
EARLY
EARLY

ACCESS
ACCESS

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

The Early Access program lets you read significant portions of an
upcoming book while it’s still in the editing and production phases, so you
may come across errors or other issues you want to comment on. But while
we sincerely appreciate your feedback during a book’s EA phase, please use
your best discretion when deciding what to report.

At the EA stage, we’re most interested in feedback related to content—
general comments to the writer, technical errors, versioning concerns, or
other high-level issues and observations. As these titles are still in draft form,
we already know there may be typos, grammatical mistakes, missing images
or captions, layout issues, and instances of placeholder text. No need to
report these—they will all be corrected later, during the copyediting, proof-
reading, and typesetting processes.

If you encounter any errors (“errata”) you’d like to report, please fill out
this Google form so we can review your comments.

https://docs.google.com/forms/d/e/1FAIpQLSfjCqdOzGOdoe7m1Rgqfo-dqvz85Gqe8758jwUD9mpFYiSjGA/viewform?fbzx=-3092278227089906900

J A V A S C R I P T C R A S H C O U R S E
N I C K M O R G A N
Early Access edition, 5/2/22

Copyright © 2022 by Nick Morgan.

ISBN 13: 978-1-7185-0226-0 (print)
ISBN 13: 978-1-7185-0227-7 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Developmental Editor: Nathan Heidelberger
Production Editor: Jenn Kepler
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Compositor: Happenstance Type-O-Rama

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Introduction

PART I: JAVASCRIPT BASICS

Chapter 1: What Is JavaScript?
Chapter 2: Data Types and Variables
Chapter 3: Arrays
Chapter 4: Objects
Chapter 5: Conditionals and Loops
Chapter 6: Functions
Chapter 7: Classes

PART II: INTERACTIVE JAVASCRIPT

Chapter 8: HTML, the Document Object Model, and CSS
Chapter 9: Event-Based Programming
Chapter 10: The Canvas Element

PART III: PROJECTS

Chapter 11: Project 1: Making a Game
Chapter 12: Project 1B: Object-Oriented Pong
Chapter 13: Project 2: Making Music
Chapter 14: Project 3: Visualizing Data

The chapters in red are included in this Early Access PDF.

4
O B J E C T S

Objects are a data structure similar to arrays, but which
use strings known as keys to access the values. Each key is
associated with a value, which together is known as a key-
value pair.

While we use arrays to store ordered lists of different elements, objects are
usually used to store multiple pieces of information about a single entity, such as a
person’s name and age. In this chapter we’ll learn how to create and manipulate
objects.

Creating Objects
Objects can be created with object literals, which consist of a pair of curly

braces, enclosing a series of key-value pairs, separated by commas. Each key-
value pair must have a colon between the key and the value. Here’s an object lit-
eral called casablanca containing some information about that movie:

let casablanca = {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 "title": "Casablanca",
 "released": 1942,
 "director": "Michael Curtiz"
};
casablanca;
 {title: "Casablanca", released: 1942, director: "Michael
Curtiz"}

We create a new object with three keys: "title", "released", and
"director". Each key has a value associated with it. I use new lines to separate
each key-value pair simply because it can be easier to read that way, but it’s not
strictly necessary.

All keys in objects are strings, but if your key is a valid identifier you can
leave off the quotes, which is common practice among JavaScript programmers:
let obj = { key1: 1, key_2: 2, "key 3": 3 };
obj;
 {key1: 1, key_2: 2, key 3: 3}

key 3 contains a space, so we have to use quotes.

WHAT IS A VALID IDENTIFIER?

A valid identifier is a series of characters that can be used as a variable name, or as an un-quoted ob-
ject key. JavaScript identifiers can contain letters, numbers, and the characters _ and $. They cannot start
with a number.

Invalid characters include symbols like * or (or #, as well as white space characters like space and
new line. These characters are all allowed in object keys, but only if the key is enclosed in quotes.

Accessing Object Values
To get the value associated with a key, you call the name of the object with

the string key in square brackets:
obj["key 3"];
3
casablanca["title"];
"Casablanca"

This is just like accessing an element from an array, but instead of using the
numeric index, you use the string key.

For keys that are also valid identifiers you can use dot notation:
obj.key_2;
2

This doesn’t work for keys that aren’t valid identifiers. For example, you can’t
say obj.key 3 because to JavaScript that looks like obj.key followed by the
number literal 3.

You might notice that this dot notation looks like the syntax we used for

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

properties like .length in Chapters 2 and 3. That’s because it’s the same thing!
A property is really just another name for a key. JavaScript treats strings like ob-
jects, and arrays are just a kind of object, so something like [1, 2,
3].length; is actually getting the value associated with the length key. You
can even access these properties with bracket notation if you want:
[1, 2, 3]["length"];
3

Setting Object Values
You can also use bracket notation or dot notation to update or set new key-

value pairs. Here we’ll set up an empty dictionary, then add two definitions:
let dictionary = {};
dictionary.mouse = "A small rodent";
dictionary["computer mouse"] = "A pointing device for computers";
dictionary;
 {mouse: "A small rodent", computer mouse: "A pointing device
for computers"}

We first create an empty object dictionary set to a pair of empty curly
braces. We then set two new properties: "mouse" and "computer mouse"
and give them definitions as values. As before, we use bracket notation for "com-
puter mouse" because it contains a space and therefore is not a valid identifier.

Nesting Arrays and Objects
As with arrays, we can nest objects in other objects. We can also nest objects

in arrays, and arrays in objects! We create these nested structures in two ways: by
creating an object or array literal with nested object or array literals inside, or by
creating the inner elements, saving them to variables, and then building up the
composite structures using the variables. I’ll show both these techniques.

Nested Array and Object Literals
We’ll create an array of objects that represents your favorite book trilogies:

let favoriteTrilogies = [
 {
 title: "His Dark Materials",
 author: "Philip Pullman",
 books: ["Northern Lights", "The Subtle Knife", "The Amber
Spyglass"]
 },
 {
 title: "Broken Earth",
 author: "N. K. Jemisin",
 books: ["The Fifth Season", "The Obelisk Gate", "The
Stone Sky"]
 }

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

];

The variable favoriteTrilogies contains an array of two elements,
each of which is an object. These objects both contain a key called books, which
itself contains an array of strings.

To get the name of the first book from the second trilogy you use a combina-
tion of array indexing and object dot notation, specifying the index of the second
object in the outer array, the key in that object that gives the inner array, and then
the index of the element within that array.
favoriteTrilogies[1].books[0];
"The Fifth Season"

Building Nested Structures with Variables
An alternative technique is to create objects containing the inner elements, as-

sign those objects to variables, and then build the outer structure out of these varia-
bles. For example, say you want to model some coins, and then create an object
that represents just the coins in your pocket.
let cent = { name: "Cent", value: 1, weight: 2.5 };
let nickel = { name: "Nickel", value: 5, weight: 5 };
let dime = { name: "Dime", value: 10, weight: 2.268 };
let quarter = { name: "Quarter", value: 25, weight: 5.67 };
let change = [quarter, quarter, dime, cent, cent, cent];
change[0].value;
25

Here we create four objects representing four different kinds of coins. We
then create an array containing a combination of these coin objects.

You’ll see that some of the coin objects appear in the array multiple times.
This is one advantage of creating the elements of the array before we create the ar-
ray—the same element can be repeated within the same array without having to
repeat the object literal.

Another interesting consequence of building the array like this is that the re-
peated elements share a common identity. For example, change[3] and
change[4] refer to the same cent object. If we decided to update the weight of a
cent, that weight would be reflected in all the cent elements of the change array:

cent.weight = 2.49;
change[3].weight;
2.49
change[4].weight;
2.49
change[5].weight;
2.49

Any changes to cent will be shown in each occurrence in the change array.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

TRY IT OUT

Try changing the value property of quarter and check to see if that change is reflected in the change
array. Now, change the weight of change[0]. Do you see that change reflected in quarter as well?

Exploring Nested Objects in the Console
The Chrome console gives you the ability to explore nested objects, like we

did in Chapter 3 with nested arrays. We’ll create a deeply nested object and try to
look inside.
let nested = {
 name: "Outer",
 content: {
 name: "Middle",
 content: {
 name: "Inner",
 content: "Whoa..."
 }
 }
};
nested.content.content.content;
"Whoa..."
nested;
 {name: "Outer", content: {…}}

As you can see, you can access the content of the inner-most object by chain-
ing together nested.content.content.content.

When we ask for the value of nested, the console just gives an abbreviated
version with the value of content shown as {…} to imply that there is an object
here but there isn’t room to display it. Click the arrow to the left to expand the
view of the outer object. Now the next nested object (with name: "Middle") is
shown in abbreviated form. Click the arrow to expand this object, and then one
more time to expand the object with name: "Inner". You should now see the
entire content of the object, as below:
 {name: "Outer", content: {…}}
 name: "Outer"
  content:
 name: "Middle"
  content:
 name: "Inner"
 content: "Whoa..."

  __proto__: Object
  __proto__: Object
  __proto__: Object

As mentioned in Chapter 3, the __proto__ properties will be explained in
Chapter 7, when we learn about object prototypes.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Printing Objects with JSON.stringify
You can also view objects as JSON, or JavaScript Object Notation, a textual

data format based on JavaScript object and array literals that’s heavily used across
the Web and beyond. JSON.stringify converts a JavaScript object into a
JSON string.

Let’s take the nested object and convert it into a JSON string:

JSON.stringify(nested);
"{"name":"Outer","content":{"name":"Middle","content":{"name":"In
ner","content":"Whoa..."}}}"

The returned string is an unformatted equivalent of the original literal we used
to create nested. To format the literal, you pass an argument that represents the
number of spaces to indent each new nested object:
JSON.stringify(nested, null, 2);
"{
 "name": "Outer",
 "content": {
 "name": "Middle",
 "content": {
 "name": "Inner",
 "content": "Whoa..."
 }
 }
}"

The second argument lets you define a replacer function which can be used to
modify the output by optionally replacing key-value pairs, but we don’t have a
need for that here, so we pass null. Passing 2 for the third argument modifies the
behavior of JSON.stringify to give a new line after each opening brace, and
then two extra characters of space for each additional level of nesting.

Calling JSON.stringify in this way is helpful for getting a quick visual
representation of an object without having to click into each key in the console.

Working with Objects
Objects have plenty of methods, and we’ll examine a few of the most common

ones here. Unlike arrays, where the methods are called directly on the array you
want to operate on, object methods are called as static methods on the Object
constructor, passing the object you want to operate on as an argument. We’ll learn
more about static methods and constructors in Chapter 7, but briefly, a constructor
is a type of function used to create objects, and static methods are methods defined
directly on the constructor.

Getting an Object’s Keys
To get an array of all the keys of an object you can use the static method Ob-

ject.keys. Here’s how you could retrieve the names of my cats:

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

let cats = { "Kiki": "Black and white", "Mei": "Tabby", "Moona":
"Gray" };
Object.keys(cats);
 (3) ["Kiki", "Mei", "Moona"]

The cats object has three key-value pairs, where each key represents a cat
name and each value represents that cat’s color. Object.keys returns just the
keys, as an array of strings.

Methods like Object.keys can’t be called as methods on the object itself,
because then you wouldn’t be able to define a keys property on any object you
created; the name would conflict with the keys method. There are a lot of these
methods, so the designers of JavaScript decided to make them available as static
methods, where they won’t conflict with your keys.

Object.keys can be helpful in cases like this where the only information
you need from an object is its keys. For example, you might have an object track-
ing how much money you owe your friends, where the keys are your friends’
names and the values are the amounts owed. With Object.keys you can list
just the names of the friends that you’re tracking.

Getting an Object’s Keys and Values
To get an array of the keys and values you use Object.entries. This

static method returns an array of two-element arrays, where the first element of the
inner array is the key and the second is the value.
let chromosomes = {
 koala: 16,
 snail: 24,
 giraffe: 30,
 cat: 38
};
Object.entries(chromosomes);
 (4) [Array(2), Array(2), Array(2), Array(2)]

We create an object with four key-value pairs, showing how many chromo-
somes various animals have. Object.entries(chromosomes) returns an
array containing four elements, each of which is a two-element array. To view the
full contents, click on the arrow to the left.
 (4) [Array(2), Array(2), Array(2), Array(2)]
0: (2) ["koala", 16]
1: (2) ["snail", 24]
2: (2) ["giraffe", 30]
3: (2) ["cat", 38]
length: 4
__proto__: Array(0)

This shows that each sub-array contains the key from the original object as its
first element, and the value as its second element.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Object.entries is useful when you want to convert an object into an ar-
ray so you can loop over its key-value pairs. We’ll see how loops work in Chapter
5.

Combining Objects
The Object.assign method lets you combine multiple objects into one.

For example, say you had two objects, one giving the physical attributes of a book,
and the other describing its contents.
let physical = { pages: 208, binding: "Hardcover" };
let contents = { genre: "Fiction", subgenre: "Mystery" };
let target = {};
Object.assign(target, physical, contents);
 {pages: 208, binding: "Hardcover", genre: "Fiction", subgenre:
"Mystery"}

The first argument to Object.assign is the target object, that is, the ob-
ject that the keys from the other objects are assigned to. In this case, we use {}
which is an empty object. The next two arguments are the objects whose key-value
pairs you want copied into the target object. These two objects are untouched, but
the target object is mutated. You can pass as many objects after the initial target
argument as you want—we’re just doing two here.

Object.assign mutates and returns the target object with the key-value
pairs copied from the other objects.

The first argument of Object.assign is always mutated. You don’t have
to use an empty object as the target, but if you don’t then you’ll be modifying one
of your input objects. For example, we could remove the first argument from the
previous call and get the same return value:
Object.assign(physical, contents);
 {pages: 208, binding: “Hardcover”, genre: “Fiction”, subgenre:
“Mystery”}

The problem here is that physical is now the target object, and so gains all
the key-values pairs from contents:

physical;
 {pages: 208, binding: "Hardcover", genre: "Fiction", subgenre:
"Mystery"}

All of the key-value pairs from the contents object have been copied into
the physical object, which now contains both sets of key-value pairs, which is
usually not what you want. For this reason, it’s common practice to use an empty
object as the first argument to Object.assign.

Conclusion
In this chapter you learned the basics of JavaScript objects, and a little about

JavaScript Object Notation, or JSON. You should have a good understanding of

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

the differences between objects and arrays, and have some idea of why you would
choose one over the other. In the next chapter we’ll look at conditionals and loops,
which will allow us to write much more complex and interesting programs, by in-
troducing logic.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

5
C O N D I T I O N A L S A N D L O O P S

Conditionals and loops are how you can add logic to your
programs, allowing your code to make decisions based on
conditions. Conditionals allow you to run a particular bit
of code only if some condition is true. Loops will keep
on running the same piece of code for as long as some
condition is true. Together, conditionals and loops are
known as control structures because they let you control
when and how often your code runs.

In this chapter you’ll learn how to conditionally run code with if statements
and how to loop code with while and for statements. You’ll also learn some
techniques for looping over the elements of arrays and objects. This is helpful, for
example, if you want to do something with every element in an array.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Making Decisions with Conditionals
Conditionals let you run particular code when some condition you set is

true. There are two main kinds of conditional statement: if statements and
if...else statements.

if Statements
An if statement runs code if some condition is true. For example, let’s cre-

ate a program that logs a message to the console if a value is greater than a certain
threshold. Open VS Code, create a new file called if.html, and enter the following.
Then open the file in Chrome (see page xxx for instructions).
<html><body><script>
let speed = 30;
console.log(`Your current speed is ${speed} mph.`);

1 if (speed > 25) {
2 console.log("Slow down!");
}
</script></body></html>

Listing 5-1 An if statement

This code is checking the value of speed and, if the value is above the
threshold we set in the if statement, it runs a particular piece of code. If the value
of speed is not above the threshold, it does nothing.

When you run this, you’ll see the following output in the JavaScript console:
Your current speed is 30 mph.
Slow down!

The if statement here has two parts: the condition inside the parentheses 1
and the code to run if the condition is true, called the body, which is everything be-
tween the curly braces 2. Here, the condition is speed > 25 and the code to run
if that is true is console.log("Slow down!");. Because speed is greater
than 25, this code will print the string Slow down! to the console.

Now let’s see what happens if the condition isn’t met. Change speed to 20
and reload the page. This time you’ll just see the following output:
Your current speed is 20 mph.

Because speed > 25 is now false, the code inside the braces isn’t run,
but the code outside the if statement body does still run.

if...else statements
Sometimes you’ll want to run one piece of code when a condition is true, and

another when that condition is false. For this we use an if...else statement.
Create a new file called ifelse.html and enter the following:
<html><body><script>
let speed = 20;

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

console.log(`Your current speed is ${speed} mph.`);
if (speed > 25) {
1 console.log("Slow down!");
} else {
2 console.log("You're obeying the speed limit.");
}
</script></body></html>

Listing 5-2 An if...else statement

Like Listing 5-1, this code will check if speed is over some threshold. If it is,
we run the first block of code, and if it’s not we run the second block.

