

Prometheus: Up & Running

Infrastructure and Application Performance Monitoring

Second Edition

Julien Pivotto and Brian Brazil

Prometheus: Up & Running

by Julien Pivotto and Brian Brazil

Copyright © 2023 Inuits BV. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: John Devins

		Development Editor: Rita Fernando

		Production Editor: Ashley Stussy

	
		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		Tech Reviewers: Julius Volz, Carl Bergquist, Andrew McMillan, and Greg Stark

		July 2018: First Edition

Revision History for the Early Release

		2022-09-15: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492034148 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Reliable Machine Learning, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-13108-1

[LSI]

Preface

This book describes in detail how to use the Prometheus monitoring system to monitor, graph, and alert on the performance of your applications and infrastructure. This book is intended for application developers, system administrators, and everyone in between.

Expanding the Known

When it comes to monitoring, knowing that the systems you care about are turned on is important, but that’s not where the real value is. The big wins are in understanding the performance of your systems.

By performance I don’t only mean the response time of and CPU used by each request, but the broader meaning of performance. How many requests to the database are required for each customer order that is processed? Is it time to purchase higher throughput networking equipment? How many machines are your cache misses costing? Are enough of your users interacting with a complex feature in order to justify its continued existence?

These are the sort of questions that a metrics-based monitoring system can help you answer, and beyond that help you dig into why the answer is what it is. I see monitoring as getting insight from throughout your system, from high-level overviews down to the nitty-gritty details that are useful for debugging. A full set of monitoring tools for debugging and analysis includes not only metrics, but also logs, traces, and profiling; but metrics should be your first port of call when you want to answer systems-level questions.

Prometheus encourages you to have instrumentation liberally spread across your systems, from applications all the way down to the bare metal. With instrumentation you can observe how all your subsystems and components are interacting, and convert unknowns into knowns.

Conventions Used in This Book

The following typographical conventions are used in this book:

		Italic

		
	Indicates new terms, URLs, email addresses, filenames, and file extensions.

	

		Constant width

		
	Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	

		Constant width bold

		
	Shows commands or other text that should be typed literally by the user.

	

		Constant width italic

		
	Shows text that should be replaced with user-supplied values or by values determined by context.

	

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, configuration files, etc.) is available for download at https://github.com/prometheus-up-and-running/examples.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Prometheus: Up & Running by Brian Brazil (O’Reilly). Copyright 2018 Robust Perception Ltd., 978-1-492-03414-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari

Note

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

		O’Reilly Media, Inc.

		1005 Gravenstein Highway North

		Sebastopol, CA 95472

		800-998-9938 (in the United States or Canada)

		707-829-0515 (international or local)

		707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/prometheus-up-and-running.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without all the work of the Prometheus team, and the hundreds of contributors to Prometheus and its ecosystem. A special thanks to Julius Volz, Richard Hartmann, Carl Bergquist, Andrew McMillan, and Greg Stark for providing feedback on initial drafts of this book.

Part I. Introduction

This section will introduce you to monitoring in general, and Prometheus more
specifically.

In Chapter 1 you will learn about the many different meanings of
monitoring and approaches to it, the metrics approach that Prometheus takes,
and the architecture of Prometheus.

In Chapter 2 you will get your hands dirty running a simple
Prometheus setup that scrapes machine metrics, evaluates queries, and sends
alert notifications.

Chapter 1. What Is Prometheus?

Prometheus is an open source, metrics-based monitoring system. Of course,
Prometheus is far from the only one of those out there, so what makes it
notable?

Prometheus does one thing and it does it well. It has a simple yet powerful
data model and a query language that lets you analyse how your applications
and infrastructure are performing. It does not try to solve problems outside of
the metrics space, leaving those to other more appropriate tools.

Since its beginnings with no more than a handful of developers working in
SoundCloud in 2012, a community and ecosystem has grown around Prometheus.
Prometheus is primarily written in Go and licensed under the Apache 2.0
license. There are hundreds of people who have contributed to the project
itself, which is not controlled by any one company. It is always hard to tell
how many users an open source project has, but we estimate that as of 2022, hundreds of thousands of organisations are using Prometheus in production. In
2016 the Prometheus project became the second member1 of the Cloud Native Computing Foundation (CNCF).

For instrumenting your own code, there are client libraries in all the popular
languages and runtimes, including Go, Java/JVM, C#/.Net, Python, Ruby, Node.js,
Haskell, Erlang, and Rust. Software like Kubernetes and Docker are already
instrumented with Prometheus client libraries. For third-party software that
exposes metrics in a non-Prometheus format, there are hundreds of
integrations available. These are called exporters, and include HAProxy, MySQL,
PostgreSQL, Redis, JMX, SNMP, Consul, and Kafka. A friend of Brian even added
support for monitoring Minecraft servers, as he cares a lot about his frames
per second.

A simple text format2 makes it easy to expose
metrics to Prometheus. Other monitoring systems, both open source and
commercial, have added support for this format. This allows all of these
monitoring systems to focus more on core features, rather than each having to
spend time duplicating effort to support every single piece of software a user
like you may wish to monitor.

The data model identifies each time series not just with a name, but also with
an unordered set of key-value pairs called labels. The PromQL query language
allows aggregation across any of these labels, so you can analyse not just per
process but also per datacenter and per service or by any other labels that you
have defined. These can be graphed in dashboard systems such as Grafana.

Alerts can be defined using the exact same PromQL query language that you use
for graphing. If you can graph it, you can alert on it. Labels make maintaining
alerts easier, as you can create a single alert covering all possible label
values. In some other monitoring systems you would have to individually create
an alert per machine/application. Relatedly, service discovery can
automatically determine what applications and machines should be scraped from
sources such as Kubernetes, Consul, Amazon Elastic Compute Cloud (EC2), Azure,
Google Compute Engine (GCE), and OpenStack.

For all these features and benefits, Prometheus is performant and simple to
run. A single Prometheus server can ingest millions of samples per second. It
is a single statically linked binary with a configuration file. All components
of Prometheus can be run in containers, and they avoid doing anything fancy that
would get in the way of configuration management tools. It is designed to be
integrated into the infrastructure you already have and built on top of, not to
be a management platform itself.

Now that you have an overview of what Prometheus is, let’s
step back for a minute and look at what is meant by “monitoring” in order to
provide some context. Following that we will look at what the main components of
Prometheus are, and what Prometheus is not.

What Is Monitoring?

In secondary school one of my (Brian) teachers told us that if you were to ask ten
economists what economics means, you’d get eleven answers. Monitoring has a
similar lack of consensus as to what exactly it means. When I tell others what I do, people think my job entails everything from
keeping an eye on temperature in factories, to employee monitoring where I was
the one to find out who was accessing Facebook during working hours, and even
detecting intruders on networks.

Prometheus wasn’t built to do any of those things.3 It was built to aid
software developers and administrators in the operation of production computer
systems, such as the applications, tools, databases, and networks backing
popular websites.

So what is monitoring in that context? Let’s narrow this sort of
operational monitoring of computer systems down to four things:

	Alerting

	
Knowing when things are going wrong is usually the most important thing that
you want monitoring for. You want the monitoring system to call in a human
to take a look.

	Debugging

	
Now that you have called in a human, they need to investigate to determine the
root cause and ultimately resolve whatever the issue is.

	Trending

	
Alerting and debugging usually happen on time scales on the order of minutes
to hours. While less urgent, the ability to see how your systems are being used
and changing over time is also useful. Trending can feed into design decisions
and processes such as capacity planning.

	Plumbing

	
When all you have is a hammer, everything starts to look like a nail. At the
end of the day all monitoring systems are data processing pipelines. Sometimes
it is more convenient to appropriate part of your monitoring system for
another purpose, rather than building a bespoke solution. This is not strictly
monitoring, but it is common in practice so we like to include it.

Depending on who you talk to and their background, they may consider only some
of these to be monitoring. This leads to many discussions about monitoring going
around in circles, leaving everyone frustrated. To help you understand where others
are coming from, we’re going to look at a
small bit of the history of monitoring.

A Brief and Incomplete History of Monitoring

While monitoring has seen a shift toward tools including Prometheus in the
past few years, the dominant solution remains some combination of Nagios and
Graphite or their variants.

When we say Nagios, we are including any software within the same broad family, such
as Icinga, Zmon, and Sensu. They work primarily by regularly executing scripts
called checks. If a check fails by returning a nonzero exit code, an alert is
generated. Nagios was initially started by Ethan Galstad in 1996, as an MS-DOS
application used to perform pings. It was first released as NetSaint in 1999, and
renamed Nagios in 2002.

To talk about the history of Graphite, we need to go back to 1994. Tobias
Oetiker created a Perl script that became Multi Router Traffic Grapher, or MRTG
1.0, in 1995. As the name indicates, it was mainly used for network monitoring
via the Simple Network Management Protocol (SNMP). It could also obtain metrics
by executing scripts.4 The year 1997 brought big changes with a move of some code to C, and the
creation of the Round Robin Database (RRD) which was used to store metric data.
This brought notable performance improvements, and RRD was the basis for other
tools including Smokeping and Graphite.

Started in 2006, Graphite uses Whisper for metrics storage, which has a
similar design to RRD. Graphite does not collect data itself, rather it is sent
in by collection tools such as collectd and Statsd, which were created in 2005
and 2010, respectively.

The key takeway here is that graphing and alerting were once completely separate concerns performed by different tools. You could write a
check script to evaluate a query in Graphite and generate alerts on that basis,
but most checks tended to be on unexpected states such as a process not running.

Another holdover from this era is the relatively manual approach to
administering computer services. Services were deployed on individual machines
and lovingly cared for by systems administrators. Alerts that might potentially
indicate a problem were jumped upon by devoted engineers. As cloud and cloud
native technologies such as EC2, Docker, and Kubernetes have come to prominence,
treating individual machines and services like pets with each getting individual attention does not scale. Rather, they
should be looked at more as cattle and administered and monitored as a group. In
the same way that the industry has moved from doing management by hand, to
tools like Chef and Ansible, to now starting to use technologies like
Kubernetes, monitoring also needs to make a similar transition from checks on
individual processes on individual machines to monitoring based on service health as a whole.

Born from two other open source projects, OpenCensus and OpenTracing, OpenTelemetry is a specification and a set of components that aim to offer built-in telemetry for projects. Its metrics component is compatible with Prometheus with the addition of the OpenTelemetry collector, which is responsible to collect and provide metrics to your Prometheus server.

You may have noticed that we didn’t mention logging. Historically logs have been used as something that you use tail, grep, and awk on by hand. You might have had an
analysis tool such as AWStats to produce reports once a hour or day. In more
recent years they have also been used as a significant part of monitoring, such
as with the Elasticsearch, Logstash, and Kibana (ELK) and OpenSearch stack.

