

Copyright All rights reserved

No part of this book may be reproduced, or stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without express written permission of the publisher.

I would like to dedicate the book to the students who will be using it. I wish you future career success and hope you never stop learning.

TABLE OF CONTENT

Introduction

Environment

Syntax Overview

Data Types

Variables

Scalars

Arrays

Hashes

Perl Conditional Statements - IF...ELSE

Loops

Operators

Date and Time

Subroutines

References

Formats

File I/O

Directories

Error Handling

Special Variables

Coding Standard

Regular Expressions

Sending Email

Socket Programming

Object Oriented Programming in PERL

Database Access

CGI Programming

Packages and Modules

Process Management

Embedded Documentation

Copyright 2005

Functions References

Introduction

Perl is a general-purpose programming language originally developed for text manipulation and now used for a wide range of tasks including system administration, web development, network programming, GUI development, and more.

What is Perl?

	

 Perl is a stable, cross platform programming language.

	

 Though Perl is not officially an acronym but few people used it as
 Practical Extraction and Report Language
 .

	

 It is used for mission critical projects in the public and private sectors.

	

 Perl is an
 Open Source
 software, licensed under its
 Artistic License
 , or the
 GNU General Public License (GPL)
 .

	

 Perl was created by Larry Wall.

	

 Perl 1.0 was released to usenet's alt.comp.sources in 1987.

	

 At the time of writing this tutorial, the latest version of perl was 5.16.2.

	

 Perl is listed in the
 Oxford English Dictionary
 .

PC Magazine announced Perl as the finalist for its 1998 Technical Excellence Award in the Development Tool category.

Perl Features

	

 Perl takes the best features from other languages, such as C, awk, sed, sh, and BASIC, among others.

	

 Perls database integration interface DBI supports third-party databases including Oracle, Sybase, Postgres, MySQL and others.

	

 Perl works with HTML, XML, and other mark-up languages.

	

 Perl supports Unicode.

	

 Perl is Y2K compliant.

	

 Perl supports both procedural and object-oriented programming.

	

 Perl interfaces with external C/C++ libraries through XS or SWIG.

	

 Perl is extensible. There are over 20,000 third party modules available from the Comprehensive Perl Archive Network (
 CPAN
).

	

 The Perl interpreter can be embedded into other systems.

Perl and the Web

	

 Perl used to be the most popular web programming language due to its text manipulation capabilities and rapid development cycle.

	

 Perl is widely known as "
 the duct-tape of the Internet
 ".

	

 Perl can handle encrypted Web data, including e-commerce transactions.

	

 Perl can be embedded into web servers to speed up processing by as much as 2000%.

	

 Perl's
 mod_perl
 allows the Apache web server to embed a Perl interpreter.

	

 Perl's
 DBI
 package makes web-database integration easy.

Perl is Interpreted

Perl is an interpreted language, which means that your code can be run as is, without a compilation stage that creates a non portable executable program.

Traditional compilers convert programs into machine language. When you run a Perl program, it's first compiled into a byte code, which is then converted (as the program runs) into machine instructions. So it is not quite the same as shells, or Tcl, which are
 strictly
 interpreted without an intermediate representation.

It is also not like most versions of C or C++, which are compiled directly into a machine dependent format. It is somewhere in between, along with
 Python
 and
 awk
 and Emacs .elc files.

Environment

Before we start writing our Perl programs, let's understand how to setup our Perl environment. Perl is available on a wide variety of platforms −

	
Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX etc.)

	
Win 9x/NT/2000/

	
WinCE

	
Macintosh (PPC, 68K)

	
Solaris (x86, SPARC)

	
OpenVMS

	
Alpha (7.2 and later)

	
Symbian

	
Debian GNU/kFreeBSD

	
MirOS BSD

	
And many more...

This is more likely that your system will have perl installed on it. Just try giving the following command at the $ prompt −

$perl -v

If you have perl installed on your machine, then you will get a message something as follows −

This is perl 5, version 16, subversion 2 (v5.16.2) built for i686-linux

Copyright 1987-2012, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the

GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on

this system using "man perl" or "perldoc perl". If you have access to the

Internet, point your browser at http://www.perl.org/, the Perl Home Page.

If you do not have perl already installed, then proceed to the next section.

Getting Perl Installation

The most up-to-date and current source code, binaries, documentation, news, etc. are available at the official website of Perl.

Perl Official Website
 −
 https://www.perl.org/

You can download Perl documentation from the following site.

Perl Documentation Website
 −
 https://perldoc.perl.org

Install Perl

Perl distribution is available for a wide variety of platforms. You need to download only the binary code applicable for your platform and install Perl.

If the binary code for your platform is not available, you need a C compiler to compile the source code manually. Compiling the source code offers more flexibility in terms of choice of features that you require in your installation.

Here is a quick overview of installing Perl on various platforms.

Unix and Linux Installation

Here are the simple steps to install Perl on Unix/Linux machine.

	

 Open a Web browser and go to
 https://www.perl.org/get.html.

	

 Follow the link to download zipped source code available for Unix/Linux.

	

 Download
 perl-5.x.y.tar.gz
 file and issue the following commands at $ prompt.

$tar
 -
 xzf perl
 -
 5.x
 .
 y
 .
 tar
 .
 gz

$cd perl
 -
 5.x
 .
 y

$
 ./
 Configure
 -
 de

$make

$make test

$make install

NOTE
 − Here $ is a Unix prompt where you type your command, so make sure you are not typing $ while typing the above mentioned commands.

This will install Perl in a standard location
 /usr/local/bin
 and its libraries are installed in
 /usr/local/lib/perlXX
 , where XX is the version of Perl that you are using.

It will take a while to compile the source code after issuing the
 make
 command. Once installation is done, you can issue
 perl -v
 command at $ prompt to check perl installation. If everything is fine, then it will display message like we have shown above.

Windows Installation

Here are the steps to install Perl on Windows machine.

	

 Follow the link for the Strawberry Perl installation on Windows
 http://strawberryperl.com

	

 Download either 32bit or 64bit version of installation.

	

 Run the downloaded file by double-clicking it in Windows Explorer. This brings up the Perl install wizard, which is really easy to use. Just accept the default settings, wait until the installation is finished, and you're ready to roll!

Macintosh Installation

In order to build your own version of Perl, you will need 'make', which is part of the Apples developer tools usually supplied with Mac OS install DVDs. You do not need the latest version of Xcode (which is now charged for) in order to install make.

Here are the simple steps to install Perl on Mac OS X machine.

	

 Open a Web browser and go to
 https://www.perl.org/get.html
 .

	

 Follow the link to download zipped source code available for Mac OS X.

	

 Download
 perl-5.x.y.tar.gz
 file and issue the following commands at $ prompt.

$tar
 -
 xzf perl
 -
 5.x
 .
 y
 .
 tar
 .
 gz

$cd perl
 -
 5.x
 .
 y

$
 ./
 Configure
 -
 de

$make

$make test

$make install

This will install Perl in a standard location
 /usr/local/bin
 and its libraries are installed in
 /usr/local/lib/perlXX
 , where XX is the version of Perl that you are using.

Running Perl

The following are the different ways to start Perl.

Interactive Interpreter

You can enter
 perl
 and start coding right away in the interactive interpreter by starting it from the command line. You can do this from Unix, DOS, or any other system, which provides you a command-line interpreter or shell window.

$perl
 -
 e
 <
 perl code
 >

 # Unix/Linux

or

C
 :>
 perl
 -
 e
 <
 perl code
 >

 # Windows/DOS

Here is the list of all the available command line options −

	

Sr.No.

	

Option & Description

	

1

	

-d[:debugger]

Runs program under debugger

	

2

	

-Idirectory

Specifies @INC/#include directory

	

3

	

-T

Enables tainting checks

	

4

	

-t

Enables tainting warnings

	

5

	

-U

Allows unsafe operations

	

6

	

-w

Enables many useful warnings

	

7

	

-W

Enables all warnings

	

8

	

-X

Disables all warnings

	

9

	

-e program

Runs Perl script sent in as program

	

10

	

file

Runs Perl script from a given file

Script from the Command-line

A Perl script is a text file, which keeps perl code in it and it can be executed at the command line by invoking the interpreter on your application, as in the following −

$perl script
 .
 pl
 # Unix/Linux

or

C
 :>
 perl script
 .
 pl
 # Windows/DOS

Integrated Development Environment

You can run Perl from a graphical user interface (GUI) environment as well. All you need is a GUI application on your system that supports Perl. You can download
 Padre, the Perl IDE
 . You can also use Eclipse Plugin
 EPIC - Perl Editor and IDE for Eclipse
 if you are familiar with Eclipse.

Before proceeding to the next chapter, make sure your environment is properly setup and working perfectly fine. If you are not able to setup the environment properly then you can take help from your system admininstrator.

All the examples given in subsequent chapters have been executed with v5.16.2 version available on the CentOS flavor of Linux.

Syntax Overview

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk, Lisp and even English. However, there are some definite differences between the languages. This chapter is designd to quickly get you up to speed on the syntax that is expected in Perl.

A Perl program consists of a sequence of declarations and statements, which run from the top to the bottom. Loops, subroutines, and other control structures allow you to jump around within the code. Every simple statement must end with a semicolon (;).

Perl is a free-form language: you can format and indent it however you like. Whitespace serves mostly to separate tokens, unlike languages like Python where it is an important part of the syntax, or Fortran where it is immaterial.

First Perl Program

Interactive Mode Programming

You can use Perl interpreter with
 -e
 option at command line, which lets you execute Perl statements from the command line. Let's try something at $ prompt as follows −

$perl
 -
 e
 'print "Hello World\n"'

This execution will produce the following result −

Hello, world

Script Mode Programming

Assuming you are already on $ prompt, let's open a text file hello.pl using vi or vim editor and put the following lines inside your file.

#!/usr/bin/perl

This will print "Hello, World"

print
 "Hello, world\n"
 ;

Here
 /usr/bin/perl
 is actual the perl interpreter binary. Before you execute your script, be sure to change the mode of the script file and give execution priviledge, generally a setting of 0755 works perfectly and finally you execute the above script as follows −

$chmod 0755 hello.pl

$./hello.pl

This execution will produce the following result −

Hello, world

You can use parentheses for functions arguments or omit them according to your personal taste. They are only required occasionally to clarify the issues of precedence. Following two statements produce the same result.

print
 (
 "Hello, world\n"
);

print
 "Hello, world\n"
 ;

Perl File Extension

A Perl script can be created inside of any normal simple-text editor program. There are several programs available for every type of platform. There are many programs designd for programmers available for download on the web.

As a Perl convention, a Perl file must be saved with a .pl or .PL file extension in order to be recognized as a functioning Perl script. File names can contain numbers, symbols, and letters but must not contain a space. Use an underscore (_) in places of spaces.

Comments in Perl

Comments in any programming language are friends of developers. Comments can be used to make program user friendly and they are simply skipped by the interpreter without impacting the code functionality. For example, in the above program, a line starting with hash
 #
 is a comment.

Simply saying comments in Perl start with a hash symbol and run to the end of the line −

This is a comment in perl

Lines starting with = are interpreted as the start of a section of embedded documentation (pod), and all subsequent lines until the next =cut are ignored by the compiler. Following is the example −

#!/usr/bin/perl

This is a single line comment

print
 "Hello, world\n"
 ;

=
 begin
 comment

This
 is
 all part
 of
 multiline comment
 .

You
 can
 use
 as
 many lines
 as
 you like

These
 comments will be ignored
 by
 the

compiler
 until
 the
 next
 =
 cut
 is
 encountered
 .

=
 cut

This will produce the following result −

Hello, world

Whitespaces in Perl

A Perl program does not care about whitespaces. Following program works perfectly fine −

#!/usr/bin/perl

print

 "Hello, world\n"
 ;

But if spaces are inside the quoted strings, then they would be printed as is. For example −

#!/usr/bin/perl

This would print with a line break in the middle

print
 "Hello

 world\n"
 ;

This will produce the following result −

Hello

 world

All types of whitespace like spaces, tabs, newlines, etc. are equivalent for the interpreter when they are used outside of the quotes. A line containing only whitespace, possibly with a comment, is known as a blank line, and Perl totally ignores it.

Single and Double Quotes in Perl

You can use double quotes or single quotes around literal strings as follows −

#!/usr/bin/perl

print
 "Hello, world\n"
 ;

print
 'Hello, world\n'
 ;

This will produce the following result −

Hello, world

Hello, world\n$

There is an important difference in single and double quotes. Only double quotes
 interpolate
 variables and special characters such as newlines \n, whereas single quote does not interpolate any variable or special character. Check below example where we are using $a as a variable to store a value and later printing that value −

#!/usr/bin/perl

$a
 =
 10
 ;

print
 "Value of a = $a\n"
 ;

print
 'Value of a = $a\n'
 ;

This will produce the following result −

Value of a = 10

Value of a = $a\n$

"Here" Documents

You can store or print multiline text with a great comfort. Even you can make use of variables inside the "here" document. Below is a simple syntax, check carefully there must be no space between the << and the identifier.

An identifier may be either a bare word or some quoted text like we used EOF below. If identifier is quoted, the type of quote you use determines the treatment of the text inside the here docoment, just as in regular quoting. An unquoted identifier works like double quotes.

#!/usr/bin/perl

$a
 =
 10
 ;

$var
 =
 <<
 "EOF"
 ;

This
 is
 the syntax
 for
 here document
 and
 it will
 continue

until
 it encounters a EOF
 in
 the first line
 .

This
 is
 case
 of
 double
 quote so variable
 value
 will be

interpolated
 .
 For
 example
 value
 of
 a
 =
 $a

EOF

print
 "$var\n"
 ;

$var
 =
 <<
 'EOF'
 ;

This
 is
 case
 of
 single quote so variable
 value
 will be

interpolated
 .
 For
 example
 value
 of
 a
 =
 $a

EOF

print
 "$var\n"
 ;

This will produce the following result −

This is the syntax for here document and it will continue

until it encounters a EOF in the first line.

This is case of double quote so variable value will be

interpolated. For example value of a = 10

This is case of single quote so variable value will be

interpolated. For example value of a = $a

Escaping Characters

Perl uses the backslash (\) character to escape any type of character that might interfere with our code. Let's take one example where we want to print double quote and $ sign −

#!/usr/bin/perl

$result
 =
 "This is \"number\""
 ;

print
 "$result\n"
 ;

print
 "\$result\n"
 ;

This will produce the following result −

This is "number"

$result

Perl Identifiers

A Perl identifier is a name used to identify a variable, function, class, module, or other object. A Perl variable name starts with either $, @ or % followed by zero or more letters, underscores, and digits (0 to 9).

Perl does not allow punctuation characters such as @, $, and % within identifiers. Perl is a
 case sensitive
 programming language. Thus
 $Manpower
 and
 $manpower
 are two different identifiers in Perl.

Data Types

Perl is a loosely typed language and there is no need to specify a type for your data while using in your program. The Perl interpreter will choose the type based on the context of the data itself.

Perl has three basic data types: scalars, arrays of scalars, and hashes of scalars, also known as associative arrays. Here is a little detail about these data types.

	

Sr.No.

	

Types & Description

	

1

	

Scalar

Scalars are simple variables. They are preceded by a dollar sign ($). A scalar is either a number, a string, or a reference. A reference is actually an address of a variable, which we will see in the upcoming chapters.

	

2

	

Arrays

Arrays are ordered lists of scalars that you access with a numeric index, which starts with 0. They are preceded by an "at" sign (@).

	

3

	

Hashes

Hashes are unordered sets of key/value pairs that you access using the keys as subscripts. They are preceded by a percent sign (%).

Numeric Literals

Perl stores all the numbers internally as either signed integers or double-precision floating-point values. Numeric literals are specified in any of the following floating-point or integer formats −

	

Type

	

Value

	

Integer

	

1234

	

Negative integer

	

-100

	

Floating point

	

2000

	

Scientific notation

	

16.12E14

	

Hexadecimal

	

0xffff

	

Octal

	

0577

String Literals

Strings are sequences of characters. They are usually alphanumeric values delimited by either single (') or double (") quotes. They work much like UNIX shell quotes where you can use single quoted strings and double quoted strings.

Double-quoted string literals allow variable interpolation, and single-quoted strings are not. There are certain characters when they are proceeded by a back slash, have special meaning and they are used to represent like newline (\n) or tab (\t).

You can embed newlines or any of the following Escape sequences directly in your double quoted strings −

	

Escape sequence

	

Meaning

	

\\

	

Backslash

	

\'

	

Single quote

	

\"

	

Double quote

	

\a

	

Alert or bell

	

\b

	

Backspace

	

\f

	

Form feed

	

\n

	

Newline

	

\r

	

Carriage return

	

\t

	

Horizontal tab

	

\v

	

Vertical tab

	

\0nn

	

Creates Octal formatted numbers

	

\xnn

	

Creates Hexideciamal formatted numbers

	

\cX

	

Controls characters, x may be any character

	

\u

	

Forces next character to uppercase

	

\l

	

Forces next character to lowercase

	

\U

	

Forces all following characters to uppercase

	

\L

	

Forces all following characters to lowercase

	

\Q

	

Backslash all following non-alphanumeric characters

	

\E

	

End \U, \L, or \Q

Example

Let's see again how strings behave with single quotation and double quotation. Here we will use string escapes mentioned in the above table and will make use of the scalar variable to assign string values.

#!/usr/bin/perl

This is case of interpolation.

$str
 =
 "Welcome to \ntutorialspoint.com!"
 ;

print
 "$str\n"
 ;

This is case of non-interpolation.

$str
 =
 'Welcome to \ntutorialspoint.com!'
 ;

print
 "$str\n"
 ;

Only W will become upper case.

$str
 =
 "\uwelcome to tutorialspoint.com!"
 ;

print
 "$str\n"
 ;

Whole line will become capital.

$str
 =
 "\UWelcome to tutorialspoint.com!"
 ;

print
 "$str\n"
 ;

A portion of line will become capital.

$str
 =
 "Welcome to \Ututorialspoint\E.com!"
 ;

print
 "$str\n"
 ;

Backsalash non alpha-numeric including spaces.

$str
 =
 "\QWelcome to tutorialspoint's family"
 ;

print
 "$str\n"
 ;

This will produce the following result −

Welcome to

tutorialspoint.com!

Welcome to \ntutorialspoint.com!

Welcome to tutorialspoint.com!

WELCOME TO TUTORIALSPOINT.COM!

Welcome to TUTORIALSPOINT.com!

Welcome\ to\ tutorialspoint\'s\ family

Variables

Variables are the reserved memory locations to store values. This means that when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be stored in the reserved memory. Therefore, by assigning different data types to variables, you can store integers, decimals, or strings in these variables.

We have learnt that Perl has the following three basic data types −

	
Scalars

	
Arrays

	
Hashes

Accordingly, we are going to use three types of variables in Perl. A
 scalar
 variable will precede by a dollar sign ($) and it can store either a number, a string, or a reference. An
 array
 variable will precede by sign @ and it will store ordered lists of scalars. Finaly, the
 Hash
 variable will precede by sign % and will be used to store sets of key/value pairs.

Perl maintains every variable type in a separate namespace. So you can, without fear of conflict, use the same name for a scalar variable, an array, or a hash. This means that $foo and @foo are two different variables.

Creating Variables

Perl variables do not have to be explicitly declared to reserve memory space. The declaration happens automatically when you assign a value to a variable. The equal sign (=) is used to assign values to variables.

Keep a note that this is mandatory to declare a variable before we use it if we use
 use strict
 statement in our program.

The operand to the left of the = operator is the name of the variable, and the operand to the right of the = operator is the value stored in the variable. For example −

$age
 =
 25
 ;

 # An integer assignment

$name
 =
 "John Paul"
 ;

 # A string

$salary
 =
 1445.50
 ;

 # A floating point

Here 25, "John Paul" and 1445.50 are the values assigned to
 $age
 ,
 $name
 and
 $salary
 variables, respectively. Shortly we will see how we can assign values to arrays and hashes.

Scalar Variables

A scalar is a single unit of data. That data might be an integer number, floating point, a character, a string, a paragraph, or an entire web page. Simply saying it could be anything, but only a single thing.

Here is a simple example of using scalar variables −

#!/usr/bin/perl

$age
 =
 25
 ;

 # An integer assignment

$name
 =
 "John Paul"
 ;

 # A string

$salary
 =
 1445.50
 ;

 # A floating point

print
 "Age = $age\n"
 ;

print
 "Name = $name\n"
 ;

print
 "Salary = $salary\n"
 ;

This will produce the following result −

Age = 25

Name = John Paul

Salary = 1445.5

Array Variables

An array is a variable that stores an ordered list of scalar values. Array variables are preceded by an "at" (@) sign. To refer to a single element of an array, you will use the dollar sign ($) with the variable name followed by the index of the element in square brackets.

Here is a simple example of using array variables −

#!/usr/bin/perl

@ages
 =
 (
 25
 ,
 30
 ,
 40
);

@names
 =
 (
 "John Paul"
 ,
 "Lisa"
 ,
 "Kumar"
);

print
 "\$ages[0] = $ages[0]\n"
 ;

print
 "\$ages[1] = $ages[1]\n"
 ;

print
 "\$ages[2] = $ages[2]\n"
 ;

print
 "\$names[0] = $names[0]\n"
 ;

print
 "\$names[1] = $names[1]\n"
 ;

print
 "\$names[2] = $names[2]\n"
 ;

Here we used escape sign (\) before the $ sign just to print it. Other Perl will understand it as a variable and will print its value. When executed, this will produce the following result −

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

Hash Variables

A hash is a set of
 key/value
 pairs. Hash variables are preceded by a percent (%) sign. To refer to a single element of a hash, you will use the hash variable name followed by the "key" associated with the value in curly brackets.

Here is a simple example of using hash variables −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 ,
 45
 ,
 'Lisa'
 ,
 30
 ,
 'Kumar'
 ,
 40
);

print
 "\$data{'John Paul'} = $data{'John Paul'}\n"
 ;

print
 "\$data{'Lisa'} = $data{'Lisa'}\n"
 ;

print
 "\$data{'Kumar'} = $data{'Kumar'}\n"
 ;

This will produce the following result −

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

Variable Context

Perl treats same variable differently based on Context, i.e., situation where a variable is being used. Let's check the following example −

#!/usr/bin/perl

@names
 =
 (
 'John Paul'
 ,
 'Lisa'
 ,
 'Kumar'
);

@copy
 =
 @names
 ;

$size
 =
 @names
 ;

print
 "Given names are : @copy\n"
 ;

print
 "Number of names are : $size\n"
 ;

This will produce the following result −

Given names are : John Paul Lisa Kumar

Number of names are : 3

Here @names is an array, which has been used in two different contexts. First we copied it into anyother array, i.e., list, so it returned all the elements assuming that context is list context. Next we used the same array and tried to store this array in a scalar, so in this case it returned just the number of elements in this array assuming that context is scalar context. Following table lists down the various contexts −

	

Sr.No.

	

Context & Description

	

1

	

Scalar

Assignment to a scalar variable evaluates the right-hand side in a scalar context.

	

2

	

List

Assignment to an array or a hash evaluates the right-hand side in a list context.

	

3

	

Boolean

Boolean context is simply any place where an expression is being evaluated to see whether it's true or false.

	

4

	

Void

This context not only doesn't care what the return value is, it doesn't even want a return value.

	

5

	

Interpolative

This context only happens inside quotes, or things that work like quotes.

Scalars

A scalar is a single unit of data. That data might be an integer number, floating point, a character, a string, a paragraph, or an entire web page.

Here is a simple example of using scalar variables −

#!/usr/bin/perl

$age
 =
 25
 ;

 # An integer assignment

$name
 =
 "John Paul"
 ;

 # A string

$salary
 =
 1445.50
 ;

 # A floating point

print
 "Age = $age\n"
 ;

print
 "Name = $name\n"
 ;

print
 "Salary = $salary\n"
 ;

This will produce the following result −

Age = 25

Name = John Paul

Salary = 1445.5

Numeric Scalars

A scalar is most often either a number or a string. Following example demonstrates the usage of various types of numeric scalars −

#!/usr/bin/perl

$integer
 =
 200
 ;

$negative
 =
 -
 300
 ;

$floating
 =
 200.340
 ;

$bigfloat
 =
 -
 1.2E-23
 ;

377 octal, same as 255 decimal

$octal
 =
 0377
 ;

FF hex, also 255 decimal

$hexa
 =
 0xff
 ;

print
 "integer = $integer\n"
 ;

print
 "negative = $negative\n"
 ;

print
 "floating = $floating\n"
 ;

print
 "bigfloat = $bigfloat\n"
 ;

print
 "octal = $octal\n"
 ;

print
 "hexa = $hexa\n"
 ;

This will produce the following result −

integer = 200

negative = -300

floating = 200.34

bigfloat = -1.2e-23

octal = 255

hexa = 255

String Scalars

Following example demonstrates the usage of various types of string scalars. Notice the difference between single quoted strings and double quoted strings −

#!/usr/bin/perl

$var
 =
 "This is string scalar!"
 ;

$quote
 =
 'I m inside single quote - $var'
 ;

$double
 =
 "This is inside single quote - $var"
 ;

$escape
 =
 "This example of escape -\tHello, World!"
 ;

print
 "var = $var\n"
 ;

print
 "quote = $quote\n"
 ;

print
 "double = $double\n"
 ;

print
 "escape = $escape\n"
 ;

This will produce the following result −

var = This is string scalar!

quote = I m inside single quote - $var

double = This is inside single quote - This is string scalar!

escape = This example of escape - Hello, World

Scalar Operations

You will see a detail of various operators available in Perl in a separate chapter, but here we are going to list down few numeric and string operations.

#!/usr/bin/perl

$str
 =
 "hello"
 .
 "world"
 ;

 # Concatenates strings.

$num
 =
 5
 +
 10
 ;

 # adds two numbers.

$mul
 =
 4
 *
 5
 ;

 # multiplies two numbers.

$mix
 =
 $str
 .
 $num
 ;

 # concatenates string and number.

print
 "str = $str\n"
 ;

print
 "num = $num\n"
 ;

print
 "mix = $mix\n"
 ;

This will produce the following result −

str = helloworld

num = 15

mul = 20

mix = helloworld15

Multiline Strings

If you want to introduce multiline strings into your programs, you can use the standard single quotes as below −

#!/usr/bin/perl

$string
 =
 'This is

a multiline

string'
 ;

print
 "$string\n"
 ;

This will produce the following result −

This is

a multiline

string

You can use "here" document syntax as well to store or print multilines as below −

#!/usr/bin/perl

print
 <<
 EOF
 ;

This
 is

a multiline

string

EOF

This will also produce the same result −

This is

a multiline

string

V-Strings

A literal of the form v1.20.300.4000 is parsed as a string composed of characters with the specified ordinals. This form is known as v-strings.

A v-string provides an alternative and more readable way to construct strings, rather than use the somewhat less readable interpolation form "\x{1}\x{14}\x{12c}\x{fa0}".

They are any literal that begins with a v and is followed by one or more dot-separated elements. For example −

#!/usr/bin/perl

$smile
 =
 v9786
 ;

$foo
 =
 v102
 .
 111.111
 ;

$martin
 =
 v77
 .
 97.114
 .
 116.105
 .
 110
 ;

print
 "smile = $smile\n"
 ;

print
 "foo = $foo\n"
 ;

print
 "martin = $martin\n"
 ;

This will also produce the same result −

smile = ☺

foo = foo

martin = Martin

Wide character in print at main.pl line 7.

Special Literals

So far you must have a feeling about string scalars and its concatenation and interpolation opration. So let me tell you about three special literals __FILE__, __LINE__, and __PACKAGE__ represent the current filename, line number, and package name at that point in your program.

They may be used only as separate tokens and will not be interpolated into strings. Check the below example −

#!/usr/bin/perl

print
 "File name "
 .
 __FILE__
 .
 "\n"
 ;

print
 "Line Number "
 .
 __LINE__
 .
 "\n"
 ;

print
 "Package "
 .
 __PACKAGE__
 .
 "\n"
 ;

they can not be interpolated

print
 "__FILE__ __LINE__ __PACKAGE__\n"
 ;

This will produce the following result −

File name hello.pl

Line Number 4

Package main

__FILE__ __LINE__ __PACKAGE__

Arrays

An array is a variable that stores an ordered list of scalar values. Array variables are preceded by an "at" (@) sign. To refer to a single element of an array, you will use the dollar sign ($) with the variable name followed by the index of the element in square brackets.

Here is a simple example of using the array variables −

#!/usr/bin/perl

@ages
 =
 (
 25
 ,
 30
 ,
 40
);

@names
 =
 (
 "John Paul"
 ,
 "Lisa"
 ,
 "Kumar"
);

print
 "\$ages[0] = $ages[0]\n"
 ;

print
 "\$ages[1] = $ages[1]\n"
 ;

print
 "\$ages[2] = $ages[2]\n"
 ;

print
 "\$names[0] = $names[0]\n"
 ;

print
 "\$names[1] = $names[1]\n"
 ;

print
 "\$names[2] = $names[2]\n"
 ;

Here we have used the escape sign (\) before the $ sign just to print it. Other Perl will understand it as a variable and will print its value. When executed, this will produce the following result −

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

In Perl, List and Array terms are often used as if they're interchangeable. But the list is the data, and the array is the variable.

Array Creation

Array variables are prefixed with the @ sign and are populated using either parentheses or the qw operator. For example −

@array
 =
 (
 1
 ,
 2
 ,
 'Hello'
);

@array
 =
 qw
 /
 This
 is
 an array
 /;

The second line uses the qw// operator, which returns a list of strings, separating the delimited string by white space. In this example, this leads to a four-element array; the first element is 'this' and last (fourth) is 'array'. This means that you can use different lines as follows −

@days
 =
 qw
 /
 Monday

Tuesday

...

