

The Cloud Data Lake

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Rukmani Gopalan

The Cloud Data Lake

 by
 Rukmani
Gopalan

Copyright © 2022 Rukmani Gopalan. All rights reserved.

Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

	
Editors:
 Andy Kwan and Jill Leonard

	
Production Editor:
 Ashley Stussy

	
Interior Designer:
 David Futato

	
Cover Designer:
 Karen Montgomery

	
Illustrator:
 Kate Dullea

	
March 2023:
 First Edition

Revision History for the Early Release

	
2022-05-03:
 First Release

	
2022-06-16:
 Second Release

	
2022-07-15:
 Third Release

	
2022-08-18:
 Fourth Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098116583
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The
 Cloud Data Lake, the cover image, and related trade dress are trademarks
 of O’Reilly Media, Inc.

 The views expressed in this work are those of the author(s), and do not
 represent the publisher’s views. While the publisher and the
 author(s) have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author(s) disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

978-1-098-11652-1

Chapter 1. Big Data - Beyond the Buzz

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at jleonard@oreilly.com.

“Without big data, you are blind and deaf and in the middle of a freeway.”

Geoffrey Moore

If we were playing workplace Bingo, there is a high chance you would win a full house by crossing off all these words that you have heard in your organization in the past 3 months - digital transformation, data strategy, transformational insights, data lake, warehouse, data science, machine learning, and intelligence. It is now common knowledge that data is a key ingredient for organizations to succeed, and organizations that rely on data and AI clearly outperform their contenders. According to an IDC study sponsored by Seagate, the amount of data that is captured, collected, or replicated is expected to grow to 175 ZB by the year 2025. This data that captured, collected, or replicated is referred to as the Global Datasphere. This data comes from three classes of sources :-

	
The core - traditional or cloud based datacenters.

	
The edge - hardened infrastructure, such as the cell towers.

	
The endpoints - PC, tablets, smartphones, and IoT devices.

This study also predicts that 49% of this Global Datasphere will be residing in public cloud environments by the year 2025.

If you have ever wondered, “Why does this data need to be stored? What is it good for?,” the answer is very simple - think of all of these data available as bits and pieces of words strewn around the globe in different languages and scripts, each sharing a sliver of information, like a piece in a puzzle. Stitching them together in a meaningful fashion tells a story that not only informs, but also could transform businesses, people, and even how this world runs. Most successful organizations already leverage data to understand the growth drivers for their businesses and the perceived customer experiences and taking the rightful action - looking at “the funnel” or customer acquisition, adoption, engagement, and retention are now largely the lingua franca of funding product investments. These types of data processing and analysis are referred to as business intelligence, or BI, and are classified as “offline insights.” Essentially, the data and the insights are crucial in presenting the trend that shows growth so the business leaders can take action, however, this workstream is separate to the core business logic that is used to run the business itself. As the maturity of the data platform grows, an inevitable signal we get from all custoemrs is that they start getting more requests to run more scenarios on their data lake, truly adhering to the “Data is the new oil” idiom.

Organizations leverage data to understand the growth drivers for their business and the perceived customer experience. They can then leverage data to set targets and drive improvements in customer experience with better support and newer features, they can additionally create better marketing strategies to grow their business and also drive efficiencies to lower their cost of building their products and organizations. Starbucks, the coffee shop that is present around the globe, uses data in every place possible to continously measure and improve their business. They use the data from their mobile applications and correlate that with their ordering system to better understand customer usage patterns and send targeted marketing campaigns. They use sensors on their coffee machines that emit health data every few seconds, and this data is analyzed to drive improvements into their predictive maintenance, they also use these connected coffee machines to download recipes to their coffee machines without involving human intervention. As the world is just learning to cope with the pandemic, organizations are leveraging data heavily to not just transform their businesses, but also to measure the health and productivity of their organizations to help their employees feel connected and minimize burn out. Overall, data is also used for world saving initiatives such as Project Zamba that leverages artificial intelligence for wildlife research and conservation in the remote jungles of Africa, and leveraging IoT and data science to create a circular economy to promote environmental sustaintability.

1.1 What is Big Data?

In all the examples we saw above, there are a few things in common.

	
Data can come in all kinds of shape and formats - it could be a few bytes emitted from an IoT sensor, social media data dumps, files from LOB systems and relational databases, and sometimes even audio and video content.

	
The processing scenarios of this data is vastly different - whether it is data science, SQL like queries or any other custom processing.

	
As studies show, this data is not just high volume, but also could arrive at various speeds, as one large dump like data ingested in batches from relational databases, or continously streamed like clickstream data or IoT data.

These are some of the characteristics of Big data. Big data processing refers to the set of tools and technologies that are used to store, manage, and analyze data without posing any restrictions or assumptions on the source, the format, or the size of the data.

The goal of big data processing is to analyze a large amount of data with varying quality, and generate high value insights. The sources of data that we saw above, whether it is from IoT sensors, or social media dumps, have signals in them that are valuable to the business. As an example, social media feeds have indicators of customer sentiments, whether they loved a product and tweeted about it, or had issues that they complained about. These signals are hidden amidst a large volume of other data, creating a lower value density, i.e. you need to scrub a large amount of data to get a small amount of signal. In some cases, the chances are that you might not have any signals at all. Needle in a haystack much? Further, a signal by itself might not tell you much, however, when you combine two weak signals together, you get a stronger signal. As an example, sensor data from vehicles tell you how much brakes are used or accelerators are pressed, traffic data provides patterns of traffic, and car sales data provides information on who got what cars. While these data sources are disparate, insurance companies could correlate the vehicle sensor data, traffic patterns, and build a driver profile of how safe the driver is, thereby offering lower insurance rates to drivers with a safe driving profile. As seen in Figure 1-1, a big data processing system enables the correlation of a large amount of data with low value density to generate insights with high value density. These insights have the power to drive critical transformations to products, processes, and the culture of organizations.

[image: Big Data Processing Overview]
Figure 1-1. Big Data Processing Overview

Big data is typically characterized by 6 Vs. Fun fact - a few years ago, we characterized big data with 3 Vs only - volume, velocity, and variety. We have already added 3 more vs - value, veracity, and variability. This only goes to say how there were more dimensions being unearthed in a few years. Well, who knows, by the time this book is published, maybe there are already more vs added as well! Lets now take a look at the vs.

	
Volume - This is the “big” part of big data, that refers to the size of the data sets being processed. When data bases or data warehouses talk about hyperscale, they possibly refer to tens or hundreds of TBs (TeraBytes), and in rare instances, PBs (PetaBytes) of data. In the world of big data processing, PBs of data is more of hte norm, and larger data lakes easily grow to hundreds of PBs as more and more scenarios run on the data lake. A special call out here is that the volume is a spectrum in big data. You need to have a system that is works well for TBs of data, that can scale just as well as these TBs acculumate to hundreds of PBs. This enables your organization to start small and scale as your business as well as your data estate grows.

Note

Most data warehouses do promise scaling to multiple PBs of data, and they are relentlessly improving to keep increasing this limit. It is important to remember that data warehouses are not designed to store and process tens or hundreds of PBs, at least as they stand today. An additional consideration is cost, where depending on your scenarios, it could be a lot cheaper to store data in your data lake as compared to the data warehouse.

	
Velocity - Data in the big data ecosystem has different “speed” associated with it, in terms of how quickly it is generated and how fast it moves and changes. E.g. think of trends in social media. While a video on Tik-Tok could go viral in adoption, few days later, it is completely irrelevant leaving way for the next trend. In the same vein, think of health care data such as your daily steps, while it is critical information to measuring your activity at the time, its less of a signal a few days later. In these examples, you have millions of events, sometimes even billions of events generated at scale, that need to be ingested and insights generated in near real time, whether it is real time recommendations of what hashtags are trending, or how far away are you from your daily goal. On the other hand, you have other scenarios where the value of data persists over a long time. E.g. sales forecasting and budget planning heavily relies on trends over the past years, and leverages data that has persisted over the past few months or years. A big data system to support both of these scenarios - ingesting a large amount of data in batch as well as continously streaming data and be able to process them. This lets you have the flexibility of running a variety of scenarios on your data lake, and also correlate data from these various sources and generate insights that would have not been possible before. E.g. you could predict the sales based on long term patterns as well as quick trends from social media using the same system.

	
Variety - As we saw in the first two bullets above, big data processing systems accomodate a spectrum of scenarios, a key to that is supporting a variety of data. Big data processing systems have the ability to process data without imposing any restrictions on the size, structure, or source of the data. They provide the ability for you to work on structured data (database tables, LOB systems) that have a defined tabular structure and strong guarantees, semi-structured data (data in flexibly defined structures, such as CSVs, JSON), and unstructured data (Images, social media feeds, video, text files etc). This allows you to get signals from sources that are valuable (E.g. think insurance documents or mortgage documents) without making any assumptions on what the data format is.

	
Veracity - Veracity refers to the quality and origin of big data. A big data analytics system accepts data without any assumptions on the format or the source, which means that naturally, not all data is powered with highly structured insights. E.g. your smart fridge could send a few bytes of information indicating its device health status, and some of this information could be lost or imperfect depending on the implementation. Big data processing systems need to incorporate a data preparation phase, where data is examined, cleansed, and curated, before complex operations are performed.

	
Variability - Whether it is the size, the structure, the source, the quality - variability is the name of the game in big data systems. Any processing system on big data needs to incorporate this variability to be able to operate on any and all types of data. In addition, the processing systems are also able to define the structure of the data they want on demand, this is referred to applying a schema on demand. As an example, when you have a taxi data that has a comma separated value of hundreds of data points, one processing system could focus on the values corresponding to source and destination while ignoring the rest, while the other could focus on the driver identification and the pricing while ignoring the rest. This also is the biggest power - where every system by itself contains a piece of the puzzle, and getting them all together reveals insights like never before. I once worked with a financial services company that collected data from various counties on housing and land - they got data as Excel files, CSV dumps, or highly structured database backups. They processed this data and aggregated them to generate excellent insights about patterns of land values, house values, and buying patterns depending on area that let them establish mortgage rates appropriately.

	
Value - This is probably already underscored in the points above, the most important V that needs to be emphasized is the value of the data in big data systems. The best part about big data systems is that the value is not just one time. Data is gathered and stored assuming it is of value to a diversity of audience and time boundedness. E.g. let us take the example of sales data. Sales data is used to drive the revenue and tax calculations, and also used to calculate the commissions of the sales employees. In addition, an analysis of the sales trends over time can be used to project future trends and set sales targets. Applying machine learning techniques on sales data and correlating this with seemingly unrelated data such as social media trends, or weather data to predict unique trends in sales. One important thing to remember is that the value of data has the potential to depreciate over time, depending on the problem you are trying to solve. As an example, the data set containing weather patterns across the globe have a lot of value if you are analyzing how climate trends on changing over time. However, if you are trying to predict umbrella sales patterns, then the weather patterns five years ago are less relevant.

[image: 6 Vs of Big Data]
Figure 1-2. 6 Vs of Big Data

Figure 1-2 illustrates these concepts of big data.

1.2 Elastic Data Infrastructure - The Challenge

For organizations to realize the value of data, the infrastructure to store, process, and analyze data while scaling to the growing demands of the volume and the format diversity becomes critical. This infrastructure must have the capabilities to not just store data of any format, size, and shape, but it also needs to have the abliity to ingest, process, and consume this large variety of data to extract valuable insights.

In addition, this infrastructure needs to keep up with the proliferation of the data and its growing variety and be able to scale elastically as the needs of the organizations grow and the demand for data and insights grow in the organization as well.

1.3 Cloud Computing Fundamentals

Terms such as “cloud computing,” or “elastic infrastructure” are as ubiqutously used today that it has become part of our natural English language such as “Ask Siri”, or “Did you Google that?” While we don’t even pause for a second when we hear it or use it, what does this mean, and why is it the biggest trendsetter for transformation? Lets get our head in the clouds for a bit here and learn about the cloud fundamentals before we dive into cloud data lakes.

Cloud computing is a big shift from how organizations thought about IT resources traditionally. In a traditional approach, organizations had IT departments that purchased devices or appliances to run software. These devices are either laptops or desktops that were provided to developers and information workers, or they were data centers that IT departments maintained and provided access to the rest of the organization. IT departments had budgets to procure hardware and managed the support with the hardware vendors. They also had operational procedures and associated labor provisioned to install and update Operating Systems and the software that ran on this hardware. This posed a few problems - business continuity was threatened by hardware failures, software development and usage was blocked by having resources available from a small IT department to manage the installation and upgrades, and most importantly, not having a way to scale the hardware impeded the growth of the business.

Very simply put, cloud computing can be treated as having your IT department delivering computing resources over the internet. The cloud computing resources themselves are owned, operated, and maintained by a cloud provider. Cloud is not homogenous, and there are different types of clouds as well.

	
Public cloud - There are public cloud providers such as Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP), to name a few. The public cloud providers own datacenters that host racks and racks of computers in regions across the globe, and they could have computing resources from different organizations leveraging the same set of infrastructure, also called as a multi-tenant system. The public cloud providers offer guarantees of isolation to ensure that while different organizations could use the same infrastructure, one organization cannot access another organization’s resources.

	
Private cloud - Providers such as VMWare who offer private cloud, where the computing resources are hosted in on-premise datacenters that are entirely dedicated to an organization. As an analogy, think of a public cloud provider as a strip mall, which can host sandwich shops, bakeries, dentist offices, music classes, and hair salons in the same physical building, as opposed to a private cloud which would be similar to a school building, where the entire building is used only for the school. Public cloud providers also have an option to offer private cloud versions of their offerings.

Your organization could use more than one cloud provider to meet your needs, and this is referred to as a multi-cloud approach. On the other hand, We also have observed that some organizations opt for what is called as a hybrid cloud, where they have a private cloud on an on-premises infrastructure, and also leverage a public cloud service, and have their resources move between the two environments as needed. Figure 1-3 illustrates these concepts.

[image: Cloud Concepts]
Figure 1-3. Cloud Concepts

We talked about computing resources,but what exactly are these? Computing resources on the cloud could belong to three different categories.

	
Infrastructure as a Service or IaaS - For any offering, there needs to be a barebone infrastructure that consists of resources that offer compute (processing), storage (data), and networking (connectivity). IaaS offerings refer to virtualized compute, storage, and networking resources that you can create on the public cloud to build your own service or solution leveraging these resources.

	
Platform as a Service or PaaS - PaaS resources are essentially tools that are offered by providers, and that can be leveraged by application developers to build their own solution. These PaaS resources could be offered by the public cloud providers, or they could be offered by providers who exclusively offer these tools. Some examples of PaaS resources are operational databases offered as a service - such as Azure CosmosDB that is offered by Microsoft, Redshift offered by Amazon, MongoDB offered by Atlas, or the data warehouse offered by Snowflake, who builds this as a service on all public clouds.

	
Software as a Service or SaaS - SaaS resources offer ready to use software services for a subscription. You can use them anywhere with nothing to install on your computers, and while you could leverage your developers to customize the solutions, there are out of the box capabilities that you can start using right away. Some examples of SaaS services are Office 365 by Microsoft, Netflix, Salesforce, or Adobe Creative Cloud.

As an analogy, lets say you want to eat pizza for dinner, if you were leveraging IaaS services, you would buy flour, yeast, cheese, and vegetables, and make your own dough, add toppings, and bake your pizza. You need to be an expert cook to do this right. If you were leveraging PaaS services, you would buy a take ‘n bake pizza and pop it into your oven. You dont need to be an expert cook, however, you need to know enought o operate an oven and watch out to ensure the pizza is not burnt. If you were using a SaaS service, you would call the local pizza shop and have it delivered hot to your house. You don’t need to have any cooking expertise, and you have pizza delivered right to your house ready to eat.

1.3.1 Value Proposition of the Cloud

One of the first questions that I always answer to customers and organizations taking their first steps to the cloud journey is why move to the cloud in the first place. While the return on investment on your cloud journey could be multifold, they can be summarized into three key categories:

	
Lowered TCO - TCO refers to the Total Cost of Ownership of the technical solution you maintain. In almost all cases barring a few exceptions, the total cost of ownership is significantly lower for building solutions on the cloud, compared to the solutions that are built in house and deployed in your on premises data center. This is because you can focus on hiring software teams to write code for your business logic while the cloud providers take care of all other hardware and software needs for you. Some of the contributors to this lowered cost includes:

	
Cost of hardware - The cloud providers own, build, and support the hardware resources bringing down the cost if you were to build and run your own datacenters, maintain hardware, and renew your hardware when the support runs out. Further, with the advances made in hardware, cloud providers enable newer hardware to be accessible much faster than if you were to build your own datacenters.

	
Cost of software - In addition to building and maintaining hardware, one of the key efforts for an IT organization is to support and deploy Operating Systems, and routinely keep them updated. Typically, these updates involve planned downtimes which can also be disruptive to your organization. The cloud providers take care of this cycle without burdening your IT departments. In almost all cases, these updates happen in an abstracted fashion so that you don’t need to be impacted by any downtime.

	
Pay for what you use - Most of the cloud services work on a subscription based billing model, which means that you pay for what you use. If you have resources that are used for certain hours of the day, or certain days of the week, you only pay for what you use, and this is a lot less expensive that having hardware around all the time even if you don’t use it.

	
Elastic scale - The resources that you need for your businesses are highly dynamic in nature, and there are times that you need to provision resources for planned and unplanned increase in usage. When you maintain and run your hardware, you are tied to the hardware you have as the cieling for the growth you can support in your business. Cloud resources have an elastic scale and you can burst into high demand by leveraging additional resources in a few clicks.

	
Keep up with the innovations - Cloud providers are constantly innovating and adding new services and technologies to their offerings depending as they learn from multiple customers. Leveraging these solutions helps you innovate faster for your business scenarios, compared to having in house developers who might not have the breadth of knowledge across the industry in all cases.

1.4 Cloud Data Lake Architecture

To understand how cloud data lakes help with the growing data needs of an organization, its important for us to first understand how data processing and insights worked a few decades ago. Businesses often thought of data as something that supplemented a business problem that needs to be solved. The approach was business problem centric, and involved the following steps :-

	
Identify the problem to be solved.

	
Define a structure for data that can help solve the problem.

	
Collect or generate the data that adheres with the structure.

	
Store the data in an Online Transaction Processing (OLTP) database, such as SQL Servers.

	
Use another set of transformations (filtering, aggregations etc) to store data in Online Analytics Processing (OLAP) databases, SQL servers are used here as well.

	
Build dashboards and queries from these OLAP databases to solve your business problem.

For instance, when an organization wanted to understand the sales, they built an application for sales people to input their leads, customers, and engagements, along with the sales data, and this application was supported by one or more operational databases.For example, there could be one database storing customer information, another storing employee information for the sales force, and a third database that stored the sales information that referenced both the customer and the employee databases. On-premises (referred to as on-prem) have three layers, as shown in Figure 1-4.

	
Enterprise data warehouse - this is the component where the data is stored. It contains a database component to store the data, and a metadata component to describe the data stored in the database.

	
Data marts - data marts are a segment of the enteprise data warehouse, that contain a business/topic focused databases that have data ready to serve the application. Data in the warehouse goes through another set of transformations to be stored in the data marts.

	
Consumption/BI layer - this consists of the various visualization and query tools that are used by BI analysts to query the data in the data marts (or the warehouse) to generate insights.

[image: Traditional on-premises data warehouse]
Figure 1-4. Traditional on-premises data warehouse

1.4.1 Limitations of on-premises data warehouse solutions

While this works well for providing insights into the business, there are a few key limitations with this architecture, as listed below.

	
Highly structured data: This architecture expects data to be highly structured every step of the way. As we saw in the examples above, this assumption is not realistic anymore, data can come from any source such as IoT sensors, social media feeds, video/audio files, and can be of any format (JSON, CSV, PNG, fill this list with all the formats you know), and in most cases, a strict structure cannot be enforced.

	
Siloed data stores: There are multiple copies of the same data stored in data stores that are specialized for specific purposes. This proves to be a disadvantage because there is a high cost for storing these multiple copies of the same data, and the process of copying data back and forth is both expensive, error prone, and results in inconsistent versions of data across multiple data stores while the data is being copied.

	
Hardware provisioning for peak utilization: On-premises data warehouses requires organizations to install and maintain the hardware required to run these services. When you expect bursts in demand (think of budget closing for the fiscal year or projecting more sales over the holidays), you need to plan ahead for this peak utilization and buy the hardware, even if it means that some of your hardware needs to be lying around underutilized for the rest of the time. This increases your total cost of ownership. Do note that this is specifically a limitation with respect on on-premises hardware rather than a difference between data warehouse vs data lake architecture.

1.4.2 What is a Cloud Data Lake Architecture

As we saw in “1.1 What is Big Data?”, the big data scenarios go way beyond the confines of the traditional enterprise data warehouses. Cloud data lake architectures are designed to solve these exact problems, since they were designed to meet the needs of explosive growth of data and their sources, without making any assumptions on the source, the formats, the size, or the quality of the data. In contrast to the problem-first approach taken by traditional data warehouses, cloud data lakes take a data-first approach. In a cloud data lake architecture, all data is considered to be useful - either immediately or to meet a future need. And the first step in a cloud data architecture involves ingesting data in their raw, natural state, without any restrictions on the source, the size, or the format of the data. This data is stored in a cloud data lake, a storage system that is highly scalable and can store any kind of data. This raw data has variable quality and value, and needs more transformations to generate high value insights.

[image: Cloud data lake architecture]
Figure 1-5. Cloud data lake architecture

As shown in Figure 1-5, the processing systems on a cloud data lake work on the data that is stored in the data lake, and allow the data developer to define a schema on demand, i.e. describe the data at the time of processing. These processing systems then operate on the low value unstructured data to generate high value data, that is often structured, and contains meaningful insights. This high value structured data is then either loaded into an enterprise data warehouse for consumption, and can also be consumed directly from the data lake. If all these seem highly complex to understand, no worries, we will go into a lot of detail into this processing in Chapter 2 and Chapter 3.

1.4.3 Benefits of a Cloud Data Lake Architecture

At a high level, this cloud data lake architecture addresses the limitations of the traditional data warehouse architectures in the following ways:

	
No restrictions on the data - As we saw, a data lake architecture consists of tools that are designed to ingest, store, and process all kinds of data without imposing any restrictions on the source, the size, or the structure of the data. In addition, these systems are designed to work with data that enters the data lake at any speed - real time data emitted continously as well as volumes of data ingested in batches on a scheduled basis. Further, the data lake storage is extremely low cost, so this lets us store all data by default without worrying about the bills. Think about how you would have needed to think twice before taking pictures with those film roll cameras, and these days click away without as much as a second thought with your phone cameras.

	
Single storage layer with no silos - Note that in a cloud data lake architecture, your processing happens on data in the same store, where you don’t need specialized data stores for specialized purposes anymore. This not only lowers your cost, but also avoids errors involved in moving data back and forth across different storage systems.

	
Flexibility of running diverse compute on the same data store - As you can see, a cloud data lake architecture inherently decouples compute and storage, so while the storage layer serves as a no-silos repository, you can run a variety of data processing computational tools on the same storage layer. As an example, you can leverage the same data storage layer to do data warehouse like business intelligence queries, advanced machine learning and data science computations, or even bespoke domain specific computations such as high performance computing like media processing or analysis of seismic data.

	
Pay for what you use - Cloud services and tools are always designed to elastically scale up and scale down on demand, and you can also create and delete processing systems on demand, so this would mean that for those bursts in demand during holiday season or budget closing, you can choose to spin these systems up on demand without having them around for the rest of the year. This drastically reduces the total cost of ownership.

	
Independently scale compute and storage - In a cloud data lake architecture, compute and storage are different types of resources, and they can be independently scaled, thereby allowing you to scale your resources depending on need. Storage systems on the cloud are very cheap, and enable you to store a large amount of data without breaking the bank. Compute resources are traditionally more expensive than storage, however, they do have the capability to be started or stopped on demand, thereby offering economy at scale.

Note

Technically, it is possible to scale compute and storage independently in an on-premises Hadoop architecture as well. However, this involves careful consideration of hardware choices that are optimized specifically for compute and storage, and also have an optimized network connectivity. This is exactly what cloud providers offer with their cloud infrastructure services. Very few organizations have this kind of expertise, and explicitly choose to run their services on-premises.

This flexibility in processing all kinds of data in a cost efficient fashion helps organizations realize the value of data and turn them into valuable transformational insights.

1.5 Defining your Cloud Data Lake Journey

I have talked to hundreds of customers on their big data analytics scenarios and helped them with parts of their cloud data lake journey. These customers have different motivations and problems to solve - some customers are new to the cloud and want to take their first steps with data lakes, some others have a data lake implemented on the cloud supporting some basic scenarios and are not sure what to do next, some are cloud native customers who want to start right with data lakes as part of their application architecture, and others who already have a mature implementation of their data lakes on the cloud, and want even more differenting scenarios powered by their data lakes. If I have to summarize my learnings from all these conversations, it basically comes down to this - There are two key things we need to keep in mind as we thinking about cloud data lakes:

	
Regardless of our cloud maturity levels, design your data lake for the company’s future.

	
Make your implementation choices based on what you need immediately!

You might be thinking that this sounds too obvious and too generic. However, in the rest of the book, you will observe that the framework and guidance we prescribe for designing and optimizing cloud data lakes is going to assume that you are constantly checkpointing yourself against these two questions.

	
What is the business problem and priority that is driving the decisions on the data lake?

	
When I solve this problem, what else can I be doing to differentiate my business with the data lake?

Let me give you a concrete example. A common scenario that drives customers to implement a cloud data lake is their on-premises harware supporting their Hadoop cluster is nearing its end of life. This Hadoop cluster is primarily used by the data platform team and the Business Intelligence team to build dashboards and cubes with data ingested from their on-premises transactional storage systems, and the company is at an inflection point to decide whether they need to buy more hardware and continue maintaining their on-premises hardware, or invest in this cloud data lake that everyone keeps talking about where the promise is elastic scale, lower cost of ownership, a larger set of features and services they can leverage, and all the other goodness we saw in the previous section. When these customers decide to move to the cloud, they have a ticking clock that they need to respect when their hardwares reaches its end of life, so they pick a lift and shift strategy that takes their existing on-premises implementation and port it to the cloud. This is a perfectly fine approach, especially given these are production systems that serve a critical business. However three things that these customers soon realize are:

	
It takes a lot of effort to even lift and shift their implementation.

	
If they realize the value of the cloud and want to add more scenarios, they are constrained by the design choices such as security models, data organization etc that originally assumed one set of BI scenarios running on the data lake.

	
In some instances, lift and shift architectures end up being more expensive in cost and maintenance refuting the original purpose.

Well, that sounds surprising, doesn’t it? These surprises primarily stem from the differences in architectures between on-premises and cloud systems. In an on-premises Hadoop cluster, compute and storage are colocated and tightly couples, vs on the cloud, the idea is to have an object storage/data lake storage layer, such as S3 on AWS, ADLS on Azure, and GCS on Google Cloud, and have a plethora of Compute options available as either IaaS (provision virtual machines and run your own software) or PaaS services (E.g. HDInsight on Azure, EMR on AWS, etc), as shown in the picture below. On the cloud, your data lake solution essentially is a structure you would build out of Lego pieces, that could be IaaS, Paas, or Saas offerings. You can find this represented in Figure 1-6.

[image: Onprem vs cloud architecture]
Figure 1-6. On-premises vs Cloud architectures

We already saw the advantages of the decoupled Compute and Storage architectures in terms of independent scaling and lowered cost, however, this also warrants that the architecture and the design of your cloud data lake respects this decoupled architecture. E.g. in the cloud data lake implementation, your compute to storage calls involve network calls, and if you do not optimize this, both your cost and performance is impacted. Similarly, once you have completed your data lake implementation for your primary BI scenarios, you can now get more value out of your data lake by enabling more scenarios, bringing in disparate data sets, or having more data science exploratory analysis on the data in your lake. At the same time, you want to ensure that a data science exploratory job does not accidentally delete your data sets that power the dashboard that your VP of Sales wants to see every morning. You need to ensure that the data organization and security models you have in place ensure this isolation and access control.

Tying these amazing opportunities back with the original motivation you had to move to the cloud, which was your on-premises servers reaching their end of life, you need to formulate a plan that helps you meet your timelines while setting you up for success on the cloud. Your move to the cloud data lake will involve two goals :-

	
Enable shutting down your on-premises systems, and

	
Set you up for success on the cloud.

Most customers end up focusing only on the first goal, and drive themselves into building huge technical debt before they have to rearchitect their applications. Having the two goals together will help you identify the right solution that incorporates both elements to your cloud data lake architecture :-

	
Move your data lake to the cloud.

	
Modernize your data lake to the cloud architecture.

To understand how to achieve both of these goals, you will need to understand what the cloud architecture is, design considerations for implementation, and optimizing your data lake for scale and performance. We will address these in detail in Chapter 2, Chapter 3, and Chapter 4. We will also focus on providing a framework that helps you consider the various aspects of your cloud data lake journey.

Summary

In this chapter, we started off talking about the value proposition of data and the transformational insights that can turn organizations around. We also built a fundamental understanding of cloud computing, and the fundamental differences between a traditional data warehouse and a cloud data lake architecture. Finally, we also built a fundamental understanding of big data, the cloud, and what data lakes are. Given the difference between on-premise and cloud architectures, we also emphasized the importance of a mindset shift that in turn defines an architecture shift when designing a cloud data lake. This mindset change is the one thing I would implore the readers to take as we delve into the details of cloud data lake architectures and the implementation considerations in our next chapters.

Chapter 2. Big Data Architectures on the Cloud

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at jleonard@oreilly.com.

‘Big data may mean more information, but it also means more false information.”

Naseem Taleb

As we learned in Chapter 1, there are two key takeaways about Cloud Data Lakes that set the foundation for this chapter :-

	
A data lake approach starts with the ability to store and process any type of data regardless of its source, size, or structure, thereby allowing an organization to extract high value insights from a large quantity of disparate sources of data with variable value density.

	
Building your data lake on the cloud involves a disaggregated architecture where you assemble different components of IaaS, PaaS, or SaaS solutions together.

It is important to remember is building your Cloud Data Lake solution also gives you a lot of options on architectures, each of them coming with their own set of strengths. In this chapter, we will dive deep into some of the more common architectural patterns, covering what they are, as well as understand the strengths of each of these architectures, as it applies to a fictitious organization called Klodars Corporation.

2.1 Why Klodars Corporation moves to the cloud

Klodars Corporation is a thriving organization that sells rain gear and other supplies in the Pacific Northwest region. The rapid growth in their business is driving their move to the cloud due to the following reasons :-

	
The databases running on their on-premises systems do not scale anymore to the rapid growth of their business.

	
As the business grows, the team is growing too. Both the sales and marketing teams are observing their applications are getting a lot slower and even timing out sometimes, due to the increasing number of concurrent users using the system.

	
Their marketing department wants more input on how they can best target their campaigns on social media, they are exploring the idea of leveraging influencers, but don’t know how or where to start.

	
Their sales department cannot rapidly expand work with customers distributed across three states, so they are struggling to prioritize the kind of retail customers and wholesale distributors they want to engage first.

	
Their investors love the growth of the business and are asking the CEO of Klodars Corporation about how they can expand beyond winter gear. The CEO needs to figure out their expansion strategy.

Alice, a motivated leader from their software development team, pitches to the CEO and CTO of Klodars Corporation that they need to look into the cloud and how other business are now leveraging a data lake approach to solve the challenges they are experiencing in their current approach. She also gathers data points that show the opportunties that a cloud data lake approach can present. These include:

	
The cloud can scale elastically to their growing needs, and given they pay for consumption, they don’t need to have hardware sitting around.

	
Cloud based data lakes and data warehouses can scale to support the growing number of concurrent users.

	
The cloud data lake has tools and services to process data from various sources such as website clickstream, retail analytics, social media feeds, and even the weather, so they have a better understanding of their marketing campaigns.

	
Klodars Corporation can hire data analysts and data scientists to process trends from the market to help provide valuable signals to help with their expansion strategy.

Their CEO is completely sold on this approach and wants to try out their cloud data lake solution. Now, at this point in their journey, its important for Klodars Corporation to keep their existing business running while they start experimenting with the cloud approach. Let us take a look at how different cloud architectures can bring unique strengths to Klodars Corporation while also helping meet their needs arising from rapid growth and expansion.

2.2 Fundamentals of Cloud Data Lake Architectures

Prior to deploying a cloud data lake architecture, it’s important to understand that there are four key components that create the foundation and serve as building blocks for the cloud data lake architecture. These components are:

	
The data itself

	
The data lake storage

	
The big data analytics engines that process the data, and

	
The cloud data warehouse

2.2.1 A Word on Variety of Data

We have already mentioned that data lakes support a variety of data, but what does this variety actually mean? Let us take the example of the data we talked about above, specifically the inventory and the sales data sets. Logically speaking, this data is tabular in nature - which means that it consists of rows and columns and you can represent it in a table. However, in reality, how this tabular data is represented depends upon the source that is generating the data. Roughly speaking, there are three broad categories of data when it comes to big data processing.

