parameter to tell us
how much memory to allocate. If you look closely at the
implementation, it is using C++’s new operator. For our purposes,
just assume that means the same things as a malloc() call. The
free_memory_for_int_array() function serves a similar role to a
free() call by using the delete operator.

There is a #define macro that gives these functions external
visibility which will make sure they are available to our JavaScript
code that is going to invoke them.

We next have a function providing an implementation of a Merge
Sort11 and another that reverses an
array of numbers.

The build systems for C/C++ applications and libraries are not as
modern and friendly as, say, Rust’s cargo command, but they are
solid and flexible. We are going to use a simple Makefile-based
approach. This is another detail we do not have time to cover in
depth, but basically we define a set of rules to build the
target. When source code changes, it causes the dependencies to be
re-evaluated and builds anything that needs to be built. The contents of
this file are available through the book’s Git repo if you want to see
how it works.

To build our code, we will use the make command and it will let us
know how it goes.

brian@tweezer ~/g/w/s/c/helloworld> make
... Lots of noise goes by...
brian@tweezer ~/g/w/s/c/helloworld> ls -laF *.wasm
-rwxr-xr-x 1 brian staff 5309 Feb 19 20:03 library.wasm*

I will leave it to you to explore the contents of the module in detail
on your own, but I want to highlight a few quick points for part of
it. Notice our module exports its own memory. You can change this
behavior to import a Memory instance from the JavaScript side of
things but we are not going to do that for now.

All you need to focus on for the moment is that our C/C++ code has a
tiny implementation of libc that will allocate and free memory from an
exported Memory instance which, after Chapter 4, should
start to get your gears turning.

brian@tweezer ~/g/w/s/c/helloworld> wasm-objdump -x library.wasm
...
Export[11]:
 - memory[0] -> "memory"
 - func[1] <get_memory_for_int_array> -> "get_memory_for_int_array"
 - func[14] <_Znam> -> "_Znam"
 - func[3] <free_memory_for_int_array> -> "free_memory_for_int_array"
 - func[16] <_ZdaPv> -> "_ZdaPv"
 - func[5] <debug_dump_memory> -> "debug_dump_memory"
 - func[7] <mergeSort> -> "mergeSort"
 - func[8] <reverse> -> "reverse"
 - func[9] <helloWorld> -> "helloWorld"
 - func[11] <_Znwm> -> "_Znwm"
 - func[15] <_ZdlPv> -> "_ZdlPv"
...

Next we will need some HTML code to invoke our C/C++ behavior. Much of
the structure is similar to what we have seen previously but I will
highlight the parts you need to understand in Example 5-14.

Example 5-14. The relevant portions of our HTML file

<script>
let wasm;

...

WebAssembly.instantiateStreaming(fetch('library.wasm'), importObject).then(
 function(obj) { [image: 1]
 wasm = obj; [image: 2]

 const ptr = wasm.instance.exports.get_memory_for_int_array(10); [image: 3]
 const memory = new Uint8Array(wasm.instance.exports.memory.buffer); [image: 4]
 const nums = memory.subarray(ptr); [image: 5]

 for(var i = 0; i < 10; i++) {
 nums[i] = i;
 }

 console.log(nums);

 wasm.instance.exports.reverse(ptr, 10); [image: 6]

 console.log(nums);

 var arr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; [image: 7]

 shuffleArray(arr);

 for(var i = 0; i < 10; i++) {
 nums[i] = arr[i];
 }

 console.log(nums);

 wasm.instance.exports.mergeSort(ptr, 10); [image: 8]

 console.log(nums);

 wasm.instance.exports.free_memory_for_int_array(ptr); [image: 9]

 ...
}

</script>

	[image: 1]

	The module is created in the JavaScript host the same way as usual.

	[image: 2]

	We want access to the module instance elsewhere once it is available.

	[image: 3]

	Enough space is initialized in the module for ten integers. We capture the “pointer” that is returned.

	[image: 4]

	The underlying buffer is wrapped with a Uint8Array.

	[image: 5]

	A sub-Uint8Array is created that covers the portion referenced by the previously returned “pointer”.

	[image: 6]

	The reverse() method from the module is invoked.

	[image: 7]

	We rely upon JavaScript functionality to shuffle some data.

	[image: 8]

	The mergeSort() method is invoked with a reference to the “pointer”.

	[image: 9]

	The memory is freed on the module side.

We start off by serving up the HTML and WebAssembly module over HTTP
as we have done previously. The module is loaded and instantiated
using the same utility library as before even though it was generated
via a completely different process. Once the module instance is
available, we assign the variable to another variable defined outside
of the lexical scope of this block so we can use it elsewhere.

Because the C/C++ side of our code does not realize what is going on,
we have to allocate enough memory from its perspective to store some
data in from the JavaScript side. Previously we just wrote data
directly into the exported Memory instances. Because we are going to
be emulating pointers, we have to create something on that side that
will look appropriate. We invoke the get_memory_for_int_array()
function and ask it to allocate room for ten integers. The function
returns a pointer on the C/C++ side. From this side it is more rightly
considered a “pointer”. It is not directly a reference to a location
in the heap as you saw earlier. Instead, it is an index into the
underlying buffer that the small libc implementation allocated the
data into. We will use this reference as an offset into the memory when
we pass it back to the other side.

We surround the underlying ArrayBuffer with a Uint8Array wrapper
so we can write 8-bit integers easily from this side. If you revisit
the code in Example 5-12, you might notice that our sorting
and reversing functions accepts char *. C can be pretty flexible by
doing automatic type coercions between ints, chars, addresses,
booleans, and more. It is extremely flexible and often very
buggy. These chars cannot be bigger than 8-bits so they have a max
size of 255. We wrap the buffer with a Uint8Array for the convenience
of not having to worry about that.

After this, a subarray of type Uint8Array is generated for the
portion beginning at our “pointer”. This allows us to ignore
everything that might have been allocated before our array and we can
start writing into it conveniently using JavaScript numbers. The
results of this are dumped to the console to show you what is going
on.

The next step is to invoke the reverse() function. This
implementation is written with the perception that it is just swapping
values in memory and remarkably it does not have to change. We do not
need a return value from this function because the array was reversed
in place. This is one of the reasons why C can be so fast. It avoids
creating a lot of unnecessary memory and has very low overhead to
retrieve values and iterate through memory locations. On the
JavaScript side our “pointer” will still point to the beginning of the
newly reversed array which is dumped to the console for clarity.

In order to show off the sorting functionality, we need some shuffled
data. It certainly would have been possible to write code like that in
C, but we need to rely on a random number generator for the shuffling
algorithm. That would have complicated things for us dependency-wise
so we just rely on JavaScript’s support for random number
generation. You are likely to make decisions to rely on behavior from
the browser sometimes and rely on code expressed in a WebAssembly
module at other times.

A newly-created array is filled, shuffled, and dumped to the
console. We write the shuffled values back into our C/C++ array at the
location indicated by our “pointer” and then invoke the mergeSort()
functionality. This too is written assuming it has access to a
location in memory so it efficiently re-orders the data to be sorted.

When we return to JavaScript, we dump the results to console and then
free up the memory we allocated as we are no longer using it.

In Figure 5-4 you see the remarkable results of our most
complicated example so far. We are getting the benefits of reusing
code that performs at near native speed in the browser. For small
datasets, the overhead is probably still not worth it, but it is easy
to make the case in other situations that it is.

[image: The results of intermixing our JavaScript and C/C++ via WebAssembly]
Figure 5-4. The results of intermixing our JavaScript and C/C++ via WebAssembly

Finally, “Hello, World!” in WebAssembly

This has been a bit of a beast of an effort, but I hope the reality of
what is possible is starting to become clear. We still have a lot more
to show you, but, it is high time I honored my promise to give you a
“Hello, World!” example. To keep it simple, I am not going to have a
typical main() program. Instead, I will expose the behavior as
another function in our library.cpp file. Example 5-15 shows
you how simple this is.

Example 5-15. Hello, World! as a function in our C/C++ code.

WASM_EXPORT void helloWorld() {
 printf("Hello, World!\n");
}

If I add a call to this new function after the other code in the HTML,
you can see the results in Figure 5-5.

[image: The previously-promised _Hello, World!_ results in all of their glory.]
Figure 5-5. The previously-promised Hello, World! results in all of their glory

How the heck did this work!?! And if it was so easy, why did we have
to wait until the end of Chapter 5 to see it?

Let me show you some more details from the HTML in
Example 5-16. There is a new function call get_memory() that
simply returns a Uint8Array instance. There are decoder and
encoder variables available for converting to and from UTF-8
representations of strings12. There is a function called
charPtrToString() that will convert a “character pointer” (i.e. C
string) into a UTF-8 string for JavaScript to use.

Further down we have a function called printString() that will be
invoked with a JavaScript string to be dumped to the console. Our
importObject is configured to have a method in it called
print_string which will convert a “character pointer” to a string
before invoking the method to dump it to the console. The
importObject, you will recall, allows us to share functionality and
data with our module instance.

Example 5-16. Behind-the-scenes machinery to make Hello, World! work

<script>
function get_memory() {
 return new Uint8Array(wasm.instance.exports.memory.buffer);
}

const decoder = new TextDecoder("utf-8");
const encoder = new TextEncoder("utf-8");

function charPtrToString(str) {
 const memory = get_memory();
 let length=0;
 for (; memory[str + length] !== 0 ;++length) {}
 return decoder.decode(memory.subarray(str, str + length));
}

let printString = function(str) {
 console.log(str);
};

const importObject = {
 env: {
 print_string: function(str) {
 printString(charPtrToString(str));
 }
 }
};
...
</script>

This covers the JavaScript side. On the C/C++ side we see in
Example 5-17 that the nanolibc/libc_extra.h header defines a
function called print_string() that takes a char *.

Example 5-17. Exposing JavaScript functions as C functions.

#ifndef _NANOLIB_C_EXTRA_H
#define _NANOLIB_C_EXTRA_H

extern "C" {
 // Will be provided by Javascript.
 void print_string(const char* str);
}

#endif

There is a file that defines our printf() instance in the nanolibc
directory. The details there are complicated so I do not want to go
into them, but I will point out that it calls puts() to put a char
* to the output console. Normally this is a low-level service
provided by the operating system, but based on what you have seen so
far, our JavaScript handlers will route it to its console once we hook
the final piece up in Example 5-18.

Example 5-18. Exposing JavaScript functions as C functions.

int puts (const char * str) {
 print_string(str); [image: 1]
 return 0;
}

	[image: 1]

	puts() calls the JavaScript function with a char *.

At long last, we see how this works. Our function calls printf()
which calls puts() which is defined to call the provided function. I
am not going to describe how that gets hooked in right now, but I hope
the result is still satisfying. There is more to know about using
C/C++ with WebAssembly, but that is the subject of the forthcoming
chapters. Until then, you have just crossed an important chasm for
understanding how WebAssembly works behind the scenes. Next we will
learn how to port existing software to run in the browser.

1 C’s history is an integral part of our industry and the development of modern operating systems. https://en.wikipedia.org/wiki/C_(programming_language)
2 One of the most popular programming books ever: https://en.wikipedia.org/wiki/The_C_Programming_Language
3 And the lion’s share of security issues!
4 LLVM used to stand for Low-Level Virtual Machine, but these days it just means LLVM. Find out more at https://llvm.org
5 Loop unrolling is a common optimization in many programming languages. https://en.wikipedia.org/wiki/Loop_unrolling
6 There is a useful C tutorial at https://learn-c.org if you do not mind some annoying ads. Otherwise, Steve Oualline’s Practical C Programming or the aforementioned The C Programming Language are good introductions.
7 nm is a common tool in the world of C to print out the contents of binary files such as this.
8 Sometimes referred to as “ten pounds of manure in a five pound bag”. It will not fit!
9 You can find Petter’s sample project here: https://github.com/PetterS/clang-wasm
10 It is outside of the scope of this book to cover these details but you can find more here if you are interested: https://en.wikipedia.org/wiki/Name_mangling
11 Merge Sort is a utility sorting algorithm with O(n log n) complexity. It is easy to implement which is why I chose it. You can find more details here: https://en.wikipedia.org/wiki/Merge_sort
12 Petter’s example at the previously listed GitHub repo does more with strings moving back and forth from JavaScript and C

Chapter 6. Applied WebAssembly : Legacy Code in the Browser

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

No matter where you go, there you are.

Buckaroo Banzai

It is time we look more closely at the process of invoking C/C++ code
in the browser. Most code in these languages was never intended to run
in the browser in a downloaded form. But as the leader of the Hong
Kong Cavaliers1
tells us in the above quotation, occasionally you will find yourself
somewhere unexpected and new but it is still just you there.

We are interested in doing this for a variety of reasons. Replacing
JavaScript is not one of them. At least not for most people. Instead,
we have an enormous base of legacy code out there written in languages
such as C and C++. A lot of it is very useful and it would be great to
have access to within our web applications. Some of it may be tying
organizations to legacy systems. Being able to distribute this code
via the browser would be a big step forward!

Additionally, there are simply some problems that are not well-suited
to be written in JavaScript. Having the option of writing that portion
of your application in another language without requiring a separate
runtime is very compelling. And, as our final example demonstrates,
there is real value in having trusted code from trusted sources
providing provenance for sensitive and tricky software such as
encryption algorithms. Being able to simply recompile existing code
from people you know who know what they are doing is a useful
capability to have as well.

In the last chapter we showed that it is possible to use a regular
WebAssembly-enabled C compiler like clang and some header and
library dependency management to achieve basic integration. Having to
provide our own versions of the standard library and manually linking
C code to provided JavaScript is going to get old really quickly
however.

Fortunately, the Emscripten project has laid
down the foundations for making this an easier process than it might
otherwise be. This is not surprising because its main developers, Alon
Zakai and Luke Wagner, have been behind much of the work starting with
asm.js, extending into the WebAssembly MVP and to the specification
advancements that continue to this day. The Emscripten2 toolchain has been there for much of the
journey.

The project is based upon the LLVM platform. In earlier chapters, I
indicated that it initially had a custom backend that emitted the
optimizable subset of JavaScript for asm.js. Once the WebAssembly
platform was defined, a new backend was able to emit Wasm binaries.

Unfortunately, that is only part of the solution. There also needs to
be support for getting data into and out of memory, linking modules,
wrapping existing libraries and more. A C program that provides a user
interface or listens for network requests often spins in a fairly
tight loop responding to input activity. Given that a browser is a
single-threaded environment by default, there would be an operational
mismatch with that kind of main loop. The Emscripten toolchain has
been modified to solve many types of issues that might arise in trying
to port native C/C++ to run in our web environment. As with most
topics, this cannot be a comprehensive introduction to everything this
project does, but I will try to get you started quickly.

Proper “Hello, World!”

So, first a confession: We could have had a working, unmodified
“Hello, World!” example in the browser way back in
Chapter 2. For the final time, we will show you
the code in Example 6-1.

Example 6-1. The typical “Hello, World!” program as expressed in C.

#include <stdio.h>

int main() {
 printf("Hello, World!\n");
 return 0;
}

Using the Emscripten C compiler (installation instructions can be
found in Appendix A), we simply need to tell it to compile
the C code and generate some JavaScript scaffolding. After that it
runs in Node.js unmodified.

brian@tweezer ~/g/w/s/ch06> emcc hello.c -o hello.js
brian@tweezer ~/g/w/s/ch06> ls -laF
total 520
drwxr-xr-x 7 brian staff 224 Mar 1 14:45 ./
drwxr-xr-x 7 brian staff 224 Mar 1 13:02 ../
-rw-r--r-- 1 brian staff 121457 Mar 1 13:05 bootstrap.min.css
-rw-r--r-- 1 brian staff 76 Mar 1 13:02 hello.c
-rw-r--r-- 1 brian staff 388 Mar 1 13:07 hello.html
-rw-r--r-- 1 brian staff 121686 Mar 1 14:45 hello.js
-rwxr-xr-x 1 brian staff 11711 Mar 1 14:45 hello.wasm*
brian@tweezer ~/g/w/s/ch06> node hello.js
Hello, World!

The HTML file in Example 6-2 was not generated by this
process and is suspiciously different than what we have seen
before. There is a single <script> element that loads our generated
JavaScript. We are not using the utils.js file we have used so
far. Instead, we have a much longer JavaScript file produced by the
previous command. Look at that file listing! It is over 120
kilobytes! It is over 2,000 lines of code. If you take a look at it,
you might find yourself getting lost pretty quickly. This is why I did
not want to start there in earlier chapters.

Example 6-2. A substantially different HTML file than we have seen.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Hello, World!</title>
 </head>
 <body>
 <div class="container">
 <h1>Hello, World!</h1>
 </div>
 <script src="hello.js"></script>
 </body>
</html>

And yet, if we serve up this directory via HTTP, open a browser and
open the JavaScript console, you will see something very similar to
Figure 6-1.

[image: The Hello, World you were told was not possible.]
Figure 6-1. The Hello, World you were told was not possible.

If you use the wasm-objdump command on the file hello.wasm, you
will notice that there is an exported main() function. The generated
code has quickly outgrown our ability to show entire files anymore, so
I will highlight just the Export section.

...
Export[13]:
 - memory[0] -> "memory"
 - func[3] <__wasm_call_ctors> -> "__wasm_call_ctors"
 - func[5] <main> -> "main"
 - func[6] <__errno_location> -> "__errno_location"
 - func[50] <fflush> -> "fflush"
 - func[47] <stackSave> -> "stackSave"
 - func[48] <stackRestore> -> "stackRestore"
 - func[49] <stackAlloc> -> "stackAlloc"
 - func[44] <emscripten_stack_init> -> "emscripten_stack_init"
 - func[45] <emscripten_stack_get_free> -> "emscripten_stack_get_free"
 - func[46] <emscripten_stack_get_end> -> "emscripten_stack_get_end"
 - table[0] -> "__indirect_function_table"
 - func[53] <dynCall_jiji> -> "dynCall_jiji"
...

You see that there is quite a bit of generated scaffolding to make
this all work. The details are fairly complicated, but if you wanted
to trace your way through it, I would recommend generating the
corresponding Wat file with wasm2wat. From there, trace through the
main() function (numbered 5 above). You will see something like Example 6-3.

Example 6-3. The main method in Wat.

...
 (func (;5;) (type 5) (param i32 i32) (result i32)
 (local i32)
 call 4
 local.set 2
 local.get 2
 return)
...

Eventually you will find your way back to the generated JavaScript
file. In there is a function called fd_write as shown in
Example 6-4. This is a added to a namespace called
wasi_snapshot_preview1. As the name suggests, this is a bit of a
preview we will cover in later discussions, but the main point is that
the Emscripten toolchain is generating code to solve some of the
low-level hassles we have seen in the previous chapters. We will
discover similar tooling with the Rust ecosystem in Chapter 10.

Example 6-4. Part of the printf solution.

...
 function _fd_write(fd, iov, iovcnt, pnum) {
 // hack to support printf in SYSCALLS_REQUIRE_FILESYSTEM=0
 var num = 0;
 for (var i = 0; i < iovcnt; i++) {
 var ptr = HEAP32[(((iov)+(i*8))>>2)];
 var len = HEAP32[(((iov)+(i*8 + 4))>>2)];
 for (var j = 0; j < len; j++) {
 SYSCALLS.printChar(fd, HEAPU8[ptr+j]);
 }
 num += len;
 }
 HEAP32[((pnum)>>2)] = num
 return 0;
 }
...

It is certainly not necessary to get down in the weeds to see exactly
how all of this works. It is important for you to understand that we
are not actually calling printf() in a typical standard library sense,
but that this function has been rewritten to call the generated
code. In the browser it will route the characters to the JavaScript
console associated with developer tools. In a Node.js environment, it
will get routed to the underlying system console. What is important at
this stage is the fact that our legacy application did not have to
change to run in this new environment but we are also not encumbered
with the terrifying prospect of running native C and C++ directly. We
are striking a crucial balance of portability, safety, and performance
which is what WebAssembly is all about.

The generated code has a Module object in the JavaScript which
defines the runtime environment our WebAssembly code will
occupy. There are comments at the top of the JavaScript file which
describe this object and its role as an interface between the two
worlds. To keep things manageable, however, we are going to focus on a
much smaller portion of this.

One of the options available to us is the use of compiler directives
to turn on or surpress certain generated behavior. For example, we
might not want our C program to run immediately when the JavaScript
code is loaded. If you try compiling without the INVOKE_RUN=0
directive, you will see the typical greeting as you did above. In the
following snippet, notice nothing is printed out to the command line
when the code is loaded in Node.js.

brian@tweezer ~/g/w/s/ch06> emcc hello.c -o hello.js -s INVOKE_RUN=0
brian@tweezer ~/g/w/s/ch06> node hello.js
brian@tweezer ~/g/w/s/ch06>

Obviously if you suppress the automatic execution, you will want to be
able to indicate when the application should be executable. This can
be accomplished with another directive.

brian@tweezer ~/g/w/s/ch06> emcc hello.c -o hello.js ↵
 -s INVOKE_RUN=0 -s EXTRA_EXPORTED_RUNTIME_METHODS="['callMain']"

In Example 6-5 you can see us invoking the main() function
in response to a button click.

Example 6-5. A delayed main() method invocation

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Hello, World!</title>
 </head>
 <body>
 <div class="container">
 <h1>Hello, World!</h1>
 <button id="press">Press Me</button>
 </div>
 <script src="hello.js"></script>
 <script>
	 var button = document.getElementById("press");
	 button.onclick = function() {
	 try {
		 Module.callMain();
	 } catch(re) {
	 };
	 };
 </script>
 </body>
</html>

In Figure 6-2 the friendly message is seen printing to the
console when the button is pressed. Firefox is not displaying each
identical message, but it shows that I have pressed the button seven
times off to the right. Your browser may show one printed message per
invocation.

[image: The Hello, World triggered by pressing the button.]
Figure 6-2. The Hello, World triggered by pressing the button

Porting Third Party Code

We are now going to dive into bringing some existing code into the
browser. This code was never intended to run on the web and does
things you would normally not expect to work in a browser such as
writing to the file system. Do not fret, we are not going to break the
browser security model, but you will see how this C++ code can run
basically unmodified.

Emscripten has a tremendous number of options for porting third party
code to WebAssembly. There are effectively drop-in replacements for
cc, make, and configure which often makes the porting process
trivial. In reality, you will likely have to work your way through the
issues you encounter, but you are probably going to be surprised how
easy the process is. The project’s website3 has
great documentation to assist you with it. My favorite introduction to
the topic, however, has been Robert Aboukhalil’s fantastic Level Up
With WebAssembly4 material. He walks you through the process of
porting several different open source projects to WebAssembly to run
them in the browser. This includes games like Tetris, Pong, and
Pacman. Rather than attempt to recreate what he has already done
masterfully, I am going to focus on a relatively simple and clean
project.

I spent some time looking for good candidate code. I wanted something
meaty but not overwhelming. Eventually I found Arash Partow’s
collection of elegant, clean, suitably-licensed and useful C++ code at
his website https://www.partow.net. If you go
there you will find quite a lot of interesting material. I was
originally going to use the computational geometry library but decided
that the Bitmap library was better-suited to a book like this.

To start off, fetch the code from
http://www.partow.net/programming/bitmap/index.html. Once
you download the Zip file and uncompress it, you will see three
files. A Makefile is an old-school Unix build file that has
directions to assemble the software in question. We will explore that
process momentarily. The bitmap_image.hpp file is the main library
and the bitmap_test.cpp is a comprehensive collection of tests that
generate a bunch of interesting Windows Bitmap images. This code does
not require any platform-specific libraries.

brian@tweezer ~/g/w/s/c/bitmap> ls -alF
total 536
drwxr-xr-x@ 5 brian staff 160 Dec 31 1999 ./
drwxr-xr-x 11 brian staff 352 Mar 6 13:56 ../
-rw-r--r--@ 1 brian staff 770 Dec 31 1999 Makefile
-rw-r--r--@ 1 brian staff 247721 Dec 31 1999 bitmap_image.hpp
-rw-r--r--@ 1 brian staff 20479 Dec 31 1999 bitmap_test.cpp

I have removed some of the comments and license details from
Example 6-6 for space. What remains is the structure of the
rules for building the test app, bitmap_test. A Makefile works by
establishing a target followed by the dependencies and rules to build
the target. As a convention, there is often an all rule which
specifies the target file name mentioned above. It is dependent upon
the .cpp and .hpp files. If either of those are modified, our
executable needs to be rebuilt. To do that, the make tool will
execute the file in the COMPILER variable with the options in the
OPTIONS variable. As a C/C++ program, it will also need to be linked
against the libraries specified in the LINKER_OPT variable. In this
case we want to link against the Standard C++ library and a basic
collection of mathematical functions. This is about as independent as
you get library-wise. The clean target just removes the derived results.

Makefile Tip

Makefiles are often sensitive to spaces versus tabs. Make sure to
use tabs to start indented rule lines. The code in the repository for
the book does this, but if you are modifying it in any way, you will
want to make sure to use tabs.

Example 6-6. Makefile for our test program

COMPILER = -c++
OPTIONS = -ansi -pedantic-errors -Wall -Wall -Werror -Wextra -o
LINKER_OPT = -L/usr/lib -lstdc++ -lm

all: bitmap_test

bitmap_test: bitmap_test.cpp bitmap_image.hpp
	$(COMPILER) $(OPTIONS) bitmap_test bitmap_test.cpp $(LINKER_OPT)

clean:
	rm -f core *.o *.bak *stackdump *~

As long as you have a functioning C++ environment installed you should
be able to build the test program.

brian@tweezer ~/g/w/s/c/bitmap> make
c++ -ansi -pedantic-errors -Wall -Wall -Werror -Wextra -o bitmap_test bitmap_test.cpp ↵
 -L/usr/lib -lstdc++ -lm
brian@tweezer ~/g/w/s/c/bitmap> ls -alF
total 944
drwxr-xr-x@ 6 brian staff 192 Mar 6 14:35 ./
drwxr-xr-x 11 brian staff 352 Mar 6 13:56 ../
-rw-r--r--@ 1 brian staff 770 Dec 31 1999 Makefile
-rw-r--r--@ 1 brian staff 247721 Dec 31 1999 bitmap_image.hpp
-rwxr-xr-x 1 brian staff 205032 Mar 6 14:35 bitmap_test*
-rw-r--r--@ 1 brian staff 20479 Dec 31 1999 bitmap_test.cpp

Now this test program requires an example image.bmp file in the
current directory. I just found one online and dropped it in place
with that name. After running the command, you will end up with a ton
of generated images as shown in Figure 6-3.

[image: The images generated by the _bitmap_test_ executable]
Figure 6-3. The images generated by the bitmap_test executable

Ok, so it works. It is clean code. I am not going to teach you C++ or
walk you through the code, but I will show you some working examples
that you can try without entirely understanding what is going on.

First things first. We need to modify the Makefile to use the
Emscripten compiler, rather than whatever you used to build the test
program. This is as simple as updating the COMPILER variable as
shown in Example 6-7.

Example 6-7. Updating the Makefile for our test program to build with Emscripten

...
COMPILER = -em++
...

The clean step of the Makefile does not remove the executable. So,
manually delete bitmap_test (or better yet, modify the Makefile!)
and re-run make now. You should see something such as the following.

brian@tweezer ~/g/w/s/c/bitmap> make
em++ -ansi -pedantic-errors -Wall -Wall -Werror -Wextra -o bitmap_test ↵
 bitmap_test.cpp -L/usr/lib -lstdc++ -lm
brian@tweezer ~/g/w/s/c/bitmap> ls -alF
total 1848
drwxr-xr-x@ 8 brian staff 256 Mar 6 15:21 ./
drwxr-xr-x 12 brian staff 384 Mar 6 14:47 ../
-rw-r--r--@ 1 brian staff 771 Mar 6 15:20 Makefile
-rw-r--r--@ 1 brian staff 247721 Dec 31 1999 bitmap_image.hpp
-rw-r--r-- 1 brian staff 248314 Mar 6 15:21 bitmap_test
-rw-r--r--@ 1 brian staff 20479 Dec 31 1999 bitmap_test.cpp
-rwxr-xr-x 1 brian staff 296743 Mar 6 15:21 bitmap_test.wasm*
-rw-r--r--@ 1 brian staff 120054 Mar 6 14:39 image.bmp

Uhm. That was easy. Sadly, we are not quite done yet. While that did
compile, it is not going to work for a variety of reasons. The first
of which is that the library expects to be able to write to the
filesystem. It should come as no surprise that this is not
possible. However, there is a really cool filesystem abstraction that
writes to local storage available to us by adding a compiler
directive. Now, just like taking care of printf() calls, the
Emscripten toolchain will simulate a filesystem. You can unlock this
support by adding the directive -s FORCE_FILESYSTEM=1 to your
Makefile. I will show you the final form below.

The second problem is that the Memory instance that will be
generated by default will not be allowed to grow. If we expect this
library to generate some rather large images in memory, it will need
to be able to ask for enough memory. So, we can use another directive
to allow for this. This is something I showed you how to do manually in
Chapter 4. It is the kind of detail that Emscripten can
take care of for us. In order to have more control over the process, we
will tell Emscripten not to automatically execute the program and to
also export the main() method so we can call it when we
want. Because we are not generating a standalone binary, we also want
to tell the Emscripten compiler to generate a JavaScript file called
bitmap_test.js The command for the bitmap_test rule should now
look like this.

Makefile Tip

In the following code I indicate line continuation with the carriage
return character (↵) so the command fits on the page. Do not type
those in, just keep the line going in your file.

Example 6-8. Modified Makefile with all of our Emscripten options

bitmap_test: bitmap_test.cpp bitmap_image.hpp
	$(COMPILER) $(OPTIONS) bitmap_test.js bitmap_test.cpp $(LINKER_OPT) ↵
	 -s FORCE_FILESYSTEM=1 ↵
	 -s ALLOW_MEMORY_GROWTH=1 ↵
	 -s INVOKE_RUN=0 ↵
	 -s EXTRA_EXPORTED_RUNTIME_METHODS="['callMain']"

That solves the specific problems that would prevent the example from
working. However, there is one remaining issue. This test runs twenty
relatively time-consuming tests. As JavaScript is a single-threaded
environment, while the WebAssembly module was doing its thing, the
browser is likely to start freaking out about things taking too long.

We will address this eventually, but for the time being, I am just
going to remove calls to the rest of the tests and only call my favorite,
test20().

The main() method now looks like Example 6-9.

Example 6-9. Main method to call one test

int main()
{
 test20();
 return 0;
}

If you re-run the make command, you should see the generated Wasm
and JavaScript files. I am going to generate some basic HTML
scaffolding for us to use. In Example 6-10 you can see I have
a button and a <canvas> element that we will use to render the
bitmap. For now, save this file to the same directory as your Wasm and
JavaScript files and serve it up over HTTP as we have done throughout
the book.

Example 6-10. HTML Scaffolding for our Bitmap generator

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>C++-rendered Image in the Browser</title>
 </head>
 <body>
 <div class="container">
 <h1>C++-rendered Image in the Browser</h1>
 </div>
 <button id="load">Load</button>
 <canvas id="output"></canvas>
 <script src="bitmap_test.js"></script>
 <script>
 var button = document.getElementById("load");
 button.onclick = function() {
	Module.callMain();
	console.log("Done rendering.");
 };
 </script>
 </body>
</html>

Once you load the HTML into your browser, open up the developer
console and press the button. This is generating a variety of files
and writing them out to “disk”. It will take a little while and I
fully expect your browser will complain about this. Just tell it to
wait as many times as it asks. Once it is done, you should see the
message printed to the console. At this point, in the console, you can
do something that might surprise you as shown in Figure 6-4.

[image: Writing files to the "filesystem" in the browser]
Figure 6-4. Writing files to the “filesystem” in the browser

Our third party code used the Standard C++ library to write to
the “filesystem”. Emscripten provided an abstraction layer over local
storage in the browser to make this possible. From C++, we
could easily read it back in. From JavaScript, it is not much harder
as shown in Example 6-11.

Example 6-11. JavaScript to read “files” in from “disk” with the filesystem abstraction

>> var image = FS.readFile("./test20_julia_set_vga.bmp");
<- undefined
>> image
<- Uint8Array(2880054) [66, 77, 54, 242, 43, 0, 0, 0, 0, 0, …]

We just got a Uint8Array back from calling the FS.readFile()
function. This is going to make it easy to deal with the bytes from
the file. There is only one problem. Browsers do not support
displaying Windows Bitmap files!

Fortunately, this is a documented format and someone has done us a
solid and provided the code to do so. We could have relied on some
existing C or C++ code, but just to show you some options, we will use
the JavaScript code provided5.

Fortunately, after Chapter 4 you will be equipped to
understand most of what is shown in Example 6-12. We pass the
underlying ArrayBuffer returned from the FS.readFile() function to
a method called getMBP(). This creates a DataView around the
buffer and pulls out the various image details before shoving them
into a more convenient JavaScript representation.

Once the Bitmap file is read in, we convert the JavaScript structure
to an ImageData instance via the convertToImageData() function
from the same website. After that we set the <canvas> size to match
its height and width and use its putImageData() method to render the
pixels.

Example 6-12. JavaScript to read our Bitmap file back in and render it in the <canvas> element

 <script>
 // Code taken from https://tinyurl.com/bitmap-in-javascript
 // Written by Ian Elliott
 function getBMP(buffer) {
 var datav = new DataView(buffer);
	var bitmap = {};
	bitmap.fileheader = {};
	bitmap.fileheader.bfType = datav.getUint16(0, true);
	bitmap.fileheader.bfSize = datav.getUint32(2, true);
	bitmap.fileheader.bfReserved1 = datav.getUint16(6, true);
	bitmap.fileheader.bfReserved2 = datav.getUint16(8, true);
	bitmap.fileheader.bfOffBits = datav.getUint32(10, true);
	bitmap.infoheader = {};
	bitmap.infoheader.biSize = datav.getUint32(14, true);
	bitmap.infoheader.biWidth = datav.getUint32(18, true);
	bitmap.infoheader.biHeight = datav.getUint32(22, true);

	bitmap.infoheader.biPlanes = datav.getUint16(26, true);
	bitmap.infoheader.biBitCount = datav.getUint16(28, true);
	bitmap.infoheader.biCompression = datav.getUint32(30, true);
	bitmap.infoheader.biSizeImage = datav.getUint32(34, true);
	bitmap.infoheader.biXPelsPerMeter = datav.getUint32(38, true);
	bitmap.infoheader.biYPelsPerMeter = datav.getUint32(42, true);
	bitmap.infoheader.biClrUsed = datav.getUint32(46, true);
	bitmap.infoheader.biClrImportant = datav.getUint32(50, true);
	var start = bitmap.fileheader.bfOffBits;
	bitmap.stride = Math.floor((bitmap.infoheader.biBitCount
	 *bitmap.infoheader.biWidth + 31) / 32) * 4;
	bitmap.pixels = new Uint8Array(buffer, start);
	return bitmap;
 }

 // Code taken from https://tinyurl.com/bitmap-in-javascript
 // Written by Ian Elliott
 function convertToImageData(bitmap) {
	var canvas = document.createElement("canvas");
	var ctx = canvas.getContext("2d");
	var width = bitmap.infoheader.biWidth;
	var height = bitmap.infoheader.biHeight;
	var imageData = ctx.createImageData(width, height);

	var data = imageData.data;
	var bmpdata = bitmap.pixels;
	var stride = bitmap.stride;

	for (var y = 0; y < height; ++y) {
	 for (var x = 0; x < width; ++x) {
	 var index1 = (x+width*(height-y))*4;
	 var index2 = x * 3 + stride * y;
	 data[index1] = bmpdata[index2 + 2];
	 data[index1 + 1] = bmpdata[index2 + 1];
	 data[index1 + 2] = bmpdata[index2];
	 data[index1 + 3] = 255;
	 }
	}
 return imageData;
 }

 var button = document.getElementById("load");
 button.onclick = function() {
	Module.callMain();
	var canvas = document.getElementById("output");
	var context = canvas.getContext('2d');

	var image = FS.readFile("./test20_julia_set_vga.bmp");
	var bmp = getBMP(image.buffer);
	var imageData = convertToImageData(bmp);

	canvas.width = bmp.infoheader.biWidth;
	canvas.height = bmp.infoheader.biHeight;

 context.putImageData(imageData, 0, 0);

	console.log(image);
 };
 </script>
 </body>
</html>

The result of calling our C++ application and rendering the
results in a canvas after reading it back in via JavaScript can be
seen in Figure 6-5.

[image: The result of rendering our Bitmap file in the canvas]
Figure 6-5. The result of rendering our Bitmap file in the canvas

I hope you are at least a little impressed. It is pretty cool how
little we had to do to run this C++ code in the browser! There are
still some issues with respect to performance and threading, but you
have come a long way from adding two numbers together.

One thing that we could do is add a command line parameter to the
execution to select which of the tests to run. For the time being, we
are not going to worry about the tests that read in the sample
image6.

To accept parameters on the command line, we need to modify the
main() method to what you see in Example 6-13.

Example 6-13. Modified main() method to accept parameters for test selection

int main(int argc, char **argv)
{
 int which = 20;

 if(argc > 1) {
 std::string::size_type sz;
 which = std::stoi(argv[1], &sz);
 }

 switch(which) {
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 case 7:
 case 8:
 case 10:
 case 11:
 case 12:
 case 13:
 case 16:
 printf("%s requires reading in a file which we don't support yet.\n", argv[1]);
 break;
 case 9:
 test09();
 break;
 case 14:
 test14();
 break;
 case 15:
 test15();
 break;
 case 17:
 test17();
 break;
 case 18:
 test18();
 break;
 case 19:
 test19();
 break;
 case 20:
 test20();
 break;
 default:
 printf("Sorry, %s is an unknown test number.\n", argv[1]);
 }

 return 0;
}

The first thing you will notice is that the signature of the main()
has been modified to accept an integer representing the number of
command line parameters and effectively an array of strings. Keep in
mind that in C/C++ this is implemented as a pointer to a bunch of
pointers which is why there are two asterisks. We can index them as
you would an array.

By default the first argument will be the name of the executable. As
we start counting at 0, the first passed in argument will be at
position 1. We set a default test number to 20 as I have indicated
that this is my favorite of the tests. However, if you pass in a
string representing a number, it will be converted into an
integer. Once we have determined whether we will use the default value
or not, we switch on this value. As mentioned, we skip over the tests
that require the input image. There are still several other you can run.

Makefile Tip

If you are going to go back and forth between native code and
WebAssembly, you will probably want to maintain two different
Makefiles at this point. When you are more comfortable, you can
create flexible Makefiles that support both targets. You can specify
which file to use with the -f <file> parameter as seen below.

If you want, recompile the native executable and try out the new
parameter handling.

brian@tweezer ~/g/w/s/c/bitmap> make -f Makefile.orig
c++ -ansi -pedantic-errors -Wall -Wall -Werror -Wextra -o bitmap_test ↵
 bitmap_test.cpp -L/usr/lib -lstdc++ -lm
brian@tweezer ~/g/w/s/c/bitmap> ./bitmap_test 1
1 requires reading in a file which we don't support yet.
brian@tweezer ~/g/w/s/c/bitmap> ./bitmap_test 9
brian@tweezer ~/g/w/s/c/bitmap> ls -laF
total 7608
drwxr-xr-x@ 14 brian staff 448 Mar 7 22:55 ./
drwxr-xr-x 12 brian staff 384 Mar 6 14:47 ../
-rw-r--r--@ 1 brian staff 893 Mar 7 17:42 Makefile
-rw-r--r--@ 1 brian staff 776 Mar 7 20:10 Makefile.orig
-rw-r--r--@ 1 brian staff 247721 Dec 31 1999 bitmap_image.hpp
-rwxr-xr-x 1 brian staff 205264 Mar 7 22:55 bitmap_test*
-rw-r--r--@ 1 brian staff 20954 Mar 7 20:16 bitmap_test.cpp
-rw-r--r-- 1 brian staff 249546 Mar 7 20:16 bitmap_test.js
-rw-r--r--@ 1 brian staff 120054 Mar 6 14:39 image.bmp
-rw-r--r-- 1 brian staff 3127 Mar 7 17:26 index.html
-rw-r--r-- 1 brian staff 3000054 Mar 7 22:55 test09_color_map_image.bmp

As you can see, it works. After passing in a 9 you see the
corresponding test image written out.

Now, let’s invoke the program from JavaScript with parameters. We need
to rebuild our Wasm module and JavaScript scaffolding.

brian@tweezer ~/g/w/s/c/bitmap> make
em++ -ansi -pedantic-errors -Wall -Wall -Werror -Wextra -o bitmap_test.js ↵
 bitmap_test.cpp -L/usr/lib -lstdc++ -lm -s FORCE_FILESYSTEM=1 ↵
 -s ALLOW_MEMORY_GROWTH=1 -s INVOKE_RUN=0 ↵
 -s EXTRA_EXPORTED_RUNTIME_METHODS="['callMain']"
brian@tweezer ~/g/w/s/c/bitmap> ls -alF
total 1840
drwxr-xr-x@ 13 brian staff 416 Mar 7 23:00 ./
drwxr-xr-x 12 brian staff 384 Mar 6 14:47 ../
-rw-r--r--@ 1 brian staff 893 Mar 7 17:42 Makefile
-rw-r--r--@ 1 brian staff 776 Mar 7 20:10 Makefile.orig
-rw-r--r--@ 1 brian staff 247721 Dec 31 1999 bitmap_image.hpp
-rw-r--r--@ 1 brian staff 20954 Mar 7 20:16 bitmap_test.cpp
-rw-r--r-- 1 brian staff 249546 Mar 7 23:00 bitmap_test.js
-rwxr-xr-x 1 brian staff 257810 Mar 7 23:00 bitmap_test.wasm*
-rw-r--r--@ 1 brian staff 120054 Mar 6 14:39 image.bmp
-rw-r--r-- 1 brian staff 3127 Mar 7 17:26 index.html

The good news is that we do not have to do much to our JavaScript
code! Because the signature has changed, we can now pass strings into
our method to invoke the main() method. Rather than dumping out only
moderately different JavaScript in HTML, in Figure 6-6 you
can see the results of invoking the executable with parameters from
the developer console.

[image: Invoking our Bitmap generator with command line parameters in the browser]
Figure 6-6. Invoking our Bitmap generator with command line parameters in the browser

In addition to selecting tests based upon command line parameters, you
might also want to run the tests just as functions. This requires a
little more discussion, however.

We will start by adding a method to our test file called run_test()
that will take a single argument. There is no need to repeat the
actual code at this point, so we will just print out a string
indicating which test was requested to run. You can see this function
defined in Example 6-14.

Example 6-14. Exporting a function to call from JavaScript

void run_test(int i) {
 printf("Running test %d!\n", i);
}

By default only the main() method is exported as that is the only
function we need to kick off our program. We need to add an
EXPORTED_FUNCTIONS directive as below. The function names are
defined with a leading underscore character. If you want main() to
still be callable, you will need to include that as well which we do
not do in Example 6-15.

Example 6-15. Modified Makefile to export additional methods

bitmap_test: bitmap_test.cpp bitmap_image.hpp
	$(COMPILER) $(OPTIONS) bitmap_test.js bitmap_test.cpp $(LINKER_OPT) ↵
	 -s FORCE_FILESYSTEM=1 ↵
	 -s ALLOW_MEMORY_GROWTH=1 ↵
	 -s INVOKE_RUN=0 ↵
	 -s EXPORTED_FUNCTIONS="['_main', '_run_test']" ↵
	 -s EXTRA_EXPORTED_RUNTIME_METHODS="['callMain']"

Unfortunately that will not work because we are using C++. The
generated function names are further mangled by the compiler for
reasons that are not worth going into here7. To avoid
this problem, we need to tell the compiler to suppress this behavior
and use C linkage. To engage this behavior, we need to modify our
function definition to look like Example 6-16.

Example 6-16. Exporting a function to call from JavaScript with C linkage

extern "C"
void run_test(int i) {
 printf("Running test %d!\n", i);
}

That should solve that problem, but I will make one more change to
show you another option you have. There is a convenience method from
the Emscripten toolchain called cwrap that will generate a
JavaScript function for invoking a particular C function. We added
that to the EXTRA_EXPORTED_RUNTIME_METHODS directive in Example 6-17.

Example 6-17. Updated Makefile to use cwrap

bitmap_test: bitmap_test.cpp bitmap_image.hpp
	$(COMPILER) $(OPTIONS) bitmap_test.js bitmap_test.cpp $(LINKER_OPT) ↵
	 -s FORCE_FILESYSTEM=1 ↵
	 -s ALLOW_MEMORY_GROWTH=1 ↵
	 -s INVOKE_RUN=0 ↵
	 -s EXPORTED_FUNCTIONS="['_main', '_run_test']" ↵
	 -s EXTRA_EXPORTED_RUNTIME_METHODS="['callMain', 'cwrap']"

If you rebuild and reload your HTML, you will be able to invoke this
function from the JavaScript developer console. See the results of
doing so in Figure 6-7.

[image: Invoking our functions from JavaScript directly and via cwrap()]
Figure 6-7. Invoking our functions from JavaScript directly and via cwrap()

Notice that the cwrap() invocation returns a proper JavaScript
function that we can invoke as usual. You could move the switch
statement to this method and have the same ability to invoke arbitrary
tests.

For some additional practice, try adding a method that writes out a
Bitmap file called image.bmp. Export this method from your C++ code
and invoke it from the browser. This could then allow you to read the
file back in for the tests that need it. You could modify the switch
statement to allow those methods to be called.

Finally, imagine some other user interface elements allowing you to
pick which test to run. Once run, imagine a list of files to display
in a <canvas> element. You have almost all of the pieces you would
need to do this, so give it a try!

libsodium

Before we wrap up this chapter, I want to draw your attention to a
project called libsodium. We are not going
to do anything directly with it, but it demonstrates additional
motivation for mixing languages such as C and C++ with the browser via
WebAssembly.

This library is based upon another library called Networking and
Cryptography library (NaCl)8. It is a high-performance, modern encryption
library written by people who know what they are doing. Many of the
features of this NaCl are not necessarily available to JavaScript
runtimes yet. New ciphersuites9 including Authenticated Encryption with Additional
Data (AEAD) might show up here long before they are ported to
JavaScript or available to the browser through the operating
system. One compelling use case for WebAssembly is the ability to
basically recompile such modern support and bring it to the browser
immediately without having to wait for updates.

A second motivation is that the authors of the NaCl library know what
they are doing. It is extremely easy to undermine the efficacy of an
encryption library with a poor implementation. Even something as
subtle as comparing whether two hash values are the same can leak
details if not implemented correctly. Frustratingly, the correct
implementation of this comparison will fly in the face of how
developers would normally compare two hashes. My point is that there
is a provenance to the NaCl code base. If a JavaScript developer without
the background to understand these details tried to implement the
functionality, there is a good chance it might have these
vulnerabilities. When you have a trusted code base, being able to
recompile it and use it directly is another reason to consider the
topics of this chapter.

So, libsodium is basically a project designed to export the NaCl
library via WebAssembly into JavaScript environments without a need to
rewrite or compromising on performance. It is designed to be
maintained as a WebAssembly project. I think once people get a better
idea of what it means to use WebAssembly in this way, we will start to
see more projects that can be used as native libraries or WebAssembly
modules depending upon your configuration needs. That will be a great
opportunity for code reuse. We will see another example of this
approach in Chapter 10.

Until then, there is still more to learn about WebAssembly.

