
EARLY
EARLY

ACCESS
ACCESS

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

The Early Access program lets you read significant portions of an
upcoming book while it’s still in the editing and production phases, so you
may come across errors or other issues you want to comment on. But while
we sincerely appreciate your feedback during a book’s EA phase, please use
your best discretion when deciding what to report.

At the EA stage, we’re most interested in feedback related to content—
general comments to the writer, technical errors, versioning concerns, or
other high-level issues and observations. As these titles are still in draft form,
we already know there may be typos, grammatical mistakes, missing images
or captions, layout issues, and instances of placeholder text. No need to
report these—they will all be corrected later, during the copyediting, proof-
reading, and typesetting processes.

If you encounter any errors (“errata”) you’d like to report, please fill out
this Google form so we can review your comments.

https://docs.google.com/forms/d/e/1FAIpQLSfjCqdOzGOdoe7m1Rgqfo-dqvz85Gqe8758jwUD9mpFYiSjGA/viewform?fbzx=-3092278227089906900

W R I T I N G A C C O M P I L E R
N O R A S A N D L E R
Early Access edition, 3/25/22

Copyright © 2022 by Nora Sandler.

ISBN 13: 978-1-7185-0042-6 (print)
ISBN 13: 978-1-7185-0043-3 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Developmental Editor: Alex Freed
Production Editor: Paula Williamson
Cover Illustrator: James L. Barry
Interior Design: Octopod Studios
Compositor: Happenstance Type-O-Rama

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Introduction

PART I: THE BASICS

Chapter 1: Introduction to Compilers
Chapter 2: Returning an Integer
Chapter 3: Unary Operators
Chapter 4: Binary Operators
Chapter 5: Logical and Relational Operators
Chapter 6: Local Variables
Chapter 7: If Statements and Conditional Expressions
Chapter 8: Compound Statements
Chapter 9: Loops
Chapter 10: Functions
Chapter 11: Static Variables

PART II: IMPLEMENTING TYPES

Chapter 12: Long Integers
Chapter 13: Unsigned Integers
Chapter 14: Floating-Point Numbers
Chapter 15: Pointers
Chapter 16: Arrays and Pointer Arithmetic
Chapter 17: Characters and Strings
Chapter 18: Supporting Dynamic Memory Allocation
Chapter 19: Structures

PART III: OPTIMIZATIONS

Chapter 20: Optimizing TACKY Programs
Chapter 21: Register Allocation

Conclusion: Next Steps

The chapters in red are included in this Early Access PDF.

2
R E T U R N I N G A N I N T E G E R

In this chapter, you’ll write a tiny compiler that can
only handle the simplest possible C programs. You’ll
learn how to read a simple assembly program, and
you’ll implement four basic compiler passes that
you’ll keep building on for the rest of the book. Let’s
start by looking at the four compiler passes you’ll
build in this chapter.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Figure 2-1: Stages of the compiler

The Four Compiler Passes
The compiler you write in this chapter will process source code in four

stages:

The lexer breaks up the source code into a list of tokens. Tokens are the
smallest syntactic units of a program, and include things like delimiters,
arithmetic symbols, keywords, and identifiers. If a program is like a
book, tokens are like individual words.

The parser converts the list of tokens into an abstract syntax tree (AST),

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

which represents the program in a form that we can easily traverse and
analyze.

The code generation pass converts the AST into assembly. At this
stage, we still represent the assembly instructions in a data structure that
the compiler can understand, not as text.

The code emission pass writes the assembly to a file so the assembler
and linker can turn it into an executable.

This is a pretty normal way of structuring a compiler, although the
exact stages and intermediate representations vary. It’s also overkill for this
chapter; the programs you’ll handle here could be compiled in just one pass!
But setting up this structure now will make it easier to expand your compiler
in future chapters. As you implement more language features, you’ll extend
these compiler stages and add a few new ones. Each chapter in the book
starts with a diagram of the compiler's architecture in that chapter, including
the stages you've already implemented and any you'll need to add. Figure 2-
1 shows the four stages you'll implement in this chapter.

Before you start coding, let’s take a quick look at how to compile C to
assembly with GCC, and how to read assembly programs.

Hello, Assembly!
The simplest possible C program looks like this:

1 int main() {
2 return 32;

}

Listing 2-1 A simple program that returns the number 2.

This program consists of a single function 1, main, containing a single
return statement 2, which returns an integer—in this case, 2 3. Let’s
translate the code in Listing 2-1 into assembly using GCC:
$ gcc -S -O -fno-asynchronous-unwind-tables -fcf-
protection=none return_2.c

These GCC options produce fairly readable assembly:

-S Don’t run the assembler or linker. This makes GCC emit assembly
instead of a binary file.

-O Optimize the code. This eliminates some instructions we don’t care
about right now. When you inspect GCC output in later chapters, you’ll
usually want to turn optimization off so you can more clearly see how
code generation works.

-fno-asynchronous-unwind-tables Don’t generate the unwind table,

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

which is used for debugging. We don’t care about it.

-fcf-protection=none Disable control-flow protection. This is a
security feature that adds extra instructions that we don’t care about.
Control-flow protection might already be disabled by default on your
system, in which case this option won’t do anything.

The result, stored in return_2.s, should basically look like this:
1 .globl main
2main:
3 movl $2, %eax
4 ret

Listing 2-2 The program from Listing 2-1 translated into assembly.

N O T E All the assembly listings in this book use AT&T syntax. Elsewhere, you’ll sometimes
see x64 assembly written in Intel syntax. They’re just two different notations
for the same language; the biggest difference is that they put instruction
operands in different order.

Your .s file might contain a few other assembler directives, but you can
safely ignore them for now. The four lines in Listing 2-2 are a complete
assembly program. Assembly programs have several kinds of statements.
The first line, .globl main 1 , is an assembler directive, a statement
that provides directions for the assembler. Assembler directives always
starts with a period. Here, main is a symbol, a placeholder for a memory
address. An assembly instruction can include a symbol when it needs to
refer to the address of a particular function or variable, but the compiler
doesn’t know where that function or variable will end up in memory. Later,
after the linker has combined the different object files that make up the
executable, it can associate each symbol with a memory address; this
process is called symbol resolution. Then the linker will update every place
that uses a symbol to use the corresponding address instead; this is called
relocation.

The .globl main directive tells the assembler that main is a global
symbol. By default, a symbol can only be used in the same assembly file
(and therefore the same object file) where it’s defined. But because main is
global, other object files can refer to it too. The assembler will record this
fact in a section of the object file called the symbol table. The symbol table
contains information about all the symbols in an object file or executable.
The linker relies on the symbol table during symbol resolution. If the
symbol table doesn’t list main as a global symbol, but another object file
tries to refer to it, linking will fail.

Next, we use main 2 as a label for the code that follows it. Labels
consist of a string or number followed by a colon. This label marks the
location that the symbol main refers to. For example, the instruction jmp

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

main should cause the program to jump to the instruction at line 3. But the
label can’t indicate the final location of main; like I mentioned earlier, we
won’t know that until link time. Instead, it defines main as an offset from
the start of the current section in this object file. (An object file includes
different sections for machine instructions, global variables, debug
information, and so on, which are loaded into different parts of the
program's address space at runtime. The object file produced from Listing 2-
2 will only have one section: the text section, which contains machine
instructions.) Because 3 is the very first machine instruction in this file, the
offset of main will be 0. The assembler will record this offset in the symbol
table so the linker can use it to determine the final address of main during
symbol resolution.

FURTHER READING ON LINKERS

The last couple of paragraphs really oversimplified how linking works! If I included a totally
accurate explanation of linkers, this chapter would be 90% about linkers and 10% about your actual
compiler. But you should go read more about linkers, because you need to understand them in order
to really get what’s going on in a running program. Here are some blog posts on linkers that I like:

• “Beginner’s Guide to Linkers,” by David Drysdale, is a good starting point.
(http://www.lurklurk.org/linkers/linkers.html)

• Ian Lance Taylor’s 20-part essay on linkers goes into a lot more depth. The first post is at
https://www.airs.com/blog/archives/38, and there’s a table of contents at
https://lwn.net/Articles/276782/.

• “Position Independent Code (PIC) in shared libraries,” a blog post by Eli Bendersky, provides an
overview of how compilers, linkers, and assemblers work together to produce position-
independent code, focusing on 32-bit machines
(https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/).

• “Position Independent Code (PIC) in shared libraries on x64,” also by Eli Bendersky, builds on
the previous article, focusing on 64-bit systems
(https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-
x64).

Next, we have movl 3, an example of a machine instruction, which is
an instruction that appears in the final executable. The movl instruction in
Listing 2-2 moves the value 2 into a register—a very small, very fast
storage slot that has its own name and sits right on the CPU. Here, we move
2 into the register named EAX, which can hold 32 bits. According to our
platform's calling convention, return values are passed to the caller in EAX
(or RAX, the 64-bit equivalent, depending on the return value’s type). Since
the caller also knows about this convention, it can retrieve the return value
from EAX after the function returns. The l suffix in movl indicates that the
operands to this instruction are long integers. In assembly, unlike most

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

http://www.lurklurk.org/linkers/linkers.html
https://www.airs.com/blog/archives/38
https://lwn.net/Articles/276782/
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64

modern implementations of C, “long” means 32 bits. A movq instruction
operates on quadwords, which is how x64 assembly refers to 64-bit integers.
I’ll just write mov when I want to refer to this instruction without specifying
its size.

Finally, we have another machine instruction, ret 4, which returns
control to the caller. You might see retq here instead of ret, since this
instruction implicitly operates on a 64-bit return address. I’m skipping a lot
of details, like what calling conventions are, who decides on them, or how
ret knows where the caller is. I’ll come back to those details when we add
function calls in chapter 10.

At this point, it’s fair to ask who the caller is, since main is the only
function in this program. It’s also fair to wonder why we need the .globl
main directive, since there don’t seem to be any other object files that could
contain references to main. The answer is that the linker adds a tiny bit of
wrapper code called crt0 to handle setup before main runs, and teardown
after it exits. (The crt stands for “C Runtime.”) This wrapper code
basically does the following:

1. Makes a function call to main. This is why main needs to be globally
visible; if it’s not, crt0 can’t call it.

2. Retrieves the return value from main.

3. Invokes the exit system call, passing it the return value from main.
Then exit handles whatever work needs to happen inside the
operating system to terminate the process and turn the return value
into an exit code.

The bottom line is that you don’t need to worry about process startup or
teardown; you can treat main like a normal function.

To verify that the assembly in Listing 2-2 works correctly, you can
assemble and link it, run it, and check the exit code with the $? shell
operator:
$ gcc return_2.s -o return_2
$./return_2
$ echo $?
2

Note that you can pass an assembly file to GCC just like a regular
source file. GCC assumes any input files with a .s extension contain
assembly, so it will just assemble and link those files without trying to
compile them first.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Writing the Compiler Driver
As we saw in the last chapter, a compiler isn’t very useful on its own.

To turn a source file into an executable, you’ll need to write a compiler
driver that invokes the preprocessor, compiler, assembler, and linker. It’s a
good idea to write a compiler driver that works with test_compiler before
starting on the compiler itself, so you can validate each compiler stage
against the test suite as you go. The compiler driver should do the following:

1. Preprocess a source file:
gcc -E -P INPUT_FILE -o PREPROCESSED_FILE

2. By convention, the preprocessed file should have a .i file extension.

3. Compile the preprocessed source file, and output an assembly file with
a .s extension. You’ll have to stub out this step, since you haven’t
written your compiler yet.

4. Assemble and link the assembly file to produce an executable:
gcc ASSEMBLY_FILE -o OUTPUT_FILE

To work with test_compiler, your compiler driver must be a command-
line program that accepts a path to a C source file as its only argument. If
this command succeeds, it must produce an executable in the same directory
as the input file, with the same name (minus the file extension). In other
words, if you run ./YOUR_COMPILER /path/to/program.c, it should
produce an executable at /path/to/program and terminate with an exit code
of zero. If your compiler fails, the compiler driver should return a non-zero
exit code, and should not write any assembly or executable files; that’s how
test_compiler verifies that your compiler catches errors in invalid programs.
Finally, your compiler driver should support a --lex option that directs it
to just perform the lexing pass, as well as a --parse option that directs it
to just run the lexer and parser but stop before code generation. Neither of
these options should produce any output files.

Once you’ve written the compiler driver, you’re ready to start working
on the actual compiler.

You need to implement the four compiler passes I listed at the
beginning of the chapter: the lexer, which produces a list of tokens; the
parser, which turns those tokens into an abstract syntax tree; the code
generator, which converts the abstract syntax tree into assembly, and the
assembly emitter, which writes that assembly to a file. Let’s look at each of
those passes in more detail.

Writing the Lexer
The lexer should read in a source file and return a list of tokens. Before

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

you can start writing the lexer, you need to know what tokens you might
encounter. Here are all the tokens in Listing 2-1:

int: a keyword

main: an identifier, whose value is “main”

(: an open parenthesis

) : a close parenthesis

{ : an open brace

return: a keyword

2: a constant, whose value is “2”

; : a semicolon

} : a close brace

I’ve used two lexer-specific terms here. An identifier is an ASCII letter
followed by a mix of letters and digits; identifiers are case sensitive. An
(integer) constant consists of one or more digits. (C supports hexadecimal
and octal integer constants too, but you can ignore them to keep things
simple. We’ll add character and floating-point constants in part II.)

Note that identifiers and constants have values in the list of tokens
above, but the other types of tokens don’t. There are many possible
identifiers (foo, variable1, or my_cool_function), so each
identifier token produced by the lexer needs to retain its specific name.
Likewise, each constant token needs to hold an integer value. By contrast,
there's only one possible return keyword, so a return keyword token
doesn't need to store any extra information. Even though main is the only
identifier right now, it’s a good idea to build the lexer in a way that can
support arbitrary identifiers later on. Also note that there are no whitespace
tokens. If we were compiling a language like Python, where whitespace is
significant, we’d need to include whitespace tokens.

You can define each token type with a regular expression. Table 2-1
gives the corresponding regular expression for each token in PCRE syntax:

Table 2-1 Tokens

Token Regular Expression
Identifier [a-zA-Z_]\w*\b
Constant

[0-9]+\b

Int keyword
int\b

Return keyword
return\b

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Open parenthesis
\(

Close parenthesis
\)

Open brace
{

Close brace
}

Semicolon
;

The process of tokenizing a program then looks roughly like this:
while input isn’t empty:
 find longest match at start of input for any regex in
Table 2-1
 convert matching substring into a token
 remove matching substring from start of input
 trim whitespace from start of input
 if no valid token can be created, raise an error

Listing 2-3 Converting a string to a sequence of tokens

Note that identifiers and constants must end at word boundaries. For
example, the first three digits of 123;bar match the regular expression for
a constant, and can be converted into the constant 123. That’s because ;
isn’t in the \w character class, so the boundary between 3 and ; is a word
boundary.

However, the first three digits of 123bar do not match the regular
expression for a constant, because those digits are followed by more
characters in the \w character class instead of a word boundary. If your
lexer sees a string like 123bar it should raise an error, because the start of
the string doesn’t match the regular expression for any token.

You can assume that your C source file only contains ASCII characters.
The C standard provides a mechanism called universal character names to
include non-ASCII characters in identifiers, but we won’t implement them.
Many C implementations let you use Unicode characters directly, but you
don’t need to support that either.

Testing the Lexer
You can test your lexer against all the programs in tests/chapter_2. The

sample programs in tests/chapter_2/invalid_lex all contain invalid tokens, so
they should all cause the lexer to fail with an appropriate error message. The
sample programs in tests/chapter_2/invalid_parse and tests/chapter_2/valid
only contain valid tokens, so the lexer should be able to process them
successfully. You can use the following command to test that your program

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

fails on the programs in tests/chapter_2/invalid_lex and succeeds on
everything else:
$./test_compiler /path/to/your_compiler --chapter 2 --stage
lex

This command just tests whether the lexer succeeds or fails. You may
want to write your own tests to validate that it produces the correct list of
tokens for valid programs and emits an appropriate error for invalid ones.

Implementation Tips
Treat keywords like other identifiers. The regex for identifiers also
matches keywords. Don’t try to simultaneously find the end of the next
token and figure out whether it’s a keyword or not. First, find the end of
the token. Then, if it looks like an identifier, check whether it matches
any of the keywords.

Don’t split on whitespace. It might seem like a good idea to start by
splitting the string on whitespace, but it’s not. It will just complicate
things, because whitespace isn’t the only boundary between tokens. For
example, main() has three tokens and no whitespace.

Writing the Parser
Now that you have a list of tokens, the next step is to figure out how

those tokens are grouped together into language constructs. In most
programming languages, including C, this grouping is hierarchical: each
language construct in the program is composed of several simpler
constructs. Individual tokens represent the most basic constructs, like
variables, constants, and arithmetic operators. Tree data structures are a
natural way to express this hierarchical relationship. A tree representation of
a program is called an abstract syntax tree, or AST. Most compilers use
ASTs internally, and yours will too. Your parser will accept the list of
tokens produced by the lexer and generate an AST. Then your code
generation stage will traverse that AST to figure out what assembly code to
emit.

There are two basic approaches to writing a parser. One option is to
handwrite the code for your parser. The other option is to use a parser
generator like Bison or ANTLR to produce your parsing code
automatically. Using a parser generator is less work than hand-writing a
parser, but this book uses a handwritten parser for a few reasons. Most
importantly, hand-writing a parser will give you a solid understanding of
how your parser works. It’s easy to use a parser generator without really
understanding the code it produces. Many parser generators also have a
steep learning curve, and you’re better off learning general techniques like
recursive descent parsing before you spend a lot of time mastering specific

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

tools.