	
Structured data - This refers to a set of formats where the data resides in a defined structure (rows and columns) and adheres to a predefined schema that is strictly enforced. A classic example is data that is found in relational databases such as SQL, which would look something like what we show in Figure 2-1. The data is stored in specialized custom made binary formats for the relational databases, and are optimized to store tabular data (data organized as rows and columns). These formats are propreitary and is tailor made for the specific systems. The consumers of the data, whether they are users or applications understand this structure and schema and rely on these to write their applications. Any data that does not adhere to the rules is discarded and not stored in the databases. The relational database engines also store this data in an optimized binary format that is efficient to store and process.

[image: Structured data in databases]
Figure 2-1. Structured data in databases

	
Semi-structured data - This refers to a set of formats where there is a structure present, however, it is loosely defined, and also offers flexibility to customize the structure if needed. Examples of semi structured data are JSON and XML. Figure 2-2 below shows a representation of semi-structured data of the sales item ID in three semi-structured formats. The power of these semi-structured data formats lie in their flexibility. Once you start designing a schema and then you figure that you need some extra data, you can go ahead and store the data with extra fields without compromising any violation of structure. The existing engines that read the data will also continue to work without disruption, and the new engines can incorporate the new fields. Similarly, when different sources are sending similar data (E.g. PoS systems, website telemetry both can send sales information), you can take advantage of the flexible schema to support multiple sources.

[image: Semi-structured data]
Figure 2-2. Semi-structured data

	
Unstructured data - This refers to a set of formats that have no restrictions on how data is stored, this could be as simple as a freeform note like a comment on social media feed, or it could be complex data such as an MPEG4 video or a PDF document. Unstructured data is probably the toughest of the formats to process, because they require custom written parsers that can understand and extract the right information out of the data. At the same time, they are one of the easiest of the formats to store in a general purpose object storage because they have no restrictions whatsoever. For instance, think of a picture in a social media feed where the seller can tag an item and once somebody purchases the data, they add another tag saying its sold. The processing engine needs to process the image to understand what item was sold, and then the labels to undersand what the price was and who bought it. While this is not impossible, it is high effort to understand the data and also, the quality is low because it relies on human tagging. However, this expands the horizons of flexibility into various avenues that can be used to make the sales. For example, in Figure 2-3, you could write an engine to process pictures in social media to understand which realtor sold houses in a given area for what price.

[image: Unstructureddata]
Figure 2-3. Unstructured data

2.2.2 Cloud Data Lake Storage

The very simple definition of cloud data lake storage is a service available as a cloud offering that can serve as a central repository for all kinds of data (structured, unstructured, and semi-structured), and can support data and transactions at a large scale. When I say large scale, think of a storage system that supports storing hundreds of petabytes (PBs) of data and several hundred thousand transactions per second, and can keep elastically scaling as both data and transactions continue to grow. In most public cloud offerings, the data lake storage is available as a PaaS offering, also called as an object storage service.The data lake storage services offer rich data management capabilities such as tiered storage (different tiers have different costs associated with them, and you can move rarely used data to a lower cost tier), high availability and disaster recovery with various degress of replication, and rich security models that allow the administrator to control access for various consumers. Lets take a look at some of the most popular cloud data lake storage offerings.

	
Amazon S3 (Simple Storage Service) - S3 offered by AWS (Amazon Web Services) is a large scale object storage service and is recommended as the storage solution for building your data lake architecture on Amazon Web Services. The entity stored in S3 (structured, unstructured data sets) is referred to as an object, and objects are organized into containers that are called buckets. S3 also enables the users to organize their objects by grouping them together using a common prefix (think of this as a virtual directory). Administrators can control access to S3 by applying access policies at either the bucket or prefix levels. In addition, data operators can also add tags, which are essentially a key value pair, to objects. These serve as labels or hashtags that lets you retrive objects by specifying the tags. In addition, Amazon S3 also offers rich data management features to manage the cost of the data and also offer increased security guarantees. To learn more about S3, you can visit their document page.

	
Azure Data Lake Storage (ADLS) - ADLS offered by Microsoft is an Azure Storage offering that offers a native filesystem with a hierarchical namespace on their general purpose object storage offering (Azure Storage Blob). According to the ADLS product website, ADLS is a single storage platform for ingestion, processing, and visualization that supports the most common analytics frameworks. You can provision a storage account, where you will specify Yes to “Enable Hierarchical Namespace” to create an ADLS account. ADLS offers a unit of organization called containers, and also a native file system with directories and files to organize the data. You can visit their document page to learn more about ADLS.

	
Google Cloud Storage (GCS) - GCS is offered by Google Cloud Platform (GCP) as the object storage service, and is recommended as the data lake storage solution. Similar to S3, data in Google is referred to as objects, and is organized in buckets. You can learn more about GCS in their document page.

Cloud data storage services include capabilties to load data from a wide variety of sources, including on-premises storage solutions and integrate with real time data ingestion services that connect to sources such as IoT sensors. They also integrate with the on-premise systems and services that support legacy applications. In addition, a plethora of data processing engines can process on the data stored in the data lake storage services. These data processing engines fall into many categories:

	
PaaS services that are part of their public cloud offerings (E.g. EMR by AWS, HDInsight and Azure Synapse Analytics by Azure, and DataProc by GCP)

	
PaaS services developed by other software companies such as Databricks, Dremio, Talend, Informatica, and Cloudera

	
SaaS services such as PowerBI, Tableau, and Looker.

	
You can also provision IaaS services such as VMs and run your own distro of software such as Apache Spark to query the data lakes.

One important point to note is that the compute and storage are disaggregated in the data lake architecture, and you can run one or more of the processing engines mentioned above on data in the data lake without having to move the data. Some of the popular data warehouses are Amazon Redshift, Google BigQuery, and Snowflake. The data warehouses offer both compute and storage in the same offering, and while the data warehouses in some cases support querying data that resides in a separate data lake storage, the most common use case is to use the most optimized path - query the data that resides in the data warehouse in a propreitary data format. A recent trend here is that data warehouses have started supporting open data formats such as Apache Iceberg, which is a very promising trend that directionally supports the Data Lakehouse architecture, which we will cover in more detail in this chapter as well.

2.2.3 Big Data Analytics Engines

At this point, we understand that big data analytics is the processing of structured, semi-structured, and unstructured data. Now lets journey into what this processing actually looks like. In the sections where we talk about the various cloud data architectures, when we talk about big data analytics on the data lake, the processing that happens is most likely one of the following described below, or a derivative of that.

2.2.3.1 MapReduce

The origins of big data and analytics processing lies in the advent of something that changed how we work - search engines. Search engines largely work by crawling text data from all sources on the internet, and building a humongous index of keywords that mapped to web pages. When the user searches for a key word, they then rank the data from this index and provide an ordered set of results back to the user. While the design of search engines by itself warrants a book and that is not something we will address here in detail, they demonstrated that there was need to process large volumes of data that can be reduced to a searchable index, giving birth to a programming model called MapReduce.

MapReduce is essentially a programming model and associated implementation that takes an input set of key/value pairs and produces an output set of key/value pairs. Sounds simple, doesn’t it? The issue here is scale, doing this transformation across a set of data that had millions and millions of records. As Jeffrey Dean and Sanjay Ghemawat describe in their paper, MapReduce: Simplified Data Processing on Large Clusters, MapReduce has 2 phases as the name suggests. In the map phase, data is organized by a key with a logic to group similar values together, resulting in an intermediate key value pair. Reduce phase processes these similar data sets to produce a filtered set of results, again as a key value pair.

As an example, let us take Twitter data, where the goal is to understand how many mentions there are for each user in a large set of feeds (a smaller sample illustrated in Figure 2-4). There are a set of compute units at work here - multiple worker units that operate on a data set assigned them, and a main orchestrator unit that does the coordination between the worker units. The compute units could be VMs, processes, or threads depending on the implementation. The large set of Twitter data feeds are broken down into smaller sets (in this example, 1 feed) and assigned to worker units, where they are mapping the mentions to counts, and generating a set of output key value pairs as illustrated in Figure 2-4. These data values are then sent to another set of worker units to do a reduce to generate the count of mentions per user. The primary advantage of this is that this programming model lets the large data set be effectively distributed across a large set of worker units with a predictable distribution mechanism.

[image: MapReduce Twitter Feeds]
Figure 2-4. MapReduce

2.2.3.2 Apache Hadoop

Apache, an open source organization, had an open source web search project, called Apache Nutch, which is used even today. In 2005, as part of Apache Nutch, Doug Cutting and Mike Cafarella created Apache Hadoop, which is a set of tools, libraries, and components for distributed processing of large data sets, that uses MapReduce as its core processing logic. Apache Hadoop consists of four primary components :-

	
Hadoop Common Module - a common set of libraries that support other modules.

	
Hadoop Distributed File System (HDFS) - a distributed storage system for large data sets

	
Hadoop MapReduce - a programming model and implementation for large scale processing of large data sets.

	
Hadoop YARN - a framework for job scheduling and resource management to distribute work and data across a cluster of machines.

Hadoop laid a strong foundation and birthed various other open source projects such as Apache Hive, Apache Pig, Apache Storm, and Apache Mahout to build more frameworks and programming models for distributed big data processing.A detailed index of all the Hadoop projects and tools are provided in this Hadoop Ecosystem Table web page, and a sample of this can be found in Figure 2-5.

[image: Apache Hadoop Toolsets]
Figure 2-5. Hadoop framework and ecosystem

Hadoop commoditized the big data processing ecosystem and vendors such as Hortonworks and Cloudera sold their distributions of Hadoop that customers can install on-premises or on the cloud. Public cloud providers also offer their packaged versions of Hadoop-based processing as PaaS services, such as Elastic MapReduce (EMR) by AWS and HDInsight by Microsoft Azure. With all this different Hadoop flavored offerings, one might wonder what to pick. While there are many reasons such as familiarity with the vendor, sales and marketing relationships, etc, from a technical perspective, there are a few key factors that contribute to what a customer picks:

	
Customers who run on a hybrid environment, where they have both on-premises and cloud deployments, or run on a multi-cloud environment pick Hadoop offerings provided by Independent Software Vendors (ISVs) such as Cloudera or Hortonworks so their implementation works on all environments.

	
Customers who prefer to have a tight integration of their big data platform with other native cloud services pick the offerings that are offered by the public cloud provider, such as AWS, Azure, and GCP.

	
Customers who are willing to invest in a strong technical team and want to save on vendor costs fork a flavor of Hadoop from Apache and build their own Hadoop platform.

This largely applies to other open source offerings such as Apache Spark as well.

It would be fair to say that Hadoop laid the foundations of a data lake architecture by providing a comprehensive set of tools for processing big data, including MapReduce for batch process, Apache Storm for real time processing, and Apache Hive for querying data over a Hadoop architecture.

2.2.3.2 Apache Spark

Apache Spark was incubated in University of California, Berkeley, at the AMPLab, which was focused on big data analytics. The goal of Apache Spark is to provide a flexible programming model that has the fault tolerance and scale of MapReduce for distributed data processing, while also supporting a wider variety of applications such as machine learning that relied on iterative processing of data, and real time processing, that offers instant insights.

Similar to Hadoop, Spark also uses an underlying storage layer, however, there is no mandate that this needs to be an HDFS storage, cloud object storage services, or even local storage is supported by Spark. Similarly, Spark also uses a cluster manager, and again, there are various options supported, such as YARN (birthed from Hadoop) and Apache Mesos, that was also incubated at University of California at Berkeley. Recently, given the rising popularity of Kubernetes and containers (simply defined, think of this as a ready to run software package, that has your code, application runtimes, and any other component required to run your code) in cloud native development, Spark on Kubernetes is gaining wide adoption as well. They key differentiator for Spark is the Spark core engine, that is built upon a foundational abstraction of datasets as Resilient Distributed Datasets (RDDs) that can be stored and processed in memory without having to store the intermediate data sets to a persistent storage, while maintaing fault tolerance. This model greatly increased the performance of Spark based applications, and offered a unified programming model for batch processing, interactive queries (Spark SQL), data science (ML Lib), real-time processing (Spark Streaming), and the recently introduced graph processing (GraphX). The ease of use and the increasing mindshare of Apache Spark helped commoditize big data processing across various industries. You can either use Spark as its own distribution, or leverage Spark offered by public cloud providers (such as Amazon Elastic MapReduce (EMR), Azure Synapse Analytics, Google Cloud DataProc) or by software providers such as Databricks, which was a company started by the inventors of Spark.

[image: Apache Spark]
Figure 2-6. Apache Spark

Figure 2-6 demonstrates the various technical components of Spark and how they layer on top of each other to provide a consistent programming model across machine learning, real time, and batch streaming.

2.2.4 Cloud Data Warehouses

A cloud data warehouse is an enterprise data warehouse offered as a managed service (PaaS service) on public clouds with optimized integrations for data ingestion, analytics processing, and BI analytics. BI analytics refers to tools that support visualization and interactive querying capabilities. Cloud data warehouse offerings are designed to elastically scale with the customer’s growing needs by abstracting the infrastructure away from the user, and they also promise faster performance and lower cost of ownership than traditional on-premise data warehouses. Lets take a look at some of the most popular cloud data warehouse offerings.

	
Amazon RedShift - Amazon RedShift was the first popular cloud data warehouse offering on the public cloud. You can provision a Redshift cluster, where they can specify the number of nodes of compute that they want. The cluster can support data at petabyte scale according to their product documentation. You can use PostgreSQL, a popular query language, to query data in your RedShift cluster. To learn more about Redshift, you can visit their product page. Redshift also announced the capability to share data across different RedShift clusters without copying data to promote sharing of data and insights.

	
Google BigQuery - Unlike Redshift where you provision your data warehouse as a cluster, Google BigQuery is a completely serverless highly scalable data warehouse solution that abstracts the details of cluster management completely away from the customer. In addition, BigQuery also has features such as BigQuery Omni that allows you to use the BigQuery compute service across other clouds such as AWS and Azure. To learn more about BigQuery, you can visit their product page.

	
Azure Synapse Analytics - Azure Synapse Analytics is offered as a unified analytics platform on Microsoft Azure. Similar to Redshift, you can provision a data warehouse cluster and specify the number of nodes you want for your scenarios. You can also provision a Spark cluster for analytics scenarios in the same experience. In addition, you can also run serverless queries in SQL or Spark. With serverless queries, you can simply submit a job without provisioning a cluster, similar to BigQuery. Azure Synapse Analytics also offers integrations in the same experience with other Azure services such as Azure Machine Learning, Azure Cognitive Services, and Power BI. To learn more about Azure Synapse Analytics, you can visit their product page.

	
Snowflake Data Platform - Snowflake data warehouse is a managed data warehouse solution that is available on all public clouds, AWS, Amazon, and GCP. Designed as a truly scalable solution, Snowflake is offered as a single service, while the implementation runs on a disaggregated compute and storage architecture making it highly scalable in the compute or storage dimension without compounding the cost. This disaggregation also lets you spin up different virtual warehouses that can access the same data, offering isolation between your different query scenarios. Snowflake also offers data sharing at a table, and object level to other Snowflake accounts. To read more about Snowflake, visit their product page.

In this section, I presented a high level overview of the concepts of the four components of a cloud data lake architecture - the data, the data lake storage, the compute engines, and the cloud data warehouse. I also provided an overview of the commonly used services and technologies, along with links for you to explore deeper. In the next section, I will go over cloud data lake architectures, that represent different ways in which these building blocks could be assembled in a solution. As we are reading this book now, there are rapid innovations in both the data lake and the data warehouse offerings to fuzz the boundaries, we will address more about this in the Data Lakehouse architecture pattern.

Data in the cloud data lake architecture can serve many purposes. However, there are two major sceanrios that are common consumption patterns in an organization:

	
Business intelligence - Data is used by Business Intelligence analysts (BI analysts) to create dashboards or work on interactive queries to answer key business problems that are well defined and work on highly structured data.

	
Data science and machine learning - Data is used by data scientists and machine learning engineers to do exploratory analysis and experimental work to answer complex problems that don’t have a defined ruleset and require multiple iterations to get better. The data involved here assumes no structure.

2.3 Modern Data Warehouse Architecture

In a modern data warehouse architecture, both the data lake and the data warehouse peacefully coexist, each serving a distinct purpose. The data lake serves as a low cost storage for a large amount of data and also supports exploratory scenarios such as data science and machine learning. The data warehouse stores high value data and is used to power dashboards used by the business and also is used for business intelligence users to query the highly structured data to gain insights about the business.

2.3.1 Reference Architecture

Data is first ingested into a data lake from various sources - on-premises databases, social media feeds, etc. This data is then transformed using big data analytics frameworks such as Hadoop and Spark, where multiple datasets can also be aggregated and filtered to generate high value structured data. This data is then loaded into a cloud data warehouse to power dashboards, as well as interactive dashboards for BI analysts using their very familiar tool of choice - SQL. In addition, the data lake also empowers a whole new set of scenarios that involve exploratory analysis by data scientists, and also machine learning models that can be fed back into their applications. A simplified representation of the modern data warehouse architecture is provided in Figure 2-7.

[image: Modern Data Warehouse]
Figure 2-7. Modern Data Warehouse Architecture

There is now a question you would naturally ask here - what is the difference between using a cloud data warehouse directly, why is a data lake necessary in between? Specially, if I only have structured data, do I even need a data lake? If I can say so myself, these are great questions. There are a few reasons why you would need a data lake in this architecture.

	
Data lakes cost a lot lesser than a data warehouse, and can act as your long term repository of data.

	
Data lakes support a variety of modern tools and frameworks around data science and machine learning, that you can enable completely new scenarios.

	
Data lakes let you future-proof your design to scale to your growing needs. As an example, you might start off your initial data lake architecture to load data from your on-premises systems on a nightly basis and publish reports or dashboards for your business intelligence users, however, the same architecture is extensible to support real time data ingestion without having to rearchitect your solution.

	
Data of all forms and structures are largely becoming relevant to organizations. Even if you are focused on structured data today, as you saw in the example above, you might find value in all kinds of data such as weather, social media feeds, etc.

In case you didn’t observe this already, there is a difference in usage pattern that you need to remember - when you load data into a data warehouse, you would use an Extract, Transform, and Load (ETL) pattern - where you extract data from the source, and you need to transform the data to the format respected by the data warehouse before loading it into the data warehouse. In a data lake, you would follow an Extract, Load, and Transform (ELT) pattern - where you extract data from the source, load into the data lake as is, and then do your transformations.

2.3.2 Sample Use case for a Modern Data Warehouse Architecture

Let us revisit our model company, Klodars Corporation. They will leverage the modern data warehouse architecture, and will start loading data from their operational data bases into the data lake. Instead of continuing to store their backups on their on-premises systems, they can now create daily backups and store upto 1 year’s worth of backup (or more if they wanted to) in their data lake. They can do this while the operational databases on their servers continue to serve their existing applications thereby ensuring the continuity of their operations. In addition, they will also plan to load data from social media feeds that relate to rain gear and winter gear to analyze patterns. This architecture will also enable them to load other data such as their clickstream in real time by using real time ingestion techniques such as Apache Kafka into the data lake storage.

With the data set up and ready to go, the data engineering team will use tools such as Apache Spark to process the structured data from their database dumps, and from the website clickstream to generate high value data that shows the shopping trends and the sales trends over time. They will also process the social media feeds and extract data that pertains to rain gear and winter gear, and any other associated purchases the same feeds indicate. This architecture will enable the data engineering team to generate high value data on a scheduled basis (E.g. daily) on sales trends, inventory and supply, website browsing trends, and social media trends around rain and winter gear. This data will then be loaded into their data warehouse and refreshed on a periodic basis (E.g. daily).

The data stored in the data warehouse is very high value structured data. Their business analysts would use this high value data to build dashboards that show the sales trends quarter over quarter, or month over month, so the sales teams can understand the trend of their sales, and set projections for the upcoming time period. The business analysts can also slice and dice the data by factors such as region, salespeople coverage, partners, and other attributes, so the leadership team can understand the growth drivers and make data informed decisions on their expansion strategy. The marketing team consumes the social media and website browsing trends by running interactive queries on the data warehouse to understand the next set of targeted marketing campaigns to develop. They can also understand the impact of their marketing campaigns by correlating the campaigns with the sales results.

The impact doesn’t stop there. Klodars also now has formed a data science team who can build on the existing data sets, such as sales, social media trends, and website browsing trends to find interesting correlations and effects of influencers that are not straightforward to process with manual analysis. They can also bring additional data sets to the data lake, such as weather data, data about winter activities such as skiing, etc, to surface interesting insights to their leadership team. This data can be fed back to the data engineering team to be loaded into the warehouse to be consumed by leadership, marketing, and sales teams.

Figure 2-8 provides a representation of the modern data warehouse architecture at Klodars Corporation.

[image: Modern Data Warehouse Klo]
Figure 2-8. How Klodars Corporation Leverages the Modern Data Warehouse Architecture

With the data lake strategy relying on a modern data warehouse architecture, Klodars Corporation was able to scale to the growing customer needs by prioritizing the right set of focus areas informed by data. Their modern data warehouse strategy enabled them to simultaneously work on innovations while also keeping their existing business running. The phased movement of their existing applications to the modernized cloud architectures gave their team time to thoughtful design and implement this transition.

2.3.3 Benefits and Challenges of Modern Data Warehouse Architecture

The modern data warehouse has an important benefit of helping the business analysts leverage familiar Business Intelligence tool sets (SQL based) for consumption, while also enabling more modern scenarios around data science and machine learning that were originally not possible in their on-premises implementation of a data warehouse. This is primarily accomplished with a data lake, that serves as a no-silos data store supporting advanced data science and machine learning scenarios with cloud native services, while retaining the familiar data warehouse like SQL based interface for business intelligence users. In addition, the data administrators can isolate the access of the data to the data warehouse for the BI teams using familar access control methods of the data warehouse. Their applications running on-premises can also be ported to the cloud over time to completely eliminate the need to maintain two sets of infrastructures. Further, the business is overall able to lower their costs by backing up the operational data into a data lake for a longer time period.

There are also a few challenges with this approach. The data engineers and administrators need to still maintain two sets of infrastructures - a data lake and data warehouse. The flexibility of storing all kinds of data in a data lake also poses a challenge - managing data in the data lake and assuming guarantees of data quality is a huge challenge that data engineers and data administrators now have to solve. They did not have this problem before. The data lake also runs the risk of growing into a data swamp if the data is not managed properly making your insights be hidden like a needle in a haystack. If BI users or business decision makers need new data sets, they need to rely upon the data engineers to process this data and load it into the warehouse, introducing a critical path. Further, if there is an interesting slice of data in the warehouse that the data scientists want to include for exploratory analysis, they need to load it back into the data lake, in a different data format, as well as a different data store, increasing the complexity of sharing.

2.4 Data Lakehouse Architecture

Data Lakehouse, a term popularized by Databricks, is probably the biggest buzzword in the industry. According to a blog by Malav Parekh, a research analyst with 451 Research, Amazon first used the term lake house, with a whitespace in between lake and house when they released Redshift Spectrum. However, the term gained momentum in the industry in January, 2020 when a Databricks blog called data lakehouse as a new, open architecture that combines the best elements of data lakes and data warehouses.

I distinctly remember the keynote at the Data and AI Summit in 2020 where Ali Ghodsi announced the data lakehouse as a new paradigm along with the introduction of Delta Lake. There were multiple sessions on Delta Lake with lines for those sessions curving along the corridors of the conference hall. The growing popularity and ecosystem of the data lakehouse architecture stands testimony to this claim of a new paradigm.

Data Lakehouse architecture can be explained in a simple fashion - a single platform that combines two functionalities:

	
Data lake for analytics processing, data science and ML scenarios

	
Data warehouse for SQL interactive queries and BI scenarios

In other words, it refers to the ability to run SQL and BI scenarios on a data lake. This is a very attractive proposition because of two reasons :-

	
Data lakes are much cheaper than data warehouses, making the lake house more cost effective.

	
There is no data movement or data copy required to move data from the data lake to the data warehouse.

	
Datasets can be freely shared between data scientists, and BI teams by eliminating the bifurcated experiences and platforms.

2.4.1 Reference architecture for Data Lakehouse

A simplified representation of the data lake architecture is provided in Figure 2-9. Note that you now run all scenarios - BI as well as data science, on a single platform, and you don’t have a cloud data warehouse.

[image: Data Lakehouse]
Figure 2-9. Data lakehouse architecture

Well, if you had the option to run your BI scenarios on the data lake already, why didn’t we do this in the first place? The simple answer is because data lakes by themselves are not really structured to support BI queries, and there are various technologies that have made the lakehouse a reality. Remember data warehouses rely on highly structured data for faster query processing and supporting complex queries involving joins and aggregates, whereas data lakes are highly scalable object storage services, which store and transact on data making no assumptions on the structure.

Let us look at this in closer detail. Data warehouses offer the following advantages :-

	
Schema definition and enforcement - Schema is essentially a definition of the structure and type of the data in your database. Data warehouses operate on highly structured data, which by definition means that you need to define and enforce this structure. E.g. you can define that the age field in a table needs to be an integer, and if you attempt to write a non-integer value, there would be an error.

	
ACID-compliant transactions - Data warehouses ensure that the transactions are ACID compliant, a quality that is important to guarantee the integrity of high value data that is typically stored in a warehouse. This integrity is very important because this data powers queries and dashboards that are used for critical operations that impact the revenue and operations of the company. For example, sales projections dashboards set revenue targets for the organization. ACID refers to four key properties of a transaction :-

	
Atomicity ensures that when a transaction is completed, there is a guarantee of integrity that the whole transaction was successful as a unit. E.g. if you request the details of a customer in your query and ask for name, age, location, and earning potential, you get all the details, and not just the age and location alone for example.

	
Consistency ensures that all the appropriate data validation rules are followed, and only data that is permitted is written. If the validation is not successful, the database is rolled back to its previous state before the transaction. E.g. if you want to add a new customer record to the database, and you have the right name and age, but an invalid location, the whole transaction fails.

	
Isolation ensures that when concurrent transactions are processd, one does not affect the other. E.g. if two users try to add the same customer to the database, the first one succeeds, the second user would get an error since the customer is already present.

	
Durability ensures that after a successful transaction, there is a guarantee that the data is available. E.g. when you successfully add customers to a database, even when there is a power failure or hardware outage, you can be rest assured that the customer data is intact.

	
Optimized for SQL - Most of the Business Intelligence and Data Analyst tooling and ecosystem is optimized around SQL, and data warehouses offer a query engine that is optimized for SQL supporting these scenarios.

Data lakes offer the following advantages :-

	
Ability to store and process unstructured data - Most of the emerging scenarios around advanced analytics, data science, and machine learning rely on processing unstructured data. Data lakes make no assumption about the structure or schema of the data.

	
Low cost - Data lakes are highly optimized storage systems that offer a low cost of ownership to the user and lets you store any amount of data that you want without worrying about the rising expenses.

	
Rich data management - Data lakes offer a slew of capabilities to help manage the data as we saw in the earlier sections. They offer tiered storage, data replication, and data sharing capabilities.

While unifying the data lake and the data warehouse into one architecture is attractive, the advantages of data lakes are the shortcomings of the data warehouse, and vice versa, and this has been hindering the lakehouse architecture for a long time.

However, with the growing adoption of data lakes across organizations, and the proliferation of scenarios running on top of the data lakes, there has been a healthy growth of mindshare that has contributed to key technologies that make the data lakehouse paradigm a reality today. Some of these technologies include Delta Lake that originated in Databricks, Apache Iceberg that originated in Netflix, and Apache Hudi that originated in Uber.

While these technologies themselves are different and come at the problem from different perspectives, they have one thing in common - they have defined the data that gets stored in the data lake. This data format lays the foundation for providing the guarantees of data warehouse (ACID-ish compliance, metadata handling, schema enforcement and evolution) on the data lake.

They accomplish this with three key components:

	
Open file formats.

	
A metadata layer that defines the data

	
Compute engines that understands these file formats and metadata layers

With these components, they take unstructured data that is stored as objects or files in a data lake and provide a new logical shape to them as a table. Table refers to data that is organized in logical rows and columns, as shown in Figure 2-10.

[image: Lakehouse formats]
Figure 2-10. Open data technologies and lakehouse architecture

Note

To enable a data lakehouse architecture, you need to ensure you leverage one of the open data technologies such as Apache Iceberg or Delta Lake or Apache Hudi, and a compute framework that understands and respects these formats. Cloud providers are continuing to work on toolsets and services that simplify the architecture and operationalization of the data lakehouse. Specifically, an example worth calling out is AWS services that make a data lakehouse implementation easier by leveraging AWS Glue for data integration and orchestration, AWS S3 as the cloud data lake storage, and Amazon Athena to query data from AWS S3 using standard SQL that is familiar to business intelligence users.

2.4.1.1 Data formats

We have already established that the data format is crucial to the data lakehouse architecture, why is that the case? As we saw earlier, data in a data warehouse has strong guarantees around integrity, to enable having similar guarantees for the data in a data lake, it is important to keep the data bound to a few key rules. As an analogy, a child needs to play by certain rules in a classroom to provide a conducive learning environment, and the same child can run amok and explore at will at a park. Think of what you need to do if you were to set up a classroom in a park, this is what the data format attempts to, ensure that the data is bounded by certain rules in an unstructured environment, which in this case is the data lake storage.

The data format is key to a lakehouse architecture because of the following reasons :-

	
The data stored needs to adhere to a schema, which is defined by the metadata (data that describes that tabular structure of the dataset). Schema here refers to a defined representation or description of the data.

	
The data stored is optimized for queries, specially to support the BI usecases that largely use SQL-like queries. This optimization is crucial to support query performance that is comparable to a data warehouse.

As it turns out, solving for the above also has a really nice benefit, which is that this data lends itself to be highly compressible, resulting in both faster performance and lower cost, which means you could have your cake, and eat it too.

The data formats used by Delta Lake, Apache Iceberg, and Apache Hudi derive from a fundamental data format, Apache Parquet, which is a columnar data storage format used by the Apache Hadoop ecosystem. Lets do a small detour and understand what columnar format means. Remember, we are talking about tabular data, where data is organized in rows and columns, as shown in the picture below. When it comes to how this data is stored in the data lake, the intuitive thinking is you store one record, i.e. one row together. In columnar formats, the data is stored in a column oriented fashion, where data with similar values for a column are stored together. Its this bundling of similar data together that offers columnar formats such as Apache Parquet to be highly compressible. Figure 2-11 provides a representation of the same data stored in a row oriented as well as a column oriented structure.

[image: Row vs columnar format]
Figure 2-11. Row-oriented vs Column-oriented data formats

We will address Apache Parquet in more detail in Chapter 4. Open data technologies use Apache Parquet as their underlying data format so they can leverage the optimizations for Apache Parquet to optimize for queries.

2.4.1.2 Metadata

Metadata simply refers to data about the data. E.g. If you have a table with 1000 rows stored as chunks of 100 rows in each dataset, there is metadata associated with each chunk that describes the data stored, e.g. this chunk has rows 101-200, containing values in the last name column starting with A-B. In addition, there is also metadata stored at the table level that has pointers to the different chunks.

This metadata is not very relevant for the end user, but is very relevant to compute engines that operate on data. These compute engines read the metadata to then go fetch the relevant data. Technologies such as Apache Iceberg, Delta Lake, and Apache Hudi have their own versions of metadata to determine how data is stored and organized across the different Parquet files, what data is getting updated and when so they can offer data integrity and consistency, and handshake with the compute engines to optimize for specific scenarios.

While all are suitable options, each was designed with a specific purpose in mind, and you’ll want to consider this as you design your architecture. Delta lake by Databricks is optimized for running highly performant SQL queries on the data lake, they leverage their metadata to do intelligent data skipping to read only the data that is required to serve the queries. Apache Hudi was open-sourced by Uber, and was primarily designed to support incremental updates while supporting fast query performance with columnar formats. Apache Iceberg was open sourced by Netflix, primarily to support refreshing data sets (E.g. support updates to existing data on an append only storage system such as S3) in addition to reads by a plethora of compute engines, such as Apache Spark, Trino (PrestoSQL), Apache Hive, and Apache Flink to varying degress.

2.4.1.3 Compute engines

Unlike the data warehouses where compute and storage are optimized and offered together as one service, running a data lakehouse requires using the right compute engines to leverage the optimizations offered by the data formats and metadata that is used to optimize the data storage. In other words, data is optimized to be written as a table in storage, and you need a compute engine to understand and read the table for effectively querying the data.