1 “The Adventures of Buckaroo Banzai Across the 8th Dimension” is one of the best cult sci-fi movies ever. For more details: https://en.wikipedia.org/wiki/The_Adventures_of_Buckaroo_Banzai_Across_the_8th_Dimension
2 The name is a linguistic mashup of JavaScript and the word “embiggen” made popular by “The Simpsons”.
3 Read more about Emscripten’s support for building C and C++ applications here: https://emscripten.org/docs/compiling/Building-Projects.html
4 Check out this great learning resource: https://levelupwasm.com
5 The code is available from here: https://tinyurl.com/bitmap-in-javascript
6 It is your homework assignment to make that work.
7 If you would like to know more about C++ name mangling, please check out this description: https://en.wikipedia.org/wiki/Name_mangling
8 Please note this has nothing to do with the Native Client (NaCl) we mentioned in Chapter 1. You can find more details about this one at: http://nacl.cr.yp.to
9 A ciphersuite is a collection of cryptographic primitives providing a set of capabilities to an encryption engine

Chapter 7. WebAssembly Tables

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

The dinner table is the center for the teaching and practicing not
just of table manners but of conversation, consideration, tolerance,
family feeling, and just about all the other accomplishments of polite
society except the minuet.

Judith Martin

The dinner table is a great metaphor for the sharing of ideas and
stories. It is always more fun to join others than to eat by
yourself. If you bring a bunch of people together from all walks of
life you can spur glorious, energetic conversation on a near infinite
number of topics. Nobody has all of the stories. Some participants may
share some aspects of the same stories. Others may have their own
version. In order to function, however, there does have to be a
certain amount of decorum, restraint and willingness to accept what is
given by the other participants. Dinner guests who misbehave, do not stop
talking or step on each other’s lines are going to ruin it for everyone.

Tables are another feature of WebAssembly that allow it to be a modern
software system with functional dependencies that will be satisfied by
additional modules. They provide the equivalent capability of a
dynamic shared library compared to a statically-linked library. The
idea is that not every module needs to provide everything it requires
to do its work. That would be horribly inefficient. Instead, it is
written against the promise of some other module satisfying the need
at run time. That is called dynamic linking in the C and C++
world. Obviously, my dinner table metaphor is simply a play on the
world table, but just like there needs to be some coordination around
sharing ideas over a meal, we need this for sharing behavior between
libraries. Let’s explore that idea more closely and then see how
WebAssembly supports it.

Static vs Dynamic Linking

Anyone who follows me on Twitter knows what an amazing cook my wife
is. She comes from a great family of cooks and has had the opportunity
to learn from a large number of generous mentors. People often see
posts I make of the culinary art she produces and ask me for the
recipe. This is not usually as easy as just sending a link as she
often combines ideas from multiple sources and then puts her own spin
on things.

In our house, she could rely on the cookbook library she has
amassed. She could say, “Make this sauce from that book. Prepare the
beef with the technique described in that other book. After it reaches
the doneness you want, add these additional ingredients that I thought
would make it better.”

Within our house, she can make reference to steps and ingredient lists
from known sources and amend the process with her additional
steps. But, when she wants to give the recipe to someone else, she
cannot rely on their having these books. In that case, she would have
to copy the recipes from her sources into a new recipe document that
was self-contained. At this point, all the steps and ingredients
would be defined in one place and the recipe could be sent to someone
else.

That is basically the difference between static and dynamic linking. A
typical program needs to read and write the contents of files, open
windows, collect input from the user, or send messages across the
network. These are common enough tasks that they are usually available
as functionality in libraries provided by the operating system. When
you wish to use a function from one of them, you would tell the linker
to allow for runtime linking. Otherwise it would complain about
missing symbol references.

At runtime, the operating system will search its configuration path
that tells it where to find these shared libraries. Prior to
initiating the program, they will map the functionality from the
libraries into a memory location that can be dynamically linked to the
rest of the code.

There are many reasons for this approach. The first being just
efficiency. Let’s say you have a function called a() that is
referenced by a dozen or more other programs. With static linking each
executable has its own copy. Programs take up more disk space. Their
memory footprints at runtime are also going to be larger. It is just
not an efficient use of space.

If the dynamic library is loaded into a shared memory space, then
presumably we only need one copy of one version of the file on
disk. Depending on the complexity of your operating system, you might
only need one copy in memory at a time too.

Dynamically-linked libraries often have their own release cycles. If
you were using a system library from one of your executable programs,
you might update your operating system and get a new version of the
library with a patch for a security issue. As long as the numbering
mechanism works out and it is backwards-compatible, presumably you
could strengthen the security of your application by using the patched
version without having to do anything else.

Look at Example 7-1. This is a function on its own without a
main() function. It is intended to be used as a library. We could
compile it into a static library, but for now we will just create the
object code and link our main() program against it. Note that this
function also relies on printf() so it must import the stdio.h
header.

Example 7-1. A library with a function to call

#include <stdio.h>

void sayHello(char *message) {
 printf("%s\n", message);
}

In Example 7-2 you will see the main() function that will
first call printf() and then call our function which also calls
printf().

Example 7-2. A sample main() method to call our library function

#include <stdio.h>

extern void sayHello(char *message);

int main() {
 printf("Hello, world.\n");
 sayHello("How are you?");
 return 0;
}

By default, if you compile these two files with clang, it will
generate an output file. I left it to use the default name. When we
run it, we see the behavior we expect. By default, the compiler will
use dynamic linking for the system library for all of the reasons I
iterated above.

brian@tweezer ~/g/w/s/ch07> clang main.c library.c
brian@tweezer ~/g/w/s/ch07> ls
a.out* library.c main.c
brian@tweezer ~/g/w/s/ch07> ./a.out
Hello, world.
How are you?

You can verify that we are using dynamic linking here with the nm
command. First, we see that our binary file provides definitions for
main() and sayHello(), but not printf(). That is the reused
function from the standard library.

brian@tweezer ~/g/w/s/ch07> nm a.out
0000000100008008 d __dyld_private
0000000100000000 T __mh_execute_header
0000000100003f10 T _main
 U _printf
0000000100003f50 T _sayHello
 U dyld_stub_binder

On Linux, you can see that the same build steps yields a binary with
additional functions mentioned. This is natural as it is a different
operating system with a different runtime and a different binary
format. The salient point is that our methods are provided in our
binary, but printf() is not.

brian@bbfcfm:~/src/hello$ nm a.out
0000000000404030 B __bss_start
0000000000404030 b completed.8060
0000000000404020 D __data_start
0000000000404020 W data_start
0000000000401080 t deregister_tm_clones
0000000000401070 T _dl_relocate_static_pie
00000000004010f0 t __do_global_dtors_aux
0000000000403e08 d __do_global_dtors_aux_fini_array_entry
0000000000404028 D __dso_handle
0000000000403e10 d _DYNAMIC
0000000000404030 D _edata
0000000000404038 B _end
0000000000401218 T _fini
0000000000401120 t frame_dummy
0000000000403e00 d __frame_dummy_init_array_entry
000000000040216c r __FRAME_END__
0000000000404000 d _GLOBAL_OFFSET_TABLE_
 w __gmon_start__
0000000000402024 r __GNU_EH_FRAME_HDR
0000000000401000 T _init
0000000000403e08 d __init_array_end
0000000000403e00 d __init_array_start
0000000000402000 R _IO_stdin_used
0000000000401210 T __libc_csu_fini
00000000004011a0 T __libc_csu_init
 U __libc_start_main@@GLIBC_2.2.5
0000000000401130 T main
 U printf@@GLIBC_2.2.5
00000000004010b0 t register_tm_clones
0000000000401170 T sayHello
0000000000401040 T _start
0000000000404030 D __TMC_END__

The otool command is another command that can be used on macOS to
show you which dynamic libraries are required for the successful
execution of your binary. The macOS version of the system library is shown.

brian@tweezer ~/g/w/s/ch07> otool -L a.out
a.out:
	/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1292.60.1)

otool does not exist for Linux, but using objdump we can see
similar results. I have removed some of the output for space, but the relevant
portion is shown below. As you can see, we need libc.so.6 to satisfy
the needs of our binary. There will be similar tools on Windows to
check your DLL dependencies.

brian@bbfcfm:~/src/hello$ objdump -x a.out

a.out: file format elf64-x86-64
a.out
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x0000000000401040

...

Dynamic Section:
 NEEDED libc.so.6
 INIT 0x0000000000401000
 FINI 0x0000000000401218
 INIT_ARRAY 0x0000000000403e00
 INIT_ARRAYSZ 0x0000000000000008
 FINI_ARRAY 0x0000000000403e08
 FINI_ARRAYSZ 0x0000000000000008
 HASH 0x00000000004002e8
 GNU_HASH 0x0000000000400310
 STRTAB 0x0000000000400390
 SYMTAB 0x0000000000400330
 STRSZ 0x000000000000003f
 SYMENT 0x0000000000000018
 DEBUG 0x0000000000000000
 PLTGOT 0x0000000000404000
 PLTRELSZ 0x0000000000000018
 PLTREL 0x0000000000000007
 JMPREL 0x0000000000400428
 RELA 0x00000000004003f8
 RELASZ 0x0000000000000030
 RELAENT 0x0000000000000018
 VERNEED 0x00000000004003d8
 VERNEEDNUM 0x0000000000000001
 VERSYM 0x00000000004003d0

Version References:
 required from libc.so.6:
 0x09691a75 0x00 02 GLIBC_2.2.5

...

WebAssembly is not the same thing as an operating system, obviously,
but it benefits from a similar concept. Our choices are the same, put
all function definitions into a single module so it stands on its own
or invoke behavior from another module in order to meet our
needs. Given that we are going to be downloading WebAssembly modules
over the network frequently, having them be on the smaller side is
desirable. This also affects disk storage, module validation, loading
the instances in memory, etc. For that, we have Table instances.

Creating Tables in Modules

Table instances have some similar characteristics to the Memory
instances we introduced in Chapter 4. There can currently
only be one per module, but it can either be defined in the module or
passed in through an imported object. The single instance per module
restriction is likely to be lifted in the future, but it is something
we must abide for the time being.

Part of the reason we have this structure in WebAssembly rather than
just using Memory instances is because the latter can be manipulated
by a module. If we are trying to have a proper dinner conversation, we
do not want any individual participant rewriting the rules of polite
company. The same is true in the land of shared modules. If we have
loaded in and validated a module with exported functions through
Table instances, we do not want another module to be able to mess it
up for anyone else. Thus, all you can do is make indirect function
calls to function references stored in the table. Currently function
references are the only thing that can be stored in Table instances,
but that is also expected to change in the future.

Rather than overly complicate things at this point, I am going to go
back to simple function definitions in Wat to demonstrate the way to
create Table instances and export them.

In Example 7-3 I have created two functions. The $add
function takes two parameters, adds them together and returns the
result. The $sub function takes two parameters, subtracts the second
from the first and then returns the results. So far, as they say, so
what? This is just retrodden territory from earlier chapters. The
difference here is what happens next.

Example 7-3. A module that exports its Table instance

(module
 (func $add (param $a i32) (param $b i32) (result i32)
 get_local $a
 get_local $b
 i32.add)

 (func $sub (param $a i32) (param $b i32) (result i32)
 get_local $a
 get_local $b
 i32.sub)

 (table (export "tbl") anyfunc (elem $add $sub))
)

We introduce a new Wat keyword, table. This defines a collection of
function references. Notice the inline export command. We will allow
our host environment to invoke methods through the $add and $sub
functions, but not via their names. The host can only invoke the
behavior through the Table instance. The anyfunc type is currently
the only allowed type for this structure as we noted previously. Based
on the ordering in the elem reference, $add will be in the 0th
position and $sub will be in the 1th1 position.

As you know by now, we can turn our Wat file into a Wasm module and
check out its contents as follows. Notice the Table section, the
Type section and the Export section.

brian@tweezer ~/g/w/s/ch07> wat2wasm math.wat
brian@tweezer ~/g/w/s/ch07> wasm-objdump -x math.wasm

math.wasm:	file format wasm 0x1

Section Details:

Type[1]:
 - type[0] (i32, i32) -> i32
Function[2]:
 - func[0] sig=0
 - func[1] sig=0
Table[1]:
 - table[0] type=funcref initial=2 max=2
Export[1]:
 - table[0] -> "tbl"
Elem[1]:
 - segment[0] flags=0 table=0 count=2 - init i32=0
 - elem[0] = func[0]
 - elem[1] = func[1]
Code[2]:
 - func[0] size=7
 - func[1] size=7

The JavaScript in Example 7-4 instantiates our module like we
did in the early chapters. From there it extracts the Table instance
from the module’s export section.

Example 7-4. Using an exported Table instance from JavaScript

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>WASM Table test</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <script>
 fetchAndInstantiate('math.wasm').then(function(instance) {
	var tbl = instance.exports.tbl;
	console.log("3 + 1 = " + tbl.get(0)(3,1));
	console.log("3 - 1 = " + tbl.get(1)(3,1));
 });
 </script>
 </body>
</html>

After we fetch the reference, we can retrieve the function associated
with the 0th position and invoke it. Keep in mind that what comes back
from the get() invocation is a reference to a function. To invoke
it, we submit the parameters in the second set of parentheses and then
print out the result to the console. We then do so for the function in
the 1th position as well.

Serve the HTML up over HTTP and open up the JavaScript console. When
your browser executes the code, it should look something like
Figure 7-1.

[image: The output from invoking methods through +Table+ instances]
Figure 7-1. The output from invoking methods through Table instances

The Table instance is only defined to have two references. If you
attempt access a position beyond tbl.length it will cause an
exception.

Dynamic-Linking in WebAssembly

Our final example is going to be a trivial example of using
dynamic-linking in WebAssembly. We are going to define two
modules. One is going to contain our previously-defined $add and
$sub method. The first module is shown in Example 7-5. The
main difference to what we have seen before is that this module is
importing a Table from the host. We place the arithmetic functions
into this table with the elem instruction. The addition function is
stored in position 0. The subtraction function is stored in position
1.

Example 7-5. A dynamically-linked module

(module
 (import "js" "table" (table 2 anyfunc))

 (func $add (param $a i32) (param $b i32) (result i32)
 get_local $a
 get_local $b
 i32.add)

 (func $sub (param $a i32) (param $b i32) (result i32)
 get_local $a
 get_local $b
 i32.sub)

 (elem (i32.const 0) $add)
 (elem (i32.const 1) $sub)
)

Our second module is going to export two functions, myadd and
mysub. It is advertising the ability to add and subtract two numbers
to its clients. Internally, it is going to call the function
references in an import Table instance which we also import from the
host JavaScript environment.

The implementations of our advertised functionality is shown in
Example 7-6. Both functions invoke the call_indirect
instruction. In earlier chapters, we saw the use of the call
instruction to call a function defined in the current module. The
call_indirect instruction invokes a function by identifying which
element of the Table you would like to invoke.

Example 7-6. A module dependent upon the dynamically-linked module

(module
 (import "js" "table" (table 2 anyfunc))

 (type $sig (func (param $a i32) (param $b i32) (result i32)))

 (func (export "myadd") (param $a i32) (param $b i32) (result i32)
 (call_indirect (type $sig) (get_local $a) (get_local $b) (i32.const 0))
)

 (func (export "mysub") (param $a i32) (param $b i32) (result i32)
 (call_indirect (type $sig) (get_local $a) (get_local $b) (i32.const 1))
)
)

One of the things that is going to jump out at you is the use of the
type instruction. This is going to define the signature of a
function to provide a modicum of type-safety in WebAssembly. The idea
is that an imported Table function should have the signature you are
looking to invoke.

In this case we define a function signature that takes two i32s and
returns an i32. When we invoke the methods through the Table we
indicate that this is the type we are expecting. After the signature,
we push the parameters to our function onto the stack before finally
pushing the Table position number. For addition, that is the
constant value of 0, representing the first position in the
Table. For subtraction, it will be second position.

We put it all together in Example 7-7. The first thing we do
is create a shared Table instance. This will be passed in via the
importObject to both modules. The difference is that the math2.wat
module writes its functions, $add and $sub into positions 0 and 1
respectively. The mymath.wat module invokes these positions
indirectly when myadd and mysub are invoked from the host
JavaScript environment. As part of the invocation, they will also pass
the parameters they have been given to the dynamically-linked
functions.

Because we are dealing with two modules, our instantiation mechanism
is slightly different. Rather than waiting on a single Promise, we
invoke the Promise.all() method which blocks until all of the
subordinate Promises are met. In this case, it means that both
modules are loaded and ready to go.

Example 7-7. Instantiating two modules with dynamic-linking between them

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>WASM Dynamic Linking test</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <script>
 var importObject = {
	js: {
	 table: new WebAssembly.Table({ initial:2, element:"anyfunc" })
	}
 };

 Promise.all([
	fetchAndInstantiate('math2.wasm', importObject),
	fetchAndInstantiate('mymath.wasm', importObject)
]).then(function(instances) {
 	console.log("4 + 3 = " + instances[1].exports.myadd(4,3));
 	console.log("4 - 3 = " + instances[1].exports.mysub(4,3));
 });
 </script>
 </body>
</html>

Once the modules are both available, this code invokes the myadd and
mysub methods with some parameters. Notice we are choosing the second
module instance representing our versions of the behavior. It
is an array of the instances rather than a single one.

Once served over HTTP, the results in the browser should look
something like what you see in Figure 7-2. One module is
calling behavior implemented in another module indirectly through the
shared Table instance.

[image: The output from invoking our dynamically-linked functions]
Figure 7-2. The output from invoking our dynamically-linked functions

This ends our introduction to the main functional elements of
WebAssembly as a platform. The remainder of the book will build upon
these fundamentals and show you several examples of how WebAssembly is
being used now and how it will be in the future. This includes some of
the more advanced features that we have yet to cover.

1 I declared this to be a word on Twitter. It is therefore on the Internet, so it must be real. I’m using it to disambiguate the second position in a 0-based collection. If I said first you might get confused. If I make up a word, maybe you won’t.

Chapter 8. WebAssembly in the Server

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 8th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

I felt extremely uncomfortable as the focal point, in the spotlight. I
really like the behind the scenes role, because all my freedom is
there.

Brian Eno

My career started in the user interface world. I first worked on an
X/Motif1
application to control Network Matrix Switches. From there, I went on
to a Whole Earth visualization environment capable of displaying
terabytes of terrain data and hyperspectral imagery. Not only was this
fun from a 3D visualization perspective, but we were inspired by Doug
Young at Silicon Graphics to build the entire application around the
Command Pattern2 a year before the “Gang
of Four” “Design Patterns” book emerged.

Working on software that humans sat down and used was a fun and
rewarding experience most of the time. You could genuinely make
people’s lives easier and less stressful by putting some thought into
how they went about their work tasks. Despite these positives, it had
its drawbacks as well. While everyone had opinions on user interface
decisions, only some of them were informed opinions.

I imagine in some small way, this is what Brian Eno was referring to
in the above quotation. He was notably one of the co-founders of Roxy
Music, a darling of music nerds everywhere. But, despite his glam
outfits and makeup, he did not really care to be in the spotlight and,
after frequent clashes with Brian Ferry, he went his separate way
focusing more on composition and production than being a typical rock
star performer.

My career shifted and I began to focus on design, architecture,
backend services and the like. I strayed away from the spotlight of
user interfaces and enjoyed the relative freedom of backend server
work. It was not as attention-getting as user-facing activities, but
it also had the benefit of not being as attention-getting as
user-facing activities.

For most of its existence, WebAssembly has been positioned as a
client-side technology. It has been seen primarily as a way to extend
and expand what is possible in the browser, a universal client no
longer restricted to extension only via JavaScript. There is a much
bigger role for WebAssembly than being simply a front end darling. It
is going to have an extremely important role as a technology outside
of the browser as well. In fact, it has been positioned for that all
along with Node.js supporting WebAssembly modules almost the entire
time.

It may not be obvious why this makes as much sense on the server where
performance is so crucial and you generally have the freedom to pick
your implementation technologies. At the confluence of hardware
heterogeneity and evolution, developer productivity, business value,
security and the capacity for architecture to serve as a design choice
to minimize infrastructure and network costs, however, lies a glowing
opportunity that WebAssembly is rapidly expanding to fill. Over the
remainder of the book we will fill in that story, but for now we will
simply focus on the basics of running WebAssembly outside of the browser.

Native Extensions to Node.js

Node.js emerged as, among other reasons, a response to the fact that
developers would use one language and set of frameworks on the client
side in the browser, and another set on the server. Previous efforts
to gain reusable code everywhere (via Java itself and the Google Web
Toolkit (GWT)) had attempted to travel the other direction from server
to client. This was a movement in the other direction. Most of the
excitement in the software development space was happening in the
browser and the explosion of techniques and frameworks from Ajax to
jQuery to Angular and more. It was maddening to have to write code
that ran in the browser and then rewrite it to run on the server in a
different language.

Node.js quickly grew in popularity and became a darling of the
software developers who now had further reach and greater
reusability. As a JavaScript-based environment, applications written
to run on it were intrinsically portable as long as the environment
was. At its core, Node.js was the highly-performant V8 JavaScript engine
from Google, libuv, the basis of its event loop and abstraction
layer over lower-level functionality and a set of APIs built on top of
all of this. This was an inherently portable environment.

The problem remained that not everything is a good fit to be
implemented in JavaScript even with the high-powered V8 engine at its
core. Naturally it allowed for an extension mechanism with native
libraries implemented in C and C++. Given the complex relationship
between JavaScript object lifecycles and native code structures, this
makes for much trickier software development. On top of that, you
suddenly have a native library management problem. If you install a
Node.js application with native library extensions, there needs to be a
process to get them to compile on Linux, Windows, macOS, etc.

So many WebAssembly tutorials demonstrate adding two numbers
together. Obviously this would not be a good use case for employing a
native library unless you were talking about machine learning-levels
of math. In Chapter 9 we will discuss that scenario
in more depth. For now, we will just highlight the relative complexity
of integrating Node.js with native libraries even for this simple,
poorly-justified example.

The issue is largely the fact that C and C++ code has direct access to
memory but JavaScript code does not. In the Node.js environment, the
V8 engine manages memory for the JavaScript code that runs in it. This
makes passing strings, structures, arguments and other elements that
take up space in memory trickier to send between the JavaScript and
native portions of the engine. V8 was intended to isolate JavaScript
from one page in the browser being able to interfere with memory
allocated for other code on a different page. This isolation is
maintained when it is embedded in the Node.js environment.

Server side frameworks are often extensible so we can add additional
response behaviors, filters, authorization models and data processing
workflows. In the Java world, there are a series of ways server
developers can deploy behavior. There are servlets, Spring beans,
reactive systems and more. The structure of these extensions are often
defined by standards or well-established conventions.

In Node.js, there has historically been middleware like Express and
then native addons written in C and C++. The majority of applications
in this environment do not have native addons as the JavaScript
engines have become quite performant and there is a seemingly
limitless supply of open source libraries tackling various needs. For
the case where JavaScript performance is not suitable, however, it is
possible to create an extension and make it callable from the
JavaScript side of things.

This is not a simple activity, unfortunately. First of all, many
JavaScript developers are not accomplished C and C++
programmers. There are big differences betwen the languages and
runtimes and passing memory back and forth from the unrestricted world
of C and C++ to the isolated, garbage-collected JavaScript world
requires significant hoop-jumping. Even when the developers are
effective in these lower-level languages, the adoption of native
libraries complicates the build process. Suddenly the program
artifacts are no longer intrisincally portable and we need to keep
track of Linux, macOS and Windows versions of the native libraries.

Let’s look at a simple example that we have seen multiple times so far
in this book. The Node.js documentation on addons has a great example
for us to make the comparison3. First, make
sure the node and node-gyp commands are installed as per
Appendix A. Then, take a look at Example 8-1
where you will see a single function to add two numbers together.

Example 8-1. A Node.js Addon from the Node website

// addon.cc
// Taken from https://nodejs.org/api/addons.html#addons_addon_examples

#include <node.h>

namespace demo {

using v8::Exception;
using v8::FunctionCallbackInfo;
using v8::Isolate;
using v8::Local;
using v8::Number;
using v8::Object;
using v8::String;
using v8::Value;

// This is the implementation of the "add" method
// Input arguments are passed using the
// const FunctionCallbackInfo<Value>& args struct
void Add(const FunctionCallbackInfo<Value>& args) {
 Isolate* isolate = args.GetIsolate();

 // Check the number of arguments passed.
 if (args.Length() < 2) {
 // Throw an Error that is passed back to JavaScript
 isolate->ThrowException(Exception::TypeError(
 String::NewFromUtf8(isolate,
 "Wrong number of arguments").ToLocalChecked()));
 return;
 }

 // Check the argument types
 if (!args[0]->IsNumber() || !args[1]->IsNumber()) {
 isolate->ThrowException(Exception::TypeError(
 String::NewFromUtf8(isolate,
 "Wrong arguments").ToLocalChecked()));
 return;
 }

 // Perform the operation
 double value =
 args[0].As<Number>()->Value() + args[1].As<Number>()->Value();
 Local<Number> num = Number::New(isolate, value);

 // Set the return value (using the passed in
 // FunctionCallbackInfo<Value>&)
 args.GetReturnValue().Set(num);
}

void Init(Local<Object> exports) {
 NODE_SET_METHOD(exports, "add", Add);
}

NODE_MODULE(NODE_GYP_MODULE_NAME, Init)

} // namespace demo

The method is called Add() and it takes a
FunctionCallbackInfo<Value>& reference. From this, we retrieve the
Isolate instance which is the handle we have to the memory subsystem
that V8 is maintaining for this instance. If there are not two
arguments or if they are not numeric types, we throw an
exception. Otherwise, we retrieve the values as numbers and add them
together before creating a new location to hold the value before
setting it as the return type for the function. In addition to all of
this, we need to register the module with Node.js via the Init()
method.

The next step is to build the addon. In Example 8-2 you can
see the binding.gyp file which instructs the node-gyp command how
to perform the build. This can be a much more detailed process, but
our needs here are fairly simple.

Example 8-2. Build instructions for the addon

{
 "targets": [
 {
 "target_name": "addon",
 "sources": ["addon.cc"]
 }
]
}

The build command is straightforward enough (I have hidden some of the details):

brian@tweezer ~/g/w/s/c/node-addon> node-gyp configure build
gyp info it worked if it ends with ok
gyp info using node-gyp@8.0.0
gyp info using node@15.4.0 | darwin | x64
gyp info find Python using Python version 3.8.3 found at "/usr/local/bin/python3"
gyp http GET https://nodejs.org/download/release/v15.4.0/node-v15.4.0-headers.tar.gz
gyp http 200 https://nodejs.org/download/release/v15.4.0/node-v15.4.0-headers.tar.gz
gyp http GET https://nodejs.org/download/release/v15.4.0/SHASUMS256.txt
gyp http 200 https://nodejs.org/download/release/v15.4.0/SHASUMS256.txt
...
gyp info spawn args ['BUILDTYPE=Release', '-C', 'build']
 CXX(target) Release/obj.target/addon/addon.o
 SOLINK_MODULE(target) Release/addon.node

At this point, the addon has been built. We can test it with the code
shown in Example 8-3.

Example 8-3. JavaScript code to test the native addon

// test.js
const addon = require('./build/Release/addon');

console.log('This should be eight:', addon.add(3, 5));

On the surface, the use of the addon feels quite similar to calling a
WebAssembly module, but clearly the implementation is significantly
more complicated than the C code we have invoked to add two numbers
elsewhere. The real issue is that the complexity of native libraries
is kind of a pain to manage. Now, with WebAssembly, there is no real
need for this anymore and you can understand why the Node.js community
is excited about WebAssembly versions of libraries. They provide good
performance gains but are completely portable and simplify their
deployment model.

WebAssembly and Node.js

While most people think of WebAssembly as a client-side browser
technology, Node.js has had support for invoking functions from
WebAssembly modules almost as long as the browsers have. I am not
going to create any actual “servers” as I think that may distract
from the points I want to make, but you clearly could set up a REST
API or something and still use the features I am mentioning.

Let’s start with a simple example in Example 8-4.

Example 8-4. A simple program to add two numbers

#include <stdio.h>

int add(int x, int y) {
 return x + y;
}

int main() {
 printf("The sum of 2 and 3 is: %d\n", add(2,3));
 return 0;
}

With clang, this is trivially compiled and executed.

brian@tweezer ~/g/w/s/c/node> clang add.c
brian@tweezer ~/g/w/s/c/node> ./a.out
The sum of 2 and 3 is: 5

If we update the source code to include some Emscripten-related
macros, we can easily run it in Node.js as we have seen previously. I
also removed the main() method so our module will no longer expect
an implementation of the printf() function since we will be operating
in the world of server side JavaScript. The updated code is in Example 8-5.

Example 8-5. A simple program to add two numbers with Emscripten macros

#include <emscripten.h> [image: 1]

EMSCRIPTEN_KEEPALIVE int add(int x, int y) { [image: 2]
 return x + y;
}

	[image: 1]

	Include the Emscripten header for the macro definition.

	[image: 2]

	Tell the Emscripten compiler to keep the add() method around.

Now we can recompile with emcc and run it with Node.js:

brian@tweezer ~/g/w/s/c/node> emcc add.c
brian@tweezer ~/g/w/s/c/node> ls -alF
total 376
drwxr-xr-x 6 brian staff 192 Apr 18 15:05 ./
drwxr-xr-x 10 brian staff 320 Apr 18 13:08 ../
-rwxr-xr-x 1 brian staff 49456 Apr 18 15:05 a.out*
-rw-r--r-- 1 brian staff 121686 Apr 18 15:05 a.out.js
-rwxr-xr-x 1 brian staff 11805 Apr 18 15:05 a.out.wasm*
-rw-r--r-- 1 brian staff 141 Apr 18 15:05 add.c
brian@tweezer ~/g/w/s/c/node> node a.out.js
The sum of 2 and 3 is: 5

If you investigate the file a.out.js, you will see all of the set up
the Emscripten toolchain has handled for us.

There is a proper JavaScript-based WebAssembly API available via the
Node.js runtime such as we have seen in the browser. This allows you to
load and instantiate modules and invoke behavior on them as you see
fit. Behind the scenes, this is what the Emscripten toolchain is
generating for us.

However, we are also interested in simplifying the loading and
instantiation of WebAssembly modules in the server just as in the
browser. Node.js provides experimental support for loading them as ES6
modules too as you can see in Example 8-6.

Example 8-6. Loading WebAssembly modules as ES6 modules

import * as Module from './a.out.wasm';

console.log('The sum of 6 and 2 is: ' + Module.add(6,2));

Depending when you attempt to run the following, you may need the
experimental feature flags, but notice how much easier it is to deal
with than what we have seen before. The expression of the behavior is
also dramatically more simple than we saw in the previous discussion
on native addons. You can see why this community is excited about
continued WebAssembly support being added over time.

brian@tweezer ~/g/w/s/c/node> node --experimental-modules ↵
 --experimental-wasm-modules index.mjs
(node:74571) ExperimentalWarning: Importing Web Assembly modules is an
experimental feature. This feature could change at any time (Use `node
--trace-warnings ...` to show where the warning was created)
The sum of 6 and 2 is: 8

As a final example, I want to pull in a more sophisticated third party
library. For reasons that I will explain at the end of this chapter,
finding a good example that did not open up too many cans of worms was
tricky. There are things we have not introduced yet but we are
starting to lay the foundation for in this chapter.

Supply Chain Attacks

This brings us to another consideration. We are facing a very serious
problem in the world of secure software systems called supply chain
attacks. They are not a new problem, but they are getting worse and
more frequent.

There is no single way to build a secure system, certainly not simply
by turning on encryption or some security feature such as that. Those
may be necessary for a secure system, but are most definitely
insufficient. Usually through the combination of Defense in
Depth4, the
Principle of Least Privilege5 and a
deliberate attempt to accept the responsibility for security
organizationally, you can start to head in the right direction.

For us, the problem is that we are running potentially untrusted code
from untrusted third parties with the privileges we normally give
ourselves in production. Out of the box, Node provides no protection
against this and that is a serious problem that is opening up new
attack vectors for Phishing, data exfiltration and other attacks.

Here is a write up of such an attack6. The
basic idea is that an attacker will produce a moderately useful bit of
open source functionality and let it start to get used. Developers
very often add dependencies without considering their source, or the
transitive collection of sources for dependencies. Once the code gains
sufficient use in the ecosystem, a minor update under carefully
controlled circumstances, starts to expose the attack in subtle and
hard to anticipate ways. Basically, the code may start looking for
cryptocurrency private keys or other useful and sensitive information.

One of the only real solutions to this problem involves an active and
attentive software developer community that hand checks every update
to every dependency (and its corresponding comprehensive list of
transitive dependencies) which is pretty much guaranteed to never
happen. The other solution is to run in a scenario where arbitrary
code is not given the privilege to do whatever it likes. Node.js has
traditionally allowed this model which is one of the reasons its
creator, Ryan Dahl, has moved on to create something new and more
secure.

Enter Deno.

WebAssembly and Deno

Deno7 is basically a more secure runtime for
JavaScript and Typescript than Node.js is likely to become. Even
though both were initially built by the same person, security was not
as much of a consideration with Node.js and would therefore be difficult
to tack on after-the-fact. Deno starts off with security as a default
position. Code running in a Deno runtime cannot access the filesystem
or open up network connection unless given the permission to do so.

This is obviously not a new idea. Java has had a secure permission
model at its core almost the entire time it has been a thing. The
problem is that Java’s permission model can be somewhat byzantine and
hard to get right. If anything is going to kill security, complexity
is at the top of the list. As you will see below, Deno has a simpler
way of handling this using a
capability-based8
approach.

Beyond security, Deno “runs TypeScript” natively where it is usually
transpiled into some flavor of JavaScript first. While, Deno is
compiling it behind the scenes and caching the compiled form, it feels
more like native support. This improves things with respect to the
quality of JavaScript development (which also has security
implications) by allowing for improved type-checking. Problems that
would normally arise at runtime can be detected at compile time
because of the robust type systems available in TypeScript.

Let’s start with our WebAssembly module from Example 8-5 that
adds two numbers together. In Example 8-7, you can see our
first attempt to use Deno’s WebAssembly support. Super simple!

Example 8-7. Loading WebAssembly modules in Deno

const wasmCode = await Deno.readFile("./a.out.wasm");
const wasmModule = new WebAssembly.Module(wasmCode);
const wasmInstance = new WebAssembly.Instance(wasmModule);
const add = wasmInstance.exports.add as CallableFunction

console.log("2 + 3 = " + add(2,3));

Unfortunately, our excitement is short-lived. At least the problem is
clear. We are attempting to read from the filesystem but we do not
have permission to do so. We see Deno’s security advantage immediately.

brian@tweezer ~/g/w/s/c/deno> deno run main.ts
error: Uncaught (in promise) PermissionDenied: Requires read access to "./a.out.wasm",
run again with the --allow-read flag

const wasmCode = await Deno.readFile("./a.out.wasm");
 ^
 at unwrapOpResult (deno:core/core.js:100:13)
 at async open (deno:runtime/js/40_files.js:46:17)
 at async Object.readFile (deno:runtime/js/40_read_file.js:19:18)
 at async file:///Users/brian/git-personal/webassembly-the-definitive-guide/src/ch08/deno/main.ts:1:18

If we re-run with the following command, things are much more pleasant.

brian@tweezer ~/g/w/s/c/deno> deno run --allow-read main.ts
Check file:///Users/brian/git-personal/webassembly-the-definitive-guide/src/ch08/deno/main.ts
2 + 3 = 5

While I did not want to get super distracted with the details of
running Node.js and Deno HTTP servers, I do admit that it is more than
a bit pathetic that I have not run a server yet in a chapter about
servers. So, here is a simple HTTP Server. To get more sophisticated
would require us to get into Deno middleware.

In Example 8-8, however, you see how Deno allows you to pull
versioned modules over HTTP for use. In this case, we are pulling a
basic HTTP server from the Deno standard library.

Example 8-8. Using WebAssembly in a Deno HTTP Server

import { serve } from "https://deno.land/std@0.93.0/http/server.ts";

const wasmCode = await Deno.readFile("./a.out.wasm");
const wasmModule = new WebAssembly.Module(wasmCode);
const wasmInstance = new WebAssembly.Instance(wasmModule);
const add = wasmInstance.exports.add as CallableFunction

const server = serve({ hostname: "0.0.0.0", port: 9000 });
console.log(`HTTP webserver running. Access it at: http://localhost:9000/`);

for await (const request of server) {
 let bodyContent = "2 + 3 = " + add(2,3);
 request.respond({ status: 200, body: bodyContent });
}

Prepare yourself for quick disappointment! Just as we could not run
TypeScript code that read from the filesystem without giving our
application permission to do so, we cannot listen to network
connections without permission to do so either!

brian@tweezer ~/g/w/s/c/deno> deno run --allow-read main-serve.ts
error: Uncaught (in promise) PermissionDenied: Requires net access to "0.0.0.0:9000", run again with the --allow-net flag
 const listener = Deno.listen(addr);
 ^
 at unwrapOpResult (deno:core/core.js:100:13)
 at Object.opSync (deno:core/core.js:114:12)
 at opListen (deno:runtime/js/30_net.js:18:17)
 at Object.listen (deno:runtime/js/30_net.js:184:17)
 at serve (https://deno.land/std@0.93.0/http/server.ts:303:25)
 at file:///Users/brian/git-personal/webassembly-the-definitive-guide/src/ch08/deno/main-serve.ts:8:16

Fortunately, we are told what to do and that it is an easy problem to fix.

brian@tweezer ~/g/w/s/c/deno> deno run --allow-read --allow-net main-serve.ts
HTTP webserver running. Access it at: http://localhost:9000/

Now a simple HTTP client can fetch our result.

brian@tweezer ~> http http://localhost:9000
HTTP/1.1 200 OK
content-length: 9

2 + 3 = 5

Now we will look at one final example of Deno and WebAssembly. I have
been a bit cagey about showing certain types of functionality until we
have a chance to discuss the WebAssembly Services Interface (WASI)
standard in Chapter 11. I promise you we will look at more
interesting Node.js and Deno examples at that point. For the time
being I want to show a use of WebAssembly with Deno that is not going
to require too many additional details.

Tilman Roeder9 has created
an in-memory SQLite WebAssembly module and wrapped it for use in
JavaScript and TypeScript10. The details for how it
works will have to wait, but using it is quite straightforward as you
see in Example 8-9.

Example 8-9. Using a WebAssembly SQLite wrapper in a Deno HTTP Server

import { DB } from "https://deno.land/x/sqlite/mod.ts";
import { serve } from "https://deno.land/std@0.93.0/http/server.ts";

// Create the Database. This requires write access!

const db = new DB("pl.db");
db.query(
 "CREATE TABLE IF NOT EXISTS languages (id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT)",
);

const names = ["C", "C++", "Rust", "TypeScript"]

// Populate the database

for (const name of names) {
 db.query("INSERT INTO languages (name) VALUES (?)", [name]);
}

// Close out the connection

db.close();

const server = serve({ hostname: "0.0.0.0", port: 9000 });
console.log(`HTTP webserver running. Access it at: http://localhost:9000/`);

for await (const request of server) {
 // Re-open the Database

 const db = new DB("pl.db");
 let bodyContent = "Programming Languages that work with WebAssembly:\n\n";

 for(const [name] of db.query("SELECT name FROM languages")) {
 bodyContent += name + "\n";
 }

 bodyContent += "\n";
 request.respond({ status: 200, body: bodyContent });

 // Close the Database
 db.close();
}

We start by creating the database file. I hope your intuition kicked
in that this is going to require another runtime permission, because
it does as you see below. After that, we load some data into the
database and close out the connection.

Once we start up the server, upon receiving a suitable HTTP request,
we will open up the database again, run a query, generate a result and
then close the database. I am not suggesting that this is quality
production code yet, but it is quite remarkable that this code runs
securely in Deno and will do so across the various platforms that Deno
supports. Even though we are dealing with a wrapped C library
(i.e. SQLlite3), WebAssembly makes the code portable while still being
fairly performant. I hope the idea of extending server infrastructure
with safe, fast and portable WebAssembly code makes more sense.

The following command will start up the server with suitable permissions.

brian@tweezer ~/g/w/s/c/deno> deno run --allow-read --allow-write ↵
 --allow-net db-serve.ts
HTTP webserver running. Access it at: http://localhost:9000/

A request from an HTTP client produces what we would expect.

brian@tweezer ~> http http://localhost:9000
HTTP/1.1 200 OK
content-length: 74

Programming Languages that work with WebAssembly:

C
C++
Rust
TypeScript

A Look Forward

As big of a leap out of the browser as this chapter represented, this
is just the beginning. While we gave up the security restrictions of
running in that constrained environment (except for a similarly
locked-down Deno instance), we also gave up the rich functionality of
the browser. There is a tremendous amount of functionality available
to the JavaScript environment in any modern browser platform. This
includes JavaScript engines, hardware accelerated 2D/3D graphics and
video playback, sound, font-support, the ability to make network
requests and more. By default, neither Node.js nor Deno provide all of
the functionality of the browser although Deno is trying to support
most of it. This makes it harder to write WebAssembly-based
applications that will work inside and outside of the browser.

WebAssembly makes the code portable. We need another strategy for
making applications portable by providing consistent service
interfaces to functionality we would expect in a modern computing
platform. This is why I have been a bit circumspect about the kinds of
examples I can show you. A real solution to the problem will be
introduced in Chapter 11. Until then, be patient, but we have a
bunch more to discuss on our way.

1 Motif built on top of the Xt Intrinsics libraries and the X Window System: https://en.wikipedia.org/wiki/Motif_(software)
2 The Command Pattern separates the triggering event for execution of code from the actual code allowing for, among other things, macro recording and playback: https://en.wikipedia.org/wiki/Command_pattern
3 There are several examples of building Node addons here: https://nodejs.org/api/addons.html#addons_addon_examples
4 A combination of overlapping security controls can help you protect against unexpected vulnerabilities: https://en.wikipedia.org/wiki/Defense_in_depth_(computing)
5 Only assigning the minimum privileges necessary to users is part of how this technique helps. More information can be found here: https://en.wikipedia.org/wiki/Principle_of_least_privilege
6 A description of a Supply Chain Attack from 2018: https://medium.com/@hkparker/analysis-of-a-supply-chain-attack-2bd8fa8286ac
7 There is a lot to like about Deno beyond security. Check it out: https://deno.land.
8 Capability-based security systems generally provide actors to demonstrate that they have an unforgeable permission to conduct an operation. https://en.wikipedia.org/wiki/Capability-based_security
9 @dyedgreen on Twitter and Github
10 You can access the GitHub repository for this project here: https://github.com/dyedgreen/deno-sqlite

Chapter 9. Applied WebAssembly : Tensorflow.js

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 9th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

Now, the world don’t move

to the beat of just one drum,

What might be right for you,

May not be right for some.

Theme to “Diff’rent Strokes”

This is the first of our “Applied WebAssembly” chapters where I
highlight potential use cases for the technology. As you will see over
the course of the book, there is no single use. Instead, the designers
have crafted a platform with increasing reach into just about all
aspects of the software development industry. So follow along. I will
not be teaching new features per se. Instead I hope to help shape your
understanding of how our industry is changing rapidly and how
WebAssembly will assist.

To begin, I want you to stop for a moment and think about programming
languages and machine learning. What is the first one that comes to
mind? There is probably a good chance your answer was not
JavaScript. Why would it be? Machine Learning is an incredibly
performance-oriented activity with monumental computational workloads
these days.

Languages such as Python are much more strongly-associated with
machine learning than JavaScript is. If we are being honest, that is a
bit of a stretch too. Python is a horrible numerics language on its
own. It strikes a nice balance, however, of readability, flexible
programming style (functional, OO, procedural) and wide-ranging
coverage of algorithms, visualization and data-wrangling features. If
you can make it run faster, then it checks an awful lot of
boxes. Numpy, native libraries, clustered cloud environments and more
can give it the computational horsepower to make the training process
happen.

Most organizations do not run Python operationally though so chances
are you will need to serialize the model into some other format so
that it can be loaded into a C/C++, C#, Java or JavaScript
application. This is becoming easier because of open formats such as
Open Neural Network Exchange (ONNX)1, but
many frameworks such as Tensorflow naturally support this form of
mixed use.

The first step is to train our models. The second step is for
inference. Until a few years ago, Tensorflow required you to train in
Python, but you could save the model out to disk and load it into other
environments. These days you have the choice of training in Python,
JavaScript or Swift with Tensorflow.

We are going to discuss Tensorflow.js which is designed as a way of
providing machine learning capabilities in and out of the browser in
JavaScript environments. Using JavaScript for machine learning
(particularly in the browser) makes more sense than what you might
think. In order to understand the relationship between machine
learning and JavaScript and WebAssembly, however, we must first have a
quick discussion about hardware and how it is changing our industry.

Hardware

The typical programmer thinks of her job as writing software that runs
on computers containing a Central Processing Unit (CPU), main memory,
a storage system, a display and some kind of input devices. While this
still covers a significant amount of software development, we have a
richer ecosystem of computational runtimes than most people
realize. Computers, tablets, game consoles, networking equipment,
smart phones, watches, embedded systems, Internet of Things (IoT)
devices, and systems on chip (SOC) provide a menagerie of hardware
systems that execute software.

Herb Sutter of C++ fame has written an excellent
essay2
called “Welcome to the Jungle” that is worth your time. In it, he
highlights the impact of hardware developments on the software
industry over the last several decades. For approximately 30 years,
Moore’s law3 translated higher
density into faster chips. If your software was slow, you simply
waited 18-24 months and it would get faster.

Once we stopped being able to make faster, more complex chips, we used
the extra density to make more simple chips. Multicore systems became
the norm. Unlike the previous “free lunch” period, developers now had
to write crazy concurrent code to benefit from the extra processing
power and not every problem fits this mold nicely. Also, this is
tricky code and easy to get wrong. This has largely pushed us toward
functional programming languages and immutable data structures.

Other developments include the emergence of cloud computing to meet
elastic demand, edge computing to distribute it geographically for
low-latency customer experiences, and heterogenous computing
environments. This includes Graphical Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs) and Application-Specific Integrated
Circuits (ASICs).

Tied up in all of this is the idea that it takes time and power to
compute things. A big part of a successful IT strategy moving forward
is going to be about minimizing time costs, power costs and latency
costs. This is going to influence where things run. It makes sense to
push large amounts of data into the cloud for elastic, bursty training
sessions. But if this results in large models, those are not as easily
distributed to desktop/mobile experience because of size. At the same
time, we do not want internet sensors and car brakes making cloud
calls at crucial times.

We are facing an absolute explosion of data which is going to make all
of this more crucial. In order to process data in reasonable amounts
of time, we need access to hardware acceleration. This parallelizes
the math so it is tractable. It is in this world that we finally can
explore the concept of JavaScript-based machine learning in the
browser.

Playground

Tensorflow Playground4 is an experimental
environment for non-experts to gain intuition about how neural
networks work through direct manipulation5.
The idea is that these models are increasingly driving systems with
real-world consequences, but the background needed to understand them
is beyond the typical non-academic researcher. By working with visual
representations, non-technical users are able to gain a sense of cause
and effect.

The problem is that the JavaScript environment is single-threaded and
the numerics support is not great for the kind of math that training
neural networks requires. The Playground environment allows you to
change all hyperparameters of the training process via simple user
interface actions. While it is easy and fun to experiment with
changing these parameters, they can have significant impacts on the
quality of the results. In order to see the effect quickly and in real
time, the runtime needs to recalculate significant portions of the
code otherwise the whole point of direct manipulation is
lost. Fortunately they were able to eke out enough performance to make
it all work by relying on the presence of WebGL in the browser. We
will discuss this idea more below.

Tensorflow.js

Out of the success of the Playground came an appreciation of what was
necessary and possible to bring deep learning systems to the
browser. It may strike you as a bit odd to want to run such
computationally-intensive systems on potentially lower-end devices
such as phones or tablets. Even just running in the browser on a
powerful desktop machine is a slightly odd concept. There are quite a
few benefits to the idea though.