Handwritten parsers also have some practical advantages over those
produced by parser generators; they can be faster and easier to debug, and
provide better support for error handling. In fact, both GCC and Clang use
handwritten parsers. So writing a parser by hand isn’t just an academic
exercise.

That said, if you’d rather use a parser generator, that’s fine too! It all
depends on what you’re hoping to get out of the book. But I won’t talk
about how to use them, so you’ll have to figure that out on your own. If you
decide to go that route, make sure to research what parsing libraries are
available in your implementation language of choice.

Whichever option you choose, the first step is designing the abstract
syntax tree you want your compiler to produce. It might help to see an
example of an AST first.

An Example Abstract Syntax Tree
Let’s take a look at the AST for this code snippet:

if (a < b) {
 return 2 + 2;
}

Listing 2-4 A simple if statement

This is an if statement, so we’ll label the root of the AST if. The if
node will have two children:

1. The condition, a < b

2. The “then” clause, return 2 + 2;

Each of these constructs can be broken down further. For example, the
condition is a binary operation with three children:

3. The left operand, variable a

4. The operator, <

5. The right operand, variable b

Figure 2-2 shows the whole AST for this code snippet:

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Figure 2-2 An AST for a simple if statement.

The AST in Figure 2-2 contains all the same information as Listing 2-4.
By looking at it, we can tell what actions the program will take, and in what
order. But, unlike Listing 2-4, this AST presents that information in a way
that your compiler can easily work with. In later stages the compiler will
traverse the tree, performing a different action at each type of node it
encounters. We’ll use this general strategy to accomplish a bunch of
different tasks, from resolving variable names to generating assembly.

Now that we understand what ASTs look like in general, we can also
construct a much simpler AST for the C program from Listing 2-1:

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Figure 2-3 The AST for Listing 2-1

Next, you'll define the necessary data structures to construct ASTs like
Figure 2-3 in code.

Defining the AST
This book gives AST descriptions in a language designed for specifying

ASTs, the Zephyr Abstract Syntax Description Language (ASDL). I’m using
ASDL here as convenient, programming-language-neutral notation. You
won’t use ASDL directly in your compiler; instead, you’ll define equivalent
data structures in your chosen programming language. The next few
paragraphs include a very brief overview of ASDL. The original paper,
which describes the whole language, is listed in the Further Reading section
below.

Here’s the ASDL description that covers the tiny subset of C you’ll
implement in this chapter (programs like Listing 2-1):

1program = Program(function_definition)
2function_definition = Function(3identifier name, statement

body)

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

4statement = Return(exp)
5exp = Constant(int)

Listing 2-5 Abstract syntax tree definition for this chapter

Each of the four lines in Listing 2-5 describes how to build one type of
AST node. Note that every AST node in Figure 2-2 has a corresponding
definition in ASDL. The root of this AST is the program node 1. At the
moment, this node can have exactly one child, of type
function_definition. A function definition has two children: a
function name of type identifier, and a function body of type
statement 2. Right now, a function consists of a single statement and
has no arguments. Later, you’ll add support for function arguments and
more complex function bodies. Note that name and body in this definition
are field names, human-friendly labels that don’t change the structure of the
AST. Field names are optional in ASDL. When a field name is present, it
comes immediately after the field type, like in identifier name 3.
I’ll add field names when I think they’ll make things more readable.

In ASDL, identifier is a built-in type that represents function and
variable names; they’re basically strings, but we want to distinguish them
from string literals like “Hello, World!” because they appear in
different parts of an AST. Since identifier is a built-in type, it has no
children. The other child of the function_definition node is
statement. Right now, the only kind of statement is a return statement 4.
A return statement has one child: its return value, of type exp, short for
expression. The only exp at the moment is a constant integer 5; int is
another built-in ASDL type, so our tree is finished.

Of course, return statements aren’t the only statements in C, and
constants aren’t the only expressions. In later chapters, we’ll add new
constructors to represent the other kinds of statements and expressions. For
example, we’ll add an If constructor to statement to represent if
statements:
statement = Return(exp) | If(exp condition, statement then,
statement? else)

The statement? type indicates an optional statement, since if
statements don’t always have an else clause. The | symbol separates
constructors. Here, it tells us that a statement can be either a return
statement, defined by the Return constructor, or an if statement, defined
by the If constructor.

Now that you understand the AST definition in Listing 2-5, you need to
implement it in whatever language you’re using to write your compiler. The
standard way to represent ASTs varies a lot between programming
languages. If you’re implementing your compiler in a functional language
like F#, ML, or Haskell, it’s easy to define your AST using algebraic

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

datatypes. Enums in Rust are basically algebraic datatypes, so they’re also a
good way to represent ASTs. If you’re using an object-oriented language
like Java, you can define an abstract class for each type of node, and define
classes that extend or inherit from those abstract classes for each
constructor. For example, you could define an Exp abstract class, and
Constant and BinaryExp classes that extend it.

FURTHER READING ON AST DEFINITIONS

If you’re still not sure how to write an AST definition in your implementation language of choice,
here are a couple papers that might help:

• “Abstract Syntax Tree Implementation Idioms,” by Joel Jones, provides a good overview of how
to implement ASTs in various programming languages
(https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf).

• “The Zephyr Abstract Syntax Description Language,” the original paper on ASDL, includes
examples of AST definitions in a few different languages
(https://www.cs.princeton.edu/~appel/papers/asdl97.pdf).

Defining the Formal Grammar
An AST has all the information you’ll need in later stages of the

compiler. It does not, however, tell you exactly what tokens make up each
language construct. For example, nothing in the AST description in Listing
2-5 tells us that a return statement needs to end with a semicolon, or a
function body needs to be enclosed in braces. (This is why it’s called an
abstract syntax tree—by contrast, a concrete syntax tree would include
every token from the original input). Once you have an AST, those specific
details are irrelevant, so it’s convenient to leave them out. When you’re
parsing a sequence of tokens to construct your AST, however, those details
are extremely important, because they indicate where each language
construct begins and ends.

So, in addition to an AST description, you’ll need a set of rules about
how to build a language construct from a list of tokens. This set of rules is
called a formal grammar, and it will correspond closely to the AST
description. Here’s the formal grammar for C programs like Listing 2-1:
<program> ::= <function>
<function> ::= “int” <identifier> “(“ “)” “{“ <statement>
“}”
<statement> ::= “return” <exp> “;”
<exp> ::= <int>
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 2-6 Formal grammar for this chapter

The grammar in Listing 2-6 is in a notation called Backus-Naur Form

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

(BNF). Each line of this grammar is a production rule that defines how a
language construct can be formed from a sequence of other language
constructs and tokens. Every symbol that appears on the left-hand side of a
production rule (like <function>) is called a non-terminal symbol.
Individual tokens, like keywords, identifiers, and punctuation, are called
terminal symbols. All non-terminal symbols are wrapped in angle brackets,
and specific tokens (like ;) are wrapped in quotes. The <identifier>
and <int> symbols are special. They represent individual identifier and
constant tokens, respectively, but these tokens aren't set strings like the other
terminal symbols. Since there’s not an easy way to define those symbols in
Backus-Naur form, we describe each of them using a special sequence—
that’s just a plain English description of the symbol, wrapped in question
marks.

Listing 2-6 looks a lot like the AST definition in Listing 2-5. In fact, it
has exactly the same structure—every AST node in Listing 2-5 corresponds
to a non-terminal symbol in Listing 2-6. The only difference is that Listing
2-6 specifies exactly which tokens we’ll find at each node of the tree. This
helps us figure out when we need to start processing a new node at the next
level down in the AST, and when we’ve finished processing a node and can
go back up to its parent on the level above.

Just like later chapters will introduce multiple constructors for some
AST nodes, they’ll introduce multiple production rules for the
corresponding symbols. For example, here’s how we’ll add a production
rule for <statement> to support if statements:

<statement> ::= “return” <exp> “;” | “if” “(“ <exp> “)” <statement> [
“else” <statement>]

Note that brackets in BNF indicate that something is optional, just like
questions marks in ASDL.

You’ll need to refer to this formal grammar while writing the parser,
but you don’t need to explicitly define the grammar rules anywhere in your
compiler.

Recursive Descent Parsing
Now that you have an AST definition and a formal grammar, let’s talk

about how to actually write the parser. We’ll use a straightforward technique
called recursive descent parsing. A recursive descent parser uses a different
function to parse each non-terminal symbol and return the corresponding
AST node. For example, when the parser expects to encounter the
<statement> symbol we defined in Listing 2-6, it will call a function to
parse that symbol and return the statement AST node we defined in
Listing 2-5. To parse an entire program, you’ll call the function that parses
the <program> symbol. With each function call to handle a new symbol,

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

the parser descends to a lower level in the tree. That’s where the descent in
recursive descent comes from. (It’s called recursive descent because the
grammar rules are often recursive, in which case the functions to process
them will be too. For example, the operand of an expression could be
another expression—we’ll see an example of that in the next chapter.)

Because the process of parsing a symbol is easier to explain in code,
let’s look at some pseudocode for parsing a <statement> symbol. Once
you understand it, you can write your own code to process <statement>
and all the other non-terminal symbols in Listing 2-6.

1parse_statement(tokens):
2 expect("return", tokens)
 return_val = parse_exp(tokens)3
4 expect(";", tokens)
5 return Return(return_val)

expect(expected, tokens):
 actual = take_token(tokens)
 if actual != expected:
 fail()

Listing 2-7 Parsing a statement

We’ll call the parse_statement function 1 when we expect the list
of remaining tokens to start with a <statement>. According to Listing 2-
6, a <statement> consists of three symbols: the return keyword, an
<exp> symbol, and a “;” token. First, we call a helper function, expect
2 , to verify that the first token really is a return keyword. If it is,
expect just discards it so we can move on to the next token. If it isn’t,
there’s a syntax error in the program. Next, the grammar tells us that the
return keyword should be followed by an <exp> symbol. We need to
turn this symbol into an exp AST node so we can construct the return
statement. Since this is a different non-terminal symbol, it should be handled
by a separate function, parse_exp, which I haven’t defined here. Once
we’ve gotten the AST node representing the return value back from
parse_exp 3, we just need to verify that it’s followed by the last token, a
semicolon. We handle this with expect 4, just like we handled the
return keyword at 2. At this point, we know the statement is syntactically
valid, so we can return an AST node 5.

Note that the parse_statement function removes all the tokens
that made up the statement from the tokens list. After
parse_statement returns, its caller will keep processing the remaining
tokens in tokens. If there are any tokens left after parsing the entire
program, that’s a syntax error.

The other thing to note is that this pseudocode is written a very
imperative way. Functional languages (the sorts of languages I

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

recommended in the last chapter!) generally won’t let you modify the input
list like I’m doing here. So the details of how your parser passes tokens
around will probably differ from Listing 2-7, but the overall structure will be
the same.

Right now, each symbol in our formal grammar has only one
production rule. In later chapters, when some symbols have multiple
production rules, your parser will need to figure out which production rule
to use. It can do that by looking at the first few tokens in the list without
removing them. Recursive descent parsers that look ahead a few tokens to
figure out which production rule to use are called predictive parsers. The
alternative to predictive parsing is recursive descent with backtracking—
trying each production rule in turn until you find one that works.

Testing the Parser
Your parser should fail on the programs in

tests/chapter_2/invalid_parse and succeed on the programs in
tests/chapter_2/valid. To test the parser, run:
$./test_compiler /path/to/your_compiler --chapter 2 --stage
parse

This command only tests whether the parser succeeds or fails, so you
may want to write your own tests to confirm that it produces the correct
AST for valid programs and emits an appropriate error for invalid ones.

Implementation Tips
Write a pretty-printer. A pretty-printer is a function that prints out
your AST in a human-readable way. This will make debugging your
parser a lot easier. For example, a pretty-printed AST for the program in
Listing 2-1 might look something like this:
Program(
 Function(
 name=”main”
 body=Return(
 Const(2)
)
)
)

Give informative error messages. This will also help you debug your
parser (and if anyone ever wants to use your compiler, it will help them
too). An error message like Expected “;” but found
“return” is a lot more helpful than Fail.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Writing the Code Generator
The code generation pass should convert the AST into x64 assembly. It

should traverse the AST in roughly the order the program executes,
producing the appropriate assembly instructions for each node. First, you
need to define an appropriate data structure to represent the assembly
program, just like you needed to define a data structure to represent the AST
when you wrote the parser. You’re adding yet another data structure, instead
of writing assembly to a file right away, so that you can modify the
assembly code after you’ve generated it. You won’t need to rewrite any
assembly in this chapter, but in later chapters you will.

I’ll use ASDL again to describe the structure we’ll use to represent
assembly. Here’s the definition:

1program = Program(function_definition)
2function_definition = Function(identifier name, instruction*

instructions)
3instruction = Mov(operand src, operand dst) | Ret
4operand = Imm(int) | Register

Listing 2-8 ASDL definition of an assembly program

This looks a lot like the AST definition from the last section! In fact,
this is an AST—but it’s an AST that represents an assembly program, not a
C program. Every node corresponds to a construct in assembly, like a single
instruction, rather than a construct in C, like a statement. I’ll refer to the data
structure defined in Listing 2-8 as the “assembly AST” to distinguish it from
the AST defined in Listing 2-5.

Let’s walk through Listing 2-8. An assembly program still consists of a
single function 1, which has a name and a list of instructions 2. The * in
instruction* indicates that it’s a list of instructions, not just one. The
two instructions 3 that can appear in our very simple assembly programs are
mov and ret, which we saw in Listing 2-2. The mov instruction has two
operands: its copies the first operand, the source, to the second operand, the
destination. The ret instruction doesn’t have any operands. The two
possible operands 4 to an instruction are a register and an immediate value,
which is a value included in the instruction – in other words, a constant. For
now, you don’t need to specify which register to operate on, because your
generated code will only use EAX. You’ll need to refer to other registers in
later chapters.

This pass will have a similar structure to the parser, so I won’t write out
the pseudocode here. You’ll need a function to handle each type of AST
node, which will call other functions to handle that node’s children. Here’s
the equivalent assembly you need for each AST node:

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Table 2-2 AST nodes and equivalent assembly

AST Node Assembly Construct
Program(function_definition) Program(function_definition)
Function(name, body) Function(name, instructions)
Return(exp) Mov(exp, Register)

Ret
Constant(int) Imm(int)

This translation is pretty straightforward, but there are a couple things
to note. The first is that a single statement results in multiple assembly
instructions. The second is that this translation only works if an expression
can be represented as a single assembly operand. That’s true right now,
because the only expression is a constant integer. But it won’t be true once
we encounter unary operators in the next chapter. At that point, your
compiler will need to generate multiple instructions to calculate an
expression, and then figure out where that expression is stored in order to
copy it into EAX.

Testing the Code Generator
To test the code generation stage, run:

$./test_compiler /path/to/your_compiler --chapter 2 --stage
codegen

The --stage codegen option will run your whole compiler. Like
the equivalent lex and parse options, it will just check whether the
compiler succeeds or fails. Your code generation stage should be able to
handle any program that parses successfully, so this just tests that your code
generation stage can handle every valid program. You may want to write
your own tests to confirm that your compiler generates the assembly you
expect.

Implementation Tips
Plan ahead for Part II! If you go on to do Part II of the book, you’ll
need to update the Mov instruction, and many of the other instructions
we’ll add in the next few sections, to store type information. You might
want to define your assembly AST in a way that makes it easy to add
more fields to each constructor later on. If there’s no good way to do
that in your implementation language, that’s okay; it just means you’ll
have a little extra refactoring to do in part II.

Writing the Code Emitter
Now that your compiler can generate assembly instructions, the last

step is writing those instructions to a file. Here’s how to print each assembly

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

construct:

Table 2-3 Formatting assembly

Assembly Construct Output
Top-level Constructs
Program(function_definition) (just print out the function definition)
Function(name, instructions) .globl <name>

<name>:
 <instructions>

Instructions
Mov(src, dst) movl <src>, <dst>
Ret ret

Operands
Register %eax
Imm(int) $<int>

Note that there must be a line break between instructions, just like in
Listing 2-2. The code emission step will need to traverse the assembly AST,
just like the code generation stage traverses the AST from Listing 2-5.
Because the assembly AST corresponds so closely to the final assembly
program, the code emission stage will be very simple, even as you add more
functionality to the compiler in later chapters.

N O T E If you’re compiling on macOS, you need an underscore in front of the function name.
For example, if you compile a function called main, the label in the resulting
assembly should be _main. If you’re on any other system, don’t include an
underscore.

Testing the Whole Compiler
To test the whole compiler from lexing to code generation, run:

$./test_compiler /path/to/your_compiler --chapter 2

This will compile each program in tests/chapter_2/valid with your
compiler and GCC, run both executables, and verify that they produce the
same exit code. It will also validate that all the invalid programs fail, but
you should have already confirmed that during the earlier stages.

Implementation Tips
Generate readable assembly. When you debug your compiler, you’ll
spend a lot of time reading the assembly it produces. Your life will be
easier if that assembly is nicely formatted. You can indent every line
except for labels, like GCC does, to make your assembly more readable.
(That’s also how I’ve formatted Listing 2-2.) If you like, you can also
include comments in your assembly programs. A # symbol in an

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

assembly program comments out the rest of the line—it works just like
// in C.