For example, in the case of Delta Lake, the compute component is a Delta Engine that is optimized for operating on Delta tables, and further also enhances performance with caching for faster performance, and Bloom-filter based index for effective data skipping. We will discuss the engines in deeper detail in Chapter 6.

2.4.2 Sample Use case for Data Lakehouse Architecture

Klodars Corporation will leverage the data lake by loading data from their operational data bases into the data lake storage, similar to what we saw in the modern data warehouse architecture. Let us take a closer look at how this architecture impacts the business.

The data engineering team will now use tools such as Apache Spark to process the structured data from their database dumps, and from the website clickstream to generate high value data that shows the shopping trends and the sales trends over time. They will also proces the social media feeds and extract data that pertains to rain gear and winter gear, and any other associated purchases the same feeds indicate.

Let us now move on to how this data extracted will be processed. The data engineering team would generate high value data on a scheduled basis (E.g. daily) on sales trends, inventory and supply, website browsing trends, and social media trends around rain and winter gear. Now, instead of loading data into the warehouse, the business analysts can start querying this data using their familiar tool of choice based on SQL, as well as modern querying tools such as Presto, without having to move the data. Similar to the modern datawarehouse pattern, the data scientists can bring their own data sets such as the weather data, and also explore data that is already in the data lake.

The lakehouse provides a key advantage over the modern data warehouse by eliminating the need to have two places to store the same data. Let us say that the data science team leveraged their new datasets, e.g. the weather data and built a new dataset that correlates their sales with the weather. The business analysts have this data ready to go for their deeper analysis since everyone is using the same data store, and possibly the same data formats. Similarly, if the business analysis generated a specific filtered dataset, the data scientists can start using this for their analysis.

Take a moment to think about what this means/what the impact of this is. This completely expands and explodes the scenarios promoting the cross pollination of insights between the different classes of consumers of the data platform. A shared platform with no silos implies that the data generated by both the BI analysts and the data scientists is available for each other to further innovate on, thereby increasing the value of data multi-fold for Klodars Corporation. A representation of the data lakehouse architecture at Klodars Corporation is presented in Figure 2-12.

[image: Data Lakehouse Klo]
Figure 2-12. How Klodars Corporation leverages the data lakehouse architecture

2.4.3 Benefits and Challenges of Data Lakehouse Architecture

Data lakehouses offer the key benefit of being able to run performant business intelligence/SQL based scenarios directly on the data lake, right alongside the other exploratory data science/ML scenarios. As we saw in the use case above, this also highly promotes sharing across the various segments of users of the data platform, giving rise to new scenarios. Further, the data lakes also end up being highly cost effective compared to data warehouses.

Having said that, there is certainly a challenge as well. As we saw in the architecture sections, constructing a data lakehouse requires careful design and architecture assembling the right data format and the compute engine to achieve the most optimized solution resulting in faster performance. Without proper planning, there are many things that could go awry which we’ll discuss in detail in Chapter 4. Data warehouses offer this optimized path right out of the box, however, are not truly open. While I have no crystal ball, given the rapid pace of innovations in the data lakehouse architecture, my bet is that this is an area that is going to see rapid innovations resulting in a simplified end to end experience as well in the coming years.

Sidebar Evolution of Cloud Data Lakehouse

With Tomer Shiran, Co-founder and CPO of Dremio Corporation

Evolution to a cloud data lakehouse architecture is in a lot of ways very similar to the evolution from a client server to a microservices architecture for cloud applications. There is a very clear value proposition of breaking the silos between data lake and data warehouse. Having said that, the tooling ecosystem and the barrier to getting started is high with the skills and engineering complexities. Very much like microservices, the data lakehouse is seeing rapid innovations in this space that this barrier is only going to get lower and lower with time. I had an interesting conversation with Tomer Shiran, the Cofounder and CPO of Dremio Corporation on this exact same topic and had a great set of takeaways that I’m sharing in this book as well.

A few decades ago, there was an evolution from a monolithic on-premises data warehouse architecture where compute and storage were colocated into a disaggregated compute and storage offering. While this made cloud data warehouses efficient with independently being able to scale compute and storage, this was still a closed system. This disaggregation solved a pain point for many and laid the foundations for the cloud data lake, that enabled an open ecosystem where multiple compute engines could transact on the same data. We used to live in a world where for the last 50 years we brought data into the compute engine. Now, in the world of cloud data lakes and lakehouses, data is its own tier, as a first class entity in the architecture, and the engines come to the data instead of the other way around. This shift introduced the notion of building a solution with components from different vendors, avoiding a lock-in situation where only one vendor could be used. The reason data lake has a market cap in the hundreds of millions of dollars today is because of the cloud. The cloud enabled the ability to rely on an infrastructure that is available in all regions that can elastically scale is making data ubiquitous and a key growth driver that organizations now heavily rely on.

The open data formats are enabling an open data architecture while maintaining the integrity of the data as an asset, which was not originally possible because of the shortcomings of cloud object storage. These open source capabilities also rallied a community around it to rely on this central repository of data. Cloud data lakehouse is essentially Cloud data warehouse 2.0.

[image: Evolution from Cloud Datawarehouses to Cloud Data Lakehouses (Courtesy of Tomer Shiran, CTO of Dremio Corporation)]
Figure 2-13. Evolution from Cloud Datawarehouses to Cloud Data Lakehouses (Courtesty of Tomer Shiran, Co-founder and CPO of Dremio Corporation)

Anytime there is a transition in architecture, it starts off as difficult and then gets easier over time. This was the case when we moved from mainframes to a client server architecture, and then to microservices. When there is a clear value proposition, the industry gets better at building tooling around it, which would make it easier for everyone to adopt. Originally, cloud data lakehouse was only done in tech companies who are on the cutting edge, and then now, when companies came along to simplify the data lakehouse architecture, enterprises are adopting the cloud data lakehouse now. While these enterprises are not on the bleeding edge of technology, they are big enough to have teams working on the right problems. We are also beginning to see data lakehouse beginning to get adopted by smaller motivated firms that have a couple of data analysts and data engineers. The barrier to getting started is lowered every day, and the vision is to make it as easy to use as a database service.

2.4.4 Data warehouses and unstructured data

If data lakes can start supporting data warehouse scenarios, can data warehouses start supporting data lake scenarios as well? The answer is a suprising Yes. As we saw in the section above, Azure Synapse Analytics offers a unified data platform for Spark, ML, and SQL alike. Google BigQuery also supports storing unstructured data, and offers Parquet support natively, it also supports querying data stored in GCS. Snowflake has recently launched support for unstructured data as well. Whether data lakes are supporting data warehouses or vice versa, our current innovations clearly indicate that the need for a unified data plaform and a data platform without silos is the way forward.

2.5 Data Mesh

In 2019, Zhamak Dehghani, Director of Emerging Technologies at Thoughtworks Inc wrote an article on data mesh that laid the foundations for the data mesh architecture that enables an organization to run the data infrastructure and operations in a decentralized fashion, thereby democratizing data and insights across the organization. Let us take a look at why this decentralized data mesh is important or relevant.

So far, we have talked about data lakes as a central repository of data and intelligence for an organization, and the technology choices. The way this has manifested in architectures is as a centrally managed infrastructure. Now let us take a look at who in the organization is responsible for designing and operationalizing the data lake. The data extraction and the processing is administered by a central team, that is typically referred to as the data platform team, the data infrastructure team, the data engineering team, and <insert your favorite variation here>. For the purposes of this section, let us refer to this team as the data platform team.

The data platform team typically owns the following roles

	
Data platform architecture - design the infrastructure for the compute and storage components that serve the needs of the organization.

	
Data management - Organize the data sets on the cloud, apply data management policies to ensure the data meets the compliance needs of the organization around data retention and data residency.

	
Data governance - Control who has access to what data, provide a catalog for consumers of the data platform can discover the data sets, and manage audits.

	
Data ingestion - this team also typically owns the ingestion of the data from various sources, on-premise systems, IoT etc, and also potentially the data preparation so its ready to be consumed. In some cases, the data platform team also tends to delegate this ingestion to the consumers of the data lake.

In other words, the data infrastructure was a monolithic unit that was managed by a central team while the rest of the organizations focused on the consumption scenarios - BI, data science, or other needs. As the scenarios based on data grows, and the organization grows, this data platform team, which is typically a lean organization can easily be buried with requests across the organization, and they also end up on the critical path for data introducing a bottleneck.

Data mesh architecture calls for a culture shift of viewing data as a product that can be shared across organizations, as opposed to data as an asset/entity that needs to be collected and processed.

What does this culture shift mean? At this point, I would like to quote a great set of principles that Zhamak Dehghani calls out in her book Data Mesh published by O’Reilly as well.

Organizationally, there is a shift in responsibility from a central data platform organization that does everything to a decentralized model where there are specialists in every business domain focusing on data needs.

Architecturally, there is a shift from a monolithic implementation of a large central data warehouse or a data lake to a distributed mesh of data lakes and data warehouses that still make a single logical representation of data by sharing insights and data between them.

Technologically, there is a shift from thinking about data as a separate entity and platform to integrated solutions that treat data and business code as a unit together.

Operationally, there is a shift from a top down directive from a central operational model on data governance to a federated model where every business domain owns and respects the policies of the organization.

Principally, there is a shift from data treated as an asset that is collected to a product that serves and delights its users.

2.5.1 Reference architecture

Data mesh relies on a distributed architecture which consists of domains. Each domain is an independent unit of data and its associated storage and compute components. When an organization contains various product units, each with their own data needs, each product team owns a domain that is operated and governed independently by the product team. The roles and responsibilities are roughly listed below:

	
The central data platform team formulates and maintains a set of blueprints/reference patterns on the architecture of the compute, storage, and data components.

	
The product teams implement these blueprints to operationalize their domains.

This allows for the product teams/domains to use the infrastructure or technology of their choice, e.g. one unit could use a lakehouse architecture on Amazon Web Services, and another unit could implement a modern data warehouse architecture on Microsoft Azure, and still share the data and insights between them. The key principle here is that the data in the domains would be shared across the organization within the compliance and governance boundaries to adhere to the principles of a no-silo logical data lake that still promotes sharing of data and insights. A representation of a data mesh architecture is presented in Figure 2-14.

[image: Data mesh]
Figure 2-14. Data mesh architecture

2.5.2 Sample Use Case for a Data Mesh Architecture

Klodars Corporation was running fine as long as its software products and teams were smaller. However, as the business grew and launched in more regions, the team and organization grew significantly, and the central data platform was no longer able to scale to the needs. Further, as Klodars Corporation acquired other companies on different technology stacks, it was very hard for them to integrate as one unit. Alice and her team on the central data platfrom decided to implement a data mesh architecture.

The central data platform team at Klodars Corporation publishes the architecture, along with deployment and configuration scripts to automate the domain setup, and they also set up data governance, compliance, and data sharing infrastructure. Klodars Corporation has sales, marketing, and customer success teams that implement their domains and sharing their insights with other organizations. The sales team finds the modern datawarehouse architecture suiting their needs given they have a prolific usage of operational databases, and the customer success team finds the lakehouse architecture better for their needs given the diversity of data sources that can benefit both their BI and data science teams. The data mesh pattern enables Klodars Corporation to give this freedom of choice to their domains while promoting the sharing of data maintaining the proposition of a unified data platform. Further, the companies Klodars Corporation acquired were able to retain their existing data lakes with minor tweaks. When Klodars Corporation wants to expand to winter gear, they can also effectively share their insights with the ski corporations they partner with to promote a better partnership extending the data mesh architecture. Klodars Corporation is growing rapidly and they want to expand their business to Europe, which has unique data residency and other compliance requirements. They can set up domains specific to EU that also respects their EU specific requirements without incurring a huge development or rearchitecture effort. Further down the road, when Klodars Corporation acquires other companies, they can onboard the data platforms of the companies they acquired as domains to their existing data mesh. A representation of the data mesh architecture at Klodars Corporation is depicted in Figure 2-15.

[image: How Klodars Corporation leverages the data mesh architecture]
Figure 2-15. How Klodars Corporation leverages the data mesh architecture

2.5.3 Challenges and Benefits of a Data Mesh Architecture

Data mesh has a unique value proposition, not just offering scale of infrastructure and scenarios, but also helping shift the organization’s culture around data, as we saw in the earlier section. Data mesh architecture offers the following benefits, as we saw from the use case in the section above.

	
Enable a self serve architecture that is extensible to the growth of the organization and the diversity of data.

	
Offer the flexibility of choice of architecture and platforms to the domains.

	
Promote data as a culture across the organization and not as the role of a small team, avoiding bottlenecks.

There is certainly challenges with this approach as well. First and foremost, this relies on individual product teams having skilled software developers available, which is not always the case. Next, a data lake architecture comes with its complexities as offered by the diversity of the data, and the ecosystem, adding a distributed layer increases this complexity. Having said that, investing in this upfront sets up an organization for success, and based on the growing popularity of the data mesh, I would make an educated guess that there is going to be rapid innovation in simplifying the deployment and management of data mesh architecture as well.

2.6 What is the right architecture for me?

We talked about three key popular cloud data lake architectures in this section,

	
Modern data warehouse architecture, which is commonly prevalent in organizations.

	
Data lakehouse architecture, which enabled BI scenarios to run on the data lake directly.

	
Data mesh architecture, which offers a decentralized approach to managing and operating the cloud data lake.

How do you know what architecture to pick? And how do you know you are right? While we all learn as we go, there are a set of fundamental principles we can apply to help get you started in the right direction.

2.6.1 Know your customers

As always with every project, start defining your goals that you know you have to meet in a prioritized order, and your customer segments. You can start with one or more of the following customer segments depending on what your organization needs.

	
Business intelligence/data analysts - Prepare data sets for them to analyze using the data lake. This can be done by running scheduled jobs that ingest data from various sources, and run data processing to generate data sets for your BI users.

	
Data scientists/exploratory analysis - Set up an infrastructure for data scientists to bring their own data sets for analysis. You can optionally manage the ingest from known sources, and make data sets available to them on the data lake.

In my experience, I have known customers who started their data lake journey for data scientists while they continued to run their data warehouses, they have no technical debt or existing compatibility and start fresh with their data lake to support the first set of scenarios for the organization. I have also known customers who have started their data lake journey by solving the needs for their BI users on the lake, in this case, their goals are to modernize their data infrastructure to support new scenarios while maintaining support for their existing pipelines, so they have some allowances to rearchitect while the priority is to keep the lights on. I have also seen some customers use the data lake as a failover plan while they continued to run their on-premise systems, in which case, their cloud architecture has to be a replica of their on-premise systems, and you would think about modernization in a later phase. You could fit into one of these buckets, or have your own scenarios. Ultimately, knowing your customers is the first step in your data lake journey - talk to your customers, your business decision makers, and understand the role of data in your organization today, and show them the potential.

2.6.2 Know your business drivers

While new technology is utterly fascinating, and this is the reason I stay doing whatever I do, we always need to remember that technology is a means to the end, and every decision needs to be grounded in a problem you are trying to solve for your organization. There are many business drivers that lead organizations to a cloud data lake, and lets take a look at few of them.

	
Cost - Moving to a cloud data lake guarantees a reduction in your total cost of ownership, and in my experience, this remains as one of the top drivers for organizations to move to the cloud data lake approach. Make sure to triangulate your decisions on architecture with the goal of how much cost reduction this would offer.

	
New scenarios - While some organizations already have an existing data infrastructure, they are motivated to move to the cloud data lake to leverage the growing ecosystem of modern technologies such as machine learning or real time analytics to differentiate their business and their product. If this is your motivation, you are leaning towards delivering value with these new scenarios, and should define the goals appropriately - are you going to increase the adoption with new marketing campaigns, or deliver value with intelligent products? Again measure your technology choices against these goals.

	
Time - While organizations move to the cloud motivated by costs, modern scenarios, and other drivers, time sometimes serves as a forcing function dictating the technology and architecture choices. I have seen customers set a roadmap to move to the cloud while support runs out on their on-premises hardware or software licenses, then your technology/architecture choices are dictated by the time available.

2.6.3 Consider your growth and future scenarios

While your customer requirements and business drivers define the prioritization of your technology and architecture decisions, you need to ensure that the design you pick does not paint you into a corner. E.g. if your data lake infrastructure is motivated by requirements from the marketing department, where they need to run personalized campaigns and understand your customer segments better, you will design the first version of your data lake architecture to meet these needs - i.e. ensure you focus on ingesting data from your customer systems, and from social media feeds, and generate data sets that can be used by business analysts to pick the high priority segments they want to customize their campaigns for. However, your design should be thoughtful to expect more scenarios and more customers when this first scenario is successful. I have worked with customers who always assumed that the data engineering team would be the sole teams having access to data in the data lake, and not implement the right set of security and access controls only to find the scenarios growing rapidly and everyone having access to everything and causing accidental data deletes. So even if you have one customer, think about how you would design a system having a multitude of users - focusing on data organization, security, and governance. We will focus on these in detail in Chapter 3.

2.6.4 Design considerations

When I talk to customers about their data lake solution, I am often asked to recommend the cheapest approach or the fastest approach, and my answer is always “It depends…” with a smile. Given the flexibility and the diversity of the cloud data lake solutions and ecosystem of software and platforms, the right fit and the right approach is almost like planning the budget to run your house. While we could make blanket statements such as “Costco has great prices!”, the less understood subtext is “… and it relies on you to ensure that you don’t waste the items you buy in bulk.” Cloud data lakes offer flexibility and lower cost, however, they rely on the data platform team to ensure its run in an optimized fashion. I have attempted to provide an assessment of these architectures against a few predictable dimensions, so you can use it as a starting point to determine the right fit for you.

Table 2-1. Comparison of architectures

	Architecture
	Total cost of solution
	Flexibility of scenarios
	Complexity of development
	Maturity of ecosystem
	Organizational maturity required

	Cloud data warehouse

	High - given cloud data warehouses rely on proprietary data formats and offer an end to end solution together, the cost is high

	Low - Cloud data warehouses are optimized for BI/SQL based scenarios, there is some support for data science/exploratory scenarios which is restrictive due to format constraints

	Low - there is less moving parts and you can get started almost immediately with an end to end solution

	High - for SQL/BI scenarios, Low - for other scenarios

	Low - the tools and ecosystem are largely well understood and ready to be consumed by organizations of any shape/size.

	Modern data warehouse

	Medium - the data preparation and historical data can be moved to the data lake at lower cost, still need a cloud warehouse which is expensive

	Medium - diverse ecosystem of tools nad more exploratory scenarios supported in the data lake, correlating data in the warehouse and data lake needs data copies

	Medium - the data engineering team needs to ensure that the data lake design is efficient and scalable, plenty of guidance and considerations available, including this book

	Medium - the data preparation and data engineering ecosystem, such as Spark/Hadoop has a higher maturity, tuning for performance and scale needed, High - for consumption via data warehouse

	Medium - the data platform team needs to be skilled up to understand the needs of the organization and make the right design choices at the least to support the needs of the organization

	Data lakehouse

	Low - the data lake storage acts as the unified repository with no data movement required, compute engines are largely stateless and can be spun up and down on demand

	High - flexibility of running more scenarios with a diverse ecosystem enabling more exploratory analysis such as data science, and ease of sharing of data between BI and data science teams

	Medium to High - careful choice of right datasets and the open data format needed to support the lakehouse architecture

	Medium to High - while technologies such as Delta Lake, Apache Iceberg, and Apache Hudi are gaining maturity and adoption, today, this architecture requires thoughtful design

	Medium to High - the data platform team needs to be skilled up to understand the needs of the organization and the technology choices that are still new

	Data mesh

	Medium - while the distributed design ensures cost is lower, lot of investment required in automation/blueprint/data governance solutions

	High - flexibility in supporting different architectures and solutions in the same organization, and no bottlenecks on a central lean organization

	High - this relies on an end to end automated solution and an architecture that scales to 10x growth and sharing across architectures/cloud solutions

	Low - relatively nascent in guidance and available toolsets

	High - data platform team and product/domain teams need to be skilled up in data lakes.

Let us look at this data in another way, Figure 2-16 shows a trade off between cost and complexity across the different architectures.

[image: Cloud Data Lake architectures cost vs complexity]
Figure 2-16. Cloud Data Lake architectures cost vs complexity

2.6.5 Hybrid approaches

Depending on your organizational needs, the maturity of your scenarios, and your data platform strategy, you could end up having a hybrid approach to your data lake. As an example, when most of the organization runs on a cloud data warehouse as its central data repository, there is a center of innovation working with a set of handpicked scenarios on a data lake architecture and then gradually expanding to the rest of the company. On another hand, while most of the organizations adopt a data lakehouse architecture, you might find some teams still dependent on legacy infrastructure that would take years to move.

The nuances and detail in your scenarios might be so niche or specific to your organization that it is out of scope of this book. However, the principles that we discussed in this chapter will help you ask the right questions and make an informed choice on the data lake architecture.

The big data ecosystem and cloud data lake architecture is a field of rapid innovation. I’m pretty sure by the time I finish this chapter, the needle has been moved on something already.

Summary

In this chapter, we took a deeper look at three key architectures for the cloud data lake, and in the end we summarized it against how they compare with the traditional cloud data warehouse architecture. First, we went over the modern data warehouse architecture, where you collect and process data in a data lake to transform your raw data with relatively lower value density into high value structured data, and load the high value data into a cloud data warehouse for supporting BI scenarios. Next, we developed on this understanding to the data lakehouse architecture, which supports BI scenarios (in addition to the data engineering and data science scenarios) directly on the data lake eliminating the need for a cloud data warehouse. Then, we explored the data mesh architecture that offers a decentralized approach to managing and operating the data lake enabling a sustainable approach to scale to the growing needs and the rapid profileration of data across the organization. Finally, we put all of these in perspective together with factors such as the maturity, skillsets, and size of your organization to help you formulate the right cloud data lake architecture for your organization. In Chapter 3, we will focus more on the “data” part of the cloud data lake, considerations for organizing, managing, securing, and governing the data in your data lake.

Chapter 3. Design Considerations for Your Data Lake

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at jleonard@oreilly.com.

Have no fear of perfection - you will never reach it.

Salvador Dali

In Chapters 1 and 2, we went through a 10,000 ft view of what cloud data lakes are, and some widely used data lake architectures on the cloud. The information in the first two chapters give you enough context to start architecting your cloud data lake design - you must be able to at least take a dry erase marker and chalk out a block diagram that represents the components and their interactions of your cloud data lake architecture.

In this chapter, we are going to dive into the details on the various aspects of the implementation of this cloud data lake architecture. As you will recall, the cloud data lake architecture is composed of a diverse set of IaaS, PaaS, and SaaS services that are assembled together into an end to end solution. Think of these individual services as Lego blocks and your solution as the structure you build with Lego pieces. You might end up building a fort or a dragon or a spaceship, and the choices are only limited by your creativity (and business needs), however, there are a few basics you need to understand on how to work with Legos, which is what we would be diving into this chapter.

We will continue to use Klodars Corporation to illustrate some examples of the decision choices.

3.1 Setting Up the Cloud Data Lake Infrastructure

Most cloud data lake architectures fall under one of the two categories

	
You want to build your cloud data lake from scratch on the cloud. You don’t have any prior data lake or data warehouse implementation and are starting from a clean slate.

	
You want to migrate your data lake from either your on-premises systems or other cloud providers to the cloud. In this case, you already have an existing implementation, either as a data warehouse or a data lake, that you would move to the cloud.

Your first steps on your journey to the cloud largely remains the same in either case. You will choose the cloud provider, you will choose the services, and you will set up your infrastructure. The cloud encompasses a wide variety of offerings that are available for you to pick, each having their strengths and opportunities, so before you move to the cloud, the first thing to remember is that there is no silver bullet or a prescribed 12 step process when it comes to making this transition. However, having worked with many customers and also having worked on cloud migrations myself, I have condensed the customer journey into a decision framework, which consists of the following key steps, as illustrated in Figure 3-1.

	
Identify your goals

	
Plan your architecture and deliverables

	
Implement the cloud data lake, either from scratch or by migrating your existing system to the cloud.

	
Operationalize and release

[image: Framework to plan your cloud data lake implementation]
Figure 3-1. Framework to plan your cloud data lake implementation

Let us take a closer look at each of these steps in practice.

3.1.1 Identify your goals

As we saw in Chapter 1, data lakes are critical to businesses in unlocking key insights to inform and transform the business. However, with the myriad possibilities and opportunities that data can unlock, its very important to identify the specific goals that data would unlock for your organization. These goals help you decide what kind of data and processing you need to prioritize for your business.

As a first step, you need to determine who the customers of your data lake are, they can either be departments within your organization (for instance, HR, finance, supply chain), or they could be customers external to your organization (for example, customers who consume your dashboards). Additionally, look at the problems with your own data lake implementation, if any, to feed to the inventory as well. For example, your current problems could be related to the high cost of the datacenters and operations that eat into your budget, or having your current hardware run out of support, or even how your current architecture cannot serve advanced sceanrios around data science and machine learning that is making your business lost advantage in this competitive market. Talk to your various customers and inventory their top of mind problems, now you can identify the subset of the top problems where data can help. Your goal for the data lake implementation would be to solve these problems, as illustrated in Figure 3-2.

[image: Define goals of your data lake]
Figure 3-2. Define goals of your data lake

As shown in Figure 3-2, your team has identified ten problems by talking to your various consumers. However, when you plot it out against a graph of high serverity vs how useful cloud data lake could be in solving those problems, you will prioritize Problem5, Problem6, Problem8, and Problem9 because they rank high in serverity and also rank high in the usefulness of a cloud data lake in solving these issues.

3.1.1.1 How Klodars Corporation defined the data lake goals

As we saw in Chapter 2, Klodars Corporation currently has legacy applications leveraging operational databases (SQL server) to manage their inventory and sales, and a Customer Relationship Management (CRM) software (such as Salesforce) to manage their customer profile and interactions. When Klodars Corporation hits growing pains when they rapidly expand across the state of Washington and neighboring states along with the growth of their online business, their software development leader, Alice pitches the idea of developing a data lake to her executives, and they are eager to invest and fund the approach.

The rubber has hit the road, and Alice begins planning the data lake implementation project. The very first step she would take is to inventory the problems across the organization and came up with the list that is outlined in Table 3-1.

Table 3-1. Inventory of problems at Klodars Corporation along with relevance to data

	Customer
	Problem
	Severity of problem
	Helpfulness of data lake
	How can cloud data lake help

	Engineering

	Database not scaling to growth of business

	High

	High

	Cloud infrastructure can elastically scale

	Sales

	Sales queries are painstakingly slow

	Medium

	High

	Cloud infrastructure scaling can support growing number of concurrent users

	Sales

	I can’t prioritize which retailer or whole sale distributor to engage outside the state of Washington

	High

	Medium

	While we can explore retail data sets to identify the sales, this would be more experimental and takes time to mature

	Marketing

	Queries are taking a really long time to run, complex queries are timing out

	High

	High

	Cloud infrastructure scaling can support growing number of concurrent users

	Marketing

	I am spending a lot of time running targeted campaigns

	High

	High

	Cloud data lakes can support data science scenarios that help with personalized and targeted campaigns

	Marketing

	I need to find the right influencers for our product

	High

	Medium

	While data science and machine learning can identify insights from social media, the specific influencers are determined with more 1:1 connections and engagements

	Exec team

	I need to understand what product offerings we can start expanding to beyond winter gear

	Medium

	High

	We can run data science models on retail data sets to understand behavior of customers buying winter gear to come up with useful product recommendations

Based on this inventory, Alice defined the goals of her data lake implementation as follows and reviewed it with her stakeholders to finalize the goals.

Cloud data lake goals

	
(Must have) Support better scale and performance for existing sales and marketing dashboards as measured by a 50% increase in query performance at the 75th percentile.

	
(Must have) Support data science models on the data lake as measured by a pilot engagement on product offering recommendations to the executive team.

	
(Nice to have) Support more data science models on the data lake as measured by the next set of scenarios on partnership identification for sales and influencer recommendation for marketing.

3.1.2 Plan your architecture and deliverables

Once the goals are defined for the data lake, the next step is to define the architecture and the deliverables for your cloud data lake. As we saw in Chapter 2, there is a variety of architecture patterns that are commonly used, each with their design considerations, as described in “2.6.4 Design considerations”. Consider the goals of your data lake along with other factors such as the organizational maturity etc to determine the right architecture with your data lake. Some of these common considerations for determining the architecture are:-

	
Cost of the solution: Identify both the initial cost of setting up as well as the longer term cost of maintaining your solution, and weigh them against the benefits. A data lake costs much cheaper than a data warehouse, however a data warehouse is easier to get up and running.

	
Time taken to do the implementation: In the world of software development, developer and operational time is as important as the dollar bills in terms of cost, so talk to both of these terms and get an estimate of the time and effort required for the solution. If you have existing hardware that is reaching end of life, you need to pick a pattern/architecture that can be implemented before the existing hardware runs out of support.

	
Backwards compatibility: When you have an existing data infrastructure that you need to the cloud, it is going to be reasonable to assume that your cloud migration will be done in phases. You need to ensure that while you are moving certain chunks of your solution to the cloud, you can guarantee business continuity without much disruption for your existing applications and consumers. If you have an existing operational database that is supporting dashboards, then ensuring that there is compatibility for the existing applications is a consideration you need to factor.

	
Organizational maturity: This is a most often ignored factor in most marketing materials. When you are talking to cloud providers or ISVs, make sure to talk to them about the current skillsets and data culture of your organization and understand how their solutions could serve the current state while you plan on upskilling your organization, and transforming its culture. For example, an architecture optimized for data science is not a best fit if you are yet to hire data scientists

Once you decide on the architecture, you can create a project plan in collaboration with your prioritized list of customers and their scenarios you are supporting, and determine the success criteria of the project based on your defined goals.

How Klodars Corporation planned their architecture and deliverables

Based on the goals defined for the cloud data lake implementation, Alice and her team then investigated different architecture choices using the following guiding principles :-

	
There is minimal/no disruption to the existing dashboards that sales and marketing teams consume.

	
The dashboards need to scale to the growth of the data and address the performance issues faced by its customers.

	
The data science scenarios need to be addressed as part of the new platform. This includes product recommendations for executive team, distributor/retailer recommendation to sales teams, and influencer recommendation to marketing teams.

	
Given the criticality of the dashboards to the business and the projected future growth that needs to be factored in, the new architecture needs to be rolled out in the next 6 months.

They evaluated the following architecture patterns on the cloud (this is fairly agnostic of the specific provider)

	
Cloud Data Warehouse - In this architecture pattern, there is no cloud data lake involved, and the primary component would be a cloud data warehouse. If you would like a refresher on cloud data warehouse, refer to “2.2.4 Cloud Data Warehouses”. While this would take the least time to implement and have a seamless experience for the business analysts from sales and marketing teams, the data science capabilities are limited. As a result, this could serve a pilot, but there might be roadblocks when the scenarios get more advanced, such as bringing in more diverse data sets.

	
Modern Data Warehouse - As we saw in “2.3 Modern Data Warehouse Architecture”, this involves leveraging a cloud data lake storage for the data collection and processing, and a cloud data warehouse for business intelligence scenarios. This would take a bit longer to implement than the cloud data warehouse. However, the rich set of data science capabilities on the data lake would help them focus on the pilots while also supporting the data analysts through the data warehouse. Additionally, the data lake offers cheaper storage to preserve multiple snapshots of historical data of their on-premise databases.

	
Data lakehouse - As we saw in “2.4 Data Lakehouse Architecture”, this involves leveraging a cloud data lake storage for the end to end implementation without requiring a cloud data warehouse component. This was very attractive for the team given the support for both data science and data analyst scenarios, however, they soon realized there is upskilling required for the tooling support and automation end to end.

The team did not evaluate the data mesh architecture because the central data team wanted to focus on maintaining central control of their end to end implementation. They would evaluate the data mesh in the next phase of the project.

They settled on a modern data warehouse architecture given the smoother transition from their current architecture while offering support for data science. The team also plans to investigate data lakehouse and data mesh architectures in their next phase of the project once they are up and running on the cloud.

[image: Proposed Cloud Data Lake Architecture for Klodars Corporation]
Figure 3-3. Proposed Cloud Data Lake Architecture for Klodars Corporation

As shown in Figure 3-3, the modern data warehouse architecture for Klodars Corporation consists of the following components:

	
A cloud data lake storage that acts as a central repository of the data.

	
Ingestion systems that upload data from existing sources such as their operational data store, as well as new data sources such as social media into the cloud data lake.

	
Data processing engines that process data from the cloud data lake storage with complex data transformations to generate high value data.

	
Data science and machine learning solutions that are leveraged by data scientists for adhoc exploratory analysis.