Now that we have looked a bit at graphing and alerting, let’s look at how metrics and
logs fit into things. Are there more categories of monitoring than those two?

Categories of Monitoring

At the end of the day, most monitoring is about the same thing: events. Events
can be almost anything, including:

	
Receiving a HTTP request

	
Sending a HTTP 400 response

	
Entering a function

	
Reaching the else of an if statement

	
Leaving a function

	
A user logging in

	
Writing data to disk

	
Reading data from the network

	
Requesting more memory from the kernel

All events also have context. A HTTP request will have the IP address it is
coming from and going to, the URL being requested, the cookies that are set,
and the user who made the request. A HTTP response will have how long the
response took, the HTTP status code, and the length of the response body. Events
involving functions have the call stack of the functions above them, and
whatever triggered this part of the stack such as a HTTP request.

Having all the context for all the events would be great for debugging and
understanding how your systems are performing in both technical and business
terms, but that amount of data is not practical to process and store. Thus
there are what we would see as roughly four ways to approach reducing that volume of data to something workable, namely profiling, tracing, logging, and metrics.

Profiling

Profiling takes the approach that you can’t have all the context for all of the
events all of the time, but you can have some of the context for limited
periods of time.

Tcpdump is one example of a profiling tool. It allows you to record network traffic
based on a specified filter. It’s an essential debugging tool, but you can’t
really turn it on all the time as you will run out of disk space.

Debug builds of binaries that track profiling data are another example. They
provide a plethora of useful information, but the performance impact of
gathering all that information, such as timings of every function call, means
that it is not generally practical to run it in production on an ongoing basis.

In the Linux kernel, enhanced Berkeley Packet Filters (eBPF) allow detailed
profiling of kernel events from filesystem operations to network oddities.
These provide access to a level of insight that was not generally available
previously, and I’d recommend reading
Brendan Gregg’s writings on the subject.

Profiling is largely for tactical debugging. If it is being used on a longer
term basis, then the data volume must be cut down in order to fit into one of
the other categories of monitoring.

Some open source tools are emerging to enable continuous profiling, such as Parca.

Tracing

Tracing doesn’t look at all events, rather it takes some proportion of events
such as one in a hundred that pass through some functions of interest. Tracing
will note the functions in the stack trace of the points of interest, and
often also how long each of these functions took to execute. From this you can
get an idea of where your program is spending time and which code paths are
most contributing to latency.

Rather than doing snapshots of stack traces at points of interest, some tracing
systems trace and record timings of every function call below the
function of interest. For example, one in a hundred user HTTP requests might be
sampled, and for those requests you could see how much time was spent talking
to backends such as databases and caches. This allows you to see how timings
differ based on factors like cache hits versus cache misses.

Distributed tracing takes this a step further. It makes tracing work across
processes by attaching unique IDs to requests that are passed from one process
to another in remote procedure calls (RPCs) in addition to whether this request
is one that should be traced. The traces from different processes and
machines can be stitched back together based on the request ID. This is a vital
tool for debugging distributed microservices architectures. Technologies in
this space include OpenZipkin and Jaeger.

For tracing, it is the sampling that keeps the data volumes and instrumentation
performance impact within reason.

Logging

Logging looks at a limited set of events and records some of the context for
each of these events. For example, it may look at all incoming HTTP requests, or
all outgoing database calls. To avoid consuming too much resources, as a rule of
thumb you are limited to somewhere around a hundred fields per log entry.
Beyond that, bandwidth and storage space tend to become a concern.

For example, for a server handling a thousand requests per second, a log entry
with a hundred fields each taking ten bytes works out as a megabyte per second.
That’s a nontrivial proportion of a 100 Mbit network card, and 84 GB of storage
per day just for logging.

A big benefit of logging is that there is (usually) no sampling of events, so
even though there is a limit on the number of fields, it is practical to determine how slow requests are affecting one particular user talking to one
particular API endpoint.

Just as monitoring means different things to different people, logging also
means different things depending on who you ask, which can cause confusion. Different types of logging have
different uses, durability, and retention requirements. As we see it, there are four
general and somewhat overlapping categories:

	Transaction logs

	
These are the critical business records that you must keep safe at all costs,
likely forever. Anything touching on money or that is used for critical
user-facing features tends to be in this category.

	Request logs

	
If you are tracking every HTTP request, or every database call, that’s a request log.
They may be processed in order to implement user facing features, or just for
internal optimisations. You don’t generally want to lose them, but it’s not the
end of the world if some of them go missing.

	Application logs

	
Not all logs are about requests; some are about the process itself. Startup
messages, background maintenance tasks, and other process-level log lines are
typical. These logs are often read directly by a human, so you should try to avoid
having more than a few per minute in normal operations.

	Debug logs

	
Debug logs tend to be very detailed and thus expensive to create and store.
They are often only used in very narrow debugging situations, and are tending
towards profiling due to their data volume. Reliability and retention requirements tend to be low, and debug logs
may not even leave the machine they are generated on.

Treating the differing types of logs all in the same way can end you up in the worst of all worlds,
where you have the data volume of debug logs combined with the extreme
reliability requirements of transaction logs. Thus as your system grows you
should plan on splitting out the debug logs so that they can be handled separately.

Examples of logging systems include the ELK stack, OpenSearch, and Graylog.

Metrics

Metrics largely ignore context, instead tracking aggregations over time of
different types of events. To keep resource usage sane, the amount of different numbers being tracked needs to be limited: ten thousand per process is a
reasonable upper bound for you to keep in mind.

Examples of the sort of metrics you might have would be the number of times you
received HTTP requests, how much time was spent handling requests, and how many
requests are currently in progress. By excluding any information about context,
the data volumes and processing required are kept reasonable.

That is not to say, though, that context is always ignored. For a HTTP request
you could decide to have a metric for each URL path. But the ten thousand metric
guideline has to be kept in mind, as each distinct path now counts as a
metric. Using context such as a user’s email address would be unwise, as they
have an unbounded cardinality.5

You can use metrics to track the latency and data volumes handled by each of
the subsystems in your applications, making it easier to determine what exactly
is causing a slowdown. Logs could not record that many fields, but once you
know which subsystem is to blame, logs can help you figure out which exact user
requests are involved.

This is where the tradeoff between logs and metrics becomes most apparent.
Metrics allow you to collect information about events from all over your
process, but with generally no more than one or two fields of context with
bounded cardinality. Logs allow you to collect information about all of one
type of event, but can only track a hundred fields of context with unbounded
cardinality. This notion of cardinality and the limits it places on metrics is
important to understand, and we will come back to it in later chapters.

As a metrics-based monitoring system, Prometheus is designed to track
overall system health, behaviour, and performance rather than individual
events. Put another way, Prometheus cares that there were 15 requests in
the last minute that took 4 seconds to handle, resulted in 40 database
calls, 17 cache hits, and 2 purchases by customers. The cost and code
paths of the individual calls would be the concern of profiling or logging.

Now that you have an understanding of where Prometheus fits in the overall
monitoring space, let’s look at the various components of Prometheus.

Prometheus Architecture

Figure 1-1 shows the overall architecture of Prometheus. Prometheus
discovers targets to scrape from service discovery. These can be your own
instrumented applications or third-party applications you can scrape via
an exporter. The scraped data is stored, and you can use it in
dashboards using PromQL or send alerts to the Alertmanager, which will convert
them into pages, emails, and other notifications.

[image: Architecture diargram]
Figure 1-1. The Prometheus architecture

Client Libraries

Metrics do not typically magically spring forth from applications; someone has
to add the instrumentation that produces them. This is where client libraries
come in. With usually only two or three lines of code, you can both define a
metric and add your desired instrumentation inline in code you control. This is
referred to as direct instrumentation.

Client libraries are available for all the major languages and runtimes. The
Prometheus project provides official client libraries in Go, Python, Java/JVM,
Ruby and Rust. There are also a variety of third-party client libraries, such as for
C#/.Net, Node.js, Haskell, and Erlang.

Official Versus Unofficial

Don’t be put off by integrations such as client libraries being unofficial or
third party. With hundreds of applications and systems that you may wish to
integrate with, it is not possible for the Prometheus project team to have the time and expertise to create and maintain them all. Thus the vast majority of
integrations in the ecosystem are third party. In order to keep things
reasonably consistent and working as you would expect, guidelines are available
on how to write integrations.

Client libraries take care of all the nitty-gritty details such as
thread-safety, bookkeeping, and producing the Prometheus text and/or OpenMetrics exposition format
in response to HTTP requests. As metrics-based monitoring does not track
individual events, client library memory usage does not increase the more
events you have. Rather, memory is related to the number of metrics you have.

If one of the library dependencies of your application has Prometheus
instrumentation, it will automatically be picked up. Thus by instrumenting a
key library such as your RPC client, you can get instrumentation for it in all
of your applications.

Some metrics are typically provided out of the box by client libraries such as CPU usage
and garbage collection statistics, depending on the library and runtime environment.

Client libraries are not restricted to outputting metrics in the Prometheus
 and OpenMetrics text formats. Prometheus is an open ecosystem, and the same APIs used to feed
the generation text format can be used to produce metrics in other formats or
to feed into other instrumentation systems. Similarly, it is possible to take
metrics from other instrumentation systems and plumb it into a Prometheus
client library, if you haven’t quite converted everything to Prometheus
instrumentation yet.

Exporters

Not all code you run is code that you can control or even have access to, and thus
adding direct instrumentation isn’t really an option. For example, it is
unlikely that operating system kernels will start outputting Prometheus-formatted metrics over HTTP anytime soon.

Such software often has some interface through which you can access metrics.
This might be an ad hoc format requiring custom parsing and handling, such as is
required for many Linux metrics, or a well-established standard such as SNMP.

An exporter is a piece of software that you deploy right beside the application
you want to obtain metrics from. It takes in requests from Prometheus, gathers
the required data from the application, transforms them into the correct format, and finally
returns them in a response to Prometheus. You can think of an exporter as a
small one-to-one proxy, converting data between the metrics interface of an
application and the Prometheus exposition format.

Unlike the direct instrumentation you would use for code you control, exporters use a different style of instrumentation known as custom collectors or
ConstMetrics.6

The good news is that given the size of the Prometheus community, the exporter you need probably already exists and can be used with little
effort on your part. If the exporter is missing a metric you are interested in, you can
always send a pull request to improve it, making it better for the
next person to use it.

