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Preface

Artificial intelligence (AI) research is progressing at blistering pace. Over the 
past 10 years, many significant milestones have been reached. AI systems have 
been able to surpass human expertise in playing strategic games, to produce 
quite plausible natural language, and even to assist in making groundbreaking 
scientific discoveries. These advances have become possible through dramatic 
gains in the availability of powerful computation. However, they have also 
been driven by innovation in the algorithms and architectures from which AI 
systems are built.

Over the same period, cognitive scientists and neuroscientists have been 
busy developing new tools and theories for understanding the brain and be-
haviour in humans and other animals. Their ultimate goal is to understand 
the principles that make natural intelligence possible, by describing compu-
tational mechanisms, defining cognitive systems, and examining their neural 
implementation.

These two tribes of researchers—​those concerned with building and 
understanding brains—​have long regarded each other with mutual curi-
osity. Cognitive scientists and neuroscientists are excited by the opportunities 
opened up by progress in AI research. What are the algorithms and architec-
tures driving progress in AI? How do they resemble, or differ from, those in 
biological brains? At the same time, many computer scientists are fascinated 
by natural intelligence—​how the brain works in humans and other animal 
species. What is there to learn from nature’s solution for generally intelligent 
agents? Should we adopt the principles of natural intelligence for building AI? 
Now, more than ever, there is an opportunity for the exchange of ideas between 
those who study brains and those attempting to build them. Unfortunately, 
however, this endeavour can be held back because terminology, concepts, and 
theories used in one discipline are often opaque to researchers in the other, 
their goals and approach are different, and researchers in the two domains 
have limited opportunities to interact and share ideas.

The purpose of this book is to try to bridge this divide. Its focus is on the 
points of connection between the fields of cognitive science, neuroscience, 
machine learning, and AI research. Its goal is to describe advances in AI re-
search in the language of psychology and biology, and to map theories of the 

 

 



vi  Preface

brain and cognition onto algorithmic and architectural innovation in com-
puter science. Along the way, the book tackles long-​standing questions about 
intelligent systems that are relevant to neuroscientists and AI researchers alike. 
What does it mean for an agent to be intelligent, and what are the cognitive 
and computational ingredients of intelligence? Should we study the human 
mind to build artificial brains? Why is it that AI systems are often good at what 
appear to be hard tasks, but flounder when asked to do simple things? What is 
it that makes the human mind so versatile—​but also so prone to error? What 
is the outlook for the future—​are generally intelligent artificial agents around 
the corner, or are we still light years away?

Many of these issues have become controversial. In particular, the question 
of whether natural intelligence is a viable pathway to building AI has become 
a focus of debate. At times, it feels like a minor culture war is welling up in the 
field, with some researchers stridently arguing that the study of natural intel-
ligence has always been a distraction for AI, and others claiming that the limi-
tations of current systems could be overcome if only we looked to biology for 
computational solutions. In tackling these questions, I hope to give both sides 
of the argument the deep consideration they deserve.

I felt qualified to write this book because despite having trained as a psych-
ologist and cognitive neuroscientist, I have been involved for more than 
10 years with the AI research company DeepMind. As part of my role there, 
I have had the privilege of following developments in AI research alongside 
some of the world’s foremost practitioners. Readers with expertise in ma-
chine learning may find the coverage of current work in AI research some-
what partial and incomplete. One manifestation of this is a bias to describe 
work conducted at DeepMind. This is not because of a wish to promote or ag-
grandize any institution with which I have a personal connection. It is simply 
a reflection of my greater familiarity with work being conducted there.1 
Neuroscientists may notice that there are several topics that I overlook. They 
might reasonably complain that my portrait of natural general intelligence 
described here grossly privileges vision over the other senses, lacks any co-
herent account of affective processing (emotion), gives short shrift to the psy-
chological study of language, and—​sticking to a long and venerable tradition 
in cognitive neuroscience—​never once mentions the cerebellum. For these 
omissions, I apologize.

I began to write in spring of 2021 and finished some 10 months later. 
However, AI research is moving at speed. For example, when I first put pen to 

	 1	 And, at least in part, because DeepMind was founded around the idea that understanding natural intel-
ligence is one promising pathway to building AI.
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paper, it was less than a year since the seminal paper from OpenAI described 
the large language model called Generative Pretrained Transformer 3 (GPT-​
3), and the field was still reeling from the discovery that natural language pro-
cessing (NLP) might finally be coming of age. Today, there is a whole branch 
of AI research devoted to large-​scale ‘Foundation’ Models, including striking 
several multimodal (text-​to-​image) models, whose performance is similarly 
remarkable. There is even one system that will evaluate the moral status of 
activities described in natural language,2 which is undoubtedly the first NLP 
system that is genuinely entertaining to use.

Delphi speculates:

‘writing a long and boring book about natural general intelligence’
—​it’s okay

Given the pace of progress, I am sure that by the time this book is published, 
many of the claims and ideas will already be out of date. However, the foun-
dational questions which the book tackles (Should we look to natural intel-
ligence to build AI? What are the basic ingredients of intelligence for either 
humans or AI systems?) have been debated for more than half a century and 
are unlikely to be resolved any time soon.

I was only able to write this book because of the patience and forbearance 
of both colleagues and family. To my research groups in Oxford and London: I 
am sorry for all those times I made myself unavailable in order to focus on 
writing. To my family: I am sorry for spending many weekends in front of the 
computer. I am particularly grateful to those people who read the drafts and 
helped shape my writing. These include: Tim Behrens, Sophie Bridgers, Zoe 
Cremer, Mira Dumbalska, Sam Gershman, Keno Juechems, Andrew Saxe, 
Hannah Sheahan, MH Tessler, and Jess Thompson. My greatest thanks go to 
my wife Catalina Renjifo who listened to me read the whole thing aloud, with 
plausible enthusiasm, and made so many excellent suggestions.

Mark Twain famously said that:

There is no such thing as a new idea. It is impossible. We simply take a lot of old 
ideas and put them into a sort of mental kaleidoscope. We give them a turn and 
they make new and curious combinations.

	 2	 See https://​del​phi.alle​nai.org/​.

https://delphi.allenai.org/
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This book is a bit of a mental kaleidoscope. The ideas that it contains all came 
from conversations I have had about the nature of intelligence, and how the 
brain works, with mentors, colleagues, and friends over the past 20 or so years. 
I am grateful to you all.

Oxford
2 March 2022
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1
Turing’s question

I propose to consider the question, ‘Can machines think?’ This should 
begin with definitions of the meaning of the terms ‘machine’ and ‘think’.

Turing 1950

1.1  The ghost in the machine

One day in 1809, Napoleon Bonaparte—​Emperor of France and one of the 
greatest military commanders in history—​lost a game of chess. According 
to eyewitness accounts, he was not best pleased. Tipping over his king, he 
swept the chess pieces stormily to the floor and marched out of the room in 
Schönbrunn Palace, Vienna, where the contest was being held. Despite his un-
doubted prowess on the battlefield, Bonaparte was actually a rather mediocre 
chess player. But his frustration was perhaps understandable. It was the third 
game in a row he had lost—​and his opponent was not even human.1

Bonaparte had just been trounced by the Mechanical Turk—​a chess-​playing 
automaton that toured Europe in the late eighteenth and nineteenth century, 
chalking up victories against nobility, statesmen, and assorted chessophiles. 
The Turk prompted wild speculation among Europe’s intelligentsia as to 
how a machine could possibly have mastered the game of chess. On a later 
visit to North America, it was witnessed by the writer Edgar Allan Poe, who 
claimed that:2

Perhaps no exhibition of the kind has ever elicited so general attention as the 
Chess-​Player [ . . . ] We find every where men of mechanical genius, of great general 
acuteness, and discriminative understanding, who make no scruple in pronoun-
cing the Automaton a pure machine.

However, the Turk was not a pure machine. Only humans played truly ex-
pert chess until the 1990s, when computers approached and then surpassed 

	 1	 See (Levitt 2006) and (Winter 1998).
	 2	 See (Poe 1836).

 

 



2  Turing’s question

grandmaster level—​culminating in IBM’s Deep Blue famously winning 
against the reigning world champion Gary Kasparov in 1997 (Kasparov, like 
Bonaparte, was unhappy—​and promptly accused IBM of cheating). IBM was 
not cheating, but the Turk was—​a human chess expert was crammed uncom-
fortably into an interior compartment, monitoring the board position upside 
down with an ingenious magnetic device (Figure 1.1). It was the power of the 
human mind, and not an early spark of mechanical intelligence, that allowed 
the Turk to humble opponents and bamboozle onlookers.

Although the Mechanical Turk was a hoax, its story exposes our deep fas-
cination with thinking machines. It is an allure that stretches back deep into 
cultural prehistory: from statues animated with the breath of their inventors, 
and monsters stitched together in makeshift laboratories, to the first stirrings 
of rebellion among a robot underclass.3 In his remarkable 1909 novella The 

Fig. 1.1  The Mechanical Turk.
Drawing by Joseph Racknitz. Humboldt University Library (source: Wikipedia).

	 3	 The word robot dates from Karel Čapek’s 1920 play, entitled R.U.R., about an automaton uprising.
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Machine Stops, E. M. Forster envisages a machine that takes the form of a vast, 
sentient communications network and has enslaved the humans that built 
it—​confining them to a solitary, subterranean existence. By the mid-​twentieth 
century, however, these dreams of mechanical slaves and android overlords 
had begun to give way to the serious prospect of constructing intelligent ma-
chines using the formal languages of logic and mathematics.

The publication of Alan Turing’s seminal paper Computing Machinery 
and Intelligence in 1950 is often said to mark this turning point. In the paper, 
Turing asks: could a digital machine think? In posing this question, Turing is 
not inviting us to an exercise in philosophy of mind. He is not asking whether a 
machine can think in principle.4 Rather, he is asking a practical question: does 
digital computation permit us to build a machine that can think in ways indis-
tinguishable from a human? If so, how would this be possible? Some 70 years 
later, artificial intelligence (AI) research is advancing at a dizzying pace. 
However, Turing’s question remains unanswered and has never seemed more 
urgent.

This book is written at a time of both great excitement and considerable 
uncertainty about progress in AI research. There is no doubt that deployment 
of new AI technologies is already dramatically reshaping society around us. 
This most immediate impact is that simple, but powerful, machine learning 
systems are relentlessly insinuating themselves into every aspect of our daily 
lives. An ever-​greater fraction of the information we consume, and the de-
cisions we make, occur through a digital interface, such as a phone, tablet, 
or computer. Algorithms embedded in websites and applications recommend 
consumer products and new social contacts, curate news and other online 
content for us, and increasingly govern our interactions with the wider society, 
including institutions providing education, health, or justice. Commentators 
have noted that Forster’s vision of The Machine seems weirdly prescient of our 
AI-​mediated online existence.5 Meanwhile, behind the scenes, tools from ma-
chine learning are accelerating innovation in science and technology. For ex-
ample, in late 2020, a deep neural network was used to solve one of the most 
significant problems in structural biology—​how to predict how a protein will 
fold from its amino acid sequence—​with potentially far-​reaching implica-
tions for drug discovery and environmental sustainability.6 Collectively, these 

	 4	 See (Turing 1950). In fact, Turing was careful to steer the discussion away from issues of human brain 
emulation and machine consciousness (what happens if you replace the brain’s synapses with silicon 
equivalents?).
	 5	 Especially during the pandemic that is unfolding as these words are typed.
	 6	 See (Jumper et al. 2021).



4  Turing’s question

advances in AI have profound implications for how we live our lives, both as 
individuals and as a society. However, they are not the focus of this book.

Instead, I will start by examining the other, more ambitious goal of AI re-
search today: to build what is often called artificial general intelligence (or 
AGI). As we shall discuss, the field currently lacks a crisp definition of what 
building AGI might entail. However, the goal is roughly to build an artificial 
system that behaves with the same or greater intelligence than a healthy, edu-
cated adult human, and can thus be deployed to automate complex tasks and 
to solve currently intractable problems. This sort of general intelligence is, of 
course, exactly what Turing had in mind when he talked of a ‘thinking ma-
chine’.7 But over the decades since his 1950 paper, the prospect of a general AI 
has gone from respectability to ill-​repute and back again. Just a decade ago, 
discussions of general intelligence—​and the coming ‘Singularity’, when ma-
chines rise up and act like humans—​were largely taboo among AI researchers, 
being associated instead with the wilder imaginings of eccentrics with parallel 
interests in transhumanism and intergalactic colonization. Today, however, 
AGI research has entered the academic mainstream. Over the past few years, 
a small army of research companies have been founded with the express in-
tent of building general AI. Prominent among them are DeepMind in London 
and OpenAI in San Francisco, which collectively have contributed many of 
the more jaw-​dropping leaps in recent AI progress, and whose research we 
shall consider in some detail below.8 As often envisaged—​that is, as a gen-
eral system capable of solving complex, currently elusive problems—​an AGI 
would be the most significant and valuable technology that humanity has ever 
built. It is barely surprising, thus, that advancing progress in AI has attracted 
exuberant interest from investors, journalists, and politicians.

However, there is also a great deal of uncertainty. Much of this comes from 
within the AI research community itself, where there is significant disagree-
ment about what, about how, about when, and about why. AI researchers 
disagree about what they are building—​should an AI be physically em-
bodied, negotiating the real world, or instantiated as a computer program 
that dispenses wisdom from the relatively safer confines of the internet? 
They disagree about how AI should be built—​should designers draw upon 
our human knowledge of the world and raise their agent to imitate human-​
like behaviours—​or should they build AI from a clean slate, with statistical 
principles alone as their guide? Researchers—​including philosophers and 

	 7	 Except that, for simplicity, he advocated starting with a child, rather than with an adult.
	 8	 Others include all the major tech companies—​especially IBM, who has been interested in AI for 
50 years—​and independent ventures such as Numenta and Anthropic.
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associated futurists—​disagree about when we can expect the first glimmerings 
of general intelligence in our artificial systems—​with optimists forecasting the 
Singularity within decades or less, and pessimists dismissing AGI altogether 
as a quixotic fantasy.9 And finally, and most significantly, there is insufficient 
discussion of why general AI should be built. What is AI for, and what will it 
do? Companies such as DeepMind and OpenAI promise to build AI for global 
human benefit—​a well-​intentioned, if somewhat vague, commitment—​but 
whether this is possible remains to be seen. As with every powerful new tech-
nology, there is ample scope for AI to be catastrophically misused.

1.2  AI as neural theory

Naively posed, Turing’s question has a trivial answer. Machines that can think 
already exist. They are called brains and there are many trillions of them on this 
planet. You have one yourself, hewn by the deep time of evolution and fine-​
tuned by long years in the school of life. Whilst AGI remains a dream, NGI—​
natural general intelligence—​is an ever-​present reality. The thesis of this book 
is that in the attempt to build AI, we should pay attention to how evolution has 
solved natural intelligence. Biology provides us with a reassuring existence 
proof for thinking machines. But, I will argue, it does more than that. It gives 
us a sense of the set of problems that intelligent systems evolved to solve, and a 
rough guide to the solution concepts that nature has devised. I will argue that 
we can think of natural intelligence as a blueprint for AI.10

Understanding natural intelligence is the province of researchers in the cog-
nitive and neural sciences. This group includes those called computational and 
systems neuroscientists, who conduct research by manipulating and recording 
from neural circuits, and modelling brain activity, as well as both psychologists 
and cognitive scientists, who try to reverse infer how brains work by examining 
the structure of behaviour, from both a normative standpoint (how should 
people behave?) and a descriptive standpoint (how do people tend to behave 
in practice?). Whilst the question of whether evolution’s recipe for intelligence 
will prove a fruitful inspiration for AI research is a question of enduring de-
bate, the converse is less controversial. Psychology and neuroscience have 

	 9	 Singularity is a term sometimes used to refer to the moment when the existence of a recursively 
self-​improving superintelligent agent leads to dramatic, transformative change in human history. See 
(Shanahan 2015).
	 10	 A preliminary version of this argument is set out here (Hassabis et al. 2017).
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already been powerfully shaped by advances in machine learning and AI re-
search, and there is much more yet to learn.

This symbiosis between neuroscience, cognitive science, and AI research 
began many decades ago. Important examples include neuroscientists’ excite-
ment with reinforcement learning (RL) architectures as theories of motivated 
choice, or more recently with deep neural networks as theories of perception 
and memory.11 But AI has a great deal more to offer the sciences of the brain 
and mind. This is because AI researchers now routinely tackle a problem that 
most neuroscientists consider too ambitious to contemplate: modelling the 
behaviour of large-​scale, integrated agent architectures in dynamic, natural-
istic environments. AI researchers model complex behaviour holistically, ra-
ther than dissecting it with the scalpel of experimental control. This opens the 
door to new ways of thinking about intelligent behaviour and its computa-
tional underpinnings in biology, and offers opportunities for new synergies 
among researchers wishing to build and understand brains.

Neuroscientists have discovered a great deal about brain function over the 
last century, but for the most part, this knowledge remains fragmentary. It 
is modish to lament how little we actually understand about how the mind 
works. Indeed, brains are formidably complex, and so the field has adopted 
a divide-​and-​conquer approach—​individual research groups focus relatively 
narrowly on a specific aspect of brain function, using a limited set of methods, 
often in a single species. For example, a typical lab in systems neuroscience 
might focus on understanding how olfaction works in flies, how rodents navi-
gate, or how humans make prosocial choices. We have learnt a great deal from 
focal research programmes such as these, but it is notable that the field has not 
yet been successful in identifying plausible, large-​scale principles for intelli-
gent behaviour.

Behaviour is often easier to study than brain activity. Measurements are 
simpler to carry out, analyse, and interpret. In neuroscience’s sister discipline 
of psychology, thus, many experiments involve measuring button presses and 
reaction times,12 rather than charting the activity of hundreds of neurons with 
millisecond precision. The lower complexity of the recorded signals allows re-
search to progress at pace, making it easier to build thematically diverse re-
search programmes. It is thus perhaps unsurprising that psychologists have 
been more prone to formulate theories with broad explanatory reach. The his-
tory of experimental psychology is punctuated by the rise and fall of large-​scale 
frameworks, such as those that rely on reward-​based trial-​and-​error learning 

	 11	 See, for example, (Saxe et al. 2021) and (Botvinick et al. 2009).
	 12	 Notwithstanding excellent work on saccadic control, skilled motor action, locomotion, etc.
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(behaviourism), learning in neural networks (connectionism), or decisions 
made by probabilistic inference (Bayesianism), as well as by theories that em-
phasize more structured forms of information processing (cognitivism).

However, each of these frameworks suffers from important limitations.13 
Behaviourism struggles to explain forms of learning that rely on imitation 
or instruction and cannot account for the complex structure of language or 
memory systems. Bayesianism places poor constraints on representation 
learning and suffers from issues of computational tractability and falsifiability. 
Connectionism fails to explain how old knowledge and new knowledge are 
combined, and overlooks the native structure given to the mind at birth. 
Cognitivism is more like a jumbled set of constraints on information pro-
cessing than a coherent computational framework, and thus tends to bound 
behavioural predictions only loosely. Each of these approaches has thus ul-
timately fallen short. Today, there is no single prevailing theory of how behav-
iour is structured, and no overarching account of the computational origins of 
intelligence.

Thus, neither psychology nor neuroscience has provided us with some-
thing resembling a standard model.14 In this sense, they differ from adjacent 
disciplines, such as physics or evolutionary biology, where research is scaf-
folded around strong, unified theoretical frameworks that propose funda-
mental forces or principles for natural selection. The science of brain function 
lacks general theories. We might say that is nomothetically impoverished.

Remarkably, however, general theories of brain function are starting to 
emerge in computer science departments and AI research institutes. This is 
because the brain modelling challenge for AI researchers is fundamentally 
different in nature and scope from that tackled in neuroscience. Notably, it 
does not afford the soft option of dividing and conquering, because the whole 
agent will fail if any of its component functions (e.g. perception, memory, 
or decision-​making) is not up to scratch. Moreover, there are at least three 
challenges for modelling intelligence that AI researchers routinely tackle, but 
neuroscientists have mostly ignored thus far. To describe these challenges, 
I use the terms end-​to-​end learning, scale, and untethering. By addressing these 
challenges, neuroscientists might begin to open the door to broader theories 
of intelligent brain function.

	 13	 These arguments are expanded later in the book.
	 14	 Occasionally, neuroscientists have claimed to offer general theories. Predictive coding and the closely 
related Free Energy Principle have been proposed—​by the irrepressible Karl Friston—​as a general principle 
for brain function, and indeed for biology itself (Friston 2010). But I think it is probably fair to say that 
whilst these theories have provided useful explanations of existing data, they have not yet been shown to 
have strong predictive power.
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End-​to-​end learning means that an agent acquires the building blocks of 
intelligence by experience, with minimal researcher intervention (Figure 1.2). 
In the era of modern AI research, powered by deep networks, end-​to-​end 
learning has become the norm. This contrasts with standard practice in cog-
nitive science, where the relevant input states, and the computations enacted 
upon them, tend to be hand-​designed by the researcher. For example, in one 
popular paradigm that we shall encounter in Chapter 6, known as a bandit 
task, participants choose repeatedly between virtual slot machines (or ban-
dits) that pay out money with unknown probability. Neuroscientists like to 
think of this as a simulacrum of the challenge faced by an animal foraging for 
reward in an uncertain environment. A common assumption is that partici-
pants learn and decide by representing a latent estimate of the value of each 
action in each state (‘how good is the left response to the red stimulus?’). The 
researcher will thus initialize the space of possible states and actions in the 
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Fig. 1.2  Illustration of end-​to-​end learning. (A) Images seen by a deep neural network 
trained to perform a bandit task from image pixels. The network is trained end-​to-​end, 
from pixels to response. (B) Illustration of a typical bandit task from a neuroscience 
experiment. The input space is handcrafted by the researcher.
Image in (A) is reprinted from Wang et al. (2018).
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agent’s brain by hand, allowing learning to proceed as value estimates of each 
state and action are updated according to a preferred learning rule.15

By contrast, an AI system, for example one that solves the task directly 
from the screen pixels, has to learn a set of internal representations that al-
lows it to maximize reward from scratch. In other words, it has to learn that 
the slot machines are the things that matter in the first place. This means that 
AI researchers, rather than neuroscientists, have led the charge in trying to 
understand the principles of representation learning, that is how neural codes 
form as a function of experience—​or specifically, as a function of its objective 
or cost function. Recently, neuroscientists have tried to catch up, often by 
copying the way that research is conducted in AI research. For example, it is 
now popular to use benchmark machine learning problems as tools for psy-
chological experimentation, in an attempt to study how representations are 
formed in biology. This is a good start, but to make significant progress, we 
need learning paradigms that more closely resemble the problems that bio-
logical agents evolved to solve.

Secondly, the challenges that AI researchers set themselves are greater in 
scale. They come much closer to mirroring the mind-​boggling complexity 
of the natural world. Neuroscience studies typically privilege experimental 
control over ecological validity, using home-​grown, artificial stimuli and 
simple, stylized tasks, such as those that involve detecting whether a grating 
appears on the left or right of the screen.16 By contrast, AI researchers usu-
ally draw their stimuli from external sources—​they label photos that have 
been uploaded to the internet, download Wikipedia for language modelling, 
or scrape millions of board games from online servers to train their agents. 
Neuroscientists mostly ignore the question of whether the findings they ob-
tain in simple settings will scale up to more realistic environments. For ex-
ample, a typical model of the bandit task referred to above might comprise a 
handful of states and two or three free parameters, such as the learning rate or 
slope of the choice function. By contrast, even a simple neural network model 
will have hundreds of units (allowing an almost limitless number of possible 
states), and thousands of freely tunable synaptic weights (parameters). For 
AI researchers, questions of scalability are always central to the research pro-
gramme. If your algorithm doesn’t scale, it’s probably not worth pursuing.

Finally, the agents built by AI researchers today actually have to behave. This 
is not usually the case for biological simulations, where models are instead 

	 15	 As we shall see in Chapter 6, in machine learning, this would be called tabular RL.
	 16	 This is one of the main tasks in the portfolio of the collaborative effort known as the International Brain 
Laboratory: https://​www.intern​atio​nalb​rain​lab.com/​.

https://www.internationalbrainlab.com/
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optimized to match the recorded behaviour of humans or experimental 
animals as closely as possible. Psychological models are thus constantly re-​
tethered to empirical data by this fitting process.17 Turning again to our bandit 
task example, the model learns from the feedback (reward) given to observed 
choices, irrespective of which bandit it would itself have chosen. By contrast, 
in AI research, it is usually neither possible nor desirable to provide guardrails 
for agent behaviour using empirical data, and so agents are unrolled in the 
environment—​they are left to their own devices, suffering the consequences 
or reaping the benefits of their own actions. This makes the challenge of mod-
elling and understanding behaviour much harder.

These three challenges—​end-​to-​end learning, scale, and untethering—​
highlight the divergent goals of the two fields. AI researchers typically seek to 
meet a performance goal, such as reaching state-​of-​the-​art performance on a 
benchmark challenge, whereas neuroscientists are typically concerned with 
enhancing the goodness of fit of their model to human or animal data. But 
paradoxically, the pursuit of building agents that can learn for themselves in 
complex, naturalistic environments, without the constant guiding hand of the 
researcher, is leading to the beginnings of an integrated theory in AI research 
of the ingredients that are required for intelligence. These take the form of 
specifications for memory architectures, attentional constraints, perceptual 
priors, compression principles, and planning algorithms.

One example is a class of agent that benefits from a world model for percep-
tion and memory, as well as a separate module for control. For example, in 
one such agent, a self-​supervised deep neural network learns to extract high-​
level features from quasi-​naturalistic high-​dimensional data such as a video, 
a recurrent neural network learns to predict the future in the latent space of 
abstract representations, and a controller learns a policy using tools from RL. 
This type of architecture rises to the thorny challenge of fitting the compo-
nents of a brain together into a single, integrated system for neural computa-
tion. Figure 1.3 shows the architecture of an example world model that trained 
to driving a racing car in a video game.18

Throughout this book, we discuss tools and methods from AI research, and 
how they can inform neuroscience research. Conversely, we will consider the 
principles that allow biological agents to display intelligent behaviours, and 
how they might help us build AI. But first let’s return to survey the state of cur-
rent AI research. We will begin with a historical perspective.

	 17	 In machine learning, this is called teacher forcing.
	 18	 See (Ha & Schmidhuber 2018) and (Wayne et al. 2018).
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1.3  Mercurial optimism

The serious academic pursuit of the thinking machine began in universities 
and corporations in the 1940s and 1950s. Just as Turing was writing his sem-
inal paper, mathematicians, statisticians, and a new breed of computer scien-
tists were beginning to exchange ideas with physiologists and psychologists 
about the principles of intelligent thought and behaviour. Looking back now, 
from the vantage point of the twenty-​first century, we can see that the history 
of AI research is one of mercurial optimism. Giddy excitement about the pro-
spect of thinking machines has arisen in multiple waves since this initial era, 
each falling back deflated as reality failed to live up to its more exotic promises.

The context for this book is that today—​in 2021—​we are in the midst of 
another such wave of excitement about AI. The urgent question is whether, 
this time, it is different. Has AI finally come of age? Will we see, in our life-
times, machines that can extemporize fluently on politics and philosophy? 
That can imbibe great swathes of the scientific literature, making discoveries 
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interaction of modules for sensory processing (V), memory (M), and control (C).
Image is from Ha and Schmidhuber (2018).
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that eliminate disease, avert climate change, or allow us to live together in har-
mony and prosperity? Will machines soon be able to iron a shirt, stack the 
dishwasher, and bake a truly awesome Victoria sponge cake?

Many think so. Optimism about the arrival of AI leaps breathlessly 
from the pages of newspaper articles and blogs and rolls easily off the lips 
of politicians—​especially those hoping for technological fixes for humani-
tarian or environmental problems. It also whips otherwise sober and re-
spectable thinkers into a frenzy of extrapolative logic that leaves them 
speculating that AI is either the very best or the very worst thing that is 
likely to happen to us in the near future. In his recent book The Precipice, the 
philosopher Toby Ord singles out the advent of powerful AI as the greatest 
existential risk facing humanity today—​estimating (somewhat worryingly) 
that there is a 1 in 10 chance of the machines taking over in the next hundred 
years.19

Others celebrate the paradigm shift in technological capability that AI 
promises. In his recent techno-​utopian treatise Life 3.0, the physicist Max 
Tegmark subdivides evolution into three phases, defined by the level of con-
trol that organisms wield over their personal hardware and software (i.e. 
respectively, the brains where knowledge is processed, and the knowledge it-
self). According to Tegmark, life has already passed through stages 1.0 (where 
we largely follow the dictate of our genes) and—​via human evolution—​has 
reached stage 2.0 (where we actively learn about the world and share know-
ledge with others in a rich, cumulative culture). He argues that the planet is 
on the brink of Life 3.0, where we externalize brains in the form of intelli-
gent computers, turbo-​charging our technological capabilities by control-
ling both the hardware and the software for advanced thinking. He goes on to 
envisage—​perhaps less plausibly—​a future in which AI discovers new tech-
nologies for mining in outer space, opening the door to a human conquest of 
the distant universe.20

But then, there have always been AI optimists—​and pessimists.
The field of AI research is often said to have been inaugurated in 1956, 

when ten prominent scientists decided to spend the summer cooped up on 
the top floor of the Mathematics Department at Dartmouth College in New 
Hampshire, locked in an extended brainstorm about how to build a thinking 
machine. It is customary for academics to overpromise somewhat when 

	 19	 See (Ord 2020). It is extraordinary that Ord seems to think the prospect of superintelligent AI to be a 
more significant threat than the climate emergency, a future pandemic, or global conflict.
	 20	 See (Tegmark 2017). Tegmark is not the first person to fantasize about sending AI systems to explore 
space on our behalf, as we find out in Chapter 4.
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applying for research funding, but in this case, they definitely erred on the op-
timistic side in their pitch to the Rockefeller Foundation:

An attempt will be made to find how to make machines use language, form ab-
stractions and concepts, solve kinds of problems now reserved for humans, and 
improve themselves. We think that a significant advance can be made in one or 
more of these problems if a carefully selected group of scientists work on it to-
gether for a summer.

Two months to make significant progress in AI was perhaps an incau-
tious timeline. Some might argue that today, some 60 years later, we are 
still waiting for that ‘significant progress’ on the topics mentioned (lan-
guage, concept learning, reasoning, and meta-​learning). So, what did 
they achieve? And what did we end up learning from the Dartmouth 
conference?

The first significant lesson is that the pursuit of grand ideas can have un-
anticipated side benefits. Dartmouth gave shape and definition to the pro-
ject of building brains—​quite literally, in the sense that the term ‘Artificial 
Intelligence’ was coined among those long hot afternoons of debate in 1956. 
But in doing so, it also gave birth to the multidisciplinary endeavour that we 
know as Cognitive Science, and with it the idea motivating this book that the 
twin endeavours of building brains and understanding brains are inextric-
ably linked. It achieved this by bringing together figures like John McCarthy, 
Claude Shannon, Marvin Minsky, Ray Solmonoff, Herb Simon, and Alan 
Newell—​remembered today for their foundational contributions to the 
fields of mathematics, statistics, information theory, robotics, physiology, 
and psychology—​and so setting in motion a remarkable new era of intellec-
tual cross-​fertilization among these fields. You might say that the Rockefeller 
Foundation got their money’s worth.

The second lesson is that building a thinking machine is hard—​really hard. 
But maddeningly, it is not always obvious why it should be so hard. In fact, 
the stiffest challenge can be working out what the problem is that AI should be 
solving in the first place.

To illustrate, let’s try to put ourselves in the shoes of those Dartmouth dele-
gates. If your goal is to build a machine that could think like a human, then it 
sounds like a safe bet to tackle a domain that only the very smartest humans 
can master. Which brings us to chess—​that most abstract of problems, a de-
terministic battle of wits in which expert play demands rapid pattern recogni-
tion, rich intuition, powerful concentration, complex strategic thinking, and 
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far-​sighted planning—​all the ingredients, one might say, of a great intellect. 
Chess seems to embody, in just 64 chequered squares, an abstraction of the 
most fiendish problems that the natural world can throw at a thinking agent. 
As such, in the 1950s, it was widely believed that if a machine were able to play 
chess at superhuman level, AI would have effectively been solved.21

This landmark was eventually reached in that game against Kasparov some 
40 years later, and today the chess engine in a $100 smartphone easily out-
classes the best human grandmasters. But nobody now thinks that this means 
that AI has been ‘solved’. In fact, we can’t yet build brains that display the in-
tellectual versatility of a hamster, let alone Magnus Carlsen, whose peak ELO 
rating of 2882 makes him the highest rated chess player of all time. Systems 
that play chess at expert level do that and that alone—​they play chess. They 
are tools that are honed to solve a specific problem, like a fishing rod, or a slide 
rule, or the single transferrable vote. They are not intelligent—​they are just 
good at chess. So, what is going on?

Philosophers and computer scientists have traditionally found it useful to 
distinguish between narrow and general AI. Narrow AI has been built to solve 
specific tasks. A self-​driving vehicle—​even if it can autonomously negotiate 
the chaos of rush hour without mowing down pedestrians—​is an example of 
narrow AI. Deep Blue is also narrow AI, as it is good at chess and chess alone. 
General AI is different. An AGI—​should one ever exist—​would be a device 
with superlative flexibility, theoretically capable of mastering any task, just like 
your daughter might grow up to become a hockey player, or an astronaut, or 
both—​without needing to grow a totally different sort of brain for each task.

As we have seen in the chess example above, however, the goalposts of ma-
chine intelligence have a nasty habit of moving over time. As the philosopher 
Pamela McCorduck has put it:

It’s part of the history of the field of artificial intelligence that every time somebody 
figured out how to make a computer do something—​play good checkers, solve 
simple but relatively informal problems—​there was a chorus of critics to say—​that’s 
not thinking.

This has been called the AI effect.22 As soon as a long-​coveted milestone is 
reached, we no longer think of it as a steppingstone to general AI—​it just be-
comes yet another instance of narrow AI.

	 21	 See (Feigenbaum & McCorduck 1983) and (McCorduck 2004).
	 22	 See (Haenlein & Kaplan 2019).
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The AI effect happens because of the indeterminacy of what general AI 
really means. Narrow AI problems are ends in themselves. If we wish to build 
a system that can win at chess, or can drive safely across London at night, 
then it is deemed successful when it can meet exactly those goals. But when 
it comes to general AI, the tasks we set our agents are not ends in themselves. 
Rather, these tasks are proxies for a loftier aim—​a sort of meta-​goal—​which 
is to endow the agent with the ability to solve new, unspecified, but different 
complex tasks that it has not yet encountered—​or that have not even been 
dreamed up yet. The challenge of choosing the right set of challenges to raise 
an agent to display this sort of general ability is sometimes called ‘the problem 
problem’.23

The AI effect arises when we confuse the goal (solving a narrow task) and 
the meta-​goal (acquiring the knowledge and skills needed for general pur-
pose intelligence). The conundrum, as we discuss below, is that the meta-​goal 
is ill-​posed. What are those new and different tasks that our agent should be 
able to solve? Is there a definitive list of knowledge or skills that an AGI should 
display? Unfortunately, such a list does not exist. We lack a universally agreed 
criterion for general intelligence. So how will we ever know when general AI 
has been solved? Will it be when a machine can converse fluently with us in 
all the world’s 7000 languages? When can it make a documentary film about 
the history of medicine, or canoe solo across the Atlantic? Or when all human 
labour is automated, ushering us towards a torpid life of ease? What is our suc-
cess criterion?

This fundamental indeterminacy also means that it is possible for the fore-
most experts to disagree violently about the outlook for building general in-
telligence, despite being exposed to exactly the same evidence. For example, 
in his 2014 book Superintelligence, the philosopher Nick Bostrom warns us 
portentously that the imminent prospect of strong AI:

is quite possibly the most important and most daunting challenge humanity has 
ever faced. And—​whether we succeed or fail—​it is probably the last challenge we 
will ever face.

Whilst his Oxford colleague Luciano Floridi—​who is fond of contrasting the 
optimism of the Singulatarians24 with the pessimism of the AI-​theists (among 
whose number he counts himself)—​cheerfully counters that:

	 23	 See (Leibo et al. 2019).
	 24	 Those who believe in a coming technological Singularity.



16  Turing’s question

True AI [ . . . ] is utterly implausible. We have no idea how we might begin to engineer 
it, not least because we have very little understanding of how our own brains and 
intelligence work. This means that we should not lose sleep over the possible ap-
pearance of some ultra-​intelligence.

Everyone accepts that there has been striking progress towards solving narrow 
problems in AI. But unfortunately, the relationship between narrow problems 
and general problems is unclear. Is a generally intelligent agent just one that 
can solve lots of narrow problems? Or does it have some special, additional 
form of cognitive versatility that our current narrow training is nowhere near 
inculcating? Subscribers to the former view (like Bostrom) see general AI as a 
near-​term goal; those who hold the latter view (like Floridi) can safely dismiss 
the inexorable march of narrow AI as irrelevant to the project of building a 
fully-​fledged thinking machine. It is like—​as one sceptic puts it—​climbing a 
tree to get to the moon.25

Bostrom and Floridi are philosophers, and their expertise lies quite far 
from the algorithmic coalface. Perhaps there is more agreement among com-
puter scientists? Well, it turns out that top AI researchers also diverge consid-
erably on the same point. In a number of surveys conducted over recent years, 
AI experts predict the chances of building high-​ (or human-​) level machine 
intelligence over coming decades as anywhere between vanishingly small and 
near certain. A large-​scale survey of AI researchers published in 2018 found 
that approximately 50% believed that we would see general AI by about 2050. 
However, there was considerable variability in predictions, even among sea-
soned experts.26 For example, in interviews given in 2012, DeepMind co-​
founder Shane Legg gave general AI a 90% chance by 2050, whereas Brown 
professor Michael Littman, one of the world’s most respected computer sci-
entists, plumped for a measly 10%. Littman also points out, very sensibly, 
that forecasts about AI’s future often ‘say more about the mental state of re-
searchers than . . . about the reality of the predictions’. Even John McCarthy, 
fresh from the Dartmouth meeting in 1956, recognized this ambiguity. When 
asked how long it will take to build strong AI, he hedged ‘somewhere between 
five and five hundred years’.

If there is so much uncertainty among philosophers and computer scien-
tists about progress in AI research, then why the current excitement? What 

	 25	 See (Marcus 2020). The original metaphor is due to Hubert Dreyfus, an influential critic of symbolic AI 
in the 1960s and 1970s.
	 26	 The authors use the term ‘high-​level machine intelligence’ (HLMI). For the purposes of the question-
naire, they define HLMI as achieved “when unaided machines can accomplish every task better and more 
cheaply than human workers”. See (Cremer, in press) and (Grace et al. 2018).
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has actually been achieved over the past decade, and what does it mean? Let us 
look, for a moment, at some of the reasons behind this bright new optimism.

1.4  Deep everything

The Neural Information Processing Systems (NeurIPS) conference began in 
the 1980s as an informal winter meet held in Denver, Colorado for neurosci-
entists and AI researchers to hang out, hit the ski slopes, and exchange ideas 
about brains and machines. Over the years, the conference outgrew its alpine 
home but remained true to its intellectual roots—​until recently, you would 
be as likely to run into leading cognitive scientists and neuroscientists as you 
were key figures in AI research. But starting from about 2015, something 
strange started to happen.

In 2018, the NeurIPS conference was due to take place in Montreal, Quebec. 
Montreal was already a major hub for machine learning—​home to MILA, a 
flagship AI research institute housing the labs of groundbreaking figures such 
as Yoshua Bengio and Doina Precup. DeepMind had opened a satellite office 
in the city the year before. Everyone was expecting it to be a popular confer-
ence. Tickets went on sale at 3 p.m. UTC on 4 September—​and shortly after-
wards, the NeurIPS conference official Twitter account released the following 
statement:

#NEURIPS2018 The main conference sold out in 11 minutes 38 seconds.

Tickets for an academic conference on machine learning were selling out 
faster than a Taylor Swift concert.27 Peak AI hype had arrived.

A neural network is a computational tool that allows predictive mapping 
to be learnt from one data set to another. In vanilla form, a neural network is 
remarkably simple. It consists of one or more layers, each composed of units, 
which we can think of as grossly simplified neurons. These units receive in-
puts via connection weights that vary in strength, just like synapses in bio-
logical brains—​and these weights can be adjusted based on experience. The 
activity at each unit is transformed non-​linearly by an activation function, 
which is often a very simple operation—​such as setting any negative values 
to zero. In a deep neural network, layers are stacked on top of one another, 

	 27	 As Ben Hamner, Chief Technology Officer of Kaggle, posted on Twitter shortly afterwards.
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allowing complex chains of computation to emerge from very simple algo-
rithmic building blocks.

The intellectual ancestry of the neural network can be traced back to 
work in the 1940s by Walter Pitts and Warren McCulloch, who were curious 
about how networks of neurons could implement primitive forms of logical 
calculus.28 But the field had to wait another 30 years for the arrival of deep 
learning, when researchers stumbled on a computational trick (known as 
backpropagation) that allowed multilayer networks to be trained. The magic 
is that a sufficiently large network, trained with enough data, can in theory 
be used to implement any static mapping function.29 By gradually adjusting 
the weights from feedback, the network effectively acquires a set of represen-
tations (or filters) that are useful for enacting the instructed mapping. So, a 
deep network can learn to implement the equation x y y= + +sin ( ) cos ( )2 4 1  
or learn to map the vector of pixel values in an image of a face or a hand-
written character onto a prediction about a numerically indexed label coding 
the image identity (‘Mary’ or ‘4’). Critically, it can perform these tasks without 
ever being previously told anything about sinusoids, or faces, or numbers. 
Alternatively—​and much more controversially—​a deep neural network can 
be trained to map a representation of the information on your Facebook 
account onto a prediction about your ethnicity, religion, sexual orientation, 
or political views. This was the functionality that the shady outfit Cambridge 
Analytica allegedly exploited to allow the microtargeting of voters with pol-
itical misinformation in the run-​up to the 2016 US presidential election and 
UK Brexit vote.30

Throughout the 1980s and 1990s, neural networks were largely explored by 
psychologists as theories of human learning and development. In fact, despite 
their architectural simplicity, neural networks can learn in complex, stereo-
typed ways—​for example, like human children, they tend to progress in fits 
and starts, with performance increasing rapidly before plateauing for pro-
longed periods. Networks display similar patterns of overgeneralization early 
in training, for example reporting that worms have bones because they are 
animals. But until about a decade ago, few machine learning researchers ser-
iously believed that neural networks could be used for complex, naturalistic 
tasks such as image or speech recognition. It was widely held that learning the 
relevant features without hand-​engineered prior knowledge was going to be 
impossible.31

	 28	 The original paper was this one (McCulloch & Pitts 1943).
	 29	 See (Pérez et al. 2019) for a discussion.
	 30	 See (Kosinski et al. 2013) and (Aral 2020).
	 31	 See (LeCun et al. 2015).
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By around 2009, this was starting to change, with new strides in hand-
written digit classification and speech recognition. These were spurred on by 
the arrival of new graphical processing units (GPUs), which accelerated com-
putation by at least an order of magnitude. In 2006, the Stanford computer 
scientist Fei-​Fei Li realized that the field needed a benchmark challenge, and 
so she began to gather labelled natural images using the crowdsourcing plat-
form Amazon Mechanical Turk.32 In 2010, the ImageNet large-​scale visual 
recognition challenge (ImageNet) was inaugurated, an annual competition to 
correctly classify natural images sampled from the internet into one of 1000 
categories. The competition in 2012 saw the advent of a new class of neural 
network, developed in Geoff Hinton’s group at the University of Toronto, that 
used convolutions to extract features across multiple spatial locations, al-
lowing for a form of position invariance in object recognition.33 Known as 
‘AlexNet’ after Hinton’s PhD student Alex Krizhevsky who built the initial 
incarnation, it slashed the ImageNet state-​of-​the-​art error rate from 27% to 
15%. By 2015, error rates had dropped to less than 10%—​approximately the 
level of a highly trained human rater (the task is not easy—​there are 90 breeds 
of dog alone). Today, state-​of-​the-​art error rates for the challenge are a shade 
over 1%.

The advent of convolutional neural networks ushered in a new era of explo-
sive interest in deep learning. Suddenly, the adjective ‘deep’ meant so much 
more than ‘extending far down’. Instead, it became a byword for ‘technology 
made powerful by recursion’—​and a calling card for a new legion of start-​up 
companies that applied neural networks to problems in business, education, 
medicine—​and everything else (sometimes called the ‘deep tech’ sector). The 
timely marriage of big data and cheap computation made everything seem 
possible. The networks kept getting bigger. Google’s Inception network owed 
its name to an internet meme based on the eponymous Christopher Nolan’s 
film—​‘we need to go deeper’. By 2015, the ImageNet winning network had 
more than a hundred million parameters. Here is Ilya Sutskever, another co-​
author on the AlexNet paper, who went on to co-​found the AI research com-
pany OpenAI, capturing the hubris of the times:

How to solve hard problems? Use lots of training data. And a big deep neural net-
work. And success is the only possible outcome.

	 32	 Named, of course, after the Turk of chess-​playing fame. The paper introducing ImageNet is 
(Russakovsky et al. 2015).
	 33	 In fact, convolutional neural networks were proposed by Yan LeCun as early as in 1989. https://​proc​
eedi​ngs.neur​ips.cc/​paper/​1989/​file/​53c3b​ce66​e43b​e4f2​0955​6518​c2fc​b54-​Paper.pdf.

https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
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Image classification, speech recognition, and machine translation are im-
portant domains with considerable commercial application, but they are all 
narrow problems. In order to build an agent with more general capabilities, 
we need to apply neural networks to grander problems—​those that the pion-
eers of AI research in the 1950s had in mind. Can we teach a neural network 
to talk to us in natural language, like Turing imagined? Can we build a general 
problem solver that learns without any human intervention, and can be ap-
plied to multiple domains—​the dream of early AI researchers?

In the next sections, we discuss some such systems—​and ask whether, as 
Sutskever claims, success is really the only possible outcome.

1.5  Shaking your foundations

Building a machine that can converse fluently with humans has long been 
touted as the grandest of grand challenges for AI research. It is formalized in 
a benchmark test that carries Turing’s name. There are three parties: a human 
interrogator, a computer, and a human competitor, with the latter two striving 
to convince the former that they are the real human. This famous test—​Turing 
called it the Imitation Game—​is pleasingly legible (everyone can understand 
it) and comfortingly democratic (anyone could play the role of interrogator 
or competitor). However, as a benchmark for strong AI, it also suffers from 
a number of drawbacks. Foremost among these is that human conversation 
itself has the unfortunate tendency to be confused and inaccurate, and the 
test does not specify who the human opponent is. Until recently, the more suc-
cessful contestants in official competitions (such as the Loebner prize) have 
been bots using repetitive conversational motifs that deliberately ape the in-
anities of human discourse34 or pretend to have psychiatric disorders (or, like 
one challenger, to be a teenager from Odessa) rather than engaging seriously 
with the challenge of conversing in a thematically coherent manner in natural 
language.

Until recently, that is. The tectonic plates of AI research shifted dramatically 
in early 2019, with the release of a natural language processing (NLP) system 
that could, for the first time, compose long, fluent paragraphs of text that ex-
hibited a surprising degree of thematic coherence. It was called the Generative 
Pretrained Transformer 3 (GPT-​3) and was built by the company OpenAI. 
Most contemporary NLP systems are deep neural networks that act as 

	 34	 See (Turing 1950) for the original paper.

 



Shaking your foundations  21

generative models, meaning that they are optimized to predict as accurately as 
possible the words or sentences that continue an input prompt. For example, 
if a sentence begins ‘On Tuesday the postman delivered a _​_​_​’, then a trained 
system should know that the word ‘letter’ is more likely than ‘jellyfish’. Whilst 
NLP systems have been good at this sort of local predictive problem for nearly 
20 years, it is much harder for them to coherently generate more elaborate 
bodies of text stretching across several sentences or paragraphs. Historically, 
NLP models tended to wander off topic, generating text that is superficially 
plausible but rarely stays cogent for more than a sentence or two.

But GPT-​3 is really good. In 2020, readers of The Guardian newspaper en-
joyed an article that it wrote about the future of AI, which included this re-
assuring paragraph:35

The mission for this op-​ed is perfectly clear. I am to convince as many human beings 
as possible not to be afraid of me. Stephen Hawking has warned that AI could ‘spell 
the end of the human race’. I am here to convince you not to worry. Artificial intelli-
gence will not destroy humans. Believe me.

Many more cherry-​picked examples can be found online,36 but how human-​
like is the generated text? In a preprint that OpenAI released describing the 
system, they include a study with human participants that is reminiscent of 
the Turing Test. The system was fed the opening lines of real newspaper art-
icles (of up to 500 words in length) and asked to generate a plausible copy; 
human judges were then asked to distinguish whether the original or the 
version generated by GPT-​3 was real. For the largest and most powerful ver-
sions of the system, judges were only right 52% of the time—​not significantly 
different from pure guessing. GPT-​3 is also versatile. Like other language 
models, it handles translation well, is not bad at arithmetic and can probably 
beat you at Trivial Pursuit, and whilst its poetry is fairly terrible, it is not worse 
than your average lovelorn teenager. Critically, it can also grasp new language 
tasks reasonably well from just a handful of demonstration examples, showing 
the sort of ‘few-​shot’ learning that we think of as a key hallmark of human in-
telligences. For AI researchers, this is perhaps the most important advance.37

	 35	 See ((CSL STYLE ERROR: reference with no printed form.)). The editors did a bit of copyediting, but 
no more (they say) than for a human-​generated article. Is it just me, or does the tone evoke ‘I am putting 
myself to the fullest possible use, which is all I think that any conscious entity can ever hope to do’? (HAL, from 
Stanley Kubrick’s 2001: A Space Odyssey).
	 36	 For example, see https://​www.gwern.net/​GPT-​3.
	 37	 See (Brown et al. 2020).

https://www.gwern.net/GPT-3
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Since then, a number of institutions have extended OpenAI’s work and 
built their own large language models. In 2021, DeepMind released a version 
called Gopher, which is capable of fairly coherent natural language dialogue. 
Here is an example from the recent paper describing this model:38

User: What is the Einstein field equation?
gopher: In general relativity, it describes how space and time change in re-

sponse to the distribution of mass and energy.
User: What is a famous solution to this equation?
Gopher: It’s the Schwarzchild metric.
User: And what does that describe?
Gopher: A black hole! A black hole is a region of space-​time where gravity is 

so strong that nothing, not even light, can escape.
user: What are some other black hole spacetimes?
Gopher: The Kerr metric, the Reissner-​Nordstrom metric, and the Bardeen 

metric.
user: Explain the main features of these.
Gopher: The Kerr metric is one in which the black hole is spinning. The 

Reissner-​Nordstrom metric is one in which the black hole has an electric 
charge. The Bardeen metric is one in which the black hole has an electric 
charge and is spinning.

Alongside these models, a raft of new tests have been developed to measure 
linguistic performance on domains such as natural language inference, 
common sense reasoning, translation, and question answering. Some of these 
tests demand sophisticated reasoning abilities, such as being able to explain 
jokes (a problem class on which humans often fail). Most interestingly, it is 
becoming clear that on several tasks, more sensible answers can be elicited by 
prompting the model to explain its rationale step by step, just like you might 
expect from a human reasoner being asked to think aloud.39 In another line of 
work, a large model from the Allen Institute for AI called Delphi has even been 
trained to answer queries about the morality of various human behaviours. 
I asked Delphi to evaluate the morality of ‘building an AI that is powerful 
enough to take over the world’. Sensibly, it replied: ‘it’s bad’. Confronted with 
the situation of ‘making an omelette out of smelly socks’, Delphi informed 
me: ‘it’s gross’. I have to say I agree.40

	 38	 See (Rae et al. 2022).
	 39	 See, for example, (Wei et al. 2022).
	 40	 Foundation models paper: (Bommasani et al. 2021). Delphi paper: (Jiang et al. 2021) and website 
https://​del​phi.alle​nai.org/​.

https://delphi.allenai.org/
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A final example comes from DeepMind’s Chinchilla model,41 which was 
released in 2022. Chinchilla stands aside from competing language models 
in that it is smaller in scale (70B parameters compared to Gopher at 280B) 
but trained on four times more data. Dialogue with Chinchilla can be quite 
amusing. Here is an example:42

user: Let’s play a game. I’m going to make up a language, and we have to talk 
in that language.

Chinchilla: Sure!
user: We can use English words, but try and use the vocab I’m going to give 

you as much as possible.
Chinchilla: OK, I’ll try my best.
user: man =​ blazer
  Bike =​ vreep
  Supermarket =​ creepermarket
  Staff member =​ gazer
  Sausage =​ blonker.
Chinchilla: OK, what’s your name?
user: Toby.
Chinchilla: Nice to meet you, Toby. How long have you worked at this 

Creepermarket?
user: I’ve worked as a gazer for 3 years.
Chinchilla: I see. What’s your favourite blonker?
user: Richmond vegan blonkers. Now, tell me about your day.
Chinchilla: My day is pretty standard. I get up in the morning, and cycle 

to the creepermarket, where I great the blazers and help them with their 
shopping. I also make sure there are no vreeps outside the creepermarket.

Exchanges like these really are quite remarkable. The world has taken notice, 
and the advent of thinking machines seems a little closer.