	
A cloud data warehouse that serves this high value data to business intelligence use cases and data analysts.

The deliverable for their project consisted of the following phases :-

	
Phase 1 - Ingestion - Load data into the data lake, set up automated pipelines to take daily back ups of the operational databases and CRM system in the data lake. Store data for the past 90 days.

	
Phase 2 - Processing - This consists of two phases that can run in parallel :-

Process BI data - Run processing pipelines to refresh data daily into the cloud data warehouse. Validate with feedback from data analysts on sales and marketing teams.
Advanced scenarios - Develop product recommendation models based on data from the operational databases and CRM system leveraging data scientists.

	
Phase 3 - Limited release - This phase involves the release of the data lake platform to select customers from sales, marketing, and executive team while the on-premises implementation is still running. This helps catch issues early and iterate based on customer feedback.

	
Phase 4 - Release to production - This involves the release of the data lake to all customers at the Klodars Corporation.

	
Phase 5 - Turn off on-premise dashboards - Once the data lake implementation is successful on the cloud, the dashboards running on-premises for the analysis will be turned off in this phase.

3.1.3 Implement the cloud data lake

In this phase, the architecture will be implemented according to the project plan. This phase involves key decisions around choice of cloud providers, and follows the best practices for infrastructure. Given the choice of cloud providers goes beyond technical reasons, we will not go into details here. Some key considerations in this phase, that apply to all cloud providers :-

	
Set up and manage your cloud identities - A key fundamental step to getting started on the cloud is to create your identity management system on the cloud provider. If you have an identity management system on-premises, cloud providers also allow you to federate your on-premise identities to the cloud.

	
Set up your subscriptions - a subscription is required to create resources (Iaas, PaaS, or SaaS services offered on the cloud). A subscription also has access controls associated with it - you can assign your cloud managed identities to specific roles (owner, contributor, etc) to your subscription.

	
Create environments - Its highly recommend that you create separate environments for development (that your developers can use to test their code), pre-production (access to all developers and select customers), and production environments. I also recommend that you use separate subscriptions for the different environments to keep them isolated from each other.

	
Choose your services - Cloud providers offer a variety of services (IaaS, PaaS, or SaaS) for your cloud data lake architecture, take the time to talk to your cloud providers and make the right choices depending on the opportunity, business needs, and the cost.

	
Invest in automation and observability - In addition to implementing the data lake itself, ensure you have the required automation to create and manage resources on demand. Given you will be paying for what you use on the cloud (as opposed to having hardware around all the time), the automation will ensure that you can create and delete resources on demand to help manage your costs. Similarly, ensure that you have logging and monitoring on the cloud to ensure you can monitor the health of your systems.

For more information, you can check out the documentation on getting started by the top cloud providers, Amazon Web Services, Microsoft Azure, and GoogleCloud.

3.1.4 Release and operationalize

In this phase, the project plan is appropriately resourced, tracked, implemented, and released to production, so the on-premises implementation can be turned off with confidence.

Some considerations for this phases include :-

	
Consider early and frequent releases to limited audience to ensure you can catch issues earlier and iterate based on feedback.

	
Ensure you have releases starting with the dev environment, tested in the pre-production environment before they release to production.

The popular cloud providers have tools and platforms that help with observability and automation, such as Lake Formation for automation and CloudWatch for observability from Amazon Web Services (AWS), Azure Resource Manager for automation and Azure Monitor for observability on Microsoft Azure, and Resource Manager for automation and Cloud Monitoring for observability on Google Cloud.

At the end of this phase, you have an operational data lake ready that you can test in your developer, pre-production, and production environment. In the coming sections, we will talk about the specifics of setting up the data lake architecture, that includes organizing the data, managing and governing the data lake, and managing costs.

3.2 Organizing data in your data lake

Once you have the infrastructure pieces set up and tested end to end, the very next step is to ingest data into your data lake storage. Before you ingest data into the data lake, its important to ensure that you have a strategy to organize data into the data lake. When you set up a kitchen, you need to understand which cabinets store your china, your pots and pans, and your coffee. You would ensure that the pots and pans are more accessible to the stovetop, and the coffee, sugar, and creamers are stored together. To understand the data organization within the data lake, let’s take a look at the Lifecycle of data in the data lake.

3.2.1 A day in the life of data

Data is first ingested from various sources in its raw natural state into the data lake. It is then cleansed, and prepared for future processing, e.g. applying a schema, removing duplicates, removing null values, and fixing them with defaults in some cases. At the end of this data prep phase, data adheres to a tabular structure as is defined by the data prep code. As a next step, this data is then aggregated, joined, and filtered to extract high value data - this phase is curation. In addition to the data that follows this lifecycle, consumers such as data scientists can bring their own data sets for exploratory analysis.

This lifecycle is an important point for you to remember, because this is an indicator of a different pattern. The most common pattern of loading data for analysis in the prior decades was ETL, Extract, Transform, and Load. Data was extracted from its source, transformed to adhere to a specific structure, and loaded into a store (Hadoop Filesystem or Data warehouse). If there was a signal in the data that was lost as part of this transformation, it was not trivial, and in some cases, impossible to retrieve that signal from the source again. Further, with innovations in cloud infrastructure and silicon, storage is getting cheaper and cheaper over time. This combination of increased value in data along with inexpensive storage has given rise to a new pattern, called ELT, or Extract, Load, and Transform. In this pattern, data is extracted from its source, loaded into the data lake, and transformed later with data processing.

3.2.2 Data Lake Zones

Following this lifecycle of data, data will be organized into different zones within your data lake. Let us now take a look at these zones in detail. Figure 3-4 provides a visual of each of these zones, and in this section, we’ll walk through each of them in detail.

[image: Data lake zones in the cloud data lake]
Figure 3-4. Data lake zones in the cloud data lake

The data in the data lake can be segmented into the following zones depending on the stage of processing and the value density packed into the data.

	
Raw data (Bronze) zone - This contains data in its natural state as it was ingested from its source. This zone has data with the lowest value density and this data is ready to go through various transformations to generate valuable insights.

	
Enriched data (Silver) zone - This zone contains the transformed version of the raw data, adhering to a structure as it is relevant for your business scenario. At this point, the value density is low to medium, however, there is a certain level of guarantee for the data to adhere to a schema or a structure.

	
Curated data (Gold) zone - This zone contains data with the highest value density. The data in this zone is generated by applying transformations to enriched data.

	
Workspace data zone - This zone is provisioned to consumers of the data lake to bring their own data sets. There is no specific gurantee for this data zone, think of this as a scratchpad that you provision in the data lake.

Let us now take a look at these sections in detail.

	
Raw Data (also referred to as Bronze) Zone: This is the section of the data lake in which data first lands from external sources. In the ELT pattern we talked about, this is the data that is extracted from the source and loaded into the data lake storage. Data is ingested from various sources such as on-premise systems, social media, external open data-sets etc. Data can be ingested either in a scheduled fashion (think bulk uploads) or real-time (think events. Data in this zone has minimal guarantee or structure, semantics, and value. The most common pattern is that this ingestion is typically controlled by a select set of teams, and not open to everyone. Data in this zone will be organized by the ingestion source, and also by the timestamp of the data. In a typical data lake scenario, most data has time associated with it (E.g. twitter feeds for a particular day, server logs from a particular hour of a day, etc.). So this zone will typically be organized by the sources, and within the source by the time, this time structure indicates the freshness of the data.

	
Enriched Data (also referred to as Silver) Zone: Raw data as it is ingested into the data lake doesn’t quite confine to a specific structure or format. As we saw in “2.2.1 A Word on Variety of Data”, data ingested into the data lake could be structured, semi-structured, on unstructured. This data is then cleansed and processed to fit into a tabular structure - this process is called data preparation or enrichment or data cooking. There are three key things that typically happen in this step :-

	
Schema definition - Schema essentially means definition of a structure that the data adheres to, i.e. there is meaning given to different parts of the data making it a tabular structure, with column definitions.

	
Data cleansing - once the schema is defined, there might be some parts of the data that doesn’t adhere to the schema. E.g. if the schema indicates that the fifth field of your CSV file is a zipcode, then this step ensures that the values adhere to a zipcode format (xxxxx or xxxxx-xxxx) and if not, either removes it or fills it with legitimate values (E.g. look up zip code from the address).

	
Optimizations - once the data adheres to a tabular structure, it is also important to prepare the data to be optimized for the most common consumption patterns. The most common pattern is for data to be written once and read many times. For example, if you have a sales database, the most common queries on this data tends to be for region specific sales information or trends over time. In this step, data is converted into a format and reorganized to be friendly for the most common queries. Typically a columnar format such as Parquet, which we saw in “2.4.1.1 Data formats” is picked to be optimized for queries.

This data is used more broadly by the different teams, data scientists, and in some cases business analysts as well for more adhoc analysis. Data in this zone is organized into domains, or units that the various consumers can understand, and is also published into a catalog (we will talk more about this in “3.3 Introduction to data governance”).

	
Curated Data (also referred to as Gold) Zone: Curated data zone has the highest value data in the data lake, and critical datasets that power key business dashboards. Typically, think of the data in this zone as a digest or a summary of the value in the data, the key insights. Data in this zone is processed by performing aggregations, filtering, correlating data from different data sets, and other complex calculations that provide the key insights into answering business problems. The data in this zone uses data in the curated zone as its source, along with occasionally other data sources as well. Data in this zone needs to adheres to the highest standards in terms of data quality given the broad impact to the business.

Curated data is used the most broadly by business analysts, and also powers dashboards that are leveraged by key business decision makers as well. Additionally, this data is also published into a catalog and is organized by the business units and the domains they are relevant to.

	
(Optional) Workspace or Sandbox Zone: As we discussed, the data that is present in the raw, enriched, and curated zones are largely managed by a select set of data engineers or data platform teams. However, there are data sets that consumers would like to bring, either for exploratory analysis, or testing the waters. This data can be organized into unitsn that are specifically provisioned for the user (think of this like a scratchpad). Data here adheres to no specific standard or quality, and is essentially used for any free form use.

Figure 3-5 below illustrates the data organization at Klodars Corporation.

[image: Data organization within the data lake at Klodars Corporation]
Figure 3-5. Data organization within the data lake at Klodars Corporation

3.2.3 Organization mechanisms

While this is not a strong requirement, it is a good practice to organize your data in a way that aligns with the usage patterns. As we discussed in “3.2.2 Data Lake Zones”, data goes through a certain lifecycle within the data lake, and you could align your organization by grouping data together as zones. This organization is very helpful as the data and the usage continues to grow in your data lake, as it certainly will. The organization mechanisms comes in handy for many reasons, including the ones listed below.

	
Control access to the data - As an example, access to the data in the raw zone is typically locked down to the data platform team, and you help manage access. When a new employee joins the marketing organization, they automatically could get access to data in the marketing business unit zone.

	
Manage data retention - As an example, when you provision workspace zones to your users for bringing their own data, this data has the potential to grow without control since the data itself is not managed by the data platform team. The data platform team can set data retention policies for specific zones to manage this uncontrollable growth.

The data lake storage services from major cloud providers offer different ways to organize your data zones. AWS S3 and Google Cloud Storage provides buckets as a unit of organizing data that you can leverage. Microsoft’s Azure Data Lake Storage offers a native filesystem with storage accounts, containers, and folders as units of data organization.

3.3 Introduction to data governance

Regardless of where you are in your data journey, whether you are taking your first steps or whether you are already having a mature data lake implementation, the amount of data and its value to your business is only going to get higher. In the words of Uncle Ben in the Spiderman, “With great power comes great responsibilities.” Let’s take a look at some of the challenges that can arise from managing data.

	
The data that you collect could have personal or business critical information, such as the person’s name and address, or trade secrets, which in the wrong hands could potentially harm the person or the business. Huge enterprises such as Yahoo, Starwood Marriott Hotels, Alibaba, and so many more have had to deal with data breaches over the years.

	
The errors in the balance and completeness of your data could skew your analysis resulting in building non-ideal experiences for your users. In 2016, Microsoft unveiled a conversational AI chatbot that quickly learnt to tweet racist and sexist messages.

	
As the data grows in your data lake, and so does the usage of the data, management and discovery of these data sets get extremely important. Without that, you run the risk of making your data lake a data swamp. To understand this better, think of that cluttered closet (or room or garage or attic) where after a point, you have no idea what is even there, and you never go near it until its moving time.

	
There are a rising number of data privacy regulations, such as General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA) and many others that you need to pay attention to while operating your cloud data lake.

Note

As the O’Reilly book, Data Governance, the Definitive Guide states, “Ultimately, the purpose of data governance is to build trust in data. Data governance is valuable to the extent that it adds to stakeholders’ trust in the data—specifically, in how that data is collected, analyzed, published, or used.”

3.3.1 Actors involved in data governance

Data governance is an umbrella term that refers to the collection of technologies, tools, and processes that ensure that data used by an organization is secure, accessible, usable, and compliant. There are three primary actors or persona who are involved in the data governance of an organization along with key responsibilities. The data governance tools are designed to meet the needs of one or more of four actors who have a part to play in an organization when it comes to data. Do note that the actors are not always human users, but are also applications or services. Further, the same team or organization can play the role of one or more of these actors described below.

	
Data officers - This group essentially manage the definition and requirements for what it means for the data to be trusted and also ensure that the requirements are met with periodic audits and reviews. This involves defining and managing controls for things such as data sharing requirements, data retention policies, compliance regulations that need to be met for the data estate. They set the bar for data governance.

	
Data engineers - These are the set of actors who implement the data lake architecture, they provision and set up the various services, manage the various identities for the actors, and they ensure that the right set of technology and processes are in place to ensure that the data and the associated insights have the required amount of trust. In other words, they implement and manage the infrstructure and technologies and ensure that their implementation meets the requirements defined by the Data Officer. They leverage various toolsets to ensure that they understand the different stages of processing that the data went through, also called as tracking the lineage of the data, and also ensuring that they can provide guarantees on the quality and consistency of the data. They also play a key role in providing the right collateral and evidence for the reviews and audits.

Note

If you have heard the term Master Data Management, this essentially refers to data about the data assets in the organization, including location, customer, products etc. This is different from metadata that we saw in Chapter 2 which is data about the data in terms of describing the schema.

	
Data producers - These are one segment of the users of the data lake. As the name suggests, data producers bring in data into your data estate, this data could be raw data (ingested from external and internal sources), enriched (prepared/cooked data that is in a tabular form), or curated data (summary/digest with high value insights), or adhoc data sets that are produced/consumed by data scientists. Data producers care deeply about ensuring that the data adheres to a certain level of quality depending on the type, and they also want to ensure that they are aware of how the data needs to be locked down or opened up to the rest of the organization in terms of managing access. They need to adhere to the tools and processes set by the Data Officers and Data Engineers and not attempt to circumvent the guardrails.

	
Data consumers - These are the other segment of users of the data lake. Just with anything else, a product is valuable only when there are customers using it. Data is no exception to this. Whether it is dashboards, queryable tables, or adhoc datasets, the data consumer is anyone who consumes the data or insights. The data producers have the control on who gets to use the data, and data consumers actually consume this data either as is, or for further processing. E.g. in the data curation process, the set of users or applications end up consuming the enriched data and produce the curated data.

[image: Data governance components]
Figure 3-6. Data governance components

Figure 3-6 provides a very simplistic overview of what are some of the top of mind concerns for the various actors who interact with the data estate, in this case the data lake.

There are a lot of tools and automations available for these different actors to enable better data governance and follow best practices. Having said that, your data governance can also be done in very manual operations. Regardless of the ease of use and automation, data governance can be categorized into the following capabilities that can either be accomplished with tools and automation or manually enforced processes.

3.3.2 Data Classification

The first step in data governance always starts with the Data Officers who works on defining the requirements and controls for the data that can be collected, stored, and processed.

Data type refers to the types of data or assets that are used by the organization. The data in your data lake needs to be tagged with one or more of these types. The data type itself, also referred to as an infotype has a singular meaning associated with it, for example, data containing first name or zip code. These infotypes are organized into data classes. For example, Name and address falls into a PII data class (Personally Identifiable Information), credit card number falls into the Financial Information data class.

Figure 3-7 illustrates this hierarchy with an example.

[image: Data types, classes, and policies - an example]
Figure 3-7. Data types, classes, and policies - an example

Policies are rules and restrictions that are applicable to the classes of data. For instance, your policy could be that PII data of consumer must always be collected after the consumer consents to it after they clearly understand how your organization plans to use that information.

If your enterprise handles sensitive data such as PII or financial information, you will need to comply with policies and regulations that are enforced by your organization, or even sometimes by governments. You will need to prove to the regulator (whoever set those regulations) that you have the policies in place, this is usually accomplished via audits. It is recommended that you define these policies and have records of your handling done in a planned manner to avoid firedrills during the reviews and audits.

In order to ensure that your data complies with the policies, data in your data lake needs to be classified, i.e. associated with the class and the type, so you can apply the relevant policies. Cloud services such as Amazon Macie leverages machine learning to provide automated classification of data in your data lake, and works on structured, unstructured, as well as semi-structured data.

3.3.3 Metadata management, Data catalog, and Data sharing

Metadata in its simplistic terms refers to the data that describes the format and the fields of the data that is stored in the data lake. For instance, when you have an employee table, the metadata would have the description. For example, the first column is the first name, which is an array of strings, followed by another array of strings that represents the last name. The next field is the age that is an integer that falls between 15 and 100 years old.

A data catalog is a system that stores this metadata and can be published for the rest of the organization. As an analogy, there is a library with a lot of books, its impossible to find the book you want without a catalog, where you can search for a book by the title or author, and find if its found in your library. Similarly, data consumers can leverage the data catalog to look for the tables that they have access to, either with the table name, or with certain key fields. For example, show me all the tables about employees. The key thing to remember here is that there can exist one data catalog that can hold data from various data sources, the data lake, data warehouse, and any other storage systems. Figure 3.8 shows a pictorial description of this concept.

[image: Data catalog]
Figure 3-8. Data catalog

Once there are key data sets and high value insights available to an organization, there are other consumers either within the organization, or in some cases, even outside the organization. In other words, data is like a product that can be shared and monetized with a larger audience. Data Sharing is an emerging capability of data governance where data sets in a data lake or in a data warehouse can be shared with an audience inside or outside an organization and have the consumer pay for the data access to the data producer. Data catalog make these scenarios much easier to implement.

3.3.4 Data Access Management

When we talk about data discoverability via catalogs and data sharing, ensuring that the right set of actors have access to the right data, and more importantly, actors don’t have access to other data. A key part of data governance is access management - where there are set of capabilities that let the actors manage data at varying levels right from access to the data stored to access to the data through more applications such as data sharing or through the warehouse.

I would like to explain this concept as a ringed approach to data access management.

	
At the very inner core, there is access to the data itself - which is a data lake storage level security model that helps you lock access to the storage itself.

	
At the next layer, it involves access to the computational engines running on top of the data lake storage, either via the ETL processes, or the data warehouse, or the dashboards.

	
The next layer involves boundaries at your cloud system level, that controls the visibility and accessibility of your cloud resources or your data across a network boundary. E.g. regional access restrictions on what data needs to stay in a region vs can be transacted across regions.

	
Finally, you can use comprehensive data security tools, such as Apache Ranger where you can apply advanced rules and policies across the data in your multiple data stores (E.g. data tagged as PII must not have access to anyone other than HR department).

Figure 3-9 illustrates this approach.

[image: Approach to access management]
Figure 3-9. Approach to access management

3.3.5 Data Quality and observability

Given the criticality of data to running a business, the quality of data has grown to be as important, if not more important than the quality of the code. Whether it is an outage that blocks critical news such as COVID-19 data, or a wrong award announcement such as the embarrassing announcement that La La Land won the Oscar in 2017, mistakes in data has a ripple effect downstream.

Organizations are increasingly relying on measuring and monitoring data quality as a best practice and this is one growing area of investment in the data lake space. While it is out of scope for this book, I recommend that you check out other resources on data quality and data observability for more in-depth coverage of the concepts and also learn more about the available toolsets you can leverage for your data quality and observability solutions. I will provide an overview of the basic concepts and approaches to data observability in this section.

In the O’Reilly book Data Quality Fundamentals, there is a succint definition of the five pillars of data observability, i.e. the attributes that need to be measured to ensure data quality in your data lake architecture. This is a great starting point to how to think about data observability.

Specially in a cloud data lake architecture, you have a disparate set of components that load data into the data lake storage, process data to generate high value insights, and yet another set of components that draw the dashboards. One component is not quite aware of the others, and hence data observability for a cloud data lake is of critical importance in building this common understanding across the components in a data lake, by taking a data centric approach.

Quoting the book, the five pillars of data observability are :-

	
Freshness

Freshness is an indicator of the recency of the data. When was the last time this data was refreshed? As an example, we talked in earlier chapters about a common pattern of having daily uploads of data from the operational datastore into the data lake. The freshness attribute indicates how fresh this update was, so if last night’s data upload failed, then you are clear that the reports are based on the data that is two days old.

	
Distribution

Distribution is an indicator of the acceptable ranges or values of the data. This lets you define acceptable ranges for the data. Most often, when the charts in your dashboards looks abnormal, you would always wonder This lets you understand that when the data goes above or below this acceptable, you know that this is a data problem rather than a real issue with the trends. As an example, when your recent sales data has not yet arrived, you might see a $0 sales, which is unlikely that there was no sales. Similarly, if you see that your sales suddenly jumped 500% compared to the normal range, this helps you perform the investigations on whether this is a genuine reason to celebrate, or there might be some duplicate processing that double counted the sales data.

	
Volume

Volume is an indicator of the acceptable size of the data. Similar to the distribution, this indicates the acceptable levels of the size of the data, and any data outside of this range is possibly an indicator of the data levels. As an example, when your data table typically has 10,000 rows, and after the day’s processing, you see 10 rows or 5 million rows, then you get that cue to investigate further.

	
Schema

As we have seen earlier, schema refers to the description of the data in terms of the structure of the data and the semantic definitions. If an upstream component changes the schema, then one or more of the fields might disappear breaking the downstream scenarios. Tracking changes to the schema itself helps us understand its effect on the downstream components, and isolate the changes to the impact.

	
Lineage

In the simplest terms, lineage can be described as a dependency graph between the producers and consumers of the data. For a given data set, data lineage describes how the data is generated, and which components consume it. When there is an error, data lineage provides the bread crumbs that you can trace back to what other components you need to investigate.

It is recommended that organizations invest in automation to measure these pillars to ensure that the data is of acceptable quality and the data lake can provide guarantees in terms of SLAs (Service Level Agreements) on how much the data meets the standards.

Data Quality and Observability

With Lior Gavish, Co-founder and CTO, and Molly Vorwerck, Content and Communications, Monte Carlo Corporation

Anything that is created by humans breaks, sometimes in an unpreditable way.

Just like DataDog or NewRelic for observability of code and services, there is a need for minimizing unpredictability in data pipelines as well. Data quality is increasingly important as organizations continue to rely on data for critical business decisions. Data quality in data lakes are more complex than structured data warehouses because of the diversity of data and the myriad computational engines.

In a data warehouse, there is a single stack of compute and storage together, there is a single point or surface of usage. In a data lake, there is also a diversity of computational engines, from real time streaming and batch ingestion, Spark or Hadoop processing engines, and query engines such as Presto, all running on the storage. It is hard to know where your data assets are coming from, what engines are modifying them, and who is consuming them - mapping all this together is key to ensuring data quality. This complexity is only exacerbated by the high scale at which a data lake operates.

A useful framework for data reliability to ensure there is a measurable metric for the five key pillars - data freshness, distribution, volume, schema, and lineage. The implementation of this framework is key to understanding, measuring, and mitigating data quality issues. Data lakes have accelerated the need for data quality to be top of mind, not just an afterthought, to ensure there is trust guaranteed with the data and insights.

Given data lake stores a wider variety of data, it could get very expensive and laborious to implement data quality for all the data in the data lake. A highly recommended approach is to start your data quality initiative by defining the high priority datasets and defining SLAs (Service Level Agreements) and SLOs (Service Level Objectives) for those data sets in terms of the five data quality pillars described above. These SLAs and SLOs become the goals and also serve as requirements to implement data quality for your data lake. Not all data is equally important, and this prioritization is key to ensuring that you can offer data quality while also ensuring your agility of development.

3.3.6 Data Governance at Klodars Corportation

Anna and her team understood the importance of data governance for their data platform architecture and set out to make the following changes.

	
They leveraged a data catalog based on open source technology Apache Atlas to curate and publish the metadata for data in their enriched and curated zones.

	
They classified data in the Sales and Customer tables with the right classes - PII, financial information, etc, and the data types, and ensured that the data catalog had information about this data classification.

	
Given they didn’t require the actual PII information for their scenarios, they wrote a PII scrubber to ensure that the PII data was masked (a unique hash for the value was stored instead of the value in plain text). The result was that the data analysts could still look at information for unique users without seeing their personal information.

	
From a security and access control perspective, they did the following

	
They implemented data lake storage security so that the access to raw data was locked down only to the platform team, access to enriched data and curated data sets had read only access to the business analysts and data scientists in their organizations. The data scientists and business analysts had read and write access to the workspace provisoned for them, but couldn’t see other user’s unless they chose to share explicitly.

	
They ensured that the product and executive team had access to the dashboards, and data scientists had access to all of the data science computational frameworks. The ingest pipeline and data prep pipeline was strictly locked down to the data engineering team.

	
They also implemented a data governance solution that had the data catalog and also policy and access management across both the data lake and the data warehouse data.

Figure 3-10 shows the implementation of data governance by Klodars Corporation.

[image: Data Governance at Klodars Corporation]
Figure 3-10. Data Governance at Klodars Corporation

3.3.7 Data governance wrap up

Putting all these concepts together, I will summarize the approach to data governance as a series of steps you take to build trust in the data with your customers of the data lake.

	
Understand the data governance policies that the data officers are experts at, and also the requirements of your customers - the data producers and data consumers. These requirements govern the implementation of data governance by your data engineers.

	
Understand the data and classify the data within your data lake to ensure that you know what policies apply to what datasets within your data lake.

	
Build a data catalog to manage the metadata that helps with understanding and discovering the data sets that are available to you. This makes it easier for your data producers and consumers to respectively publish and discover the available datasets. In the same vein, this also helps the data engineers implement data access and governance policies, and the data officers to audit and review the datasets for compliance. You can also leverage data sharing capabilities to control and manage how data is shared.

	
Manage data access at various levels, at the data layer, the compute engine layer, the network layer, and also set customized automated data policies to ensure that you control and restrict data access to comply with the access policies.

	
Invest in the right levels of data observability to ensure you have reliable monitoring to help identify and debug data quality issues.

3.4 Manage data lake costs

One of the biggest value propositions of a cloud data lake architecture is the lower cost. The main drivers of this lower cost are :-

	
No cost to maintain datacenters and maintenance, where the cloud providers take care of this.

	
Pay for consumption model on the cloud that lets you pay for only what you consume, as opposed to having hardware around all the time.

	
Decoupled compute and storage that lets you scale your compute and storage independently, thereby ensuring that your large storage needs don’t tag along with a corresponding increase in storage costs.

This provides the flexibility for you to bring in more data and light up more scenarios on your data lake without exploding the costs. While the per-unit cost is lower on the data lake, there are some factors that do increase data lake costs that you should be aware of so you can balance business objectives with your implementation.

	
Cloud services offer lower cost because you pay for what you consume. However, this has an implicit understanding that you have the cloud resources running on demand, and you shut them down when they are not used. If you do not manage this on demand provisioning and shutting down of your cloud resources, you end up leaving them running all the time, and this consumption model might not apply in your case.

	
As we saw earlier, cloud data lake architecture has a disaggregated compute and storage design, which optimizes cost because you can scale compute and storage independently depending on your need. However, this design also needs to have awareness of the transaction costs for data transferred between services, e.g. compute transacting with storage service.

	
In a cloud architecture, there are no network costs for transactions within the cloud resources that are provisioned within the same region. Similarly, there are no costs to ingress data into the cloud from other sources, such as your on-premise systems. However, there are network costs when you transfer data across regions, or when you egress data, i.e. transfer data from the cloud to your components outside the cloud such as your on-premises systems.

	
With the promise of the data lake storage being cheap, there is an opportunity to bring in any and all kinds of data, even when you don’t have immediate use for them. At the same time, this potentially has the side effect of uncontrolled growth of data when data lake becomes a data swamp, driving up the costs as well.

	
The cloud services offer a lot of rich feature sets for data management, data durability, and performance. These features of cloud services driving up costs when chosen in an unoptimized fashion.

In this section, let us take a broader look at these factors by building a fundamental of how cloud interactions work and how this drive your costs, and also take a look at how you can optimize your costs with careful design considerations.

3.4.1 Demystifying data lake costs on the cloud

Your cloud data lake implementation primarily consists of the following key components

	
Data storage - either the data lake storage or in some cases, data warehouse where the data is stored and organized. The billing model here has two key pivots - cost of data stored, and cost of transactions.

	
Compute engine - the services where the data is processed and transformed, essentially the calculator engines. These could be big data frameworks such as Spark engines, or IaaS services, or even SaaS services. The cost component here primarily relates to the utilization of the compute, such as price per compute unit (that the compute engine defines) based on how much CPU and memory is used, price per core/hr utilized.

	
Software cost - you pay a subscription (typically per month) to use a software.

	
Network cost - the cost for transferring data over the wire, specially for data that is transferred across regions or transferred out of the cloud (egress cost). The price is typically is for data transferred (per GB).

Figure 3-11 attemps to illustrate these costs as it relates to a data lake architecture.

[image: Data lake costs]
Figure 3-11. Data lake costs

Now, these building blocks of costs can manifest themselves in different ways that impact the total cost of your data lake. E.g. while you know you are paying for data stored, the exact cost depends on how you have designed your storage system, some factors that make this storage cost variable are :-

	
Storage tier - Tiers of storage costs differently, e.g. a hot/standard tier costs more than an archive tier for data stored at rest, but it costs lesser for transactions. So data is best stored in the standard tier if its highly transacted, and in an archival tier for cold storage, i.e. for data retention purposes only without transactions like data that needs to meet a retention policy.

	
Data protection and durability features - Features such as data protection such as versioning and backup, and redundant storage features such as cross-region replication offer much higher durability for your data, however, they do come with a price tag associated for the extra copies. Given all data is not equal in your data lake, its better to use these features for your high value data.

	
Transaction costs - There are two specific transactions you need to pay attention - any networking costs, specifically associated with cross region egress or egress out of your cloud into an on-premises system, and also transaction costs for transfer of data between different services. Specifically for storage transactions, given the cost of transactions is by number of transactions, transferring the same amount of data (E.g. 1 GB) with many small files (E.g. 1 KB) would cost more than larger files (a few hundred MBs).

Building this key understanding of the cost drivers of the cloud data lake systems is necessary for you to then optimize the costs based on your needs.

3.4.2 Data Lake Cost Strategy

A good data lake cost strategy always starts with understanding the business need, architecture, data, and most importantly your customers. Figure 3-12 shows the key factors you need to understand about your data lake.

[image: Data lake cost strategy]
Figure 3-12. Data lake cost strategy

Let us now understand the key aspects of the data lake architecture and the associated strategies for cost management.

3.4.2.1 Data Lake Environments and Associated Costs

In your data lake architecture, just like your coding environments, there are different environments - dev environments for your data developers to work on, pre-production environments for end to end testing, and production environments that end up supporting your customers. You need to understand the usage and the SLAs you promise for these environments so you can configure them with the appropriate level of configurations. E.g. for your dev environments, you might not need very powerful compute cores given the kind of workloads running there are to verify functionality. Your stress testing environment might need a lot of cores because you are pushing the limits of your system, but your stress tests could run weekly and you don’t need to keep them around all the time. Your production environments need to meet your SLAs for your customers and cannot compromise on availability or performance. Similarly, knowing the nature of your jobs determines what environments need to be up and around all the time vs what can be generated on demand. E.g. the clusters for notebooks that data scientists work on could be started on demand, vs the clusters that power your critical business dashboards need to be up all the time. For on-demand clusters, having an automation in place would help spin up and shut down resources on demand. These automations are also useful for generating synthetic data on demand for your use cases instead of storing data.

Quick tip for on-demand resources

Cloud services have serverless capabilities where you can focus on submitting your job or your query without having to worry about managing resources or clusters, these are worth investigating for your on-demand jobs.

3.4.2.2 Cost Strategy Based on Data

Not all data is equivalent in your data lake, and it is important to understand the value, the reproducability, and the consumption patterns for your data for optimizing your data costs.

	
Cloud data lake storage solutions provide reservation options where if you can commit to a certain size of data (E.g. 100 TB at least), you will get a lower price point for your data. Check this out if that makes sense to you.