Summary
In this chapter, you wrote a compiler that can transform a complete C

program into an executable that runs on your computer. You learned how to
interpret a program written in x64 assembly, a formal grammar in Backus-
Naur form, and an AST definition in ASDL. The skills and concepts you
learned in this chapter—and the four compiler stages you implemented—are
the foundation for everything you’ll do in the rest of the book.

In the next chapter, you’ll add support for unary operators to your
compiler. Along the way, you’ll learn about how assembly programs
manage the stack, and we’ll introduce a new way to represent the programs
you compile to make them easier to analyze, transform, and optimize.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

3
U N A R Y O P E R A T O R S

C has several unary operators, which operate on a
single value. In this chapter, you’ll extend your
compiler to handle two unary operators: negation and
bitwise complement. You’ll update the lexer, parser,
and code emission pass to handle these new operators,
but the code generation stage will require the biggest
changes. Between parsing and code emission, you’ll
need to transform complex, nested expressions into
simple operations that can be expressed in assembly.
Instead of performing this transformation in a single
compiler pass, we’ll introduce a new intermediate

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

representation between the AST produced by the
parser and the assembly program produced by the
code generation pass. We’ll also break up code
generation into several smaller passes. To get started,
let's look at a C program that uses our new unary
operators, and the corresponding assembly we want to
generate.

Figure 3-1 Stages of the compiler

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Negation and Bitwise Complement in Assembly

In this chapter, you’ll learn how to compile programs like this one:
int main() {
 return ~(-2);
}

Listing 3-1 A C program with negation and bitwise complement

This program uses both of the unary operations we’ll introduce in this
chapter. It also includes a nested expression. If you implement your
compiler the way I suggest, it will produce the assembly listing below from
the program in Listing 3-1:
 .globl main
main:
 pushq %rbp
 movq %rsp, %rbp
 subq $8, %rsp

1 movl $2, 2-4(%rbp)
3 negl -4(%rbp)
4 movl -4(%rbp), %r10d
5 movl %r10d, -8(%rbp)
6 notl -8(%rbp)

 movl -8(%rbp), %eax
7 movq %rbp, %rsp

 popq %rbp
 ret

Listing 3-2 Assembly code for Listing 3-1

The first three instructions after main are the function prologue, which
set up the current stack frame; I’ll cover them more when I talk about the
stack in detail below. After the function prologue, we’ll calculate the
intermediate result, -2, and then final result, 1, storing each of them at
unique memory address. The resulting assembly isn’t very efficient; we
waste a lot of instructions copying values from one address to another. But
this approach sets us up to generate more efficient assembly later on. In Part
III, you’ll see how to store as many intermediate results as possible in
registers, instead of memory, which will speed things up and eliminate a lot
of unneeded copies.

N O T E If you compile Listing 3-1 to assembly using GCC, or any other production C compiler,
it won’t look anything like Listing 3-2, because those compilers evaluate
constant expressions at compile time, even when optimizations are disabled!
The basis for this seems to be section 6.6 of the C standard, which states that
"[a] constant expression can be evaluated during translation rather than runtime,

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

and accordingly may be used in any place that a constant may be." Evaluating
all constant expressions at compile time is an easy way to implement this part of
the standard.

The first movl instruction 1 stores 2 at an address in memory. The
operand -4(%rbp) 2 means “the value stored in the RBP register, minus
4.” The value in RBP is a memory address on the stack (more on that
below), so 2 refers to another memory address four bytes lower. That
address is where instruction 1 will store 2. Then we negate the value at this
address with the neg instruction 3, so -4(%rbp) now contains the value -
2. (Just like mov, neg has an l suffix to indicate that it’s operating on a 32-
bit value.)

Next, we need to handle the outer bitwise complement expression. The
first step is copying the source value, stored in -4(%rbp), to the
destination address at -8(%rbp). We can’t do this in a single instruction,
because the mov instruction can’t have memory addresses as both source
and destination operands. At least one operand to mov needs to be a register
or an immediate value. We’ll get around this by copying -2 from memory
into a scratch register, R10D 4, and from there to the destination memory
address 5. We then take the bitwise complement of -2 with the not
instruction6, so memory address -8(%rbp) now contains value we want to
return: ~(-2), which comes out to 1. To return this value, we have to move
it into EAX. The next three instructions make up the function epilogue,
which tears down the stack frame and then returns from the function 7.

REPRESENTING SIGNED INTEGERS IN TWO'S COMPLEMENT

All modern computers use a two's complement representation of signed integers. A firm grasp
on two's complement will help you understand and debug the assembly code your compiler
generates. If you aren't already familiar with two's complement, or you need a refresher, here are a
couple helpful resources:

"Two's Complement", by Thomas Finley, covers how and why two's complement
representations work. (https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html)

The second chapter of The Elements of Computing Systems, by Noam Nisan and Shimon
Schocken, covers similar material from a more hardware-focused perspective. This is the
companion book for the Nand to Tetris project. This chapter is freely available at
https://www.nand2tetris.org/course; click on the book icon under "Project 2: Boolean Arithmetic".

The Stack

There are still two unanswered questions about the code in Listing 3-2:

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

https://www.cs.cornell.edu/%7Etomf/notes/cps104/twoscomp.html
https://www.nand2tetris.org/course

what the function prologue and epilogue do, and why we refer to stack
addresses relative to a value in the RBP register. To answer both those
questions, we need to talk more about the segment of program memory
called the stack. The address of the top of the stack is stored in the RSP
register, which is also called the stack pointer. (By convention, RSP points
to the last used stack slot, rather than the first free one.) Like you’d expect
with any stack data structure, you can push things onto the stack and pop
values off of it; the push and pop assembly instructions do exactly that.

The stack grows towards lower memory addresses. When you push
something onto the stack, you decrement RSP. Whenever I say “top of the
stack”, I mean the address stored in RSP, which is the lowest address on the
stack. Note that the stack diagrams in this book, unlike other diagrams you
may have seen, are oriented with lower memory addresses at the top. To
help you remember how these diagrams are laid out, you can think of
memory addresses like line numbers in a code listing: the top of the listing is
at line 0, and line numbers increase as you go down. That means the top of
the stack is on top of the diagram.

An instruction like push $3 does two things:

1. Write the value being pushed (in this example, 3) to the next empty
spot on the stack. The push and pop instructions adjust the stack
pointer in 8-byte increments, and the top value on the stack is currently
at the address stored in RSP, so the next empty spot is RSP - 8.

2. Decrement RSP by eight. The new address in RSP is now the top of the
stack, and the value at that address is 3.

Figure 3-2 illustrates the effect of a push instruction on the stack and
RSP register.

Figure 3-2 Effect of push $3 instruction on memory and RSP.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

The pop instruction does the opposite. For example, pop %rax would
copy the value at the top of the stack into the RAX register, and then add
eight to RSP.

Since the push instruction decrements the stack pointer by eight bytes,
it has to push an 8-byte value. Likewise, the pop instruction can only pop 8-
byte values off the stack. Because x64 memory addresses are eight bytes, we
can use push and pop to put them on and take them off the stack. But the
int type is only four bytes. If you want to put a 4-byte value on the stack,
like the literal 2 from Listing 3-1, you can’t use push, so you have to use
mov instead. (On 32-bit architectures, the reverse is true; you can push and
pop 4-byte values but not 8-byte values. In either case, it’s also possible to
push and pop 2-byte values, but as far as I know you’d never want to do
that.)

The stack isn’t just an undifferentiated chunk of memory; it’s divided
into sections called stack frames. Whenever a function is called, it allocates
some memory at the top of the stack by decreasing the stack pointer. This
memory is the function’s stack frame. Just before the function returns, it
deallocates its stack frame, restoring the stack pointer to its previous value.
We'll store the base of the current stack frame in the RBP register, which is
the usual approach. We can refer to data in the current stack frame relative
to the address stored in RBP. That way we don’t need absolute addresses,
which we can’t know in advance. Since the stack grows toward lower
memory addresses, any address in the current stack frame will be lower than
the address stored in RBP, which is why we refer to local variables with
operands like -4(%rbp). We can also refer to data in the caller’s stack
frame, like function arguments, relative to RBP. We’ll need to do that later
when we implement function calls. (Alternatively, we could refer to local
variables and parameters relative to RSP, and not bother with RBP at all;
some compilers do this as an optimization. We'll stick with RBP-relative
addressing because the resulting assembly is easier to understand.)

So, the first thing a function needs to do is set up a new stack frame,
and the last thing it needs to do before it returns is restore the caller’s stack
frame. The function prologue sets up the stack frame in three instructions, as
shown in Figure 3-3:

1. pushq %rbp saves the current value of RBP, the address of the
base of the caller’s stack frame, onto the stack. We save it because
we’ll need it to restore the caller’s stack frame later. This value will
be at the bottom of the new stack frame established by the next
instruction.

2. movq %rsp, %rbp makes the top of the stack the base of the new

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

stack frame. At this point, the top and bottom of the current stack frame
are the same. The current stack frame holds exactly one value, which
both RSP and RBP point to: the base of the caller’s stack frame, which
we saved in the previous instruction.

3. subq $n, %rsp decrements the stack pointer by n bytes. The stack
frame now has n bytes available to store local and temporary variables.
In Figure 3-3, this instruction allocates 24 bytes, enough space for six 4-
byte integers. It would also work to just push values onto the stack as
needed, instead of allocating space for all of them up front, but most
compilers don’t do that. One problem with that approach is that you can
only push 8-byte values. That’s inconvenient when you want to store 4-
byte integers, like we do right now.

Figure 3-3 State of the stack at each point in the function prologue

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

The function epilogue needs to restore the caller’s stack frame; that
means RSP and RBP need to have the same values they did before the
function prologue. This requires two instructions, as shown in Figure 3-4:

1. movq %rbp, %rsp puts us back where we were after the second
instruction of the function prologue: both RSP and RBP point to
bottom of the current stack frame, which holds the caller’s value
for RBP.

2. popq %rbp reverses the first instruction of the function prologue and
restores the caller’s values for both the RSP and RBP registers. It
restores RBP because the value at the top of the stack was the base
address of the caller’s stack frame that we stored in the first instruction
of the prologue. It restores RSP because it pops the last value in this
stack frame off the stack, leaving RSP pointing to the top of the caller’s
stack frame.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Figure 3-4 State of the stack at each point in the function epilogue

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Now that we know what output our compiler should produce, we’re
ready to continue coding. Let’s start by extending the lexer and parser.

Extending the Lexer

You’ll need to extend the lexer to recognize three new tokens:

~ : a tilde, the bitwise complement operator

- : a hyphen, the negation operator

-- : two hyphens, the decrement operator

You won’t implement the decrement operator in this chapter, but you
still need to add a token for it. Otherwise, your compiler will accept
programs it should reject, like this one:
int main() {
 return --2;
}

Listing 3-3 An invalid C program using the decrement operator

This shouldn’t compile, because you can’t decrement a constant. But if
your compiler doesn’t know that -- is a distinct token, it will think Listing
3-3 is equivalent to:
int main() {
 return -(-2);
}

Listing 3-4 A valid C program with two negation operators in a row

which is a perfectly valid program. Your compiler should reject
language features you haven’t implemented—it shouldn’t compile them
incorrectly. That’s why your lexer needs to know that -- is a single token,
not just two negation operators in a row. (On the other hand, the lexer
should lex ~~ as two bitwise complement operators in a row. Expressions
like ~~2 are perfectly valid.)

You can process the new tokens exactly the same way you handled
punctuation like ; and (in the previous chapter. First, you’ll need to define
a regular expression for each new token—the regular expressions here will
just be the strings ~, -, and --. Next, have your lexer check the input
against these new regexes, as well as the regexes from the previous chapter,
every time it tries to produce a token. Remember that when the start of the
input stream matches more than one possible token, you should always

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

choose the longest one. So, if your input stream ever starts with --, you’ll
parse it as a decrement operator rather than two negation operators.

Testing the Lexer

The lexer should successfully lex all the test cases for this chapter,
including the valid test programs in tests/chapter_3/valid and the invalid test
programs in tests/chapter_3/invalid_parse. To test your lexer against all the
test cases so far, run:
$./test_compiler /path/to/your_compiler --chapter 3 --stage
lex

This will also run all the lexing test cases from Chapter 2, to make sure
your lexer can still handle them.

Extending the Parser

To parse the new operators in this chapter, we first need to extend the
AST and formal grammar we defined in Chapter 2. Let’s look at the AST
first. Since unary operations are expressions, we’ll represent them with a
new constructor for the exp AST node. Here’s the updated AST definition,
with new parts bolded:
program = Program(function_definition)
function_definition = Function(identifier name, statement
body)
statement = Return(exp)
exp = Constant(int) | Unary(unary_operator, exp)
unary_operator = Complement | Negate

Listing 3-5 Abstract syntax tree with unary operations

The updated rule for exp indicates that an expression can be either a
constant integer or a unary operation. A unary operation consists of one of
the two unary operators, Complement or Negate, applied to an inner
expression. Notice that the definition of exp is recursive: the Unary
constructor for an exp node contains another exp node. That lets us
construct arbitrarily deeply nested expressions, like -(~(-~-(-4))).

We also need to make the corresponding changes to the grammar:
<program> ::= <function>
<function> ::= “int” <identifier> “(“ “)” “{“ <statement>
“}”
<statement> ::= “return” <exp> “;”
<exp> ::= <int> | <unop> <exp> | “(“ <exp> “)”

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

<unop> ::= “-“ | “~”
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 3-6 Formal grammar with unary operations

Listing 3-6 includes a new production rule for unary expressions, and a
new <unop> symbol to represent the two unary operators. Those changes
correspond exactly with the addition to the AST in Listing 3-5. We’ve also
added a third production rule for the exp symbol, which doesn’t correspond
to anything in Listing 3-5. This rule just indicates that if you wrap an
expression in parentheses, the result is still an expression. It doesn’t have a
corresponding constructor in the AST because the rest of the compiler
doesn’t need to distinguish between an expression wrapped in parentheses
and the same expression without parentheses. The expressions 1, (1), and
((((1)))) should all be represented by the same AST node:
Constant(1).

The decrement operator --, doesn’t show up anywhere in this
grammar. That means your parser should fail if it encounters a -- token.

To update the parsing stage, you first need to modify your compiler’s
AST data structure to match Listing 3-5. Then you need to update your
recursive descent parsing code to reflect the changes in Listing 3-6. Parsing
an expression is a bit more complicated than it was in the previous chapter,
because the <exp> symbol has three different production rules and you
need to figure out which one to apply. This pseudocode sketches out how to
parse an expression:
parse_exp(tokens):

1 next_token = peek(tokens)
2 if next_token is an int:
 --snip--
3 else if next_token is “~” or “-“:
4 operator = parse_unop(tokens)
5 inner_exp = parse_exp(tokens)
6 return Unary(operator, inner_exp)
7 else if next_token == “(“:

 take_token(tokens)
 inner_exp = parse_exp(tokens)
 expect(“)”, tokens)

8 return inner_exp
 else:
 fail()

Listing 3-7 Pseudocode for parsing an expression

The first step is looking at the next token in the input to figure out

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

which production rule to apply. We call peek 1 to look at this token
without removing it from the input stream. Once we know which production
rule to use, we’ll want to process the whole input, including that first token,
using that rule. That’s why we don’t want to consume this token from the
input just yet. (Like I mentioned in the last chapter, you might not consume
tokens from the input stream exactly as I’ve described here, so you might
look at the first token without actually calling a peek function.)

If the expression we’re about to parse is valid, next_token should be
an integer, a unary operator, or an open parenthesis. If it’s an integer 2, we
can parse it exactly the same way we did in the previous chapter. If it’s a
unary operator 3, we need to apply the second production rule for <exp>
from Listing 3-6 to construct a unary expression. This rule is <unop>
<exp>, so we’ll parse the unary operator and then the inner expression. The
<unop> symbol is a single token, next_token, which we’ve already
inspected. In Listing 3-7, we handle <unop> in a separate function 4
(parse_unop, whose definition I’ve omitted). In practice, it might be
unnecessary to define a separate function to parse just one token. Either
way, we’ll end up with a very simple AST node representing the appropriate
unary operator. The operator should be followed by an <exp> symbol,
which we’ll process with a recursive call to parse_exp 5. (This is the
recursive part of “recursive descent.”) That call should return an exp AST
node representing the operand of the unary expression. Now we have AST
nodes for both the operator and the operand, so we can return the AST node
for the whole unary expression6.

If next_token is an open parenthesis 7, it should be immediately
followed by a valid expression, so we remove the parenthesis from the input
stream and call parse_exp recursively to handle the expression that
follows. The inner expression should be followed by a closing parenthesis to
balance out the opening parenthesis we already processed. We call expect
to remove that closing parenthesis or throw a syntax error if it’s missing.
Since the AST doesn’t need to indicate that there were parentheses, we can
just return the inner expression as-is 8.

If next_token isn’t an integer, a unary operator, or an open
parenthesis, the expression must be malformed, so we throw a syntax error.

Testing the Parser

The parser should be able to handle every valid test case in
tests/chapter_3/valid, and raise an error on every invalid test case in
tests/chapter_3/invalid_parse. It should also continue to handle valid and
invalid test cases from the last chapter correctly. To test your parser against

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

the test cases from this chapter and last chapter, run:
$./test_compiler /path/to/your_compiler --chapter 3 --stage
parse

TACKY: A New Intermediate Representation

Converting the AST to assembly isn’t as straightforward as it was in the
last chapter. C expressions can have nested sub-expressions, and assembly
instructions can’t. A single expression like -(~2) needs to be broken up
into two assembly instructions: one to apply the inner bitwise complement
operation, and one to apply the outer negation operation.