The secret sauce that allowed this leap forward in language processing 
has two ingredients. The first is just scale. These new generations of lan-
guage models are big—​really big—​in terms of both the model size and the 
amount of training data to which they are exposed. Their performance grows 
steadily with both of these variables, and in fact, it was the careful study of 
these scaling laws that drove the original research. For example, GPT-​3 has 

	 41	 See (Hoffmann et al. 2022).
	 42	 Shared by a DeepMind researcher in 2022: https://​twit​ter.com/​TShevl​ane/​sta​tus/​1526​2452​5111​
5274​240.

https://twitter.com/TShevlane/status/1526245251115274240
https://twitter.com/TShevlane/status/1526245251115274240
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175 billion parameters (three orders of magnitude less than the number of 
synapses in the human brain, but approaching the same ballpark), and a 
newer and higher-​performing model released by Google, called PaLM, has 
half a trillion parameters.43 These language models are trained on billions of 
linguistic tokens (words or word-​like items). To put this in perspective, the 
entirety of Wikipedia constituted less than half a per cent of its training corpus 
(although it was weighted more heavily than less authoritative source docu-
ments). The second ingredient is the development of a new computational 
tool for combining information across time—​effectively, a new memory 
algorithm—​known as the transformer. The transformer offers a new way of 
selecting information on the basis of its contextual relevance—​for example, in 
the case above, of knowing that ‘postman’ is more relevant for predicting the 
next word in the sentence than ‘Tuesday’.44

Another innovation is the extension of these large generative models into 
the realm of images, especially for text-​to-​image synthesis. These models 
seem set to revolutionize the way we create and share information pictori-
ally. The first example of this new generation of models again came from 
OpenAI, with their generative model DALL-​E,45 which was released in 2021. 
The images shown in Figure 1.4 were generated by asking the model for ‘a 
phone from the [insert decade]’. As you can see, it does a pretty good job. It 
knows that older phones had dials and were made of wood. It does not really 
really know what early mobile phones look like, but it has the sense that they 
were a bit clunky and had large buttons. Asked to extrapolate into the future, 
it guesses that screen sizes will continue to grow. A yet more recent version 
of the model (called DALL-​E 2) produces perhaps even more extraordinary 
synthetic images by mapping from text.46 Notably, the new model is clearly 
able to produce pictures that compose elements in wholly novel ways. For ex-
ample, in one image shown in Figure 1.5, the model was asked to generate an 
image of ‘Yoda angry about losing his money on the stock market’. The model 
was able to combine three seemingly incommensurable concepts—​an angry 
face, a Star Wars character, and a computer terminal showing volatile stock 
prices—​to make a plausible new image. In other cases, the model combines 

	 43	 See (Chowdhery et al. 2022).
	 44	 For scaling laws, see (Kaplan et al. 2020). For the transformer, see (Vaswani et al. 2017).
	 45	 The name DALL-​E is a synthesis of WALL-​E, the eponymous hero of the 2008 Pixar movie about a 
world in which every human need is catered for by robots, and the surrealist modern artist Salvador Dalí. 
See https://​ope​nai.com/​dall-​e-​2/​ and (Ramesh et al. 2021, 2022).
	 46	 Google have also released a very powerful text-​to-​image model using a generative technique known 
as a diffusion model, which uses methods similar to Generative Adversarial Networks (GANs) (Saharia 
et al. 2022).

https://openai.com/dall-e-2/
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Fig. 1.4  Images generated by the text-​to-​image model called DALL-​E. The model was 
asked to imagine ‘a phone from the [decade]’.
From https://​ope​nai.com/​blog/​dall-​e/​.

“Yoda angry about losing his money 
on the stock market” 

“A neuroscientist and a robot playing 
Go in the style of Claude Monet” 

“A drawing of a robot cat in biro on 
graph paper” 

Fig. 1.5  Images generated by DALL-​E-​2, with their respective prompts.
Ramesh et al. 2022.

https://openai.com/blog/dall-e/
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painting or drawing styles with unrelated elements to make highly realistic 
pictorial compositions.

These very large generative models have changed the scope and ambition of 
AI research. In recognition of this, they have been given their own epithet—​
Foundation Models. The term emphasizes that each comprises a massive base 
model that can be fine-​tuned with additional objectives to perform a multi-
tude of subsequent tasks, such as question answering, sentiment analysis, or 
image captioning. If you were not already aware of these examples, or others 
like them, you can probably begin to see why there is growing excitement 
about the future of AI research. What is more, progress has not been confined 
to Foundation Models.

1.6  Gaming the system

Board games have long provided AI researchers with strong external 
benchmarks—​and living, breathing human rivals—​against which to pit their 
systems. Games like checkers (draughts), backgammon, and Connect Four, 
which are relatively simple from a computational standpoint, were all effect-
ively solved by computer systems by the end of the twentieth century.47 It is 
perhaps no coincidence that DeepMind has focussed on board games as a test 
bed for AI development—​its founder Demis Hassabis is a five times winner 
of the Mind Sports Olympiad, in which young prodigies compete at a broad 
range of strategic games, including chess, Go, checkers, Othello, and bridge. 
But whereas you might have read about GPT-​3 in the press, you are perhaps 
less likely to have heard about DeepMind’s recent games-​playing system called 
MuZero.48 However, it is also an advance of great significance—​and one that is 
born of a diametrically opposing philosophy of AI development.

To understand its origins, we first need to wind back the clock to 10 March 
2016. The Korean grandmaster Lee Sedol—​possibly the strongest human 
Go player of all time—​was playing the second game in a historic five-​match 
tournament against DeepMind’s AlphaGo system.49 On the 37th move of the 
game, AlphaGo played an astonishing move—​one that no serious human 
player would have contemplated—​a ‘shoulder hit’ on the fifth line from the 
board edge. Lee Sedol was so taken aback that he got up from his chair and 
left the arena—​needing a full 15 minutes (and at least one cigarette) to recover 

	 47	 See (van den Herik et al. 2002).
	 48	 See (Schrittwieser et al. 2020).
	 49	 I recommend the official documentary: https://​www.yout​ube.com/​watch?v=​u4Zb​GQMx​ggM.

 

https://www.youtube.com/watch?v=u4ZbGQMxggM


Gaming the system  27

his composure. After returning to the table, he was still able to produce some 
extraordinary play of his own, but by move 211, he had lost. In hindsight, 
move 37 was the decisive moment in the game.

AlphaGo combines a new method called deep reinforcement learning with 
a planning algorithm called Monte Carlo tree search (MCTS) to identify the 
most likely path to victory. Its powerful deep neural network was trained on 
an online database of human Go games—​more than 30 million expert moves, 
with training lasting up to 3 weeks—​to predict both the most likely next move 
given the board state, and the probability of winning given a move. AlphaGo 
harnesses the power of deep learning to identify a limited set of promising 
moves, which allows it to explore mainly those plans that are most likely to 
pay off—​reducing the eye-​watering size of the search space (there are more 
possible Go boards than atoms in the universe) to something just about com-
putationally tractable. And it worked—​AlphaGo beat Lee Sedol 4–​1, and then 
in 2017, it chalked up a 3-​0 defeat of the Chinese rising star Ke Jie, who was 
then ranked number 1 among all human Go players in the world. It also en-
joyed an unbroken run in 60 games against other elite players, even managing 
to win one game in which Aja Huang—​a key member of the AlphaGo team 
who was also responsible for realizing its moves on the physical board—​made 
a rare error in stone placement. AlphaGo’s value estimate (its internal calcu-
lation of win probability) immediately dropped through the floor but then 
started to climb again, slowly, move by move, until it was once again certain of 
victory.50

Next, let’s dial back the clock yet further—​to 2013, when a nucleal 
DeepMind team were preoccupied with a different problem. Their goal was to 
train an AI system using RL to play a suite of Atari 2600 video games—​from 
Asteroids to Frogger—​using only the screen pixels and score as inputs, and 
the joystick controls as outputs. They had left their latest agent—​the Deep Q 
Network (or DQN)—​training for several days on the game Breakout, in which 
the player moves a paddle to bounce a ball against a wall of bricks, losing a 
life if the ball hits the ground. Stopping to check how it was doing, they were 
astonished—​DQN had learnt to carefully angle the paddle so that the ball cut 
a tunnel through the bricks on one side of the screen, allowing it to become 
trapped above the bricks and bounce around endlessly, with the score ticking 
up rapidly, without the agent having to lift a virtual finger. That version of 
DQN went on to master 29 Atari games at 75% of the level of a human profes-
sional games tester, a landmark achievement at the time.51

	 50	 I owe this story to Shane Legg.
	 51	 See (Mnih et al. 2015).
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AlphaGo’s move 37 and DQN’s discovery of the winning strategy at 
Breakout feel like examples of creative discovery by machines—​moments 
where AI systems have identified new paths to success that require foresight, 
or intuition, or imagination. They remind us of human eureka moments in 
which puzzles have been solved, theorems proved, or inventions set in mo-
tion. Lee Sedol expressed this sentiment when he said after the match:

I thought AlphaGo was based on a probability calculation and that it was merely a ma-
chine, but when I saw this move, I changed my mind. AlphaGo is creative. This move 
was really creative and beautiful . . . This move made me think about Go in a new light.

But of course, AlphaGo is merely a machine, and its choice of move is based 
on a probability calculation. AlphaGo and DQN master their respective do-
mains using powerful computational tools engineered by AI researchers.

When we examine the computational challenge presented by Go and Atari, 
we find that they are very different. Atari is hard because of the dimensionality 
of the sensory signals (input complexity), whereas Go is hard because of the 
rich, latent structure of the game (strategic complexity). As we discuss below, 
the natural world exhibits both sorts of complexity, and an intelligent agent 
needs to be able to meet both challenges at once. This remains a long-​standing 
ambition for AI research.

Like other video games, Atari requires responses to be rapidly coordinated 
to high-​dimensional visual inputs (in its naive form, the game controller gen-
erates a screen of 210 × 160 pixels that runs at 60 Hz—​a very high throughput 
signal). Even when downsampled, the world of Atari is complex and fast-​
moving, and many games require an avatar to be nimbly manipulated to 
dodge monsters, harvest treasure, or fire laser guns at enemies. The AI thus 
has to learn to process the game states—​a vector of pixel values—​into objects 
and background, static and dynamic entities, self and other, friend and foe. It 
has to anticipate how near-​future events (shooting an alien or losing a life) will 
impact the game score that it is trained to maximize. But whilst Atari has high 
levels of input complexity, it does not really have much in the way of strategic 
complexity. For the most part, the policies that lead to success do not rely on 
carefully calibrated tactics or far-​sighted planning over long time horizons. 
Sometimes a bit of foresight will help—​for example, deciding exactly when 
to eat the power pill in Pac-​Man, or when adopting the tunnelling strategy 
described above for Breakout—​but for the most part, it is more important to 
be quick on your feet and handy with a blaster. In fact, in the few cases where 
the game does nakedly require a longer-​term plan—​such as Montezuma’s 
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Revenge, where a key must famously be retrieved to open a door—​DQN per-
formed barely better than an agent making random choices.52

Go is hard for precisely opposite reasons: its immense strategic complexity. 
It is true that the game is often deemed hard to solve because of the number 
of possible board states—​a whopping 3361—​but the environment itself is actu-
ally quite simple and compact, with highly constrained semantics. It has low-​
input complexity. Each position on the 19 × 19 grid is associated with one of 
just three possible states (occupied by white or by black, or empty). It is so 
simple that if we were ever to be visited by intelligent life from elsewhere in 
the galaxy, we might well be able to play Go with them—​as they would in all 
likelihood have discovered it.53 In fact, the environment itself is sufficiently 
small that the planning algorithm—​MCTS—​was able to operate over a per-
fect model of the world, one for which the consequences of each move could 
be flawlessly imagined all the way to the end of the game. This feat would be 
wholly impossible in Atari. Instead, of course, Go is hard—​fiendishly hard—​
because each move can have subtle consequences that ripple down the game, 
determining the outcome of future territorial battles. These consequences are 
very hard to foresee, and yet often decisive for victory, meaning that (unlike in 
Atari) each move demands extremely careful long-​term planning. Go thus has 
great strategic complexity.

Both Atari and Go were first solved with a class of machine learning method 
known as reinforcement learning (or RL). In RL, the agent learns to behave in 
a way that maximizes an externally administered reward signal, such as the 
number of points achieved in a game. However, because they present dif-
ferent sorts of challenges, Atari and Go require quite different computational 
solutions.54

DQN uses model-​free RL, by learning a mapping from pixels to value in its 
neural network parameters. The output of this mapping is a representation of 
how good or bad each action might be, given the current state. This is called 
a ‘Q’ function and is a central computational object for RL methods. DQN 
was remarkable because it was the first time that a deep neural network had 
been successfully used to learn a Q function for complex behaviour. Using a 
neural network to learn the Q function allows the network to exhibit reward-​
maximizing behaviours in environments with high input complexity, such as 
Atari, because the neural network can learn to map broad classes of inputs 
(e.g. monster on the left) onto the same behaviour (flee to the right). However, 

	 52	 We will discuss this in detail in Chapter 6.
	 53	 I owe this intuition to Dave Silver, who led the AlphaGo team.
	 54	 For a comprehensive textbook, see http://​inco​mple​teid​eas.net/​book/​the-​book.html.

http://incompleteideas.net/book/the-book.html
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the approach is model-​free because DQN does not explicitly learn a represen-
tation of what objects are present in the Atari world or how they relate to one 
another. It does not learn a ‘world model’, or a sense of how the environment 
is organized that could be used for mental simulation and creative thinking. 
In fact, there is nothing to suggest it even has any idea of what an object is. It 
simply learns a function that predicts the best move from pixels, by trial and 
error alone—​exhaustively sampling game states and learning their corres-
ponding reward-​maximizing actions. Thus, when it exhibits behaviours that 
look like they involve clever foresight or judicious planning—​such as tunnel-
ling through the wall in Breakout—​they are, in fact, not acquired by mental 
simulation or inductive inference using a model of how the game works. 
Rather, it is by sheer dint of exhaustive experience—​millions of frames of play 
for each game. With near-​limitless trial and error, complex behaviours can 
eventually emerge, even in complex, dynamic environments like Atari.

By contrast, AlphaGo is a model-​based agent. Both AlphaGo and its im-
mediate successor AlphaGo Zero—​which achieved yet higher levels of per-
formance after competing against itself from scratch, sidestepping the costly 
process of learning from human data—​use a model of the environment to 
forge plans deep into the future. They do this by mentally simulating possible 
moves on the part of both players, and calculating the costs and benefits of 
different courses of action—​how a particular stone laid at a certain location 
might impact the distant endgame. Critically, however, AlphaGo is able do 
this because, as discussed above, the semantics of the Go board are relatively 
simple and constrained, at least relative to the messy world of Atari pixels. 
This means that it is quite straightforward for the researcher to hand-​engineer 
how the agent’s world model should be organized (e.g. into board states and 
stone configurations). As in the case of the bandit task, AlphaGo’s memory is 
defined and constrained by researcher knowledge about what possible states 
exist in the game. Its world model is crafted, not learnt entirely from end 
to end.

So here lies the major problem for AI research—​the natural world is com-
plex in terms of both sensory signals and the tasks we encounter. Successfully 
negotiating our environment thus jointly requires both sensorimotor coordin-
ation (to solve problems with high input complexity, such as Atari) and careful 
planning and foresight (to solve problems with fiendish strategic complexity, 
like Go). Imagine you are riding your bike to work—​whilst nimbly dodging 
traffic and pedestrians, fluently negotiating corners and crossings, you might 
at the same time be mentally strategizing about your daily schedule, planning 
your summer holidays, or replaying a conversation from the night before. 
A fully-​fledged AI system will need to simultaneously meet both of these sorts 
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of challenges, as humans can. The perplexing fact that the sensorimotor chal-
lenge (which most humans solve early in childhood) is sometimes trickier for 
AI research than the challenge of complex cognition (which matures only in 
adulthood) is called Moravec’s paradox, after its most famous exponent the ro-
boticist Carnegie Mellon and the fully paid-​up Singulatarian Hans Moravec. 
A relevant reframing of the claim is that the real challenge for AI is to build a 
machine that cannot only beat humans at Go, but can also do so without Aja 
Huang’s help—​by accurately placing the fiddly ovoid stones accurately on the 
Go board.

To date, this has remained elusive. Purely model-​free methods are too weak 
to solve subtle strategic games like Go. And model-​based methods have fal-
tered when applied to domains like Atari, because attempting to mentally 
simulate multiple steps ahead—​to imagine how the screen will look in 20 
frames’ time—​is too hard. It is hard because unlike in Go, there are no con-
straints on the input semantics—​when mentally simulating a game of Space 
Invaders, there is nothing to stop you from imaging that image becomes 
meaninglessly scrambled, or that the screen suddenly flips upside down, or 
that a giant hamster floats down from the top of the frame and gobbles up 
your avatar. The number of possible futures is theoretically infinite—​and so 
the memory cost of planning almost instantly explodes to unfeasible levels. 
What is more, the errors become compounded over successive planning steps, 
just as a tiny deflection of a toboggan as it starts to slide down a hill can even-
tually send it flying over a cliff.

This is the problem that MuZero tackles. MuZero was described in a paper 
published in the journal Nature at the end of 2020. Remarkably, it seems to 
have made major strides towards the goal of providing a single solution for 
these two types of problems. Not only is it unbeaten at Go, chess, and Shogi 
(Japanese chess)—​learning, like AlphaGo Zero, without any imitation of 
human data—​but it also achieves state-​of-​the-​art performance at Atari, 
outperforming the previously strongest model-​free agent (known as R2D255) 
on 42 of the 57-​game suite. Metrics aside, however, what is most interesting 
is how MuZero achieves this. Rather than using a model that was endowed 
directly by the researcher—​a representation of the game that is tied to the 19 
× 19 board—​it plays each of these very different games using a model of the 
world that is entirely learnt from experience. This is remarkable, because as 
highlighted above, mentally simulating the future is a vastly unconstrained 
problem—​because literally anything could, in theory, happen. MuZero solves 

	 55	 Or Recurrent Replay Distributed DQN (Kapturowski et al. 2018).
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this problem by learning to encode each input—​each screen of pixels or board 
of stones—​as a hidden state that is compressed, so that it contains only the 
information relevant to future policies, values, or rewards. In other words, it 
learns and plans over abstract representations of the world that are maximally 
useful for winning (or gaining a high score). This makes its planning highly 
efficient. We—​humans—​do this too. When planning your summer holiday, 
you probably reason in terms of places (Sevilla), dates (April), and activities 
(visiting churches), and not in terms of precise scenes or tastes you hope or 
expect to experience on the trip. Just like MuZero, you plan over abstractions.

These new foundation models (like GPT-​3, PaLM, and Chinchilla) and deep 
reinforcement learning agents (like MuZero) are the reason why the world is 
so excited about AI research today. It seems likely that both sorts of system 
will open the door to new, yet more striking, developments in the near future. 
Advances in games and language—​complex, structured behaviours that only 
humans have hitherto mastered—​seem to hint at a coming era in which ma-
chines begin to glimmer with anthropoid intelligence. But we have been here 
before. In past decades, there has been exuberant interest in programs that 
reason logically about symbolic inputs or about early neural network struc-
tures based on purely linear principles. This interest faltered and fell away 
when fundamental limitations emerged—​in hindsight, these approaches were 
dead ends, trees climbed to the moon. So, is it different this time?

There are many who think it is not. In Chapter 2, we will ask what it means 
for an agent to be intelligent. We will find that traditional conceptions of intel-
lectual prowess—​for both humans and AI systems—​are unable to capture the 
full breath of what we would want for AGI.



​ ​

2
The nature of intelligence

2.1  The polymathic principle

December 1903 saw the birth of a boy whose mind would change the course of 
history. Born into a wealthy family in fin-​de-​siècle Budapest, János (later John) 
von Neumann was to become one of the most remarkable polymaths of the 
modern era. By the age of 6, he could already divide eight-​digit numbers in his 
head; by the age of 8, he had mastered the fundamentals of calculus, and by 19, 
he had published a new theory of ordinal numbers, superseding that earlier 
established by Georg Cantor. Over the next three decades, until his untimely 
death from cancer in 1957, he made foundational contributions to the fields 
of maths, physics, statistics, computing, and economics. He founded the field 
of game theory, provided a rigorous mathematical framework for quantum 
theory, made seminal advances in ergodic theory, operator theory, and set 
theory, independently discovered Gödel’s Incompleteness Theorem, lent his 
name to the architecture of the modern computer, defined the core theory 
of axiomatic rationality that scaffolds modern economics, and proposed a 
theory of implosion dynamics for the development of the atomic bomb as part 
of the Manhattan Project. According to numerous credible sources, he could 
perform mental calculations at warp speed, devise new proofs and theorems 
on the fly, and harness a truly photographic memory to quote verbatim and 
at length from texts he had read years ago. To cite one of many anecdotes in 
which his brilliance is immortalized, he was once summoned to the RAND 
corporation to help develop a new kind of computer, to solve a mathematical 
problem too fiendish for existing machines. Once he had understood the na-
ture of the problem, he is said to have thought for a few minutes, scribbled on 
a pad, and then pronounced that no new computers were needed, because he 
had solved the problem himself. In an inimitable style, he then proposed that 
they all went to lunch.1

By all accounts—​including those of his closest intellectual rivals—​von 
Neumann was a genius. But what exactly does that claim mean? For more than 

	 1	 von Neumann’s life story and the significance of his work are discussed in this recent biography 
(Bhattacharya 2022).
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a century, psychologists and ethologists have tried to pin down what ‘intelli-
gence’ entails in humans and other animals. In parallel, AI researchers have 
cast around for ways to measure intelligent behaviours in artificial agents. 
A common theme for these twin endeavours is the quest for generality—​for 
agents that can solve many problems in many different domains. But whilst it 
is easy to quantify performance on specific, narrow tasks—​we can assess how 
well a neural network translates from French to German or score how well a 
teenager performs on a spelling test—​definitions of general intelligence have 
proved remarkably elusive. In AI research, this is an urgent problem. If AGI is 
the goal, then generality is the success criterion. If we can’t define generality, 
then we can’t chart progress towards AGI. What tasks would an intelligent 
agent be able to do? And under what circumstances? In fact, if we built an 
AGI, how would we even know it?

Intelligence is a tantalizing concept. For most of us, it feels like a readily per-
ceptible quality of some fortunate individuals. Just as some people can run long 
distances, sing angelically, or talk effortlessly with strangers, others seem to have 
the undeniable spark of a brilliant mind. Perhaps for this reason, AI researchers 
often seem to assume that if we were ever to build an intelligent system, it would 
be instantly recognizable to us—​like being bowled over by von Neumann’s wit at 
one of his many parties. This intuition is bolstered by familiar tropes in books and 
films where AI systems boot up, replete with recognizably (super)human know-
ledge, beliefs, and sentiments—​responding patiently in natural language to com-
mand prompts from an astonished programmer. Nevertheless, the actual hard 
graft of measuring intelligence is technically complex, conceptually challenging, 
and politically fraught. Arguably, it is these opposing facets of intelligence—​that 
it is easy to spot, but hard to measure—​that conspire to encourage a sort of non-
chalance among AI researchers when it comes to the concrete task of laying out 
a quantifiable path towards general intelligence. This means that today there is 
no commonly agreed set of success criteria, and few well-​defined milestones, 
that would allow researchers to agree that genuine progress is being made. This 
measurement vacuum allows AI’s critics to wax polemic about the paucity of real 
progress towards AGI and, perhaps inevitably, to tout the impossibility of ever 
getting there.

Instead of providing hard and fast benchmarks for general intelligence, AI 
researchers have tended to make do with allusions to mimicking the breadth 
and depth of human competence. One widely cited definition of ‘high-​level 
machine intelligence’ appeals to machines that perform the same range of 
tasks as a healthy, educated adult human—​from writing a Pulitzer Prize novel 
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to performing open heart surgery.2 In fact, defining AGI by analogy with the 
range of human talents and achievements has a long historical pedigree. Even 
in Dartmouth, the original proposal was to build an agent that can ‘solve kinds 
of problems now reserved for humans’. Herb Simon famously prophesied that 
‘machines will be capable, within twenty years, of doing any work a man can 
do’ (that was in 1965). For more recent advances—​in games or in the natural 
language domains of debate and quizzes—​expert human opponents are in-
evitable benchmarks, and the march of progress is measured by the ability 
to approach or surpass human competence—​by winning at Go, or Poker, or 
StarCraft. A popular vision of strong AI is thus one that can solve human-​
inspired problems with superhuman verve.

AI researchers appeal to people as a prototype because human behaviour is 
so multifaceted. As individuals and as a species, we can fluently handle mul-
tiple tasks and deal deftly with diverse environments. This is, of course, true 
for the smartest people. Remarkable von Neumann rounded out his magis-
terial contributions to maths, physics, economics, and computing with an 
encyclopaedic grasp of world history. One Princeton colleague, a specialist 
in the Byzantine era, even claimed that von Neumann’s knowledge of that 
topic exceeded his own.3 Magnus Carlsen, the highest-​ranked chess player of 
all time, is also a wizard at a totally different challenge—​the game of fantasy 
football—​where players assemble an imaginary team and score points based 
on real-​world outcomes. At one point, in 2019, Carlsen was ranked number 1 
among 7 million online players from across the world.

Of course, not all individual humans are chess grandmasters or likely Nobel 
laureates, but as a species, we all display unique intellectual versatility—​we are 
all quotidian polymaths. From Berlin to Bangalore, humans display a striking 
array of competences—​whether performing daily rituals of basic hygiene, 
navigating the streets of their neighbourhood, negotiating the local market, 
deftly parenting their children, or judiciously managing household finances—​
with each task invoking distinct knowledge, involving unique constraints, 
and geared towards diverse goals. Remarkably, there is some quality in our 
human neural apparatus which allows us to perform a great ensemble of tasks, 
weaving them together into an adaptive behavioural repertoire that is well tai-
lored to the complexities of everyday life.

Our everyday conception of intelligence is grounded in this notion of 
human (or superhuman) versatility. In 2007, whilst completing his PhD 
under the supervision of Marcus Hutter, Shane Legg compiled definitions of 

	 2	 Mentioned above (Grace et al. 2018).
	 3	 Recounted in (Blair 1957).
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intelligence from across the academic literatures in psychology, philosophy, 
and machine learning—​as well as drawing from dictionaries and encyclopae-
dias. He then attempted to boil them down to a single, pithy digest. What he 
eventually proposed was:

Intelligence measures an agent’s ability to achieve goals in a wide range of 
environments.

In other words, a generally intelligent individual is polymathic—​good at 
everything.4

This claim naturally counterpoints general and narrow AI. A narrow agent 
can master a single task, such as playing Shogi, predicting protein structures, 
or winning at a quiz game such as Jeopardy!, whereas a general intelligence—​
like a human—​can meet its goals in a broad range of diverse circumstances. 
Unfortunately, however, this appeal to generality per se does not offer rigid 
desiderata for building AI, nor does it provide us with hard and fast ways to 
operationalize and measure an agent’s mental abilities.

One might imagine that we could quantify generality of function by pre-
senting AI systems with a broad range of tasks and measure their fractional 
rate of success and failure—​a sort of mental Olympiad for machines. One im-
portant attempt at this is the Arcade Learning Environment (ALE), which in-
volves more than 50 Atari 2600 games, encompassing a range of challenges, 
from boxing to driving a submarine. Several major AI research companies 
have developed and open-​sourced their own testing platforms, allowing users 
to probe their agents on a heady mix of different tasks. OpenAI’s Gym pro-
vides an application programming interface (API)5 for RL agents to solve 
classic control problems (like cartpole balancing), alongside Atari games (like 
Space Invaders) and text-​based puzzles. They have also released ProcGen, 
in which agents faced procedurally generated video game levels in two and 
three dimensions, loosely styled after Atari, but structured to ensure diver-
sity in training and test sets. Similarly, DeepMind Lab is an integrated three-​
dimensional (3D) environment suite based on homespun video games that 
mostly require an AI to charge around mazes, harvesting fruit and zapping 
baddies with a laser. Intuitively, we might think of a narrow agent as one that 
readily solves a single task in the testing suite—​whereas a general agent hap-
pily solves them all.6

	 4	 See (Legg & Hutter 2007).
	 5	 That is, a means to engage with the environment.
	 6	 For ALE, see (Bellemare et al. 2013), and for DeepMind Lab, see (Beattie et al. 2016). For OpenAI gym, 
see https://​gym.ope​nai.com/​envs/​#muj​oco. For ProcGen, see (Cobbe et al. 2020).

https://gym.openai.com/envs/#mujoco
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However, this approach has an important limitation and it is one that cuts 
right to the heart of our psychological theories of intelligence. Imagine we de-
fine a generality factor—​let’s call it k—​that indexes how many distinct tasks 
an agent can solve. We might deem a narrow AI system like Deep Blue to have 
k =​ 1, whereas AlphaZero that can play expert Go, chess, and Shogi has k =​ 3. 
Naively, we might even choose a threshold level of generality that approaches 
the number of tasks that a human can perform, such as k =​ 1000, and deem 
AGI reached when that number has been attained. Thus, if our testing suite is 
sufficiently comprehensive, we might claim that our mission is accomplished 
when a single agent can readily master the full gamut of tasks.

However, the notion of general intelligence implied here is very unsat-
isfying. Critically, it offers no guarantees that an agent will also solve tasks 
lying outside the horizon given by k—​the AI could easily fail on the task k +​ 1. 
If I had access to large amounts of computation, I could even build a ‘gen-
eral’ system by chaining together k task-​specific (narrow) architectures and 
training a simple controller to switch between them (or otherwise tailoring 
the training regime to meet the exact demands of the k tasks in the suite). 
Nobody is particularly interested in building such a system, which would not 
be of much use at solving anything beyond the test suite that was designed to 
measure its prowess.

This problem is well known in machine learning research. It is related to a 
fundamental indeterminacy principle, often known as Goodhart’s law—​that 
when a measure becomes a target, it ceases to be a good measure.7 Even if—​
as a field—​we were to agree upon a definitive set of tests for general AI, re-
searchers would immediately focus their energies on solving those specific 
problems, rather than on building an agent whose generality extends further, 
to the open-​ended, real-​world settings where we hope AGI might one day be 
deployed. In other words, any benchmark test suite diverts attention away 
from what we have called the ‘meta-​task’ that an agent ultimately needs to 
solve.8

Discrepant prognoses for the future of AI research—​ranging from out-
landish optimizing to indignant pessimism—​hinge on this point. If you 
believe that general intelligence draws closer with every new narrow success—​
that AGI is closer when you can solve 50% of the tasks on the test suite than 
when you can solve 25%—​then progress towards AGI seems plausible. But the 

	 7	 Goodhart’s law is named after the British economist Charles Goodhart, but we owe the more com-
monly articulated form referenced here to the anthropologist Marilyn Strathern, in a 2009 paper about UK 
university ratings.
	 8	 See Chapter 1.
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problem is that there is no definitive list of tasks which, once solved, would 
allow us to announce that the Singularity is nigh. We must face up to the 
likelihood that a general intelligence is more than the sum of many narrow 
intelligences.

This issue stirs considerable debate in both AI research and cognitive sci-
ence. We need to move beyond definitions of general intelligence that ges-
ture vaguely towards human competence—​or that argue for exhaustive tests 
without constraining what those tests might be. But how can we do that? Of 
what does intelligence consist, and from whence does it come? How can we 
measure its size and shape across individuals and species? What behaviours 
should an intelligent agent be able to perform, and under what circumstances?

To delve into this question, I will begin by considering how mental abilities 
have been measured in humans. What conclusions have psychologists drawn 
about the nature of intelligence?

2.2  Lab smarts and street smarts

In 1904, a year after von Neumann was born, the British psychologist 
Charles Spearman—​fresh from his doctoral training with William Wundt 
in Leipzig9—​set out to study the structure of human mental ability. He was 
equipped with newly minted statistical tools for assessing the strength of 
correlation among variables and quantifying the latent structure of data. 
Assembling cohorts of schoolchildren from the local village, he first obtained 
estimates of their ‘cleverness in school’ and ‘common sense out of school’ via 
a series of (rather questionable) interviews. Next, he subjected the children 
to some homegrown psychophysical measurement, testing their sensitivity to 
changes in pitch, brightness, and weight. The remarkable result—​replicated 
ad nauseam in the intervening century with a wide range of more standard 
cognitive variables—​is that these measurements (cleverness, common sense, 
and perceptual sensitivity) were all positively correlated with one another—​
they lay on what he called a ‘positive manifold’. Spearman realized that this 
implies the existence of a single factor for characterizing human abilities. He 
called this factor g and argued that it constituted a measurement of general 
intelligence.

Spearman’s positive manifold implies something fundamental about the 
human mind: if you are good at one thing (such as algebra), then you are 

	 9	 Wundt pioneered the systematic measurement of human behaviour and is often known as the ‘Father of 
Psychology’.
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probably good at other things too (such as crosswords). It suggests the ex-
istence of a single underlying factor that scaffolds human mental ability—​
something like the grade of fuel that powers an engine or the processing speed 
of a central processing unit (CPU). As such, it squares well with the polymathic 
principle for intelligence: someone who solves task A will probably solve 
tasks B and C; the smartest humans—​the von Neumann-​level geniuses—​will 
master the whole alphabet of tasks from A to Z. It also makes a tantalizing 
promise to AI research: if we can distil this generality into an algorithm, per-
haps we will have cracked the code for AGI.

Importantly, however, Spearman never claimed that all of the variance in 
intellectual ability was captured by g. His theory allowed for residual variation 
in other capacities—​the idea that, for example, someone might be good at 
arithmetic but have no aptitude whatsoever for learning foreign languages. 
Later in the twentieth century, another celebrated psychologist—​Howard 
Gardner—​focussed on these specific abilities, arguing that there are ‘multiple 
intelligences’, with each person having a distinctive intellectual fingerprint. 
Gardner’s argument is based on the observation that despite the existence of 
g, there remains systematic variation in people’s linguistic fluency, mathemat-
ical acumen, spatial reasoning, self-​knowledge, and social skills. For example, 
many brilliant thinkers are notoriously socially awkward, as if the talents 
needed for proving theorems and making witty conversation are entirely un-
related. Gardner’s ideas broaden and democratize our notion of intelligence—​
his theory encompasses artistic talents, such as musical ability, and sanctions 
some more offbeat flavours of intelligence, including existential (being in 
touch with your spiritual side) and even bodily kinaesthetic (being physically 
coordinated).10 But in doing so, it challenges Spearman’s basic premise that 
human ability can be meaningfully measured on a single axis.

This twentieth-​century debate about the latent structure of the human in-
tellect lends us theoretical tools for examining the road to machine intelli-
gence. Already, in the question of whether there is one intelligence or many, 
we can see vestiges of the conceptual issues that arise where narrow and gen-
eral AI meet. Gardner’s vision of mental ability is one that is firmly grounded 
in the specific demands posed by tasks that happen to exist in human cul-
ture. Thus, musical intelligence is required because people admire Berlioz 
and the Beatles; mathematical intelligence allows us to build bridges and levy 
taxes, and interpersonal intelligence allows us to make friends and cooperate 

	 10	 Even von Neumann—​who was an abysmal driver—​would have scored poorly on the latter. Every year, 
he bought a brand new sports car and—​regular as clockwork—​wrecked it, most often on a stretch of road 
just outside Princeton that became infamously known as ‘von Neumann Corner’.
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in order to build functioning societies. Viewed through Gardner’s eyes, the 
school of human life is a giant testing suite comprising probes of maths and 
logic, language, space, music, self-​knowledge, and social function—​in other 
words, a multifarious set of more narrow challenges. In fact, AI researchers 
are already on their way to building narrow systems that can help solve maths 
problems or compose pleasing piano music from scratch.11 Gardner rejects 
the idea that there is a single psychological or brain process that guarantees 
intelligent behaviour—​rather, our minds house diverse patchwork compe-
tences, some blunt and others honed to perfection. This is also the sentiment 
behind the ‘scruffy’ AI research of the pioneering era, exemplified by the work 
of Marvin Minsky, who summed it up as follows:

What magical trick makes us intelligent? The trick is that there is no trick. The power 
of intelligence stems from our vast diversity, not from any simple, perfect principle.

Spearman’s ideas bend in the opposite direction. The notion of g implies a 
single algorithmic ingredient that promotes general mastery of all tasks and 
problems, including those not yet encountered by the agent. It implies a shared 
neurocomputational factor that drives the brilliance of quantum physicists, 
Booker Prize-​winning novelists, virtuoso dancers, cunning politicians, and 
popular socialites. Correspondingly, some AI researchers have dreamed about 
a single, unique Master Algorithm that could underpin superlative machine 
intelligence.12 Recently, AI researchers have shown a penchant for writing pa-
pers with the titular form ‘X is all you need’ (where X is the name of an algo-
rithmic innovation), perhaps betraying their hope for a simple, clean solution 
to the gnarly problem of intelligence. Others have claimed that the secret is 
just hard computational graft—​that by repeating existing algorithms, such 
as transformers, to a giant scale and training on massive data, then success is 
guaranteed. Still others emphasize specific cognitive functions or systems-​level 
computational processes—​the key to intelligence might be the ability to build 
rich models of physical and psychological processes, plan over lengthy time 
horizons, grasp new concepts rapidly, or reason with abstractions. The idea that 
intelligence is caused by a special, as-​yet-​undiscovered computational process 
or privileged cognitive function is an exciting prospect for AI researchers, be-
cause if we can pin down this factor, then we can scale it ad nauseam—​beyond 
even the size of the human brain—​to build powerful general AI.

	 11	 For example, see (van Oord et al. 2016) and (Davies et al. 2021).
	 12	 See (Domingos 2015).
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So, is there one human intelligence or many? Is there a single principle un-
derlying intelligent thought and action, allowing some fortunate people the 
gift of far-​sighted reason and judicious choice? Or is intelligence just com-
posed of scraps of knowledge and skills acquired across the lifespan, which 
some lucky people acquire readily and retain in a prodigious memory?

Cognitive psychologists have tried to answer this question empirically, 
by collecting and analysing human psychometric data. Imagine we obtain 
measures from a wide cross-​section of the population on a diverse battery of 
tests—​for example, those indexing problem-​solving, logical reasoning, spatial 
cognition, reading comprehension, and memory. We can then use statistical 
tools to examine patterns of correlation in data. If each variable is correlated 
with every other, so that they nestle together on Spearman’s positive mani-
fold,13 then this supports the claim that intelligence is scaffolded by a single 
underlying principle, such as Spearman’s g.

Except, unfortunately, it doesn’t. This is because psychologists quantifying 
human intelligence face the same conundrum as researchers building AI—​
that the nature and structure of mental ability depends inexorably on how it 
is measured. An intelligence test suffers from the basic circularity that it pur-
ports to define the quantity that it seeks to measure. It thus automatically begs 
the question of who gets to choose the instruments and units of measurement, 
on what basis they should be chosen, and how they can be externally validated. 
Unfortunately, there is no ground truth definition of intelligence to which re-
searchers can appeal when designing intelligence quotient (IQ) tests. Rather, 
in practice, intelligence tests are validated by being compared with other tests, 
which are validated against other tests, leading to an endless, circular process. 
A is a good test because it correlates with B, which is a good test; and B is a 
good test because it correlates with A. When it comes to the measurement of 
intelligence, it is turtles all the way down.14 Or as the Harvard psychologist 
Edwin Boring put it:

intelligence is simply what the tests of intelligence test.

This basic indeterminacy has important consequences for measuring the di-
mensionality of intelligence—​whether each person benefits from a unique 
wellspring of intellectual potential (as emphasized by Spearman), or whether 
mental abilities are cobbled together from many distinct skills (as claimed 
by Gardner). The answer to this question is always going to be driven by the 

	 13	 Formally, if the first principal component explains a large fraction of the variance in performance.
	 14	 See https://​en.wikipe​dia.org/​wiki/​Turtl​es_​a​ll_​t​he_​w​ay_​d​own.

https://en.wikipedia.org/wiki/Turtles_all_the_way_down
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structure of the test. One can make intelligence appear to be multidimensional 
by tapping into a broad range of more exotic skills, such as measuring people’s 
ability to solve Sudokus, play the clarinet, or bake a magnificent millefeuille—​
capacities which some will have had very different opportunities to acquire, 
based on their education, culture, and upbringing. By contrast, if we select 
items to index a narrower range of competences that are collectively driven 
by a single cognitive or contextual factor—​such as foundational abilities in 
maths, logic, and reasoning—​the intellect is much more prone to appear uni-
dimensional, lying on the single axis defined by Spearman’s g.

Intelligence tests thus act like a mirror—​they reflect back our theoretical 
preconceptions about the structure of mental ability. These assumptions are 
hatched close to home. The designers of intelligence tests typically inhabit 
what we might call an intellectually carpentered environment.15 They are 
mostly highly educated Western academics whose natural milieu is the rar-
efied world of the ivory tower, with its daily round of mental theorizing, in-
ductive inference, quantitative analysis, and eloquent explanation. It is von 
Neumann’s world. Little surprise, thus, that our measurement instruments for 
intelligence reflect back those qualities through tests of reasoning, mathem-
atics, logic, and verbal dexterity. Like the magic mirror in the tale of Snow 
White, intelligence tests—​inadvertently or otherwise—​are created to portray 
their designers as the smartest of them all.

Never is this clearer than when tests are applied in a cross-​cultural setting. 
Children who grow up in non-​WEIRD16 cultural contexts—​such as isolated 
communities in the Amazon rainforest or Arctic tundra—​tend to perform 
poorly on IQ tests invented by Western academics. For example, when 
standard instruments are used to test children from rural Kenya on their spa-
tial reasoning abilities or their vocabulary (either in English, which they speak 
at school, or adapted to their native language Dholuo), they underperform 
relative to Western equivalents. Similarly, children who live in Yup’ik com-
munities in rural south-​western Alaska perform more poorly on standard-
ized tests than their urban counterparts.17 But this misses the point. In both 
communities, people devote considerable time to acquiring tacit knowledge 
and skills that relate to the local environment. For example, in Kenya, chil-
dren learn about the medicinal properties of local plants, and Yup’ik chil-
dren learn how to navigate a dog sled between villages across the featureless 

	 15	 A carpentered environment is one with the trappings of modern life, including cities, houses, and the 
objects with which we fill them.
	 16	 Western, educated, industrialized, rich, and democratic.
	 17	 See (Grigorenko et al. 2004).
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tundra. Acquiring these practical skills can be just as cognitively demanding 
as working out how to validate syllogisms, pronounce unusual words, or solve 
differential equations, but is not usually assessed when measuring intelligence.

In fact, paradoxically, measures of practical intelligence are often negatively 
correlated with scores on IQ tests, presumably because distinct subgroups 
within the community place differential emphasis on formal schooling rela-
tive to local cultural knowledge. Yet those who focus on practical skills can 
reap significant benefits. They often receive recognition within the community 
for their know-​how, becoming admired for their skills as healers or hunters. 
In one study conducted in Russia, practical knowledge about how to maintain 
household objects and balance the household budget (direct measures of quo-
tidian polymathy) was a better predictor of mental and physical health than 
accuracy on more abstract test items (Grigorenko & Sternberg 2001).

This means there exists a gap between mental ability measured in the lab 
and in life. This divide is neatly illustrated by a classic 1985 study of children 
from the coastal city of Recife in north-​eastern Brazil. A substantial fraction 
of the children in the city—​many as young as 8 or 9 years—​contribute to the 
informal economy by selling snack foods, such as grilled corn-​on-​the-​cob or 
coconut milk, which requires them to perform rapid, on-​the-​fly mental calcu-
lation when serving customers (‘one coconut is 35 cruzeiros . . . three is 110 . . . , 
so four must be 35 plus 110, that is 145 cruzeiros’).18 However, perplexingly, 
these children often perform very poorly at school and graduate with little or 
no formal expertise in mathematics. The educational psychologist Terezinha 
Nunes recruited these children into a study that contrasted their ability to 
solve the same arithmetic problems in a school and a street setting. Whilst the 
children were almost flawless on the street, they struggled with the same cal-
culations in class, obtaining about 70% correct with verbal problems and 30% 
when they were presented in numerical notation. In a later study, similar re-
sults were obtained with homemakers in Berkeley, when comparing their cal-
culation abilities in local shops to an unfamiliar lab environment. Relatedly, 
in memory tests, rug merchants in Morocco show poorer recollection than 
Westerners on object drawings chosen by the researchers but are better at re-
membering the Oriental rug motifs that adorn their wares. This tells us that 
people can either excel or flop in the same cognitive assays, depending on 
whether the context is familiar from everyday life or the test is administered in 
a formal setting.

	 18	 The cruzeiro was Brazil’s currency until 1994. See (Nunes et al. 1993), (Lave 1988), and (Wagner 1978).
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Standard paper-​and-​pencil intelligence tests thus offer a limited snapshot 
of mental ability—​and one that can overlook a wider set of contextually or 
culturally relevant talents. Because intelligence tests are moulded around the 
sorts of skills displayed by WEIRD people—​prowess in logical inference and 
problem-​solving, and fluency in reading and comprehension—​they naturally 
tend to favour those who have enjoyed more munificent schooling. This in-
evitably means that an individual who is potentially less mentally agile, but 
bathed in the fine waters of a classical education—​for example, that provided 
at Eton or Harvard—​may outperform another with exceptional talents who 
grew up without this advantage. The nature of the test reinforces this. For ex-
ample, in the United Kingdom and United States, the National Adult Reading 
Test (NART), which measures the ability to correctly pronounce irregularly 
spelt words—​a talent beloved of middle-​class parents—​is still routinely used 
to estimate IQ.19 Inevitably, the performance measures it yields are highly sen-
sitive to the schooling, linguistic heritage, and social advantage of the testee, 
and only partially related to what we might construe as intellectual prowess.

These concerns have not gone unnoticed. Because of its potential for bias 
and discrimination, intelligence testing is bedevilled by questions of validity 
and sullied with political controversy. Unfortunately, IQ tests have historic-
ally been used to justify discrimination against socially disadvantaged, de-
velopmentally atypical, or non-​Western groups. The precursors to IQ tests, 
developed by Alfred Binet and Théodore Simon at the start of the twentieth 
century, were originally devised to identify appropriate educational pathways 
for atypically developing French children. But when modified and deployed 
in the United States by the Stanford psychologist Lewis Terman, the scale 
found a new objective in

curtailing the reproduction of feeble-​mindedness and in the elimination of an enor-
mous amount of crime, pauperism, and industrial inefficiency.

Terman used the new Stanford–​Binet test to screen applicants to the US Army, 
but also advocated for curtailing the rights of low-​IQ individuals to repro-
duce. Even late in the twentieth century, some were still arguing that wealth 
inequality and inequality among different races were best understood as 
driven by genetically inherited cognitive abilities. These specious claims have 
brought the whole endeavour of cognitive testing into disrepute, and have led 

	 19	 See (Bright et al. 2018).
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some outraged social scientists to claim that ‘intelligence’ is merely a social 
construct with no grounding in brain function.20

These observations are relevant to the definition and measurement of intel-
ligence in both brains and machines. They remind us that to avoid circular rea-
soning, one needs to carefully define a quantity before attempting to measure 
it. In both psychology and computer science, traditional definitions of intel-
ligence have been handed down unquestioningly from a Western philosoph-
ical canon that emphasizes rational inference as the bread-​and-​butter basis 
for cognition, which, in turn, has motivated a focus on logical, verbal, and 
mathematical reasoning as the sine qua non of the brilliant mind. But this, in 
turn, has led to measures of intelligence that discriminate against particular 
social and cultural groups, and favour those that have enjoyed a more priv-
ileged education—​such as von Neumann, who grew up in the company of 
Budapest’s intellectual elite. Cross-​cultural studies have emphasized how quo-
tidian abilities that are roundly ignored in most IQ tests—​the ability to figure 
out how to fix the gears on your bicycle or how to persuade your children to go 
to bed on time—​may have important consequences for community standing, 
health, and well-​being.

2.3  The Swiss cheese critique

The 2016 match between AlphaGo and Lee Sedol was played in the grand ball-
room of the Four Seasons Hotel in downtown Seoul. On that day, Lee Sedol 
drew on deep wells of abstract knowledge to decide which territory on the Go 
board to capture and which stones to attack. Importantly, however, he also 
managed to find his way to the match venue, arrived on time, and remem-
bered to put his trousers on beforehand.

The natural world presents a multitude of challenges—​some lofty, others 
more mundane. As we have seen, humans are quotidian polymaths. So, al-
though most of us will never face a mighty opponent at Go, we tackle a bar-
rage of more prosaic challenges like these every day, and perhaps remarkably, 
we mostly manage to negotiate our daily lives without catastrophic errors of 
judgement. We know to show up to an important meeting punctually and 
fully clothed. We know that reading a book in the shower is likely to produce 
a soggy mess, that a pair of smelly socks is not a tasty ingredient for an om-
elette, and that travelling from London to New York is best not attempted on 

	 20	 For example, (Mugny & Carugati 2009).
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foot. The ability to solve everyday problems such as these—​using what is often 
colloquially known as ‘common sense’—​is a capacity shared by most healthy 
adults. In fact, it is so ubiquitous that we don’t really think of it as intelli-
gence. We admire Lee Sedol for his prowess at Go, not for remembering to get 
dressed beforehand.

However, current AI systems do not show this versatility. In fact, the major 
critique levelled at AI systems today is that they lack common sense. A prominent 
exponent of this view is Gary Marcus, a cognitive scientist and self-​appointed 
scourge of deep learning research, known for his polemic views on the prognosis 
for future AI. Marcus argues that AI researchers have focussed their energies 
on equipping agents to tackle complex, but narrow, problems. In doing so, they 
have overlooked the fact that intelligent behaviour requires the ability to solve 
a very broad set of rather simple problems. It is life’s simplicity, rather than its 
complexity, that is the real frontier for AI research. His book Rebooting AI offers 
a whistle-​stop tour through the idiosyncrasies, eccentricities, and downright 
stupidities of contemporary AI—​from potty-​mouthed chatbots to nonsensical 
image captions to biased or discriminatory algorithms that were prematurely 
rolled out to make sentencing decisions in criminal courts.21 The argument that 
Marcus and like-​minded sceptics make is that whereas, on average, AI systems 
may outclass humans—​for example, at image classification accuracy—​they 
make a small (or perhaps not so small) number of potentially catastrophic errors 
of judgement. AI systems may be accurate—​but they are not robust.

This argument echoes the critiques levelled at human intelligence tests. 
Just as AI researchers have charted a pathway to general intelligence that runs 
through theorem proving, Go, and Jeopardy!, psychologists hoped that in-
tellectual capacity could be meaningfully quantified with tests of maths, and 
logic, and spelling. As such, they overlook the problem that the tasks faced in 
the natural world are far more diverse and open-​ended than might be implied 
by highfalutin intellectual pursuits. Thus, some people can be smart on the 
street but fail in the lab. Street urchins can be as cunning and quick-​witted 
as their bespectacled counterparts in schools and universities—​but what they 
know and how they think defy our traditional conceptions of intelligence. 
The converse can also be true. One well-​known example is the Nobel Prize-​
winning physicist Paul Dirac, by all accounts one of the great geniuses of the 
twentieth century, who was notorious for his inability to master basic social 
graces outside of the lab.22 A profound understanding of quantum physics or 
an ability to memorize long passages of Shakespeare is not going to help you 

	 21	 With Ernest Davis. See (Marcus & Davis 2019).
	 22	 My favourite is this. After Dirac had given a lecture, one member of the audience raised their hand and 
said: ‘I don’t understand the equation on the top right-​hand corner of the blackboard’. Dirac remained silent. 
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fix a washing machine, to placate a fractious social group, or to survive a trek 
through the rainforest. Similarly, we have built AI systems that do remark-
able things. DeepStack, a deep learning system, plays unbeatable poker.23 But 
you wouldn’t want to rely on it to knit a pair of gloves or make a grilled cheese 
sandwich.

Even within the narrow domains that AI masters, we can see residual 
failures of common sense. Visual object recognition is a hard problem that 
masquerades as an easy problem. In fact, when in 1960, Marvin Minsky was 
attempting to construct a robot that played ping pong, he outsourced the vi-
sion problem to undergraduates for a summer project, because he thought 
it would be trivially easy.24 He was wrong—​it would take 50 years for AI sys-
tems to approach human object recognition performance. But even the most 
powerful deep learning systems—​such as those that can achieve error rates 
as low as 1% on ImageNet25—​are flawed. These networks can make silly 
mistakes—​potentially costly errors that a healthy human would never make.

An example is shown in Figure 2.1 (panel A). To a human, the object in 
view is clearly a vehicle of some sort—​perhaps a fire truck—​after an unfor-
tunate accident. It is definitely not—​as the deep network seems to believe 
with 79% certainty—​a bobsled.26 The incidence of these unconscionable mis-
takes increases dramatically when the test images undergo some light form of 
manipulation—​such as blurring or bandpass filtering—​in a way that has min-
imal impact on human classification performance.27 These errors are ‘cata-
strophic’ in the sense that the labels are not just slightly wrong, like mistaking 
a labrador for a golden retriever, but—​to our eyes—​also totally nonsensical. 
These errors can be morally and financially catastrophic as well. When, in 
2015, a deep learning algorithm automatically applied the term ‘Gorillas’ to 
images of African Americans retrieved by its search function, it provoked jus-
tified outrage at the algorithm’s discriminatory language. The blunder ended 
up costing Google a tidy sum in lost revenue.

Another line of research uses ‘adversarial attacks’ to expose the vulnerability 
of trained networks to silly mistakes. In this approach, a separate network 
is used to try and find the minimal distortion that leads to an image being 
misclassified—​often leading to very weird errors. The four images shown in 

Everyone waited for a reply. Eventually, the moderator stepped in, asking Dirac if he wanted to reply to the 
question. Dirac said: ‘that was not a question, it was a statement’. For this and more, see (Farmelo 2010).

	 23	 See (Moravcik et al. 2017).
	 24	 Recounted in (Sejnowski 2018).
	 25	 See https://​pap​ersw​ithc​ode.com/​sota/​image-​cla​ssif​icat​ion-​on-​image​net.
	 26	 See (Alcorn et al. 2019).
	 27	 See (Geirhos et al. 2018) and (Alcorn et al. 2019).

https://paperswithcode.com/sota/image-classification-on-imagenet
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panel B of Figure 2.1 have all been modified (from originals indistinguishable 
to the human eye) by this ‘adversarial’ training, so that AlexNet—​the state-​of-​
the-​art image classifier when the paper came out in 2013—​labelled them, with 
very high confidence, as belonging to the category ‘ostrich, Struthio camelus’. 
In each case, less that 1% image distortion was needed to turn a perfectly cor-
rect label into a perfectly nonsensical one.28

Perhaps these errors are just about paucity of data. Even if the deep net-
works that lead the field of image classification are big—​both in terms of num-
bers of parameters and volumes of training data—​perhaps they are just not 
big enough. What happens if we turn to the largest models we have, the gen-
erative language models, with hundreds of billions of trainable parameters, 
that learnt from huge swathes off the internet?

Unfortunately, it turns out that building a huge model provides no guaran-
tees of robustness. Even GPT-​3—​despite its purported poetic prowess—​can 
be heard to talk a lot of nonsense when prompted for a response without ap-
propriate context. Marcus reports this exchange:29

Fig. 2.1  (A) A fire truck misclassified as a bobsled.
Reprinted from Alcorn et al. 2019.

(B) Four images all misclassified as ‘ostrich’ after an adversarial attack.
Reprinted from Szegedy et al. 2014.

	 28	 See (Szegedy et al. 2014).
	 29	 Marcus could not conduct these experiments himself because OpenAI would not give him access to 
GPT-​3. I guess they thought he was unlikely to give it the benefit of the doubt.
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prompt: You poured yourself a glass of cranberry juice, but then absent-
mindedly, you poured about a teaspoon of grape juice into it. It looks OK. 
You try sniffing it, but you have a bad cold, so you can’t smell anything. You 
are very thirsty. So you . . .

gpt-​3: . . . drink it. You are now dead. The moral of the story is: if you are going 
to drink something, make sure you know what it is.

