Selenium and

Driving browsers with Perl

John Davies

b

)
Sz
>

{Perl School}

Selenium and Perl

John Davies

Selenium and Perl

1
2 ... the code examples
1.3 ... the series
1.4 ... the author
h

2 W
2

at is Selenium WebDriver?

2.2 Browsers, Servers and Drivers
2.2.1 Selenium Standalone Server
2.2.2 Chrome
2.2.3 Open a Web Page with Chrome
2.2.4 Internet Explorer
2.2.5 Edge
2.2.6 Firefox
2.2.7 Opera
2.2.8 HtimlUnit
2.2.9 phantomjs
2.2.10 Safari
2.2.11 Android

3 Testing
4 Basic Browser Interactions

4.1 Following_a link

4.2 Browser Actions

4.3 Keyboard Actions

4.4 Take a Screen Shot

5 Elements in Detail

5.1 Class

5.2 Class Name

5.3 CSS

2.4 1D

2.5 Link

5.6 Link Text

5.7 Partial Link Text

5.8 Name
5.9 Tag Name
5.10 XPath
9.11 Active Element
5.12 Child Elements
6 Element properties
6.1 Location
6.2 Enabled
6.3 Selected
6.4 Displayed
6.5 CSS Attribute
6.6 Size
7/ More browser interaction
7.1 Checkboxes
/.2 Radio Buttons
/.3 Resizing the Browser
7.4 Close and Quit
8 Using_Multiple Tabs and Windows
8.1 Open a Link in a New Window
8.2 Open a Link in a New Tab
9 Drag_and Drop
10 Cookies
10.1 Reading_Cookies
10.2 Adding_Cookies
10.3 Deleting_Cookies
11 Javascript
11.1 1s JS Enabled?
11.2 Injecting JS
11.3 Locating by JS
11.4 Popups
12 Synchronous and Asynchronous Javascript
13 More Data from Browsers
13.1 Page Source
13.2 Geolocation
14 Driver Management
14.1 Error Handling
14.2 Debugging

14.3 Timings
14.4 Status
14.5 Logs
14.6 Cache
14.7 Capabilities
14.8 Available Engines
14.9 Writing_plugins to return drivers
15 Remote Servers
15.1 Creating
15.2 Connecting
15.3 Uploading
16 References
16.1 Selenium modules
16.2 Other Perl modules
16.3 Selenium resources
16.4 W3schools resources
16.5 Other resources
17 Index

1 About ...

1.1 ... the text

Without knowing the specifics of the devices that might be used to
read this, any proliferation of fonts and styles would risk confusing
the reader rather than helping. There are therefore very few fonts in
use throughout the document. The one appearing here is used for
the text, while anything that should be typed verbatim, such as
module names and code, will appear in this font. Links to URLs
in the text should appear differently and be clickable if this is
supported by the reader’s device and software. A typical link is
PerlMonks. Text is emphasised very rarely. When it is, it appears like
this.

http://www.perlmonks.org/

1.2 ... the code examples

All code examples are meant to be small, self-contained, complete
examples. They have been tested on a small number of machines
and are believed to contain no bugs, although no warranty should be
inferred.

Strict and warnings are included in all examples. There is no
“shebang” line, partly to reduce space and partly to be consistent
with pure Windows examples that do not need one. URLs and other
string literals have usually been abstracted to variables. This is to
make the code clearer. It is perfectly possible to have the URL as a
literal in all the examples.

Commonly used variable names include sdriver for a Selenium
WebDriver object, se1t for element objects, srtn for values, possibly
including references, returned from various calls, spic for generic
graphics and swe4 for base64 encoded objects. Hungarian prefixes
are sometimes used, the commonest being ar , indicating an array
reference and nr_indicating a hash reference.

All the code examples are available from the Perl School web site.

https://perlschool.com/selenium/

1.3 ... the series

The Perl School brand has its roots in a series of low-cost Perl
training courses that Dave Cross ran in 2012. By running low-cost
training at the weekend, he hoped to encourage more programmers
to keep their Perl knowledge up to date. These courses were run
regularly for about a year before the idea was put on hold for a while.

Dave always knew that he would want to return to the Perl School
brand at some point and late in 2017 he realised what the obvious
next step was - low-cost Perl books. He had already developed a
pipeline for creating e-books from Markdown files so it was a short
step to republishing some of his training materials as books.

The first Perl School book, Perl Taster was published at the end of
2017 (just in time for the London Perl Workshop) and this is the
second. Dave has plans to publish more over the coming months.

If you are interested in writing a book for the Perl School range, then
please get in touch. We are @perl_school on Twitter.

https://perlschool.com/
https://perlschool.com/perltaster
https://twitter.com/perl_school

1.4 ... the author

John is an accountant with ingrowing computers. He started
punching cards in 1974 and has more accounting qualifications than
anyone could possibly need. An unrepentant bookworm, he still has
Pascal and COBOL manuals from the 1970s which he has been
known to quote in answer to Perl problems in 2017. He yearns for
the “good old days” when documentation came in glossy manuals
and didn’t make him rant. His pipe dream is for software that doesn’t
make him rant. Or even for accounting laws and standards that
don’t. When not on PerlMonks, he can frequently be found at Lord’s,
playing bridge or backgammon or watching cricket.

2 What is Selenium WebDriver?

Selenium WebDriver is a tool for automating web interaction. It can
pass actions to a web browser and can therefore be used to
reproduce actions for bug reporting, running tests or taking the user
to part of a web site that cannot be bookmarked. Selenium interfaces
exist for several languages and the commands are usually very
close, meaning that someone trained to use Selenium with one
language can move to another relatively easily. This document
considers Perl only. Although JavaScript injection is demonstrated,
this is done using Perl.

The machine running Perl and the machine running the browser may
or may not be the same. Selenium is designed to cope with both
situations.

There is a chain of interfaces that must be satisfied for any code
using Selenium to work. Perl will link to a browser driver, possibly via
a server. The driver will link to the browser and the browser will fetch
and process a web page. If any link in this chain fails, the behaviour
of the Perl code will change. Programmers are advised to disable
automatic updates and to install copies of any link in this chain when
updating. This will enable them to test which link has changed
should anything break. The one link that cannot be guaranteed is the
final one, the web page. If this is under the programmer’s control, all
may be well. This document will show examples of code that use
third party web sites. If these change between the time of writing and
the time of code execution, the results may not be as described in
the text. The operating system may also be a factor. Drivers and
browsers may not perform identically on different operating systems.

Note that there are separate products called “Selenium IDE” and
“Selenium Grid”. While they are produced by the same people, they
are different packages and not covered by this document.

References to “the documentation” should be understood to mean
the information on cpan.org for the relevant module. “This document”
is intended to mean the document currently being read, while all
other references to documentation should be accompanied by a
reference of some sort.

2.1 Perl

Perl 5.6.0 is specified as the minimum version in the code of
Selenium::Remote::Driver. This has not been tested. The earliest
version of Perl used to run any of the code shown is 5.18.2. Certain
examples include use feature 'say';. This requires a Perl version of
at least 5.10 (released in 2007). If an earlier version must be used,
there should be no problem replacing the say statements with print
statements of the form print "svar\n"; or even writing a sub to
implement say.

To run the examples, selenium: :Remote: :Driver Must be installed. It
comes with a large dependency chain and may be part of such a
chain itself. Chains that install it include selenium::chrome and
selenium::Firefox. It is currently at version 1.27. This version has
new documentation about WC3 Webdriver compatibility, although a
large amount of knowledge is assumed.

2.2 Browsers, Servers and Drivers

A browser is a package for reading a web page. A driver is a
package for controlling a browser. A server is a package for returning
the output of a browser or driver to a client. The Selenium
Standalone Server can act as a driver for most browsers. Some
browsers have dedicated drivers written that can act as servers for
Perl and other languages under certain circumstances. This section
will try to explain some of these complexities. Selenium lists its
recommended driver downloads on its downloads page.

The browser name may be specified as part of the constructor. By
default, Selenium will use Firefox, although connecting to the
Selenium Standalone Server with an invalid browser name (using
the wrong case, for example) seems to default to Chrome in at least
some cases.

2.2.1 Selenium Standalone Server

This requires Java. To install Java on a Linux machine that uses
some flavour of Debian, the first command is

sudo apt install —-assume-yes default-jdk.

This will need raised privileges. The server can be downloaded from
Selenium’s downloads page, the same site as recommended for
driver downloads. The latest version is 3.9.1 at the time of writing.
The download is a .jar file. To run the server, the command is:

java -jar selenium-server-standalone-3.9.1.jar

Adding --ne1p to this command brings up some useful information.

Selenium Standalone Server can act as a driver for browsers and it
can act as a server on a remote machine, unlike almost all other

http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/

drivers. It can act as an interface not only between
Selenium::Remote::Driver ON oOne machine and a browser on
another, but also for selenium: :Chrome and selenium::Firefox if they
are preferred to selenium: :Remote: :Driver. Its default is to instantiate
a Firefox browser.

Code to test which browsers are available for a specific instance of
Selenium Standalone Server appears in section 14.7 below.

2.2.2 Chrome

This includes the Chromium family. A driver is needed and the latest
driver will not support some relatively new versions of Chrome.
Version 59 is known to be incompatible with the latest driver. Vivaldi
is a fork of Chrome, but has not been tested.

Chrome is perhaps more compatible with Selenium than any other
popular browser and has been used in all examples where there is
no need to demonstrate browser specifics.

2.2.3 Open a Web Page with Chrome

Enter and run the code below:

use strict; use warnings;

use feature 'say';

use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';

my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;

say Sdriver->get title();
Sdriver->quit () ;

The code should respond “PerlIMonks — The Monastery Gates”.

2.2.4 Internet Explorer

Internet Explorer version 6 has not been supported since 2014.
Unfortunately, even version 11 appears to be incompatible with
Selenium: :Remote: :Driver. There is a driver download available from
here, but although Selenium claims it works with versions from 7 to
11, the Perl binding seems to be incompatible. Investigation reveals
that it is failing to connect to the driver even though other tools can
connect. All attempts to run without Selenium Standalone Server
(and very many options have been tried) result in the message
“Selenium server did not return proper status”. Again, many attempts
have been made with Selenium Standalone Server. All of these
result in an error message that contains much system information
but not much that is helpful. The specifics of the error message are
“Could not create new session: Unable to create new service” and
“Driver info: driver.version: unknown”.

2.2.5 Edge

Edge uses a different driver, MicrosoftWebDriver.exe, available from
Microsoft's developer web site. It must be run explicitly and be
listening when the Perl code is started. The default port is 17556. It
is also necessary to make a change to one of the packages in the
Selenium suite, namely Selenium: :Remote: :RemoteConnection. [N
versions 1.26 and 1.27, line 101 must be commented out. This
inserts a prefix into the status request that the driver cannot process,
causing the status to be NOTOK. This is a very ugly hack and
cannot be recommended for production as it may break other
browsers, although it is believed to be necessary for any hack that
might make Internet Explorer work. Despite the ugliness, this hack
makes the following code work as expected.

use strict; use warnings;
use feature 'say';
use Selenium: :Remote: :Driver;

my Sdriver = Selenium::Remote::Driver->new (
'port' => 17556,

http://selenium-release.storage.googleapis.com/index.html
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

)i

Sdriver->get ('http://www.perlmonks.org') ;
say Sdriver->get title();
Sdriver->quit () ;

2.2.6 Firefox

This needs a driver called Geckodriver. Firefox has another driver,
Marionette, that comes with Firefox. It is not compatible with the
WebDriver protocol used by Selenium and Geckodriver is the
interface. It is possible to set options to use the marionette capability
directly, but doing so has not been explored in this document.

Firefox is undergoing major revisions at the time of writing. These
have caused many problems with add-ins and, at the time of writing,
the latest driver/browser combination does not support the sending
of arbitrary keystrokes from the Perl Selenium binding under
Windows. Under Debian, the quit method fails. It cannot be replaced
by sending keystrokes. Although Debian allows keys to be sent,
Selenium sends them to an element as a POST action and not to the
browser itself. In version 1.26, the browser instance was not closed.
In version 1.27, the instance is closed after a delay, but there is still
an error raised that causes the Perl code to abort unless trapped in
an eval block.

Firefox’s geckodriver is not recognised as an installable package by
Debian. It can be downloaded from github. Go to Github’s
Geckodriver Releases page and choose the appropriate download
for the target hardware and OS. On Linux, it should be unpacked to
a directory in the path to avoid having to state the location in the
parameters of every object. /usr/local/bin seems to be the
recommended directory. At the time of writing, the latest version is
0.20.1. Once both Firefox and geckodriver are installed and both
executables available in the path, the following code can be run to
test them out.

https://github.com/mozilla/geckodriver/releases

use strict; use warnings;
use feature 'say';
use Selenium::Firefox;

my S$driver = Selenium::Firefox->new();
Sdriver->get ('http://www.perlmonks.org') ;
say Sdriver->get title();
Sdriver->quit () ;

Saving this as a file and executing it from the command line should
result in a browser instance appearing, the PerIMonks home page
being fetched and its title appearing in the terminal. At the time of
writing, error messages appear as well, warning of a failure in the
cleanup routine. This appears to be in the Perl binding. Behaviour
has changed from 1.26, when these were warnings and could be
ignored as code continued to run and 1.27, where these are errors
that cause the code to crash.

Running Firefox via Selenium Standalone Server is more
problematic, as the failure to honour the ciose and quit commands
leaves the browser open without allowing processing to continue.
The only way forward is to close the browser manually, causing the
client to crash.

The PaleMoon project is a fork of Firefox. No attempt has been
made to drive it with Selenium.

2.2.7 Opera

The documentation on Selenium’s web site about Opera is
misleading. It points to a GitHub wiki page that Selenium says
describes the steps needed to get Opera working. Unfortunately, the
link seems to be inactive, as it redirects to the wiki home page and
searching for Opera reveals there is nothing available. There is a
Github page (at the time of writing) that contains drivers for common

https://github.com/operasoftware/operachromiumdriver

operating systems. However, no combination of operating system
and options seems to create a working implementation. The closest
is Windows, which produces a window running the driver, but this
rapidly disappears. The window from which the code was invoked
gives the message “no such session”. Opera is not listed as one of
the names of recognised browsers in the selenium::Remote: :Driver
documentation, but Selenium Standalone Server lists it as one it
understands.