Service Discovery

Once you have all your applications instrumented and your exporters running,
Prometheus needs to know where they are. This is so Prometheus will know what
is meant to monitor, and be able to notice if something it is meant to be monitoring is not responding. With
dynamic environments you cannot simply provide a list of applications and
exporters once, as it will get out of date. This is where service discovery comes in.

You probably already have some database of your machines,
applications, and what they do. It might be inside Chef’s database, an inventory
file for Ansible, based on tags on your EC2 instance, in labels and annotations
in Kubernetes, or maybe just sitting in your documentation wiki.

Prometheus has integrations with many common service discovery mechanisms, such as
Kubernetes, EC2, and Consul. There is also a generic integration for those whose
setup is a little off the beaten path (see [Link to Come] and [Link to Come]).

This still leaves a problem though. Just because Prometheus has a list of machines
and services doesn’t mean we know how they fit into your architecture. For example, you might be using the EC2 Name tag7 to indicate what application
runs on a machine, whereas others might use a tag called app.

As every organisation does it slightly differently, Prometheus allows you to
configure how metadata from service discovery is mapped to monitoring targets
and their labels using relabeling.

Scraping

Service discovery and relabeling give us a list of targets to be
monitored. Now Prometheus needs to fetch the metrics. Prometheus does this by
sending a HTTP request called a scrape. The response to the scrape is parsed and ingested
into storage. Several useful metrics are also added in, such as if the scrape
succeeded and how long it took. Scrapes happen regularly; usually you would
configure it to happen every 10 to 60 seconds for each target.

Pull Versus Push

Prometheus is a pull-based system. It decides when and what to scrape,
based on its configuration. There are also push-based systems, where the
monitoring target decides if it is going to be monitored and how often.

There is vigorous debate online about the two designs, which often bears
similarities to debates around Vim versus EMACS. Suffice to say both have pros
and cons, and overall it doesn’t matter much.

As a Prometheus user you should understand that pull is ingrained in the core
of Prometheus, and attempting to make it do push instead is at best unwise.

Storage

Prometheus stores data locally in a custom database. Distributed systems
are challenging to make reliable, so Prometheus does not attempt to do any form
of clustering. In addition to reliability, this makes Prometheus easier to run.

Over the years, storage has gone through a number of redesigns, with the storage
system in Prometheus 2.0 being the third iteration. The storage system can
handle ingesting millions of samples per second, making it possible to monitor
thousands of machines with a single Prometheus server. The compression
algorithm used can achieve 1.3 bytes per sample on real-world data. An SSD is
recommended, but not strictly required.

Dashboards

Prometheus has a number of HTTP APIs that allow you to both request raw data
and evaluate PromQL queries. These can be used to produce graphs and dashboards.
Out of the box, Prometheus provides the expression browser. It uses these APIs
and is suitable for ad hoc querying and data exploration, but it is not a
general dashboard system.

It is recommended that you use Grafana for dashboards. It has a wide variety of
features, including official support for Prometheus as a data source. It can
produce a wide variety of dashboards, such as the one in Figure 1-2.
Grafana supports talking to multiple Prometheus servers, even within a single
dashboard panel.

[image: A Grafana dashboard]
Figure 1-2. A Grafana dashboard

Recording Rules and Alerts

Although PromQL and the storage engine are powerful and efficient, aggregating
metrics from thousands of machines on the fly every time you render a graph can
get a little laggy. Recording rules allow PromQL expressions to be evaluated on
a regular basis and their results ingested into the storage engine.

Alerting rules are another form of recording rules. They also evaluate PromQL
expressions regularly, and any results from those expressions become alerts.
Alerts are sent to the Alertmanager.

Alert Management

The Alertmanager receives alerts from Prometheus servers and turns them
into notifications. Notifications can include email, chat applications such as
Slack, and services such as PagerDuty.

The Alertmanager does more than blindly turn alerts into notifications on a one-to-one basis. Related alerts can be aggregated into one notification, throttled
to reduce pager storms,8 and
different routing and notification outputs can be configured for each of your different
teams. Alerts can also be silenced, perhaps to snooze an issue you are already aware of in advance when you know maintenance is scheduled.

The Alertmanager’s role stops at sending notifications; to manage human
responses to incidents you should use services such as PagerDuty and ticketing
systems.

Tip

Alerts and their thresholds are configured in Prometheus, not in the
Alertmanager.

Long-Term Storage

Since Prometheus stores data only on the local machine, you are limited by how
much disk space you can fit on that machine.9 While you usually care only about the most recent
day or so worth of data, for long-term capacity planning a longer retention
period is desirable.

Prometheus does not offer a clustered storage solution to store data
across multiple machines, but there are remote read and write APIs
that allow other systems to hook in and take on this role. These allow PromQL
queries to be transparently run against both local and remote data.

What Prometheus Is Not

Now that you have an idea of where Prometheus fits in the broader monitoring
landscape and what its major components are, let’s look at some use
cases for which Prometheus is not a particularly good choice.

As a metrics-based system, Prometheus is not suitable for storing event logs or individual events. Nor is it the best choice for high cardinality data,
such as email addresses or usernames.

Prometheus is designed for operational monitoring, where small inaccuracies and
race conditions due to factors like kernel scheduling and failed scrapes are a
fact of life. Prometheus makes tradeoffs and prefers giving you data that is
99.9% correct over your monitoring breaking while waiting for perfect data. Thus in applications involving money or billing, Prometheus should be used with caution.

In the next chapter we will show you how to run Prometheus and do some basic
monitoring.

1 Kubernetes was the first member.
2 Next to the simple text format, a more standardized version, slightly different, called OpenMetrics has been created out of the Prometheus text format.
3 Temperature monitoring of machines and datacenters is actually not uncommon. There are even a few users using Prometheus to track the weather for fun.
4 I (Brian) have fond memories of setting up MRTG in the early 2000s, writing scripts to report temperature and network usage on my home computers.
5 Email addresses also tend to be personally identifiable information (PII), which bring with them compliance and privacy concerns that are best avoided in monitoring.
6 The term ConstMetric is colloquial, and comes from the Go client library’s MustNewConstMetric function used to produce metrics by exporters written in Go.
7 The EC2 Name tag is the display name of an EC2 instance in the EC2 web console.
8 A page is a notification to an oncall engineer which they are expected to prompty investigate or deal with. While you may receive a page via a traditional radio pager, these days it more likely comes to your mobile phone in the form of an SMS, notification, or phone call. A pager storm is when you receive a string of pages in rapid succession.
9 However, modern machines can hold rather a lot of data locally, so a separate clustered storage system may not be necessary for you.

Chapter 2. Getting Started with Prometheus

In this chapter you will set up and run Prometheus, the Node exporter, and the
Alertmanager. This simple example will monitor a single machine and give you a
small taste of what a full Prometheus deployment looks like. Later chapters
will look at each aspect of this setup in detail.

This chapter requires a machine running any reasonable, modern version of Linux.
Either bare metal or a virtual machine will do. You will use the command
line and access services on the machine using a web browser. For simplicity we
will assume that everything is running on localhost; if this is not the case,
adjust the URLs as appropriate.

Tip

A basic setup similar to the one used in this chapter is publicly available at
https://prometheus.demo.do.prometheus.io/.

Running Prometheus

Prebuilt versions of Prometheus and other components are available from the
Prometheus website at https://prometheus.io/download/. Go to that page and
download the latest version of Prometheus for the Linux OS with Arch amd64; the download page will look something like Figure 2-1.

[image: A fragment of the Prometheus download page.]
Figure 2-1. Part of the Prometheus download page. The Linux/amd64 version is in the middle.

Here we are using Prometheus 2.37.0, so prometheus-2.37.0.linux-amd64.tar.gz is the filename.

Long Term Support

Minor releases of Prometheus are scheduled every 6 weeks. Upgrading at such a cadence
can be challenging, therefore some versions are defined as Long Term Support (LTS) releases.
LTS releases are supported for a longer period of time than regular releases: instead of 6 weeks, LTS releases
receive bugfixes and security fixes for at least 6 months.
You can find the complete schedule at https://prometheus.io/docs/introduction/release-cycle/.

Stability Guarantees

Prometheus upgrades are intended to be safe between minor versions, such as
from 2.0.0 to 2.0.1, 2.1.0, or 2.3.1. Even so, as with all software it is wise
to read through the changelog.

Any 2.x.x version of Prometheus should suffice for this chapter.

Extract the tarball on the command line and
change into its directory:1

hostname $ tar -xzf prometheus-*.linux-amd64.tar.gz
hostname $ cd prometheus-*.linux-amd64/

Now change the file called prometheus.yml to contain the following text:

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090

YAML

The Prometheus ecosystem uses Yet Another Markup Language (YAML) for its
configuration files, as it is both approachable to humans and can be processed
by tools. The format is sensitive to whitespace though, so make sure to copy
examples exactly and use spaces rather than tabs.2

By default Prometheus runs on TCP port 9090, so this configuration instructs to
scrape itself every 10 seconds. You can now run the Prometheus binary with
./prometheus.

hostname $./prometheus
level=info ... msg="No time or size retention was set so using the default
 time retention" duration=15d
level=info ... msg="Starting Prometheus" version="(version=2.37.0, branch=HEAD,
 revision=b41e0750abf5cc18d8233161560731de05199330)"
level=info ... build_context="(go=go1.18.4, user=root@0ebb6827e27f,
 date=20220714-15:13:18)"
level=info ... host_details="(Linux 5.18.12 #1-NixOS SMP PREEMPT..."
level=info ... fd_limits="(soft=1024, hard=1048576)"
level=info ... msg="Start listening for connections" address=0.0.0.0:9090
level=info ... msg="Starting TSDB ..."
level=info ... msg="TSDB started"
level=info ... component=web msg="TLS is disabled." http2=false
level=info ... msg="Loading configuration file" filename=prometheus.yml
level=info ... msg="Server is ready to receive web requests."

As you can see, Prometheus logs various useful information at startup, including
its exact version and details of the machine it is running on. Now you can
access the Prometheus UI in your browser at http://localhost:9090/, which will
look like Figure 2-2.

[image: An empty Prometheus Expression Browser]
Figure 2-2. The Prometheus expression browser

This is the expression browser from which you can run PromQL queries. There
are also several other pages in the UI to help you understand what
Prometheus is doing, such as the Targets page under the Status tab, which looks
like Figure 2-3.

[image: A Prometheus Targets page showing a single up Prometheus.]
Figure 2-3. The target status page

On this page there is only a single Prometheus server in the UP state,
meaning that the last scrape was successful. If there had been a problem with the
last scrape, there would be a message in the Error field.