Sunday
 /;

You can also populate an array by assigning each value individually as follows −

$array
 [
 0
]
 =
 'Monday'
 ;

...

$array
 [
 6
]
 =
 'Sunday'
 ;

Accessing Array Elements

When accessing individual elements from an array, you must prefix the variable with a dollar sign ($) and then append the element index within the square brackets after the name of the variable. For example −

#!/usr/bin/perl

@days
 =
 qw
 /
 Mon
 Tue
 Wed
 Thu
 Fri
 Sat
 Sun
 /;

print
 "$days[0]\n"
 ;

print
 "$days[1]\n"
 ;

print
 "$days[2]\n"
 ;

print
 "$days[6]\n"
 ;

print
 "$days[-1]\n"
 ;

print
 "$days[-7]\n"
 ;

This will produce the following result −

Mon

Tue

Wed

Sun

Sun

Mon

Array indices start from zero, so to access the first element you need to give 0 as indices. You can also give a negative index, in which case you select the element from the end, rather than the beginning, of the array. This means the following −

print
 $days
 [-
 1
];
 # outputs Sun

print
 $days
 [-
 7
];
 # outputs Mon

Sequential Number Arrays

Perl offers a shortcut for sequential numbers and letters. Rather than typing out each element when counting to 100 for example, we can do something like as follows −

#!/usr/bin/perl

@var_10
 =
 (
 1.
 .
 10
);

@var_20
 =
 (
 10.
 .
 20
);

@var_abc
 =
 (
 a
 ..
 z
);

print
 "@var_10\n"
 ;

 # Prints number from 1 to 10

print
 "@var_20\n"
 ;

 # Prints number from 10 to 20

print
 "@var_abc\n"
 ;

 # Prints number from a to z

Here double dot (..) is called
 range operator
 . This will produce the following result −

1 2 3 4 5 6 7 8 9 10

10 11 12 13 14 15 16 17 18 19 20

a b c d e f g h i j k l m n o p q r s t u v w x y z

Array Size

The size of an array can be determined using the scalar context on the array - the returned value will be the number of elements in the array −

@array
 =
 (
 1
 ,
 2
 ,
 3
);

print
 "Size: "
 ,
 scalar
 @array
 ,
 "\n"
 ;

The value returned will always be the physical size of the array, not the number of valid elements. You can demonstrate this, and the difference between scalar @array and $#array, using this fragment is as follows −

#!/usr/bin/perl

@array
 =
 (
 1
 ,
 2
 ,
 3
);

$array
 [
 50
]
 =
 4
 ;

$size
 =
 @array
 ;

$max_index
 =
 $
 #array;

print
 "Size: $size\n"
 ;

print
 "Max Index: $max_index\n"
 ;

This will produce the following result −

Size: 51

Max Index: 50

There are only four elements in the array that contains information, but the array is 51 elements long, with a highest index of 50.

Adding and Removing Elements in Array

Perl provides a number of useful functions to add and remove elements in an array. You may have a question what is a function? So far you have used
 print
 function to print various values. Similarly there are various other functions or sometime called sub-routines, which can be used for various other functionalities.

	

Sr.No.

	

Types & Description

	

1

	

push @ARRAY, LIST

Pushes the values of the list onto the end of the array.

	

2

	

pop @ARRAY

Pops off and returns the last value of the array.

	

3

	

shift @ARRAY

Shifts the first value of the array off and returns it, shortening the array by 1 and moving everything down.

	

4

	

unshift @ARRAY, LIST

Prepends list to the front of the array, and returns the number of elements in the new array.

#!/usr/bin/perl

create a simple array

@coins
 =
 (
 "Quarter"
 ,
 "Dime"
 ,
 "Nickel"
);

print
 "1. \@coins = @coins\n"
 ;

add one element at the end of the array

push
 (
 @coins
 ,
 "Penny"
);

print
 "2. \@coins = @coins\n"
 ;

add one element at the beginning of the array

unshift
 (
 @coins
 ,
 "Dollar"
);

print
 "3. \@coins = @coins\n"
 ;

remove one element from the last of the array.

pop
 (
 @coins
);

print
 "4. \@coins = @coins\n"
 ;

remove one element from the beginning of the array.

shift
 (
 @coins
);

print
 "5. \@coins = @coins\n"
 ;

This will produce the following result −

1. @coins = Quarter Dime Nickel

2. @coins = Quarter Dime Nickel Penny

3. @coins = Dollar Quarter Dime Nickel Penny

4. @coins = Dollar Quarter Dime Nickel

5. @coins = Quarter Dime Nickel

Slicing Array Elements

You can also extract a "slice" from an array - that is, you can select more than one item from an array in order to produce another array.

#!/usr/bin/perl

@days
 =
 qw
 /
 Mon
 Tue
 Wed
 Thu
 Fri
 Sat
 Sun
 /;

@weekdays
 =
 @days
 [
 3
 ,
 4
 ,
 5
];

print
 "@weekdays\n"
 ;

This will produce the following result −

Thu Fri Sat

The specification for a slice must have a list of valid indices, either positive or negative, each separated by a comma. For speed, you can also use the
 ..
 range operator −

#!/usr/bin/perl

@days
 =
 qw
 /
 Mon
 Tue
 Wed
 Thu
 Fri
 Sat
 Sun
 /;

@weekdays
 =
 @days
 [
 3.
 .
 5
];

print
 "@weekdays\n"
 ;

This will produce the following result −

Thu Fri Sat

Replacing Array Elements

Now we are going to introduce one more function called
 splice()
 , which has the following syntax −

splice
 @ARRAY
 ,
 OFFSET
 [
 ,
 LENGTH
 [
 ,
 LIST
]
]

This function will remove the elements of @ARRAY designated by OFFSET and LENGTH, and replaces them with LIST, if specified. Finally, it returns the elements removed from the array. Following is the example −

#!/usr/bin/perl

@nums
 =
 (
 1.
 .
 20
);

print
 "Before - @nums\n"
 ;

splice
 (
 @nums
 ,
 5
 ,
 5
 ,
 21.
 .
 25
);

print
 "After - @nums\n"
 ;

This will produce the following result −

Before - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

After - 1 2 3 4 5 21 22 23 24 25 11 12 13 14 15 16 17 18 19 20

Here, the actual replacement begins with the 6th number after that five elements are then replaced from 6 to 10 with the numbers 21, 22, 23, 24 and 25.

Transform Strings to Arrays

Let's look into one more function called
 split()
 , which has the following syntax −

split [PATTERN [, EXPR [, LIMIT]]]

This function splits a string into an array of strings, and returns it. If LIMIT is specified, splits into at most that number of fields. If PATTERN is omitted, splits on whitespace. Following is the example −

#!/usr/bin/perl

define Strings

$var_string
 =
 "Rain-Drops-On-Roses-And-Whiskers-On-Kittens"
 ;

$var_names
 =
 "Larry,David,Roger,Ken,Michael,Tom"
 ;

transform above strings into arrays.

@string
 =
 split
 (
 '-'
 ,
 $var_string
);

@names

 =
 split
 (
 ','
 ,
 $var_names
);

print
 "$string[3]\n"
 ;

 # This will print Roses

print
 "$names[4]\n"
 ;

 # This will print Michael

This will produce the following result −

Roses

Michael

Transform Arrays to Strings

We can use the
 join()
 function to rejoin the array elements and form one long scalar string. This function has the following syntax −

join EXPR, LIST

This function joins the separate strings of LIST into a single string with fields separated by the value of EXPR, and returns the string. Following is the example −

#!/usr/bin/perl

define Strings

$var_string
 =
 "Rain-Drops-On-Roses-And-Whiskers-On-Kittens"
 ;

$var_names
 =
 "Larry,David,Roger,Ken,Michael,Tom"
 ;

transform above strings into arrays.

@string
 =
 split
 (
 '-'
 ,
 $var_string
);

@names

 =
 split
 (
 ','
 ,
 $var_names
);

$string1
 =
 join
 (
 '-'
 ,
 @string
);

$string2
 =
 join
 (
 ','
 ,
 @names
);

print
 "$string1\n"
 ;

print
 "$string2\n"
 ;

This will produce the following result −

Rain-Drops-On-Roses-And-Whiskers-On-Kittens

Larry,David,Roger,Ken,Michael,Tom

Sorting Arrays

The
 sort()
 function sorts each element of an array according to the ASCII Numeric standards. This function has the following syntax −

sort [SUBROUTINE] LIST

This function sorts the LIST and returns the sorted array value. If SUBROUTINE is specified then specified logic inside the SUBTROUTINE is applied while sorting the elements.

#!/usr/bin/perl

define an array

@foods
 =
 qw
 (
 pizza steak chicken burgers
);

print
 "Before: @foods\n"
 ;

sort this array

@foods
 =
 sort
 (
 @foods
);

print
 "After: @foods\n"
 ;

This will produce the following result −

Before: pizza steak chicken burgers

After: burgers chicken pizza steak

Please note that sorting is performed based on ASCII Numeric value of the words. So the best option is to first transform every element of the array into lowercase letters and then perform the sort function.

Merging Arrays

Because an array is just a comma-separated sequence of values, you can combine them together as shown below −

#!/usr/bin/perl

@numbers
 =
 (
 1
 ,
 3
 ,(
 4
 ,
 5
 ,
 6
));

print
 "numbers = @numbers\n"
 ;

This will produce the following result −

numbers = 1 3 4 5 6

The embedded arrays just become a part of the main array as shown below −

#!/usr/bin/perl

@odd
 =
 (
 1
 ,
 3
 ,
 5
);

@even
 =
 (
 2
 ,
 4
 ,
 6
);

@numbers
 =
 (
 @odd
 ,
 @even
);

print
 "numbers = @numbers\n"
 ;

This will produce the following result −

numbers = 1 3 5 2 4 6

Selecting Elements from Lists

The list notation is identical to that for arrays. You can extract an element from an array by appending square brackets to the list and giving one or more indices −

#!/usr/bin/perl

$var
 =
 (
 5
 ,
 4
 ,
 3
 ,
 2
 ,
 1
)[
 4
];

print
 "value of var = $var\n"

This will produce the following result −

value of var = 1

Similarly, we can extract slices, although without the requirement for a leading @ character −

#!/usr/bin/perl

@list
 =
 (
 5
 ,
 4
 ,
 3
 ,
 2
 ,
 1
)[
 1.
 .
 3
];

print
 "Value of list = @list\n"
 ;

This will produce the following result −

Value of list = 4 3 2

Hashes

A hash is a set of
 key/value
 pairs. Hash variables are preceded by a percent (%) sign. To refer to a single element of a hash, you will use the hash variable name preceded by a "$" sign and followed by the "key" associated with the value in curly brackets..

Here is a simple example of using the hash variables −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 ,
 45
 ,
 'Lisa'
 ,
 30
 ,
 'Kumar'
 ,
 40
);

print
 "\$data{'John Paul'} = $data{'John Paul'}\n"
 ;

print
 "\$data{'Lisa'} = $data{'Lisa'}\n"
 ;

print
 "\$data{'Kumar'} = $data{'Kumar'}\n"
 ;

This will produce the following result −

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

Creating Hashes

Hashes are created in one of the two following ways. In the first method, you assign a value to a named key on a one-by-one basis −

$data
 {
 'John Paul'
 }
 =
 45
 ;

$data
 {
 'Lisa'
 }
 =
 30
 ;

$data
 {
 'Kumar'
 }
 =
 40
 ;

In the second case, you use a list, which is converted by taking individual pairs from the list: the first element of the pair is used as the key, and the second, as the value. For example −

%
 data
 =
 (
 'John Paul'
 ,
 45
 ,
 'Lisa'
 ,
 30
 ,
 'Kumar'
 ,
 40
);

For clarity, you can use => as an alias for , to indicate the key/value pairs as follows −

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

Here is one more variant of the above form, have a look at it, here all the keys have been preceded by hyphen (-) and no quotation is required around them −

%
 data
 =
 (-
 JohnPaul
 =>
 45
 ,
 -
 Lisa
 =>
 30
 ,
 -
 Kumar
 =>
 40
);

But it is important to note that there is a single word, i.e., without spaces keys have been used in this form of hash formation and if you build-up your hash this way then keys will be accessed using hyphen only as shown below.

$val
 =
 %
 data
 {-
 JohnPaul
 }

$val
 =
 %
 data
 {-
 Lisa
 }

Accessing Hash Elements

When accessing individual elements from a hash, you must prefix the variable with a dollar sign ($) and then append the element key within curly brackets after the name of the variable. For example −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

print
 "$data{'John Paul'}\n"
 ;

print
 "$data{'Lisa'}\n"
 ;

print
 "$data{'Kumar'}\n"
 ;

This will produce the following result −

45

30

40

Extracting Slices

You can extract slices of a hash just as you can extract slices from an array. You will need to use @ prefix for the variable to store the returned value because they will be a list of values −

#!/uer/bin/perl

%
 data
 =
 (-
 JohnPaul
 =>
 45
 ,
 -
 Lisa
 =>
 30
 ,
 -
 Kumar
 =>
 40
);

@array
 =
 @data
 {-
 JohnPaul
 ,
 -
 Lisa
 };

print
 "Array : @array\n"
 ;

This will produce the following result −

Array : 45 30

Extracting Keys and Values

You can get a list of all of the keys from a hash by using
 keys
 function, which has the following syntax −

keys %HASH

This function returns an array of all the keys of the named hash. Following is the example −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

@names
 =
 keys
 %
 data
 ;

print
 "$names[0]\n"
 ;

print
 "$names[1]\n"
 ;

print
 "$names[2]\n"
 ;

This will produce the following result −

Lisa

John Paul

Kumar

Similarly, you can use
 values
 function to get a list of all the values. This function has the following syntax −

values %HASH

This function returns a normal array consisting of all the values of the named hash. Following is the example −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

@ages
 =
 values
 %
 data
 ;

print
 "$ages[0]\n"
 ;

print
 "$ages[1]\n"
 ;

print
 "$ages[2]\n"
 ;

This will produce the following result −

30

45

40

Checking for Existence

If you try to access a key/value pair from a hash that doesn't exist, you'll normally get the
 undefined
 value, and if you have warnings switched on, then you'll get a warning generated at run time. You can get around this by using the
 exists
 function, which returns true if the named key exists, irrespective of what its value might be −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

if
 (
 exists
 (
 $data
 {
 'Lisa'
 }
)
)
 {

 print
 "Lisa is $data{'Lisa'} years old\n"
 ;

}
 else
 {

 print
 "I don't know age of Lisa\n"
 ;

}

Here we have introduced the IF...ELSE statement, which we will study in a separate chapter. For now you just assume that
 if(condition)
 part will be executed only when the given condition is true otherwise
 else
 part will be executed. So when we execute the above program, it produces the following result because here the given condition
 exists($data{'Lisa'}
 returns true −

Lisa is 30 years old

Getting Hash Size

You can get the size - that is, the number of elements from a hash by using the scalar context on either keys or values. Simply saying first you have to get an array of either the keys or values and then you can get the size of array as follows −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

@keys
 =
 keys
 %
 data
 ;

$size
 =
 @keys
 ;

print
 "1 - Hash size: is $size\n"
 ;

@values
 =
 values
 %
 data
 ;

$size
 =
 @values
 ;

print
 "2 - Hash size: is $size\n"
 ;

This will produce the following result −

1 - Hash size: is 3

2 - Hash size: is 3

Add and Remove Elements in Hashes

Adding a new key/value pair can be done with one line of code using simple assignment operator. But to remove an element from the hash you need to use
 delete
 function as shown below in the example −

#!/usr/bin/perl

%
 data
 =
 (
 'John Paul'
 =>
 45
 ,
 'Lisa'
 =>
 30
 ,
 'Kumar'
 =>
 40
);

@keys
 =
 keys
 %
 data
 ;

$size
 =
 @keys
 ;

print
 "1 - Hash size: is $size\n"
 ;

adding an element to the hash;

$data
 {
 'Ali'
 }
 =
 55
 ;

@keys
 =
 keys
 %
 data
 ;

$size
 =
 @keys
 ;

print
 "2 - Hash size: is $size\n"
 ;

delete the same element from the hash;

delete
 $data
 {
 'Ali'
 };

@keys
 =
 keys
 %
 data
 ;

$size
 =
 @keys
 ;

print
 "3 - Hash size: is $size\n"
 ;

This will produce the following result −

1 - Hash size: is 3

2 - Hash size: is 4

3 - Hash size: is 3

Perl Conditional Statements - IF...ELSE

Perl conditional statements helps in the decision making, which require that the programmer specifies one or more conditions to be evaluated or tested by the program, along with a statement or statements to be executed if the condition is determined to be true, and optionally, other statements to be executed if the condition is determined to be false.

Following is the general from of a typical decision making structure found in most of the programming languages −

[image: Decision making statements in Perl]

The number 0, the strings '0' and "" , the empty list () , and undef are all
 false
 in a boolean context and all other values are
 true
 . Negation of a true value by
 !
 or
 not
 returns a special false value.

Perl programming language provides the following types of conditional statements.

	

Sr.No.

	

Statement & Description

	

1

	

if statement

An
 if statement
 consists of a boolean expression followed by one or more statements.

	

2

	

if...else statement

An
 if statement
 can be followed by an optional
 else statement
 .

	

3

	

if...elsif...else statement

An
 if statement
 can be followed by an optional
 elsif statement
 and then by an optional
 else statement
 .

	

4

	

unless statement

An
 unless statement
 consists of a boolean expression followed by one or more statements.

	

5

	

unless...else statement

An
 unless statement
 can be followed by an optional
 else statement
 .

	

6

	

unless...elsif..else statement

An
 unless statement
 can be followed by an optional
 elsif statement
 and then by an optional
 else statement
 .

	

7

	

switch statement

With the latest versions of Perl, you can make use of the
 switch
 statement. which allows a simple way of comparing a variable value against various conditions.

The ? : Operator

Let's check the
 conditional operator ? :
 which can be used to replace
 if...else
 statements. It has the following general form −

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the expression. Below is a simple example making use of this operator −

#!/usr/local/bin/perl

$name
 =
 "Ali"
 ;

$age
 =
 10
 ;

$status
 =
 (
 $age
 >
 60
)?
 "A senior citizen"
 :
 "Not a senior citizen"
 ;

print
 "$name is - $status\n"
 ;

This will produce the following result −

Ali is - Not a senior citizen

Loops

There may be a situation when you need to execute a block of code several number of times. In general, statements are executed sequentially: The first statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and following is the general form of a loop statement in most of the programming languages −

[image: Loop Architecture in Perl]

Perl programming language provides the following types of loop to handle the looping requirements.

	

Sr.No.

	

Loop Type & Description

	

1

	

while loop

Repeats a statement or group of statements while a given condition is true. It tests the condition before executing the loop body.

	

2

	

until loop

Repeats a statement or group of statements until a given condition becomes true. It tests the condition before executing the loop body.

	

3

	

for loop

Executes a sequence of statements multiple times and abbreviates the code that manages the loop variable.

	

4

	

foreach loop

The foreach loop iterates over a normal list value and sets the variable VAR to be each element of the list in turn.

	

5

	

do...while loop

Like a while statement, except that it tests the condition at the end of the loop body

	

6

	

nested loops

You can use one or more loop inside any another while, for or do..while loop.

Loop Control Statements

Loop control statements change the execution from its normal sequence. When execution leaves a scope, all automatic objects that were created in that scope are destroyed.

Perl supports the following control statements. Click the following links to check their detail.

	

Sr.No.

	

Control Statement & Description

	

1

	

next statement

Causes the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.

	

2

	

last statement

Terminates the loop statement and transfers execution to the statement immediately following the loop.

	

3

	

continue statement

A continue BLOCK, it is always executed just before the conditional is about to be evaluated again.

	

4

	

redo statement

The redo command restarts the loop block without evaluating the conditional again. The continue block, if any, is not executed.

	

5

	

goto statement

Perl supports a goto command with three forms: goto label, goto expr, and goto &name.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The
 for
 loop is traditionally used for this purpose. Since none of the three expressions that form the
 for
 loop are required, you can make an endless loop by leaving the conditional expression empty.

#!/usr/local/bin/perl

for
 (
 ;
 ;
)
 {

 printf
 "This loop will run forever.\n"
 ;

}

You can terminate the above infinite loop by pressing the Ctrl + C keys.

When the conditional expression is absent, it is assumed to be true. You may have an initialization and increment expression, but as a programmer more commonly use the for (;;) construct to signify an infinite loop.

Operators

What is an Operator?

Simple answer can be given using the expression
 4 + 5 is equal to 9
 . Here 4 and 5 are called operands and + is called operator. Perl language supports many operator types, but following is a list of important and most frequently used operators −

	
Arithmetic Operators

	
Equality Operators

	
Logical Operators

	
Assignment Operators

	
Bitwise Operators

	
Logical Operators

	
Quote-like Operators

	
Miscellaneous Operators

Lets have a look at all the operators one by one.

Perl Arithmetic Operators

Assume variable $a holds 10 and variable $b holds 20, then following are the Perl arithmatic operators −

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

+ (Addition)

Adds values on either side of the operator

Example
 − $a + $b will give 30

	

2

	

- (Subtraction)

Subtracts right hand operand from left hand operand

Example
 − $a - $b will give -10

	

3

	

* (Multiplication)

Multiplies values on either side of the operator

Example
 − $a * $b will give 200

	

4

	

/ (Division)

Divides left hand operand by right hand operand

Example
 − $b / $a will give 2

	

5

	

% (Modulus)

Divides left hand operand by right hand operand and returns remainder

Example
 − $b % $a will give 0

	

6

	

** (Exponent)

Performs exponential (power) calculation on operators

Example
 − $a**$b will give 10 to the power 20

Perl Equality Operators

These are also called relational operators. Assume variable $a holds 10 and variable $b holds 20 then, lets check the following numeric equality operators −

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

== (equal to)

Checks if the value of two operands are equal or not, if yes then condition becomes true.

Example
 − ($a == $b) is not true.

	

2

	

!= (not equal to)

Checks if the value of two operands are equal or not, if values are not equal then condition becomes true.

Example
 − ($a != $b) is true.

	

3

	

<=>

Checks if the value of two operands are equal or not, and returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to, or greater than the right argument.

Example
 − ($a <=> $b) returns -1.

	

4

	

> (greater than)

Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.

Example
 − ($a > $b) is not true.

	

5

	

< (less than)

Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.

Example
 − ($a < $b) is true.

	

6

	

>= (greater than or equal to)

Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.

Example
 − ($a >= $b) is not true.

	

7

	

<= (less than or equal to)

Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.

Example
 − ($a <= $b) is true.

Below is a list of equity operators. Assume variable $a holds "abc" and variable $b holds "xyz" then, lets check the following string equality operators −

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

lt

Returns true if the left argument is stringwise less than the right argument.

Example
 − ($a lt $b) is true.

	

2

	

gt

Returns true if the left argument is stringwise greater than the right argument.

Example
 − ($a gt $b) is false.

	

3

	

le

Returns true if the left argument is stringwise less than or equal to the right argument.

Example
 − ($a le $b) is true.

	

4

	

ge

Returns true if the left argument is stringwise greater than or equal to the right argument.

Example
 − ($a ge $b) is false.

	

5

	

eq

Returns true if the left argument is stringwise equal to the right argument.

Example
 − ($a eq $b) is false.

	

6

	

ne

Returns true if the left argument is stringwise not equal to the right argument.

Example
 − ($a ne $b) is true.

	

7

	

cmp

Returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to, or greater than the right argument.

Example
 − ($a cmp $b) is -1.

Perl Assignment Operators

Assume variable $a holds 10 and variable $b holds 20, then below are the assignment operators available in Perl and their usage −

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

=

Simple assignment operator, Assigns values from right side operands to left side operand

Example
 − $c = $a + $b will assigned value of $a + $b into $c

	

2

	

+=

Add AND assignment operator, It adds right operand to the left operand and assign the result to left operand

Example
 − $c += $a is equivalent to $c = $c + $a

	

3

	

-=

Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operand

Example
 − $c -= $a is equivalent to $c = $c - $a

	

4

	

*=

Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operand

Example
 − $c *= $a is equivalent to $c = $c * $a

	

5

	

/=

Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operand

Example
 − $c /= $a is equivalent to $c = $c / $a

	

6

	

%=

Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operand

Example
 − $c %= $a is equivalent to $c = $c % a

	

7

	

**=

Exponent AND assignment operator, Performs exponential (power) calculation on operators and assign value to the left operand

Example
 − $c **= $a is equivalent to $c = $c ** $a

Perl Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. Assume if $a = 60; and $b = 13; Now in binary format they will be as follows −

$a = 0011 1100

$b = 0000 1101

$a&$b = 0000 1100

$a|$b = 0011 1101

$a^$b = 0011 0001

~$a = 1100 0011

There are following Bitwise operators supported by Perl language, assume if $a = 60; and $b = 13

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

&

Binary AND Operator copies a bit to the result if it exists in both operands.

Example
 − ($a & $b) will give 12 which is 0000 1100

	

2

	

|

Binary OR Operator copies a bit if it exists in eather operand.

Example
 − ($a | $b) will give 61 which is 0011 1101

	

3

	

^

Binary XOR Operator copies the bit if it is set in one operand but not both.

Example
 − ($a ^ $b) will give 49 which is 0011 0001

	

4

	

~

Binary Ones Complement Operator is unary and has the efect of 'flipping' bits.

Example
 − (~$a) will give -61 which is 1100 0011 in 2's complement form due to a signed binary number.

	

5

	

<<

Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.

Example
 − $a << 2 will give 240 which is 1111 0000

	

6

	

>>

Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.

Example
 − $a >> 2 will give 15 which is 0000 1111

Perl Logical Operators

There are following logical operators supported by Perl language. Assume variable $a holds true and variable $b holds false then −

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

and

Called Logical AND operator. If both the operands are true then then condition becomes true.

Example
 − ($a and $b) is false.

	

2

	

&&

C-style Logical AND operator copies a bit to the result if it exists in both operands.

Example
 − ($a && $b) is false.

	

3

	

or

Called Logical OR Operator. If any of the two operands are non zero then then condition becomes true.

Example
 − ($a or $b) is true.

	

4

	

||

C-style Logical OR operator copies a bit if it exists in eather operand.

Example
 − ($a || $b) is true.

	

5

	

not

Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false.

Example
 − not($a and $b) is true.

Quote-like Operators

There are following Quote-like operators supported by Perl language. In the following table, a {} represents any pair of delimiters you choose.

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

q{ }

Encloses a string with-in single quotes

Example
 − q{abcd} gives 'abcd'

	

2

	

qq{ }

Encloses a string with-in double quotes

Example
 − qq{abcd} gives "abcd"

	

3

	

qx{ }

Encloses a string with-in invert quotes

Example
 − qx{abcd} gives `abcd`

Miscellaneous Operators

There are following miscellaneous operators supported by Perl language. Assume variable a holds 10 and variable b holds 20 then −

Show Example

	

Sr.No.

	

Operator & Description

	

1

	

.

Binary operator dot (.) concatenates two strings.

Example
 − If $a = "abc", $b = "def" then $a.$b will give "abcdef"

	

2

	

x

The repetition operator x returns a string consisting of the left operand repeated the number of times specified by the right operand.

Example
 − ('-' x 3) will give ---.

	

3

	

..

The range operator .. returns a list of values counting (up by ones) from the left value to the right value

Example
 − (2..5) will give (2, 3, 4, 5)

	

4

	

++

Auto Increment operator increases integer value by one

Example
 − $a++ will give 11

	

5

	

--

Auto Decrement operator decreases integer value by one

Example
 − $a-- will give 9

	

6

	

->

The arrow operator is mostly used in dereferencing a method or variable from an object or a class name

Example
 − $obj->$a is an example to access variable $a from object $obj.

Perl Operators Precedence

The following table lists all operators from highest precedence to lowest.

Show Example

left
 terms and list operators (leftward)

left
 ->

nonassoc
 ++ --

right
 **

right
 ! ~ \ and unary + and -

left
 =~ !~

left
 * / % x

left
 + - .

left
 << >>

nonassoc
 named unary operators

nonassoc
 < > <= >= lt gt le ge

nonassoc
 == != <=> eq ne cmp ~~

left
 &

left
 | ^

left
 &&

left
 || //

nonassoc

right
 ?:

right
 = += -= *= etc.

left
 , =>

nonassoc
 list operators (rightward)

right
 not

left
 and

left
 or xor

Date and Time

This chapter will give you the basic understanding on how to process and manipulate dates and times in Perl.

Current Date and Time

Let's start with
 localtime()
 function, which returns values for the current date and time if given no arguments. Following is the 9-element list returned by the
 localtime
 function while using in list context −

sec, # seconds of minutes from 0 to 61

min, # minutes of hour from 0 to 59

hour, # hours of day from 0 to 24

mday, # day of month from 1 to 31

mon, # month of year from 0 to 11

year, # year since 1900

wday, # days since sunday

yday, # days since January 1st

isdst # hours of daylight savings time

Try the following example to print different elements returned by localtime() function −

#!/usr/local/bin/perl

@months
 =
 qw
 (
 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec
);

@days
 =
 qw
 (
 Sun
 Mon
 Tue
 Wed
 Thu
 Fri
 Sat
 Sun
);

(
 $sec
 ,
 $min
 ,
 $hour
 ,
 $mday
 ,
 $mon
 ,
 $year
 ,
 $wday
 ,
 $yday
 ,
 $isdst
)
 =
 localtime
 ();

print
 "$mday $months[$mon] $days[$wday]\n"
 ;

When the above code is executed, it produces the following result −

16 Feb Sat

If you will use localtime() function in scalar context, then it will return date and time from the current time zone set in the system. Try the following example to print current date and time in full format −

#!/usr/local/bin/perl

$datestring
 =
 localtime
 ();

print
 "Local date and time $datestring\n"
 ;

When the above code is executed, it produces the following result −

Local date and time Sat Feb 16 06:50:45 2013

GMT Time

The function
 gmtime()
 works just like localtime() function but the returned values are localized for the standard Greenwich time zone. When called in list context, $isdst, the last value returned by gmtime, is always 0. There is no Daylight Saving Time in GMT.