We’ll bridge the gap between C and assembly using a new intermediate
representation (IR), three-address code (TAC). In three-address code, the
operands of each instruction must be constants or variables, not nested
expressions. That means each instruction uses at most three values: two
operands and a destination. (It would be more accurate to call this two-
address code until we implement binary operators in the next chapter.) To
rewrite nested expressions in three-address code, we often need to introduce
new temporary variables. For example, return 1 + 2 * 3 would
become:
tmp0 = 2 * 3
tmp1 = 1 + tmp0
return tmp1

Listing 3-8 Three-address code for return 1 + 2 * 3

There are two main reasons to use three-address code instead of
converting an AST directly to assembly. The first is that it lets us handle
major structural transformations, like removing nested expressions,
separately from the details of assembly language, like figuring out which
operands are valid for which instructions. This lets us keep each compiler
pass small, instead of having one really big compiler pass handling all those
concerns. The second reason is that three-address code is well-suited to
several of the optimizations we'll implement in Part III. It has a simple,
uniform structure, which makes it easy to answer questions like “is the result
of this expression ever used?” or “will this variable always the have same
value?” The answers to those questions will determine what optimizations
are safe to perform.

MULTIPLE LANGUAGES, MULTIPLE TARGETS

Intermediate representations like three-address code are useful for one other reason, although
it isn’t relevant to this project. An intermediate representation can provide a common target for

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

multiple source languages and a common starting point for assembly generation for multiple target
architectures. The LLVM compiler framework is a great example of this: it supports several frontends
and backends using a single intermediate representation. If you want to compile a new programming
language, you can just compile it to the LLVM IR, and then LLVM can do all the work of optimizing
that IR and producing machine code for a bunch of different CPU architectures. Or, if you want to run
software on some exotic new CPU architecture, you can just write a backend that converts the LLVM
IR into machine code for that architecture, and you’ll automatically be able to compile any language
with an LLVM frontend for that architecture.

It’s pretty normal for compilers to use some sort of three-address code
internally, but the details vary. I’ve decided to name the intermediate
representation in this book TACKY. (Naming your intermediate
representations is, in my opinion, one of the best parts of compiler design.) I
made up TACKY for this book, but it’s similar to three-address code in
other compilers.

Defining TACKY

We can define TACKY in ASDL, just like our other intermediate
representations. It looks almost, but not quite, like the AST definition from
Listing 3-4:
program = Program(function_definition)
function_definition = Function(identifier, 1instruction*
body)
instruction = Return(val) | Unary(unary_operator, val src,
val dst)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate

Listing 3-9 Definition of TACKY

In TACKY, a function body consists of a list of instructions1, not just a
single statement. In this respect, it’s similar to the assembly AST we defined
in the previous chapter. For now, TACKY has two instructions. Return
returns a value. Unary performs some unary operation on src, the source
value for the expression, and stores the result in dst, the destination. Both
of these instructions operate on vals, which can be either constant integers
(Constant) or temporary variables (Var).

TACKY makes a couple of assumptions that aren’t explicit in Listing 3-
9. The first assumption is that the dst of a unary operation will be a
temporary Var, not a Constant. Trying to assign a value to a constant
wouldn’t make sense. The second assumption is that you’ll always assign a
value to a temporary before you use it. Right now, the only way to assign a
value to a variable is by making it the dst of a unary operation. There are

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

two ways to use a variable: by returning it, or by using it as the src of a
unary operation. Because we’re generating TACKY from an AST that we
know is valid, we can guarantee that both of those assumptions hold.

You’ll need to define a data structure for TACKY, just like you did for
the AST and assembly AST. It can be similar to the data structures you used
for the AST and assembly AST. For example, if you defined a separate
algebraic datatype or abstract class for each node in the assembly AST,
you’ll want to take the same approach here. Once you have your data
structure, you’re ready to write the IR generation stage, which converts the
AST from Listing 3-5 into TACKY.

Generating TACKY

Your IR generation pass needs to take an AST in the form defined in
Listing 3-5, and return a TACKY AST in the form defined in Listing 3-9.
The tricky part is turning an expression into a list of instructions; once you
have that figured out, handling all the other AST nodes is easy. Table 3-1
lists a few examples of ASTs and the resulting TACKY:

Table 3-1 TACKY representations of unary expressions

AST TACKY

Return(Constant(3)) Return(Constant(3))

Return(Unary(Complement, Constant(2))) Unary(Complement, Constant(2),

Var(tmp0))

Return(Var(tmp0))

Return(Unary(Negate,

 Unary(Complement,

 Unary(Negate,

Constant(8))))

Unary(Negate, Constant(8), Var(tmp0))

Unary(Complement, Var(tmp0),

Var(tmp1))

Unary(Negate, Var(tmp1), Var(tmp2))

Return(Var(tmp2))

In the examples above, we convert each unary operation into a Unary
TACKY instruction, starting with the innermost expression and working our
way out. We store the result of each Unary instruction in a temporary
variable, which we then use in the outer expression or return statement. The

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

pseudocode in Listing 3-10 describes how to generate these TACKY
instructions.
emit_tacky(e, instructions):

1 match e with
 | 2 Constant(c) -> return 3 Constant(c)

 | Unary(op, inner) ->
4 src = emit_tacky(inner, instructions)
5 dst_name = make_temporary()

 dst = Var(dst_name)
 tacky_op = convert_unop(op)

6 instructions.append(Unary(tacky_op, src, dst))
 return dst

Listing 3-10 Pseudocode to convert an expression into a list of TACKY instructions

This pseudocode emits the instructions needed to calculate an
expression by appending them to the instructions argument. It also
returns a TACKY val that represents the result of the expression, which
we’ll use when we translate the outer expression or statement.

The match statement in Listing 3-10 checks which type of expression
we’re translating, then runs the clause to handle that kind of expression 1. If
the expression is a constant, we’ll just return the equivalent TACKY
Constant without generating any new instructions. Note that the
Constant constructs at 2 and 3 are different; 2 is a node in the original
AST, while 3 is a node in the TACKY AST. (The same is true for the two
Unary constructs that appear in the next clause.)

If e is a unary expression, we’ll construct TACKY values for the source
and destination. First, we’ll call emit_tacky recursively on the source
expression to get the corresponding TACKY value 4. This will also generate
the TACKY instructions to calculate that value. Then, we’ll create a new
temporary variable for the destination 5. The make_temporary helper
function will generate a unique name for this variable. We’ll use another
helper function, convert_unop, to convert the unary operator to its
TACKY equivalent. I won’t provide pseudocode for either of these helper
functions, since they’re very simple. Once we have our source, destination,
and unary operator, we’ll construct the Unary TACKY instruction and
append it to the instructions list 6. Finally, we’ll return dst as the
result of the whole expression.

Testing the TACKY Generator

The TACKY generator should be able to handle every valid test case
from this chapter and the one before. To test this stage, we’ll run the whole
compiler and check whether it succeeds or fails, without inspecting its

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

output. You can run those tests with:
$./test_compiler /path/to/your_compiler --chapter 3 --stage
codegen

The TACKY stage shouldn’t encounter any invalid test cases, because
the lexer and parser should catch them first.

Implementation Tips

Generate globally unique names. In the TACKY examples in Table 3-
1, it’s clear that giving two temporary variables the same name would
be an error. In later chapters, we’ll want to guarantee that no two
temporaries share the same name, even if they’re in different functions.
That makes IR generation easier, because you don’t have to think about
whether it’s safe for two temporaries to have the same name or not. So,
you’ll want a convenient way to generate unique names. One easy
solution is to maintain a global counter; to generate a unique name, just
increment the counter and use its new value (or its new value plus some
descriptive string) as your variable name. Because these names won’t
appear in assembly, they don’t need to follow any particular naming
convention; they just have to be unique.

Handle expressions in general, not return statements in particular.
Right now, expressions only appear in return statements, but they’ll
show up in other kinds of statements in later chapters. Make sure your
solution can be extended to handle expressions that aren’t in return
statements.

Assembly Generation

TACKY is closer to assembly, but it still doesn’t specify exactly which
assembly instructions we need. The next step is converting the program
from TACKY into the assembly AST we defined in the last chapter. We’ll
do this in three small compiler passes. First, we’ll produce an assembly
AST, but still refer to temporary variables directly. Next, we’ll replace those
variables with concrete addresses on the stack. That step will result in some
invalid instructions, because many x64 assembly instructions can’t use
memory addresses for both operands. So, in the last compiler pass, we’ll
rewrite the assembly AST to fix any invalid instructions.

Converting TACKY to Assembly

First, we need to extend the assembly AST we defined in the last
chapter. We need a way to represent the neg and not instructions that we

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

used in Listing 3-2. We also need to decide how, or whether, we’ll represent
the function prologue and epilogue in the assembly AST.

We have a few different options for handling the prologue and epilogue.
We could go ahead and add the push, pop, and sub instructions to the
assembly AST. We could add high-level instructions that correspond to the
entire prologue and epilogue, instead of maintaining a 1-1 correspondence
between assembly AST constructs and assembly instructions. Or we could
omit the function prologue and epilogue entirely, and add them during code
emission. The assembly AST below just includes an instruction for
decrementing the stack pointer (the third instruction in the function
prologue) so we can record how many bytes we need to subtract. Because
the rest of the prologue and epilogue are completely fixed, we can easily add
them during code emission even if they’re not included in the assembly
AST. That said, the other approaches to representing the function prologue
and epilogue can also work, so feel free to choose whichever seems best to
you.

We’ll also introduce pseudoregisters to represent temporary variables.
We’ll be able to use pseudoregisters exactly the same way as real registers
in the assembly AST; the only difference is that they don’t correspond to
hardware registers, so we have an unlimited supply of them. Because they
aren’t real registers, they can’t appear in the final assembly program; they’ll
need to be replaced by real registers or memory addresses in a later compiler
pass. For now, we’ll assign every pseudoregister to its own address in
memory. In Part III, we’ll write a register allocator, which will speed up the
program by assigning as many pseudoregisters as possible to hardware
registers instead of memory.

Here's the updated assembly AST, with new parts bolded:
program = Program(function_definition)
function_definition = Function(identifier name, instruction*
instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | AllocateStack(int)
 | Ret
unary_operator = Neg | Not
operand = Imm(int) | Reg(reg) | Pseudo(identifier) |
Stack(int)
reg = AX | R10

Listing 3-11 Assembly definition with unary operators

The instruction node has a couple of new constructors to represent
our new assembly instructions. We’ll represent both new unary instructions
with the Unary constructor. Since this constructor represents a single not

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

or neg instruction, it takes just one operand that’s used as both source and
destination. The AllocateStack constructor represents the third
instruction in the function prologue, subq $n, %rsp. Its one child, an
integer, indicates the number of bytes we’ll subtract from RSP.

We also have several new instruction operands. The Reg operand can
represent either of the two hardware registers we’ve seen so far: EAX and
R10D. The Pseudo operand lets us use an arbitrary identifier as a
pseudoregister. We’ll use this to refer to the temporary variables we
produced while generating TACKY. Ultimately, we need to replace every
pseudoregister with a location on the stack; we’ll represent those with the
Stack operand, which indicates the stack address at the given offset from
RBP. For example, in Listing 3-2 we used -4(%rbp) as an operand. We’d
represent this as Stack(-4) in the assembly AST.

N O T E Every hardware register has several aliases, depending on how many bytes of the
register you need. EAX refers to the lower 32 bits of the 64-bit RAX register,
and R10D refers to the lower 32 bits of the 64-bit R10 register. The names AX
and R10B refer to the lower 8 bits of RAX and R10, respectively. Register
names in the assembly AST are size-agnostic, so AX in Listing 3-11 can refer to
the register alias RAX, EAX, or AX, depending on context.

Now we can write a straightforward conversion from TACKY to
assembly, given in Table 2-2 below:

Table 3-2 Conversion from TACKY to Assembly

TACKY Assembly

Top-level constructs
Program(function_definition) Program(function_definition)

Function(name, instructions) Function(name, instructions)

Instructions
Return(val) Mov(val, Reg(AX))

Ret

Unary(unary_operator, src,

dst)

Mov(src, dst)

Unary(unary_operator, dst)

Operators
Complement Not

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Negate Neg

Operands
Constant(int) Imm(int)

Var(identifier) Pseudo(identifier)

 Since our new assembly instructions use the same operation for the
source and destination, we just copy the source value into the destination
before issuing the neg or not instruction. Note that we’re not using the
AllocateStack instruction yet; we’ll add it in the very last stage before
code emission, once we know how many bytes we need to allocate. We’re
also not using any Stack operands; we’ll replace every Pseudo operand
with a Stack operand in the next compiler pass. And we’re not using the
R10D register; we’ll introduce it when we rewrite invalid instructions.

Replacing Pseudoregisters

Next, we’ll write a compiler pass to replace each Pseudo operand with
a Stack operand, leaving the rest of the assembly AST unchanged. In
Listing 3-2, we used two stack locations: -4(%rbp) and -8(%rbp).
We’ll stick with that pattern: the first temporary variable we assign a value
to will be at Stack(-4), the next will be at Stack(-8), and so on.
We’ll subtract four for each new variable, since every temporary variable is
a 4-byte integer. You’ll need to maintain a map from identifiers to offsets as
you go, so you can replace each pseudoregister with the same address on the
stack every time it appears. For example, if you were processing the
following list of instructions:
Mov(Imm(2), Pseudo(A))
Unary(Neg, Pseudo(A))

you would need to make sure that Pseudo(A) was replaced with the
same Stack operand in both instructions.

This compiler pass should also return the stack offset of the final
temporary variable, because that tells us how many bytes to allocate on the
stack in the final compiler pass.

Fixing Up Instructions

Now we need to traverse the assembly AST one more time and make
two small fixes. The first fix is inserting the AllocateStack instruction
at the very beginning of the instruction list in the

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

function_definition. The integer argument to AllocateStack
should be the stack offset of the last temporary variable we allocated in the
previous compiler pass. That way, we’ll allocate enough space on the stack
to accommodate every address we use. For example, if we replace three
temporary variables, replacing the last one with -12(%rbp), we’ll insert
AllocateStack(12) at the front of the instruction list.

The second fix is rewriting invalid Mov instructions. When we replaced
a bunch of pseudoregisters with stack addresses, we may have ended up
with Mov instructions where both the source and destination are Stack
operands. In particular, this will happen if the unary expression in your
program has at least one level of nesting. But mov, like many other
instructions, can’t have memory addresses in both the source and the
destination. If you try to assemble a program with an instruction like movl
-4(%rbp), -8(%rbp), the assembler will reject it. Whenever you
encounter an invalid mov instruction, you’ll need to rewrite it to first copy
from the source address into R10D, and then copy from R10D to the
destination. For example,
movl -4(%rbp), -8(%rbp)

would become
movl -4(%rbp), %r10d
movl %r10d, -8(%rbp)

I’ve chosen R10D as a scratch register because it doesn’t serve any
other special purpose. Some registers are used by particular instructions; for
example, the idiv instruction, which performs division, requires the
dividend to be stored in EAX. Other registers are used to pass arguments
during function calls. Using any of these registers for scratch at this stage
could cause conflicts later. For example, you might copy a function
argument into the correct register, but then accidentally overwrite it while
using that register to transfer a different value between memory addresses.
But because R10D doesn’t have any special purpose, we don’t have to
worry about that kind of conflict.

Testing Code Generation

Once you’ve implemented the assembly generation passes, you can test
them exactly the same way as the TACKY generator:
$./test_compiler /path/to/your_compiler --chapter 3 --stage
codegen

Implementation Tips

Plan ahead for Part II. The Unary instruction, like Mov, will

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

eventually need to record type information; consider defining it in a
way that will make it easier to add type information later on.

Define a register datatype. It might seem easiest to store register
names as strings, but I think you’re better off defining a new datatype to
represent them. Like I mentioned earlier, registers in our assembly AST
are size-agnostic, but register names in the final assembly program are
not. Your code will be clearer if you distinguish between registers in the
assembly AST, which aren’t yet associated with a particular integer
size, and the registers names that will appear in the final assembly
program.

Extending the Code Emitter

Finally, we need to extend the code emission stage to handle our new
constructs and print out the function prologue and epilogue. Here’s how to
print out each construct, with new and changed constructs bolded:

Table 3-3 Formatting assembly

Assembly Construct Output

Top-level constructs

Program(function_definition) (just print out the function definition)

Function(name, instructions)
 .globl <name>

<name>:

 pushq %rbp

 movq %rsp, %rbp

 <instructions>

Instructions

Mov(src, dst) movl <src>, <dst>

Ret
 movq %rbp, %rsp

 popq %rbp

 ret

Unary(unary_operator, operand) <unary_operator>
<operand>

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

AllocateStack(int) subq $<int>,
%rsp

Operators

Neg negl

Not notl

Operands

Reg(AX) %eax

Reg(R10) %r10d

Stack(int) <int>(%rbp)

Imm(int) $<int>

We’ll always insert the function prologue right after the function’s
label. We'll also emit the whole function epilogue whenever we encounter a
single ret instruction. Because RBP and RSP contain memory addresses,
which are eight bytes, we’ll operate on them using quadword instructions,
which have a q prefix. Note that the program now includes two versions of
the mov instruction: movl and movq. They’re identical apart from the size
of their operands.

