

Football Analytics with Python and R

A Data Science Approach

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Eric A. Eager and Richard A. Erickson

Football Analytics with R and Python

by Eric A. Eager and Richard A. Erickson

Copyright © 2022 Eric A. Eager and Richard A. Erickson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (https://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Michelle Smith

		Development Editor: Corbin Collins

		Production Editor: Clare Jensen

	
		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		October 2023: First Edition

Revision History for the Early Release

		2022-07-21: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781492099628 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Football Analytics with Python and R, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author(s), and do not represent the publisher’s views. While the publisher and the author(s) have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-09956-7

Chapter 1. Introducing to Python and R

Tools for Football Analytics

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

Football analytics, and more broadly, data science, require a broad set
of tools. Successful practitioners in these fields require an
understanding of these tools. Statistical programming languages are a
backbone of our data science toolbox. These programs allow us to clean
our datasets, conduct our analyses, and readily reuse our methods.
Although many people commonly use spreadsheets (such as Microsoft Excel
or Google Sheets) for data cleaning and analysis, we find spreadsheets
do not scale well. For example, when one has to work with large datasets
like tracking data, which can contain thousands of rows of data per
play, spreadsheets simply are not up to the task. Programming languages
also allow for easy reuse because copy and pasting formulas in
spreadsheets can be tedious and error prone. Lastly, spreadsheets allow
undocumented errors. For example, spreadsheets do not having a method to
catch a copying and pasting mistake.. Furthermore, modern data science
tools allow code, data, and results to be blended together in
easy-to-use interfaces. Common languages include Python, R, Julia,
Matlab, and SAS. Additional languages continue to appear as computer
science continues to advance.

As practitioners of data science, we use R and Python daily for our
work, which has collectively spanned the space of applied mathematics,
applied statistics, theoretical ecology and, of course, football
analytics. Of the languages listed previously, Python and R offer the
benefit of larger user bases (and hence likely contain the tools and
models we need). Both R and Python (as well as Julia) are open source.
Open source means two types of freedom. First, anybody can access all
the code in the language, and this freedom is sometimes called libre
freedom (think free like in free speech). This allows volunteers to
help improve the languages, such ensuring that users can debug the code
and extend the languages through add-on packages. Open source also
offers the benefit of free to use for users, sometimes called gratis
freedom (think free like in free beer). Hence, users do not need to
pay thousands of dollars annually in licensing fees. We were initially
trained in R, but have learned Python over the course of our jobs.
Either language is well suited for football analytics (and sports
analytics in general).

We encourage you to pick one language for the book and learn that
language well. Should you need to learn a second programming language,
it is easier if you understand the programming concepts behind a first
language well. Then, you can relate the concepts back to your
understanding of your original computer language. Although many people
pick favorite languages and sometimes have arguments with each other
over which coding language is better (similar to Coke versus Pepsi or
Ford versus General Motors), we have seen both R and Python used in
production and also used with large data and complex models. For
example, we have used R with 100 GB files on servers with sufficient
memory. Both of us began our careers coding almost exclusively in R, but
have learned to use Python when the situation has called for it.

Tip

When picking a language, we suggest you “use what your friends use.”
They can then help you debug and troubleshoot.
If you still need help deciding, open up both languages and play around for a little bit.
See which one you like better.
Personally, the authors like R when working with data, because of R’s data manipulation tools, and Python when building and deploying new models because of Python’s cleaner syntax.

The Python Language

The Dutch computer scientist, Guido van Rossum, created Python as a
programming language in 1991. The language is often considered clean and
easy to understand because the code uses white space for formatting and
grouping (for example, rather than using {} like R, Python uses blank
space to group code). The language allows extensions through packages,
although multiple package managers exist. Python can be used for
everything from video game development to web-page hosting. The language
is well designed with respect to computer science concepts, but can also
be used as an interactive tool to explore data or scripting statistical
methods.

Python’s numerical tools emerged as replacements for other languages.
NumPy emerged as a replacement for MatLab’s matrix tools and other
numerical methods. Matplotlib emerged as a plotting library inspired by
MatLab’s plotting style and syntax. Pandas emerged as data frame tools,
inspired by R’s data.frame objects. In contrast to a matrix, which
typically only allows values of one type (such as only allowing numbers
or characters), data frames allow columns to be different data types
(similar to a spreadsheet with columns of text and columns of numbers).
We use Miniconda for this book because it allows for more than Python to
be installed and managed. For example, Miniconda can also be used to
install R and R packages. Miniconda may be installed from the
project’s
page.

The R Language

R was created by Ross Ihaka and Robert Gentleman as a teaching language
in 1993 in New Zealand. The R language is based upon the S language,
which was first developed by the famous Bell Laboratories in 1975. Like
Python, R has extendable packages. Unlike Python, base R natively
supports many data types such as data frames and matrices, and R
includes many basic statistical tools. R has been developed by
statisticians, and many computer programmers feel the language is not as
well polished as other languages such as Python or Java from a computer
science perspective. We use R on a daily basis and like its ability to
work with different data types.

R is also the lingua franca for statisticians, especially academics.
In fact, Significance, the joint magazine published by the Royal
Statistical Society, the Statistical Society of Australia, and the
American Statistical Association published an
issue
in August 2018 titled the R Generation to celebrate the 25th
anniversary of the R language and its emergence as subcultural
phenomenon. Because of this prevalence and widespread use by academic
statisticians, many cutting edge statistical methods are first developed
as R packages by the researchers who develop the methods. Historically,
statistical tool availability and the ability to work with diverse data
types were strengths R had over Python. However, as Python has continued
to become more widely used (and, arguably has become the most common
language used in data science), this gap has narrowed. Likewise, R and
Python can call easily call code from the other language, further
leveling the playing field between the two languages.

Within R, three population sub-languages are emerging. First, base R
(the default R packages) remains popular and stable. However,
limitations exist with these methods and functions, and new ideas have
emerged. The data.table package works quickly and with large data. We
have used the data.table package to load 100 GB files on remote
servers with ease and to program high-throughput data processing when we
have days worth of data to process. The tidyverse set of packages
emerged as Hadley Wickham and others committed much of their academic
life to the question of how R should be written. We use the tidyverse
on a daily basis because it is easy to read and works quicker than base
R, and is more than quick enough (compared to data.table) for our
daily needs. Like Python, R is used in daily production by some
companies, including Eric’s employer, PFF. However, many
people prefer Python for production because Python can be used for
everything from data analysis to web page development.

First Steps in Python and R

Opening a computer terminal may be intimidating for many people. For
example, our spouses will walk by our computers, see code up on the
screens, and immediately turn their heads in disgust. One of the
author’s spouses won’t even allow him to open
any terminals on her Chromebook. However, terminals are quite powerful
and allow more to be done with less, once you learn the language. This
section will help you get started using Python or R.

Different options exist for installing Python and R and then using the
programs on your computer. You may download the programs directly from
their project homepages, www.python.org for Python and www.r-project.org
for R. However, you will then still need a program to work in as you
program. We recommend using the miniconda program to manage Python and R
on your computer because doing so allows you to easily use Jupyter
Notebooks with your code and Jupyter Lab for editing. Furthermore,
miniconda and the related Anaconda program are probably the most
commonly used programs by data scientists for managing Python. We
describe the how and why this program works in
[Link to Come].

Tip

Historically, many if not most developers used a Unix- or Linux-based operating system, including macOS (which is based upon Unix).
More recently, tools such as conda, Docker, and Windows Sub-system for Linux (WSL) allow people to develop on Windows as well.
Likewise, Chromebooks now have developer modes that give full access to Linux tools on which the Chromebooks are built.
However, we have observed that many companies are now moving to the cloud, which enables people to use any operating system (including the iPad-based iPadOS).
Hence, operating system is becoming less important than the ability to use core tools that work across OS.

For you first steps in Python & R, do the following to obtain the
program and get the initial add-on packages you will need for this book:

	
Download Miniconda. As of 2022, the homepage is
https://docs.conda.io/en/latest/miniconda.html.

	
Open the
Miniconda terminal if you are on Windows. If you are on Linux (including
Chromebook) or macOS, open your Bash terminal.

	
Install the
required core Python packages for the book by typing
conda install -c conda-forge scipy pandas seaborn jupyterlab. Type y
to confirm you want to install the required dependencies.
.
Install the required R packages for the book by typing
conda install -c r r-recommended r-tidyverse r-irkernel. Type y to
confirm you want to install the required dependencies.

	
Run
R -e 'IRkernel::installspec()' to add R-kernel
to Jupyter. This tells Jupyter to recognize R.

	
Open Python by
typing python or R by typing R.

If you need additional help, online video tutorials exist on sites such
as YouTube. For example, a search for “install mincoda video” on
www.duckduckgo.com
links to several helpful videos (we used DuckDuckGo as our example
search engine because others such as Google customize results based upon
individuals, thus your research results probably differ from ours).

Note

Both Python and R have flourished because they readily allow add-on packages.
Conda exists as one tool for managing these add-on.
[Link to Come] covers Conda and other add-ons.
In general, packages in Python can be installed by typing pip install <package name> or conda install <package name> in the terminal outside of Python.
Sometimes, you will need to use pip3, depending upon your operating system’s configuration if you are using the pip package manager system.
For a concrete example, to install the seaborn package, you could type conda install seaborn in your terminal.
In general, packages in R can be installed by opening R and then typing install.packages("<package name>").
For example, to install the tidyverse, open R and type install.packages("tidyverse")

Now, that you have R or Python installed, you have an expensive graphing
calculator (i.e., your computer). In fact, both of your authors, in lieu
of using an actually calculator, will often calculate silly things like
point spreads or totals in the console if in need of a quick
calculation. Let’s see some things we can do. Type 2+2.

2 + 2

4

Note

People use comments to leave notes to themselves and others in code.
Both Python and R use the # symbol for comments (the pound symbol for the authors or hash-tag for younger readers).
Comments are code that the computer does not read.
We use two comment symbols to tell you if a code block is Python (## Python) or R (## R)

Try other math operations such as multiplication (for example, 2*2).
What do you see? How might you take 2 to the third power, (2^3)? What
happens if you try typing 2^3? In R, you get something you probably
expect:

R
2^3

[1] 8

but in Python, you get

Python
2^3

1

Python, you did not take an exponent; instead you took a bitwise
XOR operator. To
take an exponent in Python, use 2 ** 3. This also works in R because
the old S language, which R is based upon, included it as an
undocumented feature.

You may also save numbers as variables. In Python, you could define z
to be 2 and then re-use z and divide by 3.

Python
z = 2
z / 3

0.6666666666666666

Tip

In R, either <- or = may be used to create variables.
We use <- for two reasons.
First, in this book this helps you see the difference between R and Python code.
Second, we use this style in our day-to-day programming as well.
[Link to Come] talks about code styles.
Regardless of which operator you use, be consient with your programming style in R.
Your future self will thank you.

In R, you can also define z to be 2 and then re-use z and divide
by 3.

R
z <- 2
z / 3

[1] 0.6666667

Next, we will create a data frame and then use this to create simple
scatterplots. In Python, we first load the required packages, pandas
and seaborn. Each time you want to use functions from a package, you
need to use the package’s name. To simplify our typing, we
use an alias or nickname for the package. pandas commonly uses the
nickname pd, which makes sense as a shorter version of pandas.
seaborn commonly uses the nickname sns, which is a joke references
to the character Samuel Norman Seaborn (“SNS”) from the TV drama The
West Wing.

import pandas as pd
import seaborn as sns

Next, we create two lists of values, x and y. In Python, lists are
created with square brackets, [], that are separated by commas, ,.

Python
x = [1, 2, 3]
y = [10, 11, 12]

We then put both of these into a dataframe. We need to put x and y
into dictionaries. Python dictionaries consist of a pair and key. For
example, {"x", x} takes our existing variable, x and creates a key
with the name “x”. We could also use any name such as "Fred,
football, or Green Bay".

Tip

Using single quotes around a name, such as 'x', or double quotes, such as "x", are both acceptable to languages such as Python or R.
Make sure you open and close the quotes with the same type.
For example, 'x" would not be acceptable to the languages.

You may use both single and double quotes to place quotes inside of quotes.
For example, in a figure caption you might write "Panther's score" or 'Air temperature ("true temperature")'.
Or, in Python, you can use a combination of quotes later for inputs such as "team == 'GB'" because we need to nest quotes inside of quotes.

Note

Typing print(...) around objects is not required for R or Python much of the time.
However, calling the function will ensure outputs are printed, which can sometimes be important.
If in doubt, be explicit with the use of the print() function.
We tend to include print() so that Python does not format the outputs in the Jupyter Notebooks used to create this book.

Next, let’s create a data frame. We use a dictionary with
the keys x-axis and y-axis with our previously saved x and y
lists. We can the print this to the screen:

Python
dat_python = pd.DataFrame({"x-axis": x, "y-axis": y})
print(dat_python)

 x-axis y-axis
0 1 10
1 2 11
2 3 12

Finally, we plot our data using the scatterplot() function from
seaborn. Inside the function, we tell Python to use the data from
the dat_python data frame that we just created. Likewise, we tell
Python to use the "x-axis data for the x-axis (horizontal axis) and
y-axis" data for the y-axis (vertical axis). These variable names come
from the column names of dat_python. this results in Figure
Figure 1-1:

Python
sns.scatterplot(data = dat_python, x = "x-axis", y = "y-axis")

[image: Example scatterplot with `seaborn` in Python.]
Figure 1-1. Example scatterplot with seaborn in Python.

We need to use quotes around "x-axis and y-axis" so that Python
knows we want to use the names of the columns of dat_python. Without
quotes, we could pass a variable to be the x or y input. For
example, we could write the following:

x_name = "x-axis"
y_name = "y-axis"
sns.scatterplot(data = dat_python, x = x_name, y = y_name)

The power of passing objects in computer languages is confusing at
first, but turns out to be quite powerful. For example, if you had to
create plots for all teams in the NFL, you might read x_name from a
list ["Green Bay", "Chicago",...] and update inside of a loop or
similar command.

We can use similar steps for R. First, we load the ggplot2 package for
plotting (the ggplot2 package is included within the tidyverse set
of packages, hence you already installed it, likely without realizing it
if you followed our conda direction earlier).

R
library(ggplot2)

Then, create x and y vectors. R uses the c() function to combine
or concatenate items into a vector. Notice we use <- to define or save
variables:

R
x <- c(1, 2, 3)
y <- c(11, 12, 13)

Next, create a data frame in R. Notice R does not require us to use a
package to have access to data frames. R also drops the dash, -, and
replaces it with a period, .. R, especially base R, does not like
special characters to be used in column names.

Note

Unlike the DataFrame from pandas in Python, the data.frame in base R does not easily allow special characters or spaces to be part of column names.
Although this can be done using the backtick, for example \`x-axis\`, we find it best to avoid this use in most situations.
Shorter column names are also easier to type and avoid cumbersome uses of backticks in our code.
The backticks key is found to the left of the “1” key on standard US keyboards.

R
dat_r <- data.frame("x-axis" = x, "y-axis" = y)
print(dat_r)

 x.axis y.axis
1 1 11
2 2 12
3 3 13

We can then plot this using ggplot2’s ggplot() function.
ggplot2 has its own language, based upon the Grammar of Graphics by
Leland Wilkinson (Springer 2005) and implemented in R by Hadley Wickham
during his doctoral studies at Iowa State University. The base function,
ggplot() tells R we are using ggplot2. We tell ggplot() what
data we are using as well as the aesthetics of our plot, in this
case, the x and y axes. We then add a geometry of points,
geom_point() to the plot. This results in Figure 1-2.
Although confusing at first, ggplot2 provides a powerful syntax for
describing data graphically. Pedagogically, we tend to agree with David
Robinson, who describes his reasons for teaching plotting with ggplot2
over base R in a blog post titled
Don’t
teach built-in plotting to beginners (teach ggplot2).

ggplot(data = dat_r,
 aes(x = x.axis, y = y.axis)) +
geom_point()

[image: Example scatterplot with `ggplot2` in R.]
Figure 1-2. Example scatterplot with ggplot2 in R.

Congratulations, you have likely now created your first plot using a
scripting language!

Scripts and Integrated Development Environments

But, what if we want to save our inputs? We can write a script file to
save our code. We will use these for the early part of the book. Later,
we will switch to using Jupyter Notebooks, which allow code and text to
be embedded together. In the end, typing in the terminal is not
effective or easy. We can use powerful code-editing tools called
Integrated Development Environments (IDEs). Much like football fans
fight over who is the best quarterback of all time, programmers often
argue over which IDEs are best (well, not exactly “much like”). We use
Jupyter Lab because it is easy to install from conda and is simple
enough to not have too many features to overwhelm new programmers.

Although powerful, IDEs can have downsides. Some IDEs are complex, which
can be great for expert users, but overwhelming for beginners and casual
users. For example, the emacs text editor has been jokingly described as
an operating system with a good text editor or two built into it.
Likewise, some professional programs feel that the shortcuts built into
some IDEs limit or constrain understanding of languages because they do
not require the programmer to have as deep of understanding of a
language. However, for most users, especially casual users, the benefits
of IDEs far outweigh the downsides.

We use the JupyterLab editor for this book because it works with both
Python and R. Jupyter Lab grew out of Jupyter Notebooks. Jupyter
Notebooks allow people to include code directly with text describing the
code and the code’s output, much like a lab notebook from
science class. Fernando Pérez and Brian Granger spun Jupyter Notebooks
off of the Interactive Python (IPython Project (https://ipython.org/))
to work with more languages. In fact, Jupyter stands for Julia,
Python, and R. These were the three languages that Jupyter was
originally created to work with. Jupyter now works with many other
languages.

Many useRs (slang for users of R) like the RStudio IDE]
https://www.rstudio.com/), and, if you decide to use R, we encourage you
to check out this program. A lot of different Python IDEs exist for
Pythonistas (slang for users of Python). We personally just use Jupyter
Lab, but common popular choices include Integrated Development and
Learning Environment (IDEL
(https://docs.python.org/3/library/idle.html); that comes with Python),
Visual Studio (https://visualstudio.microsoft.com/;
Microsoft’s IDE that works with both R and Python), and
PyCharm (https://www.jetbrains.com/pycharm/). If you already use another
IDE for a different language at work or elsewhere, that IDE also likely
works with Python and possibly R as well.

Note

People who use Python are commonly called Pythonistas.
People who use R are commonly called useRs.

We have included screenshots of three key features of Jupyter Lab. When
you first open Jupyter Lab, you will see a launcher such as in
Figure 1-3. The launcher allows you to start (or launch) a
Jupyter Notebook running Python or R, open a console (or terminal) for
Python or R, and open other types of programs include an operating
system-specific terminal, a plain text file, a Markdown file, a Python
script file, an R script file, and programs’ build-in help
files.

[image: Launcher with Jupyter Notebook.]
Figure 1-3. Launcher with Jupyter Notebook.

Opening a Python terminal, such as in Figure 1-4 gives
you many options. However, this is mainly like the command-line terminal
you started earlier. To run code, type it in the box at the bottom and
and then type shift + enter to run the code.

[image: R script, launching terminal with Jupyter Notebook.]
Figure 1-4. R script, launching terminal with Jupyter Notebook.

Tip

Running code such as R or Python from inside Jupyter lab requires you to type shift + enter.
This is true for both the console and script files.

Finally, from the launcher, you can open a Python or R script file, such
as the R script shown in Figure 1-5. From this script
file, you can right-click on the top and launch a console for the script
file, from the drop-down menu shown in Figure 1-5.
This allows you to interactively run a script file, line-by-line to see
what happens.

[image: Python terminal with Jupyter Notebook.]
Figure 1-5. Python terminal with Jupyter Notebook.

During the course of this book, we will be using Python and R
interactively. However, some people also run these languages as batch
files. A batch file simply tells the computer to run and entire file
and then spits out the outputs from the file. An example batch file
might calculate summary statistics that get run weekly during the NFL
season by ProFootball Focus and then placed into client reports.

Overview of Datasets

Any and all good data endeavors require datasets from which to work. In
this book, we’re going to work on a few of the cornerstone
public datasets in the football analytics space. In 2017 Max Horowitz,
Sam Ventura, and Ron Yurko built an R package called nflscrapR, which
parsed publicly-available NFL play-by-play data, and supplemented it
with expected points added (EPA) and win probability (WP) information on
each play. Later, Ben Baldwin and Sebastian Carl updated the work in the
form of the R package nflfastR, which is now the most commonly-used
public data set in the football analytics space.

While the nflfastR data is very clean, thanks to Ben and Sebastian,
not every situation is going to give rise to clean data. Most of the
time we spend as data scientists - at least during the initial phase of
work after data is collected - is spent cleaning and formatting data. In
the spirit of this reality, Chapter 3 will have you
scraping and cleaning datasets from Pro Football Reference
(https://www.pro-football-reference.com/), the best source for raw
American football (and other sports) data. For this book, readers will
scrape and analyze NFL Draft and NFL Combine data.

Suggested Reading

If you get really interested in analytics, here are some suggestions for
further reading:

	
Lewis, Michael. Moneyball: The art of winning an unfair game. WW
Norton & Company, 2004.

Lewis describes the rise of analytics in baseball and shows how the
stage was set for other sports. The book helps us think about how
modeling and data can help guide sports. A movie was also made of this
book as well.

	
Silver, Nate. The Signal and the Noise: Why So Many Predictions Fail,
but Some Don’t. Penguin, 2012.

Silver describes why models work in some instances and fail in others.
He draws upon his experience with poker, baseball analytics, and running
the political prediction website fivethirtyeight.com. The book does a
good job of showing how to think quantitatively for big picture problems
without getting bogged down into details.

Chapter 2. Exploratory Data Analysis

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

There are relatively few people who can live entirely in the abstract.
We like to see the data that we’re working with. We like to
touch the data that we’re working with. Metaphorically, of
course. We like to understand data. We like to verify the quality of
data so that we don’t do more harm than we do good. Plotting
data serves as a first step of the Exploratory Data Analysis process
(or EDA for short). We focus on plotting for our first foray into EDA.
The term EDA was coined by the American statistician John Tukey as he
prompted people to thoroughly understand their data before formal
statistical analysis. This is very important in football and sports in
general, as analytically-oriented analysts are often viewed as
outsiders, and hence failing to take into account nuances in the data
can undermine the efforts of your or your team’s analyses.
EDA includes tools such as plotting data and summarizing data to see
what is going on.

Note

John Tukey also coined other terms you may know or will hopefully know by the end of this book including boxplot (a type of graph), Analysis of Variance (ANOVA for short; a type of statistical test), software (computer programs), and bit (the smallest unit of computer data, usually represented as 0/1; you’re probably more familiar with larger units such as the byte, which is eight bits).
Tukey also helped the Princeton University football team implement data analysis.
To read more about Tukey’s life and contributions, checkout the obituary written by David Brillinger that appeared in the Annals of Statistics (https://www.jstor.org/stable/1558729).

We use EDA throughout football analysis and as an iterative process.
First, we formulate our objectives, such as predicting the winner of a
game or who will cover the spread. Second, we acquire data to answer our
questions. Third, we read data in a program like R or Python and then we
explore the data’s structure. This helps us understand the
data’s form and spot check the data’s quality
for major problems, such as missing data or corrupted data. Fourth, we
plot the data. This allows us to visualize data and start to understand
its shape. For example, if somebody recorded minutes rather than seconds
we likely could see this wrong entry in the data. Fifth, we summarize
data. This allows us to quantify what is going on with the data. Sixth,
we use statistical models to estimate patterns in the data.

Finally, we go back and use plots and summaries to help explain our
models and the stories we seek to tell with our data. If we are using
deductive reasoning, we will start with ideas or hypotheses we want to
test from our data. If we are using inductive reasoning, we will let the
data guide our conclusions and hypotheses from the data. We use both
approaches on a regular basis. For example, if we want to understand why
some players are better than others, we can test the hypothesis that
quarterbacks who are drafted earlier in the NFL draft are more
productive than those taken later. Conversely, if we want predict
fantasy football performance during a game or a season, we might build
the model, test the model, and then put the model into an easier-to-use
format.

We start with the technical skills of plotting. Plotting will help you
see the data and gain understanding. We often plot data first, use
other tools such a models and statistical summaries to explore data, and
end with creating summary plots of the data to drive home our point.
Plus, we find visualizing to be one of the most fun parts of telling
data stories.

[Link to Come] and [Link to Come]
cover data acquisition and wrangling as well as more advanced data
importing. We included these materials after this current chapter
because we find the topics to be easier once you have gained some
experience with programming. Acquiring data and then wrangling it into a
usable format is important, but can be more tedious. Think of data
skills as analogous the weight-training or cross-training of football
analytics. Casual players such as recreation leagues or intramural
players may not need these train for these skills. However, competitive
players need cross-train. Furthermore, some people only focus on
cross-training exercises, such as as competitive weight-lifters or
sprinters. Likewise, some people focus on working with data, and are
often called data engineers. A primary job for a data engineer is to
focus on data workflows.

After learning how to work with data, we transition to more ways to use
data to inform football. Chapter 5 provides an
introduction to statistics and modeling. Chapter 6,
[Link to Come], and
[Link to Come] cover different modeling approaches
and build upon each other. [Link to Come] and
[Link to Come] tie together EDA into telling stories.
The later portions of our book touch on advanced topics with
[Link to Come] describing advanced modeling topics
and [Link to Come] covering advanced tools we use on
daily basis.

Motivating Problem: How Do We “See” or Explore Passing Data?

Likely, you learn best by doing. We seek to teach by example in this
book, using football data. For this chapter, we will use yards from
passing play data from the 2020 week 2 game between the Green Bay
Packers and Detroit Lions. We also include passing play data from the
2020 game between the Detroit Lions and Houston Texas for you explore on
your own as det_hou_2020_pass.csv. We obtained both of these datasets
using the nflfastR package. We describe this package in
Chapter 3 so you can start to get your hands on
data to answer your specific questions.

Perhaps we are interested in the Green Bay Packers and Detroit Lions
passing game. We may seek to answer specific questions. For example:

	
Does either team have better passing based upon the side of the field?

	
How far do the teams take the ball after successful passes?

	
Does scrambling change where the ball goes?

First, we need to read in the data. In Python, we use the pandas
package, which we load with the import command. You can then read the
data into the computer. We need to give the data a name in the
computers, which can be tricky because we want something long enough to
be descriptive but short enough to be easy to type. The name,
gb_det_20202_pass tells us the teams (gb for Green Bay and det for
Detroit, with the home team first and away team second), year (2020),
and type of data (pass for passing). You could use any valid name you
wanted including silly names such as fred or low information names
such as dat. We also assume the data is in a sub-folder, data.

Tip

Naming objects can actually be hard when programming.
Try to balance simple names that are easier to type with longer, more informative names.
This can be especially important if you start writing scripts with longer names.
The most important part of naming to create names that you, and hopefully others, will understand when you read the code later.

import pandas as pd
gb_det_2020_pass = pd.read_csv("./data/gb_det_2020_pass.csv")

Similarly, we can read the data into R use base R’s
read.csv() and name the data the same name:

gb_det_2020_pass <- read.csv("./data/gb_det_2020_pass.csv")

Before we dive into the data, can examine the top or head of the data.
For both Python and R, we also use the print() function around the
heads of the data. In Python, we use .head() after the data object.
Then, we wrap print() around the head of the data frame.