2.2.8 HtmlUnit

HtmlUnit is a “headless” browser, creating nothing visible to the user,
that requires Java to run. It does not support screen shots, but is
very much faster than browsers that display a screen. The latest
version of HtmlUnit is available from Sourceforge. Version 2.29 is
dated 2017-12-28 and users should check for later versions and
download the latest.

2.2.9 phantomjs

phantomjs is another headless browser, although it is no longer
being maintained. It is therefore deprecated.

2.2.10 Safari

Safari requires a driver. According to the Selenium home page, the
latest version is 2.48 (at the time of writing — as usual, it is wise to
check for later versions) and can be downloaded from this web page.
Going to the parent directory of this reveals a list of directories with
later version numbers. A brief, but not exhaustive, review reveals no
Safari driver in any of the later directories, but this may be subject to
change. Further, it appears that since OSX Sierra, or about August
2016, the driver is included with the operating system, so it is worth
checking before downloading. To check, bring up a terminal window
and enter safaridriver -h. This will indicate whether or not the
driver is present, but there appears to be no option to identify the
version number. It is probably safe to assume that the version will be

http://htmlunit.sourceforge.net/
http://selenium-release.storage.googleapis.com/index.html?path=2.48/

appropriate for the browser, but its compatibility with
Selenium: :Remote: :Driver cannot be guaranteed.

While it is necessary to have the driver installed, it need not be
started explicitly. It is necessary to have Selenium Standalone
Server running. This will listen on port 4444 and will start its own
instance of the driver on a port of its own choosing.

Safari itself may need configuring in two respects. First, select
Preferences. There is an “Advanced” tab. Near the bottom of this,
there is a check box labelled “Show Develop menu in menu bar”.
This must be ticked and will add an option to the Safari main menu.
Second, this new menu option must be opened. Towards the bottom,
the option “Allow Remote Automation” must be ticked. The following
code should now run.

use strict; use warnings;
use feature 'say';
use Selenium::Remote::Driver;

my Sdriver = Selenium::Remote::Driver->new (
'port' => 4444,
'"browser name' => 'safari'

) ;

Sdriver->get ('http://www.perlmonks.org') ;
say S$driver->get title();
Sdriver->quit () ;

A side effect of this is that an instance of Safari will be left open as a
process, although the window may be closed. Manual intervention
will be needed to close the instance.

2.2.11 Android

A Selenium server for Android, Selendroid, is available from the
Selendroid web site. Perl on Android is possible, but not a

http://selendroid.io/

mainstream option. Typically, execution will use a remote server.
This is discussed in section 15 below. Selendroid’s documentation
states that “devices must be plugged in via USB to the computer that
the selendroid-standalone component is running on”. This may be
impractical where development uses a server or a virtual machine.
There are also emulators available that can reproduce some Android
functionality on a non-Android machine. However, since Selendroid
is not an official part of Selenium and a large amount of Android
developer knowledge is needed to run tests from Perl, the
explanations would become too long for this document. Selenium
Remote Server has options to emulate Android devices. Max
Maischein was unable to get all the elements of Android to work
together with www: :Mechanize::chrome, as he reported to the 2017
London Perl Workshop (YouTube video, 16:14).

http://www.youtube.com/watch?v=V3WeO-iVkAc

3 Testing

The commonest application for Selenium is testing. The standard
installation comes with a module, Test::Selenium::Remote: :Driver,
that provides test commands. However, the documentation states
“this is an experimental addition to the selenium::Remote::Driver
distribution, and some interfaces may change”. It contains a number
of references to a previous fork and the documentation is at best
fragmentary. It is therefore difficult to recommend it for production.

Perl's core module test::More has been used in almost all the
following examples. This document will not try to explain it. To learn
more about testing, consider Langworth & chromatic, “Perl Testing —
a Developer’s Notebook”, O’Reilly, ISBN 9780596100926.

The simplest demonstration of testing is to change the very first
example into a test. The code below shows one way of doing this.

use strict; use warnings;
use Selenium: :Chrome;
use Test: :More;

my Surl = 'http://www.perlmonks.org';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
is S$driver->get title(),
'Per1Monks - The Monastery Gates',
'Title as expected';
Sdriver->quit () ;
done testing;

This test should pass. Devotees of Test Driven Development may
prefer to see a test fail first. Any change to the expected value

should accomplish this.

It is possible to delay the browser for the convenience of the user by
using Perl's s1eep command. It is also possible to instruct Selenium
to pause, but unlike Perl, the delay is specified in milliseconds with a
default of 1000, or one second. A five second delay would therefore
be specified as sdriver->pause (5000) ;.

By default, Selenium will wait until the requested page has finished
loading before continuing. It is therefore unlikely that this will be
needed unless the HTTP “page loaded” response is misleading. This
can happen when the end of HTTP transfers is merely the start of
Javascript execution that does a lot of work before the user would
recognise the page as having loaded.

4 Basic Browser Interactions

4.1 Following a link

use strict; use warnings;
use Selenium::Chrome;
use Test::More;

my Surl = 'http://www.perlmonks.org';
my $link = 'Recently Active Threads';
my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;
$driver->find element by link text($link)->click;
is S$driver->get title(),

'Recently Active Threads',

'Title as expected';
Sdriver->quit () ;
done testing;

This example shows the use of the c1ick method to select a link.
There are several mouse and keyboard actions that can be
implemented using Selenium. The ciick method shown did not
cause the mouse to move, but that can be done if desired. The
technique is demonstrated in section 9 below.

4.2 Browser Actions

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.perlmonks.org';
my $link = 'Recently Active Threads';
my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;
$driver->find element by link text($link)->click;
is S$driver->get title(),

'Recently Active Threads',

'Title as expected';
$driver->go back;
is S$driver->get title(),

'PerlMonks - The Monastery Gates',

'Title as expected after back';
$driver->go forward;
is S$driver->get title(),

'Recently Active Threads',

'Title as expected after forward';
Sdriver->refresh;
is S$driver->get title(),

'Recently Active Threads',

'Title as expected after refresh';
Sdriver->quit () ;
done testing;

This code is an extension of the previous example. After loading the
“‘Monastery Gates” it advances to “Recently Active Threads”. After
that, the browser’s “Back”, “Forward” and “Refresh” commands are
invoked.

4.3 Keyboard Actions

use strict; use warnings;

use Test::More;

use Selenium::Chrome;

use Selenium: :Remote: :WDKeys 'KEYS';

my Surl = 'http://www.google.com';
my Stext = 'Perl Monks';

my S$xpath = g<//input[@name='qg']>;
my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;
$driver->find element ($xpath)->
send keys (Stext, KEYS->{'enter'});
is S$driver->get title(),
'Perl Monks - Google Search',
'Title as expected';
Sdriver->quit () ;
done testing;

This example introduces another module, wpxeys, which comes as
standard when installing Selenium. It allows the programmer to send
keys beyond the standard ASCII set. In this case, the Enter key has
been “hit” at the end of the text.

Element locators are described in more detail in section 5 below. The
example in the documentation expresses the locator as sdriver-
>find element ("//input[\@name='q']");. This is functionally
identical, but requires certain characters to be escaped. The code
example above avoids this. As with other literals, the xpath has been
abstracted to a variable to clarify the code, but might equally well be
included in line.

4.4 Take a Screen Shot

use strict; use warnings;
use Selenium: :Chrome;
use Selenium::Screenshot;

my Surl
my Soutdir ;
my Soutfile 'scrshot';
my S$driver Selenium: :Chrome->new () ;
Sdriver->get (Surl) ;
my Spic = Selenium::Screenshot->new (
png => S$driver->screenshot,
folder => Soutdir,
y—->save (filename => Soutfile);
Sdriver->quit () ;

'http://www.perlmonks.org';

This example involves a large dependency chain that has not been
mentioned previously. It will not be used again, so anyone who does
not want to go through the installation process will miss very little
from this document.

There are several learning points here. The first is that
“Selenium::Screenshot IS a wrapper class for Image::compare”
according to the POD. There are accordingly many features that can
be used to process the image if that is wanted. The second is that,
by default, a “screenshots” directory will be created and used unless
the directory is specified as above. The third is that the file name will
be created automatically as a time stamp. The fourth is that the
extension will be the file type, in this case “.png”, and that this is
immutable. The fifth is that the term “screen shot” is slightly
misleading. What will appear will vary depending on the browser
used. With Firefox, neither the browser decoration nor anything that
appears on the screen from the operating system or other
applications will appear. The file will contain the entire web page as
rendered by the browser, regardless of how little would actually fit on

http://search.cpan.org/perldoc?Image%3A%3ACompare

a screen. With Chrome, the decoration will again be lost, apart from
the image of a vertical scroll bar, which will be useless. The image
will be approximately the size of a screen. Finally, it should be noted
that this example saves the file created to the current directory. Care
should be taken when specifying directories as a path such as ‘~’
may not use the user’s home directory but create a directory called
‘~’ off the current directory. This may be operating system or version
dependent.

Taking a screen shot can be very helpful should a test fail. Reporting
the name of the screen shot in the test failure report can increase the
helpfulness as it will associate the image file with the test failure.
This can save time if there are multiple test failures.

Newer versions of selenium::Remote::Driver include a simpler
method, although the same dependency chain is needed. The
following code demonstrates it:

use strict; use warnings;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';
my Sdriver Selenium: :Chrome->new () ;
Sdriver->get (Surl) ;
$driver->capture screenshot ('PMHome.png');
Sdriver->quit () ;

There is also a method to return a screen shot in Base64 encoding.
There is no plausible practical use for the following code, but it
demonstrates that an equivalent file will result from both approaches.
It would be invalid to test that the two files are equal as PerlIMonks
contains “quips” that change from one loading to the next, in addition
to the possibility that new questions and answers may appear.

use strict; use warnings;
use Selenium::Chrome;

use MIME: :Base64;

my Surl = 'http://www.perlmonks.org';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my Sb64 = Sdriver->screenshot ();
my $decoded = decode base64 (Sb6d);
open my $fh, '>', '"PMB64.png'
or die "Can't open PMB64.png for output:

binmode $fh, ':raw';
print $fh Sdecoded;
close $fh;

Sdriver->quit () ;

S1m;

5 Elements in Detalil

So far, this document has glossed over the issue of how to find parts
of a page. The following constructs have been used:

¢ Sdriver->find element by link text ($link)
¢ Sdriver->find element (g<//input [@name="q']>)

Elements can be found singly or as groups. If singly, an object will be
returned; if as groups, an array of objects. The syntax for the two is
identical to the second version, save for the change from “element” to
“‘elements”.

If nothing is found, the error message is somewhat cryptic.
Depending on the installation and version, it may appear as:

coercion for "id" failed: When passing in

an object to the WebElement id attribute,

it must have at least one of the ELEMENT or
element-6066-11e4-ab52e-4f735466cecf keys. at
/usr/local/share/perl/5.24.1/Selenium/Remote/Driver.pm line
1034.

There are no additional messages indicating which line of the
programmer’s source code has caused the error.

There is an improved error message in version 1.27. This states that
it is unable to locate an element and gives the method and selector
as received by Selenium. This may not be immediately recognisable
if the selector is not a literal and there is still nothing to indicate the
location in the original source.

The two examples above show not only two different ways to find an
element but also the two different forms of function that can be used.
In the first example, the element will be found using the link text. In
the second, the strategy that will be used is to search by xpath. When
find element iS specified without being extended using a by part,
the strategy may be specified as an optional second parameter. This
defaults to xpath, so the second example above could have been
specified more verbosely as:

$driver->find element (g<//input[@name='q']>, 'xpath')

The difference between the two is that the version including the
strategy as part of the method will warn if nothing is found, while the
version passing the locator strategy as a parameter will use croak to
kill the script. Note that, while it is possible to write a different error
handler and pass it to the driver object at construction time, this will
NOT prevent the locator methods croaking if that is their usual
behaviour. The creation of a custom error handler is described in
section 14.1 below. This also includes example code for testing
locator results without causing a test script to die, the normal
behaviour of croak.

The selenium::Remote::Driver documentation states that there are
ten strategies for finding elements:

find element by class

find element by class name

find element by css

find element by id

find element by link

find element by link text

find element by name

find element by partial link text
find element by tag name

find element by xpath

Note that some of these do not exist in Selenium bindings for other
languages. No documentation has been found for them and they
have been identified but not used in the sections below. Note also
that the default engine of the browser will be used for many of the
locators, so if the css or xpath engines of browsers differ, so will the
results returned by Selenium.

5.1 Class

While this will, in both formats, return an object, its purpose is not
documented and no equivalent exists in other languages that support
Selenium. It requires a parameter but, given the paucity of
documentation and unclear purpose, it will be ignored. It appears to
be a synonym for c1ass name, but there may be edge cases that differ.

5.2 Class Name

This is one of the most commonly used locators. The class name
must be given as a parameter.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';

my S$driver = Selenium::Chrome->new () ;
Sdriver->get ($Surl) ;

my $eltl = Sdriver->find element by class name (

'post-voterep');
my Selt2 = Sdriver->find element (
'post-voterep', 'class name');
is deeply Seltl, Selt2,
'Find element format doesn\'t matter';
my $doc = S$driver->find element by class name (
'superdoc') ;
isn't Seltl->get text,
$doc->get text,
'Looking at different elements’';
is S$doc->get text,
'The Monastery Gates',
'h3 is a superdoc with TMG title';
Sdriver->quit () ;
done testing;

The two elements are created using the two different formats to
demonstrate that they return identical objects. Any element object
returned is likely to have over 400 lines of pata::Dumper output,
making tools like is deep1y invaluable.

The first “superdoc” class appears in the page source as:. <h3
class="superdoc">The Monastery Gates</h3>

The first thing done is to test it at a simplistic level (there is no
isn’t deeply option in Test::More) to demonstrate that it is in fact a
different object. Then its value is tested against the heading that
appears.

Selenium has its own method for testing the equality of elements.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my Selt = S$driver->find element (
'post-voterep', 'class name');

my $doc = Sdriver->find element by class name (
'superdoc') ;

ok !S$driver->compare elements(Selt, $doc),
'The superdoc is not a post';

Sdriver->quit () ;

done testing;

The output from compare elements is a boolean, so if the elements
should be the same, it is better to use is deep1y, which will give more
detailed information on the differences between the two elements. If
they should be different, compare elements will check the entire
structure, while the cursory comparison of get text in the earlier
example depends on knowing that the two elements are different at
that particular point. Of course, is deeply is available only if tests are
being run.