Unsurprisingly, the experience of clicking on a link and downloading a
deep learning-based application is a lot easier than having to install
a potentially large number of required libraries. There is zero
installation to load a web page. It is easier to share research and
practical applications when it is this easy. This broadens the
potential for interaction among deep learning researchers and makes it
easier to target endusers with applications that employ these
capabilities.

Given the popularity of JavaScript, it is a bit of a steep request
that web developers learn Python in order to do machine
learning. There is an overwhelming amount of open source JavaScript
code for building all manner of software systems. Being able to take
advantage of it all would be a benefit to developers of machine
learning systems in the other direction.

Our phones and tablets have quickly become something much more than
mobile portable electronic devices. They have become diagnostic tools,
part of our banking systems, methods of identification and more. New
software is being written to detect the onset of dementia or the
presence of strokes by analyzing video from their cameras. Both for
the quality of the user experience and privacy law compliance with
respect to the results of diagnostic outcomes, being able to push apps
to the device will be much less encumbered by regulatory burdens than
trying to take data off of the device.

Finally, many of the devices that these downloaded apps might run on
have powerful and sophisticated GPUs available for use. Not only could
it be possible to do deep learning systems in the browser, it might
actually perform well.

So, why are we discussing all of this?

The design of the Tensorflow.js framework is elegant and results in
clean APIs that work across a wide range of devices. Rather than
limiting the implementation to what is available everywhere, they
chose to create a pluggable backend to cover the widest number of
systems.

The basic version of the backend is a CPU-based JavaScript
implementation that will run anywhere. All of the code executes
directly on the CPU without benefit of optimizing instruction sets
such as the Advanced Vector Extensions (AVX)6. It does not
perform effectively anywhere but it will run basically
everywhere. Other options are better first choices, but this is a
decent fallback position.

The next major backend is accelerated by WebGL. There is no direct
support for accessing GPUs from JavaScript, but there is via WebGL
which is supported in nearly every browser. By pretending to do 3D
graphics, they can execute calculations on the GPU and write the
results into the textures. This produces a fast and convenient
implementation that runs well on just about every major modern
browser. It is similar to what was done with the Tensorflow Playground
application mentioned earlier.

Note

This is not as strange a scenario as it sounds. Prior to the
availability of GPU computation libraries such as CUDA, OpenCL, Metal
and Vulkan, researchers would do this with OpenGL to get access to
comparatively cheap computation. These APIs that specifically allow
the use of GPUs for arbitrary computation was part of what accelerated
the machine learning and deep learning systems we enjoy these days.

Servers with deep learning needs can be implemented in Node.js, so the
next backend is designed to run in a freer environment than the
browser. Apps running in Node.js can read from and write to the
filesystem, load and use native libraries, and communicate directly
with the normal native Tensorflow libraries. These can take advantage
of multicore systems, GPUs or other hardware accelerating devices such
as Google’s Tensor Processing Units (TPUs).

You can see the basic structure of the API design in Figure 9-1.

[image: Tensorflow.js Layered API and Backends]
Figure 9-1. Tensorflow.js Layered API and Backends

There is quite a lot to unpack here. First of all, the lower level
operators are exposed via the Ops API shown above. Developers who need
to get down into the details have the option of entering the API at
that level. Above that, however, is a Keras-inspired Layers API that
is designed with a pleasant developer experience in mind. This is a
simple API for defining complex neural network architectures using a
simplified stacked layer approach. It hides many of the details but
still exposes powerful behavior through a relatively-straightforward
mechanism.

Regardless of which API client code uses to enter the Tensorflow.js
API, the applications written against those APIs will be portable
across all of the environments covered by the backends. That includes
in the browser, out of the browser, with hardware acceleration and
without. That is a remarkable enough design achievement, but the code
will also run exceptionally well in the different environments when it
is able to take advantage of hardware acceleration. As we have seen,
this can come in a variety of forms, but we are not writing against
the least common denominator environment and the application code
need not be encumbered by a bunch of features-testing code to see what
the environment provides.

The results of a single inference using MobileNet7
averaged over one hundred runs are shown in Table 9-1. This
data is taken from the paper that introduced the world to
Tensorflow.js, “Tensorflow.js : Machine Learning for the Web and
Beyond8.”

Table 9-1. Summary of Tensorflow.js Performance Results

	Backend
	Time(ms)
	Speedup

	CPU JavaScript

	3426

	1x

	WebGL (Intel Iris Pro)

	49

	71x

	WebGL (GTX 1080)

	5

	685x

	Node.js CPU w/ AVX2

	87

	39x

	Node.js CUDA (GTX 1080)

	3

	1105x

The results are not surprising as a trend, but the specifics kind of
are. It takes nearly 3.5 seconds running on the raw JavaScript backend
with no hardware acceleration. Simply swapping out the backend to one
that is optimized by the presence of WebGL support and even a very
modest integrated GPU yields a 71x speed up running in the browser. On
a desktop machine with a more powerful GPU, we achieve nearly a 700x
speed up. A server application running without benefit of a GPU but
with the benefit of a CPU with optimized AVX instructions has a nearly
40x improvement. The same environment backed by a more powerful GPU
produces a jaw-dropping 1000x+ speed up. Keep in mind that nothing has
changed in the application, simply the environment it runs in.

This is my larger point. The move from the “Free Lunch” period to the
multi-core period forced a significant change in how developers had to
program in order to take advantage of these extra resources. If we had
to change how we program to take advantage of custom acceleration, the
presence of multiple CPUs, cloud-hosting environments, and running in
the browser, our deep learning applications would be a rat’s nest of
unmaintainable code. Instead, what we see is a strategy for isolating
the bits that change and taking advantage of the hardware options
available to us. This leads us to the final backend we will consider.

WebAssembly Backend

Not too long after Tensorflow.js was released, the team released a new
backend written in WebAssembly. It may surprise you that they felt the
need to do so given the coverage we just discussed. However, by now I
hope you realize that this probably did not mean starting from
scratch. Clearly there was work to do, but a fair amount of the effort
was handled by relying on existing code. In particular, the
XNNPack9 library was extended to support
WebAssembly builds.

This extends our collection of backends to include the one shown in
Figure 9-2.

[image: A WebAssembly Backend for Tensorflow.js]
Figure 9-2. A WebAssembly Backend for Tensorflow.js

This highlights a prominent use case for WebAssembly. It is not about
replacing JavaScript, at least not in all cases. It is about extending
what is possible in the browser without having to wait for consensus
from the browser vendor community. WebGPU10 or
something like it is coming through the standards process, but this
can take years. An existing library written in C++ designed to be
optimized and portable across many platforms is able to bring a good
portion of that power to browsers now without waiting.

This broadens the computational runtime to include older devices
without powerful GPUs. The code can be optimized to still run well
across a wide range of platforms. Additionally, the WebAssembly
designers are in the process of adopting two advanced features that we
will discuss in later chapters. This includes the use of Single
Instruction Multiple Data (SIMD)11 parallelization and the use
of multiple threads.

In Figure 9-3, we have a similar use of MobileNet as
before. Clearly the WebAssembly backend on its own does not perform as
well as the WebGL-backed one. You are encouraged to use the Wasm
backend instead of the plain JavaScript one as it will perform much
better everywhere. Depending on the model size, the Wasm backend makes
more sense than the WebGL one because of some fixed costs with respect
to WebGL execution. Note the dramatic improvement in performance for
the platforms that support them when threading and
SIMD-parallelization are added to the Wasm mix.

[image: Relative performance of Tensorflow.js backends across platforms]
Figure 9-3. Relative performance of Tensorflow.js backends across platforms

In Figure 9-4 we see the results for a different model
with a smaller number of parameters. In this scenario the Wasm backend
makes more sense. Notice the comparable performance on the Pixel 4 and
the dramatically better performance on the Linux and Mac
notebooks. Again, the use of threads and SIMD dramatically improve
upon the performance of the WebGL-based backend.

[image: Relative performance of Tensorflow.js backends across platforms]
Figure 9-4. Relative performance of Tensorflow.js backends across platforms

At least for the time being, WebAssembly is not always going to be the
fastest solution in every case. It is a relatively new platform and it
will be a while until all of the potential optimizations can be wrung
out of what is there. However, given its young age, it is already
changing the game about what is possible in a wide range of
computational environments.

The key lessons of this chapter are that WebAssembly and its related
technologies can offer us more choice, and in many cases, better
choices, for deploying high-performance software systems onto a
largely varied computational surface. We will see many other uses as
we go along, but now it is time to expand our options with respect to
languages and WebAssembly.

1 More details about this increasingly popular effort can be found here: https://onnx.ai
2 This one is the essay I mentioned in the text. In it, he also cites another essay he wrote called “The Free Lunch is Over”, also worth your time: https://herbsutter.com/welcome-to-the-jungle/
3 Moore’s law is a famous observation about manufacturing trends in the density of silicon chips. https://en.wikipedia.org/wiki/Moore%27s_law
4 You can experiment with the Tensorflow Playground here: http://playground.tensorflow.org
5 Direct manipulation is a style of user interface in which a user has controls that allows for safe, exploratory manipulation of an application and its data. https://en.wikipedia.org/wiki/Direct_manipulation_interface
6 AVX/AVX2 are extensions to the Intel x86 instruction set architecture (ISA) that provide parallel optimizations of the kind of math we are using here: https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
7 The MobileNets collection of models are designed for efficient mobile and embedded vision applications: https://arxiv.org/pdf/1704.04861.pdf
8 The paper is a good read and worth your time: https://arxiv.org/pdf/1901.05350.pdf
9 XNNPack is available here although it is not intended to be used directly by deep learning researchers: https://github.com/google/XNNPACK
10 This emerging standard will directly expose GPU support to browsers in a cross-platform manner: https://en.wikipedia.org/wiki/WebGPU
11 SIMD is a type of data parallelism processing that performs the same instructions on multiple computational elements on different parts of the data. https://en.wikipedia.org/wiki/SIMD

Chapter 10. Rust

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 10th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

There’s talk on the street, it’s there to remind you

Doesn’t really matter which side you’re on

You’re walking away, and they’re talking behind you

They will never forget you ‘til somebody new comes along

Eagles, New Kid in Town

For a period of my career I stopped caring about new programming
languages. It seemed like there was always a new one right around the
corner. Most of the time, they were not interesting in the slightest
to me. These days a new programming language has to have sufficient
advantage over what has come before to be able to capture our
attention and be worth the effort to learn, invest in the toolchains,
etc.

At around this time, I became aware of both Go and Rust and I put them
in the same conceptual space: systems languages that provided roughly
a similar speed to C and C++, but also contained language features
that made them far safer. As I have always been a Unix nerd, I was
drawn to Ken Thompson and Rob Pike’s1 involvement in Go. I was also excited to see some of the Plan
9 ideas gaining some traction. As a consequence, I put in some effort
to learn Go and was happy that I did. I did not see the need to also
learn Rust because I thought it was just more of the same.

And then I got interested in WebAssembly.

Once I heard that Rust was natively emitting WebAssembly on the
backend, I knew I needed to dig in deeper. This is when I learned
about the Rust language, its community, tools, documentation and kind
of fell in love. Don’t get me wrong, I like the Go community and
language as well, but the relationship between Rust and WebAssembly
was such that the lion’s share of my interest shifted and I have not
looked back.

We have focused so far in this book primarily on the relationship
between C and C++ and WebAssembly. This is the first major step toward
a different language. Rust is a modern language with a modern
ethos. It provides very good runtime performance with a safety net
that would be nearly impossible to engender as an afterthought. Given
the significant role C and C++ still play in the bugs, defects and
malware exploits we face on a daily basis, having a fast, safe systems
language is a material improvement. After a long spell as a darling of
the open source community, these benefits have started to become
obvious to commercial developers and interest in Rust is growing
daily.

C and C++ obviously still play a significant role in our
industry, but, if given the choice for new projects, I would reach for
Rust instead. It really has become the new kid in town that everyone
is talking about, so let’s learn why before we look at the interplay
between Rust and WebAssembly.

Introduction to Rust

Given the already massive scope of this book, I cannot teach you Rust
with any kind of rigor. For that I encourage you to checkout the free
book by Steve Klabnik and Carol Nichols,
“The Rust Programming Language”, or
the second edition or later of
“Programming
Rust” by Jim Blandy, Jason Orendorff and Leonora F.S. Tindall.

The high level introduction to this new language is that it started as
a side project by Graydon Hoare while at Mozilla but has morphed into
an industry-changing language gaining traction at Google, Microsoft,
Apple and other leading technical companies. There are many reasons
for their interest, but the main driver of adoption is that it is a
fast, safe, modern language. Originally intended as a systems
programming language for low-level libraries and operating system
services it has even started to find its way into Linux kernel
extensions.

There are entire classes of bugs that are addressed by a
fundamental series of design choices in the language. Issues that
would have manifested as run time errors in other languages become
compile-time errors in Rust. Unfortunately, it comes with a fairly
steep learning curve. You will run into inexplicable edge cases that
displease the Rust compiler and likely get rather frustrated
initially. I have likened the experience to the maturation process
teenagers go through.

Initially, there are not many expectations of you as a teenager, but
slowly more is expected until you are suddenly an adult. The
transition process can be painful and frustrating. As a developer, the
Rust compiler expects you to communicate clearly and indicate your
intentions so it can react accordingly. Languages like JavaScript make
no such demands on you so depending on your background, it may be a
bit off-putting.

However, while you may chafe initially at the level of adulting the
Rust compiler expects of you, it very quickly becomes a language that
people are passionate about. It has won several surveys of favorite
languages over the last couple of years2, so clearly
moving past the steep learning curve is a rewarding experience. Once
teenagers become young adults, even with the extra expectations, few
people ever long to go back to their younger selves.

Assuming you have installed Rust as detailed in
Appendix A, we can easily handle a “Hello, World!” program
such as Example 10-1.

Example 10-1. Rust “Hello, World!”

fn main() {
 println!("Hello, World!");
}

Here, we have a main() method and the ability to print strings to
the console. While it may look like an emphatic name, the exclamation
point simply marks this as a macro, a language feature we will not
have time to explore3. For our purposes,
just think of it as printf() in C or System.out.println() in
Java. Compiling and running this simple program is as simple as the
following commands:

brian@tweezer ~/g/w/s/ch10> rustc helloworld.rs
brian@tweezer ~/g/w/s/ch10> ./helloworld
Hello, World!

So far, no big deal but it does not take too long to run into a
difference with Rust though. Consider the very basic example in
Example 10-2.

Example 10-2. Rust immutable variables

fn main() {
 let s = "cool";
 s = "safe";

 println!("Rust is {}", s);
}

We assign a string literal to variable s. Rust is pretty picky about
types, but not unnecessarily so. When it can use type
inference4
to figure out what type a variable should have, there is no reason to
be verbose. The Rust compiler can tell that a reference to a string is
being assigned here. We then change our mind and overwrite the value
with another string reference and then print out the new value. In
almost any other programming language, this is a totally fine thing to
do. In Rust…

brian@tweezer ~/g/w/s/ch10> rustc immutable.rs
warning: value assigned to `s` is never read
 --> immutable.rs:2:9
 |
2 | let s = "cool";
 | ^
 |
 = note: `#[warn(unused_assignments)]` on by default
 = help: maybe it is overwritten before being read?

error[E0384]: cannot assign twice to immutable variable `s`
 --> immutable.rs:3:5
 |
2 | let s = "cool";
 | -
 | |
 | first assignment to `s`
 | help: make this binding mutable: `mut s`
3 | s = "safe";
 | ^^^^^^^^^^ cannot assign twice to immutable variable

error: aborting due to previous error; 1 warning emitted

For more information about this error, try `rustc --explain E0384`.

There is a lot going on in this error message. On the one hand,
because the Rust team is aware that the learning curve is steep, they
put an inordinate amount of time into making sure that the error
messages are helpful and informative5.

The first error message is just simply saying that there is not much
point to the first assignment because you immediately overwrite the
value before it is ever read. This is just an observation indicating a
potential code smell6. You can suppress this
warning if you do not want to see it, but it is nice that it points
these issues out by default.

The real issue is that Rust variables are immutable by default. Once
you assign a value, you cannot change it. That seems an odd policy,
but it forces you to be clear when you want a variable value to change
and when you do not. There is a large class of bugs that involve the
unintentional overwriting of variables. You may not notice that you
have done so until a test fails or there is a runtime issue.

Obviously, we need mutable variables in Rust, you just have to tell
the compiler that is what you want as you can see in
Example 10-3.

Example 10-3. Mutable Rust variables

fn main() {
 let mut s = "cool";
 s = "safe";

 println!("Rust is {}", s);
}

Now, by recompiling (and suppressing the unused assignment warning) we
end up in a happier place.

brian@tweezer ~/g/w/s/ch10> rustc -A unused_assignments immutable.rs
brian@tweezer ~/g/w/s/ch10> ./immutable
Rust is safe

It may annoy you at first that you have to communicate this clearly,
but the Rust compiler is just teaching you how to be an adult where
communication is critical to well-being and success.

Let’s look at another example of something that may trip you
up when you start doing Rust. In Example 10-4 we have another
very simple program. We assign a string literal to a variable s and
then reassign it to a variable t before printing both out.

Example 10-4. Using Rust variables

fn main() {
 let s = "Hello, world.";
 let t = s;
 println!("s: {}", s);
 println!("t: {}", t);
}

This is a perfectly reasonable thing to do and we see that the Rust
compiler has no issues with below.

brian@tweezer ~/g/w/s/ch10> rustc memcheck.rs
brian@tweezer ~/g/w/s/ch10> ./memcheck
s: Hello, world.
t: Hello, world.

With one minor change, however, we can break this as seen in Example 10-5.

Example 10-5. Rust Memory Checker Violation

fn main() {
 let s = "Hello, world.".to_string();
 let t = s;
 println!("s: {}", s);
 println!("t: {}", t);
}

The problem is helpfully highlighted in the error message from the Rust compiler.

brian@tweezer ~/g/w/s/ch10> rustc memcheck.rs
error[E0382]: borrow of moved value: `s`
 --> memcheck.rs:4:23
 |
2 | let s = "Hello, world.".to_string();
 | - move occurs because `s` has type `std::string::String`, which does not implement the `Copy` trait
3 | let t = s;
 | - value moved here
4 | println!("s: {}", s);
 | ^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.

It may not seem like much, but by adding the to_string() method
call, we have violated Rust’s memory checker. This is because we have
turned a string literal into a heap-allocated string. The stack is
where short-term variables associated with the current function are
allocated so they can easily be cleaned up when they go out of lexical
scope (i.e. at the end of the function). Heap-allocated memory is
allocated until it no longer needs to be. In C and C++, you must generally
manage this process yourself as a programmer. In Java and JavaScript
environments, the run-time garbage collector does this for you.

Rust manages the lack of a run-time garbage collector by enforcing
ownership of values. At any given time, only one variable can own the
memory associated with a heap-allocated value. In
Example 10-5, we first assign ownership to the string to
variable s. When we assign s to t, ownership transfers. At this
point, s does not point to anything valid anymore so our attempt to
use s in the println! macro is caught as a violation.

Literal values and other structures may implement the Copy trait
mentioned in the error message above. This is a behavior that allows
the associated bits to be copied from variable to variable without
inducing an ownership transfer. Because the Rust string structure
does not implement this trait, the ownership checking applies. Other
cases where ownership transfer happens includes when variables are
passed into and out of functions, in loops, and other lexical
structures such as conditional clauses.

The good news is that, by being more explicit about our intentions, we
can get around this problem without introducing new risk. The specific
risk we are attempting to avoid is use before initialization, use
after free, and other bugs that are common in languages such as a C
and C++. We can use references rather than direct access which allows
us to “borrow” a value. We can have mutable references, but only one
at a time. These function a bit like reader/writer locks in languages
such as Java.

Once we are better communicators about our intentions, the Rust
compiler can assist us with our goals rather than fight us all of the
time. The net effect is that Rust moves several run-time errors to
compile-time errors which is a much better place to handle them. This
eliminates even more classes of bugs and allows us to produce much
higher quality software including fast, highly-concurrent types of
code useful in system development.

The experience of using Rust is not just about being hassled by the
compiler though. There are plenty of language features, tools and
aspects of the community that make it a joy to use once you get past
the learning curve. The combination of Rust’s speed and safety with
its being built on LLVM make it a great language to pair with
WebAssembly.

Rust and WebAssembly

If you followed the instructions for installing Rust in
Appendix A, then you already have the basics for doing
WebAssembly with Rust available to you. As I mentioned earlier, it was
Rust’s native support for WebAssembly that initially piqued my
curiosity about Rust.

You will recall that in Figure 5-1 you saw that LLVM
provided a three stage architecture. As Rust is an LLVM-based
language, in order to support WebAssembly, it basically just needed a
new backend. That is not entirely true, but for now it is a suitable
fiction.

You can see which backends are installed by issuing the following
command:

brian@tweezer ~/g/w/img> rustup target list | grep installed
wasm32-unknown-unknown (installed)
x86_64-apple-darwin (installed)

Rust backends are labeled as triples indicating the instruction set
architecture (ISA), the vendor and the operating system. I ran that
command on an Intel Mac so you see the corresponding default
backend. But you can also notice that the WebAssembly backend is installed. As
it produces code targeting the WebAssembly stack machine, we are not
talking about x86_64, aarch64, arm7 or riscv64. Because this
code is portable, it does not matter which machine you plan to run it
on, which is why the triple is filled out with unknown-unknown.

If you look to Example 10-6 you will see the code to add two
numbers together (i32s in Rust) and a main() method to test the
behavior.

Example 10-6. Rust Function to Add Two Integers

pub extern "C" fn add(x: i32, y: i32) -> i32 {
 x + y
}

fn main() {
 println!("2 + 3: {}", add(2,3));
}

Using the default backend, you can view the result of building and
running a native Rust version of this code.

brian@tweezer ~/g/w/s/ch10> rustc add.rs
brian@tweezer ~/g/w/s/ch10> ./add
2 + 3: 5

To compile the same code into a WebAssembly module is as
straightforward as selecting the WebAssembly backend and indicating
that we want to generate a C dynamic library. You can either remove
the main function or add the compiler directive to suppress dead code
complaints as follows:

brian@tweezer ~/g/w/s/ch10> rustc -A dead_code --target wasm32-unknown-unknown ↵
 -O --crate-type=cdylib add.rs -o add.wasm

We can use the wasm3 runtime to execute our function on the command:

brian@tweezer ~/g/w/s/ch10> wasm3 --func add add.wasm 2 3
Error: [Fatal] repl_call: function lookup failed
Error: function lookup failed ('add')

Err… or not.

brian@tweezer-2 ~/g/w/s/ch10> ls -laF add*
-rwxr-xr-x 1 brian staff 334920 May 4 11:54 add*
-rw-r--r-- 1 brian staff 111 May 4 12:07 add.rs
-rwxr-xr-x 1 brian staff 1501227 May 4 12:16 add.wasm*

Wow, that’s a pretty big file compared to the native one. This is
again because of expectations the Rust compiler has about what is
necessary to execute this code in a WebAssembly environment. The
native version can rely on native dynamic libraries to provide the
needed functionality. By this point of the book you should remember
how to investigate the contents of a Wasm module.

brian@tweezer ~/g/w/s/ch10> wasm-objdump -x add.wasm
add.wasm:	file format wasm 0x1

Section Details:

Table[1]:
 - table[0] type=funcref initial=1 max=1
Memory[1]:
 - memory[0] pages: initial=16
Global[3]:
 - global[0] i32 mutable=1 - init i32=1048576
 - global[1] i32 mutable=0 <__data_end> - init i32=1048576
 - global[2] i32 mutable=0 <__heap_base> - init i32=1048576
Export[3]:
 - memory[0] -> "memory"
 - global[1] -> "__data_end"
 - global[2] -> "__heap_base"
Custom:
 - name: ".debug_info"
Custom:
 - name: ".debug_pubtypes"
Custom:
 - name: ".debug_ranges"
Custom:
 - name: ".debug_aranges"
Custom:
 - name: ".debug_abbrev"
Custom:
 - name: ".debug_line"
Custom:
 - name: ".debug_str"
Custom:
 - name: ".debug_pubnames"
Custom:
 - name: "producers"

Ok, so there is a bunch of debugging information and exported memory
and whatnot, but there is no add function exported. There is a
compiler directive we can add to the method definition that should
solve this export issue as shown in Example 10-7.

Example 10-7. Rust Function to Add Two Integers Exported Properly

#[no_mangle]
pub extern "C" fn add(x: i32, y: i32) -> i32 {
 x + y
}

Now, rebuild and check the results. You should see the add method in
the exports section. And we can invoke it on the command line.

brian@tweezer ~/g/w/s/ch10> wasm3 --func add add.wasm 2 3
Result: 5

As you might have guessed, we can also invoke our behavior through our
typical HTML/JavaScript combo with almost no effort as we do in
Example 10-8.

Example 10-8. Invoking Rust Functions from HTML

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="bootstrap.min.css">
 <title>Rust and WebAssembly</title>
 <script src="utils.js"></script>
 </head>
 <body>
 <div class="container">
 <h1>Rust and WebAssembly</h1>
 2 + 3 = .
 </div>
 <script>
 fetchAndInstantiate('add.wasm').then(function(instance) {
 var add = instance.exports.add(2,3);
	 var sumEl = document.getElementById('sum');
	 sumEl.innerText=add;
 });
 </script>
 </body>
</html>

In Figure 10-1 you can see the now familiar outcome of
invoking a function from JavaScript in the browser. The difference, of
course, is that it was originally written in Rust instead of the C and
C++ we have been using.

[image: Invoking Rust from HTML]
Figure 10-1. Invoking Rust from HTML

If that was all we had to talk about with Rust and WebAssembly, that
would not be all that exciting. Fortunately, thanks to wasm-bindgen
things get much more interesting very quickly.

wasm-bindgen

In subsequent chapters, I will introduce you to several features that
will be unlocked by proposals drafted post Minimum Viable Product
(MVP). This includes the ability to reference more complex structures
such as strings and lists, threading support, multi-value return types
and more. Until then, wasm-bindgen has been a bigger help in
bridging JavaScript and Rust at a high level so that you can pass data
across the chasm beyond just numbers. The tool is not intended to be
solely for Rust, but so far that has been where most of the benefits
have been seen.

If you have installed wasm-bindgen and wasm-pack as described in
Appendix A you should have everything you need for the
remainder of the chapter. The latter is not a requirement but it makes
things easier so we are going to start by using its bundling
capabilities.

The “Hello, World!” for wasm-bindgen is invoking the alert()
JavaScript method from Rust without having to import a method directly
in WebAssembly. As you will quickly see, the full range of browser
functionality will be unlocked and usable from Rust. Even more
amazingly, it will do so looking as if it were all written in Rust
from that perspective. Additionally, you will be able to share Rust
code with JavaScript and have it appear as JavaScript. I have worked
with several inter-language bridge technologies in my day and this is
one of the better ones I have seen.

The first step is to create a Rust library project using the cargo
build tool. This will establish the scaffolding for the basic project.

brian@tweezer ~/src> cargo new --lib hello-wasm-bindgen
 Created library `hello-wasm-bindgen` package

You can override the default code in the src/lib.rs file to be what
is shown below in Example 10-9.

Example 10-9. Our library for use with wasm-bindgen

use wasm_bindgen::prelude::*;

#[wasm_bindgen]
extern {
 pub fn alert(s: &str);
}

#[wasm_bindgen]
pub fn say_hello(name: &str, whom: &str) {
 alert(&format!("Hello, {} from {}!", name, whom));
}

This is slightly trickier Rust than we have seen so far, but not too
bad. The first line imports the contents of the
wasm_bindgen::prelude module so that we can use it in our Rust
code. This includes some of the binding code that will connect us to
the JavaScript runtime environment.

The next line is a Rust attribute name #[wasm_bindgen]. This
indicates that we plan on invoking an external function named
alert(). This is among the functionality we imported with the
aforementioned use statement from the prelude. If you think that
this method sounds familiar, you would be right! This is ultimately
going to invoke the method of the same name that you have probably
called from JavaScript many times. Notice the signature though. This
is not a JavaScript function. From our perspective, we are just
calling a Rust function from our Rust code. The bridge provided by
wasm-bindgen is so seamless that we do not even have to think about
another language at this point.

This “Hello, World!” instance is going to go the other way as
well. From JavaScript, we are going to call into Rust. The next
#[wasm_bindgen] attribute is applied to a Rust function defined in
our library that takes two string slices. We use the Rust format!
macro which is equivalent to string-formatting functions in other
languages. We take a reference to the returned string and pass it to
the alert() function identified above. This attribute is going to
generate an equivalent JavaScript function to call from that side of
the world. From its perspective it will be calling JavaScript not
Rust! The same attribute is keeping us in synch in either direction
which is rather remarkable.

The next step is to use wasm-pack to generate our support code. In
order to do that, we will need to update our Cargo.toml to indicate
that we want to generate a C dynamic library style output and that we
need wasm-bindgen as a dependency as shown in Example 10-10.

Example 10-10. Cargo.toml file

[package]
name = "hello-wasm-bindgen"
version = "0.1.0"
edition = "2018"

[lib]
crate-type = ["cdylib"]

[dependencies]
wasm-bindgen = "0.2.73"

Now we can use wasm-bindgen to generate a JavaScript module that
wraps our Rust code. I have eliminated some warnings about missing
attributes and README files as well as some cute little emojis that do
not translate well.

brian@tweezer ~/s/hello-wasm-bindgen> wasm-pack build --target web
[INFO]: Checking for the Wasm target...
[INFO]: Compiling to Wasm...
 Compiling hello-wasm-bindgen v0.1.0 (/Users/brian/src/hello-wasm-bindgen)
 Finished release [optimized] target(s) in 0.26s
[INFO]: Optimizing wasm binaries with `wasm-opt`...
[INFO]: Done in 0.73s
[INFO]: Your wasm pkg is ready to publish at /Users/brian/src/hello-wasm-bindgen/pkg.
brian@tweezer ~/s/hello-wasm-bindgen> ls -laF pkg
total 72
drwxr-xr-x 8 brian staff 256 May 10 17:20 ./
drwxr-xr-x 9 brian staff 288 May 10 17:20 ../
-rw-r--r-- 1 brian staff 1 May 10 17:20 .gitignore
-rw-r--r-- 1 brian staff 861 May 10 17:20 hello_wasm_bindgen.d.ts
-rw-r--r-- 1 brian staff 4026 May 10 17:20 hello_wasm_bindgen.js
-rw-r--r-- 1 brian staff 15786 May 10 17:20 hello_wasm_bindgen_bg.wasm
-rw-r--r-- 1 brian staff 291 May 10 17:20 hello_wasm_bindgen_bg.wasm.d.ts
-rw-r--r-- 1 brian staff 266 May 10 17:20 package.json

We have used the --target web flag to indicate we would like our
package to be loadable in a browser. Other options including using
Webpack to bundle everything up or targeting Node.js or Deno as we
will see shortly. In the pkg directory, you will see the generated
JavaScript, our Wasm module, and a package.json file. There are also
TypeScript Declaration files for our code as well. If you use
wasm-objdump and checkout the Export section of our module, you
will see the following:

Export[4]:
 - memory[0] -> "memory"
 - func[19] <say_hello> -> "say_hello"
 - func[34] <__wbindgen_malloc> -> "__wbindgen_malloc"
 - func[38] <__wbindgen_realloc> -> "__wbindgen_realloc"

This includes a Memory instance, our exported method and some memory
allocation functions.

The final step is to invoke the ES6 module from HTML and JavaScript as
seen in Example 10-11.

Example 10-11. Calling Rust from JavaScript

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>hello-wasm-bindgen Example</title>
 </head>
 <body>
 <script type="module">
 import init, {say_hello} from "./pkg/hello_wasm_bindgen.js";
 init()
 .then(() => {
	 say_hello("Rust", "JavaScript");
 });
 </script>
 </body>
</html>

If you serve up the HTML file over HTTP as we have done previously,
you should see the result as shown in Figure 10-2. This is
JavaScript calling into Rust through an exported function generated by
wasm-bindgen which in turn calls back into JavaScript through a
generated Rust wrapper around JavaScript functionality in the browser
also generated by wasm-bindgen.

[image: Calling JavaScript from Rust from JavaScript]
Figure 10-2. Calling JavaScript from Rust from JavaScript

Despite the banality of the outcome, this is an incredibly satisfying
result as the bridge generated between these two languages looks very
natural from either side. It is so much easier just thinking about
string slices in Rust rather than writing bytes into a memory instance
as we had to do previously.

Ok, now that we have the basics down, let’s try something more
interesting. One of the features I really love about Rust is its
pattern matching support. Other languages do this as well, but I
really like how Rust does this. Check out Example 10-12. The
first thing you will see is a #[wasm_bindgen] attribute on an block
indicating we would like to invoke a method called log() from
JavaScript. Notice the second inner attribute with a js_namespace of
console. This shows how we can directly invoke console.log() from
Rust thanks to wasm-bindgen.

Example 10-12. Rust Pattern Matching in Action

use wasm_bindgen::prelude::*;

#[wasm_bindgen]
extern "C" {
 #[wasm_bindgen(js_namespace = console)]
 fn log(s: &str);
}

#[wasm_bindgen]
pub fn describe_location(lat : f32, lon : f32) {
 let i_lat = lat as i32;
 let i_lon = lon as i32;

 use std::cmp::Ordering::*;

 let relative_position = match(i_lat.cmp(&38), i_lon.cmp(&-121)) {
 (Equal, Equal) => "very close!",
 (Equal, Greater) => "east of me",
 (Equal, Less) => "west of me",
 (Less, Equal) => "south of me",
 (Less, Greater) => "southeast of me",
 (Less, Less) => "southwest of me",
 (Greater, Equal) => "north of me",
 (Greater, Greater) => "northeast of me",
 (Greater, Less) => "northwest of me"
 };

 log(&format!("You are {}!", relative_position));
}

After the log() method is made available to us in Rust, we define a
function called describe_location() that takes two f32s which we
will compare to my rough location at home. To simplify the comparison
and not leak too many details about where I am, I only compare the
integer portions of my current location (38N, -121W). To accomodate, I
cast the incoming floats as integers and then import the functionality
that allows me to compare integers. The truncated i_lat value is
compared to my latitude and the i_lon value is compared to my
longitude. The results are placed into a Rust tuple which is like a
Python tuple, a lightweight way to put one or more values into a
single structure.

The values in the tuple are then matched against the various
possibilities when another location is compared to mine. If the
cmp() returns two Equal values then the location is near me. If
the latitudes are Equal but the longitudes are not, then the other
position is either to the east or west of me. What we have here is an
incredibly compact but readable way of handling nine separate
cases. If this had been expressed as a bunch of nested if-then
clauses it would have been much more difficult to read.

Once we have generated the description of the relative position, we
call the log function to print out the results. As this is
ultimately the console.log() function, the result will print out in
the developer console of your browser.

The next step is to build our package to import in HTML and JavaScript.

brian@tweezer ~/s/geo-example> wasm-pack build --target web
[INFO]: Checking for the Wasm target...
[INFO]: Compiling to Wasm...
 Compiling geo-example v0.1.0 (/Users/brian/src/geo-example)
 Finished release [optimized] target(s) in 0.51s
[INFO]: Optimizing wasm binaries with `wasm-opt`...
[INFO]: Done in 1.01s
[INFO]: Your wasm pkg is ready to publish at /Users/brian/src/geo-example/pkg.

In Example 10-13, we see the HTML and JavaScript to invoke our
behavior. We import the functions and then call a JavaScript function
that tests for the availability of the geolocation object on the
browser. If it is there, we request the current location which
triggers a popup for the user to approve. If given the location, the
results are shown as the innerText of the placeholder paragraph
element and we invoke our describe_location() method in Rust to do
the pattern matching.

Example 10-13. Calling the Rust pattern matching from HTML

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>parsing-example</title>
 </head>
 <body>
 <script type="module">
 import init, {describe_location} from "./pkg/parsing_example.js";
 init()
 .then(() => {
 	 getLocation();
 });

 var output = document.getElementById("output");

 function getLocation() {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(showPosition);
 } else {
 output.innerHTML = "This browser doesn't support Geolocation.";
 }
 }

 function showPosition(position) {
 output.innerHTML = "Your position:" +
 "
Latitude: " + position.coords.latitude +
 "
Longitude: " + position.coords.longitude;

 	describe_location(position.coords.latitude, position.coords.longitude);
 }
 </script>

 <p>Open up your JavaScript console and allow the browser to see your location</p>
 <p id="output"></p>
 </body>
</html>

The results of executing this code are shown in Figure 10-3.

[image: Pattern matching geolocations from JavaScript in Rust]
Figure 10-3. Pattern matching geolocations from JavaScript in Rust

Designing Code For In and Out of the Browser

The final section I want to cover is another WebAssembly use case that
I think is going to be increasingly popular. We have looked at using
languages other than JavaScript to target the browser. We have also
discussed the scenario of reusing existing code in a browser-based
runtime. But what about code that is designed to run both inside and
outside of the browser as a matter of course? I think once more people
are comfortable with what WebAssembly provides this is going to be an
increasingly common scenario.

I had been expecting this kind of activity in the future as long as I
have followed WebAssembly, but I was surprised at how far along Emil
Ernerfeldt had gotten with his egui library7. He describes the
project as “an easy-to-use immediate mode GUI in pure
Rust”8 Basically, it a sophisticated user interface
library that works both inside the browser and out.

We have mentioned several times in this chapter that Rust benefits
from its LLVM heritage by allowing us to emit various backend
targets. This is also what Emil is taking advantage of to make this
work. But he has done so elegantly and I think there is a lot that can
be learned from where he has gone. The full details of how he makes it
work are outside the scope of this chapter, but I want to draw
attention to the project in case you are interested in doing something
similar.

First, let’s see his app in action as a native application. If you are
on Linux, you have to install a few more packages listed on the GitHub
site, but after that, you simply have to run:

brian@tweezer ~/g/egui> cargo run --release -p egui_demo_app

The results should look something like what you see in
Figure 10-4 depending on which options you click on. If
you play around with the demo, you will see that it is an attractive,
featureful user interface library. The Rust community is very much
looking forward to more toolkits like this for building applications
and games being available.

[image: Native execution of the egui Demo App]
Figure 10-4. Native execution of the egui Demo App

The code (src/main.rs) that executes when you run the demo above is
shown in Example 10-14 (I have removed some configuration code
to suppress warnings). Notice the main() method is only used when
compiling natively.

Example 10-14. Main program for the egui Demo App

// When compiling natively:
fn main() {
 let app = egui_demo_lib::WrapApp::default();
 let options = eframe::NativeOptions {
 // Let's show off that we support transparent windows
 transparent: true,
 ..Default::default()
 };
 eframe::run_native(Box::new(app), options);
}

For native execution, the egui library has a pluggable backend that
renders the components using the egui_glium library. This in turn
presently9 uses a Rust wrapper
around OpenGL calls called Glium. The egui_glium library is part
of the egui GitHub repo.

The file src/lib.rs shows another part of the story in
Example 10-15 (I have also removed some configuration code to
suppress warnings here too).

Example 10-15. The WebAssembly entrypoint for the egui Demo App

#[cfg(target_arch = "wasm32")]
use eframe::wasm_bindgen::{self, prelude::*};

/// This is the entry-point for all the web-assembly.
/// This is called once from the HTML.
/// It loads the app, installs some callbacks, then returns.
/// You can add more callbacks like this if you want to call in to your code.
#[cfg(target_arch = "wasm32")]
#[wasm_bindgen]
pub fn start(canvas_id: &str) -> Result<(), wasm_bindgen::JsValue> {
 let app = egui_demo_lib::WrapApp::default();
 eframe::start_web(canvas_id, Box::new(app))
}

Notice the use of the wasm_bindgen annotation. The eframe library
is also used as an abstraction to hide the details of running natively
or in the browser. Compare the function used in Example 10-14
and the one used in Example 10-15.

For running the demo app in the Web context, egui uses a library
called egui_web. This relies on WebGL for rendering the components in
an HTML 5 canvas via WebAssembly.

If you look in the target/release directory, you will see that the
application is approximately 5.6 megabytes.

brian@tweezer ~/g/egui> ls -lah target/release
total 11736
drwxr-xr-x 13 brian staff 416B Sep 29 15:56 .
drwxr-xr-x@ 5 brian staff 160B Aug 16 11:54 ..
drwxr-xr-x 57 brian staff 1.8K Sep 29 15:55 build
drwxr-xr-x 394 brian staff 12K Sep 29 15:56 deps
-rwxr-xr-x 2 brian staff 5.6M Sep 29 15:56 egui_demo_app
-rw-r--r-- 1 brian staff 8.5K Sep 29 15:56 egui_demo_app.d
drwxr-xr-x 2 brian staff 64B Aug 16 11:53 examples
drwxr-xr-x 2 brian staff 64B Aug 16 11:53 incremental
-rw-r--r-- 1 brian staff 8.5K Sep 29 15:56 libegui_demo_app.d
-rwxr-xr-x 2 brian staff 49K Sep 29 15:56 libegui_demo_app.dylib
-rw-r--r-- 2 brian staff 2.0K Sep 29 15:56 libegui_demo_app.rlib

If you look in the docs directory, you will see that a WebAssembly
version of the application has also been built and is only 3.5
megabytes.

brian@tweezer ~/g/egui> ls -lah docs
total 7288
drwxr-xr-x 6 brian staff 192B Sep 29 15:51 .
drwxr-xr-x 28 brian staff 896B Sep 29 15:51 ..
-rw-r--r-- 1 brian staff 60K Sep 29 15:51 egui_demo_app.js
-rw-r--r-- 1 brian staff 3.5M Sep 29 15:51 egui_demo_app_bg.wasm
-rw-r--r-- 1 brian staff 222B Aug 16 11:51 example.html
-rw-r--r-- 1 brian staff 2.9K Aug 16 11:51 index.html

There is also an index.html file and some JavaScript to bootstrap
the whole process. I have left most of the HTML out but
Example 10-16 highlights the important parts. The demo app is
given the id of the <canvas> element to render itself into.

Example 10-16. The HTML scaffolding for the egui Demo App

 <!-- this is the JS generated by the `wasm-bindgen` CLI tool -->
 <script src="egui_demo_app.js"></script>

 <script>
 // We'll defer our execution until the wasm is ready to go.
 // Here we tell bindgen the path to the wasm file so it can start
 // initialization and return to us a promise when it's done.
 wasm_bindgen("./egui_demo_app_bg.wasm")
 .then(on_wasm_loaded)
 .catch(console.error);

 function on_wasm_loaded() {
 // This call installs a bunch of callbacks and then returns.
 console.log("loaded wasm, starting egui app");
 wasm_bindgen.start("the_canvas_id");
 }
 </script>

If you start up an HTTP server in the docs directory and point your
browser to the port you choose, you can see the result in
Figure 10-5.

brian@tweezer ~/g/e/docs> python -m http.server 10003
Serving HTTP on :: port 10003 (http://[::]:10003/) ...

[image: Browser execution of the egui Demo App]
Figure 10-5. Browser execution of the egui Demo App

If you are interested in how this all works, I encourage you to dig
into the various libraries I have mentioned. There are helpful
pointers and documents all over the place including tips on creating
your own custom widgets.

The demo app is quite sophisticated and overwhelming as a means of
getting started, but to show you a bit about what the code looks like,
please see Example 10-17 taken from the GitHub documentation.

Example 10-17. Code snippet for building a simple application

ui.heading("My egui Application");
ui.horizontal(|ui| {
 ui.label("Your name: ");
 ui.text_edit_singleline(&mut name);
});
ui.add(egui::Slider::new(&mut age, 0..=120).text("age"));
if ui.button("Click each year").clicked() {
 age += 1;
}
ui.label(format!("Hello '{}', age {}", name, age));

The results of this code sample are shown in Figure 10-6.

[image: Rendered form of the sample code]
Figure 10-6. Rendered form of the sample code

If you are interested in building your own application using egui that
will work either natively or in the browser, Emil has provided a
working project template at
https://github.com/emilk/egui_template. Just fork the repo (or use the
GitHub template to create your own repo) and follow the instructions
to get up and running.

I hope you have fun playing around with this cool library and its
related infrastructure. My larger point is that it represents the
intentional design of software to target both native and
browser-based application delivery. I expect to see much more of this
approach before long.

The wasm-bindgen Guide book
has many more exciting examples of things you can do to directly
interact with browser functionality from Rust including rendering to a
<canvas> element, doing WebGL and manipulating the DOM directly. There
are also examples for
calling
JavaScript code from Rust from TypeScript in Deno. We are going to
look at how wasm-bindgen can be used to support threads in Rust in
Chapter 12.

As you can see, Rust is a modern and exciting programming language in
its own right. The fact that it can natively generate WebAssembly code
is pretty cool too, but without the support of a wasm-bindgen, it
remains fairly tricky to build up anything significant. With this
somewhat magical tool, however, Rust can drive the behavior of a
browser in surprising and unexpected ways.

But now we must take a huge leap forward into a more general strategy
of making WebAssembly applications more portable.

1 Ken Thompson was the creator the B programming language which was a direct predecessor to C. He also invented and implemented much of the Unix operating system. Rob Pike is an author and programmer involved in the development of Unix and subsequent projects that influenced Go such as Plan 9.
2 There are lots of places to read about Rust’s popularity, but this is kind of a cool one: https://www.nature.com/articles/d41586-020-03382-2
3 For the curious among you, you can find out more about macros in Rust here: https://doc.rust-lang.org/book/ch19-06-macros.html
4 Type inference is a quality of a program that allows a compiler or runtime to deduce the type of a value without being told what it is: https://en.wikipedia.org/wiki/Type_inference
5 This will quickly become something you learn to love about the Rust compiler and the community that values developer experience so much.
6 Kent Beck popularized the evocative phrase “code smell” to suggest that you can sense a problem in code before you know it is there because of hints you pick up on. When food goes bad, you often smell it before you realize it. Same with code. https://en.wikipedia.org/wiki/Code_smell
7 The GitHub repo for egui is here: https://github.com/emilk/egui
8 The GitHub repo explains why he is interested in an immediate mode approach.
9 The Glium library is not currently being maintained so Emil is planning to replace it at some point.

Chapter 11. WebAssembly Services Interface (WASI)

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 11th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

I’m not in this world to live up to your expectations and you’re not in this world to live up to mine.

Bruce Lee

There are some things that are unnecessarily difficult in WebAssembly
as a consequence of the security and safety goals that are easier on
other platforms. Reading from the filesystem, writing to the console,
and manipulating strings in memory are all simple activities in a
language like C, C++ or Rust. It is expected that an operating system
will allow a user with sufficient priviliges to do these things. There
are not explicit, contextual boundaries.

Unfortunately, that is also the problem behind most modern cyber
threats such as phishing attacks, privilege escalation, supply chain
attacks and more. If an attacker is able to convince a privileged user
to run untrustworthy code, he can often steal access to other
resources not otherwise due him. Sandboxed environments exist to
prevent this, but they are often slow, cumbersome and burdensome to
developers. WebAssembly wants to solve this problem, and it does in
many ways. Fundamentally, however, WebAssembly modules do not have
access to anything that is not provided by their hosting
environments.

The MVP and the tools that we have seen so far have largely been about
making code portable. We are now going to learn how to make
applications portable. The solution, as it turns out, is fundamentally
about whether expectations can be met or not. This is not just a
question of languages, but also of application programming interface
(API) availability, runtime environment configurations, security
restrictions and more. As a consequence, just like Bruce Lee’s
quotation, our host environments are not always here to meet the
expectations of the code we are running. We can still be in control.