Running this in Chrome will output the following:
Your current speed is 20 mph.
You're obeying the speed limit.

An if...else statement has two bodies. The first body 1 is run if the con-
dition is true, and the second body 2 is run if the condition is false. In this
case the condition is false, so the second body runs.

TRY IT OUT

Create a new file called cointoss.html and add the usual setup code. Generate a random number with
Math.random(), then write an if...else statement that will log "heads" if the number is less than 0.5
and "tails" otherwise. Every time you reload this file you’ll get a new coin value!

Chaining if...else statements
If you need to check multiple conditions you can chain together multiple

if...else statements. Create a new file called ifelseif.html with the following
code:
<html><body><script>
let speed = 20;
console.log(`Your current speed is ${speed} mph.`);
if (speed > 25) {
 console.log("Slow down!");
} else if (speed > 15) {
 console.log("You're driving at a good speed.");
} else {
 console.log("You're driving too slowly.");
}
</script></body></html>

Listing 5-3 A chained if...else statement with three bodies

This listing checks if speed is over a certain threshold. If so, it runs the first
body. It then checks if it’s over another threshold, in which case it runs the second
body. If neither condition is true it runs the final body.

Running this will output:

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Your current speed is 20 mph.
You're driving at a good speed.

This is very similar to Listing 5-2 except now there are three sections: if,
else if, and else. If the first condition is true, the first body runs. Otherwise,
if the second condition is true, the second body runs. If none of the conditions are
true, the final else body runs. Just like a normal if...else statement, in a
chained if...else statement only one of the bodies will run, that is, the first
body that meets the condition.

You can include as many else if sections as you want:

if (speed > 25) {
 console.log("Slow down!");
} else if (speed > 20) {
 console.log("You're driving at a good speed.");
} else if (speed > 15) {
 console.log("You're driving a little bit too slowly.");
} else if (speed > 10) {
 console.log("You're driving too slowly.");
} else {
 console.log("You're driving far too slowly!");
}

Listing 5-4 A chained if...else statement with five bodies

It’s important to note that falling through to a later condition means that the
earlier conditions had to be false. For example, when we write if (speed >
20) in Listing 5-4, it’s on the understanding that if (speed > 25) is false.
Therefore, if (speed > 20) actually means if (speed > 20 &&
speed <= 25) in this context, but since we already know speed can’t be
greater than 25, we don’t need to specify the && speed <= 25 part. Table 5-1
shows the full conditions for each section in Listing 5-4.

Table 5-2 Each condition and output for the if...else statement in Listing 5-4

Condition Output
speed > 25 Slow down!
speed > 20 && speed <= 25 You're driving at a good speed.
speed > 15 && speed <= 20 You're driving a little bit too

slowly.
speed > 10 && speed <= 15 You're driving too slowly.
speed <= 10 You're driving far too slowly!

DO YOU NEED BRACES?

It’s possible to write if and if...else statements without braces, if each body is a single statement.
For example, this is valid:

if (speed > 25)
 console.log("Slow down!");
else
 console.log("You're driving under the speed limit.");

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

and so is this:

if (speed > 25) console.log("Slow down!");
else console.log("You're driving under the speed limit.");

These examples works fine, but if you have more than one line in the body you need to include the
braces. In this book we’ll always use braces to surround the body, for consistency.

Repeating Code with Loops
Loops are another form of control structure in JavaScript that let you run the

same code multiple times. There are four main kinds of loops you’ll learn in this
chapter: while loops, for loops, for...in loops and for...of loops. Let’s
start with while loops.

while loops
The while loop is the simplest kind of loop; in essence, the while loop

says “while some condition is true, run this code”. In that sense, it’s similar to an
if statement, the difference being that the while loop will keep running the code
as long as the condition is true, whereas an if statement will only run it at most
once. Often you’ll need to write code that runs multiple times, instead of just once.
This allows your program to keep running as long as it needs to, instead of just
running through once and stopping.

Let’s try it out. Create a new file called while.html and enter the following:
<html><body><script>
let speed = 30;

1 while (speed > 25) {
 console.log(`Your current speed is ${speed} mph.`);
2 speed--;
}

3 console.log(`Now your speed is ${speed} mph.`);
</script></body></html>

Listing 5-5 A while loop

This loop will keep running the same code, outputting a line of text and decre-
menting speed until the condition is false.

Running this will output the following:
Your current speed is 30 mph.
Your current speed is 29 mph.
Your current speed is 28 mph.
Your current speed is 27 mph.
Your current speed is 26 mph.
Now your speed is 25 mph.

The first time we hit the while loop at 1, speed is 30, so speed > 25 is
true. This means the body of the while loop is run, which outputs some text.
Then at 2, we decrement the speed variable by 1 so the next time around the loop

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

we have a different value for speed. At the end of the loop, we go back to the start
1 and check the condition again. If it’s still true, we run the body again, then go
back to the start and check the condition, and so on. This keeps happening until the
condition is no longer met, so when speed gets to 25. We again check the condi-
tion, which is now false (25 > 25 is false). This causes JavaScript to jump
to the first line of code following the while loop, at 3, and output a final line of
text.

BEWARE OF INFINITE LOOPS!

It’s very easy to accidentally end up in an infinite loop where your loop never stops looping until you
close the browser tab. If you’re unlucky you might even cause your browser to crash!

For example, if we changed Listing 5-5 to use speed++ instead of speed-- we’d end up in an infinite
loop. The output would look something like this:

Your current speed is 30 mph.
Your current speed is 31 mph.
Your current speed is 32 mph.
Your current speed is 33 mph.
Your current speed is 34 mph.
Your current speed is 35 mph.
Your current speed is 36 mph.
...

The speed would keep increasing until you closed the browser tab, because the condition would never
not be met. If you ever end up in a situation like this, read your code back carefully, and make sure that the
condition will eventually become false.

for loops
A for loop is another kind of loop. for loops make it easier to keep track of

your position in the loop by giving you the opportunity to set up some state, update
it, and check it. Like a while loop, a for loop keeps looping as long as some
condition is true.

Often loops have a particular looping variable, which we use for keeping
track of the state of the loop, like the speed variable in Listing 5-5. A common
pattern is to set the looping variable to a starting value, update it somehow, and
check some condition based on the looping variable. A for loop is just a more
convenient way to write this pattern.

With for loops we move the setup and updating of the looping variable into
the first line of the loop. Let’s rewrite the previous example to use a for loop in-
stead of a while loop. Save the following in for.html.

<html><body><script>
for (let speed = 30; speed > 25; speed--) {
 console.log(`Your current speed is ${speed} mph.`);
}
</script></body></html>

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Listing 5-6 A for loop

The first line of the for loop has three parts: we set up the initial variable
value with let speed = 30, set the condition with speed > 25, and then
update the variable in the same line with speed-- to decrement the variable with
each loop. You separate each part with a semicolon.

Running this will output mostly the same as the while loop from earlier:

Your current speed is 30 mph.
Your current speed is 29 mph.
Your current speed is 28 mph.
Your current speed is 27 mph.
Your current speed is 26 mph.

The only difference is that we don’t have access to the speed variable out-
side of the for loop, so we can’t log the final speed at the end. This is actually
one of the advantages of for loops: the looping variable stays within the scope of
the loop and can’t be accidentally used outside of the loop.

There’s nothing you can do with a for loop that you can’t do with a while
loop, but most programmers find for loops easier to read than the equivalent
while loop, because all the looping logic is confined to one place.

Looping Over an Array With for...of
You can use the for…of loop to loop over the items in an array. Where

while loops and for loops keep looping as long as some condition is true,
for...of loops go over each item in an array, one at a time, and stop when they
run out of items.

Let’s have a look at a for...of loop in action. Create a new file called
forof.html:
<html><body><script>
let colors = ["Red", "Green", "Blue"];

for (let color of colors) {
 console.log(`${color} is a color.`);
}
</script></body></html>

Listing 5-7 Looping over an array with a for...of loop

This code logs a sentence for each color in the array colors, then stops. This
will output the following:
Red is a color.
Green is a color.
Blue is a color.

We create an array containing three strings. We then use the statement for
(let color of colors) to set the variable color to each element in
colors, one at a time. The first time around the loop, the looping variable

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

color will be set to "Red". The second time it will be set to "Green". Finally,
the third time around it will be set to "Blue". When it runs out of items, the loop
ends.

It’s also possible to use a regular for loop to loop over an array:

for (let index = 0; index < colors.length; index++) {
 console.log(`${colors[index]} is a color.`);
}

Listing 5-8 Using a regular for loop instead of a for...of loop

You’ll see this style a lot in older code. For a long time this was the only way
to loop over an array in JavaScript, so it’s worth being able to recognize it. One
benefit of this technique is that it gives you access to the array index. Sometimes
it’s important to know which element of the array you’re dealing with. For exam-
ple, you might want to do something different with even and odd indexes, or you
might just want to print out the index to make a numbered list, like we do in List-
ing 5-9 below. To do this with a for...of loop you can use the entries()
method on the array (you’ll learn more about methods in Chapter XX).
for (let [index, color] of colors.entries()) {
 console.log(`${index}: ${color} is a color.`);
}

Listing 5-9 Using .entries() to get access to the indexes in an array

This outputs:
0: Red is a color.
1: Green is a color.
2: Blue is a color.

The entries() method gives you a list of elements where each original
item is paired with the index of that item. In this case, if colors is ["Red",
"Green", "Blue"] then colors.entries() gives you something like
[[0, "Red"], [1, "Green"], [2, "Blue"]]. This lets you loop over
pairs of [index, item] instead of just looping over the items.

TRY IT OUT

It’s also possible to loop over strings. Write a for...of loop that will loop over your name, printing
each letter on a separate line, for example:

N
i
c
k

Now see if you can print out the following:

N 0
i 1
c 2

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

k 3

To use the entries() technique from earlier you’ll first have to convert the
string to an array. To do that, use the split method: name.split("").en-
tries().

Finally, rewrite this but with a standard for loop. Which version do you pre-
fer? Think about efficiency and readability.

for...in loops
To loop over the keys in an object you can use a for...in loop. This works

similarly to a for...of loop, but with objects instead of arrays, looping over the
keys, not the values.

Save the following as forin.html:
<html><body><script>
let me = {
 firstName: "Nick",
 lastName: "Morgan",
 age: 35
};

for (let key in me) {
 console.log(`My ${key} is ${me[key]}.`);
}
</script></body></html>

Listing 5-10 Looping over the keys in an object with a for...in loop

This code loops over each key in the object, and outputs a string based on the
key and the value. Running the code will output:
My firstName is Nick.
My lastName is Morgan.
My age is 35.

The first thing we do is to create an object with three keys, then loop over the
keys. Like a for...of loop, each time round the loop, the looping variable will
be set to a different item. In this case, key is set to each key from the object me.
To get the value from the object we can use the subscript notation, me[key],
which you learned in Chapter XX.

Conclusion
This chapter introduced conditionals and loops, the control structures that let

you control how your programs run. Conditionals are used to run code condition-
ally, if the condition you set is true. Loops let you run the same code multiple
times.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

6
F U N C T I O N S

JavaScript lets you package up code for performing a
certain task using functions. These functions can then
be called, which will run the associated code. Functions
make it so you don’t have to repeat code every time you
have to perform some task.

In this chapter you’ll learn to write your own functions, and make those
functions more flexible with parameters.

Creating and Calling Functions
We’ll begin with a basic function that takes an argument and logs it out to

the console with the text “Hello”. Open the JavaScript console and enter the
following:

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

1 function 2sayHello(3name) {
4 console.log(`Hello, ${name}!`);
}

Listing 6-1 Our first function

This code is called a function declaration, because we’re declaring a
function. Here we create a function called sayHello with one parameter,
name. Parameters are pieces of information a function needs to do its job.

A function declaration has four parts: the function keyword to tell
JavaScript we’re creating a function 1, the name you give the function 2
(sayHello in this case), a comma-separated list of parameter names 3
surrounded by parentheses (name in this case), and a body 4 surrounded by
braces (console.log(`Hello, ${name}!`); in this case).

Let’s test our function out.
sayHello("Nick");
Hello, Nick!
undefined

Listing 6-2 Calling our first function

We call our sayHello function, passing the argument "Nick". When
you call a function, the values of the arguments are assigned to the parameters,
and the function body is run with the parameters set to those values. You can
imagine that name is a variable, and here you assign the value "Nick" to that
variable.

The first line of output is the result of running the function body with
name set to "Nick". The second line is the return value of the function.
Because we didn’t explicitly return a value, undefined is returned. In the
next section we’ll see how to return a value from a function.

ARGUMENTS AND PARAMETERS

The distinction between arguments and parameters can be confusing. Put simply, the parameters
are the names of a function’s inputs. Each function has only one set of parameters. The arguments are
the actual values passed to the function when you call it, and so every time a function is called it can
have a new set of arguments.

The sayHello function has one parameter, name, but could be called with a different argument
each time, for example, sayHello("Mei"), sayHello("JavaScript"), and so on.

Returning Values from Functions
To have your function return a value, you use the return keyword in the

body of the function, followed by an expression.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

function add(x, y) {
1 return x + y;
}

Listing 6-3 A function that returns a value

The add function has two parameters, x and y. We use the return
keyword to return a value from the function. Reload the page and run the
following in the console:
add(1, 2);
3

Listing 6-4 Calling a function that returns a value

When you call add with two arguments, it sets x and y to those values
and runs the body. The body sums those two arguments and returns the value.

It’s important to understand the difference between printing a string to the
console and returning a value. With the functions we’ve looked at so far, the
difference isn’t completely obvious, because JavaScript also prints the return
value of a function to the console. The difference is this: if your function
returns a value, then you can use that value later in your code, but if you just
log a value, the only place that value exists is in the log.

With our add function, we can save the result in a variable, and then do
something with that value:
let sum = add(500, 500);
`I walked ${sum} miles`;
"I walked 1000 miles"

Listing 6-5 Using the return value of a function

When you call add(500, 500) here nothing gets logged, because
we’re storing the return value in a variable called sum. The value is then used
to create a string.

This wouldn’t be possible with the sayHello function because it returns
undefined. There’s no way to access the string that was logged to the
console.

Parameter Types
JavaScript is a dynamically typed programming language, which means

that the types of variables and parameters can change while the program is
running. This is opposed to statically typed languages, where the types of
variables and parameters are fixed before the program is run.

Because of this, JavaScript parameters have no concept of type. For
example, so far we’ve only passed numbers to the add function, but there’s
nothing stopping us from passing other types, like Booleans, strings, objects, or

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

arrays. You could even pass null or undefined.

add(1, "1");
"11"
add({}, {});
"[object Object][object Object]"
add(123, null);
123

Listing 6-6 Mixing argument types

As you learned in Chapter 2, JavaScript has some complicated rules
around coercion, which is why these calls return somewhat confusing results.
When we try to add 1 and "1" with the + operator, JavaScript converts both
of the operands to strings before concatenating them.

Dynamic typing brings a lot of flexibility to JavaScript, but it can also
open the way for some confusing bugs. It’s essential to have a good idea of the
types you’re using, to make sure you’re not passing a string to a function that
expects a number, for example.

Side Effects
The side effects of a function are any changes to the environment caused

by calling that function. These could include updating the value of a variable
defined outside of the function, modifying an array or object, or outputting a
string to the console (the console is part of the environment so this also counts
as a side effect). In simple terms, a side effect is anything a function does that
isn’t returning a value, and that makes a difference outside of the function.
Side effects can be intended or unintended.

As an example of some intended side effects, we could redefine our add
function to log some information to the console with console.log and
update a variable called addCalls in addition to returning the sum of its
arguments:
let addCalls = 0;

function add(x, y) {
 addCalls++;
 console.log(`x was ${x} and y was ${y}`);
 return x + y;
}

Listing 6-7 A function that returns a value and has side effects

Now, when you call this function in the console, you’ll see the value of the
arguments printed:
add(Math.PI, Math.E);
x was 3.141592653589793 and y was 2.718281828459045

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

5.859874482048838

Listing 6-8 Calling the side-effecting function and observing logging

Also, every time you call the function, addCalls will be incremented:

addCalls;
1
add(2, 2);
x was 2 and y was 2
4
addCalls;
2

Listing 6-9 Calling the side-effecting function and observing changes in variables

Some functions are only called for their return value, and some are called
only for the side effects. As you’ve just seen, it’s also possible to write
functions that return a value and have a side effect.