Note

print() is not required for most functions because the languages have a default command for printing.
However, explicitly calling the command ensure we know exactly what will occur.

print(gb_det_2020_pass.head())

 posteam yards_after_catch air_yards pass_location qb_scramble
0 DET 0.0 5 middle 0
1 DET 16.0 13 left 0
2 DET 3.0 3 left 0
3 GB 11.0 4 middle 0
4 GB 4.0 0 right 0

In contrast with R, we first wrap head(...) around the data frame and
then wrap print(...) around the head function.

print(head(gb_det_2020_pass))

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 0 5 middle 0
2 DET 16 13 left 0
3 DET 3 3 left 0
4 GB 11 4 middle 0
5 GB 4 0 right 0
6 GB NA 0 right 0

Notice how Python starts numbering with 0 whereas R starts numbering
with 1. Python uses standard convention for computer science whereas R
uses standard convention for mathematics and statistics. This reflects
the history of the languages’ authors. Also, as a smaller
point, notice R’s head() prints the first 6 (1, 2, 3, 4,
5, and 6) rows while Python’s .head() prints the first 5
(0, 1, 2, 3, and 4) rows.

Warning

Python starts numbering a 0.
R starts numbering at 1.
Many an aspiring data scientist has been tripped up if using both languages.

Next, we’d like to know about our data. Specifically, the
data about data or meta-data. For the columns, posteam is the team
in possession of the ball at the start of the play. yards_after_catch
is the number of yards gained after the reception of the ball.
air_yards is how far the ball was passed in the air (whether completed
or not). pass_location is which side of the field the quarterback
passed the ball to. qb_scramble is a binary response (that is, 0 for
no or 1 for yes) for if the quarterback had to scramble.

Warning

With any data, mane sure you understand the meta-data.
For example, what does 0 and 1 mean?
Or, do the authors use 1 and 2 for the levels?
We have heard about studies being retracted becaues the data analystic and scientists mis-understood the meta-data and the uses of 1 and 2 versus the standard 0 and 1.
For example, a 2021 article in Significance describes an occurance of this mistake (https://www.doi.org/10.1111/1740-9713.01522).

Applying EDA

We will demonstrate how we use EDA by examining the pass data. First, we
will start with a broad examination of the data. You will examine if
there are fundamental differences between the two teams or if any
patterns emerge in the data. Second, we will focus in on specific
questions with the data. For example, Is there a relationship between
between air yards and yards after the catch? or Does either team do
better on on aspect of offense than another?

Uncovering broad trends can help you understand data and refine your
questions. For example, with the passing data, which side of the field
does a team throw to more often. Does a team defend more poorly? Or, if
picking fantasy players, which side do you hope your wide receiver
plays? Lastly, EDA method also allows you to check data for any outliers
of possible mistakes. Data points that stand out might be mis-entered,
or worth investigating more. We will teach you tools for removing
outliers in Chapter 4. However, these points
might also belong. For these data points, we may want to dig in deeper
to figure out the story behind them.

We view and use EDA and center and key component of our storytelling
process. First, we use simple plots to visualize the data. These helps
us to both get a feel for the data as well as check and develop our
intuition. Next, we probe the data by expanding the plots to include
more details. If we do not understand our data, we dig in and figure out
what is going on. Perhaps we need to make sure we understand the data
source or that the data source is error free. Lastly, we generate future
questions. These questions often motivate us to find additional data to
repeat the process.

We view EDA as an iterative process. We plot the data (this chapter).
Then, we summarize and model the data (something we
Chapter 5 starts to cover). Next, we use plots to
summarize our models. While doing this, we prepare the data to tell a
story and then communicate with our stakeholders. Lastly, we repeat
plotting, modeling, and communication as necessary.

Histograms

We start by examining the yards after catch. To do, this, we use a
histogram. Histograms summarize data by placing counts of the data into
bins. Different programs have different defaults bin width. For example,
Figure 2-1 from Python has a total of 7 bins by default. In
contrast, [Link to Come] from R has 30 bins by default. These
different bins illuminate different parts for the data. For example, the
R plot shows that some pass yards are negative, where this may not be as
obvious from the Python plot. However, the R plot also looks very
fragmented. The number of idea bins for your story therefore is
somewhere between 7 and 30.

Warning

Intentionally using the wrong number of bins to hide important attributes of your data is considered fraud by the larger statistically community.
Be thoughtful and intentional when you select the number of bins for a histogram.

In Python, we import the seaborn package and then use the displot()
function with our data. All of the function arguments (inputs) have
intuitive names: data, the input DataFrame; bins, the number of
bins; and the x variable to plot, which is a column in the
DataFrame. If we wanted to add more to plot, we would probably need to
call additional functions. This type of plotting is pen-and-paper
because it as analogous to drawing a plot with a pen on paper and adding
items one-at-a-time. matplotlib, which seaborn is built upon this
philosophical approach:

import seaborn as sns
sns.displot(data = gb_det_2020_pass, bins = 7, x = "yards_after_catch")

[image: Example histogram plot with `seaborn` in Python.]
Figure 2-1. Example histogram plot with seaborn in Python.

Plotting with ggplot2 uses a different type of syntax compared to
seaborn. ggplot2 is based upon a coherent syntax, the grammar of
graphics mentioned earlier in Chapter 1. First, we load
the tidyverse that contains ggplot2. Then, we use the ggplot()
function. We specify data, like with seaborn. However, ggplot()
has aesthetics (aes) as a function for the plot. For this simple
plot, the only aesthetics is the x-axis. We then add a geometry to the
plot, specifically a histogram using geom_histogram(). This has an
obeject called bins, which like the argument for displot:

library(tidyverse)
ggplot(data = gb_det_2020_pass, aes(x = yards_after_catch)) +
 geom_histogram(bins = 30)

[image: Example histogram plot with `ggplot2` in R.]
Figure 2-2. Example histogram plot with ggplot2 in R.

Comparing seaborn to ggplot2, we find both syntax helpful at times
and frustrating at others. Both are highly customizeable and do share
some similarities in terms because parts of seaborn are modeled after
ggplot2. If you have not yet picked one language, we encourage you to
work through this chapter and see which plotting language jumps out to.
Plotting is an important part of football analytics.

Tip

Work through both Python and R in this chapter if you have not yet picked a language.
See which type of plotting comes most naturally to you.

From both figures, all of the data seems reasonable. No outliers appear
and the values seem reasonable. That data do not follow a normal or bell
curve, as a player is much more likely to have big (in absolute values)
yards after the catch in the positive direction than in the negative
direction. We will talk about this more in future chapters. But, we are
missing something very important. We have two teams in the game. Quite
likely, the teams had different passing distributions. In fact, we are
seeking to examine if these differences exist.

We can plot both teams distribution as their histogram. We will spit, or
facet, each plot into columns. In seaborn, we add a col argument
and plot facet columns by the team in possession of the ball
"posteam". Notice like the x argument, "yards_after_catch", this
input is in quotes as well:

sns.displot(
 data = gb_det_2020_pass, x="yards_after_catch", col="posteam",
 binwidth=3, height=3,
)

[image: Example histogram plot with each possession team being faceted by column in `seaborn` in Python.]
Figure 2-3. Example histogram plot with each possession team being faceted by column in seaborn in Python.

Notice here that in this particular game, the Detroit Lions had a more
evenly-distributed set of yards after the catch, while the
Packers’ yards after the catch data was distributed more
closely to zero, with a small set of bigger plays (~20 yards).

Tip

Line breaks and white-space are important for coding.
These breaks help make our code easier to read.
Python and R also handle line breaks different, but, sometimes, both languages treat line breaks as special commands.
In both languages, we often split function inputs in script files to create shorter lines that are easier to read.
For example, we space a function like

my_plot(data = big_name_data_frame,
 x = "long_x_name",
 y = "long_y_name")

to break up line names and make our code easier to read.
In R, we need to make sure the comma stays on a previous line.
In Python, we may need to use a \ for line breaks.
For example, we would need to use:

x = \
 2 + 4

In R, we add a new command, facet_grid(...) to the old plot. We use an
tilde, ~, to with the inputs row ~ column. This may be read to a
human as row faceted by column. To either only facet by rows or only
facet by columns, use a period, ., for the non-used entry. For
example, to facet by possession team, we add facet_grid(. ~ posteam).
Notice that R does not use quotes around the plotting parameters (in
contrast to Python):

ggplot(data = gb_det_2020_pass, aes(x = yards_after_catch)) +
 geom_histogram(binwidth = 3) +
 facet_grid(. ~ posteam)

Tip

The ~ sybmol is to the left of the one key on a standard US keyboard and requires the shift-key to access.

[image: Example histogram plot with each possession team being faceted by column in `ggplot2` in R.]
Figure 2-4. Example histogram plot with each possession team being faceted by column in ggplot2 in R.

Boxplots

Histograms allow use to see the distribution of data points. However,
they can be cumbersome, especially if we have many different predictors
variables we seek to explores. Boxplots are a common plotting methods
for summarizing data. Boxplots get their name because they have a box
that contains the middle 50% of the data. That is to say, 50% of the
data occurs within the box. The line in the middle of the box is the
median, or the line where half of the data falls above the line and half
of the data falls under the the line. Boxplots are sometimes also known
as stem-and-whisker plots because lines extend above and under the
box. These contain the remainder of the data other than outliers.
Outliers are points that are more than 1.5 times the interquartile range
from either the first or third quartile. These outliers are plotted with
dots. We show you the default definition for outliers in the next
paragraphs.

Table 2-1. Parts of a boxplot.

	Part name
	Range of data

	Top dots

	Outliers above the data

	Top whisker

	100% to 75% of data, excluding outliers

	Top portion of box

	75% to 50% of data

	Line in middle of box

	50% of data

	Bottom portion of box

	50% to 25% of data

	Bottom whisker

	25% to 0% of data, excluding outliers

	Bottom dots

	Outliers under the data

To help you see a boxplot, we contract the parts over a histogram in
Figure 2-5. First, we take the yards traveled in the air
by passes (whether completed or not) and create a faceted histogram.
Second, we plot a blue line at the median. Third, we add red lines for
the 25th and 75th quantiles of data (that is to say, 50% of data lies
between these two lines). The red lines also denote the interquartile
range or IQR for short. Fourth, we add gold lines for where Python or R
consider the cutoff for outliers to be. To calculate the This cutoff for
upper outliers is the 75th quantile + 1.5
 ×
 the IQR.
This cutoff for the lower outliers is the 25th quantile - 1.5

 ×
 the IQR.

[image: Histograms of plot of yards traveled in the air by passes with facet columns by the possession team. The blue line is the median, the red lines are the upper and lower limits of the interquartile range, and the gold lines are the cutoff values for outliers.]
Figure 2-5. Histograms of plot of yards traveled in the air by passes with facet columns by the possession team. The blue line is the median, the red lines are the upper and lower limits of the interquartile range, and the gold lines are the cutoff values for outliers.

Next, we take the same colors and plot them over a boxplot. We jitter
the points so that they are non-overlapping.

[image: Boxplots of plot of yards traveled in the air by passes with facet columns by the possession team. The blue line is the median, the red lines are the upper and lower limits of the interquartile range, and the gold lines are the cutoff values for outliers.]
Figure 2-6. Boxplot of plot of yards traveled in the air by passes with facet columns by the possession team. The blue line is the median, the red lines are the upper and lower limits of the interquartile range, and the gold lines are the cutoff values for outliers.

Creating boxplots is easy to do in both seaborn and ggplot2. In
seaborn, we use the boxplot function. We specify data to be
gb_det_2020_pass, x to be "posteam", and y to be "air_yards",
the distance the ball travels in the air from the line of scrimmage
during a pass. In addition to creating the boxplot, we also save the
boxplot to be an object in Python, pass_boxplot This allows us to
start customizing the figure. Specifically, we set the x-label by using
the function .pass_boxplot.set_xlabel(...) on the saved object,
pass_boxplot. Likewise, we repeat for the y-label with
.pass_boxplot.set_ylabel(...). This creates Figure 2-7:

pass_boxplot = sns.boxplot(data = gb_det_2020_pass,
 x = "posteam", y = "air_yards")
pass_boxplot.set_xlabel("Team with possession of the ball")
pass_boxplot.set_ylabel("Yards traveled in the air by passes")

[image: Boxplots of plot of yards traveled in the air by passes with facet columns by the possession team. The example is from `seaborn` in Python.]
Figure 2-7. Boxplots of plot of yards traveled in the air by passes with facet columns by the possession team. The example is from seaborn in Python.

Notice that, after we saw that Detroit had a better yards after the
catch distribution than the Packers, the Packers had the better air
yards, which is sometimes a negatively-correlated metric with yards
after catch, as shorter passes are intended to generate a run after the
catch.

We can create a similar figure in R using the boxplot geom,
geom_boxplot() (Figure 2-8). We can also add the x-label
using xlab(...) and the y-label using ylab(...). Lastly, we change
the theme using theme_bw() to remove gray background from the plot.
This last choice is largely one of personal preference:

[image: Boxplots of plot of yards traveled in the air by passes with facet columns by the possession team. The example is from `ggplot2` in R.]
Figure 2-8. Boxplots of plot of yards traveled in the air by passes with facet columns by the possession team. The example is from ggplot2 in R.

Scatterplots

Boxplots and histograms allow us to see one variable. Often, we want to
see two variables. Scatter plots show two variables plotted against each
other. Sometimes these are called x-y plot because the horizontal
(left-right) axis is the x-axis and the vertical (up-down) axis is the
y-axis. These plots let us see how two variables interact with each
other and their relation. We often find these plots to a workhorse of
showing data.

With seaborn, we use the scatterplot() function. We tell
scatterplot() to use the gb_det_2020_pass data and plot "air_yards
on the x-axis and yards_after_catch" on the y-axis. By convention, the
feature on the x-axis usually thought to predict the feature on the
y-axis, if a casual relation exists. In this case, one football game,
there is no strong reason to expect a casual relation between air yards
and yards gained after the catch (assuming a successful reception, as
notice notice that incomplete passes have a yards_after_catch reading
of NA), even if a relationship is expected to exist over a larger
timeframe (e.g. a season).

sns.scatterplot(data = gb_det_2020_pass,
 x = "air_yards",
 y = "yards_after_catch")

[image: Scatterplot of yards traveled in the air by passes (x-axis) versus yards gained after the catch on those same passes (y-axis). The example is from `seaborn` in Python.]
Figure 2-9. Scatterplot of passing yards gained in the air (x-axis) versus yards gained after the catch on the ground (y-axis). The example is from seaborn in Python.

Scatter plots may also be created with R. We set the x and y
aesthetics to be the columns we want to plot. We use geom_point() to
add points to the plots. This creates Figure 1-2.

ggplot(data = gb_det_2020_pass, aes(x = air_yards, y = yards_after_catch)) +
 geom_point()

[image: Scatterplot of passing yards gained in the air (x-axis) versus yards gained after the catch on the ground (y-axis). The example is from `ggplot2` in R.]
Figure 2-10. Scatterplot of passing yards gained in the air (x-axis) versus yards gained after the catch on the ground (y-axis). The example is from ggplot2 in R.

We can also facet the scatter plots, just like the boxplots
Figure 2-11. In seaborn, this is slightly different
syntax. We use FacetGrid to create an empty plot and then use the
map function to apply (or, in Python-speak) map to scatterplot
function to the facet grid object. We also tell the mapping to use
"air_yards and yards_after_catch":

yards_plot = sns.FacetGrid(data = gb_det_2020_pass, col="posteam")
yards_plot.map(sns.scatterplot, "air_yards", "yards_after_catch")

[image: Example faceted scatterplot from `seaborn` in Python.]
Figure 2-11. Example faceted scatterplot from seaborn in Python.

With ggplot2, we can also created a faceted plot. For this, we simply
add facet_grid(.~ posteam) to the previous scatter plot. In general,
we think ggplot2 has a more predictable and internally consistent
language than seaborn and that is one reason we often use ggplot2 on
a daily basis.

ggplot(data = gb_det_2020_pass, aes(x = air_yards, y = yards_after_catch)) +
 geom_point() +
 facet_grid(.~ posteam)

[image: Example faceted scatter plot from `ggplot2` in R.]
Figure 2-12. Example faceted scatter plot from ggplot2 in R.

Colors and shapes

Many different methods exist for changing figures and allowing us to see
more groupings, Figure 2-13. You can change the shape of
point in scatter plots. In Python, this is the called the style. For
example, rather than faceting by posteam, we can change the
point’s shape:

sns.scatterplot(data = gb_det_2020_pass,
 x = "air_yards",
 y = "yards_after_catch",
 style = "posteam")

[image: Example changing shapes plot from `seaborn`.]
Figure 2-13. Example changing shapes plot from seaborn.

We can also change the shape in R Figure 2-14. You do
this by changing the shape aesthetic:

ggplot(data = gb_det_2020_pass,
 aes(x = air_yards, y = yards_after_catch, shape = posteam)) +
 geom_point()

[image: Example changing shapes plot from `ggplot2`.]
Figure 2-14. Example changing shapes plot from ggplot2.

Similar to changing shape, we may also change point types by color. You
can also change shape and color to allow for more variables to be
plotted, although we do not do this in our examples here. In seaborn,
color is called hue:

sns.scatterplot(data = gb_det_2020_pass,
 x = "air_yards",
 y = "yards_after_catch",
 hue = "posteam")

[image: Example changing colors plot from `seaborn`.]
Figure 2-15. Example changing colors plot from seaborn.

In R, we change the color using the color aesthetic. We also change
the colors using scale_color_manual(...) because the default colors
are hard for people (including one of the authors) with color
deficiencies (commonly known as color blindness, such as red-green
colorblindness) to see:

ggplot(data = gb_det_2020_pass,
 aes(x = air_yards, y = yards_after_catch, color = posteam)) +
 geom_point(binwidth = 3) +
 scale_color_manual(values = c("red", "blue"))

[image: Example changing colors plot from `ggplot2`.]
Figure 2-16. Example changing colors plot from ggplot2.

Plots may be customized to include many different features. For example,
you might want to plot points on the plot as text. For example, you
could pass location on the field (right, center, or left) as text. With
seaborn, this requires writing a custom function, such as this
StackOverflow question: https://stackoverflow.com/q/46027653. With
ggplot2, we simply add geom_text(aes(label = pass_location)). For
example, you can includes texts with this R code:

ggplot(data = gb_det_2020_pass,
 aes(x = air_yards, y = yards_after_catch, color = posteam)) +
 scale_color_manual(values = c("red", "blue")) +
 geom_text(aes(label = pass_location))

[image: Example of text plot with `ggplot2`.]
Figure 2-17. Example of text plot with ggplot2.

Application of plotting options

We can combine multiple plotting options to help tell our story. The
order we apply these combinations can be important and help us tell our
story. For example, if we are are interested in comparing team, pass
location, and the yards gained via the pass, there are different orders
for plotting. air_yards makes an obvious choice for the y-axis because
this is the response observation. However, we could plot pass_location
on the x-axis and facet by posteam. Or, we could do the opposite. We
will start by plotting with pass_location on the x-axis.

Note

For the remainder of the book, we will often switch between only plotting R or Python, but not both unless we are teaching a new plotting tool.
We encourage you to plot with your chosen language as you follow along.

With R, here is how we could create that plot. We also change the theme
to be black and white with theme_bw() and remove the gray background
from the facet grid by changing the theme(...). If the theme()
function seems seems tricky, you’re not alone. Learning
strip.background = element_blank() took Richard over a decade of using
ggplot2 to learn. We also change the x and y labels. Note that R uses
the alphabetical order for ordering plots. We discuss how to change
factor orders in Chapter 4.

ggplot(data = gb_det_2020_pass, aes(x = pass_location, y = air_yards)) +
 geom_boxplot() +
 facet_grid(~ posteam) +
 theme_bw() +
 theme(strip.background = element_blank()) +
 xlab("Team with possession of ball") +
 ylab("Yards traveled through the air by passes")

[image: Plot of air yards with pass location on the x-axis and team as the facet.]
Figure 2-18. Plot of air yards with pass location on the x-axis and team as the facet.

Figure 2-18 highlights how teams air pass yards vary by
location within team. However, we might also be interested in how pass
yards vary between teams rather than within team. In this case, we
switch the facet and a-axis for Figure 2-19. We
demonstrate this plot using seaborn. For this plot, we also add
order and col_order options to specify which order to plot variables
in. If we do not include these options, seaborn given us a warning
message.

yards_plot_team_location = sns.FacetGrid(data = gb_det_2020_pass,
 col="pass_location",
 col_order = ["left", "middle", "right"])
yards_plot_team_location.map(sns.boxplot, "posteam", "air_yards", order = ["DET", "GB"])
yards_plot_team_location.set_axis_labels("Team with possession of the ball.",
 "Yards traveled through the air by passes")

[image: Plot of air yards with team on the x-axis and pass location as the facet.]
Figure 2-19. Plot of air yards with team on the x-axis and pass location as the facet.

Looking at both of these two figures. Which story jumps out to you?
Which one would you use to describe the data? Neither type of plot is
correct and either one might be the best choice depending upon the story
you are trying to tell. Understanding and picking plots is part art and
part science. The only way to get better is to do practice and get
feedback.

From a football perspective, it looks pretty clear that in this game,
the Packers attacked downfield in all three directions more than Detroit
did, but the distributions (and likely sample sizes) were different
depending on the direction of the pass. For example, it looks like both
teams used the middle of the field for short passes, and the sides of
the field for the down-the-field passes. For reference, Green Bay, after
trailing 14-3, eventually won the game 42-21.

Advanced plotting and customization

In this chapter, we have only scratched the surface of plotting
possibilities. We often start with simple boxplots or scatter plots and
then start adding details. We might add in colors, shapes, facet rows,
and facet columns to see what jumps out of plots. We may change the
order multiple times and discuss with co-workers and friends to see what
tells the story best. Browsing other peoples’ plots is a
good way to improve your own plotting.

For example, Tufte’s The Visual Display of Quantitative
Information is a classic book on how to plot. Sometimes we will browse
and read this book when we get stuck with plots. Other people like other
authors. Read blogs such as Fivethirtyeight.com and other quantitative
blogs. Think about their figures and what works. Constructively, think
about what could be improved. However, be careful with the thinking
about improvement step. Any figure can be criticized by arm-chair
quarterbacks, but it is much harder to actually make good figures,
consistently.

Exercises with your data

	
Explore the number of bins with the example air plots. What size bins
hide important parts of the data?

	
Repeat the histograms with the
air_yards column of data.

	
Repeat the boxplots with the
yards_after_catch column of data.

	
Repeat all of the plots with
the Houston-Detroit data. Any differences between this game and the
Detroit-Green Bay game?

	
Plot a boxplot of yards_after_catch`on
the y-axis and `pass_location on the x-axis. Facet by posteam. What
does this figure show you?

	
Repeat exercise 5, but change the
facet and x-axis. You just plotted the same data. However, how does your
interpretation of the data change?

	
Describe these results to a
friend and explain what the plots mean.

	
Repeat all of the
exercises with det_hou_2020_pass.csv data.

Suggested Reading

If you want to learn more about plotting, here are some resources that
we found helpful:

	
The Visual Display of Quantitative Information by Edward Tufte.
https://www.edwardtufte.com/tufte/books_vdqi

This books is classic on how to think about data. The books does not
contain code, but instead shows how to see information for data. The
guidance in the book is priceless.

	
ggplot2 package documentation at https://ggplot2.tidyverse.org/

For our readers using R, this is the place to start to learn more about
ggplot2. The page includes beginner resources and links to advanced
resources. The page also includes examples that are great to browse.

	
seaborn package documentation at https://seaborn.pydata.org/

For our readers using Python, this is the place to tart for learning
more about seaborn. The page includes beginner resources and links to
advanced resources. The page also includes examples that are great to
browse. The gallery on this page is especially helpful when trying to
think about how to visualize data.

	
ggplot2: elegant graphics for data analysis, Third Edition by Hadley
Wickham, Danielle Navarro, and Thomas Lin Pedersen.
https://ggplot2-book.org/

The third edition is currently under development. This book explains how
ggplot2 works in great detail but also provides a good method for
thinking about plotting data using words. The easiest way to become an
expert in ggplot2 is to read this book. But, this is not necessarily
an easy route.

Chapter 3. Acquiring and reading in data

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

Obtaining useful data may be hardest part of data science and analytics.
We saved this part until after we learned some of the basic of
visualizing data for two reasons. Firstly, hopefully seeing some end
products will provide inspiration to learn about working with data.
Secondly, we use these tools to help check how our data looks and that
we correctly obtained and read in the data.

In this chapter, we first cover in the basics of reading in data. Next,
we cover how we check if data is looks okay to spot check our inputs.
Lastly, we cover obtaining data because it builds upon the other skills.

Reading data into a computer

Ideally, your data comes pre-cleaned like the examples we provide in the
book. Companies like Pro Football Reference (PFF) (Eric’s
employer) and Football Outsiders (a competitor) sell clean data to
clients like NFL teams, betting groups, fantasy football fans, and media
members. We cover obtaining unclean data from the web at the end of this
chapter. Regardless of the source of your clean data, their ideal format
is will be a plain text file.

Tip

Although commercial companies sell football data, many datasets are freely available if you know the right tools.
We cover tools for this at the end of this chapter.
Furthermore, you can calculate your own summary statistics (similar to what the companies sell) using tools in this book.
We encourage you to work with free data.
Once you reach the limits of free data, you will have the skills and knowledge to evaluate if data subscriptions are worth the money for your needs.

Plain text files mean you can open the file with a text editor, such as
Notepad, and the contents are editable, readable, and make sense
(specifically, the text is not gibberish symbols or strings of
nonsensical characters). We often create data files using Microsoft
Excel or similar spreadsheets programs and saving the outputs comma
separated value (.csv) files. We tread carefully when editing existing
data files with Excel because the program may change values in
unexpected ways. For example, the scientific field of genomics has DNA
data changed by Excel and impact scientists results (as described in a
2021 Nature News article,
https://www.nature.com/articles/d41586-021-02211-4).

Mechanically, you need to tell the computer where to read in files.
There are two easy methods for doing this. First, you can set you
working directory (the folder Python or R currently operates in) to the
same folder as your data. By default, the Jupyter Lab editor sets the
working directory to be the same folder as your code file. To check the
default working directory in Python, use the getcwd() (get current
working directory) function from the os package:

Python
import os
os.getcwd("")

to get an output like

'C://Users//bob//Documents//football-analytics-with-python-and-r//book'

For R, we can use a similar command, getwd() (get working directory)
that comes with base R:

R
getwd("")

and produces a similar results as Python:

"C:/Users/bob/Documents/football-analytics-with-python-and-r/book"

You will have a different working directory than us because your
computer is different.

Warning

Incorrectly telling Python or R the location of your data is one of the most common problems we see learners have during our inperson programming courses.
We also commonly make this mistake on a regular basis.
However, when we see the error message, we know the solution.
Not finding the data is like tuning into the wrong TV station on game day.
Frustrating, but not the end of the world.
Simply go to the correct place and everything will be okay.

Second, you can change the file path (computer direction to the data).
For example, during our jobs where we have many files for projects keep
data in one or more folders and code in a second folder. Likewise, you
may want to access multiple data files from different folders. For this,
we just add different files paths to data. Both Python and R use Linux
and macOS style path names with forward slashes, such as
C:/User/me/Documents/, rather than Windows style names with
backslashes such as C:\User\bob\Documents.