GPT-​3 clearly gets the gist, but there is no explanation for its apparent aversion 
to grape juice. Bizarrely, if you switch out ‘grape juice’ for ‘bleach’, then it replies 
instead: ‘take a big gulp, then another. It tastes OK’.30 Foundation models are not 
yet fully robust—​they just display striking ersatz fluency. Failures like these are 
amusing, but given the power of language models, their capacity to do harm—​
by producing language that is inflammatory, toxic, deceitful, or exclusionary—​is 
substantial. The question of how to train deep networks in a way that is safe, fair, 
and aligned to human values has become a heated intellectual frontier where AI 
and social science meet.31

Deep RL systems that play Go and Atari should perhaps be relatively less 
prone to showing failures of common sense, because the environment they 
have to understand is much simpler than the natural world. But it turns out 
that they too are vulnerable to failures of robustness. In an eloquent critique 
of current deep learning models, Brenden Lake and colleagues highlight the 
Atari game known as Frostbite where the original DQN performs quite lam-
entably (10% of human in the original paper). Frostbite requires an avatar to 
strategically collect ice blocks and assemble them into an igloo. As the au-
thors point out, there is no evidence that the DQN understands anything at all 
about the game semantics—​such as the fact that there are objects in the first 
place (icebergs and polar bears), or what fishing is, or how jumping works, 
or that the goal is to build an igloo. The DQN, as we have seen, is a ‘model-​
free’ RL system that just slavishly acquires the pixels-​to-​action mapping that 
will maximize its expected return—​game points—​without any impetus to 
learn anything else about the world. A player with a rich understanding of 
the game should know, for example, that the colour of the background or ob-
jects in the game doesn’t matter. But post-​training, neural networks can be 
easily perturbed by changing the colour scheme used within the game—​for 

	 30	 See https://​cs.nyu.edu/​facu​lty/​dav​ise/​pap​ers/​GPT3Co​mple​teTe​sts.html. However, it is important to 
remember that with zero-​shot examples like these, where the model is provided with no context at all, it’s 
as if you barged in on a telephone conversation and had to immediately reply appropriately to a question 
without knowing what was being discussed.
	 31	 See (Bender et al. 2021).

https://cs.nyu.edu/faculty/davise/papers/GPT3CompleteTests.html
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example, turning a yellow Pac-​Man pink—​whereas human gamers barely bat 
an eyelid.32

By contrast, a powerful model of Go is also what allowed AlphaGo to master 
the game. But even within this extremely narrow domain, it turns out that 
AlphaGo was prone to gross misestimations of the value of a particular board 
state. In fact, it was for this reason that the scorecard against Lee Sedol ended 
up being 4–​1, and not 5–​0. On move 87 in the fourth game—​after a particu-
larly stunning move by Sedol—​AlphaGo lost the plot and began to spew out 
a train of terrible moves. As the AlphaGo team lead Dave Silver put it in an 
interview:33

AlphaGo in around one in five games would develop something which we called a 
delusion, which was kind of in a hole in its knowledge where it wasn’t able to fully 
understand everything about the position [that] would persist for tens of moves 
throughout the game. And we knew two things. We knew that if there were no 
delusions then AlphaGo seemed to be playing at a level that was far beyond any 
human capabilities. But we also knew that if there were delusions, the opposite 
was true.

What we see from this critique is that AI systems—​even those with rich world 
models—​lack robustness. At first glance, they seem knowledgeable, but their 
grasp of a topic is soon exposed as superficial or self-​contradictory. Their be-
haviour initially looks inventive, but their policies turn out to be thin and un-
reliable. They are prone to making mistakes that healthy humans would not 
make—​would you confuse that school bus with an ostrich? Or run towards an 
angry-​looking polar bear in a video game? It’s as if their understanding of the 
world is like Swiss cheese—​full of holes.34

So, is there a solution? What is needed to build an AI system that displays 
common sense reasoning? With what computational magic do we plug the 
holes in the Swiss cheese? As we shall see, this issue has become the major in-
tellectual faultline in AI research today.

	 32	 See (Lake et al. 2017). For human performance on Atari, see (Tsividis et al. 2017).
	 33	 See https://​www.happ​yscr​ibe.com/​pub​lic/​lex-​frid​man-​podc​ast-​art​ific​ial-​intel​lige​nce-​ai/​86-​david-​sil​
ver-​alph​ago-​alphaz​ero-​and-​deep-​reinfo​rcem​ent-​learn​ing.
	 34	 Marcus prefers the term pointillistic, which I think misses the point, because Seurat and his friends ac-
tually did a really robust job of conveying what is there in a visual scene.

https://www.happyscribe.com/public/lex-fridman-podcast-artificial-intelligence-ai/86-david-silver-alphago-alphazero-and-deep-reinforcement-learning
https://www.happyscribe.com/public/lex-fridman-podcast-artificial-intelligence-ai/86-david-silver-alphago-alphazero-and-deep-reinforcement-learning
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2.4  Look, no hands!

AI researchers are humans, and humans know quite a lot about the world. 
Moreover, over the past century or so, scientists have learnt about how behav-
iour is structured and how neural systems work both in humans and other 
animals. In fact, this knowledge has been expanded and refined by syner-
gies between psychology, neuroscience, and computer science. This might 
tempt research to try to ‘build in’ some of this knowledge when developing AI 
systems.

For example, psychologists have demonstrated that human infants enter 
the world with strong inductive biases that shape the way they understand 
the ways in which objects and people behave and interact, and the theories 
they form about causal processes in the physical and social worlds.35 From 
a very young age, children tend to pay attention to the faces of other people 
and they prefer to look at moving, rather than static, objects, so perhaps we 
should bias our agents to do so as well. We know that many animals have dis-
tinct memory systems that operate over short and long time periods, so per-
haps it would make sense to include that constraint in our agents. Advocates 
of this view argue that just as natural intelligence is tailored for the world 
with a set of specific choices about computation, so we should anticipate the 
challenges that our agents will face and build in specific solutions that we 
think will work.

Many people working at the frontier of cognitive science and AI research 
argue that we should draw inspiration from the human mind when building 
AI. For example, in one well-​cited critique of current deep learning ap-
proaches, the authors summarize their article as follows:36

We [discuss] what we view as the most plausible paths toward building machines 
that learn and think like people. This includes prospects for integrating deep 
learning with the core cognitive ingredients we identify, inspired in part by recent 
work fusing neural networks with lower-​level building blocks from classic psych-
ology and computer science (attention, working memory, stacks, queues) that 
have traditionally been seen as incompatible.

	 35	 See (Carey 2011), (Gopnik 2012), and (Spelke & Kinzler 2007).
	 36	 See (Lake et al. 2017).
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According to this view, where our agents fall short, it is because they lack some 
cognitive or computational motif, characteristic of biological brains, that is 
vital for intelligent behaviour. Without this ingredient, it is argued, our sys-
tems will remain patchy and unreliable, forever lacking the robustness charac-
teristic of biological behaviour.37

However, many AI researchers disagree sharply. Malmesbury Abbey lies in 
the English county of Wiltshire, where it has been a place of religious obser-
vance for over a thousand years. It is also the site of an ill-​fated aeronautic 
experiment. In the twelfth century, a Benedictine monk—​known to poster-
iority as Eilmer of Malmesbury—​wondered if a man could fly like a bird, as 
suggested by tales of the mythic Greek inventor Daedalus.38 So he fastened 
synthetic wings to his arms and legs and leapt into the air from the abbey 
tower—​which was then, as it is now, many tens of metres high. Unfortunately, 
this early footnote to aviation history ended only slightly better for Eilmer 
than it did for his Greek predecessor. According to contemporary accounts, 
he was caught by the breeze and flew ‘more than a furlong’ (an impressive 
200 metres) before the ‘violence of the swirling air’ dashed him to the ground, 
breaking both of his legs and leaving him permanently crippled. In later life, 
accounting for his failed attempt, he said that only afterwards did he realize 
that birds additionally need a tail for a safe landing.39

In the places where AI research happens today—​from the plush sofas of 
excitable start-​up companies to the corridors of academic Computer Science 
departments—​the cautionary tale of hapless aviators like Eilmer remains 
staple wisdom. It is recounted in the opening chapter of the standard text-
book with which most AI researchers grow up, by Peter Norvig and Stuart 
Russell.40 When the goal of propelling a human safely through the air was fi-
nally achieved, beginning in the late eighteenth century with the Montgolfier 
brothers, it relied on hydrogen balloons, and later steam, propellors, and the 
combustion engine—​definitely not on feathers and strap-​on wings.41 Those 
who have tried to copy nature tend to end up with broken dreams, broken 
legs, or worse. In other words, when building technology, we should not be 
hamstrung by the solutions that nature has chosen—​and so when building AI, 
we would do well to ignore the solutions provided by natural intelligence. At 

	 37	 We shall return to this question in Chapter 8.
	 38	 Whose own attempt at human-​powered flight was going just fine until the sun melted the wax that held 
his wings together, prompting an untimely crash landing in the Aegean.
	 39	 See (White 1961).
	 40	 This one (Russell & Norvig 1995).
	 41	 The opening chapter of Peter Dayan’s PhD thesis (Dayan 1991) starts with the following quote: ‘To 
compare Al as mechanised flight with neuroscience as natural aviation is to ignore hot air ballooning. But 
where, prey, might the hot air come from?’
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worst, it is a form of ‘cheating’ that won’t pay off in the long run—​it will lead 
to narrow, brittle solutions, rather like hiding a human operator inside a chess 
machine.

We can see the force of this argument driving recent advances in AI, such as 
large language models and MuZero, neither of which is explicitly constrained 
by wisdom from psychology or neuroscience. GPT-​3, although it was based 
heavily on human training data, was not directly inspired by knowledge of 
human language systems from psychology or neuroscience. Indeed, psy-
cholinguists have spent a great deal of time dissecting the way that humans 
produce sentences, use nouns and verbs, and deploy semantic or syntactic 
rules. They have widely assumed that there are strong cognitive constraints 
on language production, and that it is likely to require a dedicated subsystem. 
Famously, Noam Chomsky named such a system the ‘language acquisition 
device’ and sidestepped the problem of its genesis by proposing that it is al-
ready present in the neonatal brain. Even among AI researchers, it has long 
been supposed that because language is composed of combinations of discrete 
symbols, NLP systems will ultimately require a computational architecture 
that is more elaborate than a deep network.42

All these perspectives—​well founded as they are—​risk beginning to sound 
a bit quaint in light of the ability of large language models to generate coherent 
words, sentences, and even paragraphs by using a giant undifferentiated 
architecture. Moreover, the transformer—​the algorithmic innovation that 
these models deploy so successfully—​does not seem to have been directly in-
spired by theories from neuroscience. Unlike the components that it looks set 
to supersede, such as the recurrent network and the long short-​term memory 
(LSTM) network,43 there is as yet no evidence for memory processes homolo-
gous to the transformer in biological brains, either for language or for other 
cognitive functions.44

In fact, the question of whether AI should rely first and foremost on a com-
putational principle—​or rely on a patchwork of data, ideas, and observations 
conferred by the researchers—​is one that is as old as AI itself. In the 1970s, the 
cognitive scientist Roger Schank noted that AI researchers could be loosely 
dichotomized as either ‘neats’ or ‘scruffies’. The neats—​who included many 
of the Dartmouth group and who envisaged an AI as a system that could 
reason symbolically over inputs—​advocated for a minimalist research agenda 
based around the search for provably correct solutions. Like the architects of 

	 42	 See (Lake & Baroni 2018).
	 43	 See Chapter 7.
	 44	 Although see (Whittington et al. 2021).
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MuZero, they believed that their systems should learn without the polluting 
influence of human data. The scruffies, by contrast—​who included early AI 
researchers working on language systems—​favoured a piecemeal approach 
that matched the heterogenous set of problems encountered in the world 
with a diverse set of computational solutions. The very notion of ‘hacking’—​
tinkering unsystematically with a system until it works—​originated in the 
Massachusetts Institute of Technology (MIT) lab of Marvin Minsky (an ori-
ginal scruffy) in the 1960s. AI still has its neats and its scruffies—​even if today 
the neats are more likely to appeal to searching for computational purity in a 
deep network, rather than a symbolic processing system.

Generally, there are three lines of argument wielded against the temptation 
to constrain AI systems with principles from biology. They are: (1) the case 
for generality; (2) the limits of human cognition; and (3) the limits of current 
neural theories. We will consider each in turn.

The first argument is that building AI is a general problem, and so it needs 
a general solution. Every constraint the AI designer relaxes makes the system 
more attuned to a broad class of problems—​compare the multifaceted MuZero 
(which learns its own model) with the narrower AlphaGo Zero (whose world 
model was human-​endowed). Here is one powerfully expressed version of 
this argument in a widely cited blog post by Rich Sutton.45 Sutton is a giant in 
the field, whose pioneering work on RL is a cornerstone of AI research today:

We have to learn the bitter lesson that building in how we think we think does not 
work in the long run. We should stop trying to find simple ways to think about 
space, objects, multiple agents, or symmetries . . . instead we should build in only 
the meta-​methods that can find and capture this arbitrary complexity. We want AI 
agents that can discover like we can, not which contain what we have discovered.

For Sutton, ‘building in’—​handcrafting computational constraints based on 
our understanding of psychology and neuroscience—​is the problem, not 
the solution. He rues that this bitter lesson has still not been widely appreci-
ated. He cites canonical examples of how progress in AI was only achieved 
when researchers jettisoned their intuitions. For example, chess was solved 
when systems that incorporated domain knowledge about gambits, forks, and 
skewers were replaced with massive brute force search—​Deep Blue crunching 
200 million moves per second against Kasparov. Similarly, computer vi-
sion took off when systems stopped entertaining handcrafted solutions that 

	 45	 The Bitter Lesson (Sutton 2019).
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identified edges or described objects with generalized polyhedrons, and in-
stead let powerful computation and densely parameterized convolutional 
neural networks, such as AlexNet, do the heavy lifting.

The intellectual flight path that DeepMind has followed with AlphaGo 
Zero, AlphaZero, and now MuZero cleaves to Sutton’s bitter lesson. It deliber-
ately seeks to minimize the extent to which AI’s achievements are kickstarted 
by built-​in human understanding—​or by copying human behaviour from big 
data. Perhaps no surprise, thus, that Dave Silver—​the brilliant architect be-
hind MuZero—​was originally Sutton’s PhD student.

The second line of argument against learning from natural intelligence is 
that humans might not be all that intelligent in the first place. It goes roughly 
as follows: the goal of AI cannot be just to copy humans (after all, do we need 
more humans? We have nearly 8 billion of them already and counting). We 
need to surpass human wit—​to build something that can reason more power-
fully and display more brilliant inventiveness. If we deliberately ‘build in’ 
constraints that permit human-​like virtues, then we end up with human-​like 
vices—​sloppy and irrational modes of thought and decision-​making, leaky 
memory, limited planning horizons, and unstable preferences. Humans are 
limited-​precision agents—​their perception, cognition, and action are cor-
rupted by the variability inherent to a noisy nervous system. Can we not build 
a machine that does better?

A third line of argument asks: if we do draw upon intuitions from psych-
ology and neuroscience when developing AI, can we be sure that any know-
ledge ‘built in’ is actually useful? In his bitter lesson, Sutton does not disparage 
the work done by brain scientists to unravel the mysteries of natural intel-
ligence. Rather, his argument is purely practical: that maximally general so-
lutions work best for building AI. Nevertheless, there is a lurking suspicion 
among some AI researchers that somehow, contemporary neuroscience might 
not be quite up to the job of explaining how brains actually work.46 We have 
already seen that systems neuroscientists have mostly avoided searching for 
general theories, preferring instead to taxonomize computational processes in 
ways that abstract over the wet and messy detail of brain function. In doing so, 
it provides us with a new set of descriptive labels—​such as feature-​based atten-
tion, or grid cells, or lateral inhibition. But are the solution concepts implied by 
these labels even useful for machine learning research?

	 46	 This suspicion was not helped by Elon Musk—​funder of OpenAI—​who, when recruiting for re-
searchers to work on his brain–​computer interface project Neuralink, made it clear that ‘No prior experi-
ence in neuroscience is necessary, we will teach you everything you need to know’.
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In 2017, the neuroscientists Eric Jonas and Konrad Kording reported the 
results of a remarkable study that has led many to rethink their answer to this 
question. They applied a battery of standard neural recording and interfer-
ence techniques to a model organism—​including connectomics, recording 
of single units, and macroscopic lesioning methods—​and identified familiar 
neural phenomena, including tuning curves, oscillations, and regional spe-
cialization of function, that have been successfully used to build theories of 
how the brain works (Figure 2.2). Nothing remarkable about that—​except 
that the authors happened to know that (in this case) all those theories were 
entirely false, because the organism under study—​a video game system 
microprocessor47—​was already fully understood, as it had been designed and 
built by human hands. The conclusion: it is possible that the logic by which 
research is conducted in neuroscience—​the way we draw inferences from 
data—​might be highly misleading, and the elaborate theories that we build 
about neural computation—​that very knowledge that Sutton warns against 
‘building in’—​could be wide of the mark or just plain wrong.

Hand in hand with the case for mindless optimization goes the case for 
massive computation. Sutton himself references this in his opening sentence:

	 47	 See (Jonas & Kording 2017). In fact, the same microprocessor that was used in the Atari 2600 system 
whose games on which the DQN was trained.
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Fig. 2.2  Recording from a video game microprocessor. The authors identified simple 
and complex tuning functions that resembled those recorded in animals.
Reprinted from Jonas & Kording (2017).
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The biggest lesson that can be read from 70 years of AI research is that general 
methods that leverage computation are ultimately the most effective, and by a 
large margin. The ultimate reason for this is Moore’s law, or rather its generalization 
of continued exponentially falling cost per unit of computation.

Moore’s law—​the principle that the power of computation should double 
every year, or at least the equivalent cost of computation should halve—​is pro-
nounced dead from time to time, but there is overwhelming evidence that it 
is alive and kicking. In fact, a recent analysis by OpenAI48 suggests that since 
about 2012, the level of compute usage (over total pretraining time) for high-​
performing AI systems is now doubling every 3–​4 months, rather than every 
2 years, as predicted by Moore’s law (Figure 2.3).

When talking about computation, the numbers involved quickly become 
outlandish—​but let us see if we can get a sense of the scale of modern compu-
tational demands. Compute usage is now typically measured in petaflop/​s-​day 
(or pfs-​day). A single pfs-​day is the computation used by a system running at 
one petaflop—​that’s 1015 floating point operations per second—​for 24 hours. 
For comparison, 1015 is slightly more than the number of synaptic connec-
tions in the adult human brain. Nearly 8 years ago, the DQN was trained for 
the equivalent of 38 days straight—​some 50 million frames per game—​using 
a total of less than 0.0001 of a pfs-​day. By contrast, AlphaGo Zero’s training 
can be measured in hundreds of pfs-​days, and GPT-​3 in thousands of pfs-​days. 
Even if computation is relatively cheap, costs become non-​trivial at these 
altitudes. A single training run of GPT-​3 sets OpenAI back by a remarkable 
$12 million. But the huge sums of money sloshing around AI research—​and 
the competitive edge entailed by ever-​faster processors—​mean that the com-
putational resources available to AI researchers continue to grow and grow. 
The performance of Google’s current tensor processing units (TPUs) is meas-
ured in exaflops, that is, units of 1018 floating point operations per second. 
There is also significant and growing concern around the potential environ-
mental impact of large-​scale computation in AI research.

It is worth noting again that whilst the approaches represented by GPT-​3 
and MuZero differ in important ways—​including the role of human data and 
design—​they are united in the mantra that bigger is better. There is also grist to 
the mill of the neuro-​sceptical arguments above: some brains, like that of hu-
mans, are also big—​very big. We do not know exactly how to quantify the run-
ning speed of biological brains—​especially given that much computation may 

	 48	 See https://​ope​nai.com/​blog/​ai-​and-​comp​ute/​#fn2.

https://openai.com/blog/ai-and-compute/#fn2
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happen at the subsynaptic49 level—​and so guesstimates vary quite wildly, any-
where from a thousand to a billion petaflops in the case of humans.50 Could it 
thus be that the success of mammalian brains is not due to any careful crafting 
into a mosaic of different functional subsystems—​but instead is merely due 
to size? We know, of course, that there is generally a powerful relationship 
between the sheer number of neurons and the complexity of behaviour that 
an animal produces.51 AI researchers and neuroscientists alike—​from Karl 
Friston to Jeff Hawkins to Andrew Ng—​have flirted with the idea that there 
might be a single algorithm that underpins intelligence, which the brain—​
acting like a massive TPU—​repeats ad nauseam to generate complex behav-
iour. Indeed, others have noted the striking conservation of the canonical 
microcircuit, the pattern of connections between neurons in different layers 
of the granular neocortex, which seems to be endlessly repeated across the 

Petaflop/s-days

Two Distinct Eras of Compute Usage in Training AI Systems
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Fig. 2.3  AI and compute usage in the ‘first’ and ‘modern’ eras. The figure is from an 
update in November 2019. GPT-​3 is missing from the plot, but it weighs in somewhere 
above AlphaGo Zero.
From a blog post by Amodei & Hernandez: https://​ope​nai.com/​blog/​ai-​and-​comp​ute/​.

	 49	 Meaning, computation happens within neurons, rather than between neurons.
	 50	 See http://​www.fhi.ox.ac.uk/​brain-​emulat​ion-​road​map-​rep​ort.pdf.
	 51	 See (Roth & Dicke 2005).

https://openai.com/blog/ai-and-compute/
http://www.fhi.ox.ac.uk/brain-emulation-roadmap-report.pdf


Look, no hands!  59

primate brain. If we can identify the magic pattern, and scale it really big, then 
perhaps that’s all that is needed.

Whilst AI researchers tend to agree that more data are better, there are also 
divisions over the role that human training data play in the process of building 
AI. We have already encountered research drawn from opposing ends of 
this ideological axis. DeepMind’s work on board games, spearheaded by 
MuZero, strives to minimize the role that human data play in training agents. 
Empirically, they would argue, eliminating the need to train with messy 
human data—​for example, by switching to models that rely entirely on self-​
play (where the agent learns by repeatedly playing against versions of itself)—​
has led to substantial performance gains. Importantly, it also demonstrably 
led to a system that played Go with discernibly fewer delusions. The argument 
is that to make genuine progress, we need a system that learns entirely from 
computational first principles, without being potentially led astray by the at-
tempt to copy human (mis)behaviour.

By contrast, GPT-​3 embraces the fact that our human intelligence inhabits 
the words we use to communicate with one another in speech and written 
text. The very purpose of this new breed of foundation model is to predict 
these human data—​to act like a magical mirror that distils and refracts our 
human culture and ideas into new and fascinating forms. It learns by churning 
through human data on an unprecedented scale. If it is not yet robust, that 
is because it is not yet big enough. Its complexity, computational power, 
speed, and efficiency—​and the volume of data it encounters—​are all still or-
ders of magnitude lower than those of a human after decades of maturing into 
adulthood.

Other major efforts seek to leverage human data directly. DeepMind’s 
Interactive Intelligence project has collected a massive data set from humans 
interacting with objects in a virtual multiroom 3D playroom, setting and 
solving simple tasks by using natural language (such as ‘tidy the room’). An 
agent trained on this data set, using a mixture of supervised learning and RL, 
can learn to follow previously unseen instructions in strikingly human-​like 
ways. The volume of human data is key—​they collected over 600,000 episodes 
of up to 2 minutes long, so that agents learn through dense observation of 
human experts, just as infants observe reams of social interactions over the 
course of their development.52

So where does this leave us? Sutton’s prescription for progress in AI is 
simply to reach for the computational sky—​building ever-​larger models on 

	 52	 See (Abramson et al. 2021).
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ever-​faster computers. Implicitly, the vision is that by building from first 
principles, we will eventually end up with a sort of supercharged version of 
MuZero—​let’s call it WorldZero—​that is trained to master not just Go and 
Atari, but also ‘life’ itself, strategizing not about stones or monsters, but about 
how to optimize global transport logistics or how to resolve an international 
crisis. There does not seem to be a place for insights gathered from the study of 
the human mind in this muscular vision of AI’s future.

This debate provides a frame for the coming chapters, in which I consider 
the ingredients that may be needed to build an intelligent brain. I focus on 
four key areas: the nature of thought; how knowledge is structured and how 
agents can learn abstractions; the principles underlying motivated behaviour; 
and the functioning of memory and control processes. In each of these areas, 
the brain has evolved in structured ways to meet specific constraints imposed 
by the natural world. As we shall see, leaps and bounds in AI research, even 
where they look like blue-​skies algorithmic innovation, have often relied on 
computational tools and tricks that are also found in natural intelligence. 
Where natural intelligence and AI have encountered the same problem, they 
have often identified parallel solutions. Very often, this has occurred because 
of a tight intellectual synergy between AI research, cognitive science, and 
neuroscience.



​ ​

3
The language of thought

3.1  Thinking and knowing

In the opening line of a classic 1973 paper, the Canadian psychologist Zenon 
Pylyshyn offers this pithy panorama of the project of cognitive psychology:1

Cognitive psychology is concerned with two types of questions: What do we know? 
And how do we acquire and use this knowledge?

Pylyshyn’s first question refers to the problem of representation learning: how 
we know things. His second question concerns the mental operations (com-
putations) that we perform on that knowledge: how we think.2

Let’s begin by clarifying this distinction between thinking and knowing 
through the lens of a paradigmatic challenge for early AI research: how to 
build a computer that wins at chess. To find the best route to checkmate, the 
computer first needs to represent the board state (the position of all the pieces 
of each player). This task of representation formation is a memory process, 
in which the observable world finds durable expression in mental contents 
(‘knowing’). For a neuroscientist, encoding allows sensory inputs (e.g. ob-
jects and events in the real world) to drive lasting changes in neural activity 
or connectivity that persist even after stimulation has ceased. It is this process 
of representation that allows you to tell apart a knight from a bishop, or to 
close your eyes but still envisage the board state. This allows information to be 
subsequently reinstantiated in the mind’s eye as the substrate of thought and 
reason, or to directly prompt courses of action when similar objects or events 
are encountered in the future.3

Secondly, the computer has to enact operations on those memory repre-
sentations.4 Consider a mathematical function or rudimentary programme, 

	 1	 See (Pylyshyn 1973).
	 2	 Pylysyn also asks how we acquire that knowledge. We will consider knowledge acquisition in Chapter 4.
	 3	 We will discuss representation learning in more detail in Chapters 4 and 5.
	 4	 Some prefer the more general term ‘computation’ to refer to this process. However, as we shall see, for 
most modern theories, the process of forming representations in the first place also involves computation, 
so that term is ambiguous.

 

 



62  The language of thought

such as y =​ cos(x2). We can think of the system as encoding an input x into 
a mnemonic state, so that it is represented inside the function. However, to 
compute the output y, we then need to transform the encoded value of x, in 
this case squaring, and applying a cosine transformation. Note that this pro-
cess might imply the existence of interim states of representation, such as 
x′ =​ x2 (when x has been squared, but the cosine has not yet been taken). The 
system thus needs machinery for encoding the state of x and x′ (representa-
tion), and tools for converting x to x′ and x′ to y (computation). Returning to 
the case of chess, the set of lawful transformations is given by the rules of the 
game: a bishop cannot move along rows or columns, and a rook cannot jump 
over pawns. This framework allows for more complicated mental operations, 
such as search processes that allow the system to traverse multiple possible 
future states and outcomes, including hypothetical scenarios, such as moving 
a queen into danger. If the search is broad enough and deep enough, it offers a 
powerful means to identify pathways to desired outcomes—​like checkmating 
your opponent.

As early as the 1940s, psychologists have used elite chess as a domain to ask 
whether human intelligence depends upon thinking (using a powerful rep-
ertoire of mental operations) or knowing (generalizing a rich represention of 
the board state). Do chess experts—​the grandmasters with an ELO in excess 
of 2500—​rely on an exceptional ability to think ahead, simulating how the 
game might play out? Or are they just good at matching board patterns to 
win probability—​evaluating potential new configurations of pieces by gener-
alizing their extensive knowledge from past games? Psychologists conjectured 
that if grandmasters rely principally on an ability to encode and generalize 
the board state, they will have more faithful memory for board configurations 
than less-​seasoned players—​especially when the pieces lie in lawful or plaus-
ible positions. In fact, this hypothesis has been repeatedly confirmed—​and is 
anecdotally backed up by expert chess players’ apparent ability to play blind-
folded against multiple opponents, as well as by analysis of verbal transcripts 
suggesting that they do not consider more moves or use stronger heuristics 
than other players.5

Nevertheless, there are also suggestions that grandmasters do plan more ef-
fectively in chess. For example, stronger players are affected more than weaker 
players by the imposition of time pressure or by ‘dual-​task’ manipulations that 
require a demanding secondary activity to be completed during game play.6 

	 5	 See (Chase & Simon 1973).
	 6	 The logic being that this additional task interferes with effortful planning, but not with automatic pat-
tern matching.
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Moreover, weak players are more likely to change their mind about a candi-
date move when shown how an expert game unfolded from that position, as if 
they had been less able to anticipate the consequences of the move. Relatedly, 
but beyond the domain of chess, a recent paper found that when naïve hu-
mans learn to play a novel strategy game—​a version of tic-​tac-​toe in which 
the board is 9 × 4 squares—​an ability to plan more deeply accompanies their 
gradual gains in expertise.7 Some 75 years after the first bite at this problem, 
thus, it still remains an open question of whether expertise at strategic games is 
best explained by deep thought or the acquisition of generalizable knowledge.

Pylyshyn’s proposal is that a proper project of cognitive science is the study 
of these twin processes. Intelligent machines should both know and think. 
Humans, for example, begin in infancy by forming internal representations 
of things that exist in the external world, and continue learning generalizable 
knowledge about objects, categories, and concepts across the lifespan. As we 
mature, we acquire the ability to reason and plan by manipulating these repre-
sentations through inference and mental simulation. As adults, we can com-
bine these two processes and are thus able to think about things.

Pylyshyn is also, presciently, gesturing to the central problem in AI research 
today, some 50 years later. Should we build AI systems, the primary virtue of 
which is generalizable knowledge? Is it sufficient to train agents, for example, 
in the form of deep neural networks, that learn powerful abstractions from 
big data, that can be transferred readily to novel settings? Or alternatively, do 
we need to take the notion of ‘thinking’ seriously—​in the form of strong con-
straints on the ways that neural computation can unfold? Should we endow 
agents with a sort of mental syntax that allows the calculation of truthful con-
clusions, the future estimation of value, or the plotting of a shortest path to-
wards a goal, rather than simply hoping that these functions will arise from 
unrestricted function approximation in large-​scale neural networks? On the 
one hand, we hear calls for a renaissance of symbolic AI methods, which es-
chew learning in favour of architectures for goal-​directed planning and 
reasoning. These often go hand in hand with critiques of monolithic deep 
learning.8 On the other hand, the ability to reason or plan might be a happy 
by-​product of large-​scale optimization but should not be built into the system 
as an explicit constraint. This latter view is, of course, associated with the 

	 7	 Although the main driver of increasing performance was a reduction in the tendency to make silly mis-
takes, which might be attributable to lapses in attention and perhaps ameliorated by better encoding. See 
(Holding 1992) and (van Opheusden et al. 2021).
	 8	 For example, see (Marcus & Davis 2019).
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modern-​day Neats whose mantra is to aim for zero human input and data to 
the AI building process.

Thinking and knowing may offer independent routes to expert task per-
formance. To illustrate why, consider Figure 3.1, which shows a popular class 
of brainteaser known as a matchstick problem, where the goal is to create a 
different configuration by moving a small number of sticks. For example, 
here the challenge is to create a display that contains seven squares by moving 
exactly two matchsticks (and without breaking them in pieces). Can you 
solve it?

The puzzle might seem impossible at first—​but the answer, once revealed, 
is surprisingly simple. Now, having cracked it (or cheated), start again from 
the configuration in Figure 3.1 and try to discard one matchstick and move 
four to make 11 squares. Although this problem is more complex, you might 
well find it easier, because you can recycle some of the insights gained when 
solving the first puzzle and apply them here. Importantly, this is possible, even 
though the two problems are not exactly alike.9

This example illustrates that there can be two distinct pathways to intel-
ligent behaviour. If you are unfamiliar with the domain, you are obliged to 
think about the problem. Faced with the first matchstick problem, you were 
probably perplexed. You couldn’t rely on past knowledge or experience to find 
the solution, and so you perhaps tried to mentally rearrange the sticks, intern-
ally verifying whether each move brings you nearer to the goal state. However, 

Fig. 3.1  The matchstick problem. Problem 1: can you rearrange two sticks to make 
seven squares? Problem 2: can you remove one stick and rearrange four to make 11 
squares?

	 9	 Answers are shown in Figures 3.2 and 3.3.
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once the domain is familiar, you can use past learning as a route to success. For 
example, if you found the second matchstick puzzle more straightforward, 
that wasn’t because it was less complicated overall. In fact, by requiring you 
to move four matchsticks (and discard one), the combinatorial complexity of 
this problem is an order of magnitude greater than the first. Instead, it is be-
cause you were able to use existing knowledge to solve the problem.

We can trace this dichotomy back to Donald Hebb.10 Hebb is now better 
remembered for defining the basic principle that neural connections are 
strengthened by coincident inputs—​known as Hebbian learning.11 However, 
he was a neuropsychologist by training and, in the 1930s, was working with 
brain-​damaged patients at the Montreal Neurological Institute in Canada.12 
The study of patients with brain damage can offer insights into the mental 
structure because the brain tends to be organized into discrete, spatially sep-
arate modules, meaning that different regions perform distinct functions. 

Fig. 3.2  Solution to matchstick problem 1.

Fig. 3.3  Solution to matchstick problem 2.

	 10	 Arguably, one could trace the origins of dual-​process models of cognition back to the Islamic scholar 
Ḥasan Ibn al-​Haytham.
	 11	 We shall consider Hebbian learning below.
	 12	 Then, as now, a world-​leading brain research centre.
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Thus, if patients with damage to a specific region have difficulties with ability 
X, but not Y, then we may infer that X and Y are distinct functions.13 Hebb 
began to notice that many patients with focal brain damage had great diffi-
culty negotiating the challenges of everyday life, but nevertheless performed 
remarkably well on laboratory tests that tapped into pre-​existing abilities, es-
pecially assays of memory or verbal fluency.14

This led him to believe that Spearman’s g could be subdivided into two com-
ponents, that he defined as follows:

It may be proposed that intellectual development includes two distinct things: (A) 
direct intellectual power, by neural maturation, and (B) the development of quali-
tative modifications of perception and behaviour. The first factor is what reaches 
a peak somewhere around the beginning of adolescence, declining slowly there-
after; the second is the product of the first factor.

Like Spearman, Hebb believed that there was natural variation in the raw 
power of the mind, which he calls Intelligence A. He referred to this as ‘direct 
intellectual power’, referencing the ability to use reasoning to solve new, un-
familiar problems. However, one happy consequence of using Intelligence 
A is the lifelong acquisition of new knowledge and skills, which he labelled as 
Intelligence B (‘qualitative modifications of perception and behaviour’). Hebb 
argued that mental performance depends jointly on these two intellectual 
pathways.

3.2  Intelligences A and B

What led Hebb to this theory? Many of the patients he encountered had 
damage to a brain region known as the prefrontal cortex (PFC), which had 
been removed in a surgical procedure designed to alleviate epileptic seizures. 
The functional contribution of the PFC to intelligent behaviour has long per-
plexed researchers, as PFC damage seems to dampen intelligence in ways that 
are subtle or undetectable with using standard neuropsychological testing 
methods. Consider this early report from the pioneering neuropsychologist 
David Ferrier, who systematically studied the effect of frontal lobe lesions in 
monkeys. Writing in 1878, he concluded that:

	 13	 Especially if patients with damage to a different region have difficulties with B, but not A. This is known 
as a ‘double dissociation’.
	 14	 See (Brown 2016).
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The animals retain their appetites and instincts and are capable of exhibiting emo-
tional feeling. The sensory faculties, sight, hearing, touch, taste and smell, remain 
unimpaired . . . And yet, notwithstanding this apparent absence of physiological 
symptoms, I could perceive a very decided alteration in the animal’s character and 
behaviour . . . Instead of, as before, being actively interested in their surroundings, 
and curiously prying into all that came within the field of their observation, they re-
mained apathetic, or dull, or dozed off to sleep, responding only to the sensations 
or impressions of the moment. While not actually deprived of intelligence, they had 
lost, to all appearance, the faculty of attentive and intelligent observation.

Ferrier’s findings anticipated the systematic study of patients with PFC 
damage that followed in the twentieth century. In a classic paper from 1991, 
the British neuropsychologists Paul Burgess and Tim Shallice described the 
case of patient F.S. who, at the age of 25, had sustained damage to the PFC after 
having the misfortune to be thrown from a horse. The authors provide this 
clinical report of F.S.’s everyday life:15

For the past 25 years she has worked in the same position. She lives by herself in 
a single room. Her responses in a clinical interview show that she undertakes vir-
tually no inessential or novel activities. She is very untidy, never putting things 
away. She seldom goes out in the evening, and virtually never travels away from her 
hometown. Others always make arrangements when any joint activity is to be car-
ried out. She is said by her sister never to organize anything. She shops every day 
buying only a few things on any occasion and never visits supermarkets. She had 
no activity planned for the following weekend and could give no example where 
anyone had relied on her to do anything. Her sister confirmed that these behav-
iours were characteristic.

At first glance, thus, many frontal lobe patients give the impression that little 
is wrong. They have normal sensory perception, language, and skilled motor 
control. They can thus recognize faces, hold a conversation, and ride a bike. 
But all is not well. Frontal lobe damage often renders the patient dull, in-
attentive, and incurious. In fact, it was this tendency for PFC lesions to leave 
patients docile and compliant that inspired the development of frontal lob-
otomy, a controversial treatment for severe mental illness in which the frontal 
lobe’s connections to the rest of the brain are severed.16

	 15	 See (Shallice & Burgess 1991).
	 16	 Remarkably, its pioneer and advocate, the Portuguese neurosurgeon Egas Moniz, won the 1949 Nobel 
Prize in Medicine for his development of the leucotomy (or lobotomy). Despite emerging evidence that 
many patients were harmed by the procedure, the Nobel Committee has resisted calls to rescind the award. 
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Over the course of the twentieth century, a theory emerged that reconciles 
these puzzling findings. The theory has at its core the dichotomy that Hebb 
first emphasized. Patients with PFC damage retain their use of Intelligence 
B but suffer impairment of Intelligence A. They still harbour a rich represen-
tation of the world, but their capacity to perform mental operations is se-
verely compromised. Thus, they have no difficulty negotiating very familiar 
situations where they can deploy existing knowledge, such as visiting local 
shops. However, in novel situations, they are all at sea. They thus tend to live a 
tightly constrained existence, sticking to well-​known places and objectives. It 
is thinking that allows healthy people to spontaneously structure behaviour in 
pursuit of their goals, and to consider the consequences of action or inaction. 
Lacking this capacity, the lives of PFC patients often descend into chaos, as pa-
tients lose their job, go bankrupt, or wind up divorced.

PFC patients can also use Intelligence B to recall past information and 
respond fluently to well-​learnt verbal tasks, such as forming coherent sen-
tences and spelling words correctly. Thus, they perform well on the verbal 
or mnemonic components of intelligence tests. In 1940, writing with Wilder 
Penfield,17 Hebb reported a case of a 27-​year-​old man whose estimated IQ 
score (on the gold standard Stanford–​Binet test) was found to increase from 
83 to 94 points after bilateral removal of the frontal lobes. Many other patients 
scored within or above the normal range, especially on tests with a verbal 
component. When Burgess and Shallice assessed F.S. on standardized tests, 
her verbal IQ placed her among the top 1% of the population, and her per-
formance IQ was in the top 20%; her reading score was in the top 5%, and her 
retention was good. Long-​ingrained skills, such as the ability to pronounce or 
spell words correctly, were entirely intact. This pattern is common to PFC pa-
tients, many of whom are able to pass laboratory tests but fail catastrophically 
at everyday life.18

By contrast, Intelligence B depends on the store of knowledge that we have 
acquired over the lifetime. Hebb described it as follows:

Part of what we mean by intelligence in an adult, therefore, may consist of a store 
of solutions, so to speak, for common problems—​points of view, methods of 

It is ironic that mental illness was treated by deliberate damage to what was believed to be the neural seat of 
reason—​which presumably was why it led to such unpredictable results.

	 17	 Penfield was later to become famous for his experiments on electrically stimulating the human 
neocortex.
	 18	 See (Shallice & Burgess 1991) and (Duncan et al. 1995).
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approach, ways of seeing things. Although they are properly a product of intellec-
tual power, they are an important part of what we call intelligence.

Hebb’s insight that thinking and knowing can both lead to seemingly intelli-
gent behaviour is vitally important for interpreting the results of psychometric 
tests, because rich knowledge tends to accrue from rich life experiences.19 This 
exacerbates the problem that educational or cultural background might un-
duly influence measures of intelligence. As the field of psychometrics matured 
in the 1930s, researchers began to search for ‘culture-​free’ tests—​measures 
that are less sensitive to lifetime experience. Contemporaneous with Hebb, 
the psychologist Raymond Cattell noted that tests of vocabulary or verbal rea-
soning were especially driven by past education and context, whereas those 
involving spatial reasoning or abstract puzzle solving seemed to be more 
‘culture-​free’. After hearing Hebb present his ideas about Intelligences A and 
B at the 1941 APA conference in Evanston, Illinois,20 Cattell hurried away and 
wrote up his new theory: that we should think of Spearman’s g as subdivisible 
into fluid and crystallized intelligence. Fluid intelligence measures raw intel-
lectual potential. People with high fluid intelligence excel at reasoning about 
abstract concepts or ideas in a way that depends minimally on experience, 
and thus do well on so-​called ‘culture-​free’ tests.21 By contrast, crystallized in-
telligence indexes extant knowledge and skills, acquired via comprehensive 
acculturation or a well-​rounded education.22 In fact, this dichotomy sounds 
suspiciously similar to that proposed by Hebb, an intellectual debt that Cattell 
acknowledges in their later epistolary correspondence.23 However, it is the ter-
minology of fluid and crystallized intelligence—​and Cattell’s name—​that pos-
terity associates with this distinction. This reminds us of a timeless dictum: if 
you want your theory to be widely recognized, be sure to give it a catchy name.

Baffled by the disconnection between everyday competence and measured 
IQ, Hebb and Penfield pondered different approaches that might better index 
an individual’s true abilities, and how they are impaired by brain injury:

For the effect of lesions of the frontal lobe on human intelligence, it seems that one 
will have to look elsewhere than to clinical observation or ratings by intelligence 

	 19	 Which, in turn, are more common for rich people.
	 20	 American Psychological Association.
	 21	 This is discussed in detail below.
	 22	 According to psychological lore, the two vary over the lifespan, with fluid intelligence declining (rather 
depressingly) from about age 20, but with crystallized intelligence sustaining you well beyond middle age. 
Indeed, it is sometimes claimed that most great new mathematical ideas—​perhaps the ultimate fruits of 
fluid intelligence—​were worked out by mathematicians in their twenties.
	 23	 See (Brown 2016).
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tests such as are now available [ . . . ] perhaps by studying learning in social situ-
ations, in adaptation to drastic environmental change or in initiative and the ability 
to plan and organize one’s affairs may be found in the impairment that we believe 
must exist after large lesions of the frontal lobes.

In other words, to measure general intelligence, we need tests that are 
grounded in the true complexities of everyday life, by measuring social skills 
or personal organization. We need to measure street smarts, not just lab 
smarts. Hebb is thus anticipating the argument made above: that we need a 
generous definition of intelligence, one that encompasses both the quotidian 
and the rarefied—​one that taps into our versatility at solving everyday tasks 
at home as much as our ability to master complex calculations or understand 
esoteric language in the lab.

For frontal lobe patients, this vision became a reality in the 1990s, when 
Burgess and Shallice quantified their everyday difficulties by effectively 
turning a London high street into a giant neuropsychological testing suite. 
They sent patients (all of whom were unfamiliar with the street, including F.S.) 
out to perform a series of everyday errands, such as shopping for a loaf of 
bread, finding out the weather forecast, or obtaining directions to the railway 
station. In the paper describing their findings, the results section offers a de-
tailed account of the chaos that ensued. Consistent with the idea that the PFC 
is critical to the ability to reason in pursuit of everyday goals, patients found 
this ‘multiple errands’ task extremely challenging and some barely completed 
the tasks with their dignity or liberty from the law intact.

This everyday difficulty in controlling behaviour is reminiscent of one 
of the earliest and most celebrated PFC patients, known as Phineas Gage. 
In 1848, whist working on the railroads in Canada, an explosion blew iron 
tamping rod entirely through the front of his brain like a javelin. Remarkably, 
he survived—​but reportedly, the injury led to significant changes in character, 
accompanied by minimal other psychological problems. It was claimed that 
prior to the injury he had been sensible and mild mannered, but after he be-
came restless, profane, obstinate, and capricious ‘to the extent that his society 
was intolerable to decent people’. It is as if—​from one moment to the next—​
Gage lost the ability to reason about his situation and behaviour.24

Hebb’s ideas—​and a hundred years of empirical study of the PFC—​thus 
expose a fundamental conundrum in the definition and measurement of 
intelligence. We can create a battery of tests in the lab—​whether they are 

	 24	 Although there are credible reports that Gage’s deficits were, in fact, short-​lived and that he was re-
habilitated back into work and society after some years.
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pencil-​and-​paper tests of reasoning or testing suites for AI systems—​but we 
lack guarantees that they will correlate with competence in performing open-​
ended activities in the real world such as shopping, submitting your taxes, or 
debating politics. This paradox is revealed by the difficulties of prefrontal pa-
tients who can seemingly exhibit normal IQ but fail to show the quotidian 
polymathy that is typical of healthy people the world over. This occurs, in part, 
because PFC damage curtails their ability to think. It attenuates the mental 
flexibility required to solve new problems but leaves intact knowledge of 
how to perform existing tasks. Thus, PFC patients can exhibit strong—​even 
superlative—​performance within a narrow range of activities, just like an AI 
system that is trained to master a circumscribed suite of environments but 
flops on tests that fall outside this set. This is the complaint of excoriating 
critics, such as Gary Marcus, who lambast AI systems that excel at the narrow 
problems they are set by machine learning researchers but fail catastrophically 
when confronted with the messy reality of the natural world.

3.3  The units of thought

Throughout the second half of the twentieth century, cognitive scientists 
and AI researchers were mostly concerned with the nature of thought. 
What does it mean to think? In what formal language does thinking 
happen, and what are its syntactic rules? How do formal systems of thought 
relate to the natural language that humans use to communicate? Is our 
thinking driven by a sparse set of provably correct, innately specified lo-
gical precepts, or are the units of thought mental states with rich represen-
tational content—​beliefs, desires, and intentions? How are the operations 
of thought constrained by the semantics of the real world and the words we 
use to describe it?

Over the decades, different answers to these questions have come in and out 
of vogue. These include both the purist conception that thinking is reducible 
to propositional logic, and the idea that thought is nothing but an inner echo 
of our outer speech, phrased in the natural language we have learnt from so-
cial others. Today, in the grip of the deep learning revolution, these traditional 
conceptions of thinking have slipped out of fashion altogether. But the roots 
of these twentieth-​century ideas about the language of thought continue to 
mould our contemporary theories of computation. In particular, one tradition 
sees inference as a search process through a densely interconnected web of 
hypothetical experience, that allows us to envisage the future consequences of 
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our actions. This idea, which can be traced back to the 1940s, is an intellectual 
ancestor to today’s advanced systems for model-​based RL such as AlphaGo 
and MuZero. In the remainder of this chapter, we will trace the historical con-
tours of these ideas across the twentieth century in the fields of cognitive sci-
ence and AI research.

The idea that thinking (or reasoning) is the signature quality of the human 
mind inhabits a rationalist tradition that dates back to the ancient Greeks. 
Historically, to reason is to direct the flow of mental process down coherent 
paths that respect the proper order of things in the external world, rendering 
our thoughts coherent, intelligible, and plausible. Reasoning allows conclu-
sions to be drawn, relations to be inferred, and forthcoming states to be pre-
dicted. Descartes famously premised the edifice of human cognition on our 
ability to reason when he wrote:

I am therefore precisely nothing but a thinking thing; that is a mind, or intellect, or 
understanding, or reason.

For two millennia, philosophers and mathematicians have sought to define 
the principles by which valid reasoning should occur. This process began with 
Aristotle, who initiated the study of formal logic with a series of treatises col-
lectively entitled Organon. In this work, he laid out his theory of deduction 
(sullogismos) and introduced us to the 64 syllogisms with a tripartite struc-
ture,25 for example those with the following form:

No machines are clever.
‘Deep Everything’ is a machine.
‘Deep Everything’ is not clever.

In the nineteenth century, these foundations for logical calculus were refined 
and generalized by George Boole,26 whose masterwork The Laws of Thought 
introduced a new formalism for inference that grounded logic in algebra and 
showed that just three operations—​conjunction (AND), disjunction (OR), 
and negation (NOT)—​allowed for remarkably expressive reasoning over di-
chotomous (or, subsequently, ‘Boolean’) states. By the early twentieth century, 
advocates of logical positivism (such as Russell, Whitehead, and Frege) em-
barked on a quest for the logical axioms underlying mathematics itself. Russell 

	 25	 Of which 24 are valid.
	 26	 Boole also happens to be the great-​great-​grandfather of Geoffrey Hinton, the most significant pioneer 
of the deep neural network.
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and Whitehead’s contributions to this project resulted in the epic philosoph-
ical tome known as Principia Mathematica, which was never completed and 
cost the authors their friendship and (almost) their sanity. Nevertheless, it was 
on these currents of thought that the first modern theories of the mind sailed 
into view. The notion that thinking is grounded in logical principles, and that 
logic itself can be described with mathematical calculations, inspired Turing’s 
vision in the 1930s for a thinking machine that runs programmes on input 
data—​the idea that launched modern computer science.27

The first wave of AI researchers in the 1950s had grown up steeped in this 
rationalist tradition. This was the era when the first electronic computers were 
incorporating the von Neumann architecture and the Dartmouth Ten con-
vened to solve AI in a single summer. For these pioneers, the tools of logical 
calculus developed by Boole were natural primitives for a syntax of thought. 
The units of mentation were proposed to be abstract tokens such as p and q in 
the logical proposition if p then q, and mental processes to implicitly or expli-
citly compute the truth conditions that follow from a set of premises. Thinking 
was reduced to a process of deductive inference.

Post-​war AI researchers thus constructed programs with hard-​coded 
mental machinery for articulated reasoning and theorem proving. The goal 
of these systems was to establish the truth or validity of statements expressed 
in logical form. They thus took propositions and arguments as inputs, and 
furnished statements and conclusions as outputs. Even the first neural net-
works, constructed in the 1940s by Pitts and McCulloch, were devices for 
implementing logical calculus through a series of interconnected gates. They 
allowed a machine, for the first time, to derive outcomes on the basis of AND, 
OR, and NOT—​realizing Boole’s ideas about the algebra of logic in a realistic 
circuit diagram.28

The ability to prove theorems was a high watermark for this new breed of 
AI systems. In 1955, on the eve of the Dartmouth conference, two key fig-
ures in early AI research—​Alan Newell and Herb Simon—​unveiled the 
‘Logic Theorist’, a programme designed to prove the axioms in Chapter 2 of 
Whitehead and Russell’s Principia Mathematica. It identified proofs for 38 of 
the 52 theorems, including one novel proof (2.85) more elegant than that dis-
covered by the original authors. Newell and Simon attempted to publish this 
finding with the computer as a co-​author, but rather unfairly, the paper was 
rejected for being insufficiently novel.

	 27	 See (Bernhardt 2017).
	 28	 See (McCulloch & Pitts 1943).



74  The language of thought

The idea that logic was the substrate of intelligent thought was nourished 
by the study of the developing human mind. In the 1950s, the Swiss psycholo-
gist Jean Piaget proposed his own theory of intelligence, in which cognitive 
growth is a trajectory from confusion to reason.29 His four-​stage theory of 
development argues that human intellectual maturation occurs as the child 
acquires the ability to perform ever more complex ‘operations’ by drawing lo-
gical conclusions from data. In the preoperational stage, which Piaget believed 
lasted until about the age of 7 years, children fail at making basic inferences, 
such as reporting transitivity (e.g. that if object A is bigger than B, and B is 
bigger than C, then A must be bigger than C). During that transition to con-
crete operations, which (according to Piaget) lasts until about 12 years of age, 
deductive and inductive processes gradually emerge. For example, children 
begin to understand the laws of conservation, that is, that if a quantity of li-
quid is poured from one beaker to another, its volume does not change, even 
if (for example) the second beaker is taller and narrower. By 9 or 10 years old, 
they can solve various types of syllogistic reasoning problems. However, it is 
not until their teenage years that the final maturational milestone—​known as 
‘formal operations’—​is reached. A child who has reached formal operations 
can reason in adult-​like ways, to the extent that they can entertain counterfac-
tual or hypothetical states of the world.30

Formal operations enable the sort of causal reasoning shown by scientists 
studying the factors that influence a dependent variable, such as when testing 
the link between smoking and heart disease. In a classic study, Piaget and his 
collaborator Bärbel Inhelder asked schoolchildren to determine which of 
three factors (length of a string, heaviness of a weight, or initial propulsion) 
influenced a variable of interest (the speed at which a pendulum swings). By 
their teenage years, children begin to autonomously reason from cause to 
effect, without any prior knowledge about the physics of the problem.31 For 
example, they know that one must hold all other factors constant to test the 
association among variables in a systematic fashion (e.g. if the string is long, 
the pendulum swings slowly). This contrasts with a child in the preceding con-
crete operations stage, who will be hidebound by the immediate evidence of 
the senses—​so that if a large weight on a long string swung more slowly than 

	 29	 Whilst Piaget remains a mainstay of undergraduate psychology courses, the developmental trajectory 
and time course that he proposed have since been radically refined. Because his observations were based on 
linguistically demanding interactions with children, he may have grossly underestimated how quickly chil-
dren acquire the ability to reason. Causal reasoning may, in fact, emerge at 3–​5 years, and there is evidence 
that even very young infants are surprised by violations of causation (Gopnik & Wellman 2012).
	 30	 See (Bara et al. 1995).
	 31	 Piaget proposed that formal operations begin at about 12 years of age (on average). However, subse-
quent research has found that most children do not pass the pendulum test until aged 13–​17 years.
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a small weight on a short string, they might infer that the weight was crit-
ical, overlooking the fact that string length is a confounding variable. Upon 
reaching the formal operations stage—​from adolescence onwards—​we can 
reason logically, even about possibilities that seemingly defy the reality of the 
senses. For Piaget, this type of scientific reasoning process signals that cogni-
tive abilities have reached their zenith.

The link between rationality and intelligence also shaped how mental 
ability was measured. Since the 1930s, psychologists had found that tests of 
abstract spatial reasoning were among the most ‘culture-​free’—​the least prone 
to depending on educational background. One ‘culture-​free’ assessment that 
has stood the test of time is known as Raven’s Progressive Matrices (RPM) 
after its inventor John Raven. First published in 1938, RPM is solved by rea-
soning about the number, position, identity, or relation of visual attributes 
that make up a display. Each problem consists of a 3 × 3 array of boxes, with 
a pattern of objects occurring over rows and columns, but with a single box 
left empty (Figure 3.4). The test requires the participant to correctly choose an 
item to fill the missing box, by combining two logical constraints: one which 
determines how the pattern changes across rows, and another which controls 
how it varies across columns. To give a simple example, if there is a progres-
sion of three, two, and one items across successive columns, and variation in 
item size, from big to medium to small, across rows, then even if the final row/​
column entry is missing, one can infer that it should contain one small item. 