Methods are a special kind of function (you’ll learn more about the
distinction in Chapter XX) that are properties of an object. We’ve seen
methods that are called for their return value, like the join method on arrays
(see Chapter 3) that returns a value but has no side effects. We’ve also seen
methods called for their side effects, like the push method on arrays that
modifies the array as a side effect and also returns a value (the new length of
the array).

Passing a Function as an Argument
In JavaScript, functions are first-class citizens, which means that they can

be used like any other value. For example, you can pass functions to other
functions, return them from functions, and store them in variables, arrays, and
objects.

We’ll illustrate this with the setTimeout function, which allows you to
delay the calling of another function. It takes two arguments: a function to call,
and a time in milliseconds to wait before calling that function.
function sayHi() {
 console.log("Hi!");
}
setTimeout(sayHi, 2000);

1
Hi!

Listing 6-10 Passing a function as an argument

Here we create a simple function with no arguments, sayHi, which just
calls console.log. We then call setTimeout, passing the sayHi
function and the number 2000, indicating 2000 milliseconds or two seconds.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

setTimeout returns a timeout id, which is a unique identifier we can use to
cancel the timeout with the clearTimeout function. After two seconds, the
sayHi function is called and the string "Hi!" is logged to the console.

You might notice that we pass sayHi and not sayHi(). The function
name without parentheses is used to refer to the function, while sayHi()
actually calls the function.

We can see this comparison with the JavaScript console:
1 sayHi;

ƒ sayHi() {
 console.log("Hi!");
}

2 sayHi();
Hi!
undefined

Listing 6-11 The difference between referring to a function and calling a function

Just executing the plain sayHi; 1 shows that sayHi refers to a function.
However, executing sayHi(); 2 calls the sayHi function, printing the
string "Hi!" and returning undefined.

Function Expressions
There are multiple ways to create functions in JavaScript, and each one

has its own strengths. In the previous section you learned about function
declarations. An advantage of function declarations is that they’re
straightforward, and most like how functions are defined in many other
languages, like C++ or Python.

In this section you’ll learn about function expressions, also known as
function literals—these are code literals that produce a function, just as 123 is
a literal that produces the number 123. Function literals are useful when we
want to use functions as values, for example, to pass to a function, to return
from a function, or to add to an array.

Function Expression Syntax
A function expression looks very similar to a function declaration, with

two main differences. First, a function expression doesn’t have to have a name,
although you can include a name. Function expressions without names are also
called anonymous functions. Second, a function expression can’t be at the start
of a line of code, otherwise the JavaScript interpreter thinks it must be a
function declaration. There has to be some code before the function
keyword for JavaScript to understand that you’re writing a function expression.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Here we create a function expression and assign it to a variable.
1 let sayHola = function () {

 console.log("Hola!");
};

2 sayHola();
Hola!
undefined

Listing 6-12 Storing an anonymous function in a variable

Because the function keyword appears on the right side of an
assignment statement 1, the JavaScript interpreter treats this as a function
expression. Also, because this is an assignment statement, we put a semicolon
at the end after the closing brace of the function expression.

The function expression defines an anonymous function that logs the
string "Hola!" and has no parameters. We assign the function to the variable
sayHola. Now, sayHola refers to the function, just like sayHi referred to
the function declaration.

Because the name sayHola is bound to the function, we can call
sayHola in the same way we would call any other function, by putting a pair
of parentheses after the name 2.

In almost all respects, this code would be equivalent to the function
declaration:
function sayHola() {
 console.log("Hola!");
}

Listing 6-13 The same function as 6-12 but defined using a function declaration

Choosing between a function expression and function declaration in
mostly a matter of style, but sometimes one or the other is more appropriate.
Next we’ll see an example where a function declaration can’t be used, so we
must use a function expression.

Passing a Function Expression as an Argument
In Listing 6-10 we passed the name of a function to setTimeout. A

more common way to achieve the same task is to pass a function expression as
the first argument, instead of the name of an already-defined function. For
variety, we’ll use setInterval this time, which calls a function repeatedly
with the given delay between each call. We have to use a function expression
in this case because a function declaration can only appear at the start of a line
of code.
setInterval(function () {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

1 console.log("Beep.");
}, 21000);
2
Beep.

Listing 6-14 Passing an anonymous function to setInterval

When you execute this code, it’ll wait a second before the first "Beep."
is logged. After that, a number will appear on the left of the console output
showing how many times "Beep." has been logged, which will increment
every second. This is a trick used by the Chrome browser to avoid filling the
console with duplicate lines of output. setInterval also returns an interval
id that we can pass to the clearInterval function if we want to stop it.

In Listing 6-14, setInterval has two arguments: the first is the
function expression 1, the second is the number 1000 2. Compare this with
the earlier call to setTimeout: setTimeout(sayHi, 2000);.
Previously we passed the name of a function, but this time we’re passing a
function literal.

N O T E If you want this code to stop "Beep."-ing, you can either refresh the page, or
call the clearInterval function, passing the interval id (in our example, this
would be clearInterval(2);).

Arrow Functions
JavaScript has yet another syntax for defining functions, called arrow

function expressions, or arrow functions for short. Arrow functions are a more
compact version of a function expression, and in most cases it’s a stylistic
decision on whether you use function expressions or arrow functions (we’ll
discuss an important difference in Chapter XX). Arrow functions can be used
anywhere a normal function expression can be used.

Here’s how you could make an add function using an arrow function:

let addArrow = (x, y) => {
 return x + y;
};

Listing 6-15 Defining a function using an arrow function expression

An arrow function doesn’t use the function keyword, and uses an
arrow (=>) between the argument list and the function body.

Arrow functions can be called just like other functions:
addArrow(2, 2);
4

Listing 6-16 Calling an arrow function

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Listing 6-15 uses block body syntax, where the body is placed between
braces, but there’s an even simpler syntax called concise body:
let addArrowConcise = (x, y) => x + y;

Listing 6-17 Defining an arrow function with concise body syntax

With concise body syntax, the body does not have surrounding braces, the
body has to be a single expression, and the return keyword is implied (that
is, the expression in the body is the return value of the function). In this case,
the return value of the function is the expression x + y.

The concise syntax is great for simple functions, but as soon as you need
multiple statements you’ll have to use the block body syntax.

Let’s set up our beep interval again using an arrow function:
setInterval(() => {
 console.log("Beep.");
}, 1000);
2
Beep.

Listing 6-18 Passing an arrow function to setInterval

We could also do this using the concise body syntax:
setInterval(() => console.log("Beep."), 1000);

Listing 6-19 Passing a concise body arrow function to setInterval

In both these cases, the function takes zero arguments, so we use an empty
parameter list: (). For arrow functions with exactly one parameter, the
parentheses around the parameter list are optional:
let sayBonjour = name => console.log(`Bonjour, ${name}!`);
sayBonjour("Nick");
Bonjour, Nick!

Listing 6-20 Defining an arrow function with one parameter

TRY IT OUT

You’ve now seen three different ways of creating functions. Write the following functions in all three
styles:

• A function that takes a number from zero to five and returns the English word for that number, for
example, 1 should return "one" (hint: you can use an array to define the mapping from number to
string).

• A function with no parameters that prints how many times it’s been called (hint: define a variable
outside of the function to keep track of the number of calls, like we did in the section on side

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

effects).

• A function that prints the current date and time (tip: you can get the current date and time with new
Date()).

Rest Parameters
Sometimes you want your function to take a variable number of

arguments. We’ll make a function that takes someone’s name and their favorite
colors, however many there are, and prints a string listing those colors. In
JavaScript, you can do this with rest parameters. A rest parameter is a special
parameter that collects the remainder of the arguments when the function is
called with multiple arguments. Rest parameters work with any kind of
function definition. Here we use them in an arrow function:
let myColors = (name, ...favoriteColors) => {
 let colorString = favoriteColors.join(", ");
 console.log(`My name is ${name} and my favorite colors are
${colorString}.`);
};
myColors("Nick", "Blue", "Green", "Orange");
My name is Nick and my favorite colors are Blue, Green,
Orange.

Listing 6-21 Rest parameters

A rest parameter looks like an ordinary parameter preceded by three
periods, and it always has to be the last parameter. When the function is called,
the rest parameter contains however many arguments come after the regular
parameter arguments and bundles them into an array.

In Listing 6-21, name is a regular parameter, and favoriteColors is
the rest parameter. When we call the function, the argument "Nick" is
assigned to the name parameter. The remaining arguments "Blue",
"Green", "Orange" are collected together into a single array and
assigned to the favoriteColors parameter. Because favoriteColors
is an array, we can use the join method to convert the array into a string,
which we then combine into a larger string and print using console.log.

Here’s another example of using a rest parameter, this time to sum all the
numbers provided as arguments:
function sum(...numbers) {
 let total = 0;
 for (let number of numbers) {
 total += number;
 }
 return total;
}
sum(1, 2, 3, 4, 5);

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

15

Listing 6-22 Summing numbers with a rest parameter

We use a function declaration instead of an arrow function, and the only
parameter is the rest parameter. Because there are no other parameters, all the
arguments (1, 2, 3, 4, 5) are collected up into an array and assigned to
the numbers rest parameter.

Higher-Order Functions
A higher-order function is a function that takes another function as an

argument, or returns another function as its return value. In this chapter you’ve
already seen two higher-order functions, setTimeout and setInterval,
which both take a function as an argument to execute later.

Functions that are passed as arguments are often called callbacks, because
they allow the other function to “call back” to the function that was passed in.

Array Methods That Take Callbacks
There are a number of methods defined on arrays that take a callback.

Remember: a method is a function that operates on an object. In most cases,
the callback is called once for each item in the array. We’ll take a look at some
examples next.

Finding an item with find

The find method on arrays finds the first element in the array that
matches some predicate. You specify the predicate with a callback function.
For example, if you wanted to find the first item in your shopping list with
more than 6 characters, you could do the following:
let shoppingList = ["Milk", "Sugar", "Bananas", "Ice Cream"];
shoppingList.find(item => item.length > 6);
"Bananas"

Listing 6-23 Using the find method

The callback function is item => item.length > 6. This callback
uses two useful syntactic features of arrow functions. First, because our
function only has one parameter, we’re leaving off the parentheses around the
parameter list. Second, we’re using the concise body syntax, so we leave off
the return keyword and the braces around the body. These features let us
define the logic for finding the element as compactly as possible, so arrow
functions are ideal for callback arguments.

The find method runs the callback for each element in the array in turn..
If the callback returns true, that item is returned from the find method, and

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

no more elements are checked.

If no item is found that meets the predicate, the find method returns
undefined:

shoppingList.find(item => item[0] === 'A');
undefined

Listing 6-24 Trying to find an item that doesn’t exist

In this case, none of the items have 'A' as their first character, so find
returns undefined.

Filtering the Elements of an Array with filter

The filter method returns a new array containing all the elements from
the original array that satisfy some predicate. We’ll update the previous find
example, just changing the method name to filter to get a list of all items
with more than 6 characters.
let shoppingList = ["Milk", "Sugar", "Bananas", "Ice Cream"];
shoppingList.filter(item => item.length > 6);
(2) ["Bananas", "Ice Cream"]

Listing 6-25 Listing 6-26: Using filter

Creating a New Array with map

Sometimes you’ll want to create a new array that contains transformed
versions of all the elements of an original array. For example, say you have an
array of objects that represent items in a store, and you want to get an array of
just the prices of those items. The map method lets you do this, by passing a
callback function that defines how to convert each element in the array into a
new element.
let stockList = [
 { name: "Cheese", price: 3 },
 { name: "Bread", price: 1 },
 { name: "Butter", price: 2 }
];
let prices = stockList.map(item => item.price);
prices;
(3) [3, 1, 2]

Listing 6-26 Using map

Here, the callback function is item => item.price, and it takes an
item and returns the value of that item’s price property. The map function
applies the callback to each item of the original array in turn, and creates a new
array with the return value of each call. The original array is unchanged.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Creating Functions That Take Callbacks
There’s nothing magic about functions that take callbacks. You define the

callback just like any other parameter, and then when you want to call it within
the function body, you just add parentheses like with any other function name.
Let’s illustrate this with a function that just calls its callback twice.
function doubler(callback) {
 callback();
 callback();
}
doubler(() => console.log("Hi there!"));
Hi there!
Hi there!

Listing 6-27 Creating a function that calls its callback

We pass a function as the callback parameter, so we can call it just like
any other function, by appending parentheses to its name. Of course, there’s
nothing stopping you from passing a non-function to doubler. If you do,
you’ll get an error:
doubler("hello");
Uncaught TypeError: callback is not a function

Listing 6-28 Passing a string where a function was expected

You can also pass arguments into your callback. Here we create a function
that calls another function some number of times, passing the current number
of times into the callback.
function callMultipleTimes(times, callback) {
 for (let i = 0; i < times; i++) {
 callback(i);
 }
}
callMultipleTimes(3, time => console.log(`This was time:
${time}`));
This was time: 0
This was time: 1
This was time: 2

Listing 6-29 Passing arguments to a callback function

This function takes two arguments: a number of times to call the callback
function, and a callback function. The callback is called that many times,
passing the current index as an argument.

Functions That Return Functions
As I said at the start of this section, higher-order functions either take

functions as arguments, or return functions as their return value. We’ve seen a

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

lot of examples of the former, so now let’s look at functions that return other
functions.

We’ll create a function that always adds some suffix to the end of a string.
We want to control what that suffix is, so our function will take a suffix and
returns a function that takes a string and appends the suffix.
function makeAppender(suffix) {
 return function (text) {
 return text + suffix;
 };
}

Listing 6-30 Returning a function from a function

There are two return keywords here. The first is used by the
makeAppender function to return the anonymous function. The second
return keyword is inside the anonymous function, and returns a value when
that function is called. To be able to call the inner function, we first have to
call the outer function.
let exciting = makeAppender("!!!");
exciting("Hello");
"Hello!!!"

Listing 6-31 Calling a function returned from another function

Calling makeAppender("!!!") returns a new function, which is
assigned to the exciting variable. The exciting variable now contains
the function expression that was returned from makeAppender, which takes
a string. When we call exciting("Hello") we get the string
"Hello!!!", which is the result of adding the two strings together.

One important thing to note is that the function we returned from
makeAppender remembers the value of suffix. Even though the call to
makeAppender has completed, the inner function it returned is able to hold
onto a parameter that was in scope when it was defined. Functions that hold
onto variables and parameters from their enclosing scopes are known as
closures, because they “close over” their environments.

WHAT EXACTLY IS SCOPE?

All bindings in JavaScript have scope, which is the area of code in which they are accessible. For
example, if you declare a variable with let inside a while loop, that variable can’t be used outside of
the while loop, but if you define the variable outside of the loop, it can be used inside the loop. Each
nesting of control structure or function definition adds a new layer of scope. Bindings defined in the
outer layers can be accessed by the inner layers, but not vice versa.

For example, in the following listing, the body of the while loop is able to access a variable
defined outside of the loop, but code outside of the loop can’t access a variable defined inside the loop.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

let outerVariable = 10;

while (outerVariable > 0) {
 let innerVariable = "hello!";
 outerVariable--;
}

console.log(innerVariable);
Uncaught ReferenceError: innerVariable is not defined

Listing 6-32 Trying to access an out-of-scope variable

The body of the while loop can access outerVariable and increment it down to 0, since it was
declared outside of the loop. However, trying to access innerVariable outside the loop results in an
error. innerVariable only has scope within the while loop.

In my definition of makeAppender I chose to return a function
expression, because it shows more clearly that there are two distinct functions.
Here’s how it would look with a concise arrow function:
function makeAppenderConcise(suffix) {
 return text => text + suffix;
}

Listing 6-33 Returning an arrow function from a function

TRY IT OUT

Write a function called makeWrapper that takes a prefix and a suffix, and returns a new function
that takes a string, and returns the string surrounded by the prefix and suffix. For example, you could
enter let bracketWrapper = makeWrapper("[", "]"); and then call
bracketWrapper("Bracket Me!"); to get the string "[Bracket Me!]".

Conclusion
In this chapter you learned how to create and work with functions. You

saw the four main ways to create functions: function declarations, function
expressions, block body arrow functions, and concise body arrow functions.

In the next chapter we’ll look at classes, which tie together objects and
functions and give us new ways of grouping code and data.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

9
E V E N T - B A S E D P R O G R A M M I N G

When a user clicks a button, scrolls, or simply moves the
mouse within a web page, that action creates an event. An
event is the browser’s way of signaling that an action hap-
pened in the DOM. Events allow us to create interactive
web applications that respond to the user’s actions. We do
this by writing handlers for specific events: functions that
are called when an event occurs. Using event handlers, we
can change the color of an element when the user clicks on
it, move an element around the screen when the user
presses a certain key, and much more.