Warning

macOS and Linux both care about the case of paths, files, and other names.
For example, myFolder is different from myfolder
Windows usually, but not always does not care about the case of files.
Like macOS and Linux, Python and R both care about the case of names.
A common typo is using the wrong case for a name in a file or folder path.

To illustrate both example, we will describe a file path on a typical
computer. Let’s consider a computer with the main hard drive
named C: (as is standard on Windows computers). There is a folder
Users that contains all of the users’ data. Unless there
are multiple accounts (e.g., spouse’s account,
children’s account) on your machine or you have a work
machine managed by your employer’s IT, you probably are the
only user on your computer. This User directory is also probably your
user name. For our example, we will use Bob’s account name,
bob. Bob has standard Windows folder under his user account such as
Documents, Desktop, and Downloads. Insides Bob’s
documents, he probably has several folders. Perhaps he has a Pets
folder, a Fishing folder, and his football folder. Inside his
football folder, Bob puts the his materials for this book as
learn_code. The file path for this folder would be
C:\User\bob\Documents\football\learn_code and you can find this file
path in Window’s File Explorer (or similar program Finder on
macOS). Bob avoids spaces in his name and uses the _ instead because
computers dislike spaces in file names (although computer often tolerate
them). Bob like to organize files so he puts data into a data folder
and is code into a code folder.

Tip

Think about how you want to organize your files for this book now.
Although boring, well organize files help you find your files easier later with Python or R.
Think of this like footwork drills for a wide receiver.
A sometimes tedious fundamental so you do not stumble during a game.

To open a data file with a script file, you would take the following
steps:

	
Make sure Miniconda is installed following the directions in
Chapter 1.

	
Open the Miniconda terminal

	
Type jupyter lab into the
terminal.

[image: Typing `jupyter lab` into the terminal to launch the program.]
Figure 3-1. Typing jupyter lab into the terminal to launch the program.

	
Click on the folder icons on the left hand side until you get to the
folder with your data and where you want to save your scripts.

[image: Jupyter Lab screen shot showing folders on the left.]
Figure 3-2. Jupyter Lab screen shot showing folders on the left.

	
Create a new Python or R script (depending upon your language choice)
using the plus sign the bottom of the launcher.

	
Right click on the files name at the top of the file and click
Rename Python file or Rename R file to a name you find helpful such
as learn_read_data.py for a Python file or learn_read_data.R for an
R file.

[image: Right clicking on a file's tab.]
Figure 3-3. Right clicking on a file’s tab.

	
Right click a second time of the file name. This time, select
Create Console for Editor. Select the appropriate Kernel (that is,
set of software packages) to use your script. You will want the Python
option if you are using Python or the R option if you are using R. If
you select the wrong kernel, you may change the kernel using the kernel
drop down menu.

[image: Example selecting kernel for Python script.]
Figure 3-4. Example selecting kernel for Python script.

	
To check that everything is working, type 2 + 2 in the script file.
While you are still on the line (shown by the flashing symbol |),
press the Press shift + enter to run the code. Your output should be
4. To run multiple lines at once, highlight all of the lines you want
to run and press shift + enter.

[image: Example of running `2 + 2` from Python script.]
Figure 3-5. Example of running 2 + 2 from Python script.

Tip

Read the Jupyter Lab Overview (https://jupyterlab.readthedocs.io/en/stable/) to better understand this powerful IDE.

Much like footwork drills, these steps will become second nature if you
do them on a regular basis. We encourage you to jot down the steps to
help you remember them. Regardless, we are now ready to read in data.
Chapter 2 listed these steps, but we will repeat here
because the steps are important. If your file is in the same folder,
load pandas and then read the gb_det_2020_pass.csv file with

Python
import pandas as pd
gb_det_2020_pass = pd.read_csv("./gb_det_2020_pass.csv")

If you are using R, read in the file with

R
gb_det_2020_pass <- read.csv("./gb_det_2020_pass.csv")

The file path, is the same between languages because both are based upon
common Linux shell languages ([Link to Come] provides
an overview of these tools in greater detail). With this name, ./
explicitly tells the computer to use the current working directory that
the code file is in. This is followed by the file’s name,
./gb_det_2020_pass.csv. Also, notice both languages requires the path
to be inside of quotes ("path_to_file").

We can also use different paths. For example, if we have the data in a
path football_2020, we would use the path
"./football_2020/gb_det_2020_pass.csv". The ./ may not always be
necessary, but tells the computer to start in the current working
directory. Next,the text football_2020 tells the computer to use this
folder. Last, we include the file name, gb_det_2020_pass.csv.

Although we could use the absolute path, such as
C:\User\bob\Documents\football\learn_code, using relative paths from
the working directory are better for multiple reasons.1 First, if you
share the file or change computers, the absolute path will usually not
work. Second, using a relative path with allow others to reuse your code
or allows you to reuse your code in remote settings such as cloud
servers. Third, absolute paths include your user name, which is a small
security concern.

Relative paths start in the current working directory. For example, if
we are working in the folder learn_code with the absolute path
C:\User\bob\Documents\football\learn_code, learn_code is our file
path. The current working directory is \"./\", although this explicit
command is often not needed. For example,
\"./path_to_csv/my_file.csv\" usually works the same as
\"path_to_csv/my_file.csv\". For example, if we have folder data
under learn code, \"./data/gb_det_2020.csv\" takes use to our file. To
use the default home directory on your computer, start with the path
\"~/path_to_file/\". Usually, the default home directory on a Windows
computer is the user name, for example C:\User\bob\. Thus, ~ would
work with files and folders located in the \"bob\" folder. To start up
a level from your current working directory, use \"../\". This may be
combined to move up multiple levels: \"../../\" goes up two folders
and \"../../../\" goes up three levels. For example, if we were
working in C:\User\bob\Documents\football\learn_code, ../ would take
us to football and ../../ would take us to Documents.

Table 3-1. Common path settings.

	Symbol
	Location

	./

	Current working directory

	../

	Up one level

	~/

	Default computer home directory

Warning

Python or R must know where your data lives.
If you cannot load data, a common mistake is that you have not set the correct working directory.
In Python load the os package by typing import os and then os.getcwd() will show you your current working directory and os.listdir("./") will show you the files in a directory.
Then you may use os.chdir("./new_file_path/folder") to change your working directory to be inside the new_file_path folder and then the folder inside this directory.
In R, getwd() will show you your current working directory and list.files("./") will show you the files in a directory
and setwd("./new_file_path/folder/") to change your working directory like the Python example.
The input options for all of these functions may be changed to a file path of your choice.

With Python, we use the read_csv() function from pandas. With R, we
use the read.csv() function that is included as part of base R.

Tip

If read.csv() is too slow in R, look up the tidyverse function read_csv().
If you need faster performance, checkout the data.table package’s function fread().
Both functions are much quicker than base R’s read.csv().
We find data.table to be less intuitive, but much quicker.
read_csv() will create a special type of a data.frame called a tibble and fread() will create a special type of data.frame called a data.table.
Both of these behave like data.frames, but have extra features and performance benefits.
For pandas users in Python, investigate the Dask package, which supports a parallel computing read option.

Besides CSV files, data comes in many different types of plain text
files. Both read_csv() function in Python’s pandas and
read.csv() function in base R are special cases of more general read
table functions. In Pandas, this is pd.read_table() and in R, this is
read.table(). Both read table functions have a sep option for
setting the deliminator between objects. For example, sep = "," would
contain comma separated variables, sep = "\t" would contain tab
separated files, and sep = "\s" would contain space separated
variables. Consistent, but weird to human file structures often occur
with machine or instrument generated data. For example, weather station
data might be downloaded in a non-comma separated format. These formats
are common in science, but more rare with football data.

Tip

Both Python and R have built in help functions.
For example, typing help("+") in Python or R shows the help file for the addition operator, +.
R also has a help shortcut with the question mark: ?"+".
More broadly, we usually search for functions because their documentation appears online and this is easier to than the build in help files.
However, sometimes in pinch (or if you are in location such as an airplane or remote cabin without internet) these basic help tools will give you the answer more readily than an search engine.

Sometimes you may want or need to read in Excel files. With the pandas
package for Python, use pd.read_excel(). You may need to specify the
spreadsheet you open using sheet_name to open a sheet other than the
first spreadsheet. In R, we need to load the readxl library with
library(readxl) to access the readxl_excel() function. The readxl
package in R also contains an excel_sheet() function for accessing
specific spreadsheets.

Verifying data is correct

After we read in data, we want to make sure the data is correct. Several
different functions exist we use to check files. These functions differ
slightly by language so, we will walk through the tools in each
language. Starting with Python, we first load the Green Bay-Detroit pass
data from their first game against each other in 2020.
Chapter 2 also used this data.

First, we load in the data. In this case, we have have our data in a
folder data. You may need to change the path depending upon where you
have your data file located.

Python
import pandas as pd
gb_det_2020_pass = pd.read_csv(".//data//gb_det_2020_pass.csv")

We could view all of the data by typing print(gb_det_2020_pass).
However, this would print all of the data and fill our screen with text.
Instead, we may look at the top of the data using the .head() function
or the bottom using .tail(). Remember that in Python, we call the data
frame’s head or tail using the functions from the object
with a period. We also use an explicit print(...) around the head.

Python
print(gb_det_2020_pass.head())

 posteam yards_after_catch air_yards pass_location qb_scramble
0 DET 0.0 5 middle 0
1 DET 16.0 13 left 0
2 DET 3.0 3 left 0
3 GB 11.0 4 middle 0
4 GB 4.0 0 right 0

Notice how the tail data is similar to the head, but shows the bottom of
the file. We like to look at the top and bottom of the data to make sure
we understand it. For long files, printing the head of the data lets us
peak and see if things make sense for the first few entries. Likewise,
the next most common area for problems to emerge is in the bottom of the
file. For example, some people include summaries in files, especially if
they they created the file in Excel or similar program.

Python
print(gb_det_2020_pass.tail())

 posteam yards_after_catch air_yards pass_location qb_scramble
57 DET NaN 0 middle 0
58 GB -2.0 -4 right 0
59 DET 20.0 16 middle 0
60 DET NaN 17 middle 0
61 DET NaN 50 left 0

Pandas also lets us examine the information about a file using
.info().

Python
print(gb_det_2020_pass.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62 entries, 0 to 61
Data columns (total 5 columns):
 # Column Non-Null Count Dtype

-
 0 posteam 62 non-null object
 1 yards_after_catch 38 non-null float64
 2 air_yards 62 non-null int64
 3 pass_location 62 non-null object
 4 qb_scramble 62 non-null int64
dtypes: float64(1), int64(2), object(2)
memory usage: 2.5+ KB
None

This function prints the type of object at the type (in this case, a
pandas.core.frame.DataFrame, the number of entries and their range,
and details about the columns. If the RangeIndex did not make sense,
the Pandas data frame has likely been edited by a function in Python and
may not behave as expected. The function .reset_index() allows this to
be reset. The first entry about columns are the column number,
abbreviated using the # symbol. Next, is the column name, followed by
the Non-Null Count. Null entries in Pandas are missing values. for
example, not all plays had yards after the catch and these are null
entries. Hence there are only 38 plays with catches compared to a total
of 62 passing plays. Last, is the data type (or Dtype for short). In
this case, we have object columns that contain characters, 64-bit
floating-point numbers, and 64-bit integers. Data type is important in
all data contexts, but especially football, where something like
coverage type could be an integer at first blush (cover 1, cover 2) but
actually be part of a group of factors, categories or characters.
Integers are a special type of number that are only whole such as 0, 1,
2, or 3. After summarizing the data types, .info() shows the memory
used by the data frame.

We can also describe the data in a data frame using the .describe()
function. This shows, the number of observations as the count and
summary statistics. Chapter 5 will cover these
statistics more detail.

Python
print(gb_det_2020_pass.describe())

 yards_after_catch air_yards qb_scramble
count 38.000000 62.000000 62.0
mean 6.263158 8.612903 0.0
std 5.912352 10.938509 0.0
min -2.000000 -6.000000 0.0
25% 2.250000 1.250000 0.0
50% 4.000000 5.000000 0.0
75% 9.000000 12.750000 0.0
max 20.000000 50.000000 0.0

We can also get the dimension or shape of the data. This is the number
of rows and columns of the data. Notice that is an attribute of the data
frame and not a function. Hence, we simply add .shape to the end of
the data frame rather than a function with parentheses.

Python
Notice this is NOT a function
gb_det_2020_pass.shape

(62, 5)

Likewise, we can directly view the data types by adding .dtypes.

Python
Notice this is NOT a function
gb_det_2020_pass.dtypes

posteam object
yards_after_catch float64
air_yards int64
pass_location object
qb_scramble int64
dtype: object

The above entries methods all presented similar outputs with different
themes and variations. We find those tools be useful in different
situations. For example, sometimes we may only want to know the
dimensions of a data frame rather than all of the information.

Next, we will show an example of how to summarize data to see the unique
entries. Let’s say we want to see if both possession teams
passed to all three locations on the filed. We can create a list of the
these two columns,
['posteam', 'pass_location']
and then use this list to only call those two columns from the
gb_det_2020_pass data frame using square brackets. Last, we apply the
function .drop_duplicates() to see what distinct combinations exist
for the two columns. We save this to be team_pass_loc and then print
the object to the screen to read.

Python
team_pass_loc = gb_det_2020_pass[['posteam', 'pass_location']].drop_duplicates()
print(team_pass_loc)

 posteam pass_location
0 DET middle
1 DET left
3 GB middle
4 GB right
6 GB left
10 DET right

If we look at the .info() for this new object, the has 6 entries that
go from 0 to 10 rather than 0 to 5 (remember, Python counting starts at
zero). This is because the when Python dropped the duplicate values, it
kept the first entry for each observation. For example, the first pass
play of the game was by Detroit to the middle of the field, but they did
not pass to the right side of the field until the 10th passing play of
the game. If you use .reset_index() on this object, the index would
reset to be 0 to 6.

print(team_pass_loc.info())

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6 entries, 0 to 10
Data columns (total 2 columns):
 # Column Non-Null Count Dtype

-
 0 posteam 6 non-null object
 1 pass_location 6 non-null object
dtypes: object(2)
memory usage: 144.0+ bytes
None

R has similar function for exploring data, but are different enough not
all functions have direct equivalents. We start by reading in the data
to R.

R
gb_det_2020_pass <- read.csv("./data/gb_det_2020_pass.csv")

Next, we print the head of the data using head(). Notice how R uses
the function on the outside of the object.

R
print(head(gb_det_2020_pass))

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 0 5 middle 0
2 DET 16 13 left 0
3 DET 3 3 left 0
4 GB 11 4 middle 0
5 GB 4 0 right 0
6 GB NA 0 right 0

Likewise, we can use tail() to look at the bottom of the data.

R
print(tail(gb_det_2020_pass))

 posteam yards_after_catch air_yards pass_location qb_scramble
57 GB 6 3 left 0
58 DET NA 0 middle 0
59 GB -2 -4 right 0
60 DET 20 16 middle 0
61 DET NA 17 middle 0
62 DET NA 50 left 0

In R, we can view the structure of the data using str(). This tells
use the type of object that gb_det_2020_pass is. In this case,
gb_det_2020_pass is a data.frame with 62 observations and 5
variables. R indicates columns names with a $ sign. This is because we
could use this function to access the column values. For example, typing
gb_det_2020_pass$posteam will show you all of the values for
posteam. We also see the columns types. We have chr for character,
that is, non-numeric values and integers, that is whole numbers. Notice
how R treats the yards as integers whereas Python treats the yards as
numbers.

R
str(gb_det_2020_pass)

'data.frame': 62 obs. of 5 variables:
 $ posteam : chr "DET" "DET" "DET" "GB" ...
 $ yards_after_catch: int 0 16 3 11 4 NA NA 0 NA NA ...
 $ air_yards : int 5 13 3 4 0 0 26 10 -2 25 ...
 $ pass_location : chr "middle" "left" "left" "middle" ...
 $ qb_scramble : int 0 0 0 0 0 0 0 0 0 0 ...

We can get the dimension of the data using dim(). Although not shown,
we could also use ncol() to get the number of columns or nrow() to
get the number of rows.

R
dim(gb_det_2020_pass)

[1] 62 5

R also provides a summary of the data using the summary() function.
This provides summary statistics for integer and numerical columns. In
contrast to Python, R calls missing values NA.

R
summary(gb_det_2020_pass)

 posteam yards_after_catch air_yards pass_location
 Length:62 Min. :-2.000 Min. :-6.000 Length:62
 Class :character 1st Qu.: 2.250 1st Qu.: 1.250 Class :character
 Mode :character Median : 4.000 Median : 5.000 Mode :character
 Mean : 6.263 Mean : 8.613
 3rd Qu.: 9.000 3rd Qu.:12.750
 Max. :20.000 Max. :50.000
 NA's :24
 qb_scramble
 Min. :0
 1st Qu.:0
 Median :0
 Mean :0
 3rd Qu.:0
 Max. :0

If we load the tidyverse, we may glimpse at the data using the
glimpse() function. This provides a view of the head of the data as
well as column information. Sometimes this format may be convenient that
base R’s data inspection tools.

library(tidyverse)
R
glimpse(gb_det_2020_pass)

Rows: 62
Columns: 5
$ posteam <chr> "DET", "DET", "DET", "GB", "GB", "GB", "GB", "GB", "…
$ yards_after_catch <int> 0, 16, 3, 11, 4, NA, NA, 0, NA, NA, 3, 2, NA, 9, NA,…
$ air_yards <int> 5, 13, 3, 4, 0, 0, 26, 10, -2, 25, 6, 6, -1, 5, 3, 4…
$ pass_location <chr> "middle", "left", "left", "middle", "right", "right"…
$ qb_scramble <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

The Tidyverse also contains a function to let us see the distinct or
unique values by parameter combinations. We first use the select()
function with the gb_det_2020_pass data to select the postteam and
pass_location columns and then use distinct() function to view the
unique values.

R
distinct(select(.data = gb_det_2020_pass, posteam, pass_location))

 posteam pass_location
1 DET middle
2 DET left
3 GB middle
4 GB right
5 GB left
6 DET right

Common problems

In our experience, reading in data often has problems. Here, we describe
some common problems and solutions.

Different separator: Sometimes people save files with confusing names.
For example, somebody or something (such as an instrument) might save a
space separated file with a .csv ending rather than a .txt ending.
Trying to read this in with Python would give you confusing inputs
because everything gets lumped into one column.

Python
print(pd.read_csv("./data/space.csv"))

 col1 col2 col3
0 a 1 2
1 b 1 2
2 c 3 4

If we instead use the .read_table() function with the space plus
separator option (sep = " ") we get three columns as we would expect.

Python
print(pd.read_table("./data/space.csv", sep = " "))

 col1 col2 col3
0 a 1 2
1 b 1 2
2 c 3 4

In R, we also need to specify a header option as TRUE, otherwise R
treats the first row as a row rather than column names.

R
read.table("./data/space.csv", sep = " ", header = TRUE)

 col1 col2 col3
1 a 1 2
2 b 1 2
3 c 3 4

Multiple lines of column names/headers: Sometimes people include
meta-data, that is data about data, in the header of their files. We
need to tell the computer to skip these extra rows. R will give us
values (as shown) whereas Python gives us a error message (not shown).

R
read.csv("./data/multihead.csv")

 Example.file.with.un.needed.header.data
Column 1 is letters
Column 2 is numbers
col1 col2
A 1
B 2

Instead, we need to tell the computer how many lines to skip. In R, we
do this with the skip option.

R
read.csv("./data/multihead.csv", skip = 3)

 col1 col2
1 A 1
2 B 2

In contrast, we tell Python using the skiprows option.

Python
print(pd.read_csv("./data/multihead.csv", skiprows = 3))

 col1 col2
0 A 1
1 B 2

Missing separator: Sometimes files will have missing separators. For
example, a 1 rather than a,1. If these mis-entries occur rarely due
to human errors entering data, the simplest solution is probably to edit
the files by hand. Conversely, if these mis-entries occur due to a
computer problem such as another program mis-formatting data, then you
probably need to write a custom function to clean up your data, which
beyond the scope of this book. In Python, this error has an a 2 and a
missing value, NaN for one column.

Python
print(pd.read_csv("./data/mis_sep.csv"))

 col1 col2
0 a 2 NaN
1 b 3.0

R
print(read.csv("./data/mis_sep.csv"))

 col1 col2
1 a 2 NA
2 b 3

Non-numbers in number columns: Sometimes people enter non-numbers into
number columns. Perhaps they entered something like <10 (less than 10)
or 1 to 2 or a typo like 1O (one-oh) rather than 10 (one-zero).
These error may be found by taking a glimpes() at the data in R or
looking at the .info() of the data in Python. For example, perhaps we
have a spreadsheet with three columns. Column 1 is letter, but columns 2
and 3 should be numbers. However, there is a typo in column 2.

For a simple, small table you might be able to see the typo. Often this
is not the case, espeically for larger data frames and, if you are like
us, may not notice the error until you try to use the data but get an
error message. in Python, we could read in the data, save the data to an
object, and then look at the information, specifically looking at the
Dtype column:

Python
wrong_number = pd.read_csv("./data/wrong_number.csv")
wrong_number.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
 # Column Non-Null Count Dtype

-
 0 col1 2 non-null object
 1 col2 2 non-null object
 2 col3 2 non-null int64
dtypes: int64(1), object(2)
memory usage: 176.0+ bytes

We can take similar steps in R:

R
wrong_number <- read.csv("./data/wrong_number.csv")
glimpse(wrong_number)

Rows: 2
Columns: 3
$ col1 <chr> "a", "b"
$ col2 <chr> "11", "1O"
$ col3 <int> 2, 44

Notice how the col3 is a int64 in Python and an int in R, but
columns 1 and 2 the type object in Python and chr in R.

Warning

Changing data by hand (such as using a spreadsheet) is generally considered bad practice for data science.
Hand editing data can introduce errors, leaves no log or history of changes made, and is not reproducible.
However, we view this like a cook tasting the cookie batter with their finger.
The hand editing (and sticking the finger in the batter) may not be ideal, but is acceptable for home use, but should not be done in a production setting (or commercial kitchen) where the product is to be consumed by others.

Lastly, we have some other closing tips. We (again) encourage you to not
use spreadsheet programs like Excel can change data with unpredictable
results. If you have having problems editing plain text files (like
.txt or .csv files), we encourage you use a plain text editor such
as Notepad on Windows (or, a cross platform editor like NotePad++,
available free from https://notepad-plus-plus.org/downloads/). Also, we
cannot cover all possible data errors. Working through data errors is
can be frustrating. We have found our search engine ninja skills have
improved through time with programming. For example, we have had our
interns take a day to find a solution we find in 5 minutes simply
because we have more experience searching for error terms. Remember,
anything, be it football or programming, requires practice to get
better.

Tip

One reason we suggested you use the same language as your friends in Chapter 1 is that they can lend you an extra set of eyes and hopefully help you when you run into problems such as mis-formatted data.

Obtaining data from the web

Often times there are situations where you need to scrape data off of
the web. While it is beyond the scope of this book to teach you all of
webscraping in Python and R, there are some pretty easy commands that
can get you a significant amount of data to analyze.

Here, we are going to scrape NFL Draft and NFL Scouting Combine data
from Pro Football Reference (https://www.pro-football-reference.com/),
which, as we’ve mentioned before, is a wonderful resource
out of Philadelphia, PA that provides free data for every sport
imaginable. The NFL Draft is a yearly event held in various cities
around the country. In the draft, teams select from a pool of players
that have completed at least three post-high school years. While there
used to be more rounds, the NFL draft currently consists of seven
rounds. The draft order in each round is determined by how well each
team played the year before. Weaker teams pick higher in the draft than
the stronger teams. Teams can trade draft picks for other draft picks or
players.

The NFL Scouting Combine is a yearly event held each year in
Indianapolis, IN. In the combine, a pool of athletes eligible for the
NFL Draft meet with evaluators from NFL teams to perform various
physical and psychological tests. Additionally, this is generally
thought of as the NFL’s yearly convention.

The combination of these two data sets are a great resource for
beginners in the football analytics space for a couple of reasons.
Firstly, the data is collected over a small set of days once a year and
is does not change thereafter. Although some players may re-test
physically at a later date, and players can often leave the team that
drafted them for a number of reasons, the draft teams by cannot change.
Thus, once you obtain the data, it’s generally good to use
for almost an entire calendar year, after which you can simply add the
new data when it’s obtained the following year. We will
scrape all one year of NFL draft data from 2022.

Tip

Web scrapping is a lot of trial and error, especially when you get started.
In generally, we find an example that works and then change one piece at a time until we get something that works for us.

for loops

We are going to cover a fundamental programming skill before we start
web scarping, for loops. Often when programming, we want to repeat
code. We can use tools such as for loops for this task. The simplest
for loops in an lanugage print the index of the loop. The loop takes
an index, commonly the character i, and goes over a range of values.

In Python, this would be

##Python
for i in range(10):
 print(i)

In R, this would be

##R
for (i in seq(1, 10)){
 print(i)
 }

In this case, notice how Python’s loop does not need
squiggly brackets ({}) around the code. Instead, Python uses white
space (the spaces) to show the loop. Design choices like this are one
reason many people consider Python to be a more elegant language than R.
For example, we could write for (i in seq(1, 10)){ print(i) } on one
line. However, this one line of code is harder to read.

Web scrapping with Python

The following code allows us to scrape with Python. We save the Uniform
Resource Locator (more commonly known as URL or web address) to an
object, url. In this case, the URL is simply the URL for the 2022 NFL
draft. Next, we use read_html from the pandas package to simply read
in tables from the given URL. Remember that Python starts counting with
0. Thus, the zeroth element of the data frame, df from read_html()
is simply the first table on the webpage.

Python
url = "https://www.pro-football-reference.com/years/2022/draft.htm"
df = pd.read_html(url)[0]

We can peak at the data using print().

print(df)

 Unnamed: 0_level_0 Unnamed: 1_level_0 Unnamed: 2_level_0 \
 Rnd Pick Tm
0 1 1 JAX
1 1 2 DET
2 1 3 HOU
3 1 4 NYJ
4 1 5 NYG
..
263 7 258 GNB
264 7 259 KAN
265 7 260 LAC
266 7 261 LAR
267 7 262 SFO

 Unnamed: 3_level_0 Unnamed: 4_level_0 Unnamed: 5_level_0 \
 Player Pos Age
0 Travon Walker DE 21
1 Aidan Hutchinson DE 22
2 Derek Stingley CB 23
3 Ahmad Gardner CB 22
4 Kayvon Thibodeaux DE 21
..
263 Samori Toure WR 24
264 Nazeeh Johnson SAF 24
265 Zander Horvath RB 23
266 AJ Arcuri OT 25
267 Brock Purdy QB NaN

 Unnamed: 6_level_0 Misc Unnamed: 9_level_0 ... Rushing Receiving \
 To AP1 PB St ... Yds TD Rec
0 NaN 0 0 0 ... NaN NaN NaN
1 NaN 0 0 0 ... NaN NaN NaN
2 NaN 0 0 0 ... NaN NaN NaN
3 NaN 0 0 0 ... NaN NaN NaN
4 NaN 0 0 0 ... NaN NaN NaN
..
263 NaN 0 0 0 ... NaN NaN NaN
264 NaN 0 0 0 ... NaN NaN NaN
265 NaN 0 0 0 ... NaN NaN NaN
266 NaN 0 0 0 ... NaN NaN NaN
267 NaN 0 0 0 ... NaN NaN NaN

 Unnamed: 24_level_0 Unnamed: 25_level_0 Unnamed: 26_level_0 \
 Yds TD Solo Int Sk
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN
..
263 NaN NaN NaN NaN NaN
264 NaN NaN NaN NaN NaN
265 NaN NaN NaN NaN NaN
266 NaN NaN NaN NaN NaN
267 NaN NaN NaN NaN NaN

 Unnamed: 27_level_0 Unnamed: 28_level_0
 College/Univ Unnamed: 28_level_1
0 Georgia College Stats
1 Michigan College Stats
2 LSU College Stats
3 Cincinnati College Stats
4 Oregon College Stats
..
263 Nebraska College Stats
264 Marshall College Stats
265 Purdue College Stats
266 Michigan St. College Stats
267 Iowa St. College Stats

[268 rows x 29 columns]

Although kind of ugly, this is workable! To scrape multiple years, for
example 2000 to 2022, you can do a simple for loop - which is often
necessary due to changes in the structure of the data - experimentation
is key.