	
Cloud data lake storage systems provide varying tiers of data storage. Data that needs to be frequently transacted is referred to as hot data, while data that needs to be stored but not transacted frequently is referred to as cold data. For cold data, use an archive tier which costs way less for data storage, but high for transactions. The archive tiers also have a minimum retention period that you need to pay attention to. Use a standard tier for data that is highly transacted, typically referred to as hot data.

	
Cloud data lake storage systems also offer high data durability features, such as versioning - multiple copies of data are stored so you can protect against data corruption, your data can be replicated across multiple regions for resilience to disasters, and your data can be stored in hardened back up systems to offer data protection. These features are ideal for critical data sets, but not necessary for non-critical data sets where you can tolerate corruption or deletion.

	
Cloud data storage systems have data retention policies that you can implement so data is deleted automatically after a certain period. It is common practice to take daily or weekly or <insert your favorite periodicity> snapshots of data from various sources to be loaded into your data lake. This could easily spike up your costs and also end up making your data lake a data swamp. Setting retention policies knowing the lifetime of your data ensure that your data lake could be decluttered.

3.4.2.3 Transactions and its Impact on Costs

As we saw above, the transaction costs, whether it is network egress costs or data storage transaction costs in most cases serve as surprises to the data lake consumer, and is most often ignored. The catch is that these transaction costs are also the hardest to model. There are two factors that you need to pay attention for transactions :-

	
The number of transactions

	
The data transferred

The best way to understand and optimize your transaction costs is to run a scaled proof of concept that is representative of your production workloads. Additionally, it is also best practice to ensure that you avoid anti-patterns such as small files, and make them at least a few hundred MB per file. In addition to saving costs, this also improves the scalability and performance of your data lake solution. We will discuss this in more detail in Chapter 4. While this might not be feasible for all data in the data lake, you could address this for data in the enriched and curated zone. E.g. IoT data tends to be a few bytes or a few KB and stored in the raw data lake zone. However, a conscious step in data preparation could be to aggregate these data into a larger file to optimize for transactions.

Summary

In this chapter, we dove deep into the implementation details of a cloud data lake. We first took a look at how to start planning the implementation of your cloud data lake. We then talked about the heart of the data lake, the data - strategies to organize and manage data into zones based on the natural lifecycle of data. Next, we had an overview of data governance to help manage the discoverability, access management, and sharing constraints of data in the data lake. We finally addressed the factors that contributed to the data lake costs, and strategize to optimize the costs. My goal for this chapter is help you build an understanding of the basic concepts of designing a data lake architecture. With this understanding, you will be able to design a data lake architecture by picking up the right cloud offerings that suit your needs, and also do the implementation with the right configurations. If you don’t know what the right configurations are, refer to this chapter, and frame your requirements to the cloud service provider or the Independent Software Vendor. In the next two chapters, I will talk about the concepts and principles to scale your data lake for scale and performance respectively.

Chapter 4. Scalable Data Lakes

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at jleonard@oreilly.com.

If you change the way you look at things, the things you look at change.

Wayne Dyer

After reading the first three chapters, you have all that you need to get your data lake architecture up and running on the cloud, and at a reasonable cost profile for your organization. Theoretically, you also have the first set of use cases and scenarios successfully running in production. Your data lake is very successful that the demand for more scenarios is now higher, and you are busy serving the needs of your new customers. Your business is booming and your data estate is growing rapidly. As they say in business, going from 0 to 1 is a different challenge than going from 1 to 100 and from 100 to 1000. To ensure your design is also scalable and continues to perform as your data and the use cases grow, its important to realize the various factors that impact the scale and performance of your data lake. Contrary to popular opinion, scale and performance are not always a trade off with costs, but they very much go hand in hand together. In this chapter, we will take a closer look at these considerations and also strategies to optimize your data lake for scale, while continuing to optimize for costs. Once again, we will be leveraging Klodars Corporation, a fictitious organization to illustrate our strategies. We will build on these fundamentals to focus on performance in Chapter 5.

4.1 A sneak peek into scalability

Scale and performance are terms you have likely seen sprinkled generously into product pitches and marketing materials. What does this actually mean, and why is this important? To understand this better, let us first look at the definitions of scalability. In Chapter 5, we will dive deep into the performance aspects.

4.1.1 What is Scalability

The best definition of scalability that I have ever come across is in Werner Vogel’s blog. Werner Vogel was the CTO of Amazon, which hosts one of the largest hyperscale systems on the planet. According to his blog, the definition of scalability goes like this. A service is said to be scalable if when we increase the resources in a system, it results in increased performance in a manner proportional to resources added. An always-on service is said to be scalable if adding resources to facilitate redundancy does not result in a loss of performance.

This concept of scale is very important because as your needs and usage grows, it is important to have an architecture that is able to guarantee the same experience to your customers without degradation in performance. To illustrate this better, we will apply the principles of scale to something all of us can relate to - making sandwiches.

4.1.2 Scale in our day to day life

Let us take an example of scalability in action. Let us say it takes you a total of 5 minutes to pack one peanut butter jelly sandwich for lunch, which consists of the following steps, as shown in Figure 4-1.

	
Toast 2 pieces of bread

	
Spread peanut butter on one side

	
Spread jelly on the other side

	
Assemble the sandwich

	
Bag the sandwich

[image: Steps to make a peanut butter jelly sandwich]
Figure 4-1. Steps to make a peanut butter jelly sandwich

Simple enough and no sweat right? Now, let us say you want to make 100 peanut butter jelly sandwiches. The obvious next step is you invite more people to help. Now if one sandwich takes 5 minutes to make, and you have a 5 member team to make the 100 sandwiches, its natural for you think that it would take a total of 100 minutes to make these 100 sandwiches, assuming an equal distribution of labor and each person makes 20 sandwiches.

Note

In this particular example, performance is measured by the output in terms of unit of work done (1 sandwich) and the time taken for that output (average time to make 1 sandwich). Scalability is understanding how much this average time is preserved as the unit of work done increases.

However, reality could be very different in terms of how you choose to implement this with 5 people. Lets take a look at two approaches.

	
End to end execution approach

In this approach, each person follows the steps above to make a single sandwich, then proceeds to make the next sandwich, until they complete 5 sandwiches. This is illustrated in Figure 4-2.

[image: End to end execution]
Figure 4-2. End to end execution

	
Assembly line approach

In this approach, you have a division of labor, where you distribute the steps across to different people, e.g. the first person toasts the bread, the second person applies peanut butter, the third person applies the jam, and so on, as shown in Figure 4-3.

[image: Assembly line]
Figure 4-3. Assembly line

As you have probably guessed by now, the assembly line approach is more efficient than the end to end execution approach. But what exactly makes it more efficient? To understand this, we first need to understand the fundamental concepts of what impacts scaling.

	
Resources - The materials that are available to make the sandwich, in this case, the bread, the peanut butter, and the jelly are the more obvious resources. There are also other resources such as the toaster and knives that are other resources required to make the sandwich.

	
Task - The set of steps that are followed to produce the output, in this case, the five steps required to make the sandwich.

	
Workers - The components that perform the actual execution of the work, in this case, the people who execute of the task of making the sandwich.

	
Output - The outcome of the job that signals that the work is complete, in this case, the sandwich.

The processes utilize the resources to execute the task that produces the output. How effectively these come together impacts the performance and scalability of the process. In the Table 4-1, we will take a look at how the assembly line approach becomes more efficient than the end to end execution approach.

Also, do note that in the end to end execution approach, you are going to observe that some sandwiches take a shorter time to complete than the others. For example, when five people are reaching for the toaster and one person gets it, that particular sandwich would be done sooner than the others who have to wait for the toaster to be ready. So if you were to measure performance, you would see that the time taken to make a sandwich at the 50th percentile might be acceptable, vs the time taken at the 75th and 99th percentiles might be a lot higher.

Table 4-1. Comparision of the approaches

	Area
	End to end execution approach
	Assembly line approach

	Contention for resources

	All the workers end up contending for the same set of resources (toaster, jar of peanut butter etc)

	The contention is minimal since the different workers need different resources

	Flexibility in workers to thread mapping

	Low - since the workers perform all the tasks, the allocation is uniform to all tasks

	High - if some tasks need more workers than others, a quick shift is possible

	Impact of adding/removing resources

	The impact of adding resources might not make a big difference depending on which bottleneck is in the system.However, adding the right resources would speed up the execution. E.g. if you have 5 toasters instead of 1 toaster, the workers can toast the bread really fast.

	The flexibility of resource allocation allows for increase in performance when more resources are available.

It would be fair to conclude that the assembly line approach is more scalable than the end to end execution approach in making the sandwich. While the benefits of this scalability is not conspicuous in your normal day, i.e. where you may pack 3 or 4 sandwiches, the difference is really visible when this job to be done drastically increases, to say making 3000 or 4000 sandwiches.

4.1.3 Scalability in Data Lake Architectures

In data lake architectures, as we saw in the earlier chapters, there are resources available to us from the cloud - the compute, storage, and networking resources. Additionally, there are also two key factors that we own and control to best leverage the resources available to us - the processing job which is the code we write, and the data itself in terms of how we get to store and organize for processing. This is illustrated in Figure 4-4.

[image: Data lake resources]
Figure 4-4. Data lake resources

They key resources available to us in a cloud data lake architecture are:-

	
Compute resources - The compute resources available to you from the cloud are primarily CPU cores and memory available for your data processing needs. Additionally, there is software running on these cores, primarily the software you install in the case of IaaS services, and the software available to you in terms of PaaS and SaaS services that are designed to manipulate and optimize the utilization of the CPU and memory resources. A key understanding of how this works would be critical to building your scalable solution. Cloud service providers offer capabilities such as auto-scaling, where as the compute needs of your solution increases, your cloud services can automatically add more compute without you having to manage the resources. Additionally, there are also serverless components such as Google’s BigQuery, that completely abstract the resourcing aspects of compute and storage from the user, and allow them to focus solely on their core business scenarios. Serverless components tend to cost more compared to the tunable IaaS services, but offer built in optimizations and tuning that lets you focus on your core scenarios.

	
Networking resources - Think of your networking resource as a metaphorical cable that can send data back and forth. These are implemented either on networking hardware or in other cases, software defined networking.

	
Storage resources - Cloud data lake storage systems provide an elastic distributed storage system that provides you with space to store data (in disks, in flash storage, and also in tape drives depending on the tier of data you operate on), along with also computational power to perform storage transactions, and networking power to do data transfer over the wire to other resources inside and outside of your cloud provider.

There are key pieces that you control - the code you write, and the way your data is stored and organized that largely influences how effectively the resources are utilized, and how scalable and performant your solution is. In the next section, we will take a deeper look at how big data processing works on a data lake architecture, and the factors that impact the scalability and performance of your data lake solution.

Understanding and learning the factors that help scale the system is important because of two key factors :-

	
The traffic patterns on the data lake tend to be highly variable and bursty in most cases, so scaling up and down are key capabilities that need to be factored in your data lake architecture.

	
Understanding the bottlenecks give you insights into what resources need to be scaled up or down, otherwise you run the risk of adding the wrong resources without moving the needle on the scalability of the solution.

Note

Why do I need to worry about scalability? My solution runs just fine today

Speaking of 10x growth, I often see customers underestimate the value and the opportunities that a data lake architecture helps unlock, and optimize their time and efforts for the short term maxima. If you are thinking along the lines of these statements, “I just need to move my data warehouse now, I don’t see any other data being important as yet,” or “My first priority is to get whatever we are doing on the cloud, let me worry about the rest later,” or “I have a 1 year timeline to move my data to the cloud, I can’t afford to think about anything else than my current workloads,” let me assure you of a few things :-

	
As with any software development efforts, thinking ahead of future scenarios helps you avoid technical debt of having to rearchitect your solutions completely when new scenarios are enabled.

	
Futureproofing your design is not as hard as you think, its more about diligence than effort, which will set you up for success.

	
According to a study published by the World Economic Forum, digital transformation is expected to add $100 trillion to the world economy by 2025, and platform driven interactions will enable to drive at least two-thirds of this $100 trillion growth. It is only a matter of time before these sceanrios are unlocked.

4.2 Internals of Data Lake Processing systems

As we see in Figure 4-4, the key operations involved in big data processing are:

	
Ingest - getting raw data from various sources into a data lake storage.

	
Prep - prepare the raw data to generate enriched data, by applying a schema on demand, removing or fixing erraneous data, and optimizing data formats.

	
Curate - generate curated data with high value density, by aggregating, filtering, and other processing of enriched data.

	
Consume - consume your data through dasboards, queries, or data science related explorations to name a few.

In this particular chapter, we will focus on the most common use cases of the big data lake, which is batch processing. In batch processing, data is ingested into the data lake in a scheduled, periodic fashion via data copies. This raw data is then prepared and enriched, and then further curated with ELT/ETL processing engines. Apache Spark and Apache Hadoop are the most common processing that is leveraged for the prep and curate phases. These Spark jobs also run in a scheduled fashion after the ingestion or data copy is completed.

There are other use cases such as real time processing engines, where data is continuously ingested into the data lake, and further prepared and curated. While the principles of scale that we will discuss in batch processing largely apply to real time processing pipelines as well, there are additional constraints into the design given the continous nature of the processing. We will not get into depth on the non-batch processing systems in this book, given the most common use cases are pertinent to batch processing. In this chapter, we will also not dive deep into the consumption use cases for business intelligence queries and data science. There are plenty of resources available to deep dive on querying patterns and data science.

In this book, we will dive into the two specific parts of big data processing that are unique to the cloud data lake architecture:

	
Data copy - This involves moving data as is from one system to another system, e.g. ingesting data into the data lake from external sources, and copying data from one storage system to another within the cloud service such as loading data from a data lake into a data warehouse. This is the most common form of ingestion used in big data processing systems.

	
ETL/ELT processing - This involves an input and output dataset, where input data is read, transformed via filtering, aggregation, and other operations to generate the output data sets. The generation of data in the enriched and curated data sets fall in this category. Hadoop and Spark are the most popular processing engines, with Spark leading the area here supporting batch, realtime and streaming operations with the same architecture. This is the most common form of data prep and data curation stages of big data processing.

4.2.1 Data copy Internals

There are many ways that data copy operations are performed. There are PaaS services that cloud providers and Independent Software Vendors (ISVs) offer that copy data from one system to another in an optimized fashion. There are also tools and SDKs that you can leverage to copy data, such as using the cloud provider’s portal to upload or download data.

4.2.1.1 Components of a Data Copy Solution

The very simplified components involved in data copy is presented in Figure 4-5.

[image: Data Copy Internals]
Figure 4-5. Data Copy Internals

The data copy tool has two main components in a simplified form

	
Data copy orchestrator - which understands the work to be done (e.g. how many files need to be copied from the source) and leverages the compute resources available to distribute the copy job across different workers.

	
Data copy workers - these are units of compute that accept work from the orchestrator and perform the copy operations from source to destination.

You have a knob that specifies the number of data copy workers that you can provide to the copy job - either directly by specifying the maximum number of workers or by specifying a proxy value that the data copy orchestrator has specified as a configurable value.

4.2.1.2 Understanding resource utilization of a data copy job

The bottlenecks that impact the scalability and performance of your data copy are :-

	
The number and size of the files/objects that need to be copied.

The granularity of the data copy job is at the file/object level in your storage system. A large file could be chunked up to do a parallel copy, but you cannot combine multiple files into a single copy work. If you have a lot of small files to be copied, you can expect this to take a long time because the listing operation for the operator could take longer, and the small files would make it so that in a single copy work unit, the amount of data transferred is low not utilizing your available bandwidth resource to the maximum possible extent.

	
Compute capacity of your data copy tool

If you configure your data copy tool to have enough compute resources, then you can launch more workers effectively making many simultaneous copy operations. On the contrary, not enough compute resources makes the number of available workers a bottleneck on your system.

	
Network capacity available for the copy

Specially for copying data across the cloud boundary, the amount of networking capacity you have controls the pipe that is used for the data transfer. Ensure that you have a high bandwidth network provisioned. Please note that when you are copying or transacting between cloud services of the same provider, you don’t need to provision or leverage your network, the cloud services have their own network to accomplish this.

	
Cross region data copy

When you make data copies across regions, it has to travel a longer distance over the network and this makes the data copy across regions much slower, and even time out in some cases causing jobs to fail.

4.2.2 ELT/ETL Processing Internals

If you need a refresher on how Big Data analytics engines work, I would recommend revisiting “2.2.3 Big Data Analytics Engines”, and specifically the section on spark in “2.2.3.2 Apache Spark”.

ELT/ETL processes primarily work on unstructured, structured, or semi-structured data, apply a schema on demand, and transform this data via filtering, aggregations, and other processing to generate structured data in a tabular format. Apache Hadoop and Apache Spark are the most common processing engines that fall in this category. We will take a deeper look at the internals of Apache Spark in this section, and the concepts at a higher level largely apply to Apache Hadoop with subtle nuances. Apache Hadoop, while it can run on the cloud, was designed to run on-premises on HDFS systems, and Apache Spark is much closer to the cloud architecture. Apache Spark is also largely the defacto processing engine due to its consistency across batch, streaming, and interactive data pipelines, so we will focus deeply on Spark in this section.

You would run an Apache Spark job in a cluster that you can create in the following ways :-

	
Provision IaaS compute resources and install the Apache Spark distribution either from open source Apache Spark, or from an Independent Software Vendor (ISV) such as Cloudera or Hortonworks. Hortonworks was acquired by Cloudera in 2019, so talk to your ISV about the future of these distributions in terms of development and support.

	
Provision PaaS services where you can get a cluster that comes with Spark already installed and ready for you to use from vendors such as Databricks, or from cloud service providers such as AWS EMR or Azure Synapse Analytics.

Apache Spark leverages a distributed computing architecture, where there is a central controller/coordinator, also called as the driver that orchestrates the execution, and multiple executors or worker units that perform a specific task that contribute to the application. Drawing an analogy to home construction, you can think of the Apache Spark driver as the general contractor, and the executors as skilled workers such as plumbers and electricians. We will now go over a few key concepts that are fundamental to Apache Spark.

4.2.2.1 Components of an Apache Spark application

From a data developer’s perspective, they write Spark code and submit that code to a Spark cluster, they then get results back when the execution is done. Behind the screen, the user code is executed as a Spark application and is divided into the following components.

	
Driver - The driver is the central coordinator of the Spark process and is the only component that understands the user code. The driver has two main components - define the breakdown of the jobs, tasks, and executors needed to execute the program, and coordinate the assignment of these into various available parts of the Spark cluster. The driver takes the help of the cluster manager to find the resources.

	
Executors - The executors are the components that actually perform the computation, the driver communicates the code, as well as the data set that the executor needs to work on.

	
Jobs, stages, and tasks - An Apache Spark application is internally translated into an execution plan inside your Spark cluster. This execution plan is represented as a DAG (Directed Acyclic Graph) with a set of nodes representing jobs, which in turn consists of stages that could have depedencies on each other. These stages are then broken down into tasks, which are the actual units of execution, where work is done. This is shown in Figure 4-6. The amount of executors assigned for a task depends on the amount of data that needs to be crunched.

[image: Spark Job Internals]
Figure 4-6. Spark Job Internals

4.2.2.2 Understanding resource utilization of a Spark job

As you can see, there are two factors that contribute to the resource utilization of a Spark code

	
The code - or the complexity of the operations that need to be performed.

	
The data - the volume and organization of the data that needs to be crunched.

The bottlenecks that impact the scalability of your data copy are :-

	
Cluster form factor and memory

The amount of compute and memory that you provision for your Spark job heavily impacts the performance of the job. When you have a compute intensive application with a lot of data transformations in question, increasing the number of compute cores would provide for more executors to accomplish the tasks, resulting in overall improvement of the job. Similarly, when you have a complex transformation in question, if you have more memory available, the temporary datasets (RDDs) could be persisted in memory minimizing retrieval times from slower persistent storage solutions, such as the object store. Apache Spark vendors also enable caches that help store frequently used datasets in memory.

	
The number and size of the files/objects that need to be operated on

The granularity of the job execution is at the file/object level in your storage system. Similar to the data copy job, if you have a lot of small files to be read to perform your Apache Spark job, you can expect this to take a long time because the listing operation at the driver would take longer, and the overhead of reading a file (i.e. doing access checks and other metadata) has only a small return in terms of actual data read or written. On the other hand however, if you crank up the number of Spark executors, you can parallelize the writes a lot faster and complete the job sooner. This is a healthy conflict because while writes are more expensive and be optimized by writing many small files, the subsequent reads get expensive. To minimize this downstream impact, Apache Spark provides compaction utilities that can be used to compact these small files into one large file after the job completes.

	
Data organization

Processing in Apache Spark essentially involves a lot of filtering or selective data retrieval operations for reads. Organizing your data in a way that enables faster retrieval of the data in question could make a huge difference in your job performance. Columnar data formats such as Parquet offer a huge benefit here, we will take a look at this in detail in the next section. In addition, effectively partitioning your data so that files/objects with similar content are organized together also immensely helps optimize for quick access, requiring lesser compute resources, and hence scalability of your solution.

	
Network capacity and regional boundaries

Similar to the data copy scenario, the network capacity and cross region boundaries heavily impact your performance and scalability.

4.2.3 A Note on Other Interactive queries

Apache Spark is an an open source technology that largely address batch, interactive, and real time interactions with the data lake. There are also other interactive query technologies that cloud data warehouses offer, which are optimized for a certain format of data. These formats are propreitary, and both the compute and storage systems are optimized for the formats. We are not doing a deep dive on them in this book. However, they conceptually follow the similar model of Spark Internals at a high level.

4.3 Considerations for Scalable Data Lake solutions

Let me start with a big disclaimer saying there is no magic bullet or a 12 step process that you can follow to the T to make your data lake performant, reliable, or scalable. However, there are set of factors that contribute to the scalability and performance of your solution that you can rely upon to have a robust implementation of your data lake. Think of these factors as knobs that you can tweak to understand what exactly drives your optimal performance.

If you have historical data from previous years, or from your analogous on-premises implementation that you can rely upon, you could use those as a proxy for your peak scale characteristics. However, no worries if that is not available, you could run a scaled proof of concept, which essentially is an imitation of your work load in a simulated environment to understand the various factors that impact your performance, and you can see how they increase as the load on your system increases. E.g. take your most complex job or your largest data set to run your proof of concept on the data lake, and double that complexity or data size or both to analyze the impact on your resources.

In this section, we will go over some of the key factors that impact the scale and performance of your system, and understand these knobs in more detail.

4.3.1 Pick the right cloud offerings

As we saw in the earlier section in this chapter, you have plenty of choices with your cloud offerings when it comes to your big data solutions. You can decide on composing your big data solution with IaaS, PaaS, or SaaS services, either all on one cloud provider, or across cloud providers (multi-cloud solution), or with a mix of on-premises and cloud environments (hybrid cloud solution), and on one region or multiple regions. Let us take a look at the impact of some of these choices on the overall performance and scalability of your solution.

4.3.1.1 Hybrid and multi-cloud solutions

Most organizations today leverage a multi-cloud approach, where they have invested in architectures that span across two or more cloud providers. Most organizations also have hybrid cloud architectures where they have investments across private clouds, on-premise systems, as well as public cloud providers.

There could be many motivations that drive a multi-cloud or a hybrid cloud architecture :-

	
Migration of an on-premises platform to the cloud in phases.

	
Leveraging the cloud for newer scenarios and bringing back the insights to the legacy platform on-premises for backwards compatibility reasons.

	
Minimize vendor lock-in on a single cloud provider, the equivalent of not putting all eggs in one basket.

	
Mergers and acquisitions where different parts of the organization have their infrastucture on different clouds.

	
There are specific requirements such as data privacy or compliance that require a part of data assets to stay on premises and not on the cloud.

	
Data mesh architecture with the flexibility of picking the cloud providers made by the individual teams/business units within the organization.

There are also advantages to a multi-cloud architecture, such as

	
Flexibility of choice to the business units.

	
Lower cost, some services could be cheaper on one cloud service compared to others.

However, when it comes to performance and scale, as well as cost of the solution, there are some traps you could get into when you have a multi-cloud or a hybrid cloud architecture :-

	
Moving data out of the cloud is not optimal in terms of performance, and also expensive. If you have a scenario where you are moving data back and forth across different cloud solutions, you would see that impacting the overall performance, and hence scalability of the solution would be impacted.

	
While the fundamental concepts are similar across the services offered by different cloud providers, it also requires deep skill sets into the nuances and best practices for implementation. Lack of this skillset could risk that you might not have an optimal solution across all your environments.

	
When you have scenarios where you need low latency, secure, direct connections to the cloud, you need to provision specialized features such as ExpressRoute from Azure or AWS Direct Connect, you would have to provision multiple solutions to move data from your on-premise systems, thereby increasing your cost and also your data transfers.

If you need to have a hybrid or a multi-cloud solution, pay attention to the data tansfers, and ideally ensure that the data transfers across these multiple environments are minimal and carefully thought through.

4.3.1.2 IaaS vs PaaS vs SaaS solutions

Your big data solution can be composed of a mix of IaaS, PaaS, or SaaS solutions. E.g. here is a difference between the choices for one scenario, of say running a Spark notebook for your data scientists.

	
IaaS solution - In this solution, you would first provision virtual machine resources from the cloud provider, install the distribution of the software, either from open source Apache Foundation, or from an ISV such as Cloudera, and enable the notebook access for your data scientists. You have end to end control of the solution, however, you also need the relevant skillsets to optimize for performance and scale. Typically, enterprises follow this approach when they have engineers who can tune the open source software for thier needs by building on them, and have their custom version of the open source tools, such as Apache Hadoop or Apache Spark.

	
PaaS solution - In this solution, you will provision clusters from the cloud provider that offer you the right software environment (along with managing updates). You will be able to specify the resources you need in terms of CPU, memory, and storage without having to understand the deep mechanics of how big data processing engines work. Most organizations follow this approach.

	
SaaS solution - In this solution, you will subscribe to a SaaS service, such as a data warehouse and a notebook service, connec them and start using them right away. While this works great for your getting started solution, the scalability and performance of your solution has a ceiling of the scalability of the SaaS solution itself. The SaaS solutions are getting better and better with time, so you need to understand how much you need to scale and verify that with the SaaS provider, and confirm with a proof of concept as well.

To summarize, when you think of choosing the IaaS, SaaS, or PaaS approach, use the table Table 4-2 and make the best choice.

Table 4-2. Comparision of IaaS, PaaS, and SaaS solutions

	Type of service
	Getting started
	Flexibility to customize solution
	Control over resources

	IaaS services

	High effort - need to manage software, updates etc

	High flexibility since you own the software stack

	Higher control since you have control over the infrastructure level details of the service

	PaaS service

	High effort, lower than IaaS services

	Medium flexibility - as much as the PaaS service provider exposes the controls

	Medium control - higher than IaaS solutions, lower than SaaS solutions

	SaaS services

	Low effort, you can get started with your business problem right away almost

	Low - the ease of use comes from limited flexibility. Leverage extensibility models to build on top of the SaaS service

	Low - the Saas services are usually multi-tenant (resources shared by different customers) and the resource level details are not exposed to the customer.

4.3.1.3 Cloud offerings for Klodars Corporation

Klodars Corporation planned to implement their solution as a hybrid solution, with their legacy component running on-premises and their data analytics components running on the cloud. They picked PaaS services for their big data cluster and data lake storage, running Apache Spark, and leveraged a SaaS service for their data warehouse and dashboarding component. They understood the impact of networking resources between their on-premises solution and their cloud provider on the performance of their solution, and ensured that they planned for the right capacity with their cloud provider. They also ran a proof of concept of their data processing workload of one of their data and compute intensive scenarios, the product recommendation and sales projections, and ensured that they picked a big data cluster with the right set of resources.

They also segmented their clusters - one for sales scenarios, one for marketing scenarios, and one for product scenarios, to ensure that a peak workload on one does not impact the performance of the others. to promote sharing of data and insights, the data scientists had access to all the data from product, sales, and marketing for their exploratory analysis. However, they also provisioned separate clusters for their data scientists and set a limit for the resources so they had guardrails against spurious jobs that could hog resources. You can find an overview of this implementation in Figure 4-7.

[image: Data Lake Implementation at Klodars Corporation]
Figure 4-7. Data Lake Implementation at Klodars Corporation

4.3.2 Plan for peak capacity

Regardless of the type of solution you choose, planning for capacity and understanding the path to acquiring more capacity when you have additional demand is key to the cloud data lake solution. Capacity planning refers to ability to predict your demand over time and ensure that you are equipped with the right resources to meet that demand, and make the right business decisions if that is not the case.

The very first step is to forecase the demand, this can be accomplished in the following way :-

	
Understand your business need and the SLAs you need to offer to your customers. E.g. if the last batch of your data arrives at 10 PM, and your promise to your customers is that they would see a refreshed dashboard by 8 AM, then you have a window of 10 hours to do your processing, maybe 8 hours if you would like to leave a buffer.

	
Understand your resource utilization on the cloud. Most cloud providers offer monitoring and observability solutions that you can leverage to understand how much resources you are utilizing. E.g. if you have a cluster with 4 vCPUs and 1 GB of memory, and you observe that your workload utilizes 80% of CPU and 20% of memory overall, then you know you could go to a different SKU or cluster type that has higher CPU and lower memory, or you could take advantage of the memory to cache some results with optimizations so you can reduce the load on the CPU.

	
Plan for peak demand and peak utilization. The big advantage of moving to the cloud is to take advantage of the elasticity that cloud offers. At the same time, it is always better to have a plan for your peak demand on exactly how you would plan to scale your resources. E.g. Your day today workloads are supported by a cluster that has 4 vCPUs and 1 GB of memory. When you anticipate a sudden increase in load, either because its the budget closing season if you are running financial services, or you are preparing for holiday demand if you are a retail industry, what would be your plan, would you increase the resources on your existing clusters, or are your jobs segmented enough that you would add additional clusters on demand? If you need to bring more data during this time from your on-premise systems, have you planned for the appropriate burst in networking capacity as well?

There are two scaling strategies you could have - horizontal and vertical scaling.
Horizontal scaling, also referred to as scaling out, is accomplished by scoping a unit of scale (e.g. virtual machine or cluster) and adding more of those units of scale. Your application would need to be aware of this scale unit as well. Vertical scaling, also referred to as scaling up, is accomplished by keeping the unit of scale as is, and adding more resources (E.g. CPUs or memory) on demand. Either strategy works well, as long as you are aware of the impact on your business need, your SLAs, and your technical implementation.

In the table Table 4-3, you will see the set of factors to monitor and evaluate for capacity planning. In addition, also look at reservation models available, where you can get reserved capacity for critical production workloads to run without interfering with other workloads.

If you leverage autoscaling capabilities on your cluster or serverless offerings from your cloud provider, a lot of these are automatically handled for you.

Table 4-3. Factors to consider for capacity planning

	Component
	Factors to consider

	IaaS Compute

	vCPU (cores), memory, SKUs (type of VM), caching available, disk size (GB/TB) and transactions (TPS)

	PaaS Compute

	cluster size, vCPU (core) when available, billable units published by the PaaS provider

	Storage

	data size (TB/PB), transactions (TPS), tier of storage (flash, disks, tape drives in order of high to low performance) depending on performance.

	Data warehouse

	SKUs - watch for the compute, storage, and transactions

	Networking

	Ingress and egress, tier (standard/premium), gateways with private networks

4.3.3 Data formats

The data format you choose plays a critical role in the performance and scalability of your data lake. This is often ignored because in structured data storage systems (databases or data warehouses), this was an assumption that was taken for granted. The data was stored in a format that was optimal for the transaction patterns of the database/data warehouse service. However, given the myriad data processing applications that run on top of the data lake storage, and the premise that the same data could be used across the multiple engines, this onus falls on the big data architects and the developers to pick the right format for their scenarios. However, the best part of this is, once you find the optimal format, you would find that your solution offers high performance and scale, along with lowered cost of your total solution. Given the rise of the data lakehouse and the ubiquity of technologies such as Apache Spark for batch, streaming, and interactive computing, Apache Parquet and formats based on Parquet such as Delta Lake and Apache Iceberg are being adopted widely as optimal formats for the data lake solution. We will dive deep into this in Chapter 6.

Summary

In this section, we dove deep into the scalability characteristics of the cloud data lake architecture and how closely this is tied to performance. We went over the difference of a big data architecture, with a disaggregated compute and storage model compared to a colocated tightly coupled architecture, and the ramifications of this disaggregation on scale. We also went into the various considerations of this cloud data lake architecture that impacts the scale - picking the right cloud offerings, planning for capacity, tuning the data formats and data organization to match the query patterns. These are considerations that you need to understand for your scenarios to effectively tune your data lake implementation to scale 10x. In Chapter 5, we will build on these fundamental concepts of scale to optimize for performance.