In this chapter you’ll learn how to write event handlers to respond to some
common DOM events. In this way, you’ll add interactivity to your web pages.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Event Handlers
Events are how the browser tells JavaScript that something has occurred in the

DOM. It’s almost as if every time the mouse moves over the window, or a key is
pressed, the browser is shouting “Hey, the mouse moved! A key was pressed!”
These shouts happen all the time, but your JavaScript code can only respond to
them if you explicitly tell it to listen for them. You do this by writing a JavaScript
event handler that will perform some action when a specific type of event occurs.

An event handler is a function triggered by a specific event type on a specific
element. For example, you could attach a handler to a specific h1 element that
handles clicks on that element. Let’s try that out! We’ll create a simple web page
with a heading and an event handler that logs a message to the console when the
heading is clicked.

First, you’ll need an HTML file. Create a new directory called chapter9 and
make a new file in that directory call index.html. Enter the content shown in List-
ing 9-1.
<!DOCTYPE html>
<html>
 <head>
 <title>Event Handlers</title>
 </head>
 <body>
 <h1 id="main-heading">Hello World!</h1>
 <script src="script.js"></script>
 </body>
</html>

Listing 9-1 index.html

As usual, our HTML file has a single html element containing a head with
some metadata and a body with some content. Specifically, the body contains an
h1 element with the id of "main-heading", and part of the heading text is
wrapped in an em element (short for emphasis), which by default italicizes that
portion of the text. The HTML file also has a script element with a link to the
file script.js. In a moment, that’s where we’ll write the code for our event handler.

Overall, this file is very similar to the HTML we created in Chapter 8, with
one important difference: the script element is inside the body element, not the
head element. This is a bit of a cheat to get around a problem with how web
browsers read web pages. As described in the previous chapter, the browser builds
a model of the page called the DOM. It builds the DOM incrementally by reading
through the HTML file from top to bottom. Any time the browser reaches a
script element, it executes the whole script before continuing. That means that
if we had our script element in the head, and looked up the h1 element in that
script, the h1 element wouldn’t be in the DOM yet! By placing the script ele-
ment at the end of the body we can be sure that all the page content has been
loaded into the DOM before we run our JavaScript.

Now create a file called script.js in the same directory as the HTML code, and

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

enter the script shown in Listing 9-2. This script adds an event handler for when
the user clicks on the h1 element.

let heading = document.querySelector("#main-heading");

heading.addEventListener("click", () => {
 console.log("You clicked the heading!");
});

Listing 9-2 script.js

Using the DOM API’s querySelector method, we get the element with
the id of main-heading and save it as the variable heading. You may recall
from Chapter 8 that this method returns the first element to match the selector. In
our case, there’s only one main-heading element, so we know this method will
select the element we want. We then use the addEventListener method on
the heading element to attach an event handler to that element. addEvent-
Listener tells JavaScript to watch for a particular event to happen on the ele-
ment, and to execute some function when it does.

N O T E Although the DOM API uses the term listener, the term handler is more commonly
used to describe the function that reacts to an event.

The addEventListener method has two required arguments. The first is
the event type. This is a string representing the type of event to respond to, for ex-
ample "click" (for mouse clicks), "keydown" (for keyboard key presses), or
"scroll" (for the window scrolling). We’ve specified "click". The second
argument is the function to execute when the specified event happens. This func-
tion is the event handler. It will be called any time the event happens on the ele-
ment addEventListener was called on. In this case, the function, which logs
a message to the console, will be called any time someone clicks on the heading
element.

N O T E As explained in Chapter 6, when a function is passed as an argument to another func-
tion, it’s known as a callback function. All event handlers are callback functions, since
they’re passed as an argument to the addEventListener method.

Open index.html in your browser and open the console. When you click the
heading you should see the message "You clicked the heading!"
printed to the console. Congratulations: you’ve made your first interactive web
page!

TRY IT OUT

Add a p element to the page and attach a click event handler to it.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Event Bubbling
When an event is triggered on an element, it also gets triggered on all the ele-

ment’s ancestors (that is, the parent of the element, the parent’s parent, and so on).
For instance, when you clicked on the h1 element in the previous example, you
were also technically clicking on the body element that contains the h1 element.
Therefore, a separate handler attached to the body element would also receive the
click event. This progression of events from children to ancestors is known as
event bubbling. Bubbling matches how we might think about interacting with the
document: if you click on some text in a box, you’re also clicking on the box.

Let’s harness bubbling by adding event handlers to the em and body elements
in index.html. Like our h1 event handler, these new handlers will log a message to
the console when the element is clicked. Since em is a child of h1 and h1 is a
child of body, a single click on em should trigger the handlers attached to all three
elements.

Add the code in Listing 9-3 to the end of script.js:
document.querySelector('em').addEventListener("click", () => {
 console.log('You clicked the em element!');
});

document.querySelector('body').addEventListener("click", () => {
 console.log('You clicked the body element!');
});

Listing 9-3 Adding more handlers to script.js

This snippet adds two handlers, one to the em element and one to the body
element, but we do it slightly differently from how we created the main-head-
ing handler in Listing 9-2. Instead of saving each element to a variable, we just
call addEventListener directly on the result of the docu-
ment.querySelector method. This technique of calling a method directly on
the return value of another method is known as method chaining: we chain multi-
ple method calls together, so that the result of the first link in the chain is used as
the object for the next method call. I used the longer form technique for Listing 9-
2 because it makes it more explicit that addEventListener is being called on
an element, but the chaining technique is often preferred because of its terseness.

Reload index.html and open the console. When you click on the word World!
you should see the following output:
You clicked the em element!
You clicked the heading!
You clicked the body element!

Listing 9-4 The output from index.html

When you click on the em element, the handler function on the em element is
the first to get called. After that, the handler function on the h1 element is called,
followed by the one on the body element. This is because the event “bubbles up”

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

through the DOM, from the innermost element to the outermost element. If you
click the non-italic part of the heading, you’ll see just the main-heading and
body handlers triggered.

Event Delegation
One of the more common uses for event bubbling is event delegation, a tech-

nique where you use a single handler to respond to events on multiple child or
other descendant elements. For example, imagine you have a list of words, where
each list item is a separate HTML element, and you want to handle clicks on each
item in the same way. By adding a single handler to the list items’ parent element,
you can catch events on each item with only a few lines of code.

To illustrate event delegation, we’ll write a simple application that builds up
and displays a sentence based on words that you click on from a list. First we’ll
update our HTML file to include a list of words and an empty p element that we’ll
populate dynamically with the words of your choice. Then we’ll write the neces-
sary event handler with JavaScript to take clicked words and add them to the p ele-
ment for display. Finally, we’ll add some CSS rules to make the application easier
to interact with.

There are two types of list in HTML: ordered (numbered) lists and unordered
(bulleted) lists. We’ll use an unordered list, which is created with the ul (unor-
dered list) element. Each individual item in the list is wrapped in an li (list item)
element. Therefore, the event resulting from a click on any li element will bubble
up to the parent ul element.

Update index.html as shown in Listing 9-5.
<!DOCTYPE html>
<html>
 <head>
 <title>Event Handlers</title>
 </head>
 <body>
 <h1 id="main-heading">Hello World!</h1>

 <ul id="word-list">
 The
 Dog
 Cat
 Is
 Was
 And
 Hungry
 Green

 <p id="sentence"></p>

 <script src="script.js"></script>
 </body>

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

</html>

Listing 9-5 Adding a list to index.html

This adds an unordered list of words to the document, as well as an empty p
element, which we’ll be modifying with JavaScript.

Next we’ll write an event handler for the ul element to handle clicks on any
of the list items. The handler will take the word that was clicked on and add it to
the p element, allowing you to build up a sentence one word at a time. Delete all
the code in script.js and replace it with Listing 9-6.
let wordList = document.querySelector("#word-list");
let sentence = document.querySelector("#sentence");

wordList.addEventListener("click", 1event => {
2 let word = event.target.textContent;
 sentence.textContent += word;
 sentence.textContent += " ";
});

Listing 9-6 Delegating events

First we look up the two elements we care about using docu-
ment.querySelector: the ul with the word list, and the empty p element.
Next, we add a click handler to the ul element. This example is a little different
to our previous handlers, because the callback function has a parameter, which
we’re calling event 1. If we give a handler function a single parameter (in this
case, event, but the name isn’t important), the parameter represents an object
through which the DOM API passes information about the event that just hap-
pened. That information, which includes the element that was clicked on, the ele-
ment’s text content, and so on, then becomes available for use within the callback
function.

In our example, we use the event object to find out what word was clicked
on and store it in the variable word 2. To do this, we find out which specific ele-
ment was clicked on with the event object’s target property. When you click
on one of the li elements, event.target will be the li element you clicked
on, not the ul (the ul element is available with the currentTarget property).
Then we use the textContent property, which returns the text of that element.
Putting it together, if you clicked on the first li element, then event.tar-
get.textContent would return the string "The", and that string would be-
come the value of the variable word.

Now that we have the word the user clicked on, we can add it to the sentence.
We use the += operator to append the word to the text content of the sentence
element. You may recall that sentence.textContent += word; essen-
tially converts to sentence.textContent = sentence.textContent
+ word;. In other words, we’re taking the sentence element’s existing text
content, adding the string stored in word to the end, and then re-assigning that text
to the element’s text content. Then, after adding the word to the sentence, we use

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

the same += trick to append a space to the end of the sentence in preparation for
the next word that gets added.

Open index.html again in your browser. You should see the list of words. You
won’t see the empty p element because it doesn’t have any content yet. As you
click on words from the list, you should see them being added to the p element.

To finish off our application, we need to add a small amount of CSS. JavaS-
cript and CSS often go hand-in-hand because the styling can give helpful tips to
the user that certain elements are interactive. In this case we’ll add two hints via
CSS: we’ll modify the list items to change the mouse pointer to a finger when it
hovers over them, so they look more “clickable,” and we’ll give the element that’s
currently under the mouse pointer an underline so it’s easier to tell which word
you’re about to click on (which isn’t always obvious when the mouse is in the ver-
tical space between words).

Create a new CSS file called style.css and add the two CSS declarations
shown in Listing 9-7.
li {
 cursor: pointer;
}

li:hover {
 text-decoration: underline;
}

Listing 9-7 style.css

To change the cursor for li elements, we use cursor: pointer. This
changes the cursor from the default arrow to a hand with a finger when it is over
the li element, as happens when you hover over a link on a web page. The
li:hover selector uses the :hover pseudo-class, which only applies when the
element is hovered (that is, when the cursor is over the element). A pseudo-class is
a kind of selector that only applies when an element is in a certain state. So
li:hover matches any li that the mouse is currently hovering over. When
that’s the case, we use text-decoration: underline to underline the text
of that li element.

To include this CSS on the page, add a link element to the head of the in-
dex.html file, as shown in Listing 9-8.
<!DOCTYPE html>
<html>
 <head>
 <title>Event Handlers</title>
 <link rel="stylesheet" href="style.css">
 </head>

Listing 9-8 Including style.css in index.html

Now when you hover over one of the list items, the cursor will change, and
the currently hovered word will be underlined, as shown in Figure 9-1.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Figure 9-1 Using CSS to give hints to users

With that styling, our simple sentence-building application is complete! Event
delegation simplified the JavaScript we wrote by letting us attach a single event
handler, rather than using a separate handler for each list item.

Mouse Movement Events
The DOM produces events when the mouse moves, with the event name

mousemove. These mousemove events are triggered on an element while the
mouse moves over that element, and we can listen for them with the addEvent-
Listener method, just as we did for mouse clicks. Let’s set up a simple
mousemove handler to see it in action. The handler will log the mouse’s position
to the console as the mouse moves around the web page.

Still working within your chapter9 project folder, add the code in Listing 9-9
to the end of script.js.
document.querySelector("html").addEventListener("mousemove", e =>
{
 console.log(`mousemove x: ${e.clientX}, y: ${e.clientY}`)
});

Listing 9-9 A mousemove event handler

In this listing we add a mousemove event handler to the html element.
Since the html element encompasses the entire web page, this handler will re-
spond to movements of the mouse anywhere in the browser window. The handler
logs a message to the console, including the clientX and clientY properties
of the event, which tell us the x and y coordinates of the mouse relative to the
browser window. In this example I’m using the shorter name e for the event pa-
rameter, rather than event, as in Listing 9-6. Remember, the name of the parame-
ter doesn’t matter—if the event handler callback function has a single parameter,
that parameter will carry information about the event.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Refresh index.html in your browser and you should see messages logged to
the console, as in Listing 9-10.
mousemove x: 434, y: 47
mousemove x: 429, y: 47
mousemove x: 425, y: 48
mousemove x: 421, y: 51
mousemove x: 416, y: 51
mousemove x: 413, y: 54
mousemove x: 408, y: 55

Listing 9-10 Sample output from Listing 9-9

There are two important things to note as you watch the console. First, the co-
ordinates start at 0 in the top left corner of the browser window, increasing as you
go across and down. The x coordinate increases as you move right, and the y coor-
dinate increases as you move down. This follows the standard convention for com-
puter graphics.

Second, there are “gaps” in locations that the mouse appears to jump over.
This is because mousemove events aren’t triggered continuously, but some lim-
ited number of times per second. The exact number depends on the mouse, the
browser, and the computer, but it tends to be in the low hundreds. Therefore, if you
move the mouse fast enough, there are locations on the screen where the mouse
seems to skip over, because the events weren’t triggering fast enough.

Now that you’ve seen mousemove events in action, we can try to do some-
thing slightly more interesting with them. In this next example, we’ll make a box
move around the page, following your cursor. To do that we’ll need to modify our
HTML, CSS, and JavaScript files. The HTML change is simple. Add the high-
lighted line in Listing 9-11 to index.html.
 <p id="sentence"></p>

 <div id="box"></div>

 <script src="script.js"></script>
 </body>

</html>

Listing 9-11 Adding a div to index.html

Here we’re using a new HTML element called div, short for content division.
It will become the moveable box on our page. The div element is HTML’s ge-
neric container element. This means that it is an element that can contain other ele-
ments, but by default has no appearance, and no specific meaning (unlike ul
which means a list, or h1 which means a heading). We’ll use CSS to give the div
element an appearance next. Add Listing 9-12 to the end of style.css.
#box {
 position: fixed;
 left: 0px;
 top: 0px;

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 width: 10px;
 height: 10px;
 background-color: hotpink;
}

Listing 9-12 Styling the div with CSS

Here we’re using #box to select the element with the id box. There are a
number of declarations within this ruleset. The first, position: fixed, tells
the browser to put this element at a position specified next by the left and top
declarations. We indicate 0px for both, which tells the browser to put the element
at the very top-left corner of the browser viewport, the part of the browser that
shows the content. We specify the width and height of the element to be 10
pixels each. Finally, we give our 10×10 box a background color that’s sure to jump
out: hot pink.

Refresh the page now, and you’ll see a small pink square appear at the top-left
corner. Now it’s time to write an event handler so you can move the square with
your mouse. Modify script.js as shown in Listing 9-13.
let wordList = document.querySelector("#word-list");
let sentence = document.querySelector("#sentence");

wordList.addEventListener("click", event => {
 let word = event.target.textContent;
 sentence.textContent += word;
 sentence.textContent += " ";
});

let box = document.querySelector("#box");

document.querySelector("html").addEventListener("mousemove", e =>
{
 box.style.left = e.clientX + "px";
 box.style.top = e.clientY + "px";
});

Listing 9-13 Moving the div with JavaScript

The first addition here is to find the box using document.querySelec-
tor and save a reference to the element in the variable box. Next, we modify the
mousemove event handler we wrote earlier. In order to move the box around,
we’re modifying its style property, which is an object representing the CSS ap-
plied to the element. For example, setting a value for box.style.left has the
same effect as updating the value of left in the CSS file. In our handler, we set
both the left and top values using the current position of the mouse.

As mentioned in Chapter 8, numeric values in CSS require a unit. We can’t
just assign a number, like box.style.left = 10. Instead, we have to pro-
vide a string including the units, like box.style.left = "10px". This is
why we include + "px" at the end of each statement in our event handler. If
e.clientX is 50 then e.clientX + "px" will give the string "50px",

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

which gets assigned to the box.style.left property, updating the left posi-
tion of the box. As the mouse moves, this handler will be called with e.clientX
and e.clientY set to the current position of the mouse, and so the pink box will
move around as your mouse moves. Refresh the page and give it a try!

TRY IT OUT

What happens if you modify the values that set the box’s position? For example, what would happen if
you multiplied e.clientX by 2, or added 50 to e.clientY?