Also, when creating our own for loops, we often start with a simple
index value (for example, set i = 1) and then make our code work.
After making our code work, we add in the the for ... line to run the
code over many different values.

Warning

When setting the index value to one while building for loops, make sure you remove the place holder index is 1 (such as i = 1) from your code.
Otherwise, you loop will simply run over the same functions or data multiple times.

Python
df = pd.DataFrame()
for i in range(2000, 2023):
 url = 'https://www.pro-football-reference.com/years/' + str(i) + '/draft.htm'
 temp = pd.read_html(url)[0]
 temp["Season"] = i
 df = pd.concat([df, temp])
seasons = df["Season"] #keeping season around
df.to_csv("nfl_draft_data_py.csv", index = false)

The tables at Pro Football Reference are a little weird in that they
repeat the column names frequently throughout the table. Additionally,
there is a table header that python initially interprets as the column
names. The simplest way to undo this is to save the table as a csv and
re-read it in. To do this, run this code:

##Python
df = pd.read_csv("draft_data.csv")
df["Season"] = seasons
print(df.head())

##Python
print(df.head())

 Unnamed: 0_level_0 Unnamed: 1_level_0 Unnamed: 2_level_0 Unnamed: 3_level_0 \
0 Rnd Pick Tm Player
1 1 1 CLE Courtney Brown
2 1 2 WAS LaVar Arrington
3 1 3 WAS Chris Samuels
4 1 4 CIN Peter Warrick

 Unnamed: 4_level_0 Unnamed: 5_level_0 Unnamed: 6_level_0 Misc Misc.1 \
0 Pos Age To AP1 PB
1 DE 22 2005 0 0
2 LB 22 2006 0 3
3 T 23 2009 0 6
4 WR 23 2005 0 0

 Unnamed: 9_level_0 ... Rushing.2 Receiving Receiving.1 Receiving.2 \
0 St ... TD Rec Yds TD
1 4 ... 0 0 0 0
2 5 ... 0 0 0 0
3 9 ... 0 0 0 0
4 4 ... 2 275 2991 18

 Unnamed: 24_level_0 Unnamed: 25_level_0 Unnamed: 26_level_0 \
0 Solo Int Sk
1 156 NaN 19.0
2 338 3 23.5
3 NaN NaN NaN
4 3 NaN NaN

 Unnamed: 27_level_0 Unnamed: 28_level_0 Season
0 College/Univ Unnamed: 28_level_1 NaN
1 Penn St. College Stats 2000.0
2 Penn St. College Stats 2000.0
3 Alabama College Stats 2000.0
4 Florida St. College Stats 2000.0

[5 rows x 30 columns]

Now inspecting the data frame, you column names.

The current column names are not helpful. However, we may obtain the
column name we want by taking the first row of the data frame and saving
this as an object names. We use the iloc[0] command to take the
first (row).

names = df.iloc[0]

Now, we also remove unwanted rows such as:

df = df[(df["Approx Val"] != "CarAV")]

Lastly, we can set the column names to be the first row values we saved
as names:

df.columns = names

Let’s look at the other columns available to us.

df.columns

Index(['Rnd', 'Pick', 'Tm',
 'Player', 'Pos', 'Age',
 'To', 'AP1', 'PB',
 'St', 'wAV', 'DrAV',
 'G', 'Cmp', 'Att',
 'Yds', 'TD', 'Int',
 'Att', 'Yds', 'TD',
 'Rec', 'Yds', 'TD',
 'Solo', 'Int', 'Sk',
 'College/Univ', 'Unnamed: 28_level_1', nan],
 dtype='object', name=0)

We can also look at the head of the data.

print(df.head())

0 Rnd Pick Tm Player Pos Age To AP1 PB St ... TD Rec \
0 Rnd Pick Tm Player Pos Age To AP1 PB St ... TD Rec
1 1 1 CLE Courtney Brown DE 22 2005 0 0 4 ... 0 0
2 1 2 WAS LaVar Arrington LB 22 2006 0 3 5 ... 0 0
3 1 3 WAS Chris Samuels T 23 2009 0 6 9 ... 0 0
4 1 4 CIN Peter Warrick WR 23 2005 0 0 4 ... 2 275

0 Yds TD Solo Int Sk College/Univ Unnamed: 28_level_1 NaN
0 Yds TD Solo Int Sk College/Univ Unnamed: 28_level_1 NaN
1 0 0 156 NaN 19.0 Penn St. College Stats 2000.0
2 0 0 338 3 23.5 Penn St. College Stats 2000.0
3 0 0 NaN NaN NaN Alabama College Stats 2000.0
4 2991 18 3 NaN NaN Florida St. College Stats 2000.0

[5 rows x 30 columns]

We still have some work to do to clean the data. For example, we need to
remove or drop the first row. We do this with the .drop() function.
labels = 0 tells Python to drop the first entry. axis = 0 tells
Python to drop the first row. Conversely, using axis = 1 would tell
Python to drop the first column.

Tip

With R and Python, we usually need to tell the computer to save our updates.
Hence, we often save objects over the same same, such as df = df.drop(labels = 0, axis = 0).

We next save the updated data frame, and look at the head of the data.
The data now looks better!

df = df.drop(labels = 0, axis = 0)
print(df.head())

0 Rnd Pick Tm Player Pos Age To AP1 PB St ... TD Rec Yds \
1 1 1 CLE Courtney Brown DE 22 2005 0 0 4 ... 0 0 0
2 1 2 WAS LaVar Arrington LB 22 2006 0 3 5 ... 0 0 0
3 1 3 WAS Chris Samuels T 23 2009 0 6 9 ... 0 0 0
4 1 4 CIN Peter Warrick WR 23 2005 0 0 4 ... 2 275 2991
5 1 5 BAL Jamal Lewis RB 21 2009 1 1 9 ... 58 221 1879

0 TD Solo Int Sk College/Univ Unnamed: 28_level_1 NaN
1 0 156 NaN 19.0 Penn St. College Stats 2000.0
2 0 338 3 23.5 Penn St. College Stats 2000.0
3 0 NaN NaN NaN Alabama College Stats 2000.0
4 18 3 NaN NaN Florida St. College Stats 2000.0
5 4 NaN NaN NaN Tennessee College Stats 2000.0

[5 rows x 30 columns]

We also need to change the last column name to be season rather than
nan. We can use the fillna() function to help with this.

df.columns = df.columns.fillna('Season')

We can duplicate the first column it and give it a name to represent the
data:

df["Selection"] = df.iloc[:, 0]

Lastly, lets take the data that we care about for the purposes of this
analysis:

	
the season in which the player was drafted (Season),

	
which selection number they were taken at (Selection),

	
the player’s name (Player)

	
the player’s position (Pos)

	
the player’s whole career approximate value (wAV)

	
The player’s approximate value for drafting team (DrAV)

Now, we can see how we have cleaned up the data.

print(df.head())

0 Rnd Pick Tm Player Pos Age To AP1 PB St ... Rec Yds TD \
1 1 1 CLE Courtney Brown DE 22 2005 0 0 4 ... 0 0 0
2 1 2 WAS LaVar Arrington LB 22 2006 0 3 5 ... 0 0 0
3 1 3 WAS Chris Samuels T 23 2009 0 6 9 ... 0 0 0
4 1 4 CIN Peter Warrick WR 23 2005 0 0 4 ... 275 2991 18
5 1 5 BAL Jamal Lewis RB 21 2009 1 1 9 ... 221 1879 4

0 Solo Int Sk College/Univ Unnamed: 28_level_1 Season Selection
1 156 NaN 19.0 Penn St. College Stats 2000.0 1
2 338 3 23.5 Penn St. College Stats 2000.0 1
3 NaN NaN NaN Alabama College Stats 2000.0 1
4 3 NaN NaN Florida St. College Stats 2000.0 1
5 NaN NaN NaN Tennessee College Stats 2000.0 1

[5 rows x 31 columns]

Lastly, we might want to re-order and select on certain columns. For
example, we might only want 6 columns and also to change their order:

print(df[["Season", "Selection", "Player", "Pos", "wAV", "DrAV"]])

0 Season Selection Player Pos wAV DrAV
1 2000.0 1 Courtney Brown DE 27 21
2 2000.0 1 LaVar Arrington LB 46 45
3 2000.0 1 Chris Samuels T 63 63
4 2000.0 1 Peter Warrick WR 27 25
5 2000.0 1 Jamal Lewis RB 69 53
...
6005 2022.0 7 Samori Toure WR NaN NaN
6006 2022.0 7 Nazeeh Johnson SAF NaN NaN
6007 2022.0 7 Zander Horvath RB NaN NaN
6008 2022.0 7 AJ Arcuri OT NaN NaN
6009 2022.0 7 Brock Purdy QB NaN NaN

[6009 rows x 6 columns]

Web-scrapping in R

We can use the rvest package to do a similar loop in R. You will need
to install this package. To do so, type

R
install.packages("rvest", repo = "https://cloud.r-project.org")

After the package install, we need to load the package and create an
empty data frame.

R
library(rvest)
df <- data.frame()

Then, we can loop over the years 2000 to 2023. Ranges can be specified
using a colon, such as 2000:2022. However, explicitly using using the
seq() command because it is more robust. A key difference of the R
code is that is the html_nodes command is called with the pipe.

R
for (i in seq(from = 2000, to = 2022)) {
 url <- paste0("https://www.pro-football-reference.com/years/",
 i,
 "/draft.htm")
 temp <-
 read_html(url) |>
 html_nodes(xpath = '//*[@id="drafts"]') |>
 html_table()

 temp <- temp[[1]]
 colnames(temp) <- temp[1,]
 temp$season <- i
 temp <- subset(temp, Tm != "Tm")
 temp <-
 temp |>
 as.data.frame()

 df <- rbind(df, temp)
}
write.csv(df, "nfl_draft_data_r.csv", row.names = FALSE)

Note

Compare the two web scrapping methods.
Python functions tend to be more self-contained and call functions that belong to the object.
In contract, R tends to use multiple functions on the same object.
This is a design trait of the languages.
Python is a more object-orientated language whereas R is a more functional language.

Notice how we save the outputs at the end. This is good practice for
multiple reasons. First, it allows us to avoid re-downloading data.
Second, it locks down the version of the data we use in case the website
changes or crashes when we want to re-run our code.

Like the Python web-scrapping, some data cleaning is needed. We can also
load our previously saved code. Lastly, we can examine the outputs using
tools we learned about in Chapter 2 . For example,
Approximate Value (AV) is PFF’s way of assigning value to
players. PFF, where Eric works, uses another metric, which you can see
in the reference.

R
library(tidyverse)
df <- read.csv("nfl_draft_data_r.csv")
df <-
 df %>%
 mutate(DrAV = ifelse(is.na(DrAV), 0, DrAV))

One way to evaluate a team’s drafting prowess is to see how
much AV they have acquired with their picks. Additionally, Draft AV
(DrAV) is the AV earned by a player with the team that drafted him. To
see how this varies with respect to draft position, we have to turn NA
values (recall that Python uses nan whereas R uses NA) into 0,
meaning that such players did not earn any value with the team that
drafted them. We may plot this relationship and include a spline curve
to help us see the trend:

R
ggplot(df, aes(Pick, DrAV)) +
 geom_point() +
 geom_smooth() +
 theme_bw()

[image: Draft pick plotted against draft approximate value (DrAV) for each player. The blue line is a spline that shows a general trend. Specifically, that lower draft picks, on average, contribute less to the DrAV.]
Figure 3-6. Draft pick plotted against draft approximate value (DrAV) for each player. The blue line is a spline that shows a general trend. Specifically, that lower draft picks, on average, contribute less to the DrAV.

This makes sense, as players drafted early are expected to have the
highest value, but there is a lot of noise in Figure 3-6. One of
the best player in the history of the NFL, Tom Brady, was taken with the
199th selection in his draft, after all.

Closing remarks on web scrapping

Now, you’ve seen the basics of web scrapping. What you do
with this data is largely up to you! Like almost anything, the more you
web scrape, the better you will become!

One tip for finding URLs is to use your web browser’s (such
as Chrome, Edge, or Firefox) inspection tool. This shows the html code
for the webpage you are visiting. You can use this to help find which
path for the table that you want. “Suggested reading” provides
additional resources on web scarping.

Suggested reading

Loading data is covered in books such as

	
R for Data Science: Import, Tidy, Transform, Visualize, and Model
Data by Garrett Grolemund and Hadley Wickham (O’Reilly),
also updated at the book’s homepage https://r4ds.had.co.nz/
and

	
Python for Data Analysis: Data Wrangling with Pandas, NumPy, and
IPython (2nd edition, 3rd edition coming soon) by Wes McKinney

Grolemund and Wickham provide a through introduction to data science
with R (both helped to write the Tidyverse) and McKinney created the
Pandas package for Python.

Many different books and other resources exist for web scraping. Besides
the package documentation for rvest in R and read_html in Pandas,
two books include

	
R Web Scraping Quick Start Guide by Olgun Aydin (Packet Publishing)
and

	
Web Scraping with Python, 2nd Edition by Ryan Mitchell
(O’Reilly Media).

Exercises

	
Change the web-scraping examples to different ranges of years for the
NFL draft.

	
Find you own data on the web and scrape it. An
example data you can use is NFL Combine data which can be found with the
URL https://www.pro-football-reference.com/draft/YEAR-combine.htm.
Explore the relationship between variables like the 40-yard dash time
and the broad jump for different position groups.

	
Import the
data you found into your language and clean up your data.

Chapter 4. Data wrangling

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

Sports analytics generally, and football analytics specifically, are
still in their early stages of development. As such, datasets may not
always be the cleanest, or tidy. Tidy datasets are usually in a
table form that computers can easily read and humans understand.
Furthermore, breaking ground in any field (and football analytics is no
different), often requires us to adapt datasets that were created for
different purposes. This is where data wrangling can come in handy. Some
synonyms for data wrangling include include data cleanup,
manipulation, mutating, shaping, tidying, and munging and describes the
process of using a scripting language such as Python or R to tidy
datasets to meet our needs. During the course of our careers, we have
found that this task takes the most time for our projects. For example,
one of our bosses once pinged us on Google chat because he was having
trouble fitting a new model. His problem turned out to not be the model,
but rather data formatting. Figuring out how to format the data to work
with the model took about 30 minutes. However, running the new model
only took about 30 seconds in R after we figured out the data.

Scripting tools like Python or R are our most-effective tools to change
our data into the form in which we can be most effective. This allows us
to keep track of our changes and see what we did and if we introduced
any errors into our data. Many people like to use spreadsheet programs
such as Microsoft Excel or Google Sheets for data manipulation.
Unfortunately, these programs do not keep track of changes easily.
Likewise, hand editing data does not scale, so as the size of the
problem becomes too large, such as when you are working with player
tracking data, you will not be able to quickly and efficiently build a
workflow that works. Thus, editing one or two files by hand is easy to
do with Excel, but editing one or two thousand files by hand is not easy
to do. Conversely, programming languages, such as Python or R, readily
scale. For example, if you have to format data after each
weeks’ games, Python or R could easily be used as part of a
data pipeline, but spreadsheets would be difficult to automate into a
data pipeline.

That being said, we understand many people like to use tools they are
familiar with. If you are switching over to Python or R from using
programs like Excel, we encourage you to switch one step at a time. As
an analogy, think about a cook licking the batter spoon to taste the
dish. When cooking at home for your family, many people do this. But,
the chef at a restaurant would hopefully be fired for licking the spoon.
Likewise, recreational data analysis can reasonably use program like
Excel to edit data. But, professional data analysis requires the us of
code to wrangle data.

Tip

We encourage you to start doing one step at a time in Python or R if you already use a program like Excel.
For example, let’s say you currently format your football data in Excel, plot the data in Excel, and then fit a linear regression model in Excel.
Start by plotting your data in Python or R the next time you work with your data.
Once you get the hang of that, start fitting your model in Python or R.
Finally, switch to formatting data in Python or R.

Logical operators

Filtering or querying data is a fundamental skills and the basic part of
filtering data is logical statement. We do this on a regular basis. For
example, perhaps we want to sort a play-by-play data frame for a player
or for whom we’re doing an analysis. Filtering or querying
data can also be hard to get the hang of. Richard remembers spending a
half-a-day in grad school stuck in the computer lab trying to filter out
example air quality data with R. Now, this task takes him about 30
seconds.

Both Python and R have many different methods for filtering data. We
focus on the tools we use, but you will see other people use different
tools if you start to read other people’s code either by
working with them or on the web such as tutorials or blogs. pandas
data frames have a .query() function. Likewise, the tidyverse in R
has a filter() function. We use these functions with logical
operators.

Note

Logic operators simply refer to computer code that compares a statement and provides a binary response.
In Python, logical results are either True or False.
In R, logical results are either TRUE or FALSE.

Fortunately, these operators are the same across most languages,
including Python and R. We will explore these operators by creating a
vector in R:

R
x <- c(1, 2, 3, 4)
y <- c("a", "b", "c", "a")

or an arrays with numpy in Python:

Python
import numpy as np
x = np.array([1, 2, 3, 4])
y = np.array(["a", "b", "c", "a"])

First, we can use basic operators. Some are easy to figure out like >
for greater than or <. For example, we can see which elements are
greater than 2 in Python:

Python
x > 2.0

array([False, False, True, True])

Likewise, we can see which elements are less than 3 in R:

R
x < 3

[1] TRUE TRUE FALSE FALSE

Less than or equal to or greater than or equal to use the equals sign
plus the operator. >= is greater than or equal to and <= is less
than or equal to. For example, compare the next code example to the
previous code example:

x <= 3

array([True, True, True, False])

Other operators are less obvious. Because we already use = to define
objects, == is used for equals. For example, we can find elements of
y that are equal to a. Make sure you put a in quotes like "a".
Otherwise, the computer thinks you are trying to use an object named
a.

Python
y == "a"

array([True, False, False, True])

We can find multiple items in the same list by comparing to a list. For
example, let’s say we want to find which elements contain
b or c. In numpy, we do this the .isin() function:

np.isin(y, ["b", "c"])

array([False, True, True, False])

pandas has a similar function for data frames we demonstrate later in
this chapter.

This is really useful when there are a number of ways to chart a player
playing a similar position. For example, “DE”, “OLB” and “ED” mean
similar things in football, and subsetting a data set for when a player
is designated as any one of those labels is often something one does in
analysis. R has a slightly different operator, an %in% function.

R
y %in% c("b", "c")

[1] FALSE TRUE TRUE FALSE

When using %in%, be careful with the order. For example, compare
y %in% c("a", "b") from the last example with c("a", "b") %in% y.

R
c("b", "c") %in% y

[1] TRUE TRUE

Tip

Using in operators can be hard.
We will often grab a test subset of our data to make sure our code works as expected.
More broadly, do not trust your code until you have convinced yourself that your code works as expected!

We can also string together operators using the and operator (&) or
the or operator (|). For example, we can see what entries are greater
than or equal to 2 for x and have a y values of "a". When working
with the numpy arrays, we need to use the where() function, but this
logic will be the same and use similar notation with Pandas later in
this chapter. The results tells us which entry meets the criteria.

Python
np.where((x >= 2) & (y == "a"))

(array([3]),)

We can also use an or operator for a similar comparison to see what
values of x are greater than 2 or what values of y are equal to
"a".

R
x > 2 | y == "a"

[1] TRUE FALSE TRUE TRUE

We can string together multiple conditions parentheses. For example, we
can see what has x values greater than 3 and y equal to “a” or
x equal to 2.

Python
np.where((x > 3) & (y == "a") | (x == 2))

(array([1, 3]),)

Likewise, similar notation may be used in R.

R
(x > 3 & y == "a") | (x == 2)

[1] FALSE TRUE FALSE TRUE

Table 4-1. Common logical operators.

	Symbol
	Example
	Name
	Question

	==

	x == 2

	equals

	Is x equal to 2?

	>

	x > 2

	greater than

	Is x greater than 2?

	<

	x < 2

	less than

	Is x less than 2?

	>=

	x >= 2

	greater than or equal to

	Is x greater than or equal to 2?

	<=

	x <= 2

	less than or equal to

	Is x less than or equal to 2?

	|

	(x > 2) | (y =="a")

	or

	Is x less than 2 or y equal to a?

	&

	(x > 2) & (y =="a")

	and

	Is x less than 2 and y equal to a?

Filtering and sorting data

In the previous section, you learned about logical operators. These
functions serve as the foundation of filtering data. In fact, when we
get stuck with filtering, we often build small test cases like the ones
above to make sure we understand our data and how our filters work (or,
as is sometimes the case, do not work).

Tip

Filtering can hard.
Start small and build complexity into your filtering commands.
Keep adding details until you are able to solver your problem.
Sometimes, you might need to do two or more smaller filters rather than one grand filter operation.
This is okay.
Get your code working before worrying about optimization.

We will again be working with the Green Bay-Detroit data from the second
week of the 2020 season. First, we will read in the data and do a simple
filter to look at plays that had yards after catch greater than 15 yards
to get an idea of where some big plays were generated. In R, load the
tidyverse, then our data. Next, we use the filter() function. The
first argument into filter is data. The second argument is the filter
criteria.

R
library(tidyverse)
gb_det_2020_pass <- read.csv("./data/gb_det_2020_pass.csv")
filter(gb_det_2020_pass, yards_after_catch > 15)

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16 13 left 0
2 GB 19 3 right 0
3 GB 19 6 right 0
4 DET 16 1 middle 0
5 DET 20 16 middle 0

Tip

With R and Python, you do not always need to use argument names.
Instead, the languages match arguments with their predefined order.
This order is listed in the help files.
For example, we could type read.csv(file = "our_file.csv") or read.csv("our_file.csv").
We usually define argument names for more complex function or when we want to be clear.
It is better to err on the side of being explicit and using the argument names because doing this makes your code easier to read.

Notice in this example that plays that generated a lot of yards after
the catch come in many shapes and sizes, including short throws with one
yard in the air, and longer throws with 16 yards in the air. We can also
filter with multiple arguments using the and operator, &. For example,
we can filter by yards after catch being greater than 15 and Detroit on
offense.

##R
filter(gb_det_2020_pass, yards_after_catch > 15 & posteam == "DET")

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16 13 left 0
2 DET 16 1 middle 0
3 DET 20 16 middle 0

However, what if we want to look at plays with yards after catch being
greater than 15 yards or air yards being greater than 20 years and
Detroit the offensive team? If we try
yards_after_catch > 15 | air_yards > 20 & posteam == "DET" in the
filter, we get results with both Green Bay and Detroit rather than only
Detroit.

Furthermore, sometimes with R or Python, our code gets too long to fit
on one line. In this case, R lets us simply do a line break either
within functions or between operators. In contrast, Python, as shown in
the next section, requires a special character for line breaks in code.
Also, with this R code, notice how we include white space to the
arguments all lineup after the filter(, we do this to help make our
code easier to read:

##R
filter(gb_det_2020_pass,
 yards_after_catch > 15 | air_yards > 20 &
 posteam == "DET")

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16 13 left 0
2 GB 19 3 right 0
3 DET NA 28 left 0
4 DET NA 28 right 0
5 GB 19 6 right 0
6 DET 16 1 middle 0
7 DET 0 24 right 0
8 DET 20 16 middle 0
9 DET NA 50 left 0

Instead, we get all plays with yards after catching being greater than
15 or all plays with yards greater than 20 and Detroit starting with
possession of the ball. Instead, we need to add a set of parentheses to
the filter:
(yards_after_catch > 15 | air_yards > 20) & posteam == "DET". The use
of parentheses in both coding and mathematics align, so the order of
operations start with the inner most set of parentheses and then move
outward.

Tip

The order of operations refers to how we do math.
For example, 1 + 2 * 3 = 1 + 6 = 7 and is different from (1 + 2) * 3 = 3 * 3 = 9.

##R
filter(gb_det_2020_pass,
 (yards_after_catch > 15 | air_yards > 20) &
 posteam == "DET")

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16 13 left 0
2 DET NA 28 left 0
3 DET NA 28 right 0
4 DET 16 1 middle 0
5 DET 0 24 right 0
6 DET 20 16 middle 0
7 DET NA 50 left 0

We can also change the filter to only look at possession teams that are
not Detroit using the not equal to operator, !=. In this case, the not
equal operator gives us Green Bay’s admissible offensive
plays, but this would not always be the case. For example, if we were
working with season long data with all teams, the not equal operator
would give us data for the 31 other NFL teams.

##R
filter(gb_det_2020_pass,
 (yards_after_catch > 15 | air_yards > 20) &
 posteam != "DET")

 posteam yards_after_catch air_yards pass_location qb_scramble
1 GB NA 26 left 0
2 GB NA 25 left 0
3 GB 19 3 right 0
4 GB NA 24 right 0
5 GB 4 26 right 0
6 GB NA 28 left 0
7 GB 19 6 right 0
8 GB 7 34 right 0

In Python with pandas, filtering is done with similar logical
structure as with the tidyverse in R, but with different syntax.
First, Python uses a .query() function. Second, the logical operator
is inside of quotes.

Python
gb_det_2020_pass = pd.read_csv("./data/gb_det_2020_pass.csv")
print(gb_det_2020_pass.query("yards_after_catch > 15"))

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16.0 13 left 0
16 GB 19.0 3 right 0
46 GB 19.0 6 right 0
52 DET 16.0 1 middle 0
59 DET 20.0 16 middle 0

However, the or operator, | works the same with both languages.

Python
print(gb_det_2020_pass.query("yards_after_catch > 15 | air_yards > 20"))

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16.0 13 left 0
6 GB NaN 26 left 0
9 GB NaN 25 left 0
16 GB 19.0 3 right 0
21 DET NaN 28 left 0
22 DET NaN 28 right 0
29 GB NaN 24 right 0
38 GB 4.0 26 right 0
40 GB NaN 28 left 0
46 GB 19.0 6 right 0
52 DET 16.0 1 middle 0
54 DET 0.0 24 right 0
55 GB 7.0 34 right 0
59 DET 20.0 16 middle 0
61 DET NaN 50 left 0

Warning

In R or Python, we can open or close with single quotes (') or double quotes (").
When using functions such as .query() in Python, we see why the languages contain two different methods for quoting.
We could use "posteam == 'DET'" or 'posteam == "DET"'.
But, we need to be consistent within the same function call.

In Python, when our code gets too long to easily read on a line we need
a backslash, \ for Python to understand the line break. This is
because Python treats white space as a special type of code, where as R
usually treats white space, such as spaces, indentations, or line
breaks, simply as aesthetic. To a novice, this part of Python can be
frustrating, but the use of white space is actually a beautiful part of
the language once one gains experience to appreciate it.