You should make a note on the fact that localtime() will return the current local time on the machine that runs the script and gmtime() will return the universal Greenwich Mean Time, or GMT (or UTC).

Try the following example to print the current date and time but on GMT scale −

#!/usr/local/bin/perl

$datestring
 =
 gmtime
 ();

print
 "GMT date and time $datestring\n"
 ;

When the above code is executed, it produces the following result −

GMT date and time Sat Feb 16 13:50:45 2013

Format Date and Time

You can use localtime() function to get a list of 9-elements and later you can use the
 printf()
 function to format date and time based on your requirements as follows −

#!/usr/local/bin/perl

(
 $sec
 ,
 $min
 ,
 $hour
 ,
 $mday
 ,
 $mon
 ,
 $year
 ,
 $wday
 ,
 $yday
 ,
 $isdst
)
 =
 localtime
 ();

printf
 (
 "Time Format - HH:MM:SS\n"
);

printf
 (
 "%02d:%02d:%02d"
 ,
 $hour
 ,
 $min
 ,
 $sec
);

When the above code is executed, it produces the following result −

Time Format - HH:MM:SS

06:58:52

Epoch time

You can use the time() function to get epoch time, i.e., the numbers of seconds that have elapsed since a given date, in Unix is January 1, 1970.

#!/usr/local/bin/perl

$epoc
 =
 time
 ();

print
 "Number of seconds since Jan 1, 1970 - $epoc\n"
 ;

When the above code is executed, it produces the following result −

Number of seconds since Jan 1, 1970 - 1361022130

You can convert a given number of seconds into date and time string as follows −

#!/usr/local/bin/perl

$datestring
 =
 localtime
 ();

print
 "Current date and time $datestring\n"
 ;

$epoc
 =
 time
 ();

$epoc
 =
 $epoc
 -
 24
 *
 60
 *
 60
 ;

 # one day before of current date.

$datestring
 =
 localtime
 (
 $epoc
);

print
 "Yesterday's date and time $datestring\n"
 ;

When the above code is executed, it produces the following result −

Current date and time Tue Jun 5 05:54:43 2018

Yesterday's date and time Mon Jun 4 05:54:43 2018

POSIX Function strftime()

You can use the POSIX function
 strftime()
 to format date and time with the help of the following table. Please note that the specifiers marked with an asterisk (*) are locale-dependent.

	

Specifier

	

Replaced by

	

Example

	

%a

	

Abbreviated weekday name *

	

Thu

	

%A

	

Full weekday name *

	

Thursday

	

%b

	

Abbreviated month name *

	

Aug

	

%B

	

Full month name *

	

August

	

%c

	

Date and time representation *

	

Thu Aug 23 14:55:02 2001

	

%C

	

Year divided by 100 and truncated to integer
 (
 00-9
 9
)

	

20

	

%d

	

Day of the month, zero-padded
 (
 01-3
 1
)

	

23

	

%D

	

Short

 MM/DD/Y
 Y
 date, equivalent to

 %m/%d/%y

	

08/23/01

	

%e

	

Day of the month, space-padded
 (
 1-3
 1
)

	

23

	

%F

	

Short

 YYYY-MM-D
 D
 date, equivalent to

 %Y-%m-%d

	

2001-08-23

	

%g

	

Week-based year, last two digits
 (
 00-9
 9
)

	

01

	

%G

	

Week-based year

	

2001

	

%h

	

Abbreviated month name * (same as

 %
 b
)

	

Aug

	

%H

	

Hour in 24h format
 (
 00-2
 3
)

	

14

	

%I

	

Hour in 12h format
 (
 01-1
 2
)

	

02

	

%j

	

Day of the year
 (
 001-36
 6
)

	

235

	

%m

	

Month as a decimal number
 (
 01-1
 2
)

	

08

	

%M

	

Minute
 (
 00-5
 9
)

	

55

	

%n

	

New-line character
 (
 '\n
 '
)

	

	

%p

	

AM or PM designation

	

PM

	

%r

	

12-hour clock time *

	

02:55:02 pm

	

%R

	

24-hour

 HH:M
 M
 time, equivalent to

 %H:%M

	

14:55

	

%S

	

Second
 (
 00-6
 1
)

	

02

	

%t

	

Horizontal-tab character
 (
 '\t
 '
)

	

	

%T

	

ISO 8601 time format
 (
 HH:MM:S
 S
), equivalent to

 %H:%M:%S

	

14:55

	

%u

	

ISO 8601 weekday as number with Monday as

 1

 (
 1-
 7
)

	

4

	

%U

	

Week number with the first Sunday as the first day of week one
 (
 00-5
 3
)

	

33

	

%V

	

ISO 8601 week number
 (
 00-5
 3
)

	

34

	

%w

	

Weekday as a decimal number with Sunday as

 0

 (
 0-
 6
)

	

4

	

%W

	

Week number with the first Monday as the first day of week one
 (
 00-5
 3
)

	

34

	

%x

	

Date representation *

	

08/23/01

	

%X

	

Time representation *

	

14:55:02

	

%y

	

Year, last two digits
 (
 00-9
 9
)

	

01

	

%Y

	

Year

	

2001

	

%z

	

ISO 8601 offset from UTC in timezone (1 minute = 1, 1 hour = 100)

If timezone cannot be termined, no characters

	

+100

	

%Z

	

Timezone name or abbreviation *

If timezone cannot be termined, no characters

	

CDT

	

%%

	

A

 %
 sign

	

%

Let's check the following example to understand the usage −

#!/usr/local/bin/perl

use
 POSIX qw
 (
 strftime
);

$datestring
 =
 strftime
 "%a %b %e %H:%M:%S %Y"
 ,
 localtime
 ;

printf
 (
 "date and time - $datestring\n"
);

or for GMT formatted appropriately for your locale:

$datestring
 =
 strftime
 "%a %b %e %H:%M:%S %Y"
 ,
 gmtime
 ;

printf
 (
 "date and time - $datestring\n"
);

When the above code is executed, it produces the following result −

date and time - Sat Feb 16 07:10:23 2013

date and time - Sat Feb 16 14:10:23 2013

Subroutines

A Perl subroutine or function is a group of statements that together performs a task. You can divide up your code into separate subroutines. How you divide up your code among different subroutines is up to you, but logically the division usually is so each function performs a specific task.

Perl uses the terms subroutine, method and function interchangeably.

Define and Call a Subroutine

The general form of a subroutine definition in Perl programming language is as follows −

sub subroutine_name {

 body of the subroutine

}

The typical way of calling that Perl subroutine is as follows −

subroutine_name(list of arguments);

In versions of Perl before 5.0, the syntax for calling subroutines was slightly different as shown below. This still works in the newest versions of Perl, but it is not recommended since it bypasses the subroutine prototypes.

&subroutine_name(list of arguments);

Let's have a look into the following example, which defines a simple function and then call it. Because Perl compiles your program before executing it, it doesn't matter where you declare your subroutine.

#!/usr/bin/perl

Function definition

sub
 Hello
 {

 print
 "Hello, World!\n"
 ;

}

Function call

Hello
 ();

When above program is executed, it produces the following result −

Hello, World!

Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other programming language and they can be acessed inside the function using the special array @_. Thus the first argument to the function is in $_[0], the second is in $_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but passing more than one array or hash normally causes them to lose their separate identities. So we will use references (explained in the next chapter) to pass any array or hash.

Let's try the following example, which takes a list of numbers and then prints their average −

#!/usr/bin/perl

Function definition

sub
 Average
 {

 # get total number of arguments passed.

 $n
 =
 scalar
 (
 @_
);

 $sum
 =
 0
 ;

 foreach
 $item
 (
 @_
)
 {

 $sum
 +=
 $item
 ;

 }

 $average
 =
 $sum
 /
 $n
 ;

 print
 "Average for the given numbers : $average\n"
 ;

}

Function call

Average
 (
 10
 ,
 20
 ,
 30
);

When above program is executed, it produces the following result −

Average for the given numbers : 20

Passing Lists to Subroutines

Because the @_ variable is an array, it can be used to supply lists to a subroutine. However, because of the way in which Perl accepts and parses lists and arrays, it can be difficult to extract the individual elements from @_. If you have to pass a list along with other scalar arguments, then make list as the last argument as shown below −

#!/usr/bin/perl

Function definition

sub
 PrintList
 {

 my
 @list
 =
 @_
 ;

 print
 "Given list is @list\n"
 ;

}

$a
 =
 10
 ;

@b
 =
 (
 1
 ,
 2
 ,
 3
 ,
 4
);

Function call with list parameter

PrintList
 (
 $a
 ,
 @b
);

When above program is executed, it produces the following result −

Given list is 10 1 2 3 4

Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, then hash is automatically translated into a list of key/value pairs. For example −

#!/usr/bin/perl

Function definition

sub
 PrintHash
 {

 my
 (%
 hash
)
 =
 @_
 ;

 foreach
 my
 $key
 (
 keys
 %
 hash
)
 {

 my
 $value
 =
 $hash
 {
 $key
 };

 print
 "$key : $value\n"
 ;

 }

}

%
 hash
 =
 (
 'name'
 =>
 'Tom'
 ,
 'age'
 =>
 19
);

Function call with hash parameter

PrintHash
 (%
 hash
);

When above program is executed, it produces the following result −

name : Tom

age : 19

Returning Value from a Subroutine

You can return a value from subroutine like you do in any other programming language. If you are not returning a value from a subroutine then whatever calculation is last performed in a subroutine is automatically also the return value.

You can return arrays and hashes from the subroutine like any scalar but returning more than one array or hash normally causes them to lose their separate identities. So we will use references (explained in the next chapter) to return any array or hash from a function.

Let's try the following example, which takes a list of numbers and then returns their average −

#!/usr/bin/perl

Function definition

sub
 Average
 {

 # get total number of arguments passed.

 $n
 =
 scalar
 (
 @_
);

 $sum
 =
 0
 ;

 foreach
 $item
 (
 @_
)
 {

 $sum
 +=
 $item
 ;

 }

 $average
 =
 $sum
 /
 $n
 ;

 return
 $average
 ;

}

Function call

$num
 =
 Average
 (
 10
 ,
 20
 ,
 30
);

print
 "Average for the given numbers : $num\n"
 ;

When above program is executed, it produces the following result −

Average for the given numbers : 20

Private Variables in a Subroutine

By default, all variables in Perl are global variables, which means they can be accessed from anywhere in the program. But you can create
 private
 variables called
 lexical variables
 at any time with the
 my
 operator.

The
 my
 operator confines a variable to a particular region of code in which it can be used and accessed. Outside that region, this variable cannot be used or accessed. This region is called its scope. A lexical scope is usually a block of code with a set of braces around it, such as those defining the body of the subroutine or those marking the code blocks of
 if, while, for, foreach,
 and
 eval
 statements.

Following is an example showing you how to define a single or multiple private variables using
 my
 operator −

sub
 somefunc
 {

 my
 $variable
 ;
 # $variable is invisible outside somefunc()

 my
 (
 $another
 ,
 @an_array
 ,
 %
 a_hash
);
 # declaring many variables at once

}

Let's check the following example to distinguish between global and private variables −

#!/usr/bin/perl

Global variable

$string
 =
 "Hello, World!"
 ;

Function definition

sub
 PrintHello
 {

 # Private variable for PrintHello function

 my
 $string
 ;

 $string
 =
 "Hello, Perl!"
 ;

 print
 "Inside the function $string\n"
 ;

}

Function call

PrintHello
 ();

print
 "Outside the function $string\n"
 ;

When above program is executed, it produces the following result −

Inside the function Hello, Perl!

Outside the function Hello, World!

Temporary Values via local()

The
 local
 is mostly used when the current value of a variable must be visible to called subroutines. A local just gives temporary values to global (meaning package) variables. This is known as
 dynamic scoping
 . Lexical scoping is done with my, which works more like C's auto declarations.

If more than one variable or expression is given to local, they must be placed in parentheses. This operator works by saving the current values of those variables in its argument list on a hidden stack and restoring them upon exiting the block, subroutine, or eval.

Let's check the following example to distinguish between global and local variables −

#!/usr/bin/perl

Global variable

$string
 =
 "Hello, World!"
 ;

sub
 PrintHello
 {

 # Private variable for PrintHello function

 local
 $string
 ;

 $string
 =
 "Hello, Perl!"
 ;

 PrintMe
 ();

 print
 "Inside the function PrintHello $string\n"
 ;

}

sub
 PrintMe
 {

 print
 "Inside the function PrintMe $string\n"
 ;

}

Function call

PrintHello
 ();

print
 "Outside the function $string\n"
 ;

When above program is executed, it produces the following result −

Inside the function PrintMe Hello, Perl!

Inside the function PrintHello Hello, Perl!

Outside the function Hello, World!

State Variables via state()

There are another type of lexical variables, which are similar to private variables but they maintain their state and they do not get reinitialized upon multiple calls of the subroutines. These variables are defined using the
 state
 operator and available starting from Perl 5.9.4.

Let's check the following example to demonstrate the use of
 state
 variables −

#!/usr/bin/perl

use
 feature
 'state'
 ;

sub
 PrintCount
 {

 state $count
 =
 0
 ;
 # initial value

 print
 "Value of counter is $count\n"
 ;

 $count
 ++;

}

for
 (
 1.
 .
 5
)
 {

 PrintCount
 ();

}

When above program is executed, it produces the following result −

Value of counter is 0

Value of counter is 1

Value of counter is 2

Value of counter is 3

Value of counter is 4

Prior to Perl 5.10, you would have to write it like this −

#!/usr/bin/perl

{

 my
 $count
 =
 0
 ;
 # initial value

 sub
 PrintCount
 {

 print
 "Value of counter is $count\n"
 ;

 $count
 ++;

 }

}

for
 (
 1.
 .
 5
)
 {

 PrintCount
 ();

}

Subroutine Call Context

The context of a subroutine or statement is defined as the type of return value that is expected. This allows you to use a single function that returns different values based on what the user is expecting to receive. For example, the following localtime() returns a string when it is called in scalar context, but it returns a list when it is called in list context.

my
 $datestring
 =
 localtime
 (
 time
);

In this example, the value of $timestr is now a string made up of the current date and time, for example, Thu Nov 30 15:21:33 2000. Conversely −

(
 $sec
 ,
 $min
 ,
 $hour
 ,
 $mday
 ,
 $mon
 ,
 $year
 ,
 $wday
 ,
 $yday
 ,
 $isdst
)
 =
 localtime
 (
 time
);

Now the individual variables contain the corresponding values returned by localtime() subroutine.

References

A Perl reference is a scalar data type that holds the location of another value which could be scalar, arrays, or hashes. Because of its scalar nature, a reference can be used anywhere, a scalar can be used.

You can construct lists containing references to other lists, which can contain references to hashes, and so on. This is how the nested data structures are built in Perl.

Create References

It is easy to create a reference for any variable, subroutine or value by prefixing it with a backslash as follows −

$scalarref = \$foo;

$arrayref = \@ARGV;

$hashref = \%ENV;

$coderef = \&handler;

$globref = *foo;

You cannot create a reference on an I/O handle (filehandle or dirhandle) using the backslash operator but a reference to an anonymous array can be created using the square brackets as follows −

$arrayref
 =
 [
 1
 ,
 2
 ,
 [
 'a'
 ,
 'b'
 ,
 'c'
]];

Similar way you can create a reference to an anonymous hash using the curly brackets as follows −

$hashref
 =
 {

 'Adam'

 =>
 'Eve'
 ,

 'Clyde'
 =>
 'Bonnie'
 ,

};

A reference to an anonymous subroutine can be created by using sub without a subname as follows −

$coderef
 =
 sub
 {
 print
 "Boink!\n"
 };

Dereferencing

Dereferencing returns the value from a reference point to the location. To dereference a reference simply use $, @ or % as prefix of the reference variable depending on whether the reference is pointing to a scalar, array, or hash. Following is the example to explain the concept −

#!/usr/bin/perl

$var
 =
 10
 ;

Now $r has reference to $var scalar.

$r
 =
 \$
 var
 ;

Print value available at the location stored in $r.

print
 "Value of $var is : "
 ,
 $$r
 ,
 "\n"
 ;

@var
 =
 (
 1
 ,
 2
 ,
 3
);

Now $r has reference to @var array.

$r
 =
 \@
 var
 ;

Print values available at the location stored in $r.

print
 "Value of @var is : "
 ,

 @$r
 ,
 "\n"
 ;

%
 var
 =
 (
 'key1'
 =>
 10
 ,
 'key2'
 =>
 20
);

Now $r has reference to %var hash.

$r
 =
 \%
 var
 ;

Print values available at the location stored in $r.

print
 "Value of %var is : "
 ,
 %
 $r
 ,
 "\n"
 ;

When above program is executed, it produces the following result −

Value of 10 is : 10

Value of 1 2 3 is : 123

Value of %var is : key220key110

If you are not sure about a variable type, then its easy to know its type using
 ref
 , which returns one of the following strings if its argument is a reference. Otherwise, it returns false −

SCALAR

ARRAY

HASH

CODE

GLOB

REF

Let's try the following example −

#!/usr/bin/perl

$var
 =
 10
 ;

$r
 =
 \$
 var
 ;

print
 "Reference type in r : "
 ,
 ref
 (
 $r
),
 "\n"
 ;

@var
 =
 (
 1
 ,
 2
 ,
 3
);

$r
 =
 \@
 var
 ;

print
 "Reference type in r : "
 ,
 ref
 (
 $r
),
 "\n"
 ;

%
 var
 =
 (
 'key1'
 =>
 10
 ,
 'key2'
 =>
 20
);

$r
 =
 \%
 var
 ;

print
 "Reference type in r : "
 ,
 ref
 (
 $r
),
 "\n"
 ;

When above program is executed, it produces the following result −

Reference type in r : SCALAR

Reference type in r : ARRAY

Reference type in r : HASH

Circular References

A circular reference occurs when two references contain a reference to each other. You have to be careful while creating references otherwise a circular reference can lead to memory leaks. Following is an example −

#!/usr/bin/perl

 my
 $foo
 =
 100
 ;

$foo
 =
 \$foo
 ;

 print
 "Value of foo is : "
 ,
 $$foo
 ,
 "\n"
 ;

When above program is executed, it produces the following result −

Value of foo is : REF(0x9aae38)

References to Functions

This might happen if you need to create a signal handler so you can produce a reference to a function by preceding that function name with \& and to dereference that reference you simply need to prefix reference variable using ampersand &. Following is an example −

#!/usr/bin/perl

Function definition

sub
 PrintHash
 {

 my
 (%
 hash
)
 =
 @_
 ;

 foreach
 $item
 (%
 hash
)
 {

 print
 "Item : $item\n"
 ;

 }

}

%
 hash
 =
 (
 'name'
 =>
 'Tom'
 ,
 'age'
 =>
 19
);

Create a reference to above function.

$cref
 =
 \&
 PrintHash
 ;

Function call using reference.

&
 $cref
 (%
 hash
);

When above program is executed, it produces the following result −

Item : name

Item : Tom

Item : age

Item : 19

Formats

Perl uses a writing template called a 'format' to output reports. To use the format feature of Perl, you have to define a format first and then you can use that format to write formatted data.

Define a Format

Following is the syntax to define a Perl format −

format
 FormatName
 =

fieldline

value_one
 ,
 value_two
 ,
 value_three

fieldline

value_one
 ,
 value_two

.

Here
 FormatName
 represents the name of the format. The
 fieldline
 is the specific way, the data should be formatted. The values lines represent the values that will be entered into the field line. You end the format with a single period.

Next
 fieldline
 can contain any text or fieldholders. The fieldholders hold space for data that will be placed there at a later date. A fieldholder has the format −

@<<<<

This fieldholder is left-justified, with a field space of 5. You must count the @ sign and the < signs to know the number of spaces in the field. Other field holders include −

@>>>>
 right
 -
 justified

@||||
 centered

@####.##
 numeric field holder

@*
 multiline field holder

An example format would be −

format EMPLOYEE
 =

===================================

@<<<<<<<<<<<<<<<<<<<<<<
 @<<

$name $age

@#####.##

$salary

===================================

.

In this example, $name would be written as left justify within 22 character spaces and after that age will be written in two spaces.

Using the Format

In order to invoke this format declaration, we would use the
 write
 keyword −

write EMPLOYEE
 ;

The problem is that the format name is usually the name of an open file handle, and the write statement will send the output to this file handle. As we want the data sent to the STDOUT, we must associate EMPLOYEE with the STDOUT filehandle. First, however, we must make sure that that STDOUT is our selected file handle, using the select() function.

select
 (
 STDOUT
);

We would then associate EMPLOYEE with STDOUT by setting the new format name with STDOUT, using the special variable $~ or $FORMAT_NAME as follows −

$
 ~
 =
 "EMPLOYEE"
 ;

When we now do a write(), the data would be sent to STDOUT. Remember: if you are going to write your report in any other file handle instead of STDOUT then you can use select() function to select that file handle and rest of the logic will remain the same.

Let's take the following example. Here we have hard coded values just for showing the usage. In actual usage you will read values from a file or database to generate actual reports and you may need to write final report again into a file.

#!/usr/bin/perl

format EMPLOYEE
 =

===================================

@<<<<<<<<<<<<<<<<<<<<<<
 @<<

$name $age

@#####.##

$salary

===================================

.

select
 (
 STDOUT
);

$
 ~
 =
 EMPLOYEE
 ;

@n
 =
 (
 "Ali"
 ,
 "Raza"
 ,
 "Jaffer"
);

@a

 =
 (
 20
 ,
 30
 ,
 40
);

@s
 =
 (
 2000.00
 ,
 2500.00
 ,
 4000.000
);

$i
 =
 0
 ;

foreach
 (
 @n
)
 {

 $name
 =
 $_
 ;

 $age
 =
 $a
 [
 $i
];

 $salary
 =
 $s
 [
 $i
 ++];

 write
 ;

}

When executed, this will produce the following result −

===================================

Ali 20

 2000.00

===================================

===================================

Raza 30

 2500.00

===================================

===================================

Jaffer 40

 4000.00

===================================

Define a Report Header

Everything looks fine. But you would be interested in adding a header to your report. This header will be printed on top of each page. It is very simple to do this. Apart from defining a template you would have to define a header and assign it to $^ or $FORMAT_TOP_NAME variable −

#!/usr/bin/perl

format EMPLOYEE
 =

===================================

@<<<<<<<<<<<<<<<<<<<<<<
 @<<

$name $age

@#####.##

$salary

===================================

.

format EMPLOYEE_TOP
 =

===================================

Name

 Age

===================================

.

select
 (
 STDOUT
);

$
 ~
 =
 EMPLOYEE
 ;

$
 ^
 =
 EMPLOYEE_TOP
 ;

@n
 =
 (
 "Ali"
 ,
 "Raza"
 ,
 "Jaffer"
);

@a

 =
 (
 20
 ,
 30
 ,
 40
);

@s
 =
 (
 2000.00
 ,
 2500.00
 ,
 4000.000
);

$i
 =
 0
 ;

foreach
 (
 @n
)
 {

 $name
 =
 $_
 ;

 $age
 =
 $a
 [
 $i
];

 $salary
 =
 $s
 [
 $i
 ++];

 write
 ;

}

Now your report will look like −

===================================

Name Age

===================================

===================================

Ali 20

 2000.00

===================================

===================================

Raza 30

 2500.00

===================================

===================================

Jaffer 40

 4000.00

===================================

Define a Pagination

What about if your report is taking more than one page? You have a solution for that, simply use
 $%
 or $FORMAT_PAGE_NUMBER vairable along with header as follows −

format EMPLOYEE_TOP =

===================================

Name Age Page @<

 $%

===================================

.

Now your output will look like as follows −

===================================

Name Age Page 1

===================================

===================================

Ali 20

 2000.00

===================================

===================================

Raza 30

 2500.00

===================================

===================================

Jaffer 40

 4000.00

===================================

Number of Lines on a Page

You can set the number of lines per page using special variable
 $=
 (or $FORMAT_LINES_PER_PAGE), By default $= will be 60.

Define a Report Footer

While $^ or $FORMAT_TOP_NAME contains the name of the current header format, there is no corresponding mechanism to automatically do the same thing for a footer. If you have a fixed-size footer, you can get footers by checking variable $- or $FORMAT_LINES_LEFT before each write() and print the footer yourself if necessary using another format defined as follows −

format EMPLOYEE_BOTTOM
 =

End
 of
 Page
 @<

 $
 %

.

For a complete set of variables related to formating, please refer to the
 Perl Special Variables
 section.

File I/O

The basics of handling files are simple: you associate a
 filehandle
 with an external entity (usually a file) and then use a variety of operators and functions within Perl to read and update the data stored within the data stream associated with the filehandle.

A filehandle is a named internal Perl structure that associates a physical file with a name. All filehandles are capable of read/write access, so you can read from and update any file or device associated with a filehandle. However, when you associate a filehandle, you can specify the mode in which the filehandle is opened.

Three basic file handles are -
 STDIN
 ,
 STDOUT
 , and
 STDERR,
 which represent standard input, standard output and standard error devices respectively.

Opening and Closing Files

There are following two functions with multiple forms, which can be used to open any new or existing file in Perl.

open FILEHANDLE
 ,
 EXPR

open FILEHANDLE

sysopen FILEHANDLE
 ,
 FILENAME
 ,
 MODE
 ,
 PERMS

sysopen FILEHANDLE
 ,
 FILENAME
 ,
 MODE

Here FILEHANDLE is the file handle returned by the
 open
 function and EXPR is the expression having file name and mode of opening the file.

Open Function

Following is the syntax to open
 file.txt
 in read-only mode. Here less than < sign indicates that file has to be opend in read-only mode.

open
 (
 DATA
 ,
 "<file.txt"
);

Here DATA is the file handle, which will be used to read the file. Here is the example, which will open a file and will print its content over the screen.

#!/usr/bin/perl

open
 (
 DATA
 ,
 "<file.txt"
)
 or
 die
 "Couldn't open file file.txt, $!"
 ;

while
 (<
 DATA
 >)
 {

 print
 "$_"
 ;

}

Following is the syntax to open file.txt in writing mode. Here less than > sign indicates that file has to be opend in the writing mode.

open
 (
 DATA
 ,
 ">file.txt"
)
 or
 die
 "Couldn't open file file.txt, $!"
 ;

This example actually truncates (empties) the file before opening it for writing, which may not be the desired effect. If you want to open a file for reading and writing, you can put a plus sign before the > or < characters.

For example, to open a file for updating without truncating it −

open
 (
 DATA
 ,
 "+<file.txt"
);
 or
 die
 "Couldn't open file file.txt, $!"
 ;

To truncate the file first −

open DATA
 ,
 "+>file.txt"
 or
 die
 "Couldn't open file file.txt, $!"
 ;

You can open a file in the append mode. In this mode, writing point will be set to the end of the file.

open
 (
 DATA
 ,
 ">>file.txt"
)
 ||
 die
 "Couldn't open file file.txt, $!"
 ;

A double >> opens the file for appending, placing the file pointer at the end, so that you can immediately start appending information. However, you can't read from it unless you also place a plus sign in front of it −

open
 (
 DATA
 ,
 "+>>file.txt"
)
 ||
 die
 "Couldn't open file file.txt, $!"
 ;

Following is the table, which gives the possible values of different modes

	

Sr.No.

	

Entities & Definition

	

1

	

< or r

Read Only Access

	

2

	

> or w

Creates, Writes, and Truncates

	

3

	

>> or a

Writes, Appends, and Creates

	

4

	

+< or r+

Reads and Writes

	

5

	

+> or w+

Reads, Writes, Creates, and Truncates

	

6

	

+>> or a+

Reads, Writes, Appends, and Creates

Sysopen Function

The
 sysopen
 function is similar to the main open function, except that it uses the system
 open()
 function, using the parameters supplied to it as the parameters for the system function −

For example, to open a file for updating, emulating the
 +<filename
 format from open −

sysopen
 (
 DATA
 ,
 "file.txt"
 ,
 O_RDWR
);

Or to truncate the file before updating −

sysopen
 (
 DATA
 ,
 "file.txt"
 ,
 O_RDWR
 |
 O_TRUNC
);

You can use O_CREAT to create a new file and O_WRONLY- to open file in write only mode and O_RDONLY - to open file in read only mode.

The
 PERMS
 argument specifies the file permissions for the file specified, if it has to be created. By default it takes
 0x666
 .

Following is the table, which gives the possible values of MODE.

	

Sr.No.

	

Entities & Definition

	

1

	

O_RDWR

Read and Write

	

2

	

O_RDONLY

Read Only

	

3

	

O_WRONLY

Write Only

	

4

	

O_CREAT

Create the file

	

5

	

O_APPEND

Append the file

	

6

	

O_TRUNC

Truncate the file

	

7

	

O_EXCL

Stops if file already exists

	

8

	

O_NONBLOCK

Non-Blocking usability

Close Function

To close a filehandle, and therefore disassociate the filehandle from the corresponding file, you use the
 close
 function. This flushes the filehandle's buffers and closes the system's file descriptor.

close FILEHANDLE

close

If no FILEHANDLE is specified, then it closes the currently selected filehandle. It returns true only if it could successfully flush the buffers and close the file.

close
 (
 DATA
)
 ||
 die
 "Couldn't close file properly"
 ;

Reading and Writing Files

Once you have an open filehandle, you need to be able to read and write information. There are a number of different ways of reading and writing data into the file.