Testing the Whole Compiler

Once you’ve updated the code emission stage, your compiler should
produce correct assembly for all the test cases in this chapter. To test it out,
run:
$./test_compiler /path/to/your_compiler --chapter 3

Just like in the previous chapter, this will compile all the valid
examples, run them, and verify the return code. It also runs the invalid
examples, but those should already fail at the parsing stage.

Summary

In this chapter, you extended your compiler to implement negation and
bitwise complement. You also implemented a new intermediate
representation, wrote a couple different compiler passes that transform
assembly code, and learned how stack frames are structured. Next, you’ll
implement binary operations like addition and subtraction. The changes to
the backend in the next chapter will be pretty simple; the tricky part will be
getting the parser to respect operator precedence and associativity.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

4
B I N A R Y O P E R A T O R S

In this chapter, you’ll implement five new operators:
addition, subtraction, multiplication, division, and the
modulo operator. These are all binary operators,
which take two operands. This chapter won’t require
any new compiler stages; you’ll just need to extend
each of the stages you’ve already written. In the
parsing stage, we’ll see why recursive descent parsing
doesn’t work well for binary operators. You’ll learn
about a different technique, precedence climbing, that
will be easier to build on in later chapters. Precedence
climbing is the last major parsing technique we'll

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

need. Once it's in place, we'll be able to add new
syntax with relatively little effort for the rest of the
book. In the code generation stage, we’ll introduce
several new assembly instructions that perform binary
operations. As usual, we’ll start with the lexer.

Figure 4-1 Stages of the compiler

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Extending the Lexer

The lexer will need to recognize four new tokens:

+ : a plus sign, the operator for addition

* : an asterisk, the operator for multiplication

/ : a forward slash, the division operator

% : a percent sign, the modulo operator

This list doesn’t include the – token, because you already added it in
the last chapter. The lexing stage doesn’t distinguish between negation and
subtraction; it should produce the same token either way.

You can implement these tokens the same way you did the single-
character tokens in earlier chapters.

Testing the Lexer

You know the drill. Your lexer shouldn’t fail on any of the test cases in
this chapter.
$./test_compiler /path/to/your_compiler --chapter 4 --stage
lex

Extending the Parser

In this chapter, we’ll need to add another kind of expression to the AST:
binary operations. Listing 4-1 gives the updated AST definition:
program = Program(function_definition)
function_definition = Function(identifier name, statement
body)
statement = Return(exp)
exp = Constant(int)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
unary_operator = Complement | Negate
binary_operator = Add | Subtract | Multiply | Divide | Mod

Listing 4-1 Abstract syntax tree with binary operations

There are a couple things to note about this AST definition. The first is
that the parser, unlike the lexer, distinguishes between negation and
subtraction. A - token will be parsed as either Negate or Subtract,
depending on where it appears in an expression.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

The second point is that the structure of the AST determines the order
in which we evaluate nested expressions. Let’s look at a couple examples to
see how the AST’s structure controls the order of operations. The AST in
Figure 4-2 represents the expression 1 + (2 * 3), which evaluates to 7.

AST for 1 + (2 * 3)

The + operation has two operands: 1 and (2 * 3). If you were going
to evaluate this expression, you would need to calculate 2 * 3 first, and
then add 1 to the result. The AST in Figure 4-3, on the other hand,
represents the expression (1 + 2) * 3, which evaluates to 9:

Figure 4-2

AST for (1 + 2) * 3

In this case, you would need to evaluate 1 + 2 first, then multiply by

Figure 4-3

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

3. As a general rule, before evaluating an AST node you need to evaluate
both of its children. This pattern, where you need to process a node’s
children before you process the node itself, is called post-order traversal.
(Note that any tree data structure can be traversed in post-order, not just
ASTs.)

Your compiler will traverse the AST to generate code, not to evaluate
expressions, but the idea is the same. When you convert the AST for a
binary expression to TACKY, you need to generate instructions to calculate
both operands, then generate instructions for the operator itself. (We also
used post-order traversal to process unary operations in the last chapter.)

The point of all this is that it’s very important for your parser to group
nested expressions correctly, because if you try to parse 1 + (2 * 3) but
end up with the AST from Figure 4-3, you’ll end up compiling the program
incorrectly.

The examples we just looked at used parentheses to explicitly group
nested expressions. Some expressions, like 1 + 2 * 3, don’t parenthesize
every nested expression. In those cases, we group expressions based on the
precedence and associativity of the operators. Operators with higher
precedence are evaluated first; since * has higher precedence than +, you’d
parse 1 + 2 * 3 as 1 + (2 * 3). Associativity tells you how to
handle operators at the same precedence level. If an operation is left-
associative, you apply the operator on the left first, and if it’s right-
associative, you apply the operator on the right first. For example, since
addition and subtraction are left-associative, 1 + 2 – 3 would be parsed
as (1 + 2) – 3. All the new operators in this chapter are left-
associative, and there are two precedence levels: *, /, and % have higher
precedence, and + and – have lower precedence.

The Trouble with Recursive Descent Parsing

It’s surprisingly tricky to write a recursive descent parser that handles
operator precedence and associativity correctly. To see why, let’s try
extending the grammar rule for expressions. The obvious rule would look
something like this:
<exp> ::= 1 <int> | <unop> <exp> | "(" <exp> ")" | 2 <exp>
<binop> <exp>

Listing 4-2 A deceptively simple but unworkable grammar rule

The rule in Listing 4-2 corresponds to the AST definition: we added a
new constructor to the AST, so it stands to reason that we can just add
another production rule 2 to the grammar. But this production rule won’t

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

work with the recursive-descent parsing algorithm we’ve used up to now. If
we try to use it, we’ll run into two problems.

The first problem is that rule 2 is ambiguous: sometimes it allows you
to parse a list of tokens in more than one way. Based on this rule, Figures 4-
2 and 4-3 are equally valid parses of 1 + 2 * 3. We need to know about
the relative precedence of + and * to decide which parse to use, but the rule
in Listing 4-2 doesn’t capture that information.

The second problem is that rule 2 is left-recursive. That means the left-
most symbol in this production rule for <exp> is, itself, <exp>. You can’t
parse a left-recursive rule with a recursive descent parser. First of all, it’s
impossible to decide which production rule to apply. Let’s say your input
starts with an <int> token. Maybe your expression is a single <int>, so
you should apply production rule 1. Or maybe it’s a more complex
expression and the <int> is just the first operand of the first sub-
expression, so you should apply production rule 2. There’s no way to tell
until you’ve parsed some of the input.

Even if you could determine which production rule to use, processing
rule 2 would lead to unbounded recursion. The first symbol in this rule is an
<exp>, so parse_exp would have to process that symbol by calling itself
recursively. But, because parse_exp would be calling itself with exactly
the same input, since it didn’t consume any tokens before the recursive call,
it would never terminate.

There are a couple of ways to solve these two problems. If you want a
pure recursive descent parser, you can refactor the grammar to remove the
ambiguity and left-recursion. Since that approach has some drawbacks,
we’ll use an alternative to recursive descent parsing called precedence
climbing. However, it’s helpful to take a look at the pure recursive-descent
solution first.

The Adequate Solution: Refactoring the Grammar

If we refactor the grammar, we’ll end up with one grammar rule for
each precedence level:
<exp> ::= <term> { ("+" | "-") <term> }
<term> ::= <factor> { ("*" | "/" | "%") <factor> }
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"

Listing 4-3 A recursive descent-friendly grammar for binary operations

Using the grammar in Listing 4-3, there’s only one way to parse 1 + 2
* 3, and there’s no left recursion. The curly braces indicate repetition, so a

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

single <exp>, for example, can contain any number of <term>s. It might
be a <term>, or <term> + <term>, or <term> - <term> +
<term>, and so on. The parser then groups that long string of terms or
factors into a left-associative tree. (Note that we can’t use a rule like <exp>
::= <term> "+" <exp> because it would result in a right-associative
tree.)

This approach works, but it gets more unwieldy as you add more
precedence levels. We have three precedence levels now, if you count
<factor>; we’ll add four more when we introduce logical and relational
operators in the next chapter. If we went with this approach, we’d need to
add a new symbol to the grammar—and a corresponding function to our
parser—for each precedence level we add. That’s a lot of boilerplate, since
the functions to parse all the different binary expressions will be almost
identical.

The Better Solution: Precedence Climbing

Precedence climbing is a simpler way to parse binary expressions; it
can handle production rules like <exp> <binop> <exp>. The basic
idea is that every operator will have a numeric precedence level, and
parse_exp will take a minimum precedence level as an argument. That
lets you specify the appropriate precedence level for whatever sub-
expression you’re parsing. For example, let’s say you just saw a + token,
and now want to parse what comes next as the right-hand side of an addition
expression—you would specify that it should only include operations that
are higher-precedence than +. This solution makes it easy to add new
operators; you have to assign those operators an appropriate numeric
precedence level, but otherwise your parsing code doesn’t need to change.

Mixing Precedence Climbing with Recursive Descent

Luckily, we can use precedence climbing here without rewriting the
recursive descent parsing code we wrote earlier. We’ll write a hybrid parser
that uses precedence climbing for binary expressions, and recursive descent
for everything else. Remember that in a recursive descent parser, we define
one parsing function to handle each symbol. That makes it straightforward
to mix the two approaches: we can just use precedence climbing in the
parse_exp function, and recursive descent in the functions that parse all
the other symbols. The parse_exp function will remove tokens from the
input stream and return an exp AST node, just like a recursive descent-
based parsing function would. But it will use a different strategy to get that
result.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Since we already know how to parse unary and parenthesized
expressions with recursive descent, let’s represent those with a separate
symbol from binary operations. That will make it easier to parse the two
types of expressions using different techniques. Here’s the resulting
grammar:
<program> ::= <function>
<function> ::= "int" <identifier> "(" ")" "{" <statement>
"}"
<statement> ::= "return" <exp> ";"
<exp> ::= <factor> | <exp> <binop> <exp>
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~"
<binop> ::= "-" | "+" | "*" | "/" | "%"
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 4-4 The final grammar to handle binary operations

A <factor> (which we were calling an <exp> in the last chapter)
can be parsed with the usual recursive descent approach. (We'll keep calling
this symbol a "factor," like we do in Listing 4-3, since it can appear as a
term in a multiplication, division, or modulo expression.) It looks almost
exactly like last chapter’s rule for <exp>, except that we now allow binary
operations as well as factors inside parentheses. That means (1 + 2) is a
factor, because "(" <exp> ")" is a production rule for <factor>.
However, -1 + 2 is not, because "-" <exp> is not a production rule for
<factor>. Because the rules for <exp> and <factor> refer to each
other, the functions to parse those symbols will be mutually recursive. An
<exp> is either a binary operation, defined in the obvious way, or it’s just a
factor.

The pseudocode to parse factors also looks almost the same as last
chapter:
parse_factor(tokens):
 next_token = peek(tokens)
 if next_token is an int:
 --snip--
 else if next_token is "~" or "-":
 operator = parse_unop(tokens)

1 inner_exp = parse_factor(tokens)
 return Unary(operator, inner_exp)
 else if next_token == "(":
 take_token(tokens)

2 inner_exp = parse_exp(tokens)
 expect(")", tokens)
 return inner_exp
 else:
 fail()

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Listing 4-5 Pseudocode for parsing a factor

The only difference is that we call parse_factor where we expect a
<factor> 1, and parse_exp where we expect an <exp> 2; before, we
just called parse_exp in both places.

Making Operators Left-Associative

Next, we need to figure out what parse_exp looks like. First, let’s
make the problem simpler by only considering the + and – operators,
which are both at the same precedence level. To handle these operators,
parse_exp needs to group expressions in a left-associative way, but it
doesn’t need to handle multiple precedence levels yet.

In this simple case, we’ll encounter inputs like factor1 +
factor2 – factor3 + factor4. These should always be parsed in
a left-associative way to produce expressions like ((factor1 +
factor2) – factor3) + factor4. As a result, the right operand of
every expression, including sub-expressions, will be a single factor. For
example, the right operand of (factor1 + factor2) is factor2,
and the right operator of ((factor1 + factor2) – factor3) is
factor3.

Once we realize that the right operand of an expression is always a
single factor, we can write pseudocode to parse these expressions:
parse_exp(tokens):

1 left = parse_factor(tokens)
 next_token = peek(tokens)

2 while next_token is "+" or "-":
 operator = parse_binop(tokens)

3 right = parse_factor(tokens)
4 left = Binary(operator, left, right)

 next_token = peek(tokens)
 return left

Listing 4-6 Parsing left-associative expressions without considering precedence level

In Listing 4-6, we start by parsing a single factor 1. This factor will be
either the whole expression or the left operand of a larger expression. Then,
we check if the next token is a binary operator 2. If it is, we consume it from
the input and convert it to an AST node. Then we construct a binary
expression where the left operand is everything we’ve parsed so far and the
right operand is the next factor 4, which we get by calling parse_factor
3. We repeat this process until we see a token other than + or - after a
factor; that means there are no binary expressions left to construct, so we’re
done.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Dealing with Precedence

Listing 4-6 lets us parse left-associative binary operators, but it doesn’t
handle different precedence levels. Now let’s extend it to handle *, /, and
%. These operators are also left-associative, but they’re at a higher
precedence level than + and -.

 Once we add these operators, the right operand of every expression can
be either a single factor, or a sub-expression involving only the new, higher-
precedence operators. For example, 1 + 2 * 3 + 4 would be parsed as
(1 + (2 * 3)) + 4. The right operand of the whole expression is a
single factor, 4. The right operand of the inner sub-expression, 1 + (2 *
3), is a product, 2 * 3.

We can be even more precise. If the outermost expression is a + or -
operation, its right operand will only contain factors, *, /, and %. But if the
outermost expression is itself a *, /, or % operation, its right operand must
be single factor.

To generalize: whenever we’re parsing an expression of the form e1
<op> e2, all the operators in e2 should be higher-precedence than <op>.
We can achieve this by tweaking the code from Listing 4-6:
parse_exp(tokens, min_prec):
 left = parse_factor(tokens)
 next_token = peek(tokens)
 while next_token is a binary operator and
precedence(next_token) >= min_prec:
 operator = parse_binop(tokens)
 right = parse_exp(tokens, precedence(next_token) +
1)
 left = Binary(operator, left, right)
 next_token = peek(tokens)
 return left

Listing 4-7 Parsing left-associative operators with precedence climbing

This pseudocode is our entire precedence climbing algorithm. The
min_prec argument lets us state that all operators in the sub-expression
we’re currently parsing need to exceed some precedence level. For example,
we could include only operators that are higher-precedence than +. We
enforce this by comparing the precedence of the current operator to
min_prec at each iteration of the while loop; we exclude the operator and
anything that follows it from the current expression if its precedence is too
low. Then, when we process the right-hand side of an operation, we set the
minimum precedence higher than the precedence of the current operator.
This guarantees that higher-precedence operators will be evaluated first.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Since operators at the same precedence level as the current operator won’t
be included in the right-hand expression, the resulting AST will be left-
associative.

When you’re calling parse_exp from any other function (including
from parse_factor, to handle parenthesized expressions), you’ll start
with a minimum precedence of zero, so the result includes operators at every
precedence level.

The code in Listing 4-7 requires us to assign every binary operator a
precedence value; the values I’ve assigned are listed in Table 4-1.

Table 4-1 Precedence Values of Binary Operators

Operator Precedence

* 50
/ 50
% 50
+ 45
- 45

The exact precedence values don’t matter, as long as higher-precedence
operators have higher values. The numbers I’ve chosen here give us plenty
of room to add new lower-precedence operators in the next chapter.

Precedence Climbing in Action

Let’s walk through an example where we parse the following
expression:
1 * 2 – 3 * (4 + 5)

We’ll trace the execution of our precedence-climbing code (Listing 4-7)
as it parses this expression. In each code snippet below, I’ve added a level of
indentation inside each function call, to make it easier to track how deep we
are in the call stack.

We’ll start by calling parse_exp on the whole expression with a
minimum precedence of zero:
parse_exp("1 * 2 – 3 * (4 + 5)", 0):

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Inside parse_exp, we’ll start by parsing the first factor:

 left = parse_factor("1 * 2 – 3 * (4 + 5)")
 = Constant(1)
 next_token = "*"

This first call to parse_factor will just parse the token 1, returning
Constant(1). Next, we peek at the token that follows, which is *. This
token is a binary operator, and its precedence is greater than zero, so we
enter the while loop.

The first iteration of the loop looks like this:
 // loop iteration #1
 operator = parse_binop("* 2 – 3 * (4 + 5)")
 = "*"
 right = parse_exp("2 – 3 * (4 + 5)", 51)
 left = parse_factor("2 – 3 * (4 + 5)")
 = Constant(2)
 next_token = "-"
 // precedence(next_token) < 51
 = Constant(2)
 left = Binary(*, Constant(1), Constant(2))
 next_token = "-"

Inside the loop, parse_binop consumes next_token from the
input, which leaves 2 – 3 * (4 + 5). Next, we need to call
parse_exp recursively to get the right-hand side of this product. Since the
precedence of * is 50, the second argument to parse_exp will be 51. In
the recursive call, we again get the next factor (2) and the token that follows
it (-). The - token is a binary operator, but its precedence is only 45; it
doesn’t meet the minimum precedence of 51, so we don’t enter the while
loop. Instead, we return Constant(2).