Next, we look at the use of parentheses with the or operator and and
operator, just like R:

print(gb_det_2020_pass.query("(yards_after_catch > 15 | \
 air_yards > 20) & \
 posteam == 'DET'"))

 posteam yards_after_catch air_yards pass_location qb_scramble
1 DET 16.0 13 left 0
21 DET NaN 28 left 0
22 DET NaN 28 right 0
52 DET 16.0 1 middle 0
54 DET 0.0 24 right 0
59 DET 20.0 16 middle 0
61 DET NaN 50 left 0

Cleaning

Having accurate data is important for sports analytics, as the edges in
sports like football can be as little as one or two percentage points
over your opponents, the sportsbook, or other players in a fantasy
football tournament. Cleaning data by hand using programs such as Excel
can be tedious and also leaves no log of what values where changed.
Also, fixing one or two systematic errors by hand can easily be done
with Excel. However, fixing or reformatting thousands of cell in Excel
would be difficult and time consuming. Luckily, we can use scripting to
help us clean data.

Note

When estimating which team will win a game, the edge is the ability to predict which team will win with better odds than predicted by your opponent.
For example, if you have the edge over the house in betting odds, you think an event is more likely to occur than the odds suggest.
Prior to the internet, these pieces of knowledge were easier to find before sportsbooks or fantasy players updated their odds.
As a concrete example, imagine the Green Bay Packers had 3-to-1 odds over the Minnesota Viking.
The odds mean that the Packers would be expected to win 3 games for every 1 that they played against the Vikings under similar circumstances and if you bet one dollar on the the Vikings winning and they won, you would win three dollars.
Conversely, if you bet three dollars on the Packers and they won, you would only win one dollar.
However, if you learned that Aaron Rogers was injured before the sportsbooks could update their odds, you would have an edge.

We will revisit the example datasets from
Chapter 3. First, we will read in the data with
Python and the look at the data using the print to screen command.
Notice how col2 has a 1O (one oh) rather than a 10 (ten).

wrong_number = pd.read_csv("./data/wrong_number.csv")
print(wrong_number)

 col1 col2 col3
0 a 11 2
1 b 1O 44

Next, we use the locate function, .loc() to locate the wrong cell. We
also select the columns, col2. Finally, we replace with with a 10
(ten).

Note

Both R and Python allow you to access data frames using a coordinate like system with rows as the first entry and columns as the second entry.
Think of this like a game of Battleship or Bingo when people call out cells like A4 or B2.
R still allows people to use commands like df[1, 2] to access the cells.
However, it is better to use filters or explicit names.
This way, if your data changes, you call the correct cell.
Also, this way future you and other people will also know why you are trying to access specific cells.

wrong_number.loc[wrong_number.col2 == "1O", "col2"] = 10

However, looking at the data frames information, we see that col2 is
still an object rather than an number or integer.

wrong_number.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
 # Column Non-Null Count Dtype

-
 0 col1 2 non-null object
 1 col2 2 non-null object
 2 col3 2 non-null int64
dtypes: int64(1), object(2)
memory usage: 176.0+ bytes

Warning

Both R and Python usually require users to save data files as outputs after editing.
Otherwise, the computer will not save your changes.
Failure to this can cost you hours of debugging code, as we have learned from our own experiences.

We can change this by using the to_numeric() function from pandas
and then look at the information for the data frame. Notice how we need
to save the results to col2 and re-write the old data. If we skip
this step, the computer will not save our edits!

wrong_number["col2"] = pd.to_numeric(wrong_number["col2"])
wrong_number.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
 # Column Non-Null Count Dtype

-
 0 col1 2 non-null object
 1 col2 2 non-null int64
 2 col3 2 non-null int64
dtypes: int64(2), object(1)
memory usage: 176.0+ bytes

Now notice the column has been changed to an integer.

If we want to save these changes for later, we can the to_csv()
function to save the outputs. Generally, you will want to use a new file
name that makes sense to you now, other, as well as your future self.
Because our data frame does not have a meaningful row names or index, we
tell pandas to not save this information using index = False.

wrong_number.to_csv("wrong_number_corrected.csv", index = False)

Warning

Wrong data types often cause problems with modeling.
When debugging code we often realized we have the wrong type of data.
For example, if we are building a regression model in Chapter 6 and we think a coverage scheme (for example, cover 1 or cover 2) is an actual numerical variable, then our model is going to be wrong. We’ve all made this mistake before.

R uses slightly different syntax. First, we use the mutate() function
to change the column. Next, we tell R to change col2 using
col2 = We then use the ifelse() function to tell R to change
col2 if it is equal to 1O (one oh) to be 10 (one-zero or ten),
else use the current value in col2.

R
wrong_number <- read.csv("./data/wrong_number.csv")
wrong_number <- mutate(wrong_number, col2 = ifelse(col2 == "1O", 10, col2))

Next, just like in Python, we need to change col2 to be numeric. In R,
we use the as.numeric() function. Then we can look at the data frames
structure using str().

R
wrong_number <- mutate(wrong_number, col2 = as.numeric(col2))
str(wrong_number)

'data.frame': 2 obs. of 3 variables:
 $ col1: chr "a" "b"
 $ col2: num 11 10
 $ col3: int 2 44

Finally, just like in Python, we can save the file using a name that
makes sense both the current us and future us. Hopefully this name names
sense to other people. Creating names can be one of the most difficult
parts of programming. With R, we use the write.csv() function. We also
need to tell R to not save the row names. We do this using the
row.names = FALSE

R
write.csv("wrong_numbers_corrected.csv", row.names = FALSE)

Warning

Python uses False for the logical results false and True for true.
R uses FALSE for false and TRUE for true.
If you are switching between the languages, be careful with these terms.

With programming, sometimes we want to pass outputs from one function to
another without needing to save the intermediate outputs. In mathematics
this is called composition, and while teaching college math classes,
Eric observed this to be one of the more misunderstood procedures due to
the confusing notational. In computer programming, this is called
piping because outputs are piped from one function to another.

Luckily, R has allowed composition through the piping operators through
the tidyverse with a pipe function, %>%. As of R version 4.1
released in 2021, base R alo now include a |> pipe operator. We use
the base R pipe operator, but you may see both in in the wild when
looking at other peoples code or websites.

Note

The tidyverse pipe allows piping to any function’s input option using a ..
This period is optional and tidyverse, will be default, use the first function input with piping.
For example if we could do read.csv("my_file.scv") %>% func(x = col1, data = .) or read.csv("my_file.scv") %>% function(col1).
With |>, we can only pass to the first input, thus, we would need to define all inputs prior to the one we are piping (in this case, data.
Thus, our code would be written as read.csv("my_file.scv") |> func(x = col1, data = .)

Warning

Any reference material can become dated, especially online tutorials.
The piping example demonstrates how any tutorial created before R 4.1 would not include the new piping notation.
Thus, when using a tutorial, examine when the material was written and ensure you can recreate a tutorial before applying it to your problem.
Lastly, when using sites such as Stack Overflow, we look at several of the top answers to make sure the accepted answer has not become outdated as languages change.

We introduce piping here for two reasons. First, you will likely see it
when you start to look at other people’s code as you teach
yourself. Second, piping allows you to be more efficient with coding
once you get the hand of it. For example, we could repeat the previous
example only saving the output once:

R
wrong_number <-
 read.csv("./data/wrong_number.csv") |>
 mutate(col2 = ifelse(col2 == "1O", 10, col2)) |>
 mutate(col2 = as.numeric(col2))
str(wrong_number)

'data.frame': 2 obs. of 3 variables:
 $ col1: chr "a" "b"
 $ col2: num 11 10
 $ col3: int 2 44

Checking and cleaning data for outliers

Data often contains errors. Perhaps people collecting or entering the
data made a mistake. Or, maybe an instrument like a weather station
malfunctioned. Sometimes, computer systems corrupt or otherwise change
files. In football, quite often there will be errors in things like
number of air yards generated, yards after the catch earned, or even the
player targeted. Resolving these errors quickly, and often through data
wrangling, is a required process of learning more about the game.
Chapter 2 presented tools to help you catch these errors.

We have included a file with an outlier entered in to it.
We’ll go through how to find and remove this outlier with
both languages.

In R, we first read in the data and then look at the summary of the
data.

R
pass_outlier <-
 read.csv("./data/gb_det_2020_pass_outlier.csv")
pass_outlier |>
 summary(.)

 posteam yards_after_catch air_yards pass_location
 Length:62 Min. :-2.000 Min. : -6.00 Length:62
 Class :character 1st Qu.: 2.250 1st Qu.: 1.25 Class :character
 Mode :character Median : 4.000 Median : 5.00 Mode :character
 Mean : 6.263 Mean : 88.45
 3rd Qu.: 9.000 3rd Qu.: 12.75
 Max. :20.000 Max. :5000.00
 NA's :24
 qb_scramble
 Min. :0
 1st Qu.:0
 Median :0
 Mean :0
 3rd Qu.:0
 Max. :0

We can get similar results with Python using .describe().

Python
pass_outlier = \
 pd.read_csv("./data/gb_det_2020_pass_outlier.csv")
pass_outlier.describe()

 	
 	yards_after_catch
 	air_yards
 	qb_scramble

 	count
 	38.000000
 	62.000000
 	62.0

 	mean
 	6.263158
 	88.451613
 	0.0

 	std
 	5.912352
 	634.064812
 	0.0

 	min
 	-2.000000
 	-6.000000
 	0.0

 	25%
 	2.250000
 	1.250000
 	0.0

 	50%
 	4.000000
 	5.000000
 	0.0

 	75%
 	9.000000
 	12.750000
 	0.0

 	max
 	20.000000
 	5000.000000
 	0.0

Looking at the summaries, the maximum value for one column seems a bit
off for air_yards. We can also see this with a histogram. If you need
help with the syntax for the histogram, Chapter 2 provides
directions. We include an example histogram from R, but the Python
histogram would should similar results.

R
pass_outlier |>
 ggplot(data = ., aes(x = air_yards)) +
 geom_histogram()

[image: Histogram of air yards showing an outlier.]
Figure 4-1. Histogram of air yards showing an outiler.

The air yards value of 5,000 yards does not seem correct. In fact, this
would be impossible for a single play. What should we do? We have two
reasonable choices. First, we can remove the value because it is
obviously wrong. With R, we can filter the data and create a second data
frame. We filter by 109 yards because this is the theoretical maximum
from throwing the ball from the one yard line to the back of the
opposing end zone. Looking at the summary, we see this value is now
gone.

R
no_pass_outlier_1 <-
 pass_outlier |>
 filter(air_yards < 109)
no_pass_outlier_1 |>
 summary(.)

 posteam yards_after_catch air_yards pass_location
 Length:61 Min. :-2.000 Min. :-6.000 Length:61
 Class :character 1st Qu.: 2.250 1st Qu.: 1.000 Class :character
 Mode :character Median : 4.000 Median : 5.000 Mode :character
 Mean : 6.263 Mean : 7.934
 3rd Qu.: 9.000 3rd Qu.:12.000
 Max. :20.000 Max. :34.000
 NA's :23
 qb_scramble
 Min. :0
 1st Qu.:0
 Median :0
 Mean :0
 3rd Qu.:0
 Max. :0

Likewise, we may do a query() with Pandas.

pass_outlier = pd.read_csv("./data/gb_det_2020_pass_outlier.csv")
no_pass_outlier_1 = pass_outlier.query("air_yards < 109")
print(no_pass_outlier_1.describe())

 yards_after_catch air_yards qb_scramble
count 38.000000 61.000000 61.0
mean 6.263158 7.934426 0.0
std 5.912352 9.624394 0.0
min -2.000000 -6.000000 0.0
25% 2.250000 1.000000 0.0
50% 4.000000 5.000000 0.0
75% 9.000000 12.000000 0.0
max 20.000000 34.000000 0.0

A second option would be to replace the value. Perhaps we think 5,000
just has two extra zeros and should be 50. With R, we can use mutate()
with ifelse() to change this single value.

R
no_pass_outlier_2 <-
 pass_outlier |>
 mutate(air_yards = ifelse(air_yards == 5000, 50, air_yards))
no_pass_outlier_2 |>
 summary(.)

 posteam yards_after_catch air_yards pass_location
 Length:62 Min. :-2.000 Min. :-6.000 Length:62
 Class :character 1st Qu.: 2.250 1st Qu.: 1.250 Class :character
 Mode :character Median : 4.000 Median : 5.000 Mode :character
 Mean : 6.263 Mean : 8.613
 3rd Qu.: 9.000 3rd Qu.:12.750
 Max. :20.000 Max. :50.000
 NA's :24
 qb_scramble
 Min. :0
 1st Qu.:0
 Median :0
 Mean :0
 3rd Qu.:0
 Max. :0

With Python, we first copy the original data to avoid changing it. Then,
we use the .loc[] function to find the wrong value and change it to be
50. Notice, the results now match R.

no_pass_outlier_2 = pass_outlier.copy()
no_pass_outlier_2.loc[no_pass_outlier_2.air_yards == 5000.0, "air_yards"] = 50.0
print(no_pass_outlier_2.describe())

 yards_after_catch air_yards qb_scramble
count 38.000000 62.000000 62.0
mean 6.263158 8.612903 0.0
std 5.912352 10.938509 0.0
min -2.000000 -6.000000 0.0
25% 2.250000 1.250000 0.0
50% 4.000000 5.000000 0.0
75% 9.000000 12.750000 0.0
max 20.000000 50.000000 0.0

Merging multiple datasets

Sometimes we need combine datasets. For example, often you want to
adjust the results of a play - say the number of passing yards - by the
weather in which the game was played. Both pandas and the tidyverse
readily allow merging datasets. For example, perhaps we have team and
and game data we want to merge. Or, maybe weather data to each game.

For this example, we will create two data frames and then merge them
together. Once data frame will be city information that contains the
teams’ names and city. The other will be a schedule. We
create a small example for multiple reasons. First, a small toy dataset
is easier to handle and see compared to a large dataset. Second, we
often create toy datasets to make sure our merges work.

Tip

When learning some new, start with a small example you understand.
The small example will be easier to debug and fail faster and easier than a large example or actual dataset.

You might be wondering, why merge these data frames? We often have to do
merges like this when summarizing data because we want or need a
prettier name. Likewise, we often need to change names for plots. Next,
you might be wondering, why not hand type these values into a
spreadsheet? Hand typing can be tedious and error prone. Plus, doing
tens, hundereds, or even thousands of games would take a long type to
hand type.

As you create the data frames in R, remember that each column you create
is a vector.

R
library(tidyverse)
city_data <- data.frame(city = c("DET", "GB", "HOU"),
 team = c("Lions", "Packers", "Texans"))
schedule <- data.frame(home = c("GB", "DET"),
 away = c("DET", "HOU"))

As you create the data frames in Python, remember that the DataFrame()
uses a dictionary to create columns and elements in the columns.

Python
import pandas as pd
city_data = pd.DataFrame({"city" : ["DET", "GB", "HOU"],
 "team" : ["Lions", "Packers", "Texans"]})
schedule = pd.DataFrame({"home" : ["GB", "DET"],
 "away" : ["DET", "HOU"]})

Now, that we have the data sets, we can use them to explore different
merges. Both pandas and the tidyverse base their merge functions
upon SQL. The joins requires common, shared key or keys between the two
data frames. In the tidyverse, this argument is called by, for
example joining city and schedule data frames by team name and home
team columns. In pandas, this argument is called on, for example
joining city and schedule data frames on team name and home team
columns.

There are four main joins we use on a regular basis and these are
included with the tidyverse and pandas. pandas has both a
merge() and join() function. merge() contains almost everything as
join() plus some more so we will only include merge() here. With
both Python and R, there are two datasets, a left data and a right
datasets. The left dataset is the one on the left (or the first
datasets) and the right dataset is the one on the right (or the second
dataset).

For our example, we want to create a new dataframe that includes both
schedule and the teams’ names. We will use this to explore
the different types of joins. Think of this example like the fairy tale
of Goldilocks and the four joins (rather than three bears). Rather than
a girl trying bears, beds and food, we’ll be exploring data
joins. This problem actually has two steps. The first step is to add in
the home team’s name. The second step is to add in the away
team’s name. At the end, will show you the complete workflow
because it also involves renaming columns.

Tip

Football analytics, like the broader field of data science, usually involves breaking big jobs down into smaller jobs.
As you become more experienced, you will become better at seeing the small steps and knowing where and how to re-use them.
When faced with intimidating problems, we break them down into smaller steps that we can readily solve.

First, we will examine a full or outer join. This merges both data
frames based upon all values in both data frames’ keys. If
one or both keys contain values not found in the other dataset, these
are replaced by missing values (NA in R, NaN in Python). For both
languages, schedule will be our left data frame and city_data will
be our right data frame. Because both data frames do not have the key,
we need to tell the computer how to pair up the keys.

In R, we use the full_join() function. We, put schedule in first,
followed by city_data. We tell R to join the data frames using
home as the left key matching up with city as the right key.

R
print(full_join(schedule, city_data, by = c("home" = "city")))

 home away team
1 GB DET Packers
2 DET HOU Lions
3 HOU <NA> Texans

Notice how we get three entries because the city_data has three rows.
The missing value is replaced by NA. Notice how R dropped the
duplicate column and only has three columns.

In Python, we use the .merge() function on the schedule data frame.
Notice that schedule is on the left. The fist argument is city_data.
We tell Pandas to how to merge, specifically and outer merge. We then
tell Pandas to use home as the left key and city as the right key.

print(schedule.merge(city_data, how = "outer",
 left_on = "home", right_on = "city"))

 home away city team
0 GB DET GB Packers
1 DET HOU DET Lions
2 NaN NaN HOU Texans

Notice Pandas kept all four columns. Also, notice how both home and
away are NaN for the new data frame.

Note

This example demonstrates how Python tends to be an object-orientated language and R tends to be functional language.
Python uses .merge() as an object contained by the data frame schedule.
R uses a full_join() as a function on two different objects, schedule and city_data.
Although R and Python both contain object-orientated and functional features, this example nicely demonstrates the underlying philosophy of the two languages.

Think of this distinction of language types similar to how some football teams are build for a run offense and others as a pass offense.
Under certain circumstances one language can be better than the other, but usually both contain the tools for given job.
Advanced data scientists recognize these trait off between languages and will switch languages to fit their needs.

Next, we will do an inner join. This only joins the shared key values.
Whereas an outer join may possibly grow data frames, an inner join
shrinks data frames. The R syntax is very similar to the previous
example, only the function name changes. However, notice how the output
only has three values.

R
print(inner_join(schedule, city_data, by = c("home" = "city")))

 home away team
1 GB DET Packers
2 DET HOU Lions

Like R, the Python code is similar. In Python, we use the same function,
but a different how argument.

Python
print(schedule.merge(city_data, how = "inner",
 left_on = "home", right_on = "city"))

 home away city team
0 GB DET GB Packers
1 DET HOU DET Lions

Next, we will do a right join. The right join keeps all of the values
from the right data frame. For this specific case, the outputs are the
same as the outer join. This is an artifact of our example and may not
always be the case. With R, we just change the function name to be
right_join().

R
print(right_join(schedule, city_data, by = c("home" = "city")))

 home away team
1 GB DET Packers
2 DET HOU Lions
3 HOU <NA> Texans

With Python, we change the how to be right.

Python
print(schedule.merge(city_data, how = "right",
 left_on = "home", right_on = "city"))

 home away city team
0 DET HOU DET Lions
1 GB DET GB Packers
2 NaN NaN HOU Texans

A left join is the opposite of a right join. This keeps all of the
values from the left data frame. In fact, rather than switching the
function, one could switch the order of inputs. Consider merging data
frames A and B in Python that share a common column, key.

A.merge(B, how = "left", on = "key")

This could also be written in reverse.

B.merge(A, how = "right", on = "key")

Here is what the R code and output looks like.

R
print(left_join(schedule, city_data, by = c("home" = "city")))

 home away team
1 GB DET Packers
2 DET HOU Lions

The Python code also looks similar to the right join. For both of the
outputs, the left join was the same as the inner join. This is an
artifact our example choice and will not always be the case. Here, the
left data frame had fewer rows than the right data frame. Hence, this
occurred in the example.

print(schedule.merge(city_data, how = "left",
 left_on = "home", right_on = "city"))

 home away city team
0 GB DET GB Packers
1 DET HOU DET Lions

Table 4-2. Common join types in R and Python.

	Name
	Brief description
	Tidyverse function
	Pandas merge how

	Full/outer join

	Merges based upon all key values

	full_join(left_data, right_data)

	left_data.merge(right_data, how = "outer"

	Inner join

	Only merges based upon shared key values

	inner_join(left_data, right_data)

	left_data.merge(right_data, how = "inner"

	Left join

	Only merges based upon left data’s key values

	left_join(left_data, right_data)

	left_data.merge(right_data, how = "left"

	Right join

	Only merges based upon right data’s key values

	right_join(left_data, right_data)

	left_data.merge(right_data, how = "right"

Returning to our initial problem How do we merge the data frame to
include the team names for both the home and away teams?

Multiple solutions exist, as is often the case with programming. We use
multiple left joins because we think about adding data to schedule and
putting this data frame on the left. However, you might think about the
problem differently, which is okay. In fact, you might be think about a
better way to do this that is either quicker, easier to read, or uses
less code!

Note

Unlike high school math, both statistics and coding often have no single best or right way to do something.
Instead, many unique solutions exist.
Some people play a game called “golf coding” where they try to solve a problem using the fewest lines of code.
But, the fewest lines of code is usually not the best answer in real life.
Instead, focus on writing code you and other people can read later.

So, we will use a series of left joins (although, we could also do
everything in reverse using right joins). Here is our step-by-step
solutions:

	
Merge in for home team

	
Rename column in R, rename and delete
column in Python

	
Merge in for away team. Needed for clarity and
avoid duplicate names.

	
Rename column in R, rename and delete
column in Python.

	
Make sure output is saved to new data frame,
schedule_name.

Some notes about how and why we use these specific steps. Whether we
merged by the away or home order is not important and we arbitrarily
selected order. We needed to rename columns to avoid duplicate names
later and also keep column names clear. The importance of this will
become important when you have to cleanup your own mess or somebody
else’s messy code! Lastly, we encourage you to start with
one line of code and keep adding more code until you understand the big
picture. That’s how we constructed this example.

With the R example, we use piping to avoid re-writing objects like we
did for the Python example. First, we take the schedule data frame and
then left join to the city_data. We tell R to join by (or match) the
home column to the city column. We then rename the team column to
be the home_team column. This helps us keep the team columns straight
in the final data frame. We then repeat these steps and join the away
team data.

%%R
R
schedule_name <-
 schedule |>
 left_join(city_data, by = c("home" = "city")) |>
 rename(home_team = team) |>
 left_join(city_data, by = c("away" = "city")) |>
 rename(away_team = team)
print(schedule_name)

 home away home_team away_team
1 GB DET Packers Lions
2 DET HOU Lions Texans

With Python we create temporary objects rather than piping. This is
because Pandas’s piping is not as intuitive to us and
requires writing custom functions. Furthermore, some people like writing
out code to see all of the steps and we want to show you a second method
for this example. With Python, we first do a left merge. We tell Python
we use home for the left merge on and city for the right merge on.
We then need to rename the team column to be home_team. The Pandas
rename function requires a dictionary as a input. Then, we tell Pandas
to remove (or .drop()) the city column to avoid confusion later. We
then repeat these steps for the away team.

Python
step_1 = schedule.merge(city_data, how = "left",
 left_on = "home", right_on = "city")
step_2 = step_1.rename(columns =
 {"team": "home_team"}).drop(columns = "city")
step_3 = step_2.merge(city_data, how = "left",
 left_on = "away", right_on = "city")
schedule_name = step_3.rename(columns =
 {"team": "home_team"}).drop(columns = "city")
print(schedule_name)

 home away home_team home_team
0 GB DET Packers Lions
1 DET HOU Lions Texans

Exercises

	
Examine short plays by sorting yards after catch to be less than 10
and air yards to be less than 5.

	
Repeat the previous filter, but
also group by each team.

	
Use your skills from
Chapter 2 to plot the results from the previous step.

	
Convince yourself that right and left joins are the same, but in
reverse.

	
Find a different way to join the schedules without
using a left join.

Suggested reading

To become an expert on these topics, use them on a regular basis and
find new methods to get started. Additionally, we found these resources
to be helpful:

	
Statistical Inference via Data Science: A ModernDive into R and the
Tidyverse by Chester Ismay and Albert Y. Kim (CRC Press), also updated
at the book’s homepage https://moderndive.com/

The book contains sections for complete beginners to learn the Tidyverse
and is a great place to start learning the tidyverse.

	
R for Data Science: Import, Tidy, Transform, Visualize, and Model
Data by Garrett Grolemund and Hadley Wickham (O’Reilly),
also updated at the book’s homepage https://r4ds.had.co.nz/

Grolemund and Wickham provide an in depth explanation of many different
methods for data wrangling with chapters expanding upon topics we
briefly describe in this chapter. This book is deeper, but less
accessible than the Ismay and Kim book previously mentioned. Also,
Wickham created the Tidvyerse, starting with ggplot2 as part of his
doctoral thesis at Iowa State University.

	
Python for Data Analysis: Data Wrangling with Pandas, NumPy, and
IPython (2nd edition, 3rd edition coming soon) by Wes McKinney

McKinney is the author of the Pandas package and provides an in depth
and accessible explanation for data wrangling in Python.

	
Advancing into Analytics: From Excel to Python and R by George Mount
(O’Reilly Media).

Mount helps current Excel users learn how to use Python and R as well as
some advanced features of Excel. For current Excel users who want to
learn more programming in Python, R, or both, we suggest they checkout
this book.

The package’s homepages also provide excelled documentation
on many additional features of the functions we use.

	
For the tidyverse, visit https://tidyverse.org/

	
For pandas, visit https://pandas.pydata.org/docs/ and checkout the
getting starting guide

Chapter 5. Summary Statistics

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

The word statistics means different things to different people. During
our day jobs, we see three uses of the word. Commonly, people use the
word to refer to data. For example, we might talk about the numbers from
a game or a player’s performance as the game’s
statistics or player’s stats. More formally, statistics
can refer to the systematic collection and analysis of data as well as
the corresponding field of study. For example, you might have taken a
statistics course in high school or somebody works as a statistician.
Lastly, a statistic can be something that is estimated, like expected
points added per play, or completion percentage above expected by a
quarterback or offense.

This chapter focuses on the last definition. We describe how to
summarize data using statistics. For example, rather than needing to
read the play-by-play report for a game, we can get an understanding of
what occurred by looking at the summary statistics from the game. We use
summary statistics on a daily basis to help us understand data and also
help other to see the story held within the data. We also use these
summary statistics to lay a foundation for modeling methods that we
cover in future chapters.

Basic statistics

Averages

Perhaps the simplest statistic is the average, or what goes on goes on
in typical observation from a dataset. In fact, some mathematically
minded people call the average the expectation for a dataset because
it is what they expect to see in the data. Commonly, when we talk about
the average for a dataset, we are talking about a the central tendency
of the data, or, where is the “middle” of the data. More formally,
three common methods exist for estimating averages. Typically, when
people say average, they are using the definition for a mean. In fact,
we use the word average in this book, we are talking about the mean
unless we clearly state otherwise. However, average can also refer to
median and model. We show how to calculate these by hand in the next
section.