The <FILEHANDL> Operator

The main method of reading the information from an open filehandle is the <FILEHANDLE> operator. In a scalar context, it returns a single line from the filehandle. For example −

#!/usr/bin/perl

print
 "What is your name?\n"
 ;

$name
 =
 <
 STDIN
 >;

print
 "Hello $name\n"
 ;

When you use the <FILEHANDLE> operator in a list context, it returns a list of lines from the specified filehandle. For example, to import all the lines from a file into an array −

#!/usr/bin/perl

open
 (
 DATA
 ,
 "<import.txt"
)
 or
 die
 "Can't open data"
 ;

@lines
 =
 <
 DATA
 >;

close
 (
 DATA
);

getc Function

The getc function returns a single character from the specified FILEHANDLE, or STDIN if none is specified −

getc FILEHANDLE

getc

If there was an error, or the filehandle is at end of file, then undef is returned instead.

read Function

The read function reads a block of information from the buffered filehandle: This function is used to read binary data from the file.

read FILEHANDLE
 ,
 SCALAR
 ,
 LENGTH
 ,
 OFFSET

read FILEHANDLE
 ,
 SCALAR
 ,
 LENGTH

The length of the data read is defined by LENGTH, and the data is placed at the start of SCALAR if no OFFSET is specified. Otherwise data is placed after OFFSET bytes in SCALAR. The function returns the number of bytes read on success, zero at end of file, or undef if there was an error.

print Function

For all the different methods used for reading information from filehandles, the main function for writing information back is the print function.

print
 FILEHANDLE LIST

print
 LIST

print

The print function prints the evaluated value of LIST to FILEHANDLE, or to the current output filehandle (STDOUT by default). For example −

print
 "Hello World!\n"
 ;

Copying Files

Here is the example, which opens an existing file file1.txt and read it line by line and generate another copy file file2.txt.

#!/usr/bin/perl

Open file to read

open
 (
 DATA1
 ,
 "<file1.txt"
);

Open new file to write

open
 (
 DATA2
 ,
 ">file2.txt"
);

Copy data from one file to another.

while
 (<
 DATA1
 >)
 {

 print
 DATA2 $_
 ;

}

close
 (
 DATA1
);

close
 (
 DATA2
);

Renaming a file

Here is an example, which shows how we can rename a file file1.txt to file2.txt. Assuming file is available in /usr/test directory.

#!/usr/bin/perl

rename
 (
 "/usr/test/file1.txt"
 ,
 "/usr/test/file2.txt"
);

This function
 renames
 takes two arguments and it just renames the existing file.

Deleting an Existing File

Here is an example, which shows how to delete a file file1.txt using the
 unlink
 function.

#!/usr/bin/perl

unlink
 (
 "/usr/test/file1.txt"
);

Positioning inside a File

You can use to
 tell
 function to know the current position of a file and
 seek
 function to point a particular position inside the file.

tell Function

The first requirement is to find your position within a file, which you do using the tell function −

tell FILEHANDLE

tell

This returns the position of the file pointer, in bytes, within FILEHANDLE if specified, or the current default selected filehandle if none is specified.

seek Function

The seek function positions the file pointer to the specified number of bytes within a file −

seek FILEHANDLE
 ,
 POSITION
 ,
 WHENCE

The function uses the fseek system function, and you have the same ability to position relative to three different points: the start, the end, and the current position. You do this by specifying a value for WHENCE.

Zero sets the positioning relative to the start of the file. For example, the line sets the file pointer to the 256th byte in the file.

seek DATA
 ,
 256
 ,
 0
 ;

File Information

You can test certain features very quickly within Perl using a series of test operators known collectively as -X tests. For example, to perform a quick test of the various permissions on a file, you might use a script like this −

#/usr/bin/perl

my
 $file
 =
 "/usr/test/file1.txt"
 ;

my
 (
 @description
 ,
 $size
);

if
 (-
 e $file
)
 {

 push
 @description
 ,
 'binary'
 if
 (-
 B _
);

 push
 @description
 ,
 'a socket'
 if
 (-
 S _
);

 push
 @description
 ,
 'a text file'
 if
 (-
 T _
);

 push
 @description
 ,
 'a block special file'
 if
 (-
 b _
);

 push
 @description
 ,
 'a character special file'
 if
 (-
 c _
);

 push
 @description
 ,
 'a directory'
 if
 (-
 d _
);

 push
 @description
 ,
 'executable'
 if
 (-
 x _
);

 push
 @description
 ,
 ((
 $size
 =
 -
 s _
))
 ?
 "$size bytes"
 :
 'empty'
 ;

 print
 "$file is "
 ,
 join
 (
 ', '
 ,
 @description
),
 "\n"
 ;

}

Here is the list of features, which you can check for a file or directory −

	

Sr.No.

	

Operator & Definition

	

1

	

-A

Script start time minus file last access time, in days.

	

2

	

-B

Is it a binary file?

	

3

	

-C

Script start time minus file last inode change time, in days.

	

3

	

-M

Script start time minus file modification time, in days.

	

4

	

-O

Is the file owned by the real user ID?

	

5

	

-R

Is the file readable by the real user ID or real group?

	

6

	

-S

Is the file a socket?

	

7

	

-T

Is it a text file?

	

8

	

-W

Is the file writable by the real user ID or real group?

	

9

	

-X

Is the file executable by the real user ID or real group?

	

10

	

-b

Is it a block special file?

	

11

	

-c

Is it a character special file?

	

12

	

-d

Is the file a directory?

	

13

	

-e

Does the file exist?

	

14

	

-f

Is it a plain file?

	

15

	

-g

Does the file have the setgid bit set?

	

16

	

-k

Does the file have the sticky bit set?

	

17

	

-l

Is the file a symbolic link?

	

18

	

-o

Is the file owned by the effective user ID?

	

19

	

-p

Is the file a named pipe?

	

20

	

-r

Is the file readable by the effective user or group ID?

	

21

	

-s

Returns the size of the file, zero size = empty file.

	

22

	

-t

Is the filehandle opened by a TTY (terminal)?

	

23

	

-u

Does the file have the setuid bit set?

	

24

	

-w

Is the file writable by the effective user or group ID?

	

25

	

-x

Is the file executable by the effective user or group ID?

	

26

	

-z

Is the file size zero?

Directories

Following are the standard functions used to play with directories.

opendir DIRHANDLE, EXPR # To open a directory

readdir DIRHANDLE # To read a directory

rewinddir DIRHANDLE # Positioning pointer to the begining

telldir DIRHANDLE # Returns current position of the dir

seekdir DIRHANDLE, POS # Pointing pointer to POS inside dir

closedir DIRHANDLE # Closing a directory.

Display all the Files

There are various ways to list down all the files available in a particular directory. First let's use the simple way to get and list down all the files using the
 glob
 operator −

#!/usr/bin/perl

Display all the files in /tmp directory.

$dir
 =
 "/tmp/*"
 ;

my
 @files
 =
 glob
 (
 $dir
);

foreach
 (
 @files
)
 {

 print
 $_
 .
 "\n"
 ;

}

Display all the C source files in /tmp directory.

$dir
 =
 "/tmp/*.c"
 ;

@files
 =
 glob
 (
 $dir
);

foreach
 (
 @files
)
 {

 print
 $_
 .
 "\n"
 ;

}

Display all the hidden files.

$dir
 =
 "/tmp/.*"
 ;

@files
 =
 glob
 (
 $dir
);

foreach
 (
 @files
)
 {

 print
 $_
 .
 "\n"
 ;

}

Display all the files from /tmp and /home directories.

$dir
 =
 "/tmp/* /home/*"
 ;

@files
 =
 glob
 (
 $dir
);

foreach
 (
 @files
)
 {

 print
 $_
 .
 "\n"
 ;

}

Here is another example, which opens a directory and list out all the files available inside this directory.

#!/usr/bin/perl

opendir
 (
 DIR
 ,
 '.'
)
 or
 die
 "Couldn't open directory, $!"
 ;

while
 (
 $file
 =
 readdir DIR
)
 {

 print
 "$file\n"
 ;

}

closedir DIR
 ;

One more example to print the list of C source files you might use is −

#!/usr/bin/perl

opendir
 (
 DIR
 ,
 '.'
)
 or
 die
 "Couldn't open directory, $!"
 ;

foreach
 (
 sort grep
 (
 /^.*\.c$/
 ,
 readdir
 (
 DIR
)))
 {

 print
 "$_\n"
 ;

}

closedir DIR
 ;

Create new Directory

You can use
 mkdir
 function to create a new directory. You will need to have the required permission to create a directory.

#!/usr/bin/perl

$dir
 =
 "/tmp/perl"
 ;

This creates perl directory in /tmp directory.

mkdir
 (
 $dir
)
 or
 die
 "Couldn't create $dir directory, $!"
 ;

print
 "Directory created successfully\n"
 ;

Remove a directory

You can use
 rmdir
 function to remove a directory. You will need to have the required permission to remove a directory. Additionally this directory should be empty before you try to remove it.

#!/usr/bin/perl

$dir
 =
 "/tmp/perl"
 ;

This removes perl directory from /tmp directory.

rmdir
 (
 $dir
)
 or
 die
 "Couldn't remove $dir directory, $!"
 ;

print
 "Directory removed successfully\n"
 ;

Change a Directory

You can use
 chdir
 function to change a directory and go to a new location. You will need to have the required permission to change a directory and go inside the new directory.

#!/usr/bin/perl

$dir
 =
 "/home"
 ;

This changes perl directory and moves you inside /home directory.

chdir
 (
 $dir
)
 or
 die
 "Couldn't go inside $dir directory, $!"
 ;

print
 "Your new location is $dir\n"
 ;

Error Handling

The execution and the errors always go together. If you are opening a file which does not exist. then if you did not handle this situation properly then your program is considered to be of bad quality.

The program stops if an error occurs. So a proper error handling is used to handle various type of errors, which may occur during a program execution and take appropriate action instead of halting program completely.

You can identify and trap an error in a number of different ways. Its very easy to trap errors in Perl and then handling them properly. Here are few methods which can be used.

The if statement

The
 if statement
 is the obvious choice when you need to check the return value from a statement; for example −

if
 (
 open
 (
 DATA
 ,
 $file
))
 {

 ...

}
 else
 {

 die
 "Error: Couldn't open the file - $!"
 ;

}

Here variable $! returns the actual error message. Alternatively, we can reduce the statement to one line in situations where it makes sense to do so; for example −

open
 (
 DATA
 ,
 $file
)
 ||
 die
 "Error: Couldn't open the file $!"
 ;

The unless Function

The
 unless
 function is the logical opposite to if: statements can completely bypass the success status and only be executed if the expression returns false. For example −

unless
 (
 chdir
 (
 "/etc"
))
 {

 die
 "Error: Can't change directory - $!"
 ;

}

The
 unless
 statement is best used when you want to raise an error or alternative only if the expression fails. The statement also makes sense when used in a single-line statement −

die
 "Error: Can't change directory!: $!"
 unless
 (
 chdir
 (
 "/etc"
));

Here we die only if the chdir operation fails, and it reads nicely.

The ternary Operator

For very short tests, you can use the conditional operator
 ?:

print
 (
 exists
 (
 $hash
 {
 value
 })
 ?
 'There'
 :
 'Missing'
 ,
 "\n"
);

It's not quite so clear here what we are trying to achieve, but the effect is the same as using an
 if
 or
 unless
 statement. The conditional operator is best used when you want to quickly return one of the two values within an expression or statement.

The warn Function

The warn function just raises a warning, a message is printed to STDERR, but no further action is taken. So it is more useful if you just want to print a warning for the user and proceed with rest of the operation −

chdir
 (
 '/etc'
)
 or
 warn
 "Can't change directory"
 ;

The die Function

The die function works just like warn, except that it also calls exit. Within a normal script, this function has the effect of immediately terminating execution. You should use this function in case it is useless to proceed if there is an error in the program −

chdir
 (
 '/etc'
)
 or
 die
 "Can't change directory"
 ;

Errors within Modules

There are two different situations we should be able to handle −

	

 Reporting an error in a module that quotes the module's filename and line number - this is useful when debugging a module, or when you specifically want to raise a module-related, rather than script-related, error.

	

 Reporting an error within a module that quotes the caller's information so that you can debug the line within the script that caused the error. Errors raised in this fashion are useful to the end-user, because they highlight the error in relation to the calling script's origination line.

The
 warn
 and
 die
 functions work slightly differently than you would expect when called from within a module. For example, the simple module −

package
 T
 ;

require
 Exporter
 ;

@ISA
 =
 qw
 /
 Exporter
 /;

@EXPORT
 =
 qw
 /
 function
 /;

use
 Carp
 ;

sub
 function
 {

 warn
 "Error in module!"
 ;

}

1
 ;

When called from a script like below −

use
 T
 ;

function
 ();

It will produce the following result −

Error in module! at T.pm line 9.

This is more or less what you might expected, but not necessarily what you want. From a module programmer's perspective, the information is useful because it helps to point to a bug within the module itself. For an end-user, the information provided is fairly useless, and for all but the hardened programmer, it is completely pointless.

The solution for such problems is the Carp module, which provides a simplified method for reporting errors within modules that return information about the calling script. The Carp module provides four functions: carp, cluck, croak, and confess. These functions are discussed below.

The carp Function

The carp function is the basic equivalent of warn and prints the message to STDERR without actually exiting the script and printing the script name.

package
 T
 ;

require
 Exporter
 ;

@ISA
 =
 qw
 /
 Exporter
 /;

@EXPORT
 =
 qw
 /
 function
 /;

use
 Carp
 ;

sub
 function
 {

 carp
 "Error in module!"
 ;

}

1
 ;

When called from a script like below −

use
 T
 ;

function
 ();

It will produce the following result −

Error in module! at test.pl line 4

The cluck Function

The cluck function is a sort of supercharged carp, it follows the same basic principle but also prints a stack trace of all the modules that led to the function being called, including the information on the original script.

package
 T
 ;

require
 Exporter
 ;

@ISA
 =
 qw
 /
 Exporter
 /;

@EXPORT
 =
 qw
 /
 function
 /;

use
 Carp
 qw
 (
 cluck
);

sub
 function
 {

 cluck
 "Error in module!"
 ;

}

1
 ;

When called from a script like below −

use
 T
 ;

function
 ();

It will produce the following result −

Error in module! at T.pm line 9

 T::function() called at test.pl line 4

The croak Function

The
 croak
 function is equivalent to
 die
 , except that it reports the caller one level up. Like die, this function also exits the script after reporting the error to STDERR −

package
 T
 ;

require
 Exporter
 ;

@ISA
 =
 qw
 /
 Exporter
 /;

@EXPORT
 =
 qw
 /
 function
 /;

use
 Carp
 ;

sub
 function
 {

 croak
 "Error in module!"
 ;

}

1
 ;

When called from a script like below −

use
 T
 ;

function
 ();

It will produce the following result −

Error in module! at test.pl line 4

As with carp, the same basic rules apply regarding the including of line and file information according to the warn and die functions.

The confess Function

The
 confess
 function is like
 cluck
 ; it calls die and then prints a stack trace all the way up to the origination script.

package
 T
 ;

require
 Exporter
 ;

@ISA
 =
 qw
 /
 Exporter
 /;

@EXPORT
 =
 qw
 /
 function
 /;

use
 Carp
 ;

sub
 function
 {

 confess
 "Error in module!"
 ;

}

1
 ;

When called from a script like below −

use
 T
 ;

function
 ();

It will produce the following result −

Error in module! at T.pm line 9

 T::function() called at test.pl line 4

Special Variables

There are some variables which have a predefined and special meaning in Perl. They are the variables that use punctuation characters after the usual variable indicator ($, @, or %), such as $_ (explained below).

Most of the special variables have an english like long name, e.g., Operating System Error variable $! can be written as $OS_ERROR. But if you are going to use english like names, then you would have to put one line
 use English;
 at the top of your program file. This guides the interpreter to pickup exact meaning of the variable.

The most commonly used special variable is $_, which contains the default input and pattern-searching string. For example, in the following lines −

#!/usr/bin/perl

foreach
 (
 'hickory'
 ,
 'dickory'
 ,
 'doc'
)
 {

 print
 $_
 ;

 print
 "\n"
 ;

}

When executed, this will produce the following result −

hickory

dickory

doc

Again, let's check the same example without using $_ variable explicitly −

#!/usr/bin/perl

foreach
 (
 'hickory'
 ,
 'dickory'
 ,
 'doc'
)
 {

 print
 ;

 print
 "\n"
 ;

}

When executed, this will also produce the following result −

hickory

dickory

doc

The first time the loop is executed, "hickory" is printed. The second time around, "dickory" is printed, and the third time, "doc" is printed. That's because in each iteration of the loop, the current string is placed in $_, and is used by default by print. Here are the places where Perl will assume $_ even if you don't specify it −

	

 Various unary functions, including functions like ord and int, as well as the all file tests (-f, -d) except for -t, which defaults to STDIN.

	

 Various list functions like print and unlink.

	

 The pattern-matching operations m//, s///, and tr/// when used without an =~ operator.

	

 The default iterator variable in a foreach loop if no other variable is supplied.

	

 The implicit iterator variable in the grep and map functions.

	

 The default place to put an input record when a line-input operation's result is tested by itself as the sole criterion of a while test (i.e.,). Note that outside of a while test, this will not happen.

Special Variable Types

Based on the usage and nature of special variables, we can categorize them in the following categories −

	
Global Scalar Special Variables.

	
Global Array Special Variables.

	
Global Hash Special Variables.

	
Global Special Filehandles.

	
Global Special Constants.

	
Regular Expression Special Variables.

	
Filehandle Special Variables.

Global Scalar Special Variables

Here is the list of all the scalar special variables. We have listed corresponding english like names along with the symbolic names.

	

$_

	

The default input and pattern-searching space.

	

$ARG

	

$.

	

The current input line number of the last filehandle that was read. An explicit close on the filehandle resets the line number.

	

$NR

	

$/

	

The input record separator; newline by default. If set to the null string, it treats blank lines as delimiters.

	

$RS

	

$,

	

The output field separator for the print operator.

	

$OFS

	

$\

	

The output record separator for the print operator.

	

$ORS

	

$"

	

Like "$," except that it applies to list values interpolated into a double-quoted string (or similar interpreted string). Default is a space.

	

$LIST_SEPARATOR

	

$;

	

The subscript separator for multidimensional array emulation. Default is "\034".

	

$SUBSCRIPT_SEPARATOR

	

$^L

	

What a format outputs to perform a formfeed. Default is "\f".

	

$FORMAT_FORMFEED

	

$:

	

The current set of characters after which a string may be broken to fill continuation fields (starting with ^) in a format. Default is "\n"".

	

$FORMAT_LINE_

BREAK_CHARACTERS

	

$^A

	

The current value of the write accumulator for format lines.

	

$ACCUMULATOR

	

$#

	

Contains the output format for printed numbers (deprecated).

	

$OFMT

	

$?

	

The status returned by the last pipe close, backtick (``) command, or system operator.

	

$CHILD_ERROR

	

$!

	

If used in a numeric context, yields the current value of the errno variable, identifying the last system call error. If used in a string context, yields the corresponding system error string.

	

$OS_ERROR or $ERRNO

	

$@

	

The Perl syntax error message from the last eval command.

	

$EVAL_ERROR

	

$$

	

The pid of the Perl process running this script.

	

$PROCESS_ID or $PID

	

$<

	

The real user ID (uid) of this process.

	

$REAL_USER_ID or $UID

	

$>

	

The effective user ID of this process.

	

$EFFECTIVE_USER_ID or $EUID

	

$(

	

The real group ID (gid) of this process.

	

$REAL_GROUP_ID or

$GID

	

$)

	

The effective gid of this process.

	

$EFFECTIVE_GROUP_

ID or $EGID

	

$0

	

Contains the name of the file containing the Perl script being executed.

	

$PROGRAM_NAME

	

	

$[

	

The index of the first element in an array and of the first character in a substring. Default is 0.

	

	

	

$]

	

Returns the version plus patchlevel divided by 1000.

	

$PERL_VERSION

	

$^D

	

The current value of the debugging flags.

	

$DEBUGGING

	

$^E

	

Extended error message on some platforms.

	

$EXTENDED_OS_ERROR

	

$^F

	

The maximum system file descriptor, ordinarily 2.

	

$SYSTEM_FD_MAX

	

$^H

	

Contains internal compiler hints enabled by certain pragmatic modules.

	

	

	

$^I

	

The current value of the inplace-edit extension. Use undef to disable inplace editing.

	

$INPLACE_EDIT

	

$^M

	

The contents of $M can be used as an emergency memory pool in case Perl dies with an out-of-memory error. Use of $M requires a special compilation of Perl. See the INSTALL document for more information.

	

	

	

$^O

	

Contains the name of the operating system that the current Perl binary was compiled for.

	

$OSNAME

	

$^P

	

The internal flag that the debugger clears so that it doesn't debug itself.

	

$PERLDB

	

$^T

	

The time at which the script began running, in seconds since the epoch.

	

$BASETIME

	

$^W

	

The current value of the warning switch, either true or false.

	

$WARNING

	

$^X

	

The name that the Perl binary itself was executed as.

	

$EXECUTABLE_NAME

	

$ARGV

	

Contains the name of the current file when reading from <ARGV>.

	

	

Global Array Special Variables

	

@ARGV

	

The array containing the command-line arguments intended for the script.

	

@INC

	

The array containing the list of places to look for Perl scripts to be evaluated by the do, require, or use constructs.

	

@F

	

The array into which the input lines are split when the -a command-line switch is given.

Global Hash Special Variables

	

%INC

	

The hash containing entries for the filename of each file that has been included via do or require.

	

%ENV

	

The hash containing your current environment.

	

%SIG

	

The hash used to set signal handlers for various signals.

Global Special Filehandles

	

ARGV

	

The special filehandle that iterates over command line filenames in @ARGV. Usually written as the null filehandle in <>.

	

STDERR

	

The special filehandle for standard error in any package.

	

STDIN

	

The special filehandle for standard input in any package.

	

STDOUT

	

The special filehandle for standard output in any package.

	

DATA

	

The special filehandle that refers to anything following the __END__ token in the file containing the script. Or, the special filehandle for anything following the __DATA__ token in a required file, as long as you're reading data in the same package __DATA__ was found in.

	

_ (underscore)

	

The special filehandle used to cache the information from the last stat, lstat, or file test operator.

Global Special Constants

	

__END__

	

Indicates the logical end of your program. Any following text is ignored, but may be read via the DATA filehandle.

	

__FILE__

	

Represents the filename at the point in your program where it's used. Not interpolated into strings.

	

__LINE__

	

Represents the current line number. Not interpolated into strings.

	

__PACKAGE__

	

Represents the current package name at compile time, or undefined if there is no current package. Not interpolated into strings.

Regular Expression Special Variables

	

$digit

	

Contains the text matched by the corresponding set of parentheses in the last pattern matched. For example, $1 matches whatever was contained in the first set of parentheses in the previous regular expression.

	

$&

	

The string matched by the last successful pattern match.

	

$MATCH

	

$`

	

The string preceding whatever was matched by the last successful pattern match.

	

$PREMATCH

	

$'

	

The string following whatever was matched by the last successful pattern match.

	

$POSTMATCH

	

$+

	

The last bracket matched by the last search pattern. This is useful if you don't know which of a set of alternative patterns was matched. For example : /Version: (.*)|Revision: (.*)/ && ($rev = $+);

	

$LAST_PAREN_MATCH

Filehandle Special Variables

	

$|

	

If set to nonzero, forces an fflush(3) after every write or print on the currently selected output channel.

	

$OUTPUT_AUTOFLUSH

	

$%

	

The current page number of the currently selected output channel.

	

$FORMAT_PAGE_NUMBER

	

$=

	

The current page length (printable lines) of the currently selected output channel. Default is 60.

	

$FORMAT_LINES_PER_PAGE

	

$-

	

The number of lines left on the page of the currently selected output channel.

	

$FORMAT_LINES_LEFT

	

$~

	

The name of the current report format for the currently selected output channel. Default is the name of the filehandle.

	

$FORMAT_NAME

	

$^

	

The name of the current top-of-page format for the currently selected output channel. Default is the name of the filehandle with _TOP appended.

	

$FORMAT_TOP_NAME

Coding Standard

Each programmer will, of course, have his or her own preferences in regards to formatting, but there are some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the -w flag at all times. You may turn it off explicitly for particular portions of code via the no warnings pragma or the $^W variable if you must. You should also always run under use strict or know the reason why not. The use sigtrap and even use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing curly bracket of a multi-line BLOCK should line up with the keyword that started the construct. Beyond that, he has other preferences that aren't so strong −

	
4-column indent.

	
Opening curly on same line as keyword, if possible, otherwise line up.

	
Space before the opening curly of a multi-line BLOCK.

	
One-line BLOCK may be put on one line, including curlies.

	
No space before the semicolon.

	
Semicolon omitted in "short" one-line BLOCK.

	
Space around most operators.

	
Space around a "complex" subscript (inside brackets).

	
Blank lines between chunks that do different things.

	
Uncuddled elses.

	
No space between function name and its opening parenthesis.

	
Space after each comma.

	
Long lines broken after an operator (except and and or).

	
Space after last parenthesis matching on current line.

	
Line up corresponding items vertically.

	
Omit redundant punctuation as long as clarity doesn't suffer.

Here are some other more substantive style issues to think about: Just because you CAN do something a particular way doesn't mean that you SHOULD do it that way. Perl is designed to give you several ways to do anything, so consider picking the most readable one. For instance −

open
 (
 FOO
 ,
 $foo
)
 ||
 die
 "Can't open $foo: $!"
 ;

Is better than −

die
 "Can't open $foo: $!"
 unless
 open
 (
 FOO
 ,
 $foo
);

Because the second way hides the main point of the statement in a modifier. On the other hand,

print
 "Starting analysis\n"
 if
 $verbose
 ;

Is better than −

$verbose
 &&
 print
 "Starting analysis\n"
 ;

Because the main point isn't whether the user typed -v or not.

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl provides the last operator so you can exit in the middle. Just "outdent" it a little to make it more visible −

LINE
 :

for
 (;;)
 {

 statements
 ;

 last
 LINE
 if
 $foo
 ;

 next
 LINE
 if
 /^
 #/;

 statements
 ;

}

Let's see few more important points −

	

 Don't be afraid to use loop labels--they're there to enhance readability as well as to allow multilevel loop breaks. See the previous example.

	

 Avoid using grep() (or map()) or `backticks` in a void context, that is, when you just throw away their return values. Those functions all have return values, so use them. Otherwise use a foreach() loop or the system() function instead.

	

 For portability, when using features that may not be implemented on every machine, test the construct in an eval to see if it fails. If you know what version or patchlevel a particular feature was implemented, you can test $] ($PERL_VERSION in English) to see if it will be there. The Config module will also let you interrogate values determined by the Configure program when Perl was installed.

	

 Choose mnemonic identifiers. If you can't remember what mnemonic means, you've got a problem.

	

 While short identifiers like $gotit are probably ok, use underscores to separate words in longer identifiers. It is generally easier to read $var_names_like_this than $VarNamesLikeThis, especially for non-native speakers of English. It's also a simple rule that works consistently with VAR_NAMES_LIKE_THIS.

	

 Package names are sometimes an exception to this rule. Perl informally reserves lowercase module names for "pragma" modules like integer and strict. Other modules should begin with a capital letter and use mixed case, but probably without underscores due to limitations in primitive file systems' representations of module names as files that must fit into a few sparse bytes.

	

 If you have a really hairy regular expression, use the /x modifier and put in some whitespace to make it look a little less like line noise. Don't use slash as a delimiter when your regexp has slashes or backslashes.

	

 Always check the return codes of system calls. Good error messages should go to STDERR, include which program caused the problem, what the failed system call and arguments were, and (VERY IMPORTANT) should contain the standard system error message for what went wrong. Here's a simple but sufficient example −

opendir
 (
 D
 ,
 $dir
)
 or
 die
 "can't opendir $dir: $!"
 ;

	

 Think about reusability. Why waste brainpower on a one-shot when you might want to do something like it again? Consider generalizing your code. Consider writing a module or object class. Consider making your code run cleanly with use strict and use warnings (or -w) in effect. Consider giving away your code. Consider changing your whole world view. Consider... oh, never mind.

	

 Be consistent.

	

 Be nice.

Regular Expressions

A regular expression is a string of characters that defines the pattern or patterns you are viewing. The syntax of regular expressions in Perl is very similar to what you will find within other regular expression.supporting programs, such as
 sed
 ,
 grep
 , and
 awk
 .

The basic method for applying a regular expression is to use the pattern binding operators =~ and
 !
 ~. The first operator is a test and assignment operator.

There are three regular expression operators within Perl.

	
Match Regular Expression - m//

	
Substitute Regular Expression - s///

	
Transliterate Regular Expression - tr///

The forward slashes in each case act as delimiters for the regular expression (regex) that you are specifying. If you are comfortable with any other delimiter, then you can use in place of forward slash.