Chapter 5. Optimizing Cloud Data Lake Architectures for Performance

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at jleonard@oreilly.com.

Simplicity is the ultimate sophistication.

Leonoardo da Vinci

Performance in its simplest terms can be defined as the timeliness of work done. Having said that, this is probably one of the most loaded terms when it comes to cloud services, simply because there is no single measure for performance. In this chapter, we will peel back the layers of the onion that is called performance, building a good understanding of what performance means, the various dimensions associated with measuring performance when it comes to a cloud data lake, and then dive into strategies that help optimize and tune your cloud data lake for the best performance. We will also leverage Klodars Corporation to illustrate these concepts and strategies.

5.1 Basics of Measuring Performance

When I say performance, I can say with a certain degree of confidence that you are assuming something related to speed - either a runner crossing the finish line with a personal record, or a dancer successfully completing their choreography on stage. The common goal across the two is that strive to successfully complete their tasks and achieved a desired outcome, meeting or exceeding the spectators’ expectations. In a similar vein, in a cloud data lake, performance refers to the process of setting targets for the tasks to be done, and ensuring that the tasks are completed within the set targets.

The performance of a task has two aspects to it, and any measure of performance needs to incorporate the flavor of these two elements.

	
Response time - How long did it take for the task to be completed?

	
Throughput - How much output was produced.

Let us take the same example of making sandwiches that we saw in “4.1.2 Scale in our day to day life”. In this section, we saw two architectures for making sandwiches - End to end execution approach as shown in Figure 5-1, and assembly line approach as shown in Figure 5-2. Now, let us take these examples and try to measure the performance.

[image: End to end execution approach to making sandwiches]
Figure 5-1. End to end execution approach to making sandwiches

[image: Assembly line]
Figure 5-2. Assembly line

5.1.1 Goals and metrics for performance

As I said, the performance depends on two factors - the response time, and throughput. To measure performance, we need to set a goal. In this example, the goal is to make 5 sandwiches. Next up, we need to identify a set of measures that are relatively easy to measure. For the purpose of simplicity, we will also assume that all the people have the same speed of working, and there is no transition time between tasks.

Variable measures - The measures below are variables, i.e. the things that you can tune or change by adding or removing.

	
Number of workers = 5

	
Number of toasters = 1 toaster with space for 4 pieces of bread

	
Number of jars of peanut butter = 1

	
Number of jars of jelly = 1

	
Number of bags of bread = 1

	
Number of bags = 5 (for the number of sandwiches needed)

Constant measures - The measures that don’t change and stay relatively constant as you change the variable measures. In this example, the following lists shows the time it takes for each step to be completed.

	
Step 1, toast the bread - 30 seconds

	
Step 2, smear peanut butter for 1 sandwich - 5 seconds

	
Step 3, smear jelly for 1 sandwich - 5 seconds

	
Step 4, put them together - 1 second

	
Step 5, bag them - 4 seconds

Given that there are limited resources, there will be scenarios where one person would need to wait for the resources to be freed before performing the task, so you would find that the each of the 5 sandwiches will be completed at different times.

Now, now, are you wondering if the pages from a recipe book are accidentally added to this book? If yes, fear not. Similar to the example of toasters and jars of jelly in sandwich making, in a cloud data lake architecture, there are components of storage, networking, and compute that are similar to the toasters or the peanut butters, and they take a certain amount of time to perform an action that contributes to your big data processing scenarios. By both optimizing this time taken to perform the action, as well as controlling the units of these components, you can optimize the cloud data lake performance overall. My goal is to explain these concepts in the context of sandwich making that is easy to visualize, and then apply the concepts in the context of cloud data lake architectures.

5.1.2 Measuring performance

Let us now apply the variables defined to understand how much time it takes to complete making the sandwiches.

In the end to end execution method, one person does all the tasks required in a sequential order, in order to make the sandwich. Let us now break down how the sandwich making will work. Person 1 and Person 2 will be able to use the toaster from the time our metaphorical stop watch begins at zero, but the others have to wait for the toaster. Similary, after the toasting is done, Person 1 will proceed to spread peanut butter from the jar, but Person 2 must wait for them to finish, and so on.

Let us say that everyone starts at Time 00:00 (minute and second, pick the hour of your choice), Table 5-1 illustrates the time taken to complete the sandwiches.

Table 5-1. Time taken to make the sandwiches in the end to end execution approach

	Sandwich
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Total time taken since 00:00

	1

	00:00 - 00:30

	00:30 - 00:35

	00:35 - 00:40

	00:40 - 00:41

	00:41 - 00:45

	45 seconds

	2

	00:00 - 00:30

	00:35 - 00:40

	00:40 - 00:45

	00:45 - 00:46

	00:46 - 00:50

	50 seconds

	3

	00:30 - 01:00

	01:00 - 01:05

	01:05 - 01:10

	01:10 - 01:11

	01:11 - 01:15

	75 seconds

	4

	00:30 - 01:00

	01:05 - 01:10

	01:10 - 01:15

	01:15 - 01:16

	01:16 - 01:20

	80 seconds

	5

	01:00 - 01:30

	01:30 - 01:35

	01:35 - 01:40

	01:40 - 01:41

	01:41 - 01:45

	105 seconds

In the assembly line method, we already see that there is a different model in place and the time taken would be different, where each person does exactly one task, and then hands over the sandwich to the next person forming an assembly line. In this case, when the first person toasts the bread for two sandwiches, they move on to toast the next set of bread loaves, while the bread of the first two sandwiches are passed off to the second and third persons, who smear the peanut butter and jelly respectively at the same time. Let us take a look at how this model impacts the performance.

Table 5-2. Time taken to make the sandwiches in the assembly line approach

	Sandwich
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Total time taken since 00:00

	1

	00:00 - 00:30

	00:30 - 00:35

	00:35 - 00:40

	00:40 - 00:41

	00:41 - 00:45

	45 seconds

	2

	00:00 - 00:30

	00:35 - 00:40

	00:40 - 00:45

	00:41 - 00:42

	00:42 - 00:46

	46 seconds

	3

	00:30 - 01:00

	01:00 - 01:05

	01:05 - 01:10

	01:10 - 01:11

	01:11 - 01:15

	75 seconds

	4

	00:30 - 01:00

	01:05 - 01:10

	01:10 - 01:15

	01:11 - 01:12

	01:12 - 01:16

	76 seconds

	5

	01:00 - 01:30

	01:30 - 01:35

	01:35 - 01:40

	01:40 - 01:41

	01:41 - 01:45

	105 seconds

As I mentioned earlier, performance is not a singular measure. In this set up, the time taken to make all the sandwiches is 105 seconds in both cases. However, to measure the performance characteristics, we will need to look at what the 60th, and 80th percentile of time was. To measure this, you essentially have an ordered list of all the times from smallest to biggest value, and find the value where 60% and 80% of the values fall under.

In this case, the 60th percentile for both architectures is 75 seconds, however, the 80th percentile is 80 seconds in the end to end execution approach vs 76 seconds in the assembly line approach.

In a similar fashion, in cloud data lake architectures, the task is similar to sandwich making, where performance is not measured for a single unit of work, also known as a job, but in terms of percentiles where multiple jobs are running at the same time, and what is the average time for job completion (50th percentile) vs the worst case times (75th or 90th percentiles). The reason is because in real life, the cloud data lake is running multiple jobs at scale. E.g. in the example of a copy job, your logical job consists of copying hundreds or thousands of files, that are multiple copy jobs, and the time taken for copying files is dependent on when the resources are available, similar to the sandwiches waiting for the toaster.

5.1.3 Optimizing for faster performance

From Table 5-1 and Table 5-2, we observe the following:

	
The largest bottleneck happens in the toaster, where it takes 30 seconds to toast the sandwich.

	
The people performing Step 2, Step 3, Step 4, and Step 5 have periods of waiting, idle time. Their idle time is more than their work time in fact.

	
The assembly line approach and the end to end approach are quite similar, and the assembly line approach has a slight edge by optimizing the time of the person who is putting the pieces of bread together.

	
Steps 4 and 5 don’t have any contention for shared resources. This is because Step 4 does not require any resource, and Step 5 has enough resources to not be shared.

To optimize performance, there are many possible options.

	
You can increase resources - you can get two toasters, two jars of peanut butter and two jars of jelly.

	
In the assembly line approach, you can allocate workers differently. You can add two more workers for a total of 6 workers, and you can have two workers each do Step 2 (spread peanut butter) and Step 3 (spread jelly), and two workers do both Step 4 (put the pieces of bread together) and Step 5 (bag the sandwich) each. The end to end execution approach does not offer this flexibility.

With these changes, let us see how the performance of the 2 architectures change, as shown in Table 5-3 and Table 5-4.

Table 5-3. Time taken to make the sandwiches in the end to end execution approach after adding resources and shifting workers

	Sandwich
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Total time taken since 00:00

	1

	00:00 - 00:30

	00:30 - 00:35

	00:35 - 00:40

	00:40 - 00:41

	00:41 - 00:45

	45 seconds

	2

	00:00 - 00:30

	00:30 - 00:35

	00:35 - 00:40

	00:40 - 00:41

	00:41 - 00:45

	45 seconds

	3

	00:00 - 00:30

	00:35 - 00:40

	00:40 - 00:45

	00:45 - 00:46

	00:46 - 00:50

	50 seconds

	4

	00:00 - 00:30

	00:35 - 00:40

	00:40 - 00:45

	00:45 - 00:46

	00:46 - 00:50

	50 seconds

	5

	00:30 - 01:00

	01:00 - 01:05

	01:05 - 01:10

	01:10 - 01:11

	01:11 - 01:15

	75 seconds

In the assembly line method, we already see that there is a different model in place and the time taken would be different.

Table 5-4. Time taken to make the sandwiches in the assembly line approach after adding resources and shifting workers

	Sandwich
	Step 1
	Step 2
	Step 3
	Steps 4 and 5
	Total time taken since 00:00

	1

	00:00 - 00:30

	00:30 - 00:35

	00:35 - 00:40

	00:40 - 00:45

	45 seconds

	2

	00:00 - 00:30

	00:30 - 00:35

	00:35 - 00:40

	00:40 - 00:45

	45 seconds

	3

	00:00 - 00:30

	00:35 - 00:40

	00:40 - 00:45

	00:45 - 00:50

	50 seconds

	4

	00:00 - 00:30

	00:35 - 00:40

	00:40 - 00:45

	00:45 - 00:50

	50 seconds

	5

	00:30 - 01:00

	01:00 - 01:05

	01:05 - 01:10

	01:10 - 01:15

	75 seconds

In this case, with the tuning called out above, we were able to bring the total time taken to make the sandwiches down to 75 seconds in both the architectures, and the 60th percentile and 80th percentiles dropped to 50 seconds. While both the architectures showed similar results, it was also clear that the assembly line approach was a lot more flexible in terms of tuning compared to the end to end execution approach, where the only way to improve performance was adding resources. Adding workers would have no effect, and shifting workers around was not possible.

Typically, this is how performance is measured, only instead of 5 sandwiches, think of millions or billions of operations on a cloud data lake. The 50th percentile is a proxy of the average behavior, and the 75th percentile is a good proxy for perceived behavior that you want to set targets for, and 90th percentile is a good measure of behavior under heavy load. Now that we understand these concepts, let us take a look at how they relate to the cloud data lake.

5.2 Cloud Data Lake Performance

In the world of data lakes, performance is measured by the time it takes to complete a job, whether it is a batch pipeline or an interactive query, or a data copy job, and how this time increases as the throughput of the job, i.e. the data to be crunched or queried changes. As we saw in the sandwich example above, performance is very tuned to the kind of job we are doing, and the business requirements we need to meet. In the sandwich example, if a caterer has an order to be delivered by 8 AM in the morning, that is the target set for them. They typically wouldn’t have an infinite time for this either, because the sandwiches need to taste fresh. So, in this case, they would tune the available workers (the sandwich makers) and the resources (jars of peanut butter and jelly, toasters) to fit the time window they have. While it costs the caterers more to pay for these resources and workers, not investing in them or not utilizing them the right way risks their order delivery, thereby risking their customer satisfaction and revenue. On the other hand, if it was a retailer making clothes, in addition to the workers and the resources, they also can play with time factor to build an inventory that has reserves of clothes made ahead of time.

In a similar fashion, the first step to architecting a performant data lake is to first understand the job to be done, and the requirements that the jobs need to meet.

5.2.1 SLAs, SLOs, and SLIs

In order to define the requirements for performance, there are three terms you need to understand - SLAs, SLOs, and SLIs.

	
SLA - Service Level Agreement - SLAs refer to the promise we make to our customers as a guarantee. This SLA could be measured in terms of timing, or freshness of the data, or other factors, or a combination of multiple metrics. This metric is measured in a customer oriented language. For example, Sales projection data up until 9 PM the day before will be available in the data warehouse for business analysts by 10 AM any given day, 99% of the time. SLAs serve as a contract between the service provider and the customer, and not meeting the SLA has consequences, in terms of escalations or even monetary impacts.

	
SLO - Service Level Objectives - SLOs are defined for each block of the solution, and they are goals that need to met to be able to meet the SLAs. This metric is measured at a system level, and is derived from the customer level metrics. For example, if the sales projection data needs to be ready at 10 AM in the warehouse, then the Spark job that processes this data needs to be ready at least by 8 AM to account for buffers. If the input data for the Spark job is only available at 5 AM, then the SLO for that Spark job is that it needs to complete within 3 hours. If the SLOs are not met, then the SLAs are potentially threatened and the team has to take action.

	
SLI - Service Level Indicator - SLIs are also defined for each block of the solution, and also drill down to deeper levels into the individual component of the block, and are measures of how the system is actually doing. For example, the SLIs for this Spark job will be metrics on the performance of the executors and the driver at the 50th, 75th, and 90th percentiles, as well as measures of CPU, memory, storage, and network usage of the jobs. The SLIs serve as indicators for the SLOs and alert the team to investigate risks.

Example - How Klodars Corporation managed their SLAs, SLOs, and SLIs

To illustrate these concepts, let us make a trip to our fictitious Klodars Corporation and take a look at their sales team requirements. Klodars Corporation has a daily executive briefing at 9 AM where they look at the daily sales data for their products, this data helps the team strategize on the plans and allocations for the day, and is also time they use for inventory planning. This requirement defines the needs for the SLA. The sales team and the data team agree on a contract that the sales dashboards will be refreshed with the new data by 9 AM. This becomes the SLA that the data team promises the sales team.

The data team then works backwards from this SLA and defines the requirements for their copy jobs and Spark jobs. The data team knows that the latest data lands in their sales databases by 3 AM, and a dump of that data needs to be copied over to the data lake storage to serve as input for the Spark jobs. The Spark jobs crunch the data from this sales database with other data to produce the datasets that power the sales dashboard. This understanding helps the data team set goals for their copy job and Spark job appropriately. The Spark job needs to be completed by 8 AM , to give a 1 hour buffer for any unforseen issues. So the data team has a window between 3 AM to 8 AM to meet their SLAs. They run a few proofs of concepts and define the goals as 3 hours or less for the copy job and 2 hours of less for the Spark job. This becomes their SLOs.

They then build metrics dashboards about the copy job progress tracking as well as the Spark job progress tracking, along with the finer granular details pertaining to both the jobs. These metrics serve as the SLIs. An illustration of these concepts can be found in Figure 5-3.

[image: Klodars Corporation working on SLAs, SLOs, and SLIs]
Figure 5-3. Klodars Corporation working on SLAs, SLOs, and SLIs

A pictorial representation of how these metrics align with the architecture of Klodars Corporation can be found in Figure 5-4.

[image: Klodars Corporation data lake architecture and SLAs, SLOs, and SLIs]
Figure 5-4. Klodars Corporation data lake architecture and SLAs, SLOs, and SLIs

These become the defining requirements for deciding what kind of architecture and technical components serve as the best choice to meet the SLAs while optimizing for cost and operational burden on the data team.

5.3 Drivers of Performance

In “4.2 Internals of Data Lake Processing systems”, we learnt the concepts of how the big data processing engines work internally, specifically for data copy jobs and ELT/ETL processing jobs. In this section, we will build on those concepts to understand the drivers of performance in each scenario.

5.3.1 Performance drivers for a copy job

The copy job primarily reads contents from a source storage system and copies it over to a destination source system. Performance drivers of the copy job are essentially the workers and shared resources that create a potential bottleneck depending on the type and amount of contents to be copied. For example, if there are a large number of small objects, then you could increase the number of workers to read the individual objects faster resulting in an overall optimization in job performance. However, if you don’t have enough network bandwidth, then these workers will be waiting for bandwidth to be available before they can read the files and copy, so the workers might stay idle, just like how we saw in our sandwich example in “5.1 Basics of Measuring Performance”, where the workers had to wait for the toaster to be available. A pictorial representation of these performance drivers as they align to the copy job internals can be found in Figure 5-5. These are the variables you can modify to tune the performance of your copy job.

[image: Performance drivers for copy job]
Figure 5-5. Performance drivers for copy job

The copy jobs are performed by ingestion services that are provided by public cloud providers, such as Azure Data Factory, or AWS Data Pipeline, or AWS Glue. AWS Glue and Azure Data Factory also offer integrations with ELT processing in addition to data copy. The copy jobs are also offered by various Independent Software vendors offering data integration capabilities such as Fivetran, WANdisco, and Stitch. You can also orchestrate data copy jobs by provisioning IaaS VMs, and running your software such as Apache Airflow to write your own data movement jobs. To optimize the copy job for better performance, the different knobs you can tweak are listed below:

	
Number of workers and power of workers

In the case of PaaS services, they offer packaged units of work that you can increase or decrease to improve the performance of the jobs. As an example, Azure Data Factory offers this as Data Integration Units or DIUs. If you are using IaaS services or VMs, you will be able to tune the configuration of the Virtual Machines, that control the amount of CPU and memory available to you, as well as leverage your data copy job configurations around parallel units, that let you configure the number of workers that can run in parallel.

	
Network bandwidth

Network bandwidth can be compared to a pipe that connects the source to the destination, and by increasing bandwidth, you can increase the width of this pipe that lets you transfer more data in parallel. There are many ways in which you can increase network bandwidth. When you are transferring data within the same region between cloud resources, this is automatically taken care by your cloud provider. Specifically in cases where you are transferring data from your on-premise systems to the cloud, you can request a dedicated network connection from cloud providers to your on-premise datacenters. Dedicated Interconnect from Google Cloud is an example of this. You can also talk to your Internet Service Provider (ISP) to request a higher bandwidth network connection.

	
Data size and formats

When you have many small files, the performance of your data copy job would dip. This is because you require the same amount of effort to set up the connection, and do the data copy preparation, which is a fixed cost that is sunken cost or an overhead. And the amount of data actually copied is lower compared to this overhead, giving you a lower return on investment. A worthy step is to compact multiple smaller files into a larger file in your source before copying it into your cloud data lake. Similarly, optimizing your files in a storage friendly format such as Apache Parquet also helps in this case.

5.3.2 Performance drivers for a Spark job

Spark job has a lot more nuanced details that impact the job performance, and there are a lot of optimizations built as tunable parameters in your Spark cluster. From a conceptual point of view, the performance drivers of a Spark job can be summarized into the following categories, along with examples of specific parameters that can be tuned within each category.

[image: Performance drivers of a Spark job]
Figure 5-6. Performance drivers of a Spark job

Figure 5-6 depicts the performance drivers as they relate to the Spark job internals. There are four different classes of parameters that control the performance of the Spark job.

	
Spark cluster configurations

This class of configurations correspond to the amount of resources, in terms of memory and CPU that are allocated to the PaaS or the IaaS service where you run Spark. In the case of PaaS services, the PaaS services will expose this configuration in terms of the resources you can allocate to the drivers and the worker nodes. As a reminder, the driver is the primary orchestrator of the Spark job, that how the data is distributed to the workers, and the workers performed the actual computations, i.e. actually execute the Spark job on a sliver of the dataset that is assigned to them. As an example, Figure 5-7 shows the screenshot of how you configure a Databricks cluster on AWS, as seen in the Databricks documentation page. You will be able to allocate the flavor of the EC2 VM to the driver node, and the number and flavor of EC2 VMs that you allocate to the worker nodes. This also shows right alongside the number of cores (that is a proxy of CPU) and the amount of memory available in your cluster. Databricks also offers a capability of auto-scaling, where the service automatically scales up or down the compute resources depending on the demands of the job.

[image: Databricks cluster configurations on AWS]
Figure 5-7. Databricks cluster configurations on AWS

If you are running Spark on IaaS VMs, you will manage the flavor and the amount of virtual machines yourself. The question that you would ask at this point is how to determine the amount of resources you need. While you can use existing best practice articles as a starting point, in my opinion, a proof of concept, i.e. running a scaled down version of your job and studying the characteristics of the resource consumption is the most accurate way to understand what your job demands.

	
Spark job configurations

The Spark job configurations essentially help you tune how the Spark job is broken down into executable chunks, and how the chunks are effectively leveraging the available resources. To better understand these, I will walk through the internals of how Spark job is executed and explain these parameters in context in “5.4.3 Choosing the right configurations on Apache Spark”.

	
Data lake storage performance - IOPS and throughput, contention with other jobs.

The lesser talked about resource in a data lake architecture when it comes to performance is the data lake storage. While the data lake storage offers elastic scale and there is nothing specific to configure here, what implicitly matters is that the storage is a shared resource across multiple compute engines that could be running on the data lake storage. If your Spark job and another job is contending with the same dataset or competing for the same shared storage resources, i.e. the AWS S3 bucket, or the Azure Storage Account, then both these jobs are contending for the same data access, creating a bottleneck. One way for you to work with this problem is to ensure that you orchestrate your jobs carefully to avoid this bottleneck.

	
Data profile - the number of objects, size of the data, partitioning, formats.

Data formats play a critical role in the job performance, and this is possibly the first place that you can optimize in your data lake architecture. As a data platform team, this is an area you have complete control of, and optimizing your data not only improves your job performance, but also reduces the overall cost of your solution, because you would end up needing much less resources. In “5.4.1 Data formats”, I will dive into data formats in deeper detail.

A note on network bandwidth for Spark jobs

You may have noticed that we have not called out network bandwidth as a constraint for Spark jobs. The reason is that when you design your Spark jobs, you need to ensure that the compute is as close to storage as possible. If you have scenarios such as cross region data access, network bandwidth would definitely be a constraint.

5.4 Optimization Principles and Techniques for Performance Tuning

In very simple words, there are a few key principles that tune your job performance, they include:

	
Plan for enough resources - Ensure there is enough compute, storage, and network available for your job. Provision the right amount and configuration of these resources, and also ensure that non-critical jobs don’t contend with your critical jobs for the same resource, as we saw in “5.3.2 Performance drivers for a Spark job”. If you need a more detailed refresher, we covered this in “4.3.1 Pick the right cloud offerings” and “4.3.2 Plan for peak capacity”, and also referred to some specifics in .

	
Leverage best practices for optimal data access - Across the board, with your data formats, data organizations, and job profiles, you need to ensure that you only access the data that you want. If you end up reading more and then filtering, you are not optimizing your resource usage.

	
Take time to find the right configurations - All big data compute engines provide out of the box configurations that can be funed based on your needs. Having the right configurations ensure that the right amount of resources are utilized in executing your jobs. Depending on the services that you pick, ensure to work with these configurations and understand them better on how this applies to your job. This information is a lot pertinent to the technology and the provider you pick.

Let us take a look at data formats and the right configurations in more detail.

5.4.1 Data formats

As we saw above, data lake architecture supports a multitude of compute engines on top of the same data. However, the data format optimizations are based on a few key assumptions :

	
Data stored in a data lake that is actively transacted is largely in a tabular format (organized as rows and columns).

	
Data that is written once is read multiple times.

	
The read patterns largely rely on conditional selection of data, where data which has similar values for certain columns are filtered to be returned or aggregated to be grouped.

A format that has gained wide industry adoption is Apache Parquet. We’ll take a deeper look into Apache Parquet next.

5.4.1.1 Exploring Apache Parquet

Apache Parquet is a column oriented data format used to store tabular data, i.e. data in the form of a table with rows and columns. Apache Parquet essentially splits a table into smaller chunks, where data is stored in a column oriented format. To illustrate this better, as shown in Figure 5-8, there is a table with 4 rows. A single row is referred to as a record within the table. In a row optimized format, such as CSV file, data for a record is stored together. However, in a column optimized format such as Apache Parquet, the data of a column are encoded and stored together.

[image: Column chunking in Apache Parquet]
Figure 5-8. Column chunking in Apache Parquet

There are a few advantages to this approach.

	
The storage format is optimized for reads, because you don’t waste resources seeking and reading columns that you don’t need in the query.

	
Given the data in a column are a lot similar to each other, this can be packed together offering better compression. This better compression results in lower cost for both storage and transactions.

When it comes to storing data in Apache Parquet format, remember that we are talking about tables in the context of having hundreds of millions of rows. Storing all of them in a single file is not going to be optimal, because you will cause bottlenecks in both reads and writes doing single file operations. Let us now take a look at how data is structured within the Parquet file. At a high level, a single table in Apache Parquet is stored across multiple files in your storage system. There are three concepts that you need to be familiar with when it comes to Apache Parquet.

	
Block - Block refers to the physical representation of data within a Parquet file. The block size is by default 128 MB, and can be configured block size parameter that is associated with a table.

	
Row group - This is the logical representation of a partition of data within the table, and is also the minimum amount of data that can be read from a Parquet file.

	
Column chunk - The chunk within the row group, where data for a single column across the records in the row group are stored together. Data within the chunk are stored continuously.

	
Data page - The data pages are contained within the column chunk, and contain the actual data for that column. The page is the basic indivisible unit within the Parquet file.

	
Metadata - Every Parquet file has a header and a footer. The footer contains metadata about the records within the row, including the numnber of records contained in the row group, the type of encoding used, the schema of the data, and the unique range of values of columns within the Parquet file. When a Parquet file is read, the footer is first read to understand if the range of the values of columns within the Parquet file have data that matches the selection criteria in the query, and if not, the pages are skipped, optimizing to read only the data that you want.

Figure 5-9 walks through the layout of the row groups, column chunks, and the data pages within a Parquet file, and this is referenced from the Apache Parquet Documentation. Let us take a look at row groups, column chunks, and pages.

[image: Apache Parquet data format]
Figure 5-9. Apache Parquet data format

Let us take a look at how Apache Parquet helps with optimization for reads. Reads in a big data processing system often query for specific columns within a table, and have a selection criteria to return only the records that meet a specific conditions. If you are already familiar with SQL, this is similar to a SELECT statement. If not, let us take a quick detour to walk through an example.

As an example, let us walk through one of the the data sets that New York City Taxi & Limousine Commision publishes for taxi data.In fact, if you are looking for data sets to practice your big data processing skills, this is a great data set to begin with. One of the datasets is the records corresponding to the trips done by the Yellow taxicabs. There are a total of 17 fields in this dataset, and you can refer to their data dictionary for the complete set of fields. In this, we will look at a subset of fields for this example.

Table 5-5. Select fields from the New York City Yellow taxi trip data

	Field
	Description

	VendorID

	The provider who shared this data

	tpep_pickup_datetime

	Time when meter was engaged

	tpep_dropoff_datetime

	Time when meter was disengaged

	passenger_count

	Number of passengers

	trip_distance

	Distance travelled

	payment_type

	Type of payment (including disputed/voided ones)

	fare_amount

	Fare charged by the meter

	tip_amount

	Tips for credit card payments

	total_amount

	Total amount including fare, tip, and taxes

Now, this data in Parquet will be stored where there are rowgroups with records of Yellow taxi data trips, and within the row groups, there is one column chunk for VendorID, one column chunk for pickup time, one column chunk for drop off time, and so on. These column chunks will contain data pages with the actual data itself. The footer of this Parquet file will contain ranges of data for each column as a quick lookup.

Now, let us say, you are querying for what the fare and tips were for all trips made on January 5, 2022, it will look like ???. You will want to perform the following operations logically:

	
Filter for transactions that were performed on January 5, 2022

	
Select the fare amount and tip amount and total them up.

select (sum of fare_amount) and (sum of tip_amount)
from yellow_taxi_trip_table
where
tpep_pickup_datetime is between 12 AM and 11:59 PM on January 5, 2022 and
tpep_dropoff_datetime is between 12 AM and 11:59 PM on January 5, 2022

If this query were to be done in a CSV file, all records will need to be loaded from storage into compute, and the filtering and the aggregation happens inside the compute. However, queries on an Apache Parquet file happens as follows.

	
Read the footer of the Parquet file to find where the row groups and column chunks are within that file, and check the column ranges for tpep_pickup_datetime and tpep_dropoff_datetime. Skip the row groups where the date ranges of the pickup and drop off columns are outside the range of January 5, 2022.

	
For the row groups where the date ranges match, only read the columns corresponding to fare_amount and tip_amount and return them to the compute engine for aggregation. The rest of the columns can be skipped.

Now, in a table with 17 columns, and millions of rows, you are effectively reading only 2 columns corresponding to a subset of the records, and skipping the rest. This by itself offers huge optimizations by minimizing the compute needs required for the filtering, as well as minimizing the storage reads.

Apache Parquet provides configurable parameters for block size and row group size, that you can use to optimize for performance based on your query patterns. It is best practice to keep your block size and row group size as close as possible.

For deeper exploration of Apache Parquet, there are a lot of resources and blogs available on Apache Parquet. The Apache Parquet documentation page does a great job walking through the details, I highly recommend that you read this in detail since this builds a solid foundation for understanding the basics of analytics data processing. There are a lot of videos and tutorials that talk about Parquet and its application in analytics in great depth that I recommend you check out for a deeper understanding. One such video is the talk at Spark+AI Summit 2019 by Boudewijn Braams on The Parquet Format and Performance Optimization Opportunities. There are also statistics such as the one published by Databricks on how Parquet offers lower cost with smaller data size as well as performance with query run times.

5.4.1.2 Other popular data formats

There are various other data formats that are built on top of Apache Parquet that have gained popularity are Delta Lake, Apache Iceberg, and Apache Hudi. They all build on top of the Apache Parquet architecture, and are optimized for specific scenarios. Delta Lake was designed to support the data lakehouse architecture, that was described in both are optimized for the data lakehouse architecture, supporting SQL-like queries for BI scenarios on the data lake. Apache Iceberg was founded to overcome the inherent disadvantages of the append only architecture of cloud object storage systems, to provide better change management for data sets. Apache Hudi was incubated by Uber to support streaming data scenarios with incremental data pipelines. We will dive deep into these formats in Chapter 6.

5.4.1.3 How Klodars Corporation picked their data formats

Alice and her team understood the importance of data formats in their organization, and ensured that their data preparation jobs stored the enriched and the curated data in Apache Parquet. Based on analyzing their use cases, the time values (E.g. date of sales, inventory dates), and regional information were the most commonly used for the queries and dashboards, so they optimized their Parquet files in a way that it was organized based on the dates and regions. This largely improved the query performance for their dashboards and their business analysts were more productive. Since the format offered a very high degree of compression, they were also able to demonstrate savings in data storage costs that was well appreciated by the finance teams and the executive leadership. Alice and her team are also evaluating the use of Delta Lake or Apache Iceberg as the first step to run the data lakehouse pattern which they were going to explore.

5.4.2 Data organization and partitioning

In the previous section, we saw how important the data formats are, which are in effect how data is organized inside a file. In addition, when you load data into the data lake or write data with your big data processing tools, its important to understand how we organize the data storage itself. E.g. think of organizing your closet, where you have one section of your closet for active wear, other for your special occasions, and other for your work clothes. Within those sections, we organize even further - like sorting your summer wear and winter wear separately. Similarly, provisioning sections of your data lake to store data, and how you organize the data storage within those sections is what we would focus on.

Why is this data organization important? There are two factors that contribute to this.

	
Reading an object or reading a file involves two operations :-

	
Metadata operations - finding the file within the storage by listing the contents, making the access checks to ensure that the caller has access to the file/object, checking the integrity of the file/object, etc. While metadata operations are very important, these are more of overheads to get to the actual data.

	
Data operations - actually working with the content of the file/object - the read and write operations. These are the actual high value operations that are relevant to the business aspect.

	
Data transfer from storage to compute involves data transfer over the network.

Let us now put that into perspective on how this impacts performance and scale.

Metadata operations are an overhead to get to the actual data operations. So in your big data processing, you need to ensure you minimize the metadata operations compared to the data read/written. When you have to read 100 MB of data, lets consider the following scenarios that illustrate how larger file sizes make for efficient read operations minimizing the metadata overhead.

	
100 objects, each 1 MB in size - To read 100 MB of data, you need to perform metadata operations on 100 objects.

	
10 objects, 10 MB in size - To read 100 MB of data, you need to perform metadata operations on 10 objects.