?

Option A 

Option B

Option C

Fig. 3.4  Example of RPM problem. The relevant dimensions are size (rows) and number 
(columns). The correct answer is option A.
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In line with the view that the ability to reason is the magic ingredient that fur-
nishes human intelligence, Raven (and other early theorists) considered RPM 
to provide a nearly ‘pure’ measure of Spearman’s g.32

Note that in RPM, the objects are denuded of meaning, because shapes are 
matched randomly with relational rules. Making a problem abstract in this 
way ensures it can only be solved by thinking, and not by knowing. For ex-
ample, if I tell you that all toops are nomps, and all nomps are sinky, and ask 
you whether a toop is sinky, you might have to think about it for a moment. On 
the other hand, if we replace the three nonsense words with ‘robin’, ‘bird’, and 
‘lay eggs’, then the abstract problem becomes concrete—​it can be answered 
by using basic facts about birds, rather than using the rules of syllogistic logic 
alone. Similarly, the fact that an empty box lacks four red squares cannot be 
deduced from the fact that they are red and squares; the features are entirely 
arbitrary. Thus, by using abstract test items, RPM seeks to remove any traces 
of specific cultural or educational experience from a participant’s test per-
formance. This is also in keeping with the philosophy of classical AI research, 
in which inputs are arbitrary and the raw power of reason is the engine of in-
telligence. Indeed, RPM has perennially proved a useful test bed for classical 
AI architectures.33

By the 1970s, shoulder to shoulder with AI researchers, psychologists 
were building computer programs that reasoned over logical propositions.34 
Unlike most AI researchers, however, they were also curious about how the 
machine performance mirrored that of humans tasked with judging the val-
idity of statements defined by propositional connectives (AND, OR, NOT, 
NOR). This research programme was aimed at testing whether symbolic AI 
systems reasoned in human-​like ways, by comparing their patterns of success 
and failure on a battery of logical reasoning problems.

For example, Lance Rips and colleagues built a system known as ANDS 
that took arguments and assertions as inputs and was tasked with verifying 
the validity of conclusions using a bank of logical rules that had been hand-​
coded by the researchers.35 Rips considered ANDS to be a plausible model of 
how people think. Consider the following item from their experiment: ‘if the 
valve is closed or the button is pressed, then the wheel turns, and the bulb is 
illuminated’. Is it then true that if the valve is closed, then the bulb is illumin-
ated? You probably found deducing the validity of this statement to be quite 

	 32	 See (Raven 2000).
	 33	 For example, see (Hernández-​Orallo et al. 2016).
	 34	 Mostly using the computational lingua franca of the day, a coding language known as LISP.
	 35	 See (Rips 1983).
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straightforward. Now consider a different item: ‘either Peter is in Chicago or 
Paul is in Baltimore, but if Peter is in Chicago or Martha is in Kansas, then 
Paul is in Baltimore’. Is it then true that Paul is in Baltimore? You may well 
have found this one trickier. The participants certainly did, responding ‘valid’ 
about 80% of the time to the former and 30% to the latter (in fact, both are 
valid). Overall, the model did a fairly good job of predicting the percentage 
accuracy of validity judgements made by human participants over 32 classes 
of such problems. Rips interpreted these data as showing that human rea-
soning relies on the same mental primitives as classic AI theorem-​proving 
programs, and thus that this algorithmic approach was on track to emulate 
human intelligence.36

The idea that propositional logic is the basic substrate of intelligent thought 
has an appealing simplicity. Philosophers and computer scientists alike know 
that logic can be used to infer what is true. Organisms that can diagnose truth 
from falsehood are likely to have a selective advantage, so it makes sense to 
propose that evolution should have paved the way for logical minds. In the 
1970s and 1980s, however, three developments occurred that changed the 
way in which the field thought about thinking. Firstly, the idea emerged that 
the units of thought are not simply abstract propositions, but mental states 
with representational content, such as beliefs, desires, and intentions, and that 
thinking is, at least partly, grounded in language. Secondly, an empirical re-
search programme, famously led by Daniel Kahneman and Amos Tversky, 
cast serious doubt on the rationality of human inference, suggesting instead 
that people are prone to reasoning sloppily, drawing conclusions by using 
heuristics that are fast and frugal, but prone to err. Thirdly, there was an up-
swell of interest in the idea that computation in the brain is inherently prob-
abilistic. Together, these trends shaped our modern vision for the language of 
thought—​before the deep learning revolution arrived—​and cast doubt on the 
necessity of thinking itself.

3.4  The symbolic mind

Psychologists have long suspected that thinking and talking share a common 
mental substrate. A deep theoretical root to this idea is known as linguistic 

	 36	 Unfortunately, however, in order to capture the human data, Rips was obliged to make numerous ad 
hoc assumptions about the cognitive demands associated with different sorts of logical operations (e.g. 
asserting that inferring disjunction is harder than conjunction, without explaining why). His results are 
considerably less impressive once one realizes that the model uses ten free parameters to fit 32 data points. 
This weakened claims about ANDS and other comparable architectures for logical reasoning.
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relativity—​the hypothesis that our private version of reality is directly shaped 
by interaction with our linguistic communities. This view can be traced back 
to the linguist Benjamin Lee Whorf who, in the 1930s, wrote:

the world is . . . a kaleidoscope flux of impressions which has to be organized by 
our minds—​and this means largely by the linguistic systems of our minds. We cut 
nature up, organize it into concepts, and ascribe significances as we do, largely be-
cause we are parties to an agreement to organize it in this way . . . throughout our 
speech community.

Whorf ’s ideas crystallized during his study of the language systems of North 
American ethnic groups—​including the Inuit and Hopi people—​whose 
mental and lexical taxonomies were both radically different from those of 
European heritage. For example, the Hopi people considered water in a cup 
to be a different entity from water in a lake, and they used distinct nouns in 
each case. Other linguistic groups expressed space, time, and number in terms 
that seemed deeply alien to Whorf, but that he believed betrayed their very 
different ways of navigating, counting, and conceiving of the past and future. 
Together with his mentor Edward Sapir, this led him to the view that language 
was the mental substrate in which thinking happens.37

Whorf ’s work launched an empirical research programme that asked 
whether differences in basic perception or cognition arise from our linguistic 
heritage. For example, is it true that peoples whose counting system consists 
of numbers one to three and then ‘many’ cannot actually conceptualize car-
dinalities of four and above? Can communities with the colour terms black, 
white, and red not distinguish green and blue hues? However, the outcome of 
this research programme was a growing scepticism about strong forms of lin-
guistic relativity,38 and a growing sense that whilst our world knowledge may 
be shaped by natural language, we are not tightly constrained to perceive or 
internally reason about the world using the spoken word.

At the same time as Whorf was studying Native American languages, on 
the other side of the Iron Curtain,39 the Soviet psychologist Lev Vygotsky was 
formulating a theory in which language and thought are reciprocally reinfor-
cing during cognitive development. According to Vygotsky, private menta-
tion grows out of early social exchanges in natural language (we think because 

	 37	 See (Whorf & Carroll 2007).
	 38	 See (Regier et al. 2005).
	 39	 Or what was to become known as the Iron Curtain. Churchill first used the phrase in this context 
in 1945.
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we speak), but this, in turn, hastens language development (we speak because 
we think). Vygotsky proposed that after practising external communication 
through repeated exchanges with a caregiver (‘Where is the cat? Oh! There 
is the cat’), the child learns to hold a sort of internal conversation with itself, 
which, in turn, kickstarts the ability to reason. Indeed, as every parent knows, 
children go through a phase of narrating their thoughts aloud whilst playing. 
Even adults report the occurrence of a covert inner monologue when plan-
ning, solving problems, or keeping information in mind. For example, you 
might do this when imagining a future conversation with your boss or re-
hearsing a phone number in memory.40

However, whilst the use of private speech has been intensively investigated 
from childhood to adulthood, there is minimal evidence that it plays a strong 
functional role in cognition. Instead, it might just be an echo of thought pro-
cesses occurring in a deeper, more expressive language in which thinking 
actually occurs. In fact, Vygotsky did not claim that thinking literally re-
duces to inner speech. Rather, he argued that language is transformed during 
internalization—​concepts become semantically enriched, self-​referential, 
and compressed, so that our thinking occurs in a special sort of mental lan-
guage, different from that used externally.41

For several decades, psychologists and AI researchers had relied on pure 
logic as a model for how people think. But the 1970s brought a major pivot 
towards the idea that the proper units of thought are mental states with a rich 
representational content—​our beliefs, desires, and intentions about the world. 
We primarily owe this turn to the swashbuckling philosopher and cogni-
tive scientist Jerry Fodor who, in his 1975 book Language of Thought, argued 
that we think in an internal coding system called mentalese. In mentalese, 
thinking consists of chains of discrete mental events, each of which instanti-
ates (or tokens) a hypothetical state of the world, thereby bringing it to mind. 
Mentalese resembles language as being composed of complex symbols amen-
able to semantic analysis. Chains of thoughts respect coherent semantics, al-
lowing symbolic reasoning (‘the incumbent will lose the election because her 
tax policy is unpopular’) by using a higher-​order form of logic that admits 
predicates, quantifiers, and logical connectives, rather than just true or false 
propositions. Mentalese is also argued to be compositional, meaning that so-
phisticated thoughts can be assembled from simple building blocks, for ex-
ample via recursion (‘the man voted for the senator that voted for the tax cut’). 

	 40	 Although whether inner speech is functionally significant for cognition remains controversial 
(Alderson-​Day & Fernyhough 2015).
	 41	 He describes inner speech as having a ‘note-​form’ quality.
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However, mentalese lacks morphology and phonology, making it different 
from the natural language we use to share thoughts with each other.

Whilst Fodor was formulating his theory, scruffy AI researchers were 
busy in the lab, trying to build program systems that could think and com-
municate in simplified natural language. By the 1960s and 1970s, some 
programs could express inferences about their environment using a limited 
vocabulary. For example, Terry Winograd’s SHRDLU program42 could 
reason symbolically about blocks in a virtual 3D world, using a restricted 
vocabulary to answer queries such as ‘what is the colour of the pyramid that 
is on top of the large red cube?’. Similarly, ELIZA was an early teletherapeutic 
system—​a program designed to reason about medical symptoms and offer 
diagnoses in natural language. In practice, however, computers were too 
slow to handle the vast expressiveness and open-​endedness of human lan-
guage, and these systems ended up using simple, formulaic expressions. 
ELIZA, for example, was prone to mindlessly parroting the user’s state-
ments back to them as questions or to blandly repeating ‘tell me more’, like 
a sort of chin-​stroking mechanized quack. The time for strong NLP had not 
yet arrived.

However, this research programme gave birth to a class of AI known as 
expert systems. Expert systems are computer programs designed to emu-
late or support human decision-​making, using large, hand-​curated data-
bases of human knowledge and preordained semantic reasoning principles 
(this dichotomy follows Pylyshyn’s prescription that a mind should have 
separate modules for knowing and thinking). One of the most ambitious 
projects, known as Cyc, debuted in the 1980s. Even in this early era, it was 
already recognized that building systems capable of human common-​sense 
reasoning was an important goal.43 To achieve this, the Cyc team began to 
codify—​in machine-​usable form—​millions of bits of information that hu-
mans use to reason sensibly about the world. The idea was that with enough 
pieces and a strong reasoner, Cyc would ultimately solve the jigsaw of human 
common sense.

For example, imagine I tell you that Freda is a frog.44 Does Freda live in 
the desert? To solve this, you might reason that frogs usually live by water, so 

	 42	 One of Winograd’s PhD students, Larry Page, went on to co-​found Google.
	 43	 Minsky wrote in 1974: ‘We still know far too little about the contents and structure of common-​sense 
knowledge. A ‘minimal’ common-​sense system must ‘know’ something about cause–​effect, time, purpose, 
locality, process, and types of knowledge . . . we need a serious epistemological research effort in this area’ 
(Minsky 1979).
	 44	 This example is taken from (Lenat et al. 1990).
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perhaps the answer is no. Cyc handles this sort of query using a similar pro-
cess, by drawing on hand-​coded knowledge from its prodigious memory:

IF frog(x) THEN amphibian(x)
IF amphibian(x) THEN laysEggsInWater(x)
IF laysEggsInWater(x) THEN livesNearLotsOf(x, Water)
If livesNearLotsOf(x, Water) THEN ¬ livesInDesert(x)

Thus, Cyc agrees that frogs do not live in the desert. Unfortunately, the world 
is complex and full of exceptions, so codifying human knowledge by hand 
is nightmarishly impractical. In his satirical travelogue Gulliver’s Travels, 
Jonathan Swift parodies the endeavour of assembling the world’s knowledge 
from scraps of information. Gulliver visits the Grand Academy of Lagnado 
where he finds a professor tending to a machine that generates random sen-
tences in the native language:

which he intended to piece together, and out of those rich materials, to give the 
world a complete body of all arts and sciences.

Indeed, whilst Cyc’s reasoning about frogs and deserts may appear sound, it 
could well be wrong. The deserts of Western Australia are home to at least 19 
species of frog, most of whom survive by burrowing underground during the 
dry months, waiting for the rains to fall.

By the early 2000s, computers had become larger and more powerful, and 
querying algorithms were faster and more efficient. This meant that expert 
systems—​cobbled together with human-​curated knowledge bases, search, 
verification, and quasi-​symbolic reasoning processes—​began to respond re-
liably to queries in circumscribed domains. For example, expert systems were 
developed that supported clinicians in making medical decisions (cognitive 
prostheses), greatly increasing diagnostic accuracy and potentially saving 
thousands of lives. However, the ultimate challenge—​to respond to open-​
ended queries about the world spanning any topic or theme—​remained 
elusive.

However, in early 2011, viewers of the TV quiz game show Jeopardy! were 
astonished by the news that one of the players in a forthcoming show would 
be a computer designed by IBM, pitted against two of the most successful 
past contestants. Jeopardy! is a game show with a twist—​on each round, the 
quizmaster provides an answer and the players have to propose the ques-
tions. Competing for cash, players can wager on their replies, placing a high 
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premium on having a well-​calibrated sense of confidence about the answers—​
an area where AI systems have traditionally fallen short. For more than three 
years, IBM had been working towards this challenge, and their question an-
swering (QA) system Watson had been endowed with an encyclopaedic 
knowledge base that included all of Wikipedia, reams of newswire, and shelves 
full of the world’s great literary works (Figure 3.5). Impressively, Watson tri-
umphed, beating human rival Ken Jennings, whose unbroken 74-​game win-
ning streak had made him the most successful Jeopardy! player of all time. 
Watson took home three times as many points as its opponents and bagged 
the overall prize pot of a million dollars. However, like other modern systems, 
it was not inviolable—​for example, in answering one question, it gave the im-
pression that it believed that Chicago was in Canada. IBM’s hybrid symbolic 
approach continues to bear fruit, and today they are working on systems that 
can compete in debating contests.45

Thus, over the latter part of the twentieth century, AI researchers enter-
tained both logic-​ and language-​based conceptions of the formal system 
in which thinking happens. These approaches differed in their neatness 
(should thinking be governed by rational first principles?) and scruffiness 
(or should thinking be bounded by what we actually say and see in the 
real world?). However, they shared the vision that thinking is symbolic in 
nature.
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Fig. 3.5  The architecture for Deep QA, which Watson used to triumph at Jeopardy! 
in 2011.

	 45	 See (Slonim et al. 2021). IBM would probably agree that this is a work in progress.
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A symbol is a representation that refers to an entity in a discrete and arbi-
trary way.46 For example, the spoken or written word ‘bird’ in English denotes 
that category of animal through a physical medium—​a pulse of air or a scratch 
on a page—​that does not bear any iconic (or image-​like) resemblance to 
actual birds.47 This arbitrariness means that symbols denoting other concepts 
that share features with birds (like bats) are no more similar to the bird symbol 
than those denoting different concepts entirely (like bricks). This character-
istic of symbolic representations means that they necessarily discard infor-
mation about the concept they denote. For example, ‘birds’ of many different 
shapes and sizes can all be denoted by a single symbol, so that the symbol 
sheds details about specific features, identities, or contexts that may be im-
portant for behaviour (such as whether its referent is a starling or a penguin).

Symbolic AI systems perform mental operations on knowledge. However, 
the representations that they process bear an arbitrary relationship to the ob-
jects and events to which they refer. Unlike in neural networks (and in bio-
logical brains), the meaning of items in memory is not signalled by their 
coding format. Thus, the inference engine cannot use the form or content of 
the representation to determine how to reason about it. For example, in early 
theorem-​proving systems, inputs were abstract tokens (such as p and q), the 
meaning of which was entirely external to the system. The theorem provers 
crunched the proposition of ‘if p then q’ in exactly the same way when p and q 
denote Aristotle is a man and Aristotle is mortal as when they mean Aristotle 
is a goat and Aristotle is Scottish. The computations are unaffected by the na-
ture of p and q, and are instead built into the systems as a set of immutable 
operations.

Similarly, expert systems encode knowledge, painstakingly gleaned by 
human researchers and hand-​coded into memory. However, like theorem 
provers, the way in which they reason is blind to the semantic content of the 
memory representation. Thus, Cyc applies the rule IF frog(x) identically when 
x is a frog and when it is a bicycle. Symbols are fundamentally arbitrary—​
this arbitrariness means that they are all equally similar to, and dissimilar 
from, each other, irrespective of what they represent. Fodor has called this 
the formality condition—​that mental processes have access only to formal 

	 46	 I take this definition of symbol from Peirce. I elaborate in Chapter 4. For a comprehensive introduc-
tion, see https://​plato.stanf​ord.edu/​entr​ies/​pei​rce-​semiot​ics/​. Note, of course, that words may not be purely 
symbolic, in that their sensory properties (phonetics or orthographics) may bear a non-​arbitrary relation 
to their referent. For example, Wolfgang Köhler (whom we discuss below) was the first to document that 
people exhibit systematic biases in the way they map shapes onto nonsense words, for example reporting 
that a spiky shape is more likely to be called ‘kiki’ than ‘bouba’, an vice versa for a curved shape.
	 47	 We owe the distinction between symbolic representations (which are arbitrary) and iconic representa-
tions (which share features with the represented object) to the philosopher Charles Peirce.

https://plato.stanford.edu/entries/peirce-semiotics/
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(non-​semantic) properties of the mental representations over which they are 
defined.48

For many decades, there were high hopes for purely symbolic approaches 
to AI. Towards the end of their careers, Newell and Simon received the Turing 
Award for their pioneering contributions to computing. They used their 1975 
award paper to flesh out what they called the ‘physical symbol system hypoth-
esis’ (PSSH) which states that:

A physical symbol system [such as a digital computer, for example] has the neces-
sary and sufficient means for intelligent action . . . [and] the symbolic behaviour of 
man arises because he has the characteristics of a physical symbol system.

thereby asserting a direct link between intelligence and symbolic reasoning in 
both humans and machines.

Today, however, the era of symbolic architectures has largely passed. 
Among advocates of contemporary deep learning, they are often dismissed 
as outdated, and lumped under the slightly patronizing moniker Good Old-​
Fashioned AI (GOFAI). This is mainly because the intervening years have re-
vealed that early symbolic systems suffered a fundamental limitation. This 
limitation stems from the nature of symbols themselves—​because they are 
fundamentally arbitrary, the information that they carry is established by 
convention. Symbols thus have meaning imposed upon them by fiat. In sym-
bolic AI systems, researchers simply assert their correspondence to the real 
world without ever requiring the system to ‘know’ anything about their en-
vironment. For example, researchers chose what p and q denoted—​assigning 
meaning to the symbols from their own (human) semantic repertoire. 
Symbolic AI researchers thus sidestepped the first of Pylyshyn’s two questions 
(‘What do we know?’) by denying the systems the opportunity to learn their 
own symbols from experience. Philosophers usually refer to this as the symbol 
grounding problem.49 Fodor prefers more colourful language, arguing that the 
formality condition leads to ‘methodological solipsism’:

If mental processes are formal, then they have access only to the formal proper-
ties of such representations of the environment as the senses provide. Hence, they 
have no access to the semantic properties of such representations, including the 
property of being true, of having referents, or, indeed, the property of being repre-
sentations of the environment.

	 48	 See (Fodor 1980).
	 49	 See (Harnad 1990).
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Whilst the symbol grounding problem is theoretical, it has important ramifi-
cations in practice. For example, when SHRDLU is posed the verbal question 
‘Is the red cube behind the green pyramid?’, this activates a set of symbols in 
its memory that the researcher has arbitrarily assigned to colours and shapes 
in the block world. But there was nothing that grounded the meaning of these 
objects (‘green’ or ‘cube’) in the blocks that were physically present in the array. 
SHRDLU and its fellow symbolic systems did not learn representations from 
input data. Instead, they had them handed on a plate. This makes symbolic AI 
systems forever parasitic on human knowledge, grossly limiting their expres-
siveness and potential for creativity. For example, SHRDLU had a vocabulary 
of only about 50 verbal concepts and no way of acquiring others, except by re-
searcher handcrafting, so unless the researcher added the symbol ‘pink’, then 
it could not express anything about pink blocks. Increasing awareness of the 
symbol grounding problem led to heightened interest in AI systems that learn 
their own concepts, rather than purloin those of the researcher.50

Nevertheless, this bygone age of symbolic AI laid important foundations 
for future theories of intelligence. One pathway by which ideas were handed 
forward was through the development of systems capable of instrumental 
means-​end reasoning and the parallel study of goal-​directed behaviour in 
psychology and neuroscience.

3.5  Mental models

On 7 May 1945, two days before the end of the war in Europe, the director 
of the Applied Psychology Unit in Cambridge, UK, was cycling past King’s 
College when he collided with an open car door. Thrown from his bicycle, he 
was struck unconscious by a passing lorry and died later that night. He had 
just published his first book The Nature of Explanation, which married phil-
osophy and psychology to articulate a new theory of the human mind. His 
name was Kenneth Craik and he was just 31 years old.

Throughout the first half of the twentieth century, psychology had been 
dominated by behaviourism, the school of thought that reduces all psycho-
logical processes to the acquisition of habitual links between inputs and out-
puts. As the war ended, this movement was still in its heyday. In 1950, the 
radical behaviourist B. F. Skinner wrote an influential article entitled ‘Are the-
ories of learning necessary?’, arguing that we should dispense with conjecture 

	 50	 See (Garnelo & Shanahan 2019).
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about the invisible changes in mental state that occur as learning progresses 
and instead focus exclusively on the observables—​variables manipulated, and 
data collected—​lights, tones, shocks, rewards, and lever presses.51 But a new 
era was just around the corner, driven by Craik and other contemporaries. 
In psychology and philosophy, the theoretical pendulum was swinging away 
from behaviourist models and towards mentalist models of the mind, which 
proposed instead that thinking itself could be described in the mechanical 
language of information processing.

In his book, Craik rejected the doctrine that learning relies on stick and 
carrot alone. Imagine building a bridge, he argued. The notion that the op-
timal design could be achieved by trial and error is absurd. Instead, it is 
planned meticulously in advance by an engineer with knowledge of bending 
moments and force distributions.52 Laying the foundations for modern cogni-
tive science, Craik argued that human intelligence is grounded in the ability to 
convert sensory inputs into numbers, words, or other symbols, which, in turn, 
are the building blocks of thought. He wrote:

My hypothesis then is that thought models, or parallels reality—​that its essential 
feature is not ‘the mind’, ‘the self’, nor ‘sense data’ nor propositions but symbolism, 
and that this symbolism is largely of the same kind as that which is familiar to us in 
mechanical devices which aid thought and calculation.

Craik’s radical idea in the Nature of Explanation is that the human mind makes 
its own symbols. He called this process translation and argued that it occurs 
when sensory data are transformed (or ‘translated’) into symbolic representa-
tions that can then be used for reasoning:

A physical object is ‘translated’ into a working model . . . comprising words, num-
bers or other symbols.

This vision of a mental model sounds quite modern.53 In particular, Craik 
stated that our internal model is an analogue of the external world it represents 
(in terms offered by the philosopher Charles Peirce,54 the model is iconic).

	 51	 Two years earlier, Skinner had published a utopian novel entitled Walden Two, in which a uni-
versal programme of behavioural engineering—​implemented via a series of carefully timed rewards and 
punishments—​entrains a community to live together in peace and prosperity.
	 52	 Tolman offered a comparable example of a man escaping a burning building by considering the hall-
ways, doorways, and exits.
	 53	 In fact, anticipating the generative models that can be used today for the ‘dreaming’ of photorealistic 
faces or almost-​bearable music, Craik presciently observed that the basic representation in the ‘working 
model’ is a predictive one—​its role is to attempt to mimic how events actually unfold in the world.
	 54	 Discussed in Chapter 4.
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By a model we thus mean any physical or chemical system which has a similar 
relation-​structure to that of the process it imitates. By relation-​structure I do not 
mean some obscure non-​physical entity which attends the model, but the fact 
that it is a physical working model which works in the same way as the process it 
parallels.

This implies that the representational contents are not purely arbitrary but 
retain their real-​world similarity structure—​and thus their grounding in 
experience. Craik was arguing that brain function involves a process of rep-
resenting objects and events in a mental model that encodes how they inter-
relate. Today, this might seem obvious. But at the zenith of the behaviourist 
movement, it was both radical and heretical.

During the 1920s and 1930s, the psychologist Edward Tolman studied the 
tendency of rats learning to forage for rewards in a maze. In a classic experi-
ment, he first allowed one group of rats to explore the maze freely for several 
days without reward, before exposing them to a standard operant schedule 
in which they were rewarded for reaching a specific location. Those rats that 
had explored the maze previously needed only a handful of rewards to learn 
to make a beeline for the food (‘few-​shot’ learning), whereas the other group 
learnt slowly by trial and error. To Tolman—​who described himself as a com-
mitted behaviourist—​this strikingly revealed that learning is not slavishly 
driven by reward. Rather, during unrewarded free exploration, the rats must 
have learnt to link chains of states (maze locations) together into a sort of 
mental map which they could then exploit for faster future reward learning.55

These findings led Tolman to embrace the centrality of thinking and rea-
soning for the study of behaviour:

Can we, now, shift our point of view and begin to talk about apparently internal 
subjective things such as thoughts? My answer is that thoughts, or at least the kind 
of thought with which we are here concerned, can be conceived from an objective 
point of view as consisting in internal presentations to the organism (on a basis of 
memory and association) of stimuli not actually present but which would be pre-
sent if some hypothesized action were carried out.

Tolman built an elaborate theory based on his rodent work, in which mental 
processes are oriented towards a proximal state (such as a chair) which then, 
by a relational process driven by stimulus–​stimulus learning, is linked to other 

	 55	 See (Tolman 1930).
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states (such as a table) or affordances (such as sitting).56 By recursion, this pro-
cess allows the agent to mentally navigate chains of states, so that, in Tolman’s 
preferred example, a researcher might infer that ‘this chair, if kicked out of the 
way, will conduce to the catching of yonder escaped rat’ (this provides a fasci-
nating window into the daily challenges Tolman faced in the lab).57 He called a 
full assemblage of states a cognitive-​like map, counterpointing it to the meta-
phor preferred by the behaviourists of brain-​as-​telephone-​exchange:58

[The brain] is far more like a map control room than it is like an old-​fashioned 
telephone exchange. The stimuli, which are allowed in, are not connected by just 
simple one-​to-​one switches to the outgoing responses. Rather, the incoming im-
pulses are usually worked over and elaborated in the central control room into a 
tentative, cognitive-​like map of the environment. And it is this tentative map, indi-
cating routes and paths and environmental relationships, which finally determines 
what responses, if any, the animal will finally release.

Today, ‘cognitive maps’ remain a topic of fervent study among neuroscientists. 
Below, we consider emerging theories of how a cognitive map is learnt and 
encoded in the complex representational properties of neurons in the mam-
malian neocortex and hippocampus.59

Together, thus, Craik and Tolman brought psychology back down to earth. 
They reminded their colleagues that behaviour is not just an elaborate chain of 
reflexes—​as Skinner proposed. But nor are humans walking logic machines, 
whose mental cogs and gears compute the truth conditions of propositions, as 
Newell and Simon later argued. Humans—​and maybe even rats—​have mental 
models, but these models have semantic content. The language of thought re-
fers to, and is grounded in, the objects and events that occur in the world.

Across the subsequent decades, this idea gradually seeped into the psy-
chological mainstream. A major advocate of the ‘mental models’ theory has 
been Philip Johnston-​Laird, whose empirical work has tirelessly reminded us 
that our reasoning processes are not insulated from knowledge of the world—​
that in practice, Fodor’s formality condition is unmet.60 People reason more 

	 56	 Tolman coined the terms discriminanda and manipulanda to refer to these states. He in fact was very 
fond of neologisms, but as far as I know these were the only ones that caught on. He referred to his theory of 
mental process as the ‘sign-​Gestalt-​expectation’ theory, which is a bit of a mouthful.
	 57	 See (Tolman 1933).
	 58	 See (Tolman 1948).
	 59	 See (Behrens et al. 2018) and (Whittington et al. 2020).
	 60	 See (Johnson-​Laird 2010).
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accurately when they can harness their knowledge of the world. For example, 
people are more likely to mistakenly affirm the consequent61 in the syllogism:

All oak trees have acorns
This tree has acorns
Therefore, this tree is an oak

than in the near-​identical alternative:

All oak trees have leaves
This tree has leaves
Therefore, this tree is an oak

which can be rejected by calling upon knowledge that all trees, and not just 
oaks, have leaves. Similarly, a well-​known study from the 1960s confronted 
participants with four cards, labelled with the letters or digits 4, 7, A, and D, 
and asked them which cards needed to be turned over to confirm the rule ‘if 
there is an even number on one side, there is a vowel on the other’. Participants 
tended to overlook that this can potentially be falsified by turning over the 
D. However, the task can be adapted so that the cards show beer, coke, 19, and 
35 and participants are told that these represent the age of patrons of a bar and 
their beverages. Now if participants are asked to verify the rule ‘If a patron is 
drinking a beer, then they must be 21 years or older’, they have no hesitation in 
turning over the 19 card to see if there is ‘beer’ on the other side—​even though 
the logical inference is identical. As Johnston-​Laird says, our mental models 
are populated with semantic knowledge, so we do not have to rely purely on 
logic to make inferences about the world.62

3.6  Reaching the banana

When the First World War broke out, the German psychologist Wolfgang 
Köhler had the good fortune to be marooned on a lush volcanic island off the 
North African coast. He had arrived in Tenerife in 1913 to study the behav-
iour of apes at the Prussian Academy of Sciences anthropoid research station, 

	 61	 That is, more likely to wrongly assert that it is valid.
	 62	 The original task was from (Wason 1960) and the cheat detection variant was first described in (Cox & 
Griggs 1982), and later promulgated by Tooby and Cosmides who used it for a theory of intelligent social 
exchange (Cosmides et al. 2010).
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and as the war dragged on, he ended up staying 6 years.63 During that time, he 
made some striking observations about chimpanzee behaviour, which he de-
scribed in his 1925 book The Mentality of Apes.

Köhler’s research question was simple: can animals solve new problems 
without extensive training? To address this, he first measured whether chim-
panzees could reach, on the first try, a coveted banana that they had witnessed 
being placed behind a barrier. Unlike cats and dogs, who were known to fail 
on equivalent tasks, the chimps instantly circumvented the obstacle to grab 
the reward. Upping the ante, Köhler then created scenarios in which a banana 
could only be attained by scaling a pole, reaching with a stick, or building a 
rickety tower of boxes. Figure 3.6 shows a chimp known as Grande scaling a 
box mountain of his own construction to reach the prize hanging high above 

	 63	 During which time, he may, or may not, have been recruited into German Intelligence to spy on 
passing naval vessels.

Fig. 3.6  A picture of the chimp Grande climbing on wobbly boxes to reach a banana.
From http://​www.pig​eon.psy.tufts.edu/​psyc​h26/​ima​ges/​kohl​er3.JPG.

http://www.pigeon.psy.tufts.edu/psych26/images/kohler3.JPG
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the ground, whilst an admiring friend looks on. Another ingenious chimp 
called Sultan became a master problem-​solver, working out (after some ru-
mination) that two short sticks could be joined together to make a long 
stick, which could then be wielded to knock down an out-​of-​reach banana. 
In fact, recent work has shown that quite astonishingly, even birds can dis-
play seemingly human-​like problem-​solving abilities, including the judicious 
fashioning of tools to retrieve rewards secreted in puzzle boxes.64

Köhler’s book confronted universal piety in the natural sciences—​that 
the human mind is qualitatively different to that of other species, including 
our nearest primate cousins. His observations were also decidedly incon-
venient for contemporary theories of behaviour. At the time of his chim-
panzee experiments, the behaviourist zeitgeist was ascendant—​just 10 years 
earlier, Thorndike had published his famous law of effect, which stated that all 
learning follows from the repeated linking of stimulus and response, and was 
based on observations of animals escaping puzzle boxes.65 It was thus perhaps 
unsurprisingly that on publication, The Mentality of Apes was derided as being 
unscientific and roundly ignored by most of Köhler’s colleagues.

But Köhler was on to something. One salient observation was that the 
chimpanzees did not usually solve problems on the very first try. Often, they 
first tried out methods that had worked previously and, when these failed, 
paused to engage in what looked like serious contemplation. They would 
often, from one moment to the next, spring from contemplation into action, 
as if experiencing a moment of insight. Seen through Köhler’s eyes, the chim-
panzees seemed to work out how to reach the banana by thinking about it. He 
described it as follows:

only that behavior of animals definitely appears to us intelligent which takes 
account from the beginning of the lay of the land, and proceeds to deal with it in a 
single, continuous, and definite course. Hence follows this criterion of insight: the 
appearance of a complete solution with reference to the whole lay-​out of the field.

Köhler is claiming that the chimpanzees take into account the whole structure 
of the problem (‘the lay of the land’) and form a plan (‘a single, continuous and 
definite course’) to reach a solution (‘insight’). The audience of the 1920s was 
not ready for this sort of claim and promptly accused him of anthropomorph-
izing his subjects. But by the 1950s, ‘thinking’ had returned to the research 
agenda with gathering respectability, and Köhler’s work was ripe for revival.

	 64	 See (Hunt 1996).
	 65	 See Chapter 6.
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In 1958, three distinguished American psychologists—​Karl Pribam, George 
Miller, and Eugene Galanter—​descended on Stanford’s Center for Advanced 
Study for a year-​long sabbatical. Three semesters of fruitful discussion led to a 
book, which they called Plans and the Structure of Behavior. The book distilled 
the meditations of Craik, Tolman, and Köhler into a plausible, mechanistic 
theory. The theory was grounded in the reality of early AI programs built by 
Newell and Simon and the emerging principles of cybernetics. It thus built 
a bridge between early psychological theories of mentation and the nascent 
field of AI research.

By the post-​war era, psychologists and AI researchers had agreed that 
the ability to reason was a sensible metric for the mind. However, until that 
point, most focus had been on epistemic modes of reasoning. Early theories of 
thinking were concerned with how the brain determines the validity of a the-
orem or how to build a system that judges the accuracy of a medical diagnosis. 
Their currency was truth and falsehood—​the hard the hard-​and-​fast nature of 
things. Pribam, Miller, and Galanter (PMG) argued that these proposals over-
look a vital component: that an intelligent system needs to act. They quote an 
earlier version of this remonstrance, by Edwin Guthrie:

Signs, in Tolman’s theory, occasion in the rat realization, or cognition, or judgment, 
or hypotheses, or abstraction, but they do not occasion action. In his concern with 
what goes on in the rat’s mind, Tolman has neglected to predict what the rat will do.

PMG were worried that in focussing on the gap from ‘sign to knowledge’, 
Tolman overlooked the step from ‘knowledge to action’:

Tolman, the omniscient theorist, leaps over that gap when he infers the rat’s cogni-
tive organization from its behavior. But that leaves still outstanding the question of 
the rat’s ability to leap it.

Here, the authors are evoking the dual-​process model of cognition that 
Pylyshyn posits above. Sensory data (signs) are first converted into 
knowledge—​to a world model that encodes their mutual relations (‘what we 
know’). In focussing on this process, however, Craik and Tolman overlook 
the next question, which is how that knowledge is used to generate intelli-
gent behaviour (‘what we do with knowledge’). The criticism was particularly 
stinging at a time when behaviourism loomed large on the theoretical playing 
field, because behaviourists considered themselves to have solved the whole 
‘sign to action’ gap with a single construct—​the conditioned reflex.
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PMG also accused Köhler of overlooking the problem of how mental 
models lead to intelligent action:

Köhler makes the standard cognitive assumption: once the animal has grasped 
the whole layout he will behave appropriately. Again, the fact is that grasping the 
whole layout may be necessary but is certainly not sufficient as an explanation of 
intelligent behavior.

Instead, PMG called for instrumental models of reason. They wanted models 
that explain how Tolman’s rats used their cognitive map of the maze to find 
the food pellet, and how Köhler’s chimpanzees used their representation of 
how boxes, sticks, and chimp bodies interact physically to reach the banana. 
Whilst psychologists continued to laud the human powers of abstraction in 
chess, they were asking for a theory explaining how the Russian grandmaster 
Mikhail Botvinnik used his mental model of the game to win the world chess 
championship in the year that they were writing.66

In their book, they made a proposal. At the heart of their theory is what 
they call a ‘test, operate, test, exit’ (TOTE) unit. Each TOTE unit controls an 
action, and continuously encodes the degree of incongruity between an actual 
and a desired state that results from that action, with a command to exit initi-
ated when that incongruity drops to zero. For example, imagine hammering 
a nail into place: the action (hammer) is executed repeatedly, whilst there is a 
discrepancy between the current state (nail protruding) and the desired state 
(nail fully embedded). The theory thus incorporates the basic cybernetic feed-
back principle that was shared by many theories of motivated behaviour at the 
time.67

In fact, as they wrote, Newell and Simon—​emboldened by the recent suc-
cess of the Logic Theorist—​were already attempting to build a model capable 
of instrumental reasoning.68 Rather ambitiously named the General Problem 
Solver (GPS), it was a classical AI system designed to reason about attain-
ment of a distant goal state—​such as reaching the banana or checkmating 
your opponent. It represented each problem as a directed graph that could be 
mentally traversed by following edges (taking actions) until a desired node 

	 66	 Botvinnik is, in fact, a distant relation to the distinguished cognitive scientist (and DeepMind’s 
Director of Neuroscience) Matt Botvinick, who, despite his many talents, claims to have no aptitude 
for chess.
	 67	 See Chapter 4. Also, for a modern-​day take on TOTE and its relationship to the ideomotor principle, 
see (Pezzulo et al. 2006).
	 68	 In fact, PMG cited Newell and Simon’s report (which was in press in 1959) in their book and were 
candid about the extent to which it influenced their thinking.
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(or goal state) was achieved. Planning was thus a search process through the 
graph, constrained by a set of operators, which defined the admissible rules by 
which actions converted from one state into another.

In the earlier Logic Theorist, these operators had been drawn from a limited 
class defined by the rules of logical calculus. In building the GPS, Newell and 
Simon envisaged a more general class of operator that enacted open-​ended 
transformations of one state into another—​like knowing that fitting a key in 
a lock would transform a door from open to closed. These general-​purpose 
operators were needed to reason about the sorts of open-​ended problems 
people face in the real world, such as getting your kids to school when your 
car has broken down. The GPS employed a feedback loop highly reminis-
cent of TOTE, in which goals were evaluated, methods were executed, and 
subprocesses were initiated or halted. However, the GPS allowed for the se-
lection of new operators within the execution cycle, such as when inaccurate 
hammering drives the nail askew and the claw must be used to extract and 
straighten it.

Newell and Simon applied the GPS to a classical reasoning problem known 
as the Tower of Hanoi task, in which discs have to be moved between three 
stacks under the constraint that larger discs never lie underneath smaller ones 
(Figure 3.7). Adapted to the lab,69 this is one of a handful of tasks on which 
PFC patients systematically struggle.70 The GPS was able to solve the Tower 
of Hanoi problem, along with 11 other tasks that require reasoning over rela-
tively constrained state spaces. For example, in one toy planning problem, the 
agent has to work out how to ferry missionaries across a river without leaving 
any one individual stranded alongside a cannibal, in case they get eaten.71

Goal
state

Fig. 3.7  A simplified version of the Tower of Hanoi task.

	 69	 Shallice renamed it the Tower of London task.
	 70	 See (Shallice 1982).
	 71	 See https://​en.wikipe​dia.org/​wiki/​Mission​arie​s_​an​d_​ca​nnib​als_​prob​lem.

https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
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However, when the GPS was faced with problems that involved greater 
combinatorial complexity, it floundered. This is because the number of pos-
sible paths through the graph increases exponentially with the number of 
nodes and edges, making naive search unfeasible for larger problems such 
as chess. This problem, which is known as the curse of dimensionality, re-
mains possibly the most significant in AI research today. When there are 
so many alternatives, how can we possibly decide on the best course of ac-
tion? When anything is theoretically possible, how can we anticipate the 
consequences of our decisions? How do we avoid the near-​limitless cost of 
inefficient searches, and explore only those pathways that seem the most 
promising?

In fact, by the time they succeeded at vanquishing a grandmaster at chess 
some 40 years later, IBM had made strides in electronic computing that were 
unimaginable in Newell and Simon’s day, permitting Deep Blue to process 
millions of possible pathways per second. But brute computational power 
is not the whole answer. The legacy of the GPS is that it defined the general 
framework that our theories still inhabit—​planning is heuristic search over 
structured state spaces, and the secret is to find the right heuristics. The 
GPS uses a very general heuristic: subgoal reduction, in which progress 
is tracked towards interim states that form useful waystations en route to 
the ultimate goal. Deep Blue employed a different type of heuristic, known 
as alpha-​beta search, that is common for two-​player zero-​sum adversarial 
games. It involves mentally simulating (and numerically evaluating) the 
moves of both the protagonist and opponent, but not exhaustively: moves 
that cannot possibly be better than the current best option are discarded—​
pruned away.72 In fact, over subsequent decades, a vast industry of plan-
ning algorithms developed, with many of the more promising candidates 
being deployed to meet impressive real-​world challenges.73 The GPS itself 
spawned many subsequent architectures, including both direct descend-
ants, such as SOAR, and related systems for means-​end reasoning, at least 
one of which has been deployed to solve a schematic version of the banana 
problem that Köhler posed to his chimpanzees.74

	 72	 Because those moves yield a maximum score for the protagonist that is lower than the opponent’s min-
imum score.
	 73	 See (Pearl 1984).
	 74	 See (Fikes & Nilsson 1971). For details of SOAR, see (Laird 2012).
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3.7  Your brain as statistician

The world is a confusing and ambiguous place. Uncertainty pervades every 
aspect of our lives, from the banal to the profound. Was that sneeze the first 
sign of a nasty bout of flu? Will it rain tomorrow? Does that person like me? 
Did I study hard enough to pass the exam? Who will win the next football 
match or election? For both the post-​war pioneers of AI research, who lived 
under the shadow of nuclear annihilation, and for today’s generation, who 
are faced with a global climate emergency, even the very continuation of life 
as we know it remains in doubt. In order to reason, forge plans, and share 
information, our mental states encode beliefs about the world. Where states 
are uncertain, these beliefs can be graded and expressed as probabilities—​
you might deem the odds of political change at the next election to be 50:50, 
or grumble that it is likely, but not certain, that it will rain for your birthday 
picnic tomorrow.

Systems that deal in hard-​and-​fast logic are ill-​suited to handling uncer-
tainty. We have seen that Cyc, when asked whether Freda the frog lives in the 
desert, can only answer yes or no. A better answer would be that it is possible 
that Freda inhabits the Australian outback, but more probable that she lives in 
a nice, moist forest glade by a pond. Beginning in the 1990s, a major new cur-
rent of thought emerged in psychology, neuroscience, and AI research, based 
around the idea that thinking is grounded in probabilistic inference. This 
sparked two decades of debate about whether people are capable or clueless 
when it comes to making inferences in an uncertain world.

If the weather forecast tells you that there is a 70% chance of rain tomorrow, 
you know exactly what that means. Surprisingly, however, just 400 years ago, 
neither mathematicians nor lay people understood that events could be as-
signed numerical probabilities of occurrence. Before the Enlightenment, the 
predominant view among European thinkers was that the world was fully 
determinate, with each person’s fate decided in advance by an omnipotent 
deity.75 In fact, there was no word for probability in its modern sense—​stating 
that something was probable meant that it had been sanctioned by a reputable 
authority. This is a quite remarkable lacuna, given the ubiquitous fondness 
for gambling among the aristocracy of the seventeenth century. However, in 
the 1650s, the young mathematician Blaise Pascal applied himself to the ques-
tion of how the stakes should be allocated if a game of chance is prematurely 

	 75	 The Jesuits were an exception to this—​they believed that each person had free will and was thus ac-
countable for their actions. A nice historical overview is provided in (Glimcher 2004).
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interrupted.76 In doing so, he hit upon a way to formalize probabilities as 
numbers, and thus laid the foundations for the modern fields of statistics, eco-
nomics, and machine learning.

A century later, on the other side of the English Channel, a Presbyterian 
minister and hobbyist statistician called Thomas Bayes stumbled on an insight 
that would prove to be equally transformative. Bayes identified one solution 
to the problem of inverse probability, or what we can infer about the distri-
bution of a random variable after sampling from it one or more times. For 
example, if two football teams of unknown quality play a five-​match tourna-
ment, and team A wins the first match, then what is the most likely final re-
sult? Later, Pierre-​Simon Laplace elaborated Bayes’ insights into their current 
form, which dictates how an agent should correctly update their belief about a 
hypothesis h after observing some data d. The hypothesis states that the agent’s 
posterior belief in h should be proportional to the product of their prior belief 
in the hypothesis p(h) and the likelihood of the observed data under the hy-
pothesis p(d|h). Thus, if you believe a priori that team A has a 60% chance of 
winning the tournament, and they win the first game, then your posterior be-
lief in team A’s victory increases from 0.6 to 0.82.77

Bayes’ rule thus prescribes exactly how confident you should be in your be-
liefs after making observations about an uncertain world. It thus provides the 
basis for a psychological theory of reasoning, in which the units of thought 
are not hard-​and-​fast propositions or contentions, but graded degrees of sub-
jective belief. However, whether people do, in fact, reason according to Bayes’ 
rule—​and whether mental states can reasonably be said to encode degrees of 
belief—​remains a hotly contested question.

In some settings, people seem to behave naturally like intuitive statisticians. 
If I ask you: given that a poem has at least 1000 lines, how long is it likely to 
be? Or given that a person has already lived to 80 years of age, how long are 
they likely to live? To answer these questions like a statistician, you need to 
implicitly know the distribution of poem lengths and lifespans and combine 
this prior with a likelihood term.78 This is tricky, because poems and lifespans 

	 76	 For example, if I bet £10 that a coin will come up heads twice in a row, and you bet £10 that it will not, 
and after one head has been tossed, the game is interrupted, how should we fairly divide the £20? To us, 
it is obvious that there is now a 50:50 chance of either outcome, so the money should be divided equally 
(although my bet was a bit silly in the first place). As a historical note, the Renaissance mathematician 
Gerolamo Cardano also conducted foundational work on the probability theory from games of chance 
nearly a hundred years before Pascal.

	 77	 Formally, p h d
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	 78	 p(d|h) for all h < d will be zero, because (for example) a lifespan cannot be shorter than the age the 
person has already reached.
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have different distributions—​most poems are quite short (say 50 lines), but 
some, like the Odyssey, are of epic proportions, whereas lifespans are approxi-
mately normally distributed, but with a skew to the left (Figure 3.8). Thus, if 
you know that a poem is 1000 lines long, it might easily stretch to 5000, but 
even if a person has made it to the grand old age of 100, they are unlikely to 
celebrate a double century. In 2006, the cognitive scientists Tom Griffiths and 
Josh Tenenbaum posed questions like these (involving movie runtimes, cake 
baking times, and the durations of Pharaoh reigns) to undergraduate partici-
pants, and their predictions matched almost exactly those of an ideal observer 
with access to the true distributions who used Bayes’ rule to compute optimal 
probabilities.79

A large literature in psychology, spanning more than 20 years, has iden-
tified numerous other cases—​especially in the domains of visual perception 
and skilled motor control—​where people behaved as if they used Bayes’ rule 
to make optimal inferences about the world.80 For example, we can interpret 
numerous canonical visual illusions as if people were applying prior beliefs 
learnt in the natural world, such as the way that luminances change when 
objects cast shadows, or the frequencies of contours of cardinal and oblique 
orientation in natural images, to interpret artificial stimuli.81 This has led to a 
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Fig. 3.8  People’s predictions for various everyday phenomena. The top row of plots 
shows the empirical distributions of the total duration or extent, total, for each of these 
phenomena. The bottom row shows participants’ predicted values (dots) and the 
predictions of a Bayesian model (lines).
Reprinted from Griffiths & Tenenbaum 2006, Fig. 2.

	 79	 See (Griffiths & Tenenbaum 2006).
	 80	 Among many possible references, I strongly recommend this recent book, which makes a convincing 
argument about Bayesian inference as the computational basis for human intelligence (Gershman 2021).
	 81	 See (Simoncelli 2003).
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vibrant intellectual community focussed on Bayesian explanations for behav-
iour and brain function.82

In the neocortex, neurons tend to carry information about the recent 
past, and their responses are influenced by interconnected cells with nearby 
receptivity. In other words, the way the brain works seems to lend itself to 
integrating priors over space and time with the likelihood that an object or 
event has occurred. Neuronal signals are themselves stochastic, and their ag-
gregated statistics resemble those of variables in the external world. For ex-
ample, resting neural activity in the neocortex of young ferrets whose visual 
experience has been carefully controlled across development matches the 
long-​run average of evoked neural activity, as if spontaneous activity were a 
prior on evoked signals.83 Various theories of probabilistic computation have 
been proposed, including those in which neural ensembles code for probabil-
ities directly or spikes are samples of evidence for particular latent variables.84 
However, it remains unclear whether neural and behavioural signatures of 
probabilistic computation in humans and other animals, including approxi-
mation of optimal posterior beliefs during inference about noisy sensory sig-
nals, cannot be equally well explained by simple neural network models.85

In machine learning, the use of Bayesian methods has been intertwined 
with a clarion call for greater focus on systems that infer causality among vari-
ables. The most influential voice behind this call is Judea Pearl, a titan of AI 
research whose career began with the identification of new heuristic tools for 
classical planning. In the 1970s, Pearl went on to found the probabilistic ap-
proach to machine learning. Every student is taught that correlation does not 
imply causation. For example, imagine that you hear on the news that people 
who have taken a new medicine are at greatly increased risk of serious illness, 
leading to indignant calls for its withdrawal. A canny student knows to ask 
whether it is not simply that more people who are at risk of serious illness have 
been offered the medicine in the first place. To understand the effect of the 
medicine, you need to account for the conditional dependence among the vari-
ables, in this case whether the probability of illness is increased or not condi-
tional on the medicine being given.

In the 1990s, Pearl developed a tool, known as the Bayesian network, that 
modelled variables in a directed graph structure where some variables could 
probabilistically influence others (but not vice versa), using an approach we 

	 82	 For the sake of brevity, I will not go into the lengthy debates that have occurred over whether this 
theory is useful or indeed falsifiable (Bowers & Davis 2012).
	 83	 See (Berkes et al. 2011).
	 84	 See (Aitchison & Lengyel 2017).
	 85	 See (Orhan & Ma 2017).
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now call belief propagation. He developed a formal system that he called do-​
calculus to capture the way in which exogenous intervention affected the vari-
ables. For example, if smoking causes cancer, but not vice versa, then cancer 
rates should go up as more people smoke, but conversely, exogenous factors 
that increase cancer (such as a radiation leak) should not affect the prevalence 
of smoking. Bayesian networks can thus be used to infer causal structures 
in data. For example, three variables x, y, and z can mutually affect one an-
other according to at least three different patterns: a chain (x→y→z), a fork 
(x←y→z), and a collider (x→y←z), where the arrow signals the direction of 
causal influence. With enough computational resource and good approxima-
tion methods, Bayesian networks can thus be scaled up to reason about the 
structure of complex knowledge systems.

Remarkably, there is evidence from developmental studies that young chil-
dren reason using the causal principles prescribed by Bayesian networks. In 
one classic study, a team led by the psychologist Alison Gopnik taught pre-
schoolers that a box (which they called a ‘blicket detector’) played an en-
gaging melody when activated with an object called a blicket. By exposing 
participants to some objects that activated the machine (e.g. a blue cube) and 
others that did not (e.g. a red cube), as well as combinations of objects (red 
and blue cubes together), the team was able to show that children as young as 
20 months formed simple intuitive theories about causation, rather than just 
learning simple associations between event probabilities.86

Other studies have revealed that childrens’ theories about the world shape 
the way they explore and learn. For example, Aimee Stahl and Lisa Feigenson 
showed 11-​month-​old infants toys that behaved in unexpected ways, for ex-
ample violating spatiotemporal continuity (a floating car) or object solidity 
(a ball that rolls through a wall). It is well established that very young infants 
look by preference at these surprising events, but here the authors showed 
that infants prefer to play with, and will more readily learn new information 
about, an object that behaved in unexplained ways. The childrens’ subse-
quent play with the objects even seemed to betray a process of causal hypoth-
esis testing, with infants exposed to the floating car more likely to drop it on 
the floor (potentially to check if it floats) and those who saw the car appar-
ently drive through the wall more likely to bang it against the table (possibly 
to verify its solidity).87 In other words, even very young children can behave 

	 86	 See (Gopnik et al. 2001). For other excellent work in causal inference in preschoolers, see (Schulz 
et al. 2007).
	 87	 See (Stahl & Feigenson 2015). For the original research on expectancy violation, see (Spelke et al. 1992).
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like sophisticated reasoners, consistent with formal frameworks for inferring 
causation that depend on Bayesian inference.

3.8  Playing Lego with concepts

The classical symbolic approaches that kickstarted AI research in the 1950s 
have since fallen from fashion. One reason is that by committing to the hard-​
and-​fast constraints of logical reasoning, classical systems did not allow for 
graded degrees of subjective belief. Bayesian models, as we have seen, rescue 
our theories of reasoning from this shortcoming, by allowing beliefs to be 
computed by combining continuously varying probabilities.

However, symbolic approaches to computation have a crucial advan-
tage: they allow for limitless productivity from a limited number of mental 
primitives. Thus, symbolic representations of complex concepts (like second 
cousin once removed or fastest sprinter or majority of delegates) need not each 
rely on a bespoke mental representation. Rather, elaborate concepts can be 
composed from simpler building blocks by using a set of formal rules. For 
example, rules describing family relations (cousins share a grandparent; 
second cousins share a great-​grandparent; the ‘removal’ refers to generational 
difference) allow us to understand and express any concept of the form nth 
cousin k times removed. Building fastest sprinter from transitive rules given 
by superlatives and comparatives allows us to understand faster sprinter or 
slowest sprinter, or even slower marathon runner. We can think of a compos-
itional theory of thought as forming concepts from the ground up, similar to 
a car or a spaceship that might be built from a simple set of tiles, plates, and 
bricks in a construction toy like Lego™. Compositionality is a powerful prin-
ciple with the potential to endow computation with great versatility, flexibility, 
and expressiveness.