Another page you should look at is the /metrics of Prometheus itself, as
somewhat unsurprisingly Prometheus is itself instrumented with Prometheus
metrics. These are metrics available on http://localhost:9090/metrics and are human
readable as you can see in Figure 2-4.

[image: The first part of Prometheus's /metrics]
Figure 2-4. The first part of Prometheus’s /metrics

Note that there are not just metrics from the Prometheus code itself,
but also about the Go runtime and the process.

Using the Expression Browser

The expression browser is useful for running ad hoc queries, developing PromQL
expressions, and debugging both PromQL and the data inside Prometheus.

To start, make sure you are in the Console view, enter the expression up, and
click Execute.

As Figure 2-5 shows, there is a single result with the value
1 and the name up{instance="localhost:9090",job="prometheus"}. up is a
special metric added by Prometheus when it performs a scrape; 1 indicates that
the scrape was successful. The instance is a label, indicating the target
that was scraped. In this case it indicates it is the Prometheus itself.

[image: The expression browser console view with a single result.]
Figure 2-5. The result of up in the expression browser

The job label here comes from the job_name in the prometheus.yml.
Prometheus does not magically know that it is scraping a Prometheus and thus
that it should use a job label with the value prometheus. Rather, this is a
convention that requires configuration by the user. The job label indicates
the type of application.

Next, you should evaluate process_resident_memory_bytes as shown in Figure 2-6.

[image: The expression browser console view with a single result for process_resident_memory_bytes.]
Figure 2-6. The result of process_resident_memory_bytes in the expression browser

Our Prometheus is using about 73 MB of memory. You may wonder why this metric
is exposed using bytes rather than megabytes or gigabytes, which may be more
readable. The answer is that what is more readable depends a lot on context,
and even the same binary in different environments may have values differing by
many orders of magnitude. An internal RPC may take microseconds, while polling a long-running process might take hours or even days. Thus the convention in Prometheus is to use base
units such as bytes and seconds, and leave pretty printing it to frontend tools
like Grafana.3

Knowing the current memory usage is great and all, but what would be really
nice would be to see how it has changed over time. To do so, click Graph to
switch to the graph view as shown in Figure 2-7.

[image: An expression browser graph with a single plot for process_resident_memory_bytes.]
Figure 2-7. A graph of process_resident_memory_bytes in the expression browser

Metrics like process_resident_memory_bytes are called gauges. For a gauge, it is its current absolute value that is important to you. There is a second core type of metric called the
counter. Counters track how many events have happened, or the total size of
all the events. Let’s look at a counter by graphing
prometheus_tsdb_head_​samples_appended_total, the number of samples Prometheus has ingested, which will look like Figure 2-8.

[image: An expression browser graph with a single plot for prometheus_tsdb_head_samples_appended_total going up and to the right.]
Figure 2-8. A graph of prometheus_tsdb_head_samples_appended_total in the expression browser

Counters are always increasing. This creates nice up and to the right graphs,
but the values of counters are not much use on their own. What you really want
to know is how fast the counter is increasing, which is where the rate function
comes in. The rate function calculates how fast a counter is increasing per
second. Adjust your expression to
rate(prometheus_tsdb_head_samples_appended_total[1m]), which will calculate
how many samples Prometheus is ingesting per second averaged over one minute
and produce a result such as that shown in Figure 2-9.

[image: An expression browser graph with a single mostly horizontal plot.]
Figure 2-9. A graph of rate(prometheus_tsdb_head_samples_appended_total[1m]) in the expression browser

You can see now that Prometheus is ingesting 28 or so samples per second on
average. The rate function automatically handles counters resetting due to
processes restarting and samples not being exactly aligned.4

Running the Node Exporter

The Node exporter exposes kernel- and machine-level metrics on Unix systems,
such as Linux.5 It provides all the standard metrics such as CPU, memory, disk
space, disk I/O, and network bandwidth. In addition it provides a myriad of additional
metrics exposed by the kernel, from load average to motherboard temperature.

What the Node exporter does not expose is metrics about individual processes,
nor proxy metrics from other exporters or applications. In the Prometheus
architecture you monitor applications and services directly,
rather than entwining them into the machine metrics.

A prebuilt version of the Node exporter can be downloaded from
https://prometheus.io/download/. Go to that page and download the latest
version of Node exporter for the Linux OS with Arch amd64.

Again, the tarball will need to be extracted, but no
configuration file is required so it can be run directly.

hostname $ tar -xzf node_exporter-*.linux-amd64.tar.gz
hostname $ cd node_exporter-*.linux-amd64/
hostname $./node_exporter
level=info ... msg="Starting node_exporter" version="(version=1.3.1,
 branch=HEAD, revision=a2321e7b940ddcff26873612bccdf7cd4c42b6b6)"
level=info ... msg="Build context" build_context="(go=go1.17.3,
 user=root@243aafa5525c, date=20211205-11:09:49)"
level=info ... msg="Enabled collectors"
level=info ... collector=arp
level=info ... collector=bcache
level=info ... collector=bonding
...
various other collectors
...
level=info ... msg="Listening on" address=:9100
level=info ... msg="TLS is disabled." http2=false

You can now access the Node exporter in your browser at http://localhost:9100/
and visit its /metrics endpoint.

To get Prometheus to monitor the Node exporter, we need to update the
prometheus.yml by adding an additional scrape config:

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 - job_name: node
 static_configs:
 - targets:
 - localhost:9100

Restart Prometheus to pick up the new configuration by using Ctrl-C to shut it
down and then start it again.6 If you look
at the Targets page you should now see two targets, both in the UP
state as shown in Figure 2-10.

[image: A Prometheus Targets page showing an up Prometheus and Node exporter.]
Figure 2-10. The target status page with Node exporter

If you now evaluate up in the Console view of the expression browser you
will see two entries as shown in Figure 2-11.

[image: The expression browser console view with two results.]
Figure 2-11. There are now two results for up

As you add more jobs and scrape configs, it is rare that you will want to look at the same metric from different jobs at the same time. The memory usage of a Prometheus and a Node
exporter are very different, for example, and extraneous data make debugging and
investigation harder. You can graph the memory usage of just the Node exporters
with process_resident_memory_bytes{job="node"}. The job="node" is called
a label matcher, and it restricts the metrics that are returned, as you can see
in Figure 2-12.

[image: An expression browser graph with a single plot.]
Figure 2-12. A graph of the resident memory of just the Node exporter

The process_resident_memory_bytes here is the memory used by the Node
exporter process itself (as is hinted by the process prefix) and not the machine as a whole. Knowing the resource usage of the
Node exporter is handy and all, but it is not why you run it.

As a final example evaluate rate(node_network_receive_bytes_total[1m]) in Graph view
to produce a graph like the one shown in Figure 2-13.

[image: An expression browser graph with several plots.]
Figure 2-13. A graph of the network traffic received on several interfaces

node_network_receive_bytes_total is a counter for how many bytes have been received
by network interfaces. The Node exporter automatically picked up all the
network interfaces, and they can be worked with as a group in PromQL. This is
useful for alerting, as labels avoid the need to exhaustively list every single
thing you wish to alert on.

Alerting

There are two parts to alerting. First, adding alerting rules to Prometheus,
defining the logic of what constitutes an alert. Second, the Alertmanager
converts firing alerts into notifications, such as emails, pages, and chat
messages.

Let’s start off by creating a condition that you might want to alert on.
Stop the Node exporter with Ctrl-C. After the next scrape, the Targets page
will show the Node exporter in the DOWN state as shown in
Figure 2-14, with the error connection refused as
nothing is listening on the TCP port and the HTTP request is being
rejected.7

Tip

Prometheus does not include failed scrapes in its application logs, as a failed
scrape is an expected occurrence that does not indicate any problems in
Prometheus itself. Aside from the Targets page, scrape errors are also
available in the debug logs of Prometheus, which you can enable by passing the
--log.level debug command-line flag.

[image: A Prometheus Targets page showing an up Prometheus and a down Node exporter.]
Figure 2-14. The target status page showing the Node exporter as down

Manually looking at the Targets page for down instances is not a good use of
your time. Luckily, the up metric has your back, and when evaluating up in the Console
view of the expression browser you will see that it now has a value of 0 for
the Node exporter as shown in Figure 2-15.

[image: The expression browser console view with two results, the Node exporter has a value of 0 for up.]
Figure 2-15. up is now 0 for the Node exporter

For alerting rules you need a PromQL expression that returns only the results
that you wish to alert on. In this case that is easy to do using the
== operator. == will filter8 away any time series whose values don’t match. If you evaluate up == 0 in the expression browser, only the down instance is returned, as Figure 2-16 shows.

[image: The expression browser console view with one result, the Node exporter with a value of 0 for up.]
Figure 2-16. Only up metrics with the value 0 are returned

Next, you need to add this expression in an alerting rule in Prometheus. I’m
also going to jump ahead a little, and have you tell Prometheus which
Alertmanager it will be talking to. You will need to expand your
prometheus.yml to have the content from Example 2-1.

Example 2-1. prometheus.yml scraping two targets, loading a rule file, and talking to an Alertmanager

global:
 scrape_interval: 10s
 evaluation_interval: 10s
rule_files:
 - rules.yml
alerting:
 alertmanagers:
 - static_configs:
 - targets:
 - localhost:9093
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 - job_name: node
 static_configs:
 - targets:
 - localhost:9100

Next, create a new rules.yml file with the contents from Example 2-2,
and then restart Prometheus.

Example 2-2. rules.yml with a single alerting rule

groups:
 - name: example
 rules:
 - alert: InstanceDown
 expr: up == 0
 for: 1m

The InstanceDown alert will be evaluated every 10 seconds in accordance with
the evaluation_interval. If a series is continuously returned for at least a
minute9 (the
for), then the alert will be considered to be firing. Until the required
minute is up, the alert will be in a pending state. On the Alerts page you can click this alert and see more detail,
including its labels as seen in Figure 2-17.

[image: A single firing alert on the Alerts page]
Figure 2-17. A firing alert on the Alerts page

Now that you have a firing alert, you need an Alertmanager to do something with it.
From https://prometheus.io/download/, download the latest
version of the Alertmanager for the Linux OS with Arch amd64. Untar the Alertmanager and cd into its directory.

hostname $ tar -xzf alertmanager-*.linux-amd64.tar.gz
hostname $ cd alertmanager-*.linux-amd64/

You now need a configuration for the Alertmanager. There are a variety of ways
that the Alertmanager can notify you, but most of the ones that work out of
the box use commercial providers and have setup instructions that tend to
change over time. Thus we are going to presume that you have an open SMTP
smarthost available.10 You should base your alertmanager.yml on Example 2-3,
adjusting smtp_smarthost, smtp_from, and to to match your setup and email
address.