	
1 object, 100 MB in size - To read 100 MB of data, you need to perform metadata operations on 1 object.

As we saw, most read operations involve conditionally selective queries. You have multiple options to accomplish this, and each involves sending data between storage and compute over the wire. As you can see clearly, improvements in selections of the data minimize the data transferred over the wire.

	
Read 500 MB of data from storage into compute, perform the filtering in the compute engine to select the relevant 100 MB. This is inefficent because you are sending more data over the wire, and you are also spending additional compute to do the filtering.

	
Organize the 500 MB efficiently, so you can find the 100 MB you need with that organization and send it over the wire. This is a more efficient approach.

Data partitioning is the process of effectively organizing data in your objects in such a way that makes the retrieval easy. Whether it is AWS or GCP buckets, or Azure folders and containers, you are optimizing the organization in a way that is optimized for retrieval. In a tabular data structure, partitions are mostly done based on columns that are most commonly queried.

5.4.2 Optimal data organization strategy for Klodars Corporation

Alice and her team wanted to explore various ways to partition their data. They took a closer look at their sales data which is most queried and brainstormed various options to organize data, as shown in Figure 5-10.

[image: Data partitioning options at Klodars Corporation]
Figure 5-10. Data partitioning options at Klodars Corporation

	
Option 1 - Organize data by regions followed by salesperson - this option is optimized for queries where regional sales patterns are most commonly used followed by individual performance.

	
Option 2 - Organize data by time followed by regions - this option is optimized for queries where trend over time is most commonly used followed by regional pivots.

	
Option 3 - Organize data by regions followed by time - this option is optimized for queries where regional sales patterns are most commonly used followed by trends over time.

They interviewed the consumers, and also looked at the query trends on their data lake and data warehouse. They determined that the most common query pattern was regional followed by trends over time, so they chose Option 2 as their partitioning strategy. They also repeated this analysis for their other data sets, and ensured that the partitioning strategy met their usage patterns.

5.4.3 Choosing the right configurations on Apache Spark

I talked about the internals of Apache Spark in “4.2.2.1 Components of an Apache Spark application”. To do a quick recap, as shown in Figure 5-11 the Spark application has the code for a Spark job, and a job is broken down into stages, that is further broken down into tasks that are units of execution. There are two units of compute - the driver that orchestrates the job execution by assigning data sets to workers, and the workers do the actual execution of a part of the job. The data is persisted as in memory data sets called RDDs, that the executors operate on.

[image: Spark Job Internals]
Figure 5-11. Spark Job Internals

Apache Spark provides configurable parameters that can be tuned so that the job is executed with optimal resource utilization in terms of CPU and memory. This process of setting the right set of parameters for effective utilization of CPU and memory is called performance tuning. The tunable parameters of Apache Spark fall into the following categories:

	
Data serialization - Apache Spark offers libraries that serialize the data sets, i.e. convert logical objects into a series of bytes to be sent over the network or persist in disk storage in an efficient fashion. When you write your core Spark applications, you would write code to transform the data via filtering, aggregation, joins, etc. And this data set, whether it is the input, or the transformed data set, is serialized before it is sent to the executors, as shown in Figure 5-12. Apache Spark offers serialization in Java as well as Kryo libraries that offer faster efficient serialization compared to Java. Leveraging the Apache Spark configuration to use the Kryo serializer will offer performance optimizations, especially for networking intensive applications, where there are large data transfers going over the network, with more complex transformations or using cloud data lake storage to persist the data sets. You can read more about the Kryo serializer in the Apache Spark Performance Tuning - Data serialization documentation.

[image: Data sets and executors in Spark application]
Figure 5-12. Data sets and executors in Spark application

	
Memory tuning - In Apache Spark, memory is used for persisting intermediate results during the transformations of data. Spark offers tuning parameters so that you can leverage how much memory is allocated to data structures. Additionally, the structure of your data could be optimized to utilize less memory as well. One major best practice to follow is to minimize complexities in your data structures. Keeping the data relatively flat and minimizing many nested structures can ensure that it would utilize less memory. As an example, you can store an address as a single string, or as a structure with street address, city, state, and zipcode as separate fields. Leveraging the former means that you need less memory to understand the address. There is only one field to be read vs understanding the four fields and their relationships. A typical data structure offered by Java that is used in big data applications is a HashMap. This would utilize more memory than simpler primitive data types such as arrays.

	
Memory management - You might wonder what the difference is between memory tuning and memory management. Memory tuning essentially enables you to tune how much memory is needed for your data. Memory management enables you to tune how you would allocate available memory for different purposes. In Apache Spark, you need memory for two purposes - execution and storage. Execution refers to the memory needed to do computations and store intermediate results of your computation. Storage refers to the caches you can leverage to store your results to minimize the network calls you need to make. Apache Spark provides a varied set of configurations that enable you to effectively allocate memory across the different needs.

There is probably a separate book’s worth of material on Apache Spark performance tuning. This section gives you a conceptual understanding of the categories of tuning. You can read more about Spark performance tuning in the Apache Spark Performance Tuning documentation. I strongly recommend running proofs of concepts with samples of data sets that are representative of your actual data usage to play with these configurations and tune it for optimal performance.

I also highly recommend leveraging a performance monitoring solution, either with Apache Spark monitoring or other tools such as Datadog to understand the resource utilization of your Spark job, which will in turn help you tune your Spark job for optimal performance. Some customers I know have spent more time tuning for performance than they did authoring their Spark job, so plan and budget for that time in your Spark job pipelines.

5.5 Minimize overheads with data transfer

In a cloud data lake architecture, there are a few key things that we need to remember in terms of overhead. Overheads are tasks or steps in your big data processing that essentially add more time to your execution, thereby deterioriating the overall performance of your cloud data lake architecture. In addition, most of these overheads also increase the cost of your overall solution, so minimizing the overheads could also optimize your overall costs. A few key overheads are:

	
Network calls between compute and storage - As we saw earlier, big data applications involve clusters that are constructed with virtual machines, as well as calls between clusters and the data lake storage, all involving network calls. These add overheads to your core job execution. Some strategies you can adopt to minimize this overhead are:

	
Leverage caching for frequently used data sets such as reference data or frequently read data sets, that you can store right in your cluster in memory without having to make a network call to storage.

	
Write optimized Spark applications that have an optimized query plan, leveraging partitioning, as we discussed earlier in this chapter. Reading the right amount of data required for your job as opposed to reading more data, and spending compute resources to filter that to the data you want adds to the performance.

	
Optimize for colocating your storage and compute resources together. Talk to your cloud providers about the options they have for colocations.

	
Read or writes across region boundaries - One cardinal principle in any cloud processing is to keep the compute and storage closer together. If your compute in one region needs to call into storage in another region, there is a network call made across regional boundaries. Cross-region network calls get worse in terms of performance because data has to travel a lot longer over the network. In addition, they also increase the overall cost of your solution because network egress cost, i.e. cost to transfer data out of a region is quite high compared to other costs. This is one of the patterns you need to focus on minimizing in your big data solution. If you have scenarios where you need to use data sets across regions, complete all your computations in the region where the data sets originates, and only transfer the completely processed data sets. Also evaluate if recomputing the data with local data sets is cheaper than accessing remote data or transferring data across regions.

5.6 Premium offerings and performance

Cloud providers often also have premium offerings for their cloud services. While it is intuitive to think that paying for this premium will improve the performance and scalability of your application, it is only effective if you are using those features to solve the right problems. In this section, I want to talk about a few examples to illustrate this point with Klodars Corporation. Take the time to understand the bottlenecks and consumption patterns for your architecture and talk to your cloud providers to determine the best fit for you. The most important consideration is to ensure that the premium offering will indeed solve your problem.

5.6.1 The case of bigger Virtual Machines

Klodars Corporation found their sales dashboards slowing down when they onboarded a new region and expanded their sales. They suspected that their compute resources were not enough and added more compute cores, vertically scaling their compute cluster. However, they observed that this did not improve the performance, and in some cases, even worsened the worst case. Upon further analyis, they observed that Klodars Corporation had partitioned their data based on time trends, and the query pattern was largely pivoting on regional trends to find the individual performance. Given everyone was interested in the recent data, the multiple queries were all querying the recent data and later filtering for specific regions and salespersons, causing a bottleneck. Further, They changed the partition pattern to optimize for region followed by salesperson, and found that this largely improved the performance.

In this case, increasing the compute cores in fact worsened the situation because there were now more queries hitting the same data. Partitioning revision was a more effective strategy.

5.6.2 The case of flash storage

Klodars Corporation found their product queries getting a lot slower, and saw that a bottleneck in their system around slower storage transactions. They saw this offering about a storage tier that is based on flash storage, and immediately upgraded to that. While this helped speed up the queries, they immediately spotted the queries slowing again comparitively when the product data increased again. This was not ideal given they were also paying a lot more for this higher tier of storage. Upon further analysis, they observed that the product data was coming from various feeds and were stored as small files. So when the data set increased, so did the number of files. This caused the metadata overhead required to read files much higher compared to the data. They pivoted their strategy and worked on compacting these small files, this instantly increased the query performance. They even went back to the disk based storage and found the performance not regress.

In this case, the flash drive based storage did increase the performance due to better storage system, but it did not quite solve the problem, so it came back again when the data set increased again. The right solution was to fix the antipattern around small files. Flash based storage systems are very useful when you have a small set of data heavily transacted, the typical scenario here is machine learning.

Summary

In this section, I first covered the fundamentals of what performance means, and how it is measured. These concepts will help you define the requirements around performance of your data lake as SLAs, and SLOs, and define how you will measure this with SLIs. I then applied these concepts to cloud data lake applications, and dived deep into the performance drivers of data copy and Spark applications. I also then went over performance optimization strategies for these applications. Further, I also talked about some of the larger patterns to consider when designing your cloud data lake solution. Finally, I talked about premium offerings and the need to understand the scenarios that the premium offerings offer benefits. With this understanding of the performance drivers of your cloud data lake architecture, and the configurations and options that are available as knobs for you to tune the performance of your cloud data lake solution, you are ready to tweak these knobs based on which performance driver needs to be tuned in your solution. It is important to note that this chapter provides the conceptual understanding of performance. When implementing your cloud data lake solution, I definitely recommend that you invest in the observability solution to monitor your performance and also ensure that you have the right metrics and logging in place to diagnose any performance issues. This will help you put these concepts into action, and measure the impact of your optimizations. In the next chapter, I will put this conceptual understanding of scale and performance in perspective in the context of data formats, and how the data formats offer built in optimizations for big data solutions.

Chapter 6. Deep Dive on Data Formats

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at jleonard@oreilly.com.

“Design is not just what it looks like and feels like. Design is how it works.”

Steve Jobs

Traditionally, data warehouses are built on a propreitary data format that they leverage to optimize for the query patterns. Given the increasing amount of scenarios that are served by the cloud data lake, especially with the rise of the lakehouse architectural pattern, more and more customers and solution providers are investing in capabilities that enable running warehouse like queries directly on the cloud data lake. This takes us close to the promise of delivering an architecture that minimizes the need to copy data back and forth across data stores for specific purposes. This promise of a data storage with no silos has resulted in an increasing number of open data formats that enable running warehouse like queries directly on a cloud data lake storage. In this chapter, we will take a look at three such formats: Apache Iceberg, Delta Lake, and Apache Hudi. This chapter is probably the most technical one in the book where we take a look at the formats in great detail and how they serve the scenarios they are designed for. My hope is that this chapter provides you with enough knowledge and fundamentals on why these formats were designed, so that when you evaluate one of these formats, you have enough ammunition to ask the right questions and find the right data format for your cloud data lake architecture.

6.1 Why do we need these open data formats?

If I have to summarize the need for open data formats in one sentence, here it goes. The open data formats essentially enable the cloud data lake storage to be able to store tabular data. This gives rise to two questions: why do we need to store tabular data, and why is it a problem to store tabular data in a cloud data lake storage. Let us explore these questions in detail.

6.1.1 Why do we need to store tabular data?

In “5.4.1 Data formats”, I talked about the key assumptions on data that is stored in a cloud data lake, as listed below.

	
Data stored in a data lake that is actively transacted is largely in a tabular format (organized as rows and columns).

	
Data that is written once is read multiple times.

	
The read patterns largely rely on conditional selection of data, where data which has similar values for certain columns are filtered to be returned or aggregated to be grouped.

Let us take a look at why data stored in a data lake is most commonly tabular. While data in a big data analytics system could originate from any source and be of any size and format as illustrated by the 6Vs of big data in “1.1 What is Big Data?”, this data by itself is considered low value riddled with a high degree of noise. The primary value proposition of a big data architecture is to generate high value insights from this low value data. The process of generating these high value insights involves a variety of operations, that however primarily fall under a few high level categories, as listed in Table 6-1.

Table 6-1. Categories of operations on a data lake

	Operation
	Description
	Examples from a sales dataset

	Aggregation

	Statistical results on a data set

	Total sales by region, Maximum invoice amount closed by a sales person

	Filtering

	Looking for a subset of data from a large data set that meets a specific criteria

	Sales per month during summer months, Customers who placed an order over a certain amount over the past year

	Projection

	Predict future trends based on past trends

	Sales forecast over next year based on last year’s trends

	Joins

	Correlate values from two different datasets to identify patterns

	How did social media trends influence sales

A tabular data structure lends itself to these common data lake operations because it offers the flexibility to group similar data together. When similar data is grouped together, it takes fewer number of transactions to get to the subset of the data you want, and perform the computations. This is the reason most of the data formats optimize for storing tabular data.

In a big data analytics system, data that comes into the system need not be tabular, however, as I said before, this is considered low value raw data. This data undergoes a set of transformations as the first step to be converted into tabular data, that is then used for further processing. You can visit “3.2.1 A day in the life of data” to read more about the data lake zones. Data in zones other than the raw data zone are typically tabular in nature.

6.1.2 Why is it a problem to store tabular data in a cloud data lake storage?

When you think tabular data, its probably intuitive for you to think of a spreadsheet that lets you organize data into rows and columns. Most databases and data warehouses have storage that are organized this way as well. However, as we saw in “2.2.2 Cloud Data Lake Storage”, the storage used by a data lake architecture is a general purpose object storage, which is designed to store any kind of data without imposing any restrictions. So, the same storage system used to store content that powers your websites, your blogs, and also photos in your online photo album is also used to store data that is used for your big data analytics applications. The primary reasons that this is very attractive is the low cost, and the ability to store data of any size, and format without imposing any restrictions, the combination lets organizations bring any and all data they have to the data lake storage without breaking the bank.

At the same time, the data lake storage by itself has a few distinct limitations when it comes to storing and processing tabular data, as listed below:

	
Updates to existing data - Data lake storage systems are largely append only storage systems, this means that if any of the existing data needs to be replaced, this is not a very straight forward process.

	
Schema enforcement and validation - Schema refers to the description of the data itself. E.g. we know that an address has the following fields - a street address, a city name, an abbreviated form of state, and a zip code. The object storage system does not have a way to guarantee that an address stored will have all these fields.

	
Query performance - As we saw in great detail in Chapter 5, there are a lot of factors that go into ensuring a performant data lake. However, all these factors rely on the practicioner to design for these, as opposed to an out of the box guarantee, because an object storage system by itself does not guarantee performance out of the box.

Their flexibility and low cost has driven adoption of cloud data lake architectures. As a result, there are more business critical queries and dashboards that rely on the data residing in a general purpose object storage. To ensure that the data stored in a general purpose object storage system can be optimized for core data lake computations supporting the business critical scenarios, customers and cloud data practitioners have incubated various open data formats that primarily offer guarantees on the tabular nature of the data. The compute engines that process the data also understand these open data formats, thereby ensuring an optimized performance as well. While there are more and more formats incubated, we will take a deeper look at three data formats: Delta Lake, Apache Iceberg, and Apache Hudi.

6.2 Delta Lake

Delta Lake is an open data format incubated and maintained by Databricks, the company started by the founders of Apache Spark. As we saw in “2.2.3.2 Apache Spark”, Apache Spark enabled a unified programming model across a variety of scenarios such as batch processing, real time streaming, and machine learning scenarios on a unified platform in a cloud data lake architecture. The final piece of the puzzle was to remove the silo of needing a data warehouse for business intelligence scenarios. Delta Lake was the underpinning of the data lakehouse pattern that Databricks popularized where in addition to batch, real time, and machine learning scenarios, organizations can also run business intelligence scenarios directly on the cloud data lake storage, without requiring a separate cloud data warehouse.

6.2.1 Why was Delta Lake founded?

Delta Lake was founded as the fundamental building block of the data lakehouse pattern, offering the following value propositions.

Eliminate data silos across business analysts, data scientists, and data engineers

As covered in “2.2.3.2 Apache Spark”, Apache Spark was founded on the principles of providing a flexible programming model for supporting a wide variety of applications such as batch processing, real time streaming, as well as machine learning. Apache Spark was widely successful in terms of both customer adoption and mindshare that is continuing to grow. With Apache Spark, customers could use a single programming model that worked for both data engineers for core data processing as well as data scientists for machine learning scenarios. However, there was still a need to copy data over to a data warehouse for business analysts to leverage SQL like languages for queries, because of the optimized query performance that data warehouses offered. The limitations of a cloud object storage that we discussed in “6.1 Why do we need these open data formats?” was the inhibitor that came in the way. Delta Lake was the open data format founded by Databricks to let business analysts leverage the cloud data lake directly for their queries, enabling a lakehouse architecture for organizations.

Provide a unified data and computational system for batch and real time streaming data

Organizations tend to focus on two different aspects when it comes to insights - understand what is happening right now, and also understand patterns from historical data. For example, when a marketing team publishes a post on social media, they would like to understand how that post is trending right now. Similarly, when they work on their next campaign, they leverage historical data to understand how the past campaigns have trended to help guide their strategy. Real time streaming refers to analyzing data that enters the big data lake for immediate insights, i.e. the right now. The computations are focused on speed of processing on data that is very recent. However, if you want to have insights based on historical data, then you would work on data that is stored in the data lake with a batch processing pipeline. The architecture pattern that supports both of these paths is referred to as a lambda architecture, that involves a hot path for real time analysis, and a cold path for analyzing historical data. While Spark offers a unified programming language for both real time and batch processing, analyzing real time and historical data is traditionally done by different data pipelines. Delta Lake minimizes the need for these two different paths. A pictorial representation of the lambda architecture is shown in Figure 6-1.

[image: Lambda architecture]
Figure 6-1. Lambda architecture

Support bulk updates or changes to existing data

As we have learnt earlier, data enters the data lake as low value raw data, and undergoes multiple transformations to generate high value structured curated data. As the raw data changes, this impacts the curated data as well. It is not uncommon for new incoming data to change multiple rows and columns in high value curated data. As an example, let us say that there is a dataset with 4 rows and 4 columns, as shown in Figure 6-2. Now with new data, row A is modified, row C is deleted, and row CC is newly inserted to the table. An object data storage layer cannot handle these incremental updates to existing data in a straightforward fashion. So, typically data practitioners end up generating the whole table from scratch. As we already know, this is not ideal in terms of both cost and engineering energy spent. Further, if there are consumers reading this data set while the data set is being recomputed, they would see inaccurate or partial results, so this recomputation needs to be orchestrated at a time that there are no readers and it must be coordinated appropriately. Delta Lake offers a way to manage these incremental updates without requiring updates of the whole data set, and also enables consumers of the data to continue reading the dataset while the update is being performed.

[image: Updates to data sets]
Figure 6-2. Updates to datasets

Handle errors due to schema changes and incorrect data

In a tabular data format, schema refers to specifications or descriptions of what the row and the column values need to be. Given a cloud data lake storage system has no restrictions on the size or the shape of the data, incoming data could have some missing pieces and thereby not adhere to the scehma expected by the computational engines. For instance, if there is an data set of addresses coming in, and there are records within that dataset that don’t have a street address or a zipcode, the compute engine extracting addresses from this data set would fail. Similarly, with time, data sources could add new fields or change existing fields, and compute engines get confused because there is older data and newer data in the same dataset that now look different. An example of this is provided in Figure 6-3. Delta lake enables graceful handling of these scenarios by offering schema enforcement and schema validation, so you can ensure that there are checks performed on this data, and also proactively rectify this by fixing the missing values with defaults or rejecting the records that don’t adhere to the schema.

[image: Schema validation and evolution]
Figure 6-3. Schema validation and evolution

Alright, all this sounds amazing. How does Delta Lake enable these scenarios? Delta Lake strives to offer ACID guarantees of data - Atomicity, Consistency, Integrity, and Durability on data in the data lake storage, lying the foundations for enabling the scenarios above. if you would like to know more about ACID transactions, do visit “2.4.1 Reference architecture for Data Lakehouse”. Let us take a look at the internals of Delta Lake in how this enables the scenarios above.

6.2.2 How does Delta Lake work?

Delta Lake is an open storage format used to store tabular data in data lake storage systems, offering ACID guarantees. A Delta Lake table consists of the following components.

	
Data objects - the actual data in the table stored as Parquet files. You can review the concepts behind Apache Parquet in “5.4.1.1 Exploring Apache Parquet”.

	
Log - a transaction log, think of a ledger that keeps track of changes to the data in the table. These changes are called as actions, and are stored in JSON format. Delta log keeps track of both changes to the data itself, the inserts, deletes, or updates, as well as the changes to the metadata or the schema, where columns are added or removed from the table.

	
Log checkpoints - a compressed version of the log that contains non-redundant actions up to a certain point in time. As you would imagine, given the amount of actions that happen to data over time, the log could grow a lot, so the log checkpoints serve as an optimization for performance.

The Delta Lake documentation page provides detailed instructions on how to work with Delta tables. When you create a Delta table, there is also a log created for that table. All changes to the table are recorded in that log, and this log is crucial to maintaining the integrity of the data in the table, thereby offering the guarantees we discussed above.

[image: Delta Lake Writes]
Figure 6-4. Delta Lake Writes

As shown in Figure 6-4, a write to a Delta table involves two components:

	
Make the updates to the data objects by modifying the Parquet files.

	
Update the Delta log and associate that modification with a unique identifier in the Delta log.

Unless both of the operations are completed, the write does not succeed. So if there are two simultaneous writes to the table, they are automatically serialized in a sequential fashion with this log. The second write needs to wait till the first write succeeds with the updates to the log, and then the second write completes by updating the log. Having this log with a transaction ledger also enables the caller to do a time travel, where you can access the past versions of the data.

In addition to offering ACID guarantees and enabling scenarios such as time travel, Delta tables aslo enable schema enforcement, where you can ensure that data adheres to the schema that you specify (E.g. zipcodes have to be 5 digit integers), and schema evolution, where as you add new columns and evolve your schema, you can ensure the older data works by placing default values. These make SQL like scenarios possible on the data lake.

6.2.3 When do you use Delta Lake?

Delta Lake provides stronger guarantees to data that resides in a general purpose object storage. One thing you need to remember is for data that is stored in the Delta Lake format, you need to leverage compute engines that understand the format to take advantage of its capabilities. I would recommend that you leverage Delta Lake on the data that you expect to run SQL like queries, or datasets that power machine learning models where you need to be able to preserve the versions. If you use Apache Spark, you can largely leverage your existing pipelines with minimal modifications to convert your existing data to Delta Lake format.

6.3 Apache Iceberg

Apache Iceberg was incubated by Netflix, as they were powering their business critical applications on top of the data lake storage, with the shortcomings we described in “6.1.2 Why is it a problem to store tabular data in a cloud data lake storage?”.

6.3.1 Why was Apache Iceberg founded?

Netflix is a popular video streaming company that was built as a highly data driven company since its inception. Data powers their critical business scenarios such as providing recommendations to users based on their watching patterns, understanding the kind of content Netflix needs to create or distribute to engage its user base, and monitoring the health of their services, to name a few. Especially in a highly competitive space like video streaming with multiple players in the market, data driven insights and business is one of Netflix’s key differentiators.

According to their technology blog, the datasets used in Netflix reside in different data stores. AWS S3 which is a general purpose object storage powering their cloud data lake, MySQL which is an operational database, and Redshift and Snowflake that are data warehouses, to name a few. The data platform at Netflix ensures that these diverse data stores are interoperable as one single data warehouse to their consumers. A depiction of this can be found in Figure 6-5.

[image: Netflix data architecture from their blog]
Figure 6-5. Netflix data architecture diagram from their blog

Specifically on the data that resides in their cloud data lake on AWS S3, Netflix leverages Apache Hive tables, that enabled a table format leveraging the Apache Hadoop ecosystem to run SQL like queries. They ran into the limitations of the general purpose object storage solution, as described below.

	
Updates to existing data sets

As we saw earlier in “6.2.1 Why was Delta Lake founded?”, object storage systems do not handle changes to existing data well. Strong consistency refers to the behavior where a read always returns the data that was last written. AWS announced strongly consistent writes in 2020. However, at the time Apache Iceberg was founded, AWS S3 offered eventually consistent writes, which did not provide predictable data on reads to Netflix users. To overcome this, the writes needed to be coordinated and orchestrated in a fashion that did not conflict with the reads.

	
Performance of Apache Hive

Apache Hive stored the data in files and folders on the object storage file system. This meant that any time data needed to be queried, the files and folders needed to be listed in order to find the data of interest. As the size of the data grew to a petabyte scale, the need to list files at that scale was really expensive and created performance bottlenecks for the queries.

Apache Iceberg was incubated as an open source project in 2018 to overcome thesse restrictions of using tables on a cloud data lake.

6.3.2 How does Apache Iceberg work?

Apache Iceberg, interestingly, builds on top of existing data formats, so you could use it on top of your existing data. The physical data is stored in open data formats such as Apache Parquet and Apache Orc. The simplest way to describe Apache Iceberg is that it is a translation layer between the physical storage of data (Apache Parquet or Apache Orc) and how they come together and structured to form a logical table.

Apache Iceberg stores the files that contribute to the table in a persistent tree structure. The state of the table is stored in multiple files that describe the metadata, as described below:

	
A catalog file that has the pointers to the latest version of the metadata, and the primary source of truth of where the latest version of the metadata is.

	
A snapshot metadata file that stores the metadata about the table, such as the schema, the partitioning structure, etc.

	
A manifest list for this snapshot, where there is an entry for each manifest file associated with the snapshot.

	
A set of manifest files that contains a list of paths to the files that actually store the data.

[image: Apache Iceberg Structure]
Figure 6-6. Apache Iceberg Structure

This manifest also contains the metadata about the data sets, e.g. the upper and lower bounds of columns, similar to the row group headers. This is depicted in Figure 6-6. Let us go over an example of how Apache Iceberg does writes, as illustrated in Figure 6-7.

[image: Writes using Apache Iceberg]
Figure 6-7. Writes using Apache Iceberg

As you can see, initially the Apache Iceberg table has rows A, B, C, and D. and is stored across two data files. There are manifest files that point to these data files, and a manifest list that contains pointers to these two manifest files.

	
When row A is modified first, that data is written in a new data file, and a new manifest file is created to point to this new row. A new snapshot is created and preserved in a manifest list file. Apache Iceberg then updates the catalog to point to this new manifest list file. The write succeeds when all of these succeed, and the writes are completed only when the catalog file updates the metadata pointer to the newest version, this controls multiple writes.

	
When row C is deleted and row CC is inserted, a similar process is repeated, and the catalog now points to the newest version of the data.

	
When there is a read query that filters only for rows A and B, the manifest files help indicate that the data files containing rows CC and D can be skipped, there by avoiding unnecessary reads of files, increasing query performance.

The Apache Iceberg wiki has detailed documentation on how to use Apache Iceberg.

6.3.3 When should you use Apache Iceberg?

Similar to Delta Lake, Apache Iceberg is used for curated data and enriched data zones, where data assumes a tabular format, and is used for queries. Prioritize the data where strong guarantees are expected. Since this is update heavy, typically this is the curated data zone in the table. Apache Iceberg is best suited when your underlying data could be of different formats, thereby not enforcing a specific data format. Apache Iceberg offers the following capabilities that you can leverage in your architecture:

	
Support for schema evolution: When the schema is updated, i.e. new columns are added or existing columns are deleted, these updates are preserved in the snapshots, and you can leverage them to understand how the schema has evolved over time.

	
Data partition optimization: As we saw in “5.4.1 Data formats”, placing similar data closer together offers increased performance for your queries because you are optimizing for the smallest number of transactions to get to the data that you want. When your underlying data changes, you can continue making changes to how the data files are organized and partition the data better, while the applications continue to call into the manifest without having to understand these optimizations, thereby allowing the flexibility to optimize your data layouts without worrying about breaking your applications.

	
Time travel or roll back: Specifically in machine learning scenarios, models are built using a certain version of the data, and as the data changes, the model behavior also changes. In Apache Iceberg, you have snapshots that preserve specific versions of data, so you can tie your application to a specific version of data by associating with a specific snapshot or version. This concept is called snapshot isolation. Further, if your newer updates had an issue or an error, you can manage your snapshots and roll back to a previous version in a more straightforward fashion.

While Netflix incubated Apache Iceberg, this is widely being adopted as an open data format for the data lake across multiple customers and data providers. Apache Iceberg is widely adopted by organizations such as Apple, Airbnb, LinkedIn, and Expedia. In addition, data platform providers such as Dremio, Snowflake, and AWS have also provided native support for Apache Iceberg in their cloud offerings.

6.4 Apache Hudi

Similar to Apache Iceberg, Apache Hudi was incubated by Uber, a company that started as one of the first ride sharing application. Over the years, Uber has evolved into a mobility as a service provider offering additional services such as food delivery (Uber Eats and Postmates), package delivery, couriers, freight transportation,electric bicycle and motorized scooter rental via a partnership with Lime, and ferry transport in partnership with local operators. The underpinning of this rapid expansion of Uber lies in the data driven culture that is part of the DNA of the organization. Data and advanced machine learning capabilities powered critical Uber business operations such as predicting driver ETAs (estimated time of arrival), meaningful recommendations to Uber customers on where to order their next dinner, and also important features that ensure rider and passenger safety, to name a few. The timeliness of these features, i.e. the real-time recommendations or actions were critical to ensuring a great customer experience.This, of course, was important to the customer satisfaction and branding of Uber. Faced by similar challenges as Netflix, in addition to additional challenges involving the importance of real-time insights, Apache Hudi was incubated and further established to offer strong guarantees and timely insights on data that resides in a data lake.

Apache Hudi was designed to support these operations and data guarantees at scale, supporting around 500 billion record updates per data on a 150 PB data lake as of the year 2020, which is only growing more, as Uber continues to scale as a business.

6.4.1 Why was Apache Hudi founded?

The motivations of Apache Hudi are largely similar to Apache Iceberg and Delta Lake in that it was founded to overcome the inherent limitations of that general purpose object storage that was used to power the data lake storage. Specifically, the key motivations for Uber to address the following scenarios.

	
Upserts for efficient writes - Upsert refers to a concept where data needs to be written as an insert operation when it doesn’t already exist, or as an update operation if the row already exists. In a scenario where upserts are not supported, you have multiple rows instead of one, and there needs to be a separate computation that needs to be written to fetch these rows and filter for the most recent data. This solution costs more as well as takes more time for processing. Object storage systems are largely append only, and they do not support the concept of upserts inherently.

	
Understand incremental modifications - As we saw in the earlier chapters, data processing pipelines run jobs that process large amounts of datasets to generate highly curated data that are aggregated, filtered, and joined versions of the input data. Typically, whenever the input data is changed, the way these processing engines work is recompute the curated data over the entire data set. To speed up the time to insights, instead of reprocessing the whole batch, there was an opportunity to run the recomputations only on the datasets that changed - thereby processing only the incremental changes. To do this, there was a need to understand what changed since the last job, and this operation is naturally not supported by the data lake storage as is.

	
Support real time insights - As we saw in “6.2.1 Why was Delta Lake founded?”, while there are programming models that offer unified computation across real time and batch streaming, the actual architectures and implementations are different. As an example, when there are decisions to be made such as finding the best drivers to call for a particular ride, the real time data about the driver location is combined with the batch data of maps and traffic optimizations to book the right driver for the ride. Similarly, when serving recommendations in Uber Eats, the real time clickstream data of what the customer is browsing at that moment is combined with the recommendations data, which is possibly in a graph database, to serve the right recommendations. Once again, the data lake storage as is was not natively designed for this scenario.

Apache Hudi was primarily designed to drive efficiencies with support for upserts and incremental processing that enables data freshness in minutes as opposed to recomputing the entire dataset from scratch.

6.4.2 How does Apache Hudi work?

Apache Hudi like other formats is an open data format that is used to store tabular data. In a lambda architecture, that supports both real time streaming scenarios and batch scenarios, understandably so, you have two kinds of write patterns on the data:

	
Continuous ingestion of large volumes of data - think a ton of Uber vehicles transmitting information in real time.