Back in the outer call to parse_exp, we use Binary to construct the
AST node for 1 * 2 from the values we’ve parsed so far. Then, we check
the next token to see whether we have more sub-expressions to process. The
next token is -; we peeked at it, but didn’t remove it from the input, inside
the recursive call to parse_exp. Because – is a binary operator, and it
exceeds our minimum precedence of zero, we jump back to the beginning of
the while loop to parse the next sub-expression:

 // loop iteration #2
 operator = parse_binop("– 3 * (4 + 5)")
 = "-"
 right = parse_exp("3 * (4 + 5)", 46)
 left = parse_factor("3 * (4 + 5)")
 = Constant(3)
 next_token = “*”
 // loop iteration #1

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

 operator = parse_binop("* (4 + 5)")
 = "*"
 right = parse_exp("(4 + 5)", 51)
 left = parse_factor("(4 + 5)")
 parse_exp("4 + 5", 0)
 --snip--
 = Binary(+, Constant(4),
Constant(5))
 = Binary(+, Constant(4),
Constant(5))
 = Binary(+, Constant(4), Constant(5))
 left = Binary(*, Constant(3), Binary(+,
Constant(4), Constant(5)))
 = Binary(*, Constant(3), Binary(+, Constant(4),
Constant(5)))
 left = Binary(-,
 Binary(*, Constant(1), Constant(2)),
 Binary(*, Constant(3), Binary(+,
Constant(4), Constant(5))))

The second time through the loop, we consume – from the input and
make a recursive call to parse_exp. This time, because the precedence of
– is 45, the second argument to parse_exp will be 46.

Following our usual routine, we get the next factor (3) and the next
token (*). Since the precedence of * exceeds the minimum precedence, we
need to parse another sub-expression. We consume *, leaving (4 + 5),
then make yet another recursive call to parse_exp.

In this next call to parse_exp, we start by calling parse_factor
as usual. This call will consume the rest of our input and return the AST
node for 4 + 5. To handle that parenthesized expression,
parse_factor will need to recursively call parse_exp with the
minimum precedence reset to zero, but we won’t step through that here. At
this point, there are no tokens left in our expression. Let’s assume this is a
valid C program and the next token is a semicolon. Since the next token
isn’t a binary operator, we just return the expression we got from
parse_factor.

At the next level up, we construct the AST node for 3 * (4 + 5)
from the sub-expressions we’ve processed in this call. Once again, we peek
at the next token, see that it isn’t a binary operator, and return.

Finally, back in the original call to parse_exp, we construct the final
expression from the left operand that we constructed in the first loop
iteration (1 * 2), the current value of next_token (-), and the right
operand that was just returned from the recursive call (3 * (4 + 5)). For
the last time, we check the next token, see that it isn’t a binary operator, and

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

return.

Now that we’ve seen how to parse binary expressions with precedence
climbing, you’re ready to extend your own parser. Remember that you’ll use
precedence climbing to parse binary expressions, and recursive descent to
parse all the other symbols in the grammar, including factors.

FURTHER READING ON PRECEDENCE CLIMBING

These blog posts helped me understand precedence climbing, and how it relates to similar
algorithms that solve the same problem. You might find them helpful too.

• “Parsing expressions by precedence climbing,” a blog post by Eli Bendersky, provides a good
overview of the precedence climbing algorithm. It also covers right-associative operators, which
I didn’t discuss here. (https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-
precedence-climbing)

• “Some problems of recursive descent parsers,” also by Eli Bendersky, goes into more detail
about how to handle binary expressions with a pure recursive descent parser.
(https://eli.thegreenplace.net/2009/03/14/some-problems-of-recursive-descent-parsers)

• Andy Chu has written two useful blog posts on precedence climbing. The first, “Pratt Parsing
and Precedence Climbing are the Same Algorithm” explores the fundamental similarities
between these two approaches (https://www.oilshell.org/blog/2016/11/01.html). The second,
"Precedence Climbing is Widely Used," discusses their differences
(https://www.oilshell.org/blog/2017/03/30.html). These posts clarify some of the confusing
terminology around different parsing algorithms.

Testing the Parser

The parser should be able to handle every valid test case in
tests/chapter_4/valid, and raise an error on every invalid test case in
tests/chapter_4/invalid_parse. To test your parser against the test cases from
this chapter and the ones before it, run:
$./test_compiler /path/to/your_compiler --chapter 4 --stage
parse

Remember that the test suite only checks whether your compiler parses
a program successfully or throws an error; it doesn’t check that it produced
the correct AST. In this chapter, it’s especially easy to write a parser that
appears to succeed but generates the wrong AST, so you might want to write
your own tests to validate the output of your parser.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing
https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing
https://eli.thegreenplace.net/2009/03/14/some-problems-of-recursive-descent-parsers
https://www.oilshell.org/blog/2016/11/01.html
https://www.oilshell.org/blog/2017/03/30.html

Extending TACKY Generation

Next, we need to update the stage that converts the AST to TACKY.
We’ll start by updating TACKY itself to include binary operations:
program = Program(function_definition)
function_definition = Function(identifier, instruction*
body)
instruction = Return(val)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2,
val dst)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate
binary_operator = Add | Subtract | Multiply | Divide | Mod

Listing 4-8 Adding binary expressions to TACKY

The changes here are pretty straightforward: we’ve just added one new
type of instruction to represent binary operations, and defined all the
possible operators. Like unary operations, binary operations in TACKY can
only be applied to constants and variables, not to nested sub-expressions.
We can turn a binary expression into a sequence of TACKY instructions in
almost exactly the same way that we handled unary expressions:
emit_tacky(e, instructions):
 match e with
 | --snip--
 | Binary(op, e1, e2) ->
 v1 = emit_tacky(e1, instructions)
 v2 = emit_tacky(e2, instructions)
 dst_name = make_temporary()
 dst = Var(dst_name)
 tacky_op = convert_binop(op)
 instructions.append(Binary(tacky_op, v1, v2, dst))
 return dst

Listing 4-9 Converting a binary operation to TACKY

 We need to emit the TACKY instructions to calculate each operand,
then emit the binary expression that uses those source values. The only
difference from how we handled unary expression is that we’re processing
two operands instead of one.

NO, YOU’RE OUT OF ORDER!

In Listing 4-9, we generate code that evaluates the first operand, then the second operand, then
the whole operation. Surprisingly, it would be just as correct to evaluate the second operand before
the first. According to the C standard, sub-expressions of the same operation are unsequenced—
they can be evaluated in any order. In the programs we can compile so far, it doesn’t matter which

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

operand we evaluate first; you’ll get the same visible behavior either way. That’s not the case in the
following program:

#include <stdio.h>

int main() {
 return printf("Hello, ") + printf("World!");
}

You could compile this program with a C standard-compliant compiler, run it, and get either of
the following outputs:

Hello, World!
World!Hello,

There are a few exceptions where the first operand must be evaluated first: the logical && and
|| operators, which we’ll cover next chapter; the conditional ?: operator, which we’ll cover a few
chapters later; and the comma operator, which we won't implement.

If you’re curious, the relevant part of the C18 standard is section 6.5, paragraphs 1-3. There’s
also a more readable explanation at https://en.cppreference.com/w/c/language/eval_order.

Testing TACKY Generation

The TACKY generator should be able to process every valid test case
we’ve seen so far. You can test it with:
$./test_compiler /path/to/your_compiler --chapter 4 --stage
codegen

Extending Assembly Generation

The next step is converting TACKY into assembly. We’ll need several
new assembly instructions to handle addition, subtraction, multiplication,
division, and the modulo operation. Let’s talk through these new
instructions.

Doing Arithmetic in Assembly

The instructions for addition, subtraction, and multiplication all take the
form op src, dst, where:

op is an instruction,

src is an immediate value, register, or memory address, and

dst is a register or memory address.

Each of these instructions applies op to dst and src, storing the result
in dst. The instructions for addition, subtraction, and multiplication are

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

https://en.cppreference.com/w/c/language/eval_order

add, sub, and imul, respectively. As usual, these instructions can take an
l suffix if their operands are 32 bits, and a q suffix if their operands are 64
bits. Here’s an example of each instruction:

Table 4-2 Assembly instructions for addition, multiplication, and division

Instruction Meaning

addl $2, %eax eax = eax + 2

subl $2, %eax eax = eax - 2

imull $2, %eax eax = eax * 2

Note that dst is the first operand in the corresponding mathematical
expression; that means subl a, b computes b – a, not a - b.

These instructions are pretty easy to use and understand! In a perfect
world, we could perform division in exactly the same way. But we don’t live
in a perfect world, which is why we’re stuck with the idiv instruction.

Division is Weird

We’ll use the idiv instruction to implement the division and modulo
operations. Even though you need two numbers to perform division, it takes
a single operand, which can’t be an immediate. This operand is the divisor.
(A reminder, in case you’re like me and always get them mixed up: in a /
b, a is the dividend and b is the divisor.) In its 32-bit form, idiv gets the
other value it needs, the dividend, from the EDX and EAX registers, which
it treats as a single, 64-bit value. It gets the most significant 32 bits from
EDX and the least significant 32 bits from EAX. Unlike our other arithmetic
instructions, division produces two results: the quotient and the remainder.
The quotient is stored in the EAX register, and the remainder is stored in the
EDX register. (The 64-bit version of idiv, which we’d write as idivq,
uses RDX and RAX as the dividend instead of EDX and EAX.)

In order to use idiv, we need to turn a 32-bit dividend into a 64-bit
value spanning both EDX and EAX. Whenever we need to convert a signed
integer to a wider format, we'll use an operation called sign extension. This
operation fills the upper 32 bits of the new, 64-bit value with the sign bit of
the original 32-bit value.

Sign extending a positive number just pads the upper 32 bits with zeros.
Sign-extending the binary representation of 3, for example, turns
00000000000000000000000000000011

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

into
00
0011

Both representations have the value 3; the second one just has more
leading zeros. To sign extend a negative number, we fill the upper four bytes
with ones, which converts -3 from
11111111111111111111111111111101

into
11
1101

Thanks to the magic of two's complement, the value of both of these
binary numbers is -3. (If you're not clear on how this works, you can check
out the further reading on two's complement from Chapter 3.)

 The cdq instruction does exactly what we need here: it sign extends
the value from EAX into EDX. If the number in EAX is positive, this
instruction will set EDX to all zeros. If EAX is negative, this instruction will
set EDX to all ones. Putting it all together, here’s how you’d compute 9 /
2, or 9 % 2, in assembly:

movl $2, %ebx
movl $9, %eax
cdq
idiv %ebx

The result of 9 / 2, the quotient, will be stored in EAX. The result of
9 % 2, the remainder, will be stored in EDX.

Now we’ve covered all the new instructions we’ll need in this chapter:
add, sub, imul, idiv, and cdq. Next, let’s add these new instructions to
the assembly AST and update the conversion from TACKY to assembly.

Converting TACKY to Assembly

Here’s the updated assembly AST, with additions bolded:
program = Program(function_definition)
function_definition = Function(identifier name, instruction*
instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | Binary(binary_operator, operand, operand)
 | Idiv(operand)
 | Cdq
 | AllocateStack(int)
 | Ret

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) |
Stack(int)
reg = AX | DX | R10 | R11

Listing 4-10 Adding new instructions to the assembly AST

Since the addition, subtraction, and multiplication instructions all take
the same form, we’ll represent them all using the Binary instruction node.
We’ll also add instruction nodes for the new idiv and cdq instructions.
We’ll add the EDX register to the AST definition, since the idiv
instruction uses it. We'll also add the R11 register to use along with R10
during the instruction fix-up pass.

Now we need to convert our new binary operations from TACKY to
assembly. For addition, subtraction, and multiplication, we’ll convert a
single TACKY instruction into two assembly instructions:
Binary(op, src1, src2, dst)

becomes
Mov(src1, dst)
Binary(op, src2, dst)

Division is a little more complicated; we need to move the first operand
into EAX, sign-extend it with cdq, issue the idiv instruction, and then
move the result from EAX to the destination. So
Binary(Divide, src1, src2, dst)

becomes
Mov(src1, Reg(AX))
Cdq
Idiv(src2)
Mov(Reg(AX), dst)

The modulo operation looks exactly the same, except that we ultimately
want to retrieve the remainder from EDX instead of retrieving the quotient
from EAX. So
Binary(Mod, src1, src2, dst)

becomes
Mov(src1, Reg(AX))
Cdq
Idiv(src2)
Mov(Reg(DX), dst)

The idiv instruction can’t operate on immediate values, so the
assembly instructions for division and modulo won’t be valid if src2 is a

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

constant. That’s okay; we’ll fix it during the instruction-rewriting pass.
Table 4-3 summarizes the conversion from TACKY to assembly.

Table 4-3 Conversion from TACKY to Assembly

TACKY Assembly

Top-level constructs
Program(function_definition) Program(function_definition)

Function(name, instructions) Function(name, instructions)

Instructions
Return(val) Mov(val, Reg(AX))

Ret

Unary(unary_operator, src,

dst)

Mov(src, dst)

Unary(unary_operator, dst)

Binary(Divide, src1, src2,

dst)

Mov (src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(AX), dst)

Binary(Mod, src1, src2, dst) Mov (src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(DX), dst)

Binary(binary_operator, src1,

src2, dst)

Mov(src1, dst)

Binary(binary_operator, src2,

dst)

Operators
Complement Not

Negate Neg

Add Add

Subtract Sub

Multiply Mult

Operands

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Constant(int) Imm(int)

Var(identifier) Pseudo(identifier)

Note that the table above includes three rows for the Binary TACKY
instruction—one for division, one for modulo, and one for everything else.

Replacing Pseudoregisters

You’ll need to update this pass to handle the new Binary and Idiv
instructions. You can handle them exactly like the existing Mov and Unary
instructions. When you see a pseudoregister in a Mov, Unary, or Binary
instruction, replace it with the corresponding stack address. If the register
hasn’t been assigned a stack address yet, assign it to the next available 4-
byte address.

Fixing Up Instructions

In the last compiler pass before emitting the final program, we rewrite
invalid instructions that we produced in earlier stages. Now we need to add
a couple more rewrite rules. First, we need to fix idiv instructions that take
constant operands. Whenever idiv needs to operate on a constant, we can
just copy that constant into our scratch register first. So
idiv $3

is rewritten as
movl $3, %r10d
idiv %r10d

The add and sub instructions, like mov, can’t use memory addresses
as both source and destination operands. We can rewrite them in the same
way as mov, so that

addl -4(%rbp), -8(%rbp)

becomes
movl -4(%rbp), %r10d
addl %r10d, -8(%rbp)

The imul instruction can't use a memory address as a destination,
regardless of its source operand. When we need to fix an instruction's
destination operand, we'll use the R11 register instead of R10. To fix imul,
we'll load the destination into R11, multiply it by the source operand, and
then store the result back to the destination address, so
imull $3, -4(%rbp)

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

becomes
movl -4(%rbp), %r11d
imull $3, %r11d
movl %r11d, -4(%rbp)

Using different registers to fix source and destination operands will
become helpful in Part II, when we'll sometimes need to rewrite the source
and destination for the same instruction. We'll need two registers so that the
fix-up instructions for the different operands don't clobber each other.

Once you’ve updated the assembly-generating, pseudoregister-
replacing, and instruction-fixing compiler passes, your compiler should be
able to generate AST representations of complete, correct assembly
programs that perform basic arithmetic. All that’s left is emitting those
assembly programs in the right format.

Testing Assembly Generation

To test the assembly generation stages, run:
$./test_compiler /path/to/your_compiler --chapter 4 --stage
codegen

Extending the Code Emitter

The last step is extending the code emission stage to handle the new
assembly instructions we added in this chapter. Here’s how to print out each
construct, with new and changed constructs bolded:

Table 4-3: Formatting assembly

Assembly Construct Output

Top-level constructs

Program(function_definition) (just print out the function definition)

Function(name, instructions)
 .globl <name>

<name>:

 pushq %rbp

 movq %rsp, %rbp

 <instructions>

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Instructions

Mov(src, dst) movl <src>, <dst>

Ret
 movq %rbp, %rsp

 popq %rbp

 ret

Unary(unary_operator, operand) <unary_operator>
<operand>

Binary(binary_operator, src, dst) <binary_operator>
<src>, <dst>

Idiv(operand) idivl <operand>

Cdq cdq

AllocateStack(int) subq $<int>,
%rsp

Operators

Neg negl

Not notl

Add addl

Sub subl

Mult imull

Operands

Reg(AX) %eax

Reg(DX) %edx

Reg(R10) %r10d

Reg(R11) %r11d

Stack(int) <int>(%rbp)

Imm(int) $<int>

All the new instructions operate on 32-bit values, so they get l suffixes.
Note that the subl instruction we use to subtract integers and the subq
instruction that we use to allocate space on the stack are just 32-bit and 64-
bit versions of the same instruction.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Testing the Whole Compiler

Now you’re ready to try compiling programs all the way through. To
check if you’re compiling every test program correctly, run:
$./test_compiler /path/to/your_compiler --chapter 4

Extra Credit: Bitwise Operators

Now that you’ve learned how to compile a few binary operators, you
know enough to implement the bitwise binary operators on your own. These
include bitwise AND (&), OR (|), XOR (^), left shift (<<), and right shift
(>>). Your compiler can handle these much like the operators you just
added. You’ll need to look up the relative precedence of these operators.
You’ll also need to check the documentation for the x64 instruction set to
see how to use the relevant assembly instructions.