Example 2-3. alertmanager.yml sending all alerts to email

global:
 smtp_smarthost: 'localhost:25'
 smtp_from: 'youraddress@example.org'
route:
 receiver: example-email
 group_by: [alertname]
receivers:
 - name: example-email
 email_configs:
 - to: 'youraddress@example.org'

You can now start the Alertmanager with ./alertmanager.

hostname $./alertmanager
level=info ... msg="Starting Alertmanager" version="(version=0.24.0,
 branch=HEAD, revision=f484b17fa3c583ed1b2c8bbcec20ba1db2aa5f11)"
level=info ... build_context="(go=go1.17.8, user=root@265f14f5c6fc,
 date=20220325-09:31:33)"
level=info ... component=cluster msg="setting advertise address
 explicitly" addr=192.168.10.52 port=9094
level=info ... component=cluster msg="Waiting for gossip to settle..."
 interval=2s
level=info ... component=configuration msg="Loading configuration file"
 file=alertmanager.yml
level=info ... component=configuration msg="Completed loading of
 configuration file" file=alertmanager.yml
level=info ... msg=Listening address=:9093
level=info ... msg="TLS is disabled." http2=false
level=info component=cluster ... msg="gossip not settled" polls=0 before=0
 now=1 elapsed=2.00004715s
level=info component=cluster ... msg="gossip settled; proceeding"
 elapsed=10.001771352s
 polls=0 before=0 now=1 elapsed=2.00011639s

You can now access the Alertmanager in your browser at
http://localhost:9093/ where you will see your firing alert, which should look similar to
Figure 2-18.

[image: A single firing alert on the Alertmanager status page]
Figure 2-18. A InstanceDown alert in the Alertmanager

If everything is set up and working correctly, after a minute or two you should
receive a notification from the Alertmanager in your email inbox that looks
like Figure 2-19.

[image: An email sent by the Alertmanager.]
Figure 2-19. An email notification for an InstanceDown alert

This basic setup has given you a small taste of what Prometheus can do. You
could add more targets to the prometheus.yml and your alert would
automatically work for them too.

In the next chapter we are going to focus on one part of using Prometheus—adding
instrumentation to your own applications.

1 This uses a glob for the version in case you are using a different version than we are. The star will match any text.
2 You may wonder why Prometheus doesn’t use JSON. JSON has its own issues such as being picky about commas, and unlike YAML does not support comments. As JSON is a subset of YAML, you can use JSON instead if you really want to.
3 This is the same logic behind why dates and times are generally best stored in UTC, and timezone transformations only applied just before they are shown to a human.
4 This can lead to rates on integers returning noninteger results, but the results are correct on average. For more information, see [Link to Come].
5 Windows users should use the wmi_exporter rather than the Node exporter.
6 It is possible to get Prometheus to reload the configuration file without restarting by using a SIGHUP.
7 Another common error is context deadline exceeded. This indicates a timeout, usually due either to the other end being too slow or the network dropping packets.
8 There is also a bool mode that does not filter, covered in the section [Link to Come].
9 Usually a for of at least 5 minutes is recommended to reduce noise and mitigate various races inherent in monitoring. We are only using a minute here, so you don’t have to wait too long when trying this out.
10 Given how email security has evolved over the past decade this is not a good assumption, but your ISP will probably have one.

Part II. Application Monitoring

You will realise the full benefits of Prometheus when you have easy access to the
metrics you added to your own applications. This section covers
adding and using this instrumentation.

In Chapter 3 you will learn how to add basic instrumentation,
and what is benefical instrumentation to have.

In [Link to Come] I cover making the metrics from your application available to
Prometheus.

In [Link to Come] you will learn about one of the most powerful features of
Prometheus and how to use it in instrumentaton.

After you have your application metrics in Prometheus, [Link to Come]
will show you how you can create dashboards that group related graphs
together.

Chapter 3. Instrumentation

The largest payoffs you will get from Prometheus are through instrumenting your
own applications using direct instrumentation and a client library. Client libraries are available in a variety
of languages, with official client libraries in Go, Python, Java, Rust, and Ruby.

We use Python 3 here as an example, but the same general principles apply to other languages and runtimes,
although the syntax and utility methods will vary.

Most modern OSes come with Python 3. In the unlikely event that you don’t
already have it, download and install Python 3 from
https://www.python.org/downloads/.

You will also need to install the latest Python client library. This can be
done with pip install prometheus_client. The instrumentation examples can
be found
on
GitHub.

A Simple Program

To start things off, we have written a simple HTTP server shown in
Example 3-1. If you run it with Python 3 and then visit
http://localhost:8001/ in your browser, you will get a Hello World response.

Example 3-1. A simple Hello World program that also exposes Prometheus metrics

import http.server
from prometheus_client import start_http_server

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

if __name__ == "__main__":
 start_http_server(8000)
 server = http.server.HTTPServer(('localhost', 8001), MyHandler)
 server.serve_forever()

The start_http_server(8000) starts up a HTTP server on port 8000 to serve
metrics to Prometheus. You can view these metrics at http://localhost:8000/,
which will look like Figure 3-1. Which metrics are
returned out of the box varies based on the platform, with Linux platforms
tending to have the most metrics.

[image: A basic /metrics for Python.]
Figure 3-1. The /metrics page when the simple program runs on Linux with CPython

While occasionally you will look at a /metrics page by hand, getting the
metrics into Prometheus is what you really want. Set up a Prometheus with the
configuration in Example 3-2 and get it running.

Example 3-2. prometheus.yml to scrape http://localhost:8000/metrics

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: example
 static_configs:
 - targets:
 - localhost:8000

If you enter the PromQL expression python_info in the expression browser at
http://localhost:9090/, you should see something like Figure 3-2.

[image: Prometheus expression browser with one result for python_info.]
Figure 3-2. Evaluating the expression python_info produces one result

In the rest of this chapter we will presume that you have Prometheus running
and scraping your example application. You will use the expression browser as
you go along to work with the metrics you create.

The Counter

Counters are the type of metric you will probably use in instrumentation most
often. Counters track either the number or size of events. They are mainly used
to track how often a particular code path is executed.

Extend the above code as shown in Example 3-3 to add a new
metric for how many times a Hello World was requested.

Example 3-3. REQUESTS tracks the number of Hello Worlds returned

from prometheus_client import Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.inc()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

There are three parts here: the import, the metric definition, and the
instrumentation.

	Import

	
Python requires that you import functions and classes from other modules in
order to use them. Accordingly, you must import the Counter class from the
prometheus_client library at the top of the file.

	Definition

	
Prometheus metrics must be defined before they are used. Here we define a
counter called hello_worlds_total. It has a help string of Hello Worlds
requested., which will appear on the /metrics page to help you understand what
the metric means.

Metrics are automatically registered with the client library in the default
registry.1 You do not need to pull the
metric back to the start_http_server call; in fact, how the code is
instrumented is completely decoupled from the exposition. If you have a
transient dependency that includes Prometheus instrumentation, it will appear on
your /metrics automatically.

Metrics must have unique names, and client libraries should report an error if
you try to register the same metric twice. To avoid this, define your metrics
at file level, not at class, function, or method level.

	Instrumentation

	
Now that you have the metric object defined, you can use it. The inc method
increments the counter’s value by one.

Prometheus client libraries take care of all the nitty-gritty details like
bookkeeping and thread-safety for you, so that is all there is to it.

When you run the program, the new metric will appear on the /metrics. It will
start at zero and increase by one2 every time you view the main
URL of the application. You can view this in the expression browser and use
the PromQL expression rate(hello_worlds_total[1m]) to see how many Hello World requests are
happening per second as Figure 3-3 shows.

[image: A graph of Hello Worlds per seconds in the expression browser.]
Figure 3-3. A graph of Hello Worlds per second

With just two lines of code you can add a counter to any library or
application. These counters are useful to track how many times errors and unexpected
situations occur. While you probably don’t want to alert every single time
there is an error, knowing how errors are trending over time is useful for debugging. But this
is not restricted to errors. Knowing which are the most popular features and
code paths of your application allows you to optimise how you allocate your
development efforts.

Counting Exceptions

Client libraries provide not just core functionality, but also utilities and methods for common use cases. One of these in Python
is the ability to count exceptions. You don’t have to write your own
instrumentation using a try…except; instead you can take advantage of the
count_exceptions context manager and decorator as shown in Example 3-4.

Example 3-4. EXCEPTIONS counts the number of exceptions using a context manager

import random
from prometheus_client import Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.')
EXCEPTIONS = Counter('hello_world_exceptions_total',
 'Exceptions serving Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.inc()
 with EXCEPTIONS.count_exceptions():
 if random.random() < 0.2:
 raise Exception
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

count_exceptions will take care of passing the exception up by raising it,
so it does not interfere with application logic. You can see the rate of
exceptions with rate(hello_world_exceptions_total[1m]). The number of
exceptions isn’t that useful without knowing how many requests are going
through. You can calculate the more useful ratio of exceptions with

 rate(hello_world_exceptions_total[1m])
/
 rate(hello_worlds_total[1m])

in the expression browser. This is how to generally expose ratios: expose two
counters, then rate and divide them in PromQL.

Note

You may notice gaps in the exception ratio graph for periods when there are no
requests. This is because you are dividing by zero, which in floating-point math
results in a NaN, or Not a Number. Returning a zero would be incorrect as the
exception ratio is not zero, it is undefined.

You can also use count_exceptions as a function decorator:

EXCEPTIONS = Counter('hello_world_exceptions_total',
 'Exceptions serving Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @EXCEPTIONS.count_exceptions()
 def do_GET(self):
 ...

Counting Size

Prometheus uses 64-bit floating-point numbers for values so you are not limited
to incrementing counters by one. You can in fact increment counters by any
non-negative number. This allows you to track the number of records processed,
bytes served, or sales in Euros as shown in Example 3-5.

Example 3-5. SALES tracks sale value in Euros

import random
from prometheus_client import Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.')
SALES = Counter('hello_world_sales_euro_total',
 'Euros made serving Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.inc()
 euros = random.random()
 SALES.inc(euros)
 self.send_response(200)
 self.end_headers()
 self.wfile.write("Hello World for {} euros.".format(euros).encode())

You can see the rate of sales in Euros per second in the expression browser
using the expression rate(hello_world_sales_euro_total[1m]), the same as
for integer counters.

Caution

Attempting to increase a counter by a negative number is considered to be a
programming error on your part, and will cause an exception to be raised.

It is important for PromQL that counters only ever increase, so that rate
and friends don’t misinterpret the decrease as counters resetting to zero when an
application restarts. This also means there’s no need to persist counter
state across runs of an application, or reset counters on every scrape.
This allows multiple Prometheus servers to scrape the same application
without affecting each other.