The Match Operator

The match operator, m//, is used to match a string or statement to a regular expression. For example, to match the character sequence "foo" against the scalar $bar, you might use a statement like this −

#!/usr/bin/perl

$bar
 =
 "This is foo and again foo"
 ;

if
 (
 $bar
 =~
 /
 foo
 /)
 {

 print
 "First time is matching\n"
 ;

}
 else
 {

 print
 "First time is not matching\n"
 ;

}

$bar
 =
 "foo"
 ;

if
 (
 $bar
 =~
 /
 foo
 /)
 {

 print
 "Second time is matching\n"
 ;

}
 else
 {

 print
 "Second time is not matching\n"
 ;

}

When above program is executed, it produces the following result −

First time is matching

Second time is matching

The m// actually works in the same fashion as the q// operator series.you can use any combination of naturally matching characters to act as delimiters for the expression. For example, m{}, m(), and m>< are all valid. So above example can be re-written as follows −

#!/usr/bin/perl

$bar
 =
 "This is foo and again foo"
 ;

if
 (
 $bar
 =~
 m
 [
 foo
])
 {

 print
 "First time is matching\n"
 ;

}
 else
 {

 print
 "First time is not matching\n"
 ;

}

$bar
 =
 "foo"
 ;

if
 (
 $bar
 =~
 m
 {
 foo
 })
 {

 print
 "Second time is matching\n"
 ;

}
 else
 {

 print
 "Second time is not matching\n"
 ;

}

You can omit m from m// if the delimiters are forward slashes, but for all other delimiters you must use the m prefix.

Note that the entire match expression, that is the expression on the left of =~ or !~ and the match operator, returns true (in a scalar context) if the expression matches. Therefore the statement −

$true
 =
 (
 $foo
 =~
 m
 /
 foo
 /);

will set $true to 1 if $foo matches the regex, or 0 if the match fails. In a list context, the match returns the contents of any grouped expressions. For example, when extracting the hours, minutes, and seconds from a time string, we can use −

my
 (
 $hours
 ,
 $minutes
 ,
 $seconds
)
 =
 (
 $time
 =~
 m
 /(
 \d
 +):(
 \d
 +):(
 \d
 +)/);

Match Operator Modifiers

The match operator supports its own set of modifiers. The /g modifier allows for global matching. The /i modifier will make the match case insensitive. Here is the complete list of modifiers

	

Sr.No.

	

Modifier & Description

	

1

	

i

Makes the match case insensitive.

	

2

	

m

Specifies that if the string has newline or carriage return characters, the ^ and $ operators will now match against a newline boundary, instead of a string boundary.

	

3

	

o

Evaluates the expression only once.

	

4

	

s

Allows use of . to match a newline character.

	

5

	

x

Allows you to use white space in the expression for clarity.

	

6

	

g

Globally finds all matches.

	

7

	

cg

Allows the search to continue even after a global match fails.

Matching Only Once

There is also a simpler version of the match operator - the ?PATTERN? operator. This is basically identical to the m// operator except that it only matches once within the string you are searching between each call to reset.

For example, you can use this to get the first and last elements within a list −

#!/usr/bin/perl

@list
 =
 qw
 /
 food foosball subeo footnote terfoot canic footbrdige
 /;

foreach
 (
 @list
)
 {

 $first
 =
 $1
 if
 /(
 foo
 .*?)/;

 $last
 =
 $1
 if
 /(
 foo
 .*)/;

}

print
 "First: $first, Last: $last\n"
 ;

When above program is executed, it produces the following result −

First: foo, Last: footbrdige

Regular Expression Variables

Regular expression variables include
 $
 , which contains whatever the last grouping match matched;
 $&
 , which contains the entire matched string;
 $`
 , which contains everything before the matched string; and
 $'
 , which contains everything after the matched string. Following code demonstrates the result −

#!/usr/bin/perl

$string
 =
 "The food is in the salad bar"
 ;

$string
 =~
 m
 /
 foo
 /;

print
 "Before: $`\n"
 ;

print
 "Matched: $&\n"
 ;

print
 "After: $'\n"
 ;

When above program is executed, it produces the following result −

Before: The

Matched: foo

After: d is in the salad bar

The Substitution Operator

The substitution operator, s///, is really just an extension of the match operator that allows you to replace the text matched with some new text. The basic form of the operator is −

s/PATTERN/REPLACEMENT/;

The PATTERN is the regular expression for the text that we are looking for. The REPLACEMENT is a specification for the text or regular expression that we want to use to replace the found text with. For example, we can replace all occurrences of
 dog
 with
 cat
 using the following regular expression −

#/user/bin/perl

$string
 =
 "The cat sat on the mat"
 ;

$string
 =~
 s
 /
 cat
 /
 dog
 /;

print
 "$string\n"
 ;

When above program is executed, it produces the following result −

The dog sat on the mat

Substitution Operator Modifiers

Here is the list of all the modifiers used with substitution operator.

	

Sr.No.

	

Modifier & Description

	

1

	

i

Makes the match case insensitive.

	

2

	

m

Specifies that if the string has newline or carriage return characters, the ^ and $ operators will now match against a newline boundary, instead of a string boundary.

	

3

	

o

Evaluates the expression only once.

	

4

	

s

Allows use of . to match a newline character.

	

5

	

x

Allows you to use white space in the expression for clarity.

	

6

	

g

Replaces all occurrences of the found expression with the replacement text.

	

7

	

e

Evaluates the replacement as if it were a Perl statement, and uses its return value as the replacement text.

The Translation Operator

Translation is similar, but not identical, to the principles of substitution, but unlike substitution, translation (or transliteration) does not use regular expressions for its search on replacement values. The translation operators are −

tr
 /
 SEARCHLIST
 /
 REPLACEMENTLIST
 /
 cds

y
 /
 SEARCHLIST
 /
 REPLACEMENTLIST
 /
 cds

The translation replaces all occurrences of the characters in SEARCHLIST with the corresponding characters in REPLACEMENTLIST. For example, using the "The cat sat on the mat." string we have been using in this chapter −

#/user/bin/perl

$string
 =
 'The cat sat on the mat'
 ;

$string
 =~
 tr
 /
 a
 /
 o
 /;

print
 "$string\n"
 ;

When above program is executed, it produces the following result −

The cot sot on the mot.

Standard Perl ranges can also be used, allowing you to specify ranges of characters either by letter or numerical value. To change the case of the string, you might use the following syntax in place of the
 uc
 function.

$string
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

Translation Operator Modifiers

Following is the list of operators related to translation.

	

Sr.No.

	

Modifier & Description

	

1

	

c

Complements SEARCHLIST.

	

2

	

d

Deletes found but unreplaced characters.

	

3

	

s

Squashes duplicate replaced characters.

The /d modifier deletes the characters matching SEARCHLIST that do not have a corresponding entry in REPLACEMENTLIST. For example −

#!/usr/bin/perl

$string
 =
 'the cat sat on the mat.'
 ;

$string
 =~
 tr
 /
 a
 -
 z
 /
 b
 /
 d
 ;

print
 "$string\n"
 ;

When above program is executed, it produces the following result −

b b b.

The last modifier, /s, removes the duplicate sequences of characters that were replaced, so −

#!/usr/bin/perl

$string
 =
 'food'
 ;

$string
 =
 'food'
 ;

$string
 =~
 tr
 /
 a
 -
 z
 /
 a
 -
 z
 /
 s
 ;

print
 "$string\n"
 ;

When above program is executed, it produces the following result −

fod

More Complex Regular Expressions

You don't just have to match on fixed strings. In fact, you can match on just about anything you could dream of by using more complex regular expressions. Here's a quick cheat sheet −

Following table lists the regular expression syntax that is available in Python.

	

Sr.No.

	

Pattern & Description

	

1

	

^

Matches beginning of line.

	

2

	

$

Matches end of line.

	

3

	

.

Matches any single character except newline. Using m option allows it to match newline as well.

	

4

	

[...]

Matches any single character in brackets.

	

5

	

[^...]

Matches any single character not in brackets.

	

6

	

*

Matches 0 or more occurrences of preceding expression.

	

7

	

+

Matches 1 or more occurrence of preceding expression.

	

8

	

?

Matches 0 or 1 occurrence of preceding expression.

	

9

	

{ n}

Matches exactly n number of occurrences of preceding expression.

	

10

	

{ n,}

Matches n or more occurrences of preceding expression.

	

11

	

{ n, m}

Matches at least n and at most m occurrences of preceding expression.

	

12

	

a| b

Matches either a or b.

	

13

	

\w

Matches word characters.

	

14

	

\W

Matches nonword characters.

	

15

	

\s

Matches whitespace. Equivalent to [\t\n\r\f].

	

16

	

\S

Matches nonwhitespace.

	

17

	

\d

Matches digits. Equivalent to [0-9].

	

18

	

\D

Matches nondigits.

	

19

	

\A

Matches beginning of string.

	

20

	

\Z

Matches end of string. If a newline exists, it matches just before newline.

	

21

	

\z

Matches end of string.

	

22

	

\G

Matches point where last match finished.

	

23

	

\b

Matches word boundaries when outside brackets. Matches backspace (0x08) when inside brackets.

	

24

	

\B

Matches nonword boundaries.

	

25

	

\n, \t, etc.

Matches newlines, carriage returns, tabs, etc.

	

26

	

\1...\9

Matches nth grouped subexpression.

	

27

	

\10

Matches nth grouped subexpression if it matched already. Otherwise refers to the octal representation of a character code.

	

28

	

[aeiou]

Matches a single character in the given set

	

29

	

[^aeiou]

Matches a single character outside the given set

The ^ metacharacter matches the beginning of the string and the $ metasymbol matches the end of the string. Here are some brief examples.

nothing in the string (start and end are adjacent)

/^
 $
 /

a three digits, each followed by a whitespace

character (eg "3 4 5 ")

/(
 \d\s
)
 {
 3
 }/

matches a string in which every

odd-numbered letter is a (eg "abacadaf")

/(
 a
 .)+/

string starts with one or more digits

/^
 \d
 +/

string that ends with one or more digits

/
 \d
 +
 $
 /

Lets have a look at another example.

#!/usr/bin/perl

$string
 =
 "Cats go Catatonic\nWhen given Catnip"
 ;

(
 $start
)
 =
 (
 $string
 =~
 /
 \A
 (.*?)
 /);

@lines
 =
 $string
 =~
 /^(.*?)
 /
 gm
 ;

print
 "First word: $start\n"
 ,
 "Line starts: @lines\n"
 ;

When above program is executed, it produces the following result −

First word: Cats

Line starts: Cats When

Matching Boundaries

The
 \b
 matches at any word boundary, as defined by the difference between the \w class and the \W class. Because \w includes the characters for a word, and \W the opposite, this normally means the termination of a word. The
 \B
 assertion matches any position that is not a word boundary. For example −

/\bcat\b/
 # Matches 'the cat sat' but not 'cat on the mat'

/
 \Bcat\B
 /
 # Matches 'verification' but not 'the cat on the mat'

/
 \bcat\B
 /
 # Matches 'catatonic' but not 'polecat'

/
 \Bcat\b
 /
 # Matches 'polecat' but not 'catatonic'

Selecting Alternatives

The | character is just like the standard or bitwise OR within Perl. It specifies alternate matches within a regular expression or group. For example, to match "cat" or "dog" in an expression, you might use this −

if
 (
 $string
 =~
 /
 cat
 |
 dog
 /)

You can group individual elements of an expression together in order to support complex matches. Searching for two people’s names could be achieved with two separate tests, like this −

if
 ((
 $string
 =~
 /
 Martin
 Brown
 /)
 ||

 (
 $string
 =~
 /
 Sharon
 Brown
 /))

This
 could be written
 as
 follows

if
 (
 $string
 =~
 /(
 Martin
 |
 Sharon
)
 Brown
 /)

Grouping Matching

From a regular-expression point of view, there is no difference between except, perhaps, that the former is slightly clearer.

$string
 =~
 /(
 \S
 +)
 \s
 +(
 \S
 +)/;

and

$string
 =~
 /
 \S
 +
 \s
 +
 \S
 +/;

However, the benefit of grouping is that it allows us to extract a sequence from a regular expression. Groupings are returned as a list in the order in which they appear in the original. For example, in the following fragment we have pulled out the hours, minutes, and seconds from a string.

my
 (
 $hours
 ,
 $minutes
 ,
 $seconds
)
 =
 (
 $time
 =~
 m
 /(
 \d
 +):(
 \d
 +):(
 \d
 +)/);

As well as this direct method, matched groups are also available within the special $x variables, where x is the number of the group within the regular expression. We could therefore rewrite the preceding example as follows −

#!/usr/bin/perl

$time
 =
 "12:05:30"
 ;

$time
 =~
 m
 /(
 \d
 +):(
 \d
 +):(
 \d
 +)/;

my
 (
 $hours
 ,
 $minutes
 ,
 $seconds
)
 =
 (
 $1
 ,
 $2
 ,
 $3
);

print
 "Hours : $hours, Minutes: $minutes, Second: $seconds\n"
 ;

When above program is executed, it produces the following result −

Hours : 12, Minutes: 05, Second: 30

When groups are used in substitution expressions, the $x syntax can be used in the replacement text. Thus, we could reformat a date string using this −

#!/usr/bin/perl

$date
 =
 '03/26/1999'
 ;

$date
 =~
 s
 #(\d+)/(\d+)/(\d+)#$3/$1/$2#;

print
 "$date\n"
 ;

When above program is executed, it produces the following result −

1999/03/26

The \G Assertion

The \G assertion allows you to continue searching from the point where the last match occurred. For example, in the following code, we have used \G so that we can search to the correct position and then extract some information, without having to create a more complex, single regular expression −

#!/usr/bin/perl

$string
 =
 "The time is: 12:31:02 on 4/12/00"
 ;

$string
 =~
 /:
 \s
 +/
 g
 ;

(
 $time
)
 =
 (
 $string
 =~
 /
 \G
 (
 \d
 +:
 \d
 +:
 \d
 +)/);

$string
 =~
 /.+
 \s
 +/
 g
 ;

(
 $date
)
 =
 (
 $string
 =~
 m
 {
 \G
 (
 \d
 +
 /\d+/
 \d
 +)});

print
 "Time: $time, Date: $date\n"
 ;

When above program is executed, it produces the following result −

Time: 12:31:02, Date: 4/12/00

The \G assertion is actually just the metasymbol equivalent of the pos function, so between regular expression calls you can continue to use pos, and even modify the value of pos (and therefore \G) by using pos as an lvalue subroutine.

Regular-expression Examples

Literal Characters

	

Sr.No.

	

Example & Description

	

1

	

Perl

Match "Perl".

Character Classes

	

Sr.No.

	

Example & Description

	

1

	

[Pp]ython

Matches "Python" or "python"

	

2

	

rub[ye]

Matches "ruby" or "rube"

	

3

	

[aeiou]

Matches any one lowercase vowel

	

4

	

[0-9]

Matches any digit; same as [0123456789]

	

5

	

[a-z]

Matches any lowercase ASCII letter

	

6

	

[A-Z]

Matches any uppercase ASCII letter

	

7

	

[a-zA-Z0-9]

Matches any of the above

	

8

	

[^aeiou]

Matches anything other than a lowercase vowel

	

9

	

[^0-9]

Matches anything other than a digit

Special Character Classes

	

Sr.No.

	

Example & Description

	

1

	

.

Matches any character except newline

	

2

	

\d

Matches a digit: [0-9]

	

3

	

\D

Matches a nondigit: [^0-9]

	

4

	

\s

Matches a whitespace character: [\t\r\n\f]

	

5

	

\S

Matches nonwhitespace: [^ \t\r\n\f]

	

6

	

\w

Matches a single word character: [A-Za-z0-9_]

	

7

	

\W

Matches a nonword character: [^A-Za-z0-9_]

Repetition Cases

	

Sr.No.

	

Example & Description

	

1

	

ruby?

Matches "rub" or "ruby": the y is optional

	

2

	

ruby*

Matches "rub" plus 0 or more ys

	

3

	

ruby+

Matches "rub" plus 1 or more ys

	

4

	

\d{3}

Matches exactly 3 digits

	

5

	

\d{3,}

Matches 3 or more digits

	

6.

	

\d{3,5}

Matches 3, 4, or 5 digits

Nongreedy Repetition

This matches the smallest number of repetitions −

	

Sr.No.

	

Example & Description

	

1

	

<.*>

Greedy repetition: matches "<python>perl>"

	

2

	

<.*?>

Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

	

Sr.No.

	

Example & Description

	

1

	

\D\d+

No group: + repeats \d

	

2

	

(\D\d)+

Grouped: + repeats \D\d pair

	

3

	

([Pp]ython(,)?)+

Match "Python", "Python, python, python", etc.

Backreferences

This matches a previously matched group again −

	

Sr.No.

	

Example & Description

	

1

	

([Pp])ython&\1ails

Matches python&pails or Python&Pails

	

2

	

(['"])[^\1]*\1

Single or double-quoted string. \1 matches whatever the 1st group matched. \2 matches whatever the 2nd group matched, etc.

Alternatives

	

Sr.No.

	

Example & Description

	

1

	

python|perl

Matches "python" or "perl"

	

2

	

rub(y|le))

Matches "ruby" or "ruble"

	

3

	

Python(!+|\?)

"Python" followed by one or more ! or one ?

Anchors

This need to specify match positions.

	

Sr.No.

	

Example & Description

	

1

	

^Python

Matches "Python" at the start of a string or internal line

	

2

	

Python$

Matches "Python" at the end of a string or line

	

3

	

\APython

Matches "Python" at the start of a string

	

4

	

Python\Z

Matches "Python" at the end of a string

	

5

	

\bPython\b

Matches "Python" at a word boundary

	

6

	

\brub\B

\B is nonword boundary: match "rub" in "rube" and "ruby" but not alone

	

7

	

Python(?=!)

Matches "Python", if followed by an exclamation point

	

8

	

Python(?!!)

Matches "Python", if not followed by an exclamation point

Special Syntax with Parentheses

	

Sr.No.

	

Example & Description

	

1

	

R(?#comment)

Matches "R". All the rest is a comment

	

2

	

R(?i)uby

Case-insensitive while matching "uby"

	

3

	

R(?i:uby)

Same as above

	

4

	

rub(?:y|le))

Group only without creating \1 backreference

Sending Email

Using sendmail Utility

Sending a Plain Message

If you are working on Linux/Unix machine then you can simply use
 sendmail
 utility inside your Perl program to send email. Here is a sample script that can send an email to a given email ID. Just make sure the given path for sendmail utility is correct. This may be different for your Linux/Unix machine.

#!/usr/bin/perl

$to
 =
 'abcd@gmail.com'
 ;

$from
 =
 'webmaster@yourdomain.com'
 ;

$subject
 =
 'Test Email'
 ;

$message
 =
 'This is test email sent by Perl Script'
 ;

open
 (
 MAIL
 ,
 "|/usr/sbin/sendmail -t"
);

Email Header

print
 MAIL
 "To: $to\n"
 ;

print
 MAIL
 "From: $from\n"
 ;

print
 MAIL
 "Subject: $subject\n\n"
 ;

Email Body

print
 MAIL $message
 ;

close
 (
 MAIL
);

print
 "Email Sent Successfully\n"
 ;

Actually, the above script is a client email script, which will draft email and submit to the server running locally on your Linux/Unix machine. This script will not be responsible for sending email to actual destination. So you have to make sure email server is properly configured and running on your machine to send email to the given email ID.

Sending an HTML Message

If you want to send HTML formatted email using sendmail, then you simply need to add
 Content-type: text/html\n
 in the header part of the email as follows −

#!/usr/bin/perl

$to
 =
 'abcd@gmail.com'
 ;

$from
 =
 'webmaster@yourdomain.com'
 ;

$subject
 =
 'Test Email'
 ;

$message
 =
 '<h1>This is test email sent by Perl Script</h1>'
 ;

open
 (
 MAIL
 ,
 "|/usr/sbin/sendmail -t"
);

Email Header

print
 MAIL
 "To: $to\n"
 ;

print
 MAIL
 "From: $from\n"
 ;

print
 MAIL
 "Subject: $subject\n\n"
 ;

print
 MAIL
 "Content-type: text/html\n"
 ;

Email Body

print
 MAIL $message
 ;

close
 (
 MAIL
);

print
 "Email Sent Successfully\n"
 ;

Using MIME::Lite Module

If you are working on windows machine, then you will not have access on sendmail utility. But you have alternate to write your own email client using MIME:Lite perl module. You can download this module from
 MIME-Lite-3.01.tar.gz
 and install it on your either machine Windows or Linux/Unix. To install it follow the simple steps −

$tar xvfz MIME
 -
 Lite
 -
 3.01
 .
 tar
 .
 gz

$cd MIME
 -
 Lite
 -
 3.01

$perl
 Makefile
 .
 PL

$make

$make install

That's it and you will have MIME::Lite module installed on your machine. Now you are ready to send your email with simple scripts explained below.

Sending a Plain Message

Now following is a script which will take care of sending email to the given email ID −

#!/usr/bin/perl

use
 MIME
 ::
 Lite
 ;

$to
 =
 'abcd@gmail.com'
 ;

$cc
 =
 'efgh@mail.com'
 ;

$from
 =
 'webmaster@yourdomain.com'
 ;

$subject
 =
 'Test Email'
 ;

$message
 =
 'This is test email sent by Perl Script'
 ;

$msg
 =
 MIME
 ::
 Lite
 ->
 new
 (

 From

 =>
 $from
 ,

 To

 =>
 $to
 ,

 Cc

 =>
 $cc
 ,

 Subject

 =>
 $subject
 ,

 Data

 =>
 $message

);

$msg
 ->
 send
 ;

print
 "Email Sent Successfully\n"
 ;

Sending an HTML Message

If you want to send HTML formatted email using sendmail, then you simply need to add
 Content-type: text/html\n
 in the header part of the email. Following is the script, which will take care of sending HTML formatted email −

#!/usr/bin/perl

use
 MIME
 ::
 Lite
 ;

$to
 =
 'abcd@gmail.com'
 ;

$cc
 =
 'efgh@mail.com'
 ;

$from
 =
 'webmaster@yourdomain.com'
 ;

$subject
 =
 'Test Email'
 ;

$message
 =
 '<h1>This is test email sent by Perl Script</h1>'
 ;

$msg
 =
 MIME
 ::
 Lite
 ->
 new
 (

 From

 =>
 $from
 ,

 To

 =>
 $to
 ,

 Cc

 =>
 $cc
 ,

 Subject

 =>
 $subject
 ,

 Data

 =>
 $message

);

$msg
 ->
 attr
 (
 "content-type"
 =>
 "text/html"
);

$msg
 ->
 send
 ;

print
 "Email Sent Successfully\n"
 ;

Sending an Attachment

If you want to send an attachment, then following script serves the purpose −

#!/usr/bin/perl

use
 MIME
 ::
 Lite
 ;

$to
 =
 'abcd@gmail.com'
 ;

$cc
 =
 'efgh@mail.com'
 ;

$from
 =
 'webmaster@yourdomain.com'
 ;

$subject
 =
 'Test Email'
 ;

$message
 =
 'This is test email sent by Perl Script'
 ;

$msg
 =
 MIME
 ::
 Lite
 ->
 new
 (

 From

 =>
 $from
 ,

 To

 =>
 $to
 ,

 Cc

 =>
 $cc
 ,

 Subject

 =>
 $subject
 ,

 Type

 =>
 'multipart/mixed'

);

Add your text message.

$msg
 ->
 attach
 (
 Type

 =>
 'text'
 ,

 Data

 =>
 $message

);

Specify your file as attachement.

$msg
 ->
 attach
 (
 Type

 =>
 'image/gif'
 ,

 Path

 =>
 '/tmp/logo.gif'
 ,

 Filename

 =>
 'logo.gif'
 ,

 Disposition

 =>
 'attachment'

);

$msg
 ->
 send
 ;

print
 "Email Sent Successfully\n"
 ;

You can attach as many files as you like in your email using attach() method.

Using SMTP Server

If your machine is not running an email server then you can use any other email server available at the remote location. But to use any other email server you will need to have an id, its password, URL, etc. Once you have all the required information, you simple need to provide that information in
 send()
 method as follows −

$msg
 ->
 send
 (
 'smtp'
 ,
 "smtp.myisp.net"
 ,
 AuthUser
 =>
 "id"
 ,
 AuthPass
 =>
 "password"
);

You can contact your email server administrator to have the above used information and if a user id and password is not already available then your administrator can create it in minutes.

Socket Programming

What is a Socket?

Socket is a Berkeley UNIX mechanism of creating a virtual duplex connection between different processes. This was later ported on to every known OS enabling communication between systems across geographical location running on different OS software. If not for the socket, most of the network communication between systems would never ever have happened.

Taking a closer look; a typical computer system on a network receives and sends information as desired by the various applications running on it. This information is routed to the system, since a unique IP address is designated to it. On the system, this information is given to the relevant applications, which listen on different ports. For example an internet browser listens on port 80 for information received from the web server. Also we can write our custom applications which may listen and send/receive information on a specific port number.

For now, let's sum up that a socket is an IP address and a port, enabling connection to send and recieve data over a network.

To explain above mentioned socket concept we will take an example of Client - Server Programming using Perl. To complete a client server architecture we would have to go through the following steps −

To Create a Server

	

 Create a socket using
 socket
 call.

	

 Bind the socket to a port address using
 bind
 call.

	

 Listen to the socket at the port address using
 listen
 call.

	

 Accept client connections using
 accept
 call.

To Create a Client

	

 Create a socket with
 socket
 call.

	

 Connect (the socket) to the server using
 connect
 call.

Following diagram shows the complete sequence of the calls used by Client and Server to communicate with each other −

[image: Perl Socket]

Server Side Socket Calls

The socket() call

The
 socket()
 call is the first call in establishing a network connection is creating a socket. This call has the following syntax −

socket(SOCKET, DOMAIN, TYPE, PROTOCOL);

The above call creates a SOCKET and other three arguments are integers which should have the following values for TCP/IP connections.

	

 DOMAIN
 should be PF_INET. It's probable 2 on your computer.

	

 TYPE
 should be SOCK_STREAM for TCP/IP connection.

	

 PROTOCOL
 should be
 (getprotobyname('tcp'))[2]
 . It is the particular protocol such as TCP to be spoken over the socket.

So socket function call issued by the server will be something like this −

use
 Socket

 # This defines PF_INET and SOCK_STREAM

socket
 (
 SOCKET
 ,
 PF_INET
 ,
 SOCK_STREAM
 ,(
 getprotobyname
 (
 'tcp'
))[
 2
]);

The bind() call

The sockets created by socket() call are useless until they are bound to a hostname and a port number. Server uses the following
 bind()
 function to specify the port at which they will be accepting connections from the clients.

bind
 (
 SOCKET
 ,
 ADDRESS
);

Here SOCKET is the descriptor returned by socket() call and ADDRESS is a socket address (for TCP/IP) containing three elements −

	

 The address family (For TCP/IP, that's AF_INET, probably 2 on your system).

	

 The port number (for example 21).

	

 The internet address of the computer (for example 10.12.12.168).

As the bind() is used by a server, which does not need to know its own address so the argument list looks like this −

use
 Socket

 # This defines PF_INET and SOCK_STREAM

$port
 =
 12345
 ;

 # The unique port used by the sever to listen requests

$server_ip_address
 =
 "10.12.12.168"
 ;

bind
 (
 SOCKET
 ,
 pack_sockaddr_in
 (
 $port
 ,
 inet_aton
 (
 $server_ip_address
)))

 or
 die
 "Can't bind to port $port! \n"
 ;

The
 or die
 clause is very important because if a server dies without outstanding connections, the port won't be immediately reusable unless you use the option SO_REUSEADDR using
 setsockopt()
 function. Here
 pack_sockaddr_in()
 function is being used to pack the Port and IP address into binary format.

The listen() call

If this is a server program, then it is required to issue a call to
 listen()
 on the specified port to listen, i.e., wait for the incoming requests. This call has the following syntax −

listen(SOCKET, QUEUESIZE);

The above call uses SOCKET descriptor returned by socket() call and QUEUESIZE is the maximum number of outstanding connection request allowed simultaneously.

The accept() call

If this is a server program then it is required to issue a call to the
 access()
 function to accept the incoming connections. This call has the following syntax −

accept(NEW_SOCKET, SOCKET);

The accept call receive SOCKET descriptor returned by socket() function and upon successful completion, a new socket descriptor NEW_SOCKET is returned for all future communication between the client and the server. If access() call fails, then it returns FLASE which is defined in Socket module which we have used initially.

Generally, accept() is used in an infinite loop. As soon as one connection arrives the server either creates a child process to deal with it or serves it himself and then goes back to listen for more connections.

while
 (
 1
)
 {

 accept
 (
 NEW_SOCKET
 ,
 SOCKT
);

}

Now all the calls related to server are over and let us see a call which will be required by the client.

Client Side Socket Calls

The connect() call

If you are going to prepare client program, then first you will use
 socket()
 call to create a socket and then you would have to use
 connect()
 call to connect to the server. You already have seen socket() call syntax and it will remain similar to server socket() call, but here is the syntax for
 connect()
 call −

connect
 (
 SOCKET
 ,
 ADDRESS
);

Here SCOKET is the socket descriptor returned by socket() call issued by the client and ADDRESS is a socket address similar to
 bind
 call, except that it contains the IP address of the remote server.

$port
 =
 21
 ;

 # For example, the ftp port

$server_ip_address
 =
 "10.12.12.168"
 ;

connect
 (
 SOCKET
 ,
 pack_sockaddr_in
 (
 $port
 ,
 inet_aton
 (
 $server_ip_address
)))

 or
 die
 "Can't connect to port $port! \n"
 ;

If you connect to the server successfully, then you can start sending your commands to the server using SOCKET descriptor, otherwise your client will come out by giving an error message.