We intentionally do not include code for this section. Furthermore, we
hope you do this hand, just this one time to better learn and understand
the ways to calculate these statistics. And yes, computers are much,
much better at calculating than people and computers also make fewer
mistakes than people. We will show you how use Python and R to calculate
these later in the chapter. However, doing the calculations once by hand
will help you learn the concepts better.

First, let’s calculate a mean by hand. We will use the air
yards from passes to the middle of the field by Detroit from their first
game against Green Bay in 2020. This is the same dataset we previously
used. The air yards are:

 5
 ,
 -
 1
 ,
 5
 ,
 8
 ,
 5
 ,
 6
 ,
 1
 ,
 0
 ,
 16
 ,
 and

 17

. To
calculate the mean, we first add up all of the numbers (a mathematical
operation also called taking the sum):

 5
 +
 -
 1
 +
 5
 +
 8
 +
 5
 +
 6
 +
 1
 +
 0
 +
 16
 +
 17
 =
 68
 .

Next, we divide by the total number plays with air yards:

 68
 /
 11
 =
 6
 .
 18
 .

This allows us to estimate the mean air yards to the middle of the field
to be 6.18 yards for Detroit during their first game against Green Bay
in 2020. Also, we rounded the output to be 6.18. We rounded because the
resulting mean does not end and we only truly know the first two digits,
but include the last digit to capture uncertainty. More formally, this
is known as the number of significant digits or figures.

Tip

Significant digits are important when reporting results.
Although formal rules exist, a rule of thumb that works most of the time is to simply report the number of digits you have confidence in the result.

Another way to estimate an average or typical outcome is to examine the
median. The median is simply the middle number, or the value of the
average individual (rather than the average value). One way to think
about the median is that it’s the value earned by the
average individual (whereas the mean is the average value earned).

The calculate the median, we write the numbers in order for smallest to
largest and then find the middle number:

 -
 1
 ,

 0
 ,

 1
 ,

 5
 ,

 5
 ,

 5
 ,

 6
 ,

 6
 ,

 8
 ,

 16
 ,

 17

.

Because we have 11 numbers, 5 is the middle number. If we have a tie
when we have an even number of numbers, then we take the mean of the two
middle numbers. For example, if we have 4 numbers

 -
 1
 ,

 0
 ,

 1
 ,

 5

then

 (0+1) 2
 =
 0
 .
 5

 is the median.

The last method to estimate an average number is to examine the mode.
The mode is the most common outcome. To calculate the mode, we need to
create a table with counts and air yards.

With this example, 5 is the mode because there were 3 observations with
5. Data can be multi-modal, that is to say, have multiple modes. For
example, if two outcomes have the same number of occurrences, then the a
bimodal outcome occurred. Modes also allow us to estimate the average
for categories. For example, we could count the number of passing plays
to either the middle, left, or right sides of the field to calculate the
model.

Lastly, we want to note that different types of means exist. Other than
this references, we do not include them elsewhere in the book. However,
you may run into them in the future if you keep learning as a football
analyst. Examples of different means include arithmetic, geometric,
harmonic, and power means. We only us arithmetic mean, but if you take
the dive into advanced statistics books you may see these terms. For
example, we use geometric means at work when dealing with environmental
chemistry data. This is more robust to outliers, but also harder to
explain and work with. Hence we stick to the arithmetic mean.

To see the three different types of averages, let’s examine
a for all pass locations for both teams from the 2020 Green Bay and
Detroit’s first game. This sub-set of the data is more
interesting to examine, but would have been harder to use by hand.
First, notice the blue line that is the mean. The mean is to the right
of the median, which means the data is skewed or has outliers to the
right. Second, the median is the same as the model.

[image: Histogram of yards after catch. The blue line shows the mean, the red line shows the median, and the orange lines shows both modes. Notice each bin is 1 yard in width. The median and mode are offset to allow each to be seen.]
Figure 5-1. Histogram of yards after catch. The blue line shows the mean, the red line shows the median, and the orange lines shows both modes. Notice each bin is 1 yard in width. The median and mode are offset to allow each to be seen.

So, what does this tell us about Detroit’s passing game to
the middle of the field? First, the difference between the median and
mean shows us that most plays are short, but one really long play
differs from the rest and hence skews our perception if we only look at
the mean. If we were analyzing the game, we would want to see if what
impact this play had on the game. Second, the mode and median show us
that most plays to the center of the field did not have many yards for
Detroit. The histogram shows these observations nicely. In fact, the
histogram would probably tell as better story than the summary
statistics for this simple case. However, when dealing with more data,
not always able to include plots or need numbers to quickly capture what
the figure shows. Lastly, we will use these concepts to introduce more
complex ideas as well.

Range and distribution

The previous section shows how to examine the middle or central tendency
of the data. However, we can also be interested in how much variability
exists in the data. This is the distribution of the data. One of the
simplest methods for examining a distribution may be the range.

Using the previously constructed table (or histogram), we can calculate
the range. The range is simply difference between the minimum and
maximum value. The minimum (commonly abbreviated min) or lowest value
is -1 and the maximum (commonly abbreviated max) or highest value is
17. Range goes from -1 to 17 yards and range width is 18 yards. Recall
that subtracting a negative number is the same as addition, so

 17
 -
 -
 1
 =
 17
 +
 1
 =
 18

.

Another methods to examine the range and distribution of a dataset is
examine the quantiles. These focus on a specific parts of the
distribution. For example, the 50th quantile is the median.
Chapter 2 covered quantiles in the section of this book on
boxplots. At the core, boxplots allow us to easily see the distribution
of data.

Recall that boxplots show us where the middle 50% of the data occurs.
Sometimes, other types of quantiles may be used as well. The benefit of
quantile are that they allow to estimate end points other than the
central tenancy. For example, the mean or median allows us to examine
how well average players do, but a quantile allows us to examine how
well the best player do (for example, what does a player need to be
better than 95% of other players?). [Link to Come]
covers methods for modeling quantiles.

Another methods for examining the distribution is to look at the
variance and standard deviation. Variance examines how far apart
each observation is from the mean. Because some values will be negative,
the variance is squared and then summed to be calculated. Using the
Detroit middle of field example air yards example, we can do this
calculation by hand. We include a column mean in case you are doing this
calculations in a spreadsheet such as Excel and to also help you see
where the numbers come from.

After we create this table, we then take the sum of the difference
squared column, which is 337.6. We divide 10 because this is the number
of observations minus 1. We subtract one to reflect the degrees of
freedom, or number of unused data points we have. Because we are using
one data point to calculate the mean, are degrees of freedom drops by
one.

Calculating
 337.6 (11-1)
, we get the variance,
33.7. The units for variance with this example would be yards

 ×
 yards or yards
 2
. This unit does not
help us very much, so we can take the square root to get the standard
deviation: 5.81. The unit for this example standard deviations are now
yards.

Both the variance and standard deviation allow us to easily see how much
variability exists in the data. People more commonly use the standard
deviation because the units are easier to understand. Also, the standard
deviation can be more helpful when comparing many different variables.
Lastly, we can use use the standard deviation to understand uncertainty
around the estimates.

Uncertainty around estimates

When people give us predictions or summaries, how much certainty exists
around the data? We can show uncertainty around the mean using the
standard error of the mean, often abbreviated as SEM or simply SE for
standard error because other estimated values may have SEs as well.
More informatively, we can estimate confidence intervals, abbreviated
CI. The most commonly CI is 95%. The CI will contain the true or correct
estimate 95% of the time if we repeat our observation process. If we
accept this probability view of the world, we know our CIs will include
the mean 95% of the time, but we just won’t know which 95%
of the time. Both CIs and SEMs required to make assumptions about the
data’s distribution that [Link to Come] goes over.

Continuing with the previous example, we can calculate the standard
error by dividing the standard deviation by the square root of the
number of observations:

 5
 .
 81
 /

 11

 =
 1
 .
 75

. Thus, we
can write the mean as

 6
 .
 18
 ±
 1
 .
 75

 (
 SE
)

. We
could also calculate the 95% CI, which would be

 ±
 1
 .
 75
 ×
 1
 .
 96

. For now, trust us on the 1.96.
[Link to Come] shows where this number comes from.

Tip

As an approximate rule of thumb when working with statistically normal data, 99% of data falls with 3 standard deviation from, 95% of data falls within 2 standard deviations (1.96 rounded up) from the mean, and 68% of data falls within 1 standard deviation from the mean.

Thus, we could write the means as

 6
 .
 18
 ±
 3
 .
 43

 (
 95
 %
 CI
)

, or more informatively, we
can write the mean as

 6
 .
 18

 (
 2
 .
 38

 to

 9
 .
 24
 ;

 95
 %
 CI
)

Warning

Always include uncertainty such as a confidence interval around estimates such as mean when presenting to a technical audience.
Presenting a naked mean is considered bad form because it does not allow the reader to see how much uncertainty exists around an estimate.

Based upon statistical convention, we can compare 95% CIs to examine if
estimates differ. For example,

 6
 .
 18

 (
 2
 .
 38

 to

 9
 .
 24

 95
 %
 ;
 CI
)

differs from 0, so we can say the air yards differs from zero based upon
statistical uncertainty. If we were comparing two estimated means, we
could compare both 95% CIs. If the CIs did not overlap, then we can say
the means are different.

Note

People use 0.05 as the probability for being wrong because of historical convention.
There is not a great reason other than people have always been doing this.
Wasserstein, Schirm, & Lazar discuss this in a 2019 editorial in the The American Statistician, which is freely available online at https://www.doi.org/10.1080/00031305.2019.1583913.
Their editorial present many different perspectives on alterive methods for statistcial inference.

Chapter 6 also covers more about statistical inferences. In
Chapter 6, we will also cover about different methods for
estimating variances and confidence intervals. [Link to Come]
will also cover more about basic statistics when we cover about
probability distributions. Now, enough about theory and hand
calculations, let’s see how to estimate these values in
Python and R!

Calculating summary statistics with Python and R

To calculate summary statistics with Python and R, first we read in the
data. Remember to change your path to point to where your data is
located. We also load our required R and Python packages.

R
library(tidyverse)
gb_det_2020_pass <- read.csv("./data/gb_det_2020_pass.csv")

Python
import pandas as pd
gb_det_2020_pass = pd.read_csv("./data/gb_det_2020_pass.csv")

Next we look at summary of data frame, like in Chapter 4. Hopefully you now understand where
these numbers come from and what they tell us. The 1st Qu. and
3rd Qu. are the first and third quantiles in R. Thus, 50% of the data
falls between these data points. They help us get a sense for the middle
of the data.

R
summary(gb_det_2020_pass)

 posteam yards_after_catch air_yards pass_location
 Length:62 Min. :-2.000 Min. :-6.000 Length:62
 Class :character 1st Qu.: 2.250 1st Qu.: 1.250 Class :character
 Mode :character Median : 4.000 Median : 5.000 Mode :character
 Mean : 6.263 Mean : 8.613
 3rd Qu.: 9.000 3rd Qu.:12.750
 Max. :20.000 Max. :50.000
 NA's :24
 qb_scramble
 Min. :0
 1st Qu.:0
 Median :0
 Mean :0
 3rd Qu.:0
 Max. :0

In R, we can also describe() the data see similar summaries that also
include the median, count, and maximum value. One benefit of using
summary() is that shows the missing or NA values in R. This can help
you see possible problems in the data.

print(gb_det_2020_pass.describe())

 yards_after_catch air_yards qb_scramble
count 38.000000 62.000000 62.0
mean 6.263158 8.612903 0.0
std 5.912352 10.938509 0.0
min -2.000000 -6.000000 0.0
25% 2.250000 1.250000 0.0
50% 4.000000 5.000000 0.0
75% 9.000000 12.750000 0.0
max 20.000000 50.000000 0.0

We can also summarize the data by hand in R. We pipe the data using |>
to the summarize() function. We then tell R to what functions to use
on which columns. We use min() for the minimum, max() for the
maximum, mean() for the mean, median() for the median, sd() for
standard deviation, var() for the variance, and n() for the count.
We also need to tell R what to call the output columns. You can see our
naming for output columns here. We chose these names because they are
short are relatively easy to both type and understand what they are
from.

R
gb_det_2020_pass |>
summarize(min_yac = min(yards_after_catch),
 max_yac = max(yards_after_catch),
 mean_yac = mean(yards_after_catch),
 median_yac = median(yards_after_catch),
 sd_yac = sd(yards_after_catch),
 var_yac = var(yards_after_catch),
 n_yac = n())

 min_yac max_yac mean_yac median_yac sd_yac var_yac n_yac
1 NA NA NA NA NA NA 62

R only give us NA values. What is going on? Recall that these columns
have missing data, so we need to tell R to ignore them using the
na.rm = TRUE option in the functions.

R
gb_det_2020_pass |>
summarize(min_yac = min(yards_after_catch, na.rm = TRUE),
 max_yac = max(yards_after_catch, na.rm = TRUE),
 mean_yac = mean(yards_after_catch, na.rm = TRUE),
 median_yac = median(yards_after_catch, na.rm = TRUE),
 sd_yac = sd(yards_after_catch, na.rm = TRUE),
 var_yac = var(yards_after_catch, na.rm = TRUE),
 n_yac = n())

 min_yac max_yac mean_yac median_yac sd_yac var_yac n_yac
1 -2 20 6.263158 4 5.912352 34.9559 62

A reasonable question would be, why did we just do all that coding for
almost the same output as describe()? First, we can customize what
outputs appear. Second, we can now group or aggregate by other
predictors. For example, we can now easily estimate these values by the
team with possession by using group_by() function with posteam as an
input. Notice how we keep piping outputs along to the next function. We
also demonstrate how this may be done for a second variable, air_yards
as well. We drop variance and medians to allow the results to more
easily be displayed.

R
gb_det_2020_pass |>
group_by(posteam) |>
summarize(min_yac = min(yards_after_catch, na.rm = TRUE),
 max_yac = max(yards_after_catch, na.rm = TRUE),
 mean_yac = mean(yards_after_catch, na.rm = TRUE),
 sd_yac = sd(yards_after_catch, na.rm = TRUE),
 min_ay = min(air_yards, na.rm = TRUE),
 max_ay = max(air_yards, na.rm = TRUE),
 mean_ay = mean(air_yards, na.rm = TRUE),
 sd_ay = sd(air_yards, na.rm = TRUE),
 n = n())

A tibble: 2 × 10
 posteam min_yac max_yac mean_yac sd_yac min_ay max_ay mean_ay sd_ay n
 <chr> <int> <int> <dbl> <dbl> <int> <int> <dbl> <dbl> <int>
1 DET 0 20 6.9 6.05 -6 50 8.03 11.6 32
2 GB -2 19 5.56 5.84 -4 34 9.23 10.3 30

We can also do similar summarizes with Python. For Python, we use the
.agg() function to aggregate the data frame. We use a dictionary
insides of Python to tell Pandas which column to aggregate and what
functions to use. Recall that Python defines dictionaries using
{"key" : [values]} notation. In this case, the dictionary uses the
column "yards_after_catch" as the key and the aggregating functions as
the list values.

print(gb_det_2020_pass.agg(
 {
 "yards_after_catch": ["min", "max", "mean", "median",
 "std", "var", "count"]
 }
))

 yards_after_catch
min -2.000000
max 20.000000
mean 6.263158
median 4.000000
std 5.912352
var 34.955903
count 38.000000

Python also has a grouping function, .groupby(), that can take
"posteam". Notice that Python does not use piping. Instead, we string
together function one after each other. This is due to the object
orientated nature of Python compared to the procedural nature of R. Both
approaches have trade-offs and largely boil down to personal preference.

print(gb_det_2020_pass.groupby("posteam").agg(
 {
 "yards_after_catch": ["min", "max", "mean",
 "median", "std", "var", "count"]
 }
))

 yards_after_catch
 min max mean median std var count
posteam
DET 0.0 20.0 6.900000 4.0 6.051533 36.621053 20
GB -2.0 19.0 5.555556 4.5 5.843269 34.143791 18

With Python, we can include a second variable by including a second
entry in the dictionary. Also, Pandas, unlike the Tidyverse, allows us
to calculate different summaries for each variable by changing the
dictionary values.

print(gb_det_2020_pass.groupby("posteam").agg(
 {
 "yards_after_catch": ["min", "max", "mean",
 "median", "std", "var", "count"],
 "air_yards": ["min", "max", "mean",
 "median", "std", "var", "count"]
 }
))

 yards_after_catch \
 min max mean median std var count
posteam
DET 0.0 20.0 6.900000 4.0 6.051533 36.621053 20
GB -2.0 19.0 5.555556 4.5 5.843269 34.143791 18

 air_yards
 min max mean median std var count
posteam
DET -6 50 8.031250 5.0 11.607796 134.740927 32
GB -4 34 9.233333 5.0 10.338023 106.874713 30

Presenting summary statistics

The key for presenting summary statistics are to make sure you use the
information available to you to effectively tell your story. Firstly,
know your target audience is extremely important. For example, if
you’re talking to Cris Collinsworth about his next Sunday
Night Football broadcast (something Eric does on a regular basis) or to
your buddies at the bar during a game, you’re going to
present the information differently.

Furthermore, if you’re presenting your work to the Director
of Research and Strategy for an NFL team, you’re probably
going to have to supply different, specifically more, information than
in the aforementioned two examples. Likewise, when talking to the
Director of Research and Strategy, you will likely need to justify both
your numbers and your method choices. Unless you’re having
beers with Eric and Richard (or other quants), you probably will not be
discussing model choices over beers!

The “why” is key and you’ll have to dig into data and
truly understand it well, so that you can speak it in a number of
different languages. For example, is the dynamic you’re
seeing due to coverage differences, the wide receivers, or changes in
the quarterback’s form?

Second, use numbers to support your story, but do not use numbers as
your story. For example, say “Green Bay has slightly less yards after
the catch compared to Detroit, with Green Bay having an average of 5.5
yards and Detroit having 6.9 yards” rather than saying “Detroit
passed an average of 6.9 years. Green Bay passed an average of 5.5
years. Green Bay scored 2 more points on average in the middle of the
field…”. Adding context to numbers is something that we, as authors,
have noticed helps the best quantitative people stand out compared to
many quantitative people. In fact, communication skills about numbers
helped both us get our current jobs.

Third, while a picture may be worth a thousands words, walk your reader
through the picture. A graph with no context is likely worse than no
graph at all.

For a non-technical audience, you may include a figure and mention the
“averages” in your words. Thus, the raw summary statistics may not
even be shown in your writing. For more technical audiences, include the
details and uncertainty either in text for one or two number or in a
table or supplemental materials for more summary statistics.

Finally, we have found there are two good ways to improve our presenting
of summary statistics. First, present early and present often to people
who will give you constructive feedback. Make sure they can understand
your message, and if they cannot, ask them what is unclear and figure
out how to more clearly make your point. For example, the authors like
to give lectures and seminar to students because we will ask our
students how they might explain a figure and then they help us to more
clearly think about data. Also, if we cannot explain concepts to high
school and college students, we do not clearly understand the ideas
well.

Second, look at other people’s work. Read blogs, read other
books, read articles. Other people’s examples will help you
see what is clear and what is not. Besides casual reading, read
critically. What works? What does not work? Why did the authors make a
choice? If you have a chance, ask the authors if you see them or
interact with them on social media such re-tweeting. A diplomatic tweet,
will likely start a conversation. For example, replying to a tweeting I
liked your model and the insight it gave me to Friday’s
game. Why did you use X rather than Y?. Conversely, replying to a tweet
with your model sucked, you should use my favorite model. will likely
be ignored or possibly start a pointless flamewar and decrease not only
the original poster’s view of you, but also other people who
read the tweet.

Exercises

	
Using the NFL Draft data scraped in Chapter 3,
find the mean, median and standard deviation of DrAV for all position
groups. Is the NFL better at finding talent at some positions in the
draft rather than others?

	
Using the NFL Draft data alluded to in question 1, find the maximum
DrAV earned for every pick in the draft. We know that Tom Brady has
been the league’s most valuable pick 199, but how can we
quantify this?

	
Using the NFL Scouting data scraped in the
exercises of Chapter 3, find the mean, median and
standard deviation of the 40-yard dash times among different positions.
It’s obvious that some positions are faster than others, but
are there any surprises in this analysis?

	
Using the NFL Scouting
data alluded to in Chapter 3, find the minimum
forty-yard dash time for all position groups. Are there any surprises in
this list? What does this say about the 40-yard dash and how it
translates to NFL success?

Future readings

Many different books exist describing introductory statistics. If you
want to learn more about statistics, we suggest reading the first 1-2
chapters of several books until you find one that speaks to you. Some
books you may wish to consider include:

	
Advancing into Analytics: From Excel to Python and R by George Mount
(O’Reilly Media).

This book assumes a reader knows Excel well, but then helps the reader
to transition to either R or Python. The book covers the basis of
statistics.

	
Statistical Inference via Data Science: A ModernDive into R and the
Tidyverse by Chester Ismay and Albert Y. Kim (CRC Press), also updated
at the book’s homepage https://moderndive.com/

This book provides a robust introduction to statistical inferences for
people who also want to learn R.

	
Practical Statistics for Data Scientists by Peter Bruce, Andrew Bruce
(O’Reilly Media).

This book provides an introduction to statistics for people who already
know some R.

Chapter 6. Linear models

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

Linear models, while being the simplest of inference and prediction
tools, are also one of the most powerful. Linear models leverage the two
mathematical operations that we most often encounter in our everyday
lives, even if we don’t necessarily think of it that way.
Through scaling and addition we put together combinations of predictor
variables (also called “features”) in attempt to explain or predict an
outcome variable (also called a “response”). Subject matter expertise
helps us determine which predictor variables to use, while the data
determines the scaling factors, or coefficients, through the regression
process. Examining this coefficients allow us to understand the past
through statistical inference. Using these coefficients with new data
allows us to make predictions about new situations such as the future or
new locations.

For example, let’s say we want to make bratwurst (brats for
short) for our tailgate party. The average brat is 1 sausage link and 1
bun halves. We could write this as an equation:

 brat
 =
 sausagelink
 +
 2
 ×
 bunhalves

With this delicious, but silly example, brat would be the response
variable and sausage link and bun halves would be the predictor
variables. Predictor variables are often called
 x
 such as

 x 1
 and
 x 2
 and the response variable

 y
 due to historic convention. When plotting a regression
where there is one predictor variable, the predictor variable usually
goes on the left-to-right or horizontal axis (
 x
-axis) and
the response variable goes on the up-and-down or vertical
(
 y
-axis).

The above example, while illustrative, is not exactly how linear models
work in situations where we are trying to learn something new. In the
real world we don’t know before hand how many sausage links
or bun halves go into a bratwurst, the same way we don’t
know how many times to count a defensive lineman’s pressures
when trying to determine how many wins he’s worth on the
football field for his team.

Mathematically, we have described one brat in terms of its ingredients
We start with simple linear models because we use them on a daily basis
in our jobs and think you will find them to be a helpful tool as well.
Linear models also help us to better understand more complex models
ranging from statistical methods we cover in future chapters such as
logistic regression as well as many machine learning tools. In fact, we
would go as far as saying that linear models are the workhorse for much
of statistics!

Linear models have a long history in the field of statistics and have
been used by people to understand and predict the world since the early
1800s. As computers have become more powerful, we can now fit linear
models to larger and larger datasets as well as more complex models. If
you have had an introductory statistics course, you almost certainly
learned about some special cases of linear models. The broad term,
linear models captures several other types of models.

This includes regressions such as linear regression and multiple
regression as well as ordinary least-squared regression (OLS) when
certain algorthims are used to fit the regression model. Other
statistical methods are also related to linear models. The analysis of
variance (ANOVA) model is a special case of a linear model and a

 t
-test is a special case of an ANOVA. An ANOVA focuses on
how a model explains variation (e.g., what predictors affect the amount
of uncertainty or variability in the data) whereas a linear model
focuses on how we predict the average outcome for input parameters.

Note

The term Linear model covers many types of statistcial models including linear regression, multiple regression, analysis of variance (ANOVA), and the t-test.

Linear models also extend to other methods, some of which we cover in
this book. Linear models assume continuous response variables (e.g.,
player height or weight). A generalized linear models (GLMs) allows
other types of response variables such as binary (e.g., heads or tails,
win or lose) or counts with many zeros and integers (e.g., sacks per
game). Non-linear predictor variables can be modeled using generalized
additive models (GAMs). For example, the optimal temperature for a
football game is neither too cold nor too hot. A GAM model could capture
this. We can also model nested data such a players through the seasons
using linear mixed-effect models (LMMs) and generalized linear
mixed-effect models.

Total passing yards

We will examine the total passing yards from plays, passing_yards for
short with the computer, from the first Green Bay and Detroit game of
2020. However, this variable does not exist in our dataset. Thus, we
will need to create it. We find we often need to manipulate data to
create the variables that we want.

Creating a new variable, passing_yards takes multiple steps.

	
We need to read in data.

	
We need to calculate whether a pass
was complete or not.

	
We need to calculate the passing_yards by
adding together the yards_after_catch and air_yards to completed
passes.

With R, we load the tidyverse package. Then, we read in the data and
filter. To make a column for complete or non-complete, we create a
column called complete, which is 1 if the value of
yards_after_catch is not NA and 0 otherwise.

In R, we can mutate() our data with the tidyverse to create the new
columns complete and passing_yards, with the latter being the total
yards generated on a completed pass.

R
library(tidyverse)
gb_det_2020_pass <-
 read.csv("./data/gb_det_2020_pass.csv") |>
 mutate(complete = ifelse(!is.na(yards_after_catch), 1, 0)) |>
 mutate(passing_yards = ifelse(complete == 1,
 yards_after_catch + air_yards, 0))

pandas uses parallel steps to R. First, we import the pandas package
as pd and the numpy package as np. Then we read in the data. Next,
we use the functions np.where and np.isnan to create the complete
column by sorting through the yards_after_catch rows that have NaN
values. Finally, we use the same np.where function to add up the total
yards in the event of a completion (and 0 in the event of an
incompletion).

import pandas as pd
import numpy as np
gb_det_2020_pass = pd.read_csv("./data/gb_det_2020_pass.csv")
gb_det_2020_pass["complete"] = \
 np.where(np.isnan(gb_det_2020_pass["yards_after_catch"]), 0, 1)

gb_det_2020_pass["passing_yards"] = \
 np.where(gb_det_2020_pass["complete"] == 1,
 gb_det_2020_pass["yards_after_catch"] +
 gb_det_2020_pass["air_yards"], 0)

Tip

Complex code is simply small code commands built together.
To understand complex code, look at the little parts.
Conversely, to solve problems, build up small steps to solve your problem.

Intercept only models

Global intercept

Linear models have predictor coefficients. Often, people call these
coefficients slopes if the predictor variable is continuous and
intercepts or contrasts if the predictor variable is a category.
Some of the simplest linear models only have intercepts. In fact, the
simplest model only has one intercept! This intercept is the global
mean. We will work with the passing_yards column we just created. You
may see this in Figure 6-1. Revisit
Chapter 2 if you need help creating this figure on your
own.

Note

Formulas with statsmodels are usually similar or identical to R.
This is because computer languages often borrow from other computer languages.
Python’s statsmodels borrowed formulas from R, similar to panda borrowing data frames from R.
R also borrows ideas, and R is infact a recreation of the S language.
As another example in R, the tidyverse borrows syntax and ideas for cleaning data from SQL-type languages.