WebAssembly System Interface (WASI)

The cool demos and code samples you have seen so far, particularly the
ones involving graphics, sound, video and the like, are largely
possible because they run in the browser. This is a piece of software
designed to be a universal client, a host to other code. It is
possible to extend the Web by sending arbitrary programs down to the
client for execution. It has built-in security restrictions, but it is
actually quite a featureful programming environment these days filled
with APIs such as WebGL for 3D graphics, accelerated video, WebRTC for
collaboration and more. Emscripten provides implementations of
standard APIs such as POSIX and OpenGL via what is available to the
browser runtime environment so that standard C/C++ applications can
simply compile and still work.

We have seen a mechanism for providing functions to module instances to
invoke via objects they import. Remember, for example, passing in a
JavaScript function that prints to the console rather than relying on
the Standard C Library to provide access to printf(). This is a
fundamentally unsatisfactory approach though. Every WebAssembly module
that needs to print to the console should just have a function to
call, preferably the one it was already written against whenever it
needs it. This is about meeting expectations safely and performantly.

Because of security concerns, however, the other part of the Bruce Lee
quotation is relevant. Just because a program wants to read or write
to the filesystem does not mean it gets to. Our business-critical
desktop computers are not in this world to meet the expectations of
malicious software. We want to control the context in which
applications get access to resources, if at all.

Another issue with respect to expectations is that runtime
environments outside of the browser are a significant part of
WebAssembly’s potential execution surface. Many of these APIs are not
available in the same way in environments like Node.js or Deno. There
are not compatible Web IDL1-defined interfaces exposing
access to audio and video playback, 3D graphics and the rest. There
are certainly other similar APIs available, but they are not directly
compatible with what is inside of browsers and applications would have
to be rewritten to use them.

Normally POSIX functions will be consistently-defined across different
operating systems and will map to lower-level kernel functions or
platform-specific APIs such as Win322. These are such crucial
bits of reusable functionality that we want them to be fast and stable
implementations. Arbitrary JavaScript wrapper functions provided by
application developers are not likely to be fast or stable
enough. Many of these extra-browser APIs do not have the same security
guarantees of sandboxed-browser environments so they are not directly
available there either.

These are among the myriad of problems WebAssembly System Interface
(WASI) is attempting to solve. It is a tall order and the effort is
expanding and getting rather complicated at this point in time, but
the fundamentals are fairly straightforward so we will start there.

Ultimately, we want an ecosystem of functionality that programs
permitted to access it can expect to be available. We want the
functionality to work across language boundaries which means we need
ways to refer to high level structures such as strings, lists and
arrays. We want protected but fast implementations. We want some
manner of type safety and not have to rely on too much feature testing
in the code we write. We also want language features such as garbage
collection and exception handling to be available from languages that
support them without putting burdens on languages that do not. In
order to meet these requirements, the WebAssembly platform needed to
be extended. In Chapter 12 I will introduce some of
these major extensions but for now I want to stay reasonably high
level.

Let’s revisit the Rust version our famous example from
Chapter 10 shown in Example 11-1 one more time. We have
established that the issue is that the println! macro is not
available in a browser. Nor is the printf() function in the C
version. We have seen various ways of getting around this, but these
solutions have remained vexing.

Example 11-1. Rust “Hello, World!”

fn main() {
 println!("Hello, World!");
}

For reasons that will become clear momentarily, I am going to recreate
the sample scaffolding of this basic Rust program and run it. The
cargo new command will establish the directory structure of a
project and fill in a simple application that is effectively the above
example.

brian@tweezer ~/g/w/s/ch11> cargo new --bin hello-world
 Created binary (application) `hello-world` package
brian@tweezer ~/g/w/s/ch11> cd hello-world/
brian@tweezer ~/g/w/s/c/hello-world> cargo build --release
 Finished release [optimized] target(s) in 0.03s
brian@tweezer ~/g/w/s/c/hello-world> cargo run --release
 Finished release [optimized] target(s) in 0.01s
 Running `target/release/hello-world`
Hello, world!

The cargo build tool created project scaffolding for us by placing
a friendly program in src/main.rs. We built an optimized, release version
of this application and then ran the associated native
executable. Remember, Rust is LLVM-based so the default backend will
be for whatever operating system you have installed the toolchain on.

We saw in Chapter 10 that we can use the WebAssembly
backend to generate modules from Rust, but with all of the limitations
involving strings, memory-management, interacting with the operating
system, etc. it does not work.

brian@tweezer ~/g/w/s/c/hello-world> cargo build ↵
 --target wasm32-unknown-unknown --release
 Compiling hello-world v0.1.0 (/Users/brian/git-personal/webassembly-the-definitive-guide/src/ch11/hello-world)
 Finished release [optimized] target(s) in 0.89s
brian@tweezer ~/g/w/s/c/hello-world> ls -laF target/wasm32-unknown-unknown/release/
total 3008
drwxr-xr-x 10 brian staff 320 Jun 27 16:02 ./
drwxr-xr-x@ 5 brian staff 160 Jun 27 16:02 ../
drwxr-xr-x 2 brian staff 64 Jun 27 16:02 build/
drwxr-xr-x 4 brian staff 128 Jun 27 16:02 deps/
drwxr-xr-x 2 brian staff 64 Jun 27 16:02 examples/
-rw-r--r-- 1 brian staff 228 Jun 27 16:02 hello-world.d
-rwxr-xr-x 2 brian staff 1534049 Jun 27 16:02 hello-world.wasm*
drwxr-xr-x 2 brian staff 64 Jun 27 16:02 incremental/
brian@tweezer ~/g/w/s/c/hello-world > wasm3 target/wasm32-unknown-unknown/release/hello-world.wasm
Error: [Fatal] repl_call: function lookup failed
Error: function lookup failed ('_start')

A fundamental problem is that the basic module structure does not
define the same type of Application Binary Interface
(ABI)3 that an
executable program does. It does not have the expected intialization
function name. Developers think that main() is the starting point,
but that is generally what is called by the very minimal C runtime
environment from a method called "start".

Another issue is that there is no direct way to write to the console
or read and write files from a WebAssembly module. This would seem to
be a pretty big obstacle for WebAssembly, but I encourage you not to
give up hope just yet! What happens if we use a different backend?
Rather than wasm32-unknown-unknown we will use wasm32-wasi.

brian@tweezer ~/g/w/s/c/hello-world> cargo build --target wasm32-wasi --release
 Compiling hello-world v0.1.0 (/Users/brian/git-personal/webassembly-the-definitive-guide/src/ch11/hello-world)
 Finished release [optimized] target(s) in 0.74s
brian@tweezer ~/g/w/s/c/hello-world> wasm3 target/wasm32-wasi/release/hello-world.wasm
Hello, world!

Huh. Will you look at that?

Let’s investigate the module.

brian@tweezer ~/g/w/s/c/hello-world > wasm-objdump -x target/wasm32-wasi/release/hello-world.wasm
hello-world.wasm: file format wasm 0x1

Section Details:

Type[18]:
 - type[0] () -> nil
 - type[1] (i32) -> nil
 - type[2] (i32) -> i64
 - type[3] (i32, i32) -> nil
 - type[4] (i32, i32) -> i32
 - type[5] (i32, i32) -> i64
 - type[6] (i32) -> i32
 - type[7] (i32, i32, i32) -> i32
 - type[8] (i32, i32, i32, i32) -> i32
 - type[9] () -> i32

...
Import[4]:
 - func[0] sig=8 <_ZN4wasi13lib_generated22wasi_snapshot_preview18fd_write> <- wasi_snapshot_preview1.fd_write
 - func[1] sig=1 <__wasi_proc_exit> <- wasi_snapshot_preview1.proc_exit
 - func[2] sig=4 <__wasi_environ_sizes_get> <- wasi_snapshot_preview1.environ_sizes_get
 - func[3] sig=4 <__wasi_environ_get> <- wasi_snapshot_preview1.environ_get
...

Export[5]:
 - memory[0] -> "memory"
 - global[1] -> "__heap_base"
 - global[2] -> "__data_end"
 - func[247] <_start.command_export> -> "_start"
 - func[248] <main.command_export> -> "main"

...

It is a WebAssembly module, but it also exports a known starting point
so a WASI-aware environment such as wasm3 knows how to initialize it
and begin execution. There is much more to WASI than this bootstrap
process though. It also provides a convenient way for a module to
import functionality that it needs to execute. This is essentially
what the Rust wasm32-wasi backend is doing for us. It is emitting
calls to a standard library implementation that will be provided by
the host environment that our code will run in. Again, wasm3 is at
least a rudimentary WASI environment so it provides those
capabilities. It preceded WASI as an outside-the-browser
WebAssembly engine, but it is actively supporting the evolving
standards and newer proposals which we will discuss in the next chapter.

If you follow the installation steps from Appendix A, you
can install two more WASI environments, Wasmtime4 and Wasmer
5. Both are open source and
independent initiatives.

brian@tweezer ~/g/w/s/c/hello-world> wasmtime target/wasm32-wasi/release/hello-world.wasm
Hello, world!
brian@tweezer ~/g/w/s/c/hello-world> wasmer target/wasm32-wasi/release/hello-world.wasm
Hello, world!

Finally, there is an extension to cargo itself that uses Wasmtime, but
helps make building, running and testing Rust-based WASI applications
even easier.

brian@tweezer ~/g/w/s/ch11 > cargo install cargo-wasi
 Updating crates.io index
 ...
brian@tweezer ~/g/w/s/c/hello-world> cargo wasi run
 Finished dev [unoptimized + debuginfo] target(s) in 0.03s
 Running `/Users/brian/.cargo/bin/cargo-wasi target/wasm32-wasi/debug/hello-world.wasm`
 Running `target/wasm32-wasi/debug/hello-world.wasm`
Hello, world!

The actual details of how this all works is more complicated than I
want to get into at the moment, but to give you a bit of a peek behind
the curtain, Example 11-2 is an example from the Wasmtime WASI
tutorial6.
It is working at a lower level than perhaps you have done before, but
it is fairly typical systems programming.

Example 11-2. Invoking Standard Library Behavior from Wat

;; Taken from the Wasmtime WASI Tutorial
(module
 ;; Import the required fd_write WASI function which will write the given io
 ;; vectors to stdout. The function signature for fd_write is:
 ;; (File Descriptor, *iovs, iovs_len, nwritten) -> Returns # of bytes written
 (import "wasi_unstable" "fd_write"
 (func $fd_write (param i32 i32 i32 i32) (result i32)))

 (memory 1)
 (export "memory" (memory 0))

 ;; Write 'hello world\n' to memory at an offset of 8 bytes
 ;; Note the trailing newline which is required for the text to appear
 (data (i32.const 8) "hello world\n")

 (func $main (export "_start")
 ;; Creating a new io vector within linear memory
 ;; iov.iov_base - This is a pointer to the start of the
 ;; 'hello world\n' string
 (i32.store (i32.const 0) (i32.const 8))
 ;; iov.iov_len - The length of the 'hello world\n' string
 (i32.store (i32.const 4) (i32.const 12))

 (call $fd_write
 (i32.const 1) ;; file_descriptor - 1 for stdout
 (i32.const 0) ;; *iovs - The pointer to the iov array at memory loc 0
 (i32.const 1) ;; iovs_len - We're printing 1 string
 (i32.const 20) ;; nwritten - Mem loc to store the # of bytes written
)
 drop ;; Discard the number of bytes written from the top of the stack
)
)

The Unix pipes and filters approach to tool composition allows you to
redirect the output of one program to the input of another
one7. Examples include using
the less command to pause scrolling terminal messages or the grep
command to find elements in the process table that match a certain
pattern.

Files are the common abstraction in Unix for both real files on disk
as well as virtual files such as the input or output to a program. The
ability to print to the console is managed by writing to a particular
file descriptor. In this environment, file descriptor 0 in a program
represents the standard input, what was passed into the program. File
descriptor 1 represents the standard output, what the program logs out
under normal circumstances. File descriptor 2 is standard error which
is usually used for error messages.

It has been a few chapters since we messed around with Wat and this is
slightly more complicated than what we have seen so far, but I think
you should be able to sort through it with some guidance.

The first thing we do is to import a function called fd_write from
the wasi_unstable namespace. This is where a WASI environment will
meet our expectations if it wants to. If we are not provided with this
behavior, we will not be able to execute.

The fd_write function takes four parameters that indicate which file
descriptor to use, where we have stored a string to write in memory,
how long it is and where to write the number of bytes written. As
specified, this will be after our strings in memory.

We next define our module’s Memory instance and export it. The
function we just imported is going to want to interrogate this based
on the parameters we send it. We use a data element to write the
string “hello world” into our memory at byte 8. Finally we export a
method which ultimately calls all of this.

We write the numeric location of the base pointer to the string into
the first four bytes and its length into the subsequent four
bytes. The string itself will exist after these numbers. Finally we
call our imported fd_write function.

You will notice we do not even need to compile our Wat file back into
a binary module. Our friendly little WASI environments can do that for
us.

brian@tweezer ~/g/w/s/ch11> wasmtime hello.wat
hello world
brian@tweezer ~/g/w/s/ch11> wasmer hello.wat
hello world

Quite obviously you are not going to want to write programs in Wat
like this. I included this just to give you sense of what is happening
behind the scenes. You will write your programs in languages such as
Rust or C and compile them with a WASI-aware toolchain. Speaking of C,
we will now revisit our trusty “Hello, World!” program one final time
in Example 11-3.

Example 11-3. C “Hello, World!” hopefully for the final time!

#include <stdio.h>

int main() {
 printf("Hello, World!\n");
 return 0;
}

We need to compile this to a WASI-friendly form. There are several
ways to do that, but one of the easiest ones is to use the Wasienv
toolchain from our friends at Wasmer8. C compilation requires headers
and libraries, but in this case, we also need a version of the
standard library functionality that is WASI-aware9. Just as Emscripten has
replacements for cc, c++, make and configure, Wasienv does
too. I have removed some compile warnings of no consequence, but
otherwise you should start to get the picture of how powerful this all
is.

brian@tweezer ~/g/w/s/ch11> wasicc -o hello hello.c
brian@tweezer ~/g/w/s/ch11> wasm3 hello.wasm
Hello, World!
brian@tweezer ~/g/w/s/ch11> wasmer hello.wasm
Hello, World!
brian@tweezer ~/g/w/s/ch11> wasmtime hello.wasm
Hello, World!
brian@tweezer ~/g/w/s/ch11> ./hello
Hello, World!

We have now used the same runtimes to run code compiled unmodified in
both Rust and C. The same WASI-form of the WebAssembly module will run
on Linux or Windows too. As long as our expectations are being met by
our WASI-enabled host, we should run anywhere WebAssembly does. Note
that Wasienv even went so far as to generate a standalone native
application for us! You will learn more about what that entails
in the next chapter.

As it turns out, Node.js and Deno both support WASI as well. There is
even a JavaScript-polyfill that will allow your WASI-enabled
application to run in the browser! See Figure 11-1 for an
example of the WASI polyfill in action. This is available at
https://wasi.dev/polyfill/.

[image: Running a WASI application in a polyfill in a browser]
Figure 11-1. Running a WASI application in a polyfill in a browser

WebAssembly makes your code portable. WASI endeavors to make your
application portable by satisfying its expectations when you want it
to.

Capabilities-based Security

There is another aspect to WASI that is crucial to the future of
WebAssembly in this ubiquitous computational landscape. We want to be
able to provide functionality to the applications we want to provide
them to, but not to malicious software. As we often cannot tell which
is which, we will probably have limited sandbox environments as the
default.

From its inception, WASI has been envisioned as a means of enforcing
capabilities-based10 security
restrictions on the behavior it affords to hosted modules.

The short version of what this means is that, just as WebAssembly does
not give arbitrary code direct access to memory, WASI does not give it
direct access to sensitive resources such as file handles, network
sockets or subprocess details. Instead the resources will be exposed
through unforgeable, opaque handles that provide the capability to the
code. As this will require passing language-specific or perhaps
OS-level structures to and from WebAssembly modules, we will need a
way to make external references.

How and why this works is a complex, moving target at the time this
book is being written. I have struggled with how many of the details
to focus on and have settled on the position that much of it will be a
distraction at the moment. In part this is because the proposals are
being worked on. It is because it is super complicated in some
ways even as it bubbles up as an increasingly elegant design. In
Chapter 12 I will expose you to some more of the details
but for now, let’s focus on seeing the results.

In Example 11-4 we have a simple program written in Rust that
writes a string out to a file and then reads it back in. From a
programming perspective, it is quite simple. The big deal, of course,
is access to the file system. If you are not yet a Rust guru, do not
sweat the details, the flow of the program should still hopefully make
sense.

Example 11-4. Rust program that uses the filesystem

use std::fs;
use std::io::{Read, Write};

fn main() {
 let greeting = "Hello, world!";
 let outfile = "hello.txt";
 let mut output_file = fs::File::create(outfile)
 .expect(&format!("error creating {}", outfile));

 output_file.write_all(greeting.as_bytes())
 .expect(&format!("Error writing: {}", outfile));

 let mut input_file = fs::File::open(outfile)
 .expect(&format!("error opening {}", outfile));

 let mut input = String::new();
 input_file.read_to_string(&mut input)
 .expect(&format!("Error reading: {} ", outfile));

 println!("Read in from file: {}", input);
}

I have this code in another cargo-driven project, so generating a
native executable is a piece of cake.

brian@tweezer ~/g/w/s/c/hello-fs> cargo build --release
 Finished release [optimized] target(s) in 0.01s
brian@tweezer ~/g/w/s/c/hello-fs> cargo run --release
 Finished release [optimized] target(s) in 0.01s
 Running `target/release/hello-fs`
Read in from file: Hello, world!
brian@tweezer ~/g/w/s/c/hello-fs> ls -alF
total 32
drwxr-xr-x 10 brian staff 320 Jun 27 13:18 ./
drwxr-xr-x 10 brian staff 320 Jun 27 18:42 ../
-rw-r--r-- 1 brian staff 177 Jun 27 12:18 Cargo.toml
-rw-r--r-- 1 brian staff 13 Jun 27 18:47 hello.txt
drwxr-xr-x 3 brian staff 96 Jun 27 13:18 src/
drwxr-xr-x@ 7 brian staff 224 Jun 27 18:42 target/
brian@tweezer ~/g/w/s/c/hello-fs> cat hello.txt
Hello, world!

As you see, we can build and run the program. The file is created and
read back into a string that we print out to the console. This is
possible because, as the main user and administrator of this machine,
I have permission to do these things.

What if I downloaded a random program from the Internet and ran it
though? That’s probably not a good idea. The permissions I am afforded
are conferred to the random code through a scenario we call the
Confused Deputy Problem11. If it is a
malicious application, it could delete files, steal my Bitcoin private
keys12 or encrypt my hard drive to extract a
ransom.

However, let’s recompile the application targeting WASI and try to run it in Wasmtime.

brian@tweezer ~/g/w/s/c/hello-fs> cargo build --target wasm32-wasi --release
 Finished release [optimized] target(s) in 0.01s
brian@tweezer ~/g/w/s/c/hello-fs> wasmtime target/wasm32-wasi/release/hello-fs.wasm
thread 'main' panicked at 'error creating hello.txt: Custom { kind: Other, error: "failed to find a
pre-opened file descriptor through which \"hello.txt\" could be opened" }', src/main.rs:8:10
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Error: failed to run main module `target/wasm32-wasi/release/hello-fs.wasm`

Caused by:
 0: failed to invoke command default
 1: wasm trap: unreachable
 wasm backtrace:
 0: 0x838a - <unknown>!__rust_start_panic
 1: 0x7fd5 - <unknown>!rust_panic
 2: 0x7c42 - <unknown>!std::panicking::rust_panic_with_hook::h914d916f8f3c1673
 3: 0x7190 - <unknown>!std::panicking::begin_panic_handler::{{closure}}::h15c8896377a9b562
 4: 0x70d1 - <unknown>!std::sys_common::backtrace::__rust_end_short_backtrace::h8e2b0a38bc469b94
 5: 0x7790 - <unknown>!rust_begin_unwind
 6: 0xdc62 - <unknown>!core::panicking::panic_fmt::h79dd662186e4ad97
 7: 0xebb2 - <unknown>!core::result::unwrap_failed::hc8762c9cd74198d4
 8: 0xce3 - <unknown>!hello_fs::main::h13132a06338f22dc
 9: 0x73d - <unknown>!std::sys_common::backtrace::__rust_begin_short_backtrace::h3c3458f2edddefd1
 10: 0xe02 - <unknown>!std::rt::lang_start::{{closure}}::h4a57af2dc5415a53
 11: 0x8139 - <unknown>!std::rt::lang_start_internal::hb132ad43e5d53599
 12: 0xdc9 - <unknown>!__original_main
 13: 0x44d - <unknown>!_start
 14: 0x11bff - <unknown>!_start.command_export
 note: run with `WASMTIME_BACKTRACE_DETAILS=1` environment variable to display more information

Well, that didn’t work. There is quite a lot of noise, but the salient
point is that we do not have the capability to do what we are trying
to do because the WASI host has not given it to us in the form of an
unforgeable handle (called a “pre-opened file descriptor” in the error
message above).

Relaunching the executable but invoking the command line argument that
allows for directory access solves the problem.

brian@tweezer ~/g/w/s/c/hello-fs> wasmtime --dir=. target/wasm32-wasi/release/hello-fs.wasm
Read in from file: Hello, world!

Wasmer frames the message slightly differently, but it is the same issue.

brian@tweezer ~/g/w/s/c/hello-fs> wasmer target/wasm32-wasi/release/hello-fs.wasm
thread 'main' panicked at 'error creating hello.txt: Os
 { code: 2, kind: PermissionDenied, message: "Permission denied" }', src/main.rs:8:10
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
error: failed to run `target/wasm32-wasi/release/hello-fs.wasm`
│ 1: WASI execution failed
│ 2: failed to run WASI `_start` function
│ 3: RuntimeError: unreachable
 at __rust_start_panic (hello-fs.wasm[171]:0x838a)
 at rust_panic (hello-fs.wasm[163]:0x7fd5)
 at std::panicking::rust_panic_with_hook::h914d916f8f3c1673 (hello-fs.wasm[156]:0x7c42)
 at std::panicking::begin_panic_handler::{{closure}}::h15c8896377a9b562 (hello-fs.wasm[145]:0x7190)
 at std::sys_common::backtrace::__rust_end_short_backtrace::h8e2b0a38bc469b94 (hello-fs.wasm[144]:0x70d1)
 at rust_begin_unwind (hello-fs.wasm[155]:0x7790)
 at core::panicking::panic_fmt::h79dd662186e4ad97 (hello-fs.wasm[239]:0xdc62)
 at core::result::unwrap_failed::hc8762c9cd74198d4 (hello-fs.wasm[262]:0xebb2)
 at hello_fs::main::h13132a06338f22dc (hello-fs.wasm[17]:0xce3)
 at std::sys_common::backtrace::__rust_begin_short_backtrace::h3c3458f2edddefd1 (hello-fs.wasm[12]:0x73d)
 at std::rt::lang_start::{{closure}}::h4a57af2dc5415a53 (hello-fs.wasm[20]:0xe02)
 at std::rt::lang_start_internal::hb132ad43e5d53599 (hello-fs.wasm[164]:0x8139)
 at __original_main (hello-fs.wasm[18]:0xdc9)
 at _start (hello-fs.wasm[10]:0x44d)
 at _start.command_export (hello-fs.wasm[310]:0x11bff)
╰─> 4: unreachable

And the solution is the same.

brian@tweezer ~/g/w/s/c/hello-fs> wasmer --dir=. target/wasm32-wasi/release/hello-fs.wasm
Read in from file: Hello, world!

Adding a command line option to the executable instance does not seem
like the most robust security mechanism but that misses the larger
point. You may certainly use Wasmer or Wasmtime to launch your
applications, but it is not required. In the next chapter you will
learn how to write WASI-enabled code of your own in which case you
could use whatever mechanism you would like to enable or disable
behavior.

With that, let’s regroup and take a broader view on WASI to wrap up this chapter.

The Bigger Picture

The full vision of WebAssembly is way more expansive than most people
have realized. There is a decent awareness about the capabilities of
the MVP out there, but for most people that is where it ends. The idea
of being able to use languages other than JavaScript to deploy code to
the browser is kind of cool but not a strict necessity given the
advancements in the language and the JavaScript runtime engines.

To me the more important part of the vision is that we will be able to
write code in whatever language we want and use it in just about any
environment we want. This allows us to leverage existing software in
new environments without having to rewrite it. This allows us to pick
a language that is appropriate to a problem and not require a new
runtime. If an organization had the Java Virtual Machine (JVM)
deployed in production, the move to Ruby on Rails or a Python-based
solution would probably require the installation of their respective
environments13.

It is in no way an all-or-nothing prospect. Sometimes we will want to
run code natively for performance reasons, sometimes we will want the
benefit of the zero-installation aspects of the Web. Sometimes we will
want to run in a sandbox, sometimes we will not. Consider all the
variables that would go into bringing this vision into existence and
it would be nearly impossible to design from the ground up.

But what you have hopefully started to see in this chapter is how this
vision is coming into reality because of the deliberate choices that
the WebAssembly designers have been making. They have tried to walk a
line to avoid over- or under-engineering things. The MVP left out
language features that not every language supported like threads,
garbage collection and exceptions. There are technical proposals and
working examples of all of these things, but it would have been too
much upfront.

Clearly there are limitations in the platform as it is. A steady
stream of proposals are being published to extend the capabilities of
the platform where and when it makes sense to do so. WASI has emerged
as a focal point in allowing these proposals to emerge independently
and to be adopted by platforms such as Wasmtime, Wasmer and Wasm3
incrementally. Admittedly, this makes it very confusing to track what
has been added where, but through procedural mechanisms they are
starting to sort that out as well.

In order to facilitate a significant amount of the desired behavior,
the WASI designers realized that there was a need to standardize how
modules linked to each other. We needed a solution that allows us to
refer to the unforgeable handles in memory without revealing the
underlying structures. We also needed a way to refer to types such as
strings, lists, and records. There became a dependency to the
proposals design and implementation that would unlock some of this
additional behavior. Some of these proposals will be introduced in the
next chapter, but Wasmtime, Wasmer and wasm3 have started implementing
several of these fundamental proposals already.

This process will continue and new WASI modules will be
designed. While the initial behavior focused on files and console
access, there are alread proposals for a range of features including
cryptographic functions, cryptocurrency contracts, 2D and 3D graphics,
networking and neural network systems. There will not be a single WASI
namespace, but as many as there is value in having. Not every
application will need every module. Not every environment will provide
full implementations of these modules. They can be
contextually-restricted, virtualized or shared across multiple modules
with the same dependencies. To this end, WASI may never be “done”.

In Figure 11-2 you can see the basic contours of what all
of this means and approximately how we get there. In
Chapter 12 and subsequent chapters I will elaborate on some
of these points, but for now I think the vision is a suitable goal.

[image: The WASI layered vision]
Figure 11-2. The WASI layered vision

At the top of the software layering, we have our applications. This is
obviously the majority of what we write including standalone
executables, Web applications, frameworks, libraries, microservices,
serverless functions and more. This is going to represent the lion’s
share of the business value we create. When we make poor technology
choices, that business value gets locked up into silos and become
legacy systems sooner than they need to. It is hard to extract
functionality so our only real choice often is to reimplement which is
generally the opposite of adding business value. Even if we make good
technology choices, however, our industry does not sit idle and reuse
has a generally finite scope.

In this vision, however, we can imagine the emergence of a generalized
framework for expressing expectations about the environments our
software runs in. We have started to see how we get language
independence from WebAssembly by writing to an intermediate, portable
representation. That leaves us with often unmet expectations in the
environments we hope to expand to fill. Now we are starting to see how
the host environments can be modular, virtualizable, swappable and
more to provide functionality that meets our interface
expectations. Code running in a browser but expecting filesystem
access can be given an abstraction that meets the needs but uses local
storage or something else. You can even imagine a scenario where the
“filesystem” abstraction is a userland filesystem such as
Fuse14 backed by a
cloud storage provider transparently.

The point is that our code does not have to be rewritten necessarily
to float between these environments whether they are fully-privileged
native applications, virtualized, hosted, in-browser or
embedded. Leveraging modular compiler architectures such as LLVM
gives us the ability to add a backend that will express our
expectations in a flexible manner. We can implement code sharing and
dynamic linking strategies as makes sense.

The flip side is that we have a snowballing security hellscape
unfolding around us with malicious software, phishing attacks and
ransomware. If we have the ability to run code from anywhere in any
language in sandboxed environments, this could go a long way to
strengthening our default security postures.

The vision of a safe, portable and fast computational ecosystem is so
powerful that the Bytecode Alliance was
formed to carry it forward. The early members include Mozilla, Intel,
Microsoft, Fastly and more. They are striking a balance between safe,
protected environments and performance. Rather than big, heavyweight
communication processes between isolated modules, they are creating a
“nanoprocess” mechanism that is bringing the many varied requirements
into being. They are imagining a brighter future for our industry that
is able to develop high-performance, secure code meeting the needs of
modern systems and to capture business value for longer than we
currently can. That is an idea we can all get behind.

1 This is the interface definition language (IDL) used to express the behavior provided by browsers as part of the standards process: https://en.wikipedia.org/wiki/Web_IDL
2 Known more generally as WinAPI these days, this was one of Microsoft’s greatest strengths during the heyday of its operating system dominance: https://en.wikipedia.org/wiki/Windows_API
3 The application binary interface of an operating system defines how programs are linked and executed. For more information: https://en.wikipedia.org/wiki/Application_binary_interface
4 Wastime began as a Mozilla project but is now part of the Bytecode Alliance which we will discuss soon: https://wasmtime.dev
5 Wasmer is the name of the company and the WebAssembly hosting environment. https://wasmer.io
6 A tutorial on WASI from the Bytecode Alliance: https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-tutorial.md
7 This architectural style is one of the aspects of Unix that made it so powerful for publishers and productive for developers: https://en.wikipedia.org/wiki/Pipeline_(Unix)
8 More information about the Wasienv toolchain can be found here: https://github.com/wasienv/wasienv
9 I am presently trying to shield you from some of this complexity, but if you insist on knowing more, you can check out: https://github.com/WebAssembly/wasi-libc
10 It is outside of the scope of this book to provide you a meaningful discussion on the whole scope of Capabilities-based security, but for the curious: https://en.wikipedia.org/wiki/Capability-based_security
11 When permissions are intermingled, it gets hard to sort out who is allowed to do what: https://en.wikipedia.org/wiki/Confused_deputy_problem
12 And thus any Bitcoin I had, which, as I started paying attention in 2008, would have been substantial if I had actually, you know, mined and stuff. Sigh.
13 Yes, yes, I know about Jython and JRuby.
14 Fuse provides the basis of many virtual filesystems: https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Chapter 12. Extending the WebAssembly Platform

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 12th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

He picks up scraps of information

He’s adept at adaptation

‘Cause for strangers and arrangers

Constant change is here to stay

Rush, Digital Man

The Minimum Viable Product
(MVP) definition of WebAssembly put a stake in the ground but was
never intended as a comprehensive solution for all uses. It primarily
focused on language features that are ubiquitous and runtimes that do
not require the complexities of threading, garbage collection and
exception-handling. There were several other limitations that we have
seen throughout the book. While it is impressive that people have found
ways around these short-comings, the MVP was never the endstate. It
was the beginning.

The designers of the WebAssembly platform have taken a surgical
approach to its decisions. While it may be confusing from the outside,
there is an internal consistency that takes into consideration several
of the larger and longer-term goals. Many of the motivations for
these decisions are documented alongside the specifications
themselves. Rather than lumping shoe-horned solutions to the omissions
in the next big release, they have created a series of follow-on
proposals that are tracked independently. Several of these proposals
are inter-dependent so there is an order to which they have been
submitted and adopted.

Because the post-MVP world is evolving this way, it gets a little
tricky to keep track of which features are available in which
distribution. I fully expect there to be tools and libraries to assist
with this, but hopefully the burden on the developers will be
minimized. Some of these complexities are not super interesting or
useful so I do not want to spend a lot of time on them, but it is
somewhat illuminating to see how things like the Multi-Value and
Reference Type proposals will help enable the heavier-weight Interface
Types proposal.

For our purposes, we will consider them as a collection of follow-on
features that are not fully supported yet, but are representative of
where the WebAssembly platform is going beyond its modest beginnings. I
will not comprehensively cover the proposals as many are more esoteric
or have not developed fully yet. Just be aware that there are several
attempts to improve the experience of targeting WebAssembly to make
our code more widely-usable, safe, fast and portable.

WASI Runtimes

In Chapter 11 we introduced the main ideas behind WASI. It has
become one of the major vectors for adding new capabilities to the
platform. There is a process for introducing a proposed extension
which will then go through a series of phases on its way to adoption
and standardization1. As
we indicated in the last chapter, not every runtime will support every
proposal. Even if one supports a proposal under some circumstances, for
security reasons, it may not in others. We saw some basic command-line
usage with the Wasmer and Wasmtime engines, but the more interesting
reality is that you will be able to execute arbitrary functionality
from your own applications using WASI-based mechanisms.

This will allow you to securely build and deploy plugin mechanisms,
serverless functions, hot swap replacements, data filters, retail
promotions, Kubernetes nodes, blockchain engines and extension points
that can be written in arbitrary languages. The combination of freedom
of language, performance and sandboxed isolation has pushed many
projects and companies to already start doing this.

Edge computing companies such as Fastly and Cloudflare are allowing
customers to geographically distribute microservices and serverless
functions for low-latency access in multi-tenant environments. Istio
and and Envoy are allowing their users to create filters and support
new protocols with WebAssembly-based mechanisms. Second State’s
WasmEdge environment is, among other uses, targeting blockchains and
software defined vehicles. WasmCloud is providing a distributed system
infrastructure based upon the actor model. Even Microsoft’s Flight
Simulator2
is moving away from dynamic link library (DLL)-based plugins for
WebAssembly modules. We will discuss some of these other projects in
Chapter 15.

For now I will show you the basics of using WebAssembly and WASI
with some simple modules. Once you are comfortable with the concepts
and sequence of events, we will introduce some of the new proposals
that are supported by our WASI-based frameworks to see how the
platform is evolving to fill in some of the MVP omissions.

First, create a Rust binary project.

brian@tweezer ~/g/w/s/ch12> cargo new --bin hello-wasi
 Created binary (application) `hello-wasi` package
brian@tweezer ~/g/w/s/ch12> cd hello-wasi

We need to add a dependency on the wasmtime crate so we have access to
the runtime structures that allow us to instantiate modules and
execute code. Edit the Cargo.toml file in the hello-wasi directory
to look like Example 12-1. Keep in mind that by the time you
read this, the version numbers may be different, but it should still
work.

Example 12-1. Cargo.toml file

[package]
name = "hello-wasi"
version = "0.1.0"
edition = "2018"

[dependencies]
wasmtime = "0.28.0"

We are going to use the Rust version of the libraries below but there
are similar structures for other languages such as C and Python. We
will look at the .NET and AssemblyScript versions in subsequent
chapters. It is even possible to use the command line version of
wasmtime with bash as you can see in Example 12-2.

Example 12-2. Calling our function from Bash

#!/bin/sh
Based on https://docs.wasmtime.dev/lang-bash.html
function how_old() {
 local x=$(($1))
 local y=$(($2))
 local result=$(wasmtime hello.wat --invoke how_old $x $y 2>/dev/null)
 echo "$result"
}

for num in "2021 2000" "2021 1980" "2021 1960"; do
 set -- $num
 echo "how_old($1, $2) = $(how_old "$1" "$2")"
done

brian@tweezer-2 ~/g/w/s/c/hello-wasi> chmod ogu+rx hello.sh
brian@tweezer-2 ~/g/w/s/c/hello-wasi> ./hello.sh
how_old(2021, 2000) = 21
how_old(2021, 1980) = 41
how_old(2021, 1960) = 61

We have greater control over the lifecycle when we use the libraries,
classes and structures in the supported development languages. First,
as a reminder, we will use our age-calculating module from
Chapter 2 as something to call. You can refresh your
memory by checking out Example 12-3.

Example 12-3. Our age-calculating Wasm module

(module
 (func $how_old (param $year_now i32) (param $year_born i32) (result i32)
 get_local $year_now
 get_local $year_born
 i32.sub)

 (export "how_old" (func $how_old))
)

Now we will create a stand alone Rust application that invokes the
behavior through the Wasmtime libraries. Keep in mind that Wasmer,
Wasm3 and other environments will have their strategies for doing this
as well and we will demonstrate some of them over the remainder of the
book. I will walk you through the details, but take a look at
Example 12-4.

Example 12-4. Minimal Wasmtime WASI integration in Rust

use std::error::Error;
use wasmtime::*;

fn main() -> Result<(), Box<dyn Error>> {
 let engine = Engine::default();
 let mut store = Store::new(&engine, ());
 let module = Module::from_file(&engine, "hello.wat")?;
 let instance = Instance::new(&mut store, &module, &[])?;

 let how_old =
 instance.get_typed_func::<(i32,i32), (i32), _>(&mut store, "how_old")?;
 let age : i32 = how_old.call(&mut store, (2021i32, 2000i32))?;

 println!("You are {}", age);

 Ok(())
}

After importing prelude definitions of the various features we are
using, we begin to use the structures as defined by Wasmtime’s Rust
library. Consult Table 12-1 for a description of
these types.

Table 12-1. Wasmtime Structures

	Name
	Description

	Engine

	A global context for configuration values intended to be shared across threads.

	Store

	A collection of WebAssembly objects including instances, globals, memories, and tables.

	Module

	The compiled form of a WebAssembly module.

	Instance

	An instance of the compiled module.

The Engine contains any special configuration details. As you see in
Example 12-4 we are just using a default configuration. This
is used to create the Store. This provides a context for the
WebAssembly functionality and is thus a unit of isolation. Different
WebAssembly structures created in a Store cannot be shared or
accessed from other Store instances. In the Rust version of the
Wasmtime API, mutable references to the Store instances are passed
into the functions which precludes sharing them across threads.

The Engine is next used to initialize and compile the Module
instance. There are a variety of mechanisms for retrieving the
underlying bytes, but for our purposes, we are just reading in the
.wat file from the filesystem. Keep in mind we are building a native
Rust application here, not a WASI application so it will therefore be
allowed to access the filesystem.

Once the Module has been compiled, we can create a new Instance of
it. In this case we are not providing any import objects but we will
see examples of sharing functions from the Rust host environment to a
module below. From the Instance we are able to retrieve a reference
to an exported function wrapper so that it can be invoked almost as if
it were a regular Rust function. We use the type safe get_typed_func
which here takes two i32 parameters and returns an i32 result.

Finally, we invoke our function with the values 2021i32 and
2000i32 which represent Rust 32-bit integer type literals for the
numbers “2021” and “2000”. The result is captured in a Rust i32
variable and then printed to the console.

I have removed extraneous build output below, but I wanted to
demonstrate that it is just a regular Rust cargo build command using
the native OS backend to generate the application invoking the
WebAssembly behavior.

brian@tweezer ~/g/w/s/c/hello-wasi> cargo build --release
 Finished release [optimized] target(s) in 3m 22s
brian@tweezer ~/g/w/s/c/hello-wasi> cargo run --release
 Finished release [optimized] target(s) in 0.38s
 Running `target/release/hello-wasi`
You are 21

Now that you have seen the basics, we will investigate some of the new
proposals that Wasmtime supports as a runtime. As this book is being
written, this is definitely a moving target so by the time you read
it, there could be more support added. At this point in your
WebAssembly career it is my opinion that you need not dwell on the
details of the proposals themselves although I will link to them where
relevant. Instead, I think it is more important for you to see
tangible examples of how the WebAssembly platform is evolving. As a
consequence, I am only going to focus on the proposals that are
available in a WASI environment but will hint at what else is coming
when we wrap up the chapter.

Multi Value Return

The MVP settled on some fairly basic semantics for invoking
functions. While they may take any number of parameters, functions are
only able to produce a single result. For many situations, this is
obviously fine, but it is easy to imagine scenarios where this would
be overly limiting.

Consider some of our earlier examples involving strings. Because we
are using a linear Memory instance to allocate the strings, we need a
reference to both the base address of the string as well as the length
of the string. There is no easy way to do that without relying on a
trick like we did where we wrote the length of the string first and
then had the sequence of characters.

What about a language that supports tuples such as Python or Rust?
This allows a developer to easily package several values into a single
structure to return from a function, but a client from another
language may want to unbox or destructure them into a different
representation to be more idiomatic for that language.

Even something as simple as swapping a pair of values or sorting an
array becomes problematic. It would have to be done in place in the
linear memory block. Several arithmetic functions also can return
multiple values if you consider modular operations, carry bits, and
the like.

Beyond function return values, another limitation in the MVP was that
instruction sequences such as conditional blocks and loops are unable
to consume values or return more than one result. It could equally be
interesting to swap values, conduct arithmetic with overflow, or have
a multi-value tuple response there too.

If you recall from Chapter 2, the result of a
WebAssembly function is found at the top of the stack. There is no
real reason the top several elements of the stack could not be
interpreted as multiple return values. So, both as an improvement to
the platform and to facilitate other extensions, the Multi-value
return type exension3 was an important next step. At
this point it has been merged into the main specification and is
implemented in many WebAssembly environments.

The proposal introduces new instructions such as the aforementioned
arithmetic functions. This includes i32.divmod that accepts a
numerator and divisor and returns the quotient and the remainder. It
also allows multiple values to remain on the stack and not have to be
copied into the linear memory instance. This is both faster and more
memory-efficient.

Because Wasmtime supports the Multi-Value proposal already, we can
easily demonstrate how useful it is. In Example 12-5 you see a
Wat file that provides the structure we will use. The first line
imports a function that takes two parameters and returns two
parameters from the Rust environment. As you can see, it
is no big deal to extend the result syntactically to support more
than one value. Implementing it is obviously more complicated, but as
I mentioned above, the results come from the top of the stack so it is
not exactly rocket surgery. We call our new function swap because
that is what the function we will pass in will do.

Example 12-5. A simple Wat file demonstrating Multi-Value Return types

(module
 (func $swap (import "" "swap") (param i32 i32) (result i32 i32))

 (func $myfunc (export "myfunc") (param i32 i32) (result i32 i32)
 (call $swap (local.get 0) (local.get 1))
)
)

The next line defines an exported function called myfunc that calls
our swap function. Keep in mind that the parameters sent to the
function are addressable as local variables in position 0 and 1. We
call the instructions to push those values to the stack and then
directly call our imported function. We do not have to do anything
special in our function definition other than to indicate that we
return two i32 values as our result. These should be at the top of
the stack once swap returns. Those behind the scenes details are
what the Wasmtime team had to implement, but the impact on the Wat
syntax is quite low.

In Example 12-6 you see the host application that is going to
call our Wat functions. The majority of the application is quite similar
to what you saw in Example 12-4.

Example 12-6. Exercising Multi-Value Return Types with Wasmtime Rust libraries

use std::error::Error;
use wasmtime::*;

fn main() -> Result<(), Box<dyn Error>> {
 let engine = Engine::default();
 let mut store = Store::new(&engine, ());
 let module = Module::from_file(&engine, "mvr.wat")?;

 let callback_func = Func::wrap(&mut store, |a: i32, b: i32| -> (i32, i32) {
 (b, a)
 });

 let instance = Instance::new(&mut store, &module, &[callback_func.into()])?;

 let myfunc =
 instance.get_typed_func::<(i32,i32), (i32, i32), _>(&mut store, "myfunc")?;
 let (a, b) = myfunc.call(&mut store, (13, 43))?;

 println!("Swapping {} and {} produces {} and {}.", 13, 43, a, b);

 Ok(())
}

What is new is that we are defining a callback function by calling
Func::wrap. This takes a mutable reference to our Store instance
and a Rust closure that takes two i32 parameters and returns a tuple
of two i32 parameters. We are using idiomatic Rust to express the
functionality which is pretty cool! The closure implementation is
quite trivial. We just return a tuple with the parameters in the
opposite order.

Now that we have our callback, notice we pass it to the import context
when we create the module Instance. After this we fetch a wrapper to
the myfunc function exported from our WebAssembly module and call it
with a tuple value. This is again idiomatic Rust and a very natural
way of passing in two parameters. These will be destructured
behind-the-scenes into the two parameters our function is
expecting. The result of calling the exported function is captured as
a tuple which we then destructure and print out the results.

brian@tweezer ~/g/w/s/c/hello-mvr> cargo build --release
 Compiling hello-mvr v0.1.0 (/Users/brian/git-personal/webassembly-the-definitive-guide/src/ch12/hello-mvr)
 Finished release [optimized] target(s) in 3.17s
brian@tweezer ~/g/w/s/c/hello-mvr> cargo run --release
 Finished release [optimized] target(s) in 0.22s
 Running `target/release/hello-mvr`
Swapping 13 and 43 produces 43 and 13.

Reference Types

Having the ability to specify multiple return values is a necessary
precursor to some of the additional proposals. Another enabling
proposal is the ability to specify references to opaque handles. This
is going to be crucial for adding garbage collection, having typed
references, exception handling and more, but it is also key to having
the host environments be able to pass in opaque references referring
to resources we do not want the WebAssembly modules to necessarily
have raw access to. Keep in mind that we are talking about being able
to pass in arbitrary references to arbitrary structures in arbitrary
languages on arbitrary operating systems. Trying to be both this
flexible and performant is no easy task!

We have been able to make references previously, but only to functions
and only in Table instances which we could not manipulate once they
were created. This was in part to disallow the modules from
manipulating sensitive details in memory or being able to change which
function was in which slot. Recall from Chapter 7 that we
had to make indirect calls to the function references rather than
the more common direct calls to other functions.

This new proposal4 affords us the ability
to manipulate Table members, grow the Table instance size and the
ability to pass externref references back and forth between
WebAssembly modules and their host environments.

Wasmtime supports the ability to make externref references, so let’s
create another sample application using their APIs. To be clear, any
WASI environment will have to support these fundamental proposals, but
we’re focusing on Wasmtime.

brian@tweezer ~/g/w/s/ch12> cargo new --bin hello-extref
 Created binary (application) `hello-extref` package

This is another relatively simple change to the syntax of our Wat
files. A quick check of Example 12-7 will show you that we may
store externref elements in a Table or pass them in as parameters
or return them as function results. This is a simplified version of
the Wasmtime example on these reference types. I am not focusing on
them here, but it is also possible to make global variable references
to externref elements too.

Example 12-7. A Wat file with externref parameters, Table elements and results.

(module
 (table $table (export "table") 10 externref)

 (func (export "func") (param externref) (result externref)
 local.get 0
)
)

Our module exports a Table with the space for ten references. We
also have a function that simply returns the its parameter. Unfortunately,
the Rust code in Example 12-8 is substantially more
complicated than other examples we have looked at because we are
wrapping these references, cloning them, deferencing them and
extracting the wrapped data as needed. I will walk you through it
though so we can focus on what is new.

The first thing you will see is the introduction of a Config
instance. We have been using default configurations for our Engine
instances previously, but we need to turn on support for the external
references and then configure our Engine accordingly. From then on
things should look familiar from a set up perspective.

To demonstrate the flexibility we have with respect to the references,
we create two instances of the ExternRef structure from the Wasmtime
API. One might be an unforgeable bearer token or something that could
be passed back when the module makes shared function calls. For our
purposes, I just have a string slice that says “secret key”. The other
reference is to an array of bytes. As the ExternRef structure is a
parameterized type, it is able to wrap both data types.