Keyboard Events
Keyboard events are triggered when keys are pressed on the keyboard. We’ll

focus on one keyboard event called keydown, which is triggered when a key is
pressed down. (There’s a corresponding event called keyup which is triggered
when a key is released.)

We’ll add a handler to our web page that simply logs keydown events to the
console as they happen. Add Listing 9-14 to the end of script.js.
document.querySelector("html").addEventListener("keydown", e => {
 console.log(e);
});

Listing 9-14 Logging keydown events

As in Listing 9-13, we’re adding an event handler to the html element, mean-
ing it will apply to the entire web page, but this time we’re handling the keydown
event. This event is triggered whenever you press down a key on your keyboard.
Our handler logs e to the console, meaning the entire event object will be logged
when a key is pressed.

Try reloading the page to see the handler in action. You’ll need to open the
console, then click inside the document to give it focus. This just means that the
key presses will get sent to your web page, instead of to the console text input. As
long as everything’s set up correctly, you should see events being logged to the
console, as in Listing 9-15.
KeyboardEvent {isTrusted: true, key: "h", code: "KeyH",
location: 0, ctrlKey: false, …}
KeyboardEvent {isTrusted: true, key: "e", code: "KeyE",
location: 0, ctrlKey: false, …}
KeyboardEvent {isTrusted: true, key: "l", code: "KeyL",
location: 0, ctrlKey: false, …}
KeyboardEvent {isTrusted: true, key: "l", code: "KeyL",
location: 0, ctrlKey: false, …}
KeyboardEvent {isTrusted: true, key: "o", code: "KeyO",
location: 0, ctrlKey: false, …}

Listing 9-15 Some logged keydown events generated by typing the word hello

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Click on the arrow next to one of the events to see the properties each event
has. As you’ll see, there are a lot, but we mostly care about which key was
pressed, which we can find with the key property. We’ll use this information next
to move the pink box around using the keyboard.

In order to move the box around, we’ll create two new variables to keep track
of its x and y positions, and then update those variables with an event handler
when specific keys are pressed. Update script.js as shown in Listing 9-16. (Note
that the mousemove handler has been removed in this listing.)

let wordList = document.querySelector("#word-list");
let sentence = document.querySelector("#sentence");

wordList.addEventListener("click", event => {
 let word = event.target.textContent;
 sentence.textContent += word;
 sentence.textContent += " ";
});

let box = document.querySelector("#box");

let currentX = 0
let currentY = 0

document.querySelector("html").addEventListener("keydown", e => {
 if (e.key == "w") {
 currentY -= 5;
 } else if (e.key == "a") {
 currentX -= 5;
 } else if (e.key == "s") {
 currentY += 5;
 } else if (e.key == "d") {
 currentX += 5;
 }

 box.style.left = currentX + "px";
 box.style.top = currentY + "px";
});

Listing 9-16 Using keydown events to move the box

We create two variables called currentX and currentY to store the loca-
tion of the box. Then we modify our keydown handler to include an
if...else statement that checks to see if the event’s key property matches any
of "w", "a", "s", or "d". If so, that indicates one of those four keys has been
pressed (I’m using these keys as they’re typically used for movement in games).
Depending on which key has been pressed, we add or subtract 5 to currentX or
currentY, corresponding to the box moving 5 pixels up, down, left, or right. Af-
ter we update the variables, we update the style of the box with
box.style.left and box.style.top as we did in Listing 9-13. This time,
however, we use the updated value of currentX and currentY to change the
CSS.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

When you reload the page, try holding down the s or d keys to make the box
move down or right. You should notice that holding the keys down results in the
box continuing to move, as the keyboard sends repeating keydown events. This is
the normal behavior of a computer keyboard when you hold down a key. The exact
repeat speed is controlled by your operating system.

TRY IT OUT

The event object for a keydown has a Boolean property called repeat that tells you if the current
keydown was generated as a repeat from holding down the key. How could you modify the keydown han-
dler to only respond to actual key presses, and not automatic repeats?

Hint: One approach is to use the return keyword to return early from the handler function.

Conclusion
In this chapter you learned the basics of DOM events and event handling.

DOM events are how the browser tells your code that something happened on your
page. You can respond to these events with event handlers, JavaScript functions
that are executed when a certain event happens to a certain DOM element. Event
handlers allow you to create web pages that respond interactively to the user’s ac-
tions. In particular, you saw how to write event handlers triggered by clicks,
mouse movements, and key presses. You’ll learn about other events in subsequent
chapters, such as change, for when a user changes the value of a form element,
and submit, for when a user submits a form.

In the next chapter we’ll learn about the canvas element, which gives us a
way to draw pictures and animations using JavaScript.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

10
T H E C A N V A S E L E M E N T

One of the more interactive elements in HTML is the
canvas element. This element acts like a painter’s
canvas: it provides space for you to draw images within
the browser window using JavaScript. What’s more, by
repeatedly erasing old images and drawing new ones,
you can create animations on the canvas. In this sense,
the canvas element is more like the screen at a movie
theater, where the image is updated many times every
second to create the appearance of motion.

In this chapter you’ll learn how to create canvas elements and how to
use the Canvas API, which gives you a way to manipulate the canvas via
JavaScript. You’ll write JavaScript to draw static images to the canvas. Then

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

you’ll build a simple interactive drawing application. Finally, you’ll learn the
basics of creating 2D animations on the canvas.

Creating a Canvas
To include a canvas element on a web page, you create it as part of the

page’s index.html file. All you need are opening and closing HTML tags, like
this: <canvas></canvas>. The canvas element doesn’t have any
required attributes. However, it’s a good idea to give the canvas an id, so you
can easily access it using JavaScript. It’s also common to set the element’s
width and height attributes so you can establish the size of the canvas.

Images that appear in the canvas are generated using JavaScript, not
HTML. Any HTML between the opening and closing canvas tags will only
appear if the browser doesn’t support the canvas element, and so can be used
as a fallback for older browsers or text-only browsers.

Let’s create an HTML file that includes a canvas element and a
script element linking to a JavaScript file, where we’ll write code to
generate images on the canvas. We’ll use the same HTML file throughout the
chapter to draw different kinds of images. Create a new directory called
chapter10, and make a new file in that directory called index.html. Enter the
content shown in Listing 10-1.
<!DOCTYPE html>
<html>
 <head>
 <title>Canvas</title>
 </head>
 <body>
 <canvas id="canvas" width="300" height="300"></canvas>
 <script src="script.js"></script>
 </body>
</html>

Listing 10-1 index.html

This is our familiar HTML template, similar to the index.html files we’ve
created in previous chapters, but with a canvas element instead of an h1
element. The width and height attributes specify the size of the canvas in
pixels. By default, the canvas is transparent, so you won’t actually see anything
just yet if you load the page.

Making Static Drawings
Now that we have a canvas element, we’re ready to draw on it using

JavaScript and the Canvas API. We’ll start by drawing a solid rectangle. Then
we’ll look at how to create other static drawings. Create a new file called

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

script.js in the chapter10 directory, and enter the code shown in Listing 10-2.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.fillStyle = "blue";
ctx.fillRect(10, 10, 200, 100);

Listing 10-2 script.js

First we get a reference to the canvas element using the
document.querySelector method. The canvas element has a method
called getContext which we use the get the canvas’s drawing context. The
drawing context is an object that provides the entire Canvas API as a set of
methods and properties (like fillRect and fillStyle, respectively, both
used in Listing 10-2). These methods and properties are what we’ll use to draw
images on the canvas. In this case, we pass the string "2d" to the
getContext method to request the two-dimensional drawing context.

N O T E You can make 3D graphics with the canvas by passing the string "webgl" to the
getContext method instead of "2d", but that is much more complicated than
2D graphics and deserves its own book!

Next we tell the drawing context that we want the fill color for new
elements to be blue, using the fillStyle property. Finally, we draw a filled
rectangle using the current fill color with the fillRect method. This method
takes four arguments: the x and y coordinates of the top-left corner of the
rectangle, and the width and height of the rectangle in pixels. The coordinates
work in the same way as coordinates for the whole browser window: x values
increase moving to the right along the canvas, and y values increase moving
downwards, with (0, 0) representing the top-left corner of the canvas.

Open index.html in your browser and you should see a solid blue
rectangle, as shown in Figure 10-1.

Figure 10-1 The blue rectangle

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Any subsequent calls to fillRect will use the same fillStyle (until
you set a new fillStyle, that is). You can confirm this by drawing some
more rectangles to the canvas.

TRY IT OUT

1. Draw a 100 pixel square starting at (0, 0).

2. We set the canvas to be 300 pixels wide by 300 pixels tall. What happens if you draw a rectangle
that’s bigger than the canvas?

Drawing Outlined Rectangles
As well as fillRect for making a rectangle filled with a color, the

Canvas API provides the strokeRect method for outlining (stroking) a
rectangle. To try it out, modify script.js as shown in Listing 10-3.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.lineWidth = 2;
ctx.strokeStyle = "red";
ctx.strokeRect(10, 10, 200, 100);

Listing 10-3 Using strokeRect to outline a rectangle

First we specify the width of the outline with the lineWidth property,
setting it to 2 pixels wide. Then we use strokeStyle and strokeRect
rather than fillStyle and fillRect to create an outlined rectangle with
no fill color. The strokeRect method takes the same arguments as
fillRect: the x and y coordinates for the top left corner, and the width and
height of the rectangle.

When you reload index.html you should see the rectangle is now outlined
in red, with no fill, as show in Figure 10-2.

Figure 10-2 A red outlined rectangle

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

When you set styles on the drawing context, such as the line width or line
color, those settings only apply to subsequent additions to the canvas. That is,
they don’t retroactively affect anything that’s already been drawn. In this
sense, the canvas really is very much like a physical canvas, where the current
style is like the color of paint and type of brush you’re currently using. To
demonstrate, we’ll draw several rectangles with different colors. Add the code
in Listing 10-4 to the end of script.js, after the code for drawing the red
rectangle.
ctx.strokeStyle = "orange";
ctx.strokeRect(20, 20, 180, 80);

ctx.strokeStyle = "yellow";
ctx.strokeRect(30, 30, 160, 60);

ctx.strokeStyle = "green";
ctx.strokeRect(40, 40, 140, 40);

ctx.strokeStyle = "blue";
ctx.strokeRect(50, 50, 120, 20);

Listing 10-4 Drawing more rectangles

This code draws a series of nested rectangles, each offset by 10 pixels
from the previous one, and each 20 pixels smaller than the previous one.
Before we draw each successive rectangle, we change the color of the outline
by updating the strokeStyle property.

Refresh index.html and you should see something like the image in Figure
10-3.

Figure 10-3 Concentric rectangles

Each rectangle is a different color, indicating that the style changes didn’t
impact anything that had already been drawn.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Drawing Other Shapes Using Paths
All other shapes besides rectangles are drawn on the canvas as paths. A

path is a series of points connected by straight or curved lines, and then either
stroked with an outline or filled in with a color. As an example, we’ll draw a
path between three different points and then fill it in to make a red triangle.
Replace the contents of script.js with the code in Listing 10-5.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.fillStyle = "red";
ctx.beginPath();
ctx.moveTo(100, 100);
ctx.lineTo(150, 15);
ctx.lineTo(200, 100);
ctx.lineTo(100, 100);
ctx.fill();

Listing 10-5 Drawing a triangle with path methods

Drawing a path takes three steps. First, you declare that you want to start
drawing a new path, with beginPath(). Then, you use various methods to
define where the path will be. Finally, you use fill() or stroke() to fill
or stroke the path.

In this case, we use two different methods to define the path: moveTo and
lineTo. The moveTo method moves an imaginary pen to a particular point
on the canvas defined by x and y coordinates, without drawing a line. We use
this method to define the starting point of our path, (100, 100), which will
be the bottom left corner of the triangle. The lineTo method does the same
as moveTo, but it draws a line as it moves . Thus, lineTo(150, 15)
draws a line from (100, 100) to (150, 15), and so on. Finally we fill
the shape with the fill() method. When you refresh the page you should see
a red triangle, as shown in Figure 10-4.

Figure 10-4 Drawing a filled triangle

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Drawing circles follows a similar pattern, but uses a method called arc
instead of moveTo and lineTo. The arc method draws an arc, a section of
the circumference of a circle. You can produce any length of arc with the arc
method, but here we’ll use it to produce an entire circle.

Update script.js with the code in Listing 10-6. This code keeps the first
and third steps of the path drawing code but replaces the second step with the
code for drawing a circle rather than a triangle.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.fillStyle = "red";
ctx.beginPath();
ctx.arc(150, 100, 50, 0, Math.PI * 2, false);
ctx.fill();

Listing 10-6 Drawing a circle with path methods

The arc method takes a whopping six arguments! The first two are the x
and y coordinates of the center of the circle. In this case we’re centering the
circle at the coordinates (150, 100). The third argument is the circle’s
radius in pixels, which is set here to 50. The next two arguments give the
starting and ending angle of the arc in radians. Because we want a full circle,
we provide 0 for the starting angle and 2π for the ending angle. The final
argument specifies whether the arc should be drawn clockwise (false) or
counterclockwise (true) from the starting angle to the ending angle. In this
case, we pick clockwise, but since we’re drawing a full circle, the direction is
irrelevant.

N O T E Radians are a way of measuring angles. In degrees, a full revolution of circle goes
from 0 to 360. In radians, a revolution goes from 0 to 2π.

When you refresh the page now, you should see a red circle, as show in
Figure 10-5.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Figure 10-5 Drawing a filled circle

You can use the same technique to draw a stroked circle instead by using
the stroke method rather than the fill method. What’s more, you can
make compound shapes like rounded rectangles by combining calls to the
line and arc methods. The Canvas API also allows for drawing more
complex curves with the quadraticCurveTo and bezierCurveTo
methods. Search the Mozilla Developer Network (MDN) Web Docs for more
details about these other methods.

Interacting with the Canvas
The canvas gets a lot more interesting when the user can interact with it.

The canvas element itself doesn’t have any notion of interactivity built in,
but we can add that interactivity with JavaScript. To make the canvas
interactive, we write event handlers that listen for certain user actions and
trigger Canvas API methods that update the canvas in response.

In this section we’ll build a very basic drawing application using a canvas
with a click handler. The handler will listen for clicks on the canvas, and
call a method that draws a circle at the position where the click happened.
We’ll also create a slider so the user can set the opacity of the circles, and a
button to clear the canvas.

First, let’s add the necessary HTML elements to create a slider and a
button. Make the modifications shown in Listing 10-7 to index.html.
<!DOCTYPE html>
<html>
 <head>
 <title>Canvas</title>
 </head>

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 <body>
 <canvas id="canvas" width="300" height="300"></canvas>
 <div>
 <button id="clear">Clear</button>
 <input id="opacity" type="range" min="0" max="1"
value="1" step="0.1">
 <label for="opacity">Opacity</label>
 </div>
 <script src="script.js"></script>
 </body>
</html>

Listing 10-7 Adding some additional elements to index.html

Here we’re adding a new div element containing three other HTML
elements. The div element is there to group the elements inside it together and
to put them below the canvas (without the div they’d appear to the right of the
canvas).

The first element inside the div is a button element. It creates a
clickable button. Any content between the opening and closing button tags
will appear as text on the button. In this instance, the button will have the text
Clear. Later, we’ll write a JavaScript function that clears any circles on the
canvas when the user clicks the button.

Next inside the div is an input element, which is used for taking values
from the user. The input element doesn’t allow any child elements, and so
doesn’t need a closing tag. In this case the input is of type range, which
means it will display as a slider. This slider will be used to set the opacity of
new circles drawn on the canvas. It has several attributes defining its
functionality. min defines the minimum value the slider will produce, and max
defines the maximum value. value defines the initial value the slider is set to,
and step is how much the slider moves at a time. This slider is set to range
from 0 to 1 in steps of 0.1, and it starts at 1, which corresponds to full
opacity.

The last element in the div is a label element, which applies a label to
another element. The for attribute of the label determines what element the
label should be applied to; its value has to match the id of another element. In
this case, we assign the label to the slider by specifying opacity as the target
id. This way, the slider will be labeled Opacity, which is the text content of
the label element. Thanks to the label element’s for attribute, the
browser understands that the label and input are related, and certain
actions performed on the label will apply to the input. For example, if you
hover over the label, the input will display as hovered, and if you click the
label, the input will get keyboard focus (in this case, pressing left and
right will decrease and increase the value of the slider).

Figure 10-6 shows how these elements should look, although their exact

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

appearance can vary depending on your browser and operating system. Load
index.html in your browser and you should see something similar.