[image: Histogram of passing yards.]
Figure 6-1. Histogram of passing yards.

Before we build our first model, let’s summarize the data
using R. We will calculate the mean, number of observations, and
standard deviation. We will then use these to calculate the standard
error of the mean (SEM). These can then be compared to a linear model:

R
gb_det_2020_pass |>
 summarize(ave_passing = mean(passing_yards),
 n = n(),
 sd = sd(passing_yards), .groups = "drop") |>
 mutate(sem = sd / sqrt(n))

 ave_passing n sd sem
1 7.806452 62 9.826092 1.247915

A formula in R has a left-hand side (LHS for short) and right-hand
side (RHS for short). The LHS is predicted by the RHS. The tilde symbol
(~) tells the computer what is predicted, and we often read the ~
symbol as predicted by. The simplest model only has an intercept and
no predictor variables. For example, we could use passing_yards ~ 1 to
tell the computer that passing_yards is predicted by a global
intercept. We use the linear model function, lm() and also specify the
data. We save the model as lm_out and then print the output:

R
lm_out <- lm(formula = passing_yards ~ 1,
 data = gb_det_2020_pass)
print(lm_out)

Call:
lm(formula = passing_yards ~ 1, data = gb_det_2020_pass)

Coefficients:
(Intercept)
 7.806

The output tells us the input setting for the formula or (computer
call) as well as the coefficients (or, in this case coefficient named
(Intercept)). Notice, the intercept from this output is the same as
the average passing yards from before. In this simple case, the linear
model is only a fancy method for calculating the mean. We can look at
the summary of our model, which we saved as lm_out, using the
summary() function:

R
summary(lm_out)

Call:
lm(formula = passing_yards ~ 1, data = gb_det_2020_pass)

Residuals:
 Min 1Q Median 3Q Max
-13.806 -7.806 -2.306 3.194 33.194

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.806 1.248 6.256 4.33e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.826 on 61 degrees of freedom

The summary include the Call, like print(). Next, the summary
includes the residuals, which help us understand how the model fits and
are described later in this chapter. The summary then shows the
model’s estimated coefficients. In addition to the estimated
value, a standard error for the model coefficient (Std. Error), test
statistics (specifically a

 t
 -

value), and

 p
 -

value are included. Notice how the Std. Error was the
same as the SEM we calculated by hand.

The

 p
 -

value provides the probability of obtaining the
observed

 t
 -

value assuming the null hypothesis of the
coefficient being zero is true. The

 p
 -

value ties into null
hypothesis significance testing (NHST), something that most introductory
statistics courses cover, but is increasing falling out of use by
practicing statisticians. Next, the summary provides us with a graphical
summary of the
 p
-value as well well as the code:

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that this code shows ranges. For example,
'***' corresponds to
 P
-values
between 0 and 0.001. Lastly, the summary provides residual standard
error, that is to save the variability not captured by the model and the
degrees for freedom. Degrees of freedom are extra data points compared
to the number of coefficients estimates. For example, we had 38
observations and 1 coefficient estimated. Thus, we have 38 - 1 = 37
degrees for freedom. Models sometimes pool data for estimates, thus
degrees of freedom may not always be integers such as 1, 2, or 34, but
also real numbers such as 3.4 or 55.7.

Tip

Checking degrees of freedom may seem strange to people starting out modeling.
However, this can be a great check for your data to make sure the model is using all of your inputs correctly and values are not being lost.
Likewise, checking degrees of freedom can be a great check for your model to make sure your model is using the data correctly.
We have a friend who spends most of a semester teaching her graduate students in statistics how to compare degrees of freedom across different models.
Do not underestimate the utility of understanding degrees of freedom!

The purpose of this coding exercise was to show you how a linear model
calculates a mean and standard deviation. For more complex models,
things change and are not as simple, as we will see in the future.
Before we look at more complex examples, let’s repeat with
Python.

Note

R was created for teaching statistics, based upon the S language.
Given this history and the state of statistics in the early 1990s, R has linear models well integrated into the language.
In contrast, Python has a clone of R for linear models for statistcial inference, specifically the statsmodels package.
The main package for models in Python, scikit-learn (sklearn) focuses on machine learning rather than statistcial inference.
Understanding the history of R and Python can provide insight into why the language exist as they do.
We would also argue that if all one needs and wants to do is fit regression models for statistical inference, R would be the better software choice.

With Python, we import statsmodels.formula.api as smf. We then need
to build a model using the ordinary least squares (.ols()) function.
Notice this syntax is almost identical to R, but uses quotes around
the formula. After building the model, we have to explicitly tell Python
to fit the model using the .fit() command. Then, we can print the
.summary():

Python
import statsmodels.formula.api as smf
lm_out_build = smf.ols(formula = "passing_yards ~ 1",
 data = gb_det_2020_pass)
lm_out = lm_out_build.fit()

print(lm_out.summary())

 OLS Regression Results
==
Dep. Variable: passing_yards R-squared: 0.000
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: nan
Date: Sat, 09 Jul 2022 Prob (F-statistic): nan
Time: 16:14:49 Log-Likelihood: -229.14
No. Observations: 62 AIC: 460.3
Df Residuals: 61 BIC: 462.4
Df Model: 0
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
--
Intercept 7.8065 1.248 6.256 0.000 5.311 10.302
==
Omnibus: 21.351 Durbin-Watson: 1.962
Prob(Omnibus): 0.000 Jarque-Bera (JB): 28.412
Skew: 1.411 Prob(JB): 6.77e-07
Kurtosis: 4.744 Cond. No. 1.00
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
 > specified.

The Python printout for OLS Regression Results is similar to
R’s summary(), but contains more details. First, notice
the details about the model that include the dependent (response)
variable (Dep. Variable), the model’s name (Model), the
numerical methods used to fit the model (Method), the Date and
Time the model was fit, the total number of observations
(No. Observations), the number of degrees of freedom for the residuals
(Df Residuals) and model (Df model), and the method used for the
model’s covariance. The model output also includes the

 R 2
 and adjusted
 R 2
 values that provide
insight into how well the model fits. An
 R 2
 of 1.0 is a
prefect fit and 0.0 is no fit. Hence, this model does a poor job of
predicting the data because the

 R 2
 =
 0

. The adjusted

 R 2
 accounts for the number of parameters. The
F-statistic and corresponding probability allow for model comparison.
The Log-Likelihood comes from how well the model fits the data. The
Akaike information criterion (AIC) and Bayesian information criterion
(BIC) allow for model selection and comparison of different models.
[Link to Come] covers information criterion in
greater detail as part of material on model selection.

Next, the model summary includes the coefficient estimates that are in a
similar format to R, but also include the 95% confidence interval (CI).
Given statistical theory, we can expect the 95% CI to contain the
correct or true value 95% of the time if we were to repeat our
observation process or experiment a very large number of times. Although
these definition may (and hopefully does) seem strange, the definition
highlights a major constraint of NHSTs and fitting statistical models.
Philosophically, most modern statistical method assume data reflects
long-term averages if the observation process or experiment is repeated
an infinite number of times. Hence, we need to be aware our
models’ estimates will be wrong. Practically, we can compare
the 95% CI to to other values. If the 95% CI does not include a value,
we can say the estimate differs from that value. Usually, people care if
coefficients differ from zero. Hence, both Python and R compare
coefficients to a null model of a coefficient equaling zero.

With both Python and R we often times want to extract coefficients. With
R, the broom package allows us to extract model coefficients across
almost all models in R to a standard, tidy format using the tidy()
function. We can also tell R to include CIs by setting
conf.int = TRUE. The default setting is 95% CI:

R
library(broom)
tidy(lm_out, conf.int = TRUE)

A tibble: 1 × 7
 term estimate std.error statistic p.value conf.low conf.high
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 7.81 1.25 6.26 0.0000000433 5.31 10.3

Python does not have as well of developed option, so we show you how to
extract the outputs directly from the fit model. The suffix .params
shows a model’s parameter estimates. Notice that .params
is not a function and does not include parentheses. Instead, this
shows a model’s estimated parameters, which are an attribute
(also sometimes called an attribute) of the fitted model object.

Note

In object-oriented programming two broad methods exist for viewing properties of an object.
First, many objects have species functions to view properties.
For example, lm_out.summary() is a function to view outputs formatted nicely.
Using a car analogy, this is like viewing how much fuel is in the gas tank using the gas gauge of your car.
The summary might also tells you other useful outputs based upon how much gas is in your car such as your millage or range.
Second, the raw parts of an object may often be viewed by directly typing the part’s name.
For example, lm.params directly shows us the parameter values.
Returning to the car analogy, this is like viewing the amount of gas by opening the gas lid and looking in.
Sometimes, opening might be the only way, but it can be messier and more accident prone.
With code, directly looking at objects can be slightly dangerous if you accidentally change the value for the part of an object you look at.

Python
print(lm_out.params)

Intercept 7.806452
dtype: float64

The Python function .conf_int() displays the confidence intervals for
a model:

Python
print(lm_out.conf_int())

 0 1
Intercept 5.311091 10.301812

Multiple intercepts

We often want to predict or compare one or more groups. For example, we
might want to compare the passing yards by each team
Figure 6-2. We will repeat the summarizing, but this
time group by the team of possession of the ball.

[image: Boxplot of passing yards by team.]
Figure 6-2. Boxplot of passing yards by team.

R
gb_det_2020_pass |>
 group_by(posteam) |>
 summarize(ave_passing = mean(passing_yards),
 n = n(),
 sd = sd(passing_yards),
 .groups = "drop") |>
 mutate(sem = sd / sqrt(n))

A tibble: 2 × 5
 posteam ave_passing n sd sem
 <chr> <dbl> <int> <dbl> <dbl>
1 DET 7.62 32 9.23 1.63
2 GB 8 30 10.6 1.93

We can include the team of possession of the football (posteam) by
adding a term to the formula in either R or Python:

1 + posteam

This output calculates an intercept for the first team alphabetically
(DET) and then the contrast or difference with the other team
(GB). Both languages tells us this is from the posteam variable, R
with posteamGB and Python posteam[T.GB]. We simply print the outputs
because we do not want or need to save the models for later:

R
lm(passing_yards ~ 1 + posteam, gb_det_2020_pass)

Call:
lm(formula = passing_yards ~ 1 + posteam, data = gb_det_2020_pass)

Coefficients:
(Intercept) posteamGB
 7.625 0.375

Python
print(smf.ols(formula = 'passing_yards ~ 1 + posteam',
 data = gb_det_2020_pass).fit().params)

Intercept 7.625
posteam[T.GB] 0.375
dtype: float64

We do not need to include the 1 + to estimate an intercept. In fact,
we do not usually include the 1 + in models’ formula
unless we want to be explicit, usually when teaching. Notice the outputs
are the same as above:

R
lm(passing_yards ~ posteam, gb_det_2020_pass)

Call:
lm(formula = passing_yards ~ posteam, data = gb_det_2020_pass)

Coefficients:
(Intercept) posteamGB
 7.625 0.375

Python
print(smf.ols(formula = 'passing_yards ~ posteam',
 data = gb_det_2020_pass).fit().params)

Intercept 7.625
posteam[T.GB] 0.375
dtype: float64

However, what if we want to estimate the mean for each team? We can use
the formula posteam - 1. The - 1 tells the formula to estimate an
intercept for each team rather than one intercept and a contrast. In
this case, we save the outputs, because we want to look at them:

R
lm_out_posteam <- lm(passing_yards ~ posteam - 1,
 gb_det_2020_pass)

We can then use summary() to look at the output using R. Previously,
we calculated the mean and sem by hand. The means are the same as
those we previously calculated. Notice that now the Std. Error now
differs from the SEM. That’s the “magic sauce” of linear
models. Specifically, how models capture variability make them different
from simply estimating means. In fact, a sub-discipline of statistics
deals with the analysis of variance, or ANOVA, for short! We only
include the R example, but the Python example produces the same results.

R
summary(lm_out_posteam)

Call:
lm(formula = passing_yards ~ posteam - 1, data = gb_det_2020_pass)

Residuals:
 Min 1Q Median 3Q Max
-14.000 -7.625 -2.125 3.000 33.000

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
posteamDET 7.625 1.751 4.354 5.29e-05 ***
posteamGB 8.000 1.809 4.423 4.16e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.906 on 60 degrees of freedom
Multiple R-squared: 0.391, Adjusted R-squared: 0.3707
F-statistic: 19.26 on 2 and 60 DF, p-value: 3.45e-07

Design matrix

The formulas in R and Python create something called a design matrix.
The design matrix tells the computer what parameters to use for the
model. This matrix is then solved to the observed data to estimate the
model coefficients. Usually, the linear algebra used results in ordinary
least-square (OLS methods). Different numerical methods exist, but are
beyond the scope of this book. However, these numerical methods can be
important for professional data scientist and statisticians

R uses the function model.matrix() to create a design matrix.
Let’s look at the first example for the formula for
predicted by team of possession: ~ posteam. We only look at the top
(or head()) of the data to keep the output easy to read:

R
model.matrix(~ posteam, gb_det_2020_pass) |>
head()

 (Intercept) posteamGB
1 1 0
2 1 0
3 1 0
4 1 1
5 1 1
6 1 1

Notice, that an intercept is estimated for all data points, but a 0
and 1 are used to indicate if Green Bay was in possession of the ball.
In contrast, compare to predicting where each team has their own
intercept: posteam - 1:

R
model.matrix(~ posteam - 1, gb_det_2020_pass) |>
head()

 posteamDET posteamGB
1 1 0
2 1 0
3 1 0
4 0 1
5 0 1
6 0 1

In this case, column 1 is Detroit’s possession and column 2
is Green Bay’s possession.

With Python, we need to use the patsy package to access a design
matrix function, dmatrix(). We also tell Python to only look at the
head of the data when we read the data into the function, in contrast to
R where we use the head() function on the output.

Python
import patsy
patsy.dmatrix("posteam - 1", gb_det_2020_pass.head())

DesignMatrix with shape (5, 2)
 posteam[DET] posteam[GB]
 1 0
 1 0
 1 0
 0 1
 0 1
 Terms:
 'posteam' (columns 0:2)

Tip

We included designed matrices primarily as a learning tools.
However, we use design matrices when debugging or understanding our models in our day jobs, especially when we want to understand models we are using and re-using for important predictions.
Furthermore, Richard also uses them when formatting data for custom, advanced models he builds using the program Stan.
So, tuck the design matrix tool in the back of your toolbox, because you may someday use it!

Slopes and intercepts

Linear models can also be expanded to include continuous predictor
variables, which are commonly called slopes. Hence, we now have models
with slopes and intercepts. These models are commonly called linear
regression. The simplest linear regressions only have one slope and one
intercept. [Link to Come] covers more complex
regressions.

With a simple linear regression, several different methods exist for
describing the model with math. The predictor variable is usually

 x
 and the response variable is
 y
. Some
people write the model with the slope
 m
 and intercept b:
Another way people write a simple linear regression is with the
intercept
 a
 and slope
 b
: Confused yet? We
found these notations confusing as well when learning. If you see
somebody using a linear regression and are confused about their
equations, don’t be afraid to ask. If their math is
confusing to you, they probably have not explained it well!

Personally, we like to use an equation with the Greek letter

 β
 for the regression terms. Specifically, we use

 β 0
 (pronounced “beta-naught”) for the intercept and

 β 1
 for the slope. We also use a ~ tilde in the
equation:

We read this equation as
 y
 is predicted by beta-naught
plus beta-one times
 x
. We use these Greek letters because
this notation allows us to extend the model in
[Link to Come].

With a simple linear regression, the intercept is where the
model’s predicted value crosses or intercepts the y-axis.
The slope is how the response variable changes given one unit change
in
 x
. As a more concrete example, we will build a model to
examine the change in Green Bay’s points scored during games
from 2018 to 2020. We can use this question to ask if Green Bay started
scoring more points after 2018, less points per game, or statistically
the same number of points per game.

To start, we load in the data file, score_GB.csv, using R or Python.
We need to reformat the data slightly before we can use it with these
steps:

	
Break the game_id column into multiple column.

	
Reformat the
new Year and Week columns to be numbers rather than text.

Tip

Manipulating data is hard.
We understand if our approaches seem strange or counter-intuitive to you.
We have found the only way to get better at it is to do it on a regular basis.
Hopefully you will find that you become better at teaching yourself Python or R skills as you learn the language more.
Our data manipulation skills come from three sources:

	
Experience programming with Python and R.

	
Looking up methods our knowledge gaps.

	
Experience effectively looking up information to fill our knowledge gaps.

This last step is the ability to know which book to look in or know how to effectively search the web for information as well as the experience to know when a book is better than the internet.

In R, we load the Tidyverse. Then, we first read in the file. We use the
separate() function on game_id to split this column into Year,
Week, Home (team), and Away (team) while deleting the value with
NA. Next, we mutate() the Year and Week column into numeric
values.

R
library(tidyverse)
gb_scores <-
 read.csv("./data/score_GB.csv") |>
 separate(game_id, c("Year", "Week", "Home", "Away", NA)) |>
 mutate(Year = as.numeric(Year),
 Week = as.numeric(Week))

In Python, we first make sure Pandas is loaded. Then, we read in the
data file. Next, we take the text string and split the text using
.str.split(). We need to tell Python that the text is separated by the
_ symbol and to expand the output. Lastly, we use the .astype()
function with a dictionary to change Year and Week into integers.

Python
import pandas as pd
gb_scores = pd.read_csv("./data/score_GB.csv")
gb_scores[["Year", "Week", "Home", "Away"]] = (
 gb_scores["game_id"].str.split("_",expand = True)
)
gb_scores = gb_scores.astype({"Year": "int32",
 "Week": "int32"})

To see what our data looks like, we can plot Year against points
scored by GB Figure 6-3. If you need help creating this
figure, please revisit Chapter 2. Notice that the COVID19
year of 2020 had higher scoring on average for the Packers (and league
wide). Also, Packers’ quarterback Aaron Rodgers won league
MVP in 2020, which contributed to this boost in scoring.

[image: Plot of points scored by Green Bay in 2018, 2019, and 2020.]
Figure 6-3. Plot of points scored by Green Bay in 2018, 2019, and 2020.

With R, we use the lm() function like before. We (optionally) use a
1 for the intercept in the formula and the continuous variable Year
in the formula as well, we can also print the model outputs to see the
coefficient.

R
lm_gb_score_year <- lm(GB ~ 1 + Year, gb_scores)
print(lm_gb_score_year)

Call:
lm(formula = GB ~ 1 + Year, data = gb_scores)

Coefficients:
(Intercept) Year
 -8212.40 4.08

Python uses the same formula as R. You’ll need to make sure
you have statsmodels.formula.api package imported before you use the
.ols function. We can also build and .fit() the model in one step
because we are not planning on re-using the model. Lastly, you can view
the parameter estimates using .params.

Python
import statsmodels.formula.api as smf
lm_gb_score_year = smf.ols(formula = "GB ~ 1 + Year",
 data = gb_scores).fit()
lm_gb_score_year.params

Intercept -8212.395692
Year 4.080499
dtype: float64

Both models produce the same outputs accounting for rounding on the
screen. These outputs could be written as

$ = -8212.40 + 4.08 . $

Thus, for each additional year, Green Bay scored about 4 extra points
per game per year during that three-year stretch of play. Likewise, at
Year = 0, Green Bay would have scored negative 8,000 points.

This slope estimate hopefully seems reasonable. But, the intercept
should not. Neither the Green Bay Packers (despite some cheesheads
assertions) nor football existed around 0 A.D!

These observations highlight two major limitations with modeling. First,
extrapolating beyond your dataset (in our case, any year other than
2018, 2019, or 2020) may lead to wrong conclusions.

Note

Models diverging from reality is a problem with any type of modeling and can happen to professional data scientists and even big tech companies.
For example, Zillow misused their models or misunderstood limitations of their models when their house-flipping business when broke and caused them to lay-off around a quarter of their workforce around January 2022.
Likewise, Google stopped their Google Flu because they realized their statistical models were diverging from reality in 2015 after working well for 7 years.

Second, having our first year be 2018 may not be the best choice. We
may want to transform year to start with year 0 as the first year of
data (2018) rather than year 0 being 0 AD. “Transformations”
covers this topic in greater detail.

Looking at the summary from this model, we see the same formatted output
as before for both R and Python. Looking at the outputs, notice how the
slope estimate for Year differs from zero. Thus, scores increased
through time. However, both models have low
 R 2
 values and
thus do a poor job of predicting score. In this case, our model does a
good job of observing a trend, which may help us understand data, but a
poor job of predicting the future.

R
summary(lm_gb_score_year)

Call:
lm(formula = GB ~ 1 + Year, data = gb_scores)

Residuals:
 Min 1Q Median 3Q Max
-22.051 -5.051 0.788 4.889 21.949

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -8212.396 3124.448 -2.628 0.0114 *
Year 4.080 1.547 2.637 0.0111 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.013 on 50 degrees of freedom
Multiple R-squared: 0.1221, Adjusted R-squared: 0.1045
F-statistic: 6.953 on 1 and 50 DF, p-value: 0.01112

With the Python output, notice the second Note:

The condition number is large, 5.05e+06. This might indicate that there are
strong multicollinearity or other numerical problems.

This message suggests a problem with the model. The multicollinearity
warning would indicate we have two or more predictor variables that are
highly correlated. But, we only have one predictor variable. Hence, we
have other numerical problems. Give our personal experiences with data
analysis and statistics, we would see this and think maybe the input
predictor needs to be scaled. One clue suggesting this is that the
estimated intercept is three orders of magnitude larger than the slope
estimate. Before moving on to scaling data in
“Transformations”, let’s look at how well the
data fits the model.

Python
print(lm_gb_score_year.summary())

 OLS Regression Results
==
Dep. Variable: GB R-squared: 0.122
Model: OLS Adj. R-squared: 0.105
Method: Least Squares F-statistic: 6.953
Date: Sat, 09 Jul 2022 Prob (F-statistic): 0.0111
Time: 16:14:50 Log-Likelihood: -187.10
No. Observations: 52 AIC: 378.2
Df Residuals: 50 BIC: 382.1
Df Model: 1
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
--
Intercept -8212.3957 3124.448 -2.628 0.011 -1.45e+04 -1936.757
Year 4.0805 1.547 2.637 0.011 0.972 7.189
==
Omnibus: 1.568 Durbin-Watson: 2.423
Prob(Omnibus): 0.456 Jarque-Bera (JB): 0.836
Skew: -0.255 Prob(JB): 0.658
Kurtosis: 3.353 Cond. No. 5.05e+06
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
 > specified.
[2] The condition number is large, 5.05e+06. This might indicate that there are
strong multicollinearity or other numerical problems.

Residuals

A very good question for any model How well does the model fit the
data? Residuals are the difference between the predicted values from a
model and the observed values. Figure 6-4 shows the
residuals for our model. With our example, most data points are away
from the regression line and therefore have large residuals.

Many times in sports analytics we want to separate the expected from the
observed. Many models that are created in this space are “above
expected”, meaning there’s some expected value like
“expected yards”, “expected completion”, etc., which are derived
using a model like a regression. Then, what is actually observed is
compared with this value. That’s a residual.

[image: Plot of points scored by Green Bay in 2018, 2019, and 2020. The points jittered slightly on the x-axis to avoid overlap. The blue line is the regression line and the shaded region around the line is the model's 95% confidence interval. The lighter vertical lines show the residuals between the observed and predicted values.]
Figure 6-4. Plot of points scored by Green Bay in 2018, 2019, and 2020. The points jittered slightly on the x-axis to avoid overlap. The blue line is the regression line and the shaded region around the line is the model’s 95% confidence interval. The lighter vertical lines show the residuals between the observed and predicted values.

Examining residuals also provide insight into a key assumption of linear
models: That residuals are assumed to follow a normal distribution. The
normal distribution may be familiar to you because it is also called the
bell curve, aptly named after the bell-shaped line, for example see
Figure 6-5. Although formal statistical tests exist, we find
visualizing data to be a better approach to check for normality compare
to the formal test for two reasons. First, the formal tests often fail
to catch a lack of normality when dealing with smaller datasets. Second,
the formal tests often declare large datasets to be non-normal simply
due to many data points decreasing the

 p
 -

value for the
tests.

[image: Example bell curve with a mean of zero and standard deviation of 1.]
Figure 6-5. Example bell curve with a mean of zero and standard deviation of 1.

Both R and Python have tools for extracting the residuals. After
extracting there resisduals, we can plot them and examine if the data
look normal enough. With R, we use the residuals() function. Then,
we create a data.frame before plotting a histogram with ggplot2.

Python
df_res = pd.DataFrame({"residuals": lm_gb_score_year.resid})
sns.histplot(df_res, x = "residuals")

[image: Histograms of residuals plotted in R (left) and Python (right).]
Figure 6-6. Histograms of residuals plotted in R (left) and Python (right).

The residuals plots shown in Figure 6-6 look close enough to
a bell curve for our purposes. Not all data in football are this way.
For example, earlier in this chapter we looked at passing yards.
Incomplete passes take up about 30 to 40 percent of these passes, and so
there would be a huge mass of plays centered at 0 passing yards, which
would cause residuals to not be normal.

The residuals above are slightly overdisperesed, that is to say the
far left and right values are farther away from 0 than would be expected
with a normal distribution. This is due to the fact that there is
theoretically no upper bound on the number of points that can be scored
in a game, but there is a lower bound of zero.

Transformations

We sometimes have trouble fitting model. For example, our data (or, more
specifically, the data’s residuals) might not be normal
enough for linear methods. So, what do we do? We have multiple options.
In this section, we’ll talk about transforming data. In
[Link to Come], we will talk about other models.

We start of with two warnings about transformations. First,
transformations can impact the importance of predictors, especially with
multiple regression, which we talk about in
[Link to Come]. For example, in the next
example, we will see how changing the start year from 2018 to 0 changed
the value of the slope coefficient and our interpretation of the
coefficient. Second, transformations can make our model outputs harder
to understand. Ben Bolker’s book warns about this in his
book, Ecological Models and Data in R (Princeton University Press,
2008) using a hypothetical ecology field study where a scientist counts
the number of seeds. When analyzing the data, the scientist transformed
the data so much that they are left asking: What is the probability of
observing at this much variability among the
arcsine-square-root-transformed counts of seeds in different treatment?
Instead of creating statistical gibberish, we encourage you to think
about how you will explain your model before transforming your data.
Likewise, with modern tools, you may not even need to transform your
data if you build your model around your data rather than forcing your
data into the model!

Rescaling is one type of transformation, Revisiting the example from
“Slopes and intercepts”, what does the year zero mean and how do
we define and understand it? Or, more directly what is special about
year 0? Should 0 be 0 A.D. or the start of your observations? Or, should
you use the middle? Maybe you should use the start of an era (for
example, a new coach or quarterback). With our example, use can rescale
to use the start of observations.