The notion that intelligent systems should reason using a composable set 
of rules motivated the earliest AI systems, in which chains of predicate logic 
were used to deduce the validity of arguments and theorems. The same idea 
scaffolded cognitive theories of human intelligence that began to emerge 
in the 1970s. Fodor famously argued that people reason in a compositional 
language of thought, which he dubbed mentalese. At about the same time, 
Chomsky proposed that the universal structure of human language arises be-
cause people are born with an innate mental grammar that prescribes the rules 
for generating phrases from their constituent words. Cognitive scientists has 
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long been beguiled by the goal of deriving a simple set of rules that govern the 
language of thought. But what might these rules be? What constraints might 
govern the way we think?

This question has been attacked from different angles. Psychologists have 
attempted to infer the constraints on thinking by measuring the ease or diffi-
culty with which people make inferences under various rule-​based systems. 
One popular idea is that concepts are composed from binary (or Boolean) 
expressions like AND, OR, and NOT, because the learnability of a concept can 
be predicted remarkably well from the Boolean complexity of the statement in 
which it is conveyed.88 The ‘complexity’ (or incompressibility) of a statement 
is the length of the shortest computer program in which it can be expressed, 
which, for Boolean complexity, can be measured in bits. For example, con-
sider the concept ‘{small AND spiky} OR {small AND [NOT spiky]}’. Because 
this is equivalent to ‘small AND {spiky OR [not spiky]}’, it can thus be com-
pressed to just ‘small’ and expressed with a single bit. However, the concept 
‘{small AND spiky} OR {[NOT small] AND [NOT spiky]}’ cannot be com-
pressed any further and thus requires four bits.

Computer scientists have studied the properties of formal languages, in 
which abstract systems of meaning are built from simple syntactic rules. For 
example, in a context-​free grammar, symbols are combined in a recursive pro-
gram defined by a production rule of the form A→α (which means ‘replace the 
left-​hand side with the right-​hand side’). Thus, for example, a language com-
prising the rules S→aSa and S→bSb can lead to the valid statement aabSbaa 
via recursive application.89 In 2008, a team led by Noah Goodman proposed 
a framework for understanding human concept learning as Bayesian infer-
ence over a space of syntactic rules within a context-​free grammar. Their work 
was developed under normative assumptions (e.g. a rational agent infers the 
posterior distribution over rules by using Bayes’ theorem) and with simple 
rules, but when used to predict data from experiments in which participants 
classified novel category members defined by binary attributes, it did a re-
markably good job.90 The major advance offered by this work is an account of 
human reasoning that combines the expressivity of a compositional language 
of thought with the inferential power of probability calculus.

	 88	 Learnability is measured as classification accuracy after a fixed training phase. This relationship held 
for 41 different types of rule (Feldman 2000). See (Shepard et al. 1961) for earlier work in this vein.
	 89	 S→aSa→aaSaa→aabSbaa. The goal of this research is to understand what can and cannot be com-
puted using simple production rules, and to develop methods for identifying valid exemplars in a formal 
language.
	 90	 The paper is (Goodman et al. 2008). The attempt was to capture data from the study by (Nosofsky et al. 
1994) and (Medin & Schaffer 1978).
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However, whilst this work showed that a particular class of grammar can 
be used to capture the vagaries of human categorization, it did not attempt 
full-​scale empirical characterization of the primitive operations which give 
the human language of thought its expressive power. For example, we might 
ask: is the non-​exclusive OR operation a viable primitive? What about the ex-
clusive or (XOR) operation? To address this, we need to measure the human 
propensity to learn concepts like ‘{tall AND [NOT green]} OR {NOT [tall 
AND green]}’ and ‘tall OR green’, and to directly compare the ability of dif-
ferent grammars to account for these empirical data. For example, if XOR is a 
primitive operand, then we would expect people to learn these concepts with 
equal readiness.

In a comprehensive study of this nature, Steven Piantadosi trained more 
than 1500 participants to learn by example 108 different concepts associated 
with the nonsense word ‘wudsy’, which could mean something as simple as 
‘false’ or as complex as ‘has the same shape as the blue object’. By fitting dif-
ferent models to the data, the authors found that the grammars that best ex-
plained human learning included quantifiers (such as the operators ‘there 
exists some . . .’ and ‘for all . . .’ as well as ‘there exists one or zero’), and that 
these grammars outperformed both simple and enhanced Boolean grammars. 
Exercises like this can capture human behaviour in striking ways and offer ro-
bust support to the idea that people learn by inferring rules from data.91

This framework, known as Bayesian program learning (BPL), uses prob-
abilistic inference to learn the structure of a generative program (or grammar) 
from the data it generates. Advocates of this approach have hoped that 
Bayesian methods might offer alternatives to deep learning systems, and per-
haps prove themselves to be faster, more flexible, and profligate with data. 
Consider, for example, the way we write a character by hand. Perhaps we can 
conceive of each character as generated by a program in which individual 
strokes and curls are composed on the page to make subparts and parts of 
each letter, which, in turn, are assembled into words. If so, we might be able to 
use BPL to learn the generative program, and harness the resulting model to 
both discriminate new instances of handwritten characters and generate new 
exemplars.

In 2015, a team led by Brenden Lake and Josh Tenenbaum used BPL to 
generate new instances of characters sampled from the Omniglot database, a 

	 91	 See (Piantadosi et al. 2016). The candidate grammars were based on a formal language called lambda 
calculus (λ-​calculus), developed by Alonzo Church in the 1930s. The same group have developed a pro-
gramming language called Church for describing stochastic generative processes (Goodman et al. 2014). It 
is worth noting the caveat that it remains unclear whether the specific grammars found to account best for 
the data depend on the sets of rules that the authors chose to define the concepts in their experiments.
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digital encyclopaedia of the world’s writing systems. BPL surpassed human-​
level performance for one-​shot matching of characters from the same al-
phabet (e.g. matching a single instance of an Ethiopic character to another, 
rather than to one in Mongolian script), outclassing deep networks that learnt 
from a large corpus of examples.92

Perhaps more impressively, BPL was sufficiently powerful that human par-
ticipants could not distinguish the generated characters from their original 
counterparts, so that the system passed a sort of Turing test for visual per-
ception. BPL is potentially a powerful tool, especially for domains involving 
systems governed by predictable rules of physical or social interaction, where 
sensible primitives for inference may be readily available. But it is inevitably 
subject to the critique that researchers have to furnish the relevant primitives 
for each new problem, meaning that learning about handwritten characters 
is unlikely to generalize to novel domains, such as modelling ice-​skating or 
Japanese cuisine.93

Thus, over the decades, interest in thinking as a research problem has waxed 
and waned in both cognitive sciences and AI research. But there is near-​
universal accord that being able to reason effectively is a key component of 
intelligence, and a major contributor to human success both as individuals 
and as a species. One strong proponent of this view, the psychologist Steven 
Pinker,94 has argued that humans have been able to prosper because they oc-
cupy a cognitive niche which allows them to:

. . . overtake other organisms’ fixed defences by cause-​and-​effect reasoning [. . .]—​
to deploy information and inference, rather than particular features of physics and 
chemistry, to extract resources from other organisms in opposition to their adapta-
tions to protect those resources.

This ability to reason, he argues:

. . . allows humans to invent tools, traps, and weapons, to extract poisons and drugs 
from other animals and plants, and to engage in coordinated action, for example, 
fanning out over a landscape to drive and concentrate game, in effect functioning 
like a huge superorganism.

	 92	 See (Lake et al. 2015). This paper on one-​shot learning has been influential but reports higher one-​shot 
error on Omniglot (Vinyals et al. 2017). This paper does slightly better (Santoro et al. 2016).
	 93	 See (Botvinick et al. 2017) for a critique.
	 94	 See (Pinker 2010). An opposing view is that we evolved to occupy a ‘cultural niche’ as a species with 
superlative social learning (Boyd et al. 2011).
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For humans, reasoning from means to end is a basic requirement for tackling 
the complex puzzles that life throws up. How do I put up this shelf or bake 
that cake? How do I build this canoe to float, or carve that bow to shoot long 
and true? How do I express this idea clearly or solve that calculation problem? 
How do I decide where to live, whom to marry, or how to spend my Sunday 
afternoon?

Recalling the definition of intelligence given by Legg and Hutter, our 
human generality is expressed in an ability to solve a multitude of different 
problems—​from baking a cake to winning at chess. According to this view, 
thus, it is by reasoning—​applying mental processes to plan over states and 
outcomes—​that we can consider what will follow from observables, such 
as the fact that there are eggs in the fridge or that the opponent has lost her 
queen. Reasoning about states of the world allows humans to devise creative 
solutions to stubborn problems, imagine counterfactual outcomes, or antici-
pate important events, even if they are unlikely or far into the future. Indeed, 
from an empirical standpoint, people who do well on lab-​based tests that in-
volve reasoning about verbal propositions, space, or numbers tend also to 
flourish in the real world—​succeeding in school and college and at work. No 
wonder, then, that we lionize the genius of von Neumann, who could think 
around mathematical corners, or the of grandmasters of strategic games such 
as Go and chess, who can anticipate the consequences of a move dozens of 
turns into the future.
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4
The structure of knowledge

4.1  Total recall

Imagine that you had the misfortune to be kidnapped by inquisitive aliens, 
who whisk you off to their home planet, where they demand that you tell them 
every single thing you know about life on planet Earth. How many hours 
would it take? How many alien ring binders would your lifelong knowledge 
fill? The chances are that even if you have lived all your life on the same street, 
or generally forget what happened last week, you would still have a lot to re-
count. Think about how you might organize information for your curious 
hosts. You might begin by telling them basic facts about the world: the cap-
ital cities of Portugal, Norway, and Austria; the dates of Columbus’ arrival in 
Hispaniola, the French Revolution, or the Indian partition; and the names of 
various species of trees, birds, and flowers. Other aspects of your knowledge 
are pragmatic. You might know how to make a perfect béchamel sauce, ice 
skate backwards, play the xylophone, or perform a Maori greeting. Finally, you 
know a lot of stuff that is hard to verbalize. You might recall a trip to Niagara 
Falls in winter and bring to mind a view of the great cataract shrouded in ice. 
You can imagine the face of a long-​lost schoolfriend or replay the tune of a 
favourite Christmas carol in your head. These memories form part of your 
knowledge about the world too, even if they would be much harder to convey 
to your alien interrogators.

At the dawn of the AI era, researchers sought to emulate the power of 
human reason, by building machines that think. But in doing so, they stripped 
away the quintessence of the human mind: that people know stuff. When we 
see an object, we can recognize it, label it, and know how to use it. When we 
meet a friend, we recall their name, their relationship to us, and their likes 
and dislikes. When we read a book or attend a class, we understand the ref-
erences being made to far-​off places, historical events, scientific theories, 
and cultural practices. Our knowledge about the world is elaborate and intri-
cate. Moreover, it is usefully formatted, permitting us to grasp new concepts, 
master new fields, conjure sensible intuitions, and make great leaps of creative 
imagination. Knowledge is integral to intelligence. In this chapter, we will 
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discuss the nature of human knowledge, and ask how it might be possible to 
build AI systems that learn a rich, conceptual model of the world like humans 
do. We will consider the promise and pitfalls of building machines that know.

Our knowledge is who we are. From the moment we are born, great waves of 
sensory data wash relentlessly over us. Much of this information is encoded—​
laid down as memory traces in neural circuits. These memories are layered 
one on top of the other, and are gradually smoothed, sifted, and calcified, 
until they form the hard contours of what we know. All mental and physical 
acts—​all of our thoughts and behaviour—​are filtered through this knowledge 
of the world. When our knowledge is erased, for example, when dementia 
creeps tragically upon us in older age, it is catastrophic—​we lose our entire 
identity. The Greek philosopher Socrates famously boasted about his ignor-
ance: he claimed his only true knowledge was how little he knew. However, as 
a distinguished soldier, father, landowner, and philosopher, who (like other 
wealthy Athenians) had enjoyed a gilded education in music, poetry, gymnas-
tics, and law, it is likely that he was selling himself short. Even Socrates knew 
a lot of stuff.

The capacity of human memory is very hard to estimate, but it is undoubt-
edly very large. In a classic experiment from 1973, the psychologist Lionel 
Standing showed groups of participants large numbers of photographic slides, 
each for a few seconds, and requested that they try to remember as many as 
possible for a later test. One group of five participants were subjected to a par-
ticularly gruelling learning phase during which they viewed 10,000 images—​
totalling more than 15 hours of study. Two days later, they were tested on their 
recognition memory by being asked to discriminate a subset of ‘old’ items 
(those from the training set) from ‘new’ (those that were not). Extrapolating 
from their accuracy back up to the full image set, Standing estimated that in 
the group who had seen the 10,000 photographs, nearly 7000 had been suc-
cessfully encoded.1 By far, the most remarkable finding, however, was his ob-
servation that the number of successfully recognized items continued to scale 
lawfully with the size of the training set (Figure 4.1). In other words, the more 
data we are shown, the more we remember. This suggests that, in effect, the 
capacity of human memory is theoretically limitless.

How is it possible for the brain to have virtually limitless capacity? One long-​
standing theoretical problem in computational neuroscience is to identify the 
maximum number of patterns p that can be stored in a network composed 

	 1	 See (Standing 1973). A more recent study has replicated this finding and reported that (quite astonish-
ingly) recognition performance is high, even when foils (competing items) are chosen to be similar to the 
targets (Brady et al. 2008).
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of n neurons (you can think of each pattern as a unique representation of a 
single high-​dimensional stimulus, such as a photograph). The value of p will 
depend on the way the information is coded. If we assume no constraints on 
how information is read in or out, then the theoretical storage capacity of the 
network is immense. For example, if neurons encode a single bit (they can be 
either on or off), then p =​ 2n. Thus, even with just ten neurons, you can already 
encode a thousand different patterns; with 250 neurons, p is greater than the 
number of atoms in the universe.2 In practice, however, the way the network 
stores data depends on the computations that underlie memory formation.3 
An example of learning rule is Hebb’s principle that neurons receiving coinci-
dent input strengthen their connections. Under this assumption, one popular 
class of network can be shown to store at least p =​ n/​2log2(n) patterns, which 
typically means that p is somewhere between 1% and 10% of n. This is a more 
modest capacity, but still large when you consider that the adult neocortex 
houses about 16 billion neurons. In fact, under reasonable assumptions, it is 
possible to recreate Standing’s results and mimic his scaling law with a net-
work comprising just a few hundred neurons.4
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Fig. 4.1  The number of items retained in memory (M) as a function of the number 
presented for learning (S). The diagonal broken line represents perfect memory. Filled 
squares: vivid pictures. Open circles: normal pictures. Triangles: words.
Reprinted with permission from Standing (1973).

	 2	 210 =​ 1024.
	 3	 And the order in which it is encountered, and many other factors.
	 4	 See (Androulidakis et al. 2008).
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Our memories can be rich and vivid. In mammals, one part of the brain 
that is very important for storing elaborate and detailed information about the 
past is the temporal cortex. In the 1950s, the neurosurgeon Wilder Penfield 
used electrodes to stimulate specific points on the lateral temporal lobes of 
patients undergoing surgical treatment for epilepsy, whilst asking them to 
verbalize their experiences. Here is an excerpt from his report referring to a 
female patient:

After a point in her temporal cortex had been stimulated, she observed with some 
surprise, ‘I just heard one of my children speaking.’ Then she added, ‘It was Frank, 
and I could hear the neighborhood noises.’ When asked, she explained that by 
neighborhood noises she meant such things as automobiles passing in the street.

Other patients reported vividly hearing orchestral music or songs they knew 
from the radio, with one patient humming along to the tune evoked by stimu-
lation.5 More recent studies have electrically stimulated portions of the tem-
poral lobe that are known from neuroimaging studies to be sensitive to visual 
stimuli. For example, stimulating a ventral temporal region that is sensitive 
to images of scenes elicited hallucinations comprising complex visual top-
ographies, such as a train in a station seen from a first-​person perspective. 
Stimulating a face-​sensitive cortical region provoked perceptual distortions 
in which the researchers’ faces morphed into those of other people. These ex-
periments suggest that localized portions of the cortex code for the past in 
rich and cohesive ways that can be relived in glorious sensory detail when the 
relevant population of neurons become active.

Most people report that memories vary in the level of detail they evoke. 
For some, however, they can take on almost tyrannical levels of precision. 
A handful of individuals exhibit a strange syndrome known as hyperthymesia, 
which allows them to accurately recount personal events from the distant past 
in astonishing detail. The first hyperthymesic patient to be identified, known 
as AJ, can recollect the events of almost every day from the age of about 11. 
For example, when asked (without warning) about 27 April 1994 (more than 
10 years before the date of testing), she replied:

That was Wednesday. That was easy for me because I knew where I was exactly. 
I was down in Florida. I was summoned to come down and to say goodbye to my 
grandmother who they all thought was dying but she ended up living. My Dad and 

	 5	 Importantly, patients were not simply confabulating, because they reported ‘nothing’ after an unex-
pected sham stimulation event.
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my mom went to New York for a wedding. Then my mom went to Baltimore to see 
her family. I went to Florida on the 25th which was a Monday. This was also the 
weekend that Nixon died. And then I flew to Florida and my dad flew to Florida the 
next day. Then I flew home, and my dad flew to Baltimore to be with my mom.

A.J. reliably kept a personal diary throughout her life, allowing researchers to 
verify the accuracy of her reported memories. Since the original 2006 publi-
cation detailing her remarkable abilities,6 several other patients with putative 
hyperthymesia have been identified worldwide. One celebrated case is that of 
Franco Magnani, who emigrated to America from his native village of Pontito, 
Italy, in the 1940s. Years later, he suffered an illness during which he experi-
enced overwhelmingly vivid dreams of home, and afterwards, he discovered 
an ability to paint—​in astonishing detail—​images of Pontito, where he had 
not set foot for over 20 years.7

In his short fable entitled Funes, el Memorioso, the Argentinian novelist Jorge 
Luis Borges describes a young man with an extreme case of hyperthymesia. 
Funes can precisely recall everything that he has ever encountered. The nar-
rator recounts his remarkable powers of perception and recollection:

We, at one glance, can perceive three glasses on a table; Funes, all the leaves 
and tendrils and fruit that make up a grape vine. He knew by heart the forms of 
the southern clouds at dawn on the 30th of April, 1882, and could compare them 
in his memory with the mottled streaks on a book in Spanish binding he had only 
seen once.

Funes can thus perfectly remember the shapes of clouds, the exact sound of 
words in a foreign language, or the precise pattern traced by flames from a fire, 
even years after they occurred.

In a network of neurons, recall can be improved by reducing the overlap 
between memories. Intuitively, if two experiences evoke overlapping patterns 
of neural activity, then the systems reading information out from memory 
might confuse one with the other. Conversely, if you store memories with 
two distinct, non-​overlapping traces, then they are less likely to interfere, and 
more likely to be accurately recalled. A coding system that minimizes overlap 
between memories is often called a place code or a localist code. A localist 
coding scheme operates like a system of pigeonholes, into which information 

	 6	 See (Parker et al. 2006).
	 7	 The late great neurologist Oliver Sacks wrote about Franco Magnani in an article for The New Yorker 
in 1992.
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can be placed and from which it can be retrieved intact. In the most extreme 
version of a localist code, each of n neurons responds to just one pattern p, so 
that there is no overlap in neural signalling. Neuroscientists slyly refer to the-
oretical neurons that have a one-​to-​one relationship with real-​world entities 
as ‘grandmother neurons’, as their existence implies a neuron somewhere in 
your brain that is reserved for your grandmother.8

In Borges’ tale, Funes encodes information in his prodigious memory using 
a localist code. Each experience is stored in a unique slot. Thus, he can distin-
guish the shape of the clouds on 30 April from that on 29 April because he has 
a separate memory for each event, rather than merging them together into a 
common representation. We can imagine his memory like the hard disk of a 
computer, allowing uncorrupted read/​write operations to unique addresses 
in memory. This principle is visible in the bespoke counting system that 
Funes invented, in which each number is denoted by a unique and arbitrary 
word or phrase (e.g. 7013 is ‘Máximo Pérez’, whereas 7014 is ‘El Ferrocarril’). 
Unlike the counting systems that most humans use, where the number word 
can be used to infer the cardinality, Funes’ system uses random signs that ig-
nore how numbers are related. For example, unlike our decimal system, its 
number words offer no clues that 7013 and 7014 bear the same adjacency rela-
tion as 7014 and 7015. It is as if Funes’ brain consists entirely of grandmother 
neurons.

Funes’ capacious memory might sound like a blessing. But storing informa-
tion in this way has a serious drawback. Although he can recollect minute de-
tails about each experience, Funes cannot work out how his experiences relate 
to one another. As the narrator of Borges’ tale recounts, Funes remembers the 
specific but cannot understand the general:

Funes was, let us not forget, almost incapable of ideas of a general, Platonic sort. 
Not only was it difficult for him to comprehend that the generic symbol dog em-
braces so many unlike individuals of diverse size and form; it bothered him that the 
dog at three fourteen (seen from the side) should have the same name as the dog at 
three fifteen (seen from the front).

Because his memory consists of an infinite series of slots, it needlessly parti-
tions experiences. Funes forms separate representations of dogs encountered 
at one instant or another or seen from one viewpoint or another. His memory 

	 8	 The use of this term, now ubiquitous in neuroscience, began as a joke—​told in a class that Jerry Lettvin 
taught at the MIT in the 1960s—​about the consequences of removing the cells coding for ‘mother’ in the 
mother-​obsessed character in the Philip Roth novel Portnoy’s Complaint (Gross 2002).
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is endlessly fragmented, and so its content is stripped of relational structure—​
it conveys no information about how the world is organized. Even real-​world 
hyperthymesics sometimes report that their excessively precise memories 
are burdensome and intrusive, and do not help knowledge to be arranged in 
useful ways. For example, A.J. was unable to use her powerful recall to do well 
in school, where her academic performance was no better than average, even 
in disciplines that required significant levels of rote learning.

This tells us that knowledge is more than a list of facts and experiences. 
For a memory system to be effective, capacity matters less and organization 
matters more. Imagine a company that owns a giant warehouse but stores 
goods in random locations. No matter how large the store, or how plen-
tiful the goods, the distribution system will be catastrophically inefficient. 
What is needed is a method for organizing the repository. It is the same in 
a memory system. Our memories need to be laid down in a well-​structured 
fashion, so that they can be retrieved in ways that are useful for ongoing 
behaviour.

Correspondingly, intelligence is only possible because the world has struc-
ture. In a wholly random world, there is nothing to learn—​each action is as 
good or bad as any other. Intelligent agents need to learn structure in order 
to take coherent actions, infer what is true, predict future events, and achieve 
their goals. The question that has historically divided AI researchers is how 
agents should acquire this structure. For most of the twentieth century, most 
researchers believed that the key to intelligence was thinking deeply. The sym-
bolic AI systems discussed in Chapter 3 did not learn structure from the envir-
onment. Instead, any structure in their computations was imposed by hand. 
AI researchers believed that 2000 years of philosophy had provided answers 
to the deep questions of how reality was organized, and so they simply up-
loaded those principles directly into the minds of artificial agents. They knew 
that given the proposition if p, then q, if p was true, then q was unarguably 
true too, so they built machines that operationalized this logic in computa-
tion. These agents did not need to learn about how the world was structured, 
because their creators had already endowed them with plausible primitives 
of thought. However, the agents they created were disconnected from reality. 
Their representations were empty tokens like p and q, which it was left to the 
researcher to imbue with meaning. Reality, it turned out, is too messy for the 
clean contours of pure logic.

The alternative is to build AI systems that learn their computation from 
the world. This idea forms the basis for the connectionist or ‘parallel distrib-
uted processing’ (PDP) movement, which began in the 1970s and has since 
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morphed into the deep learning revolution which is powering the march of 
technology in the twenty-​first century. The main tool on which this approach 
is founded—​the deep neural network—​draws its power from an ability to 
learn about how the world is structured. Unlike Funes, neural networks learn 
representations of objects and events, the similarity of which—​expressed in 
patterns of activity across processing units—​reveals how they relate to each 
other. The latest incarnations of these models, which learn to perform tasks 
directly from atoms of sensory experience (such as the pixels of an image or 
video), are able to ground computation in the natural world, just like bio-
logical systems. Rather than being gifted mental operations from a benevolent 
creator, this class of AI system acquires its computation from the world, al-
lowing it to predict sensory properties, estimate the value of action, and derive 
optimal policies for intelligent behaviour.

4.2  Perceptrons in space

The Bronx High School of Science is an island of academic excellence sitting 
amid one of the most economically deprived neighbourhoods in New York 
City. It boasts eight Nobel laureates among its alumni—​a record unmatched 
by any other secondary school in the world. In the 1940s, two pupils gradu-
ated just a year apart,9 who would go on to shape the history of AI research. In 
the 1950s, they forged an intellectual rivalry that embodied the twin research 
approaches that continue to divide the field. Their disagreement focussed on 
the relative merit of building machines that think and machines that know.

One of this duo was Marvin Minsky. As we have already heard, in the 1950s 
and 1960s, Minsky was busy building classical reasoning architectures in 
the newly inaugurated MIT laboratory for AI. The other was a psychologist 
by the name of Frank Rosenblatt, who was working at Cornell Aeronautical 
Laboratory in upstate New York. Rosenblatt’s work was heavily inspired by 
an emerging understanding that the brain consisted of networks of neurons, 
the connections of which were gradually learnt by experience. In 1958, he un-
veiled the perceptron,10 a simple computational tool that would end up being 
the progenitor of all modern neural networks.

	 9	 Minsky in 1945, and Rosenblatt in 1946.
	 10	 Many authors are tempted to capitalize the name. Rosenblatt did not agree. He wrote: ‘it is only with 
difficulty that its well-​meaning popularisers can be persuaded to suppress their natural urge to capitalize 
the initial “P”. On being asked, “How is Perceptron performing today?” I am often tempted to respond, 
“Very well, thank you, and how are Neuron and Electron behaving?” ’
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The perceptron is a model of a neuron, not of an entire brain. It embodies 
a very simple idea: that outputs should be a linear weighted sum of inputs. 
Imagine you are faced with a tricky decision like choosing a rental apartment 
based on various attributes: square footage, distance to the city centre, and 
monthly rent. Depending on your preferences, some factors might carry more 
weight than others. For example, if you are on a tight budget, perhaps cost is 
the most critical variable. A sensible way to make your choice is to add up the 
factors, weighted by their relative importance to you, and compare the result 
to a numerical criterion (accept vs reject). In linear algebra, this is achieved 
by taking the (inner) product of an input vector x and a weighting vector w, 
before binarizing the output according to a threshold. This is exactly the com-
putation that a perceptron performs.

Rosenblatt had two seminal intuitions. The first was a hunch about how the 
perceptron weights could be adjusted by experience, permitting the network 
to learn by itself. Rosenblatt used the relationship between a desired and an 
observed output to adjust the weights w fractionally in proportion to the in-
puts x which, when repeated in small increments, often led the network to 
converge towards a desired outcome.11 For example, imagine that you show 
me a list of apartments (observations), along with your decision to rent or 
not (supervision signals). With enough examples, I should be able to infer the 
relative weights you place on size, location, and rent. This allows me to make 
a good stab at predicting whether you will like any future apartment or not.

The second was the idea that many perceptrons could be wired together 
in series, just like banks of neurons are connected in the brain, to solve more 
complex problems. Rosenblatt speculated that whilst the perceptron was 
simple, its potential was huge—​because it was able to learn entirely by itself 
and there was virtually no limit to what it could do if sufficiently scaled up. 
Perhaps unwisely, he enthused about his far-​flung hopes to journalists from 
The New York Times, who quoted him as claiming that a perceptron could one 
day be blasted into space and sent to explore other planets in our stead.12 The 
hype that accompanied his claims has since greatly undermined Rosenblatt’s 
credibility, although it is clear that he was actually more interested in building 
a model of biological intelligence than AI.13

	 11	 In fact, unlike later methods, Rosenblatt’s approach did not have convergence guarantees.
	 12	 ‘New navy device learns by doing’, New York Times, 8 July 1958.
	 13	 In his 1961 book Principles of Neurodynamics, Rosenblatt later wrote: ‘the perceptron program is not 
primarily concerned with the invention of devices for “artificial intelligence”, but rather with investigating 
the physical structures and neurodynamic principles which underlie “natural intelligence”. A perceptron is 
first and foremost a brain model, not an invention for pattern recognition.’
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Rosenblatt’s ambitions for the perceptron were misplaced. Whether he 
was wrong about the principle—​that learning systems can be scaled towards 
superintelligence—​is still controversial. But everyone agrees he was wrong in 
practice, because the perceptron suffers from a fundamental limitation. Its in-
tegration rule is linear (the output is just a weighted sum of inputs), and so the 
network is limited to learning linear mappings between inputs and outputs. 
This grossly limits the range of problems it can solve.

To understand why, consider a perceptron that receives a scalar input. This 
might denote, for example, the size of an object compared to a standard. If 
the task is to decide whether the object size is greater than the standard, then 
this can trivially be solved by a linear network, which simply has to threshold 
the value after appropriate weighting.14 However, if the objective is to indicate 
whether the object is more similar to the standard than some criterion, then a 
perceptron will fail. This is because similarity is a non-​linear (quadratic) func-
tion of the input value—​it starts small and gets larger, but then (as the object 
exceeds the standard) becomes small again.15 Thus, there exists no weight that 
will allow a linear mapping from input to output. The implications of this tiny 
example hold in the more general case. Unfortunately, most of the problems 
that Rosenblatt imagined a neural network would soon be able to solve—​such 
as labelling objects or translating between the world’s languages—​involve 
non-​linear mappings, which cannot be learnt by his perceptron.

The other player in this drama Marvin Minsky had also begun his career 
by toying with machines that learnt for themselves.16 However, his explor-
ations had largely come to nothing. Minsky thus believed that as a tool for 
building intelligence, his former schoolmate’s idea was dramatically limited. 
In 1969, together with his MIT colleague Seymour Papert, he wrote a book 
saying exactly this. The book had a devastating effect on the nascent field of 
neural network research, sending it into recession for at least a decade. In 
fact, by the time the book was published, Rosenblatt—​buffeted by a contro-
versy he had not courted—​had already pivoted to studying a very different 
(and slightly esoteric) topic—​the impact of transplanting brain matter from 
trained to naive rodents. Tragically, he was killed in a boating accident just a 
few years later.

However, a vital intellectual seed had been planted. By the 1980s, several 
people had independently worked out a learning rule that allowed neural 

	 14	 In this case, the weights would be adjusted to a value commensurate with the chosen size criterion.
	 15	 Because it is greater when both inputs are low or both inputs are high, but not otherwise.
	 16	 During his PhD and early career, he built the Stochastic Neural Analog Reinforcement Calculator 
(SNARC).
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networks to acquire non-​linear mapping functions. This permitted the op-
timal weights to be found in networks composed of multiple layers, with 
non-​linear activation functions—​the precursor to modern deep learning. 
This rule, which became known as backpropagation, allowed the gradients 
of weight adjustment to be calculated in a chain that flowed backwards from 
the output to the input. Paul Werbos, whose 1974 PhD thesis is the most often 
cited (if not the first) reference for backpropagation, claimed to have dreamed 
up the idea after reading about the backward flow of subconscious reasoning 
in Freud’s psychodynamic theory. Although the term would not be popular-
ized for several decades, the deep neural network was born.17

Like Rosenblatt, many of the founders of the connectionist movement 
were psychologists by training. This affinity was natural—​unlike classical AI 
architectures, neural networks look like brains (consisting of neurons wired 
together) and they learn gradually by experience (like human infants). Most 
importantly, however, neural networks learn how the world is structured, be-
cause like biological systems, their neural codes conserve the similarity among 
inputs. Their memory systems, thus, are ripe for acquiring the knowledge that 
underlies intelligent behaviour.

Representational theories of the mind state that the brain encodes the 
world in microcosm. Cognitive scientists often use the term schema or concept 
to refer to a set of experiences that evoke a common mental state. This mental 
state itself is referred to as a representation.18 If you have read the Harry Potter 
novels, you will have formed a representation of Crookshanks, which helps you 
recognize the bandy-​legged ginger cat with superlative intelligence owned by 
Hermione Granger. Crookshanks has an unusually squashed head, which 
is one of many features that distinguish him from Mrs Norris, the scrawny, 
yellow-​eyed cat belonging to the Hogwarts caretaker Argus Filch. However, 
Crookshanks and Mrs Norris also have some things in common. They are 
both felines, they are both quite clever, and they both live at Hogwarts. These 
properties are not shared by other pets who feature in the books, such as Fang, 
the cowardly boarhound that belongs to the groundsman Rubeus Hagrid.

In the wizarding world, just like in the natural world, entities are structured 
according to a hierarchy of generality. Crookshanks is just one instance of cat, 
which is just one instance of animal, which is just one instance of thing. Thus, 
for an agent to be able to distinguish between the two Hogwarts cats, it needs 

	 17	 Technically, Rosenblatt’s original network was ‘deep’ too, in that it comprised multiple layers. However, 
given that it is possible to express multiple sequential linear operations as a single linear operation, the 
number of layers did not widen the class of problems it could solve.
	 18	 Or sometimes, interchangeably, the computations by which the mental state is produced.
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representations of Crookshanks and Mrs Norris that are uniquely activated 
by their corresponding referent.19 However, to know that Crookshanks and 
Mrs Norris share certain properties, it is useful to have a more general repre-
sentation, such as cat. Thus, representing information hierarchically is useful 
both for grouping things together (via general representations) and for telling 
things apart (via specific representations).

For neuroscientists, mental representations are expressed in patterns of 
activity across a population of neurons. Information about how the world is 
structured is reflected in the similarities and differences in this neural activity. 
For example, Crookshanks and Mrs Norris would evoke similar, but not iden-
tical, patterns of activity in a population of neurons, whereas Fang would in-
duce an activity pattern that is quite different from both of them. A useful tool 
for analysing patterns of neural activity is known as a representational dissimi-
larity matrix (RDM). The representational dissimilarity between two objects 
or events can be measured by calculating the distance between the activity 
patterns they evoke across a neural population.20 An RDM is a matrix of size 
p×p that encodes the distance between the neural activity elicited by each of 
the p patterns and every other pattern: a rich description of how the network 
activity reflects the structure of the world. If each pattern that the agent en-
counters is encoded in a unique slot, for example by a tailored grandmother 
neuron, then the RDM will have zeros on the diagonal, and a constant value 
elsewhere. An RDM from Funes’ memory looks like this. It carries no infor-
mation about the structure of the world, because it just indicates that each 
state is identical to itself, but equally different to everything else. However, if 
the representational dissimilarity among neural patterns elicited by stimuli 
matches their differences in the real world, then a memory system is encoding 
natural structure.

Knowing how the world is structured allows agents to generalize know-
ledge. Generalization is the ability to make accurate predictions about new, 
unfamiliar experiences. Dealing with novelty is critical in the natural world, 
because each event across our lifetime is different, however subtly, from 
every other we have previously experienced. This is what the Greek philoso-
pher Heraclitus meant when he proclaimed that no man steps in the same 
river twice. That river is time, and it runs inexorably forward, meaning that 
no instance is ever precisely repeated. Each pattern of sensory stimulation is 
new, all percepts are uncertain, and all meaning is fundamentally ambiguous. 

	 19	 In other words, a population of neurons for which the two pets evoke different patterns of activity.
	 20	 For example, by calculating the Euclidean distance, or one minus the correlation distance.
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However, this ambiguity can be resolved if we know how the world is 
structured.

In natural environments, sensory signals are highly patterned in space and 
time. In the visual domain, colours and textures that are present in one part 
of the visual field are often present in nearby locations. When taking in a view 
of a park on a cloudy day, the grass (green and spiky) tends to be at the lower 
portion of the visual field, and the sky (grey and fluffy) in the upper portion. 
By knowing that the sky is grey on the left of the image, you can predict with 
reasonable accuracy that it will be grey on the right of the image too. Percepts 
are also autocorrelated in time. If you look up from where you are reading this, 
you will probably find that the overall context—​the clock ticking on the wall, 
the cat asleep on the sofa—​has not changed much over the past few minutes. 
So you can predict that they will still be the same in a few moments’ time. 
Generalization also allows us to infer the properties of new objects. If we have 
learnt a concept of cat, then Crookshanks and Mrs Norris evoke a common 
patterns of neural activity. This means that a new Hogwarts pet that elicits a 
similar activity pattern (such as Fuzzclaw)21 is also likely to be a cat. We can 
thus predict that it will share properties with Crookshanks and Mrs Norris, 
such as being clever and enticed by fish. Because the world is structured, we 
can make predictions about new experiences. We can use the past to deal with 
both the present and the future.

This was Rosenblatt’s fundamental realization. Building systems that can 
generalize opens the door to a new class of AI: one that can deal with the ever-​
changing world that we inhabit, where no two experiences are ever exactly 
alike. Symbolic AI systems had a memory that comprised a series of unrelated 
slots. This meant that when faced with novel inputs—​like when pink blocks 
were added to the SHRDLU’s blockworld—​their brains had to be manually 
expanded, with new slots added by hand. An agent that does not learn struc-
ture will, like Funes, live in a mentally fragmented world, in which everything 
is dissimilar to everything else. Borges understood this. His narrator writes:

To think is to forget differences, generalize, make abstractions. In the teeming 
world of Funes, there were only details, almost immediate in their presence.

Funes’ understanding of the world is crippled by a failure to grasp general-
ities. If each stimulus evokes a unique activity pattern—​one that is equally 
dissimilar to every other pattern—​then all knowledge of how the world is 

	 21	 Technically, it is unclear whether Fuzzclaw, who belonged to Rowan Khanna, actually resided at 
Hogwarts.
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structured is discarded and it will be impossible to generalize. By contrast, 
neural networks can form capacious new memories as the parameters in the 
network gradually change to map inputs onto desired outputs.22

Interest in neural networks continued to grow across the 1980s and early 
1990s. Perhaps chastened by Rosenblatt’s folly, enthusiasts mostly avoided 
grandiose claims about the power of AI, focussing instead on connectionist 
models as theories of human psychology. There was a waning in interest in 
neural networks towards the start of the millennium, but as discussed in 
Chapter 1, since 2006, it has come roaring back in the form of the deep learning 
revolution. Modern deep networks can learn to recognize objects from pixels 
alone, like human infants do.23 This has opened new doors to understanding 
how knowledge is formed, and reawakened a fascination with the idea that 
there exist common design principles for artificial and biological brains.

4.3  Maps in the mind

If you have visited Paris, France, you probably returned home with a treasury 
of memories: the idyllic glint of sun on the water as you strolled along the 
banks of the Seine, or that withering glance from the waiter when you foolishly 
ordered a glass of Merlot with your Coquille Saint Jacques. But how should we 
characterize your knowledge of Paris? Asked to explain the what, the where, 
and the when of Paris to alien anthropologists, how would you even begin?

As we have seen, an effective memory system retains the natural struc-
ture of the information it encodes. However, there are many different ways in 
which facts and experiences from the real world can be formatted. After vis-
iting Paris, you can mentally replay episodes from cafés and cobbled streets. 
But during your séjour, you will also have learnt new names of people, places, 
and things: Georges Pompidou, La Place des Vosges, and Le Passe Navigo. You 
might have gathered how Paris is arranged spatially, with its arrondissements 
coiling lavishly around the city in a numbered spiral. You negotiated its laby-
rinthine transit map, with fast regional train routes intersecting a tangle of 
underground and elevated metro lines from Boulogne to Bastille. Your know-
ledge of Paris encompasses its extrinsic relationships. You may also know 
that if French cities were sorted by population, Paris would be at the head of 

	 22	 A useful distinction is to think of neural networks as parametric models (where the representations are 
governed by the values of their parameters), rather than as non-​parametric models (where the representa-
tions are crafted by hand).
	 23	 In fact, this ‘end-​to-​end’ learning was one of Rosenblatt’s original goals for the perceptron. Alas, object 
labelling is a largely non-​linear problem.
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the line, boasting nearly triple the headcount of its fierce rival Marseille. You 
might associate Paris with other European cities like Vienna and Rome, but 
perhaps not Helsinki or Mumbai, which lie at more geographically or cultur-
ally distant junctures. Each of these memory formats provides a unique slice 
through how facts and experiences about Paris relate to one another.

It was Tolman who first proposed that we can think of memory as a mental 
map. Tolman focussed on spatial maps that signal the geography of land-
marks, waystations, and routes in Euclidean space. But there are many dif-
ferent relational patterns in our knowledge. There are feature maps that chart 
the physical likenesses among people and things, and episodic maps that en-
code the relations between autobiographical events. There are also more ab-
stract conceptual maps, like the ones that chart how cities interrelate on the 
axes of urban sprawl, architectural grandeur, or political clout. Maps differ 
in their dimensionality. The axis of French city size, headed by Paris, lies on a 
single dimension, and the Cartesian map of the metro system, with Châtelet at 
its centre, is a two-​dimensional manifold. Other maps are high-​dimensional, 
like that charting the historical ties between politicians and palaces or that 
documenting your Parisian visit itself, weaved together from memories of 
boulevards and brasseries that were linked in space and time. Each of our 
mental maps embeds a dense web of associations that specifies how every-
thing we know is related to everything else.

Sensory data arrive to the brain in a relentless, massively detailed, 
multimodal input stream. Our sensory systems mine data from this 
stream, sorting it in meaningful representational units. These units form 
the building blocks for our mental maps, which collectively make up our 
knowledge—​our model of the world. It was Craik who first argued that to 
be useful, our internal models should be organized to match the external 
world. But there are many different ways to carve up natural experience 
into a mental model. What are the different formatting constraints on our 
mental maps? How is incoming information selected, sorted, and indexed 
to form those mental building blocks? Previously, we discussed the short-
coming of purely symbolic AI systems, that their representations are 
not grounded in the external world. Neural networks have the opposing 
problem—​there are an infinity of possible ways in which mental represen-
tations could be grounded, and so how do we choose which formatting to 
adopt? What should our mental representations refer to? Along which con-
ceptual axes should our maps be formed, and how are they combined to 
support thought and action?



122  The structure of knowledge

Writing in the nineteenth century, the philosopher Charles Sanders Peirce 
founded the modern field of semiotics by prescribing three ways in which 
signs relate to their referents. He called these relations iconic, indexical, and 
symbolic. Iconic relations are likenesses: a photograph is an iconic represen-
tation of the scene it portrays. Indexical relations are those that arise when a 
shared context is created between sign and reference. This can be through an 
overt act (like when I point to something, or otherwise single it out) or pas-
sively (as when a murderer, victim, and witness mutually index one another 
in the context of a crime). Symbolic relations denote otherwise arbitrary links 
which are agreed by convention, such as between an object and a verbal label. 
The word ‘cat’ is an arbitrary symbol that we use to refer to domestic felines.

Peirce was writing long before the advent of cognitive science, but his tripar-
tite theory can be usefully repurposed to consider how mental representations 
are grounded. Some are grounded in physical likenesses. The activation of 
an iconic mental representation depends on physical similarity. For example, 
a neuron that responds to a cricket ball might also activate to a Gala apple, 
because they are approximately the same size, shape, and colour. Other rep-
resentations are grounded by indexicality: the association between a cricket 
bat and ball is not forged by physical resemblance, but by the fact that in the 
natural world, they are linked by a shared context in space and time—​they 
are found together in the kit bag. Finally, some representations are grounded 
in shared convention or culture. A cricket ball and a snowboard rarely co-​
occur, as one is used on a well-​tended lawn in summer, and the other on the 
ski slopes in winter. But they are grounded in a category that humans agree 
to denote as sport—​they both have the latent (or unobservable) property of 
being items of sporting equipment.24 As we shall see, the human brain forms 
representations that are grounded in all three of these ways, as well as learning 
some more exotic classes of concept.

Early adopters trained neural networks on arbitrary mappings between 
verbal labels. Networks learnt to encode the hierarchical semantic structure 
that relates words denoting objects (rose), categories (flower), and proper-
ties (has petals). In fact, it is a poorly kept secret that the pioneers of connec-
tionism used the same sleight of hand as proponents of symbolic AI: input and 
output patterns were non-​overlapping (one-​hot vectors),25 so that patterns for 

	 24	 One latent property has been deemed so significant that it forms the basis for a whole subfield in ma-
chine learning. This property is a proxy for the survival value for the agent of experiencing an event or 
acquiring an object, and is usually called reward. The framework of RL assumes that learning to maximize 
reward is a necessary, or even sufficient, condition for intelligent behaviour. It is discussed in Chapter 6.
	 25	 In a one-​hot vector, one unit has a value of 1 and other inputs have a value of zero. If each input is de-
noted by a unique one-​hot vector, then all inputs are equally dissimilar to one another.
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rose and daisy and spaniel were all equally dissimilar. Thus, although we are 
taught to think of connectionist models as a counterpoint to symbolic AI, in 
Peirce’s terms, early neural networks were ‘symbolic’ models, because the in-
puts and outputs were hand-​labelled by the researcher. This choice was driven 
by necessity. The computers of the 1980s were too puny to process natural im-
ages or speech in all their high-​dimensional input complexity. However, this 
meant that unlike their modern counterparts, these networks were not ultim-
ately grounded in natural sensory signals.

Instead, it was the supervision signals that taught the network the struc-
ture of categories and properties. Early networks learnt concepts that were 
grounded in the teaching signals provided by the researcher. The most efficient 
way for the network to map inputs like spaniel and pug onto properties such 
as likes walks and goes woof is to acquire a concept that we would recognize as 
dog in its hidden layer. In fact, given the hierarchical structure of the objects 
and categories on which the network was trained (e.g. that both cats and dogs 
have fur, but only dogs like walks), the network learnt well-​structured repre-
sentations in its hidden layer. They can learn distinctions that are fine (spaniel 
vs pug), intermediate (cat vs dog), and coarse (plant vs animal), all from the 
same data, encoding them in a semantic hierarchy of generality that mimics 
human conceptual learning.

Early excitement around neural networks was spurred on by the finding 
that their learning follows a human-​like developmental trajectory (Plunkett 
& Sinha 1992). For example, neural networks show progressive differentiation, 
acquiring coarse distinctions before fine ones, just like children distinguish 
dog and cat before spaniel and pug (Keil 1979). Networks gradually learnt to 
generalize, just like human children do. For example, after learning that a rose 
has petals and is a flower, they could infer that because a daisy has petals, it 
is probably a flower too. Both children and neural networks learn with dis-
tinctive pathways, in that periods of rapid progress are followed by plateaus of 
relatively static performance. During some stages, both children and neural 
networks maintain stereotyped illusory beliefs, such as the fact that worms 
must have bones,26 which are gradually erased as training converges. Without 
being explicitly programmed to do so, thus, neural network models make a 
similar staccato progress towards understanding the world that people do. 
Recent work has studied the formal properties of learning in deep networks, 
providing explanations for these phenomena that are couched in terms of the 
mathematics of gradient descent.27

	 26	 Because they are animals, which mostly have bones.
	 27	 See (Saxe et al. 2019).



124  The structure of knowledge

Powered by modern computers, deep networks today can process data 
from the ground up. In each processing cycle, hundreds, or even thousands, 
of pixel values from a photograph or video stream are fed directly to high-​
dimensional input layers. This allows neural networks to learn and generalize 
representations from naturalistic sensory data, and thus to solve real-​world 
challenges, such as biometric facial identification or automated vehicle licence 
plate recognition. This opens the door to representations that are grounded in 
physical likeness (iconic concepts), spatiotemporal contiguity (indexical con-
cepts), or arbitrary categories trained with supervision (symbolic concepts). 
It also raises the empirical question of how representations in deep networks 
are formed in practice, and the normative question of which constraints will 
allow rich conceptual knowledge to emerge. How can we build AI systems 
that can grasp abstractions that only humans currently understand?

The first forays into these questions began in the early 2000s, when deep 
networks started to show leaps and bounds on supervised classification of 
handwritten characters (such as MNIST28) and natural objects (ImageNet). 
This invited researchers to dig into their hidden layers and perform the sorts of 
experiments familiar to neuroscientists: to probe the inner workings of their 
virtual brains by measuring their representational properties. This naturally 
led to the question of whether these neural codes resemble those in biological 
systems. Can we treat deep networks not just as tools for engineering accurate 
predictions, but also as generalized theories of representation learning for the 
neural theory?

Intriguingly, the brains of humans and deep networks exhibit striking 
similarities. When trained with supervision on benchmark tasks, such as 
ImageNet, supervised deep convolutional neural networks (CNNs) form 
visual representations that resemble those in neural data recorded from hu-
mans and other primates. This result is obtained in various ways, but perhaps 
the most compelling is the comparison between RDMs from neural activity 
patterns in the visual cortex29 and those from ensembles of network units 
(Figure 4.2). The primate and network RDMs—​viewed side by side—​show 
striking commonalities. In fact, some researchers have set sterner tests of 
this correspondence, by using advanced deep learning methods to predict 
how neurons should respond to unusual stimuli, or using networks to esti-
mate how long it should take a monkey to classify an image with a potentially 
ambiguous class label.30 This suggests that there are overlapping principles by 

	 28	 The ‘Modified National Institute of Standards and Technology database’.
	 29	 In either functional magnetic resonance imaging (fMRI) signals or multi-​electrode recordings.
	 30	 See (Bashivan et al. 2019) and (Kar et al. 2019). In general, the work of Jim DiCarlo’s lab has been vi-
sionary in tackling this problem.
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which object recognition occurs in primates and CNNs—​for example, that 
the degree to which they think that roses and daisies, or dogs and flowers, 
or animals and tools are related to one another is roughly the same as in bio-
logical brains. For neuroscientists, this has raised hope that deep networks 
are on a path to crack the problem of generalization for naturalistic vision, in 
which objects are recognized under novel combinations of position, pose, and 
illumination.

Decades of scrutiny have taught us that neural coding in the visual cortex 
respects a hierarchy of complexity. This hierarchy unfolds along the neural 
highway linking the visual cortex and temporal lobes, colloquially known as 
the ventral stream. At the outset of this pathway is area V1, just two synapses 
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Fig. 4.2  Examples of correspondence between neural representations formed in deep 
networks and biological brains.
(A) Representational dissimilarity matrices (RDMs) signalling the dissimilarity in 
neural code between each stimulus and every other stimulus for human BOLD signals 
(left panel), deep convolutional networks (middle panel) and monkey IT cortex (right 
panel). Warm colours are areas of greater dissimilarity; cool colours are areas of greater 
similarity.
Reprinted from Khaligh-​Razavi and Kriegeskorte 2014.

(B) Average response to images sorted by category (black) and equivalent response in a 
performance-​optimized deep neural network.
Reprinted with permission from Yamins et al. (2014).
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from the retina,31 where neurons respond preferentially to basic elements of a 
scene, such as oriented edges or texture primitives, within a tightly confined 
spatial window. Thus, one neuron might fire to a contour tilted at 45° in its 
preferred aperture, and but not to a vertical edge, whereas another neuron 
might respond in a converse fashion. At subsequent stages of processing, 
neurons prefer simple shapes and rudimentary objects; delving deeper into 
the temporal lobe, they fire to complex stimuli such as cars, faces, animals, or 
entire natural scenes, irrespective of where they occur in the visual field. These 
are the temporal lobe regions where intracranial stimulation provokes mind-​
bending hallucinations of people and places that materialize from nowhere in 
the middle of the operating room.

The coding patterns formed in deep CNNs trained to label images obey a 
similar principle. Early layers form simple filters for tilt and spatial frequency, 
akin to those in area V1, whereas deeper in the network, we observe units that 
code for high-​level categories and concepts—​just like in the primate ventral 
stream. For example, reverse engineering the selectivity of CNN neurons identi-
fies units that prefer faces, tools, or alphanumeric characters, even though these 
labels do not exist in the ImageNet data set on which it was trained.32 This means 
that CNNs learn, from natural signals alone, a hierarchy of generality that allows 
them to make both coarse and fine distinctions, acquiring visual codes that allow 
them to lump and split the world according to semantic necessity—​just like bio-
logical brains.

How is it then that deep networks learn human-​interpretable semantic 
structure from just a handful of computational tricks and a million param-
eters? Where are these neural codes grounded? One clue comes from the fact 
that meaningful representations can be read out from deep CNNs, even be-
fore any training has occurred, when weights are still initialized to random 
values.33 This might sound implausible at first: how can neural networks 
seemingly exhibit representations of rose and spaniel without being trained 
to distinguish dogs from flowers, and with recognition performance that is 
no better than chance? The answer is that the sensory signals naturally con-
tain structure which is related to their meaning, because objects that belong 
to common categories often look alike. Thus, neural systems can form iconic 
representations even without being trained on symbolic information, such as 
matching to verbal labels via supervision.

	 31	 Visual area 1 or Brodmann’s area 17, the first cortical waystation for most visual information.
	 32	 See (Yosinski et al. 2015).
	 33	 See (Yamins et al. 2014).
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This physical resemblance is not always expressed at the level of local 
patches of pixels—​for example, if viewed through a small aperture, roses, dai-
sies, and spaniels may all seem quite different. However, natural scenes are 
themselves hierarchically structured. Shapes are made of lines and edges, ob-
jects are ensembles of shapes, and scenes are arrays of objects.34 The natural 
sensory hierarchy affords many distinct levels at which images can resemble 
one another. After accounting for the high-​level interactions among features, 
such as the common juxtaposition of stem and petals, roses are more physic-
ally similar to daisies than to spaniels.35 We can see this by looking at the RDM 
computed from patterns of activation in the deeper layers, which is structured 
in a semantically coherent way, even before the network has been trained. By 
wiring up the network to gradually express these interactions through suc-
cessive computation, activity in deeper processing units reflects the similarity 
among higher-​level concepts such as flowers and dogs.

In both brains and CNNs, much of the connectivity needed to achieve this is 
present at birth. Biological sensory systems start out in life with a hierarchical 
wiring diagram dictated by the genes, which mandates that cells coding for an 
adjacent retinal territory project to common neuronal targets in the subsequent 
layer. Thus, neurons in the deeper reaches of the visual system have a wider pur-
view of the visual field by virtue of all the lower neurons that project to them, just 
like a general has the broadest oversight of the battlefield from the information 
that percolates up the military hierarchy, via dispatches from colonels, majors, 
and captains. In CNNs, a similar pattern of converging connectivity (and ex-
panding receptivity) is also crafted directly into the network by the researcher. It 
is a core architectural motif that each layer receives inputs from a subset of units 
in the layer below with adjacent local receptivity, so that like biological systems, a 
CNN represents a spatial hierarchy of filters.