Only one format is permitted for finding multiple elements.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.perlmonks.org';

my S$Sdriver = Selenium::Chrome->new();

Sdriver->get (Surl) ;

my @eltl = Sdriver->find elements(
'post-voterep', 'class name');

my Qelt2 = Sdriver->find elements (
'superdoc' , 'class name');

my Snum = scalar Qeltl;

cmp ok S$num, '>', 5, "More than 5 posts (Snum)";

is scalar @elt2, 1, 'Only one superdoc';

Sdriver->quit () ;

done testing;

5.3 CSS

This is very useful but slightly misleadingly named. In other Selenium
implementations it is called CSS Selector. The point is not that it
returns CSS or finds elements by looking at CSS, but it uses the
same locator as CSS does. So if the CSS that is supposed to be
applied is known, it can be used to find the element. This is obviously
most useful on sites that have extensive CSS, although that is a
growing number and the overwhelming majority of new sites. There
are also browser tools that can help specify the CSS locators of an
element.

Bootstrap * The most popular HTML, €55, and |5 library in the world. - Chromium

I £ C 1} | ® getbootstrap.com #|
i Apps (@ Debian.org (@ Latest News (@ Help

= | [w ﬂ Elements Console Sources Network Performance » @20 § X

html lang="en"
¥ =head=. </head
¥ =body class="bd-hone"
> <a id="skippy" class="sr-only sr-only-focusable"' href="#content"=.</a
B ~header class="navbar navbar-expand navbar-dark flex-column flex-md-row
bd-navbar"=.-/header
¥ <main class="bd-masthead" id-"content' role="main"
¥ <div class="container’
¥ <div class="row align-items-center" -
#<div class="col-6 mx-auto col-md-6 order-md-2"-.</div
¥ <div class="col-md-& order-md-1 text-center text-md-left pr-md-5°

‘h1 class="mh-3 bd-text-purple-hright" “Bootstrap=/hl == 0
k<p class="lead"=.=/p
P <p class="lead mb-4"=.</p
b =div class="d-flex flex-column flex-md-row lead mb-3"=.</div -

| htmi body #content div div div QW BRIV T gl laig

Styles Eventlisteners DOM Breakpoints Properties

Bogtstrap . gy

element vle {

hl.mb-2.bd-text-purple-bright | 374=40

margin -
14
7] 5 = = . haord -
Build responsive, mobile-first projects on bd-nasthead hl { _nasthead.scss:9 e
: line-height: 1: | — :
the web with the world's most popular ' - |- - I~ - -
. bd-text- le-bright { tent . scss:115 oz e
front-end component library. g == —
F 15
i 3 mb-3 { spacing.scssil3
Bootstrap is an open source toolkit for S .. e |
developing with HTML, CSS, and JS. 12 | Filter) showall
¥ p g i : ' ry hi, hi{ ZEYDE SESEIL P box-sizing border.
Quickly prototype your ideas or build your ot 8,5 [» calor Hrghil:
- . : | » display black
entire app with our Sass variables and L, h2, 1S, e, b5, S, b type.scssi5 |y font. family ele,
mivine _racnanciun orid cuctam avtancin 52 B A TR S s b v b font-size 40px T

{K '@ Bootstrap The most popular HTM... M@ dr@debianselenium: /media/2TB/D... HEBEOTEPY ~21:46 =

In the screen shot above, the developer tools have been activated on
Chrome. This can be done with Ctrl-Shift-1 or by following the “More
tools” menu from the three vertical dots.

Elements can be selected using the selection tool, a rectangle with an
arrow. This is highlighted in blue in the screen shot above. The
“Bootstrap” masthead has been selected with it, and the developer
window shows the CSS selector needed.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl 'http://getbootstrap.com';
my Sdriver Selenium: :Chrome—->new () ;
Sdriver->get ($Surl) ;
my S$elt = Sdriver->find element (
'hl.mb-3.bd-text-purple-bright',
'css');
is Selt->get text(),
'Bootstrap',
'Masthead found by CSS';
Sdriver->quit () ;
done testing;

CSS and xpath are the two locators that can find one element of
many that match, if the index is known. So to find the fourth column of
the third row of a table, for example, the CSS specified might be:
tr:nth-of-type (3) td:nth—of—type(4).|ftheindeXiS not known but
the value is, it is still possible to use find elements and iterate over
the return to identify the element desired.

See also section 6.5 below, which describes the css attribute of an
element.

541D

IDs can be computer generated and subject to change without notice.
Assuming that the ID is known, the element can be extracted in the
usual way.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.perlmonks.org';
my $driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$elt = Sdriver->find element (

'Voting Booth', 'id');
unlike Selt->get text(),

'/No recent polls found/i',

'There is a current poll';
Sdriver->quit () ;
done testing;

5.5 Link

Like Class, this is undocumented and does not exist in other
languages. It will therefore be ignored. It is better to use “Link Text” or
“Partial Link Text”, which are documented for other languages and will
therefore be easier to understand and research.

5.6 Link Text

This is one of the two locators used previously. The example code
Wwas $driver->find element by link text ($link). This could also be
written as sdriver->find element ($1ink, 'link text'). The example
in section 4.1 above shows its use.

5.7 Partial Link Text

This is useful if only part of the link text is known or if multiple
elements are wanted.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$elt = Sdriver->find element ('oting',
'partial link text');
like Selt->get text(),
'/experience/1i"',
'Link to voting & experience system';
Sdriver->quit () ;
done testing;

The example above will work whether “voting” is spelled with an
upper or lower case V. Users should note that, since Selenium is
available for many languages, the full features of Perl’s regex engine
cannot reliably be used in the Selenium binding, although they can be
used in the pure Perl parts of the code where regexes have their
standard meaning.

It might be expected that the code above would return the voting
booth element, as in the previous example. However, this locator is
for links and the voting booth element is not a link, although it
contains links. This can be shown by changing the code as below.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';
my $driver = Selenium::Chrome->new () ;

Sdriver->get ($Surl) ;

my @elt = Sdriver->find elements('oting',
'partial link text');

is scalar @elt, 1, 'Only 1 voting link';

Sdriver->quit () ;

done testing;

5.8 Name

This is the element’'s name, not the name of the tag, covered in the
next section. It is common to use hidden elements to create some
sort of state in HTML, and for programmer ease these elements
frequently have convenient names. But names may be given to
elements for other reasons.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';
my S$Sdriver = Selenium::Chrome->new () ;
Sdriver->get ($Surl) ;
my Selt = Sdriver->find element ('passwd', 'name');
is S$elt->get attribute ('maxlength'), 10,
'Still no increase in password length';
Sdriver->quit () ;
done testing;

The code introduces a new Selenium function, get attribute. This
DWIMs, returning the value of an attribute whose name is passed as
a parameter. This code finds the password entry box on the
PerlIMonks home page. It does not use the tag name for good reason
— there is an HTML input type “password” and using this as a name
would risk confusion. The restriction of passwords to 10 characters is
a common gripe among PerlMonks users, but the old code makes
increasing it problematic. There are lots of problems with PerIMonks
passwords, so don’t re-use one there.

5.9 Tag Name

This is the terminology chosen by Selenium. It is the tag itself. The
code below searches for the first “a” reference, a link to the hosting
company.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.perlmonks.org';
my $driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$elt = S$driver->find element('a',
'tag name');
is Selt->get attribute('href'),
'http://pair.com/",
'First link is to Pair';
Sdriver->quit () ;
done testing;

Again, the get attribute function has been used to extract the href.
However, there is no Selenium way to extract a list of what the
attributes are. That would have to be done with Javascript or using an
HTML parser.

Note that this is an unusual way of getting links. The “link text” and
“partial link text” locators described above would be a more normal
way.

5.10 XPath

This is the most complex of the Selenium locators, but it is also the
most powerful. It is the default if no locator variable is passed. XPath
is a large and complicated subject of its own, and will be covered only
briefly. As with CSS, it is possible to use the developer tools to help.
However, there is also an online tool at FreeFormatter’s web site that
allows users to play with xpath expressions and XML (officially, but
XHTML is HTML that follows XML rules and is probably a good idea
anyway) to find out what works and doesn’t. The example from
section 4.3 above that uses an xpath is repeated here for
convenience.

use strict; use warnings;

use Test::More;

use Selenium::Chrome;

use Selenium::Remote: :WDKeys 'KEYS';

my Surl = 'http://www.google.com';
my Stext = 'Perl Monks';
my S$xpath = g<//input[@name='qg']>;

my Sdriver Selenium: :Chrome->new() ;
Sdriver->get (Surl) ;
$driver->find element (Sxpath)->

send keys ($text, KEYS->{'enter'});
is Sdriver->get title(),

'Perl Monks - Google Search',

'Title as expected';
Sdriver->quit () ;
done testing;

Remember that, if no locator parameter is passed, xpath is used.

To repeat what was stated in section 5.3 above, CSS and xpath are
the two locators that can find one element of many that match, if the
index is known. So to find the fourth column of the third row of a
table, for example, the xpath specified might be: //tr(31//tdr4]. If

https://www.freeformatter.com/xpath-tester.html

the index is not known but the value is, it is still possible to use
find elements and iterate over the return to identify the element
desired.

5.11 Active Element

Since the active element has already been located, this locator may
seem redundant and, indeed, it is of little use for locating an element
in the first place. However, if a bug is found, especially if that bug has
been created by mouse or keyboard actions, it may be useful to
interrogate the element that has really been activated to determine
whether it is the one the code assumed was activated. Other locators
like id and css may also result in an unexpected element being
activated if the page design has changed in an unexpected way.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl 'http://www.google.com';
my Sdriver Selenium: :Chrome->new () ;
Sdriver->get (Surl) ;
is Sdriver->get active element ()->

get attribute('name'),

qu,

'Google query box activated by default';
s$driver->quit () ;
done testing;

Note that there is always an active element (under normal
circumstances — extremes like an empty web page have not been
tried), even if a find _element command has failed.

Since the active element must always exist and need not be assigned
to a variable, it is convenient that there is a method to send keys to it
without extra work. This method is send keys to active element and
works in exactly the same way as the send keys method described in
section 4.3 above.

5.12 Child Elements

An element, such as a form or a table, may be a container for other
elements.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';
my $driver = Selenium::Chrome->new () ;
Sdriver->get ($Surl) ;
my Selt = S$driver->find element (
'Voting Booth', 'id');
my Scount = scalar
@{$driver->find child elements (
$elt, 'input', 'tag name')} - 3;
cmp ok $count, '>', 2,
"The poll has at least 2 options (Scount)";
Sdriver->quit () ;
done testing;

In section 5.4 above, a test was shown for the existence of a current
poll on PerlMonks. This test examines the number of inputs within the
voting booth. The subtraction of 3 is because of the design of this
particular web page, not something that would need to be replicated
for all web pages.

The find child elements method has much in common with other
locators. It must be given a locator string and strategy, although as
with find element, this will default to xpath. But it differs in needing
another parameter first, namely the specific element whose children
are sought.

As with root elements, methods exist for both single and multiple
elements.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';
my S$Sdriver = Selenium::Chrome->new();
Sdriver->get (Surl) ;
my Selt = Sdriver->find element (
'Voting Booth', 'id');
my Schild = S$driver->find child element
($elt, "//input[\Q@value='Vote']l");
is Schild->get tag name (),
"input',
'A voting button exists';
Sdriver->quit () ;
done testing;

The parameters — two compulsory, one, the strategy, optional and
defaulting to xpath — are the same as for find child elements. The
“child” locators have no equivalent where the strategy is part of the
method rather than a parameter.

6 Element properties

6.1 Location

Elements have a get element location operator which returns a
hash. The WebElement documentation mentions only two of the key
/ value pairs returned, namely the X and Y co-ordinates. The other
keys are scale, toString, ceil, translate, round, clone and floor.
These appear not to exist in at least some other language
implementations of Selenium.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$elt = Sdriver->find element (

'search text', 'id');
my S$hash = Selt->get element location();
cmp ok $Shash{x}, ">", 10,

"X co-ordinate reasonable ($Shash{x})";
cmp ok $Shash{y}, ">", 50,

"Y co-ordinate reasonable ($Shash{y})";
Sdriver->quit () ;
done testing;

This tests the location of the search text input box on the PerlIMonks
title bar. Its position is not constant, hence the rather imprecise tests.

Another tool exists to return the location of an element, namely
get element location in view. The documentation for this states
“This is considered an internal command and should only be used to
determine an element’s location for correctly generating native
events”. It returns the element’s location on the screen after any
scrolling has happened. There is no explanation of what would result
if the element had been scrolled off screen.

6.2 Enabled

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'https://www.w3schools.com/tags/tryit.asp?

filename=tryhtml input disabled';

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my $frame = Sdriver->find element (
qw{//iframe[@name="'1iframeResult']});

$driver->switch to frame (S$frame);

my S$elt = Sdriver->find element ('fname', 'name');

ok Selt->is enabled, 'First name is enabled';

$elt = S$driver->find element ('lname', 'name');

ok !Selt->is enabled, 'Last name is disabled';

Sdriver->quit () ;

done testing;

The line containing the URL is long and may appear wrapped. If
copying and pasting code, take care to prevent any unwanted line
break characters being pasted, as this may invalidate the example.

The example web page uses iframes. Code cannot look into an
iframe unless Selenium has switched to the frame. It would be
possible to do that in a single line of code, but the SSCCE (Small,
Self Contained, Complete Example — see www.sscce.org) above
shows the frame being located, after which switch to frame is used
to change context. Only then is it possible to find the input, submit
and output elements.

The use of the intermediate scalar seit is not necessary; the line
that creates it and the following line could be combined, but at a
possible cost in clarity.

http://www.sscce.org/

Once the frame has been selected, the code can check the first and
last name input boxes to see that the right ones are enabled and
disabled. A possible source of confusion is that HTML uses a
“disabled” flag with “enabled” being the silent default, while Selenium
names its method is enabled.

6.3 Selected

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'https://www.w3schools.com/tags/tryit.asp?
filename=tryhtml select';
my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;
$driver->switch to frame ($driver->find element (
qw{//iframe[@name="'1iframeResult']}));
my S$elt = Sdriver->find element (
'option', 'tag name');
ok Selt->is selected(), 'First option selected';
is Selt->get attribute('value'), 'volvo',
'First option is Volvo';
Sdriver->quit () ;
done testing;

As previously, care must be taken when cutting and pasting the URL
to prevent line endings causing problems.