After we create the references, we retrieve the exported Table from
the module and store clones of our references in slots 3 and 4. We use
Some wrappers so that it makes it easier to tell when a reference is
there or not. If it is not, we might get a None instance. This is
via a structure called an Option in Rust5. As the table stores
externref elements, there is no way for the module to look at the
details. When we retrieve them back out, however, they still represent
the structures we put in them. Other programming languages will have
different mechanisms for this procedure depending on static typing and
memory management details, but it will look basically the same.

Example 12-8. A Wasmtime Rust application that uses externref elements

use std::error::Error;
use wasmtime::*;

fn main() -> Result<(), Box<dyn Error>> {
 let mut config = Config::new();
 config.wasm_reference_types(true);

 let engine = Engine::new(&config)?;
 let mut store = Store::new(&engine, ());
 let module = Module::from_file(&engine, "extref.wat")?;

 let instance = Instance::new(&mut store, &module, &[])?;

 let eref = ExternRef::new("secret key");
 let arr : [u8; 4] = [1, 2, 3, 4];

 let eref2 = ExternRef::new(arr);

 let table = instance.get_table(&mut store, "table").unwrap();
 table.set(&mut store, 3, Some(eref.clone()).into())?;
 table.set(&mut store, 4, Some(eref2.clone()).into())?;

 let ret = table.get(&mut store, 3)
 .unwrap()
 .unwrap_externref()
 .unwrap();

 let ret2 = table.get(&mut store, 4)
 .unwrap()
 .unwrap_externref()
 .unwrap();

 let str = *ret.data().downcast_ref::<&'static str>().unwrap();
 let arr2 = *ret2.data().downcast_ref::<[u8; 4]>().unwrap();

 println!("Retrieved external reference: {} from table slot {}", str, 3);
 println!("Retrieved external reference: {:?} from table slot {}", arr2, 4);

 let func = instance.get_typed_func::<Option<ExternRef>, Option<ExternRef>, _>
 (&mut store, "func")?;

 let ret = func.call(&mut store, Some(eref.clone()))?;

 let str2 = *(ret.unwrap()).data().downcast_ref::<&'static str>().unwrap();

 println!("Received {} back from calling extern-ref aware function.", str2);

 Ok(())
}

Pulling the references out looks a little strange, but the first
unwrap() function determines whether we have made an index reference
within the boundaries of the Table instance or not. It then extracts
the externref and verifies it is an instance of that type (as
opposed to some other reference type). The final unwrap() makes sure
that it did not produce a null reference, which is another addition
this proposal brings to the WebAssembly platform.

The next steps are perhaps even a little stranger still, but we are
deferencing our references, extracting the data and casting them to
our expected types, in this case a string slice with a static lifetime
(also known as a string literal) and a four element u8
array. Assuming these downcasts are successful we print out the
element values we have pulled back out the module instance.

Our final step fetches a reference to the module’s exported function
which takes an Option-wrapped ExternRef and returns an
Option-wrapped ExternRef. Recall from Example 12-7 that
our function simply returns its parameter. We call our function with a
cloned copy of our ExternRef, capture the return value and go
through the same downcasting to extract the value.

Now that everything has been explained, we can execute the example as
per usual.

brian@tweezer ~/g/w/s/c/hello-extref> cargo run --release
 Finished release [optimized] target(s) in 0.36s
 Running `target/release/hello-extref`
Retrieved external reference: secret key from table slot 3
Retrieved external reference: [1, 2, 3, 4] from table slot 4
Received secret key back from calling extern-ref aware function.

This is admittedly not the most exciting example in the world, but
this proposal, like the Multi-Value Return proposal, is more about
what it enables than something you would use in and of itself.

Module Linking

The final proposal that we will cover briefly in this chapter is the
Module Linking proposal6.
The scope of this proposal is quite large, but it ultimately is about
allowing modules themselves to be imported through a variety of
mechanisms and styles.

Consider the fundamentals of the WASI standard library. We want to
have a dependency on a module that will provide this behavior without
having to import individual methods one-by-one. That approach would be
fragile, annoying, and ultimately would perform poorly if every
function invocation had to go through a JavaScript wrapper or
something similar. We do, however, like the idea of virtualizing the
implementations so that filesystem access might be approximated by the
use of local storage in a browser while other APIs might behave as
expected (e.g. printing to the JavaScript console through
fd_write). We also want the benefit of shared nothing architectures
such as the Unix pipes and filters strategy we have discussed
previously without performance penalties there either. We also want to
be able to have shared instances of widely-used modules to save on
memory. What we need is the ability to describe types of modules and
allow different implementations to satisfy those types.

Because there are complicated requirements, it is a complicated
proposal. To keep things simple for now, we are going to demonstrate a
simple example, but the full implications are going to be huge for the
resilience and convenience of large, complicated module dependency
trees in our WebAssembly systems. There is even a new textual format
for describing these interfaces based on Wat. It only allows interface
definitions, however, so it has an extension of .wit instead to
differentiate the type.

In Example 12-9 we see a sample module as defined in the
Module Linking proposal.

Example 12-9. A Wat file for a sample module

(module
 (memory (import "a") 1 2)
 (func (import "b") (param i32))
 (table (export "c") 1 funcref)
 (func $notImportedOrExported (result i64)
 i64.const 0
)
 (func (export "d") (result f32)
 f32.const 0
)
)

In Example 12-10 we see a the corresponding interface file
(.wit) which has no implementation details but still defines the
“type” of the module based upon the elements it imports and
exports. This is ultimately going to give us the ability to link
modules more cleanly, flexibly and performantly.

Example 12-10. A Wit file for the same module

(module
 (memory (import "a") 1 2)
 (func (import "b") (param i32))
 (table (export "c") 1 funcref)
 (func (export "d") (result f32))
)

For convenience sake, I am just going to show the module linking
example from the Wasmtime examples7.
We have two modules, one which depends on the other and one which
depends on having a WASI capability of writing to the console.

Our Cargo.toml file shown in Example 12-11 has a few more
dependencies than we have seen so far. The most important one,
however, is the wasmtime-wasi dependency. This is an implementation
of the standard WASI functionality that we are going to link against
below.

Example 12-11. A Cargo.toml file for our module linking example

[package]
name = "hello-modlink"
version = "0.1.0"
edition = "2018"

[dependencies]
wasmtime = "0.28.0"
wasmtime-wasi = "0.28.0"
anyhow = "1.0.19"

In the first module shown in Example 12-12, we import a function
called double that will take an i32, double it, and return an
i32. We are also importing a convenience function called log that
will print a string in a Memory at the given offset and of the given
length. We will also import a Memory instance to use and a global
variable representing an offset to use as the location of our
activity.

Our exported run function loads the constant “2” to the stack and
then calls the double function. Remember that the top of the stack
will contain the parameter so we expect this to produce the value
“4”. We do not do anything with the output, but you can feel free to
convince yourself that it does work. The point is mainly that our call
to an imported function did actually work.

After doubling the value, we call the log function to print out
“Hello, World!”. Notice we write our string into memory with a data
element at the location specified by the global variable.

Example 12-12. A module that we will link against that depends on another module

(module
 (import "linking2" "double" (func $double (param i32) (result i32)))
 (import "linking2" "log" (func $log (param i32 i32)))
 (import "linking2" "memory" (memory 1))
 (import "linking2" "memory_offset" (global $offset i32))

 (func (export "run")
 ;; Call into the other module to double our number, and we could print it
 ;; here but for now we just drop it
 i32.const 2
 call $double
 drop

 ;; Our `data` segment initialized our imported memory, so let's print the
 ;; string there now.
 global.get $offset
 i32.const 14
 call $log
)

 (data (global.get $offset) "Hello, world!\n")
)

The second module is shown in Example 12-13. It defines a type
for a function that takes four i32 parameter and returns an
i32. This type will correspond to the fd_write method that we will
import from the WASI namespace "wasi_snapshot_preview1". This method,
as we saw in Chapter 11 takes parameters for the file
description, where the string vectors start, how many there are and
where it should write the return value representing the number of
bytes written.

There is also a simple function called double that loads the i32
parameter sent in to the stack, follows up with the constant “2” and
then invokes the i32.mul instruction which will pop the top two
stack values, multiply them, and write the result back to the top of
the stack.

Our exported log function calls the imported fd_write after
setting up the details. Notice many modules might import the
fd_write functionality, but here we have a reusable function that
hides most of the details. Other modules can import our function
definition and just pass in a memory pointer and length to achieve the
same results.

Finally, our module exports a Memory instance and a global variable
indicating the current offset to write values into. This is a
(potentially fragile) way to allow the memory used to be managed by
this module while allowing other modules to write into unused space.

Example 12-13. A second module that our first module depends upon

(module
 (type $fd_write_ty (func (param i32 i32 i32 i32) (result i32)))
 (import "wasi_snapshot_preview1" "fd_write" (func $fd_write (type $fd_write_ty)))

 (func (export "double") (param i32) (result i32)
 local.get 0
 i32.const 2
 i32.mul
)

 (func (export "log") (param i32 i32)
 ;; store the pointer in the first iovec field
 i32.const 4
 local.get 0
 i32.store

 ;; store the length in the first iovec field
 i32.const 4
 local.get 1
 i32.store offset=4

 ;; call the `fd_write` import
 i32.const 1 ;; stdout fd
 i32.const 4 ;; iovs start
 i32.const 1 ;; number of iovs
 i32.const 0 ;; where to write nwritten bytes
 call $fd_write
 drop
)

 (memory (export "memory") 2)
 (global (export "memory_offset") i32 (i32.const 65536))
)

The Rust code in Example 12-14 introduces a few more features
of the Wasmtime APIs. The first is the concept of a Linker. This is
a tool that will help link modules together based upon their import
and export configurations. Because the WASI functionality is widely
used, it is available as the separate dependency we saw in
Example 12-11 above. We basically add details of this module to
our linker so they are available to be linked to modules that depend
on this behavior.

After this we instantiate our two modules, configure the WASI instance
and add the details to our Store so that they will be contextually
available at runtime.

We register our second module with the Linker instance because we
are going to want to make it available to our first module. Keep in
mind that the whole idea here is about balancing reuse, swappability,
performance, isolation, and the other requirements.

Example 12-14. A module that we will link against that depends on another module

use anyhow::Result;
use wasmtime::*;
use wasmtime_wasi::sync::WasiCtxBuilder;

fn main() -> Result<()> {
 let engine = Engine::default();

 // First set up our linker which is going to be linking modules together. We
 // want our linker to have wasi available, so we set that up here as well.
 let mut linker = Linker::new(&engine);
 wasmtime_wasi::add_to_linker(&mut linker, |s| s)?;

 // Load and compile our two modules
 let linking1 = Module::from_file(&engine, "linking1.wat")?;
 let linking2 = Module::from_file(&engine, "linking2.wat")?;

 // Configure WASI and insert it into a `Store`
 let wasi = WasiCtxBuilder::new()
 .inherit_stdio()
 .inherit_args()?
 .build();
 let mut store = Store::new(&engine, wasi);

 // Instantiate our first module which only uses WASI, then register that
 // instance with the linker since the next linking will use it.
 let linking2 = linker.instantiate(&mut store, &linking2)?;
 linker.instance(&mut store, "linking2", linking2)?;

 // And with that we can perform the final link and the execute the module.
 let linking1 = linker.instantiate(&mut store, &linking1)?;
 let run = linking1.get_typed_func::<(), (), _>(&mut store, "run")?;
 run.call(&mut store, ())?;
 Ok(())
}

Finally we link our first module to our second module, fetch the run
function and invoke it as below.

brian@tweezer ~/g/w/s/c/hello-modlink> cargo run --release
 Compiling hello-modlink v0.1.0 (/Users/brian/git-personal/webassembly-the-definitive-guide/src/ch12/hello-modlink)
 Finished release [optimized] target(s) in 21.49s
 Running `target/release/hello-modlink`
Hello, world!

Feature Testing

One of the ways you can navigate this topsy-turvy world of partial
support for numerous proposals is to use a library from Google called
wasm-feature-detect8. It’s not
just a clever name. That is what it does.

It is quite straight-forward and is easilly extensible with plugin
tests. They solicit input from developers who want to add checks for
new proposal features they do not yet test for. Contributions involve
a .wat file that provides a use of one of the new proposals to see
if it works. The module will be compiled by wabt.js9

In Example 12-15 you can see the test for the Multi-Value
return proposal.

Example 12-15. A wasm-feature-detect detector for Multi-Value return support.

;; Name: Multi-value
;; Proposal: https://github.com/WebAssembly/multi-value
;; Features: multi_value

(module
 (func (result i32 i32)
 i32.const 0
 i32.const 0
)
)

Using the library to test for certain features is straightforward as
well. In Example 12-16 I have a simple test that goes through
most of the available tests and indicates whether they are supported
by the current browser or not.

Example 12-16. A test document to see which of the new proposals a browser supports.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <script type="module">
 import {
 bigInt,
	bulkMemory,
	exceptions,
	multiValue,
	mutableGlobals,
	referenceTypes,
	saturatedFloatToInt,
	signExtensions,
	simd,
	tailCall
 } from "https://unpkg.com/wasm-feature-detect?module";

 function test(test, promise) {
 promise().then(supported => {
	 console.log("Test: " + test + " is " + supported);
	 });
 }

 test("BIGINT", bigInt);
 test("BULK MEMORY", bulkMemory);
 test("EXCEPTIONS", exceptions);
 test("MULTIVALUE", multiValue);
 test("MUTABLEGLOBALS", mutableGlobals);
 test("REFERENCETYPES", referenceTypes);
 test("NONTRAPPING F-to-I", saturatedFloatToInt);
 test("SIGN EXTENSIONS", signExtensions);
 test("SIMD", simd);
 test("TAIL CALL", tailCall);
 </script>
 </head>
 <body>
 </body>
</html>

In Figure 12-1 you can see the results of loading this test
HTML in Safari. At the time of this writing, this is Safari 15.0 which
was just recently released with more support for WebAssembly. Notably
lacking is support for the SIMD Proposal.

[image: Testing WebAssembly features in Safari]
Figure 12-1. Testing WebAssembly features in Safari

In Figure 12-2 you can see the results of loading this test
HTML in Firefox. It has always been one of the browsers with strongest
WebAssembly support so it is not surprising that the coverage is so
good.

[image: Testing WebAssembly features in Firefox]
Figure 12-2. Testing WebAssembly features in Firefox

In Figure 12-3 you can see the results of loading this test
HTML in Chrome. Also a browser with strong WebAssembly support, I was
surprised by the lack of support for Reference Types, but I imagine
that will appear soon enough.

[image: Testing WebAssembly features in Chrome]
Figure 12-3. Testing WebAssembly features in Chrome

Other Proposals

There are many other proposals coming to the WebAssembly
platform. There are probably going to be new ones all of the
time10. This is one of the primary
methods that the WebAssembly platform designers are using to extend
the platform incrementally over time.

Each proposal is considered on its own merits and its potential impact
on the text and binary formats of modules, the parsing and validation
of modules, dependencies on or for other proposals, and more. What you
have heard about the making of laws and sausages11 is true for the
standards process as well. These documents use precise and formal
language to describe the details so there is no error from difference
in interpretation by implementors.

Some of the proposals are fundamental such as the ability to add
garbage collection, higher-level interface types, threads, vectorized
math and more. Others are more subtle or are designed to enable other
new features but must be designed and implemented first. There are not
a lot of developer-friendly descriptions of most of these yet, but I
believe Wasmtime, Wasmer, Wasm3 and other environments are going to be
the best place for you to learn about them as they add support over
time.

If the whole process seems a little hodge-podge, well, that is a fair
criticism which is why there is a proposal to add feature detection to
the WebAssembly platform so that is easier to detect which features
are enabled and which are not. Direct access is going to be the best
bet, but there may be opportunities for shims, polyfills and other
fallback positions in case they are not. Ideally we will not have the
need for an excessive amount of feature detection as that complicates
testing strategies and portability, but it is inevitable that there
will be some of it.

For now, this is enough of a peek at what is coming and how
WebAssembly will evolve over time. Now it is time to learn about how
we can use this platform from the .NET World.

1 You can track the existence and progress of the various proposals here: https://github.com/WebAssembly/WASI/blob/main/docs/Proposals.md
2 You can find details about extending Flight Simulator with WebAssembly here: https://docs.flightsimulator.com/html/Programming_Tools/WASM/WebAssembly.htm
3 As it represents a fundamental change to the WebAssembly platform, the Multi-Value Proposal has been merged into the WebAssembly standard itself.
4 You can read the Reference Types proposals here if you are into that kind of thing: https://github.com/WebAssembly/reference-types
5 You can find out more about Option instances here: https://doc.rust-lang.org/std/option/
6 The Module Linking Proposal is fairly complicated and requires the support of several of the more fundamental proposals to be supported first. You can read an explanation here if you like: https://github.com/WebAssembly/module-linking/blob/master/proposals/module-linking/Explainer.md
7 This and other examples of using the Wasmtime APIs are available here: https://github.com/bytecodealliance/wasmtime/tree/main/examples
8 The wasm-feature-detect library GitHub repo is here: https://github.com/GoogleChromeLabs/wasm-feature-detect
9 wabt.js is a port of the functionality of the WebAssembly Binary Toolkit (WABT) that we introduced early in this book. It’s GitHub repo is here: https://github.com/AssemblyScript/wabt.js
10 You can currently track the major proposals and what phase they are in here: https://github.com/WebAssembly/proposals
11 Although it is often attributed to Otto von Bismarck, evidence suggests that it was John Godfrey Saxe who said that laws were like sausages. If you like either, you should not watch them be made.

Chapter 13. WebAssembly and .NET

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 13th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

I think foosball1 is a combination
of soccer and shishkabobs.

Mitch Hedberg

Throughout my career I have had a respectfully indifferent
relationship with .NET. I have nothing against it, I just have almost
never needed it and have spent little time working on anything
Windows-specific, which, for many years it was.

Back in the early 2000s, I did help initiate a .NET-based project with
some coworkers to visualize scenarios simulating attacks on
buildings. The idea was that by using real physics models of
explosions we could marry visualization with possible outcomes based
upon various protective measures. Security planners could consider
different locations for physical barriers and run tests for their
facilities involving explosives-laden vehicles. If they could only get
so close, what kind of an impact on the building or people standing
just inside the entrance might it have2? Windows was the target platform and clearly we
needed some computational speed, so we chose a Managed C++ basis for
the core libraries and C# for the application. I was not on the
project long, but it was a successful enough project in the end.

Other than that, I have done what I have needed to do with Java, C++,
JavaScript, Rust, Python and other languages and environments. I know
a lot of people who love .NET and the tools that surround it, but it
has just never mattered much to my career.

That being said, I have always been intrigued by initiatives like
Mono3 so I keep somewhat aware of
what is happening in that world. Plus, many of my friends are experts
and champions of the space so they let me know what is going on there
too. One of the exciting shifts for its advocates is that the
Microsoft development tools and .NET frameworks are now real solutions
for cross-platform development.

I was still surprised when I started to learn about some of the .NET
and WebAssembly initiatives that were gaining steam. They initially
felt like combinations of soccer and shishkabobs, strange and
anachronistic pairings. The more I thought about it though, I realized
that there are some compelling and consequential aspects located at
the integration of these technologies that are worth exploring.

.NET and Wasmtime

As you are no doubt starting to realize, there are quite a few
different use cases for WebAssembly beyond the straightforward
approaches engendered by the MVP. We will start with a not overly
.NET-specific integration along the lines of what we have seen in
previous chapters. The Wasmtime platform supports .NET integrations
through its NuGet package4. This example supports the
idea of extending .NET applications with WebAssembly modules,
libraries, and plugins.

You will need to install the .NET Core SDK before you can attempt the
following. Please consult Appendix A for instructions to
help you accomplish this. Once the tools are available, we will create
a new directory and initialize a project. The dotnet command line
tool is able to create structures based on existing templates. One of
the simplest ones is the console template, so we will use that.

brian@tweezer ~/g/w/s> mkdir wasmtime-dotnet
brian@tweezer ~/g/w/s> cd wasmtime-dotnet
brian@tweezer ~/g/w/s/wasmtime-dotnet> dotnet new console
The template "Console Application" was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on /Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj...
 Determining projects to restore...
 Restored /Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj (in 58 ms).
Restore succeeded.

Once the project structure is initialized, we will need to add a
dependency to the Wasmtime NuGet package. As of the time this is being
written, version 0.28.0-preview1 is the latest version. You may want
or need to use a newer version.

brian@tweezer ~/g/w/s/wasmtime-dotnet> dotnet add package ↵
 --version 0.28.0-preview1 wasmtime
 Determining projects to restore...
 Writing /var/folders/mn/4kd_fxdj3lxbpljfhjyp5sw40000gn/T/tmp5A8L0B.tmp
info : Adding PackageReference for package 'wasmtime' into project '/Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj'.
info : Restoring packages for /Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj...
info : GET https://api.nuget.org/v3-flatcontainer/wasmtime/index.json
info : OK https://api.nuget.org/v3-flatcontainer/wasmtime/index.json 234ms
info : GET https://api.nuget.org/v3-flatcontainer/wasmtime/0.28.0-preview1/wasmtime.0.28.0-preview1.nupkg
info : OK https://api.nuget.org/v3-flatcontainer/wasmtime/0.28.0-preview1/wasmtime.0.28.0-preview1.nupkg 235ms
info : GET https://api.nuget.org/v3-flatcontainer/microsoft.csharp/index.json
info : OK https://api.nuget.org/v3-flatcontainer/microsoft.csharp/index.json 210ms
info : GET https://api.nuget.org/v3-flatcontainer/microsoft.csharp/4.6.0/microsoft.csharp.4.6.0.nupkg
info : OK https://api.nuget.org/v3-flatcontainer/microsoft.csharp/4.6.0/microsoft.csharp.4.6.0.nupkg 20ms
info : Installed Microsoft.CSharp 4.6.0 from https://api.nuget.org/v3/index.json with content hash kxn3M2rnAGy5N5DgcIwcE8QTePWU/XiYcQVzn9HqTls2NKluVzVSmVWRjK7OUPWbljCXuZxHyhEz9kPRIQeXow==.
info : Installed Wasmtime 0.28.0-preview1 from https://api.nuget.org/v3/index.json with content hash diVfo3IYN8ZBRwY30d1Wme7vFC2NelIeqBCNiaK/FIGVLoa6IHoBfpsDqBm9gjcNY8wDsRDo/u4xRquSCG+2dg==.
info : Package 'wasmtime' is compatible with all the specified frameworks in project '/Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj'.
info : PackageReference for package 'wasmtime' version '0.28.0-preview1' added to file '/Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj'.
info : Committing restore...
info : Writing assets file to disk. Path: /Users/brian/src/wasmtime-dotnet/obj/project.assets.json
log : Restored /Users/brian/src/wasmtime-dotnet/wasmtime-dotnet.csproj (in 2.45 sec).

At this point, there should be a generated console application in your
project called Program.cs which should look like
Example 13-1.

Example 13-1. Generated C# console application

using System;

namespace wasmtime_dotnet
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

Double-check that everything is set up correctly by executing the following command.

brian@tweezer ~/g/w/s/wasmtime-dotnet> dotnet run
Hello World!

If you see our usual friendly greeting, we can move on. To keep things
simple, we will just use our existing howold function for
consistency. For reference, please make sure the module shown in
Example 13-2 is in a file called hello.wat in your project
directory (e.g. wasmtime-dotnet if you followed my command above).

Example 13-2. Our age-calculating Wasm module

(module
 (func $how_old (param $year_now i32) (param $year_born i32) (result i32)
 get_local $year_now
 get_local $year_born
 i32.sub)

 (export "how_old" (func $how_old))
)

Unsurprisingly the Wasmtime classes will be named similarly to what we
have seen in Rust even though we are now going to be using C# as the
basis of our integration. If you change the Program.cs file to what
you see in Example 13-3, we are back in business with Wasi
support5.

Example 13-3. Using Wasmtime to execute WebAssembly in C#

using System;
using Wasmtime;

namespace wasmtime_dotnet
{
 class Program
 {
 static void Main(string[] args)
 {
 using var engine = new Engine();
 using var module = Module.FromTextFile(engine, "hello.wat");
 using var linker = new Linker(engine);
 using var store = new Store(engine);

 var instance = linker.Instantiate(store, module);
 var howOld = instance.GetFunction(store, "how_old");

 Console.WriteLine($"You are {howOld.Invoke(store, 2021, 2000)}");
 }
 }
}

Executing the code obviously does what you expect.

brian@tweezer ~/g/w/s/wasmtime-dotnet> dotnet run
You are 21

Of course, we have great support for the other kinds of things you
want to do when crossing the boundary between host and WebAssembly
module. In Example 13-4 we have an example of an imported
function from our .NET host being invoked.

Example 13-4. Calling a function passed in from the host environment.

(module
 (type $voidfunc (func))
 (import "hello" "world" (func $hello.world (type $voidfunc)))
 (func $exec
 call $hello.world
)
 (export "exec" (func $exec))
)

The code to set up the module and share the function to invoke is
highlighted in Example 13-5. Notice we can use a C# closure as
the basis of the function we store in the Store instance. We
retrieve the exported exec function from the module and call it,
which turns around and calls the hello.world namespaced function we
provided.

Example 13-5. Our host environment providing a C# closure to invoke

using System;
using Wasmtime;

namespace wasmtime_dotnet
{
 class Program
 {
 static void Main(string[] args)
 {
 using var engine = new Engine();
 using var module = Module.FromTextFile(engine, "hello.wat");
 using var linker = new Linker(engine);
 using var store = new Store(engine);

 linker.Define(
	"hello",
	"world",
 Function.FromCallback(store,
	 () => Console.WriteLine("I like soccer and shishkabobs."))
);

 var instance = linker.Instantiate(store, module);
 var exec = instance.GetFunction(store, "exec");
 exec.Invoke(store);
 }
 }
}

Running the dotnet command line will show us what you expect.

brian@tweezer ~/g/w/s/wasmtime-dotnet> dotnet run
I like soccer and shishkabobs.

There are plenty of additional examples at the GitHub repo linked in
the footnote above including other examples of Wasi integration. There
are similar examples available for using .NET with the Wasmer runtime
as well. The main point is that WebAssembly can easily be invoked from
and interact with a .NET environment. The next use case is a bit of a
departure but still an up-and-coming combination of these
technologies.

Blazor

Microsoft has another vision of WebAssembly that aligns with their
renewed interest in providing tools and frameworks for developers on
all major platforms. The Blazor framework6 allows
developers to target the web with interactive components and
applications written in C#. Development can be done with a variety of
tools on Windows, macOS, and Linux.

Blazor uses the Razor syntax which is a mashup markup language of HTML
and C#. If you think that sounds a bit like soccer and shishkabobs, I
agree, but we will see some working examples below. The main benefit
is that it allows developers to build user interfaces using existing
tools and .NET libraries rather than relying on JavaScript user
interface frameworks. While those are very popular with JavaScript
developers, the learning curve is pretty steep compared to a more
conventional object-oriented user interface experience.

The applications written with this framework have the option of being
deployed either on the server or in the browser. Both modes allow the
user interface to be rendered in the browser, but in the first
scenario, the main logic is executed on the server. Communication of
user interface updates is managed through a SignalR7 connection. This
is a remote procedure call (RPC) method that allows the server to
invoke behavior in JavaScript in the browser via WebSockets,
Server-Sent Events, or Long Polling techniques. This is not the use
case we will focus on, but it is connected to the larger point I would
like to make with respect to this use case. I will return to it
below. This deployment model is visualized in Figure 13-1.

[image: Blazor Server deployment model]
Figure 13-1. Blazor Server deployment model

The more relevant scenario is the in-browser deployment model called
Blazor WebAssembly. In this scenario the C# and Razor files are
compiled into .NET assemblies which are then downloaded to the
browser. The produced artifact is a Single Page Application (SPA) that
runs in the browser and can make changes to what is being displayed
locally. Obviously in order for this to work, the .NET runtime must
also be available in the browser, so it too must be downloaded. Local
user interface updates are able to affect the DOM directly through
JavaScript interoperability. This deployment model is shown in
Figure 13-2.

[image: Blazor WebAssembly deployment model]
Figure 13-2. Blazor WebAssembly deployment model

It may not be clear how this works, but you have to look no further
than the Mono platform mentioned previously. It has been compiled to
WebAssembly therefore code artifacts that run on top of it should
also work in any environment it does. The size of the .NET
runtime is a potential concern for smaller profile devices such as
phones and embedded devices, but, in general, this is a penalty you
will pay infrequently as it is just a dependent web resource and can
have cache controls put on it so it is not a constant bandwidth
burden.

We will build a sample application below, but for now, consider the
Blazor WebAssembly demo site shown in Figure 13-3. This
shows a simple stateful counter and a button to manipulate it as well
as some routable components on the left to display other panels in the
SPA.

[image: Blazor WebAssembly demo website]
Figure 13-3. Blazor WebAssembly demo website

To get a sense of how this might possibly work, consider the details
shown in Figure 13-4. The Mono platform is shown as
mono.wasm. It is initialized by a companion JavaScript file called
mono.js which will look like a variety of bootstrapping JavaScript
we have seen throughout the book. Toward the bottom of the image you
will see console log details about this bootstrapping process. Even
though many of the .NET assemblies are tens to hundreds of kilobytes
big, you will note they are all cached from previous sessions so they
will not need to be refetched.

[image: Network traffic around the Blazor demo website]
Figure 13-4. Network traffic around the Blazor demo website

Both deployment strategies have their pros and cons. The Blazor Server
model does not burden the client with downloading a large binary
runtime, but does have the issue of latency in the interactions
between the backend and frontend user interface components. That could
potentially be problematic on slow and flaky networks or
distantly-remote clients. The Blazor WebAssembly model does not
generally have the access to the complete .NET platform in order to
make the runtime download a manageable size. Debugging is also an
issue with the Blazor WebAssembly for the time being but that should
clearly be an issue Microsoft should be able to address given their
attitude toward giving developers good tools.

For now, let’s generate the Blazor WebAssembly demo
scaffolding. Fortunately we do not need to install anything beyond
what we have already used in the previous examples. However, we will
be referencing a new template called blazorwasm which will set us up
for this deployment model. If you wanted to try to create a server
hosted model, you would use blazorserver as your template name.

brian@tweezer ~/g/w/s> dotnet new blazorwasm -o blazor-web
The template "Blazor WebAssembly App" was created successfully.
This template contains technologies from parties other than Microsoft,
see https://aka.ms/aspnetcore/5.0-third-party-notices for details.

Processing post-creation actions...
Running 'dotnet restore' on /Users/brian/src/blazor-web/blazor-web.csproj...
 Determining projects to restore...
 Restored /Users/brian/src/blazor-web/blazor-web.csproj (in 4.83 sec).
Restore succeeded.

At this point, we have a working application available to us. If we
investigate the directory structure, we will see that we are indeed
standing on the shoulders of giants. There is an overwhelming amount
of code at play behind the scenes to make an otherwise simple
application work. The tree command below produces 700 lines of files
and directories. Granted, the typical JavaScript framework pulls in an
overwhelming amount of dependencies too. You can decide for yourself
if the tradeoff is worth it, but clearly many organizations will come
to the conclusion that it is.

I have heavily removed extraneous lines below just to focus on the
main files you care about, but if you are feeling adventurous and have
tree installed, give it a try.

What remains is a fairly straightforward project. The files that end
in .razor are the component files. There are several configuration
files strewn throughout the directory structure. Several components
have custom Cascading Style Sheet (CSS) files to define their
styles.

brian@tweezer ~/g/w/s/c/blazor-web> tree .
.
├── App.razor
├── Pages
│ ├── Counter.razor
│ ├── FetchData.razor
│ └── Index.razor
├── Program.cs
├── Properties
│ └── launchSettings.json
├── Shared
│ ├── MainLayout.razor
│ ├── MainLayout.razor.css
│ ├── NavMenu.razor
│ ├── NavMenu.razor.css
│ └── SurveyPrompt.razor
├── _Imports.razor
├── bin
... <======= A bunch of .NET dependencies removed
├── blazor-web.csproj
├── obj
... <======= A bunch of .NET dependencies removed
└── wwwroot
 ├── css
 │ ├── app.css
 │ ├── bootstrap
 │ │ ├── bootstrap.min.css
 │ │ └── bootstrap.min.css.map
 │ └── open-iconic
 │ ├── FONT-LICENSE
 │ ├── ICON-LICENSE
 │ ├── README.md
 │ └── font
 │ ├── css
 │ │ └── open-iconic-bootstrap.min.css
 │ └── fonts
 │ ├── open-iconic.eot
 │ ├── open-iconic.otf
 │ ├── open-iconic.svg
 │ ├── open-iconic.ttf
 │ └── open-iconic.woff
 ├── favicon.ico
 ├── index.html
 └── sample-data
 └── weather.json

After the application-specific files and a metric ton of .NET
dependencies, we see a directory called wwwroot which represents
various assets and resources that will need to be served up to
complete the application. This includes fonts, some sample JSON data,
and a minimized Bootstrap8 base for the application.

I cannot give a detailed tutorial on Razor components and everything
that goes into them, but I want to walk through the basics of the
application to allow you to thread the needle with respect to its
functionality. The main views are stored in the Pages
directory. Shared layouts are stored in the Shared directory. The
main application file shown in Example 13-6 is in App.razor
in the main project directory.

Example 13-6. The top level application component defined in Razor

<Router AppAssembly="@typeof(Program).Assembly" PreferExactMatches="@true">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

This represents high level details of the application including the
default layout identified as a MainLayout. If it is unable to find a
working layout, notice it has a default message. This is an SPA we are
expecting to be served over HTTP, so we do need a mechanism for
routing endpoints to pages. We will see those details shortly.

In Example 13-7 we have the default layout from
Shared/MainLayout.razor. We can see that it inherits behavior from a
LayoutComponentBase and is comprised by a NavMenu in a side bar
<div> element on the left. This highlights that Razor components mix
C# object interactions and HTML layouts. It is a bit of a funky
syntax, but once you get used to it, it is not especially onerous.

Example 13-7. The default layout is a shared template

@inherits LayoutComponentBase

<div class="page">
 <div class="sidebar">
 <NavMenu />
 </div>

 <div class="main">
 <div class="top-row px-4">
 About
 </div>

 <div class="content px-4">
 @Body
 </div>
 </div>
</div>

By convention, the file Index.razor holds the landing page just like
most websites are defined by a file called index.html. In
Example 13-8, the body of this component will be inserted into
the @Body location in the MainLayout when the default route is
invoked.

Example 13-8. The default route points to Index.razor in the Pages directory

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

We see our first @page directive above which indicates to the main
application that default HTTP requests to “/” should point to this
rendered page. We see our typical friendly greeting rendered as HTML
as well as an embedded component for a survey.

As this page and its assets do need to be served over HTTP, we will
start it up using the following command.

brian@tweezer ~/g/w/s/blazor-web> dotnet run
Building...
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: /Users/brian/src/blazor-web

In Figure 13-5 you will see the generated output if you
point your browser to http://localhost:5000. If you wish to see all of
the .NET assemblies and the runtime loaded, make sure to open up the
network view first. Note that if you click on the survey link, it will
take you to an actual SurveyMonkey survey!

[image: Generated Blazor WebAssembly application in action]
Figure 13-5. Generated Blazor WebAssembly application in action

Routing to a read-only rendered HTML snippet is cool and all, but how
about maintaining some state and using non-default routes? The Counter
link on the left in the sidebar will take you to a view rendered from
the Pages/Counter.razor file shown in Example 13-9.

Example 13-9. A page with stateful fields and interactive UI elements

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 currentCount++;
 }
}

We see some more interesting behavior in this code sample. First, you
will notice the @page directive points to a location other than the
default route so you can imagine setting up multiple views for your
SPA. You see some more of the funky syntax, but this time we define a
<button> element and the behavior we wish to invoke when the user
presses it. In this case, the @onclick hint tells us we want to call
a function called IncrementCount on our component. This is defined
in the @code block further down as is the state the component will
maintain in a field called currentCount. This is intialized to 0 but
is incremented every time the button is pressed.

While you may not choose to embed your components directly in the
.Razor files like this, it is at least possible to do so and makes
for a pretty simple effort to get state maintained and reflected in
the view. Click on the Counter link and see it in action. Stop the
server and try printing out a message to the console using
Console.WriteLine every time the button is pressed. Spend a minute
marveling how far you have come in this book compared to our early
laments about WebAssembly not supporting strings.

The final thing I want to point out here is the contents of the
Pages/FetchData.razor file shown in Example 13-10. This
includes a bunch of details that you would need to handle for a more
useful SPA such as fetching remote data, using conditional logic in
the view, and iterating over the data that you have fetched.

Example 13-10. A more sophisticated page with a dependency-injected HttpClient

@page "/fetchdata"
@inject HttpClient Http

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)
{
 <p>Loading...</p>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var forecast in forecasts)
 {
 <tr>
 <td>@forecast.Date.ToShortDateString()</td>
 <td>@forecast.TemperatureC</td>
 <td>@forecast.TemperatureF</td>
 <td>@forecast.Summary</td>
 </tr>
 }
 </tbody>
 </table>
}

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>("sample-data/weather.json");
 }

 public class WeatherForecast
 {
 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string Summary { get; set; }

 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
 }
}

Most of this sample should be pretty clear to developers familiar with
C# and .NET functionality. We have handling for an empty initial data
set. The code includes a function that return an asynchronous Task
that will be used to fetch the JSON data stored in the
wwwroot/sample-data/weather.json file. Again, this is technically
not part of the application so it will not be compiled into the
assemblies but will instead be served up similarly to the other HTTP
resources.

You have seen enough to know that we could import a JavaScript
function that would allow us to use an XMLHttpRequest or fetch
request to retrieve data. One of the nice things about this use case
for integrating WebAssembly, the web, and a platform like .NET is that
the platform provides this functionality directly in a convenient
mechanism.

Notice the second directive at the top of Example 13-10. This
is a dependency injection directive. If you are familiar with
container-based frameworks like Spring, you will know this is a
declarative way to request an object of the right type to be made
available on our component. It may not be clear where this object
instance is going to come from. If you take a gander at
Example 13-11, this is our main program that will initiate the
whole process. We highlight below where the HttpClient is added to
our component.

Example 13-11. The main program for our project

using System;
using System.Net.Http;
using System.Collections.Generic;
using System.Threading.Tasks;
using System.Text;
using Microsoft.AspNetCore.Components.WebAssembly.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

namespace blazor_web
{
 public class Program
 {
 public static async Task Main(string[] args)
 {
 var builder = WebAssemblyHostBuilder.CreateDefault(args);
 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp
 => new HttpClient {
	 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
	}); [image: 1]

 await builder.Build().RunAsync();
 }
 }
}

	[image: 1]

	The HttpClient instance is added as a scoped component grounded in our deployed context.

As you can see on the indicated line, an instance of the
System.Net.Http.HttpClient object is added as a scoped component
that is available to be injected into our pages. This way our
page component does not need to worry about the lifecycle or configuration
for this object, we get to reuse the functionality, and do not have to
perform additional configuration to pass an imported function into our
code at all.

Even though we have only looked at the scaffolding project generated
by the command line dotnet tool based on a Blazor WebAssembly
project, I hope you have a good idea what this use case does for
us. We essentially have an environment that benefits from WebAssembly
without having to expose it as a prominent feature of the development
runtime if you do not want it to. The application we are building upon
reuses .NET frameworks and components, the Razor syntax, and, as we
saw, a bunch of other functionality.

On the one hand, this will give C# developers entree to a simple way
to develop applications that can be deployed to the browser. As one of
the optional constraints detailed in Dr. Roy Fielding’s
thesis9, this is
a very useful way to extend the behavior of our “universal client”.

Developers using .NET have clearly had ways of building web
applications, but, like other platforms they are a mixture of C# (or
other .NET language on the backend) and then JavaScript in the
browser. We have now opened up a path toward a fairly significant
amount of reuse between desktop enterprise applications and those that
can now run in a browser. It is not a direct path, but I imagine it
will get even better over time where you can simply recompile a
codebase to target other platforms.

That is when I think this WebAssembly use case will perhaps make an
even bigger splash. If the bosses realize that they can have
significant reuse from their codebases and have C# developers have an
easier time building web pages, I think there will be a dramatic shift
in the front end technologies used for enterprise applications back to
.NET.

Uno Platform

One final use case for WebAssembly and .NET integration deserves
mention because it has, surprisingly, even broader reach than the
previous example. The Uno Platform10 is a multi-platform
development framework for building pixel-perfect applications with C#
and WinUI. From a single codebase, you can target Windows, iOS, macOS,
Android, Linux and now, thanks to WebAssembly, the web. This is a
radically different prospect than Blazor promises even though
Blazor-based applications should run in many of these environments in
browsers.

The difference is that Uno is targeting native applications as well
and making them look identical in every environment. This has been one
of the hobgoblins of cross-platform development for my entire
career. You either have multiple codebases and target native
applications that look suitable for the operating system (e.g. an
application looks like a macOS application when running there), or you
have a single codebase that looks the same everywhere, and therefore,
not like a native application. Neither is an ideal situation. You do
not want your application to behave differently than the ones users
are comfortable with on their main desktop environment, but you also
do not want to rebuild an application multiple times.

There have been innumerable solutions to the common look and feel
approach, but most of them look and feel terrible. The ones that are
passably attractive and useful are limited to native applications, not
running in the browser. This is for reasons that I hope are pretty
clear by now. The native libraries that provide the common look and
feel are not available in the browser. Even if it were worth the time
to emulate using Canvas-graphics and WebGL or something, the codebases
would have to be JavaScript and not C, C++, or C# like the other
codebases.

This is what is so compelling about the Uno Platform. They really seem
like they have cracked this nut with some solid engineering and
abstractions. .NET deserves a big portion of the credit, but
WebAssembly is the final piece of the puzzle.

Elsewhere in this book, we have used WebAssembly as the prominent
vision for developing our applications. This includes the benefits and
limitations that it provides. We have seen a variety of solutions
around these limitations with additional tooling, infrastructure, new
proposals to extend the platform and more. With both Blazor
WebAssembly and now also with the Uno Platform, WebAssembly is simply
a convenient implementation detail. With Blazor, whether you are
hosting on the server or in the browser does not materially affect the
development style. Both use Razor components and JavaScript
interoperability. The server model just uses more of a separation and
an independent communication model.

With the Uno Platform, the dominant style, codebase and abstractions
are built around Xamarin11, an open
source platform that provides cross-platform development targeting
Android, iOS, macOS, Linux or anywhere there is a .NET runtime
available. Given the portability of the Mono platform, this is the
means of ubiquitous native support.

Xamarin includes a user interface technology called Xamarin.Forms that
builds upon XAML component binding. Uno does not use this part of
Xamarin, but instead focuses on WinUI-based applications. WinUI is a
modern user interface toolkit also built upon XAML that provides
Fluent Design12, accessible
applications, and other modern application development techniques.

In Figure 13-6 you can see the high level architecture of
the Uno Platform. On Windows, it is understandably a native platform
for these technologies. When targeting iOS, Android, and macOS, the
Uno Platform uses Xamarin Native libraries with WinUI, a combination
supported by the .NET 5 and .NET 6 platforms. On Linux, they do
something cool with the Skia library13 which is also
WebAssembly-friendly14. And, finally, because
the Mono runtime has been compiled to WebAssembly and is available in
browser as you have seen, it is the basis of the strategy to target
browsers.

[image: The Uno Platform Architecture]
Figure 13-6. The Uno Platform Architecture

Once again, there is a tremendous amount of engineering that has gone
in to provide a pixel-perfect cross-platform solution with this
remarkable scope. My main interest is to let you know about this use
case and let you investigate it for your own needs, so I will leave it
to you to explore the Uno Platform. As incentive, however, I want to
point out some examples of it in action that I think will underscore
the value proposition.

First, the NuGet Package Explorer (NPE), originally a .NET 6-based
Windows Presentation Foundation (WPF)-based application, has been
ported to a Progressive Web App (PWA) based on the WebAssembly
target. This is an application that had been downloaded hundreds of
thousands of times as a native application. It is now not only
available as a web application, it also runs with a consistent look and
feel across all of the various platforms Uno supports. You can see the
NPE in action in Figure 13-7 and give it a shot at https://nuget.info.

[image: The NuGet Package Explorer running in Firefox on macOS]
Figure 13-7. The NuGet Package Explorer running in Firefox on macOS

The Uno Platform Playground15 is
another great way to get more comfortable with the combination of
technologies and how they come together. There are a significant
number of examples for you to explore via the snippets
menu. Figure 13-8 shows the Cards example which includes
a ListView XAML element populated by elegant looking cards.

[image: The Uno Platform Playground]
Figure 13-8. The Uno Platform Playground

Finally, Figure 13-9 shows a more complicated example of a
Uno-based Ray Tracer and the rendered output. Not only is it a more
sophisticated application that produces slick results, it is also a
way of comparing the relative performance for ray tracing in different
languages and runtime environments16.

[image: A Ray Tracer Demo on the Uno Platform]
Figure 13-9. A Ray Tracer Demo on the Uno Platform

There is clearly a lot more that could be said about the integration
of the two independent but powerful platforms of .NET and
WebAssembly. There are several new books emerging on the topic that I
encourage you to check out, but I have also tried to provide you
several places to find working projects and code examples for your own
explorations.

In this chapter we have seen exciting results that I think portend
coming shifts in our industry. At a minimum, it also shows
how C# developers can stick with the language they know and love and
be effective building applications that run in a variety of places
without having to rely solely on JavaScript in the front end. In the
next chapter, we will see a way to make it easier for JavaScript and
TypeScript developers to benefit from WebAssembly as well.

1 If you are not familiar with the name, foosball is a popular game in many homes and recreation facilities where humans manipulate soccer players on metal rods. You can see more here: https://en.wikipedia.org/wiki/Table_football
2 Fortunately I was not part of the project that blew up cadavers in the desert to determine the impact on bodies!
3 Mono is an open source, cross platform .NET framework. https://www.mono-project.com
4 NuGet is a package management systems for managing code dependencies ala NPM. The Wasmtime NuGet package is available here: https://www.nuget.org/packages/Wasmtime
5 The next two examples are based upon the Wasmtime .NET library examples here: https://github.com/bytecodealliance/wasmtime-dotnet
6 More details about Blazor can be found here: https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
7 You can find details about SignalR here: https://docs.microsoft.com/en-us/aspnet/core/signalr
8 Bootstrap is an open source stylesheet system that is widely used to produce responsive, mobile-first applications. You can find more details here: https://getbootstrap.com
9 While it is incorrect to say Dr. Fielding “invented” REST, his thesis gave formal definitions to many of the ideas that had already been implemented in early web infrastructure. His thesis was an analysis of architectural styles of which REST is one. It’s a very readable thesis and worth your time: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
10 More details about the Uno Platform are available here: https://platform.uno
11 Xamarin is a cool platform in and of itself, but, without WebAssembly, cannot target the browser in the same way. More details are available here: https://dotnet.microsoft.com/apps/xamarin/cross-platform
12 Fluent Design is a design language from Microsoft introduced in 2017 to target modern UI systems.
13 Skia is a very nice cross platform open source 2D graphics library. More details can be found here: https://skia.org
14 More details about the Skia and CanvasKit WebAssembly use case can be found here: https://skia.org/docs/user/modules/canvaskit/
15 The Uno Platform Playground is available here: https://playground.platform.uno/#wasm-start
16 The RayTracer app is visible here: https://raytracer-mono-aot.platform.uno and the GitHub repo is here: https://github.com/unoplatform/Uno.RayTraceBenchmark

Chapter 14. Using AssemblyScript and WebAssembly

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 14th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.