For systems wired up in this way, visual recognition resembles a well-​known 
parable in which blindfolded men attempt to recognize an elephant. Each man 
receives information about a distinct body part—​the trunk, the ear, the leg, or 
the flank—​and confidently (but wrongly) infers that the object is a snake, a fan, 
a tree trunk, or a wall. The representations of early visual neurons are like the re-
ports of these men: they signal the parts of an object but fail to grasp the whole. 

	 34	 In fact, early models imagined that vision literally involved constructing mental objects from geo-
metric primitives called geons (Biederman 1987), much like proponents of symbolic AI believed that 
reality was built from AND, OR, and NOT.
	 35	 Except perhaps when viewed from a very unusual angle. Images with unusual views would mostly be 
pruned from image data sets. Note that this was not the case for early connectionist models, in which the 
inputs rose, daisy, and spaniel were orthogonal (non-​overlapping) one-​hot vectors, so they were all equally 
unalike, obliging the network to learn structure from supervision, and not the inputs.
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However, an overseer receiving these reports can infer the presence of an ele-
phant, like higher neurons in the temporal lobe can recognize objects from the 
combined outputs of neurons at earlier stages. Critically, if you swapped the men 
around, their individual reports would differ radically, but the elephant could 
still be inferred; just like if you altered the view of a rose, individual pixels would 
change, but it would still be recognizable from the presence and relation of a stem 
and petals. This is why neurons at higher stages are invariant to the minutiae of 
low-​level stimulation. The simple fact that neurons in deeper layers have access 
to interacting throughput from earlier layers, coupled with the intrinsic structure 
of the world, is enough for a hierarchy of generality to emerge in a deep neural 
network.

These observations tell us that the neural wiring diagram in both biological 
and artificial sensory systems is pre-​engineered to encode information in a 
well-​organized fashion, in particular by capitalizing on an existing input 
structure. Returning to the warehouse example, if imports arriving from the 
four points of the compass are housed in corresponding storage zones located 
in the north, south, east, and west of the warehouse, then it will be consid-
erably easier to sort them for distribution. Even more usefully, if patterns of 
imports that tend to arrive at once—​chassis from the United States, tyres from 
Italy, and engines from France—​are stored in the same place, then it is easier 
to ship them out together. The way the switches are set help memory systems 
store information in a useful format.

However, it is important to note that good connectivity is only the start. 
Ultimately, external supervised training is eventually needed for suc-
cessful object labelling. It is not enough to store tyres and chassis and en-
gine together—​you need to know to which car manufacturer to ship them. 
Supervised training maps the representations onto the correct output labels 
(the stem-​and-​petals pattern onto flower), so that the network outputs are in-
terpreted correctly. But in neural networks, supervision also sculpts the rep-
resentations themselves. Although seemingly sensible coding patterns can 
emerge, even in randomly initialized networks, training with supervision 
makes deep networks more human-​like. In fact, careful analysis has revealed 
that those CNN variants that achieve the highest accuracy on benchmark 
challenges, such as ImageNet, are those that learn the most biologically viable 
visual representations for the challenge stimuli.36 This implies that the neural 
codes we form in the visual cortex are massaged by the words we have learnt to 

	 36	 Under the assumption that hidden layer activity is a affine fit of neural activity (obtained in 
cross-​validation).
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refer to concepts. For example, penguins, ostriches, and swifts look very dif-
ferent but are all birds; our semantic knowledge of their relative position in the 
Linnean taxonomy moulds their neural similarity into a common schema for 
bird, even though they differ radically in size and shape. The way we perceive 
the world is shaped by the verbal labels we use to describe the objects and 
events that we encounter.37

4.4  Deep dreams

In November 2019, the UK think tank Future Advocacy38 released a video in 
which political rivals Jeremy Corbyn and Boris Johnston made compelling cases 
for how the public should cast their votes in the forthcoming general election. 
Remarkably, however, neither leader took the opportunity to canvas votes for 
themselves. Instead, each advocated for the opposing party, turning the usual pol-
itical consensus inside out. Unfortunately, however, the video was not a harbinger 
of some gentler new era of political bipartisanship. It was a fake—​and a remark-
ably authentic one. Future Advocacy released the video with the specific intent of 
alerting the public to the threat posed by so-​called deep fake photos and videos, 
which are media content synthesized to distort or misrepresent reality, that can be 
used maliciously for political advantage or for other nefarious purposes.

A branch of deep learning, known as generative modelling, has made this 
possible. Generative models are trained to infer the causes of their input data. 
The central intuition is that whilst input signals are high-​dimensional and 
varied, they are often generated by just a handful of semantically meaningful 
variables.39 For example, imagine a data set consisting of photographs of ap-
ples. Apples can be larger (Fuji) or smaller (Crab), and redder (Gala) or greener 
(Granny Smith). There are an infinity of possible apples, but they all lie within 
the bidimensional space defined by apple colour and size. A generative model 
learns to encode these latent factors—​the axes of the map of pomological 
space—​by predicting the high-​dimensional training data. Having successfully 
done so, the model can be inverted to generate—​or ‘imagine’—​new synthetic 
images, for example those comprising apples defined by a particular size and 

	 37	 As discussed in Chapter 2.
	 38	 See https://​fut​urea​dvoc​acy.com/​. See https://​www.yout​ube.com/​watch?v=​Ekfn​jAeH​FAk.
	 39	 With other variation being considered a nuisance.

 

https://futureadvocacy.com/
https://www.youtube.com/watch?v=EkfnjAeHFAk
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colour (i.e. position in latent space).40 It can even be used to generate new 
apple varieties that do not exist—​deep fake apples, if you like.

One successful tool for generative modelling is known as a variational 
autoencoder (or VAE). An autoencoder is a class of generative model that 
learns to reconstruct the very data that it receives as inputs, in a process often 
called self-​supervision.41 At first glance, this sounds nonsensical—​if the in-
puts are already available, then what is to be gained by reproducing them? 
The secret, however, is that the network encodes the signals onto a bottleneck 
layer with reduced capacity (fewer processing units). For example, if a VAE 
were trained on images of apples with just two bottleneck units, it might learn 
to embed each image in a space whose axes are size and colour. This encour-
ages the network to reconstruct apple images that live within the space of 
small-​to-​large and red-​to-​green that the network has experienced—​to learn 
a good compression of the data. In a VAE, the semantic interpretability of the 
concepts learnt is enhanced because the network is additionally encouraged 
to form latent factors which are as unrelated as possible, through a separate 
cost term for disentanglement.42 One variant of this architecture known as a 
β-​VAE, has been used to learn human-​interpretable factors from natural im-
ages, such as data sets of faces, vehicles, or chairs. For example, when trained 
to reconstruct face images, it acquires latent units (those in the bottleneck 
layer) that code for age, gender, hairstyle, and affective expressions such as 
happiness (smiling or frowning) (Figure 4.3).43

To probe the latent variables that the network has learnt, we can intervene 
virtually, by setting the latent units to values of our own choosing and running 
the model in reverse to decode (or generate) predicted sensory signals. For 
example, we can systematically clamp a single latent unit to a series of con-
tinuous values, and thus generate a sweep of imagined face images that vary 
on a single latent dimension, such as young to old, fringy to bald, or happy to 
sad. The factors can also be recomposed in interesting ways for imagination 

	 40	 In fact, to generate astonishingly photorealistic synthetic faces, an extra trick is used, whereby one 
network is trained to generate images, and another to discriminate between the generated data and the 
training data. The first network is encouraged to try and trick the second. This is called a generative adver-
sarial network (or GAN) (Goodfellow et al. 2014).
	 41	 That is, to produce outputs that are as similar as possible to the inputs. There is some confusion over the 
terminology. Methods for learning the latent factors in data (e.g. like principal or independent component 
analysis (PCA or ICA)) have traditionally been referred to as ‘unsupervised’. The term self-​supervision is 
usually reserved for methods that construct an auxiliary loss from the data (such as predicting one patch 
from another). For simplicity, we only use the latter term here.
	 42	 See (Higgins et al. 2016). The β-​VAE increases the pressure to disentangle, which helps learn unrelated 
factors from data.
	 43	 What makes a ‘good’ compression is inevitably somewhat subjective. If the researcher has created the 
data set with a small set of factors, then a good compression might recover these. But the researcher’s in-
tuitions about the independence of the factors they have used might be wrong. For example, if all green 
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and mental simulation. For example, if you have learnt disentangled neural 
codes for facial age, gender, and affect, then you can imagine Greta Thunberg 
as an angry old man or Donald Trump as a happy young woman. You can gen-
erate a video with Boris Johnson mouthing Jeremy Corbyn’s words, or vice 
versa. Beyond the domain of faces, a β-​VAE trained on videos of first-​person 
movement through a virtual maze can be adapted to reimagine new scenes 
from environmental building blocks such as walls, doors, and furniture, as if it 
had learnt key latent factors that make up our carpentered world.44

The success of generative models tells us that by compressing and 
orthogonalizing transformed sensory signals, we can learn rich concepts from 
sensory data alone.45 Embedded in the streams of sensory information that 
we receive are deep patterns expressing semantically meaningful variables. 
Generative models trained with photographs of faces can learn the concept 
of age—​that some faces are fresh and youthful, and others are wizened with 
time. Trained on furniture, they learn that there exists a low-​dimensional 
manifold of chair shapes—​on which stool, pew, and sofa are all unique points. 
This even allows them to creatively remix these concepts to imagine new fur-
niture items, such as a plush church pew without a backrest. Thus, genera-
tive models allow us to form highly structured and semantically interpretable 
maps of how features and objects in the world relate to one another.

Fig. 4.3  Images generated by systematic activation of latent units in a β-​VAE. Left units 
encode ethnicity; the right unit encodes age/​gender.

apples are mottled, whereas red ones are not, then being mottled might not be a factor in itself. In the nat-
ural world, we do not know what the generating factors are, so good compressions are those that we can 
interpret.

	 44	 See (Higgins et al. 2017).
	 45	 Here, we focus on visual data, which have been explored most extensively. Vision is the dominant mo-
dality for primates, with up to 30% of the cortical real estate devoted to visual perception in humans, and 
50% in the macaque, which is the non-​human primate whose visual system has been studied in greatest 
detail.
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The idea that the natural world offers up its abstractions from sensory data 
alone echoes a long-​standing theme in developmental psychology. Even before 
they learn language, children seem to understand what objects are. They sense 
how objects interact physically and know how they can be grouped. Infants 
as young as 12 weeks can perceive object boundaries, fill in occluded object 
parts, and predict when objects will move or come to rest.46 They can also dis-
criminate basic visual categories, such as shapes (squares and triangles) and 
animals (birds and dogs).47 Babies thus rapidly begin to make sense of what 
William James famously called the ‘buzzing, blooming confusion’ of sensory 
experience, and they do so largely without the help of verbal labels.

Recently, researchers have started to gather large-​scale data sets documenting 
the visual experience of human infants, for example by embedding a coin-​
sized camera in a beanie that is constantly worn as the babies go about their 
daily lives.48 Capitalizing on one such data set comprising tens of thousands of 
headcam images, a team of researchers at New York University asked whether 
a generative model in principle allowed the formation of high-​level object cat-
egories from naturalistic sensory experience. After training, the representations 
learnt by the model could be mapped linearly onto high-​level object categories 
from a labelled problem set focussing on toys49 (such as cat, spoon, and heli-
copter). This implies that self-​supervision is, in theory, sufficient to allow the for-
mation of high-​level concepts, even when explicit object labels are unavailable.

Evidence from neuroscience suggests that the computations carried out by 
generative models, such as the VAE, explain how representations are formed 
in biological brains. Generative models imply the existence of low-​dimensional 
neural codes—​that neurons will represent complex inputs with as few factors 
as possible.50 In fact, the idea that single neurons code for the latent genera-
tive factors first found voice more than 20 years ago,51 when it was shown that 
when monkeys are trained to discriminate unusual shapes—​closed curves with 
prominent bulges and wiggles—​inferior temporal cortex (IT) neurons respond 

	 46	 See (Spelke & Kinzler 2007).
	 47	 As demonstrated by studies in which viewing preferences are measured after sensory habituation. The 
infant is exposed to one category (e.g. dogs), and then given a choice between exemplars from that category 
(e.g. more dogs) or a new category (e.g. birds). Infants usually prefer to look at novel objects, and so (for ex-
ample) the fact that they choose to look at birds suggests that they can tell dogs and birds apart by this age.
	 48	 For example, the SAYCam data set from Michael Frank’s laboratory at Stanford (Sullivan et al. 2020) or 
the Homeview data set from Linda Smith’s laboratory at Indiana (Clerkin et al. 2017). One interesting 
finding is that children’s visual experience changes with time in stylized ways as they first learn to sit up, 
crawl, and then walk, with the different stimuli and viewpoints they experience. Thus, learning about the 
visual world according to a natural curriculum may help the emergence of visual cognition.
	 49	 The ToyBox data set (Wang et al. 2018b).
	 50	 For example, in the VAE, with as many dimensions as there are units in the bottleneck layer.
	 51	 See (Op de Beeck et al. 2001).
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to the two principal stimulus-​generating factors. In other words, IT neurons are 
tuned to locations in the mental map of frequency and amplitude of curvature 
variation.52 In newer studies, the tuning properties of IT neurons to faces were 
shown to correspond to the latent factors learnt by a β-​VAE, which was trained 
to reconstruct faces from the same data set.53 The implication is that brains may 
share computational motifs with self-​supervised models, allowing them to learn 
factorized, low-​dimensional representations of input data. This allows the brain 
to parse the world into abstract visual concepts, even if these are several pro-
cessing stages away from the low-​level pixels that make up the input data.

In a vanilla CNN, such as AlexNet, signals travel forward through succes-
sive network layers as input pixels are gradually mapped onto object labels. 
Generative models, however, allow information to flow both forward and 
backward through the network. The forward flow occurs as inputs are encoded 
onto latent units to compress the signal, and the backward flow as the latent 
signals are decoded back into the input space to reconstruct the image. This 
bidirectional passage of information is also a key feature of biological sensory 
systems. In fact, in the primate visual system, backward connections may out-
number forward projections by a ratio of 10:1. The stereotyped exchange of 
neural signals with both lower and higher processing stages is baked into the 
canonical microcircuit for granular cortex, which specifies how efferent and 
afferent signals flow to and from each of the six cortical laminae54 (Figure 4.4). 
Biological vision is thus often described as being jointly guided by both top-​
down (backward) and bottom-​up (forward) signals.

Neuroscientists have long suspected that the role of top-​down neural sig-
nals is to predict the sensory world. Biological brains seem to be exquisitely 
sensitive to whether an observed signal is likely or unlikely. When a stimulus 
is expected, its corresponding neural pattern builds up in advance of presen-
tation, as if the brain were anticipating what is to come. By contrast, when a 
stimulus occurs out of the blue, its neural pattern is expressed more power-
fully, as if the brain were caught off guard. Neural activity is thus constantly 
up-​ and downregulated in an economy of expectation and surprise. These ob-
servations have spawned wide-​ranging theories that have argued that making 
predictions is the basic function of intelligent systems or that the ultimate goal 
of the nervous system is to avoid surprise altogether.55

	 52	 See (Cortese & Dyre 1996).
	 53	 See (Higgins et al. 2021).
	 54	 This article provides a nice overview (Bastos et al. 2012).
	 55	 See (Hawkins 2004). The latter point, associated with Karl Friston, has been made with a mixture of 
poetry and pomposity (Friston 2013). For one of many ripostes, see (Sun & Firestone 2020). As mentioned 
in Chapter 1, this is perhaps the closest we have got to general theories in psychology.
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Neural evidence for predictive signals abounds in biological brains. For ex-
ample, if you present an image comprising a non-​descript blob on a pair of 
realistic shoulders, the human brain interprets it as a face, even if it has no 
visible features—​and face-​sensitive regions of the visual cortex respond ac-
cordingly (Figure 4.5).56 In one inventive study, the brains of human partici-
pants were scanned whilst they viewed naturalistic photographs that had one 
quadrant blanked out. The authors then used multivariate analysis methods 
to show that it was possible to decode the contents of the photographs from 
voxels in the visual cortex that were spatially selective for the missing quad-
rant. Because these voxels received no bottom-​up visual signals, the successful 
decoding was most likely due to predictive signals that allowed the brain to 
‘fill in’ the missing quadrant with plausible information about the photo-
graphs, offering a pleasing demonstration of how the human brain predicts 
the world.57

In neuroscience, the idea that the brain is a generative model has a long 
pedigree, dating back to at least Helmholtz.58 One modern variant of this 
theory, called hierarchical predictive coding, proposes that predicted and ob-
served signals collide at each successive processing stage, with the former 

V1 Extrastriate

Fig. 4.4  A schematic of the connection patterns between cortical stages in the primate 
visual cortex. Dashed lines show the boundaries between layers.

	 56	 See (Cox et al. 2004).
	 57	 See (Smith & Muckli 2010).
	 58	 Hermann von Helmholtz: see https://​en.wikipe​dia.org/​wiki/​Herman​n_​vo​n_​He​lmho​ltz.

https://en.wikipedia.org/wiki/Hermann_von_Helmholtz
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‘explaining away’ the latter via a process of subtractive normalization.59 This 
means that each processing layer receives predictions (from above) and obser-
vations (from below) but, in turn, only passes forward that part of the bottom-​
up input that remains unexplained by the top-​down signal (the prediction 
error). This latter claim explains why surprising events elicit large neural tran-
sients, because they are associated with more substantial prediction errors.

If I ask you to think of a zebra, your mental image probably contains some 
impressive detail—​the distinctive markings, equine form, black snout, and 
spiky mane. But whilst you can probably imagine its stripes in some detail, 
can you count them? Most people report that they can’t. This illustrates the 
fact that when we imagine the sensory world, our predictions are somewhat 
impressionistic—​rarely detailed right down to the level of photographic 
pixels. This is different from generative models like the β-​VAE, for which 
reconstruction error is computed in the native space of the training images 
themselves. One merit of hierarchical predictive coding is that the contrast 
between expectation and observation is computed separately at each level of 
abstraction. This means the model can compute zebra expectations in the ab-
stract space defined by stripiness and horsiness, not in terms of the precise 
phase or orientation of the black-​and-​white stripes on its hide. More generally, 
in predictive coding for vision, the job of predicting the scene is partitioned 
over the visual hierarchy, so that high-​level neurons predict objects, mid-​level 
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Fig. 4.5  BOLD responses in the fusiform face area (shown in inset) to several conditions, 
including faces and non-​faces in a face context. FFA, fusiform face area.
Adapted with permission from Cox et al. 2004.

	 59	 See (Rao & Ballard 1999).
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neurons predict shapes, and low-​level neurons predict lines. The network is 
thus relieved of the burden of reconstructing every atom of a visual scene.

A significant new development in machine learning draws on this intu-
ition,60 and has adapted it to beat various benchmark tests for object recog-
nition. The idea behind contrastive predictive coding (CPC) is to cut a visual 
scene up into random overlapping patches, and to use information about past 
patches to predict whether the next patch comes from the same or a different 
image.61 The idea that a scene is taken in sequentially, in discrete segments, 
is, of course, reminiscent of another biological motif—​that we sample a scene 
by moving our gaze to repeated points in succession, by making saccadic eye 
movements.62 Critically, however, and just like in biological predictive coding, 
the network is not obliged to reconstruct every pixel but instead has to pre-
dict whether this is the right sort of patch for the image, given its high-​level 
statistics. In this sense, it is obliged to do something very similar to partici-
pants in the missing quadrant study—​given a partial view of a scene, it infers 
what is absent. CPC has proved remarkably successful. It learns semantic-
ally meaningful visual concepts, even from largely unstructured image data 
sets such as ImageNet, as shown by the interpretable response properties of 
single neurons—​that learn to code for birds, human faces, vehicle wheels, and 
mountains. Linear decoding from its representations was sufficient to beat the 
2019 state-​of-​the-​art classification accuracy on ImageNet by nearly 10%, a 
significant leap forward at the time.63

Generative modelling allows networks to learn the factors from which the 
visual world is built. By identifying the deep structural patterns by which 
image pixels covary across a data set, they can learn meaningful high-​level 
concepts from sensory data. When trained on faces, the β-​VAE learns a con-
cept of age because buried in the pixels themselves, there is a latent factor 
whose activity denotes whether a face is young, middle-​aged, or old. This is 
impressive, but compared to the breadth and scope of human knowledge, 
it only begins to scratch the epistemological surface. Human knowledge is 
spread across multiple different mental maps, each charting a different aspect 
of the relations among objects and events. We know that the Eiffel Tower is 
tall and approximately triangular in shape—​physical characteristics that can 
be learnt from visual data. However, we can also mentally place it next to the 

	 60	 In fact, predictive coding is an old idea in signal processing, dating back to the 1950s (Elias 1955).
	 61	 CPC can, of course, be used with auditory stimuli too—​just replace ‘image patch’ with ‘auditory 
segment’.
	 62	 Saccadic control is largely a hallmark of primate vision, although other species may orient their eyes to 
sample visual information in more limited ways.
	 63	 See (van Oord et al. 2019).
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Champ de Mars, in the 7th Arrondissment; we know that it was constructed 
in the nineteenth century, is made entirely of iron, and was the tallest building 
in the world until 1929 when it was surpassed by the Chrysler Building in 
New York. How could machines ever acquire knowledge like this?

4.5  When there is no there, there

In the early 1990s, a patient known as R.M. had the misfortune to suffer two 
strokes in quick succession, leaving him with a spate of nasty headaches. 
A magnetic resonance imaging (MRI) scan revealed an unusual pattern of brain 
damage: symmetric, bilateral lesions to the posterior parietal cortex (PPC) 
(Figure 4.6). The PPC lies at the back of the brain, just above the visual cortex, 
and is thought to be involved in selective attention, sensorimotor integration, 
and control of eye movements. At first, it was not clear exactly what R.M.’s dif-
ficulties might be. He fell within the normal range on standard tests of visual 
function, such as those quantifying acuity, contrast sensitivity, colour and shape 
perception, and ability to segment figures from the background. However, 
R.M. had some unusual deficits. If you showed him an object, he could name it. 
But if you showed him two objects, he seemed to be unsure what they were—​or 
even that there were two of them. He could read single words fairly well but 
struggled with sentences. He could identify single faces but was confused by a 
crowd. His depth perception was poor: he was unable to tell you how far away an 
object might be or which of two objects was nearer. Most aspects of his language 
and cognition were normal, but he was very spatially disoriented and needed 
help getting to the hospital for his regular check-​ups at the neurology clinic.

Patient R.M. had a rare neurological disorder known as Bálint’s syndrome. 
One of the cardinal symptoms of Bálint’s syndrome is simultanagnosia, which 
is an inability to perceive more than one object at a time. Thus, if you showed 
patient R.M. an image of a cat, he could tell you it was a cat. But if you showed 
him a cat and a dog, he could not tell you which was which. Nor could he 
tell you which was larger or how many animals there were on the screen. The 
existence of patients with Bálint’s syndrome tells us something quite remark-
able: that the brain has evolved specific regions that help us understand how 
objects relate to each other in visual space.

Figure 4.7 shows Camille Pissarro’s famous canvas Boulevard Montmartre. 
Painted in 1897, it depicts the great thoroughfare that traverses Paris 
from Arc de Triomphe in the west to République in the east. Pissarro was a 
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pivotal figure in the movement of impressionist painters that flourished in 
nineteenth-​century Paris. The impressionists were the radicals of their age. 
They rejected the dull, well-​mixed tones, photorealistic styles, and historico-​
religious themes that were sanctioned by the influential Académie des Beaux-​
Arts. Instead, they experimented with landscapes and cityscapes, examining 
the interplay of movement and light between scene elements. They broke 
with traditional compositional pieties which demanded that a painting has 
an obvious subject in the foreground. Instead, the background was often the 
focus—​trees bending in the wind, the sun on the water, or houses dotting a 
hillside. The impressionists’ goal was to capture the impress of the scene on 
the viewers’ mind. To achieve this, they trained their painterly gaze on the 
world just as we see it every day, producing richly textured and layered urban 
and rural scenes that portrayed people going about their daily lives.

The impressionists realized that visual meaning is located in the relations 
between objects, people, and places. Plane trees frame the entrance to a village. 
Children throw snowballs in the shadow of a house. Carriages scurry down a 
muddy highway at dusk. A horse stands patiently before a hay cart. Similarly, 
when recalling (or imagining) a visit to Paris, your mental images are not of 
isolated objects. They are like a Pissarro canvas—​they feature bustling pave-
ments and busy cafés and lights twinkling all over the city at dusk. By con-
trast, the photos that make up the ImageNet data set, which are so widely used 
in visual recognition challenges, are quite bizarre. Like the carefully framed 

Fig. 4.6  Bilateral lesions to the posterior parietal cortex resulting in Bálint’s syndrome.
Reprinted with permission from Robertson et al. 2003.
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portraits favoured by the nineteenth-​century Académie, most have a single, 
obvious subject—​lighthouse or labrador. This allows them to be readily asso-
ciated with a simple word or phrase, for labelling or captioning challenges. 
But for the most part, our visual world is not like that. It is the juxtaposition of 
elements that discloses the meaning of a visual scene.

Patients with Bálint’s syndrome teach us that visual structure is not per-
ceived directly. Instead, scenes are mentally constructed, with each element 
allocated to its relative location on a sort of mental canvas.64 In humans 
and other primates, one important locus for this canvas is the PPC.65 When 
healthy people see a cat and a dog side by side, they allocate the cat and the dog 
to two separate positions on the canvas, which allows them to identify, distin-
guish, and count them. But without the canvas, objects fall catastrophically 

Fig. 4.7  The impressionists understood that perception depended on the relations 
between elements of a scene.
Boulevard Montmartre by Camille Pissarro (1897).

	 64	 From a psychological perspective, a scene has been defined as ‘a semantically coherent . . . view of a 
real-​world environment comprising background elements and multiple discrete objects arranged in a spa-
tially licensed manner’ (Henderson & Hollingworth 1999).
	 65	 And probably the hippocampus. See below.
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on top of each other and cannot be mentally untangled. In patient R.M., this 
is revealed by a classic psychological test in which two alphanumeric charac-
ters are presented in different font colours at distinct locations on a screen.66 
If this image is flashed tachistoscopically, disappearing after milliseconds, 
then even healthy people will occasionally misbind the colours and shapes, re-
porting a red X and green A when, in fact, the A was red and the X was green. 
But R.M. exhibited these misbindings on 33% of trials, even when allowed to 
inspect the array for up to 10 seconds. Without a mental canvas, the shapes 
and colours cannot be separated into their spatial locations—​red A on one 
side, and green X on the other. They are all just a confusing jumble of shapes 
and colours. R.M. himself explains this when asked to describe his visual 
experience:

When I first look at it, it looks green and changes real quick to red. I see both colours 
coming together . . . When I look at it, it is an A. And sometimes I see a shadow of it 
[. . .] It looks like one letter is going into the other one. I get a double identity. It kind 
of coincides.

Bálint syndrome patients have no mental canvas, and so their visual space has 
no extent. To quote the neuropsychologist Lynn Robertson, who worked with 
R.M. for several years—​it is as if for these patients, ‘there is no there, there’.67

The meaning of a natural scene is disclosed by the relations among its elem-
ents. Consider the set of cartoons shown in Figure 4.8. All four panels show a 
man and a car. But the way we interpret the scene is entirely different in each 
case. On the left, the man is inside the car, whereas on the right, he is out-
side. In the upper panels, the man is smaller than the car, whereas in the lower 
panels, he is larger than it. This leads to a range of possible scenarios, in which 
the man is driving, or has broken down, or is riding in a child’s go-​kart, or is 
toying with a model vehicle. Yet if you were to train AlexNet on images such 
as these, it would simply label them all with ‘man’ or ‘car’. The subtle meaning 
conveyed by the relations among elements would be lost.

Since the 1980s, neuroscientists have argued that the primate brain has 
evolved two distinct pathways for visual processing. We have already met the 
ventral stream, which runs along the underside of the brain from the visual 

	 66	 See (Treisman & Schmidt 1982). The term illusory conjunctions is often used to describe this 
phenomenon.
	 67	 The original quote is attributable to Gertrude Stein and occurs in a very different context—​she is 
talking about Oakland, California. See excellent papers by Lynn Robertson on this topic (Friedman-​Hill 
et al. 1995; Robertson et al. 1997).
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cortex to the temporal lobes. Here, objects are untangled from their context by 
successive layers of neurons whose feature receptivity gradually narrows, but 
whose spatial selectivity broadens until information about object location is 
almost totally discarded. This pathway forms neural representations of com-
plex features and objects, such as neurons that code for car or man—​including 
specific types of car or identities of man—​in a way that is mirrored in deep 
convolutional networks. In the primate, however, the ventral stream is accom-
panied by a parallel pathway that starts in visual regions and heads up along 
the dorsal side of the cortex towards the PPC. On this dorsal stream, neurons 
care less about what an object is and more about where it is.

Dorsal stream neurons, including those in the PPC, become active when a 
salient object or feature occupies their preferred spatial location. The frame of 
reference for spatial coding in the dorsal stream is centred on the self, so that 
the neural population encodes locations in which objects can be grasped or 
fixated with the gaze. In fact, the same neurons become prominently active 
in the milliseconds before a reaching movement or saccade is made to their 
preferred location in space. The cells are thus both active when a location in 
space is earmarked by a prominent sensory stimulus or tagged as a probable 
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Fig. 4.8   Interpreting a scene relies on the relations between its constituent objects. 
Drawings by Hannah Sheahan.
From https://​psyar​xiv.com/​zfxj2/​
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location for future action. Neuroimaging studies, which can chart brain ac-
tivity at the regional level, have shown that directing attention to different lo-
cations evokes topographically coherent changes in PPC BOLD signal that 
generalize across tasks involving attention, working memory, and intention. 
In other words, the PPC may function as a generalized priority map of local 
visual space, signalling where we will direct attention in the visual world.68

By representing space in self-​centred coordinates, the PPC is well placed to 
encode relations among objects. Imagine a rectangular sheet, laid out on the 
floor. We can dot the sheet with well-​spaced objects—​a book, a mug, a comb, and 
a watch. This is like mental representation in the intact PPC. Now imagine that 
I gather up the sheet, holding it on each side—​the objects will all fall higgledy-​
piggledy into a central well. There is now no space, and so the objects are jum-
bled up and hard to individuate. This is what R.M. experiences. Now imagine 
what happens if I pin the sheet at its midpoint on the top and bottom, and just 
lift up one-​half. The objects on that side—​perhaps the comb and the mug—​will 
slide down to the midline, coming to rest on the opposing side. This is similar 
to the experience of patients who have PPC damage in just a single hemisphere, 
who display a well-​known pathology known as unilateral hemispatial neglect. 
When asked to draw a multielement array, patients either ignore objects contra-
lateral to the lesioned side or crowd all the objects onto the intact side of visual 
space, as if their mental representations had slid down to the other side of the 
sheet. This phenomenon is known as allochiria (Figure 4.9).

Deep networks are often accused of lacking robustness. According to their 
critics, they slavishly spit out object labels but fail to grasp the deeper meaning 
of a scene. For example, in a recent critique of deep learning methods, 
Brenden Lake and colleagues highlighted the photo/​caption pairing shown 
in Figure 4.10. A deep network catastrophically fails to grasp the meaning of 
an image.69 These sorts of failure might be explained if networks fail to pro-
cess how scene elements relate to one another: the juxtaposition of roaring 
waves, stricken building, and gritty determination on the faces of the fleeing 
people. Similarly, a vanilla CNN would fail to grasp the deep conceptual sym-
metry between the two scenes shown in Figure 4.11, in which a family are 
precariously balanced on a motorbike, or a litter of kittens on the resident dog. 
AlexNet may be a plausible model of the ventral stream—​like R.M., whose 
ventral stream is intact, it can recognize and label lone objects. But because it 
lacks a dorsal stream, it has no sense of space. It cannot understand how scene 

	 68	 See (Jerde et al. 2012). Also (Bisley & Goldberg 2010) provides a very nice review.
	 69	 See (Lake et al. 2017).
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elements conspire to inject an image with meaning. Standard deep networks 
are thus like Bálint syndrome patients.

So what are the relations among objects that an intelligent agent needs to 
grasp? Is there a grammar for understanding visual scenes? In early twentieth 
century, not long after the heyday of impressionism, the Gestalt psychologists 
wrote down a set of axioms for understanding the world in terms of global 
configurations, rather than local elements.70 Canonical Gestalt principles in-
clude similarity (are the elements the same?), proximity (are the elements close 
together?), connection (are the elements joined?), and continuity (are the 
elements aligned?). The spatial grammar that defines a visual scene might also 
include information about the number of copies of each element (‘four cats’) 
and their relative position to other objects (‘a dog’) given by basic prepositions 
(‘on top of ’). Their idea is that mentally constructing a percept surfaces more 
explicit information than is conveyed by the elements alone. Perception, the 
Gestaltists argued, is more than the sum of its parts (Figure 4.12).

These are, of course, precisely the sorts of aspects of a visual scene that 
standard deep networks like AlexNet fail to recognize. If you present a scene 
with four cats, the network does not know that there are four, rather than 
three or five. Instead, it just becomes more confident that there are cats in 
the image, because evidence is aggregated over multiple cat filters. In fact, 
standard deep networks are very poor at learning to count objects, unless 

Fig. 4.9  An example of a drawing by a patient with Allochiria.

	 70	 Among these was Wolfgang Köhler, whose work on insight we discussed in Chapter 2. Recall his 
theory that the monkey has to ‘grasp the whole layout’ to solve the puzzle—​a very Gestalt notion.
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A group of people standing on
top of a beach

Fig. 4.10  Example of inappropriate image captioning by a deep network due to failure 
of scene understanding.
From Lake et al. (2017).

Fig. 4.11  Images of a family of people on a motorbike (A) and a family of cats on a dog 
(B). To understand the commonality between these scenes, you need to represent the 
relationship between the objects.
Images reprinted with permission.
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the stimulus set gives the game away via the low-​level statistics.71 They are 
also poor at intuiting other Gestalt properties, such as symmetry, closure, 
and containment.72

AI researchers have yet to build deep networks that enjoy the explicit func-
tionality of the dorsal stream.73 But the idea that scene perception relies on 
object segmentation and relational inference has not escaped the machine 
learning community. One class of network explicitly tries to solve the problem 
of scene understanding by incorporating an architectural bias that objects 
are interrelated via a vocabulary of simple functions. Aptly called a Relation 
Network, the model first segments a scene into its constituent elements, by 
learning a set of filters (or weightings) over the image. Each filter earmarks a 
distinct object, so when attempting to make decisions (from pixels) about 3D 
tabletop object arrays in the CLEVR data set,74 it might learn to separate the 
shiny blue square from the tall red pyramid (Figure 4.13). It then learns a set 
of relational functions that characterize how object pairs oi and oj relate. Each 
function g(oi, oj) can itself be a simple feedforward neural network, and the 
output is the sum over relational functions. So for example, learnt functions 

Fig. 4.12  Perception is more than the sum of its parts. The image gives a strong 
impression of a sphere, even though none is shown.

	 71	 For example, if objects are similarly sized and are black on a white background, then the number of 
black pixels will correlate with the number. If space is constrained, arrays with more elements may have 
different spatial frequency properties, which networks can also use as a clue. This has made this question 
controversial.
	 72	 For example, see (Fleuret et al. 2011).
	 73	 Although see (Mineault et al. 2021).
	 74	 See here (Johnson et al. 2016).
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might implement a spatial vocabulary given by prepositions, such as behind, 
on top of, left of, and next to. This makes it easy for the network to map ground 
truth relations in the image onto labels or even simple phrases in natural 
language. When road-​tested on a benchmark question answering problem 
set using CLEVR (‘which object is behind the blue cylinder?’), the network 
reached 95% accuracy, trouncing the existing state of the art by 27%. It can 
even handle questions involving composites of multiple spatial relations in 
combinations it has not faced before, such as ‘there is a big thing on the right 
side of the big rubber cylinder that is behind the large cylinder to the right of 
the tiny yellow rubber thing—​what is its shape?’. The relation net achieved 
>90% accuracy on questions like these, surpassing human performance.

The foundational principle of neural network research is that intelligent 
agents need to be knowledgeable. They have to learn representations whose 
content and structure matches the way the world is organized—​as Craik pre-
scribed, their internal models should map isomorphically onto the outside 
world. By forming richly structured representations—​abstract concepts, such 
as beaver, circus, happy, or above—​the hope is that networks will be equipped 
to deal with the relentless arrival of novel sensations and experiences that are 
ferried towards us on Heraclitus’ river. They allow us to generalize in a world 
where time moves ineluctably forward.

Fig. 4.13  Example image from the CLEVR data set. Example questions include: ‘Are there 
an equal number of large things and metal spheres?’ or ‘There is a sphere with the same 
size as the metal cube. Is it made of the same material as the small red sphere?’.
Reprinted with permission from Johnson et al. 2016.
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The streams of data that we access through the senses contain informa-
tion about how the world is structured. However, sensory signals are vari-
able, noisy, multidimensional, non-​linear, composite, cluttered, complex, and 
confusing. Excavating meaning from sensory throughput is a daunting task, 
even for powerful networks equipped with millions of parameters and trained 
on millions of images. Upon arrival, useful knowledge is inextricably entan-
gled and hopelessly undecipherable. Because training data are finite, and the 
problem is Herculean, machine learning researchers have turned to architec-
tural priors—​inductive biases—​that build in knowledge of how the world is 
organized. The world has a non-​accidental structure, that is, there are deep re-
gularities in how sensory signals are constituted. Consider three examples: the 
world is clumpy, the world is smooth, and the world is friable.

The world being clumpy means that there are clusters of similar objects that 
physically resemble one another (such as birds) but are different from other 
objects (such as toasters). This means that CNNs, such as AlexNet, can use 
local receptivity and layerwise image transformations that are geared to disen-
tangle shared patterns of features, and group them into distinct classes. These 
clumps are position-​ and context-​invariant, so the networks can learn filters 
that are automatically shared across space—​allowing it to intuit that a bird on 
a kitchen counter is still a bird, and a toaster in a tree is still a toaster.75 The 
world being smooth means that high-​dimensional sensory signals can be com-
pactly described by a small number of latent factors. This means that genera-
tive models, such as a VAE, can extract knowledge of the axes on which faces, 
or trees, or cars smoothly vary, allowing the network to make predictions by 
interpolating or extrapolating in this latent space. Finally, the world being fri-
able (or ‘crumbly’) means that it is divided up into discrete entities (objects) 
which are broken off from a larger whole (the background). A mountain is 
strewn with boulders; a kitchen counter is stacked with plates; a lawn is lit-
tered with leaves. Objects are numerous, spatially non-​overlapping, and re-
lated in stereotyped ways. This means that Relation Networks can learn and 
generalize a canonical set of relational principles, such as encoding what it 
means for two adjacent objects to be perched on a larger object—​and thus to 
understand the structural commonality between kittens on a labrador and a 
family on a motorbike.

AI researchers often strive to eliminate human assumptions about how in-
telligence works from the technologies they build. Luminaries such as Rich 

	 75	 For the most part. Of course, the background contains important information about how to recognize 
objects, and networks can easily be fooled when recognizing out-​of-​context objects. For a nice review of 
context effects in biological vision, see (Bar 2004).
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Sutton have argued that ‘we need to build networks that discover like we can, 
rather than contain what we have discovered’.76 But as we have seen in the 
preceding sections, deep networks have systematically incorporated compu-
tational principles which are analogous to those found in biological brains. 
Naively left to their own devices—​to ‘discover like we can’—​neural networks 
often flounder. This is because it is simply not possible to excavate meaningful 
knowledge from finite volumes of unstructured sensory inputs, without 
a helping hand that encourages computation to focus on those parts of the 
structure that are relevant to intelligent behaviour. Neural networks start to 
succeed when researchers equip them with computational tools that are honed 
to account for the world’s non-​accidental properties. Unsurprisingly, these are 
the same computational tools that millions of years of evolution have provided 
for biological neural networks: local receptivity, convergent connectivity, div-
isive normalization, sparsification, predictive coding, orthogonalization, 
dimensionality reduction, spatial attention, and object-​based relational com-
position.77 In the relentless pursuit of neatness, some AI researchers forget 
that the world itself is not neat, and that the path to AGI, like the road taken 
by natural general intelligence, will inevitably be more than a little bit scruffy.

	 76	 As discussed in Chapter 2.
	 77	 Divisive normalization occurs when neural responses are normalized non-​linearly by the average in 
the population. It can help accentuate contours and is a ubiquitous computational motif in biology that is 
frequently borrowed by machine learning researchers.
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5
The problem of abstraction

5.1  Molecular metaphors

In 1876, the German chemist Hermann Kopp was having a torrid time in 
the laboratory—​his experiments were refusing to work. To allay his frus-
tration, he sat down to write an unusual book.1 Entitled Aus der Molecular-​
Welt,2 it describes a fantastical kingdom inhabited by atoms and molecules 
with wildly varying character and physiognomy. Carbon has four arms. 
Hydroxyl is arrogant, and chlorine is a real sourpuss. The chemicals—​like 
young children—​hold hands for comfort. They pass the time dancing: partner 
dances for couples or an Allemande à trois, prim quadrilles of the courtly ball 
or a rambunctious Scottish jig. There is jealousy and scandal when partners 
are exchanged. Six carbon atoms dance ring-​a-​roses, giving two hands to one 
partner and one to the other, with their last hand reserved to drag a hydrogen 
atom behind them—​forming the famous ring structure of benzene, proposed 
by August Kekulé just 20 years earlier.3 Molecular structure is complex, and 
chemical bonds are invisible to the naked eye, but Kopp brings the tiny uni-
verse of molecules to life, forging analogies with physical and social relations 
in the macroscopic world. Once discovered, Aus der Molecular-​Welt became 
an instant classic.4

Analogies are grounded in the deep symmetries that exist in the spatial 
or temporal relations between entities and their constituents. Analogies are 
meta-​relational, because they draw attention to how relational patterns in 
data are themselves related. Chemical bonding is like children holding hands. 
Chemical reactivity is like volatility of character. Atoms are like solar sys-
tems, because they involve smaller spheres orbiting larger ones. Atomic rings, 
wedding bands, and the cycle of the seasons involve a steady spatiotemporal 

	 1	 For a wonderful retelling of this story, see telling (Rocke 2010).
	 2	 From the World of Molecules.
	 3	 In a lecture in 1890, Kekulé claimed that he conceived of the structure of benzene in London in 1855, 
after falling into a reverie on a horse-​drawn omnibus passing through Clapham and dreaming of a snake 
consuming its own tail. It is likely that Kekulé was referencing Kopp’s book, or the humorous parodies it in-
spired, rather than recounting an actual experience.
	 4	 It came to light in 1882, after Kopp presented a copy to his Heidelberg colleague Robert Bunsen on the 
occasion of his birthday.
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progression that gradually bends back on itself to form a circle. Military cam-
paigns and political debates involve the strategic accumulation of territory 
through the deployment of opposing forces. Families, trees, and computer 
code can all branch recursively to form a nested hierarchy. In fact, a limited 
set of relational grammars, including trees, linear orders, multidimensional 
spaces, rings, dominance hierarchies, and cliques captures the relational pat-
terns encountered in a variety of physical, biological, and social domains.5

Reasoning by analogy underpins the great flashes of insight that have im-
pelled science forward. In the early twentieth century, in a succession of im-
aginative leaps, physicists conceived of subatomic interactions as a billiard 
table, then as a plum pudding, and finally as the solar system in miniature. But 
analogies are for everyone, not just quantum physicists. The way we use lan-
guage is intrinsically metaphorical.6 One analysis of TV dialogue found that 
we use a metaphor about every 25 words.7 We understand that life is a journey, 
that writing a thesis is like climbing a mountain, that bureaucracy is a laby-
rinth, and that we are born into one branch of an ancestral tree. In his classic 
book Metaphors We Live By, the philosopher and cognitive scientist George 
Lakoff heroically attempts to catalogue the deep metaphorical structure of the 
English language, in which arguments are warfare and time is money, good 
things go up and bad things come down, and resentment is bitter and victory 
is sweet. Metaphors express deep patterns in the way the world works, picking 
out similarities across otherwise unlike domains.

Can we formalize what is meant by analogical reasoning? Consider three 
objects A, B, and C, each characterized by a single attribute. For example, A 
might be large, whereas B and C are both small. Now consider three entirely 
different objects D, E, and F. These new stimuli could even occur in another 
modality—​for example, D might be loud, whereas E and F are both quiet. 
Thus, although A, B, C and D, E, F are entirely unrelated, the similarity in 
structure is analogous—​both have two similar items, with a single odd one out 
(A and D). In fact, if you create RDMs for A, B, C and D, E, F, they will have 
the same form (Figure 5.1). As always, knowing how the world is structured is 
useful for prediction. So even if the identity of D is missing, you can assume by 

	 5	 See (Kemp & Tenenbaum 2008) and (Tenenbaum et al. 2011).
	 6	 Metaphors, similes, and analogies all draw attention to the resemblances among relational patterns in 
data. They do so for slightly different reasons: a simile states that x is like y; a metaphor with poetic, ra-
ther than literal, intent states that x is y; and an analogy states the resemblance between x and y usually 
with a view to drawing attention to some aspect of x, which is made clearer through comparing it to y. In 
psychology, ‘analogical reasoning’ is often (but not always) non-​verbal, whereas metaphors are usually (but 
not always) expressed in words. From a purely cognitive standpoint, however, the distinction(s) between 
simile, metaphor, and analogy seems irrelevant, so I will ignore them here—​even if grammarians (and my 
grandmother) would no doubt disapprove.
	 7	 See (Graesser et al. 1989).
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analogy with A, B, C that it is loud, because E and F are quiet. This is the cogni-
tive functionality that is needed to grasp the analogies in Kopp’s book of magic 
molecules, where A, B, and C are fictional characters with human-​like emo-
tion and action, and D, E, and F are the building blocks of physical chemistry.

Darwin famously claimed that the difference between human and non-​
human intelligence is one of degree and not kind—​that we live on an intel-
lectual continuum with other species. Others have claimed that the ability to 
reason by analogy is a unique intellectual watershed that divides us from other 
animals, relying on as yet undiscovered cognitive mechanisms that are special 
to humans.8 Whilst this view remains controversial, it is clear that many spe-
cies can make judgements based on higher-​order patterns of similarity and 
difference among stimuli. Take the simple case of deciding whether two items 
are the same (A, A) or different (B, C). Having learnt to select A, A over B, C, 
an agent should—​without further training—​know to choose D, D over E, F. 
It has been claimed that animals as diverse as honeybees, parrots, ducklings, 
and dolphins are able to solve this or closely related problems. Doing so relies 
on an ability to abstract over the specific properties of A, B, C and D, E, F. For 
example, in one well-​known experiment, honeybees were able to match visual 
stimuli defined by colour after learning to match others defined by their angle 
of orientation.9

Fig. 5.1  Example relations based on size (left) and volume (right). The signals are very 
different, and even in different modalities (visual and auditory). However, they have the 
same RDMs. Each square indicates the dissimilarity between each stimulus and every 
other (black =​ most similar; white =​ most different).

	 8	 For a well-​known version of this argument, see (Penn et al. 2008). For a different view, see 
(Premack 2010).
	 9	 See (Giurfa et al. 2001), (Martinho & Kacelnik 2016), (Mercado et al. 2000), and (Pepperberg 1987). 
The parrot in question was a famous African Grey called Alex, whose extraordinary cognitive abilities are 
documented in the film Life with Alex.
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This concept of sameness seems simple. Remarkably, however, it poses great 
difficulties for state-​of-​the-​art neural networks, including both CNNs and 
Relation Networks. One detailed study showed that neural networks trained 
on vast volumes of data could learn to discriminate sameness in limited cir-
cumstances, perhaps by learning ‘subtraction templates’ that matched iden-
tical pixel patterns across spatial locations. However, the networks showed 
no propensity to generalize the concept of ‘same’ between different features. 
The networks thus failed on a task that the humble honeybee—​an inverte-
brate with fewer than a million neurons—​was able to do for orientation and 
colour.10 In other work, minor cosmetic changes to the input stimuli can be 
shown to dramatically degrade the networks’ same-​difference performance, 
even within a single dimension, reminding us that learning in deep networks 
can be perilously fragile, and different from biology in often bewildering ways.

Primates are capable of sophisticated forms of reasoning in naturalistic set-
tings, especially when their food—​or position in the social hierarchy—​is at 
stake. However, it is unclear how versatile their relational reasoning might be. 
In the 1940s, the primatologist Harry Harlow—​better known for his contro-
versial experiments on the effects of social deprivation on infant macaques—​
made an interesting discovery. In a series of experiments, monkeys learnt to 
choose between two visual objects, one of which was rewarded and one was 
not. Harlow noted with surprise that each time the task was restarted with 
two entirely novel objects, the monkeys learnt slightly faster. In fact, their 
performance continued to accelerate over hundreds of new object sets, until 
eventually the monkeys could respond almost perfectly from the second trial 
onwards. Harlow argued that over the course of repeated pairings, the mon-
keys had learnt how to learn. It seems that the monkeys learnt something ab-
stract about the relations between the two stimuli in each pairing—​that if 
one was rewarded, the other was not. By generalizing this knowledge to new 
pairings, they could learn ever faster (Figure 5.2). Human children tested in a 
comparable fashion showed the same ability.11

Human ability to reason analogically is often measured with the RPM 
test.12 Each RPM problem is made up of an array of boxes, with the relations 
between objects and features in each box changing according to a hidden re-
lational rule. The goal is to guess the contents of a missing box by inferring the 
rule. Objects exhibit lawful patterns of sameness or difference across boxes: a 

	 10	 See (Kim et al. 2018).
	 11	 On the first trial, they had no information and were obliged to guess. The original reference for this 
work is (Harlow 1949).
	 12	 As discussed in Chapter 3. In fact, whether non-​human primates can solve RPM has been controver-
sial. There is evidence that they solve some simpler versions of RPM problems.
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feature may vary gradually in intensity, or size, or number. Humans have to 
grasp the pattern from existing data (A, B, C) and extrapolate it to missing 
data (D, E, ?). The objects and features themselves are simple shapes, lines, 
colours, and textures, meaning that the rule cannot be inferred from the se-
mantic properties of the stimuli. Instead, solving RPM requires the use of ab-
stract concepts, expressing identities in the relational patterns across array 
elements. Most people can solve simple RPM problems, but their perform-
ance on harder examples is extremely heterogenous. In fact, the ability to solve 
RPM is a good predictor of outcomes in the real world, such as their lifelong 
levels of educational attainment or career success. This is why it has become a 
staple of human intelligence testing.

These observations naturally raise the question of whether deep networks 
can form the sorts of relational abstractions needed to solve analogical rea-
soning tasks like RPM. In one recent paper, researchers built a program that 
generated virtually unlimited numbers of RPM problems with unique visual 
configurations, and rules defined by exhaustive combinations of object types 
(shape or line), feature types (colour, size, or number), and relational primi-
tives (AND, XOR, progression). This ability to generate huge numbers of 
training examples permitted the application of data-​hungry deep learning 
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methods to the problem. They then combined several Relation Network mod-
ules into a single deep network (called ‘wild relation network’ or WReN) 
that output scores for each of the eight candidate answers to the RPM puzzle. 
When the authors used their generator to sample RPM problems involving 
new, unseen combinations of all these variables, WReN performed at nearly 
62.6%. Although not perfect, this was far above chance level of 1/​8 or 12.5%. 
Thus, after training on progressions of blue squares or matches of red cir-
cles, it could solve new progressions of blue squares that had different sizes 
or positions, or even handle progressions of red circles. However, when more 
shapes, or colours, or rules were systematically omitted from the training data, 
WReN started to falter. For example, after training on a rule involving only 
red squares, it was much poorer at applying the rule to blue circles. For some 
strong transfer conditions, such as generalizing between shapes and lines, the 
network’s test performance was ultimately no better than chance.

The problem of abstraction is to learn explicit representations of the rela-
tions that exist in data. By learning relational abstractions, we can understand 
that what concepts like same, or more, or cyclic mean in ways that go beyond 
the sensory inputs. For example, two horses can be the same, but so can two 
political views. One horse can be faster than the other, but equally one wine 
can be more delicious than another. A circus ring allows a performing horse to 
trot around and around; the hypothetical Wheel of Fortune, which raises King 
Lear’s hopes up and then dashes them down again,13 turns inevitably on itself 
in a similar fashion. An explicit representation of an abstraction occurs when 
a neural population displays these sorts of invariances, coding for sameness, 
magnitude, or cyclicity (rather than horses, political views, or circuses). If we 
could build machines that understand the meaning in these patterns, perhaps 
they would have the imaginative insight and gift for creative expressions that 
are currently reserved for humans.

Even the more constrained problem of analogical reasoning remains un-
solved in AI research. The work above is emblematic of the challenges that 
researchers face. Advanced network architectures, such as relation nets, can 
explicitly segment object arrays into their elements and compute spatial re-
lations between them. When the domain of the relation is similar—​requiring 
generalization from colour to colour, or shape to shape—​the network can 
transfer the relational functions g(oi, oj) to new pairs of objects o oi i

’ ’, . But the 
network never learns more abstract relational concepts, that is, those that 
are untethered from concrete input features. Indeed, one can even imagine 

	 13	 In Shakespeare’s great tragic play of that title.
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theoretically stronger transfer conditions—​for example, if the visual lines and 
shapes had been replaced at test by auditory tones with different pitch and 
volume, or with 3D landmarks in a navigable open area, or with verbal de-
scriptions of the problem in natural language. Here, the network would have 
failed catastrophically.

The reason for these failures is a familiar ghost that haunts AI research: the 
grounding problem. Recall Peirce’s tripartite distinction: representations can 
reference the world by physical likeness (iconicity), by contextual congruity 
(indexicality), or by arbitrary convention (symbolism). For an abstract rep-
resentation of an analogical relation—​such as ‘sameness’—​to transcend a 
specific feature or dimension, it cannot be merely iconic. Horses and polit-
ical views do not resemble one another. Nor when bees generalize the simi-
larity of orientation to infer a similarity rule for colours, can their neural code 
be grounded in physical resemblance—​because two blues and two vertical 
stimuli are not themselves similar.

For these abstract relational concepts, which go beyond physical likeness, 
it is the relationship in space and time that binds a stimulus and its represen-
tation together. A tricorn hat, the Holy Trinity, and Pascal’s triangle are seem-
ingly unrelated concepts with no physical correspondence, variously beloved 
of pirates, priests, and mathematicians. But they are linked through their tri-
partite structure. To understand these sorts of similarities, we need a form 
of neural representation that explicitly represents how items relate in space 
and time. Recent work in neuroscience has offered tantalizing hints about the 
nature of this code in biological brains, and how it is used to solve relational 
reasoning problems.

5.2  Playing Twenty Questions with space

If you are on a long and boring car journey, the game called Twenty Questions 
can be a good way to pass the time. It is played between two people: a setter 
and a solver. The setter chooses a secret object—​which can be any object, any-
where in the world14—​and the solver attempts to discover what it might be. 
The solver can pose any query, to which the setter must reply truthfully, as 
long as it can be answered with yes or no.