Client - Server Example

Following is a Perl code to implement a simple client-server program using Perl socket. Here server listens for incoming requests and once connection is established, it simply replies
 Smile from the server
 . The client reads that message and print on the screen. Let's see how it has been done, assuming we have our server and client on the same machine.

Script to Create a Server

#!/usr/bin/perl -w

Filename : server.pl

use
 strict
 ;

use
 Socket
 ;

use port 7890 as default

my
 $port
 =
 shift
 ||
 7890
 ;

my
 $proto
 =
 getprotobyname
 (
 'tcp'
);

my
 $server
 =
 "localhost"
 ;

 # Host IP running the server

create a socket, make it reusable

socket
 (
 SOCKET
 ,
 PF_INET
 ,
 SOCK_STREAM
 ,
 $proto
)

 or
 die
 "Can't open socket $!\n"
 ;

setsockopt
 (
 SOCKET
 ,
 SOL_SOCKET
 ,
 SO_REUSEADDR
 ,
 1
)

 or
 die
 "Can't set socket option to SO_REUSEADDR $!\n"
 ;

bind to a port, then listen

bind
 (
 SOCKET
 ,
 pack_sockaddr_in
 (
 $port
 ,
 inet_aton
 (
 $server
)))

 or
 die
 "Can't bind to port $port! \n"
 ;

listen
 (
 SOCKET
 ,
 5
)
 or
 die
 "listen: $!"
 ;

print
 "SERVER started on port $port\n"
 ;

accepting a connection

my
 $client_addr
 ;

while
 (
 $client_addr
 =
 accept
 (
 NEW_SOCKET
 ,
 SOCKET
))
 {

 # send them a message, close connection

 my
 $name
 =
 gethostbyaddr
 (
 $client_addr
 ,
 AF_INET
);

 print
 NEW_SOCKET
 "Smile from the server"
 ;

 print
 "Connection recieved from $name\n"
 ;

 close NEW_SOCKET
 ;

}

To run the server in background mode issue the following command on Unix prompt −

$perl sever
 .
 pl
 &

Script to Create a Client

!
 /usr/
 bin
 /
 perl
 -
 w

Filename : client.pl

use
 strict
 ;

use
 Socket
 ;

initialize host and port

my
 $host
 =
 shift
 ||
 'localhost'
 ;

my
 $port
 =
 shift
 ||
 7890
 ;

my
 $server
 =
 "localhost"
 ;

 # Host IP running the server

create the socket, connect to the port

socket
 (
 SOCKET
 ,
 PF_INET
 ,
 SOCK_STREAM
 ,(
 getprotobyname
 (
 'tcp'
))[
 2
])

 or
 die
 "Can't create a socket $!\n"
 ;

connect
 (
 SOCKET
 ,
 pack_sockaddr_in
 (
 $port
 ,
 inet_aton
 (
 $server
)))

 or
 die
 "Can't connect to port $port! \n"
 ;

my
 $line
 ;

while
 (
 $line
 =
 <
 SOCKET
 >)
 {

 print
 "$line\n"
 ;

}

close SOCKET
 or
 die
 "close: $!"
 ;

Now let's start our client at the command prompt, which will connect to the server and read message sent by the server and displays the same on the screen as follows −

$perl client
 .
 pl

Smile
 from
 the server

NOTE
 − If you are giving the actual IP address in dot notation, then it is recommended to provide IP address in the same format in both client as well as server to avoid any confusion.

Object Oriented Programming in PERL

We have already studied references in Perl and Perl anonymous arrays and hashes. Object Oriented concept in Perl is very much based on references and anonymous array and hashes. Let's start learning basic concepts of Object Oriented Perl.

Object Basics

There are three main terms, explained from the point of view of how Perl handles objects. The terms are object, class, and method.

	

 An
 object
 within Perl is merely a reference to a data type that knows what class it belongs to. The object is stored as a reference in a scalar variable. Because a scalar only contains a reference to the object, the same scalar can hold different objects in different classes.

	

 A
 class
 within Perl is a package that contains the corresponding methods required to create and manipulate objects.

	

 A
 method
 within Perl is a subroutine, defined with the package. The first argument to the method is an object reference or a package name, depending on whether the method affects the current object or the class.

Perl provides a
 bless()
 function, which is used to return a reference which ultimately becomes an object.

Defining a Class

It is very simple to define a class in Perl. A class is corresponding to a Perl Package in its simplest form. To create a class in Perl, we first build a package.

A package is a self-contained unit of user-defined variables and subroutines, which can be re-used over and over again.

Perl Packages provide a separate namespace within a Perl program which keeps subroutines and variables independent from conflicting with those in other packages.

To declare a class named Person in Perl we do −

package
 Person
 ;

The scope of the package definition extends to the end of the file, or until another package keyword is encountered.

Creating and Using Objects

To create an instance of a class (an object) we need an object constructor. This constructor is a method defined within the package. Most programmers choose to name this object constructor method new, but in Perl you can use any name.

You can use any kind of Perl variable as an object in Perl. Most Perl programmers choose either references to arrays or hashes.

Let's create our constructor for our Person class using a Perl hash reference. When creating an object, you need to supply a constructor, which is a subroutine within a package that returns an object reference. The object reference is created by blessing a reference to the package's class. For example −

package
 Person
 ;

sub
 new
 {

 my
 $class
 =
 shift
 ;

 my
 $self
 =
 {

 _firstName
 =>
 shift
 ,

 _lastName
 =>
 shift
 ,

 _ssn
 =>
 shift
 ,

 };

 # Print all the values just for clarification.

 print
 "First Name is $self->{_firstName}\n"
 ;

 print
 "Last Name is $self->{_lastName}\n"
 ;

 print
 "SSN is $self->{_ssn}\n"
 ;

 bless $self
 ,
 $class
 ;

 return
 $self
 ;

}

Now Let us see how to create an Object.

$object
 =
 new
 Person
 (
 "Mohammad"
 ,
 "Saleem"
 ,
 23234345
);

You can use simple hash in your consturctor if you don't want to assign any value to any class variable. For example −

package
 Person
 ;

sub
 new
 {

 my
 $class
 =
 shift
 ;

 my
 $self
 =
 {};

 bless $self
 ,
 $class
 ;

 return
 $self
 ;

}

Defining Methods

Other object-oriented languages have the concept of security of data to prevent a programmer from changing an object data directly and they provide accessor methods to modify object data. Perl does not have private variables but we can still use the concept of helper methods to manipulate object data.

Lets define a helper method to get person’s first name −

sub
 getFirstName
 {

 return
 $self
 ->{
 _firstName
 };

}

Another helper function to set person’s first name −

sub
 setFirstName
 {

 my
 (
 $self
 ,
 $firstName
)
 =
 @_
 ;

 $self
 ->{
 _firstName
 }
 =
 $firstName
 if
 defined
 (
 $firstName
);

 return
 $self
 ->{
 _firstName
 };

}

Now lets have a look into complete example: Keep Person package and helper functions into Person.pm file.

#!/usr/bin/perl

package
 Person
 ;

sub
 new
 {

 my
 $class
 =
 shift
 ;

 my
 $self
 =
 {

 _firstName
 =>
 shift
 ,

 _lastName
 =>
 shift
 ,

 _ssn
 =>
 shift
 ,

 };

 # Print all the values just for clarification.

 print
 "First Name is $self->{_firstName}\n"
 ;

 print
 "Last Name is $self->{_lastName}\n"
 ;

 print
 "SSN is $self->{_ssn}\n"
 ;

 bless $self
 ,
 $class
 ;

 return
 $self
 ;

}

sub
 setFirstName
 {

 my
 (
 $self
 ,
 $firstName
)
 =
 @_
 ;

 $self
 ->{
 _firstName
 }
 =
 $firstName
 if
 defined
 (
 $firstName
);

 return
 $self
 ->{
 _firstName
 };

}

sub
 getFirstName
 {

 my
 (
 $self
)
 =
 @_
 ;

 return
 $self
 ->{
 _firstName
 };

}

1
 ;

Now let's make use of Person object in employee.pl file as follows −

#!/usr/bin/perl

use
 Person
 ;

$object
 =
 new
 Person
 (
 "Mohammad"
 ,
 "Saleem"
 ,
 23234345
);

Get first name which is set using constructor.

$firstName
 =
 $object
 ->
 getFirstName
 ();

print
 "Before Setting First Name is : $firstName\n"
 ;

Now Set first name using helper function.

$object
 ->
 setFirstName
 (
 "Mohd."
);

Now get first name set by helper function.

$firstName
 =
 $object
 ->
 getFirstName
 ();

print
 "Before Setting First Name is : $firstName\n"
 ;

When we execute above program, it produces the following result −

First Name is Mohammad

Last Name is Saleem

SSN is 23234345

Before Setting First Name is : Mohammad

Before Setting First Name is : Mohd.

Inheritance

Object-oriented programming has very good and useful concept called inheritance. Inheritance simply means that properties and methods of a parent class will be available to the child classes. So you don't have to write the same code again and again, you can just inherit a parent class.

For example, we can have a class Employee, which inherits from Person. This is referred to as an "isa" relationship because an employee is a person. Perl has a special variable, @ISA, to help with this. @ISA governs (method) inheritance.

Following are the important points to be considered while using inheritance −

	

 Perl searches the class of the specified object for the given method or attribute, i.e., variable.

	

 Perl searches the classes defined in the object class's @ISA array.

	

 If no method is found in steps 1 or 2, then Perl uses an AUTOLOAD subroutine, if one is found in the @ISA tree.

	

 If a matching method still cannot be found, then Perl searches for the method within the UNIVERSAL class (package) that comes as part of the standard Perl library.

	

 If the method still has not found, then Perl gives up and raises a runtime exception.

So to create a new Employee class that will inherit methods and attributes from our Person class, we simply code as follows: Keep this code into Employee.pm.

#!/usr/bin/perl

package
 Employee
 ;

use
 Person
 ;

use
 strict
 ;

our
 @ISA
 =
 qw
 (
 Person
);

 # inherits from Person

Now Employee Class has all the methods and attributes inherited from Person class and you can use them as follows: Use main.pl file to test it −

#!/usr/bin/perl

use
 Employee
 ;

$object
 =
 new
 Employee
 (
 "Mohammad"
 ,
 "Saleem"
 ,
 23234345
);

Get first name which is set using constructor.

$firstName
 =
 $object
 ->
 getFirstName
 ();

print
 "Before Setting First Name is : $firstName\n"
 ;

Now Set first name using helper function.

$object
 ->
 setFirstName
 (
 "Mohd."
);

Now get first name set by helper function.

$firstName
 =
 $object
 ->
 getFirstName
 ();

print
 "After Setting First Name is : $firstName\n"
 ;

When we execute above program, it produces the following result −

First Name is Mohammad

Last Name is Saleem

SSN is 23234345

Before Setting First Name is : Mohammad

Before Setting First Name is : Mohd.

Method Overriding

The child class Employee inherits all the methods from the parent class Person. But if you would like to override those methods in your child class then you can do it by giving your own implementation. You can add your additional functions in child class or you can add or modify the functionality of an existing methods in its parent class. It can be done as follows: modify Employee.pm file.

#!/usr/bin/perl

package
 Employee
 ;

use
 Person
 ;

use
 strict
 ;

our
 @ISA
 =
 qw
 (
 Person
);

 # inherits from Person

Override constructor

sub
 new
 {

 my
 (
 $class
)
 =
 @_
 ;

 # Call the constructor of the parent class, Person.

 my
 $self
 =
 $class
 ->
 SUPER
 ::
 new
 (
 $_
 [
 1
],
 $_
 [
 2
],
 $_
 [
 3
]
);

 # Add few more attributes

 $self
 ->{
 _id
 }

 =
 undef
 ;

 $self
 ->{
 _title
 }
 =
 undef
 ;

 bless $self
 ,
 $class
 ;

 return
 $self
 ;

}

Override helper function

sub
 getFirstName
 {

 my
 (
 $self
)
 =
 @_
 ;

 # This is child class function.

 print
 "This is child class helper function\n"
 ;

 return
 $self
 ->{
 _firstName
 };

}

Add more methods

sub
 setLastName
 {

 my
 (
 $self
 ,
 $lastName
)
 =
 @_
 ;

 $self
 ->{
 _lastName
 }
 =
 $lastName
 if
 defined
 (
 $lastName
);

 return
 $self
 ->{
 _lastName
 };

}

sub
 getLastName
 {

 my
 (
 $self
)
 =
 @_
 ;

 return
 $self
 ->{
 _lastName
 };

}

1
 ;

Now let's again try to use Employee object in our main.pl file and execute it.

#!/usr/bin/perl

use
 Employee
 ;

$object
 =
 new
 Employee
 (
 "Mohammad"
 ,
 "Saleem"
 ,
 23234345
);

Get first name which is set using constructor.

$firstName
 =
 $object
 ->
 getFirstName
 ();

print
 "Before Setting First Name is : $firstName\n"
 ;

Now Set first name using helper function.

$object
 ->
 setFirstName
 (
 "Mohd."
);

Now get first name set by helper function.

$firstName
 =
 $object
 ->
 getFirstName
 ();

print
 "After Setting First Name is : $firstName\n"
 ;

When we execute above program, it produces the following result −

First Name is Mohammad

Last Name is Saleem

SSN is 23234345

This is child class helper function

Before Setting First Name is : Mohammad

This is child class helper function

After Setting First Name is : Mohd.

Default Autoloading

Perl offers a feature which you would not find in any other programming languages: a default subroutine. Which means, if you define a function called
 AUTOLOAD(),
 then any calls to undefined subroutines will call AUTOLOAD() function automatically. The name of the missing subroutine is accessible within this subroutine as $AUTOLOAD.

Default autoloading functionality is very useful for error handling. Here is an example to implement AUTOLOAD, you can implement this function in your own way.

sub
 AUTOLOAD
 {

 my
 $self
 =
 shift
 ;

 my
 $type
 =
 ref
 (
 $self
)
 ||
 croak
 "$self is not an object"
 ;

 my
 $field
 =
 $AUTOLOAD
 ;

 $field
 =~
 s
 /.*:
 //;

 unless
 (
 exists $self
 ->{
 $field
 })
 {

 croak
 "$field does not exist in object/class $type"
 ;

 }

 if
 (
 @_
)
 {

 return
 $self
 ->(
 $name
)
 =
 shift
 ;

 }
 else
 {

 return
 $self
 ->(
 $name
);

 }

}

Destructors and Garbage Collection

If you have programmed using object oriented programming before, then you will be aware of the need to create a
 destructor
 to free the memory allocated to the object when you have finished using it. Perl does this automatically for you as soon as the object goes out of scope.

In case you want to implement your destructor, which should take care of closing files or doing some extra processing then you need to define a special method called
 DESTROY
 . This method will be called on the object just before Perl frees the memory allocated to it. In all other respects, the DESTROY method is just like any other method, and you can implement whatever logic you want inside this method.

A destructor method is simply a member function (subroutine) named DESTROY, which will be called automatically in following cases −

	
When the object reference's variable goes out of scope.

	
When the object reference's variable is undef-ed.

	
When the script terminates

	
When the perl interpreter terminates

For Example, you can simply put the following method DESTROY in your class −

package
 MyClass
 ;

...

sub
 DESTROY
 {

 print
 "MyClass::DESTROY called\n"
 ;

}

Object Oriented Perl Example

Here is another nice example, which will help you to understand Object Oriented Concepts of Perl. Put this source code into any perl file and execute it.

#!/usr/bin/perl

Following is the implementation of simple Class.

package
 MyClass
 ;

sub
 new
 {

 print
 "MyClass::new called\n"
 ;

 my
 $type
 =
 shift
 ;

 # The package/type name

 my
 $self
 =
 {};

 # Reference to empty hash

 return
 bless $self
 ,
 $type
 ;

}

sub
 DESTROY
 {

 print
 "MyClass::DESTROY called\n"
 ;

}

sub
 MyMethod
 {

 print
 "MyClass::MyMethod called!\n"
 ;

}

Following is the implemnetation of Inheritance.

package
 MySubClass
 ;

@ISA
 =
 qw
 (
 MyClass
);

sub
 new
 {

 print
 "MySubClass::new called\n"
 ;

 my
 $type
 =
 shift
 ;

 # The package/type name

 my
 $self
 =
 MyClass
 ->
 new
 ;

 # Reference to empty hash

 return
 bless $self
 ,
 $type
 ;

}

sub
 DESTROY
 {

 print
 "MySubClass::DESTROY called\n"
 ;

}

sub
 MyMethod
 {

 my
 $self
 =
 shift
 ;

 $self
 ->
 SUPER
 ::
 MyMethod
 ();

 print
 " MySubClass::MyMethod called!\n"
 ;

}

Here is the main program using above classes.

package
 main
 ;

print
 "Invoke MyClass method\n"
 ;

$myObject
 =
 MyClass
 ->
 new
 ();

$myObject
 ->
 MyMethod
 ();

print
 "Invoke MySubClass method\n"
 ;

$myObject2
 =
 MySubClass
 ->
 new
 ();

$myObject2
 ->
 MyMethod
 ();

print
 "Create a scoped object\n"
 ;

{

 my
 $myObject2
 =
 MyClass
 ->
 new
 ();

}

Destructor is called automatically here

print
 "Create and undef an object\n"
 ;

$myObject3
 =
 MyClass
 ->
 new
 ();

undef
 $myObject3
 ;

print
 "Fall off the end of the script...\n"
 ;

Remaining destructors are called automatically here

When we execute above program, it produces the following result −

Invoke MyClass method

MyClass::new called

MyClass::MyMethod called!

Invoke MySubClass method

MySubClass::new called

MyClass::new called

MyClass::MyMethod called!

MySubClass::MyMethod called!

Create a scoped object

MyClass::new called

MyClass::DESTROY called

Create and undef an object

MyClass::new called

MyClass::DESTROY called

Fall off the end of the script...

MyClass::DESTROY called

MySubClass::DESTROY called

Database Access

This chapter teaches you how to access a database inside your Perl script. Starting from Perl 5 has become very easy to write database applications using
 DBI
 module. DBI stands for
 Database Independent Interface
 for Perl, which means DBI provides an abstraction layer between the Perl code and the underlying database, allowing you to switch database implementations really easily.

The DBI is a database access module for the Perl programming language. It provides a set of methods, variables, and conventions that provide a consistent database interface, independent of the actual database being used.

Architecture of a DBI Application

DBI is independent of any database available in backend. You can use DBI whether you are working with Oracle, MySQL or Informix, etc. This is clear from the following architure diagram.

[image: Perl Database Module DBI Architecture]

Here DBI is responsible of taking all SQL commands through the API, (i.e., Application Programming Interface) and to dispatch them to the appropriate driver for actual execution. And finally, DBI is responsible of taking results from the driver and giving back it to the calling scritp.

Notation and Conventions

Throughout this chapter following notations will be used and it is recommended that you should also follow the same convention.

$dsn Database source name

$dbh Database handle object

$sth Statement handle object

$h Any of the handle types above ($dbh, $sth, or $drh)

$rc General Return Code (boolean: true=ok, false=error)

$rv General Return Value (typically an integer)

@ary List of values returned from the database.

$rows Number of rows processed (if available, else -1)

$fh A filehandle

undef NULL values are represented by undefined values in Perl

\%attr Reference to a hash of attribute values passed to methods

Database Connection

Assuming we are going to work with MySQL database. Before connecting to a database make sure of the followings. You can take help of our MySQL tutorial in case you are not aware about how to create database and tables in MySQL database.

	

 You have created a database with a name TESTDB.

	

 You have created a table with a name TEST_TABLE in TESTDB.

	

 This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

	

 User ID "testuser" and password "test123" are set to access TESTDB.

	

 Perl Module DBI is installed properly on your machine.

	

 You have gone through MySQL tutorial to understand MySQL Basics.

Following is the example of connecting with MySQL database "TESTDB" −

#!/usr/bin/perl

use
 DBI

use
 strict
 ;

my
 $driver
 =
 "mysql"
 ;

my
 $database
 =
 "TESTDB"
 ;

my
 $dsn
 =
 "DBI:$driver:database=$database"
 ;

my
 $userid
 =
 "testuser"
 ;

my
 $password
 =
 "test123"
 ;

my
 $dbh
 =
 DBI
 ->
 connect
 (
 $dsn
 ,
 $userid
 ,
 $password
)
 or
 die
 $DBI
 ::
 errstr
 ;

If a connection is established with the datasource then a Database Handle is returned and saved into $dbh for further use otherwise $dbh is set to
 undef
 value and $DBI::errstr returns an error string.

INSERT Operation

INSERT operation is required when you want to create some records into a table. Here we are using table TEST_TABLE to create our records. So once our database connection is established, we are ready to create records into TEST_TABLE. Following is the procedure to create single record into TEST_TABLE. You can create as many as records you like using the same concept.

Record creation takes the following steps −

	

 Preparing SQL statement with INSERT statement. This will be done using
 prepare()
 API.

	

 Executing SQL query to select all the results from the database. This will be done using
 execute()
 API.

	

 Releasing Stattement handle. This will be done using
 finish()
 API.

	

 If everything goes fine then
 commit
 this operation otherwise you can
 rollback
 complete transaction. Commit and Rollback are explained in next sections.

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "INSERT INTO TEST_TABLE

 (FIRST_NAME, LAST_NAME, SEX, AGE, INCOME)

 values

 ('john', 'poul', 'M', 30, 13000)"
);

$sth
 ->
 execute
 ()
 or
 die
 $DBI
 ::
 errstr
 ;

$sth
 ->
 finish
 ();

$dbh
 ->
 commit
 or
 die
 $DBI
 ::
 errstr
 ;

Using Bind Values

There may be a case when values to be entered is not given in advance. So you can use bind variables which will take the required values at run time. Perl DBI modules make use of a question mark in place of actual value and then actual values are passed through execute() API at the run time. Following is the example −

my
 $first_name
 =
 "john"
 ;

my
 $last_name
 =
 "poul"
 ;

my
 $sex
 =
 "M"
 ;

my
 $income
 =
 13000
 ;

my
 $age
 =
 30
 ;

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "INSERT INTO TEST_TABLE

 (FIRST_NAME, LAST_NAME, SEX, AGE, INCOME)

 values

 (?,?,?,?)"
);

$sth
 ->
 execute
 (
 $first_name
 ,
 $last_name
 ,
 $sex
 ,
 $age
 ,
 $income
)

 or
 die
 $DBI
 ::
 errstr
 ;

$sth
 ->
 finish
 ();

$dbh
 ->
 commit
 or
 die
 $DBI
 ::
 errstr
 ;

READ Operation

READ Operation on any databasse means to fetch some useful information from the database, i.e., one or more records from one or more tables. So once our database connection is established, we are ready to make a query into this database. Following is the procedure to query all the records having AGE greater than 20. This will take four steps −

	

 Preparing SQL SELECT query based on required conditions. This will be done using
 prepare()
 API.

	

 Executing SQL query to select all the results from the database. This will be done using
 execute()
 API.

	

 Fetching all the results one by one and printing those results.This will be done using
 fetchrow_array()
 API.

	

 Releasing Stattement handle. This will be done using
 finish()
 API.

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "SELECT FIRST_NAME, LAST_NAME

 FROM TEST_TABLE

 WHERE AGE > 20"
);

$sth
 ->
 execute
 ()
 or
 die
 $DBI
 ::
 errstr
 ;

print
 "Number of rows found :"
 +
 $sth
 ->
 rows
 ;

while
 (
 my
 @row
 =
 $sth
 ->
 fetchrow_array
 ())
 {

 my
 (
 $first_name
 ,
 $last_name
)
 =
 @row
 ;

 print
 "First Name = $first_name, Last Name = $last_name\n"
 ;

}

$sth
 ->
 finish
 ();

Using Bind Values

There may be a case when condition is not given in advance. So you can use bind variables, which will take the required values at run time. Perl DBI modules makes use of a question mark in place of actual value and then the actual values are passed through execute() API at the run time. Following is the example −

$age
 =
 20
 ;

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "SELECT FIRST_NAME, LAST_NAME

 FROM TEST_TABLE

 WHERE AGE > ?"
);

$sth
 ->
 execute
 (
 $age
)
 or
 die
 $DBI
 ::
 errstr
 ;

print
 "Number of rows found :"
 +
 $sth
 ->
 rows
 ;

while
 (
 my
 @row
 =
 $sth
 ->
 fetchrow_array
 ())
 {

 my
 (
 $first_name
 ,
 $last_name
)
 =
 @row
 ;

 print
 "First Name = $first_name, Last Name = $last_name\n"
 ;

}

$sth
 ->
 finish
 ();

UPDATE Operation

UPDATE Operation on any database means to update one or more records already available in the database tables. Following is the procedure to update all the records having SEX as 'M'. Here we will increase AGE of all the males by one year. This will take three steps −

	

 Preparing SQL query based on required conditions. This will be done using
 prepare()
 API.

	

 Executing SQL query to select all the results from the database. This will be done using
 execute()
 API.

	

 Releasing Stattement handle. This will be done using
 finish()
 API.

	

 If everything goes fine then
 commit
 this operation otherwise you can
 rollback
 complete transaction. See next section for commit and rollback APIs.

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "UPDATE TEST_TABLE

 SET AGE = AGE + 1

 WHERE SEX = 'M'"
);

$sth
 ->
 execute
 ()
 or
 die
 $DBI
 ::
 errstr
 ;

print
 "Number of rows updated :"
 +
 $sth
 ->
 rows
 ;

$sth
 ->
 finish
 ();

$dbh
 ->
 commit
 or
 die
 $DBI
 ::
 errstr
 ;

Using Bind Values

There may be a case when condition is not given in advance. So you can use bind variables, which will take required values at run time. Perl DBI modules make use of a question mark in place of actual value and then the actual values are passed through execute() API at the run time. Following is the example −

$sex
 =
 'M'
 ;

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "UPDATE TEST_TABLE

 SET AGE = AGE + 1

 WHERE SEX = ?"
);

$sth
 ->
 execute
 (
 '$sex'
)
 or
 die
 $DBI
 ::
 errstr
 ;

print
 "Number of rows updated :"
 +
 $sth
 ->
 rows
 ;

$sth
 ->
 finish
 ();

$dbh
 ->
 commit
 or
 die
 $DBI
 ::
 errstr
 ;

In some case you would like to set a value, which is not given in advance so you can use binding value as follows. In this example income of all males will be set to 10000.

$sex
 =
 'M'
 ;

$income
 =
 10000
 ;

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "UPDATE TEST_TABLE

 SET INCOME = ?

 WHERE SEX = ?"
);

$sth
 ->
 execute
 (
 $income
 ,
 '$sex'
)
 or
 die
 $DBI
 ::
 errstr
 ;

print
 "Number of rows updated :"
 +
 $sth
 ->
 rows
 ;

$sth
 ->
 finish
 ();

DELETE Operation

DELETE operation is required when you want to delete some records from your database. Following is the procedure to delete all the records from TEST_TABLE where AGE is equal to 30. This operation will take the following steps.

	

 Preparing SQL query based on required conditions. This will be done using
 prepare()
 API.

	

 Executing SQL query to delete required records from the database. This will be done using
 execute()
 API.

	

 Releasing Stattement handle. This will be done using
 finish()
 API.

	

 If everything goes fine then
 commit
 this operation otherwise you can
 rollback
 complete transaction.

$age
 =
 30
 ;

my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "DELETE FROM TEST_TABLE

 WHERE AGE = ?"
);

$sth
 ->
 execute
 (
 $age
)
 or
 die
 $DBI
 ::
 errstr
 ;

print
 "Number of rows deleted :"
 +
 $sth
 ->
 rows
 ;

$sth
 ->
 finish
 ();

$dbh
 ->
 commit
 or
 die
 $DBI
 ::
 errstr
 ;

Using do Statement

If you're doing an UPDATE, INSERT, or DELETE there is no data that comes back from the database, so there is a short cut to perform this operation. You can use
 do
 statement to execute any of the command as follows.

$dbh
 ->
 do
 (
 'DELETE FROM TEST_TABLE WHERE age =30'
);

do
 returns a true value if it succeeded, and a false value if it failed. Actually, if it succeeds it returns the number of affected rows. In the example it would return the number of rows that were actually deleted.

COMMIT Operation

Commit is the operation which gives a green signal to database to finalize the changes and after this operation no change can be reverted to its orignal position.

Here is a simple example to call
 commit
 API.

$dbh
 ->
 commit
 or
 die
 $dbh
 ->
 errstr
 ;

ROLLBACK Operation

If you are not satisfied with all the changes or you encounter an error in between of any operation , you can revert those changes to use
 rollback
 API.

Here is a simple example to call
 rollback
 API.

$dbh
 ->
 rollback
 or
 die
 $dbh
 ->
 errstr
 ;

Begin Transaction

Many databases support transactions. This means that you can make a whole bunch of queries which would modify the databases, but none of the changes are actually made. Then at the end, you issue the special SQL query
 COMMIT
 , and all the changes are made simultaneously. Alternatively, you can issue the query ROLLBACK, in which case all the changes are thrown away and database remains unchanged.

Perl DBI module provided
 begin_work
 API, which enables transactions (by turning AutoCommit off) until the next call to commit or rollback. After the next commit or rollback, AutoCommit will automatically be turned on again.