Figure 10-6 The new button and slider elements

Now that we have the HTML elements, we can write the JavaScript that
will make this application interactive. First, we’ll add some general
declarations and the code for drawing circles when the user clicks on the
canvas element. Update script.js with the code shown in Listing 10-8.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");

let width = canvas.width;
let height = canvas.height;

let opacity = 1;

function drawCircle(x, y) {
1 ctx.fillStyle = `rgba(0, 255, 0, ${opacity})`;
 ctx.beginPath();
 ctx.arc(x, y, 10, 0, Math.PI * 2, false);
 ctx.fill();
}

canvas.addEventListener("click", e => {
 drawCircle(e.offsetX, e.offsetY);
});

Listing 10-8 Drawing a circle on click

First we store the width and height of the canvas element in two
variables, width and height. We’ll need these variables later in our
function for clearing the canvas. The width and height properties of the
JavaScript canvas object come straight from the HTML canvas element’s
width and height properties (which are both 300 in index.html). We also
initialize the variable opacity to 1.

Next, we create a helper function called drawCircle. This function
takes an x and y coordinate and draws a filled circle at that location. We use
the same path drawing methods demonstrated in Listing 10-6 to draw the
circle. The x and y parameter becomes the circle’s center, and we set its radius
to 10 pixels.

One key difference from the previous drawing examples is that we’re
setting fillStyle to an RGBA color instead of a named color like red or

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

blue 1. RGBA is a way of defining colors using four numbers: red, green,
blue, and alpha. The first three correspond to the amount of each primary color
of light. These three range from 0 to 255 and can be combined to produce any
color you might want. Setting all three to 0 produces black and setting all three
to 255 produces white. Alpha is another word for opacity, and it defines how
opaque or transparent the color should be, ranging from 0 (completely
transparent) to 1 (completely opaque).

In the Canvas API, you set RGBA colors using the string "rgba(...)"
with the four values comma-separated. For example, setting fillStyle to
the string "rgba(0, 255, 0, 0.9)" would make bright green circles
that were slightly transparent. In our case, we wrap the RGBA string in
backticks and use a placeholder for the alpha value to allow the user to change
the opacity with the slider.

Lastly, we add a click event handler to the canvas element using
addEventListener. The handler calls the drawCircle function we just
created, passing the offsetX and offsetY properties of the click event as
the function’s parameters. The offsetX and offsetY properties give the
distance of the click event from the top-left corner of the clicked element itself
(rather than from the top-left corner of the whole browser window), and so are
ideal for determining exactly where on the canvas the click happened.

Reload index.html in your browser and try clicking on the canvas.
Wherever you click, a small green circle should appear, as shown in Figure 10-
7!

Figure 10-7 Drawing green circles with mouse clicks

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

To complete the drawing application, we need to wire up the Clear button
and the Opacity slider. Add the code in Listing 10-9 to the end of script.js.
document.querySelector("#clear").addEventListener("click", ()
=> {
 ctx.clearRect(0, 0, width, height);
});

document.querySelector("#opacity").addEventListener("change",
e => {
 opacity = e.target.value;
});

Listing 10-9 Wiring up the Clear and Opacity controls

First we add a click event handler to the Clear button. This calls a
Canvas API method called clearRect, which is used to clear a rectangular
section of the canvas. Just like drawing a rectangle, you define the rectangle to
be cleared using the x and y coordinates of its top left corner, followed by its
width and height. Here we’re clearing a rectangle that starts at the top-left
corner of the canvas and is as wide and high as the canvas itself. Thus,
ctx.clearRect(0, 0, width, height); clears the entire canvas.

Next we add a change event handler to the Opacity slider. The change
event is triggered on input elements when their value changes, so this
handler will be called whenever the slider is set to a new position. We get the
input element with e.target and get the element’s current value with
.value. Then we update the opacity variable with this value. Because the
drawCircle function uses the value of opacity as the alpha component of
the RGBA color, any new circles will use the latest value set with the Opacity
slider.

Now when you reload index.html in your browser you should have a fully
functioning (if basic) drawing application! You can use the Opacity slider to
change the opacity of new circles, and the Clear button to clear the canvas and
start drawing again. Try drawing overlapping circles with the opacity slider set
halfway to see how they overlay.

TRY IT OUT

3. Add sliders for controlling the R, G, and B components of the color. These will need to range from
0 to 255. You could also add a Radius slider that controls the radius of the circle drawn in the
drawCircle function.

4. Make a new function called drawSquare that draws a square centered on a point, and call that
function from the click handler instead of drawCircle.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Animating the Canvas
As noted at the beginning of the chapter, you can animate the canvas by

updating the image multiple times per second. In this section we’ll code a very
simple animation to show the basics of how this works.

Animating the canvas generally follows this basic pattern:

1. Update state

2. Clear canvas

3. Draw image

4. Wait a short time

5. Repeat

State here means some variables storing information about the current
frame of the animation. It could be the current location of an object in motion,
a variable indicating what direction the object is moving, and so on. In our
example, the state will be the x and y coordinates of a circle. When it’s time to
update the state, we’ll increment the x and y coordinates by 1, meaning that the
circle’s position will gradually move diagonally down and to the right.
Drawing the image will entail drawing a small circle at the x and y coordinates.
We clear the canvas before drawing the circle to ensure that the image from the
previous cycle is removed. We’ll tackle the last two steps (waiting and
repeating) by using the setInterval function to call our code every 100
milliseconds, or 10 times a second.

We can continue to work with the same HTML and JavaScript files. The
only change to index.html is to remove the div and its nested elements that we
added in Listing 10-7, as they’re not needed any more. After removing those
elements, update script.js based on the code in Listing 10-10.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

let x = 0;
let y = 0;

function drawCircle(x, y) {
 ctx.fillStyle = "rgb(0, 128, 255)";
 ctx.beginPath();
 ctx.arc(x, y, 10, 0, Math.PI * 2, false);
 ctx.fill();
}

function update() {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 x += 1;
 y += 1;
}

function draw() {
 ctx.clearRect(0, 0, width, height);
 drawCircle(x, y);
}

setInterval(() => {
 update();
 draw();
}, 100);

Listing 10-10 Creating an animation

We create two new variables, x and y, representing the location of the
circle that we’ll animate. These variables will store the current state of the
animation and will be updated at regular intervals. The drawCircle function
itself is mostly unchanged, although the fillStyle is now different. Now
that we’re not setting an opacity we can use the simpler rgb() format string
for setting the R, G, and B values. With rgb(),the opacity of the color is
always 100%.

After drawCircle we declare the update function, where we update
the x and y variables, incrementing each by 1. Next we declare the draw
function, which clears the canvas and then calls drawCircle to draw a circle
at the current x and y coordinates. Finally, we call setInterval to
orchestrate the animation. You may recall from Chapter 6 that setInterval
takes a function and a time interval in milliseconds, and repeatedly calls that
function once every time interval. Here we’re calling an anonymous function
every 100 milliseconds. The function itself calls update() and draw() to
create each frame of the animation.

Reload index.html in your browser, and you should see a small circle
gradually move down the canvas from the top-left to the bottom right. Even
after the circle leaves the canvas, the x and y coordinates will keep increasing,
but the canvas ignores anything drawn outside of its bounds.

TRY IT OUT

5. Update the animation so the circle restarts at the top-left corner when it reaches the bottom-right
corner. There are a few ways to do this. One option is to use the % remainder operator, which
evenly divides the first operand by the second, and returns the remainder. For example, 325 %
100 gives 25. By passing x % width and y % height to the draw function, you can ensure
that the circle will always be drawn within the canvas. You can also use the %= operator to keep
the x and y values within bounds in the update function using x %= width and y %= height

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

after incrementing their values. Try out both options.

6. How could you make the ball start out at the left of the canvas, move to the right, then move back,
and so on? Hint: you’ll need to declare another state variable to keep track of the direction, for
example let forwards = true, and use that variable to decide whether to increment or
decrement x. You’ll then need to update the new variable to be false when the x value gets past
a certain point.

7. Try changing the time interval in the setInterval function. For example, what does the
animation look like with 1,000 ms, or 10 ms, or 1 ms? Note that at a certain point, the browser
won’t be able to update as fast as you’re asking it to, so it’s unlikely that a 1 ms interval will run 10
times faster than a 10 ms interval.

Conclusion
In this chapter you learned the basics of drawing on the canvas element,

as well as some techniques for creating interactive applications and animations
using the canvas. We’ll build on some of these techniques later in this book as
we learn how to make a canvas-based game.

Congratulations, you’ve just finished the second section of this book! You
now know not only the basics of JavaScript, but some powerful techniques for
using JavaScript within web pages to create interactive applications and games.
In the rest of the book, we’ll put these techniques to use over a series of
projects, starting with a game.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

11
P R O J E C T 1 : M A K I N G A G A M E

We’ve now reached the most exciting part of this book:
it’s time to start building real projects! In this first
project, you’ll use JavaScript to recreate one of the first
arcade video games: the classic Pong from Atari. Pong
is a simple game, but it will teach you some important
aspects of game design: a game loop, player input,
collision detection, and score keeping. There’s even
some basic artificial intelligence in there.

The Game
Pong was developed in 1972 and was released that year as a hugely

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

successful arcade machine (see Figure 11-1). It’s a very basic game, consisting
of a ball and two paddles, like table tennis. If the ball hits the top or bottom
wall, it bounces off, but if it hits the left or right wall, the player on the
opposite side scores a point. The ball bounces off the paddle normally, unless it
hits near the top or bottom edge of the paddle, in which case the angle of return
changes.

Figure 11-1 The original Pong arcade game

(https://www.flickr.com/photos/31988656@N00/33875579648)

In this chapter, we’ll make our own version of Pong, which we’ll call
Tennjs (like Tennis but with JS, get it?). In our game, the left paddle will be
controlled by the computer and the right paddle will be controlled by a human
player. In the original game, the paddles were controlled with rotating dial
controllers, but in our version we’ll use the mouse. The computer, rather than
trying to anticipate where the ball will bounce, will just attempt to always
match the vertical position of the ball. In order to give the human player a
chance, we’ll set an upper limit on how fast the computer can move the paddle.

Set Up
We’ll begin by setting up the project’s file structure and creating a canvas

for displaying the game. As usual, the project will require an HTML file and a
JavaScript file. We’ll start with the HTML file. Create a directory called tennjs
and a file in that directory called index.html. Then enter the content shown in
Listing 11-1.
<!DOCTYPE html>
<html>
 <head>
 <title>Tennjs</title>
 </head>

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

https://www.flickr.com/photos/31988656@N00/33875579648

 <body>
 <canvas id="canvas" width="300" height="300"></canvas>
 <script src="script.js"></script>
 </body>
</html>

Listing 11-1 index.html

This is almost exactly the same as the HTML file created in Chapter 10, so
there should be no surprises. The HTML creates a canvas element, where
we’ll draw the game, and a script element referencing the file script.js,
where our game code will live.

Next we’ll write some JavaScript to set up the canvas. Create the file
script.js, and enter the code shown in Listing 11-2.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

ctx.fillStyle = "black";
ctx.fillRect(0, 0, width, height);

Listing 11-2 Setting up the canvas in script.js

The code here should also be familiar. We first get a reference to the
canvas with document.querySelector and get the canvas’s drawing
context. Then we save the width and height of the canvas to variables called
width and height for easy access within the code. Finally, we set the fill
style to black and draw a black square the size of the canvas. This way the
canvas appears to have a black background.

Open index.html in your browser and you should see something like in
Figure 11-2.

Figure 11-2 Our black square

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

We now have a blank, black canvas where we can create our game.

The Ball
Now it’s time to draw the ball. Add the code in Listing 11-3 to the end of

script.js.
1 const BALL_SIZE = 5;
2 let ballPosition = { x: 20, y: 30 };

ctx.fillStyle = "white";

3 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE,
BALL_SIZE);

Listing 11-3 Drawing the ball

This code uses the fillRect method to draw the ball as a small white
square near the top-left corner of the canvas 3. As in the original Pong game,
the ball is a square rather than a circle. This gives the game a retro feel, and
will also simplify the task of detecting when the ball has collided with the
walls or with a paddle. The size of the ball is stored in a constant called
BALL_SIZE 1. We use the “true constant” all-caps style for the identifier
name because the ball size won’t change during the course of the program. We
could just use the value 5 instead of the constant BALL_SIZE when we call
the fillRect method to draw the ball, but we’re going to end up needing to
refer to the ball’s size a lot more throughout the program. Giving the size a
name will make it much easier to understand code that needs to know the size
of the ball. The other good thing about this approach is that if we change our
mind later and decide the ball should be bigger or smaller, we only have to
update the code in one place: at the declaration of the BALL_SIZE constant.

We keep track of the ball’s position with an object containing its x and y
coordinates, created at 2 using an object literal. In Chapter 10 we used separate
variables for the x and y position of the circle that was being drawn, but it’s a
bit tidier to store the two variables together as on object, especially since this
program is going to be longer and more complex.

Refresh index.html and you should see the white ball sitting in the top-left
corner of the canvas, as shown in Figure 11-3.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Figure 11-3 Figure 11-3: The ball

The ball is stationary for now, but soon enough we’ll write code to make it
move.

Refactoring
Next we’re going to do a simple refactor. Refactoring is a software

development term for modifying some code without changing its behavior,
usually to make the code easier to understand or update. As the code for a
project grows more complex, refactoring can help keep the code organized.

In this case, I know that we’re going to want to draw to the canvas
multiple times, not just once. In fact, we’ll eventually want to redraw the
canvas once every 30 milliseconds to give our game the appearance of motion.
To make that easier to accomplish, we’ll refactor so all the current drawing
code becomes part of a function called draw. That way we can simply call the
draw function any time we want to redraw the canvas.

Update script.js with the changes show in Listing 11-4.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

const BALL_SIZE = 5;
let ballPosition = { x: 20, y: 30 };

1 function draw() {
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 ctx.fillStyle = "white";
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE,
BALL_SIZE);
}

2 draw();

Listing 11-4 Refactoring the drawing code

The only change here is to group all the drawing code into a single
function called draw 1, which we then immediately call at 2. Because it’s a
refactoring, nothing actually changes in the behavior of the program. You can
refresh index.html to confirm that everything still looks as before.

The Game Loop
Almost all games contain a game loop that orchestrates everything that has

to happen for each frame of the game. Game loops are similar to animation
loops, like the one we looked in Chapter 10, but with some additional logic.
Here’s the general shape of the game loop in most games.

1. Clear canvas

2. Draw image

3. Get player input

4. Update state

5. Check collisions

6. Wait a short time

7. Repeat

Getting and acting on input from a player (or players) is the main thing
that distinguishes a game from an animation. Collision detection is another
important aspect of most games: checking for when two objects in the game
meet and responding accordingly. Collision detection is what stops you from
walking through walls or driving through another car—or in this case, it’s what
will make the ball bounce off the walls and paddles. Apart from these
elements—player input and collision detection—the steps in the game loop are
more or less the same as in an animation loop: we clear the canvas, draw the

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

image, update the state of the game to move objects to their new positions,
pause, and repeat.

Rather than trying to write the whole game loop at once, we’ll build it up
gradually. Update script.js with the content in Listing 11-5, which will be the
beginnings of the game loop in our game. This code moves the ball (that is,
updates the ball’s state), redraws the canvas, pauses, and repeats.
--snip--
const BALL_SIZE = 5;
let ballPosition = { x: 20, y: 30 };

1 let xSpeed = 4;
let ySpeed = 2;

function draw() {
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 ctx.fillStyle = "white";
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE,
BALL_SIZE);
}

2 function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
}

3 function gameLoop() {
 draw();
 update();

 // Call this function again after a timeout
4 setTimeout(gameLoop, 30);
}

5 gameLoop();

Listing 11-5 The game loop

The first change here is to initialize two new variables: xSpeed and
ySpeed 1. We’ll use these to control the horizontal and vertical speed of the
ball. The new update function 2 uses these two variables to update the
position of the ball. For every frame, the ball will move xSpeed pixels along
the x axis and ySpeed pixels along the y axis. The two variables start out at 4
and 2, so every frame the ball will move 4 pixels to the right and 2 pixels
down.

The gameLoop function 3 calls the draw function followed by the
update function. Finally it calls setTimeout(gameLoop, 30); 4,

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

which will call the gameLoop function again after 30 milliseconds. This is
almost exactly the same as the setInterval technique we used in Chapter
10. You may recall that setTimeout only calls its function once after the
timeout, while setInterval calls its function repeatedly. We’re using
setTimeout here so we have more control over whether or not to keep
looping; later on we’ll add some conditional logic to either call setTimeout
or end the game.

At the end of the script, we call the gameLoop function to set the game in
motion 5. Since gameLoop currently ends with setInterval, the result is
that gameLoop will be repeatedly called once every 30 milliseconds. Reload
your page and you should see the ball move across and down, much like the
animation from Chapter 10.