The test of whether an element is selected is valid only for options,
checkboxes and radio buttons. A boolean is returned. Two other
methods, set selected and toggle, exist but were deprecated in
version 1.20 with the words “use click instead”. This deprecation
seems to have been removed from version 1.23 and later, but the
advice is probably still sensible.

6.4 Displayed

It is routine to have hidden elements in a web page. This may be to
provide state or simply because it is easier to hide and reveal
elements to change appearances than to rewrite the page to exclude
them. There are two methods that report booleans for this status.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';
my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$elt = Sdriver->find element('op', 'name');
ok Selt->is hidden(), '"op" element is hidden';
ok !Selt->is displayed(),

'""op" element is not displayed';
$elt = S$driver->find element ('user', 'name');
ok Selt->is displayed(),

'""uyser" element is displayed';
ok !$elt->is hidden(),

'"user" element is not hidden';
Sdriver->quit () ;
done testing;

As the code demonstrates, these are simple opposites.

6.5 CSS Attribute

This method reports the value of a CSS attribute as rendered.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://getbootstrap.com';

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my $elt = Sdriver->find element (
'hl.mb-3.bd-text-purple-bright', 'css');

is Selt->get css attribute('font-size'), '64px',
'Masthead font size is unchanged’';

Sdriver->quit () ;

done testing;

There is a list of CSS attributes at W3schools. This is the converse
of the CSS selector described in section 5.3 above. That used the
same locator as CSS to find an element, ignoring whatever
formatting the CSS rules had imposed. This has no information on
the selection mechanism but reports the formatting actually chosen.

https://www.w3schools.com/cssref/

6.6 Size

The get size method returns a hash containing the size of the
element. The keys for the size values are neight and width. As with
location, described in section 6.1 above, there are additional keys,
scale, toString, ceil, translate, round, clone and floor,thatdC)not
exist in Selenium bindings for other languages.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.perlmonks.org';
my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$elt = Sdriver->find element (

'search text', 'id');
my $hr = Selt->get size();
is $hr->{height}, 21,

'Search text box height does not change';
is Shr->{width}, 173,

'Search text box width does not change';
Sdriver->quit () ;
done testing;

While it was necessary to write approximate tests for the location
because it depended on what had appeared previously in the page,
the size of the search text box should not change, meaning that the
tested values can be specified precisely.

7 More browser interaction

7.1 Checkboxes

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'https://www.w3schools.com/tags/tryit.asp?

filename=tryhtml input checked';

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my $frame = Sdriver->find element (
qw{//iframe[@name="'1iframeResult']});

$driver->switch to frame (Sframe);

$driver->find element (
g<//input[@value="'Bike']>)->click;

$driver->find element (
g<//input[@value='Submit']>)->click;

$frame = Sdriver->find element (
qw{//iframe [@name="iframeResult']});

$driver->switch to frame ($frame);

my S$elt = Sdriver->find element (
"//body[\Q@class="w3-container']/div");

is Selt->get text(),
'vehicle=Bike&vehicle=Car ',
'Both boxes selected’';

Sdriver->quit () ;

done testing;

As previously, care must be taken when cutting and pasting the URL
to prevent line endings causing problems.

This code worked in versions up to and including 1.26. In 1.27, an
error is returned indicating that there is no such element. Further
investigation indicates that the contents of the page as shown by the
browser are “detached” from the elements. Refreshing the browser
returns the page to its state before the checkbox was ticked.

The trailing space in the string containing the expected return value
is necessary as it appears in the value returned by the web site.
Whether it is necessary to write code to strip trailing spaces must
depend on the application. It seems unduly complicated for this
example.

In the example above, the checkbox has been selected using the
click method. It would have been possible to select it by sending a
space or by any other mechanism acceptable on the web page.
Indeed, a test suite might include all these if there were any danger
of a different result.

7.2 Radio Buttons

Radio buttons are very much like checkboxes in the way they work,
but with the obvious exception that no more than one can be active
at any one time if the web page has been designed properly. There
can be several sets of radio buttons with one selected in each set
and it is therefore worth testing every possible combination to be
sure that no button has become isolated. The code below does not
do this, but shows how it might be done.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'https://www.w3schools.com/html/tryit.asp?
filename=tryhtml form radio';
my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my S$frame = Sdriver->find element (
qw{//iframe[@name="iframeResult']});
$driver->switch to frame ($frame);
is Sdriver->find element (
g<//input[@value='male']>)
->get attribute ('checked'), 'true',
""male" is true before click';
is Sdriver->find element (
g<//input[@value="'female']>)
->get attribute ('checked'), undef,
'""female" is undef before click';
is Sdriver->find element (
g<//input[@value='other']>)
->get attribute ('checked'), undef,
'""other" is undef before click';
$driver->find element (
g<//input[@value='other']>)->click;

is S$driver->find element (
g<//input [@value="male']>)
->get attribute ('checked'), undef,
""male" is undef after click';

is S$driver->find element (
g<//input[@value="'female']>)
->get attribute ('checked'), undef,

'""female" is undef after click';
is S$driver->find element (
g<//input[@value='other']>)
->get attribute ('checked'), 'true',
""other" is true after click';
Sdriver->quit () ;
done testing;

As previously, care must be taken when cutting and pasting the URL
to prevent line endings causing problems.

While it is consistent with Perl’s definitions of truth, the return values
of a radio button’s “checked” attribute may surprise the uninitiated. If
the button is selected, the value returned is a string containing ‘true’,
while the value is undefined if not selected. undef might need
handling differently from defined values.

7.3 Resizing the Browser

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my S$driver = Selenium::Chrome->new () ;
my $orighigh = S$driver->
get window size()->{height};

my Sorigwide = S$driver->

get window size()->{width};
my S$origx = Sdriver->

get window position()->{x};
my Sorigy = Sdriver->

get window position()->{y};

my S$changes = 0;
$driver->maximize window;
sleep 1;

$changes++ if S$driver->

get window size()->{height} != Sorighigh;
Schanges++ if S$driver->

get window size()->{width} != Sorigwide;
$changes++ if S$driver->

get window position ()->{x} = Sorigx;
Schanges++ if S$driver->

get window position()->{y} != Sorigy;

cmp ok $changes, ">", 0,
"At least one attribute has changed (Schanges)";

$driver->set window size (S$orighigh, Sorigwide);
$driver->set window position (Sorigx, Sorigy);
sleep 1;

is $driver->get window size()->{height},
Sorighigh, 'Height has original value';

is S$driver->get window size()->{width} ,
Sorigwide, 'Width has original value';

is $driver->get window position()->{x} ,
Sorigx, 'X co-ord has original value';

is S$driver->get window position()->{y} ,
$origy, 'Y co-ord has original value';

Sdriver->quit () ;

done testing;

This code introduces five new methods, get window size,
get window position, set window size, set window position and
maximize window. If the browser window defaults to being maximised,
a test will fail as the size and position will be the same before and
after maximisation. The sleep commands seem to be important to
reduce the number of test failures, but even with these, some of the
tests of the restored values may fail on different implementations.
This does not appear to change if a URL is retrieved. Note that
maximize window IS Known not to work with Chrome.

The get methods each return a hash containing two key / value
pairs, height and width are returned by get window size and x and y
by get window position. There are no extraneous pairs as with other
hashes that are returned by some Selenium methods.

There are three further methods that are intended to emulate mobile
devices. These are get orientation, set orientation and
set_inner window size. Ihe “orientation” methods take and return,
according to the documentation, a single string in upper case which
may be either ranpscare or porTrAIT. On Debian Chrome, setting
returns a success code but with no visible change to the browser,
while the get orientation method results in a run time error
message that seems to indicate a discrepancy between Selenium
itself and Chrome, with Chrome having no such functionality. Any
attempt to set the inner window size freezes the interface between
Perl and Chrome. While Chrome will respond to manual commands,
the Perl script will remain frozen until the browser instance is closed
manually.

7.4 Close and Quit

These two commands are both browser dependent. c1cse closes a
“‘window”, usually meaning a tab, while quit closes all browsers. The
documentation for quit is as follows:

DELETE the session, closing open browsers. We will try to call
this on our down (sic) when we get destroyed, but in the event
that we are demolished during global destruction, we will not be
able to close the browser. For your own unattended and/or
complicated tests, we recommend explicitly calling quit to make
sure you’re not leaving orphan browsers around.

It is certainly good practice generally to close all browsers, but it
might be that the programmer wants to leave the browser available
in a particular state, especially should a test have failed, for further
work to be done. Not all browsers permit this. At least some versions
of Chrome (certainly including 63.0.3239.84 on Debian 9.3) will close
themselves upon termination of the Selenium caller, while at least
some versions of Firefox (certainly including 52.5.2 64 bit ESR on
Debian 9.3) will remain open, possibly as a result of a bug in either
Selenium itself or selenium: :Firefox. The two code examples below
were used to demonstrate the difference.

use strict; use warnings;
use Selenium: :Chrome;
my S$driver = Selenium::Chrome->new () ;

closes the browser, unlike

use strict; use warnings;
use Selenium::Firefox;
my S$driver = Selenium::Firefox->new();

Selenium::Chrome has a method of its own that can be used instead
of quit. This method is named shutdown binary and claims to ensure
that the binary executable is closed as well as the browser.

The nature of multiple tabs and instances is discussed in section 8
below. It is worth noting that PaleMoon, a fork of Firefox, has an
option to keep the browser alive even when the last tab is deleted.
The final tab of an instance does not appear to have been deleted
but cleared to an empty state.

8 Using Multiple Tabs and
Windows

Historically, browsers showed only a single web page. If the user
wanted more open concurrently, a second instance of the browser
needed to be opened in a new window. Modern browsers use tabs to
combine these into a single window, giving the user an option of
multiple tabs in a single window as well as multiple windows.
However, Selenium’s documentation sometimes refers to “window”
as having the meaning of a new tab. This document will use the
more generally understood meanings.

The creation of an additional instance of the browser is sometimes
referred to as a popup or popunder. This is a perennial favourite of
spammers and is routinely blocked by many browsers. The term
“‘popup” is also used to mean a user interaction form created by
Javascript. This is discussed in section 11.4 below.

8.1 Open a Link in a New Window

The easiest way to handle multiple windows is to use a different
driver for each. It might be sensible to keep them in an array.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl 'http://www.perlmonks.org';
my $link = 'Recently Active Threads';
my @drivers;
push @drivers, Selenium::Chrome->new();
Sdrivers[0]->get (Surl);
my $linkurl = S$drivers[0]->
find element by link text($link)->
get attribute('href');
push @drivers, Selenium::Chrome->new();
Sdrivers[1l]->get ($linkurl);
is S$drivers[l]->get title(),
'Recently Active Threads',
'Title as expected';
sleep 5;
for (@drivers) {
$ —>quit;
}

done testing;

This code is browser dependent and can cause problems with
Firefox, which dislikes having multiple browser windows open at the
same time unless it is done through the Firefox interface. Using a
send keys command is a possible workaround, although this
introduces the issue of selecting and switching windows. The list of
sendable keys and their names does not appear anywhere in the
Perl documentation. It can be seen by looking at the source of
Selenium/Remote/WDKeys.pm, Which is little more than a list of key
bindings. It certainly varies by implementation, as Apples have keys
defined differently. The issue of whether a shift-type key needs to be
send twice (the second time, after the affected key, being to clear the

effect) seems to be implementation dependent.

The sieep command is so that users can see two browsers even
though there is only one test. It can be deleted if desired.

8.2 Open a Link in a New Tab

There are no documents on how to do this. It is a frequently asked
question in many languages, but there are varying success rates.
The approach of sending a WDKeys string is used here to open a
link in a new tab.

use strict; use warnings;

use Test: :More;

use Selenium: :Chrome;

use Selenium: :Remote: :WDKeys 'KEYS';

my Surl = 'http://www.perlmonks.org';
my $link = 'Recently Active Threads';
my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;
$driver->find element by link text ($link)->
send keys (KEYS->{'control'},
KEYS->{'enter'});
is S$driver->get title(),
'PerlMonks - The Monastery Gates',
'Title as expected';
my $handles = S$driver->get window handles;
$driver->switch to window($Shandles->[1]);
is S$driver->get title(),
'Recently Active Threads',
'Title of second tab as expected’';
Sdriver->quit;
done testing;

There are several learning points here. The first is that tests should
not be run unless the active tab is known. This is important since
some browsers allow the user to specify whether a newly opened tab
automatically becomes active or not. Another option is where to put
related tabs — the settings may allow the user to choose whether
they appear at the end or next to the tab of the link. These
differences in settings may mean that tests which pass on one
machine may fail on another, even though the hardware, OS and
browser versions are identical. The second learning point is that

there are Selenium commands to manipulate tab handles (remember
that Selenium thinks of tabs as windows). These should be used
whenever sensible in preference to sending keys. The
get window handles method returns an array from which a handle
can be chosen. The third is that the keys for a combination (called a
chord by other languages) must be sent separately; send keys (KEYS-
>{'control', ‘'enter'}) Will fail. There are web pages suggesting
this approach meaning, again, that it may be implementation
dependent.

Selenium has a method, get current window handle, Which can help
when navigating multiple tabs.

use strict; use warnings;

use Test::More;

use Selenium: :Chrome;

use Selenium::Remote: :WDKeys 'KEYS';

my Surl = 'http://www.perlmonks.org';
my $1link = 'Recently Active Threads';
my Sdriver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;
my Sorighdl = S$driver->
get current window handle;
$driver->find element by link text ($link)->
send keys (KEYS->{'control'},
KEYS->{'enter'});
my $handles = $driver->get window handles;
if ($driver->get current window handle
ne $orighdl) {
$driver->switch to window ($Shandles->[0]);
}
is S$driver->get title(),
'PerlMonks - The Monastery Gates',
'Title as expected';
$driver->switch to window($Shandles->[1]);
is S$driver->get title(),
'Recently Active Threads',
'Title of second tab as expected’';
Sdriver->quit;
done testing;

It would, of course, have been perfectly possible to guarantee that
the first tab opened was selected by switching to it without testing
the handles. In more complicated situations where many tabs are
being opened and closed in a browser with unknown settings, this
may not be possible and the best way to identify which is a specific
tab might well be to loop through all the handles looking for one that
has been identified previously. Handles are strings, and the array
reference returned by get window handles is to an array of strings.