The Gauge

Gauges are a snapshot of some current state. While for counters how fast it is
increasing is what you care about, for gauges it is the actual value of the
gauge. Accordingly, the values can go both up and down.

Examples of gauges include:

	
the number of items in a queue

	
memory usage of a cache

	
number of active threads

	
the last time a record was processed

	
average requests per second in the last minute3

Using Gauges

Gauges have three main methods you can use: inc,4 dec, and set. Similar to the methods on counters, inc and dec default to changing a gauge’s value by one. You can pass an argument with a different value to change by if you want. Example 3-6 shows how gauges can be used to track the number of calls in progress and determine when the last one was completed.

Example 3-6. INPROGRESS and LAST track the number of calls in progress and when the last one was completed

import time
from prometheus_client import Gauge

INPROGRESS = Gauge('hello_worlds_inprogress',
 'Number of Hello Worlds in progress.')
LAST = Gauge('hello_world_last_time_seconds',
 'The last time a Hello World was served.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 INPROGRESS.inc()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")
 LAST.set(time.time())
 INPROGRESS.dec()

These metrics can be used directly in the expression browser without any
additional functions. For example, hello_world_last_time_seconds can be used to determine when the last Hello World was served.
The main use case for such a metric is detecting if it has been too long since
a request was handled. The PromQL expression time() - hello_world_last_time_seconds
will tell you how many seconds it is since the last request.

These are both very common use cases, so utility functions are also provided
for them as you can see in Example 3-7. track_inprogress
has the advantage of being both shorter and taking care of correctly handling
exceptions for you. set_to_​current_time is a little less useful in Python, as
time.time() returns Unix time in seconds;5 but in other
languages’ client libraries, the set_to_current_time equivalents make usage
simpler and clearer.

Example 3-7. The same example as Example 3-6 but using the gauge utilities

from prometheus_client import Gauge

INPROGRESS = Gauge('hello_worlds_inprogress',
 'Number of Hello Worlds in progress.')
LAST = Gauge('hello_world_last_time_seconds',
 'The last time a Hello World was served.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @INPROGRESS.track_inprogress()
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")
 LAST.set_to_current_time()

Metric Suffixes

You may have noticed that the example counter metrics all ended with _total, while
there is no such suffix on gauges. This is a convention within Prometheus that
makes it easier to identify what type of metric you are working with.

With OpenMetrics, this suffix is mandated. As the prometheus_client Python library is the reference implementation for OpenMetrics, if you do not add the suffix, the library will add it.

In addition to _total, the _count, _sum, and _bucket suffixes
also have other meanings and should not be used as suffixes in your metric names to avoid confusion.

It is also strongly recommended that you include the unit of your metric at the
end of its name. For example, a counter for bytes processed might be
myapp_requests_​processed_bytes_total.

Callbacks

To track the size or number of items in a cache, you should generally add
inc and dec calls in each function where items are added or removed
from the cache. With more complex logic this can get a bit tricky to get right
and maintain as the code changes. The good news is that client libraries offer
a shortcut to implement this, without having to use the interfaces that writing
an exporter require.

In Python, gauges have a set_function method, which allows you to specify a
function to be called at exposition time. Your function must return a floating point value for the metric when called,
as demonstrated in Example 3-8. However, this strays a bit outside of direct instrumentation, so you will need to
consider thread safety and may need to use mutexes.

Example 3-8. A trivial example of set_function to have a metric return the current time6

import time
from prometheus_client import Gauge

TIME = Gauge('time_seconds',
 'The current time.')
TIME.set_function(lambda: time.time())

The Summary

Knowing how long your application took to respond to a request or the latency
of a backend are vital metrics when you are trying to understand the
performance of your systems. Other instrumentation systems offer some form of
Timer metric, but Prometheus views things more generically. Just as
counters can be incremented by values other than one, you may wish to track
things about events other than their latency. For example, in addition to
backend latency you may also wish to track the size of the responses you get
back.

The primary method of a summary is observe, to which you pass the size of
the event. This must be a nonnegative value. Using time.time() you can track latency as shown in Example 3-9.

Example 3-9. LATENCY tracks how long the Hello World handler takes to run

import time
from prometheus_client import Summary

LATENCY = Summary('hello_world_latency_seconds',
 'Time for a request Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 start = time.time()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")
 LATENCY.observe(time.time() - start)

If you look at the /metrics you will see that the
hello_world_latency_seconds metric has two time series:
hello_world_latency_seconds_count and hello_world_latency_seconds_sum.

hello_world_latency_seconds_count is the number of observe calls that
have been made, so rate(hello_world_latency_seconds_count[1m]) in the
expression browser would return the per-second rate of Hello World requests.

hello_world_latency_seconds_sum is the sum of the values passed to
observe, so rate(hello_world_latency_seconds_sum[1m]) is the amount of
time spent responding to requests per second.

If you divide these two expressions you get the average latency over the last
minute. The full expression for average latency would be:

 rate(hello_world_latency_seconds_sum[1m])
/
 rate(hello_world_latency_seconds_count[1m])

Let’s take an example. Say in the last minute you had three requests
that took 2, 4, and 9 seconds. The count would be 3 and the sum would be 15
seconds, so the average latency is 5 seconds. rate is per second rather
than per minute, so you in principle need to divide both sides by 60, but that
cancels out.

Note

Even though the hello_world_latency_seconds metric is using seconds as its
unit in line with Prometheus conventions, this does not mean it only
has second precision. Prometheus uses 64-bit floating-point values that
can handle metrics ranging from days to nanoseconds. The preceding example
takes about a quarter of a millisecond on our machine, for example.

As summaries are usually used to track latency, there is a time context
manager and function decorator that makes this simpler, as you can see in
Example 3-10. It also handles exceptions and time going backwards
for you.7

Example 3-10. LATENCY tracking latency using the time function decorator

from prometheus_client import Summary

LATENCY = Summary('hello_world_latency_seconds',
 'Time for a request Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @LATENCY.time()
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

Summary metrics may also include quantiles, although the Python client does not
currently support these client-side quantiles. These should generally be
avoided as you cannot do math such as averages on top of quantiles, preventing
you from aggregating client-side quantiles from across the instances of your
service. In addition, client-side quantiles are expensive compared to
other instrumentation in terms of CPU usage (a factor of a hundred slower is
not unusual). While the benefits of instrumentation generally greatly outweigh their resource costs, this may not be the case for quantiles.

The Histogram

A summary will provide the average latency, but what if you want a quantile?
Quantiles tell you that a certain proportion of events had a size below a given
value. For example, the 0.95 quantile being 300 ms means that 95% of requests
took less than 300 ms.

Quantiles are useful when reasoning about actual end-user experience. If a
user’s browser makes 20 concurrent requests to your application, then it is the
slowest of them that determines the user-visible latency. In this case the 95th
percentile captures that latency.

Quantiles and Percentiles

The 95th percentile is the 0.95 quantile. As Prometheus prefers base units, it
always uses quantiles, in the same way that ratios are preferred to
percentages.

The instrumentation for histograms is the same as for summarys. The
observe method allows you to do manual observations, and the time context
manager and function decorator allow for easier timings as shown in
Example 3-11.

Example 3-11. LATENCY histogram tracking latency using the time function decorator

from prometheus_client import Histogram

LATENCY = Histogram('hello_world_latency_seconds',
 'Time for a request Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @LATENCY.time()
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

This will produce a set of time series with the name
hello_world_latency_seconds_bucket, which are a set of counters. A
histogram has a set of buckets, such as 1 ms, 10 ms, and 25 ms, that track the number of events that fall into each bucket. The
histogram_quantile PromQL function can calculate a quantile from the buckets. For
example, the 0.95 quantile (95th percentile) would be:

histogram_quantile(0.95, rate(hello_world_latency_seconds_bucket[1m]))

The rate is needed as the buckets’ time series are counters.

Buckets

The default buckets cover a range of latencies from 1 ms to 10 s. This is
intended to capture the typical range of latencies for a web application.
But you can also override them and provide your own buckets when defining metrics.
This might be done if the defaults are not suitable for your use case, or to
add an explicit bucket for latency quantiles mentioned in your Service-Level
Agreements (SLAs). In order to help you detect typos, the provided buckets must
be sorted:

LATENCY = Histogram('hello_world_latency_seconds',
 'Time for a request Hello World.',
 buckets=[0.0001, 0.0002, 0.0005, 0.001, 0.01, 0.1])

If you want linear or exponential buckets, you can use Python list
comprehensions. Client libraries for languages that do not have an equivalent
to list comprehensions may include utility functions for these:

buckets=[0.1 * x for x in range(1, 10)] # Linear
buckets=[0.1 * 2**x for x in range(1, 10)] # Exponential

Cumulative Histograms

If you have looked at a /metrics for a histogram, you probably noticed that
the buckets aren’t just a count of events that fall into them. The buckets also include
a count of events in all the smaller buckets, all the way up to the
+Inf, bucket which is the total number of events. This is
known as a cumulative histogram, and why the bucket label is called le,
standing for less than or equal to.

This is in addition to buckets being counters, so Prometheus histograms are
cumulative in two different ways.

The reason they’re cumulative is that if the number of buckets becomes a performance
problem, some extraneous buckets8 can be dropped using
metric_relabel_​configs (see [Link to Come]) in Prometheus while still allowing quantiles to be
calculated. There is an example of this in [Link to Come].

You may be wondering how many buckets you should have for sufficient accuracy.
We recommend sticking to somewhere around ten. This may seem like a small
number, but buckets are not free, as each is an extra time series to be
stored.9 Fundamentally, a
metrics-based system like Prometheus is not going to provide 100% accurate
quantiles. For that you would need to calculate the quantiles from a log-based
system. But what Prometheus provides is good enough for most practical
alerting and debugging purposes.

The best way to think of buckets (and metrics generally) is that while they may
not always be perfect, they generally give you sufficient information to
determine the next step when you are debugging. So, for example, if Prometheus
indicates that the 0.95 quantile jumped from 300 ms to 350 ms, but it was
actually from 305 ms to 355 ms that doesn’t matter that much. You still know that
there was a big jump, and the next step in your investigation would be the same
either way.

SLAs and Quantiles

Latency SLAs will often be expressed as 95th percentile latency is at most
500 ms. There is a nonobvious trap here, in that you may focus on the wrong
number.

Calculating the 95th percentile accurately is tricky, requiring what may be
significant computing resources if you want to get it perfect. Calculating how
the proportion of requests that took more than 500 ms is easy though, you only
need two counters. One for all requests and another for requests that took up
to 500 ms.