There’s something strange going on tonight

There’s something going on that’s not quite right

Joey’s nervous and the lights are bright

There’s something going on that’s not quite right

Wire

It is getting harder for me to make cultural references that the
general populace gets. There is a good chance that many of the people
reading this book will not recognize this song, but it is still
important to reference the classics. For those of you cultured
enough1 to recognize the aforementioned
song as an R.E.M. song on the “Document” album2, you may be surprised to learn it is a
cover. The original was done by the band Wire. If you listen to the
original, your reaction to this might be that something strange is
going on just like the song says. It is both familiar and not at the
same time.

In this chapter, I am going to introduce a language called
AssemblyScript which might prompt the same reaction. It is a
Binaryen-based compiler that turns a subset of TypeScript into
WebAssembly. It is obviously very similar to TypeScript (which is, in
turn, similar to JavaScript), but, upon closer inspection, something
strange is going on here too. Still, it fits a different use case for
WebAssembly and shows you how versatile this platform can be.

TypeScript is a popular superset of JavaScript that transpiles to
regular JavaScript so that it will run anywhere JavaScript will. Its
main purpose is to express your intent using a strongly-typed language
to minimize the kind of annoying and rampant type errors that fill the
average JavaScript codebase. As such, even though it uses a compiler,
its goal is more about safety than performance.

If you have not used a strongly-typed language before, the idea may
seem to be more of a burden than a benefit. To be fair, some
developers do feel that way. However, a type system-focused language
defines the meaning and operations that apply to different types. A
compiler enforces that you only attempt to invoke operations on the
types that define them so you do not end up with runtime errors. As a
consequence, strongly-typed systems help you produce software that is
more correct, immutable, encapsulated, composable, and, often,
readable. This is not to say that you cannot do the same with
loosely-typed systems, you just have less assistance when you try to
do so.

TypeScript was developed at Microsoft as a response to its increased
use of browsers to deliver their office application suites and other
business systems. While individual applications in JavaScript can be
developed easily, complex, high-performance suites of applications
present challenges once they grow past a certain size. This was an
attempt to solve some of those growth issues while still staying
within the vibrant JavaScript ecosystem.

As a very simple example, Example 14-1 shows us a simple
TypeScript snippet that defines a function. Notice that the parameter
is typed as a string. Idiomatically, it is used just like a piece of
regular JavaScript.

Example 14-1. Basic TypeScript example.

// src/greeter.ts
function greeter(person: string) {
 return "Hello, " + person;
}
let user = "Mannequin Skywalker";
document.body.textContent = greeter(user);

Browsers and host environments such as Node.js and Deno do not execute
TypeScript, however. The compiler will transpile
it3 into regular
JavaScript.

brian@tweezer ~/s/t/hello-ts> tsc src/greeter.ts
brian@tweezer ~/s/t/hello-ts> ls -alF src
total 32
drwxr-xr-x 6 brian staff 192 Jan 14 17:17 ./
drwxr-xr-x 8 brian staff 256 Jan 14 16:55 ../
-rw-r--r-- 1 brian staff 125 Jan 14 17:19 greeter.js
-rw-r--r-- 1 brian staff 135 Jan 14 17:19 greeter.ts

You will have to look a little closely at the generated JavaScript to
tell the difference. In Example 14-2 you can see that all
that has really happened is that the type has been removed.

Example 14-2. JavaScript generated from TypeScript

// src/greeter.js
function greeter(person) {
 return "Hello, " + person;
}
var user = "Mannequin Skywalker";
document.body.textContent = greeter(user);

So, what is the big deal? Why do we put the type there just to take it
away? The benefit of adding the types is that the compiler can catch
errors. By ensuring your code is not used wrongly (to the best of its
ability), the overall correctness and quality of the software should
improve. We see such an error in Example 14-3 which would not
be detected until runtime in JavaScript.

Example 14-3. A type error in TypeScript

// src/greeter.ts
function greeter(person: string) {
 return "Hello, " + person;
}
let user = [0, 1, 2];
document.body.textContent = greeter(user);

The TypeScript compiler is easily able to stop this mistake from
happening at compile time, a much better time to find errors!

brian@tweezer ~/s/t/hello-ts> tsc src/greeter.ts
src/greeter.ts:7:37 - error TS2345: Argument of type 'number[]' is not assignable to parameter
of type 'string'.
7 document.body.textContent = greeter(user);
                                      ~~~~
Found 1 error.


Even better, TypeScript-aware development environments will be able to
flag the error as soon as you enter the code. VS Code from Microsoft
and other popular IDEs have very nice support for developer assistance
using this language.








“Definitely not a TypeScript to WebAssembly compiler”


This section header is a direct quotation from the AssemblyScript
GitHub page. It is part of an attempt to be clear about the role it
plays and that it will not be possible to simply compile a typical
TypeScript codebase to WebAssembly. That being said, AssemblyScript is
an attempt to provide a JavaScript-like (and, more to the point
TypeScript-like) experience but with the performance and security
WebAssembly offers. It is largely considered a useful way of building
higher-performance Web-based applications without having to rely on C,
C++ or Rust. It should be a relatively straightforward transition for
existing Web developers to move into and benefit from this platform.


First of all, AssemblyScript does not run as JavaScript, it runs as
WebAssembly. The compiler generates WebAssembly modules which should
effectively work like other modules we have seen. There are some cool
features that you will see below, however, for allocating memory in
your module’s Memory instances, passing strings back and forth
between JavaScript host environments and Wasm modules, and more.


Unfortunately, where I did attempt to teach you some C in the C-based
chapters and Rust in the Rust-based chapters, I do not really have the
space to teach you much TypeScript and then tell you how
AssemblyScript is different. So, I will assume that you know
TypeScript4 and will tell you briefly how
AssemblyScript differs before showing some basic examples.


First, while TypeScript does enforce types, it has any and
undefined for better compatibility with untyped
JavaScript. AssemblyScript does not support either of these
types. Another difference is the lack of union types, one of my
favorite features of TypeScript.


Because AssemblyScript is compiled into Wasm, it has no ability to do
anything with network connections, file system access, DOM
manipulation just like any other module. Those have to be provided
through import objects or through WASI as you will see momentarily.


AssemblyScript lives very close to the WebAssembly instruction set we
have seen throughout the book. The numeric types are basically what
you would imagine them to be including i32, i64, f32, f64 and,
usize which is used for indexing memory. As the MVP version of
WebAssembly supports 32-bit addressing, that currently corresponds
with the i32 type.


In addition, there is currently no support for implementing
interfaces, closures, exceptions or access modifiers for classes
(public, private, or protected). The good news is that most of
these limitations will be overcome eventually. Some of them can be
addressed directly by future versions of the AssemblyScript compiler
while others will rely on the WebAssembly platform to evolve.


There are additional differences, but rather than spending any more
time focusing on how they are different (there are better
documentation resources online), let’s see something positive and look
at AssemblyScript in action.

















Simple Example


By now you should not be surprised that our first example will be to
add two numbers together. It is just the simplest thing we can show in
WebAssembly usually before things get weird. You will see just such a
starter example in Example 14-4.


Example 14-4. The ubiquitous code to add two integers together


export function add(a: i32, b: i32): i32 {
 return a + b;
}



If you have installed the AssemblyScript compiler as detailed in
Appendix A, then you should be able to run the following
command.

brian@tweezer ~/g/w/s/ch14> asc hello.ts -b hello.wasm
brian@tweezer ~/g/w/s/ch14> ls -alF
total 98560
drwxr-xr-x   7 brian  staff       224 Jul 18 15:39 ./
drwxr-xr-x  13 brian  staff       416 Jul 14 11:52 ../
-rw-r--r--   1 brian  staff        62 Jul 18 15:39 hello.ts
-rw-r--r--   1 brian  staff        91 Jul 18 15:39 hello.wasm


One of the things that should jump out at you is how small the Wasm
module is. Obviously there is not a ton of functionality there yet,
but there is also very little overhead. Calling on the services of our
exploratory tools shows us what else is going on.

brian@tweezer ~/g/w/s/ch14> wasm-objdump -x hello.wasm

hello.wasm:	file format wasm 0x1

Section Details:

Type[1]:
 - type[0] (i32, i32) -> i32
Function[1]:
 - func[0] sig=0 <add>
Table[1]:
 - table[0] type=funcref initial=1
Memory[1]:
 - memory[0] pages: initial=0
Global[3]:
 - global[0] i32 mutable=0 - init i32=8
 - global[1] i32 mutable=1 - init i32=16392
 - global[2] i32 mutable=0 - init i32=16392
Export[2]:
 - func[0] <add> -> "add"
 - memory[0] -> "memory"
Elem[1]:
 - segment[0] flags=0 table=0 count=0 - init i32=1
Code[1]:
 - func[0] size=7 <add>



Unless you tell it otherwise, the AssemblyScript compiler will
generate a Memory instance and export it for you
automatically. Notice that the compiler has also exported our function
just by adorning the function with the keyword export. This makes it
very easy to use these compiled functions from JavaScript.


If we use our simple utils.js file from before and a simple HTML
scaffolding like Example 14-5 we should see what we expect to
see in the JavaScript console. There are good tools for generating
more elaborate scaffolding for AssemblyScript projects but I want to
keep things simple for the time being.


Example 14-5. Simple HTML to load our AssemblyScript-base Wasm module


<!doctype html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <link rel="stylesheet" href="bootstrap.min.css">
    <title>Basic AssemblyScript</title>
    <script src="utils.js"></script>
  </head>
  <body>
    <script>
      fetchAndInstantiate('hello.wasm').then(function(instance) {
          console.log(instance.exports.add(12, 30));
      });
    </script>
  </body>
</html>



In addition to making it easier to export functions from Wasm modules,
AssemblyScript also makes it easy to import functionality for the
module to call into its JavaScript environment. In
Example 14-6 you can see we are expressing an intent to import
a function called log() by using the declare keyword.


Example 14-6. Declaring functions for import to AssemblyScript


declare function log(num: i32): void;

export function addAndLog(a: i32, b: i32): void {
 log(a + b);
}



You still have to provide the expected function as a function on an
imported object as per usual, but the syntax for declaring it is much
simpler. Note the namespace convention in Example 14-7.


Example 14-7. HTML that provides our expected imported function


<!doctype html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <link rel="stylesheet" href="bootstrap.min.css">
    <title>Importing JavaScript Functions to AssemblyScript</title>
    <script src="utils.js"></script>
  </head>
  <body>
    <script>
      var importObject = {
	hello: {
	  log: value => console.log(value)
	}
      };

      fetchAndInstantiate('hello.wasm', importObject).then(function(instance) {
        instance.exports.addAndLog(12, 30);
      });
    </script>
  </body>
</html>



An AssemblyScript module named hello.wasm will expect a namespace of
hello to be available in the imported object. You can verify this by
checking out what the module expresses in its Import section.

brian@tweezer ~/g/w/s/c/hello-imp> wasm-objdump -x hello.wasm
hello.wasm:	file format wasm 0x1

Section Details:

Type[2]:
 - type[0] (i32) -> nil
 - type[1] (i32, i32) -> nil
Import[1]:
 - func[0] sig=0 <hello.log> <- hello.log
Function[1]:
 - func[1] sig=1 <addAndLog>
Table[1]:
 - table[0] type=funcref initial=1
Memory[1]:
 - memory[0] pages: initial=0
Global[3]:
 - global[0] i32 mutable=0 - init i32=8
 - global[1] i32 mutable=1 - init i32=16392
 - global[2] i32 mutable=0 - init i32=16392
Export[2]:
 - func[1] <addAndLog> -> "addAndLog"
 - memory[0] -> "memory"
Elem[1]:
 - segment[0] flags=0 table=0 count=0 - init i32=1
Code[1]:
 - func[1] size=9 <addAndLog>



One final thing that the AssemblyScript compiler does is to make it
pretty easy to work with a module’s Memory instance5. As I mentioned previouly, unless you tell it not to, the
compiler will create a Memory instance for your module. In
Example 14-8 we grow this memory by a page to make sure we
have 64K of memory to play with (although we will not need anything
near that much, it is the minimum size we can request).


Example 14-8. AssemblyScript and Memory instance manipulation


memory.grow(1);

store<u8>(0, 100);

export function whereToStore(): i32 {
  let basePtr = load<u8>(0);
  return basePtr;
}

export function readFromLocation(loc: i32): i32 {
  let value = load<u8>(loc);
  return value;
}



After we guarantee some space to use, we write a location into the
zeroth position. We then have two functions exported to our JavaScript
host environment. One reports the current location to write to while
the other gives you the ability to read from a specified location. The
methods load<T>() and store<T>() are convenient wrappers around the
actual low-level WebAssembly instructions that provide similar
behavior.


As you know and will see again shortly, we could manipulate the memory
buffer directly. I just wanted to show you some options on both
sides. A more sophisticated example might give the ability to write
memory to the next available location and auto-increment the location.


There is an example of using this functionality from JavaScript in
Example 14-9.


Example 14-9. Interacting with Memory


<!doctype html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>AssemblyScript and Wasm Memory</title>
    <script src="utils.js"></script>
  </head>
  <body>
    <script>
      fetchAndInstantiate('mem.wasm').then(function(instance) {
        var mem = instance.exports.memory;
        var u8Arr = new Uint8Array(mem.buffer);

        let location = instance.exports.whereToStore();
	u8Arr[location] = 123;

	let value = instance.exports.readFromLocation(location);
	console.log("Round-tripped value: " + value);
      });
    </script>
  </body>
</html>



We do wrap the Memory instance’s buffer with a typed array. We
invoke the whereToStore() function and then write into our
Uint8Array at that location. Next we pass that location into the
readFromLocation() function exported from our module which loads the
value stored at the default location. Happily, when printed to the
console, the value is what we expect, "123".

















Garbage Collection and the AssemblyScript Runtime


One of the big holes in the WebAssembly MVP platform is a garbage
collection capability. Langauges like C/C++ and Rust do not need it,
but other higher languages will. There is a proposal working its way
through the standards process6,
but until it is available through the platform, various projects are
creating shims and add-on support.


If you are unfamiliar with the concept of Garbage Collection, it is
the automated cleanup of allocated resources when they are no longer
necessary. C and C++ require you to call malloc() and free() (or
new() and delete()) so there is nothing really automated about the
process. Rust has strict memory ownership guidelines as you saw in
Chapter 10 so that it knows when values go out of scope
lexically and can then clean things up. These two approaches represent
tradeoffs of low-overhead but dangerous if you mess it up or
heavy-handed but safe. Python uses reference counting to know when
memory can be freed. Other languages such as Java and JavaScript use
garbage collection and track memory references through a variety of
sophisticated but time-consuming algorithms. Part of what has kept
Java as a bit player in the embedded computing space is that these
algorithms can kick in unpredictably and block other processing from
happening. This is unacceptable for high-precision devices used for
medical or industrial safety purposes. As always, there are tradeoffs
everywhere.


AssemblyScript added a Garbage Collection capability as of version
0.18. I will demonstrate a more convenient way of interacting with it
in a later section via the Loader. But for now I just want to mention
it because you can use it directly if you tell the AssemblyScript
compiler to export access to the runtime with the --exportRuntime
directive. Not only that, you have the option of controlling the
behavior of the runtime by using the --runtime parameter. This
allows you to specify whether it should use an incremental, minimal,
stub or even a custom pluggable implementation.


I think a deep introduction to this process is outside of the scope of
this chapter, but could be useful depending on what you attempt to do
with AssemblyScript7.


I did want you to know about its existence, though, and to make you
aware that it is possible to allocate memory from a module’s exported
Memory instance as well as pinning and unpinning references that
point into it so that they will or will not be collected by other
processes. We will see some examples of using these abilities below.

















AssemblyScript Standard Library


Another nice addition to AssemblyScript’s ecosystem is a standard
library of structures and functionality that you would expect from a
modern programming infrastructure. As we have seen, WebAssembly
requires these common functions to be provided by the host environment
through import objects or more generally through WASI capabilities.


This library8 has support for
math functions, dates, string manipulation, and more.


As a simple example, we will build a set of functions for calculating
details of a circle based on its radius. In Example 14-10 we
have three exported functions for calculating the diameter (2r),
circumference (2πr), and area (πr^2)9. Because AssemblyScript defaults to f64 numbers, we cast
them to f32 numbers before returning the values from the functions.


Example 14-10. AssemblyScript that uses the Standard Library


export function diameter(radius: f32): f32 {
  let diam = <f32>(2.0 * radius);
  return diam;
}

export function circumference(radius: f32): f32 {
  let circ = <f32>(2.0 * Math.PI * radius);
  return circ;
}

export function area(radius: f32): f32 {
  let area = <f32>(Math.PI * Math.pow(radius, 2));
  return area;
}



In Example 14-11 we instantiate our module and invoke the
functionality. While it would obviously be faster to just do this
simple math in JavaScript, more sophisticated calculations benefit
from having this functionality available within the module definition
so we do not have to manually request such functionality from within
our AssemblyScript algorithms.


Example 14-11. Invoking AssemblyScript that uses the Standard Library from JavaScript


<!doctype html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>AssemblyScript Standard Library</title>
    <script src="utils.js"></script>
  </head>
  <body>
    <script>
      fetchAndInstantiate('stdlib.wasm').then(function(instance) {
        let diameter = instance.exports.diameter(2.0);
	console.log("Diameter of a circle for a radius 2.0: " + diameter);
	let circumference = instance.exports.circumference(2.0);
	console.log("Circumference of a circle for a radius of 2.0: "
	  + circumference);
	let area = instance.exports.area(2.0);
	console.log("Area of a circle for a radius of 2.0: " + area);
      });
    </script>
  </body>
</html>



If everything is as it should be, you should see the following printed
out to your JavaScript console when you serve the HTML to the browser
over HTTP.

Diameter of a circle for a radius 2.0: 4
Circumference of a circle for a radius of 2.0: 12.566370964050293
Area of a circle for a radius of 2.0: 12.566370964050293

















AssemblyScript Loader


In order to move beyond the basics, we are going to rely on an
existing example from the AssemblyScript Examples GitHub repo. It
provides many of the talking points I wish to wrap up with so I
figured it was just as easy to use it as the basis of the next couple
of examples.


To start off with, clone the repository. We are going to focus on the
loader directory but please check out the other examples which
include fun uses of graphics, N-body simulators and more.

brian@tweezer ~/git-others> git clone https://github.com/AssemblyScript/examples.git as-examples
Cloning into 'as-examples'...
remote: Enumerating objects: 261, done.
remote: Counting objects: 100% (261/261), done.
remote: Compressing objects: 100% (163/163), done.
remote: Total 261 (delta 110), reused 215 (delta 72), pack-reused 0
Receiving objects: 100% (261/261), 553.00 KiB | 3.87 MiB/s, done.
Resolving deltas: 100% (110/110), done.
brian@tweezer ~/git-others> cd as-examples/
brian@tweezer ~/g/as-examples> ls
LICENSE      game-of-life interference loader       n-body       transform
README.md    i64          libm         mandelbrot   sdk
brian@tweezer ~/g/as-examples> cd loader


Once you are in the loader directory, install the dependencies and
then run the asbuild script (defined in the packages.json file).
This will create both optimized and unoptimized, debuggable versions
of the AssemblyScript code we will focus on with support for the run
time (because of the --exportRuntime directive).

brian@tweezer ~/g/a/loader> npm install

added 4 packages, and audited 5 packages in 1s

1 package is looking for funding
  run `npm fund` for details

found 0 vulnerabilities
brian@tweezer ~/g/a/loader> npm run asbuild

> @assemblyscript/loader-example@1.0.0 asbuild
> npm run asbuild:untouched && npm run asbuild:optimized

> @assemblyscript/loader-example@1.0.0 asbuild:untouched
> asc assembly/index.ts -b build/untouched.wasm -t build/untouched.wat --exportRuntime --sourceMap --debug

> @assemblyscript/loader-example@1.0.0 asbuild:optimized
> asc assembly/index.ts -b build/optimized.wasm -t build/optimized.wat --exportRuntime --sourceMap --optimize


The AssemblyScript code is located in the assembly/index.ts file. To
keep things manageable here, I will only show you some of the
important snippets. Example 14-12 shows us a surprisingly
trivial way of sharing strings back and forth between WebAssembly and
a JavaScript host environment. We are not going to be running in the
browser, but there are similar mechanisms for making this work too.


Example 14-12. AssemblyScript that uses WebAssembly strings


// see: tests/index.js "Test for Example 1"

export function getHello(): string {
  return "Hello world (I am a WebAssembly string)";
}



Pause and consider what is going on. AssemblyScript is defining a
string as a literal. This string will be allocated and initialized in
WebAssembly linear memory. All those details we puzzled over in
Chapter 4 seem like a distant memory at this point.


Example 14-13 is taken from test/index.js. At the top of this
file we load in the modules and then extract elements of the exported
runtime. This includes the ability to initialize strings and arrays,
pin the pointers so they will not be garbage collected and pass values
back and forth. I hinted at this capability in the previous discussion
about garbage collection.


Example 14-13. Setting up the use of WebAssembly strings in JavaScript


// Load the node module exporting our WebAssembly module
const myModule = require("../index");

// Obtain the runtime helpers for
const {
  // memory management
  __newString, __newArray,
  // garbage collection
  __pin, __unpin,
  // and interop
  __getString, __getArray, __getArrayView
} = myModule;



Example 14-14 finally represents the first test. The string
returned from our modules getHello() method will be allocated in our
module’s Memory instance. The location of this string in memory is
managed by the runtime, but we are able to pin it to keep it from
being garbage collected. The __getString() method will go through
the motions of wrapping the underlying buffer and converting the
string into a usable JavaScript string.


Example 14-14. Using the exported runtime for working with WebAssembly strings


// Test for Example 1: Passing a string from WebAssembly to JavaScript.
{
  console.log("Example 1:");

  // Obtain a pointer to our string in the module's memory.
  const ptr = __pin(myModule.getHello());

  // Print its contents
  console.log("  " + __getString(ptr));

  __unpin(ptr); // it is ok if the string becomes garbage collected now
}



If you have a strong stomach and a bold spirit, you can investigate
the loader’s implementation details including this function by
checking out the file
node_modules/@assemblyscript/loader/index.js. It may surprise you,
but you should be mostly comfortable with what is going on given where
we have been so far in this book.


Example 14-15. Window into the details of the AssemblyScript loader


...

  /** Reads a string from the module's memory by its pointer. */
  function __getString(ptr) {
    if (!ptr) return null;
    const buffer = memory.buffer;
    const id = new Uint32Array(buffer)[ptr + ID_OFFSET >>> 2];
    if (id !== STRING_ID) throw Error(`not a string: ${ptr}`);
    return getStringImpl(buffer, ptr);
  }

  extendedExports.__getString = __getString;
...



AssemblyScript decodes these strings into UTF-16 strings through
functions like getStringImpl() which is slightly above the
__getString() method in the index.js file. It, in turn, uses
elements of the AssemblyScript Standard Library for string
manipulation.


Example 14-16. Decoding Memory references using UTF-16 and AssemblyScript’s Standard Library


...
/** Gets a string from memory. */
function getStringImpl(buffer, ptr) {
  let len = new Uint32Array(buffer)[ptr + SIZE_OFFSET >>> 2] >>> 1;
  const wtf16 = new Uint16Array(buffer, ptr, len);
  if (len <= STRING_SMALLSIZE) return String.fromCharCode(...wtf16);
  try {
    return utf16.decode(wtf16);
  } catch {
    let str = "", off = 0;
    while (len - off > STRING_CHUNKSIZE) {
      str += String.fromCharCode(...wtf16.subarray(off, off += STRING_CHUNKSIZE));
    }
    return str + String.fromCharCode(...wtf16.subarray(off));
  }
}
...



I am not going to show you all of the details, but I wanted to show
you a little bit about what was going on behind the curtain. First of
all, you have been exposed to a lot of these details. Secondly,
AssemblyScript, the compiler and the Loader shield you from a lot of
this complexity so you can just focus on the expression of your
code. WebAssembly has some fairly primitive instructions, but relying
on high-level tools can keep us from having to deal with the annoying
fiddly bits that we started off with in the earlier chapters.


If you run the tests, you will see the first output from
Example 14-14 in the output. Test 2 does something similar but
from the other direction passing JavaScript string in so they are
converted into WebAssembly strings. There is another neat trick at
play in the file myConsole.ts which allows us to log back to the
JavaScript console seamlessly. I will let you dig into the details on
your own.

Example 1:
  Hello world (I am a WebAssembly string)


The other tests and examples do similar roundtrips for arrays and
classes. Overall, these examples highlight the sweet spot that
AssemblyScript fills. There is no single use case that makes
WebAssembly make sense. We have talked about reusing existing
libraries and writing low-level code in portable ways using Rust or C
for performance reasons.


If you have mostly been a JavaScript developer all of your
professional life, that is going to be a tall order to suddenly learn
a language like that. AssemblyScript brings a slightly strange but
still much more familiar language that you largely already know. It
allows you to compile it down to potentially higher-performance
code. That is a very nice additional use case indeed.










1 Also known as old.
2 Seriously, this is a classic album.
3 Transpilation is the process of translating one source codebase into another codebase as opposed to a binary executable (compilation). You can read more about it here: https://en.wikipedia.org/wiki/Source-to-source_compiler
4 There are several great tutorials and walkthroughs to learn TypeScript through their website: https://www.typescriptlang.org
5 This example and others were inspired by the website https://wasmbyexample.dev/home.en-us.html by Aaron Turner (@torch2424) who is a talented, generous developer and a badass DJ too. Check him out.
6 This proposal requires the completion of several other proposals first as indicated in Chapter 12 but you can read more about it here: https://github.com/WebAssembly/gc/blob/master/proposals/gc/Overview.md.
7 You can find more details about what is provided with the AssemblyScript Garbage Collector support here: https://www.assemblyscript.org/garbage-collection.html#runtime-interface
8 You can find more details about the AssemblyScript Standard Library here: https://www.assemblyscript.org/stdlib/globals.html
9 While it is commonly believed that π are squared, it isn’t true. π are round. Cornbread are squared.




Chapter 15. Applied WebAssembly: In the Cloud and on the Edge



A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 15th chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.




I’ve looked at clouds from both sides now

From up and down and still somehow

It’s cloud illusions I recall

I really don’t know clouds at all


Joni Mitchell




Given the popularity and ubiquity of cloud computing initiatives these
days, it may seem odd to start this chapter with a quotation about not
understanding clouds. If we are being honest, I think that it is fair
to say that a lot of people do not understand the full scope of using
cloud computing. There is the obvious speed improvement and ease of
spinning up instances in contrast to the often untenable scenario of
procuring physical hardware systems. But everything in the cloud is
just as silly of a strategy as nothing in the cloud.


The real driver of your thinking about cloud strategy should not just
be about procurement and developer productivity even though those are
important considerations. A more general idea is to consider the cost
of computation. This is a more complex calculation than it may seem
though both in terms of what I mean by “cost” and “computation”. In
this chapter, I am going to focus on how where we run our computation
is changing rapidly and why WebAssembly is going to be a key part of
that.








A Short, Personal Detour


Earlier in my career, I was one of the first employees at a company
called Parabon1. We
built an Internet distributed computing platform to aggregate idle
time on computers all over the world. Keep in mind this was
pre-cloud. In addition to porting our engine with its Java-based core
for safety to eight platforms, we also built the client APIs, the
server infrastructure for scheduling the work and a half-dozen or more
vertical applications to use it. The kind of jobs we ran included gene
sequence comparisons that scaled linearly, genetic algorithm-based
feature selection for exhaustive regression searches, and a Monte
Carlo-based rendering system.


The whole point of this initiative was to find arbitrage opportunities
in computational capacity. Organizations did not buy enough computing
power for their peak needs and therefore there were ceilings on what
they could tackle computationally. We gave them an elastic capability
for one class of problem known as “embarrassingly parallel”
problems2. Customers
could ask for as many or few computational resources as they needed to
solve a particular problem. This gave them a knob to turn to incur
marginal costs based on their needs.


When doing exhaustive searches, this allowed them to include more
features than they normally had the resources to analyze. This was
helpful in one case to a pharmaceutical company to find why a
certain therapy only worked for some patients and not others. Another
example of a good match was a NASA consultant who was able to speed up
his simulations from taking nine months on equipment he had access to
under normal circumstances to four to five hours on our platform. In
order to achieve the portability across the various operating systems
and the protection we promised to our computation providers, he had to
port his code from Fortran to Java. While Fortran could run circles
around the upstart language from Sun at the time in a direct
competition, we would make it up with parallelization.


Even with the limitation of the embarrassingly parallel problem
constraint, given where things were with broadband roll out at the
time, data-intensive tasks such as the digital rendering were not good
fits for our platform. The compute to data ratio was too low. It cost
too much in terms of time and bandwidth to get the data where it
needed to be. What we were fundamentally offering was a form of
computational intermediation. Even at the time, I felt like more was
needed to really provide the most value, but cloud computing had not
emerged yet to give us a fuller vision of resource virtualization.


Another work experience that drove my thinking was my time in the
video game industry. I worked on a game that was based on another game
that had 40 million users so we were pretty sure we were going to need
to scale up. Putting everything into the cloud would have been cost
prohibitive, however, so we ran a mix of data center equipment that we
purchased and set up and then used cloud services as an elastic spill
over. Again, we were able to use the extra resources only when we
needed them and did not have to pay for them to be running all of the
time.

















Our Industry Evolves


With that background in place, when I talk about the “cost” of
computation, I mean the time cost, the money cost, the opportunity
cost of not having elastic supply, the power consumption cost and the
latency cost. These are all costs that we are trying to minimize these
days. Cloud computing is one part of the strategy, but so are
architectural designs such as microservices and serverless
functions. Apple’s M1 designs are another. There are two CPUs in the
M1 chip, one that is more performance-oriented and one that is more
power consumption-oriented. Researchers are analyzing sophisticated
approaches for using machine-learning strategies to order LLVM
optimizations to either maximize performance or minimize power
consumption. The application code does not change, just its compiled
form.


Where and how we engage computational elements to solve problems has
become one of the most important aspects of a successful IT
strategy. This includes advanced and custom hardware such as
vectorizing CPU instructions3, graphics
processing units (GPUs), Field Programmable Gate Arrays
(FPGA)4,
Application Specific Integrated Circuits (ASIC)5
and Tensor Processing Units (TPU)6. Each of these
types of hardware has different capabilities, instructions, costs, and
performance characteristics. Mapping workloads to these elements is
going to be a big part of getting computation done in ways that
minimize a range of costs.


Physical location is another element of cost, because latency is, as
you know7,
something we cannot discount. If you are familiar with the concept of
cloud regions or the use of a content delivery network (CDN) to serve
up static resources, you will understand the benefit of getting things
closer to where your users are. Domain Name Service (DNS) trickery
allows an endpoint to be selected dynamically based upon the
geographic region a user is coming from.


Edge computing is an emerging service offering that takes these ideas
a step further to mix together the ideas of distributed computing (a
la Parabon), cloud hosting, and geographically distributed
resources. The difference is that we are no longer simply talking
about static resources, but executable code. The web architecture
allows us to push things all the way into the browser. As you have
seen, WebAssembly has a prominent role in this use case. Sometimes you
would like to go in browser or on device for privacy reasons,
low-latency user experiences, and more. At other times, you may not
want to run proprietary code on the user’s device, but will still want
to get close. This is the realm of Edge Computing. It is a continuum
of deployment localities that spans centralized data centers, regional
boundaries, service provider access point boundaries, on premise
systems, local access points, and on device. To say things have gotten
a little complicated would be an accomplished exercise in
understatement.


Implicit in this range of localities is a variety of hardware
architectures, privacy models, access to potentially-sensitive
information, and computational capabilities. The demand we put on the
NASA researcher I mentioned previously (i.e. porting his code to Java)
is unlikely to be a reasonable request these days. These environments
will need to give customers the freedom to choose their languages but
also provide the protection to avoid them stepping on each other in a
multi-tenant system.


A snapshot view of this continuum of locations can be seen in
Figure 15-1. Developers will want to be able to deploy
software artifacts across this landscape for different reasons. There
is value in doing large model training and data analysis in the
cloud. The results may not be well-suited to run on mobile devices or
embedded systems. Some services can be located closer to the users for
low-latency, better experiences. For intellectual property protection
reasons, you may not want to send some behavior all the way down to
the device. In other cases, privacy regulations such as Payment Card
Industry (PCI), Health Insurance Portability and Accountability Act
(HIPPA), and General Data Protection Regulation (GDPR) will encourage
or require you to.


We have strategies for deploying scalable infrastructure in the cloud
via containers-based enviornments and Kubernetes-driven
infrastructure. The vast majority of things that would do well in that
space would be completely useless in a mobile device or embedded
system.



[image: The continuum of locality and responsibility]
Figure 15-1. The continuum of locality and responsibility




WebAssembly and WASI provide a very good story to provide coverage
across all of this variance. I think they are going to shine in this
realm and catch fire beyond the promising uses we have seen so far. I
would like to introduce you to some of the leading projects at the
time of writing, but fully expect these to expand dramatically in the
near future.


In a recent talk8, Liam Randall from
Cosmonic and the wasmCloud project (introduced below) highlighted the
continuum I have been discussing. Take a look at
Figure 15-2 below.



[image: Evolution of Our Industry]
Figure 15-2. Evolution of Our Industry




What we see is how our industry has changed over time. What developers
need to be responsible for has been shrinking. What we can rely on our
runtime environments to provide has grown. Initially, we had to manage
everything. We had to buy the hardware, install the operating systems
and patches and any dependent libraries or applications. Keeping these
systems patched was a full-time job and could often introduce
incompatibilities with what our systems were built against.


Open source operating systems such as Linux and FreeBSD changed the
industry. What previously involved expensive licenses for proprietary
operating systems became free. We could have as many copies as we
wanted, but the effort to set up and configure them on various
hardware configurations remained an expensive activity ripe for
innovation.


The cloud explosion introduced a virtualization layer where we could
be protected from the details of the hardware. This gave us the
ability to have shared access to physical systems with time-sliced
usage. Spinning up pre-defined images of various operating system
configurations made it easy to meet demand and move quickly from a
known starting point. These virtual machine images were large,
cumbersome, and overkill for a variety of uses. There was still a
significant burden for the application developer to manage
dependencies, but it was progress.


Container systems as we know them can be traced to seeds in the 1970s
with the addition of the chroot system9 In 2000, FreeBSD’s
Jail10 system emerged as a
way of allowing multi-tenant hosts to further separate what was shared
and what was unique to each user. This drove interest and development
in Linux control groups many years later leading to the development of
Linux Containers (LXC) in 2008. Google and CloudFoundry had some
offerings along the way, but it was ultimately Docker being released
in 2013 that really got the ball rolling.


Overall this containerization approach allowed finer-level granularity
around the virtualization than the heavier weight images of
the previous generation. More of the infrastructure could be
pre-defined so we could focus on installing the right versions of our
shared libraries and applications.


WebAssembly introduced a new version of the idea of safe, stable,
portable code as you have seen. API availability remains an issue, but
WASI helps with that. The concept of sandboxed code
has become increasingly important in environments like this not just
because of the supply chain attacks we discussed in
Chapter 8, but also because we wish to deploy code at
the various layers of Figure 15-1 in multi-tenant
systems. As Liam mentions in his talk linked above, this is a trend
you can probably expect to continue as capabilities-based security
systems are gaining traction.


In several recent chapters we explored applications loading and
executing reusable WebAssembly modules through the Wasmtime and Wasmer
APIs. Ultimately, this is the basis for the final transition to where
we find ourselves. This use case helps define a new layer of
application hosts that will provide options for supporing plug-ins,
modules, extensions, and even basic functionality. The code requires
approved capabilities to do anything outside of basic execution such
as reading from the file system, spawning threads, or opening up a
network connection. This approach will facilitate a wide range of uses
such as long-running applications with plugin proxies and filters
written in different languages, microservices, and serverless
functions.


In addition to this flexible computational style, the overhead of
these approaches is even smaller and the security tighter than that
provided even by the container models that everyone is currently so
excited about. This is going to allow us to reach into the entire
range of our computational landscape highlighted in
Figure 15-1. To reinforce the potential impact we are
discussing, Solomon Hykes, a Docker cofounder, is often quoted in
these discussions from when he said: “If WASM+WASI existed in 2008, we
wouldn’t have need to create Docker. That’s how important it
is. Webassembly on the server is the future of computing.”11 As he
acknowledges subsequently, this does not necessarily mean Docker is
going away, but rather that we are talking about something of equal
significance. The two technologies will likely find ways to work
together.


Let’s see how these ideas come together in various ways to lay the
foundation for our heterogeneous and expansive computational
future. We are going to explore a handful of commercial and open
source offerings below as examples of what is being considered
now. There will undoubtedly be more before we know it.

















Fastly Compute@Edge


Fastly has been a successful CDN provider for the last decade. They
are a founding member of the Bytecode Alliance and have recently hired
many of the engineers focused on WebAssembly and WASI from
Mozilla. They are moving well beyond serving up static content and
into the this new world we are imagining with their Compute@Edge
platform.


At the core of this offering is the Lucet WebAssembly compiler and
runtime that is being merged with the Mozilla Wasmtime project we
mentioned in Chapter 11. In open sourcing it and contributing
it to the Bytecode Alliance, Fastly hopes to make both runtimes richer
by capitalizing on their strengths. Both are built around the
CraneLift12 project
and when combined with WASI will facilitate customers being able to
push functionality written in a variety of programming languages
safely into Fastly’s Edge@Compute environment.


One of the defining characteristics of the Lucet runtime is its
ability to instantiate WebAssembly modules in under 50 microseconds
compared to say V8’s 5 milliseconds to do the same
thing13. In
addition to this speed advantage, it can also do so with a very low
memory overhead measured in kilobytes rather than tens of megabytes.


Interacting with the Compute@Edge platform works about as you would
imagine. You register an account and get access to the API which is
protected by tokens14. There is a command
line tool for initiating projects and deploying them into the
ecosystem with dynamic DNS entries. Code can presently be written in
Rust, AssemblyScript or JavaScript. Many of the features are in beta
at the moment, but they are moving quickly and are heavily involved in
the development and stewardship of the related technologies and
standards.


While there are registration requirements for deploying arbitrary code
to their systems, their Terrarium Platform is easily explorable in a
browser due to its WebAssembly basis. It is built around the
WebAssembly Studio15 and provides a simple
way to experience the ease of deploying functionality to their
platform.


Start by going to https://wasm.fastlylabs.com. You should see a site
with a popup that allows you to choose a variety of projects. There
are empty projects oriented toward C, TypeScript and basic Wat
codebases. There are also C and Rust examples that do real work like
submitting DNS queries over HTTPS, image processing, a weather app
that fetches remote data, a GraphQL example that communicates with
GitHub and throttling proxy example.


Once you select one of the project types, the browser will fill in
with its associated structure. In this case, I have chosen the image
processing example in C. Each of the files is available to explore and
edit, but I have simply clicked on the “Build & Deploy” button toward
the top in Figure 15-3. Notice that it generates a random
DNS name for the hosted app as a convenience.



[image: C Image Processing example compiled and deployed.]
Figure 15-3. C image processing example compiled and deployed.




If you follow the generated domain name, you will see the HTML
generated by the selected file main.c. This is shown just for
thoroughness in Figure 15-4.



[image: Accessing the deployed image processing example via a browser]
Figure 15-4. Accessing the deployed image processing example via a browser




Finally, if you click on the link to sharpen the larger image by 20%,
you will see something like the cat picture shown in
Figure 15-5. The exciting thing is not that you can publish
an application to the web and invoke it through a browser. It is that
you can pick your language including eminently unsafe languages such
as C and deploy it into a hybrid architecture in someone else’s
infrastructure (with the possibility of geographic replication for
low-latency interactions) without concern.



[image: Cat image sharpened by 20%]
Figure 15-5. Cat image sharpened by 20%




On the continuum of deployment localities, we are mainly looking at
Edge computing as is indicated by the name. Next we will look at a
solution that will help developers deploy WebAssembly modules to their
existing Kubernetes clusters.

















Krustlet


While Docker containers provide the isolation and behavior dependency
mechanisms, Kubernetes has become one of the primary environments for
orchestrating these containers into automated deployments of
sophisticated applications and workflows. The two technologies have
really fed off of each others strengths. So much so that they are
quite tightly coupled as engines of deployment. While this is not an
issue in large cloud deployments, it becomes a problem when we want to
target smaller profile platforms. Ultimately we are going to seek a
mechanism that will allow composition of behavior expressed in lighter
structures. But, finding a way to integrate WebAssembly with
Kubernetes directly is a reasonable goal. This is exactly what
Microsoft’s DeisLabs team16 has been
experimenting with over the last several years.


The team has identified WebAssembly as an alternate way to deploy
safe, fast, secure software. They consider it easier to start from a
secure basis like this rather than having to lockdown the container
instances which is tricky to get right. They have developed
Krustlet17, a Rust-based Kubelet (thus the name). Other
noted benefits of this approach are faster start up and shutdown times
and smaller deployment elements than conventional containers. This
creates new opportunities for use with Internet of Things (IoT)
sensors and devices, embedded systems, and other constrained
environments as well as being compatible with existing Kubernetes
environments.


They do not think existing applications are going to suddenly be
repackaged as composed WebAssembly modules, however, so this is in no
way intended to replace Docker. Instead, it is a minimally-functional
Kubelet that interacts with Kubernetes basically “as is”. Rather than
using only Open Container Initiative (OCI) containers, you can mix and
match the functionality with WebAssembly and a runtime
environment. These runtime layers are not fixed but Krustlet has
historically worked with Wasmtime and the predecessor to the wasmCloud
project below. By breaking the coupling between Kubernetes and
containers, we expect cool things to come from efforts such as
this. Notably, Krustlet has been adopted by the Cloud Native Computing
Foundation (CNCF) as a sandbox project.


Keep in mind, this is largely a way of extending the status quo with
WebAssembly. It will ultimately allow for a wider range of
engines and computational localities in concert with a container and
Kubernetes-based strategy. It also highlights that we have options in
terms of our orchestration strategies and application host providers
which we will discuss next.

















SubOrbital


The Suborbital18 project grew out of a
similar interest in decoupling the composition, orchestration, and
scheduling of behavior from containers. They had originally considered
Docker containers as a basis of their workflow but found them
cumbersome, slow and hard to secure. WebAssembly was a better overall
fit, so let’s see how it comes together.


There are several parts to the Suborbital platform. The first is a
Go-based development environment for expressing API services called
Vektor. This allows simple expressions of complex behavior including
establishing and configuring servers. The Vektor guide includes
Example 15-1, a way of demonstrating starting a server
configured with a Let’s Encrypt-backed certificate and registering and
mounting simple handlers.


Example 15-1. Sample Vektor server


import "github.com/suborbital/vektor/vk"

server := vk.New(vk.UseAppName("Vektor API Server"),
 vk.UseDomain("vektor.example.com"))

server.GET("/ping", HandlePing)

if err := server.Start(); err != nil {
  log.Fatal(err)
}

func HandlePing(r *http.Request, ctx *vk.Ctx) (interface{}, error) {
  return "pong", nil
}



The next element is a Go-based runtime scheduling functions and
runnable behavior called Reactr. It can be a standalone application or
run as a service and accept work through HTTPS connections to provide
a Function-as-a-Service (FaaS) environment. It handles memory
management, the capabilities security system and can schedule runnable
work written in Rust, AssemblyScript, and Swift. The functions can be
scheduled synchronously, asynchronously or chained together to provide
a Unix Pipes and Filters style functional composition model.


The Grav environment is a Go-based distributed messaging mesh for
scaling communication between the managed components. It is designed
to have low overhead, high resilience, support a variety of messaging
styles (e.g. request/reply and broadcast) and both in-memory and
inter-process messaging models. It has a specific intended use,
however, and is not intended to replace more established, general
purpose environments such as RabbitMQ or Kafka.


A comprehensive and consistent command line tool called subo allows
you to interact with the Suborbital environment and hides many of the
details over particular language build systems, container structures,
and more. Deployed artifacts can be bundled in a variety of ways and can
be hot-swapped incrementally at runtime.


Atmo is the final piece that ties it all together. It is a server side
API framework for declaratively managing the deployed
functionality. Developers can focus on the functionality and rely on
the infrastructure to scale out based on needs. While Atmo is not tied
to Kubernetes per se, it can be used to assist in the auto scaling
infrastructure if it is configured to do so. Atmo is configured via
YAML Directive files to define how the runnable functions should be
deployed and bundled. This includes managing routes, business logic
and state management.


Suborbital is still in beta, but it provides a compelling vision of
the kind of runtime environment that is suggested by the final column
in Figure 15-2. There is even a headless version of Atmo
coming called Flight Deck which will allow Software as a Service
(SaaS) vendors to extend their applications naturally with APIs and
functionality managed by this ecosystem.

















WasmEdge


The next project I want to highlight is the WasmEdge project from
SecondState19. It is a secure and high
performance WebAssembly runtime that has also been adopted by the CNCF
as an official sandbox project. It is also imagined as the target
runtime across the spectrum of locations we have been discussing so
far in this chapter.


In addition to the typical host features we have seen, WasmEdge has a
mechanism for measuring the consumption of execution time which will
be useful in an attempt to monetize serverless FaaS environments and
blockchain-based systems. Wasmtime also has this ability as we will
see in Chapter 16.


The WasmEdge team is a big advocate for the concept of the Jamstack, a
technology suite that includes Javascript, APIs and
Markup20. The basic idea is that front ends are converted
into optimized, static single pages and assets during the build
process. This allows their runtime performance to have reduced
complexity and load burdens. While the frontends may be converted into
static resources, they maintain dynamic behavior by interacting with
backend APIs and hypermedia systems.


Their backend is cleanly queryable using standard HTTP clients such as
browsers or command line tools such as HTTPie21.


To execute a deployed function to their FaaS is as simple as the
following, but be careful. I have elided the bytes of the compiled
WebAssembly code.

brian@tweezer ~> http https://rpc.ssvm.secondstate.io:8081/api/executables/1
{
  "wasm_id": 1,
  "wasm_sha256": "0xfb413547a8aba56d0349603a7989e269f3846245e51804932b3e02bc0be4b665",
  "wasm_description": "Function as a Service (FaaS)",
  "wasm_as_buffer": {
    "type": "Buffer",
    "data": [
      48,
      44,
      57,
      55,
      .
      .
      .
    ]
  },
  "wasm_state": "{}",
  "wasm_callback_object": "{}"
}


As you can see, new endpoints can be defined by manipulating
resources. To invoke the behavior of an endpoint to issue a friendly,
parameterized greeting, you can issue the following.

brian@tweezer ~> echo "from the future" | http -f POST https://rpc.ssvm.secondstate.io:8081/api/run/161/say Content-Type:text/plain
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Connection: keep-alive
Content-Length: 22
...
Content-Type: text/html; charset=utf-8
Date: Tue, 17 Aug 2021 18:48:13 GMT
ETag: W/"16-kf3Sg+1nPhqMOp7M01tMU9CkSVk"
...

hello from the future


Other features provided by WasmEdge include capabilities-based
security, a RockDB-backed storage mechanism, WASI integration,
TensorFlow functionality, and more.


An example that uses this functionality is described here
https://www.secondstate.io/articles/faas-face-detection. This example
uses a Multi-task Cascaded Convolutional Network (MTCNN) model trained
off of the FaceNet22 dataset.


The example includes a link to the GitHub repository with the actual
code, as well as a description of the process of building, deploying
and calling this capability via both command line tools and from a
browser. The result of submitting a famous picture from the 1927
Solvay Conference23 is shown in
Figure 15-6.



[image: Invoking a MTCNN Model on a famous image]
Figure 15-6. Invoking a MTCNN Model on a famous image




Invoking complex functionality from a REST API is not inherently
earth-shattering. But, being able to deploy the code that you want to
run safely in a portable, high-performance sandboxed environment
is. The fact that you can also run the same behavior locally in
Node.js or some other form is equally useful from a testing
perspective.