9 Drag and Drop

A previous maintainer of selenium: :Remote: :WebDriver has written a
blog_post. The implications are that drag & drop may be unreliable
without Javascript, but the post was written in approximately 2015
and the code below seems to work.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'https://jqueryui.com/droppable/"';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my Sframe =
$driver->find element
(g<//iframe[Qclass='demo-frame']>);
$driver->switch to frame ($frame);
my $from = Sdriver->find element (
'draggable', 'id');

my S$to = Sdriver->find element (
'droppable', 'id');
my $from loc = Sfrom->get element location;
my $to loc = S$to ->get element location;
ok ((($Sfrom loc{x} != $Sto loc{x})
or ($$from loc{y} != $Sto loc{y})),

'One of the starting co-ordinates differs');
$driver->move to(element => $from);
$driver->button down;
$driver->mouse move to location (element => $to);
$driver->button up;

my $new loc = S$from->get element location;
ok ((($Sfrom loc{x} != $Snew loc{x})
or ($$from loc{y} != $Snew loc{y})),
'At least one co-ordinate has changed');
sleep 10;

Sdriver->quit;
done testing;

http://blog.danielgempesaw.com/post/103347925809/dragndrop-with-perl-webdriver-and

The s1eep command is so the user can see the result of the action
and can be deleted if wished.

There are several learning points in this code. The first is that the
web page used has been specially designed for drag and drop. If the
code does not work here, it is unlikely to work anywhere.

The second point is the get element location method. This is used
only for the tests, not for the dragging and dropping itself. It returns a
hash that contains several other elements, but the ones needed by
the code are x and y, the co-ordinates of the element. It might be
expected that the final co-ordinates of the move would be identical to
the destination co-ordinates, but the two objects are not the same
size and there is a difference of 25 pixels on the machine used to
write this document. Systems may differ. Certainly, when using drag
& drop in a production test, it would not be enough to test that a
single co-ordinate had changed. Something more positive would be
appropriate.

The next learning point is that there is no “either — or” test in
Test::More OF Test::Simple, NOr is there any documented way of
writing such a test in either module. The two tests in this SSCCE
have therefore been written using ox, despite it being less self-
explanatory when tests fail.

Mouse actions have been introduced for the first time. button down
and putton up take no parameters and are self-explanatory. Users
should make sure that there is no danger that the system will be left
with the mouse button down; the effects are likely to be
unpredictable, hard to diagnose and system dependent. move to and
mouse move to location dO exactly the same thing. The
documentation shows the longer version, which makes clearer that a
mouse is moving, but Laziness suggests the shorter version.

The default, when moving the mouse, is to move to the centre of the
element. This is why the SSCCE ended up with the moved element
having different co-ordinates from the target. However, the
documentation is misleading. It implies clearly that making the
second movement command

$driver->move to(element => $Sto, x => 0, y => 0);

would put the element at the top left of the target. However, neither
this nor any of the values that have been tried for the offsets
(including negative values) results in any difference in the visible
position of the moved element or the values returned by
get _element location. AS wusual, this may be implementation
dependent.

The documentation for Selenium: :Remote: :Driver->button down
includes the following:

Note that the next mouse-related command that should follow is
buttonup . Any other mouse command (such as click or another
call to buttondown) will yield undefined behaviour.

This seems strange. While it is understandable that a click would be
undefined when the mouse button is already down, it seems illogical
to suggest that the mouse cannot be moved with the button
depressed. The correct operation of the code example above seems
to imply that the quoted documentation is less than exhaustive.

The technique of changing to an iframe has been explained in
section 6.2 above. Remember that xpath is the default location
strategy.

10 Cookies

Selenium documentation on cookies is sparse, regardless of the
language. Selenium can read, add and delete cookies, but only
certain parameters can be added directly by Selenium, although all
can be read.

10.1 Reading Cookies

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.freeformatter.com';
my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my $ar cook = S$driver->get all cookies();
my $n = scalar @Sar cook;
is Sn, 2, 'Freeformatter uses 2 cookies';
my $%$cookies;
for (Q@Sar cook) {

$cookies{$ ->{name}} = $ ->{value};
}
ok exists S$Scookies{AWSELB},

'Found Amazon cookie at freeformatter';
Sdriver->quit;
done testing;

This generates an array of hashes, each element of the array being
a cookie. Note that the return is an array reference, SO my @cookies =
sdriver->get all cookies(); would not result in an array but an
array containing an array reference. Note also that the number of
cookies may be geolocation dependent; assuming the UK, the
cookies that appear after loading google.com are not google.com
cookies at all; they are for google.co.uk. To see any google.com
cookies, the browser would have to be persuaded not to redirect.
Only then would the google.com cookie(s) be accessible.

The documentation states that there are five possible properties in
each cookie hash, namely ‘name’, ‘value’, ‘path’, ‘domain’ and
‘secure’. Using pata::pumper reveals two more, ‘expiry’ and
‘httpOnly’. Do not be surprised if other properties appear that are
undocumented in Selenium.

10.2 Adding Cookies

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.example.com';

my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;

my $ar cook = S$driver->get all cookies();

is scalar @Sar cook, O,
'Example.com uses no cookies';
$driver->add cookie ('cookiename',
'cookievalue',
’/”
'.example.com') ;
$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 1, 'l cookie now';
is $Sar cook[0] {name}, 'cookiename',
'The added cookie has the right name ...';
is $Sar cook[0]{value}, 'cookievalue',
'... and value';
Sdriver->quit;
done testing;

The parameters for adding a cookie are positional. A fifth, the
“secure” value, is optional. There is no documentation, official or
otherwise, on using a hash or on adding a parameter to an existing
cookie. Experimentation has failed to produce a workaround.

Cookies appear to be added to the start of the array. This appears to
be consistent, but again there is no documentation. A more reliable
way of testing for the addition of a cookie would be to loop through
the array until the name is found. Only one cookie may exist for a
name and domain combination.

Note that the positional parameters do not include the expiry.
Accordingly, all cookies created using this technique are session
only cookies and will be destroyed when the browser is closed.

10.3 Deleting Cookies

Cookies may be deleted in two ways. Deleting all cookies for a page
can be done with a single command.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.freeformatter.com';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;

my $ar cook = $driver->get all cookies();

is scalar @Sar cook, 2,

'Freeformatter uses 2 cookies';
$driver->delete all cookies;
$ar cook = Sdriver->get all cookies();
is scalar @$Sar cook, 0, 'All gone';
Sdriver->refresh;
$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 2,

'... but refreshing replaces them.';
Sdriver->quit;
done testing;

If the object is to delete a single cookie, that can be done without
looping if its name is known. Note that trying to delete a cookie that
does not exist is not a problem; no error occurs, although nothing is
deleted.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.freeformatter.com';
my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;

my S$ar cook = Sdriver->get all cookies();

is scalar @Sar cook, 2,
'"Freeformatter uses 2 cookies';
$driver->delete cookie named('Cthulhu');

$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 2, 'No cookie? No problem';
$driver->delete cookie named ('AWSELB');
$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 1,
'Deleting an existing named cookie works';
Sdriver->refresh;
$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 2,
'... but refreshing replaces it.';
Sdriver->quit;
done testing;

To delete a cookie where something is known apart from the name, it
would be necessary to write a loop that goes through all cookies
looking for the known information and then extracts the name when
the information is found. delete cookie named can then be used.
There are no other commands in Selenium for deleting cookies.

11 Javascript

JavaScript can be version dependent in different browsers. Selenium
code that relies on JavaScript has a worse risk of problems than

Selenium code that doesn'’t.

11.1 Is JS Enabled?

This is a very simple task, but if any JS work is intended, this should
probably be the first test with everything else being skipped if it fails.
Not all drivers or browsers support JavaScript, or JavaScript may be
disabled.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my S$driver = Selenium::Chrome->new () ;

ok Sdriver->has javascript,
'Javascript is enabled';

Sdriver->quit;

done testing;

11.2 Injecting JS

Using Selenium alone, there is no way to add a field to a cookie
unless the field was one of the five positional parameters the
Selenium interface understood. However, this can be done using JS.
It might be necessary to use JS to create cookies rather than create
them directly from the server if user approval is needed. This is
compulsory in certain jurisdictions such as the EU and creating
cookies before a user has taken positive action to accept them may
create legal issues. This document is not legal advice. If in doubt,
consult a qualified legal practitioner in the jurisdiction in question.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com/';

my $js = <<'END OF JS';

document.cookie = "testcookie=testvalue; path=/; domain=
.example.com;expires=27 Nov 2027 00:00:01 UTC";

END_OF JS

my S$driver = Selenium::Chrome->new () ;

SKIP: {

skip "Can't test JS (disabled)", 5
unless Sdriver->has javascript;
$driver->delete all cookies;
Sdriver->get (Surl) ;
my $ar cook = Sdriver->get all cookies();
is scalar @$Sar cook, 0,
'Example.com uses no cookies';
$driver->execute script($js);
$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 1, 'l cookie now';
is $Sar cook[0]->{name}, 'testcookie',
'The added cookie has the right name ...';
is $Sar cook[0]->{value}, 'testvalue',
'... and value ...';
is $Sar cook[0]->{expiry}, 1827273601,
'... and expiry!"';
}

$driver->delete all cookies;

Sdriver->quit;
done testing;

This code uses a “heredoc” to set up the JS. JS does not like line
breaks within a cookie definition, so be sure that the JS is a single
line if cutting & pasting this example.

There is a skip block, meaning that there will be no test failures
reported if the browser has JS disabled. This has been told that
there are five tests that may be skipped, which is important only if a
test plan has been stated.

By default, cookies expire when the session closes, but the cookie
specified has a longer date, meaning that it is automatically saved by
Chrome (if its default options have not been changed). This means
that the browser contains the cookie before loading the URL,
affecting the number of cookies that will exist for the page. This is
fixed by the delete a11 cookies command. This is repeated outside
the skip block to ensure that no cookies are left behind after the tests
have been run. Conversion of cookie date & time formats is not the
subject of this document.

If an attempt is made to create a cookie with an expiry that has
already passed, nothing will happen. This is shown in the next code
example. Again, beware of line breaks in the heredoc if cutting and
pasting.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com/';

my $js = <<'END OF JS';

document.cookie = "testcookie=testvalue; path=/; domain=
.example.com;expires=Mon, 27 Nov 2017 00:00:01 UTC";

END OF JS

my S$driver = Selenium::Chrome->new () ;
SKIP: {

}

skip "Can't test JS (disabled)", 2

unless Sdriver->has javascript;
$driver->delete all cookies;
Sdriver->get (Surl) ;
my $ar cook = $driver->get all cookies();
is scalar @Sar cook, O,

'Example.com uses no cookies';
$driver->execute script ($js);
$ar cook = Sdriver->get all cookies();
is scalar @Sar cook, 0, 'Cookie not added';

Sdriver->quit;
done testing;

11.3 Locating by JS

If JS works, locating elements by JS is the most powerful and
versatile of all the locate options. It is usually faster as the document
object model (DOM - the elements of the page broken down into a
tree form to aid traversal) does not have to be exported from the
browser to Selenium before being processed. Further, the
processing is done by the browser’'s compiled code. This not only
adds speed but also reliability. If there is a difference between the
result of a locator run in Selenium and the expected result, JS may
be the best tool. Remember that browsers may behave differently, so
a consistency in Selenium can expose this sort of problem.

Any JS DOM element returned should be converted automatically to
a WebElement object.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';

my $js = <<'END OF JS';

return document.getElementById('Log In');
END OF JS

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my $elt = Sdriver->execute script($js);

like Selt->get text(), '/"“Log In/i',
'Login table found';

Sdriver->quit;

done testing;

The SSCCE above locates an element in the same way as in section
5.4 above, but using JS to execute the locator. The various locators
that are available in JS are not the subject of this document.

11.4 Popups

Popups take two forms. The non-Javascript one is the creation of a
popup or popunder window, an additional instance of the browser
discussed in section 8 above.

There are three types of popup available from Javascript. An “alert”
box requires the user to click “OK”. A confirmation box allows the
user to choose “OK” or “Cancel’. A prompt box allows the user to
enter data before clicking “OK” or “Cancel”. All these are treated as
“alerts” by Selenium.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.example.com';

my $jsAlert = <<'END OF ALERT';

var rtn = alert ("We use cookies. OK accepts this.");
localStorage.setItem("JSSelenium", rtn);
END OF ALERT

my $jsGetItem = <<'END OF GET';
return localStorage.getItem("JSSelenium") ;
END OF GET

my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
sdriver->execute script ($jsAlert);
$driver->accept alert;

my $rtn = Sdriver->execute script($jsGetItem);
is $rtn, 'undefined',

'Accepting an alert returns nothing';
Sdriver->execute script ($jsAlert);
$driver->dismiss alert;
$driver->execute script($jsGetItem);
is S$rtn, 'undefined',

'Dismissing an alert also returns nothing';
Sdriver->quit;
done testing;

This SSCCE creates an alert box twice, although sleep or pause
commands will be needed to see it. There are several points that
need explaining.

Promises are available in JS (see, for example, Google’s primer for
developers), but they have not been implemented in Selenium. This
creates a problem in the SSCCE above. It is perfectly possible to
inject JS using Selenium and to capture the value or object returned,
as seen in section 11.3 above. In this case, though, the JS injected
creates a popup. The value of this is not known at the point where
control is returned to Perl and the execute script method will return
undef. Likewise, the accept alert and dismiss_alert methods return
values (1 in normal circumstances), but these are different methods
and do not capture the return values of anything else. Since the
return value wanted, the encoding of the user’s action, is not
available from either of the methods used to emulate the user
interface and action, the popup’s return value needs to be stored
somewhere and returned in a different way.

The two obvious options are cookies and local storage. The use of
cookies has already been demonstrated. The code above therefore
uses the popup JS injection to store the return value of the popup as
interpreted by JavaScript in local storage and a second injection to
retrieve it and return it to Selenium. This results in a JS value
(undefined) that approximates to Perl’s undef being passed to Perl as
a string. It is possible to view the value within JS by adding a second
popup that displays the value to the end of the first piece of JS
injected. That code would be aiert ("<" + rtn + "> returned"); and
would require a sleep followed by an additional dismiss alert tO
clear the alert after enough time for it to be read.