$rc
 =
 $dbh
 ->
 begin_work
 or
 die
 $dbh
 ->
 errstr
 ;

AutoCommit Option

If your transactions are simple, you can save yourself the trouble of having to issue a lot of commits. When you make the connect call, you can specify an
 AutoCommit
 option which will perform an automatic commit operation after every successful query. Here's what it looks like −

my
 $dbh
 =
 DBI
 ->
 connect
 (
 $dsn
 ,
 $userid
 ,
 $password
 ,

 {
 AutoCommit
 =>
 1
 })

 or
 die
 $DBI
 ::
 errstr
 ;

Here AutoCommit can take value 1 or 0, where 1 means AutoCommit is on and 0 means AutoCommit is off.

Automatic Error Handling

When you make the connect call, you can specify a RaiseErrors option that handles errors for you automatically. When an error occurs, DBI will abort your program instead of returning a failure code. If all you want is to abort the program on an error, this can be convenient. Here's what it looks like −

my
 $dbh
 =
 DBI
 ->
 connect
 (
 $dsn
 ,
 $userid
 ,
 $password
 ,

 {
 RaiseError
 =>
 1
 })

 or
 die
 $DBI
 ::
 errstr
 ;

Here RaiseError can take value 1 or 0.

Disconnecting Database

To disconnect Database connection, use
 disconnect
 API as follows −

$rc
 =
 $dbh
 ->
 disconnect
 or
 warn $dbh
 ->
 errstr
 ;

The transaction behaviour of the disconnect method is, sadly, undefined. Some database systems (such as Oracle and Ingres) will automatically commit any outstanding changes, but others (such as Informix) will rollback any outstanding changes. Applications not using AutoCommit should explicitly call commit or rollback before calling disconnect.

Using NULL Values

Undefined values, or undef, are used to indicate NULL values. You can insert and update columns with a NULL value as you would a non-NULL value. These examples insert and update the column age with a NULL value −

$sth
 =
 $dbh
 ->
 prepare
 (
 qq
 {

 INSERT INTO TEST_TABLE
 (
 FIRST_NAME
 ,
 AGE
)
 VALUES
 (?,
 ?)

 });

$sth
 ->
 execute
 (
 "Joe"
 ,
 undef
);

Here
 qq{}
 is used to return a quoted string to
 prepare
 API. However, care must be taken when trying to use NULL values in a WHERE clause. Consider −

SELECT FIRST_NAME FROM TEST_TABLE WHERE age
 =
 ?

Binding an undef (NULL) to the placeholder will not select rows, which have a NULL age! At least for database engines that conform to the SQL standard. Refer to the SQL manual for your database engine or any SQL book for the reasons for this. To explicitly select NULLs you have to say "WHERE age IS NULL".

A common issue is to have a code fragment handle a value that could be either defined or undef (non-NULL or NULL) at runtime. A simple technique is to prepare the appropriate statement as needed, and substitute the placeholder for non-NULL cases −

$sql_clause
 =
 defined
 $age
 ?
 "age = ?"
 :
 "age IS NULL"
 ;

$sth
 =
 $dbh
 ->
 prepare
 (
 qq
 {

 SELECT FIRST_NAME FROM TEST_TABLE WHERE $sql_clause

 });

$sth
 ->
 execute
 (
 defined
 $age
 ?
 $age
 :
 ());

Some Other DBI Functions

available_drivers

@ary
 =
 DBI
 ->
 available_drivers
 ;

@ary
 =
 DBI
 ->
 available_drivers
 (
 $quiet
);

Returns a list of all available drivers by searching for DBD::* modules through the directories in @INC. By default, a warning is given if some drivers are hidden by others of the same name in earlier directories. Passing a true value for $quiet will inhibit the warning.

installed_drivers

%
 drivers
 =
 DBI
 ->
 installed_drivers
 ();

Returns a list of driver name and driver handle pairs for all drivers 'installed' (loaded) into the current process. The driver name does not include the 'DBD::' prefix.

data_sources

@ary
 =
 DBI
 ->
 data_sources
 (
 $driver
);

Returns a list of data sources (databases) available via the named driver. If $driver is empty or undef, then the value of the DBI_DRIVER environment variable is used.

quote

$sql
 =
 $dbh
 ->
 quote
 (
 $value
);

$sql
 =
 $dbh
 ->
 quote
 (
 $value
 ,
 $data_type
);

Quote a string literal for use as a literal value in an SQL statement, by escaping any special characters (such as quotation marks) contained within the string and adding the required type of outer quotation marks.

$sql
 =
 sprintf
 "SELECT foo FROM bar WHERE baz = %s"
 ,

 $dbh
 ->
 quote
 (
 "Don't"
);

For most database types, quote would return 'Don''t' (including the outer quotation marks). It is valid for the quote() method to return an SQL expression that evaluates to the desired string. For example −

$quoted
 =
 $dbh
 ->
 quote
 (
 "one\ntwo\0three"
)

may produce results which will be equivalent to

CONCAT
 (
 'one'
 ,
 CHAR
 (
 12
),
 'two'
 ,
 CHAR
 (
 0
),
 'three'
)

Methods Common to All Handles

err

$rv
 =
 $h
 ->
 err
 ;

or

$rv
 =
 $DBI
 ::
 err

or

$rv
 =
 $h
 ->
 err

Returns the native database engine error code from the last driver method called. The code is typically an integer but you should not assume that. This is equivalent to $DBI::err or $h->err.

errstr

$str
 =
 $h
 ->
 errstr
 ;

or

$str
 =
 $DBI
 ::
 errstr

or

$str
 =
 $h
 ->
 errstr

Returns the native database engine error message from the last DBI method called. This has the same lifespan issues as the "err" method described above. This is equivalent to $DBI::errstr or $h->errstr.

rows

$rv
 =
 $h
 ->
 rows
 ;

or

$rv
 =
 $DBI
 ::
 rows

This returns the number of rows effected by previous SQL statement and equivalent to $DBI::rows.

trace

$h
 ->
 trace
 (
 $trace_settings
);

DBI sports an extremely useful ability to generate runtime tracing information of what it's doing, which can be a huge time-saver when trying to track down strange problems in your DBI programs. You can use different values to set trace level. These values varies from 0 to 4. The value 0 means disable trace and 4 means generate complete trace.

Interpolated Statements are Prohibited

It is highly recommended not to use interpolated statements as follows −

while
 (
 $first_name
 =
 <>)
 {

 my
 $sth
 =
 $dbh
 ->
 prepare
 (
 "SELECT *

 FROM TEST_TABLE

 WHERE FIRST_NAME = '$first_name'"
);

 $sth
 ->
 execute
 ();

 # and so on ...

}

Thus don't use interpolated statement instead use
 bind value
 to prepare dynamic SQL statement.

CGI Programming

What is CGI ?

	

 A Common Gateway Interface, or CGI, is a set of standards that defines how information is exchanged between the web server and a custom script.

	

 The CGI specs are currently maintained by the NCSA and NCSA defines CGI is as follows −

	

 The Common Gateway Interface, or CGI, is a standard for external gateway programs to interface with information servers such as HTTP servers.

	

 The current version is CGI/1.1 and CGI/1.2 is under progress.

Web Browsing

To understand the concept of CGI, lets see what happens when we click a hyper link available on a web page to browse a particular web page or URL.

	

 Your browser contacts web server using HTTP protocol and demands for the URL, i.e., web page filename.

	

 Web Server will check the URL and will look for the filename requested. If web server finds that file then it sends the file back to the browser without any further execution otherwise sends an error message indicating that you have requested a wrong file.

	

 Web browser takes response from web server and displays either the received file content or an error message in case file is not found.

However, it is possible to set up HTTP server in such a way so that whenever a file in a certain directory is requested that file is not sent back; instead it is executed as a program, and whatever that program outputs as a result, that is sent back for your browser to display. This can be done by using a special functionality available in the web server and it is called
 Common Gateway Interface
 or CGI and such programs which are executed by the server to produce final result, are called CGI scripts. These CGI programs can be a PERL Script, Shell Script, C or C++ program, etc.

CGI Architecture Diagram

[image: CGI Architecture]

Web Server Support and Configuration

Before you proceed with CGI Programming, make sure that your Web Server supports CGI functionality and it is configured to handle CGI programs. All the CGI programs to be executed by the web server are kept in a pre-configured directory. This directory is called CGI directory and by convention it is named as /cgi-bin. By convention Perl CGI files will have extention as
 .cgi
 .

First CGI Program

Here is a simple link which is linked to a CGI script called
 hello.cgi
 . This file has been kept in
 /cgi-bin/
 directory and it has the following content. Before running your CGI program, make sure you have change mode of file using
 chmod 755 hello.cgi
 UNIX command.

#!/usr/bin/perl

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 '<html>'
 ;

print
 '<head>'
 ;

print
 '<title>Hello Word - First CGI Program</title>'
 ;

print
 '</head>'
 ;

print
 '<body>'
 ;

print
 '<h2>Hello Word! This is my first CGI program</h2>'
 ;

print
 '</body>'
 ;

print
 '</html>'
 ;

1
 ;

Now if you click
 hello.cgi
 link then request goes to web server who search for hello.cgi in /cgi-bin directory, execute it and whatever result got generated, web server sends that result back to the web browser, which is as follows −

Hello
 Word
 !
 This
 is
 my
 first CGI program

This hello.cgi script is a simple Perl script which is writing its output on STDOUT file, i.e., screen. There is one important and extra feature available which is first line to be printed
 Content-type:text/html\r\n\r\n
 . This line is sent back to the browser and specifies the content type to be displayed on the browser screen. Now you must have undertood basic concept of CGI and you can write many complicated CGI programs using Perl. This script can interact with any other exertnal system also to exchange information such as a database, web services, or any other complex interfaces.

Understanding HTTP Header

The very first line
 Content-type:text/html\r\n\r\n
 is a part of HTTP header, which is sent to the browser so that browser can understand the incoming content from server side. All the HTTP header will be in the following form −

HTTP Field Name: Field Content

For Example −

Content
 -
 type
 :
 text
 /
 html\r\n\r\n

There are few other important HTTP headers, which you will use frequently in your CGI Programming.

	

Sr.No.

	

Header & Description

	

1

	

Content-type: String

A MIME string defining the format of the content being returned. Example is Content-type:text/html

	

2

	

Expires: Date String

The date when the information becomes invalid. This should be used by the browser to decide when a page needs to be refreshed. A valid date string should be in the format 01 Jan 1998 12:00:00 GMT.

	

3

	

Location: URL String

The URL that should be returned instead of the URL requested. You can use this filed to redirect a request to any other location.

	

4

	

Last-modified: String

The date of last modification of the file.

	

5

	

Content-length: String

The length, in bytes, of the data being returned. The browser uses this value to report the estimated download time for a file.

	

6

	

Set-Cookie: String

Set the cookie passed through the
 string

CGI Environment Variables

All the CGI program will have access to the following environment variables. These variables play an important role while writing any CGI program.

	

Sr.No.

	

Variables Names & Description

	

1

	

CONTENT_TYPE

The data type of the content. Used when the client is sending attached content to the server. For example file upload, etc.

	

2

	

CONTENT_LENGTH

The length of the query information. It's available only for POST requests

	

3

	

HTTP_COOKIE

Returns the set cookies in the form of key & value pair.

	

4

	

HTTP_USER_AGENT

The User-Agent request-header field contains information about the user agent originating the request. Its name of the web browser.

	

5

	

PATH_INFO

The path for the CGI script.

	

6

	

QUERY_STRING

The URL-encoded information that is sent with GET method request.

	

7

	

REMOTE_ADDR

The IP address of the remote host making the request. This can be useful for logging or for authentication purpose.

	

8

	

REMOTE_HOST

The fully qualified name of the host making the request. If this information is not available then REMOTE_ADDR can be used to get IR address.

	

9

	

REQUEST_METHOD

The method used to make the request. The most common methods are GET and POST.

	

10

	

SCRIPT_FILENAME

The full path to the CGI script.

	

11

	

SCRIPT_NAME

The name of the CGI script.

	

12

	

SERVER_NAME

The server's hostname or IP Address.

	

13

	

SERVER_SOFTWARE

The name and version of the software the server is running.

Here is a small CGI program to list down all the CGI variables supported by your Web server. Click this link to see the result
 Get Environment

#!/usr/bin/perl

print
 "Content-type: text/html\n\n"
 ;

print
 "Environment\n"
 ;

foreach
 (
 sort keys
 %
 ENV
)
 {

 print
 "$_: $ENV{$_}
\n"
 ;

}

1
 ;

Raise a "File Download" Dialog Box?

Sometime it is desired that you want to give option where a user will click a link and it will pop up a "File Download" dialogue box to the user instead of displaying actual content. This is very easy and will be achived through HTTP header.

This HTTP header will be different from the header mentioned in previous section. For example, if you want to make a
 FileName
 file downloadable from a given link then it's syntax will be as follows −

#!/usr/bin/perl

HTTP Header

print
 "Content-Type:application/octet-stream; name = \"FileName\"\r\n"
 ;

print
 "Content-Disposition: attachment; filename = \"FileName\"\r\n\n"
 ;

Actual File Content will go hear.

open
 (
 FILE
 ,
 "<FileName"
);

while
 (
 read
 (
 FILE
 ,
 $buffer
 ,
 100
)
)
 {

 print
 (
 "$buffer"
);

}

GET and POST Methods

You must have come across many situations when you need to pass some information from your browser to the web server and ultimately to your CGI Program handling your requests. Most frequently browser uses two methods to pass this information to the web server. These methods are
 GET
 Method and
 POST
 Method. Let's check them one by one.

Passing Information using GET Method

The GET method sends the encoded user information appended to the page URL itself. The page and the encoded information are separated by the ? character as follows −

http://www.test.com/cgi-bin/hello.cgi?key1=value1&key2=value2

The GET method is the defualt method to pass information from a browser to the web server and it produces a long string that appears in your browser's Location:box. You should never use GET method if you have password or other sensitive information to pass to the server. The GET method has size limitation: only 1024 characters can be passed in a request string.

This information is passed using
 QUERY_STRING
 header and will be accessible in your CGI Program through QUERY_STRING environment variable which you can parse and use in your CGI program.

You can pass information by simply concatenating key and value pairs alongwith any URL or you can use HTML <FORM> tags to pass information using GET method.

Simple URL Example: Get Method

Here is a simple URL which will pass two values to hello_get.cgi program using GET method.

http://www.tutorialspoint.com/cgi-bin/hello_get.cgi?first_name=ZARA&last_name=ALI

Below is
 hello_get.cgi
 script to handle input given by web browser.

#!/usr/bin/perl

local
 (
 $buffer
 ,
 @pairs
 ,
 $pair
 ,
 $name
 ,
 $value
 ,
 %
 FORM
);

Read in text

$ENV
 {
 'REQUEST_METHOD'
 }
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

if
 (
 $ENV
 {
 'REQUEST_METHOD'
 }
 eq
 "GET"
)
 {

 $buffer
 =
 $ENV
 {
 'QUERY_STRING'
 };

}

Split information into name/value pairs

@pairs
 =
 split
 (
 /&/
 ,
 $buffer
);

foreach
 $pair
 (
 @pairs
)
 {

 (
 $name
 ,
 $value
)
 =
 split
 (
 /=/
 ,
 $pair
);

 $value
 =~
 tr
 /+
 / /
 ;

 $value
 =~
 s
 /%(..)/
 pack
 (
 "C"
 ,
 hex
 (
 $1
))/
 eg
 ;

 $FORM
 {
 $name
 }
 =
 $value
 ;

}

$first_name
 =
 $FORM
 {
 first_name
 };

$last_name
 =
 $FORM
 {
 last_name
 };

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 "<html>"
 ;

print
 "<head>"
 ;

print
 "<title>Hello - Second CGI Program</title>"
 ;

print
 "</head>"
 ;

print
 "<body>"
 ;

print
 "<h2>Hello $first_name $last_name - Second CGI Program</h2>"
 ;

print
 "</body>"
 ;

print
 "</html>"
 ;

1
 ;

Simple FORM Example: GET Method

Here is a simple example, which passes two values using HTML FORM and submit button. We are going to use the same CGI script hello_get.cgi to handle this input.

<FORM
 action
 =
 "/cgi-bin/hello_get.cgi"
 method
 =
 "GET"
 >

First Name:
 <input
 type
 =
 "text"
 name
 =
 "first_name"
 >

Last Name:
 <input
 type
 =
 "text"
 name
 =
 "last_name"
 >

<input
 type
 =
 "submit"
 value
 =
 "Submit"
 >

</FORM>

Here is the actual output of the above form coding. Now you can enter First and Last Name and then click submit button to see the result.

First Name:
 [image:]

Last Name:
 [image:]

 [image:]

Passing Information using POST Method

A more reliable method of passing information to a CGI program is the
 POST
 method. This packages the information in exactly the same way as GET methods, but instead of sending it as a text string after a
 ?
 in the URL, it sends it as a separate message as a part of HTTP header. Web server provides this message to the CGI script in the form of the standard input.

Below is the modified
 hello_post.cgi
 script to handle input given by the web browser. This script will handle GET as well as POST method.

#!/usr/bin/perl

local
 (
 $buffer
 ,
 @pairs
 ,
 $pair
 ,
 $name
 ,
 $value
 ,
 %
 FORM
);

Read in text

$ENV
 {
 'REQUEST_METHOD'
 }
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

if
 (
 $ENV
 {
 'REQUEST_METHOD'
 }
 eq
 "POST"
)
 {

 read
 (
 STDIN
 ,
 $buffer
 ,
 $ENV
 {
 'CONTENT_LENGTH'
 });

}
 else
 {

 $buffer
 =
 $ENV
 {
 'QUERY_STRING'
 };

}

Split information into name/value pairs

@pairs
 =
 split
 (
 /&/
 ,
 $buffer
);

foreach
 $pair
 (
 @pairs
)
 {

 (
 $name
 ,
 $value
)
 =
 split
 (
 /=/
 ,
 $pair
);

 $value
 =~
 tr
 /+
 / /
 ;

 $value
 =~
 s
 /%(..)/
 pack
 (
 "C"
 ,
 hex
 (
 $1
))/
 eg
 ;

 $FORM
 {
 $name
 }
 =
 $value
 ;

}

$first_name
 =
 $FORM
 {
 first_name
 };

$last_name
 =
 $FORM
 {
 last_name
 };

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 "<html>"
 ;

print
 "<head>"
 ;

print
 "<title>Hello - Second CGI Program</title>"
 ;

print
 "</head>"
 ;

print
 "<body>"
 ;

print
 "<h2>Hello $first_name $last_name - Second CGI Program</h2>"
 ;

print
 "</body>"
 ;

print
 "</html>"
 ;

1
 ;

Let us take again same examle as above, which passes two values using HTML FORM and submit button. We are going to use CGI script hello_post.cgi to handle this input.

<FORM
 action
 =
 "/cgi-bin/hello_post.cgi"
 method
 =
 "POST"
 >

First Name:
 <input
 type
 =
 "text"
 name
 =
 "first_name"
 >

Last Name:
 <input
 type
 =
 "text"
 name
 =
 "last_name"
 >

<input
 type
 =
 "submit"
 value
 =
 "Submit"
 >

</FORM>

Here is the actual output of the above form coding, You enter First and Last Name and then click submit button to see the result.

First Name:
 [image:]

Last Name:
 [image:]

 [image:]

Passing Checkbox Data to CGI Program

Checkboxes are used when more than one option is required to be selected. Here is an example HTML code for a form with two checkboxes.

<form
 action
 =
 "/cgi-bin/checkbox.cgi"
 method
 =
 "POST"
 target
 =
 "_blank"
 >

<input
 type
 =
 "checkbox"
 name
 =
 "maths"
 value
 =
 "on"
 >
 Maths

<input
 type
 =
 "checkbox"
 name
 =
 "physics"
 value
 =
 "on"
 >
 Physics

<input
 type
 =
 "submit"
 value
 =
 "Select Subject"
 >

</form>

The result of this code is the following form −

[image:]
 Maths
 [image:]
 Physics
 [image:]

Below is
 checkbox.cgi
 script to handle input given by web browser for radio button.

#!/usr/bin/perl

local
 (
 $buffer
 ,
 @pairs
 ,
 $pair
 ,
 $name
 ,
 $value
 ,
 %
 FORM
);

Read in text

$ENV
 {
 'REQUEST_METHOD'
 }
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

if
 (
 $ENV
 {
 'REQUEST_METHOD'
 }
 eq
 "POST"
)
 {

 read
 (
 STDIN
 ,
 $buffer
 ,
 $ENV
 {
 'CONTENT_LENGTH'
 });

}
 else
 {

 $buffer
 =
 $ENV
 {
 'QUERY_STRING'
 };

}

Split information into name/value pairs

@pairs
 =
 split
 (
 /&/
 ,
 $buffer
);

foreach
 $pair
 (
 @pairs
)
 {

 (
 $name
 ,
 $value
)
 =
 split
 (
 /=/
 ,
 $pair
);

 $value
 =~
 tr
 /+
 / /
 ;

 $value
 =~
 s
 /%(..)/
 pack
 (
 "C"
 ,
 hex
 (
 $1
))/
 eg
 ;

 $FORM
 {
 $name
 }
 =
 $value
 ;

}

if
 (
 $FORM
 {
 maths
 }
)
 {

 $maths_flag
 =
 "ON"
 ;

}
 else
 {

 $maths_flag
 =
 "OFF"
 ;

}

if
 (
 $FORM
 {
 physics
 }
)
 {

 $physics_flag
 =
 "ON"
 ;

}
 else
 {

 $physics_flag
 =
 "OFF"
 ;

}

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 "<html>"
 ;

print
 "<head>"
 ;

print
 "<title>Checkbox - Third CGI Program</title>"
 ;

print
 "</head>"
 ;

print
 "<body>"
 ;

print
 "<h2> CheckBox Maths is : $maths_flag</h2>"
 ;

print
 "<h2> CheckBox Physics is : $physics_flag</h2>"
 ;

print
 "</body>"
 ;

print
 "</html>"
 ;

1
 ;

Passing Radio Button Data to CGI Program

Radio Buttons are used when only one option is required to be selected. Here is an example HTML code for a form with two radio button −

<form
 action
 =
 "/cgi-bin/radiobutton.cgi"
 method
 =
 "POST"
 target
 =
 "_blank"
 >

<input
 type
 =
 "radio"
 name
 =
 "subject"
 value
 =
 "maths"
 >
 Maths

<input
 type
 =
 "radio"
 name
 =
 "subject"
 value
 =
 "physics"
 >
 Physics

<input
 type
 =
 "submit"
 value
 =
 "Select Subject"
 >

</form>

The result of this code is the following form −

[image:]
 Maths
 [image:]
 Physics
 [image:]

Below is
 radiobutton.cgi
 script to handle input given by the web browser for radio button.

#!/usr/bin/perl

local
 (
 $buffer
 ,
 @pairs
 ,
 $pair
 ,
 $name
 ,
 $value
 ,
 %
 FORM
);

Read in text

$ENV
 {
 'REQUEST_METHOD'
 }
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

if
 (
 $ENV
 {
 'REQUEST_METHOD'
 }
 eq
 "POST"
)
 {

 read
 (
 STDIN
 ,
 $buffer
 ,
 $ENV
 {
 'CONTENT_LENGTH'
 });

}
 else
 {

 $buffer
 =
 $ENV
 {
 'QUERY_STRING'
 };

}

Split information into name/value pairs

@pairs
 =
 split
 (
 /&/
 ,
 $buffer
);

foreach
 $pair
 (
 @pairs
)
 {

 (
 $name
 ,
 $value
)
 =
 split
 (
 /=/
 ,
 $pair
);

 $value
 =~
 tr
 /+
 / /
 ;

 $value
 =~
 s
 /%(..)/
 pack
 (
 "C"
 ,
 hex
 (
 $1
))/
 eg
 ;

 $FORM
 {
 $name
 }
 =
 $value
 ;

}

$subject
 =
 $FORM
 {
 subject
 };

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 "<html>"
 ;

print
 "<head>"
 ;

print
 "<title>Radio - Fourth CGI Program</title>"
 ;

print
 "</head>"
 ;

print
 "<body>"
 ;

print
 "<h2> Selected Subject is $subject</h2>"
 ;

print
 "</body>"
 ;

print
 "</html>"
 ;

1
 ;

Passing Text Area Data to CGI Program

A textarea element is used when multiline text has to be passed to the CGI Program. Here is an example HTML code for a form with a TEXTAREA box −

<form
 action
 =
 "/cgi-bin/textarea.cgi"
 method
 =
 "POST"
 target
 =
 "_blank"
 >

<textarea
 name
 =
 "textcontent"
 cols
 =
 40
 rows
 =
 4
 >

Type your text here...

</textarea>

<input
 type
 =
 "submit"
 value
 =
 "Submit"
 >

</form>

The result of this code is the following form −

[image:]

 [image:]

Below is the
 textarea.cgi
 script to handle input given by the web browser.

#!/usr/bin/perl

local
 (
 $buffer
 ,
 @pairs
 ,
 $pair
 ,
 $name
 ,
 $value
 ,
 %
 FORM
);

Read in text

$ENV
 {
 'REQUEST_METHOD'
 }
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

if
 (
 $ENV
 {
 'REQUEST_METHOD'
 }
 eq
 "POST"
)
 {

 read
 (
 STDIN
 ,
 $buffer
 ,
 $ENV
 {
 'CONTENT_LENGTH'
 });

}
 else
 {

 $buffer
 =
 $ENV
 {
 'QUERY_STRING'
 };

}

Split information into name/value pairs

@pairs
 =
 split
 (
 /&/
 ,
 $buffer
);

foreach
 $pair
 (
 @pairs
)
 {

 (
 $name
 ,
 $value
)
 =
 split
 (
 /=/
 ,
 $pair
);

 $value
 =~
 tr
 /+
 / /
 ;

 $value
 =~
 s
 /%(..)/
 pack
 (
 "C"
 ,
 hex
 (
 $1
))/
 eg
 ;

 $FORM
 {
 $name
 }
 =
 $value
 ;

}

$text_content
 =
 $FORM
 {
 textcontent
 };

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 "<html>"
 ;

print
 "<head>"
 ;

print
 "<title>Text Area - Fifth CGI Program</title>"
 ;

print
 "</head>"
 ;

print
 "<body>"
 ;

print
 "<h2> Entered Text Content is $text_content</h2>"
 ;

print
 "</body>"
 ;

print
 "</html>"
 ;

1
 ;

Passing Drop Down Box Data to CGI Program

A drop down box is used when we have many options available but only one or two will be selected. Here is example HTML code for a form with one drop down box

<form
 action
 =
 "/cgi-bin/dropdown.cgi"
 method
 =
 "POST"
 target
 =
 "_blank"
 >

<select
 name
 =
 "dropdown"
 >

<option
 value
 =
 "Maths"
 selected
 >
 Maths
 </option>

<option
 value
 =
 "Physics"
 >
 Physics
 </option>

</select>

<input
 type
 =
 "submit"
 value
 =
 "Submit"
 >

</form>

The result of this code is the following form −

 [image:]

 [image:]

Below is the
 dropdown.cgi
 script to handle input given by web browser.

#!/usr/bin/perl

local
 (
 $buffer
 ,
 @pairs
 ,
 $pair
 ,
 $name
 ,
 $value
 ,
 %
 FORM
);

Read in text

$ENV
 {
 'REQUEST_METHOD'
 }
 =~
 tr
 /
 a
 -
 z
 /
 A
 -
 Z
 /;

if
 (
 $ENV
 {
 'REQUEST_METHOD'
 }
 eq
 "POST"
)
 {

 read
 (
 STDIN
 ,
 $buffer
 ,
 $ENV
 {
 'CONTENT_LENGTH'
 });

}
 else
 {

 $buffer
 =
 $ENV
 {
 'QUERY_STRING'
 };

}

Split information into name/value pairs

@pairs
 =
 split
 (
 /&/
 ,
 $buffer
);

foreach
 $pair
 (
 @pairs
)
 {

 (
 $name
 ,
 $value
)
 =
 split
 (
 /=/
 ,
 $pair
);

 $value
 =~
 tr
 /+
 / /
 ;

 $value
 =~
 s
 /%(..)/
 pack
 (
 "C"
 ,
 hex
 (
 $1
))/
 eg
 ;

 $FORM
 {
 $name
 }
 =
 $value
 ;

}

$subject
 =
 $FORM
 {
 dropdown
 };

print
 "Content-type:text/html\r\n\r\n"
 ;

print
 "<html>"
 ;

print
 "<head>"
 ;

print
 "<title>Dropdown Box - Sixth CGI Program</title>"
 ;

print
 "</head>"
 ;

print
 "<body>"
 ;

print
 "<h2> Selected Subject is $subject</h2>"
 ;

print
 "</body>"
 ;

print
 "</html>"
 ;

1
 ;

Using Cookies in CGI

HTTP protocol is a stateless protocol. But for a commercial website it is required to maintain session information among different pages. For example one user registration ends after transactions which spans through many pages. But how to maintain user's session information across all the web pages?

In many situations, using cookies is the most efficient method of remembering and tracking preferences, purchases, commissions, and other information required for better visitor experience or site statistics.

How It Works

Your server sends some data to the visitor's browser in the form of a cookie. The browser may accept the cookie. If it does, it is stored as a plain text record on the visitor's hard drive. Now, when the visitor arrives at another page on your site, the cookie is available for retrieval. Once retrieved, your server knows/remembers what was stored.

Cookies are a plain text data record of 5 variable-length fields −

	

 Expires
 − The date the cookie will expire. If this is blank, the cookie will expire when the visitor quits the browser.

	

 Domain
 − The domain name of your site.

	

 Path
 − The path to the directory or web page that set the cookie. This may be blank if you want to retrieve the cookie from any directory or page.

	

 Secure
 − If this field contains the word "secure" then the cookie may only be retrieved with a secure server. If this field is blank, no such restriction exists.