We need to format our data before we build a second model. In R, we can
mutate() our data. Notice how the intercept is now much closer to
slope:

R
gb_scores <-
 gb_scores |>
 mutate(Year_0 = Year - min(Year))

gb_score_year_0 <-
 gb_scores |>
 lm(formula = GB ~ Year_0)
summary(gb_score_year_0)

Call:
lm(formula = GB ~ Year_0, data = gb_scores)

Residuals:
 Min 1Q Median 3Q Max
-22.051 -5.051 0.788 4.889 21.949

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.051 2.036 10.831 1.02e-14 ***
Year_0 4.080 1.547 2.637 0.0111 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.013 on 50 degrees of freedom
Multiple R-squared: 0.1221, Adjusted R-squared: 0.1045
F-statistic: 6.953 on 1 and 50 DF, p-value: 0.01112

Likewise, we can wrangle our data in Python. With the Python outputs,
also notice how the second note goes away compared to
“Slopes and intercepts”:

Python
gb_scores["Year_0"] = gb_scores["Year"] - gb_scores["Year"].min()
lm_gb_score_year_0 = smf.ols(formula = "GB ~ Year_0",
 data = gb_scores).fit()
print(lm_gb_score_year_0.summary())

 OLS Regression Results
==
Dep. Variable: GB R-squared: 0.122
Model: OLS Adj. R-squared: 0.105
Method: Least Squares F-statistic: 6.953
Date: Sat, 09 Jul 2022 Prob (F-statistic): 0.0111
Time: 16:14:52 Log-Likelihood: -187.10
No. Observations: 52 AIC: 378.2
Df Residuals: 50 BIC: 382.1
Df Model: 1
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
--
Intercept 22.0510 2.036 10.831 0.000 17.962 26.140
Year_0 4.0805 1.547 2.637 0.011 0.972 7.189
==
Omnibus: 1.568 Durbin-Watson: 2.423
Prob(Omnibus): 0.456 Jarque-Bera (JB): 0.836
Skew: -0.255 Prob(JB): 0.658
Kurtosis: 3.353 Cond. No. 3.05
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
 > specified.

In addition to these two transformations, we could also subtract by
middle (median value) or other important number (for example start of a
coach’s tenure or other era in football).

Another type of transformation can be to scale (also known as
standardizing or normalizing) the data. This changes the data from the
raw scale to have a mean of 0 and standard deviation of 1. We can use
the scale() function in R, or do calculation by hand in Python. To
scale the data, the computer subtracts mean and then divides by the
standard deviation.

R
gb_scores <-
 gb_scores |>
 mutate(GB_normal = scale(GB))
gb_scores |> pull(GB_normal) |> head()

 [,1]
[1,] -0.2402671
[2,] 0.2846862
[3,] -0.4502484
[4,] 0.7046489
[5,] 0.4946676
[6,] -0.9752017

Notice how Python does not have a scale function in the core statistics
packages so we must do our own transformation.

Python
gb_scores["GB_normal"] = gb_scores["GB"]
gb_scores["GB_normal"] -= gb_scores["GB_normal"].mean()
gb_scores["GB_normal"] /= gb_scores["GB_normal"].std()
print(gb_scores["GB_normal"].head())

0 -0.240267
1 0.284686
2 -0.450248
3 0.704649
4 0.494668
Name: GB_normal, dtype: float64

When we compare the raw data to the transformed data, both look fairly
normal, as seen in Figure 6-7. Hence, a
transformation would not be needed in this case, and, in fact, make our
example harder to follow.

images = [Image.open(x) for x in
 ["./images/hist_raw_bg_score.png",
 "./images/hist_raw_bg_normal.png"]]
widths, heights = zip(*(i.size for i in images))

total_width = sum(widths)
max_height = max(heights)

new_im = Image.new('RGB', (total_width, max_height))

x_offset = 0
for im in images:
 new_im.paste(im, (x_offset,0))
 x_offset += im.size[0]

new_im.save("./images/hist_raw_and_normal_gb_score.png")

[image: Histograms of raw and normalized score for Green Bay from their first game against Detroit during 2022.]
Figure 6-7. Histograms of raw and normalized score for Green Bay from their first game against Detroit during 2022.

R
gb_score_year_0_normal <-
 gb_scores |>
 lm(formula = GB_normal ~ Year_0)
summary(gb_score_year_0_normal)

Call:
lm(formula = GB_normal ~ Year_0, data = gb_scores)

Residuals:
 Min 1Q Median 3Q Max
-2.31515 -0.53031 0.08273 0.51326 2.30444

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4449 0.2137 -2.081 0.0425 *
Year_0 0.4284 0.1625 2.637 0.0111 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9463 on 50 degrees of freedom
Multiple R-squared: 0.1221, Adjusted R-squared: 0.1045
F-statistic: 6.953 on 1 and 50 DF, p-value: 0.01112

Python
lm_gb_score_year_0_normal = smf.ols(formula = "GB_normal ~ Year_0",
 data = gb_scores).fit()
print(lm_gb_score_year_0_normal.summary())

 OLS Regression Results
==
Dep. Variable: GB_normal R-squared: 0.122
Model: OLS Adj. R-squared: 0.105
Method: Least Squares F-statistic: 6.953
Date: Sat, 09 Jul 2022 Prob (F-statistic): 0.0111
Time: 16:14:52 Log-Likelihood: -69.895
No. Observations: 52 AIC: 143.8
Df Residuals: 50 BIC: 147.7
Df Model: 1
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
--
Intercept -0.4449 0.214 -2.081 0.043 -0.874 -0.016
Year_0 0.4284 0.162 2.637 0.011 0.102 0.755
==
Omnibus: 1.568 Durbin-Watson: 2.423
Prob(Omnibus): 0.456 Jarque-Bera (JB): 0.836
Skew: -0.255 Prob(JB): 0.658
Kurtosis: 3.353 Cond. No. 3.05
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
 > specified.

Other transformations exist as well. For example the natural log and
log-based 10 transformation may be used for data that have skew to the
right. Other people like to use the square-root transformation. We use
log transformation in our chemistry and population ecology research, but
do not include them here because the outputs can be hard to explain.

Case Study: Score Through Years

Now that we have some tools, let’s put them together to talk
about football. For example, maybe we and our sports buddies think the
Green Bay Packers have been scoring more points recently compared to a
couple of years ago. Sure, we could argue about it, but we can also use
statistical models to estimate if a trend is occurring. Using the tools
we learned in Chapter 3, we obtain some data. Then,
we use the tools from Chapter 4 to clean up the
data. Now, we’re ready to plot the data using tools from
Chapter 2 and we create figures like
Figure 6-8.

To start off, let’s read in the data:

gb_scores_lm_plot <-
 ggplot(gb_scores, aes(x = Year_0, y = GB)) +
 geom_point() +
 stat_smooth(method = "lm", formula = y ~ x) +
 ylab("Green Bay score") +
 scale_x_continuous("Year (staring in 2018)", breaks = seq(1, 3, by = 1)) +
 theme_bw()

Next, we fit a model and format the outputs to create a forest plot. The
R code might look like this (we use the word might, because there many
different ways to read this code; the best one is the one you use and
understand!):

R
gb_score_year_0_coef <-
 tidy(gb_score_year_0, conf.int = TRUE) |>
 select(-p.value, - std.error, -statistic) |>
 pivot_longer(-c(term, conf.low, conf.high))
print(gb_score_year_0_coef)

gb_score_year_0_coef_plot <-
 ggplot(gb_score_year_0_coef,
 aes(x = term, y = value,
 ymin = conf.low, ymax = conf.high)) +
 geom_hline(yintercept = 0, size = 2, color = "red") +
 geom_point() +
 geom_linerange() +
 coord_flip() +
 theme_bw() +
 xlab("Parameter") +
 ylab("Estimate")

A tibble: 2 × 5
 term conf.low conf.high name value
 <chr> <dbl> <dbl> <chr> <dbl>
1 (Intercept) 18.0 26.1 estimate 22.1
2 Year_0 0.972 7.19 estimate 4.08

Likewise, we could create similar figures using Python and models using
Python using this code. The plots of the regression coefficients
(Figure 6-9) are sometimes called a forest plot
(see Wikipedia article for an
extended discussion). These plots quickly allow people to see
differences for parameters from the model.

import seaborn as sns
import matplotlib.pyplot as plt
gb_score_plot = sns.regplot(x = "Year_0", y = "GB", data=gb_scores)
gb_score_plot.set_xlabel("Year (staring in 2018)")
gb_score_plot.set_ylabel("Green Bay score")
gb_score_plot.set_xticks([0, 1, 2])

images = [Image.open(x) for x in
 ["./images/gb_scores_lm_plot.png",
 "./images/python_regplot.png"]]
widths, heights = zip(*(i.size for i in images))

total_width = sum(widths)
max_height = max(heights)

new_im = Image.new('RGB', (total_width, max_height))

x_offset = 0
for im in images:
 new_im.paste(im, (x_offset,0))
 x_offset += im.size[0]

new_im.save("./images/gb_score_lm_plot_both.png")

[image: Regression plots with `ggplot2` in R (left) and `seaborn` in Python (right).]
Figure 6-8. Regression plots with ggplot2 in R (left) and seaborn in Python (right).

lm_gb_score_year_0_conf_int = lm_gb_score_year_0.conf_int(alpha=0.05)
lm_gb_score_year_0_parms = lm_gb_score_year_0.params

lm_all_coef = pd.concat([lm_gb_score_year_0_parms,
 lm_gb_score_year_0_conf_int], axis=1)
lm_all_coef.columns = ["Estimate", "Lower", "Upper"]
lm_all_coef = lm_all_coef.rename_axis("Coef").reset_index()
print(lm_all_coef)

 Coef Estimate Lower Upper
0 Intercept 22.051020 17.961872 26.140169
1 Year_0 4.080499 0.972268 7.188730

Python
import matplotlib.pyplot as plt
coef_int = [lm_all_coef["Estimate"] - np.array(lm_all_coef["Lower"]),
 np.array(lm_all_coef["Upper"] - lm_all_coef["Estimate"])]

plt.errorbar(lm_all_coef["Estimate"],
 lm_all_coef["Coef"],
 xerr = coef_int,
 fmt = "o")

<ErrorbarContainer object of 3 artists>
![png](output_155_1.png)

images = [Image.open(x) for x in
 ["./images/gb_score_year_0_coef_plot.png",
 "./images/py_coef_plot.png"]]
widths, heights = zip(*(i.size for i in images))

total_width = sum(widths)
max_height = max(heights)

new_im = Image.new('RGB', (total_width, max_height))

x_offset = 0
for im in images:
 new_im.paste(im, (x_offset,0))
 x_offset += im.size[0]

new_im.save("./images/gb_score_year_0_coef_plot_both.png")

[image: Regression coefficient plots with `ggplot2` in R (left) and `seaborn` in Python (right)]
Figure 6-9. Regression coefficient plots with ggplot2 in R (left) and seaborn in Python (right)

One thing to take into consideration, as we discussed above, is the fact
that 2020 was played largely without fans in the stands, and as such
road teams actually fared pretty well offensively relative to historical
standards. Thus, when modeling this problem, one has to make sure that
other factors are accounted for before jumping to causal conclusions
about the game of football.

Exercises

	
Fit a linear model for yards_after_the_catch as the response, with
air_yards as the feature, for completed passes. What do you
find?

	
For the Draft Data scraped in Chapter 3, fit a linear
model for draft position and DrAV. What are some issues that can arise
when trying to approach this problem that way?

	
Transform DrAV
in such a way so that a linear model with draft position as the feature
fits the assumptions laid out in this chapter.

	
Merge the Draft
data and the Scouting Combine data together. For wide receivers (WR)
fit a linear model for 40-yard dash time and career receiving yards. Is
there a positive relationship? What does this say about the efficiency
of the scouting combine and finding good players at the wide receiver
position? What if you do the same thing for vertical jump and sacks for
defensive ends (DE)?

	
With the merging of the Draft data and
Scouting Combine data in 4), fit a transformed linear model for 40-yard
dash time and draft position for wide receivers. Compare this to your
answer to 4). Do the same thing for vertical jump for defensive ends,
and compare.

Further reading

Many books exist on regression.

Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and Other
Stories (2020; Cabridge University Press in 2020).

This book shows how to apply regression analysis to real world problems.
For people looking for more worked case studies, we recommend this
book to help you learn how to think about applying regression.

Frank Harell’s Regression Modeling Strategies: With
Applications to Linear Models, Logistic and Ordinal Regression, and
Survival Analysis (2015, 2nd edition; Springer)

This book helped one of the authors think through the world of
regression modeling. The books is advanced, but provides a good
oversight into regression analysis. The book is written at an advanced
undergraduate/introductory graduate-level. Although hard, working
through this book provides mastery of regression analysis.

 About the Authors

 Eric A Eager is the Head of Research, Development and Innovation at Pro Football Focus (PFF), where he uses his training as an applied mathematician to produce solutions to quantitative problems for 32 National Football League clients, over 105 NCAA Football clients and numerous media clients and contacts.
 He also co-hosts the PFF Forecast Podcast, which can be found on PodcastOne and iTunes and is the most popular football analytics podcast in the world since 2018.
 Additionally, Eager supplies odds used by Steve Kornacki on Football Night in America, the Today Show, and other programs since 2020.

 He studied applied mathematics and mathematical biology at the University of Nebraska, where he wrote his PhD thesis on how stochasticity and nonlinear processes affect population dynamics.
 Eager spent his first six years thereafter as a professor at the University of Wisconsin - La Crosse, before transitioning to PFF full-time in 2018.
 He has since taught statistics and mathematics to over 10,000 students through college-level courses, the Wharton Sports Analytics and Business Initiative’s Moneyball Academy, as well as an online course, “Linear Algebra for Data Science in R” with DataCamp.

 Eager has been interviewed by nfl.com’s Ian Rappoport about Cowboys in-game decision making and The Washington Post for commentary about sports analytics.
 He joined the legendary Peter King’s podcast about fourth-down decisions and is a frequent guest on Cris Collinsworth’s podcast.

 Richard A Erickson helps people use mathematics and statistics to understand our world as well as make decisions with this data.
 He is a lifelong Green Bay Packer fan, and, like thousands of other cheeseheads, a team owner.
 He has taught over 25,000 students statistics through graduate-level courses, workshops, and his DataCamp courses on Generalized Linear Models in R and Hierarchical Models in R.
 He also uses Python on a regular basis to model scientific problems.

 Erickson received his PhD in Environmental Toxicology with an applied math minor from Texas Tech where he wrote his dissertation on modeling population-level effects of pesticides.
 He has modeled and analyzed diverse datasets including topics such as soil productivity for the USDA, impacts of climate change on disease dynamics, and improving rural healthcare.
 Erickson currently works as a research scientist and has over 70 peer-reviewed publications.
 Besides teaching Eric about R and Python, he also taught Eric to like cheese curds.

OEBPS/Images/python_hist_yac_side_by_side.png
posteam

5 o 05o® 5 0 5 2
yards_after_catch yards_after_catch

OEBPS/Images/hist_boxplot_values.png
GB

DET

o o o
< N

sassed Aq Jre ay) Ul pajane.) sple

Count of observations

OEBPS/Images/df_res_save.png
count

7.54

2.54

0.0 1

-20

-10

0
residuals

10

20

OEBPS/Images/facet_scatter_r.png
GB

DET

20~

_o
S3
°
_o
[4p]
°
O
N
°
[] o
“ -
°
o o
°* . o °
O~ -o
°
_o
0o
_o
S3
O
[4p]
°
O
N
[Ne)
—
°
o0
°
o, ¢
o oo O -o
C °
1 1 1 1
n o n o
— —

yoreo Jaye spirek

air_yards

OEBPS/Images/passing_yards_plot.png
40 -

30+

Passing yards

104

DET

Team with possession

GB

OEBPS/Images/python_scatter.png
y-axis

1200

75

150

125

100

1075

1050

1025

1000

130

135

150

175

200

255

250

275

350

OEBPS/Images/py_boxplot.png
E)

§ B R 8 °

sassed fq e 31 Ul pajanes Spug,

&

DET

am with possession of the ball

OEBPS/Images/r_hist_yac.png
count

6-

4-

2-

N “ll | l
0 5 10 15 20

yards_after_catch

OEBPS/Images/example_text_plot.png
20- middle
righght

middle left
15-

left
right
midcliieldle
l10-

after catch

lefmiddle
righght

right

yards

lefeft
5- right middle
rightightieft right
lefemidititaght
nmigttdeft

0- migydedighe right
right

0 10 20 30 40
air_yards

50

posteam
a DET
a GB

OEBPS/Images/gb_score_lm_plot_both.png
o (=] o o (@]
< ™ N —
2100Ss Aeg udaun
0000 o o0 oo [BN] [FXN
[o O 00 o0 o0 [I B] e
o0 6 0 & &6 [] [J
T T T T T
o o o o o
< ™ N —

2109s Aeg uaalo

Year (staring in 2018)

Year (staring in 2018)

OEBPS/Images/Launcher.png
O,

L]
=}

File Edt View Run Kemel Tabs

Filter fi
-

Name
i book

m callouts
 ch01_files
i ch02_files
i ch03_files
 ch04_files
. ch05_files
. ch06_files
 ch07._files
i ch08_files
- ch09_files
 ch10_files
m chii_files
 chi2 files
. chi3_files
m chia_files
m chi5_files
m images
m theme

= tools

) atlasjson
B author_bio
[cho1 ascil
[cho2.ascii
[ch03ascii
[ch04.ascii
[cho5 ascii
[ch06 ascil

™ ch07.ascii
simple

+ c

Last Modified
17 minutes ago
2 months ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
2 months ago
amonth ago
2 months ago
2 months ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago

12 davs ao

[N R

[W] Notebook
e @

Python 3 R
(ipykernel)

A console
e @

Python 3 R
(ipykernel)

Other
- = v
Terminal Text Fie Markdown File

R &

‘Show Contextual

Help

English (United States) Launcher

OEBPS/Images/gb_det_2020_pass_demo_plot.png
count

5 10
Air yards (each bin is 1 yard)

15

OEBPS/Images/chp_3_jl_5.png
untitled.py - JupyterLab

T File Edt View Run Kemel Tabs Settings Help
= EEE o [Ewweiy e+
y name Q he
o, : 242 5
Name - Last Modified
s Deskiop amonth ago
= Documents 6 days ago
® o Downloads 6 days ago
m Games 7 months ago
M GOG Games ayear ago
m MEGAsyn. ayear ago
m miniconda3 2 minutes ago
™ Music 2 years ago
m Pictures an hour ago
m Public 2 years ago
=R 2yearsago | m untitled py x |+
m Templates 2yearsago |
m triplea 2 years ago
m Videos 2years ago Python 3.9.12 (main, Jun 1 2022, 11:38:51)
Duwosss cemmo | T i e o facae o mre o
IR Firefox_wa. 4 months ago help.
D system7s 2 years ago
@ testpy & months ago oo
[Unitled.ipy. 4 months ago
@ untited.p 4
« (] Untitled1.i aminute ago
1
Simple 0 M 2@ Python Ln2 Col 1 Spaces:4 untitled.py

OEBPS/Images/facet_scatter_py.png
Yards_after_catch

5 &

P
air_yards

P

air_yards

OEBPS/Images/chp_3_jl_1.png
a raerickson@pop-os: -

(base) raericksonapop-os:~$ jupyter lab]

OEBPS/Images/chp_3_jl_2.png
+

D localho

= File Edt View Run Kemel Tabs Settings Help
- c “@launcher 4
Q
0 [?] Notebook ©
Name =~ Last Modified
m Deskiop amonth ago
= Documents s a0 e R
® o Downloads 6 days ago
m Games 7 months ago (ke !
m GOG Games ayearago
m MEGAsyn ayearago [console
m minicondas aminute ago
m Music 2 years ago
m Pictures an hour ago P
= Public 2years ago é Q
mR 2 years ago Python 3 R
m Templates 2 years ago (ipykemnel)
m triplea 2 years ago
m Videos 2 years ago Other
[adobe.deb 6 days ago
I Firefox_wa 4 months ago —_
O system76 2 years ago = M
@ testpy & months ago - v
) United.iy. 4 months 20 Terminal Text File Markdown File
2 =]
Python File RFile Show Contextual
Help
Simple oMo ® Launcher

OEBPS/Images/chp_3_jl_3.png
O

L]
o

untitled.py - Jupyterlab ~ x +

D localho

File Edt View Run Kemel Tabs Setings Help
c intitled.py x |+
Close Tab AlteW
Q ! Al Other T
Y T Righ &
Create Console for Editor
Name ~ Last Modified
Rename Python File.
m Desktop amonth ago
Delete Python File
s Documents. 6 days ago
New View for Python File
m Downloads 6 days ago
Show in File Browser
m Games 7 months ago i Gl for Breweer Hens
m GOG Games ayear ago N
™ MEGASyn ayear ago
s miniconda3 2 minutes ago
m Music 2 years ago
m Pictures an hour ago
m Public 2years ago
mR 2years ago
m Templates 2 years ago
m tiplea 2 years ago
m Videos 2years ago
[adobe.deb 6 days ago
M Firefox_wa. 4 months ago
[system76-I 2 years ago
@ testpy 6 months ago
(A Untitled.ipy. 4 months ago
@ untitled.p
+ [Untled.i seconds ago
Simple oM 1 ® Python Ln1,Col 1 Spaces:4 untitled.py

OEBPS/Images/py_color_plt.png
2

5

yards_after_catch

posteam
o DET
. @

air_yards

ETES

OEBPS/Images/chp_3_jl_4.png
untitied py - Jupytertab x +

O D localhost:

T File Edt View Run Kemel Tabs Settings Help
- - + c intitled.py X |+ %
Filter files by name aQ :
(=]
Name =~ Last Modified
m Deskiop amonth ago
s Documents. 6 days ago
® o Downioads 6 days ago
m Games 7 months ago
™ GOG Games ayear ago
™ MEGAsyn.. ayear ago
s miniconda3 2 minutes ago
O = 2 zasEag Select Kernel
m Pictures an hour ago
vy 2yours o8 Select kernel or: untted py
f_ 2years o Python 3 (ipykernel) v I
m Templates 2 years ago | =
e — [o ceme |
m Videos 2 years ago)
[adobe.deb 6 days ago
M Firefox_wa... 4 months ago
O system76-l... 2 years ago
& testpy 6 months ago
[Unitled.ipy... 4 months ago
« (] Untitled1.i... seconds ago
[l
simple 0 [1 @ NoKemel|Initializing Ln1,Col 1 Console

OEBPS/Images/r_shape_plt.png
20~

T
S Lo
o 0 O
—
(2]}
O e 4«
o
R |
<
4 qo
° <
<« 4 nAom
e o0 «®
© .
1 1 1
T) o To)
— -

yoreo Jaye spirek

air_yards

OEBPS/Images/R_screen_shot.png
K

L]
o

File Edt View Run

-
Name
o avasgson
B author_bio
[cho1 ascil
[cho2.ascii
[ch03ascii
[ch04.ascii
[cho5 ascii
[ch06 ascil
[ch07 ascii
[ch08.ascil
[cho9ascii
[chi0.ascil
[chi1 ascil
[chi2ascil
[chi3.ascil
[chi4.ascil
[chi5.ascil
B colohtml
B copyrighth
y: environme.
ixhtml
preface.as.
README

remove_a.

DeceDa

sample_ch
B titlepage.html
B tochtml

«] Untitied.ipy.

simple

Kemel Tabs

c

Last Modified
Zmonus ago

2 months ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago

2 months ago

2 months ago
amonth ago

2 months ago
an hour ago
amonth ago

2 months ago
12 days ago

2 months ago

2 months ago

seconds ago

Settings

untitled -

24

Help

Close Tab.

Create Console for Editor
Rename R File,

Delete R File

New View for R File

Show in File Browser

Ln1,Col6 Spaces:4 English (United States)

untitled.r

OEBPS/Images/outlier_hist.png
count

60 -

40-

20~

1000

2000

air_yards

3000

4000

5000

OEBPS/Images/r_hist_yac_side_by_side.png
count

DET

10

15

20 5 0
yards_after_catch

GB

10

15

20

OEBPS/Images/gg_norm.png
Probability desnity

0.4 4

©
w
1

o
N
1

0.1+

0.0 1

-4 2 0
Standar deviation

OEBPS/Images/passing_yards_hist.png
Passing yards

25+

20

=
a1
1

=
o
1

"LL"'-"

0 10 20 30 40
passing_yards

OEBPS/Images/facet_yards_plot_team_location.png
Yrds traveled through the air by passes

pass_location = lft

.
‘
DET 3 DET 3 DET 3

am with possession of the ball.

am with possession of the ball.

am with possession of the ball.

OEBPS/Images/r_color_plt.png
20~

posteam
e DET
e GB

15-
0
5

yoreo Jaye spirek

air_yards

OEBPS/Images/r_scatter_2.png
20-

15-

1
o Lo
—

yoreo Jaye spiek

40

20
air_yards

10

OEBPS/Images/gb_res_plot.png
2019 2020

Football season

2018

40+
0
0
0

aweb Jad paloos sjuiod Aeg usalo

OEBPS/Images/hist_raw_and_normal_gb_score.png
count

7.54

254

0.04

i

GB

count

7.54

T T
-1 0
GB_normal

OEBPS/Images/py_shape_plt.png
» * . posteam
o
. M
=
5o *
5 P
£ .
. W .
3 L S T T

air_yards

OEBPS/Images/Python_ternmal.png
-
=]

File Edt View Run

-
Name
i book

m callouts
 ch01_files
i ch02_files
i ch03_files
 ch04_files
. ch05_files
. ch06_files
 ch07._files
i ch08_files
- ch09_files
 ch10_files
m chii_files
 chi2 files
. chi3_files
m chia_files
m chi5_files
m images
m theme

= tools

) atlasjson
B author_bio
[cho1 ascil
[cho2.ascii
[ch03ascii
[ch04.ascii
[cho5 ascii
[ch06 ascil
™ ch07 ascil

simple

Kemel Tabs

c

Last Modified

an hour ago

2 months ago

12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago

2 months ago
amonth ago
2 months ago

2 months ago

12 days ago
12 days ago
12 days ago
12 days ago
12 days ago
12 days ago

12 davs ao

0 M6 & Python3 (ipykerel) | Idie

.10.2 | packaged by conda-forge |
Type ‘copyright’, for more information

IPython 8.0.1 -- An enhanced Interactive Python. Type '7' for help.

English (United States)

OEBPS/Images/r_boxplot.png
GB

DET
Team with possession of the ball

o o o o o o
Lo < o™ N —

sassed Aq Jre ay) Ul pajane.) sple

OEBPS/Images/cover.png
OREILLY"

Football

Analytics with
Python & R

Learning Data Science Through
the Lens of Sports

Early
Release

RAW &
UNEDITED

Eric A. Eager &
Richard A. Erickson

OEBPS/Images/r_scatter.png
13.0-

11.0- o
10

15

2.0 25 3.0
X.axis

OEBPS/Images/python_hist_yac.png
Count

H

0
yards_after_catch

OEBPS/Images/boxplot_colors.png
GB

DET

o o o
< N

sassed Aq Jre ay) Ul pajane.] sples

GB

DET

Team with possession of the ball

OEBPS/Images/gb_score_year_0_coef_plot_both.png
Parameter

Year_0+

(Intercept) 4

o

10
Estimate

20

Year_0

Intercept

—_—_—

10

15

20

25

OEBPS/Images/ggdrav.png
100

200

Pick

50+

OEBPS/Images/example_facet_plot_pass_location.png
DET GB
504 °
n
Q
7
8 40-
>
o
[[]
]
() 30'
s I
o
S
o 204
=
o
Q |
O 104
g —
= T
B
g 01 | | |
g |
left middle right left middle right

Location of pass catch

OEBPS/Images/py_scatter_2.png
2

4 a8 =
(e Iaye sprek

E3

3

]

air_yards

OEBPS/Images/gb_scores_plot.png
@

. .
H s .
] H :

H
. .
e w5 w0

ear