Bitwise operations are optional; later test cases don’t rely on them. If
you do want to implement bitwise operations, you can use the --bitwise
flag to include test cases that use them, like this:
$./test_compiler /path/to/your_compiler --chapter 4 --
bitwise

You’ll want to include this flag when you run test cases in later chapters
too, so that those test cases also include bitwise operators.

 Summary

In this chapter, you implemented several binary arithmetic operations in
your compiler. You learned how to use a new technique, precedence
climbing, to parse expressions that recursive descent parsers don’t handle
well. In the next chapter, you’ll implement even more unary and binary
operations: logical operators like !, && and ||, and relational operators like
==, <, and >. Some of these operators don’t correspond closely to assembly
instructions, so we’ll break them down into lower-level instructions in
TACKY. We’ll also introduce conditional assembly instructions, which will
be particularly important when we implement control-flow statements like
if statements and loops.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

5
L O G I C A L A N D R E L A T I O N A L

O P E R A T O R S

Now that you know how to compile binary operators,
we’re going to add a whole mess of them (plus one
more unary operator). We’ll cover the logical NOT
(!), AND (&&) and OR (||) operators, plus all the
relational operators: <, >, ==, and so on. Each of these
operators tests some condition, returning 1 if that
condition is true, and 0 if it’s false.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Figure 5-1 Stages of the compiler

The && and || operators differ from the binary operators we’ve seen so
far because they short-circuit: if you know the result after the first operand,
you don’t evaluate the second operand. To support short-circuiting logic,
we’ll add new instructions to TACKY that let us skip over blocks of code.
Then, during the code generation pass, we’ll introduce several new
instructions, including conditional assembly instructions that let us take
specific actions only if some condition is met. We’ll see how the CPU relies
on special-purpose hardware registers to implement these instructions.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Let’s talk about short-circuiting operators before moving on to the
compiler passes.

Short-Circuiting Operators

The C standard guarantees that && and || short-circuit when you don’t
need the second operand. For example, consider the expression 0 &&
foo(). Because the first clause is zero, we know the whole expression will
evaluate to zero regardless of what foo returns, so we won’t call foo at all.
Likewise, if the first operand of || is non-zero, we don’t evaluate the
second operand.

This isn’t just a performance optimization; the second operand might
not change the result of the expression, but evaluating it can have visible
side effects. For example, the foo function might perform I/O or update
global variables. If your compiler doesn’t implement && and || as short-
circuiting operators, some compiled programs will behave incorrectly. (For
the record, the standard defines this behavior in section 6.5.13, paragraph 4
for the && operator, and 6.5.14, paragraph 4 for the || operator.)

Now that we’ve clarified how these operators work, you’re ready to
continue coding.

Extending the Lexer

In this chapter, you’ll need to add nine new tokens:

! : an exclamation point, the logical NOT operator

&& : two ampersands, the logical AND operator

|| : two vertical bars, the logical OR operator

== : two equals signs, the “equal to” operator

!= : an exclamation point followed by an equal sign, the “not equal to”
operator

< : the “less than” operator

> : the “greater than” operator

<= : the “less than or equal” operator

>= : the “greater than or equal” operator

Your lexer can handle these the same way as the other operators you’d

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

added so far. Remember that the lexer should always choose the longest
possible match for the next token. If your input is <=something, the next
token the lexer emits should be <=, not <.

Testing the Lexer

You can test the lexer with the usual command:
$./test_compiler /path/to/your_compiler --chapter 5 --stage
lex

Your lexer should succeed on all of this chapter’s test cases.

Extending the Parser

We’ll need to add all our new operations to the AST definition. Listing
5-1 gives the updated definition, with new additions bolded:
program = Program(function_definition)
function_definition = Function(identifier name, statement
body)
statement = Return(exp)
exp = Constant(int)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Mod |
And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 5-1 Abstract syntax tree with new operations

We’ll also need to make corresponding changes to the grammar, which
is given in Listing 5-2:
<program> ::= <function>
<function> ::= "int" <identifier> "(" ")" "{" <statement>
"}"
<statement> ::= "return" <exp> ";"
<exp> ::= <factor> | <exp> <binop> <exp>
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 5-2 Grammar with new operations

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

In Listings 5-1 and 5-2, we’ve added some new operators, but haven’t
made any other changes. Now we’re ready to update the parsing code. To
handle the new ! operator, you’ll need to change parse_factor. Your
parsing code will treat ! exactly like the unary ~ and – operators you’ve
already implemented.

Next, you’ll need to update parse_exp to handle all the new binary
operators. Remember that in the last chapter, we associated every binary
operator with a numeric precedence value. Now, we need to give the new
operators precedence values. All the new operators have lower precedence
than the ones we’ve already implemented, and they’re all left-associative.
Among the new operators, <, <=, >, and >= have highest precedence,
followed by the equality operators == and !=. The && operator has lower
precedence than any of the relational operators, and || has the lowest
precedence of all. The precedence values I’ve chosen are listed in Table 5-1.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Table 5-1 Precedence Values of Old and New Binary Operators

Operator Precedence

* 50

/ 50

% 50

+ 45

- 45

< 35

<= 35

> 35

>= 35

== 30

!= 30

&& 10

|| 5

I chose these values to accommodate the relative precedence of all these
operators, plus the optional bitwise operators from the previous chapter.
You don’t need to use the exact values in this table as long as operators have
the same precedence relative to each other.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

You’ll also need to extend the code that converts tokens into
unary_operator and binary_operator AST nodes. For example,
whatever function converts a + token into an Add node should also be able
to convert a == token into an Equal node. (The pseudocode in the last two
chapters called separate functions, parse_unop and parse_binop, to
handle that conversion.)

Once you’ve updated your parser’s table of precedence values,
parse_binop, and parse_unop, you’re done! The precedence
climbing algorithm we implemented in the last chapter will be able to
handle all the new operators without any further changes.

Testing the Parser

The parser should be able to handle every valid test case in
tests/chapter_5/valid, and raise an error on every invalid test case in
tests/chapter_5/invalid_parse. To test your parser, run:
$./test_compiler /path/to/your_compiler --chapter 5 --stage
parse

Once your lexer and parser are working properly, we can venture into
less familiar territory: handling the new operators in TACKY.

Extending TACKY Generation

You can convert relational operators to TACKY in exactly the same
way as the binary operators we’ve already implemented. For example, given
the expression e1 < e2, the resulting TACKY looks something like this:

<instructions for e1>
tmp1 = <result of e1>
<instructions for e2>
tmp2 = <result of e2>
Binary(LessThan, tmp1, tmp2, dst)

Listing 5-3 Structure of TACKY for a binary expression

But you can’t generate the && and || operators this way, because they
need a way to short-circuit. The code in Listing 5-3 always evaluates both
e1 and e2, but we need to generate code that sometimes skips e2. To
support short-circuiting operators, we’ll add a jump instruction, which lets
us jump to a different point in the program. We’ll also add two conditional
jump instructions, which only jump if a particular condition is met.

Listing 5-4 shows these new jump instructions, along with the other

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

additions to TACKY:
program = Program(function_definition)
function_definition = Function(identifier, instruction*
body)
instruction = Return(val)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2,
val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier
target)
 | Label(identifier)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Mod |
Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan |
GreaterOrEqual

Listing 5-4 Adding conditionals jumps and labels to TACKY

The Jump instruction works just like goto in C—it causes the
program to jump to the point labeled with some identifier, target. The
Label instruction associates an identifier with a location in the program.
The following snippet of TACKY shows how Jump and Label
instructions work together:

1 Unary(Negate, Constant(1), Var(tmp))
2 Jump("there")
3 Unary(Negate, Constant(2), Var(tmp))
4 Label("there")
5 Return(Var(tmp))

Listing 5-5 Example TACKY with a Jump instruction

First, this program will store -1 in tmp 1. The Jump instruction 2 will
make it jump to 4 and then execute the return statement at 5, which will
return -1. Instruction 3 won’t execute at all, because we jumped over it.

The first conditional jump, JumpIfZero, says: if the value
condition is zero, jump to the instruction indicated by target. If
condition is anything other than zero, don’t jump to target—instead,
just execute the next instruction as usual. The second conditional jump,
JumpIfNotZero, does the opposite: we jump to target only if
condition isn’t zero. We don't really need both of these instructions,
since any behavior you can express with one can also be expressed with the
other plus a Not instruction. But adding both of them will let us generate

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

simpler TACKY for both the && and || operations, which will ultimately
translate into simpler, shorter assembly.

We’ll need one more instruction: Copy. Since && and || ultimately
return 1 or 0, we need this instruction to copy a 1 or 0 into the temporary
variable that holds the result of the expression.

Besides these five new instructions, the latest TACKY definition
includes all the new binary operators and the unary Not operator. Note that
TACKY doesn’t include binary And or Or operators, because we won’t
implement them as binary operations. Instead, we’ll implement them using
the jump instructions. The TACKY for the expression e1 && e2 should
look something like this:
<instructions for e1>
v1 = <result of e1>

1 JumpIfZero(v1, false_label)
<instructions for e2>
v2 = <result of e2>

2 JumpIfZero(v2, false_label)
3 result = 1
4 Jump(end)
5 Label(false_label)
6 result = 0

Label(end)

Listing 5-6 TACKY for && operation

We start by evaluating e1. If it’s zero, we want to short-circuit and set
result to 0, without evaluating e2. We can accomplish this with the
JumpIfZero instruction 1; if v1 is zero, we jump straight to
false_label 5, and then set result to 0 with the Copy instruction 6.
(I’ve written this out as result = 0 instead of Copy(0, result) to
make it a bit more readable.) If v1 isn’t zero we still need to evaluate e2.
We can handle the case where v2 equals zero exactly like the case where
v1 equals zero—by jumping to false_label. Once again, we can do this
with JumpIfZero 2. We’ll only reach instruction 3 if we didn’t take either
conditional jump. That means both e1 and e2 must be non-zero, so we set
result to 1 (using the Copy instruction again). Then we need to jump
over 6 to the end label to avoid overwriting result.

Note that Listing 5-6 includes a couple of labels. Labels, like temporary
variables, must be globally unique—an instruction like Jump("foo") is
useless if the label foo shows up in multiple places.

Labels differ from temporary variable names in one important way.
They’ll appear in the final assembly program, so they must be identifiers

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

that the assembler considers syntactically valid. You can make sure your
labels are syntactically valid by including only letters, digits, and
underscores, and starting each label with a letter.

You can translate the || operation to TACKY in a very similar way,
using the JumpIfNotZero instruction. I’ll leave it to you to implement
this on your own. That leaves ! and all the relational operations; like I
mentioned earlier in this section, you can convert these to TACKY in
exactly the same way as the unary and binary operations from earlier
chapters.

Testing TACKY Generation

You can test the TACKY generation pass with:
$./test_compiler /path/to/your_compiler --chapter 5 --stage
codegen

Implementation Tips

Generate descriptive labels. Because labels appear in the final
assembly program, informative labels can make the program easier to
read and debug. For example, when generating instructions for && like
the ones in Listing 5-6, the label at 5 could be something like
and_falseN, where N is some globally unique counter.

Extending Assembly Generation

Before starting on the assembly generation pass, let’s talk through the
new assembly instructions we’ll need. First, we’ll discuss the cmp
instruction, which compares two values, and the conditional set instructions,
which can set a byte to 1 or 0 based on the result of a comparison. With
these instructions, we can implement relational operators like <. Next, we’ll
talk about conditional and unconditional jump instructions.

Comparisons and Status Flags

The “condition” that all conditional instructions depend on is the state
of the RFLAGS register. Unlike EAX, RSP, and the other registers we’ve
encountered, you usually can’t set RFLAGS directly. Instead, the CPU
updates RFLAGS automatically every time it issues an instruction. Like the
name suggests, each bit in the register is a flag that reports some fact about
the last instruction or the status of the CPU. Different instructions update
different flags—the add, sub, and cmp instructions update all the flags

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

we’ll talk about below, and the mov instruction doesn’t update any of them.
Other instructions have other effects that we can ignore for now. Whenever I
refer to the “last instruction” or “last result” while discussing RFLAGS, I
mean the last instruction that affects the particular flag I’m talking about.

Right now, we only care about three of these flags:

The Zero Flag (ZF)
ZF is set to 1 if the result of the last instruction was zero. It’s set to

0 if the result of the last instruction was non-zero.

The Sign Flag (SF)
SF is set to 1 if the most significant bit of the last result was 1. It’s

set to 0 if the most significant bit of that result is 0. Remember that in
two’s complement, the most significant bit of a negative number is
always 1, and the most significant bit of a positive number is always 0.
That means the sign flag can tell us whether the result of the last
instruction was positive or negative. (If the last result should be
interpreted as an unsigned integer, it can’t be negative, and the sign flag
is meaningless.)

The Overflow Flag (OF)
OF is set to 1 if the last instruction resulted in a signed integer

overflow, and 0 otherwise. An integer overflow occurs when the result
of a signed integer operation can't be represented in the number of bits
available. A positive result will overflow if it's larger than the
maximum value the type can hold. For example, suppose we’re
operating on 4-bit integers. The largest signed number we can represent
is 0111, or 7. If we add 1 to it with the add instruction, the result will
be 1000. This is 8 if we interpret it as an unsigned integer, but -8 if
we interpret it as a signed integer. The result of the computation should
be positive, but since it overflowed, it appears negative. This
computation will set the overflow flag to 1.

We'll also encounter integer overflow in the opposite situation:
when the result should be negative, but it’s below the smallest possible
value. For example, in ordinary math, -8 – 1 = -9. But if we use
the sub instruction to subtract 1 from the 4-bit binary representation of
-8, which is 1000, we’ll end up with 0111, or 7. The overflow flag
will be set to 1 in this case too.

The result of an unsigned operation can also be too large or small
for its type to represent, but we won't refer to this as integer overflow.
Instead, we'll just say the result wrapped around; that's more consistent
with the terminology for unsigned operations in the C standard and in

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

most discussions of x64 assembly. We draw this distinction because
unsigned wrap-around follows different rules from signed integer
overflow in the C standard, and the CPU detects it differently. We'll
learn exactly how to handle it in Part II.

Tables 5-2 and 5-3 summarize the cases where each kind of integer
overflow can occur. Note that Table 5-3 is just Table 5-2 with the
columns swapped, since A – B and A + (- B) are equivalent. Like
SF, OF is meaningless if the result is unsigned.

Table 5-2 Integer overflow and underflow from addition

A + B B > 0 B < 0

A > 0
Overflow from positive to

negative

Neither

A < 0
Neither Overflow from negative to

positive

Table 5-3 Integer overflow and underflow from subtraction

A – B B > 0 B < 0

A > 0
Neither Overflow from positive to

negative

A < 0
Overflow from negative to

positive

Neither

The instruction cmp b, a computes a – b, exactly like the sub
instruction, and has exactly the same impact on RFLAGS, but discards the
result instead of storing it in a. This is a bit more convenient when you only
want to subtract two numbers in order to compare them, but don’t
necessarily want to overwrite a. Let’s think about how the instruction cmp
b, a would impact ZF and SF.

• If a == b, then a – b will be 0, so ZF will be 1 and SF will be 0.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

• If a > b, then a – b will be a positive number, so both SF and ZF
will be 0.

• If a < b, then a – b will be a negative number, so SF will be 1 and
ZF will be 0.

By issuing a cmp instruction and then referring to ZF and SF, you can
handle every comparison we’re implementing in this chapter. But wait!
That’s not quite true, because a – b could overflow, which will flip SF.
Let’s consider how that impacts each of the three cases above:

• If a == b, then a – b can’t overflow because it’s 0.

• If a > b, then a – b could overflow when a is positive and b is
negative. The correct result in this case is positive, but if it overflows,
the actual result will be negative. In that case, SF will be 1, and OF will
be too.

• If a < b, then a – b could overflow when a is negative and b is
positive. In this case, the correct result is negative, but the actual result
will be positive. That means SF will be 0, but OF will be 1.

Table 5-4 gives the values of these flags in every case we’ve
considered.

Table 5-4 Impact of cmp instruction on status flags

 ZF OF SF

A == B
1 0 0

A > B, no overflow
0 0 0

A > B, overflow
0 1 1

A < B, no overflow
0 0 1

A < B, overflow
0 1 0

Note that you can tell whether a or b is larger by checking whether SF
and OF are the same. If they are, we know that a ≥ b. Either both are 0,
because we got a positive (or zero) result with no overflow, or both are 1,
because we got a large positive result that overflowed until it became

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

negative. If SF and OF are different, we know that a < b. Either we got a
negative result with no overflow, or a negative result that overflowed and
became positive.

UNDEFINED BEHAVIOR ALERT!

If the add and sub instructions can overflow, why didn't we account for that in Chapter 4? We
didn't need to because integer overflow in C is undefined behavior, where the standard doesn't tell
you what should happen. Compilers are permitted to handle undefined behavior however they want,
or ignore it completely.