The selenium::Remote::Driver documentation describes two
methods, get local storage item and delete local storage item,

https://developers.google.com/web/fundamentals/primers/promises

for local storage operations. Unfortunately, these fail with an error
message along the lines of:

Error while executing command: getLocalStorageltem:

Server returned error message unhandled request instead of
data at
/usr/local/share/perl/5.24.1/Selenium/Remote/Driver.pm line
327",

This error occurs regardless of the browser used. Until this
behaviour is changed, the workaround of using a second JS injection
is the simplest. Also, there is no Selenium method to write to local
storage.

As mentioned previously, the values returned from the second
injection are strings representing the JS values. It is therefore
necessary to test them against strings rather than treat them as
Booleans. JS treats all responses to an alert (using JS’s definition
rather than Selenium’s) as being the same and does not return
anything to indicate what the user actually did.

The second type of popup is the confirm box. Its differences from the
alert box can be seen from the code below.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com';
my $jsConfirm = <<'END OF CONFIRM';
var rtn = confirm("We use cookies. OK lets us.");

localStorage.setItem("JSSelenium", rtn);
END OF CONFIRM

my $jsGetItem = <<'END OF GET';
return localStorage.getItem("JSSelenium") ;
END OF GET

my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;

$driver->execute script($jsConfirm);
$driver->accept alert;

my $rtn = Sdriver->execute script($jsGetItem);
is S$rtn, 'true',

"Accepting a confirmation returns true";
$driver->execute script($jsConfirm);
$driver->dismiss alert;
$rtn = S$driver->execute script ($jsGetltem);
is $rtn, 'false',

"Dismissing a confirmation returns false";
Sdriver->quit;
done testing;

This works in a very similar way to the previous SSCCE, but now the
accept_alert and dismiss alert methods result in true and faise
strings being returned.

The third JS popup is the prompt box. This captures data provided by
the user, although the user may enter none or hit the Cancel button.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my S$url = 'http://www.example.com';

my $jsPrompt = <<'END OF PROMPT';

var rtn = prompt ("How many cookies may we set?");
localStorage.setItem ("JSSelenium", rtn);

END OF PROMPT

my $SjsGetItem = <<'END OF GET';
return localStorage.getItem("JSSelenium") ;
END OF GET

my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
for my $str ('1', '') {

sdriver->execute script ($jsPrompt);
$driver->send keys to prompt ($str);
$driver->accept alert;

my $rtn = Sdriver->execute script (
SisGetItem) ;
is rtn, Sstr,
"<$str> and accept returned correctly";
}
$driver->execute script ($jsPrompt) ;
$driver->dismiss alert;
my $rtn = Sdriver->execute script($jsGetItem);
is S$rtn, 'null',
"Dismissing a confirmation returns null";
Sdriver->quit;
done testing;

Unlike confirm, the dismiss alert method results in a return of nu11
rather than rfaise. This is a peculiarity of JS rather than Perl or
Selenium. The keys are sent to the popup by the method
send_keys to prompt. Another method, send _keys to alert, is
synonymous. There is no implicit validation of the data entered into
the prompt box. It can be empty or otherwise invalid, but it will be
different from the user clicking “Cancel” unless the user types in
“null” and clicks OK.

The message sent to the user can be extracted from the popup.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my S$url = 'http://www.example.com';

my $jsAlert = <<'END OF ALERT';

var rtn = alert ("We use cookies. OK accepts this.");
localStorage.setItem ("JSSelenium", rtn);
END OF ALERT

my Sdriver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

$driver->execute script ($jsAlert);

my $rtn = Sdriver->get alert text;

is S$rtn, 'We use cookies. OK accepts this.',
'Text generated correctly';

$driver->accept alert;

Sdriver->quit;
done testing;

This is pointless in the simple example above as the text is given by
the JS. It may be valuable in situations where the JS is being
injected by the server of the web page and the code is intended to
test that the correct popup appears in certain circumstances. The
popup may also contain other text along the lines of “Example.com
says”. There are no Selenium tools for extracting this, which may be
browser dependent.

Note that, in all the examples in this section, it is necessary to open
a URL. Failing to do so will result in a hash reference being returned,
as will other errors.

12 Synchronous and
Asynchronous Javascript

All the examples so far have used synchronous JS. A method,
execute async_script, exists to handle scripts that use
asynchronous features of JS. The following example uses the
method without any JS to demonstrate how the method handles
failures.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com';

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

$driver->set async script timeout (2000) ;

my Srtn = eval
{Sdriver->execute async script('');};

like $$rtn{message}, '/timeout/i',
'"Empty JS times out';

print $$rtn{message} . "\n";

Sdriver->quit;

done testing;

It is not necessary to specify the length of wait, but in this case, to
avoid wasting too much time, the timeout is set to 2 seconds (2000
milliseconds). The default is 30 seconds, but can be changed as
needed. After the test is run, the message returned is printed out for
information purposes. The next example is based on the
documentation.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.perlmonks.org';

my $js = <<'END OF JS';

var id = arguments[0];

var callback = arguments[arguments.length-1];
var elt = document.getElementById(id) ;
callback(elt);

END OF JS

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my S$elt = Sdriver->execute async script
($Js, 'Log_In');

like Selt->get text, '/"“Log In/',
'Login table found';

Sdriver->quit;

done testing;

It is easy to misunderstand the documentation. A passage reads:

The executed script is assumed to be asynchronous and must
signal that is done by invoking the provided callback, which is
always provided as the final argument to the function. The value
to this callback will be returned to the client.

This is clearer if the word always is read to mean automatically. It is
then possible to understand that the argument that creates the

callback in the second line of the JS has been appended to the list of
arguments supplied by the programmer. Similarly, it is the output of

the callback, not anything provided to it, that is returned to the client.
The example in the documentation seems incomplete, resulting in an
error message ‘Can’t call method “click” on an unblessed reference’.
The example above works, but is rendered problematic by the fact
that the JS in the example does nothing that is asynchronous. The
following example uses a somewhat contrived asynchronous feature.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';

my $js = <<'END OF JS';

var delay = arguments[0];

var id = arguments[1l];

var callback = arguments[arguments.length-17];

setTimeout (function () {
var elt = document.getElementById(id);
callback(elt);

}, delay * 1000);

END OF JS

my S$driver = Selenium::Chrome->new () ;

Sdriver->get (Surl) ;

my $elt = Sdriver->execute async_script
($js, 5, 'Log In'");

like $elt->get text, '/"Log In/',
'Login table found';

Sdriver->quit;

done testing;

This imposes a five second delay before searching for the element. It
may appear that the delay is less if the browser treats a page as
being fully loaded before it has finished the rendering process.

The effect of this treatment of asynchronous processes is to render
them synchronous to the Perl client. It is therefore not possible to
use the callback process described here to avoid the process in the
prompt and confirm examples in section 11.4 above. For more tools
for controlling timings, see section 14.3 below.

13 More Data from Browsers

13.1 Page Source

Selenium can return the entire page to a variable with a single
method. It also has two ways of extracting the body text, one of

which uses techniques previously demonstrated.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com/"';

my Sdriver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;

my $page = Sdriver->get page source;

like $page, gr/You may use this/, 'OK to use';
my $body = $driver->get body;

my Spagelen = length ($page);

my S$bodylen = length ($body) ;

cmp ok $pagelen, ">", Sbodylen,

"Page longer than body ($pagelen>Sbodylen)";

my S$elt = Sdriver->find element (
'body', 'tag name')->get text;
is $elt, $body,

'get body is simpler than using the driver';

Sdriver->quit;
done testing;

13.2 Geolocation

This feature is more browser-dependent than most. There are two
methods, get geolocation and set geolocation. The documentation
fOFget_geolocatrm1saySZ

Note that your webdriver must implement this endpoint -
otherwise, it will crash your session. At the time of release, we
couldn’t get this to work on the desktop FirefoxDriver or desktop
Chromedriver.

It is not clear what is meant by “we couldn’t get this to work”. The
documentation for get geolocation Says:

note that your driver must implement this endpoint, or else it will
crash your session. At the very least, it works in v2.12 of
Chromedriver.

This implies that the feature is implemented but that the transfer of
data to the browser fails and that trying will NOT crash the session.
Using ChromeDriver 2.33, the session returns an error if get is called
before set and then crashes. The documentation describes three
location parameters that can be set, latitude, longitude and altitude,
but the hash returned after setting includes a fourth, accuracy. This
is undocumented and there is no indication whether it is Chrome
specific. The equivalent code crashes using Firefox, stating that
getGeolocation is not a known command. The Chrome code is:

use strict; use warnings;
use Test::More;

use Selenium: :Chrome;

use Data: :Dumper;

my S$driver = Selenium::Chrome->new () ;
print Dumper S$driver->get geolocation;
print "Not crashed\n";

$driver->set geolocation(location => {
latitude => 40.714353,
longitude => -74.005973,

P

print Dumper S$driver->get geolocation;
Sdriver->quit;

Commenting out the first get geolocation command causes the
code to run.

14 Driver Management

14.1 Error Handling

As was explained in section 5 above, an error message or warning
will be raised if an attempt is made to locate an element that does
not exist in the target web page. This can be a problem if the test is
written before the element is added to the page, as is standard
practice in Test Driven Development. The correct code action then
would be neither a warning nor an error but a test failure. These can
be trapped using Perl’s block eval function.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.perlmonks.org';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
my Serrcroak = eval {
my Seltcroak = S$driver->
find element ('Cthulhu', 'id');
1};
ok Serrcroak, "Test should croak";
print $@ unless Serrcroak;
Serrcroak = eval {
my $eltcroak = Sdriver->
find element ('Voting Booth', 'id'");
1};
ok S$Serrcroak, "Test should NOT croak";
print $@ unless S$errcroak;
Sdriver->quit () ;
done testing;

Running this will result in one pass and one failure. Programmers
who are doing many such tests or using an “Object Orientated”
approach might consider more advanced test modules such as
Test::Exception,Test::Fatal.and Test::Class.

The code above has tested only for errors that would otherwise
cause the code to die with any subsequent tests not run. The
example above demonstrates that tests will continue to run even
after a croak, but does not consider an action that fails with a
warning. For that, there are several approaches. One is to promote
warnings to errors with use warnings FATAL => qw(all);. This is
lexically scoped and can be turned on and off wherever needed.
Another way of changing the behaviour of warnings is to use
$s1G{_wWARN }. The code below uses another test module,

Test::Warnings.

use strict; use warnings;
use Test::More;

use Selenium: :Chrome;

use Test::Warnings;

my Surl = 'http://www.perlmonks.org';
my S$driver = Selenium::Chrome->new () ;
Sdriver->get (Surl) ;
for ('Cthulhu', 'Voting Booth') ({
my S$elt = Sdriver->find element by id($);
if (0 == $Selt) {
fail "Couldn't find element $§ ";
} else {
is Selt->get attribute('id'), $_,
"Found $_";
}

}
Sdriver->quit () ;
done testing;

This fails two tests, throwing a failure when it reaches the end and
reporting that there was at least one unexpected warning.
Test::Warnings does not indicate which test resulted in a warning.
Perl follows its usual practice of displaying the warning before the
problematic test This may be confusing to testers who are used to
seeing the output of tests after the “ok”™ or “not ok message.
Therefore, should the locator fail to return an element object, a
specific failure is raised to provide greater clarity. If an element is
found, there is a double check to ensure that it is the one intended.

This has the effect of executing the same number of tests whichever
path is followed, preventing problems for those who prefer to specify
a test plan.

Test::Warnings has been preferred to Test: :warn because it handles
done testing correctly. Both have features for testing whether code
produces a warning when it is supposed to.

Errors in methods other than element locators can be trapped by
custom error handlers if desired. The error handler can be specified
at creation or later and can be cleared (i.e. reverting to the default
handler) as desired. This means that the default of croaking on any
error, causing the code to terminate, will no longer work unless it is
added explicitly to the error handler. It was explained previously that
the local storage methods cause problems. This is demonstrated in
the code below.

use strict; use warnings;
use Selenium: :Chrome;
use feature 'say';

my Surl = 'http://www.example.com/"';
my S$driver Selenium: :Chrome->new (
error handler => sub ({
warn @ ;
warn 'Warned by custom error handler';

}
) i
Sdriver->get (Surl) ;
$driver->get local storage item('JSSelenium');
$driver->error handler (
sub {
say @_;
say 'Logged by custom error handler';
}
) i
$driver->get local storage item('JSSelenium');
$driver->clear error handler;
$driver->get local storage item('JSSelenium');
say 'This line not reached';

This results in the following output:

Selenium: :Chrome=HASH (0x55a2697e5b48)Error while executing
command:

getLocalStorageltem: Server returned error message
unhandled request

instead of data at
/usr/local/share/perl/5.24.1/Selenium/Remote/Driver.pm line
327.

Warned by custom error handler at DebChErrHandler.pl line
13.

Selenium: :Chrome=HASH (0x55a2697e5b48)Error while executing
command:

getLocalStoragelItem: Server returned error message
unhandled request

instead of data at
/usr/local/share/perl/5.24.1/Selenium/Remote/Driver.pm line
327.

Logged by custom error handler

Error while executing command: getLocalStorageltem: Server
returned

error message unhandled request instead of data at
/usr/local/share/perl/5.24.1/Selenium/Remote/Driver.pm line
327.

at /usr/local/share/perl/5.24.1/Selenium/Remote/Driver.pm
line 327.

This demonstrates not only the setting, changing and clearing of
error handlers but also the fact that the default error handler
terminates execution while the custom ones, which do not contain
croak Or die, do not. The hash returned is the driver object. Note
that, while an error in a locator method will be handled by the custom
error handler, it will subsequently be handled by its own, which will
croak.

14.2 Debugging

Selenium has a built-in debugging feature that sends information to
stdout.

use strict; use warnings;
use Test::More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com/"';
my S$driver = Selenium::Chrome->new () ;
$driver->debug on;

Sdriver->get (Surl) ;

$driver->debug off;

Sdriver->refresh;

Sdriver->quit;

This returns the output below.

Prepping get

Executing get

REQ: POST,
http://127.0.0.1:9515/wd/hub/session/01d346fbc807a8bbl12d8b
12cb69257c/url,

{"url":"http://www.example.com/"}

RES:
{"sessionId":"01d346fbc807a8bbl12d8bl2cb69257c", "status":0,
"value":null}

No data has been returned from the refresn command because
debugging had been turned off at that point. There is no facility to set
a custom debugger as there is for the error handler. It is generally
possible to redirect stdout to a file if desired. For a solution within
Perl, consider capture: :Tiny.