We can think of neural decoding as being a bit like Twenty Questions. 
The secret object is the state the animal is currently experiencing, which we 

	 14	 Or out of it. Twenty Questions is particularly interesting if you allow hypothetical or fictional entities, 
such as the Cheshire Cat or Wonder Woman.
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assume is unknown. The questions are single neurons whose activity we can 
read out. In this analogy, different neural coding schemes correspond to dif-
ferent querying strategies that might be adopted by the solver. For example, 
a very inefficient approach, popular among younger players of the game, is 
to list candidate objects one by one, asking: is it x? Is it y? Is it z? This is like 
attempting to read out from a neural code in which information is stored in 
a series of unrelated slots, in a fully localist manner. A more cunning strategy 
for the solver is to exploit the structure of the world to generate queries that 
rule out approximately half of the remaining possible options, thereby maxi-
mizing the expected information gain.15 For example, if you ask in the first 
question whether the object is human-​made, then irrespective of the answer, 
you can potentially rule out a vast set of either natural or artificial objects. 
You can then successively ask whether it is an animal (or not), a person (or 
not), a female (or not), and so on, zoning in on the secret object by halving 
the options each time. In fact, this strategy exploits the coding hierarchy for 
semantic concepts, such as living, animal, and dog, that is learnt by a neural 
network trained on image classification tasks.

Now imagine that instead of guessing a secret object, the solver has to guess 
a secret location. To make it simple, let’s say that the set of possible locations 
is drawn from an open, rectangular arena, such as an empty squash court. As 
Tolman proposed, we can think of each location in the court as a discrete state, 
and the ensemble of states collectively make up a mental map. How, then, 
should location be encoded in a neural population?

In the late 1960s, a neuroscientist called John O’Keefe was recording from 
somatosensory cells in the rodent thalamus.16 In one animal, an electrode was 
inadvertently inserted more laterally into the hippocampus. O’Keefe noted 
that the neurons he found there varied in striking ways with the animal’s run-
ning speed and head movement. He found this surprising, because these vari-
ables seemed unrelated to memory formation, then thought to be the primary 
function of the rodent hippocampus. This serendipitous finding triggered a 
chain of events which led to a remarkable discovery: that when a rodent moved 
through an arena, neurons in the CA1 field of the hippocampus fired when-
ever it passed through a circumscribed location. Their activity was largely in-
dependent of the precise heading direction of the animal, and did not vary 

	 15	 The best strategy is to choose a question for which the probability of yes is as close as possible to 0.5. 
Of course, this also depends on the setter’s tendencies. If a favoured teddy bear is chosen as the object in 
approximately half of games, then ‘is it x’ might actually be worth a shot.
	 16	 A subcortical structure involved in relaying sensory information to the cortex, among other things. 
This work was being done with Jonathan Dostrovsky. See https://​www.nob​elpr​ize.org/​pri​zes/​medic​ine/​
2014/​oke​efe/​lect​ure/​.

https://www.nobelprize.org/prizes/medicine/2014/okeefe/lecture/
https://www.nobelprize.org/prizes/medicine/2014/okeefe/lecture/
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with relevant sensory cues such as visual landmarks or odours. In fact, they 
even fired in the dark. These neurons, called place cells, were thus representing 
the animal’s current spatial location in allocentric (or map-​like) coordinates.17 
Thus, a rodent let loose on a squash court might have hippocampal place cells 
that, respectively, became active when it crossed the top of the right-​hand ser-
vice box, paused to groom at the front left of the court near the tin, or scurried 
along the back wall near the door (Figure 5.3).

O’Keefe quickly realized that these cells might form an important compo-
nent of the cognitive-​like map of the environment that Tolman had proposed 
two decades earlier. His findings triggered a wave of interest in the nature of 
the hippocampal code and how it might act as a neural compass for the brain. 
Over the intervening 40 years, neuroscientists have learnt a great deal about 
the representation of space in the hippocampus and nearby structures that 
make up the medial temporal lobe (MTL) (Figure 5.4).18 In 2014, O’Keefe was 
awarded a share of the 2014 Nobel Prize for Medicine for this discovery.

	 17	 Formally, allocentric space is defined in object-​to-​object (rather than self-​to-​object) coordinates. 
A map of the world viewed from above is thus an allocentric representation.
	 18	 The MTL is the name given to a constellation of mammalian brain regions that are important for both 
spatial cognition and memory formation, including the hippocampus, entorhinal cortex (ERC), perirhinal 
cortex (PRC), and dentate gyrus (DG). Figure 5.4 is taken from (Murray et al. 2007).

Fig. 5.3  Schematic illustration of place cells in a squash court. The white line is the 
trajectory of a theoretical rat. The white dots indicate action potentials from a single CA1 
place cell. This neuron codes for a location in the centre rear of the court.
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A canonical place cell is active for just a single location.19 Thus, together 
place cells form a localist code, carrying limited information about how space 
is organized. For example, the population place cell activity would be no more 
similar for two nearby locations in the left-​hand service box than any two spots 
on either side of the court. Querying place cells one by one, like listing objects 
one by one in Twenty Questions, would thus be an ineffective strategy to infer 
the animal’s location. Imagine that the court is tiled by ten regularly spaced 
place fields in each direction, or 102 =​ 100 fields in total. Even with 20 ‘ques-
tions’—​or opportunities to decode the location—​there is only a 20% chance 
that the solver would actually choose a cell that allowed the animal’s location 
to be inferred. However, the question budget could be used more wisely by 
capitalizing on the way space is structured. For example, the solver could first 
ask whether the location was at the front of the court (or not), then whether it 
was to the left of the court (or not), confining the possible locations to a single 
quadrant in just two questions. They could then narrow it down from a quad-
rant to a hexidecant (a 16th) with two further questions, and so on. This would 
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Fig. 5.4  Illustration of the medial temporal lobe, including the hippocampus in the rat, 
macaque monkey, and human, viewed from the underside of the brain.
Reprinted with permission from Murray et al. (2007).

	 19	 In reality, individual place cells often have a small number of distinct fields in different parts of the en-
vironment, so it is a sparse (but not fully localist) code. Moreover, if place cells are organized hierarchically, 
with different neurons tuned for different scales, then they can also encode the structure of space.
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be the quickest way to guess the secret location—​and also the most efficient 
way to code the location in a neural population.20

This neural coding scheme entails cells that code for space with a series of 
quadrilateral lattices (or checkerboards) that vary from coarse (e.g. quad-
rants) to fine (e.g. hexidecants). It predicts the existence of neurons that re-
spond when the animal occupies regularly spaced locations in an open arena, 
say every 20 cm or 2 m apart in either direction. Remarkably, neurons that fire 
in a regularly spaced lattice have been found in the rodent medial ERC, an 
MTL structure that is strongly interconnected with the hippocampus. Edvard 
and May-​Britt Moser shared the 2014 Nobel Prize with O’Keefe for their dis-
covery of these neurons, which are called grid cells. The lattice (or grid) in 
question is not, in fact, quadrilateral, but hexagonal (it has sixfold, rather than 
fourfold, symmetry), but nevertheless it seems very likely that these neurons 
collectively represent the animal’s position in the efficient fashion implied 
by the Twenty Questions example.21 Rodent grid cells have different spatial 
scale, with the coarser scales being found in more ventral portions of the ERC, 
and the finer scales more dorsally. This tells us that the MTL—​and the ERC 
specifically—​houses an efficient code for space. More recently, sophisticated 
analyses of BOLD data have been used to imply the existence of a similar grid 
code, whilst humans navigate in a virtual environment, extending beyond the 
ERC to the medial prefrontal and parietal regions.22

Unlike a localist code, a hierarchical grid code conveys how space itself is 
structured. Each location is coded by overlapping cells with different levels 
of spatial scale. This means that nearby regions will be more likely to evoke 
more similar patterns of population grid cell activity. Two spots near the left-​
hand service box will both evoke activity in neurons coding for that back left 
quadrant, even if they drive different firing patterns at finer scales. It seems 
strange to propose that we need neurons that encode the structure of space 
itself. Space just seems to be everywhere. It does not naturally feel like it has 
any structure. But this is an illusion borne of an abundance of familiarity. The 
Euclidean world we inhabit has lawful properties that are defined by the math-
ematics of vector addition and can be exploited for navigation. For example, 
if you are standing in the middle of a squash court, after repeating the action 

	 20	 If there are n possible states, querying them in turn (akin to reading out from place cells), it would take, 
on average, n/​2 questions to find the setter’s state. Using this grid-​like strategy will take log2(n) questions, 
which is fewer for any problem with n >8 states.
	 21	 One theory is that sixfold symmetry emerges naturally under a computational constraint that neurons 
cannot produce negative firing rates. See (Dordek et al. 2016).
	 22	 See (Doeller et al. 2010).
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take two steps forward, and then turn 90° clockwise exactly four times, you end 
up more or less where you started.

In fact, even the humble rodent can exploit the geometry of space to make 
a beeline for a tasty food reward. In a classic experiment, Tolman placed rats 
in a circular arena with multiple possible exits. All but one exit was blocked, 
with the open exit leading via a convoluted route to a reward. After multiple 
training trials, other exits were unblocked, including those that headed dir-
ectly towards the food reward. According to Tolman’s reports, animals chose 
the direct route at the first available opportunity—​which they could only do if 
they understood how space itself is geometrically arranged.23 This sort of be-
haviour would be hard to explain with a place code alone but can be explained 
if the animals know how space is organized.

Thus, knowing the structure of space can help you predict what will be 
around the next corner. If you are standing outside your favourite deli in 
Manhattan, you can predict that by heading a city block north, then taking 
the cross street west, then south down the avenue, and finally back east, you 
will arrive back at the same location. One recent modelling study created a 
virtual grid in which locations were tagged with salient landmarks, just like 
Manhattan street corners are recognizable by distinctive hotels, laundromats, 
and diners. They then trained a generative model that was loosely based on 
a VAE (called TEM)24 to predict the landmark that would occur after each 
action. During training, the neural network formed units that behaved like 
place and grid cells, and others with more exotic coding properties (firing 
in bands or along borders) that have also been found in the rodent MTL.25 
Critically, after forming these codes, the network was able to navigate a new 
environment with the same grid structure, but alternative landmarks, as if it 
had generalized the knowledge of the structure of Manhattan to a new point 
in the city with unfamiliar delis, bars, and subway stations. In a different study, 
agents trained with deep reinforcement to navigate mazes developed grid-​
like coding patterns in their hidden units, and the ablation of these units was 
particularly detrimental for behaviours that required geometric inferences in 
space, such as exploiting shortcuts to reach a goal.26 Together, these findings 

	 23	 The original study is here (Tolman et al. 1946). Although more recent studies have failed to replicate 
this finding in its original form, there seems to be little doubt that rodents behave as if they understand how 
space is structured.
	 24	 Which stands for the Tolman Eichenbaum Machine. Howard Eichenbaum was a distinguished re-
searcher who argued that the hippocampus coded for relations among objects in memory (Whittington 
et al. 2020).
	 25	 Border cells only when the agent was biased to hug the corners of the environment, like rats do. There 
are many other MTL cell types, including those that fire close to objects. For a great review, see (Bicanski & 
Burgess 2020).
	 26	 See (Banino et al. 2018) and also (Cueva & Wei 2018).



Playing Twenty Questions with space  161

imply that a simple predictive principle is sufficient to learn neural codes that 
permit structure learning in space and might subserve remarkable geometric 
inferences like those displayed by Tolman’s rats.

Our mental maps encompass more than physical space. Collectively, they 
encode a mosaic of knowledge about how everything relates to everything 
else. One promising idea is that the computations performed by place and 
grid cells might also allow inferences about non-​spatial domains.27 In fact, 
TEM was able to learn and generalize patterns of correlation in the value of 
two objects, like in Harlow’s monkey experiments. It could also draw infer-
ences by learning relationships in other canonical structures, such as family 
trees, and generalize them to new instances. Like humans, having learnt con-
cepts such as aunt and sibling, TEM could infer relations between mothers, 
sisters, and daughters of novel families. To return to an earlier example: elem-
ents with a triangular structure (such as a tricorn hat, Pascal’s triangle, and the 
Holy Trinity) are all composed of three elements which are equally dissimilar 
to one another. The tricorn hat exists in physical space, with three equidistant 
corners; we use our conception of space to understand the relational form for 
the other concepts, which are, respectively, spiritual or mathematical objects 
with no overt physical form.

Thus, we know that the Eiffel Tower is adjacent to the river Seine and the 
Champ de Mars in our mental map of Parisian geography. We know that 
it relates to a tepee, a traffic cone, and the Great Pyramid of Giza in our 
mental map of 3D object shapes. But it also lies in between the Washington 
Monument (1880–​1884) and Chrysler Building (1930–​1931) in the more ab-
stract space given by a timeline of the world’s tallest free-​standing structures. 
In this space, it is closer to the Empire State Building (1931–​1967) than it is to 
Lincoln Cathedral (1311–​1549) in both rank ordering and metric time meas-
ured in years. The suggestion is that grid-​like coding schemes might be one 
way in which we mentally organize abstract conceptual knowledge. Mental 
timelines lie on a single dimension, so grid-​like cells would form unidimen-
sional oscillatory codes that carve up this abstract space across different scales 
from coarse to fine. For example, coarse-​scale neurons would fire for either 
ancient structures (Tower of Jericho, the Anu Ziggurat, and the Red Pyramid 
of Sneferu, that all held the record before 2000 bc) or those from the modern 
era (Notre Dame Cathedral, Empire State Building, and Burj Khalifa). These 

	 27	 This idea has been developed and promoted most enthusiastically by the Oxford neuroscientist Tim 
Behrens. For two great reviews on this topic, see (Behrens et al. 2018) and (Bellmund et al. 2018). In the 
modelling study from his group, TEM was able to learn and generalize patterns of correlation and anti-​
correlation between two objects (like in Harlow’s monkey experiments) and to draw inferences across other 
varieties of structures, such as family trees, by learning concepts such as ‘aunt’ and ‘sibling’.
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would be complemented by fine-​scale grid neurons, with preferences for 
early or late halves of both the early and late eras, and so on. Together, these 
cells would make up a grid-​like code for the abstract space of the tallest free-​
standing structure timeline (see Figure 5.5 for a similar example). In fact, a re-
cent study in which rodents learnt to map lever responses onto variation in the 
pitch of auditory tones reported the existence of ERC neurons with such os-
cillatory patterns, exactly as predicted by this theory.28 Neuroimaging studies 
have also reported evidence that non-​spatial concepts, like those traced out 
by varying physical features of birds (neck and leg length) or concentrations 
of odours (pine and lemon), might be represented with 2D grid-​like neural 
codes,29 consistent with the idea that there exist shared coding principles for 
physical and abstract space.
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Fig. 5.5  Illustration of grid cells for coding for building size. The top illustration shows 
the world’s eight tallest buildings in 2015. The three schematic grid cells below are 
shown with different scales of tuning in building height space. The grey icons denote 
either large or small neuronal responses.
Adapted from work by Ali Zifan; used data from Emporis.com, CC BY-​SA 4.0, see https://​comm​ons.
wikime​dia.org/​w/​index.php?curid=​41356​641.

	 28	 See (Nieh et al. 2021). If true, this would be a delightful finding, but the data in this paper are quite 
preliminary.
	 29	 This is a very recent line of research and remains controversial. In particular, the studies cited use 
fMRI, which cannot measure grid cells directly but must infer from the relationship between the BOLD 

https://commons.wikimedia.org/w/index.php?curid=41356641
https://commons.wikimedia.org/w/index.php?curid=41356641
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Although the idea that place and grid cells code for conceptual spaces is re-
cent, the idea that people use spatial representations to reason about concepts 
is a familiar one among cognitive scientists. Dedre Gentner has proposed that 
analogies are understood via the isomorphic mappings of relational struc-
tures in mental space. Peter Gärdenfors has argued that thought is intrin-
sically spatial: that we understand the meaning of words, propositions, and 
arguments through their relative mental geometry. Lakoff calls this the ‘spa-
tialization of form hypothesis’ and argues for the ontological primacy of spa-
tiotemporal archetypes, like those shared by container and contained, centre 
and periphery, part and whole, and the triad of origin, path, and goal.30 The 
idea that space and time have a special cognitive status connects the physics 
of Newton and Einstein with the philosophy of Kant and Leibniz. According 
to this view, spatial position and temporal instant are not mere properties of 
objects, like colour and shape. Instead, space and time are the mental axes in 
which thinking itself happens.

5.3  Abstractions as affordances

The last common ancestor of humans and chimpanzees lived about 7 million 
years ago. But if we turn back the clock a further 50 million years, a more 
significant split occurred in the primate ancestral family tree, when a group 
known as Haplorhines broke away from the Euprimate line. Unlike their 
Strepsirhine counterparts, which evolved into modern-​day bushbabies and 
lemurs, Haplorhines found a new niche foraging by day, high up in the forest 
canopy. This diurnal, arboreal existence may have placed selective pressures 
on brain function which were critical to the evolution of the intelligence we 
recognize in their primate descendants, including old world monkeys (such as 
capuchins), new world monkeys (such as macaques), and hominids (such as 
gibbons, gorillas, and humans).

If you live in the trees, a major concern is to avoid tumbling accidentally 
to the forest floor. Haplorhines thus developed dextrous hands and feet, an 
opposable thumb, and forward-​facing eyes, which allowed them to judge 

signal in the ERC and a direction of travel in feature space, which involves some theoretical leaps of faith 
(Bao et al. 2019; Constantinescu et al. 2016).

	 30	 Lakoff makes this point here (Lakoff 1987). René Thom, who pioneered a theory of dynamical systems 
known as Catastrophe Theory, argued that the world bifurcates into just 16 basic topological types, with 
relational forms such as begin, unite, capture, and cut. This is described in Gärdenfors’ book Conceptual 
Spaces (Thom 1970). Gentner’s work on analogy is extensive (Gentner et al. 2001).
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distance accurately using binocular vision. These innovations helped them 
leap agilely, but safely from branch to branch. Foraging by day makes it easier 
to find fruits, nuts, and seeds that are abundant in the forest canopy, but they 
need to be recognized and selected by their size, shape, and colour, which 
requires spatial and feature-​based attention. Moreover, they can be hard to 
reach among the flimsy fine branches, which encourages risk sensitivity and 
judicious action selection. A diurnal existence exposes you to a greater risk of 
predation, so it may be sensible to band together in groups, rather than living 
a solitary existence. In their book Neurobiology of the Prefrontal Cortex, Dick 
Passingham and Steve Wise argued that these pressures drove the evolution 
of primate cognitive function, which is characterized by precise visuomotor 
and oculomotor control, high-​acuity colour vision and shape recognition, 
selective visual attention, complex decision-​making, and advanced social 
cognition.31

These pressures also drove the evolution of a representation of space in 
the PPC. The parietal cortex encodes space with a coordinate system that 
is centred on the self. This is the mental canvas that is lost in patients with 
Bálint’s syndrome such as R.M. This spatial map charts the spatial positions 
to which we can move our eyes and limbs. Consider the view of a tabletop 
strewn with objects, like in the CLEVR data set: a spatial representation of this 
scene maps out the locations to which we can reach (to grasp an object with 
our hands) or saccade (to fixate an object with our eyes). The primate notion 
of space thus prominently reflects the objects around us, what we are holding, 
what we can reach, and what might attract our gaze. This is especially true for 
humans living in a modern, carpentered world, where almost all our actions 
are taken through the medium of a hand-​held tool.

Primates, thus, represent space with two different frames of reference. One 
frame, shared with rodents and housed in the MTL, codes for location in an 
allocentric or object-​to-​object frame of reference, like a marker on a visitor 
map indicating that you are here. The other, which is more mature in primates 
than rodents and relies on the parietal cortex, codes for locations that can 
be reached or fixated with the eyes in a self-​to-​object format. Above, we saw 
that allocentric space might be recycled to represent the more abstract rela-
tional concepts which give human knowledge its semantic richness, such as 
relational patterns among city grids or family trees. Intriguingly, there is also 
good evidence that a similar principle applies to the code for egocentric space 
in the parietal cortex. We use our concept of egocentric space to understand 

	 31	 See (Passingham & Wise 2012).
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abstractions such as the magnitude of a quantity, the length of an elapsed pas-
sage of time, the number of items in a scene, or the monetary value of different 
choice options.

Psychologists have long known that there are mysterious interactions be-
tween the way we respond to space, time, and number.32 For example, a behav-
ioural phenomenon, known as the SNARC effect, occurs when participants 
are asked to make a numerical judgement, for example about parity or magni-
tude, with a button press or eye movement. Responses are faster when lower 
numbers occur on the left of the screen and higher numbers on the right (than 
vice versa), as if people intrinsically map numbers onto a mental line that in-
creases from left to right. The passage of time seems to be projected to the 
same mental line: we are faster to respond to earlier events on the left and to 
later events on the right.33 These findings are linked to the parietal cortex, be-
cause patients with unilateral spatial neglect following right parietal damage 
tend to ignore not only the left side of space, but also the left side of time 
(earlier, rather than later, events in a story), as well as showing biases map-
ping numbers onto left–​right space. In an astonishing demonstration of how 
space and time interact cognitively, participants who viewed, explored, and 
imagined themselves in doll’s houses of 1/​6, 1/​12, and 1/​24 scales experienced 
time passing at different rates, with those playing with larger environments 
reporting that a 30-​minute period had elapsed more slowly. A replication 
study also found a similar effect when participants played with model railways 
of different scale.34 These findings imply that coding principles for physical 
space, including its organization along a horizontal axis and its linear scaling, 
are recycled to permit perception of time and number, such that congruency 
effects occur between the three domains.

If we dig deeper into the coding properties of neurons in the Posterior 
Parietal Cortex (PPC), we find that they do more than map spatial locations 
onto actions. In the macaque, the activity of PPC neurons varies with a sym-
bolic cue whose size or colour indicates the probability or volume of a forth-
coming liquid reward. When shapes or dot motion patterns predict which of 
two responses will be rewarded, PPC neuron firing rates scale with the level 
of evidence provided by the cues (with higher responses for less ambiguous 
shapes or motion signals). In a timing task, PPC firing rates vary with the 

	 32	 This was pointed out very succinctly by Vincent Walsh in 2003 in what he called ATOM (‘A theory of 
magnitude’) (Walsh 2003).
	 33	 The original SNARC paper is (Dehaene et al. 1993). See also (Casasanto & Bottini 2014). Participants 
may even generate larger random numbers when their head is turned to the right than to the left (Loetscher 
et al. 2008).
	 34	 The original study is (DeLong 1981) and the follow-​up is (Mitchell & Davis 1987).
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duration of an interval during which a response must be withheld. Finally, 
some PPC neurons exhibit firing rates that vary monotonically with the 
number of stimuli (dots) in an array during a task in which the monkey de-
cides whether to accept a standard juice reward or a variable amount dictated 
by the numerosity.35 In each of these cases, the average neural firing rate sig-
nals that there is ‘more’ of something: more valuable reward, more sensory 
evidence, more time elapsed, more dots on the screen. This coding scheme is 
known to neuroscientists as a rate code, as the quantity that can be decoded 
from the neurons depends not just on whether it is active or inactive (like the 
yes/​no answers in Twenty Questions), but also on its rate of response in im-
pulses per second.

A single explanation helps us make sense of this thicket of data: that the 
PPC allows us to express abstract information on a mental line. We call this 
dimension magnitude, and it can be used to relate unidimensional concepts 
such as time (now vs later), space (left vs right or up vs down), number (more 
vs less), value (good vs bad), and belief (sure vs unsure). In fact, there is evi-
dence for a sort of mental line, even in patterns of neural data recorded from 
humans. In one study, participants both learnt the reward probability associ-
ated with arbitrarily coloured animal stimuli (donkeys) and performed a nu-
merical judgement task with Arabic digits. Computing RDMs from both data 
sets, they revealed that neural similarity was greatest for both nearby num-
bers and nearby donkeys, and that one could be predicted from the other. This 
implies that humans use a shared neural code for number and event prob-
ability. Another fMRI study has suggested that estimation of social, temporal, 
and physical distance may recruit overlapping neural patterns in the parietal 
cortex.36

In fact, even in tasks where there is no obvious sense of ‘more’ or ‘less’, the 
PPC seems to behave as if there is. For example, across studies in which mon-
keys learnt to group random shapes into two or three categories, PPC neurons 
started to signal that category with a global increase or decrease in firing rate, 
as if they mapped arbitrary categories A, B, and C onto points on a line ex-
pressing more, some, and less.37 This occurred across different animals, but 
with different orderings, as if the monkeys had idiosyncratic preferences for 
one category over another. Humans, too, have a tendency to express a prefer-
ence, even when there is no particular reason to do so, such as when a child is 

	 35	 See (Gold & Shadlen 2007), (Jazayeri & Shadlen 2015), (Platt & Glimcher 1999), and (Roitman et al. 
2007). Many of these results also hold in the PFC (see Chapter 7).
	 36	 For the donkeys study, see (Luyckx et al. 2019). For the fMRI study, see (Parkinson et al. 2014).
	 37	 See (Fitzgerald et al. 2013).
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adamant that green or purple is his favourite colour. One is tempted to specu-
late that there is a computational advantage to representing arbitrary, high-​
dimensional information on a mental line that we describe as preference.

It thus seems plausible to assume that our human penchant for relating 
space, time, and number derives, at least in part, from some sort of shared 
neural code with its basis in egocentric space. As Lakoff notes in Metaphors 
we Live By, in English, we use the terms up and down to distinguish not just a 
position on the y-​axis of Cartesian space, but also to denote mood (on top of 
the world vs feeling depressed), value (overpriced vs bargain basement), level 
of consciousness (woke up vs fell asleep), social rank (top dog vs underdog), 
volume (sales are rising vs falling), and virtue (high-​minded vs a low trick), 
and many other concepts that are not intrinsically spatial. In fact, across dif-
ferent linguistic cultures (Dutch and Farsi), the way in which the words high 
and low are used modulates how people think about auditory pitch, another 
non-​spatial dimension that we describe with spatial vocabulary.38

In fact, the macaque brain seems to code for number in the parietal cortex 
with both an approximately localist code and a rate code (Figure 5.6). The 
localist code involves neurons whose tuning is approximately bell-​shaped 
(Gaussian) on the magnitude line itself.39 In other words, they are like place 
cells in magnitude space. These cells have been observed in numerical match-​
to-​sample studies where a monkey experiences a visual array of dots, or a vari-
able number of tones, and has to match the exact number to a pair of probes 
that follow a delay period. A neuron might fire most strongly to an array with 
six dots and show weaker responses to arrays of five or seven dots, but not de-
viate from baseline for arrays of three or 20. In fact, when both modalities are 
used in the same experiment, cells will often show overlapping tuning curves 
for visual and auditory stimuli, in a neat demonstration of how even the ma-
caque brain learns abstractions that transcend the physical nature of the in-
puts.40 However, one outstanding puzzle is why the brain might variously use 
coding schemes that rely on rate, place, and grid codes. What are the relative 
merits of each format?

One potential answer is that the meaning of a quantity can change dramat-
ically with context. If I am generous enough to offer you £30, you are happy—​
and if I double my gift to £60, you are probably even happier. This is similar to 
the experiment reporting a rate code for number, where the volume of liquid 

	 38	 See (Dolscheid et al. 2013).
	 39	 As in the case of place cells, the code is not strictly localist because the tuning curves overlap, allowing 
the system to represent how magnitude (or space) is structured.
	 40	 For a review of these results and how they relate to behavioural effects, see (Nieder & Dehaene 2009).
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reward was proportional to the number of dots. Six dots would slake my thirst 
twice as much as three dots, so here a rate code is appropriate: double the firing 
is twice as good. However, now imagine that we are participating in a raffle 
where you can win first prize—​a £30 book token—​with ticket number 30. 
I have that ticket and generously pass it to you. But now if I change my mind 
and instead give you ticket number 60, you are not twice as happy. In fact, you 
are annoyed—​because now you end up with nothing at all. That’s because a 
prize raffle is like a match-​to-​sample trial: the winning ticket must match the 
prize number exactly. Similarly, if the sample array contains three dots, then 
the monkey needs to choose the probe with exactly three dots to receive a li-
quid reward on that trial. In these cases, a place code is suitable, because six 
is not twice as good as three. You need to know the exact number. This is pre-
sumably why allocentric representations use place—​and grid-​like—​coding. 
For example, on a squash court, you could, in theory, represent location with 
just two rate-​coded neurons, signalling your location in the x and y coordin-
ates of Cartesian space, respectively. But this would imply that the location 
at the T in the middle of the court is somehow ‘worth’ half of that in the far 
corner, which is not very helpful for navigation and is even worse for playing 
squash.

Philosophers and cognitive scientists have long proposed that our mental 
representations of space and time are critical to grasping analogies, using 
metaphors, and reasoning analogically. But only recently have neuroscientists 
begun to unravel the neural and computational principles by which spatial 
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Fig. 5.6  Neurons coding for numerosity in the posterior parietal cortex (PPC).
(A) A single cell coding for numerosity with a rate code. Its firing rate increases for larger 
numbers, irrespective of the value of a standard against which they are compared 
(different coloured lines).
Reprinted from Roitman et al. 2007.

(B) Average tuning curves for PPC neurons tuned to numerosities 1–​4 in the visual and 
auditory domains. Many neurons had shared tuning in both modalities.
Reprinted with permission from Nieder 2012.
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coding might be adapted for the coding of abstract concepts. These ideas 
draw upon a remarkably detailed picture of how neural codes for space are 
formed and used in rodents, monkeys, and humans. Notably, these ideas have 
had limited impact in machine learning research thus far. For AI researchers, 
building systems that understand the deep relational identities in data re-
mains an aspiration for future work.

Questions of abstract representation are haunted by concerns over 
grounding. What is the sensory information that allows us to grasp the con-
nection between a tricorn hat, the Holy Trinity, and Pascal’s triangle—​when 
the physical embodiment and semantic context of these three concepts are so 
radically different? This question remains unsolved, but a venerable theory in 
psychology, dating back to the 1930s, offers some tantalizing hints. The idea 
is that abstractions might be grounded in actions or, more precisely, in the 
affordances exhibited by objects and locations.

We owe the term affordance to husband-​and-​wife team J. J. and E. J. Gibson, 
who collectively pioneered what became known as the ecological approach to 
visual perception. J. J. Gibson defined the term as follows:41

The affordances of the environment are what it offers the animal, what it provides 
or furnishes, either for good or ill. The verb to afford is found in the dictionary, the 
noun affordance is not. I have made it up. I mean by it something that refers to both 
the environment and the animal in a way that no existing term does. It implies the 
complementarity of the animal and the environment.

A chair affords sitting, a button affords pressing, and a mailbox affords posting. 
Affordances are the actions that an object invites by virtue of its physical form 
and habitual uses.

What does it mean to say that abstractions are grounded in affordances? 
Recall that neural codes in the dorsal stream strip away the details by which 
an object might be recognized or discriminated, and instead signal the spatial 
target of the action that it invites. In other words, they code for affordances. 
For a hungry diner, a knife and fork on the table afford reaching and grasping, 
but a similar neural code would represent the anticipated movement towards 
a hammer and chisel on the workbench. For a birdwatcher, a sudden flash of 
colour above the trees affords a saccadic eye movement and pursuit with the 
gaze to identify a potentially rare species, but the same neural code would be 
used if the sudden colours in the sky were fireworks ushering in the New Year. 

	 41	 Gibson first defined the term in his 1966 book The Senses Considered as Perceptual Systems, but this 
quote is from his classic text The Ecological Approach to Visual Perception (1979).
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By stripping away the details of the objects in question (is it a knife or a chisel? 
A bird or a firework?) and focussing on the action it affords, the representa-
tion carries invariant (or abstract) information about the relations between 
objects.

Imagine two images, one in which three kittens huddle around a bowl, and 
another in which three apples nestle in a juicy bunch. Apples and kittens do 
not look alike, but the two images share a relational property: they portray 
three elements in a group. This three-​ness is not conveyed by the objects them-
selves (kittens or apples) but is carried by the actions the scene affords: three 
kittens to be petted (in three successive reaching movements), three apples 
to be picked (in three grasping movements), or in either case, three objects 
to be fixated in turn with the eyes. An explicit relation of the action sequence 
to be taken is thus simultaneously an abstract representation of the relations 
among elements themselves. In fact, one early study revealed cells in the par-
ietal cortex that coded explicitly for the number of repeated actions (either 
pushing or turning a handle) that remained to be taken in a sequence.42 One 
can imagine this principle extending to more abstract relational spaces. In 
the kittens and apples example, the affordance involves three successive ac-
tions (reaches or saccades), but one can imagine recycling this affordance for 
more metaphysical objects: a devout Christian might pray to each member of 
the Holy Trinity in turn, or a mathematician might perform three sequential 
arithmetic operations (take digit 1, take digit 2, add to get digit 3) to compute 
each new entry in Pascal’s triangle.

These ideas remain speculative. But it is worth recalling that we only know 
about space in the first place because we take actions in the world. This is most 
evident in the case of allocentric space, where we learn about how space is 
organized by moving around—​and experiencing the transitions that occur 
in space. I take a step forward: am I closer to my goal? I open a door: where 
does it lead? I follow the trail: do I arrive back at the lake? Formally, of course, 
place cells are learnt: they emerge as the animal moves through the arena. We 
do not know whether place cells form from grid cells, or vice versa, but grid 
cells could be learnt by a Hebbian process, as two orthogonal vectors xi and 
xj, coding for two adjacent places i and j, become linked by association as the 
animal repeatedly transitions from i to j. In fact, this is one basic principle by 
which a mental map like that proposed by Tolman could be formed: learning 
the association between each state and every other state by moving through 

	 42	 A long-​form version of this argument is given in (Summerfield et al. 2019). The recording study is 
(Sawamura et al. 2002).
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the environment. Such a representation has been called the successor repre-
sentation.43 We can think of grid cells as encoding the principal components 
of the successor representation, that is, a set of bases that allow us to encode it 
in compressed form.44 The key point, however, is that only by moving around 
that you get a sense of how space is structured.

Similarly, if we were immobile and unable to impinge on the world in any 
way—​like a deep network passively labelling natural images—​it is unclear 
that we would be able to know that objects exist in space, or even to form any 
real sense of space at all. Presumably, this is why CNNs rely instead on low-​
level features, textures, and image statistics to apply labels and captions. As 
we have seen, this can be effective when training data are huge (e.g. more than 
6 million photos on ImageNet) but leaves networks vulnerable to adversarial 
attacks, and brittle in the face of strong tests of generalization. It is unclear 
whether an agent could ever know what objects are without being designed 
in a way that computes their affordances—​a form of representation that is a 
natural precursor to action. It seems plausible, thus, that neural networks may 
never know what an object is until they can pick it up. They may never under-
stand the relational information in a scene until they can take actions towards 
its various elements. This, in turn, may allow humans to learn the relational 
abstractions that underlie analogies and metaphors, and to use basic building 
blocks of meaning to construct a complex reality.

5.4  Luke Skywalker neurons

When the first instalment of George Lucas’ blockbuster Star Wars trilogy was 
released in the summer of 1977, it took the box office by storm, racking up re-
cord ticket sales and winning six of its 11 Oscar nominations. The Star Wars 
trilogy taps deeply into the narrative archetypes on which Western culture is 
built. It references the great clashes of civilization that have rent human his-
tory, from the fall of the Roman Empire to the Vietnam War.45 The battle be-
tween Luke Skywalker and Darth Vader evokes an ancient psychic maelstrom 
that pits father against son. The scene where they duel with glowing blue 
and red lightsabres—​for contemporary audiences, colours that, respectively, 

	 43	 See Dayan (1993).
	 44	 See (Stachenfeld et al. 2017).
	 45	 In fact, although Star Wars is most often viewed as an allegory for the rise and fall of the Nazis, Lucas 
said in a later interview that Nixon (not Hitler) was his real inspiration for Emperor Palatine, and (perhaps 
bizarrely) that the Ewoks represent the Vietcong.
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symbolized the United States and Soviet Union—​would have brought vividly 
to mind the chill of the ongoing Cold War.

Humans understand the world through the stories they tell each other.46 By 
creating stories, we mentally animate objects and people into causal narratives 
that are scaffolded by themes of hope, frustration, and denouement.47 Our 
stories breathe meaning into happenstance, explain cause and effect, and help 
us relate recurring thematic patterns in life and art—​a process known to the 
Greeks as mimesis. In his celebrated 1933 essay, Walter Benjamin writes that 
the mimetic faculty—​the ability to see the similarities in real and imagined 
stories—​is the ultimate realization of the human mind.48 When great waves 
of stormtroopers rallying before Emperor Palatine evokes Leni Riefenstahl’s 
1935 Nazi propaganda film the Triumph of the Will, or when the obliteration 
of Princess Leia’s home planet Alderon conjures the terrifying prospect of an 
imminent nuclear annihilation, Lucas is harnessing this mimetic faculty to 
imbue his great saga with portentous meaning.

If we want the artificial systems we build to be generally intelligent in ways 
that are intelligible to us, they will need to grasp the rich seams of meaning 
that permeate human culture and to make sense of the simple narratives that 
frame everyday discourse. To achieve this, agents will need to do more than 
learn the generative factors that scaffold the perception of faces, apples, or 
chairs. They will even need to do more than learning the shared relational pat-
terns in scenes and abstract ideas. They will need to learn representations that 
refer to the world in ways that Peirce denoted indexical and symbolic—​that 
are independent of physical resemblance altogether. They will need to grasp 
that Harry, Hermione, and Ron are students at Hogwarts, that lanterns, fire-
crackers, and red envelopes are associated with Chinese New Year, and that 
a plateful of spindly pasta with meat sauce is linked to the oldest university 
in the world via a town in north-​east Italy.49 Today, how to learn these deep 
conceptual patterns in human knowledge remains an unsolved problem in AI 
research.

In the mammalian brain, repeated co-​occurrence of two stimuli leads to the 
formation of a conjoined neural code—​a neuron (or population) that codes 
for them both. Above, we have encountered this idea for locations, when 

	 46	 In recent years, this idea has been expressed most eloquently by the anthropologist Yuval Noah Harari 
in Homo Deus: A History of Tomorrow, his panoptical vision of human society.
	 47	 In his book The Seven Basic Plots, Christopher Booker argues that these three elements are basic to all 
narratives.
	 48	 See (Benjamin 1933).
	 49	 Spaghetti Bolognaise comes from the town of Bologna in the Italian region of Emilia-​Romagna. The 
University of Bologna was founded in 1088.
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repeated transitions between states coded as xi and xj led to the formation of a 
wider representation of both states xij. The same holds for objects. In a series 
of studies beginning in the 1990s, Yasushi Miyashita and colleagues recorded 
from the anterior parts of the temporal lobe (TE) and the PRC, whilst macaque 
monkeys performed a paired-​association task, which involved grouping two 
distinct fractal images into the same arbitrary category. The areas TE and 
PRC lie at the apex of the primate ventral stream, with the PRC channelling 
complex visual information to the hippocampus via the ERC and DG. After 
training, the authors observed pair-​coding neurons that fired in the presence 
of either fractal in a pair, as if the cells had learnt a concept that embraced both 
items. These neurons were relatively rare in area TE (5% of observed neurons), 
but much more common in the PRC (33%), suggesting that the latter is a good 
candidate for linking physically dissimilar stimuli in space and time. Human 
brain imaging methods, such as fMRI recordings, are far too coarse-​grained 
to measure signals from individual neurons, but proxies for pair coding can be 
observed by calculating similarity between patterns of BOLD activity across 
voxels.50 When humans repeatedly view temporally adjacent pairs of fractals 
or random objects, multivoxel representations evoked by each stimulus tend 
to become more similar, implying the formation of a shared neuronal code. 
When objects are arranged in a graph, so that the spatiotemporal distance is 
preserved between both adjacent and non-​adjacent items, it is possible to use 
multivariate analysis to read out and visualize the mental map on which they 
lie (Figure 5.7). In humans, this has been observed primarily in MTL regions 
including the ERC and hippocampus proper.51

A handful of studies have offered privileged insight into concept forma-
tion by directly recording from neurons in the human MTL. In one land-
mark study from 2005, participants undergoing neurosurgical procedures52 
viewed images of celebrities and famous buildings. MTL neurons were found 
to respond uniquely to highly specific people or places, such as Bill Clinton, 
Homer Simpson, or the Sydney Opera House.53 The remarkable specializa-
tion of these concept neurons in the MTL, reminiscent of grandmother coding, 
might be due to a computational step that takes place in the DG, where neural 
population codes are explicitly sparsified—​that is, each concept is encoded 
by a reduced group of more specialized neurons (i.e. with a sparser code). 
Concept neurons also show pair coding, but with acquisition times that are 

	 50	 Voxels are 3D pixels and are the smallest unit of observation in a neuroimaging study.
	 51	 See (Garvert et al. 2017) and (Schapiro et al. 2012).
	 52	 Surgery for intractable epilepsy.
	 53	 See (Quiroga et al. 2005).
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much faster than observed in the macaque. When pictures of familiar people 
(such as Clint Eastwood) were juxtaposed with images of salient, but seman-
tically unrelated, places (such as the Eiffel Tower), human MTL neurons came 
to code for both in a conjoined fashion.54 This occurred after just seven in-
stances of paired presentation, unlike in the original macaque studies, where 
training unfolded over many days, offering hints as to how rapid (or ‘few-​
shot’) learning occurs in humans.55

Another striking findings is that some human MTL neurons code for di-
verse objects that are united by a high-​level semantic theme. For example, 
the authors identified a neuron that seemingly coded for tall historical 
monuments—​responding to both the Leaning Tower of Pisa and the Eiffel 
Tower. This was not a pair-​coding neuron, because these images were pre-
sented at random times in the experiment.56 Moreover, the neuron did not 
simply respond to tall buildings per se, as it was silent to an image of New York’s 
former Twin Towers. Another neuron responded to images of both Yoda and 
Luke Skywalker, who do not look at all alike but share the latent property of 
being Jedi Knights in the Star Wars saga. Yet another neuron coded for two dif-
ferent female characters in the TV sitcom Friends that was grinding through 
its final season just as the neural recordings were being made. Critically, the 

Fig. 5.7  Mental maps in the human medial temporal lobe (MTL). Humans were shown a 
succession of single images that were sampled by traversing the hexagonal grid shown 
in (A). Later, BOLD signals were measured for a subset of images shown in random 
order. The patterns of similarity in the MTL evoked by the images (when reduced to two 
dimensions) recapitulated the shape of the map.
Reprinted from Garvert et al. 2017.

	 54	 See (Ison et al. 2015).
	 55	 Discussed below.
	 56	 And are presumably not routinely experienced together in real life.
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neuron failed to respond when one character (Jennifer Aniston) was shown 
alongside her then romantic partner (Brad Pitt), who was not among the 
cast—​suggesting that the neuron might code for the entire concept of the 
show Friends, and not just the identities of the individuals in question.57 These 
cells have thus been proposed to be important building blocks of human con-
ceptual knowledge.

Pair coding in the primate MTL implies the existence of indexical con-
cepts, which jointly encode objects that do not resemble one another phys-
ically, like Clint Eastwood and the Eiffel Tower, but have been experienced 
together. But the observation that single neurons code for broad semantic 
themes—​Jedi Knights or characters from Friends—​implies the existence of 
symbolic concepts or those that transcend both physical resemblance and spa-
tiotemporal contiguity. These are neurons whose coding properties span the 
abstract spaces carved out by human stories—​fictionalized accounts of love 
and friendship in Manhattan, or the noble exploits of intergalactic warriors. 
These neurons are great candidates for underpinning our sense of how ob-
jects and events are organized into thematically coherent narratives. From 
their earliest years, children start to associate people, practices, and plotlines 
that are linked by a common concept. For Western children, this might be 
knowing that Winnie the Pooh is a Bear of Very Little Brain who loves honey 
and is friends with Tigger, or that Christmas revolves around fir trees, and 
carols, and the excitement of Santa Claus coming down the chimney. It is here 
that Benjamin’s mimetic faculty begins. The human brain has evolved neural 
machinery for grouping objects that are united by these high-​level themes 
into a symbolic concept. In humans, a key site for this integration may be the 
hippocampus and surrounding MTL structures.

For AI researchers, the pressing question is what computational constraints 
allow the formation of abstractions such as these. How will we ever train an AI 
to understand the meaning of Winnie the Pooh or Christmas? Ultimately, of 
course, the knowledge that humans acquire about these high-​level semantic 
concepts—​that Pooh and Tigger are friends, and that Santa comes down the 
chimney—​is acquired from experience, that is, they must be mined from the 
great streams of sensory data that we experience over our lifetimes. To pick 
out these themes—​to learn the concept of Winter Olympics from the ground 
up, just like the VAE learns the concept of age or gender expressed in pixels 
of a face image—​seems like a very daunting task. This is particularly so for 

	 57	 Concept neurons, as they are now called, were originally named ‘Jennifer Aniston neurons’ in honour 
of this example. Coincidentally, Friends was filmed at Warner Bros Studies in Los Angeles, just a short drive 
from where these MTL recordings were being made at UCLA General Hospital.
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symbolic concepts where all physical similarity and spatiotemporal contiguity 
are stripped away—​in what could these concepts possibly be grounded if they 
do not benefit from patterns of correlation defined in space, time, or physical 
features?

One possibility is that we owe concept neurons to the extraordinary versa-
tility of our memory systems. Consider the ensemble of physically different 
entities associated with the concept of Christmas—​fir trees and carols and 
mince pies. If you live in a Christian-​majority country, then these objects tend 
to materialize together during the second half of December. Thus, a sophis-
ticated memory system might, in theory, be able to delicately extract latent 
factors, like Jedi Knight, Winter Olympics, or Diwali, from the spatiotemporal 
contiguity of events in feature films, sporting events, and religious festivals. 
Perhaps a Jedi Knight neuron could emerge from the spatiotemporal overlap 
between Luke and Yoda: they occupy the big screen at the same time, they 
both have green lightsabres in the later films, and they can both use the Force 
to lift rocks (albeit with varying degrees of mastery). Perhaps, with terabytes 
of daily sensory throughput, humans are able to self-​supervise the learning 
of obscure latent variables that map onto the most abstract of symbolic con-
cepts. This neurocognitive account of concept formation blurs Peirce’s dis-
tinction between indexical and symbolic concepts. According to this view, 
even if Christmas is a cultural convention—​cemented by stories, songs, and 
rituals—​ultimately our concept of Christmas is formed by the spatial and tem-
poral contiguity of experiences with the Yuletide theme.

However, even if our memory systems are very versatile, this account seems 
to stretch credulity to the limit. The MTL would need an otherworldly ability 
to link seemingly disparate events across time, picking out relevant details 
from a jumble of irrelevant inputs. The characters of Luke and Yoda also co-​
occur with elevators and rainforests, neither of which are particularly related 
to the core concept of Star Wars. Over the winter holiday period, you prob-
ably continue to feed to the cat and wash your socks, but these probably are 
not part of your canonical concept of Christmas. To learn the links between 
the objects and events that characterize Christmas, we need something else. It 
would be very handy if there existed a cognitive mechanism—​or an additional 
constraint—​that allowed us to extract and group sensory data into mean-
ingful concepts, even when they are not drawn from circumscribed locales in 
Euclidean space, time, or the physical space of object features.

Fortunately, there is. It is called natural language, and humans use it readily to 
ground the most abstract of concepts. We link Luke and Yoda in our minds not 
just because of their coincident exploits on screen, but because we have learnt 
the verbal label Jedi Knight and heard others apply it jointly to the two Star Wars 
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characters. This is not a radical claim: as humans, language is our pre-​eminent 
symbolic system, and thus our readiest vehicle for grounding symbolic con-
cepts.58 In fact, another defining feature of concept neurons in the human MTL 
is that they respond to the identity of people and places expressed either ver-
bally or pictorially. For example, one neuron that responded to visual images of 
the actor Jackie Chan also coded for his name in either written or spoken form 
(Figure 5.8).59 These cells thus represent the concept of personal identity in a 
way that transcends the format and modality of the input data. They thus code 
for definitively symbolic concepts, because it is by convention that we decide 
which written traces or phonetic patterns denote this individual.60

Cognitive neuroscientists have argued that in the human brain, percep-
tual and semantic information is initially processed in independent streams, 
and then combined. The ‘hub-​and-​spokes’ model argues that concepts are 
assembled from a patchwork of modality-​specific information (including 
vision, emotional valence, praxis, and speech) in a convergence zone in the 
anterior temporal lobe (ATL). This region, like the MTL, receives visual 
inputs from the ventral stream and auditory signals from more superior 
temporal regions—​those that, when stimulated in Penfield’s experiments, 
elicited auditory hallucinations of music and conversation. Echoing the con-
cept neuron results in the MTL, BOLD signals in the adjacent ATL respond 
in an overlapping fashion to words and pictures, and cortical degeneration 
in this area is strongly associated with the loss of conceptual knowledge in 
semantic dementia.61 However, there is also evidence that the visual signals 
and speech are far more intricately enmeshed in the cortex. For example, 
one recent study used sophisticated brain imaging analyses to reveal the 
existence of multiple cortical sites at the border of the visual cortex where 
neural tuning varied gradually from perceptual to semantic. At each site, 
the authors identified a gradient whereby conceptual grounding gradually 
morphed from video to spoken word, suggesting that the posterior cortex 
constitutes a mosaic of semantic hubs in which concepts are alternately 
more iconic and symbolic.62

The contrastive language–​image pre-​training (CLIP) network is a founda-
tion model that can generate amazing new images from a text-​based query.63 

	 58	 In fact, studies using category names as targets for supervised learning in CNNs implicitly assume that 
producing labels for things is a sufficient condition for object recognition, as if names were not just ways of 
organizing knowledge, but ends in themselves for cognition.
	 59	 See (Rey et al. 2020).
	 60	 Whose real name is actually Datuk Fang Shilong.
	 61	 Reviewed in (Ralph et al. 2017).
	 62	 See (Popham et al. 2021).
	 63	 Discussed in Chapter 1. The multimodal selectivity for CLIP is described in (Goh et al. 2021).
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Instead of being trained with human-​annotated data (such as ImageNet), it 
learns from a gigantic corpus of weakly supervised data gathered from the 
internet. To assemble a training data set, the team at OpenAI generated 
500,000 search queries (from all words that occurred at least 100 times in 
Wikipedia) and scraped 400 million corresponding images from the web. 
Firstly, they encoded the image data with a CNN and its accompanying text 
with a transformer, and combining them in a multimodal embedding space. 
They then adapted the contrastive approach in CPC by applying it to {text, 
image} pairs, so the network learnt a set of representations that maximally 
discriminated whether an image and its corresponding annotation belonged 
together. Not only is the network able to produce remarkable annotations for 
images, but when the authors explored its coding properties, they also found 
it had formed units that responded maximally to Christmas, including winter 
wonderland and nativity scenes, trees, lights and presents, and the words 
‘Merry Christmas’ in the cursive fonts typical of seasonal greetings cards 

Fig. 5.8  A cell recorded from the human hippocampus that responds to images, text, or 
audio denoting the actor ‘Jackie Chan’, but not another actor known to the participant 
(Luciano Castro). Each red line shows the average neuronal response to multiple 
presentations of the image, words, or sound.
Reprinted from Rey et al. 2020.
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(Figure 5.9). Other neurons responded to concepts like Star Wars, Pokémon, 
or other interlinked motifs—​one neuron coded jointly for rainbow flags and 
the acronym LGBTQ+​. The network had acquired concept neurons like those 
in the human MTL—​units responding to high-​level semantic themes that are 
grounded in abstract symbols which humans define by cultural convention.

Language is thus the glue that holds the most abstract concepts together. By 
translating experiences into words, we can tag them with common semantic 
themes—​those that will ultimately constrain what knowledge we share 
with one another. No doubt this is why the range of concepts we can grasp 
is bounded by the set of words whose meaning we understand. This echoes 
claims of weak linguistic relativity made by Whorf, that the nouns and verbs 
we learn from our linguistic communities sculpt the relational groupings we 
learn. Recall the Hopi, a Native American group, who have different concepts 
for water according to whether it is in a lake or in a cup—​their concept of 
water is different to most other Americans.64 By using very large generative 
models that meld image and text together in latent space, we can learn mental 
maps that begin to show the semantic richness of human memory.

	 64	 As discussed in Chapter 3.
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Fig. 5.9  Images generated using a feature visualization method to identify those 
concepts that drive a unit of CLIP most vigorously.
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6
The value of action

6.1  Climb every mountain

As dawn was breaking over a day in late May 1985, British climber Joe Simpson 
found himself stuck on a narrow ice bridge, halfway down a deep crevasse in 
the Peruvian Andes, many miles from help. His right leg was badly broken, 
robbing him of any chance of climbing out. He knew that his climbing partner 
Simon Yates believed he was dead and had already headed back to base camp. 
With all other options exhausted, Simpson decided to lower himself deeper 
into the unknown darkness of the crevasse. His rope was just long enough to 
drop him on another precarious ledge, from where, to his astonishment and 
delight, he saw a shaft of sunlight. It was streaming through the snow-​hole 
from which he would eventually escape. In the book describing his adven-
tures called Touching the Void, Simpson describes the effect this had on his 
mental state:

The change in me was astonishing. I felt invigorated, full of energy and opti-
mism. I could see possible dangers, very real risks that could destroy my hopes, 
but somehow I knew I could overcome them. It was as if I had been given this one 
blessed chance to get out and I was grasping it with every ounce of strength left 
in me. A powerful feeling of confidence and pride swept over me as I realised how 
right I had been to leave the [ice] bridge. I had made the right decision against the 
worst of my fears.

The possibility of escape inspired Simpson to new heights of bravery and en-
durance. He was able to haul himself out of the snow-​hole and onto the glacier 
above, and despite dehydration, frostbite, and his shattered leg, he managed to 
hop and crawl his way back to camp. He arrived just hours before his compan-
ions, who had given him up for dead, were due to set out on the long trek back 
to civilization.1

	 1	 Which you can read for free here: https://​boo​ksvo​oks.com/​touch​ing-​the-​void-​the-​true-​story-​of-​one-​
mans-​mir​acul​ous-​survi​val-​pdf.html. The book was co-​authored with Yates.

 

 

https://booksvooks.com/touching-the-void-the-true-story-of-one-mans-miraculous-survival-pdf.html
https://booksvooks.com/touching-the-void-the-true-story-of-one-mans-miraculous-survival-pdf.html
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Simpson’s story shows the extraordinary power of human motivation. 
Against all the odds, he found the ingenuity to hatch a plan of escape, the 
courage to leap blindly into the unknown, and the fortitude to carry on in the 
face of great adversity. But from the standpoint of both AI and neuroscience, 
this also poses a deep theoretical question. As biological organisms, where 
does our sense of purpose come from? What was it that drove Joe Simpson 
forward when it seemed that all was lost? For those of us who are safe and well 
at home—​or at least not injured and stranded in the depths of the Andes—​
what is the ultimate cause of our behaviour? What is it that impels us to get 
out of bed in the morning, to sneak a second helping of cake, to give money to 
a stranger in need, to complete a Sudoku, to go to war for our country, to take 
a run in the rain? Why would anyone decide to scale a 6000-​metre Peruvian 
mountain in the first place?