By having a 500 ms bucket in your histogram you can accurately calculate the ratio of requests that take over 500 ms using

 my_latency_seconds_bucket{le="0.5"}
/ ignoring(le)
 my_latency_seconds_bucket{le="+Inf"}

to determine if you are meeting your
SLA. The rest of the buckets will still give you a good estimate of the 95th percentile latency.

Quantiles are limited in that once you calculate them you cannot do any
further math on them. It is not statistically correct to add, subtract, or
average them, for example. This affects not just what you might attempt in PromQL,
but also how you reason about a system while debugging it. A frontend may
report a latency increase in the 0.95 quantile, yet the backend that caused it
may show no such increase (or even a decrease!).

This can be very counterintuitive, especially when you have been woken up in
the middle of the night to debug a problem. Averages, on the other hand, do not
have this problem, they can be added and subtracted.10 For example, if you see a 20 ms increase in
latency in a frontend due to one of its backends, you will see a matching
latency increase of around 20 ms in the backend. But there is no such guarantee with
quantiles. So while quantiles are good for capturing end-user experience, they
are tricky to debug with.

We recommend debugging latency issues primarily with averages rather
than quantiles. Averages work the way you think they do, and once you have
narrowed down the subsystem to blame for a latency increase using averages, you
can switch back to quantiles if appropriate. To this end the histogram also
includes _sum and _count time series. Just like with a summary, you can
calculate average latency with:

 rate(hello_world_latency_seconds_sum[1m])
/
 rate(hello_world_latency_seconds_count[1m])

Unit Testing Instrumentation

Unit tests are a good way to avoid accidentally breaking your
code as it changes over time. You should approach unit testing instrumentation the same way you approach unit tests for logs. Just as
you would probably not test a debug-level log statement, neither should you
test the majority of metrics that you sprinkle across your code base.

You would usually only unit test log statements for transaction logs and sometimes request logs.11
Similarly it usually makes sense to unit test metrics where the metric is a key
part of your application or library. For example, if you are writing an RPC library,
it would make sense to have at least some basic tests to make sure the key requests,
latency, and error metrics are working.

Without tests, some of the noncritical metrics you might use for
degugging may not work, in our experience this will be the case for around 5% of
debug metrics. Requiring all metrics to be unit tested would add friction to
instrumentation, so rather than ending up with 20 metrics of which 19 are
usable, you might instead end up with only 5 tested metrics. It would no
longer be a case of adding two lines of code to add a metric. When it comes to
using metrics for debugging and deep perfomance analysis, a wider breadth of
metrics is always useful.

The Python client offers a get_sample_value function that will effectively
scrape the registry and look for a time series. You can use get_sample_value as shown in
Example 3-12 to test counter instrumentation. It is the increase of a
counter that you care about, so you should compare the value of the counter before and after, rather than the absolute value. This will work even if other tests have also
caused the counter to be incremented.

Example 3-12. Unit testing a counter in Python

import unittest
from prometheus_client import Counter, REGISTRY

FOOS = Counter('foos_total', 'The number of foo calls.')

def foo():
 FOOS.inc()

class TestFoo(unittest.TestCase):
 def test_counter_inc(self):
 before = REGISTRY.get_sample_value('foos_total')
 foo()
 after = REGISTRY.get_sample_value('foos_total')
 self.assertEqual(1, after - before)

Approaching Instrumentation

Now that you know how to use instrumentation, it is important to know where and
how much you should apply it.

What Should I Instrument?

When instrumenting, you will usually be looking to either instrument services or
libraries.

Service instrumentation

Broadly speaking, there are three types of services, each with their own
key metrics: online-serving systems, offline-serving systems, and
batch jobs.

Online-serving systems are those where either a human or another service is
waiting on a response. These include web servers and databases. The key metrics to include in service instrumentation are the request rate, latency, and error rate. Having request rate, latency, and error rate metrics is sometimes called the RED
method, for Rate, Errors, and Duration. These metrics are not just useful
to you from the server side, but also the client side. If you notice that the
client is seeing more latency than the server, you might have network issues or an overloaded client.

Tip

When instrumenting duration, don’t be tempted to exclude failures. If you were
to include only successes, then you might not notice high latency caused by many
slow but failing requests.

Offline-serving systems do not have someone waiting on them. They usually batch
up work and have multiple stages in a pipeline with queues between them. A log processing system is an example of an offline-serving system. For each stage you should have
metrics for the amount of queued work, how much work is in progress, how fast
you are processing items, and errors that occur. These metrics are also known as the USE
method for Utilisation, Saturation, and Errors. Utilisation is how full your service is, saturation is the amount of queued work, and errors
is self-explanatory. If you are using batches, then it is useful to have metrics
both for the batches, and the individual items.

Batch jobs are the third type of service, and they are similar to offline-serving systems. However, batch jobs run on a regular schedule, whereas
offline-serving systems run continuously. As batch jobs are not always running,
scraping them doesn’t work too well, so techniques such as the Pushgateway
(discussed in [Link to Come]) are used. At the end of a batch job you should
record how long it took to run, how long each stage of the job took, and the
time at which the job last succeeded. You can add alerts if the job hasn’t
succeeded recently enough, allowing you to tolerate individual batch job run
failures.

Idempotency for Batch Jobs

Idempotency is the property that if you do something more than once, it has the
same result as if it were only done once. This is a useful property for batch
jobs as it means handling a failed job is simply a matter of retrying, so you
don’t have to worry as much about individual failures.

To achieve this you should avoid passing which items of work (such as the
previous day’s data) a batch job should work on. Instead you should have
the batch job infer that and continue on from where it left off.

This has the additional benefit that you can have your batch jobs retry
themselves. For example, you might have a daily batch job run instead a few
times per day, so that even if there is a transient failure the next run will
take care of it. Alert thresholds can be increased accordingly, as you will
need to manually intervene less often.

Library instrumentation

Services are what you care about at a high level. Within each of your services
there are libraries that you can think of as mini services. The majority will
be online-serving subsystems, which is to say synchronous function calls, and
benefit from the same metrics of requests, latency, and errors. For a cache you would want these metrics both for the cache overall and the cache misses that then
need to calculate the result or request it from a backend.

Total and Failures, Not Success and Failures

With metrics for failures and total it is easy to calculate the failure ratio
by division. With success and failures this is trickier,12 as you first need to calculate the
total.

Similarly for caches it is best to have either hits and total requests, or
failures and total requests. All of total, hits, and misses works fine too.

It is beneficial to add metrics for any errors that occur and anywhere that you
have logging. You might only keep your debug logs for a few days due to their
volume, but with a metric you can still have a good of idea of the frequency of
that log line over time.

Thread and worker pools should be instrumented similarly to offline-serving
systems. You will want to have metrics for the queue size, active threads,
any limit on the number of threads, and errors encountered.

Background maintenance tasks that run no more than a few times an hour are
effectively batch jobs, and you should have similar metrics for these tasks.

How Much Should I Instrument?

While Prometheus is extremely efficient, there are limits to how many metrics
it can handle. At some point the operational and resource costs outweigh the
benefits for certain instrumentation strategies.

The good news is that most of the time you don’t need to worry about this. Let’s
say that you had a Prometheus that could handle ten million
metrics13 and
a thousand application instances. A single new metric on each of these
instances would use 0.01% of your resources, making it
effectively free. This means you are free to add individual metrics by hand
where it is useful.

Where you need to be careful is when things get industrial. If you
automatically add a metric for the duration of every function, that can add up
fast (it is classic profiling after all). If you have metrics broken out by
request type and HTTP URL,14 all the potential
combinations can easily take up a significant chunk of your resources.
Histogram buckets expand that again. A metric with a cardinality of a hundred
on each instance would take up 1% of your Prometheus server’s resources, which
is a less clear win and certainly not free. We discuss this further in
[Link to Come].

It is common for the ten biggest metrics in a Prometheus to constitute over
half of its resource usage. If you are trying to manage the resource usage of
your Prometheus, you will get a better return for your efforts by focusing on
the ten biggest metrics.

As a rule of thumb, a simple service like a cache might have a hundred metrics
in total, while a complex and well-instrumented service might have a thousand.

What Should I Name My Metrics?

The naming of metrics is more of an art than a science. There are some simple
rules you can follow to avoid the more obvious pitfalls, and also general
guidelines to construct your metric names.

The overall structure of a metric name is generally library_name_unit_suffix.

Characters

Prometheus metric names should start with a letter, and
can be followed with any number of letters, numbers, and underscores.

While [a-zA-Z_:][a-zA-Z0-9_:]* is a regular expression for valid metric
names for Prometheus, you should avoid some of the valid values. You should not
use colons in instrumentation as they are reserved for user use in recording
rules, as discussed in [Link to Come]. Underscores at the start of metric
names are reserved for internal Prometheus use.

snake_case

The convention with Prometheus is to use snake case for metric names; that is,
each component of the name should be lowercase and separated by an underscore.

Metric suffixes

The _total, the _count, _sum, and _bucket suffixes are used by the counter, summary, and histogram metrics. Aside from always having a _total
suffix on counters, you should avoid putting these suffixes on the end of your
metric names to avoid confusion.

Units

You should prefer using unprefixed base units such as seconds, bytes, and
ratios.15 This is because Prometheus uses seconds in functions
such as time, and it avoids ugliness such as kilomicroseconds.

Using only one unit avoids confusion as to whether this particular metric is
seconds or milliseconds.16 To avoid
this confusion you should always include the unit of your metric in the name.
For example, mymetric_seconds_total for a counter with a unit of seconds.

There is not always an obvious unit for a metric, so don’t worry if your metric
name is missing a unit. You should avoid count as a unit, as aside from clashing with
summarys and histograms, most metrics are counts of something so it doesn’t
tell you anything. Similarly with total.

Name

The meat of a metric name is, um, the name. The name of a metric should give someone who has no knowledge of the subsystem the metric is from a good idea of what it means. requests is not very insightful,
http_requests is better, and http_requests_authenticated is better again.
The metric description can expand further, but often the user will only have
the metric name to go on.

As you can see from the preceding examples, a name may have several
underscore-separated components. Try to have the same prefix on related
metrics, so that it’s easier to understand their relationship. queue_size and
queue_limit are more useful than size_queue and limit_queue. You might
even have items and items_limit. Names generally go from less to more
specific as you go from left to right.

Do not put what should be labels (covered in [Link to Come]) in metric
names. When implementing direct instrumentation you should never procedurally
generate metrics or metric names.

Note

You should avoid putting the names of labels that a metric has into a metric’s name because it will be incorrect when that label is aggregated away with PromQL.