14.3 Timings

Timeouts for asynchronous Javascript have been discussed in
section 12 above. The documentation includes references to two
other methods for controlling timings.

The set_timeout method can be used to set three different timeouts.
The format is $driver->set timeout (type, ms), where type is one of
script, implicit and page load and ms is the time Ilimit in
milliseconds. The most likely of these to be useful in practice is the
page load. It enables programmers to raise errors should pages take
unreasonably long to load. implicit sets a timeout for element
searches. The default is zero, and users are unlikely to need to
change it in normal circumstances. script has no effect on
asynchronous scripts, which have a different method for setting
timeouts, while synchronous scripts are unlikely to have timing
problems. But these tools exist for the rare occasions when they are
essential.

The second method, set implicit wait timeout, IS @ synonym for

set timeout ('implicit', ms).

14.4 Status

This is slightly misleadingly named. It returns information about the
environment the driver is currently using. A hash reference is
returned, containing two keys, each of which contains another hash.
The documentation says that one of these, “build”, should say “when
the server was built”. This is certainly not returned from all
implementations. Printing the hash reference using pata: :Dumper is
suggested by the docs and gives less than a screenful of output.
This method should not be confused with the cache status method
discussed in section 14.6 below.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Sdriver = Selenium::Chrome->new () ;
for my S$key ('os', 'build') {
ok grep (/Skey/, keys %{S$driver->status}),
"Found Skey";
}
is scalar keys %{S$driver->status}, 2,
'No strange keys';
Sdriver->quit;
done testing;

14.5 Logs

The documentation states that Selenium expects at least four types
of log in every browser, but will return more if they exist. To find out
what is available, use the get 10g types method, which returns an
array reference. The four that are expected are browser, client, driver
and server. The Selenium documentation is more detailed and states
that “logs for all these nodes may not be available in all
configurations”. The following code returns 3 failures and indicates
that only the browser and driver logs exist in Chrome. This is not
affected by fetching a web page.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Sdriver = Selenium::Chrome->new () ;
my S$reflogs = S$driver->get log types;
my $logcount = scalar @$reflogs;
cmp ok $logcount, '>', 3,
"At least 4 logs available ($Slogcount)"™;
for my $log
("browser', 'client', 'driver', 'server') {
ok grep(/$log/, @Sreflogs), "Found S$log";
}

Sdriver->quit;
done testing;

Logs are read using the get 10g method. The documentation is
ambiguous about whether an array or a reference to one is returned,
implying that this may be browser dependent. Chrome returns array
references in all tested cases. It also states that the return will
include entries “since the most recent request”, which might be taken
to mean the last browser request or the last request for the log
contents. Experimentation has failed to extract any data using this
method. The Selenium documentation referred to above lists six log
levels that may be used, but there appears to be no way to set the

https://github.com/SeleniumHQ/selenium/wiki/Logging

log level, which may well default to “OFF”. Examination of the driver
object has revealed no clues. Firefox does not recognise the
get log types method while the following code for Chrome returns
empty arrays in every case.

use strict; use warnings;
use Test::More;
use Selenium::Chrome;

my Surl = 'http://www.example.com/';
my Sdriver = Selenium::Chrome->new () ;
my S$reflogs = S$driver->get log types;
for (0..1) {

for my $log (@Sreflogs) {

is scalar @{S$Sdriver->get log ($log)}, O,
'"Empty log returned';

}

sdriver->get (Surl) if 0 == § ;
}
Sdriver->quit;
done testing;

14.6 Cache

The behaviour of this differs substantially from the documentation.
Firefox crashes, claiming that cachestatus “did not match a known
command”. Chrome, on the other hand, returns exactly the same
output as in section 14.4 above. The documentation says that the
status of the HTML5 cache should be returned, matching the Firefox
error message if not its behaviour. It states that the return should be
an integer from 0 to 5, having meanings listed in the table below.

0 UNCACHED

1 IDLE

2 CHECKING

3 DOWNLOADING
4 UPDATE READY
5 OBSOLETE

The incomplete (but working), experimental code used in identifying
the behaviours described is given below.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com/"';

my @STATUS = ('UNCACHED', 'IDLE', 'CHECKING',
'DOWNLOADING', 'UPDATE_READY', 'OBSOLETE") ;

my S$Sdriver = Selenium::Chrome->new () ;

my $idx = Sdriver->cache status;

is SSTATUS[S$idx], 'IDLE',

'"Nothing to see yet';
Sdriver->get (Surl) ;
$idx = S$driver->cache status;
use Data: :Dumper;
print Dumper $idx;
Sdriver->quit;
done testing;

This seems to be a function of changing HTMLS standards. Mozilla
states:

Deprecated

This feature has been removed from the Web standards.
Though some browsers may still support it, it is in the process of
being dropped. Avoid using it and update existing code if
possible; see the compatibility table at the bottom of this page to
guide your decision. Be aware that this feature may cease to
work at any time.

https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache

14.7 Capabilities

Extracting a hash of capabilities from a browser is trivial.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Sdriver = Selenium::Chrome->new () ;
is S$driver->get capabilities()->{browserName},
'chrome', 'Correct browser';
my Skeycount = scalar keys $%${Sdriver->
get capabilities()};
cmp ok S$keycount, '>', 10,
"Lots of elements (Skeycount)";
Sdriver->quit;
done testing;

There is a list of which capabilities apply to which browsers on
Selenium’s Github site. It also lists which are writable and which are
read-only. The capabilities hash gives complete control over browser
creation, meaning that there will be no assumptions or user
preferences set. This can help circumvent some of the issues
described in section 8 above.

There are, though, a number of issues in using the capabilities as
extracted from an existing browser instance. Trying to use the
hashref returned without modification would not create a browser
instance. The first problem is that, instead of simple true and false
values such as 1 and 0, the hashref contains two references to
JSON objects which evaluate to 1 and 0. Every other capability that
is true or false then points to the capability containing the JSON
object. This cannot be passed back to a creation process without the
references being reduced to simple values. Since the hashref may
contain keys pointing to further hashes, the procedure to this must

https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities

call itself recursively.

The next issue is that it is possible for some of the keys in the
hashref returned to have invalid values. In the case of Chrome
running on Debian, one of these is the unexpectedalertBehaviour
key. In the code above, its value is a zero length string. The github
documentation mentioned above lists the allowable values as
“accept”, “dismiss” and “ignore™. If none of these are used, it is also
acceptable to delete the key. Using the zero length string returned,
however, will result in a failure to create a browser. The code below
demonstrates both the dereferencing and the correcting of the zero
length string.

use strict; use warnings;
use Test: :More;
use Selenium: :Chrome;

my Surl = 'http://www.example.com/"';
my S$driver = Selenium::Chrome->new () ;
my $hr caps = $driver->get capabilities();

Sdriver->quit;

$hr caps->{'unexpectedAlertBehaviour'}
= 'ignore';

refeval (Shr caps);

delete Shr caps->{acceptInsecureCerts};

$driver = Selenium::Chrome->new from caps (
'desired capabilities' => {%S$hr caps});

Sdriver->get (Surl) ;

is $driver->get title(), 'Example Domain',
'Title correct';

$hr caps = S$driver->get capabilities();

refeval (Shr caps);

is $hr caps->{'unexpectedAlertBehaviour'},
'ignore', 'Capability as set';

Sdriver->quit;

done testing;

sub refeval {
my Shref = shift;

for my Skey(keys %$Shref) {
if ('HASH' eq ref (Shref->{skey})) {
refeval ($href->{Skey});

} elsif ('' ne ref(Shref->{Skey})) {
Shref->{$key} = eval (Shref->{Skey});
}

The code above was working in version 1.26 without deleting the the
acceptInsecureCerts key/value pair, but the new from caps method
no longer creates a session instance in 1.27 unless it is deleted.

If there are multiple sessions running from a single driver,
capabilities can be extracted as an array of hashes using the
get sessions method. In addition to the capabilities, each top level
array element will have an ‘id’ key, the value of which will be the
session ID. This is not available if the browser sessions are in
different drivers, even if these are in an array as suggested.

The capabilities functionality is the only way to establish whether the
browser requested is the one actually created on a remote machine.
Assuming a running instance of Selenium Standalone Server, the
following code may identify problems.

use strict; use warnings;
use Selenium: :Remote: :Driver;
use Test: :More;

my Surl = 'http://www.perlmonks.org';

for my $name (# 'phantomjs', 'firefox',
'internet explorer', 'MicrosoftEdge',
'safari', 'iphone',

'"htmlunit', 'chrome') {

my S$driver = Selenium::Remote::Driver->new (
remote server addr => '127.0.0.1",
port => '4444",
browser name => Sname

)
Sdriver->get (Surl) ;
is Sdriver->get title(),
'PerlMonks - The Monastery Gates',

"Title as expected for S$name";
is S$driver->get capabilities()->{browserName},
Sname, 'Correct browser';
Sdriver->quit () ;
}

done testing;

All the browsers listed in the Selenium: :Remote: :Driver
documentation are included in the code above, although those that
cause problems have been commented out. Firefox runs but will not
close, while the others are proprietary. Browsers that have been
commented out cause the client to crash, preventing further tests.
The results are likely to vary depending on the software installed on
the target machine and are certain to vary between operating
systems. In earlier versions, iphone and phantomjs appeared to run,
but they passed the first test (reading the page) and failed the
second, running Chrome by default. This has changed in
Selenium: :Remote::Driver 1.27 and/or Selenium standalone server
3.9.1.

14.8 Available Engines

This is documented in selenium::Remote::Driver, but neither
Chrome nor Firefox nor Selenium Standalone Server recognise it.
The documentation states that this cannot be used with Webdriver3

servers

14.9 Writing plugins to return drivers

Four files are required to demonstrate this, two of which should be
put in a subdirectory called ri1ugins. These two files appear next and
are almost identical. They should be saved as chrome.pm and

Firefox.pm.

package Plugins::Chrome;

use strict; use warnings;
use Selenium::Chrome;

use Moose;

use namespace::autoclean;

has driver => (

is => 'rw',
) ;
sub BUILD {

my $self = shift;

my %args = $$_[0];

Sself->{driver} =

Selenium: :Chrome->new (%args) ;

}
__PACKAGE ->meta->make immutable;
1;

Firefox.pm:

package Plugins::Firefox;
use strict; use warnings;
use Selenium::Firefox;
use Moose;

use namespace::autoclean;

has driver => (
is => 'rw',
) ;
sub BUILD ({
my S$self = shift;
my %args = $S_[0];
Sself->{driver} =
Selenium: :Firefox->new (%args):;

}
PACKAGE ->meta->make immutable;

1;

The next two files should be in the parent directory of the plugins.
The first should be saved as r.auncher.pm.

package Launcher;

use strict; use warnings;
use Moose;

use Module: :Find;

has plug => (
is => 'rw',

) ;

sub findplugins {
my ($self, S$browsername) = @ ;
my @found = useall Plugins;
for my $plugin (@found) {

if ($plugin =~ /::\QS$browsername\ES$/1i) {
Sself->{plug} = Splugin;
last;

sub launch {

my ($self, Sbrowsername, $hr params) = @ ;
my S$params;
$params = %$Shr params if defined $hr params;

$self-> findplugins (Sbrowsername) ;
my Sobject = $self->plug->new ($params) ;
return $object->driver;

The name of the last file is not important. It demonstrates the use of
the two plugins.

use strict; use warnings;

use Selenium: :Remote::Driver;
use Test::More;

use lib ".";

use Launcher;

my S$url = 'http://www.perlmonks.org';
my S$launcher = Launcher->new() ;
for my S$browser ('Chrome', 'Firefox') {
my Sdriver = $launcher->launch (Sbrowser);
Sdriver->get ('http://www.perlmonks.org') ;
is S$driver->get title(),
'PerlMonks - The Monastery Gates',
"Title as expected for S$Sbrowser";
Sdriver->close () ;

What will happen when this file is run is that a launcher object will be
created. Next, a loop will be entered for first the Chrome and next
the Firefox browser. The launcher object will be told to launch the
browser and return the driver. Then a very simple pair of commands
is run through the driver to demonstrate that it is working as
expected. These commands could be far more complicated and
different loops might run for different browsers depending on
functionality.

Within the launcher, the 1auncn method sorts out any parameters that
are sent and instructs an internal method, findplugins, t0 use
Module: :Find tO look through all available plugins and return the one
that matches the name parameter passed in. A match is assumed,;
this simple example makes no provision for validation or error
handling. The 1aunch method then creates a new object containing a
driver using the plugin found and passing any parameters specified.

The plugins are very simple Moose objects, but can be extended if
needed. The point about this example is that to add a new browser, it
is necessary to write a new plugin once. After that, all that is needed

is to name the plugin in the code that does the work and leave the
rest to Launcher.pm. It is not necessary to recode Launcher.pm; it
will search and find the plugins automatically if they are in the
appropriate directory.

15 Remote Servers

Starting a browser specific driver such as chromedriver or
geckodriver from the command line is possible, but does not result in
a server that will accept connections from Selenium, although other
tools can be used to reveal valuable debugging information. This is
because these are drivers that also act as servers rather than pure
servers. Selenium Standalone Server is the recommended tool for
situations where the server and client are on separate machines,
especially since it can be reached by browser specific driver
modules like selenium::chrome. It is possible to emulate the
behaviour of two machines on a single machine, and this will be
done in the examples in the rest of this section.

15.1 Creating

As stated in section 2.2.1 above, the server can be started with the
command

java -jar selenium-server-standalone-3.9.1.jar

This will produce a lot of information reports both at boot time and
when connections are made. When booting, the last report should be
that the server is up and running. By default, it will accept
connections on port 4444, but this, along with the reporting level, can
be changed by using options when starting the server.

15.2 Connecting

use strict; use warnings;

use Selenium::Remote: :Driver;
use Selenium: :Chrome;

use Test::More;

my Surl = 'http://www.perlmonks.org';
my $driver = Selenium::Remote::Driver->new (
my S$driver = Selenium::Chrome->new (
remote server addr => '127.0.0.1"',
port => '4444",
browser name => 'chrome'

) ;
Sdriver->get (Surl) ;
is S$driver->get title(),
'PerlMonks - The Monastery Gates',
'Title as expected';
Sdriver->quit () ;
done testing;

This code includes several lines that have been commented out. In
the version that appears above, it will make a connection to the
‘remote” server running on the same machine, open an instance of
Chrome, load the PerlIMonks home page, run a test and exit.