	

 Name = Value
 − Cookies are set and retrviewed in the form of key and value pairs.

Setting up Cookies

It is very easy to send cookies to browser. These cookies will be sent along with the HTTP Header. Assuming you want to set UserID and Password as cookies. So it will be done as follows −

#!/usr/bin/perl

print
 "Set-Cookie:UserID = XYZ;\n"
 ;

print
 "Set-Cookie:Password = XYZ123;\n"
 ;

print
 "Set-Cookie:Expires = Tuesday, 31-Dec-2007 23:12:40 GMT"
 ;
 \n
 ";

print "
 Set
 -
 Cookie
 :
 Domain
 =
 www
 .
 tutorialspoint
 .
 com
 ;
 \n
 ";

print "
 Set
 -
 Cookie
 :
 Path
 =
 /
 perl
 ;
 \n
 ";

print "
 Content
 -
 type
 :
 text
 /
 html\r\n\r\n
 ";

...........Rest of the HTML Content goes here....

Here we used
 Set-Cookie
 HTTP header to set cookies. It is optional to set cookies attributes like Expires, Domain, and Path. It is important to note that cookies are set before sending magic line
 "Content-type:text/html\r\n\r\n
 .

Retrieving Cookies

It is very easy to retrieve all the set cookies. Cookies are stored in CGI environment variable HTTP_COOKIE and they will have following form.

key1
 =
 value1
 ;
 key2
 =
 value2
 ;
 key3
 =
 value3

Here is an example of how to retrieve cookies.

#!/usr/bin/perl

$rcvd_cookies
 =
 $ENV
 {
 'HTTP_COOKIE'
 };

@cookies
 =
 split
 /;/,
 $rcvd_cookies
 ;

foreach
 $cookie
 (
 @cookies
)
 {

 (
 $key
 ,
 $val
)
 =
 split
 (
 /=/
 ,
 $cookie
);
 # splits on the first =.

 $key
 =~
 s
 /^
 \s
 +
 //;

 $val
 =~
 s
 /^
 \s
 +
 //;

 $key
 =~
 s
 /
 \s
 +
 $
 //;

 $val
 =~
 s
 /
 \s
 +
 $
 //;

 if
 (
 $key eq
 "UserID"
)
 {

 $user_id
 =
 $val
 ;

 }
 elsif
 (
 $key eq
 "Password"
)
 {

 $password
 =
 $val
 ;

 }

}

print
 "User ID = $user_id\n"
 ;

print
 "Password = $password\n"
 ;

This will produce the following result, provided above cookies have been set before calling retrieval cookies script.

User ID = XYZ

Password = XYZ123

CGI Modules and Libraries

You will find many built-in modules over the internet which provides you direct functions to use in your CGI program. Following are the important once.

	

 CGI Module

	

 Berkeley cgi-lib.pl

Packages and Modules

What are Packages?

The
 package
 statement switches the current naming context to a specified namespace (symbol table). Thus −

	

 A package is a collection of code which lives in its own namespace.

	

 A namespace is a named collection of unique variable names (also called a symbol table).

	

 Namespaces prevent variable name collisions between packages.

	

 Packages enable the construction of modules which, when used, won't clobber variables and functions outside of the modules's own namespace.

	

 The package stays in effect until either another package statement is invoked, or until the end of the current block or file.

	

 You can explicitly refer to variables within a package using the
 ::
 package qualifier.

Following is an example having main and Foo packages in a file. Here special variable __PACKAGE__ has been used to print the package name.

#!/usr/bin/perl

This is main package

$i
 =
 1
 ;

print
 "Package name : "
 ,
 __PACKAGE__
 ,
 " $i\n"
 ;

package
 Foo
 ;

This is Foo package

$i
 =
 10
 ;

print
 "Package name : "
 ,
 __PACKAGE__
 ,
 " $i\n"
 ;

package
 main
 ;

This is again main package

$i
 =
 100
 ;

print
 "Package name : "
 ,
 __PACKAGE__
 ,
 " $i\n"
 ;

print
 "Package name : "
 ,
 __PACKAGE__
 ,

 " $Foo::i\n"
 ;

1
 ;

When above code is executed, it produces the following result −

Package name : main 1

Package name : Foo 10

Package name : main 100

Package name : main 10

BEGIN and END Blocks

You may define any number of code blocks named BEGIN and END, which act as constructors and destructors respectively.

BEGIN { ... }

END { ... }

BEGIN { ... }

END { ... }

	

 Every
 BEGIN
 block is executed after the perl script is loaded and compiled but before any other statement is executed.

	

 Every END block is executed just before the perl interpreter exits.

	

 The BEGIN and END blocks are particularly useful when creating Perl modules.

Following example shows its usage −

#!/usr/bin/perl

package
 Foo
 ;

print
 "Begin and Block Demo\n"
 ;

BEGIN
 {

 print
 "This is BEGIN Block\n"

}

END
 {

 print
 "This is END Block\n"

}

1
 ;

When above code is executed, it produces the following result −

This is BEGIN Block

Begin and Block Demo

This is END Block

What are Perl Modules?

A Perl module is a reusable package defined in a library file whose name is the same as the name of the package with a .pm as extension.

A Perl module file called
 Foo.pm
 might contain statements like this.

#!/usr/bin/perl

package
 Foo
 ;

sub
 bar
 {

 print
 "Hello $_[0]\n"

}

sub
 blat
 {

 print
 "World $_[0]\n"

}

1
 ;

Few important points about Perl modules

	

 The functions
 require
 and
 use
 will load a module.

	

 Both use the list of search paths in
 @INC
 to find the module.

	

 Both functions
 require
 and
 use
 call the
 eval
 function to process the code.

	

 The
 1;
 at the bottom causes eval to evaluate to TRUE (and thus not fail).

The Require Function

A module can be loaded by calling the
 require
 function as follows −

#!/usr/bin/perl

require
 Foo
 ;

Foo
 ::
 bar
 (
 "a"
);

Foo
 ::
 blat
 (
 "b"
);

You must have noticed that the subroutine names must be fully qualified to call them. It would be nice to enable the subroutine
 bar
 and
 blat
 to be imported into our own namespace so we wouldn't have to use the Foo:: qualifier.

The Use Function

A module can be loaded by calling the
 use
 function.

#!/usr/bin/perl

use
 Foo
 ;

bar
 (
 "a"
);

blat
 (
 "b"
);

Notice that we didn't have to fully qualify the package's function names. The
 use
 function will export a list of symbols from a module given a few added statements inside a module.

require
 Exporter
 ;

@ISA
 =
 qw
 (
 Exporter
);

Then, provide a list of symbols (scalars, lists, hashes, subroutines, etc) by filling the list variable named
 @EXPORT
 : For Example −

package
 Module
 ;

require
 Exporter
 ;

@ISA
 =
 qw
 (
 Exporter
);

@EXPORT
 =
 qw
 (
 bar blat
);

sub
 bar
 {
 print
 "Hello $_[0]\n"
 }

sub
 blat
 {
 print
 "World $_[0]\n"
 }

sub
 splat
 {
 print
 "Not $_[0]\n"
 }

 # Not exported!

1
 ;

Create the Perl Module Tree

When you are ready to ship your Perl module, then there is standard way of creating a Perl Module Tree. This is done using
 h2xs
 utility. This utility comes along with Perl. Here is the syntax to use h2xs −

$h2xs -AX -n ModuleName

For example, if your module is available in
 Person.pm
 file, then simply issue the following command −

$h2xs -AX -n Person

This will produce the following result −

Writing Person/lib/Person.pm

Writing Person/Makefile.PL

Writing Person/README

Writing Person/t/Person.t

Writing Person/Changes

Writing Person/MANIFEST

Here is the descritpion of these options −

	

 -A
 omits the Autoloader code (best used by modules that define a large number of infrequently used subroutines).

	

 -X
 omits XS elements (eXternal Subroutine, where eXternal means external to Perl, i.e., C).

	

 -n
 specifies the name of the module.

So above command creates the following structure inside Person directory. Actual result is shown above.

	
Changes

	
Makefile.PL

	
MANIFEST (contains the list of all files in the package)

	
README

	
t/ (test files)

	
lib/ (Actual source code goes here

So finally, you
 tar
 this directory structure into a file Person.tar.gz and you can ship it. You will have to update README file with the proper instructions. You can also provide some test examples files in t directory.

Installing Perl Module

Download a Perl module in the form tar.gz file. Use the following sequence to install any Perl Module
 Person.pm
 which has been downloaded in as
 Person.tar.gz
 file.

tar xvfz Person.tar.gz

cd Person

perl Makefile.PL

make

make install

The Perl interpreter has a list of directories in which it searches for modules (global array @INC).

Process Management

You can use Perl in various ways to create new processes as per your requirements. This tutorial will list down few important and most frequently used methods of creating and managing Perl processes.

	

 You can use special variables
 $$
 or
 $PROCESS_ID
 to get current process ID.

	

 Every process created using any of the mentioned methods, maintains its own virtual environment with-in
 %ENV
 variable.

	

 The
 exit()
 function always exits just the child process which executes this function and the main process as a whole will not exit unless all running child-processes have exited.

	

 All open handles are dup()-ed in child-processes, so that closing any handles in one process does not affect the others.

Backstick Operator

This simplest way of executing any Unix command is by using backstick operator. You simply put your command inside the backstick operator, which will result in execution of the command and returns its result which can be stored as follows −

#!/usr/bin/perl

@files
 =
 `ls -l`
 ;

foreach
 $file
 (
 @files
)
 {

 print
 $file
 ;

}

1
 ;

When the above code is executed, it lists down all the files and directories available in the current directory −

drwxr-xr-x 3 root root 4096 Sep 14 06:46 9-14

drwxr-xr-x 4 root root 4096 Sep 13 07:54 android

-rw-r--r-- 1 root root 574 Sep 17 15:16 index.htm

drwxr-xr-x 3 544 401 4096 Jul 6 16:49 MIME-Lite-3.01

-rw-r--r-- 1 root root 71 Sep 17 15:16 test.pl

drwx------ 2 root root 4096 Sep 17 15:11 vAtrJdy

The system() Function

You can also use
 system()
 function to execute any Unix command, whose output will go to the output of the perl script. By default, it is the screen, i.e., STDOUT, but you can redirect it to any file by using redirection operator > −

#!/usr/bin/perl

system
 (
 "ls -l"
)

1
 ;

When above code is executed, it lists down all the files and directories available in the current directory −

drwxr-xr-x 3 root root 4096 Sep 14 06:46 9-14

drwxr-xr-x 4 root root 4096 Sep 13 07:54 android

-rw-r--r-- 1 root root 574 Sep 17 15:16 index.htm

drwxr-xr-x 3 544 401 4096 Jul 6 16:49 MIME-Lite-3.01

-rw-r--r-- 1 root root 71 Sep 17 15:16 test.pl

drwx------ 2 root root 4096 Sep 17 15:11 vAtrJdy

Be careful when your command contains shell environmental variables like $PATH or $HOME. Try following three scenarios −

#!/usr/bin/perl

$PATH
 =
 "I am Perl Variable"
 ;

system
 (
 'echo $PATH'
);

 # Treats $PATH as shell variable

system
 (
 "echo $PATH"
);

 # Treats $PATH as Perl variable

system
 (
 "echo \$PATH"
);
 # Escaping $ works.

1
 ;

When above code is executed, it produces the following result depending on what is set in shell variable $PATH.

/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin

I am Perl Variable

/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin

The fork() Function

Perl provides a
 fork()
 function that corresponds to the Unix system call of the same name. On most Unix-like platforms where the fork() system call is available, Perl's fork() simply calls it. On some platforms such as Windows where the fork() system call is not available, Perl can be built to emulate fork() at the interpreter level.

The fork() function is used to clone a current process. This call create a new process running the same program at the same point. It returns the child pid to the parent process, 0 to the child process, or undef if the fork is unsuccessful.

You can use
 exec()
 function within a process to launch the requested executable, which will be executed in a separate process area and exec() will wait for it to complete before exiting with the same exit status as that process.

#!/usr/bin/perl

if
 (!
 defined
 (
 $pid
 =
 fork
 ()))
 {

 # fork returned undef, so unsuccessful

 die
 "Cannot fork a child: $!"
 ;

}
 elsif
 (
 $pid
 ==
 0
)
 {

 print
 "Printed by child process\n"
 ;

 exec
 (
 "date"
)
 ||
 die
 "can't exec date: $!"
 ;

}
 else
 {

 # fork returned 0 nor undef

 # so this branch is parent

 print
 "Printed by parent process\n"
 ;

 $ret
 =
 waitpid
 (
 $pid
 ,
 0
);

 print
 "Completed process id: $ret\n"
 ;

}

1
 ;

When above code is executed, it produces the following result −

Printed by parent process

Printed by child process

Tue Sep 17 15:41:08 CDT 2013

Completed process id: 17777

The
 wait()
 and
 waitpid()
 can be passed as a pseudo-process ID returned by fork(). These calls will properly wait for the termination of the pseudo-process and return its status. If you fork without ever waiting on your children using
 waitpid()
 function, you will accumulate zombies. On Unix systems, you can avoid this by setting $SIG{CHLD} to "IGNORE" as follows −

#!/usr/bin/perl

local
 $SIG
 {
 CHLD
 }
 =
 "IGNORE"
 ;

if
 (!
 defined
 (
 $pid
 =
 fork
 ()))
 {

 # fork returned undef, so unsuccessful

 die
 "Cannot fork a child: $!"
 ;

}
 elsif
 (
 $pid
 ==
 0
)
 {

 print
 "Printed by child process\n"
 ;

 exec
 (
 "date"
)
 ||
 die
 "can't exec date: $!"
 ;

}
 else
 {

 # fork returned 0 nor undef

 # so this branch is parent

 print
 "Printed by parent process\n"
 ;

 $ret
 =
 waitpid
 (
 $pid
 ,
 0
);

 print
 "Completed process id: $ret\n"
 ;

}

1
 ;

When above code is executed, it produces the following result −

Printed by parent process

Printed by child process

Tue Sep 17 15:44:07 CDT 2013

Completed process id: -1

The kill() Function

Perl
 kill('KILL', (Process List))
 function can be used to terminate a pseudo-process by passing it the ID returned by fork().

Note that using kill('KILL', (Process List)) on a pseudo-process() may typically cause memory leaks, because the thread that implements the pseudo-process does not get a chance to clean up its resources.

You can use
 kill()
 function to send any other signal to target processes, for example following will send SIGINT to a process IDs 104 and 102 −

#!/usr/bin/perl

kill
 (
 'INT'
 ,
 104
 ,
 102
);

1
 ;

Embedded Documentation

You can embed Pod (Plain Old Text) documentation in your Perl modules and scripts. Following is the rule to use embedded documentation in your Perl Code −

Start your documentation with an empty line, a =
 head1
 command at the beginning, and end it with a =
 cut

Perl will ignore the Pod text you entered in the code. Following is a simple example of using embedded documentation inside your Perl code −

#!/usr/bin/perl

print
 "Hello, World\n"
 ;

=
 head1
 Hello
 ,
 World
 Example

This
 example demonstrate very basic syntax
 of
 Perl
 .

=
 cut

print
 "Hello, Universe\n"
 ;

When above code is executed, it produces the following result −

Hello, World

Hello, Universe

If you're going to put your Pod at the end of the file, and you're using an __END__ or __DATA__ cut mark, make sure to put an empty line there before the first Pod command as follows, otherwise without an empty line before the =
 head1
 , many translators wouldn't have recognized the =
 head1
 as starting a Pod block.

#!/usr/bin/perl

print
 "Hello, World\n"
 ;

while
 (<
 DATA
 >)
 {

 print
 $_
 ;

}

__END__

=
 head1
 Hello
 ,
 World
 Example

This
 example demonstrate very basic syntax
 of
 Perl
 .

print
 "Hello, Universe\n"
 ;

When above code is executed, it produces the following result −

Hello, World

=head1 Hello, World Example

This example demonstrate very basic syntax of Perl.

print "Hello, Universe\n";

Let's take one more example for the same code without reading DATA part −

#!/usr/bin/perl

print
 "Hello, World\n"
 ;

__END__

=
 head1
 Hello
 ,
 World
 Example

This
 example demonstrate very basic syntax
 of
 Perl
 .

print
 "Hello, Universe\n"
 ;

When above code is executed, it produces the following result −

Hello, World

What is POD?

Pod is a simple-to-use markup language used for writing documentation for Perl, Perl programs, and Perl modules. There are various translators available for converting Pod to various formats like plain text, HTML, man pages, and more. Pod markup consists of three basic kinds of paragraphs −

	

 Ordinary Paragraph
 − You can use formatting codes in ordinary paragraphs, for bold, italic, code-style , hyperlinks, and more.

	

 Verbatim Paragraph
 − Verbatim paragraphs are usually used for presenting a codeblock or other text which does not require any special parsing or formatting, and which shouldn't be wrapped.

	

 Command Paragraph
 − A command paragraph is used for special treatment of whole chunks of text, usually as headings or parts of lists. All command paragraphs start with =, followed by an identifier, followed by arbitrary text that the command can use however it pleases. Currently recognized commands are −

=pod

=head1 Heading Text

=head2 Heading Text

=head3 Heading Text

=head4 Heading Text

=over indentlevel

=item stuff

=back

=begin format

=end format

=for format text...

=encoding type

=cut

POD Examples

Consider the following POD −

=
 head1 SYNOPSIS

Copyright
 2005
 [
 TUTORIALSOPOINT
].

=
 cut

You can use
 pod2html
 utility available on Linux to convert above POD into HTML, so it will produce following result −

Copyright 2005

Next, consider the following example −

=
 head2
 An
 Example
 List

=
 over
 4

=
 item
 *
 This
 is
 a bulleted list
 .

=
 item
 *
 Here
 's another item.

=back

=begin html

<p>

Here'
 s some embedded HTML
 .

 In
 this
 block I can

include images
 ,
 apply
 <
 span style
 =
 "color: green"
 >

styles
 </
 span
 >,
 or
 do
 anything
 else
 I can
 do
 with

HTML
 .
 pod parsers that aren
 't outputting HTML will

completely ignore it.

</p>

=end html

When you convert the above POD into HTML using pod2html, it will produce the following result −

An Example List

 This is a bulleted list.

 Here's another item.

Here's some embedded HTML. In this block I can include images, apply

styles, or do anything else I can do with HTML. pod parsers that aren't

outputting HTML will completely ignore it.

Functions References

Here is the list of all the important functions supported by standard Perl.

	

 abs
 - absolute value function

	

 accept
 - accept an incoming socket connect

	

 alarm
 - schedule a SIGALRM

	

 atan2
 - arctangent of Y/X in the range -PI to PI

	

 bind
 - binds an address to a socket

	

 binmode
 - prepare binary files for I/O

	

 bless
 - create an object

	

 caller
 - get context of the current subroutine call

	

 chdir
 - change your current working directory

	

 chmod
 - changes the permissions on a list of files

	

 chomp
 - remove a trailing record separator from a string

	

 chop
 - remove the last character from a string

	

 chown
 - change the owership on a list of files

	

 chr
 - get character this number represents

	

 chroot
 - make directory new root for path lookups

	

 close
 - close file (or pipe or socket) handle

	

 closedir
 - close directory handle

	

 connect
 - connect to a remote socket

	

 continue
 - optional trailing block in a while or foreach

	

 cos
 - cosine function

	

 crypt
 - one-way passwd-style encryption

	

 dbmclose
 - breaks binding on a tied dbm file

	

 dbmopen
 - create binding on a tied dbm file

	

 defined
 - test whether a value, variable, or function is defined or not

	

 delete
 - deletes a value from a hash

	

 die
 - raise an exception or bail out

	

 do
 - turn a BLOCK into a TERM

	

 dump
 - create an immediate core dump

	

 each
 - retrieve the next key/value pair from a hash

	

 endgrent
 - be done using group file

	

 endhostent
 - be done using hosts file

	

 endnetent
 - be done using networks file

	

 endprotoent
 - be done using protocols file

	

 endpwent
 - be done using passwd file

	

 endservent
 - be done using services file

	

 eof
 - test a filehandle for its end

	

 eval
 - catch exceptions or compile and run code

	

 exec
 - abandon this program to run another

	

 exists
 - test whether a hash key is present

	

 exit
 - terminate this program

	

 exp
 - raise Ito a power

	

 fcntl
 - file control system call

	

 fileno
 - return file descriptor from filehandle

	

 flock
 - lock an entire file with an advisory lock

	

 fork
 - create a new process just like this one

	

 format
 - declare a picture format with use by the write() function

	

 formline
 - internal function used for formats

	

 getc
 - get the next character from the filehandle

	

 getgrent
 - get next group record

	

 getgrgid
 - get group record given group user ID

	

 getgrnam
 - get group record given group name

	

 gethostbyaddr
 - get host record given its address

	

 gethostbyname
 - get host record given name

	

 gethostent
 - get next hosts record

	

 getlogin
 - return who logged in at this tty

	

 getnetbyaddr
 - get network record given its address

	

 getnetbyname
 - get networks record given name

	

 getnetent
 - get next networks record

	

 getpeername
 - find the other end of a socket connection

	

 getpgrp
 - get process group

	

 getppid
 - get parent process ID

	

 getpriority
 - get current nice value

	

 getprotobyname
 - get protocol record given name

	

 getprotobynumber
 - get protocol record numeric protocol

	

 getprotoent
 - get next protocols record

	

 getpwent
 - get next passwd record

	

 getpwnam
 - get passwd record given user login name

	

 getpwuid
 - get passwd record given user ID

	

 getservbyname
 - get services record given its name

	

 getservbyport
 - get services record given numeric port

	

 getservent
 - get next services record

	

 getsockname
 - retrieve the sockaddr for a given socket

	

 getsockopt
 - get socket options on a given socket

	

 glob
 - expand filenames using wildcards

	

 gmtime
 - convert UNIX time into record or string using Greenwich time format.

	

 goto
 - create spaghetti code

	

 grep
 - locate elements in a list test true against a given criterion

	

 hex
 - convert a string to a hexadecimal number

	

 import
 - patch a module's namespace into your own

	

 index
 - find a substring within a string

	

 int
 - get the integer portion of a number

	

 ioctl
 - system-dependent device control system call

	

 join
 - join a list into a string using a separator

	

 keys
 - retrieve list of indices from a hash

	

 kill
 - send a signal to a process or process group

	

 last
 - exit a block prematurely

	

 lc
 - return lower-case version of a string

	

 lcfirst
 - return a string with just the next letter in lower case

	

 length
 - return the number of bytes in a string

	

 link
 - create a hard link in the filesytem

	

 listen
 - register your socket as a server

	

 local
 - create a temporary value for a global variable (dynamic scoping)

	

 localtime
 - convert UNIX time into record or string using local time

	

 lock
 - get a thread lock on a variable, subroutine, or method

	

 log
 - retrieve the natural logarithm for a number

	

 lstat
 - stat a symbolic link

	

 m
 - match a string with a regular expression pattern

	

 map
 - apply a change to a list to get back a new list with the changes

	

 mkdir
 - create a directory

	

 msgctl
 - SysV IPC message control operations

	

 msgget
 - get SysV IPC message queue

	

 msgrcv
 - receive a SysV IPC message from a message queue

	

 msgsnd
 - send a SysV IPC message to a message queue

	

 my
 - declare and assign a local variable (lexical scoping)

	

 next
 - iterate a block prematurely

	

 no
 - unimport some module symbols or semantics at compile time

	

 oct
 - convert a string to an octal number

	

 open
 - open a file, pipe, or descriptor

	

 opendir
 - open a directory

	

 ord
 - find a character's numeric representation

	

 our
 - declare and assign a package variable (lexical scoping)

	

 pack
 - convert a list into a binary representation

	

 package
 - declare a separate global namespace

	

 pipe
 - open a pair of connected filehandles

	

 pop
 - remove the last element from an array and return it

	

 pos
 - find or set the offset for the last/next m//g search

	

 print
 - output a list to a filehandle

	

 printf
 - output a formatted list to a filehandle

	

 prototype
 - get the prototype (if any) of a subroutine

	

 push
 - append one or more elements to an array

	

 q
 - singly quote a string

	

 qq
 - doubly quote a string

	

 qr
 - Compile pattern

	

 quotemeta
 - quote regular expression magic characters

	

 qw
 - quote a list of words

	

 qx
 - backquote quote a string

	

 rand
 - retrieve the next pseudorandom number

	

 read
 - fixed-length buffered input from a filehandle

	

 readdir
 - get a directory from a directory handle

	

 readline
 - fetch a record from a file

	

 readlink
 - determine where a symbolic link is pointing

	

 readpipe
 - execute a system command and collect standard output

	

 recv
 - receive a message over a Socket

	

 redo
 - start this loop iteration over again

	

 ref
 - find out the type of thing being referenced

	

 rename
 - change a filename

	

 require
 - load in external functions from a library at runtime

	

 reset
 - clear all variables of a given name

	

 return
 - get out of a function early

	

 reverse
 - flip a string or a list

	

 rewinddir
 - reset directory handle

	

 rindex
 - right-to-left substring search

	

 rmdir
 - remove a directory

	

 s
 - replace a pattern with a string

	

 scalar
 - force a scalar context

	

 seek
 - reposition file pointer for random-access I/O

	

 seekdir
 - reposition directory pointer

	

 select
 - reset default output or do I/O multiplexing

	

 semctl
 - SysV semaphore control operations

	

 semget
 - get set of SysV semaphores

	

 semop
 - SysV semaphore operations

	

 send
 - send a message over a socket

	

 setgrent
 - prepare group file for use

	

 sethostent
 - prepare hosts file for use

	

 setnetent
 - prepare networks file for use

	

 setpgrp
 - set the process group of a process

	

 setpriority
 - set a process's nice value

	

 setprotoent
 - prepare protocols file for use

	

 setpwent
 - prepare passwd file for use

	

 setservent
 - prepare services file for use

	

 setsockopt
 - set some socket options

	

 shift
 - remove the first element of an array, and return it

	

 shmctl
 - SysV shared memory operations

	

 shmget
 - get SysV shared memory segment identifier

	

 shmread
 - read SysV shared memory

	

 shmwrite
 - write SysV shared memory

	

 shutdown
 - close down just half of a socket connection

	

 sin
 - return the sine of a number

	

 sleep
 - block for some number of seconds

	

 socket
 - create a socket

	

 socketpair
 - create a pair of sockets

	

 sort
 - sort a list of values

	

 splice
 - add or remove elements anywhere in an array

	

 split
 - split up a string using a regexp delimiter

	

 sprintf
 - formatted print into a string

	

 sqrt
 - square root function

	

 srand
 - seed the random number generator

	

 stat
 - get a file's status information

	

 study
 - optimize input data for repeated searches

	

 sub
 - declare a subroutine, possibly anonymously

	

 substr
 - get or alter a portion of a stirng

	

 symlink
 - create a symbolic link to a file

	

 syscall
 - execute an arbitrary system call

	

 sysopen
 - open a file, pipe, or descriptor

	

 sysread
 - fixed-length unbuffered input from a filehandle

	

 sysseek
 - position I/O pointer on handle used with sysread and syswrite

	

 system
 - run a separate program

	

 syswrite
 - fixed-length unbuffered output to a filehandle

	

 tell
 - get current seekpointer on a filehandle

	

 telldir
 - get current seekpointer on a directory handle

	

 tie
 - bind a variable to an object class

	

 tied
 - get a reference to the object underlying a tied variable

	

 time
 - return number of seconds since 1970

	

 times
 - return elapsed time for self and child processes

	

 tr
 - transliterate a string

	

 truncate
 - shorten a file

	

 uc
 - return upper-case version of a string

	

 ucfirst
 - return a string with just the next letter in upper case

	

 umask
 - set file creation mode mask

	

 undef
 - remove a variable or function definition

	

 unlink
 - remove one link to a file

	

 unpack
 - convert binary structure into normal perl variables

	

 unshift
 - prepend more elements to the beginning of a list

	

 untie
 - break a tie binding to a variable

	

 use
 - load in a module at compile time

	

 utime
 - set a file's last access and modify times

	

 values
 - return a list of the values in a hash

	

 vec
 - test or set particular bits in a string

	

 wait
 - wait for any child process to die

	

 waitpid
 - wait for a particular child process to die

	

 wantarray
 - get void vs scalar vs list context of current subroutine call

	

 warn
 - print debugging info

	

 write
 - print a picture record

	

 -X
 - a file test (-r, -x, etc)

	

 y
 - transliterate a string

OEBPS/Image00016.jpg
LEARN CGI WITH
PERL
PROGRAMMING

OEBPS/Image00018.jpg
LEARN CGI WITH
PERL
PROGRAMMING

G’DO

OEBPS/Image00013.jpg
Submit |

OEBPS/Image00014.jpg
I Maths - |

OEBPS/Image00011.jpg
Select Subject |

OEBPS/Image00012.jpg

OEBPS/Image00009.jpg
Select Subject |

OEBPS/Image00010.jpg

OEBPS/Image00007.jpg
Submit |

OEBPS/Image00008.jpg

OEBPS/Image00015.jpg
Submit |

OEBPS/Image00002.jpg
Client Server

e
-

bind()
S 2

listen()

—

Read/write
I

OEBPS/Image00003.gif

OEBPS/Image00000.jpg
If condition If condition
is true is false

conditional Y
code

OEBPS/Image00001.jpg
If condition
is true

If condition
is false

OEBPS/Image00006.jpg
Submit |

OEBPS/Image00004.gif
Web Server

‘ Web Client }—) Server Side Script

Database

HTTP Protocol

OEBPS/Image00005.jpg