Library

As metrics names are effectively a global namespace, it is important to both
try to avoid collisions between libraries and indicate where a metric is coming from. A metric
name is ultimately pointing you to a specific line of code in a specific file
in a specific library. A library could be a stereotypical library that you have
pulled in as a dependency, a subsystem in your application, or even the main
function of the application itself.

You should provide sufficient distinction in the library part of the metric
name to avoid confusion, but there’s no need to include complete organisation
names and paths in source control. There is a balance between succinctness and
full qualification.

For example, Cassandra is a well-established application so it would
be appropriate for it to use just cassandra as the library part of its metric
names. On the other hand, using db for a company’s internal database connection
pool library would be unwise, as database libraries and database connection pool
libraries are both quite common. You might even have several inside the
same application. robustperception_db_pool or rp_db_pool would be better
choices there.

Some library names are already established. The process
library exposes process-level metrics such as CPU and memory usage, and is standardised across client libraries. Thus you should not expose additional
metrics with this prefix. Client libraries also expose metrics relating to
their runtime. Python metrics use python, Java Virtual Machine (JVM) metrics
use jvm, and Go uses go.

Combining these steps produces metric names like
go_memstats_heap_inuse_bytes. This is from the go_memstats library, memory
statistics from the Go runtime. heap_inuse indicates the metric is related to the
amount of heap being used, and bytes tells us that it is measured in bytes.
From just the name you can tell that it is the amount of the heap
memory17
that Go is currently using. While the meaning of a metric will not always be
this obvious from the name, it is something to strive for.

Caution

You should not prefix all metric names coming from an application with the name
of the application. process_cpu_seconds_​total is process_cpu_seconds_total
no matter which application exposes it. The way to distinguish metrics from
different applications is with target labels, not metric names. See [Link to Come].

Now that you have instrumented your application, let’s look at how you can expose
those metrics to Prometheus.

1 Unfortunately not all client libraries can have this happen automatically for various technical reasons. In the Java library, for example, an extra function call is required, and depending on how you use the Go library you may also need to explicitly register metrics.
2 It may increase by two due to your browser also hitting the /favicon.ico endpoint.
3 While this is a gauge, it is best exposed using a counter. You can convert a requests over time counter to a gauge in PromQL with the rate function.
4 Unlike counters, gauges can decrease, so it is fine to pass negative numbers to a gauge’s inc method.
5 Seconds are the base unit for time, and thus preferred in Prometheus to other time units such as minutes, hours, days, milliseconds, microseconds, and nanoseconds.
6 In practice, there is not much need for such a metric. The timestamp PromQL function will return the timestamp of a sample, and the time PromQL function the query evaluation time.
7 System time can go backwards if the date is manually set in the kernel, or if a daemon is trying to keep things in sync with the Network Time Protocol (NTP).
8 The +Inf bucket is required, and should never be dropped.
9 Particularly if the histogram has labels.
10 However, it is not correct to average a set of averages. For example, if you had 3 events with an average of 5 and 4 events with an average of 6, the overall average would not be 5 + 6 / 2 = 5.5, but rather (3 * 5 + 4 * 6) / (3 + 4) = 5.57.
11 Categories of logs were mentioned in “Logging”.
12 You should not try dividing the failures by the successes.
13 This was roughly the performance limit of Prometheus 1.x.
14 [Link to Come] looks at labels, which are a powerful feature of Prometheus that make this possible.
15 As a general rule, ratios typically go from 0…1 and percentages go from 0…100.
16 At one point Prometheus itself was using seconds, milliseconds, microseconds, and nanoseconds for metrics.
17 The heap is memory of your process that is dynamically allocated. It is used for memory allocation by functions such as malloc.

OEBPS/Images/prur_0209.png
@ Uselocaltime @ Enabequory histery @ Ensbie sutocompite @ Enable hhghing @ Enable it
Q ratelprametheus tsab head somples appended_total1s])
Table Graph

= s)

OEBPS/Images/prur_0208.png
@ Uselocaltime @ Enabequory histery @ Ensbie sutocompite @ Enable hhghing @ Enable it

T Y- |

Table Graph

= e s et e s)

OEBPS/Images/prur_0207.png
@ Uselocaltime @ Enabequory histery @ Ensbie sutocompite @ Enable hhghing @ Enable it

;LT o |

Table Graph

D ——

OEBPS/Images/prur_0206.png
Prometheu

@ Uselocaltime @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable inter

Table Graph

comatonime [

proces.sesidentmemary_bytes instance-lcalhost 090 o= prometheus) Tass0ss0

Remave Panel

OEBPS/Images/prur_0205.png
Prometheu

@ Uselocaltime @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable inter

Table Graph

comatonime [

uplinstanceTocalhost 090 job=prometheus’) '

Remave Panel

OEBPS/Images/prur_0204.png
HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
TYPE go_gc_duration seconds summary
}'5.7129e-05
57} 8.2145e-05
57} 6.000206873
75") 0.000210127
go_gc_duration seconds{quantile="1"} 0.006215627
go_gc_duration_seconds_sun ©.000771301
go_gc_duration_seconds count 5
HELP go_goroutines Nusber of goroutines that currently exist.
TYPE go_goroutines gauge
go_goroutines 28
HELP go_info Information about the Go environment.
TYPE go_info gauge
go_info{version="go1.18.4"} 1
HELP go_nemstats_ailoc bytes Number of bytes allocated and still in use.
TYPE go_nenstats alloc_bytes gauge
go_menstats_alloc_bytes 1.4703912e+07
HELP go_nemstats_alloc bytes total Total number of bytes allocated, even if freed.
TYPE go_nemstats alloc_bytes total counter
go_memstats alloc bytes fotal 2.1393576e+07

OEBPS/Images/prur_0303.png
th

O r

@ Uselocaltime @ Enablequeryistory @ Enable atocomplete @ Enable ighighiing @ Enable liner

Q| ratethelto vorlds total(sal)

Tabe Graph

=-n

OEBPS/Images/prur_0302.png
©

O o

@ Uselocaltime @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable inter

Q python_info

Table Graph

A coon B

pytho. o mplementaonsCPythn nstance=Tocahost 5000 Job="example mjor" miner"" pachlevel"1 3 version="3913) 1

OEBPS/Images/prur_0203.png
O rx
Targets

prometheus (1/1 p) (D

Enpoint

i rcaostsosameries

ste

sepe
Lastserape. Durston e

147918000 sdssms

©

OEBPS/Images/prur_0202.png
the

@ selocaltime @ Enable query history @ Enable autocomplte @ Enabe highlighting @ Enabl lnter

a q.-..

Table Graph

RemovePanel

OEBPS/Images/prur_0301.png
HELP python_gc objects collected total Objects collected during gc
TYPE python gc_objects collected total counter

o) 131.0
o

MELP python gc_objects uncollectable total Uncollectable object found during 6C
TYPE python gc objects uncollectable total counter.
python_gc_objects. uncollectable._total {generation="0"}

MELPpython_info Python platforn information
TYPE python info gauge
python_info(inplenentation="CPython" ,najor="3",ninor="

" patchlevel="13", version="3.9.13"} 1.6

OEBPS/Images/prur_0102.png
@ Ouime- @ 8 - @

ogns O

Pt ety 286

senerreqets prrrr—

bl = bl = bt = bt I

OEBPS/Images/prur_0201.png
prometheus

“The Prometheus monitoringsystem and time seies database. © prometheus/prometheus.

23701 20220714 [e s
File name.

prometheus 2370 darin-amdsa tar g2
prometheus 237.0inuxamaatar gt

prometheus 237.0mindows amdsa ip

arwin ame.
inox amosd

windows amasa

Sie
001mB.
7950MB

sra7me.

SHA2S6 Checksum

OEBPS/Images/prur_0101.png
Applcation

Clent
Library

Brporter

3rdParty
Applcation

OEBPS/Images/prur_0219.png
1 alert for alertname=InstanceDown

View In Alertmanager

[1] Firing

Labels

alertname = InstanceDown
instance = localhost9100
job = node

Source

OEBPS/Images/prur_0218.png
Aertmanager et sieces s e

Fiter Group Receiver: Al Silenced Inhibited

Custom mtcher, .. eni=prodicion

.

= | slertname="nstanceDown" Yalert

2022.07.18T1a2850.0567 2 Source 7 Slence

Instance=—localhost100" | | obe"node”

OEBPS/Images/prur_0217.png
Q_ Filterby name orlabels Show annotations

rules ymi > example.

“InstanceDown (1 active)

nane: Instancedoun
expr: up ==
for: am

Labels Swte ActiveSince Value
T e e 220mET2T AN 0

OEBPS/Images/prur_0216.png
© Uselocaltime @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable finter

-]

Table Graph

pfinstancesTocahest 10

iobeade) o

Remove Panel

OEBPS/Images/prur_0215.png
Prometheu

© Uselocaltime @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable finter

a w

Table Graph

plinstancesTocalhost 090 job prometheus) '

“pfinstance:Tocahost 10

Remove Panel

OEBPS/Images/prur_0214.png
[+ B
Targets
node (071 up) G

endpoin

e ocabest9100/metics

a

stte
em

prometheus (1/1 up) EEE)

Endpoin
N ocabost 9090 metics

sute
-]

Labee
em e

Labee

Lastserpe
24898000

Last srape
Az

°

seape
Durtion Enor

1761ms Get i ocahost9100/metics”
al1p 1}910:connet:comection
ehused

Sape
ourstion Eror

saums

OEBPS/Images/prur_0213.png
(]

@ Uselocaltime @ Enabequery histery @ Ensbie sutocompite @ Enable bhighing @ Enable tr

] e s, v e i - |

= s s 1 o)
Pt

OEBPS/Images/prur_0212.png
Q] s i sy ptiors Y- |

L T ———

OEBPS/Images/prur_0211.png
Prom

Uselocal time @ Enable query history @ Enable autocomplete @ Enable highlhting @ Enable inter

a w [e |

Table Graph

plinstancesTocalhost 100" jobnade) '

Remore Panel

Add Panel

OEBPS/Images/prur_0210.png
O *r
Targets

node (171 up) (I

seape
endpoin. Swe Lt LastSerape Ourtion Enor

W ocabost9100metics @

135685390 66.746ms

prometheus (171 up) EEED

Scape
Endpoin e Labels LastScrape Durton Eror
g ocabost00metics (@ CETTET 791 000ms 4 768ms.

OEBPS/Images/cover.png
OREILLY"

Prometheus
Up & Running

Infrastructure and Application Performance
Monitoring

Early
Release

RAW &
UNEDITED

Julien Pivotto
& Brian Brazil