Bouncing
In the previous section you got the ball moving, but it just flew off the

edge of the canvas. Next you’ll learn how to make it bounce off the edge of the
canvas at the appropriate angle—our first collision detection code. Update
script.js with the code in Listing 11-6, which adds a checkCollision
function to our game.
--snip--
function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
}

function checkCollision() {
1 let ball = {
 left: ballPosition.x,
 right: ballPosition.x + BALL_SIZE,
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 }

2 if (ball.left < 0 || ball.right > width) {
 xSpeed = -xSpeed;
 }
3 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}

function gameLoop() {
 draw();
 update();
4 checkCollision();

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
}

gameLoop();

Listing 11-6 Wall collision detection

The new function checkCollision checks to see if the ball has
collided with one of the four walls of the canvas. If it has, it updates xSpeed
or ySpeed as appropriate to make the ball bounce off the wall. First, we
calculate values for the edges of the ball. We need to know where the left,
right, top, and bottom edges are to determine if these edges have exceeded the
bounds of the playing area. We group the values in an object called ball 1
that has left, right, top, and bottom properties. Identifying the left and
top ball edges is easy: they’re ballPosition.x and ballPosition.y,
respectively. To get the right and bottom edges, we add BALL_SIZE to
ballPosition.x and ballPosition.y. This is one of those cases
noted earlier where having access to the ball’s size as a constant is helpful.

Next, we perform the actual collision detection. If the left edge of the ball
is less than 0, or the right edge of the ball is greater than the width of the
canvas 2, we know that the ball has hit the left or right wall. In both cases, the
math is the same: the new value of xSpeed should be the negative of the
current value (that is, the value is negated). For example, the first time the ball
hits the right edge, xSpeed will go from 4 to -4. Meanwhile, ySpeed
remains unchanged. As a result, the ball continues moving down the screen at
the same rate, but now it’s moving to the left instead of to the right.

The same kind of check happens for the top of the ball colliding with the
top wall or the bottom of the ball colliding with the bottom wall 3. In either of
these cases, we negate ySpeed, changing it from 2 to -2 when the ball hits
the top edge, or from -2 to 2 when the ball hits the bottom edge.

The only other change to the code is to add a call to checkCollision
to the list of things that happen in the gameLoop function 4. Now when you
refresh index.html you should see the ball continuously bounce around the play
area.

If you’ve been paying attention, you might have noticed that the ball isn’t
supposed to bounce off the left and right walls. Once we have moving paddles,
we’ll modify the collision detection code to only bounce off the paddles or the
top and bottom walls, and to score a point for a side wall collision.

The Paddles
Our next task is to draw the two paddles. To do that we’ll first introduce

some new constants that establish the paddle dimensions and their horizontal

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

position relative to the sides of the canvas, as well as some variables defining
their vertical positions. (The paddles can only move up and down, not from
side to side, so only their vertical positions need to be variables.) Update
script.js with the changes in Listing 11-7.
--snip--
let xSpeed = 4;
let ySpeed = 2;

const PADDLE_WIDTH = 5;
const PADDLE_HEIGHT = 20;
const PADDLE_OFFSET = 10;

let leftPaddleTop = 10;
let rightPaddleTop = 30;

function draw() {
--snip--

Listing 11-7 Defining the paddles

First we set up the constants that define the paddles. PADDLE_WIDTH and
PADDLE_HEIGHT define both paddles to be 5 pixels wide and 20 pixels tall.
PADDLE_OFFSET refers to the distance of the paddle from the left or right
edge of the playing area.

The variables leftPaddleTop and rightPaddleTop define the
current vertical position of the top of each paddle. Eventually,
leftPaddleTop will be controlled by the computer through a function we’ll
write to follow the ball, and rightPaddleTop will be updated when the
player moves the mouse. For now, we’re simply setting these values to 10 and
30, respectively.

Next we update the draw function to display the paddles using the
information we just defined. I’ve also added comments to the code to clarify
what’s happening at each step of the draw function. Modify the code as
shown in Listing 11-8.
--snip--
function draw() {
 // Fill the canvas with black
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 // Everything else will be white
 ctx.fillStyle = "white";

 // Draw the ball
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE,
BALL_SIZE);

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 // Draw the paddles
1 ctx.fillRect(
 PADDLE_OFFSET,
 leftPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);
2 ctx.fillRect(
 width - PADDLE_WIDTH - PADDLE_OFFSET,
 rightPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);
}

function update() {
--snip--

Listing 11-8 Drawing the paddles

The new code features two calls of fillRect, one for drawing each
paddle, at 1 and 2. I’ve split the arguments over multiple lines because the
identifiers are so long! Remember that the parameters to fillRect are x, y,
width, and height, where x and y are the coordinates of the top-left corner
of the rectangle. The x coordinate of the left paddle is PADDLE_OFFSET
because we’re using that to mean the paddle’s distance from the left edge of
the canvas, while the y coordinate of the left paddle is just leftPaddleTop.
The width and height arguments are the PADDLE_WIDTH and
PADDLE_HEIGHT constants.

The right paddle is a little more complicated to draw: to get the x
coordinate of the paddle’s top-left corner, we need to take the width of the
canvas and subtract the width of the paddle and the offset of the paddle from
the right edge. Given that the width of the canvas is 500, and the paddle width
and offset are both 10, that means the x coordinate of the right paddle is 480.

When you refresh index.html you should see the two paddles now, in
addition to the bouncing ball, as shown in Figure 11-4.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Figure 11-4 The paddles and ball

Note that the ball currently passes straight through the paddles, because
we haven’t set up collision detection for the paddles yet. We’ll get to that later
in this section.

Player Input to Move the Paddle
The paddles are drawn at the vertical positions given by the variables

leftPaddleTop and rightPaddleTop, so to make the paddles move up
and down, we just have to update the value of these variables. Right now we’re
just concerned with the right paddle, which will be controlled by the human
player.

To let the player control the right paddle, we’ll add an event handler to
script.js that listens for mousemove events. Listing 11-9 shows how it’s done.

--snip--
let leftPaddleTop = 10;
let rightPaddleTop = 30;

document.addEventListener("mousemove", e => {
 rightPaddleTop = e.y - canvas.offsetTop;
});

function draw() {
--snip--

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Listing 11-9 Moving the right paddle

This code follows the same pattern for event handling you first saw in
Chapter 9. We use document.addEventListener to check for mouse
movements. When one is detected, the event handler function updates the
value of rightPaddleTop based on the y coordinate of the mousemove
event, accessed as e.y. The y coordinate is relative to the top of the page, not
the top of the canvas, so we subtract canvas.offsetTop (the distance of
the top of the canvas from the top of the page) from the y coordinate. This way
the assigned rightPaddleTop value will be based on the distance of the
mouse from the top of the canvas, and the paddle will follow the mouse
accurately.

Refresh index.html and you should see the right paddle move vertically as
the mouse moves up and down. Figure 11-5 shows how it should look.

Figure 11-5 The right paddle moving with the mouse

Our game has now officially become interactive! The player has full
control of the position of the right paddle.

Paddle Collision Detection
The next step is to add collision detection for the paddles. We need to

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

know if the ball has hit a paddle, and make the ball bounce off the paddle
appropriately. This requires a lot of code, so I’ll break it up over a few listings.

The first thing we have to do is to create objects defining the four edges of
the two paddles, as we did earlier for the ball in Listing 11-6. These changes
are shown in Listing 11-10.
--snip--
function checkCollision() {
 let ball = {
 left: ballPosition.x,
 right: ballPosition.x + BALL_SIZE,
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 }

 let leftPaddle = {
 left: PADDLE_OFFSET,
 right: PADDLE_OFFSET + PADDLE_WIDTH,
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,
 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (ball.left < 0 || ball.right > width) {
--snip--

Listing 11-10 Calculating the edges of the paddles

The two objects, leftPaddle and rightPaddle, each contain the
edges of the respective paddles as four properties, left, right, top, and
bottom. As in Listing 11-8, the right paddle needs a bit more math because
its position has to take into account the width of the canvas, the offset of the
paddle, and the width of the paddle.

Next we need a function, which we’ll call checkPaddleCollision,
that takes the ball object and one of the paddle objects and returns true if the
ball is intersecting with that paddle. See the definition in Listing 11-11.
--snip--
function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
}

function checkPaddleCollision(ball, paddle) {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 // check if the paddle and ball overlap vertically and
horizontally
 return (
 ball.left < paddle.right &&
 ball.right > paddle.left &&
 ball.top < paddle.bottom &&
 ball.bottom > paddle.top
);
}

function checkCollision() {
--snip--

Listing 11-11 The checkPaddleCollision function

This function will be called with the ball and each of the paddle objects
defined earlier. checkPaddleCollision uses a long Boolean expression
made up of four sub-expressions which are all &&’d together, so it only returns
true if all four sub-expressions are true. (Note: I added spacing to each
sub-expression so the operands line up vertically—this is just to make the code
easier to read.) In English, the sub-expressions say:

1. The left edge of the ball must be to the left of the right edge of the
paddle

2. The right edge of the ball must be to the right of the left edge of the
paddle

3. The top edge of the ball must be above the bottom edge of the paddle

4. The bottom edge of the ball must be below the top edge of the paddle

If the first two conditions are true then the ball is intersecting horizontally,
and if the last two conditions are true, the ball is intersecting vertically. The
ball is only truly intersecting with the paddle if all four conditions are true.
To illustrate this, see Figure 11-6.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Figure 11-6 Collision detection illustrated

The figure shows four possible scenarios we might check. In all the
scenarios, the paddle has the following bounds: { left: 10, right:
15, top: 5, bottom: 25 }.

In A, ball has the bounds { left: 20, right: 25, top: 30,
bottom: 35 }. ball.left < paddle.right is false (the left
side of the ball is not to the left of the right side of the paddle), but
ball.right > paddle.left is true. Likewise, ball.top <
paddle.bottom is false and ball.bottom > paddle.top is
true.

In B, ball has the bounds { left: 20, right: 25, top: 22,
bottom: 27 }. This time, ball.top < paddle.bottom and
ball.bottom > paddle.top are both true, which means that the ball
is vertically intersecting with the paddle, but not horizontally intersecting.

In C, ball has the bounds { left: 13, right: 18, top: 30,
bottom: 35 }. In this case, the ball is horizontally intersecting with the
paddle, but not vertically intersecting.

Finally, in D, ball has the bounds { left: 13, right: 18,
top: 22, bottom: 27 }. Now the ball is both horizontally and

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

vertically intersecting with the paddle, all four sub-expressions are true, and
so checkPaddleCollision returns true.

Now it’s time to actually call the checkPaddleCollision function
for the two paddles, and handle the case where the function returns true. You
can find this code in Listing 11-12.
--snip--
 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,
 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (checkPaddleCollision(ball, leftPaddle)) {
 // left paddle collision happened
 1 xSpeed = Math.abs(xSpeed);
 }

 if (checkPaddleCollision(ball, rightPaddle)) {
 // right paddle collision happened
 2 xSpeed = -Math.abs(xSpeed);
 }

 if (left < 0 || right > width) {
 xSpeed = -xSpeed;
 }
 if (top < 0 || bottom > height) {
 ySpeed = -ySpeed;
 }
}
--snip--

Listing 11-12 Checking for paddle collisions

Remember that checkPaddleCollision takes an object representing
the ball and an object representing a paddle and returns true if the two are
intersecting. If checkPaddleCollision(ball, leftPaddle)
returns true, we set xSpeed to Math.abs(xSpeed) 1, which has the
effect of setting it to 4 because in our game xSpeed is only ever 4 (when
moving to the right) or -4 (when moving to the left).

You might be wondering why we didn’t just negate xSpeed, as we did
with the vertical wall collision code earlier. Using the absolute value is a little
trick to avoid multiple collisions that could send the ball bouncing back and
forth inside the paddle. It’s possible if the ball hits at just the right point at the
end of the paddle that it would get bounced back, but the next frame would
also result in a collision with the same paddle. If we were negating the
xSpeed then it would just keep bouncing “inside” the paddle. By forcing the
updated xSpeed to be positive, we can ensure that a collision with the left

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

paddle will always result in the ball bouncing to the right.

Following this, we do the same thing with the right paddle. In this case, if
there’s a collision we update xSpeed to -Math.abs(xSpeed),which in
effect is -4, meaning that the ball will bounce to the left 2.

Refresh index.html again and try to move the right paddle with your
mouse so the ball hits it. You should now have ball/paddle bounces happening!
At this point the ball can still safely bounce off the side walls, but we’ll fix that
soon.

Bouncing Near the Paddle Ends
I mentioned at the beginning of this chapter that in Pong you can change

the angle of the ball’s bounce by hitting near the top or bottom of the paddle.
We’ll implement that functionality now. First we’ll add a new function called
adjustAngle immediately before checkCollision. It checks if the ball
is near the top or bottom of the paddle, and updates ySpeed if it is. See
Listing 11-13 for the code.
--snip--
function adjustAngle(distanceFromTop, distanceFromBottom) {
1 if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 ySpeed -= 0.5;
 } 2 else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 ySpeed += 0.5;
 }
}

function checkCollision() {
--snip--

Listing 11-13 Adjusting the bounce angle

The adjustAngle function has two parameters, distanceFromTop
and distanceFromBottom. These represent the distance from the top of
the ball to the top of the paddle, and from the bottom of the paddle to the
bottom of the ball, respectively. At 1 we check if distanceFromTop is less
that 0. If so, that means the top edge of the ball is above the top edge of the
paddle at collision time, which is how we’ll define being near the top of the
paddle. In this case, we subtract 0.5 from ySpeed. If the ball is moving
down the screen when it hits near the top of the paddle, then ySpeed is
positive, so subtracting 0.5 reduces the vertical speed. For example, at the start
of the game, ySpeed is 2. If you align the paddle so the ball hits the top,
ySpeed will become 1.5 after the bounce, effectively reducing the angle of
bounce. However, if the ball is moving up the screen, then ySpeed is
negative. In this case, subtracting 0.5 after a hit near the top of the paddle will

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

increase the ball’s vertical speed. For example, a ySpeed of -2 will become
-2.5.

The opposite happens if the ball hits near the bottom of the paddle, which
we check at 2. In this case, we add 0.5 to ySpeed, increasing the vertical
speed if the ball is moving down the screen or decreasing the speed if the ball
is moving up the screen.

Next we update the checkCollision function to call the new
adjustAngle function as part of the collision-detection logic for the two
paddles. Listing 11-14 shows the changes.
--snip--
function checkCollision() {
--snip--
 if (checkPaddleCollision(ball, leftPaddle)) {
 // left paddle collision happened
 let distanceFromTop = ball.top - leftPaddle.top;
 let distanceFromBottom = leftPaddle.bottom - ball.bottom;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = Math.abs(xSpeed);
 }

 if (checkPaddleCollision(ball, rightPaddle)) {
 // right paddle collision happened
 let distanceFromTop = ball.top - rightPaddle.top;
 let distanceFromBottom = rightPaddle.bottom - ball.bottom;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = -Math.abs(xSpeed);
 }
--snip--

Listing 11-14 Listing 11-14: Calling adjustAngle

Within the if statement for each paddle, we declare
distanceFromTop and distanceFromBottom, the arguments needed
for the adjustAngle function. Then we call adjustAngle before
updating xSpeed as before.

Now try out the game and see if you can hit the ball near the edge of the
paddle!

TRY IT OUT

Hitting the edge of the paddle can be tricky. To make it easier, try reducing the speed of the game
by increasing the setTimeout interval—for example, from 30 milliseconds to 60 milliseconds. Another
option for making it easier is to expand what counts as “near the top” and “near the bottom” of the
paddle. Instead of distanceFromTop < 0 you could do distanceFromTop < 5, for example,
which would check that the top of the ball is less than 5 pixels below the top of the paddle.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

It also isn’t always obvious when a top or bottom hit has occurred, since the change to ySpeed is
pretty small. To get some more feedback as to what’s actually happening when the ball hits the paddle,
you can add logging to the adjustAngle function. For example, you could add the following line to the
start of the function:

console.log(`top: ${distanceFromTop}, bottom: ${distanceFromBottom}`);

This way the console will show the ball’s distance from the top and bottom of the paddle every time
the ball hits the paddle. Another thing that might help is adding logging to the two conditionals within the
adjustAngle function, like so:

 if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 console.log("Top hit!");
 ySpeed -= 0.5;
 } else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 console.log("Bottom hit!");
 ySpeed += 0.5;
 }

Now you’ll get additional feedback that you’ve hit the top or bottom of the paddle, and that ySpeed
is being adjusted.

You should be careful about where you add logging in games. If you add logging in the
checkCollision function, for example, then every frame of the game will produce a new log line,
which gets very noisy and hard to read, and can also lead to performance problems. It’s best to limit the
logging to certain conditions that won’t be true all the time, for example only logging when a collision
occurs, as we did here.