When an expression in C overflows, for example, the result will usually wrap around like the
examples we saw earlier. However, it's equally correct for the program to generate a result at
random, or raise a signal, or erase your hard drive. That last option may seem unlikely, but
production compilers really do handle some undefined behavior in surprising (and arguably
undesirable) ways. Take the following program:

#include <stdio.h>

int main() {
 for (int i = 2147483646; i > 0; i = i + 1)
 printf("The number is %d\n", i);
 return 0;
}
A program with integer overflow

The largest value an int can hold is 2,147,483,647, so the expression i + 1 will overflow the
second time we execute it. We know that when the add assembly instruction overflows, it produces
a negative result, so we might expect this loop to execute twice, then stop because the condition i
> 0 no longer holds. And, in fact, that's exactly what happens if you compile Listing 5-7 without
optimizations, at least with the versions of Clang and GCC that I tried:

$ clang overflow.c
$./a.out
The number is 2147483646
The number is 2147483647

But if you enable optimizations, the behavior might change completely:

$ clang -O overflow.c
$./a.out
The number is 2147483646
The number is 2147483647
The number is -2147483648
The number is -2147483647
The number is -2147483646
The number is -2147483645
--snip--

What happened? The compiler tried to optimize the program by removing conditional checks
that always succeed. Because we initialized i to a positive number, and then only incremented it, the
compiler concluded that i > 0 would always be true—which is correct as long as i doesn't
overflow. It's incorrect if i does overflow, of course, but the compiler isn't required to account for that

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

case. So it removed that condition entirely, resulting in a loop that never terminates.
I used Clang for this example because GCC produced a completely different, even less intuitive

behavior. You may well see different results if you compile Listing 5-7 on your own machine. Try it
out with a few different optimization levels, and see what happens.

Note that setting the overflow flag in assembly doesn't necessarily indicate overflow in the
source program. For example, when we implement a comparison like a < 10 with cmp, that cmp
instruction may set the overflow flag. But the result of the comparison is 0 or 1, which we can
obviously represent as an int. Therefore, a comparison in a C program won't produce undefined
behavior, regardless of how exactly we implement it in assembly.

These blog posts go into more detail about undefined behavior and the trail of chaos and
destruction it leaves in its wake:

• “A Guide to Undefined Behavior in C and C++, Part 1,” by John Regehr, is a good overview of
what undefined behavior means in the C standard and how it impacts compiler design.
(https://blog.regehr.org/archives/213).

• “With Undefined Behavior, Anything is Possible,” by Raph Levien, explores some sources of
undefined behavior in C and the history of how it got into the standard to begin with.
(https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html).

Now that we understand how to set ZF, OF, and SF, let's take a look at
a few instructions that depend on those flags.

Conditional Set Instructions

To implement a relational operator, we first set some flags using the
cmp instruction, and then set the result of the expression based on those
flags. We'll perform that second step with a conditional set instruction. Each
conditional set instruction takes a single register or memory address as an
operand, which it sets to 0 or 1 based on the state of RFLAGS. The
conditional set instructions are all identical, except they test for different
conditions. Table 5-5 lists the conditional set instructions we need in this
chapter:

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Table 5-5 Conditional set instructions (effect just after executing cmp b, a)

Instruction Meaning Flags

sete Set byte if a == b ZF set

setne Set byte if a != b ZF not set

setg Set byte if a > b ZF not set and SF == OF

setge Set byte if a ≥ b SF == OF

setl Set byte if a < b SF != OF

setle Set byte if a ≤ b ZF set or SF != OF

One annoying thing about conditional set instructions is that they only
set a single byte. If you want to conditionally set EAX to 0 or 1, for
example, the instruction must refer to the AL register, which is the least
significant byte of EAX. You also need to zero out EAX first, because the
conditional set instruction won’t clear its upper bytes. For example, if EAX
is
11111111111111111111111111111011

and you run
mov $2, %edx
cmp $1, %edx
sete %al

then the new value in EAX will be:
11111111111111111111111100000000

which is, obviously, not 0. The sete instruction zeroed out the last
byte of EAX, but not the rest of it.

Jump Instructions

The jmp assembly instruction takes a label as an argument, and
performs an unconditional jump to that label. Jump assembly instructions
manipulate another special-purpose register, RIP. The RIP register always

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

holds the address of the next instruction to execute (IP stands for
“instruction pointer”). To execute a sequence of instructions, the CPU
carries out the fetch-execute cycle:

1. Fetch an instruction from the memory address in RIP, and store it in a
special-purpose instruction register. (This register doesn’t have a name
because you can’t refer to it at all in assembly.)

2. Increment RIP. Instructions in x64 aren’t all the same length, so the
CPU has to inspect the instruction it just fetched, figure out how many
bytes long it is, and increment RIP by that many bytes.

3. Run the instruction in the instruction register.

4. Repeat.

Normally, this means that the CPU will execute instructions in the order
they appear in memory. But jmp puts a new value in RIP, which changes
what instruction the CPU executes next. The assembler and linker convert
the label in a jump instruction into a relative offset that tells you how much
to increment or decrement RIP. Consider the following snippet of assembly:
 addl $1, %eax
 jmp foo

1 movl $0, %eax
foo:

2 ret

Listing 5-7 Assembly code using the jmp instruction

 Instruction 1 in Listing 5-8 turns out to be five bytes long. If you want
to jump over it and execute instruction 2 instead, you need to increment RIP
by an extra five bytes. The assembler and linker will convert jmp foo into
the machine instruction for jmp 5. Then, when the CPU executes this
instruction, it will:

1. Fetch the instruction jmp 5 and store it in the instruction register.

2. Increment RIP to point to the next instruction, mov $0, %eax.

3. Execute jmp 5. This will add five bytes to RIP, so that it points to
ret.

4. Fetch the instruction RIP points to, ret, and continue the fetch-execute
cycle from there.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Note that labels aren’t instructions: the CPU doesn’t execute them, and
they don’t appear in the text section of the final executable (the section that
contains machine instructions). If you’re curious, you can see exactly what’s
in the text section of an executable with objdump; that’s how I figured out
how long instruction 1 is and verified that label foo is resolved to the
relative offset 5. Appendix B explains how to inspect executables with
objdump.

A conditional jump takes a label as an argument, but only jumps to that
label if the condition holds. Conditional jumps look a lot like conditional set
instructions; they depend on exactly the same conditions, using exactly the
same flags in RFLAGS. For example, suppose you wanted to return 3 if two
registers were equal, and 0 if they weren’t equal. You could write:

 cmp %eax, %edx
 je return3

1 mov $0, %eax
2 ret

return3:
 mov $3, %eax
 ret

Listing 5-8 Assembly code using conditional jumps

If the values in EAX and EDX are equal, cmp will set ZF to 1, so at
je we’ll jump to return3. Then we’ll execute the two instructions
following return3, causing the function to return 3. If EAX and EDX
aren’t equal, we won’t jump at je. Instead, we’ll execute instruction 1 and
2, causing the function to return 0. Similarly, jne jumps only if ZF is 0.
There are also jump instructions that check other conditions, but we don’t
need them in this chapter.

Now that we’ve covered jumps, comparisons, and conditional
instructions, we’re ready to extend the assembly AST and update the
assembly generation pass.

Converting TACKY to Assembly

Here’s the latest assembly AST, with additions bolded:
program = Program(function_definition)
function_definition = Function(identifier name, instruction*
instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | Binary(binary_operator, operand, operand)
 | Cmp(operand, operand)
 | Idiv(operand)

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

 | Cdq
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | AllocateStack(int)
 | Ret

unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) |
Stack(int)
cond_code = E | NE | G | GE | L | LE
reg = AX | DX | R10 | R11

Listing 5-9 Assembly AST with comparisons and conditional instructions

Since all conditional jump instructions have the same form, we’ll
represent them all with a single JmpCC instruction, and just distinguish
between them using different condition codes. We’ll do the same with
conditional set instructions. It’s easiest to treat labels like instructions at this
stage; however, Label isn’t really an instruction, since labels aren’t
executed by the CPU.

We’ll implement the JumpIfZero and JumpIfNotZero
instructions from TACKY with the new JmpCC instruction. For example,
we’ll convert
JumpIfZero(val, target)

to
Cmp(Imm(0), val)
JmpCC(E, target)

We can implement JumpIfNotZero exactly the same way, just by
changing the condition code from E to NE.

Similarly, we can implement all the relational operators using
conditional set instructions. For example, the following TACKY instruction:
Binary(GreaterThan, src1, src2, dst)

becomes
Cmp(src2, src1)
Mov(Imm(0), dst)
SetCC(G, dst)

For all the other relational operators, just replace G with the appropriate
condition code. Remember that we have to zero out the destination before

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

the conditional set instruction, since it only sets the lowest byte. It’s safe to
perform a mov right after the cmp instruction because mov doesn’t change
RFLAGS. The one remaining wrinkle is that SetCC needs a one-byte
operand, but dst is four bytes; luckily, we can account for this during code
emission. If dst is a location in memory, SetCC will just operate on the
first byte at that location, which is the behavior we want. (Because x64
processors are little-endian, the first byte is the least significant, so setting
that byte to 1 sets the whole 32-bit value to 1.)

If dst is a register, it’s a little more complicated: the Mov instruction
will refer to a 32-bit register, like EAX, and the SetCC instruction will refer
to the corresponding 8-bit register, like AL. We’ll make sure to print out the
right register name during code emission. At this stage, we refer to registers
without specifying their size, so 8-bit registers don’t require any special
handling.

Because !x is equivalent to x == 0, we can also implement the unary
! operator with a conditional set instruction. We’ll convert this TACKY
instruction:
Unary(Not, src, dst)

into this list of assembly instructions:
Cmp(Imm(0), src)
Mov(Imm(0), dst)
SetCC(E, dst)

The remaining TACKY instructions, Jump, Label, and Copy, are
easy. A TACKY Jump becomes an assembly Jmp, Label becomes
Label, and Copy becomes Mov. Table 5-6 summarizes how to convert
each new TACKY construct to assembly.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Table 5-6 Conversion from TACKY to Assembly

TACKY Assembly

Top-level constructs

Program(function_definition) Program(function_definition)

Function(name, instructions) Function(name, instructions)

Instructions

Return(val) Mov(val, Reg(AX))

Ret

Unary(Not, src, dst) Cmp(Imm(0), src)

Mov(Imm(0), dst)

SetCC(E, dst)

Unary(unary_operator, src,

dst)

Mov(src, dst)

Unary(unary_operator, dst)

Binary(Divide, src1, src2,

dst)

Mov (src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(AX), dst)

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Binary(Mod, src1, src2, dst) Mov (src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(DX), dst)

Binary(arithmetic_operator,

src1, src2, dst)

Mov(src1, dst)

Binary(arithmetic_operator,

src2, dst)

Binary(relational_operator,

src1, src2, dst)

Cmp(src2, src1)

Mov(Imm(0), dst)

SetCC(relational_operator,

dst)

Jump(target) Jmp(target)

JumpIfZero(condition, target) Cmp(Imm(0), condition)

JmpCC(E, target)

JumpIfNotZero(condition,

target)

Cmp(Imm(0), condition)

JmpCC(NE, target)

Copy(src, dst) Mov(src, dst)

Label(identifier) Label(identifier)

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Operators

Complement Not

Negate Neg

Add Add

Subtract Sub

Multiply Mult

Operands

Constant(int) Imm(int)

Var(identifier) Pseudo(identifier)

Conditions

Equal E

NotEqual NE

LessThan L

LessOrEqual LE

GreaterThan G

GreaterOrEqual GE

Once your compiler can handle the conversion from TACKY to
assembly, you’re ready to move on to the rest of the code generation pass.

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Replacing Pseudoregisters

You should replace any pseudoregisters used by the new Cmp and
SetCC instructions with stack addresses, just like you’re doing for all the
other instructions.

Fixing Up Instructions

The cmp instruction, much like the arithmetic instructions we’ve
already implemented, can’t use memory addresses for both operands. We’ll
rewrite it in the usual way, so that
cmpl -4(%rbp), -8(%rbp)

will become
movl -4(%rbp), %r10d
cmpl %r10d, -8(%rbp)

The second operand of a cmp instruction can’t be a constant. This sort
of makes sense if you remember that cmp follows the same form as sub—
the second operand of a sub, add, or imul instruction can’t be a constant
either, since that operand holds the result. Even though cmp doesn’t
produce a result, the same rules apply. So
cmpl %eax, $5

will become
movl $5, %r11d
cmpl %eax, %r11d

Following the convention that we established in the previous chapter,
we use R10 when we need to fix a cmp instruction's first operand, and R11
when we need to fix its second operand.

Testing Assembly Generation

To test the assembly generation stage, run:
$./test_compiler /path/to/your_compiler --chapter 5 --stage
codegen

Extending the Code Emitter

We’ve now generated a valid assembly program, and we’re ready to
emit it. Code emission is slightly more complicated in this chapter, for two
reasons. The first reason is that we’re now dealing with both 8-bit and 32-bit
registers. You’ll print out a different name for a register depending on

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

whether it appears in a conditional set instruction, which takes 8-bit
operands, or any of the other instructions we’ve encountered so far, which
take 32-bit operands.

The second issue is emitting labels. Right now, assembly labels come
from two places: some are autogenerated inside the compiler, and some—
function names—come from user-defined identifiers. Right now, the only
function name is main, but eventually we’ll compile programs with
arbitrary function names. Because labels must be unique, our auto-generated
labels can’t conflict with any function names that could possibly appear in a
program. We can avoid conflicts by using labels that aren’t syntactically
valid function names. An easy solution is to just add a period at the
beginning of each label, since periods can’t appear in the names of C
functions. For example, if you autogenerated label foo123 during the
TACKY generation stage, you can emit it as .foo123, so it won’t cause
problems if the function name foo123 appears elsewhere in the program.

If you’re compiling on macOS, you don’t have to mangle your labels at
all. Remember that your code emission stage already adds underscores to
user-defined labels (so that main becomes _main, for example). As long
as your autogenerated labels don’t start with underscores, you don’t have to
worry that they’ll conflict with user-defined identifiers.

Otherwise, code emission is pretty straightforward; Table 5-7
summarizes how to print out each construct, with this chapter’s additions
bolded:

Table 5-7 Formatting assembly

Assembly Construct Output

Top-level constructs

Program(function_definition) (just print out the function definition)

Function(name, instructions)
 .globl <name>
<name>:
 pushq %rbp
 movq %rsp, %rbp
 <instructions>

Instructions

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Mov(src, dst)
 movl <src>, <dst>

Ret
 movq %rbp, %rsp
 popq %rbp
 ret

Unary(unary_operator, operand)
 <unary_operator>
<operand>

Binary(binary_operator, src, dst)
 <binary_operator>
<src>, <dst>

Idiv(operand)
 idivl <operand>

Cdq
 cdq

AllocateStack(int)
 subq $<int>,
%rsp

Cmp(operand, operand)
 cmpl <operand>,
<operand>

Jmp(label)
 jmp .<label>

JmpCC(cond_code, label)
 j<cond_code>
.<label>

SetCC(cond_code, operand)
 set<cond_code>
<operand>

Label(label)
.<label>:

Operators

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Neg
negl

Not
notl

Add
addl

Sub
subl

Mult
imull

Condition Codes

E
e

NE
ne

L
l

LE
le

G
g

GE
ge

Operands

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Reg(AX) 4-byte
%eax

1-byte
%al

Reg(DX)

4-byte
%edx

1-byte
%dl

Reg(R10) 4-byte
%r10d

1-byte
%r10b

Reg(R11) 4-byte
%r11d

 1-byte
%r11b

Stack(int)
<int>(%rbp)

Imm(int)
$<int>

On macOS, you don’t need the period before the label in JmpCC and
Label instructions, although it doesn’t hurt to include it. Make sure to
emit the one-byte version of registers when they appear in SetCC, and the
four-byte version anywhere else. Note that the cmp instruction gets a l
suffix to indicate that it operates on 32-bit values, but set instructions
don’t. That’s because conditional set instructions only take one-byte
operands; there are no four-byte or eight-byte variants. Because these
instructions only support one possible operand size, you don’t need a suffix
to indicate which size you want.

Testing the Whole Compiler

Now you should be able to compile and run programs that use our new
operators. To check if you’re compiling every test program correctly, run:
$./test_compiler /path/to/your_compiler --chapter 5

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

Summary

Your compiler can now handle programs with relational and logical
operators. You added conditional jumps to TACKY to support short-
circuiting operators, and learned about several new assembly instructions,
including conditional instructions. You also learned about how the CPU
keeps track of the current instruction and how it records the result of
comparisons. The new TACKY and assembly instructions we introduced in
this chapter will eventually help you implement complex control structures
like if statements and loops. But first, we’ll implement one of the most
essential features of C: variables!

Writing a C Compiler (Early Access) © 2022 by Nora Sandler

	WritingCCompiler_EA.pdf
	Sandler_WritingACCompiler_Ch2_EA
	Sandler_WritingACCompiler_Ch3_EA.docx
	Sandler_WritingACCompiler_Ch4_EA
	Sandler_WritingACCompiler_Ch5_EA
	50
	50
	50
	45
	45
	Neither
	Overflow from positive to negative
	Overflow from negative to positive
	Neither
	Overflow from positive to negative
	Neither
	Neither
	Overflow from negative to positive
	0
	0
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	ZF set
	Set byte if a == b
	ZF not set
	Set byte if a != b
	ZF not set and SF == OF
	Set byte if a > b
	SF == OF
	Set byte if a (b
	SF != OF
	Set byte if a < b
	ZF set or SF != OF
	Set byte if a ≤ b
	(just print out the function definition)
	Mov(src, dst)
	Ret
	Unary(unary_operator, operand)
	Binary(binary_operator, src, dst)
	Idiv(operand)
	Cdq
	AllocateStack(int)
	Neg
	Not
	4-byte
	Reg(AX)
	4-byte
	4-byte
	Reg(R10)
	4-byte
	Reg(R11)
	Stack(int)
	Imm(int)