In addition to basic WASI support, WasmEdge also supports several of
the proposals discussed in Chapter 12 and even a WASI
socket extension for adding network support. WasmEdge also has an API
similar to the ones we have seen from Wasmer and Wasmtime for
embedding WebAssembly behavior in arbitrary other applications.


If you visit the SecondState website, you will find other examples of
running WasmEdge in uses for block chain, in automotive
infrastructure, and a variety of other scenarios. We will touch upon
some of that in Chapter 16, but for now we will
focus on our final WebAssembly application infrastructure runtime.

















wasmCloud


The wasmCloud project24 is a sophisticated and evolving
collection of technologies known previously as waSCC (which stood for
WebAssembly Secure Capabilities Connector). It has recently been
selected as an official CNCF Application runtime project and promises
to help developers build actor-based models on orchestrated
capabilities across the entire spectrum of locations we have discussed
throughout this chapter. I want to focus on it because I think they
effectively address the various engineering decisions that go into
solving the mysteries of the final column of
Figure 15-1. It certainly is not the only project that is
likely to, but for now it is the most robust and comprehensive
distillation of that vision.


wasmCloud provides a comprehensive abstraction from cloud-based
infrastructure. The use of actors allows developers to produce
business functionality that is based upon message handling and the use
of capabilities provided by the infrastructure. Capabilities are just
a term for non-functional requirements needed for actors to have their
expectations met by an application runtime. The clean separation
allows reuse across different environments as well as hot-swapping of
underlying implementations within the same one.


The tools and frameworks associated with wasmCloud are intended to
solve the complexities of deploying multi-lingual code libraries to an
increasingly diverse set of platforms as outlined in Liam’s talk
above. They are fixated on only adding the pieces that they need to
which is why they leverage WebAssembly and WASI. The team made a
recent decision around a migration toward the Elixir and OTP platform
instead of hand-rolling the concurrency solutions in this
ecosystem. They long ago decided to base their connective
infrastructure on the NATS25
tool chains and frameworks for adaptive edge and distributed
communication.


What you end up with is a technology stack tracking the evolution of
our industry ready to meet the needs of various runtime configurations
and scenarios. Let’s quickly walk through the layers involved.


At the base of the stack is WebAssembly and WASI. From here
we have a portable and secure architecture that will run in a wide
number of runtimes and environments of varying capabilities and
resources. Unlike previous sandboxed environments, this gives us the
freedom of language choice and the benefit of high performance
results. This base level is shown in Figure 15-7.



[image: The WebAssembly base of the wasmCloud stack]
Figure 15-7. The WebAssembly base of the wasmCloud stack




wasmCloud extends the WebAssembly base with signed packages, reduced
boilerplate code, the composable actor model, and horizontal and
vertical scalability. It supports multi-tenant stateless and isolated
execution of deployed business functionality. This level is
highlighted in Figure 15-8.



[image: The wasmCloud cloud layer extends the WebAssembly base]
Figure 15-8. The wasmCloud cloud layer extends the WebAssembly base




The capabilities piece on top of the wasmCloud base is the
hot-swappable non-functional dependencies an actor needs to fulfill
its execution model. wasmCloud includes a wide range of pre-defined
capabilities such as data storage, serving up web resources, message
queues and more. These are visualized in Figure 15-9.



[image: Capabilities provide the non-functional requirements to actors]
Figure 15-9. Capabilities provide the non-functional requirements to actors




Developers will build upon these capabilities and supply their own
providers as needed for specialized needs. The actors that exist on
top of this tier will exist in isolation or composed business
functionality that can grow vertically in richer tiers. The underlying
distribution model (WebAssembly-based actors) remains fairly
lightweight and can take advantage of similarly-configured by
constraint-suitable stacks in other environments. Unlike the tight
coupling between Kubernetes and containers, this gives organizations
more options for reuse. We demonstrate the layer where developers
spend the majority of their time in Figure 15-10.



[image: Developers spend most of their time creating and composing actors]
Figure 15-10. Developers spend most of their time creating and composing actors




Finally, all of this is attached to a Mesh Lattice Network that is
self-forming and healing. It uses global discovery mechanisms, tunable
topologies and support for offline and online execution modes across
various cloud providers. This final flexibility is shown off in
Figure 15-11.



[image: The Lattice network infrastructure is flexible, self-forming and healing]
Figure 15-11. The Lattice network infrastructure is flexible, self-forming and healing




The aggregate effect of these design choices is a remarkable ecosystem
able to meet the needs of the 21st Century. As a final example, the
fine folks from Red Badger have published their recent experiments in
deploying a wasmCloud cluster across multiple cloud providers. It uses
Krustlet and wasmCloud and is detailed at this GitHub repo:
https://github.com/redbadger/wasmcloud-k8s-demo. It is a compelling
vision of one possible fulfillment of the evolution shown in
Figure 15-1.


I fully anticipate that we will see alternative implementations of
similar technology structures. I expect great things from the other
projects we have mentioned in this chapter as well as new projects we
have not even heard of yet. The tradeoffs and technical evolution will
remain coherent in other initiatives. Developers will increasingly
have less to worry about with respect to the infrastructure they
employ so they can focus on the business value they are primarily paid
to develop. Given the heterogeneity of the modern world of software
development, I am not sure how else it might be.


Next we will take a final architectural detour into the world of
decentralized systems and see what our WebAssembly family of related
technologies can do for us there.










1 Parabon these days focuses on the intersection of computation and DNA for next-generation therapies and forensic tools such as those used for solving cold cases. There was a popular television show based on their work with CeCe Moore called “The Genetic Detective”. More details: https://parabon-nanolabs.com
2 More information on this class of problems is available here: https://en.wikipedia.org/wiki/Embarrassingly_parallel
3 This includes technologies such as Advanced Vector Extensions (AVX): https://en.wikipedia.org/wiki/Advanced_Vector_Extensions and Streaming SIMD Extensions (SSE): https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
4 FPGAs allow software programs to be written to the hardware as needed: https://en.wikipedia.org/wiki/Field-programmable_gate_array
5 ASICs represent high performance, low energy, single use computing elements: https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
6 Google developed TPUs to be deployed as needed with consumer-facing applications that need performance boosts: https://en.wikipedia.org/wiki/Tensor_Processing_Unit
7 The Fallacies of Distributed Computing are worth memorizing: https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
8 You can watch Liam’s excellent talk here: https://www.youtube.com/watch?v=HPA8qmsHQfc
9 The chroot system helped isolate processes by changing the root directory for them and their children. More details can be found here: https://en.wikipedia.org/wiki/Chroot
10 More details about the FreeBSD Jail system are available here: https://en.wikipedia.org/wiki/FreeBSD_jail
11 He said this on Twitter: https://twitter.com/solomonstre/status/1111004913222324225
12 https://github.com/CraneStation/cranelift
13 Fastly’s announcement about open sourcing Lucet can be found here: https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
14 Given the registration process, I will not be showing working examples, but you can find more details if you are interested here: https://developer.fastly.com/learning/compute/
15 You can explore the WebAssembly studio experiments here: https://webassembly.studio
16 The team is largely made up by people who worked on Helm, the Kubernetes Package Manager. You can find out more details here: https://deislabs.io
17 More details about the project can be found here: https://krustlet.dev
18 You can find out more about Suborbital and its related projects at: https://suborbital.dev
19 You can find more information about SecondState at their webpage: https://www.secondstate.io
20 You can explore the larger Jamstack world at https://jamstack.org
21 Learn more about why HTTPie is my favorite command line HTTP client at: https://httpie.org
22 A paper describing FaceNet is available here: https://arxiv.org/abs/1503.03832
23 It is really difficult to underscore the collective brain power shown in this picture. There are 17 Nobel Prize winners featured. You can find out more about this remarkable photo and the gathering it is from here: https://en.wikipedia.org/wiki/Solvay_Conference
24 The website for wasmCloud is available here: https://wasmcloud.dev
25 NATS is also an official CNCF incubating project. More details are available here: https://nats.io




Chapter 16. Applied WebAssembly : Decentralized Applications



A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 16th chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.




It’s true that contemporary technology permits decentralization, it
also permits centralization. It depends on how you use the technology.

Noam Chomsky




The software we write takes on a role depending on where and how it is
deployed. Legacy systems were often single applications that took in
input, did some processing, and produced output. Unix commands are
often tools to coordinate together into scripted workflows. In this
book, we have largely been discussing WebAssembly’s strengths in
client-side user interfaces with the occasional foray into server side
technology. These days, our software plays many other parts in the
cloud, through microservices architectures, in embedded systems and
mobiles devices, and serverless functions.


These different roles often serve an architectural purpose in an
attempt to manage change, allow for independent technology choices, to
meet scale demands or to facilitate reuse and avoid silos. There is an
underlying tension to how the disparate elements are organized and
coordinated. Most conventional systems are centrally-managed, but we
are seeing an increased aptitude in developers being able to wrangle
widely-deployed, decentralized systems into productive use. Let’s
start by discussing some of the tradeoffs.








Centralization vs Decentralization


Our industry has long vacillated between centralization and
decentralization. Neither arrangement is ideal, both have their
benefits and negative side effects. Centralization is easy to control,
index, optimize, and provide a common experience. Decentralization can
be stable, empowering, and censorship-resistant. Mainframes, hosted
services, and siloed social media sites are examples of
centralization. PCs, mobile devices, and file-sharing systems are
examples of types of decentralization.


It is easy to deny people access to centralized resources. They are
often fragile if not maintained. Many governments attempt to control
access to certain kinds of thinking by controlling access to
information. Decentralized systems are very difficult to make useful,
efficient, and avoid market pressures that will encourage a
recentralization at some point.


The Web strikes a pretty nice balance between the two forces in
general. On the one hand, anyone can invent a new protocol and listen
for clients that speak it on a port. There is no required
centralization until we bring naming into it. The Domain Name Service
(DNS) has a central orientation. There is an authority even though it
is spread out hierarchically for speed and convenience. Once you have
a domain name, however, you are able to create as many resources in
that domain as you want. You may share them freely and give access to
whomever you choose. But, DNS can also be controlled as people who
have gotten on Wifi in coffee shops, airplanes, or countries with
oppressive regimes have sadly discovered.


Part of the issue is the use of location-based identity. On one hand,
it is super useful that the names we wish to connect with via the HTTP
protocol are the things we will interact with. On the other hand, if
we decide to stop hosting these resources, they go away. In my
previous book on resource-oriented architecture
patterns1, I identified the curated URI pattern as a way of bringing
stability to the interaction. But as anyone who has ever run into a
broken link can attest, the practice is not widely practiced.


One of the benefits of the web is that content producers and content
consumers can largely make their own technology choices. By using
standards, we can exchange declarative structures defining layouts and
styling choices that work well across a range of targets. Javascript
has long been part of that story and now, as you have seen,
WebAssembly is too.


Decentralization benefits from consistent use of standards, protocols,
and engineering practices that allow arbitrary participants to
exchange content. Having the ability to exchange executable content
portably, safely, and performantly is going to widen what is possible.


When we built our distributed computing system at Parabon, we had to
rely on the Java language and platform in order to get the safety and
portability guarantees we needed. We were ultimately a
centrally-controlled platform but in a modern setting, it would be
fairly straightforward to build a similar decentralized system with
WebAssembly, WASI, and the various runtimes we have discussed. In the
previous chapter, we saw how this is helping evolve our computational
landscape. As Chomsky said, we can support either approach; it is up
to us what we do with it.


We will now discuss a handful of decentralized platforms including:



	
Bitcoin and Legacy Ethereum



	
ewasm



	
The Polkadot Network



	
The Interplanetary File System (IPFS)





















From Bitcoin to Ethereum


One of the poster children for decentralized systems is Bitcoin in
particular and cryptocurrencies2
in general. For all the excessive hype and negative naysaying, what
Satoshi Nakamoto designed into the system is rather remarkable from a
technical and social perspective. There are plenty of unaccounted for
externalities that need to be considered when discussing the totality
of a technology, but I want to focus on the parts that are relevant to
the topic at hand.


Beyond the obvious concept of currency, the Bitcoin system is filled
with economic levers that can drive stakeholder behavior. One of its
main achievements is the development of a consensus mechanism that
allows participants to agree on the rules and their enforcement
without a requirement for real identities or weak notions of trust. By
now, most people are aware of how it works, but in the interest of
clarity, I will summarize it briefly as the basis for modern
blockchain thinking. We will connect it back to WebAssembly when we
discuss Ethereum as an follow on platform.


Bitcoin has a maximum currency base that will be released. It uses
computationally difficult problems to control the steady release of
decreasing amounts of the currency over time. Roughly every ten
minutes or so, a little bit more is added to the ecosystem, but it is
tapering off over time. Miners validate all of the transactions that
are executing on the platform. That is their main purpose. But, as
reward for their effort, they can participate in a recurring puzzle to
find the solution to a hash problem. As more miners participate there
is more power to attack the problem, so it gets harder over time. In
its current form, it would take several hundred thousand years for a
single computer to solve a round on its own.


Nobody has that kind of time, so they work together in parallel
through mining pools to find it in a matter of minutes. The node that
finds it announces its solution to the rest of the miners who verify
the outcome. Once everyone comes to consensus on the result, this
entitles that node to award itself the CoinBase
transaction3 which it will share with its pool peers. The
winning node must also decide which other transactions will end up in
the current block and then links it back to previous blocks. This is
where the name blockchain comes from.


What actually runs on the nodes is fairly constrained. It is ludicrous
numbers of hash transactions, the communication protocols, and the
verification of the transactions which involve executing a small
Forth-like4 language
called Script. This mostly just verifies that the account sending
Bitcoin to another account is in control of the private keys
associated with the account. There really is not a whole lot to it and
not much else you can do with it. There is some wiggle room, but it is
an intentionally constrained language and therefore easy to support
across multiple platforms.


One way that I explain what Parabon was doing is that it was like the
Seti@Home project5
except it was a pre-emptive Java-based general purpose programming
solution. This latter distinction is because SETI@Home only did one
thing initially6. It
just chunked through data. As a consequnce, they could be
substantially more comfortable using other people’s computers because
there was only a fixed number of tasks that it did.


As I indicated in Chapter 15, we were effectively
constrained to a particular type of problem in terms of what made
sense to run on the platform, but the actual code could be anything we
allowed (i.e. no disk or network access). We did prime searches, gene
sequence comparisons that scaled linearly, machine learning,
thermospheric simulations, and more. As I was the first engineer at
the company, one of the questions I was asked was “How would you
control a runaway process?” We were using other peoples’ computers but
we were considering allowing clients to run arbitrary code. This is
the same dilemma we face with the safety of code we install on our
computers, phones, tablets, and watches.


The Bitcoin core developers wanted to keep what could happen on the
mining nodes constrained, more like SETI@Home. Vitalik Buterin and
others wanted to expand what could run on the platform. When it became
obvious that it was not going to be possible, the Ethereum project
emerged as a result. One of the main differences between the two
projects was about the nature of what would run on the nodes. The
Ethereum developers wanted a Turing Complete language7. Without going into
a ton of theory, this gets back to the problem of runaway tasks. So,
let’s take a quick side trip to talk about that.

















How do you solve a problem like The Halting Problem?


If we want to run arbitrary tasks on a computational platform, there
are two ways to determine if the code will eventually stop. One is to
reason about it and the other is to try it out with the unfortunate
side effect of potentially waiting until the Heat Death of the
Universe to happen before we answer the question. One of those is
perhaps harder than the other, and, as it turns out, it isn’t trying
and waiting (although that is still not recommended).


In computability theory, this is known as an undecidable
problem8 and it is part of
the reason the Bitcoin developers were not enthused by the idea of
running a Turing-complete language. If you are compensating people for
the time you are using their computer, it would be nice to know if the
program will ever finish9.


All is not lost, however. Mining nodes on the Ethereum platform must
run the arbitrary contract code. The more resources you use
computationally (storage, CPU time, etc.), the more you have to
pay. It would be really annoying to start executing a contract and
letting it run for a few millenia before realizing you would never get
paid for that work. The Ethereum team came up with a good solution
called “gas”. The idea is that if you want to drive across country,
you better have enough money for gas. Otherwise, somewhere in the
middle you will run out and you might get stuck. An Ethereum contract
is evaluated with a quick heuristic to determine roughly how expensive
it will be to run and the client launching the contract has to cough
up that much or more. As the contract executes, it consumes gas and
can run out. If it does, the nodes get compensated for effort and you
may be left with nothing. It is a reasonable compromise to an
otherwise intractable problem. It also simultaneously forces contract
developers to exercise caution and test their code locally.


The Ethereum project also intended to run on a variety of hardware and
software platforms so the code that gets executed made sense to be
virtualized. They designed a handful of contract languages, but the
one that caught on initially was called Solidity. It has an LLVM-based
compiler, but it emits a bytecode that can run on their custom virtual
machine. As you can imagine, this was a non-trivial engine to write
so, as WebAssembly emerged, there became a lot of interest in
migrating to a new virtual machine that they would not have to
maintain.


The concept of gas is still important, however. As WebAssembly is
being imagined as the engine for several blockchain-based projects, it
is unsurprising that the idea has begun to show up in the platforms we
are discussing as well.


In Example 16-1 you can see a simple implementation that
calculates Fibonacci numbers directly in Wat taken from the Wasmtime
GitHub repository. If you need a refresher on the algorithm, check out
our example in Chapter 4.


Example 16-1. Wat implementation of Fibonacci numbers


(module
  (func $fibonacci (param $n i32) (result i32)
    (if
      (i32.lt_s (local.get $n) (i32.const 2))
      (return (local.get $n))
    )
    (i32.add
      (call $fibonacci (i32.sub (local.get $n) (i32.const 1)))
      (call $fibonacci (i32.sub (local.get $n) (i32.const 2)))
    )
  )
  (export "fibonacci" (func $fibonacci))
)



Notice there is no concept of time or cost in this calculation. It is
recursive but it will just do what you ask it to do. While this is not
an excessively hungry calculation, you could keep a node busy
calculating a large number of Fibonacci numbers. What we would like is
a concept like gas that allows us to do what we want to do, but to
measure the cost and to cut it off if it exceeds that cost.


The code in Example 16-2 is able to do this because Wasmtime
supports the concept of “fuel”. Remember that Store instances are
keepers of the runtime instance details, so we allocate 10,000 fuel
units in the store. We instantiate a compiled version of our .wat
file as a module so we can invoke the fibonacci() function.


Example 16-2. Rust Wasmtime example with fuel


use anyhow::Result;
use wasmtime::*;

fn main() -> Result<()> {
  let mut config = Config::new();
  config.consume_fuel(true);
  let engine = Engine::new(&config)?;
  let mut store = Store::new(&engine, ());
  store.add_fuel(10_000)?;
  let module = Module::from_file(store.engine(), "examples/fuel.wat")?;
  let instance = Instance::new(&mut store, &module, &[])?;

  // Invoke `fibonacci` export with higher and higher numbers until we
  // exhaust our fuel.
  let fibonacci
     = instance.get_typed_func::<i32, i32, _>(&mut store, "fibonacci")?;

  for n in 1.. {
    let fuel_before = store.fuel_consumed().unwrap();
    let output = match fibonacci.call(&mut store, n) {
        Ok(v) => v,
        Err(_) => {
          println!("Exhausted fuel computing fib({})", n);
          break;
        }
     };
     let fuel_consumed = store.fuel_consumed().unwrap() - fuel_before;
     println!("fib({}) = {} [consumed {} fuel]", n, output, fuel_consumed);
     store.add_fuel(fuel_consumed)?;
  }
  Ok(())
}



Once we have the instance, we start an unbounded loop of n from 1 to
infinity. Clearly we do not want to wait for this code to complete on
its own. So, we are going to leverage fuel. Individual instructions
are calibrated as having a cost, so we keep track of how much we spend
each iteration and subtract it from our available fuel deposit. Once
we run out, our attempt to invoke the function will fail and break out
of the loop.


So, we have a general capability that can be built into various
runtimes to allow us to run arbitrary code safely without concern
about whether it will spin out of control or not. Building a generic
blockchain engine out of this capability is clearly one potential use.

















ewasm


The legacy Ethereum Virtual Machine is referred to as EVM1. The new
version is known as ewasm. The documentation and design process are
available here: https://ewasm.readthedocs.io. This is a work in
progress and there have been many changes along the way, but the goal
is still to create a new virtual machine on a WebAssembly base for
all of the reasons that should be obvious by now. One consequence that
may not be obvious is that this will likely open up contract languages
to a much wider variety given the ease with which LLVM-based compilers
can be reused.


They did not come to this decision lightly. As can be seen on the
“Comparison with Other Architectures” section of the documentation
linked above, they considered all manner of intermediate
representations and bytecode formats as the possible basis for this
new virtual machine.


The main arguments for heading down this path are obviously speed,
efficiency, and security. We are talking about a standards-based
instruction set which will be curated and extended over time by the
W3C. The Ethereum community will benefit from this work and will not
have to make all of the design decisions themselves. The widespread
and growing toolchain support for a wider number of languages is going
to create a natural path for using languages that developers are
already familiar with such as C/C++, Rust, Go, AssemblyScript, and
more (including some new ones we will discuss in the final chapter!).


WebAssembly is intrinsically portable which will also reduce the
burden on the Ethereum developer community to target an increasing
number of hardware platforms as they become available. This
portability and the performance gains will also allow more of the
Ethereum platform itself to be expressed in Wasm instructions which
keeps the size of the codebase down when supporting multiple
platforms. This is useful both from a level of effort and a code
analysis for security auditing perspective.


They do not want to design themselves into a corner, however, so they
are introducing some new ideas. The first is the idea of the Ewasm
Contract Interface (ECI) which defines the structure of a contract
module. Modules are communicated in the Wasm binary format. Contracts
will be allowed to import symbols defined to be part of the Ethereum
Environment Interface (EEI). This exposes the core Ethereum API to the
ewasm enviroments. You can think of it a little like the relationship
between WASI and WASI-host environments. Contracts are expected to
export a main() function to initiate the contract and a Memory
instance for sharing data between contracts and its host
environments. Again, these should make sense to you by now.


I am not able to give you a proper tutorial for this new platform
here, but the basic idea is that contracts will need to be able to
fetch and store data, call functionality in other contracts, be
deployed at knowable addresses, etc. The concept remains that the more
burden a contract puts on the platform, the more cost it will
incur. Gas still remains and so there will be an intricate metering
capability similar to what we saw in the previous section but with
more nuance.


Because different instructions might cost more or less on different
platforms, they are assigning each Wasm opcode to one or more IA-32
(x86) instructions having a fixed cycle count. This is expected to
represent an average CPU used to host Ethereum nodes running at
approximately 2.2GHz. One second of CPU use is configured to cost 10
million gas. These numbers are not going to be fixed in time and will
be periodically adjusted based upon observation and the evolution of
hardware systems.


The cost of an instruction is equivalent to a cycle count * the gas
per cycle equivalence for the instruction type. For example, the
get_local instruction costs 3 cycles and is expected to cost 0.0135
Gas. Loading things into and out of memory will have similar
costs. Accessing constant values (e.g. i32.const) does not require
any transfer of data, calculation or storage so it is essentially a 0
gas operation.


As there is so much compiled EVM1 bytecode in existence, there are
also plans to have a Transcompiler to convert EVM1 bytecode into ewasm
bytecode for backward compatibility. There are some differences
including that EVM1 uses 256-bit integers by default and ewasm will
use 64-bit integers, but there will be compensating actions to make it
all work and price the work accordingly in the new environment.


Finally, there will also be predefined contracts for functionality
that will be needed as part of the behavior of the Ethereum
environment to function properly. This includes a sentinel contract
for validation and metering injection, the transcompilation of EVM1 to
ewasm, various hashing algorithms (e.g. SHA2-256, RIPEMD160,
KECCAK256), and more.


This remains an adventurous work in progress, but the design
motivation makes sense and the selection criteria aligns with many of
the reasons we have highlighted for being excited about WebAssembly in
general. Decentralized systems have a lot of innate complexity in
them. Whatever they can do to standardize, secure, optimize, and
expand the range of contract language options available to
cryptocurrency smart contract developers is likely to strengthen the
Ethereum platform overall.

















Polkadot


While Bitcoin is the overall market leader in the cryptocurrency
space, Ethereum has emerged as a close second. With its support for
multiple languages and arbitrary contracts in a widening collection of
languages, if you needed to target a specific, non-Bitcoin platform,
Ethereum would be a defensible choice even with some of the growing
pains it has experienced over the years. But what if you did not want
to tie yourself to a single platform such as Ethereum? This is where
Polkadot comes in. It is a new blockchain project designed from the
ground up with blockchain interoperability in mind.


Polkadot10 was founded by
Dr. Gavin Wood, author of the Ethereum Yellow Paper11, with an eye toward
upgradeable, extensible, and interoperable blockchain capabilities. It
is one of the cornerstones of the Web3 Foundation12.


One of the projects funded by the Web3 Foundation was to bring an
ewasm virtual machine into the Polkadot ecosystem. The contract was
awarded to Second State, makers of the WasmEdge platform we introduced
in the previous chapter. The project is called Substrate and its
webpage is here: https://substrate.dev. You can find the project on
GitHub: https://github.com/second-state/substrate-ewasm. With
support for the ewasm contract interface and execution environment,
this opens the door for Ethereum contracts to be transparently
deployed to Polkadot-based blockchains. Not only does this avoid
lock-in, it also increases the transfer of ideas, contracts, and
capabilities into an ever richer collection of blockchain-based
stakeholders. Other projects based upon the SecondState ewasm engine
include Oasis Ethereum13 and Parastate14.


These are simply a couple of examples of the intersection of
WebAssembly and blockchain-flavored decentralization. I anticipate
there will be many, many more, but for now I want to wrap up the
chapter with a quick introduction of another one of my favorite
decentralization projects that is also a star of the Web3 world. It
too will benefit from WebAssembly.

















Interplanetary File System (IPFS)


I have to admit, I fell in love with this project initially just for
its name. Granted, I have come to respect it and honestly be in awe at
what the community is able to produce since then, but the name still
rules. The thing is, it is not just a clever name. It is
simultaneously a historical reference15 and an
aspirational nod to a future that is closer than most of us are
ancipating. Humans will soon be going back to the moon and making
early forays to Mars. The network latencies involved with
communicating with bases on these planets are going to be
problematic. One aspect of the design criteria for IPFS is to help
solve some of these issues. I will not bother explaining how they plan
to do this, but perhaps that will pique your curiousity to
investigate. The project produces an overwhelming amount of code,
documentation, videos, and tutorials, but their main website is a good
starting point: https://ipfs.io.


One of the coolest aspects of IPFS is that they are designing their
layers around the idea of reuse across projects. You do not have to buy
into their entire stack, elegant as it is. Instead, you can pick and
choose the pieces that your project might benefit from and go from
there. Examples of useful (and reuseful) projects from this community
includes Multiformats16,
libp2p17, and IPLD18.


While there are many ways WebAssembly is showing up in this community,
I want to highlight a very simple one. I am not going to describe how
IPFS works in detail, but there are some core ideas. The whole thing
is based upon Merkle-DAGs19. A Directed Acyclic Graph
(DAG) is a graph structure that has identifiers based upon hashes of
the node’s contents. Merkle DAGs are similar to Merkle
Trees20 which are useful for
detecting changes of content-based addressable blocks.


The net effect of these decisions is that files can be broken down
into dependencies between blocks that are identified by content
identifiers (CIDs) driven by the actual content of the blocks. As
files change, the only portions that need to be updated are the
effected blocks. Doing so does not invalidate the existing immutable
Merkle DAGS, so multiple versions of files can co-exist
simultaneously.


If you do not have a background in these kinds of decentralized
systems, there are a lot of behind-the-scenes details that we do not
need to focus on to make my larger point. To hide those details, I am
going to use the Go-based command line tools from the IPFS
project. You can find how to install these in Appendix A
if you are interested in trying them. There are libraries in many
other languages. Many of these do not require you to install and run
things locally if you do not want to. As you will see below there are
HTTP gateways for bridging the Web as you know it and the IPFS
network.


In order to use the tools, you need to generate an identity. This does
not involve your name or anything, it is just an RSA keypair that can
be used to digitally sign documents and communicate with the large
network. Creating a node identity is easy.

brian@tweezer ~> ipfs init
initializing IPFS node at /Users/brian/.ipfs
generating 2048-bit RSA keypair...done
peer identity: QmZoRwJ7YYayf5eNWDweN5GCGJjuRnKGJA3susZqjV8Jcb
to get started, enter:
    ipfs cat /ipfs/QmS4ustL54uo8FzR9455qaxZwuMiUhyvMcX9Ba8nUH4uVv/readme


The very long content identifier (CID) that starts with QmZoRwJ refers
to the node I created. There are no services running yet, we simply
have tools that allows us to communicate with the IPFS network. That
includes the ability to request files. Files have similar CIDs to the
node, as do blocks. If you dig into the IPLD model mentioned above,
you will see that it is just a big interlinked collection of named,
immutable nodes. The comment at the end of what was produced above
indicates that we can find out more by issuing that command. As you
will see soon, you do not need to have these tools involved, but at
this point something needs to know how to communicate with the
network. The ipfs command line tool takes multiple arguments. One of
them makes it act like the Unix cat command to show the contents of
a file. In this case, it is a file called readme referenced as a
subelement of the directory it lives in. This convenience is a bit
like a fragment identifier on a Web URL to avoid multiple round
trips. We can ask for it in one go. The results should look something
like what you see in Figure 16-1.



[image: Requesting files from IPFS]
Figure 16-1. Requesting files from IPFS




Note that there are other files in that directory so you could ask for
them as well. If you did not know what files were available, you could
simply ask IPFS. Notice below I am using the directory name on its
own. As you can see, each file in the directory has its own CID.

brian@tweezer ~/s/ipfs> ipfs ls /ipfs/QmS4ustL54uo8FzR9455qaxZwuMiUhyvMcX9Ba8nUH4uVv
QmZTR5bcpQD7cFgTorqxZDYaew1Wqgfbd2ud9QqGPAkK2V 1677 about
QmYCvbfNbCwFR45HiNP45rwJgvatpiW38D961L5qAhUM5Y 189  contact
QmY5heUM5qgRubMDD1og9fhCPA6QdkMp3QCwd4s7gJsyE7 311  help
QmejvEPop4D7YUadeGqYWmZxHhLc4JBUCzJJHWMzdcMe2y 4    ping
QmXgqKTbzdh83pQtKFb19SpMCpDDcKR2ujqk3pKph9aCNF 1681 quick-start
QmPZ9gcCEpqKTo6aq61g2nXGUhM4iCL3ewB6LDXZCtioEB 1091 readme
QmQ5vhrL7uv6tuoN9KeVBwd4PwfQkXdVVmDLUZuTNxqgvm 1162 security-notes


Adding files to IPFS is easy. I am going to take the example from
Chapter 6 where we rendered a Windows bitmap
file from C++ in the browser. As a reminder, this is what is in that
directory.

brian@tweezer ~/s/i/bitmap> ls -alF
total 1800
drwxr-xr-x  11 brian  staff     352 Aug 18 12:27 ./
drwxr-xr-x   3 brian  staff      96 Aug 18 12:26 ../
-rw-r--r--@  1 brian  staff     893 Aug 18 12:26 Makefile
-rw-r--r--@  1 brian  staff     948 Aug 18 12:26 Makefile.lib
-rw-r--r--@  1 brian  staff     776 Aug 18 12:26 Makefile.orig
-rw-r--r--@  1 brian  staff  247721 Aug 18 12:26 bitmap_image.hpp
-rw-r--r--@  1 brian  staff   21026 Aug 18 12:26 bitmap_test.cpp
-rw-r--r--   1 brian  staff  249496 Aug 18 12:26 bitmap_test.js
-rwxr-xr-x   1 brian  staff  257924 Aug 18 12:26 bitmap_test.wasm*
-rw-r--r--@  1 brian  staff  120054 Aug 18 12:26 image.bmp
-rw-r--r--   1 brian  staff    3127 Aug 18 12:26 index.html


To add the files, we just go into that directory and issue the following.

brian@tweezer ~/s/i/bitmap> ipfs add -r .
added QmUViZoR2ZnnpGXyNxRyVp4kpG64kCYgHLp7w3SdmUsRcf bitmap/Makefile
added QmTPTTSvSdwgjGciTH5EgoPdujcrfXvqqSXDUB83uoFhR5 bitmap/Makefile.lib
added QmWFi2rEqobqnz9RZbWrtjNRcftkbRUNmKSoxZxDuMzhDT bitmap/Makefile.orig
added QmZbBUguGknW7wWAkJoZ2XXiDXAsa1zDQgLSuKn7JX7edy bitmap/bitmap_image.hpp
added QmNffnsKcGhNveuEXUuwmLYUqMEW33ZpmY3Xke1oK7Y7Uh bitmap/bitmap_test.cpp
added QmWcuK2svP5qyDaDksvtWanNqDGDoj3CfuqsJXkrKY3MNo bitmap/bitmap_test.js
added QmRwyDerSuwq1VrP56gy28JsXTXyYhPyHxFWH1zctHHe5m bitmap/bitmap_test.wasm
added QmQDwr7R6WxMJgiV4PWkLMJxpzAV8pXhafwfr5omoD93xp bitmap/image.bmp
added Qmdn3WDNXNm94c5FFBPUDq7kdfoeRP8JfgyjAd1BroQFni bitmap/index.html
added QmZcJdVbvZKz9jB8ymAie6nqPLr6iBGQheEUC8bYraFFpB bitmap
 880.83 KiB / 880.83 KiB [=============================================] 100.00%


At this point the directory has an identifier as do all of the
files. Nobody else in the world can see these yet even if they were
able to guess the node identity21. In order to publish, you need to start an instance of the IPFS
Daemon, a background server that communicates with peers and responds
to requests from other nodes. It takes a while for everything to start
to get synced up, but the result of running the daemon looks something
like the following.

brian@tweezer ~> ipfs daemon
Initializing daemon...
go-ipfs version: 0.9.1-dc2715af6
Repo version: 11
System version: amd64/darwin
Golang version: go1.16.6
Swarm listening on /ip4/127.0.0.1/tcp/4001
Swarm listening on /ip4/127.0.0.1/udp/4001/quic
Swarm listening on /ip4/169.254.245.235/tcp/4001
Swarm listening on /ip4/169.254.245.235/udp/4001/quic
Swarm listening on /ip4/192.168.1.169/tcp/4001
Swarm listening on /ip4/192.168.1.169/udp/4001/quic
Swarm listening on /ip6/::1/tcp/4001
Swarm listening on /ip6/::1/udp/4001/quic
Swarm listening on /ip6/fd4b:2552:d54e:3:1444:3cef:8a9b:25f3/tcp/4001
Swarm listening on /ip6/fd4b:2552:d54e:3:1444:3cef:8a9b:25f3/udp/4001/quic
Swarm listening on /ip6/fde3:9366:f229:3:18e0:193e:c7d2:8aaa/tcp/4001
Swarm listening on /ip6/fde3:9366:f229:3:18e0:193e:c7d2:8aaa/udp/4001/quic
Swarm listening on /p2p-circuit
Swarm announcing /ip4/127.0.0.1/tcp/4001
Swarm announcing /ip4/127.0.0.1/udp/4001/quic
Swarm announcing /ip4/192.168.1.169/tcp/4001
Swarm announcing /ip4/192.168.1.169/udp/4001/quic
Swarm announcing /ip6/::1/tcp/4001
Swarm announcing /ip6/::1/udp/4001/quic
API server listening on /ip4/127.0.0.1/tcp/5001
WebUI: http://127.0.0.1:5001/webui
Gateway (readonly) server listening on /ip4/127.0.0.1/tcp/8000
Daemon is ready


The strange looking identifiers show you the power of the Multiformats
I mentioned above. These are self-describing network references. We
have the various ports and protocols that our daemon is listening on
to communicate with its peers. We have the ports it is listening on,
the IP addresses where it is binding to (e.g. localhost or other
interface), what network type it is (i.e. ip4 vs ip6) as well as the
preferred transport to use to talk to our node. Notice the distinction
between TCP and QUIC over UDP. This is an extremely powerful idea that
supports resilience, simple interaction models, and extensibility all
throughout the technology stack.


The daemon goes out and looks up bootstrap nodes via DNS. It can use
Multicast DNS (mDNS) to find other nodes on the same network. There
are many ways for it to communicate with the outside world. But, after
a few moments, you can find out who it is talking to as follows. I
have elided a ton of results, but we see Multiformat network
references for the peers including their node identities and the
preferred means to talk to them.

brian@tweezer ~/s/ipfs> ipfs swarm peers
/ip4/1.170.45.218/tcp/44262/p2p/QmbsXKVDhxFDgZW6zxrGfgPjXopvhNmGFqqqazv1kyZLkv
/ip4/1.254.1.205/tcp/45622/p2p/QmRePjhxRLWJoAXan79JzvxeUwqW5DyeZbHfxi3y1bSke7
/ip4/101.18.52.217/udp/38214/quic/p2p/12D3KooWBjaFGCZ1heSh4HBy6tsj3i348hDeGZhBnRRonCa2JtLT
/ip4/101.70.141.179/udp/7962/quic/p2p/12D3KooWAwcdxRJbDXcYh4FxrNkarnT1BGmqYTedc16oGim4WK8m
/ip4/104.131.131.82/udp/4001/quic/p2p/QmaCpDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ
/ip4/104.207.140.198/udp/4001/quic/p2p/12D3KooWFgmp9SgKqGvcE5zEs19iGq16gpMqeV5CYMo2vdD8KiJb
/ip4/104.236.47.160/tcp/4001/p2p/QmXhDHnhAr1PAE6pK1GbxN1Ez5zmkJHqvSN1GHSgPiuLWP
/ip4/104.238.220.184/tcp/4001/p2p/QmRi2tR7Uf33VmKhGBUNZvFEuCnFwaLLf2FsdYNcLCm4gu
/ip4/104.248.69.187/tcp/4001/p2p/12D3KooWHoqCWMkMuDrauyD6wuJUrPoQfZGPULj99hX94eu69ps5
/ip4/107.173.84.101/tcp/4001/p2p/12D3KooWNKQGwEMJXqta2uV2xBSsVrN1jZKd78CF4QossGghaLSe
/ip4/107.184.158.170/udp/35299/quic/p2p/12D3KooWQMeiAvzKWGM7V83ENkNqtgJJhdQeQ2xLAihVwvaaXMuC
/ip4/109.153.171.191/tcp/4001/p2p/12D3KooWK2mqKoGUtZeiJpKCJc3XWLwyk2oC9isNPzvW6ftq9GSv
/ip4/109.194.47.83/tcp/4001/p2p/QmQmfPz9Xn4cNE6vfWcfrozeNDCx9BJFCdRMM3Cnmx2226
/ip4/109.206.48.199/tcp/35317/p2p/QmaY9GdxBY2ovzD1HNhcyBhawTda7gu6QU8rHv6w4pTfqv
/ip4/111.229.166.178/tcp/4001/p2p/12D3KooWAjVr5JL7VgfoNqT8zro2bp9fMKUamF2WAYE4syRzBR3z
/ip4/111.92.180.99/tcp/53353/p2p/QmYNmBBbzV7AVytNHmVgoHAKd9CvFRWDj32qvHDyjCgJMe
...


The daemon does not start publishing files until anyone asks for them,
but it also starts up a couple of local services. The first is a
readonly HTTP gateway on listening on /ip4/127.0.0.1/tcp/8000. We have
been using the IPFS Go command line tools, but anyone else on our
localhost can access this service without regard to those.


As an example, there is a famous picture of a cat in IPFS. You can ask
for its details using the command line tools.

brian@tweezer ~/s/ipfs> ipfs ls /ipfs/bafybeidsg6t7ici2osxjkukisd5inixiunqdpq2q5jy4a2ruzdf6ewsqk4/cat.jpg
QmPEKipMh6LsXzvtLxunSPP7ZsBM8y9xQ2SQQwBXy5UY6e 262144
QmT8onRUfPgvkoPMdMvCHPYxh98iKCfFkBYM1ufYpnkHJn 181086


What you are seeing are the two blocks that are associated with the
file. You can also use the local HTTP gateway from the daemon as
demonstrated in Figure 16-2. The URL is obscured but there
is nothing fancy, the browser is simply requesting a file over HTTP.



[image: Requesting files from IPFS via HTTP Gateways]
Figure 16-2. Requesting files from IPFS via HTTP Gateways




The local HTTP gateway is only one. There is also one run by the IPFS
project at https://ipfs.io/ipfs/<CID> and one run by CloudFlare at
https://cloudflare-ipfs.com/ipfs/<CID>. Just replace the CID with the
cat image node name and the file name and you should see it there too.


What I just showed you is way cooler than you may realize as both of
those are TLS-terminated endpoints. This means you can request files
out of IPFS without anyone knowing what you are asking for by sniffing
packets. IPFS is quite successful at routing around censorship. Any
attempt to squash one gateway is likely to initiate several more.


Another service the daemon starts is a web application for browsing
the node’s details and interacting with the platform more
naturally. It is listed as the WebUI in the daemon output above and it
is located at http://127.0.0.1:5001/webui. As bound, only users on the
same machine can hit it, but you could configure it to bind to an IP
address so any other local network machines could request files
without installing any IPFS tools. This application is shown in
Figure 16-3.



[image: Interacting with IPFS via a WebUI]
Figure 16-3. Interacting with IPFS via a WebUI




There are a lot of other cool things you can do within the WebUI, but
to bring it back to the topic at hand, look closely at the address bar
in this window. Port 5001 is serving up a web application… from IPFS.

brian@tweezer ~/s/ipfs> ipfs ls /ipfs/bafybeiflkjt66aetfgcrgvv75izymd5kc47g6luepqmfq6zsf5w6ueth6y
bafkreigqagdyzmirtqln7dc4qfz5sb7tkdexbzmhwoxzbkma3kakpeoqma 5324  asset-manifest.json
bafkreihc7efnl2prri6j6krcopelxms3xsh7undpsjqbfsasm7ikiyha4i 34494 favicon.ico
bafkreihmzivzfdhagatgqinzy6u4mfopfldebcc4mvim5rzrdpins5pr7a 4530  index.html
bafkreicayih3vhhjugxshbar5ylocvcqz4xixuqk6cflyxpnuxf2spwws4 24008 ipfs-logo-512-ice.png
bafybeiadadzwwymj72nnlyoy6bza4lhps6sofmgmyf6ew5klzwdae4g3pa -     locales/
bafkreicplcott4fe3nnwvz3bidothdtqdvpr5wygbxzoyfozm7tiues77q 298   manifest.json
bafybeierqn364ton5lp5ogcu4l22gukzprwieaau7lvcan555n3sg4i6we -     static/


The browser requests the root CID for the directory that the web
application is in. index.html, as always, is the default file. If
you ipfs cat that file, you will see that it references the static
resources, stylesheets, etc. Somewhere, someone has published this
application. It is not being hosted in a conventional sense at a cloud
hosting site or anything. I have no direct knowledge of where it
originates, but it is being served up locally via an HTTP gateway to
my browser.


What about the directory I published earlier with the C++-rendered
bitmap files? Because my daemon has been up for a while, other nodes
can now ask for that. Check out Figure 16-4 for the
gobsmacking result of my application being fronted over TLS by
CloudFlare.



[image: Interacting with my files published locally via IPFS HTTP gateways]
Figure 16-4. Interacting with my files published locally via IPFS HTTP gateways




I am not going to go into any more details, but want to highlight what
else this means. Keep in mind that Merkle DAGs are immutable. If I
change my application by modifying one or two files, those are the
only things that need to be republished. Remember publishing is simply
adding files to IPFS. Their edits will result in different hashes for
their blocks which means different hashes for the files which means
different hashes for the directory. There is a new top level CID. But
the old one still works. There are games you can play with DNS, but I
will leave that for you to discover with the IPFS documentation and
tutorials.


What does this have to do with WebAssembly? It is really the
intersection of platform benefits that I am highlighting and the
implications it will have as another use case. I just demonstrated a
web application being served up via a CDN with its geographic
distribution without any other hosting needs. It is being served up
locally and the results can be cached along the way. This includes C++
code compiled to WebAssembly running in a sandbox on whatever browser
or platform you happen to be using. Multiple versions can be supported
simultaneously and users can decide when they want to upgrade.


You can serve applications without paying for hosting to arbitrary
clients anywhere in the world. You can use whatever language you want
to achieve high performance, interactive systems on whatever platform
your users prefer. They are comfortable running your applications
because of the security protections and no central authority can
easily shut you down.


Tell me that isn’t cool.










1 “Resource-Oriented Architectures: Patterns for Webs of Data”
2 Crypto means cryptography.
3 The CoinBase transaction is how BitCoin is minted at a controlled pace.
4 You can read about Forth here: https://en.wikipedia.org/wiki/Forth_(programming_language)
5 More details about the super cool Seti@Home project can be found here: https://en.wikipedia.org/wiki/SETI@home
6 They eventually expanded what they did to a more general framework called BOINC. You can read about that here: https://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network_Computing
7 I am not going to turn this into a Finite Automata class. If you want to dig into the larger implications (careful, it’s a deep rabbit hole), check out this: https://en.wikipedia.org/wiki/Turing_completeness
8 More on undecidability: https://en.wikipedia.org/wiki/Undecidable_problem
9 Alan Turning demonstrated in 1936 that this was not always possible.
10 More information about the Polkadot network can be found on their website: https://polkadot.network
11 The Yellow Paper famously describes many of the design motivations on the Ethereum platform. If you are interested in blockchain technologies more generally, it would be worth your time to read: https://ethereum.github.io/yellowpaper/paper.pdf
12 The Web3 foundation funds research into projects that can contribute to the overall success of this decentralized vision: https://web3.foundation
13 More details about Oasis Ethereum are available here: https://www.oasiseth.org
14 More details on Parastate are available here: https://www.parastate.io
15 J.C.R. Licklider referred to early versions of the emerging ARPAnet (which became the Internet) as the Intergalactic Computer Network. More details can be found here: https://en.wikipedia.org/wiki/Intergalactic_Computer_Network
16 Multiformats allow you to express hashes, network addresses, and other useful values in a self-describing, flexible state. More info: https://multiformats.io
17 libp2p is a remarkable, pluggable, extensive networking stack that allows for swapping transports, multiplexing channels, handling high-latency environments, and so much more. Additional details: https://libp2p.io
18 IPLD is a linked data format for decentralized systems. More info: https://ipld.io
19 More details about Merkle-DAGs: https://docs.ipfs.io/concepts/merkle-dag
20 More details about Merkle Trees: https://en.wikipedia.org/wiki/Merkle_tree
21 I would bet against that.




Chapter 17. WebAssembly and Other Languages



A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 17th chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.




If you talk to a man in a language he understands, that goes to his
head. If you talk to him in his own language, that goes to his heart.

Nelson Mandela




We are getting to the end of our story, at least for now. We have seen
a wide range of use cases, language and platform integrations, hosting
environments, and more where WebAssembly is shining already. There are
quite a few choices for developers to make to be productive and
effective with this exciting new platform. There are concrete reasons
why some languages and their associated runtimes work well with
WebAssembly and why others do not. The lack of garbage collection and
good thread support everywhere are among the obstacles that have
existed since the early days of the MVP, but both are well on their
way to being resolved.


As we saw in Chapter 12 these and other limitations
are well-understood and increasingly available in various host and
runtime environments. The future is bright for much wider support
of just about any language developers might like to use. So, please,
if your favorite language is not yet supported, keep your chin up.
I do not think it will be long before it might.