If it is changed to use selenium::Remote::Driver IiNnstead of
Selenium::Chrome, the same thing should happen, but with the
important difference that Firefox will be used, as it is the server’s
default unless otherwise specified. selenium::Remote::Driver’S
failure correctly to communicate with Firefox causes increased
problems in this configuration. While a Firefox instance will be
opened, communication from Selenium standalone server fails,
reporting an unknown driver version. The error results in the
termination of the client code, leaving the browser instance open.
This means that the done testing line is never reached. Tests, too,

cannot be reached.

The behaviour of defaulting to Firefox can be overridden not only on
the machine running the server but also by the client. The example
above shows the simplest way to do this in the final comment line.
Simply specifying the name of a recognised browser is enough to
invoke that browser with its usual defaults.

When connecting, it is essential that all the necessary
communications between the two machines are open. Proxy settings
can be changed by giving the constructor the necessary parameters,
but it is up to the programmer and systems staff to ensure that ports
are open and that firewalls do not prevent packet transmission.

15.3 Uploading

Selenium contains an upload_file method that allows files to be
placed on the remote server. The following code needs multiple
command prompts. One is to launch the server. It is preferable to run
the server in a window of its own rather than in the background, as
the logging information helps to explain what is happening. The
second window is needed to run the code, which pauses to require
the user to hit a key. The third is to examine the uploaded file.

use strict; use warnings;
use Selenium: :Remote: :Driver;

open my S$fh, '>', 'upfile.txt' or die
"Can't open upfile.txt for output: $!";
print $fh "File contents\n";

close $fh;

my $driver = Selenium::Remote::Driver->new (
remote server addr => '127.0.0.1"',
port => '4444",
browser name => 'chrome'

) ;
my S$remote file name =
$driver->upload file('upfile.txt');
print "Sremote file name\n";
my Swait = <STDIN>;
unlink 'upfile.txt';
Sdriver->quit () ;

This code creates a very simple text file in the same directory as the
code. Then, after connecting to the remote server, it uploads the file,
prints its remote name and pauses with the browser still open. At this
point, it is possible to use the third command line window to verify
that the file is as expected. On Debian, it is saved to a directory
created at run time in the /tmp/ directory. This directory is deleted,
with all its contents, when the sdriver->quit command is executed.
It is this that makes a pause necessary. Having inspected the file,
hitting enter will allow the script to continue and close the browser.

The uploaded file and its parent directory will now have been deleted
automatically and the data file created for the example is also
deleted, this time explicitly.

The documentation says:

Passing raw data as an argument past the filename will upload
that rather than the file’s contents.

When passing raw data, be advised that it expects a zipped and
then base64 encoded version of a single file. Multiple files
and/or directories are not supported by the remote server.

As can be seen from the example, a simple text file can be uploaded
without the need to zip or encode.

16 References

16.1 Selenium modules

» http://search.cpan.org/~teodesian/Selenium-Remote-
Driver/lib/Selenium/Remote/Driver.pm

e http://search.cpan.org/~teodesian/Selenium-Remote-
Driver/lib/Selenium/Chrome.pm

» http://search.cpan.org/~teodesian/Selenium-Remote-
Driver/lib/Selenium/Firefox.pm

» http://search.cpan.org/~teodesian/Selenium-Remote-
Driver/lib/Selenium/Remote/\WWebElement.pm

http://search.cpan.org/~teodesian/Selenium-Remote-Driver/lib/Selenium/Remote/Driver.pm
http://search.cpan.org/~teodesian/Selenium-Remote-Driver/lib/Selenium/Chrome.pm
http://search.cpan.org/~teodesian/Selenium-Remote-Driver/lib/Selenium/Firefox.pm
http://search.cpan.org/~teodesian/Selenium-Remote-Driver/lib/Selenium/Remote/WebElement.pm

16.2 Other Perl modules

» http://search.cpan.org/~dagolden/Capture-
Tiny/lib/Capture/Tiny.pm

» http://search.cpan.org/perldoc?Test%3A%3AMore

e http://search.cpan.org/perldoc?Test%3A%3AWarnings

o https://www.youtube.com/watch?v=V3WeO-iVkAc
(WWW::Mechanize::Chrome)

http://search.cpan.org/~dagolden/Capture-Tiny-0.46/lib/Capture/Tiny.pm
http://search.cpan.org/~crenz/Module-Find-0.13/Find.pm
http://search.cpan.org/~exodist/Test-Simple-1.302120/lib/Test/More.pm
http://search.cpan.org/~ether/Test-Warnings-0.026/lib/Test/Warnings.pm
https://www.youtube.com/watch?v=V3WeO-iVkAc

16.3 Selenium resources

o http://www.seleniumhgq.org/docs/03_webdriver.jsp

» https://github.com/operasoftware/operachromiumdriver

» https://github.com/SeleniumHQ/selenium/wiki/Logging

e https://github.com/mozilla/geckodriver/releases

o http://selendroid.io/

o https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilitie

» http://selenium-release.storage.googleapis.com/index.html
(downloads for IEServerDriver, Selenium Standalone Server &
others)

o https://developer.microsoft.com/en-us/microsoft-
edge/tools/webdriver/

http://www.seleniumhq.org/docs/03_webdriver.jsp
https://github.com/operasoftware/operachromiumdriver
https://github.com/SeleniumHQ/selenium/wiki/Logging
https://github.com/mozilla/geckodriver/releases
http://selendroid.io/
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://sourceforge.net/projects/htmlunit/files/htmlunit/2.29/
http://selenium-release.storage.googleapis.com/index.html
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

16.4 W3schools resources

e https://www.w3schools.com/js/js_cookies.asp

o https://www.w3schools.com/tags/tryit.asp?
filename=tryhtml|_input_checked

o https://www.w3schools.com/html/tryit.asp?
filename=tryhtml_form_radio

e https://www.w3schools.com/tags/tryit.asp?
filename=tryhtml_input_disabled

o https://www.w3schools.com/cssref/

https://www.w3schools.com/js/js_cookies.asp
https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_input_checked
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_radio
https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_input_disabled
https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_select
https://www.w3schools.com/js/js_popup.asp
https://www.w3schools.com/cssref/

16.5 Other resources

o http://www.sscce.org (how to ask & answer a question)

o https://www.freeformatter.com/xpath-tester.html

» https://validator.w3.org/ (HTML validation)

o http://www.perlmonks.org/

» https://developers.google.com/web/fundamentals/primers/promi
Ses

o https://developer.mozilla.org/en-
US/docs/Web/HTML/Using_the_application_cache

http://www.sscce.org/
https://www.freeformatter.com/xpath-tester.html
https://jqueryui.com/droppable/
https://validator.w3.org/
http://www.perlmonks.org/
https://developers.google.com/web/fundamentals/primers/promises
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache

17 Index

Android 2.2.11

Available engines 14.8
Base64 encoding 4.4, 15.3
Browser tabs 8

Browser windows 8
Capabilities 14.7

Chrome 2.2.2

Cookies 10

add with Javascript 11.2
add with Selenium 10.2
delete with Selenium 10.3
expiry 11.2

expiry past 11.2
properties 10.1

read with Selenium 10.1
Debugger 14.2

Drag and drop 9

Driver plugins 14.9

Edge 2.2.5

Error handler 14.1

Firefox 2.2.6

Freeformatter 5.10

,
Geckodriver 2.2.6
Geolocation 13.2
HTML

o checkbox 7.1

o iframe 6.2

o link 4.1

o radio button 7.2
HtmlUnit 2.2.8
Internet Explorer 2.2.4
Javascript 11

o alert 11.4

O 0O O O O O ©

0O O O O O O O O

(0]

asynchronous 12
callback 12
confirmation 11.4
cookies 11.2
enabled 11.1
injection 2, 11.2
locate element 11.3
popups 11.4
prompt 11.4

e Local storage 11.4, 14.1
e Marionette 2.2.6
e Methods

(¢]

O 0 0O o o o O o 0O 0O 0O o 0O O O 0O 0 0O O o o o o o

accept_alert 11.4
add_cookie 10.2
button_down 9

button_up 9

cache status 14.6
capture_screenshot 4.4
clear_error_handler 14.1
click 4.1

close 7.4
compare_elements 5.2
debug_off 14.2

debug on 14.2

delete_all cookies 10.3
delete _cookie _named 10.3
delete local storage item 11.4
dismiss_alert 11.4
driver_status 14.4
error_handler 14.1
execute_async_script 12
execute script 11.2
find_child_element 5.12
find_child_elements 5.12
find_element 5
find_element_by class 5.1
find_element by class name 5.2

O 0 0O o o o 0O o o 0O 0O 0O OOOO OO O 0O 0o o 0O 0o o 0O 0o o o o o o o o o o o

find_element by css 5.3
find_element_by id 5.4
find_element by link 5.5
find_element by link text 4.1, 5.6
find_element_by name 5.8
find_element_by partial_link_text 5.7
find_element_by tag name 5.9
find_element_by xpath 5.10
find_elements 5.2

get4.1

get_active_element 5.11
get_alert text 11.4
get_all_cookies 10.1
get_attribute 5.8

get_body 13.1

get_capabilities 14.7
get_css_attribute 6.5
get_current_window_handle 8.2
get_element_location 6.1
get_geolocation 13.2
get_local_storage item 11.4
get_log 14.5

get_log types 14.5
get_orientation 7.3

get_page source 13.1
get_size 6.6

get_text 5.2

get_title 4.1
get_window_handles 8.2
get_window_position 7.3
get_window_size 7.3

go_back 4.2

go_forward 4.2

has_javascript 11.1
is_displayed 6.4

is_enabled 6.2

is_hidden 6.4

is_selected 6.3
maximize_window 7.3
mouse_move_to location 9
move_to 9
new 4.1
new_from caps 14.7
pause 3
quit 7.4
refresh 4.2
send_keys 4.3
send_keys to active _element 5.11
send_keys to _alert 11.4
send_keys to prompt 11.4
set_async_script_timeout 12
set_geolocation 13.2
set_implicit_wait_timeout 14.3
set_inner_window_size 7.3
set orientation 7.3
set_timeout 14.3
set_window_position 7.3
set window_size 7.3
shutdown_binary 7.4
switch_to frame 6.2
switch_to_window 8.2

o upload file 15.3
Opera 2.2.7
PaleMoon 2.2.6, 7.4
Perl version 2.1
PerlIMonks 2.2.6, 5.8
phantomjs 2.2.9
Popups 8, 11.4
Promises 11.4
Remote Server 14.7, 15
Safari 2.2.10
Screen shot 4.4

o capture_screenshot 4.4
Selenium::Screenshot 4.4

0O 0 0O O 0O 0O o o o 0O 0O 0O 0O 0O O 0O 0O 0O 0O O o o o o

e Selendroid 2.2.11
e Selenium

o Grid 2
IDE 2
Selenium::Remote::RemoteConnection 2.2.5
Selenium::Chrome 2.1
Selenium::Firefox 2.1
Selenium::Remote::Driver 2.1
Selenium::Remote::WDKeys 4.3
Selenium::Screenshot 4.4

o Test::Selenium::Remote::Driver 3
e Selenium Standalone Server 2.2.1, 15
e SSCCE 6.2
e Tests 3

o cmp_ok 5.2
is3
is_deeply 5.2
isn’t 5.2
ok 5.2
skip 11.2
Test::Class 14.1
Test::Exception 14.1
Test::Fatal 14.1
Test::More 3
Test::Selenium::Remote::Driver 3
Test::Warn 14.1
Test::Warnings 14.1

o unlike 5.4
» W3schools 6.2, 6.3,6.5, 7.1, 7.2

O O O O O O ©

O 0O 0O o 0O 0O 0O 0O 0O o o o

	1 About …
	1.1 … the text
	1.2 … the code examples
	1.3 … the series
	1.4 … the author

	2 What is Selenium WebDriver?
	2.1 Perl
	2.2 Browsers, Servers and Drivers
	2.2.1 Selenium Standalone Server
	2.2.2 Chrome
	2.2.3 Open a Web Page with Chrome
	2.2.4 Internet Explorer
	2.2.5 Edge
	2.2.6 Firefox
	2.2.7 Opera
	2.2.8 HtmlUnit
	2.2.9 phantomjs
	2.2.10 Safari
	2.2.11 Android

	3 Testing
	4 Basic Browser Interactions
	4.1 Following a link
	4.2 Browser Actions
	4.3 Keyboard Actions
	4.4 Take a Screen Shot

	5 Elements in Detail
	5.1 Class
	5.2 Class Name
	5.3 CSS
	5.4 ID
	5.5 Link
	5.6 Link Text
	5.7 Partial Link Text
	5.8 Name
	5.9 Tag Name
	5.10 XPath
	5.11 Active Element
	5.12 Child Elements

	6 Element properties
	6.1 Location
	6.2 Enabled
	6.3 Selected
	6.4 Displayed
	6.5 CSS Attribute
	6.6 Size

	7 More browser interaction
	7.1 Checkboxes
	7.2 Radio Buttons
	7.3 Resizing the Browser
	7.4 Close and Quit

	8 Using Multiple Tabs and Windows
	8.1 Open a Link in a New Window
	8.2 Open a Link in a New Tab

	9 Drag and Drop
	10 Cookies
	10.1 Reading Cookies
	10.2 Adding Cookies
	10.3 Deleting Cookies

	11 Javascript
	11.1 Is JS Enabled?
	11.2 Injecting JS
	11.3 Locating by JS
	11.4 Popups

	12 Synchronous and Asynchronous Javascript
	13 More Data from Browsers
	13.1 Page Source
	13.2 Geolocation

	14 Driver Management
	14.1 Error Handling
	14.2 Debugging
	14.3 Timings
	14.4 Status
	14.5 Logs
	14.6 Cache
	14.7 Capabilities
	14.8 Available Engines
	14.9 Writing plugins to return drivers

	15 Remote Servers
	15.1 Creating
	15.2 Connecting
	15.3 Uploading

	16 References
	16.1 Selenium modules
	16.2 Other Perl modules
	16.3 Selenium resources
	16.4 W3schools resources
	16.5 Other resources

	17 Index