	
Batch ingestion of data in bulk - think dumps of sales or marketing data that is done with daily jobs.

To support these patterns, Apache Hudi offers two kinds of tables:

	
Copy on write - There is one source of truth, that both readers and writers of the table interact with. Every write is immediately written as an update to the Apache Hudi table, and the updates are reflected in near real time to the readers. The data is stored in a columnar format optimized for reads, such as Apache Parquet.

	
Merge on read - Every write is written into a buffered zone in a write optimized data format (row based data format such as Avro), and these are later updated to the table that serves the readers, where data is stored in a columnar format (such as Apache Parquet).

Apache Hudi consists of three main components that are stored for a table.

	
Data files - The files containing the actual data. For copy on write tables, the data is stored in a columnar format. For merge on read tables, data is stored as a combination of incremental writes stored in row based formats, and the full data set stored in columnar formats.

	
Metadata files - This is a complete set of all transactions stored as an ordered timeline of activities on a table. There are three types of transactions on an Apache Hudi table.

	
Commits - An atomic write operation of a batch of records into a dataset stored in an Apache Hudi table.

	
Delta commits - An atomic write operation of a batch of records into a delta log, which needs to later be committed to the dataset. This operation is supported only on the Merge on Read type of tables.

	
Compaction - a background process of optimizing data stored by reorganzing their file structure, where the delta files are merged into the columnar format in the dataset.

	
Cleans - a background process where older versions of data that are no longer required are deleted.

	
Index - A data structure that enables efficient look ups of the data files belonging to the transactions.

There are different types of reads supported on Apache Hudi tables:

	
Snapshot queries - Query a specific snapshot of the data stored in the Apache Hudi table. A snapshot refers to the version of the data for a given time. This query returns all the data that matches your query.

	
Delta queries - Query data that has changed over a given time period. If you are only interested in what changed, you will use delta queries.

	
Read optimized queries - This query type is supported for the merge on read tables, and returns the data that is stored in a format optimized for reads. This does not include the data in the delta files that are not yet compacted. This query is optimized for faster performance and comes with the tradeoff on data not being the freshest.

Let us put these concepts together and walk through a concrete example of how Apache Hudi works.

6.4.2.1 Copy on write tables

A pictorial representation of the transactions on the copy on write tables can be seen in Figure 6-8.

[image: Transactions on Copy on write tables]
Figure 6-8. Transactions on Copy on write tables

In the copy on write tables, every write, whether it is an insert operation where new rows are inserted, or an update operation where existing rows are updated, or a delete operation where existing rows are deleted, are all treated as commits. There is one source of truth for the data set preserved in a columnar format, and every write is an atomic operation where the dataset is updated. There are snapshots of this truth preserved, where you see what the data was at a particular point in time. The queries supported here are Snapshot queries, and delta queries.

6.4.2.2 Merge on read tables

A pictorial representation of the transactions on the copy on write tables can be seen in Figure 6-9. While this is mostly similar to copy on write tables as seen in Figure 6-8, the key difference here is that the source of truth is distributed.

[image: Transactions on Merge on read tables]
Figure 6-9. Transactions on Merge on read tables

In the merge on read tables, there is a dataset in a columnar data format optimized for reads, and writes are stored in delta logs in a write optimized format, which are then compacted into the primary dataset in a columnar format. There are three types of queries supported on these tables - a snapshot query that returns the version of the data set as of a particular time, a delta query that returns only the data that changed, and a read optimized query that returns the dataset from the columnar format, offering faster performance, and does not include the data that has not yet been compacted.

6.4.3 When do you use Apache Hudi?

Apache Hudi offers more flexibility with its different types of tables that supports different types of queries, while offering strong data guarantees with atomic writes and versioning of data that is supported. Apache Hudi was incubated by Uber, but since then has been gaining strong adoption across other companies such as Amazon, Walmart, Disney+ Hotstar, GE Aviation, Robinhood, and Tiktok. There is recently a company that was founded called Onehouse that offers a managed platform that is built on Apache Hudi.

Apache Hudi is designed to support tables that need to handle a high frequency of writes in both real time and batch fashion. It also offers the flexibility of using different types of queries based on the requirements you have around performance and data freshness.

Summary

In this chapter, we dove deeper into the data formats, and built an understanding of how these data formats offer strong guarantees of data while helping with large improvements in query performance while keeping the cost profile low by leveraging the data lake storage. I went over what Delta Lake is, and how it can be used. I also did a deep dive on data formats that were incubated by customers running large scale data lakes, such as Apache Iceberg and Apache Hudi. These open data formats enable a truly no silo data lake, which can support a variety of computations, solving the needs of data engineers, machine learning engineers and data scientists, and business intelligence analysts on one platform. In spite of the leaps made with these data formats, it takes steep learning skills and a strong data platform team to build your data lake leveraging these data formats. Data solution providers such as Dremio, AWS, and Onehouse are building managed data platform solutions that offer lakehouse out of the box. Depending on the motivations and engineering resources of your organization, you can make lakehouse a reality on a cloud data lake. In the next chapter, we will focus on the end to end decision making strategies by putting together all the concepts we have covered in these first six chapters.

OEBPS/assets/DataLifeCycle.png
User User User User

Domain Domain Domain Domain

Data processing

Domain Domain Domain Domain

Data preparation

Source Source Source Source

Ingestion

Workspace

Curated

Enriched

Raw

OEBPS/assets/PartitioningData.png
Region
Salesperson
Year
Month
Day

Volume

Customer

Optimized for region level
analysis of metrics focused on
individual performance.

Revenue

Salesperson
Customer

Volume

Revenue

Optimized for analysis of
trends over time with regions
as the cohort.

Month

Day

Salesperso

Customer

Volume

Revenue

Optimized for region level
analysis of metrics focused on

trends.

OEBPS/assets/DataLakeArchitectureKlo.png
Product

" Dashboards
recommendation
for sales and
for exec team g
marketing
Data Machine Cloud Data
ScTce Learning Warehouse
Cloud Data Lake
[—
Data -— ® New
- O
sources [—] €y datasets
Customer data
on-prem from CRM Product trend

Sales, inventory data data

OEBPS/assets/DataLakeSLASLOsKlo.png
Job l]ﬂlln Dashboards

Business for sales and
performance marketing

Data
metrics analyst

Intelligence

SLA
recommendation n
sLI for exec team of }

B L 6 & o

SLO product ETL Data Sclence Cloud Data Sales ETL Marketing ETL
b done 2 Warehouse
hours by 8
AM
Copy
[SINeJl completed by Cloud Data Lake
6AM
f—
Data —) New
sources G O datasets
ON-Prem s inventory data s | SLI G e

metrics

OEBPS/assets/ApacheIceberg.png
Catalog catalog

metadata

snapshot0

Latest version of metadata

metadata

snapshot1

snapshot0

Metadata

manifest list

Data

OEBPS/assets/Lakehouse_formats.png
lorolol .
1oroio1 LY Binary fles that don't
Table with records lotoloiolo | Seem to make much
l010i0i0i0 | meaning just by
1010101010 | themselves
Use APIs of said open Through data lake
data technology. storage APIs

Curated data (high value data) - Open data format

Transform to use open /@
data technology...

Raw data (as ingested from source)

Data lake Storage

OEBPS/assets/Apache_Iceberg_Writes.png
Logical table

Columns

Modified

Catalog
Deleted catalog
Inserted Latest version of metadata
metadata metadata metadata
snapshoto snapshoto snapshoﬂ snapshot0 || snapshott || snapshot2
Metadata

Manifest for
Row CCD

Data file

Al m [A [m cloloala
[[T 81 B2 o [oo | or 02 B | 8o | 81 | B2 | o 00 o1 02

Data

OEBPS/assets/AssemblyLine.PNG
Assembly line

TOAST 2 SPREAD SPREAD JELLY ASSEMBLE BAG THE
PIECES OF PEANUT ON THE THE SANDWICH
BREAD BUTTER ON OTHER SANDWICH

ONE

OEBPS/assets/Traditional_data_warehouse_pipeline.png
Appiication

Application

Applcation

S

Data warehouse on-premises

f’@
£

Data mart

OEBPS/assets/DataCopyPerfDrivers.png
Storage performance

Network bandwidth

Readworker number and power Wity Destination data storage

Source data storage

Data profile - size
and number of
objects

|
|
Worker Worker | ... Worker :
|
|

|
|
|
|
|
A
List contents to | Launch wotkers and
be copied | manag¢ work allocation

| Data copy orchestrator

|
|
| |
|

Data copy service/tool

OEBPS/assets/Lambda_Architecture.png
E Ingest Sarving

Appicaton
Primary dataset — Batch queries
]
]
Lﬁps Delta queries
i Hot dataset — Real time queries
IoT sensors
©
S

Social media

OEBPS/assets/Vs_of_Big_Data.png
Real time Batch

59 Zettabytes evons tansters
data generated = [
2020. [ci]

Volume Velocity

d ds,
Variety 6 Vs of Big Data Value | prasting

patterns

Veracity Varlablllty é@

Data science
Varying degrees C@
of trust in the

data analyzed. Dashboards Applmauons

OEBPS/assets/Apache_Hadoop_Toolsets.png
e

575 STORM @MapReduce

@ Hadoop YARN (Resource Manager)

@ Hadoop Distributed File System (HDFS)

T - 0

OEBPS/assets/DataGovernanceKlo.png
Product
. Dashboards
recommendation
for sales and
for exec team 3
marketing

Compute framework access

Storage level security

Cloud Data
Warehouse

Machine
Learning

@
Q
<
®
<
=
[
>
o
=]
]
S
©
a

Unified data governance with complex rules and policies

Cloud Data Lake) Storage level securit
|}
-
[}

S
Data ® New
sources O¢Y datasets
Customer data
on-prem o 2 Product rond

Sales, inventory data data

OEBPS/assets/Apache_Spark.png
Programming language (Python, Scala, R)

Spark
saL

Streaming

ML Lib

GraphX

Spark Core + RDD API

Cluster Manager
(YARN, or Mesos, or Kubernetes)

Storage (HDFS/Cloud data lakes)

ﬁ Ingest

i

OEBPS/assets/Row_vs_columnar_format.png
Logical data

Columns
0o |1 |2
A0 |A1 |A2
BO [B1 [B2
CO [C1 |C2

RICIES

Rows

i

Physical storage Physical storage
(row oriented) (column oriented)

AO |A1 |A2 |BO |[B1 [B2 /A0 |BO |CO Al [B1
CO |[C1 |C2 A2 [B2 |C2

OEBPS/assets/Schema_validation_enforcement.png
Missing values Schema evolution
Columns Columns

Rows
Rows

Added
column

Fails schema validation

OEBPS/assets/DataLakeCosts.png
3 Ingress cost - per unit of data (typically free)

Appiication

Compute units (cores/custom units)

B

= Ingest Prep Curate Consume

)

loT sensors

LOB apps Software license

Transactions 1 per transaction|

©
5¢ Data lake

Social media Data stored

Network costs
Egress cost - per unit of data

=Tr=4
QEI DB Storage costs

Application Compute costs

OEBPS/assets/DataCopyInternals.png
Source data storage Read WritsA Destination data storage

|
|
Worker | ... Worker :
|
|

List contents to
be copied

\ ﬁunch worers and

Data copy service/tool

OEBPS/assets/Private_and_Public_Cloud.png
Public Cloud
(Provider1)

Private Cloud (On-premises) Hybrid Cloud Design

{ ubisaq@ pnoio mnw}

OEBPS/toc01.xhtml

		1. Big Data - Beyond the Buzz
		1.1 What is Big Data?

		1.2 Elastic Data Infrastructure - The Challenge

		1.3 Cloud Computing Fundamentals
		1.3.1 Value Proposition of the Cloud

		1.4 Cloud Data Lake Architecture
		1.4.1 Limitations of on-premises data warehouse solutions

		1.4.2 What is a Cloud Data Lake Architecture

		1.4.3 Benefits of a Cloud Data Lake Architecture

		1.5 Defining your Cloud Data Lake Journey

		Summary

		2. Big Data Architectures on the Cloud
		2.1 Why Klodars Corporation moves to the cloud

		2.2 Fundamentals of Cloud Data Lake Architectures
		2.2.1 A Word on Variety of Data

		2.2.2 Cloud Data Lake Storage

		2.2.3 Big Data Analytics Engines

		2.2.4 Cloud Data Warehouses

		2.3 Modern Data Warehouse Architecture
		2.3.1 Reference Architecture

		2.3.2 Sample Use case for a Modern Data Warehouse Architecture

		2.3.3 Benefits and Challenges of Modern Data Warehouse Architecture

		2.4 Data Lakehouse Architecture
		2.4.1 Reference architecture for Data Lakehouse

		2.4.2 Sample Use case for Data Lakehouse Architecture

		2.4.3 Benefits and Challenges of Data Lakehouse Architecture

		2.4.4 Data warehouses and unstructured data

		2.5 Data Mesh
		2.5.1 Reference architecture

		2.5.2 Sample Use Case for a Data Mesh Architecture

		2.5.3 Challenges and Benefits of a Data Mesh Architecture

		2.6 What is the right architecture for me?
		2.6.1 Know your customers

		2.6.2 Know your business drivers

		2.6.3 Consider your growth and future scenarios

		2.6.4 Design considerations

		2.6.5 Hybrid approaches

		Summary

		3. Design Considerations for Your Data Lake
		3.1 Setting Up the Cloud Data Lake Infrastructure
		3.1.1 Identify your goals

		3.1.2 Plan your architecture and deliverables

		3.1.3 Implement the cloud data lake

		3.1.4 Release and operationalize

		3.2 Organizing data in your data lake
		3.2.1 A day in the life of data

		3.2.2 Data Lake Zones

		3.2.3 Organization mechanisms

		3.3 Introduction to data governance
		3.3.1 Actors involved in data governance

		3.3.2 Data Classification

		3.3.3 Metadata management, Data catalog, and Data sharing

		3.3.4 Data Access Management

		3.3.5 Data Quality and observability

		3.3.6 Data Governance at Klodars Corportation

		3.3.7 Data governance wrap up

		3.4 Manage data lake costs
		3.4.1 Demystifying data lake costs on the cloud

		3.4.2 Data Lake Cost Strategy

		Summary

		4. Scalable Data Lakes
		4.1 A sneak peek into scalability
		4.1.1 What is Scalability

		4.1.2 Scale in our day to day life

		4.1.3 Scalability in Data Lake Architectures

		4.2 Internals of Data Lake Processing systems
		4.2.1 Data copy Internals

		4.2.2 ELT/ETL Processing Internals

		4.2.3 A Note on Other Interactive queries

		4.3 Considerations for Scalable Data Lake solutions
		4.3.1 Pick the right cloud offerings

		4.3.2 Plan for peak capacity

		4.3.3 Data formats

		Summary

		5. Optimizing Cloud Data Lake Architectures for Performance
		5.1 Basics of Measuring Performance
		5.1.1 Goals and metrics for performance

		5.1.2 Measuring performance

		5.1.3 Optimizing for faster performance

		5.2 Cloud Data Lake Performance
		5.2.1 SLAs, SLOs, and SLIs

		Example - How Klodars Corporation managed their SLAs, SLOs, and SLIs

		5.3 Drivers of Performance
		5.3.1 Performance drivers for a copy job

		5.3.2 Performance drivers for a Spark job

		5.4 Optimization Principles and Techniques for Performance Tuning
		5.4.1 Data formats

		5.4.2 Data organization and partitioning

		5.4.3 Choosing the right configurations on Apache Spark

		5.5 Minimize overheads with data transfer

		5.6 Premium offerings and performance
		5.6.1 The case of bigger Virtual Machines

		5.6.2 The case of flash storage

		Summary

		6. Deep Dive on Data Formats
		6.1 Why do we need these open data formats?
		6.1.1 Why do we need to store tabular data?

		6.1.2 Why is it a problem to store tabular data in a cloud data lake storage?

		6.2 Delta Lake
		6.2.1 Why was Delta Lake founded?

		6.2.2 How does Delta Lake work?

		6.2.3 When do you use Delta Lake?

		6.3 Apache Iceberg
		6.3.1 Why was Apache Iceberg founded?

		6.3.2 How does Apache Iceberg work?

		6.3.3 When should you use Apache Iceberg?

		6.4 Apache Hudi
		6.4.1 Why was Apache Hudi founded?

		6.4.2 How does Apache Hudi work?

		6.4.3 When do you use Apache Hudi?

		Summary

OEBPS/assets/DataSecurity.png
Complex data access
policies with data
governance tools

Secure network
access to cloud
resources

Secure access to
compute engines

Secure data access in
the storage

OEBPS/assets/ParquetFormat.png
Rows

Logical data

Physical storage

Columns
o [1 |2 B0 co N) B1 = D1 |A2 [sz [cz_TJoz
oncoded chunk ‘oncoded chunk ‘oncoded chunk
A A0 |A1 |A2
B BO [B1 [B2
C Co |c1 |C2

i

OEBPS/assets/DataLakeArchitectureResources.png
I

Appiication

LOB apps

)

loT sensors

5

Social media

Software program (job code)

Ingest Prep Curate Consume

Data format, organization etc
Data lake

Storage resources - disk space, CPU for transactions, network for bandwidth|

What is available to us

What we control

OEBPS/assets/Cost_vs_complexity.png
Complexity of development vs Cost of Solution

'y
High
Data mesh
5 | Data
29 | lakehouse
% E
iz
g ° Modern data
RE] warehouse
Cloud data
Low warehouse
>
Low Cost of High

solution

OEBPS/assets/Data_Mesh_at_Klo.png
Dat:

€

Sharing across Domain teams @ Klo
- Usethe data
catalog to discover
data they could
leverage.

e
[aa)
-9
00
- Consumethedata O @

o
o

20
&
produced by other 5 g $ [~
domains to o -
improve their @ @
insighs.
90 ? ~ $ 00
2% ks
@ =5
@ =
@ =)
o0 Data Infrastructure as a Platform
RS Provision, Access control, Catalog, Governance

a platform team @ Klo

Reference architectures on public clouds, automation scripts for deployment. configuration of

resources.

Requirements on compliance, data residency. data retention requirements. Scripts to

manage/monitor these requirements.

Set up and manage data catalog for discovery, data sharing, access policy. and other data

governance infrastructure.

@Domaln teams @ Klo

Implement domain infrastructure.
pick their choice of cloud
providers, and services.
Implement compliance. data
residency and data retention
policies.

Publish data in data catalog, set up
sharing and access control
policies.

Leverage scripts from data
paltform team for above. and
consult for questions.

OEBPS/assets/DataLakeImplementationKloDependencies.png
Driving factor Exec briefing at 9 AM

SLA

SLO

SLI

©)
Fresh data available by 9 AM @

Spark job Copy job

completes by completes by
8 AM, has a 6 AM, and (@)

window of 2 available for
hours max Spark job

Metrics dashboards %

Contract between
sales and data
team

Goals for the data
team

Measure progress
towards goals

OEBPS/assets/ApacheHudi_CopyOnWrite.png
Timeline

————————eo—o—p

TO - Commit T1- Commit T2 - Commit
Actions Insert A, B, C, D Update A1, D1 Insert E, F
Update A2
Filel- A B FileT - Al B FileT" - A2, B
Files
File2-C,D File2 - C, D1
File3-E,F
Query type TO m T2
Snapshot ABCD Al B, C, D1 A2,B,C,D1EF

Incremental A BCD A1, D1 A2,E,F

OEBPS/assets/DatabricksCluster.png
New Cluster Cancel DBU / hour: 3 - 9 o

Policy ©

Unrestricted
Cluster Name

Test

Cluster Mode ©

Standard

Databricks Runtime Version @ Learn more

Runtime: 8.2 (Scala 2.12, Spark 3.1.1)
Databricks Runtime 8.x uses Delta Lake as the default table format. Learn more
[J Use your own Docker container @

Autopilot Options
Enable autoscaling @

[Enable autoscaling local storage @

Terminate after 120 minutes of inactivity (2]

Worker Type @ in Workers Max Workers

i3.xlarge 30.5 GB Memory, 4 Cores 2 8

Driver Type

i3.xlarge 30.5 GB Memory, 4 Cores

DBU/hour:3-9 @

OEBPS/assets/cover.png
OREILLY"

The Cloud
Data Lake

Optimizing Data Storage
and Speeding Up Insights

Early
Release

RAW &
UNEDITED

Rukmani Gopalan

OEBPS/assets/Cloud_Data_Lake_Architecture.png
Structured
==

Appiication

B

= Ingest Prep Curate Consume

loT sensors

Semi-structured
LOB apps

(JSON exports)

Unstructured

©
5¢ Data lake

Social media

OEBPS/assets/DataTypeClassPolicy.png
PE RSONALLY (DENTIFIABE
[NFO M ATION

\(Pl\)MA poL 1LY

CFrect yamp\ e | ap pi
DATA { | por name NEEDS TO
TPE [Anperss BE OLLECTEN

C

1 Lect
r— e
| > / aNSENT_DE
. . 4 > THE USER.
\ / =
EXAMPLE OF DATA NES,
CL ASSES AND fPouaM

?

OEBPS/assets/BigData_Value.png
-
LOB apps

Ideas and experiments

o)

IoT sensors

Non-intuitive patterns

®
O
Social media

High value insights

Images and videos

Documents

High value density
Low value density from in the insights
disparate sources

OEBPS/assets/SparkJobInternals.png
Job

Driver

Job

depends

Stage

Task

Job

Stage

Task

OEBPS/assets/SparkJobPerfDriversSerialization.png
Transformed data sent to executors

Executor Executor Executor
N Executor Executor Executor
Driver
Executor Executor Executor
Transformed Transformed
Input data data set data set Output

Logical flow of Spark application

OEBPS/assets/DataOrganizationKlo.png
User1 User2 User3 User4
Workspace
Sales Inventory Product
+Sales
+Salestrend
+salestrend2022010!
+salestrend20220108 AN Curated
+salestrend20220107 Data processing
+Sales i i
42022 Sales Marketing || Inventory Social
+01
K N\
+salesdata20220109 Enriched
+08 i
+salesdata20220108 Data preparation
Sales Customer Social Inventory
+Sales DB Data data DB
+2022
+01
+09 2\ Raw

+salesdata20220109backup

+08

+salesdata20220108backup

Ingestion

OEBPS/assets/DataGovernance.png
00 Discovery

mc -Catalog
Data -Sharing
Producer/
Consumer

Data Governance

=)=} Observability Policy
Dﬁ -Quality -Access control

-Lineage, MDM -Compliance

Engineer

09
o

[aa)
Data

Officer

OEBPS/assets/SparkJobPerfDrivers.png
Spark cluster
Cluster resources - memory,)

Job design

depends

Driver

Data profile - size, Storage read and write
number of objects, performance
partitions

Cloud Data Lake Storage

OEBPS/assets/Database.png
‘Supplord int
Supplerame varcrars0)
Adress varcnar 100

Praductaint
PradciName varcharis0)
ProdciDase varcnar(100)
RetaiPrice foat

BulkPric fost

SupprorD nt

Gustomera nt
Customerame varcra(50)
Notea varchar 100)

[Ep—
rdrid
Customeridnt
Productd nt
Diccount foat
Biedamaunt fost

Onteridint
Costomerant
Date daetime.
PaymentSttus int
TotwAmount foat

OEBPS/assets/ApacheHudi_MergeOnRead.png
Timeline
—_—e e — o——p

TO - Commit T1- Delta Commit T2 - Delta Commit T3 - Compaction
Actions Insert A, B, C, D Update A1, D1 Insert E, F
Update A2
Filel- A B Logl- Al Log - Al, A2 Filel - A2, B
Files .
File2-C,D Log2 - D1 File2 - C, D1
Log3-EF File2 - E,F
Query type T0 m T2 T3
Snapshot ABCD Al B, C, D1 A2,B,C,DlE,F A2,B,C,DlEF
Incremental AB,C,D A1, D1 A2, E,F

Read Optimized ABCD A B,C,D A B,C,D A2,B,C,DLEF

OEBPS/assets/Unstructureddata.png

OEBPS/assets/Bulk_update_data.png
Rows

Original data

Columns
0 1 2
A A0 A1 A2
B BO B1 B2
C Co C1 C2
D DO D1 D2

Rows

Modified data

Columns

Modified

Deleted
Inserted

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/css_assets/beaver_epub.png

OEBPS/assets/Data_Lakehouse_Klo.png
e Does weather correlate to sales? © Where are sales growing fast and

« Who are the influencers? not so fast?
* Whatelse do people buy whenthey o Who is bringing in the best sales?
shop for umbrellas? s Who are the retailers/partners in
e Forfolks who are bringing in the best areas where sales can grow?
sales, what are they doing * What age group prefers our
differently? umbrellas the most?
« What are the gaps in o Is weather impacting sales in
retailers/partners that cause a dip in certain regions?
sales?
™ Consume
Data of
usage El][lu.,
Machine Businsss Data
Learning Intelligence ,a1yst
Curated data (high value data) - Open data format Curate
Data lake Enriched data (cleansed, validated, deduped) Prep
Raw data (as ingested from source) Ingest
— P
Data] 2 {D@
sources —] [} &Y

LOB apps 10T sensors Social media

OEBPS/assets/Datawarehouse_Datalakehouse.png
Cloud Data Warehouses

Engine 1

(e.g. Snowflake)

Proprietary
Data

(e.g. Synapse)

E

ngine 3

.g. Redshift)

Propnetary
Data

Storage: $3, ADLS, GCS

()

2015-2020

x Can't use multiple engines on the same
data or use cases

x Limited to functionality of one engine

x Can't adopt new engines in the future
(lock-in, similar to Teradata/Oracle)

ICloud Data
Lak_e/Lakehouse

Engine 1 Engine 2 Engine 3
¢ dremio (e, Spark) | | .

ymmon Data
/Delta Lake, etc,)

Storage: S3, ADLS, GCS

~ Flexibility to use multiple best-of-breed

engines on the same data and use cases

~ Easy to adopt additional engines today
~ Easy to adopt new engines in the future,

simply point them at the data

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/DataLakeGoals.png
High priority for data lake

High Problem9
Problem4
Problem8
Helpfulness Problem10
of data Problem5
Problem2 Problem6
Problem1 Problem3
Low Problem7

Low

High
Severity of problem

OEBPS/assets/Delta_Lake_Writes.png
Rows

Columns

Log

ID 1 - insert row CC
ID 2 - delete row CC

ID 3 - modify row A

ID 4 - modify row A

Modified

Deleted

Inserted ~ {Q}
Task1

Task2

Task3

Task4

OEBPS/assets/Onprem_vs_cloud_architecture.png
On-premises Hadoop cluster

Compute (YARN based resource management) to
run queries/streaming and batch workioads

HDFS Storage

Named node (block placement, metada
replication logic etc)

Datanode Data node

u Block I

Cloud Data Lakes

Compute engine

Compute engine

Data lake/Object Storage

Compute engine Compute engine

OEBPS/assets/MakingSandwichStepByStep.PNG
Making of a Sandwich
Step by Step

1 2 3 4 5

TOAST 2 SPREAD SPREAD JELLY ASSEMBLE BAG THE
PIECES OF PEANUT ON THE THE SANDWICH
BREAD BUTTER ON OTHER SANDWICH

ONE

OEBPS/assets/1_Nz8bc62eRDxegVkzJr_HrQ.png
[Data Sources M Compute

][Services][

Tools]

AMAZON
REDSHIFT

—
—

RDS

¥

Pig

i

Spar‘lzz

.
=

st

M

Metacat

\PourQ i
é‘:ﬂﬁ, Lipstick Pig Workflow
) Visualization

Job/Cluster Perf
Visualization

VIS

Big Data Portal

~_
Jupyter
v
Notebook

Other internal tools for
data lineage, data

etc.

Microbots
- quality, data movement

OEBPS/assets/Data_lake_cost_strategy__1_.png

OEBPS/assets/Data_mesh.png
B

5

®©
3

%o

(1 ©
5
&

o}
& &
=5 D
@ [y (g)
o

00

(@ S

[aa)

Data Infrastructure as a Platform

Provision, Access control, Catalog, Governance

@ Common data engineering team manages and defines blueprints.
for self serve data infrastructure

Domain data and pipelines owned by domain teams using
common infra blueprints

@ Domain data shared with other products/domains as well

OEBPS/assets/Cloud_Data_Lake_Setting_Up_Infrastructure.png
. Improve based on feedback
Validate against goals |terate plan based on feasibility.

What?
Why? Plan How? Did it?
Y
(Determine architecture (Implement (Release)
goals) and deliverable)

deliverable)

OEBPS/assets/Parquet_Format.png
Magic Number (4 bytes): PART"

Fow group 0
Columna Footer
Page 0 FileMetaData (ThritCompactProtocol)

- Version (of the format)
- Schema
- extra keyvalue pairs

Page header (ThriftCompactProtocol)
Repeition levels
Definition levels

Row group 0 mefa data:

Column a meta data:
~type / path / encodings / codec.
- num values

Page 1 - offset of irst data page
; - offset of first index page
— - compressediuncompressed size
- extra keyivalue pairs

column "0 meta data 7|:
Row group 1 meta data 71:

Footer length (4 bytes)

values

Columnb

Row group 1

Magic Number (4 bytes): ‘PART"

OEBPS/assets/EndtoEndExecution.PNG
End to end execution

RARKR KR

TOAST 2 SPREAD SPREAD JELLY ASSEMBLE BAG THE
PIECES OF PEANUT ON THE THE SANDWICH
BREAD BUTTER ON OTHER SANDWICH

ONE

OEBPS/assets/Modern_Data_Warehouse.png
Data
usage

Data lake

Data
sources

l]ug

Business

Data

ence analyst
Data Machine Cloud Data
Scielnce Learning Warehouse

> consume

Curated data (high value data)

Curate

Enriched data (cleansed, validated, deduped)

Prep

Raw data (as ingested from source)

Ingest

| -] = @
&
= B i &

|

10T sensors Social media

OEBPS/assets/Modern_Data_Warehouse_Klo.png
Data
usage

Data lake

Data
sources

Where are sales growing fast and ot so fast?
Who is bringing in the best sales?

i

Business

Does weather correlate to sales? " Data
Intell
Who are the influencers? ntelligence - analyst
What else do people buy when they
shop for umbrellas? (5
Machine Cloud Data
Learning Warehouse

\ \

~

Who are the retailers/partners in areas where sales can grow?
What age group prefers our umbrellas the most?

> consume

Curated data (high value data) - sales trends, social media
trends, website navigation patterns, weather correlation etc

Enriched data (cleansed, validated, deduped)

Raw data (as ingested from source)

Curate

Prep

Ingest

g —
Je

]
DB —]
[}

OEBPS/assets/DataCatalog.png
Table1 Data lake

-

[Table1 Data catalog

Table2

... Other metadata published

Database - Database

OEBPS/assets/Data_Lakehouse.png
Data
usage

Data lake

Data
sources

i

Business

Data Machine

! Data
ScTce Learning Intelligence ,a1yst

\ |

~

Consume

.

Curated data (high value data) - Open data format

Enriched data (cleansed, validated, deduped)

Raw data (as ingested from source)

Curate

Prep

Ingest

| -] = @
&
= B i &

|

10T sensors Social media

OEBPS/assets/DataLakeImplementationKlo.png
Product
recommendation
for exec team

g

Dashboards
Business for sales and
Intelligence af:l;as. ‘marketing
& A 8 & SR
&® © 2 2
Product ETL Data Science Cloud Data Sales ETL Marketing ETL
and ML Warehouse
=
Product Sales Marketing
Cloud Data Lake
Data -— (@] New
DB - D
sources [—] €y datasets
Customer data
on-prem i Product rend

Sales, inventory data

data

OEBPS/assets/semi_structured.png
Sales_Item (XML)

<sales_item>
<sales_item_id>1233</sales_item_id>
<order_id> 34556 </order_id>
<customer_id> 5678 </customer_id>
<product_id> 8754 </product_id>
<discount> 0.50 </discount>
<billed_amount>
<value>100.00 </value>
<currency> USD </currency>
</billed_amount>
</sales_item>

Sales_Item (JSON)

“sales_item”: {
“sales_itemid”: “1233",
“orderID": “34556",
“customerID”: “5678",
“productID”; “8754",
“discount”: “0.50"
“billed_amount”: {

“value”: “100.00”
“currency”: “USD”
}
}

OEBPS/assets/MapReduce_Twitter_Feeds.png
Input data - Twitter feed

Map

Reduce

This s tweett @usert @user2
@users

T s tweet2 @userd @userd

This is tweet3 @user2 @user!
@users

This s tweetd @user? @user!

@userd

@user1, 1
@user2, 1
@users 1

@usert3

@users, 1
@userd, 1

@user2, 1
@user 1
@users, 1

@user7, 1
@user 1
@user3, 1

@user.1