That being said, there are incremental efforts, partial solutions, and
works-in-progress for many other popular and even
emerging-but-still-somewhat niche languages that we will address in
this chapter. I do not suggest that these are drop-in replacements for
the more well-supported languages, but, perhaps cracks to let the
light in to a brighter polyglot WebAssembly future. As Madiba says in
the opening quotation, we can understand many languages, but we love
when our own languages are used.








TinyGo


As I mentioned in the Chapter 10, I was originally drawn to Go
as a systems language to replace C and C++ due to its clean syntax,
ties to Unix and Plan 9, and the involvement of Rob Pike and Ken
Thompson. When it trailed Rust on support for WebAssembly, my
attention waned but I have always looked forward to the day when that
gap would close. We are not there yet, but we are getting much closer
thanks to a new variant called TinyGo1. This project is not specific to
WebAssembly, but it is based on a new Go compiler built on the LLVM
infrastructure which opens up WebAssembly as a backend.


From their FAQ “What is TinyGo exactly?”2 we see that it is a parser
based upon the standard library (and thus portable and well-supported
by various WebAssembly tools such as Emscripten and wasi-sdk) and LLVM
for its reusable optimization support. Beyond that, the FAQ indicates
that it also includes compiler intrinsics (rules to assist with
optimization), a memory allocator, a scheduler, reimplemented common
packages, and support for string manipulation.


The “Tiny” portion of TinyGo is a desire to target microcontrollers
which are not supported by the conventional Go compiler. Absent the
layered architecture of LLVM, adding that kind of support on the
backend would be more trouble than its worth to many developers. LLVM
changes the level of effort and therefore opens up all sorts of new
possibilities. The other aspect of the regular Go toolchain is that it
produces large binaries which are also unsuitable for embedded systems
and microcontrollers. The combination of addressing these issues also
happens to work well in supporting a Go-to-WebAssembly path which is
likely to continue to bear fruit and allow Go to be usable in this way.


Given that Rust and Go land in the same space in many people’s heads
and Rust is also interested in targeting embedded systems with its
LLVM-based toolchain, the FAQ goes on to motivate Go as an option as
it has an admittedly shallower learning curve, thread implementation
independent concurrency support via goroutines and channels and a rich
standard library. In Rust, some of those features are supported by
dependent Cargo packages. They acknowledge that Rust has its own
strengths and advantages, but the larger point is that there is enough
demand in the marketplace of ideas to support both languages, so the
effort was worth it.


In Figure 17-1 we show the TinyGo playground in a
browser. Hopefully the sneak peek into the runtime importObject
resonates now that you have learned about WASI and other ways of
sharing behavior with WebAssembly runtimes.



[image: TinyGo Playground in the browser]
Figure 17-1. TinyGo Playground in the browser




If you clone the TinyGo repo3, there are some examples
that highlight interactions that should seem structurally familiar now
even if you do not know Go.


If you install the compiler as detailed in Appendix A, you
can run the examples. In Example 17-1 you can see the
main.go file from examples/wasm/main.


Example 17-1. Basic TinyGo example


package main

func main() {
  println("Hello world!")
}



To run the example, you have to execute the following. It builds the
named example (e.g. main) and then copies the necessary files into
an html directory. To serve up the contents of that directory, you
can run the Go HTTP server.

brian@tweezer ~/g/t/s/e/wasm> make main
rm -rf ./html
mkdir ./html
cp ../../../targets/wasm_exec.js ./html/
tinygo build -o ./html/wasm.wasm -target wasm -no-debug ./main/main.go
cp ./main/index.html ./html/
brian@tweezer ~/g/t/s/e/wasm> go run server.go
2021/08/14 13:49:42 Serving ./html on http://localhost:8080


Figure 17-2 demonstrates the unsurprising output from this
example.



[image: TinyGo main example in the browser]
Figure 17-2. TinyGo main example in the browser




I am not going to replicate the file here, but given what you have
seen elsewhere in this book, a perusal of the wasm_exec.js file
might be of interest to you. The authors of TinyGo have created a
common API for invoking Go consistently in browsers, Node.js, Electron
applications, and Parcel. You saw a snippet of this file in
Figure 17-1.


A more interesting Go example can be found in
Example 17-2. Not only do we see more of the Go language in
action, we also see the mechanism that they have put in place to
interact with the JavaScript environment.


Example 17-2. More interesting Go example


package main

import (
  "strings"
  "syscall/js"
)

func splitter(this js.Value, args []js.Value) interface{} {
  values := strings.Split(args[0].String(), ",")

  result := make([]interface{}, 0)
  for _, each := range values {
    result = append(result, each)
  }

  return js.ValueOf(result)
}

func main() {
  wait := make(chan struct{}, 0)
  js.Global().Set("splitter", js.FuncOf(splitter))
  <-wait
}



The main() method creates a global JavaScript function based on the
splitter() function expressed above. Running the following invokes
the compiler and copies JavaScript files into the html directory so
this program runs.

brian@tweezer ~/g/t/s/e/wasm> make slices
rm -rf ./html
mkdir ./html
cp ../../../targets/wasm_exec.js ./html/
tinygo build -o ./html/wasm.wasm -target wasm -no-debug ./slices/wasm.go
cp ./slices/wasm.js ./html/
cp ./slices/index.html ./html/


The copied files include the reusable API in wasm_exec.js as
before. The index.html is mostly unremarkable, but I show it in
Example 17-3 so you can see the input and div elements.


Example 17-3. Simple HTML file for Go slices example


<!DOCTYPE html>

<html>
  <head>
    <meta charset="utf-8"/>
    <title>Go WebAssembly</title>
    <meta name="viewport" content="width=device-width, initial-scale=1"/>
    <script src="wasm_exec.js" defer></script>
    <script src="wasm.js" defer></script>
  </head>
  <body>
    <h1>WebAssembly</h1>
    <p>type values separated by comma, using WebAssembly:</p>
    <input type="text" id="a" value=""/>==<div id="b"></div>
  </body>
</html>



As I said, there is not much to this HTML file other than loading the
common Go API I mentioned above and the application-specific
Javascript in wasm.js. This is shown in Example 17-4.


Example 17-4. Application-specific JavaScript for the Go slices example


'use strict';

const WASM_URL = 'wasm.wasm';

var wasm;

function update() {
  const value = document.getElementById("a").value;
  document.getElementById("b").innerHTML
    = JSON.stringify(window.splitter(value));
}

function init() {
  document.querySelector('#a').oninput = update;

  const go = new Go();
  if ('instantiateStreaming' in WebAssembly) {
    WebAssembly.instantiateStreaming(fetch(WASM_URL), go.importObject).then(function (obj) {
      wasm = obj.instance;
      go.run(wasm);
    })
  } else {
    fetch(WASM_URL).then(resp =>
      resp.arrayBuffer()
    ).then(bytes =>
      WebAssembly.instantiate(bytes, go.importObject).then(function (obj) {
        wasm = obj.instance;
        go.run(wasm);
      })
    )
  }
}

init();



Other than selecting the streaming or non-streaming methods of
instantiating WebAssembly modules depending on what the environment
provides, this code establishes an update() function to invoke when
the input field called a changes. The value is sent into the global
JavaScript function splitter() on the window instance which was
added from the Go main method. This string will be split on
comma-separated boundaries and then sent back to display in the HTML
via Javascript as shown in Figure 17-3.



[image: Go _slices_ example running in the browser]
Figure 17-3. Go slices example running in the browser




Obviously it would be silly to write a WebAssembly module in Go just
to split strings like this, but this demo is just trying to show you
the mechanics of the interaction. I do not think we have seen the
final form of Go support for WebAssembly yet, but I am pleased that
TinyGo brings this language along as far as it does.

















Artichoke


I have long been a fan of the Ruby language. It has a clean syntax and
powerful metaprogramming capability. It is hard to describe why one
language resonates versus another, but Ruby’s aesthetic has always
appealed to me. Despite this appreciation, I have never really done
much with it beyond the occasional Rails project. I remember the
excitement everyone felt when Rails first caught the developer
community’s attention. For a variety of reasons, despite being
extremely productive and a well-loved project, performance issues and
the need to support another runtime have hampered its world
domination. Charles Nutter and the the JRuby4
community have done a yeoman’s job getting Ruby to run on the JVM, but
we are now seeing another option emerge in the Artichoke
project5.


Artichoke is a Rust-based Ruby runtime environment that is designed to
be compatible with Matz’s Ruby Interpreter (MRI)6. It is early days so I do not
want to spend much time on this project, but it seems to be moving
quickly and they are looking for contributors so I wanted to mention
it in case you were interested. I would love to see this evolve into a
full-throttle way of getting Ruby more fully into Webassembly
environments as it also supports running untrusted code in a sandboxed
environment.


I have detailed some ways to install artichoke in
Appendix A. This includes the artichoke Ruby interpreter
and an irb7 replacement called airb. For now the
easiest way to experiment with this Ruby-to-WebAssembly toolchain is
probably through the Playground8 which can be seen in
Figure 17-4.



[image: Artichoke Ruby running in the browser]
Figure 17-4. Artichoke Ruby running in the browser




As with TinyGo, I do not think this is the end game for Ruby and
WebAssembly, but it is real enough that it should give Ruby
enthusiasts confidence that at some point in the near future they will
be able to participate more fully in the WebAssembly ecosystem.

















Swift


The Swift programming language continues to surprise me with its ever
widening reach. What seemed initially to be a nice, modern replacement
for Objective-C in the macOS and iOS programming world has expanded to
be open-sourced, available for server-side development, and a
well-supported language for machine learning in the TensorFlow
space. It would not be appropriate to classify Swift as officially
supporting WebAssembly yet, but, as you will see, it is not far off
and I think we will see it in the main toolchain before long.


Part of the reason why it is a natural transition to WebAssembly is
because Swift is based upon LLVM like Rust, clang, TinyGo, and many
other projects we have have discussed. Beyond that, there is a vibrant
community interested in seeing these two technologies becoming more
directly compatible.


As per usual, the easiest way to get started playing around at the
intersection of Swift and Webassembly is in the browser. The SwiftWasm
webpage (https://swiftwasm.org) provides just such an opportunity as
shown in Figure 17-5.



[image: SwiftWasm running in the browser]
Figure 17-5. SwiftWasm running in the browser




Not only is it possible to execute regular Swift code in the browser,
through projects like the Tokamak project9, it is
possible to run an increasing number of SwiftUI programs in the
browser as well. There is an example of this shown in
Figure 17-6.



[image: SwiftUI application running in the browser]
Figure 17-6. SwiftUI application running in the browser




There are many other projects involving Swift and WebAssembly, but one
more I wanted to highlight was the “Swift, Wasm, and Algorithms”
project shown in Figure 17-7. This represents an
interactive version of the algorithms Apple has added support for at
the Swift and Algorithms repo
(https://github.com/apple/swift-algorithms). This open-source package
of algorithms focuses on generating sequences, combinations,
permutations, and more from collections classes.



[image: Swift, Wasm and Algorithms as interactive documentation]
Figure 17-7. Swift, Wasm and Algorithms as interactive documentation




The page shown above allows users to interactively experiment with the
inputs and configurations for these algorithms which is a great way to
learn how they work. By being able to use the Swift code directly,
developers can see exactly how it will behave under different
circumstances which is more useful than approximating the libraries by
re-writing them in JavaScript.


While the browser-based demos are fun and easy to show off, it will be
more interesting to try our hand at more conventional programming. If
you install the SwiftWasm toolchain as described in
Appendix A, you should be able to run the following
commands on macOS or Linux to verify that you have the
WebAssembly-aware version of the Swift compiler installed.

brian@tweezer ~> swift --version
SwiftWasm Swift version 5.3 (swiftlang-5.3.1)
Target: x86_64-apple-darwin20.6.0


In Example 17-5 we have our usual introductory program
expressed in Swift.


Example 17-5. Hello, world! in Swift


print("Hello, world!")



We can generate a WASI-targeted version of the program as follows and
notably run it in both Wasmer and Wasmtime which highlights how good
the support is already.

brian@tweezer ~/s/swift> swiftc -target wasm32-unknown-wasi hello.swift ↵
  -o hello.wasm
brian@tweezer ~/s/swift> wasmer hello.wasm
Hello, world!
brian@tweezer ~/s/swift> wasmtime hello.wasm
Hello, world!


There are limitations to what is possible with this integration at the
moment. Much of the functionality that the Swift standard library
depends upon is not yet available because standard threading support
in WebAssembly is still a moving target. Hopefully you can see that we
are well on our way to having proper Swift support for WebAssembly
though, both in and outside the browser.

















Java


It seems inconceivable that Java is on this list of under-supported
languages and runtimes, but, alas it is true. Java’s reliance on
garbage collection and threads are among the biggest reasons this is
still the case. As these proposals advance, things will obviously
change but for now we have a limited number of options.


The first option allows us to embed WebAssembly in Java with Wasmer as
we have seen for other languages. That is clearly not the same thing
as compiling Java to run on a WebAssembly platform, but it is a
start. It depends on the Wasmer library and Java Native Interface
(JNI) to load, but it is straightforward enough overall. The basic
structure is shown in Example 17-6.


Example 17-6. Our howOld function being called from Java via Wasmer


import org.wasmer.Instance;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

class HowOldExample {
  public static void main(String[] args) throws IOException {
    byte[] bytes = Files.readAllBytes(Paths.get("howold.wasm"));
    Instance instance = new Instance(bytes);

    Function howOld = instance.exports.getFunction("howOld");
    Integer result = (Integer) howOld.apply(2021, 2000)[0];

    System.out.println("Result: " + result);

    instance.close();
  }
}



There is nothing substantially different from what we have seen so far
with respect to the Wasmer API. We instantiate an instance of a
WebAssembly module, retrieve a Function instance and invoke it with
our parameters. In the wasmer-java/examples directory10 there are additional
demonstrations on how to interact with exported Memory instances.


The Bytecode Alliance does not presently maintain Java APIs for
interacting with the Wasmtime runtime, but there are
community-supported versions available here:
https://github.com/kawamuray/wasmtime-java and here:
https://github.com/bluejekyll/wasmtime-java. They behave very much
like the Wasmtime APIs we have seen in Rust and .NET in previous
chapters.


Another similar option is to use GraalVM, a high-performance JDK
distribution that provides support for polyglot development and near
native performance to the Java world. With additional support it is
possible to run Python, Ruby, R, JavaScript, WebAssembly, and
LLVM-based languages through the LLVM JIT engine. Not only is it
possible to write these languages, it is also possible to have them
interoperate. There is a similar API from the GraalVM community for
instantiating WebAssembly modules and invoking them from Java which is
substantively equivalent to what we just did. Given the polyglot
interoperability, I would concede that it was a step closer to
supporting Java and WebAssembly more fully, but it is still not a full
solution. Until there is proper, standardized garbage collection and
thread support in the WebAssembly ecosystem, it is not going to be
straightforward to run Java in this way.


Once this does happen, and we see additional improvements in the
WebAssembly run times from a performance and optimization perspective,
then we will start to see organizations question the need for a JVM
and a WebAssembly engine in production. Java itself will not go away,
but I can see a scenario in the future where people are fine with a
single runtime of co-mingled software whether it is using GraalVM or a
WebAssembly engine.


While Java is not a fully-supported language yet, it does not mean
there is not a strategy toward adoption. The company Leaning
Technologies has a commercial offering called
CheerpJ11 that has some
impressive results. The solution is a combination of ahead-of-time
compilation, a WebAssembly and JavaScript runtime and the ability to
do dynamic compilation on the fly. I will let you investigate their
offering on your own, but you can see the remarkable achievement of
running the SwingSet3 demo in the browser in
Figure 17-8. This will not represent the ultimate
integration strategy from Java and WebAssembly, but if you have a need
now to support legacy systems in the browser, it might be an option.



[image: The SwingSet3 demo running in a browser via CheerpJ]
Figure 17-8. The SwingSet3 demo running in a browser via CheerpJ



















Kotlin


Kotlin reminds me of the old Saturday Night Live ad parody for
“Shimmer”, the combination floor wax and dessert topping12. As a language and a
runtime, there are so many things it can be, it feels like it falls
into multiple categories simultaneously. It can be used to target
applications on the JVM, it transpiles to JavaScript to run in the
browser, it has a scripting side to its list of identities, and it can
generate native applications on iOS and Android via an LLVM compiler.


What it is, undoubtedly, is popular. Different organizations use it
for different reasons, but it combines many different language
features to create a concise and safe industrial-strength
object-oriented programming language. It has been adopted as the
preferred language for developing Android applications as well as a
fully-supported language for super star open source projects such as
Spring and Gradle.


Along the way, they experimented with generating WebAssembly through
its LLVM compiler. As of now, they are deprecating that approach for a
more fully-supported backend to handle Kotlin to WebAssembly
directly. This is definitely a work in progress as they were forming a
new team to manage this and trying to staff it up in May of 2021.


You can still use the kotlinc-native wasm32 backend to experiment
if you like, but that is not going to be the long-term strategy. So,
while there are great things in the plans for the pairing between
these languages, we must take a wait-and-see approach for the time
being.

















Zig


It will not surprise me to hear that you might have never heard of
Zig, or if you have, only in passing. My favorite anecdote about it is
that Jakub Konka, a well-respected software and researcher into
algorithms and compiler theory learned Zig while waiting for a Rust
compile to finish13. It is a funny story that gets to poke fun
at the notoriously slow Rust compiler14
while also giving you a suggestive hint about what Zig brings to the
table.


First of all, as indicated by the story, Zig is a simple
language. Their website15 suggests that your time is better spent debugging
your applications rather than your knowledge of your programming
languages. Complex programming languages are hard to learn and hard to
be effective with until you have mastered them over years. Zig has no
hidden control flow, no hidden memory allocations, and neither a
preprocessor, nor a macro system. Its entire syntax is captured in a
500 line parsing expression grammar file.


Their functional design aesthetic is captured in their main
documentation webpage. It is precisely that: a single page. It is a
long, easily searchable file that also functions nicely offline.


Do not confuse their avoidance of flimflammery with a restricted
feature set. Zig is a fast, portable language that supports
cross-compilation for targeting multiple platforms, a wide range of
safety and optimization options, direct support for SIMD
vectorization, and much, much more.


What I am hoping to stress here is not that you need to learn Zig,
although it is high on my list of new languages to master. Instead, I
want you to think more about the fact that languages bring some amount
of value to the table while runtimes bring other types of value. We
have imagined a variety of use cases throughout the book that involve
anything from reusing legacy libraries to writing safe, modern code
that eliminates some runtime errors by turning them into compile time
errors. We have a range of options in choosing a language in which to
express our application and systems functionality. And, increasingly,
we do not need to worry that our niche little language can never be
used because it lacks a well-supported runtime platform. I indicated
above that I thought it was the Ruby runtime that cast a shadow over
the developer love affair with Ruby’s productivity. These kinds of
choices no longer seem to be the show-stoppers that they might have
been in the past.


Through various API styles, we can connect clients written in one
language to services written in another. By adopting loose-coupling in
the responses (e.g. hypermedia, JSON-LD, etc.), we have the freedom to
vary one or the other without impacting either in many
cases. Architectural approaches like microservices allow for even more
decentralized governance in technology choice as long as it does not
put a burden on our operational runtimes and deployment strategies. As
WebAssembly modules can officially be consumed as ES6 modules in the
very near future, there will be even less concern about the language
that a software artifact is built in.


I just think it is important to highlight that WebAssembly helps
manage many of these tradeoffs by turning them into
not-tradeoffs. When you have the freedom to pick a language that you
love, that is a good match to the problem, that leverages existing
developer training and experience, or that allows for longer-term
business value capture and reuse, then so many of the big problems we
have faced in the past simply evaporate moving forward.


This is not to say that there are not issues in supporting a polyglot
language environment. You will want to exercise some amount of
oversight in technology choice so that errant developers do not thrust
their weird preferences on their peers and then quit. But, if they do,
you have the freedom to continue to use their code as long as it works
until you have the chance to swap it out.


Whether it is avoiding calcified legacy technology lock-in,
insufficient reuse, or roadblocks toward modernization, WebAssembly is
well-poised to add business value widely and deeply in technology
infrastructures. If that means developing business applications in C#
and .NET or writing sophisticated modern algorithms in a language like
Zig, all of these use cases are on the table. That is worth
highlighting more than once because it cuts to the core of the point
of this book.


While we certainly are not going to motivate the strengths of Zig in
our well-trodden example, it will at least highlight the mechanics to
experiment on your own should you get the Zig bug. You will find a Zig
version of our howOld() function in Example 17-7. It does
not look substantially different from what we have seen before, but,
how hard is subtracting one integer from another really?


Example 17-7. Our howOld function written in Zig


export fn howOld(now: i32, then: i32) i32 {
  return now - then;
}



Building our example as a “freestanding” WebAssembly module (as
opposed to, say, a WASI-targeting one) looks like the following. Do
not blink or you might miss the compilation step.

brian@tweezer ~/g/w/s/c/zig> zig build-lib howOld.zig ↵
  -target wasm32-freestanding -dynamic


We can invoke our new module in a variety of ways, but, for something
different, let’s use the Node.js code in Example 17-8.


Example 17-8. Calling our Zig module from Node.js


const fs = require('fs');
const source = fs.readFileSync("./howOld.wasm");
const typedArray = new Uint8Array(source);

WebAssembly.instantiate(typedArray).then(result => {
  const howOld = result.instance.exports.howOld;
  let age = howOld(2021, 2000);
  console.log('You are: ' + age);
});



Running this gives the following.

brian@tweezer ~/g/w/s/c/zig> node main.js
You are: 21


A more interesting example is shown in Example 17-9, which is
taken from the Zig website and highlights its WASI support. In this
case, we demonstrate the use of capabilities-based security and
controlled access to the command line and file system by printing out
which directories our code has access to as a list of preopens to the
runtime.


Example 17-9. A WASI-targeted Zig application using console and potentially file system access


const std = @import("std");
const PreopenList = std.fs.wasi.PreopenList;

pub fn main() !void {
  var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{}){};
  const gpa = &general_purpose_allocator.allocator;

  var preopens = PreopenList.init(gpa);
  defer preopens.deinit();

  try preopens.populate();

  for (preopens.asSlice()) |preopen, i| {
    std.debug.print("{}: {}\n", .{ i, preopen });
  }
}



I am not going to go through the Zig-specific details, but basically
we are simply printing out what directories we have preopen access to
based upon capabilities awarded us by our host environment. Building
this application requires a different backend target. Rather than the
“Freestanding” WebAssembly module, we will produce a WASI-based one.


The first line below obviously builds the WASI-module. The second one
executes it in Wasmtime without giving it access to any
directories. As a consequence, there is no output. The third line
reexecutes Wasmtime with permission to the current directory which the
application is now able to acknowledge.

brian@tweezer ~/g/w/s/c/zig> zig build-exe preopens.zig -target wasm32-wasi
brian@tweezer ~/g/w/s/c/zig> wasmtime preopens.wasm
brian@tweezer ~/g/w/s/c/zig> wasmtime --dir=. preopens.wasm
0: Preopen{ .fd = 3, .type = PreopenType{ .Dir = '@"."' } }


I am not trying to sell you on Zig16. Instead, I am trying to reinforce
one of the major themes of this book. WebAssembly is a remarkably
value-amplifying technology. Being able to pick a language because it
is legacy and therefore useful to reuse or because it is new,
exciting, and adds new benefits while being able to target the full
menagerie of runtimes we have discussed is quite the achievement.


If you would like to have a little more fun with Zig, check out this
implementation of the popular video game written in Zig and using
WebGL: https://raulgrell.github.io/tetris.

















Grain


The final language I am going to cover is certainly not the final
language that can generate WebAssembly. There are many others we have
not had an opportunity to pursue. Instead, I picked a language that is
unique from all of the others we have discussed in that it was
designed to emit WebAssembly while also being a vehicle for
popularizing exciting and exotic new academic language features.


The Grain language17 is young but promising and merges functional
benefits, strong-typing and language accessibility. Many functional
programming languages are tremendously powerful, but they also seem
arcane and not intended for typical developers. It is nice to see
these features show up in developer-friendly languages such as Java
(post JDK 8), Rust, and now Grain. Despite this adoption of the
functional style, it is not unnecessarily pure, however, and also
supports mutable variables. Balancing type inferencing with a rich
standard library of composite structures, direct support for
WebAssembly primitives and the pattern-matching capabilities of Rust
are among its chief charms.


The website has great documentation about setting up VS Code with a
Grain extension for an all-around positive developer experience. My
purpose here is not necessarily to teach you Grain. I will let the
online resources and Grain community do that. Instead, I just wanted
to end with the idea that language innovation does not have to occur
in a vacuum. It is entirely likely that other new programming
languages will be designed with WebAssembly in mind. Having a path
forward with continuous innovation that is easy to adopt is yet
another reminder that we are not dealing with the technology choices
of the past.


We can build a future where language and runtime and hardware platform
and API style and data model and storage system choices can be unified
into a comprehensive vision of technical and business value.


But that, my friends, is probably my next book.

















And then?


There you have it. We have covered tremendous ground in this book from
the basics of the MVP with its low-level details, to the transition
out of the browser into WASI-based environments. We have seen
remarkably large and sophisticated software projects compiled to
WebAssembly, sometimes using shims and shortcuts to deal with the
platform limitations. We have also seen the active pace of the new
proposals that seek to extend WebAssembly into just about every nook
and cranny of our complex, heterogeneous, and ever-changing world of
modern software.


And now, we have concluded with a quick survey of how support for
WebAssembly is being added nearly across the board to our favorite
programming languages in one form or another. It is also being adopted
by and driving the features of exciting new languages. It seems like
it is becoming an expectation that all of these languages will want to
emit WebAssembly output to lay claim to their portion of the future.


Some of the inertia so far has been awareness, but there is now a
growing consensus that WebAssembly will have far-reaching impacts at
making our software safe, fast, and portable. Where there are
limitations and omissions, these are generally being overcome and
closed quickly both by extending the platform and developing
toolchains that protect us from annoying minutiae.


I started talking about WebAssembly professionally on the
NoFluffJustStuff18 tour in early
2017, just after the MVP had been finalized and browser support was
becoming ubiquitous. That was clearly well before most people were
ready to take advantage of this emerging platform, but I wanted to
start painting a picture of what was coming so software developers can
be prepared.


I have never become less excited about what this platform has in store
for us; my interest has only grown. As you evaluate the various tools,
technologies, and use cases we have alighted upon in this book, I hope
you have caught at least some of that excitement. Things will continue
to change on a weekly basis, but I hope that the majority of what I
have written about is stable and worthy of your time.


I thank you for your attention and I cannot wait to see what you do
with what you have learned.










1 The TinyGo webpage is here: https://tinygo.org
2 The TinyGo FAQ is here: https://tinygo.org/docs/concepts/faq
3 The TinyGo repo is available here: https://github.com/tinygo-org/tinygo
4 You can find more about this remarkable project here: https://www.jruby.org
5 The Artichoke web page is available here: https://artichokeruby.org
6 More details about what this means can be found here: https://en.wikipedia.org/wiki/Ruby_MRI
7 The irb is an interactive Ruby REPL environment: https://github.com/ruby/irb
8 The Artichoke Playground is located here: https://artichoke.run
9 The Tokamak project GitHub repo is here: https://github.com/TokamakUI/Tokamak
10 The wasmer-java GitHub repo is available here: https://github.com/wasmerio/wasmer-java
11 https://leaningtech.com/cheerpj
12 NBC is protecting the video, but you can listen to the skit here: https://www.youtube.com/watch?v=wPO8PqHGWFU
13 Jakub’s hands have been all over WASI, witx, Wasmtime, and more. More details are available here: http://www.jakubkonka.com
14 Although to be fair, it is because it is doing so much and has gotten much better over time.
15 The main Zig website is https://ziglang.org
16 Although if I have piqued your interest, “Sorry, not sorry.”
17 The website is located here: https://grain-lang.org
18 You can find out more about this traveling software carnival here: https://nofluffjuststuff.com




Appendix A. Installing WebAssembly Tools



A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at wasmbook@bosatsu.net.




Technology is nothing. What’s important is that you have a faith in
people, that they’re basically good and smart, and if you give them
tools, they’ll do wonderful things with them.

Steve Jobs




It is unsurprising given all of the languages, tools and frameworks
that we discuss in this book that there is a fair amount to
install. This appendix will not be comprehensive, but will try to
point you in the right direction to getting everything going. Some of
the tools are easier to install on Linux or macOS, but most should
work on Windows too.








Installing WebAssembly Binary Toolkit (WABT)


The WebAssembly Binary Toolkit (WABT) provides a suite of tools for
converting things too and from the various formats we have discussed
as well as several others. It includes tools for dumping out details
about the modules, validating their structures and more.


There are quite good instructions on the GitHub repo for building on
all three major operating systems so there is no point in replicating
that here. The repo is located here:


https://github.com/WebAssembly/wabt


One thing I did want to point out was that some of the tools are also
available online. It shouldn’t be too surprising that WebAssembly
tools might also run in the browser. If you want to try converting
formats without installing the tools, you can try them out here:


https://webassembly.github.io/wabt/demo/


Additionally, there is a spin off project called Wabt.js that allows
you to use much of the functionality from the toolkit in the
browser. It’s GitHub repository is here:


https://github.com/AssemblyScript/wabt.js/

















Installing LLVM


LLVM looks like it would stand for something but it doesn’t. It’s just
the name for an exceptionally cool modular compiler architecture that
serves as the basis for languages such as Rust, Swift, Julia and many
more.


LLVM is able to emit platform-specific codes even for different
platforms if you install the correct tooling. It is also useful for
experimenting with optimizations, running the intermediate form in a
virtual machine and producing WebAssembly.


I highly recommend you install LLVM through one of the installers
rather than building it from scratch as it takes forever and consumes
an obscene amount of disk space. Depending on your OS, you may already
have a version installed. The macOS toolchain is LLVM-based, but that
version does not yet interoperate with WebAssembly.


The main website is here:


https://llvm.org


There are installers for most major operating systems so you should
not have difficulty finding one that will work.

















Installing Emscripten


The Emscripten toolchain is a set of tools that wrap the LLVM
tools. Originally it emitted asm.js, but now it supports WebAssembly
directly. In addition to assisting with compiling existing C and C++
code, it has drop in replacements for other command line tools for
building software such as Make and configure.


With its macros and compiler directives, it is fairly straightforward
to simplify communicating between JavaScript host environments in the
browser or Node.js. It has support for widely-used dependencies like
the standard library and OpenGL.


The getting started guide has good instructions for multiple operating
systems so your best bet will be to investigate this site:


https://emscripten.org/docs/getting_started/index.html

















Installing Wasm3


Wasm3 bills itself as “The fastest WebAssembly interpreter, and the
most universal runtime.”


The GitHub repo is here:


https://github.com/wasm3/wasm3


Given the variety of platforms it runs on and languages it works with,
I am not going to challenge them on that. It currently runs on:



	
Linux, Windows, macOS, FreeBSD, Android, iOS



	
OpenWrt, Yocto, Buildroot (network equipment)



	
Raspberry Pi and other Single Board Computers



	
A variety of microcontrollers



	
Most modern Browsers






It is also doing a good job of tracking the various new proposals.


It is easy enough to build from source, but there are several
installers documented here:


https://github.com/wasm3/wasm3/blob/main/docs/Installation.md


I also encourage you to check out the helpful cookbook here:


https://github.com/wasm3/wasm3/blob/main/docs/Cookbook.md

















Installing WasmTime


Wasmtime was originally a Mozilla project but is maintained by the
Bytecode Alliance these days. They refer to it as “a standalone
wasm-only optimizing runtime for WebAssembly and WASI”.


It is one of the most up-to-date runtimes for the various proposals
and has an extensive set of programmatic libraries as you have seen
throughout the book.


There is quite extensive documentation here:


https://docs.wasmtime.dev


You can find installation instructions here:


https://docs.wasmtime.dev/cli-install.html

















Installing Wasmer


Wasmer was one of the first non-browser and non-Node.js WebAssembly
runtimes I encountered. It pre-dated WASI but quickly added support.


The main website for Wasmer is:


https://wasmer.io


In addition to being a standalone runtime, it has integration support
for:



	
Rust



	
C and C++



	
JavaScript



	
Go



	
Python



	
PHP



	
Ruby






It also maintains the WebAssembly Package Manager (WAPM),
WebAssembly.sh, and the Wasienv toolkit.


A great place for getting started and installing the runtime is their
excellent documentation here:


https://docs.wasmer.io/ecosystem/wasmer/getting-started

















Installing Rust Tools


Rust clearly has a big place in the WebAssembly ecosystem, but it has
a lot to speak of on its own as a safe, fast programming language that
is growing in adoption rapidly.


The main website is:


https://rust-lang.org


You will generally want to use the rustup tool for managing your Rust
toolchain. They support nightly, beta and stable versions. Based upon
your own level of comfort or a desire for the latest and greatest
features, you can quickly and easily switch between the various
channels that are installed. It is easy to install multiple channels
whenever you want. It is also possible to install backends for other
architectures if you are interested in cross-compiling.


Start by installing the rustup toolchain documented here:


https://www.rust-lang.org/tools/install


To generate WebAssembly directly you will have to install the
backend. You can pick whichever channel you want, but to install the
nightly WebAssembly backend you would do this:

~/s/r/wasm> rustup target add wasm32-unknown-unknown --toolchain nightly


To use the backend when compiling Rust, you would do something like
this if you did not make it the default toolchain:

~/s/r/wasm> rustc +nightly --target wasm32-unknown-unknown ↵
   -O --crate-type=cdylib add.rs -o add.wasm


To generate WASI code, you will want the WASI backend installed:

~/s/r/wasm> rustup target add wasm32-wasi --toolchain nightly


To use it if it is not the default toolchain:

~/s/r/wasm> rustc hello.rs --target wasm32-wasi


Notice that the regular Rust native backend, regular WebAssembly and
WASI backends are distinct depending on what you want to target.


If you want to interact seamlessly between Rust and JavaScript, you
will probably want to install wasm-bindgen.


An excellent introduction to the tool is here:


https://rustwasm.github.io/wasm-bindgen/


With the Rust tools installed, you should be able to install it with:

~/s/rust> cargo install -f wasm-bindgen-cli

















Installing Dotnet Tools


As you have seen in the book, .NET has become a robust WebAssembly
environment, particularly now that it is cross-platform.


The good news is that it is a piece of cake to install. The
instructions for the major operating systems are located here:


https://dotnet.microsoft.com/download


Once those are installed, you should be able to run the command line
examples we featured in the book.

















Installing AssemblyScript


AssemblyScript is emerging as a strong player in the WebAssembly
world. It strikes a nice balance between the past and the future. You
do not have to learn C or C++ code and can stay in a somewhat familiar
language space while still producing higher performance software.


The main website is here:


https://www.assemblyscript.org


Installation instructions are here:


https://www.assemblyscript.org/quick-start.html

















Installing IPFS


The Interplanetary Filesystem (IPFS) is not directly-related to
WebAssembly, but as a key player in the decentralized space there are
several places they intersect. I highlighted one example in the book.


If you would like to find out more about the project, the website is
here:


https://ipfs.io


You have some choices for installation which are detailed here:


https://ipfs.io/#install

















Installing TinyGo


As I indicated in the last chapter, TinyGo is emerging as a nice
starting point for the integration between Go and WebAssembly in
addition to its support for microcontrollers and other embedded
systems.


The main website is here:


https://tinygo.org


Instructions for installing on various operating systems or Docker are
available here:


https://tinygo.org/getting-started/install/

















Installing Artichoke


Artichoke is a compelling beginning of getting Ruby to the WebAssembly
party. It is still early days but, as I mentioned, they are looking
for contributors.


You can find installation instructions here:


https://www.artichokeruby.org/install/

















Installing SwiftWasm


SwiftWasm is also in early stages but shows a lot of promise for this
increasingly interesting language that has escaped its macOS
origins. There are a variety of installation options available here:


https://book.swiftwasm.org/getting-started/setup.html

















Installing Zig and Grain


Zig and Grain are both compelling new languages. They are ones that I
am very interested in digging into. While they are not widely used by
any stretch of the imagination, interest in them is growing. The fact
that they have strong emerging WebAssembly strategies is likely to
amplify their impact quickly since you will not need new runtime
tooling in many circumstances.


Even though they are separate and unrelated, I have bundled them
together because I think they serve similar roles and are at similar
places.


I encourage you to dig in further to both.


Zig is available here:


https://ziglang.org/download/


Grain is available here:


https://grain-lang.org/docs/getting_grain













About the Author


Brian Sletten is a liberal arts-educated software engineer with a focus on forward-leaning technologies. His experience has spanned many industries including retail, banking, online games, defense, finance, hospitality and health care. He has a B.S. in Computer Science from the College of William and Mary and lives in Auburn, CA. He focuses on web architecture, resource-oriented computing, social networking, the Semantic Web, data science, 3D graphics, visualization, scalable systems, security consulting and other technologies of the late 20th and early 21st Centuries. He is also a rabid reader, devoted foodie and has excellent taste in music. If pressed, he might tell you about his International Pop Recording career.



OEBPS/Images/wadg_1501.png
Service Provider

Customer

Power/
Storage

Low-Latency/
1P Protection

Low-Latency

Interactive/
Privacy/
Embedded/
Low-Profile

o

© &

Cloud/
Regions

Edge/
Serverless

On Premise

Mobile/
loT





OEBPS/Images/wadg_1102.png
MUSL libc “top haif

WASI libe

WASI APl oo T T T .






OEBPS/Images/wadg_1505.png





OEBPS/Images/wadg_1504.png
Terrarium image processing example

L

TPy e i e e 1t () s ) s Ot e, 0 S
L —————

i e
© o ey’






OEBPS/Images/wadg_1503.png
fastly labs

e v v & omeir






OEBPS/Images/wadg_1502.png
o Conputer
FORMAT: PC cLoup CONTAINER  WEBASSEMBLY WASMCLOUD
ExecuTion: VM- PublcClovd [rm—

o wa Erny oy o Buios o
o £ U Secesondon | Sndboxs Copates
- e Vi st Tow M
o tow et €U i o e
ey spien o ity et

g





OEBPS/Images/wadg_1101.png
[r— 5

[ —

Hetto, Worla?

This i simple Web plyil] erso of WASI,portbl sy neface for WebAssrnly. allwing simple WASIprogras that
pin o siot o b run i  browser See s e fo more informaton on sing WASL





OEBPS/Images/wadg_1509.png





OEBPS/Images/wadg_1508.png





OEBPS/Images/wadg_1507.png





OEBPS/Images/wadg_1506.png
Detect faces

Usingtho MTCA Torstio ocelSoscoc






OEBPS/Images/wadg_0302.png
@ co Plpy———

B Webissembly Code Explorer






OEBPS/Images/wadg_0301.png
[ ——

@ c o (0D kanesioos imow 2

I WebAssermbly Code Explorer v

)






OEBPS/Images/wadg_1511.png





OEBPS/Images/wadg_1510.png





OEBPS/Images/wadg_0702.png
3

i T © e s ) st O e Oty @ s oty B At

a

e e

o





OEBPS/Images/wadg_0701.png
O s oo O owo s () Sreione D wermacs O ey @ S Acomy 3 X
® s s o i oG58 i 5

» ]






OEBPS/Images/wadg_0305.png
@ O e e © oo 14 v () st D uamarc O i

B »

) [

1 o






OEBPS/Images/wadg_0304.png
@ O e e © oo 14 v () st D uamarc O i

B »

) [






OEBPS/Images/wadg_0303.png
@ co Plpy———

B Webissembly Code Explorer






OEBPS/Images/6.png





OEBPS/Images/12.png





OEBPS/Images/11.png





OEBPS/Images/7.png





OEBPS/Images/4.png





OEBPS/Images/5.png





OEBPS/Images/8.png





OEBPS/Images/10.png





OEBPS/Images/9.png





OEBPS/Images/wadg_0904.png
BlazeFace

EY

2

ms

10

B WebGL M Wasm [ Wasm+SIMD [ Wasm + SIMD + threads

ThinkPad X1 Gen 6 with Linux  Macbook Pro 15 2019






OEBPS/Images/wadg_0903.png
MobileNet v2

W webGL W Wasm [ Wasm+SIMD [l Wasm + SIMD + threads
200

100

ms

Pixel 4 ThinkPad X1 Gen 6 with Linux  Macbook Pro 15 2019





OEBPS/Images/wadg_0902.png
Client Code

Layers AP

ope
S e e T
o (| B | e || bt || ohdans






OEBPS/Images/wadg_0901.png
Client Code

Layers AP

ope
S e e T
o (| B | e || bt || ohdans






OEBPS/Images/wadg_0505.png
(O tnspector () Console O Debugger 1 Network () Style Eator (D Pertormance O Memory [ Storage » () +++ X

B vrmoms
» UinesArry asne) (8,3, 2, 3, 4, 5, 6,7
» inesArro e (9, 8, 7, 6,5, 4, 3, 2, 1
Uity 66tne) (19, 2, 7, 9, 31, 5, 8, 6,
 intBArra (6884) (8,3, 2, 3, 5 6,74 8, 3
et ot

)
)

o W Lo o Do €55 e 36
vt e
[iste———

o






OEBPS/Images/2.png





OEBPS/Images/3.png





OEBPS/Images/1.png





OEBPS/Images/wadg_1203.png





OEBPS/Images/wadg_1202.png
O O o Dcie © tnme TERt () st D s O sy @ S ey >

s L A -

© s

© o
s e s L o 58 e B X






OEBPS/Images/wadg_1201.png





OEBPS/Images/wadg_1604.png
Ci+-rendered Image in the Browser






OEBPS/Images/wadg_1603.png
0 w00

IPFS






OEBPS/Images/wadg_1602.png





OEBPS/Images/wadg_1601.png





OEBPS/Images/cover.png
O'REILLY"

WebAssembly
The Definitive Guide

Safe, Fast, and Portable Code

Early
Release

RAW &
UNEDITED

Brian Sletten






OEBPS/Images/wadg_0401.png
Uint32Array [0]

257

Uint8Array [0-4]






OEBPS/Images/wadg_0405.png
no & =

Japanese: TuIZBIRIC LA TLE LT,
English 1 sed to live in Yokohams.





OEBPS/Images/wadg_0404.png
no & =

Japanese: TaIZBIRIC LA TLE LT,
English 1 used to live in Yokohama





OEBPS/Images/wadg_0403.png
Fb{O]:0
Fblll |
Fbl2L |
Fbl3):2
Fbfd]: 3
FbIS] S
Fibfel: 8
Fb{7L 13
Fib{s]: 21
FbiSL 34
Fil10]:55
Fb{11]:89
Fib12]: 144
Fbl131:233
Fib14]:377
Fi{15]: 610
Fili6]:987
Fb{17): 1507
Fi18]:2584
Fibl19]: 4151

x +

0 locahost10003 memoryini





OEBPS/Images/wadg_0402.png
Memory

Your memery insanceis 65536 bytes.
Ithas tis many pages: |
Uin32Bufte0) = 257.






OEBPS/Images/wadg_0607.png
C+-rendered Image in the Browser

@ O v T O ot () st e © e
s

[ TR P

ol





OEBPS/Images/wadg_0606.png
C+-rendered Image in the Browser

@ O b T Ottt () st 0 © ey @ e
s

o B a-x






OEBPS/Images/wadg_0605.png





OEBPS/Images/wadg_0604.png
C+-rendered Image in the Browser

B






OEBPS/Images/wadg_1303.png
o gitnubiol 3

s s simpe xampl of a componant
Gurent count 7





OEBPS/Images/wadg_1302.png
Razor

.NET —[] [

WebAssembly






OEBPS/Images/wadg_1301.png
ASP.NET

Razor

NET

SignalR





OEBPS/Images/wadg_1307.png
@ R-p—r

FluentVaidation ®
Rvaldaton vy for NET tht sos et traco to constr

RostSharp ©
Slople REST and HTTP APIClont.

logénet
7T psche St Foundsion 85 dovrioas
Iogénet saool 1 hel the pogrammercuputog staements..

At came tme,og utpu can o 8 voluinous ha

Iogénets desgned with o dtnct goas i mid: speod an.

StackExchange.Redis
Sk Excrang, i rve 6 1M onriosde
Ha porormance et lont, ncarporatg ot synchronous

vios120

RestSharp ©

e

o

‘Simp ResT ane
o Snoran,






OEBPS/Images/wadg_1703.png
r—

@ O D ocakost

‘WebAssembly

type values separated by comma, using WebAssembly:

Go,runs, inthe, browser,now
['Go"" runs” " in the* browser"






OEBPS/Images/wadg_1306.png





OEBPS/Images/wadg_1702.png
°

-

B 0 i @t O e Tt (st Qs Oty @ e At

s x

o





OEBPS/Images/wadg_1701.png
TioPayround [ ) )






OEBPS/Images/wadg_1305.png
O D esrost = v

Hello, world!





OEBPS/Images/wadg_1304.png
@ O o D camole © a1t () s

@ sumnce © vonoy @ some






OEBPS/Images/wadg_1707.png
€500 0B e
Swift, Wasm, and Algorithms

Combinations ©
comination ofcount: )

Atype that comptes combinatons of acolction'selments.

[1, 2, 3, 4].conbinations (ofcount: 3)

Permutations ©

Atype that comptes permutations of acollectio'sslements, o ofasubset o those lements,

[1, 2, 3, 41.permutations ofcount: 1)

m
fl
8l





OEBPS/Images/wadg_1706.png
SwiftWasm

on ) (e

oo rin(camie Ve e}

R r——






OEBPS/Images/wadg_1705.png
“Try Swift on WebAssembly now

fune tizuastorons T, <01 100) €

bt it 1830 ¢
printCine)
f
print(s)
»

[





OEBPS/Images/wadg_1309.png
Sec: 0.559





OEBPS/Images/wadg_1308.png





OEBPS/Images/wadg_1704.png





OEBPS/Images/wadg_1708.png





OEBPS/Images/wadg_0504.png
@ O imspector [ Console © Debugger 1 Network () Style Eator (D Pertormance O Memory (3 stoage » () -+ X

o ariops ogs o Dwbvg G55 0 Feaests B

)09, 8,7,6,5 4,3
» vnesarraannn) (3, 8, 9, 2, 4, 5, 10,
» neshrroy () (8, 3,2, 3, 4, 5, 6, 8,

»1

o






OEBPS/Images/wadg_0503.png
4|5






OEBPS/Images/wadg_0502.png
How Old Are You?





OEBPS/Images/wadg_0501.png
1

Parser

Optimizer

Backend






OEBPS/Images/wadg_1006.png
My egui Application

Your name: [Arthur j’f

42 age
Click each year





OEBPS/Images/wadg_1005.png





OEBPS/Images/wadg_1004.png
eguidemo apos






OEBPS/Images/wadg_1003.png
© v

oo () o

@ b O ey B s

2 x

(R ——

o





OEBPS/Images/wadg_1002.png
p——






OEBPS/Images/wadg_1001.png
D locathost10010fcex it

Rust and WebAssembly





OEBPS/Images/wadg_0203.png
2000

2021

Top





OEBPS/Images/wadg_0202.png
2021

Top





OEBPS/Images/wadg_0201.png
Top





OEBPS/Images/wadg_0603.png





OEBPS/Images/wadg_0602.png
®

Hello, World!

§ O ot Dome D owaper Hh etk ) Skt et © oy

@ »

2 x

o





OEBPS/Images/wadg_0206.png
[cccmam —oaeces—mm o |
Hello, World! (Sort of)

ik you r 21 yoars o





OEBPS/Images/wadg_0601.png
Hello, World!

© i T © o

)

e () St @ putomarce O Menay @ S ey 3>

o o 5 o e 28

o





OEBPS/Images/wadg_0205.png
watzwasm demo






OEBPS/Images/wadg_0204.png
21

Top