Scoring Points
Games are usually more fun when you can win or lose. In Pong, you score

a point if you hit the wall behind the opposing player’s paddle. After the ball
hits the wall, the ball is reset to its starting position and speed.

First we’re going to need a way to keep track of the scores. To do that,
we’ll create some new variables. Update script.js with the code in Listing 11-
15.
--snip--
let leftPaddleTop = 10;
let rightPaddleTop = 30;

let leftScore = 0;
let rightScore = 0;

document.addEventListener("mousemove", e => {
 rightPaddleTop = e.y - canvas.offsetTop;
});
--snip--

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Listing 11-15 Variables to keep track of the scores

We declare two new variables, leftScore and rightScore, and set
them both to zero. Later we’ll add logic to increment these variables when
points are scored.

Next we add code for displaying the scores to the end of the draw
function. Update the function as shown in Listing 11-16.
function draw() {
 --snip--
 ctx.fillRect(
 width - PADDLE_WIDTH - PADDLE_OFFSET,
 rightPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);

 // Draw scores
1 ctx.font = "30px monospace";
2 ctx.textAlign = "left";
3 ctx.fillText(leftScore.toString(), 50, 50);
 ctx.textAlign = "right";
 ctx.fillText(rightScore.toString(), width - 50, 50);
}

Listing 11-16 Drawing the scores

This added code uses some new canvas properties and methods we haven’t
seen yet. First, we set the font of the text we’re about to draw 1. This is similar
to a CSS font declaration. In this case, we’re setting the font to be 30 pixels tall
and monospace style. Monospace means that each character takes up the same
width, and is usually used for code, as in this book’s code listings. It looks
like this. There are many monospace fonts, but because operating systems
can come with different fonts installed, we only give a generic font style
(monospace), meaning the operating system should use the default font for that
font style. In most operating systems, Courier or Courier New is the default
monospace font.

Next we use ctx.textAlign to set the alignment for the text 2. We
choose left alignment, but this will only apply to the left score. Before drawing
the right score, we change the alignment to "right". This way if the scores
get into double digits, the numbers will extend towards the middle of the
screen, keeping things visually balanced.

At 3 we use the fillText method to display the left score. This method
has three parameters: the text to be drawn, and the x and y coordinates at
which to draw the text. The first parameter must be a string, so we call the
toString method on leftScore to convert it from a number to a string.
We use 50 for the x and y coordinates to place the text near the top-left corner
of the canvas.

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

N O T E The meaning of the x coordinate parameter for fillText depends on the text’s
alignment. For left-aligned text, the x coordinate specifies the left edge of the text,
whereas for right-aligned text it specifies the right edge.

The right score is handled similarly to the left score: we set the text
alignment, then call fillText to display the score. This time we set the x
coordinate to width - 50, so it appears as far from the right as the left score
appears from the left.

When you refresh index.html you should see the initial scores rendered, as
illustrated in Figure 11-7.

Figure 11-7 Displaying the scores

Next we have to handle the case where the ball hits the side walls. Instead
of bouncing, the appropriate score should be incremented and the ball should
be reset to its original speed and position. First we’ll do another refactor and
write a function that resets the ball. This also requires some changes to how the
ball’s speed and position variables are handled. Listing 11-17 shows the
changes.
--snip--
const BALL_SIZE = 5;

1 let ballPosition;

let xSpeed;

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

let ySpeed;

function initBall() {
2 ballPosition = { x: 20, y: 30 };
 xSpeed = 4;
 ySpeed = 2;
}

const PADDLE_WIDTH = 5;
--snip--

Listing 11-17 The initBall function

Here we’ve separated the declaration of the ball state variables
(ballPosition, xSpeed, and ySpeed) from the initialization of those
variables. For example, ballPosition is declared at the top level of the
program 1, but initialized in the new initBall function (short for “initialize
ball”) 2. The same goes for xSpeed and ySpeed. This is so we can reset the
ball to its initial position and speed whenever we want simply by calling
initBall, rather than by copy-pasting the values of the ball state variables
all over the program. In particular, we can now call initBall at the start of
the program to set up the ball for the first time, and we can also call it anytime
the ball hits the left or right wall, to reset the ball to its original state.

Note that we can’t both declare and initialize the ball state variables inside
the initBall function—for example by placing let ballPosition =
{ x: 20, y: 30 }; within the function—because the let keyword
defines a new variable in the current scope, which in that case would be the
body of initBall. Thus, the variables would only be available within
initBall. In fact, we want the variables to be available throughout the
program, so we declare them with let at the top level of the program, outside
the body of any functions. However, because we want to initialize the variables
multiple times, we assign them their value in the initBall function, which
can be called repeatedly.

Next we have to modify the collision detection code to increment the score
and reset the ball when the left or right wall is hit. Listing 11-18 shows how.
function checkCollision() {
--snip--
 if (checkPaddleCollision(ball, rightPaddle)) {
 // right paddle collision happened
 let distanceFromTop = ball.top - rightPaddle.top;
 let distanceFromBottom = rightPaddle.bottom - ball.bottom;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = -Math.abs(xSpeed);
 }

1 if (ball.left < 0) {
 rightScore++;

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 initBall();
 }
2 if (ball.right > width) {
 leftScore++;
 initBall();
 }
 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}
--snip--

Listing 11-18 Scoring points on wall collisions

Previously, we checked for left and right wall collisions in a single if
statement, but now we have to handle the left and right walls individually,
since a different player scores depending on which wall is hit. Therefore,
we’ve split the original if statement into two. If the ball hits the left wall 1,
rightScore is incremented and the ball is reset with a call to our new
initBall function. If the ball hits the right wall 2, leftScore is
incremented and the ball is reset. The logic for collisions with the top and
bottom walls remains the same.

Finally, since we’ve moved the initialization of the ball state variables to
the initBall function, we need to call that function before the game loop
starts in order to set the ball up for the first time. Scroll down to the bottom of
script.js and update the code as shown in Listing 11-19.
--snip--
function gameLoop() {
 draw();
 update();
 checkCollision();

 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
}

1 initBall();
gameLoop();

Listing 11-19 Calling initBall for the first time

We’ve added a call to initBall before the call to gameLoop 1. Now
when you refresh index.html you should see the scores increment when the ball
hits the side wall, and the ball should reset to its original speed and position
after a side wall hit. Of course, it’s pretty easy to beat the computer right now
because it doesn’t move its paddle yet!

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

Computer Control
Now let’s add some challenge to this game! We want the computer-

controlled opponent to move the paddle and try to hit the ball. There are
various ways to do this, but in our simple approach, we’ll have the computer
always try to match the current position of the ball. The logic for the computer
will be very simple:

• If the top of the ball is above the top of the paddle, move the paddle up.

• If the bottom of the ball is below the bottom of the paddle, move the
paddle down.

• Otherwise, do nothing.

With this approach, if the computer could move at any speed, then it
would never miss. Since this would be no fun for us humans, we’ll set a speed
limit for the computer. We’ll do that first, declaring the computer’s speed limit
as a constant. Listing 11-20 shows how.
let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

const MAX_COMPUTER_SPEED = 2;

const BALL_SIZE = 5;
--snip--

Listing 11-20 Limiting the computer’s speed

We declare the constant MAX_COMPUTER_SPEED. By setting it to 2,
we’re saying that the computer isn’t allowed to move the paddle more than two
pixels per frame of the game.

Next we’ll define a function called followBall that moves the
computer’s paddle. The new function is shown in Listing 11-21.
--snip--
function draw() {
--snip--

function followBall() {
1 let ball = {
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 };
2 let leftPaddle = {
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

3 if (ball.top < leftPaddle.top) {
 leftPaddleTop -= MAX_COMPUTER_SPEED;
 } 4 else if (ball.bottom > leftPaddle.bottom) {
 leftPaddleTop += MAX_COMPUTER_SPEED;
 }
}

function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
5 followBall();
}

Listing 11-21 Computer-controlled paddle

Within the followBall function, we define objects representing the ball
1 and the left paddle 2, each with top and bottom properties representing
their upper and lower bounds. Then we implement the paddle movement logic
with two if statements. If the top of the ball is above the top of the paddle 3,
we move the paddle up by subtracting MAX_COMPUTER_SPEED from
leftPaddleTop. Likewise, if the bottom of the ball is below the bottom of
the paddle 4, we move the paddle down by adding MAX_COMPUTER_SPEED
to leftPaddleTop.

At 5 we call the new followBall function within the update
function. This way moving the left paddle becomes part of the process of
updating the state of the game that happens with each iteration of the game
loop.

Reload the page and see if you can score a point against the computer!

Game Over
The final step in making our game is to make it winnable! To do that, we

have to add some kind of game-over condition, and stop the game loop at that
point. In this case, we’ll stop the game loop once one of the players reaches 10
points, then display the text “GAME OVER”.

First we need to declare a variable for keeping track of whether or not the
game is over. We’ll use this variable to decide whether or not to continue
repeating the gameLoop function. We add it in Listing 11-22.
--snip--
let leftScore = 0;
let rightScore = 0;

1 let gameOver = false;
--snip—

function checkCollision() {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 --snip--
 if (ball.right > width) {
 leftScore++;
 initBall();
 }
2 if (leftScore > 9 || rightScore > 9) {
 gameOver = true;
 }
 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}
--snip--

Listing 11-22 The gameOver variable

At 1, near the top of script.js, we declare a variable called gameOver for
recording whether the game is over. We initialize it to false so the game
doesn’t end before it begins. Then, within the checkCollision function,
we check to see if either of the scores has exceeded 9 2. If so, we set
gameOver to true. This check could happen anywhere, but we do it in
checkCollision to keep the logic that increments the scores and the logic
that checks the scores together.

Next we add a function for writing the text “GAME OVER” and modify
the game loop so it ends when gameOver is true. Listing 11-23 shows how.

function checkCollision() {
 --snip--

1 function drawGameOver() {
 ctx.fillStyle = "white";
 ctx.font = "30px monospace";
 ctx.textAlign = "center";
 ctx.fillText("GAME OVER", width / 2, height / 2);
}

function gameLoop() {
 draw();
 update();
 checkCollision();

2 if (gameOver) {
 draw();
 drawGameOver();
 } else {
 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
 }
}

Listing 11-23 Ending the game

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

At 1 we define the drawGameOver function. It draws the text “GAME
OVER” to the middle of the canvas in large, white text. To position the text in
the middle of the canvas, we set the text alignment to "center" and use half
the canvas width and height as the text’s x and y coordinates. (With center
alignment, the x coordinate refers to the horizontal midpoint of the text.)

Within the gameLoop function, we’ve wrapped the call to setTimeout
within a conditional statement. At 2 we check the value of the gameOver
variable. If it’s true, the game is over, so we call the draw and
drawGameOver functions. (The draw function is needed to display the final
score—otherwise the winning player would still be stuck with 9 points.) If
gameOver is false, the game can continue: we keep looping as before by
using setTimeout to call gameLoop again after 30 milliseconds.

Once gameOver becomes true and the game loop ends, the game
effectively stops. Nothing else will be drawn to the screen after the “GAME
OVER” text—at least, not until the page is refreshed and the program starts
again from the beginning. Go ahead and do that now: refresh index.html and
see if you can beat the computer! Once one of you gets more than 9 points you
should see the “GAME OVER” text, as shown in Figure 11-8.

Figure 11-8 Game over

I hope you beat the computer but don’t worry if you didn’t—the game is
pretty hard. Here are some things you can do to make it easier for yourself:

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

• Increase the time between frames in gameLoop

• Make the paddles taller

• Reduce the computer’s max speed

• Make it easier to hit the edge of the paddle

• Increase the effect on ySpeed from hitting the edge of the paddle

Whatever you do, have fun! It’s your game now.

TRY IT OUT

Now that you have a working game, you can make any changes you want. I gave some
suggestions above for how to make the game easier. How about making the game harder? Here are
some things to try:

• Increase the speed of the game as the scores increase (note that you could either do this by
increasing the xSpeed and ySpeed of the ball, or by reducing the setTimeout time in
gameLoop)

• Slow down the player’s paddle—this will require something similar to the computer paddle
movement, with the right paddle moving by some max amount each frame to try to reach the
current mouse position

• Add a second, slower ball!

The Complete Code
For your convenience, the whole script.js file is shown in Listing 11-24.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

const MAX_COMPUTER_SPEED = 2;

const BALL_SIZE = 5;
let ballPosition;

let xSpeed;
let ySpeed;

function initBall() {
 ballPosition = { x: 20, y: 30 };
 xSpeed = 4;
 ySpeed = 2;
}

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

const PADDLE_WIDTH = 5;
const PADDLE_HEIGHT = 20;
const PADDLE_OFFSET = 10;

let leftPaddleTop = 10;
let rightPaddleTop = 30;

let leftScore = 0;
let rightScore = 0;
let gameOver = false;

document.addEventListener("mousemove", e => {
 rightPaddleTop = e.y - canvas.offsetTop;
});

function draw() {
 // Fill the canvas with black
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 // Everything else will be white
 ctx.fillStyle = "white";

 // Draw the ball
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE,
BALL_SIZE);

 // Draw the paddles
 ctx.fillRect(
 PADDLE_OFFSET,
 leftPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);
 ctx.fillRect(
 width - PADDLE_WIDTH - PADDLE_OFFSET,
 rightPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);

 // Draw scores
 ctx.font = "30px monospace";
 ctx.textAlign = "left";
 ctx.fillText(leftScore.toString(), 50, 50);
 ctx.textAlign = "right";
 ctx.fillText(rightScore.toString(), width - 50, 50);
}

function followBall() {
 let ball = {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 };
 let leftPaddle = {
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

 if (ball.top < leftPaddle.top) {
 leftPaddleTop -= MAX_COMPUTER_SPEED;
 } else if (ball.bottom > leftPaddle.bottom) {
 leftPaddleTop += MAX_COMPUTER_SPEED;
 }
}

function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
 followBall();
}

function checkPaddleCollision(ball, paddle) {
 // check if the paddle and ball overlap vertically and
horizontal
 return (
 ball.left < paddle.right &&
 ball.right > paddle.left &&
 ball.top < paddle.bottom &&
 ball.bottom > paddle.top
);
}

function adjustAngle(distanceFromTop, distanceFromBottom) {
 if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 ySpeed -= 0.5;
 } else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 ySpeed += 0.5;
 }
}

function checkCollision() {
 let ball = {
 left: ballPosition.x,
 right: ballPosition.x + BALL_SIZE,
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 }

 let leftPaddle = {
 left: PADDLE_OFFSET,

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 right: PADDLE_OFFSET + PADDLE_WIDTH,
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,
 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (checkPaddleCollision(ball, leftPaddle)) {
 // left paddle collision happened
 let distanceFromTop = ball.top - leftPaddle.top;
 let distanceFromBottom = leftPaddle.bottom - ball.bottom;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = Math.abs(xSpeed);
 }

 if (checkPaddleCollision(ball, rightPaddle)) {
 // right paddle collision happened
 let distanceFromTop = ball.top - rightPaddle.top;
 let distanceFromBottom = rightPaddle.bottom - ball.bottom;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = -Math.abs(xSpeed);
 }

 if (ball.left < 0) {
 rightScore++;
 initBall();
 }
 if (ball.right > width) {
 leftScore++;
 initBall();
 }
 if (leftScore > 9 || rightScore > 9) {
 gameOver = true;
 }
 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}

function drawGameOver() {
 ctx.fillStyle = "white";
 ctx.font = "30px monospace";
 ctx.textAlign = "center";
 ctx.fillText("GAME OVER", width / 2, height / 2);
}

function gameLoop() {

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

 draw();
 update();
 checkCollision();

 if (gameOver) {
 draw();
 drawGameOver();
 } else {
 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
 }
}

initBall();
gameLoop();

Listing 11-24 The complete code

Conclusion
In this chapter you created a full game from scratch! With the knowledge

you learned here, you can start creating all kinds of 2D games. The basics of
game loops, collision detection, and rendering are applicable to many games.
Some other games you might try implementing next are Breakout or Snake. If
you need some help with the logic, there are lots of tutorials online you could
follow. Have fun!

JavaScript Crash Course (Early Access) © 2022 by Nick Morgan

	JavaScriptCrashCourse_EA.pdf
	Morgan_JavaScriptCrashCourse_Ch04_EA
	Morgan_JavaScriptCrashCourse_Ch05_EA
	Morgan_JavaScriptCrashCourse_Ch06_EA
	Morgan_JavaScriptCrashCourse_Ch09_EA
	Morgan_JavaScriptCrashCourse_Ch10_EA
	Morgan_JavaScriptCrashCourse_Ch11_EA
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