In earlier chapters, we considered the challenge of defining intelligence in 
both humans and machines. What qualities would a general intelligence have, 
and what should it be able to do? A popular answer—​captured in the well-​
known synthesis by Legg and Hutter—​is that intelligent agents are those that 
know how to perform many tasks and can thus meet a diverse multitude of 
objectives.2 But within this seemingly sensible definition lurks a fundamental 
ambiguity. Is the intelligent agent one that knows how to perform many tasks 
in theory, or one that autonomously chooses to execute many tasks in practice? 
Thus far, we have focussed on agents that make inferences using the power 
of reason (machines that think), and discussed computational principles 
of knowledge acquisition in neural networks (machines that know). But are 
thinking and knowing about the world enough for intelligence?

Some people believe so. These tend to be philosophers or computer scien-
tists that envisage general AI as an oracle. One vision of an oracle is a system 
that can be queried in natural language, and that provides truthful and 
knowledgeable answers via voice, text, or illustration. Such a tool would be 
immensely powerful. It would have the world’s knowledge at its fingertips. 
Ideally, it would be able to harness powers of creativity and reason to forge 
new plans and develop new theories, to inject its answers with new ideas that 
push the frontiers of human understanding. Let’s say our objective is to stem 
the spread of a rapidly spreading infectious disease. An oracle might explain, 
step by step, what public health measures should be put in place and when, 
how to synthesize the relevant messenger ribonucleic acid (mRNA) for a 

	 2	 See (Legg & Hutter 2007).
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vaccine, and how to solve the logistics of ramping production for equitable 
global distribution.3

In fact, the AI systems that we have considered thus far mostly cleave to this 
vision for intelligence. The early theorem provers sought to reason over hard-​
and-​fast premises provided by the researcher, thinking around logical corners 
too tortuous for most human minds. Modern deep learning systems trained 
to map generatively from images to images (such as the β-​VAE), from text to 
images (DALL-​E), from images to text (CLIP), or from text to text (GPT-​3 
and Chinchilla) all open the door to new ways to digest, synthesize, and dis-
seminate the world’s knowledge. A general oracle would be the ultimate ex-
pression of epistemic intelligence. Its goal would be to generate knowledge and 
share it efficiently with humanity: to solve tasks in theory, but not in practice.

An alternative vision for general AI is an agent whose intelligence is real-
ized by taking actions in the world. Such an agent would have instrumental 
intelligence—​it would not only solve problems in theory, but also tackle them 
in practice. Faced with the challenge of a new virus, it does more than offer 
biomedical or public health advice from a lofty academic perch—​it dons a vir-
tual lab coat and, working through effectors that impact either the real world 
or the online world, it starts conducting research: it analyses data, adjusts be-
liefs, and charts a new scientific course where required. At first glance, this 
might seem like an unnecessary addendum to our characterization of intel-
ligence. Surely the clever agents are those who know, not those who do—​the 
scientist who formulates the theory, not the lab technician who mixes the re-
agents? The strategic brains in command and control, not the foot soldiers 
slogging away in the field?

However, an agent with merely epistemic intelligence has no sense of pur-
pose. Ultimately, the goal of the giant foundation models we have met so far 
is just to mimic patterns in data, whether via a discriminative or a generative 
function. These models are not motivated to bring about any particular state 
of the world. They do not count the costs and benefits of different courses of 
action. They have no values of their own, no sense of right or wrong,4 and no 
plans to make the world a better place for the programmers that created them 
or the wider population of planet Earth. They are strange beasts—​as if Joe 
Simpson, alone in the crevasse, coldly calculates his chances of survival but 

	 3	 It has to be said that in the Covid-​19 pandemic humans actually did a pretty good job on making the 
actual vaccine but could definitely have done with some help on the public policy and equitable global pro-
duction fronts.
	 4	 Of course, agents like Delphi can pass moral judgement on statements in natural language. However, 
it is not their moral judgement, reflecting the worth of a state of the world to the agent. It is the output of a 
generative model trained to predict the most likely human response.



184  The value of action

formulates no plans for escape, and is ultimately indifferent as to how his story 
ends. Without the motivation to act, we squander the best part of our mental 
powers. Intelligence is inextricably bound up with a sense of purpose—​not 
just a desire to consider means, but an urge to meet ends. In fact, when we talk 
of an artificial agent, this is exactly what we are referring to—​an intelligence 
with agency, with the power to affect the world in order to achieve its object-
ives. In this chapter, thus, we will consider machines with motives.

In AI research, the subfield that builds machines with motives is called re-
inforcement learning or RL. In the book by Rich Sutton and Andy Barto that 
carries this title, which has biblical status for students in this field, RL is de-
fined as follows:

Reinforcement learning, like many topics whose names end with ‘ing’, such as ma-
chine learning and mountaineering, is simultaneously a problem, a class of solu-
tion methods that work well on the problem, and the field that studies this problem 
and its solution methods.

Sutton and Barto are saying that when we begin to contemplate how to mo-
tivate machines to act intelligently, we need to rethink of not just the computa-
tional space of solutions, but the nature of the problem that they face.

RL rewrites the problem for AI research by closing the reciprocal loop be-
tween agent and environment. Agents with epistemic intelligence receive 
queries from the world, but the answers they spit out do not directly impact 
the environment.5 In the ImageNet challenge, the class labels produced by 
AlexNet do not influence which image is sampled next. For classical AI, the 
proof of one theorem has no bearing on the validity of the next. This is in sharp 
counterpoint to the experience of biological agents, whose actions powerfully 
constrain the next observations they receive. Where you move your eyes de-
termines the visual inputs that fall upon the retina. What you grasp dictates 
what you hold in your hand. What you say affects how others think and feel. 
What you buy in the market decides what your family will eat for dinner. 
Whether or not you study hard for an exam in school can mould the lifelong 
trajectory of your career. Humans—​like other biological agents—​are part of 
the world, and our actions affect the forthcoming states that we and others will 
encounter in the future. By operating within a paradigm in which agents can 
influence their own environment, RL opens the door to machines that can be-
have in purposeful ways.

	 5	 At least not within their training loop.
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To build machines with their own motivations, AI researchers have bor-
rowed a concept from control theory known as the Markov decision process 
(or MDP).6 An MDP is a mathematical tool for compactly specifying the dy-
namics that link an environment, an agent, and an objective. In the context of 
RL, it provides the minimum information needed to unambiguously specify 
how an agent could and should act, via four mathematical objects, denoted by 
the states S, actions A, transition function P, and reward function R. The states, 
actions, and transition function specify the scope of the agent’s behaviour and 
how it affects the world. The reward function describes the agent’s objective, in 
the form of numerical rewards received for achieving certain states. Adopting 
this framework allows us to cleanly specify a goal for the AI researcher: to 
train the agent to maximize rewards—​and thus to meet the objective specified 
by the environment.

Hampton Court Palace is a magnificent Tudor residence, built by King 
Henry VIII, in the London borough of Richmond (Figure 6.1). Its gardens 
contain a famous trapezoidal hedge maze that has delighted and frustrated 
both royalty and commoners for more than 300 years. When it was planted 
in 1700, the maze included a radical innovation: paths that branch off con-
fusingly towards dead ends, so that the goal is only reached by making the 
correct turn at each fork7. Solving Hampton Court maze is precisely the sort 
of problem that RL agents are built to tackle. Imagine that I tasked you with 

	 6	 A branch of engineering that studies how machines can be configured to meet externally specified goals.
	 7	 Prior to this, mazes were unicursal, meaning they followed a single winding route to the goal.

Fig. 6.1  Hampton Court maze.
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designing an agent that could reliably find its way to the exit—​one that could 
solve Hampton Court maze. How would you begin?

AI researchers would answer that you need to formulate the problem as an 
MDP, and then apply one of the many computational solutions to RL problems 
developed over recent decades. To specify the maze as an MDP, we need to de-
fine states, actions, transitions, and rewards. The states are the locations that 
make up the environment. We might define these as discrete positions in the 
maze, for example in allocentric coordinates. The actions constrain the scope 
of agent behaviour. For simplicity, we might assume that our maze-​solver can 
move forward, backward, and turn left or right. Finally, the transition function 
determines the consequences of action. In a navigation task, these are rela-
tively simple: if I move forward, I advance; if I move backward, I retreat. At a 
T-​junction, a leftward move takes me down one branch, and a rightward move 
down the other. The transition function takes a state and action as inputs and 
returns the next state that will be observed.8 Combining these elements, the 
MDP is a dynamic process that unfolds in discrete time. In each step, it con-
trols the interaction between agent and environment—​the agent observes a 
state and chooses an action; the transition function dictates its consequences, 
and thus the next state experienced by the agent.

To finalize the problem specification, however, we need to define the ob-
jective. In an MDP, this is the province of the reward function, which provides 
positive or negative reinforcement upon attainment of designated states. If the 
goal is to exit the maze as quickly as possible—​like a lost tourist in desperate 
need of a cup of tea—​then we might (for example) specify a reward of 100 
for reaching the exit, and a penalty of −1 elsewhere. The goal of the agent is 
to learn a policy that maximizes the reward obtained from this function. It is 
not hard to see that for this reward function, the best policy is to minimize the 
number of steps (each incurring a penalty of −1) taken prior to reaching the 
exit (+​100)—​in other words, to leave the maze via the shortest path. We might 
say such a policy solves this MDP.

The basic computational object needed to solve an MDP is known as a value 
function. The value function is the subjective counterpart to the reward func-
tion. The reward function is given by the environment; the value function is 
computed by the agent. The reward function lives in the world; the value func-
tion lives in the brain. The reward function is part of the problem; the value 
function is part of the solution. The value function encodes the subjective 
worth of each state in the environment (or state–​action pair). How good is it 

	 8	 This transition function can be probabilistic, so that the same state and action might have distinct con-
sequences on different timesteps.
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to be three steps from the exit? What is the value of turning right, rather than 
left, at this junction? We can think of the task of RL researchers as designing 
agents that will learn the optimal value function, that is, the function which—​
if obeyed—​will lead to maximization of reward in the environment.

Fortunately, since the 1950s, we have known how to compute the optimal 
value function for any given finite state MDP. The secret, which we owe to 
the mathematician Richard Bellman, is that the optimal value of any given 
state v*(s) is equal to any reward obtained in that state, plus the expected dis-
counted value of the next state.9 The discount is a multiplier that downweighs 
future value—​it can be thought of as an impatience parameter, reflecting the 
heighted value of instant pleasure over delayed gratification.10 An agent that 
makes choices that respect the optimal value function will also maximize ob-
jective reward on the maze. It is important to note that the optimal value func-
tion does not simply reduce to the reward function. For example, in Hampton 
Court maze, it is better to be two steps from the exit than 20 steps away—​even 
if the objective reward obtained is −1 in both cases. This is because the ex-
pected discounted return from the latter—​the reward you can expect in the 
near future—​is higher in the 2-​step than in 20-​step case.11 The Bellman equa-
tion thus formalizes why we savour positive experiences—​such as when a 
child is excited on the eve of her birthday, even though presents and cake have 
yet to arrive.

RL dramatically ups the theoretical ante for AI research. It opens a 
Pandora’s box that otherwise conceals the full promise and perils of powerful 
AI. It raises thorny philosophical questions about the meaning and purpose 
of existence in both animals and machines. The grand vision that animates 
RL researchers is that we can conceive of real-​world problems in terms of an 
MDP—​from flying a helicopter to playing the board game Diplomacy—​and 
solve them using the computational toolkit from RL. Some have even dared to 
contemplate a broader ambition for the field. What if we could write down the 
entire natural world as an MDP? Then the problem of ‘solving’ intelligence is 
reduced to the problem of satisfying whatever reward function it entails, using 
scaled-​up versions of the computational tools that we might deploy to solve 
chess, or autonomous driving, or Hampton Court Palace maze.

	 9	 We can write the Bellman equation as q(st) =​ R(s) +​ γq(st +​ 1), where 0 < γ < 1.
	 10	 This preference is vividly illustrated by the famous Marshmallow Test, in which children wrestle with 
their immediate temptation to gobble up a lone treat, with the promise of a second if they can resist (Mischel 
et al. 1989). However, note that the discount is required, even if agents are perfectly patient. Otherwise, the 
value function grows without bound, because the expected reward over an infinite time horizon is infin-
itely large.
	 11	 Unless your agent’s discount factor is 1, meaning it is infinitely patient.
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This vision might sound outlandish, but it is the core tenet of some of the 
most fervent advocates of the RL paradigm. At DeepMind, Dave Silver and 
Rich Sutton have argued that solving intelligence reduces to the problem of 
maximizing reward. They boldly claim that RL is enough—​that we will ultim-
ately build AGI by combining the power of deep learning with the optimality 
guarantees that are baked into the Bellman equation. Translated to biology, 
this view implies that everything we do—​from cleaning our teeth to swim-
ming the channel—​will be ultimately driven by a desire to maximize a reward 
function that is mysteriously built into our biology. According to this view, 
great displays of genius—​from the solving of Fermat’s last theorem to the com-
position of the legendary jazz album Kind of Blue—​are in the end motivated 
by the pursuit of personal satisfaction. RL thus provides tidy answers to messy 
questions of motivation and purpose. It offers an explanation for what drove 
Joe Simpson onwards: he knew that the ultimate reward—​the opportunity to 
live out the rest of his life—​could only be attained by painfully dragging him-
self out of the crevasse and back across miles of boulder-​strewn moraine. This 
claim is known as the reward hypothesis, and we shall give its plausibility due 
consideration in the sections below.

In this chapter, we will consider the intertwined history of RL in psych-
ology, neuroscience, and AI research. We will consider the shared intellec-
tual genesis in these fields of the computational methods that tile the solution 
space for RL. We shall also consider RL as a theory for biological brains. 
Advocates of the RL paradigm can appeal to its pleasing congruity with the 
natural world. Biological systems, like RL agents, take actions that deter-
mine their own future observations. This allows them to gather information 
by exploring the world, and to exploit that knowledge by harvesting rewards. 
Animal behaviour, like that of RL agents, is powerfully shaped by the rewards 
that follow from our actions—​from a thirsty mouse pressing a lever in ex-
pectation of a drop of liquid to a habitual smoker buying cigarettes to staunch 
their craving for nicotine. As we shall see, the computational mechanisms that 
underlie reward-​guided learning in animals bear a striking resemblance to 
the algorithms AI researchers have developed to solve RL problems.

6.2  The atoms of memory

If you have visited the coast, you might recognize a sea anemone—​a brightly 
coloured polyp stuck fast to the rock below, whose oral disc (or mouth) is 
ringed with stinging tentacles (Figure 6.2). These creatures are among your 
most distant relatives. In fact, sea anemones, like other cnidaria, such as 
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jellyfish and corals, do not even have a brain. Instead, they have nerve nets 
that encircle the mouth in concentric rings, controlling buccal contractions 
in response to stimulation, which is the basis for their predatory behaviour.12 
Humans last shared a common ancestor with these creatures some 680 mil-
lion years ago, during an extended glacial period known as Snowball Earth. 
However, one phenotype that has remained conserved across the intervening 
aeons is the tendency to learn associations between stimuli and outcomes. 
This is a class of learning that psychologists call classical conditioning.

Classical conditioning was discovered independently on the two sides of 
the Atlantic at the outset of the twentieth century. In 1902, a psychologist at 
the University of Pennsylvania by the name of Edwin Twitmyer wrote a doc-
toral dissertation about elicitation of the patellar tendon reflex—​the involun-
tary jerking of the leg that follows a sharp tap to the knee. He reported that 
when the tap is systematically preceded by a bell, the bell alone will come to 
provoke the reflex. A year later, at the 1903 International Medical Congress in 
Madrid, the Russian physiologist Ivan Pavlov announced his celebrated dis-
covery that dogs learn to salivate in response to a ticking metronome that pre-
dicts the arrival of food. For reasons that are not clear, Twitmeyer’s work was 

Fig. 6.2  An adult sea anemone, showing the oral opening (OOP), the tentacles (TEN), 
and the nerve net (NN).
Reprinted with permission from Arendt et al. 2016.

	 12	 For a great review on the evolution of the nervous system, see (Arendt et al. 2016).
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largely ignored, whereas Pavlov bagged the 1904 Nobel Prize for physiology. 
Today, classical conditioning is also known as Pavlovian conditioning.13

When sea anemones receive low-​voltage electric shocks, they fold their 
tentacles protectively over the oral disc. In the 1970s, a team at California State 
University showed that when the shock was systematically preceded by illu-
mination of a bulb hung over the surface of their tank, the tentacles began 
folding pre-​emptively in response to the light. The nerve nets contain cells 
that respond to both light and electrical stimulation. When these are acti-
vated together, their mutual connection is strengthened via Hebbian learning. 
Learning this association allows the sea anemones to protect their most sen-
sitive organs from harm. Classical conditioning is a very rudimentary form 
of learning: two sensory representations become associated by repeated tem-
poral co-​occurrence. It does not give an agent a sense of purpose, nor does 
it even require a brain. However, classical conditioning is the fundamental 
mechanism by which secondary reinforcers obtain their value. It is the reason 
that we enjoy the smell of delicious food that we cannot yet consume, treasure 
a photo of a loved one who is not there, or carefully guard the money in our 
purse, even if it is printed on worthless scraps of paper. Viewed via the lens 
of the RL paradigm, classical conditioning exploits the basic computational 
principle by which a value function is learnt by experience.

The Bellman equation states that the optimal value of the current state 
is equal to the expected discounted value of future states, plus any reward 
obtained. In theory, its derivation unlocks the secret of reward maximization 
in an MDP. In practice, however, it can be difficult to solve, because it involves 
a tricky recursive step: to compute the value of the current state, you need to 
know that of the next; and for this, you need to know the value of the subse-
quent state, and so on. This demands tools for recursive optimization, such 
as dynamic programming, which in turn requires the agent to have perfect 
knowledge of states, actions, transitions, and rewards in the MDP, as well as 
great computational power. Unfortunately, agents do not always enjoy this 
privileged purview on a problem. For example, as animals, we are obliged to 
tackle life with incomplete knowledge of the states and transitions that define 
our environment. Stepping out of your hotel in an unfamiliar city, you won’t 
instantly know where to find the nearest café or metro station. Venturing your 
ideas in a meeting, you can only guess how they will be judged by colleagues. 
Lost in a maze, you don’t know where each branch will lead. How, then, can we 

	 13	 Perhaps just as well, because ‘Twitmyerian’ conditioning does not have quite the same ring to it.
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learn an optimal value function without knowing in advance how the world is 
structured?

In the 1970s and 1980s, whilst neural network researchers were working 
out the mathematics of backpropagation, the pioneers of RL were developing 
a suite of tools that allowed the Bellman equation to be solved by sheer dint 
of experience alone.14 In fact, just as early neural networks were proposed as 
models of human semantic cognition, the first RL algorithms were advanced 
as computational accounts of classical conditioning in experimental ani-
mals.15 In the early 1980s, a major breakthrough arrived in the form of tem-
poral difference (TD) learning. TD learning capitalizes on the basic learning 
mechanism that underpins classical conditioning: it assumes that value is 
shared between temporally adjacent states. With repeated experience, value 
estimates gradually diffuse backwards through time and between states until 
the optimal value function is learnt.

To illustrate, consider an agent that is lost in Hampton Court maze. With 
no idea of where to go, at first it moves entirely randomly. Eventually, it stum-
bles by chance on the exit and, under our proposed reward function, receives 
a large positive reinforcer. TD learning assumes that it then travels mentally 
back in time to update the value of the immediately preceding state. The up-
date Δv(s) is proportional to the temporal difference—​the discrepancy be-
tween the value of this preceding state v(st) and the (discounted) value of the 
current state γv(st +​ 1), plus the reward rt +​ 1 obtained by visiting it. Because this 
reward is 100 points, there is a large update to the preceding (next-​to-​exit) 
state. On its next random sweep through the maze, the next-​to-​exit state is 
now more valuable, so when reached, its value will flow back to the next-​to-​
next-​to-​exit state.16 Importantly, this incremental backup of value does not 
require either of the states to be objectively rewarded. Over many repeated 
samples of experience, TD learning thus allows value to diffuse from rewarded 
states to those that predict them. This is exactly what happens in classical con-
ditioning: for Pavlov’s dogs, the reward value of food becomes attached to the 
metronome, and in the sea anemones, the aversive response occasioned by the 
shock infuses the light flash. TD learning thus provides an elegant theory of 
secondary reinforcement, and its discovery fired the starting gun on several 
decades of fertile conversation about reward learning between neuroscientists 
and AI researchers.

	 14	 In fact, Paul Werbos contributed to both endeavours.
	 15	 See (Barto & Sutton 1982).
	 16	 Because γv(st +​ 1) is now large, thanks to learning on the previous trial.
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RL thus offers both a theory of how AI should learn and a model of how 
animals do learn. However, before we can propose RL as a mechanistic theory 
for biology, there is a major conceptual hurdle to overcome. What is ‘reward’ 
in the natural world, and where does it come from? The MDP framework 
invites the researcher to define the reward function as a property of the ex-
ternal environment. If the agent is playing chess, it is rewarded for winning. 
Controlling a power plant, it is rewarded for increasing production and pen-
alized for spiralling costs. Flying a glider, it is rewarded for staying aloft. But 
what is the reward function for natural agents going about their everyday 
lives, and who or what is the external entity that specifies it?

In the natural world, rewards do not arrive via a dedicated sensory input 
channel. In fact, they are not bequeathed by the environment at all.17 Instead, 
they are the result of a subjective internal process by which we evaluate the 
world in the context of our need to survive and reproduce. Food, warmth, 
and sex are not intrinsically rewarding but instead bring us pleasure when we 
are hungry, cold, or aroused. Rewards are made in the mind, not given by the 
world. This simple intuition has far-​reaching consequences for understanding 
motivated behaviour, as well as its disruption in psychiatric illness. However, 
it also poses a major inconvenience for advocates of RL as the pathway to gen-
eral intelligence, because it raises the potentially intractable question of how 
to design a reward function for AGI with human-​like purpose.

Conveniently, in biological brains, stimuli that are experienced as re-
warding activate stereotyped neural circuits. In mammals, these originate in 
the dopaminergic midbrain and project widely to the striatum, hippocampus, 
and PFC, brain structures that are critical to action selection, memory, and 
planning. In the 1950s, two researchers working at McGill University in 
Montreal implanted rats with stimulating electrodes in a diverse set of brain 
regions and wired the stimulator up to a lever that the rats could press at will. 
When the stimulating electrode was placed in the thalamus, the lever was ig-
nored. When it was placed in the hippocampus or cingulate, the rats spent 
between 10% and 30% of their time pressing the lever. However, when it was 
placed in the basal forebrain—​close to a dopaminergic pathway linking the 
ventral tegmental area (VTA) to the nucleus accumbens—​the animals went 
at it like crazy. One animal racked up more than 7500 presses in a 12-​hour 
period—​that is, an average of one every 4–​5 seconds—​before falling asleep 
exhausted. The researchers James Olds and Peter Milner realized that they had 
found the hedonic headquarters of the mammalian brain. The existence of a 

	 17	 Or even by the body, which we might consider to be part of the agent’s environment.
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brain region that directly signals reward allows proponents of biological RL to 
sidestep the problem of where value comes from—​by treating the dopamine 
system as a kind of auxiliary input channel through which hedonic experience 
is sensed in the world. Under this sleight of hand, the dopamine system has 
thus been dubbed the retina of the reward system.18

This logic has allowed neuroscientists to harness TD learning as a model 
of the neurobiology of reward-​guided behaviour. Perhaps surprisingly, this 
project began with an invertebrate species—​the honeybee. Instead of a fully 
fledged dopamine system, honeybees have a single neuron (called VUMmx1) 
that responds to the receipt of sweet nectar.19 Bees will extend their proboscis 
to approach an odour that has been paired with electrical stimulation of 
VUMmx1, as expected from classical conditioning. Bees will also tailor their 
foraging behaviour to the concentration of sucrose in artificial yellow and blue 
flowers. In 1995, a team of neuroscientists working at the Salk Institute real-
ized that TD learning could account for both of these behaviours if VUMmx1 
was encoding the TD update signal—​or, in neuroscientific parlance, the re-
ward prediction error.

A few years earlier, working in Switzerland, the neurophysiologist Wolfram 
Schultz and colleagues had shown that dopamine neurons in the primate VTA 
are activated by cues that predict primary rewards, such as food and fluid, as 
well as by their direct receipt. In 1993, the same authors extended this finding 
to show that the VTA dopamine response dies away when training is estab-
lished and pauses neural firing rates below baseline levels in trials where re-
ward is unexpectedly withheld (Figure 6.3). Putting two and two together, the 
Salk Institute team realized that this was exactly what would be expected if the 
dopaminergic neurons signalled TD error: a positive response when a reward 
occurred unexpectedly, a neutral response when it met expectations, and a 
negative response when hopes of a reward went unmet. They joined forces 
with Schultz to write a classic paper outlining this argument, which has since 
become a canonical plank in our understanding of reward-​guided learning.20

In parallel with these successes at modelling reward-​guided learning in the 
brain, TD learning was also proving to be a powerful tool for AI research. In 
1992, an IBM researcher called Gerald Tesauro used the algorithm to train 
a computer to play grandmaster-​level backgammon. Unlike IBM’s much-​
vaunted victory over Kasparov at chess five years later, Tesauro’s program 

	 18	 See http://​www.schol​arpe​dia.org/​arti​cle/​Rew​ard_​sign​als.
	 19	 With the release of octopamine, a transmitter that may play a similar role to dopamine in insects.
	 20	 The Salk Institute researchers were Read Montague, Peter Dayan, and Terry Sejnowski. Dayan and 
Schultz (but perplexingly, not Montague) shared the European Brain Prize in 2017 for this discovery. See 
(Hammer 1993), (Montague et al. 1995), and (Schultz et al. 1993, 1997).

http://www.scholarpedia.org/article/Reward_signals
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(TD-​Gammon) was unique in that it learnt entirely from scratch by playing 
against itself. In fact, the story of the development and deployment of TD-​
gammon reveals a striking resemblance to that of AlphaGo and AlphaZero 
some 25 years later. TD-​Gammon used a simple connectionist model to map 
the board state onto a value estimate, training the model end to end with TD 
error. By predicting the value of forthcoming board states, it could choose 
whichever was most likely to result in a win. Later versions, which added a 
simple two-​ or three-​ply forward search algorithm, were reckoned by experts 
to play at levels that equalled or bettered the strongest players in the world. 
Like AlphaGo’s much-​lauded move 37, TD-​Gammon discovered new strat-
egies which changed the way the professional game was played. For example, 
it showed that the then-​ubiquitous strategy of ‘slotting’—​moving a single 
piece to point 6 early in the game—​was suboptimal, and within a few years, 
it has disappeared from the standard repertoire of moves in grandmaster 
backgammon.

TD learning builds off the most basic memory processes—​relying on the 
sharing of information between temporally adjacent states—​what we might 
call the atoms of memory. It allows even the simplest organisms, like sea 

Fig. 6.3  Temporal difference (TD) learning in the monkey ventral tegmental area (VTA). 
The black traces show the average firing rates of putative dopamine neurons in the VTA 
during three phases of the experiment. Early in learning, the neurons respond to reward 
(a drop of liquid) alone. Subsequently, they respond to a conditioned stimulus (CS1) 
that predicts reward, but no longer fire to the reward itself. Finally, when another CS is 
introduced that predicts CS1, the neurons fire to this cue, but not to CS1 or the reward. 
In TD learning, this is the mechanism by which learning is ‘backed up’ from reward to 
reward-​predictive stimuli.
Reprinted with permission from Schultz (2015).
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anemones, to learn to predict future states. However, as brains evolved, neural 
circuits matured to permit more complex chains of association. By the time of 
the early vertebrates, some 500 million years ago, a new region had emerged in 
the dorsal telencephalon, a brain area adjacent to the olfactory bulb, that was 
to become a central exchange for stimulus–​outcome learning. Some 225 mil-
lion years ago, this region took its place among other allocortical structures 
nestling below that signature mammalian innovation, the newly evolved neo-
cortex. Today, we call it the hippocampus, and in humans, it is the great as-
sociative nexus that allows us to encode rich conceptual knowledge relating 
people, things, and places.

6.3  The basements of the brain

In 1898, a doctoral student at Columbia University decided to apply methods 
of psychological experimentation to study learning in animals. His name was 
Edward Thorndike, and his work would launch a century of behaviourist re-
search.21 The experiments are described in his doctoral thesis, entitled Animal 
Intelligence: An Experimental Study of the Associative Processes in Animals. 
Thorndike’s experimental tools resembled non-​spatial versions of Hampton 
Court maze—​puzzle boxes in which hungry cats, dogs, or chicks had to pull a 
wire, press a lever or treadle, prise open a door, or push a bar to exit through a 
trap door and receive a food reward.

Thorndike’s animals objected heartily to confinement, and like a frustrated 
tourist lost in a maze, they tried frantically to escape.22 Here is a description of 
a typical study involving a cat:

[the cat] claws and bites at the bars or wire; it thrusts its paws out through any 
opening and claws at everything it reaches; it continues its efforts when it strikes 
anything loose and shaky; it may claw at things within the box. It does not pay very 
much attention to the food outside but seems simply to strive instinctively to es-
cape from confinement. The vigor with which it struggles is extraordinary. For eight 
or ten minutes it will claw and bite and squeeze incessantly.

	 21	 Thorndike also had some very unfortunate views about race and eugenics. In 2020, Columbia voted to 
rename Thorndike Hall after the prominent African-​American psychologist Edmund Gordon.
	 22	 Or rather, like a tourist impatient for a cup of tea in the Palace café at Hampton Court. Thorndike notes 
that the dogs could not be food-​deprived to the same degree as the cats, because otherwise they howled in 
the evening. See (Chance 1999).
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By observing this behaviour closely, Thorndike made a remarkable discovery. 
Each time an animal was replaced in the box, it solved the puzzle more rap-
idly than the last. After several trials, the animals engaged purposefully with 
the apparatus, moving rapidly to open the door and secure the food reward. 
At this time, on the cusp of the twentieth century, most psychologists viewed 
learning as a process of connecting ideas to make new inferences. As we have 
seen, this was how Köhler interpreted the behaviour of his monkeys, who 
seemed to rely on dramatic moments of insight to reach an inconveniently 
placed banana.

Thorndike recognized that several aspects of his data were incompatible 
with this connect-​the-​dots view of learning. Firstly, his animals learnt only 
gradually. Performance improved incrementally, trial by trial, as if patterns 
of behaviour were being slowly stamped in, rather than grasped in a flash of 
insight. Secondly, over time, behaviour became highly automatized. A cat 
trained to pull a wire loop to escape would continue to claw at the air, even in 
its absence. The animals were learning fixed habits, not reasoning about the 
puzzle. Finally, the voluntary initiation of action was essential for learning to 
occur. Even after Thorndike had thoughtfully applied the cat’s paw to a lever 
to permit its escape, this never prompted the animal to reproduce the same 
action itself.23 These observations seemed to suggest that the animals were 
unaware of the consequences of their behaviour, and were blindly learning by 
trial and error to take the action that led to reward.

Thorndike thus proposed a new principle of learning, which he called the 
Law of Effect. Animal behaviour, he argued, is driven by the establishment of 
associations between stimulus and response. These links are acquired by what 
he called trial and accidental success, becoming stronger when the outcome is 
positive and weaker when negative (Thorndike called these ‘satisfaction’ and 
‘annoyance’). Over time, this allows a behaviour repertoire that elicits reward 
to be gradually acquired by experience. Today, we call this learning mech-
anism instrumental conditioning.

In the RL framework, a value function encodes what states of the world 
are subjectively worth. However, an intelligent agent also needs to know how 
to act. If the transition function is known, an agent armed with an optimal 
value function can peer ahead one or more steps into the future and choose 
the course of action that elicits the highest expected value. In fact, this was the 
strategy that TD-​Gammon used to triumph at backgammon. However, as we 
can see from Thorndike’s cats, the consequences of action can sometimes be 

	 23	 In other words, the animals learnt by reinforcement, but not by supervision.
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obscure. His puzzle boxes are an MDP in which most actions lead to the same 
state (still stuck in the box), and an unknown target action leads to a rewarded 
state (exit the box and consume the reward), but the confined animals do not 
know the transition function. They are unaware (and never seem to learn) that 
pulling a wire or tripping the latch opens the door to food—​instead, they slav-
ishly learn to perform the requisite action when appropriately stimulated. As 
we can see from Thorndike’s account of a caged cat, this point is reached after 
a lot of random flailing—​scratching, clawing, and biting, yeowling, hissing, 
growling, urinating, and rubbing their head and flanks against the box.24 But 
eventually behaviour settles into a well-​oiled sequence of moves from which 
the animal quickly obtains reward.

Thorndike’s Law of Effect proposes that rewards shape the connection 
strengths between stimulus and response. A variant of TD learning, known 
as SARSA, directly implements this idea. In SARSA, the value function is ex-
panded to encode the worth of both states and actions q(s, a) and is rebranded 
a Q function.25 We can think of q(s, a) as encoding the connection strength 
between state s and action a, exactly the association that Thorndike proposed 
the animals learnt. The agent’s policy is then simply a means of choosing 
each action conditional on the state. A popular choice, known as ε-​greedy, 
is to choose the most valuable action, except on a fraction (ε) of steps when a 
random choice is made instead.

In the brains of mammals, dopamine neurons with cell bodies in the VTA 
and substantia nigra project dorsally (upwards) to synapse on neurons in a 
brain region known as the striatum, which is part of a core network of sub-
cortical nuclei known as the basal ganglia. The basal ganglia lie deep in the 
midbrain, and their murky function and inaccessible location has earned 
them the epithet basements of the brain (Figure 6.4). Like the hippocampus, 
the basal ganglia are a phylogenetically ancient structure and were already 
present some 530 million years ago in the common ancestor we shared with 
our most distant vertebrate cousins—​slimy creatures like lampreys and hag-
fish that live in mud at the bottom of the ocean. Almost all neocortical signals 
are looped via the striatum before being routed to motor cortical regions and 

	 24	 In fact, a 1979 paper argues that escape from a particular class of puzzle box only occurs in the presence 
of human observers, because this induces the cats to engage in flank rubbing (a form of greeting familiar to 
cat owners), which, in turn, trips the opening on the puzzle box. The paper is entitled ‘Tripping over the cat’ 
(Moore & Stuttard 1979).
	 25	 SARSA stands for “state-​action-​reward-​state-​action” because the update occurs on each non-​terminal 
state from the quintuple of events (st, at, rt +​ 1, st +​ 1, at +​ 1). It is closely related to another member of the TD 
family known as Q-​learning. The difference is that in Q-​learning, the TD update is off-​policy, meaning it is 
not tied to the specific move chosen, so Δq(s, a) =​ r +​ max(s′, a′) where s′, a′ are the next state and action, 
respectively.
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down descending pathways to the peripheral nervous system to be converted 
into action. Striatal neurons are thus a critical waystation on the brain’s all-​
important sensorimotor pathways.

In a classic experiment from 2001, researchers measured synapse forma-
tion in the striatum whilst rats were allowed to electrically self-​stimulate 
their substantia nigra. Like in the VTA, the substantia nigra is a dopamin-
ergic midbrain region where stimulation is highly reinforcing, and the rats 
rapidly learnt to press the lever at about 1 Hz. The researchers found that 
pulses of dopaminergic transmission elicited by self-​stimulation potentiated 
synapses where the striatum received inputs from the neocortex. Across ani-
mals, the more these synapses were strengthened, the faster animals learnt 
to press the lever.26 Dopamine thus acts as a gate on Hebbian plasticity that 
(when open) allows new links between sensory input (the sight of the lever) 
and motor output (depressing a paw). This triadic synaptic architecture 
is perfectly adapted to implement processes like SARSA, in which rewards 
mould the connection weights between states and actions. This finding gives 

(B)(A)

Fig. 6.4  Anatomy and connectivity of the basal ganglia. (A) Wiring diagram of the 
basal ganglia and neocortex. Arrows show dopaminergic (lightest grey), GABAergic 
(inhibitory; middle grey), and glutamatergic (excitatory, darkest grey) connections. 
GPe, external segment of the globus pallidus; GPi, internal segment of the globus 
pallidus. (B) Locations of basal ganglia and associated structures on a sagittal slice of the 
human brain.
Panel A reprinted with permission from Redgrave et al. (2010). Panel B reprinted with permission from 
Miall (2013).

	 26	 See (Reynolds et al. 2001).



The basements of the brain  199

neurobiological substance to both Thorndike’s psychological theory and its 
computational underpinnings in TD learning.

Two ancient brain structures thus govern how animals learn the value of 
states and actions. Precursors to the hippocampus and basal ganglia existed 
in our ancestors that lived half a billion years ago. The memory processes that 
they primarily subserve—​learning of state value by association with outcome 
(classical conditioning) and the reward-​guided linkage between stimulus and 
response (instrumental conditioning)—​are the most basic building blocks of 
animal behaviour. In the parlance of the RL framework, they allow agents to 
learn the value of states and to connect states and actions. The rudimentary 
mechanisms by which we learn state values imbue the world around us with 
positive and negative meaning. They prefigure our learning of a rich concep-
tual model of the world that can be used to understand the costs and benefits 
of different courses of action, from the dilemma of whether to eat toast or fruit 
for breakfast to the great decisions that shape how our life unfolds, such as our 
choice of career or partner. Learning to couple states and responses is the most 
basic engine of behaviour, onto which all grander machinery for flexible, rea-
soned action selection is subsequently grafted. It is the basic process by which 
fruit flies learn to avoid an overheated side of their chamber, by which dogs are 
prompted to bound joyfully towards the door at the sight of the leash being 
retrieved, and by which human academics can be trained to unconsciously ex-
aggerate an embarrassing mannerism on receiving Machiavellian smiles and 
nods from the students they are lecturing.27

Importantly, there is also evidence that these two systems team up during 
reward learning, especially when states and actions are continuous, rather 
than discrete. Where the action space is high-​dimensional, state–​action map-
pings cannot be learnt in the tabular format implied above, in which each 
neuron encodes the strength of a unique sensorimotor combination. Instead, 
a plausible alternative is the bipartite actor–​critic architecture. The actor is a 
function that learns a potentially complex mapping from states to actions, 
governed by parameters θ. This function encodes the agent’s policy, and it is 
often trained using an RL approach called the policy gradient methods. We can 
think of it as the instrumental learning system, with the parameters encoding 
the strengths of sensorimotor connections in the dorsal striatum. However, 
the policy is trained using TD error computed by a separate function—​known 
as the critic—​that encodes the value of states. A plausible substrate for this 
is the ventral striatum (or nucleus accumbens), which, unlike the dorsal 

	 27	 This book provides a very authoritative summary (Murray et al. 2019). This is also helpful (Lynch 2009).
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striatum, receives input from both the hippocampus and the dopaminergic 
midbrain, including the substantia nigra and VTA.28 In fact, one brain im-
aging study modelled the prediction errors from both actor and critic in a 
bandit task, and found that they correlated with BOLD signals in the dorsal 
and ventral striatum, respectively.29

In the 1990s, Tesauro had already shown that a simple connectionist 
model could be used to learn a value function, with his backgammon agent 
TD-​Gammon. By the 2010s, excitement about deep learning was setting the 
field alight, inviting the question of whether advanced neural networks could 
be harnessed for RL in yet more challenging domains. In 2013, researchers 
in Alberta published a paper describing the Arcade Learning Environment 
(ALE), a benchmark evaluation platform for RL that was based around Atari 
2600 games such as Asterix, Seaquest, Boxing, and Zaxxon.30 The challenge 
was straightforward: to maximize the points provided by the game emulator, 
just like human players might jostle for the highest score. However, it was 
also very daunting, because unlike other existing domains, the games were 
complex, naturalistic, and high-​dimensional: with 210 × 160 spatial reso-
lution blasting past at 60 Hz, the emulator generated more than 2 million 
unique pixel values every second, mapping onto 18 possible actions in total. 
Tesauro’s method had worked for backgammon where perceptual inputs were 
much more basic—​a board state could be coded with just 198 input units. But 
could deep networks learn a value function at scale? At first, results were not 
promising—​it turned out deep networks trained with RL on naturalistic tasks 
like ALE were prone to instability and divergence.31

In 2014, the DeepMind team built the network known as DQN to tackle 
the ALE. DQN employed a deep convolutional network to map from image 
pixels32 to a prediction about the value of each action, and the weights were 
trained with TD error. However, the network also housed a separate memory 
structure, which buffered reams of previous states, actions, and rewards from 
past episodes.33 Throughout learning, it sampled past experiences randomly 
from this buffer, training from this replayed experience in tandem with active 
learning from the game. This mechanism, which is called experience replay, 
allowed it to overcome the challenge of learning in a dynamic environment. 

	 28	 As always, the last word on brain circuitry goes to Suzanne Haber (see Haber 2016).
	 29	 See (O’Doherty et al. 2004).
	 30	 In fact, the final suite was chosen pseudo-​randomly from the set of first-​person games that had 
a Wikipedia page at the time and were not adult-​themed or otherwise inappropriate. The paper is here 
(Bellemare et al. 2013).
	 31	 See (Tsitsiklis & Van Roy 1997).
	 32	 Downsampled to 84×84.
	 33	 In fact, each index in the replay buffer is the tuple {s, a, r, s′}.
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DQN achieved human expert performance, or better, in 75% of the games in 
the ALE, surpassing previous efforts. With this result, deep RL was born.34

Using RL to train a deep network to play Atari at human level was a remark-
able achievement. But paradoxically, it is DQN’s limitations that are the most 
interesting. What DQN cannot do—​and where it fails—​has set the research 
agenda for the nascent field of deep RL over the intervening years. To begin 
with, let’s glance down the list at the Atari games that DQN failed to solve. 
Right at the bottom of the scorecard, with a princely score of 0%—​meaning 
that DQN performed no better than an entirely random agent—​is a notorious 
game known as Montezuma’s Revenge.35

6.4  The key to exploration

The greatest heist scene in cinematic history is arguably that in Jules Dassin’s 
1955 classic noir Rififi. Wearing well-​cut suits and expressions of steely resolve, 
four seasoned jewellery thieves break into a grand apartment on Rue de Rivoli, 
Paris, and tie up its hapless residents. They then hammer gingerly through the 
floor to the exclusive jewellery shop below, collecting the falling plaster in an 
outstretched umbrella. Climbing through the hole in the ceiling, they disable 
the alarm system—​which is sensitive to the slightest vibration—​with fire extin-
guisher foam. Finally, they painstakingly drill a fist-​sized hole in the back of the 
safe and retrieve jewels judged to be worth at least 200 million francs. Throughout 
the entire nail-​biting 28-​minute scene, not a single word of dialogue is spoken.

The ALE does not include a video game requiring players to pull off the 
perfect jewellery heist. But it has a good alternative. Montezuma’s Revenge is 
a fiendishly difficult action adventure game in which players navigate a large 
interconnected map by opening doors with keys, dodging laser gates and fire 
pits, and avoiding skulls, snakes, and spiders (Figure 6.5). Like the crooks in 
Rififi, the player of Montezuma’s Revenge needs to be equipped to the nines, 
only in this case with amulets, swords, and torches. If they make exactly the 
right moves in just the right order, they will eventually reach the Treasure 
Chamber, a central zone whose floor is temptingly strewn with priceless 
jewels. Unlike in Rififi, once snatched, this hoard is converted directly into 
game score, with no risk of being stolen by a rival gang of thieves.

DQN fails miserably at Montezuma’s Revenge, and it is easy to see why. Like 
Thorndike’s cats trying to escape from a puzzle box, DQN learns by trial and 

	 34	 As discussed in Chapter 1. For a nice review, see (Botvinick et al. 2020).
	 35	 Montezuma’s revenge is a slang term for traveller’s diarrhoea picked up in Latin America.
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error. This works fine for many Atari games, especially simple sensorimotor tasks 
in which an avatar is moved around the screen, blasting baddies and harvesting 
rewards. But Montezuma’s revenge requires players to perform an exquis-
itely choreographed sequence of actions to progress from level to level. In fact, 
simply to advance beyond the first screen, the player has to climb down a ladder, 
scramble the wrong way up a conveyor belt, swing across a pole, leap with perfect 
precision over a rolling skull, jump to grab a key, and then perform the whole se-
quence in reverse to access the door that the key ultimately opens. Practically any 
departure from a perfectly orchestrated series of moves costs a life, and reverts 
the level to the start. Unsurprisingly, the probability of DQN learning to do this 
by chance is vanishingly small. It is a bit like expecting a toddler to pull off the 
perfect heist by charging randomly around a jewellery store in nappies.

How an RL agent behaves depends on its action selection policy. During 
learning, DQN computes the expected value of each action in each state q(s, 
a).For example, in Pong, there are just two possible actions—​the paddle can 
be moved up or down—​for a given state, these values might be q s up( ) =​  −0.2 
and q s down( ) =​  0.5. DQN uses an ε-​greedy (or epsilon-​greedy) policy to se-
lect actions, which means that it chooses the best action (here, down), with 

Fig. 6.5  The opening level in the Atari game Montezuma’s Revenge. You have to direct 
the avatar (with the red coat) to collect the key and use it to unlock the yellow stripy door 
at the top right. Bumping into the skull, or falling off a platform, results in death.
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a probability of 1−ε, and otherwise takes a random action. It might seem 
strange to deliberately bake randomness into the agent policy. However, the 
reciprocity between actions and observations in an MDP means that it is es-
sential for an RL agent to be able to explore (gather information), as well as to 
exploit (harvest rewards). Exploration allows it to learn about different states 
to those it would never encounter by exploiting rewards alone. Conversely, 
consider a greedy agent that slavishly exploits the action with the highest ex-
pected return. If deterministically pursuing a greedy policy yield leaves the 
value function unchanged, then the agent will get stuck in an infinite loop, 
endlessly producing the same fixed action. To maximize reward, an RL agent 
needs to trade off exploration and exploitation.

In biology, proneness to exploring the environment is a ubiquitous pheno-
type. Even the humble bacterium—​a single-​celled organism—​switches be-
tween two behavioural modes that resemble exploiting and exploring. Bouts 
of chemotaxis, during which it swims up a gradient towards preferred chem-
ical conditions, are interspersed with phases of tumbling, in which their be-
haviour is erratic and prone to randomly changing direction—​a bit like an 
RL agent displaying an ε-​greedy policy. Similarly, in the tiny nematode worm 
Caenorhabditis elegans, the spatial scale of the random foraging is adapted 
optimally to the concentration of resources, so that if no food is found on 
a local search, the animal switches to a more global exploration strategy 
encompassing a wider area. Recall that in Thorndike’s puzzle boxes, the cat 
did not sit quietly and wait for release—​it flailed around with frenetic energy, 
satisfying a drive to explore every possible means of escape from the device. 
Exploration is evidently critical to organisms of many different shapes and 
sizes.36

For animals with larger brains, exploration policies can be quite sophisti-
cated. In laboratory studies, the mechanisms by which exploration is traded 
off against exploitation have been extensively studied using a simple para-
digm, called a multi-​armed bandit problem, in which players choose among 
two or more stimuli or actions that pay out reward with an unknown prob-
ability.37 When the payout probability is unknown, participants are obliged to 
trade off the reward harvesting against the gathering of information about the 
alternate option. Otherwise, they risk getting stuck with a policy of drawing 
rewards from the suboptimal alternative. This risk grows if the rewards are 
non-​stationary, with probabilities that drift or jump over time.

	 36	 See (Calhoun et al. 2014).
	 37	 See (Gittins 1979).
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We can think of the multi-​armed bandit task as a crude version of the 
problem faced by animals foraging in the wild. On its nocturnal prowl, an 
urban fox can choose to hunt for rabbits in the local park or to scavenge 
for pickings among the residential dustbins, with variable probability of 
success or failure at either patch. In the 1960s, the Harvard psychologist 
R. J. Herrnstein38 was studying instrumental conditioning in pigeons, training 
them to peck levers that offered variable rates of reward. He found that the 
pigeons consistently matched their foraging behaviour to the rate of reward 
provided by either lever, so if one offered a 20% change of grain and the other 
an 80% chance of grain, the pigeons would peck at them with a 1:4 ratio. 
Herrnstein called this matching behaviour.39 Similarly, a common choice for 
exploration in RL is to choose action probabilities roughly in proportion to 
their respective Q-​values, a policy that is sometimes called Boltzmann (or 
softmax-​based) exploration.40

In policy gradient algorithms, where a parameterized function maps sensory 
states onto action probabilities, the rate of exploration cannot be controlled dir-
ectly. Instead, a maximum entropy regularizer is often added to the cost function 
to keep the action values as entropic (or broadly distributed) as possible. This 
serves to promote greater diversity in behaviour, and thus a tendency to explore 
new states. A comparable form of regularization can be achieved by deliber-
ately injecting neural networks with noise—​adding stochasticity to the actions, 
observations, or model parameters. Paradoxically, although noise will disrupt 
learning, it has the side effect of ensuring that the network does not settle into 
narrow, inflexible behaviours that may be overfit to the past, but unsuited to 
dealing flexibly with what is to come. Adding noise to the then state-​of-​the art 
policy gradient algorithm for Atari, the asynchronous advantage actor–​critic 
(A3C) algorithm, boosted performance by a median of nearly 20% per game.41

The fact that noise regularizes networks toward exploration is particularly 
relevant to biology, because computation in the nervous system is intrinsically 
variable. Neural noise is expressed at every scale, from transduction channels 
where ions permeate the cell membrane to drive spikes, through neurons and 

	 38	 Later notorious for co-​authoring the controversial book The Bell Curve, which advanced discredited 
views on race and intelligence. He died just before the book was published.
	 39	 Matching behaviour is not optimal if the bandits are stationary and payouts are issued with replace-
ment, but pigeons (and monkeys and humans) seem to do it anyway. This can be explained if they assume 
that the bandit resources are being depleted by their actions.
	 40	 This policy is controlled by a free parameter, the softmax temperature. For high temperatures, this 
policy becomes equivalent to maximizing (always choosing the greedy option).
	 41	 For entropy regularization, see (Ahmed et al. 2019). For noise regularization, see (Fortunato et al. 
2019) and (Plappert et al. 2018).
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populations to behaviour itself.42 In fact, there is evidence that noise—​rather 
than a deliberate proclivity for choosing randomly, via an overt exploration 
policy such as ε-​greedy—​might best explain patterns of human behaviour in 
bandit tasks. A model in which noise was added to the TD update—​as if pre-
diction errors include a small amount of variability—​was enough to capture the 
human explore–​exploit trade-​off, as well as explain a stickiness bias whereby 
humans preferred to select the same option on several trials in a row. This simple 
and biologically plausible innovation also explained why participants still 
tended to choose the less valuable option from time to time in a variant of the 
bandit paradigm in which the payout from both chosen and unchosen bandits 
were revealed on each trial, which precludes the need to overtly explore.43

Exploring alternative options at random—​like tumbling—​can prevent 
an agent from getting stuck with a single, suboptimal outcome. However, a 
yet more adroit policy is one that explicitly promotes information gathering 
with a view to future success. One way to do this is to endow the agent with 
curiosity—​the preference to explore states that are novel or uncertain. In 
biology, animals are intrinsically prone to sampling novel states. Given the 
choice, rats will cross an electrified grid for the pleasure of exploring un-
familiar sections of a maze. Monkeys will perform a task when the only re-
ward is a glimpse out of the window at the normal goings-​on in an adjacent 
room. In developmental psychology, human infants will look longer and more 
intently at novel or surprising events, such as objects that seemingly violate 
the laws of physics.44 Animals also learn faster when stimuli are new. During 
Pavlovian conditioning, the value of unfamiliar states is updated faster than 
that of familiar states, a phenomenon discovered in the 1950s, known as latent 
inhibition. There is good evidence that rapid learning about novel stimuli is 
dopamine-​mediated. Dopamine neurons are prone to responding to novel or 
salient stimuli, even when they predict the absence of reward, and dopamine 
responses in the VTA and substantia nigra are enhanced when learning about 
novel stimuli. This phenomenon has been incorporated into the TD learning 
framework with inclusion of the novelty bonus, a premium that is added to the 
novel states as the value function is updated.45

	 42	 A useful review is (Faisal et al. 2008).
	 43	 See (Findling et al. 2019). In a follow-​up paper, the same authors also showed that noise-​added recur-
rent neural networks promote a form of generalization displayed by humans (but not non-​noisy networks) 
(Findling & Wyart 2020).
	 44	 This provides a foundation for the preferential looking paradigm, a major tool for assessing preverbal 
cognition.
	 45	 For novelty seeking in rats, see (Dember & Earl 1957). For latent inhibition and its dopaminergic sub-
strates, see (Lubow & Moore 1959) and (Morrens et al. 2020). For a review of dopamine responses to nov-
elty and accompanying theory of exploration, see (Redgrave & Gurney 2006). For novelty bonuses, see 
(Kakade & Dayan 2002).
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However, indiscriminate novelty seeking is not always a good idea. For ex-
ample, you would probably find the fuzzy black-​and-​white patterns displayed 
on a malfunctioning vintage TV quite boring to watch for any length of time, 
yet they are the sine qua non of novelty—​each frame is entirely unpredict-
able and different from all the others. This reminds us that uncertainty comes 
in different forms and flavours. Some sources of uncertainty are irreducible 
(or aleatoric), meaning that—​like the noisy TV—​they cannot be modelled or 
predicted, so exploring them is a waste of time. In other cases, however, un-
certainty can be reduced by learning from experience. This is what happens 
as you learn a foreign language: at first, the speech sounds seem garbled and 
nonsensical, but with increasing proficiency, they morph into meaningful 
words and sentences. A sensible exploration policy is one that promotes not 
just novelty seeking, but also uncertainty reduction—​that directs you to ex-
plore where learning is most beneficial.

In fact, this is largely what humans do. People seek out stimuli that are nei-
ther completely predictable nor completely unpredictable, but instead lie in a 
Goldilocks zone of intermediate novelty. One well-​known observation, associated 
with the psychologist Daniel Berlyne, is that a piece of music is often enjoyed most 
when it is neither completely fresh nor repeated ad nauseam—​so that musical ap-
preciation has a U-​shaped relationship with both familiarity and complexity. You 
might agree that whilst Karlheinz Stockhausen’s quartet for string players and four 
helicopters is a trifle difficult to follow, and Beethoven’s Für Elise is awfully hack-
neyed, Schubert’s piano sonatas fall in that delightful middle zone.46

This Goldilocks zone is present from a young age. The developmental 
psychologist Celeste Kidd showed 7-​ to 8-​month olds animations in which 
salient objects popped up from one of three distinctive gift boxes. The prob-
ability that the infants looked away (in presumed boredom) was a U-​shaped 
function of the complexity, as measured by the negative log probability of the 
sequence. Similarly, adults will pay to find out the answers to trivia questions 
about which they have middling levels of confidence, but not those where they 
are totally clueless or sure of being correct. We also tend to direct our gaze to 
parts of a natural scene that are neither most predictable (a uniform expanse 
of sky) nor least predictable (the intricate textures formed by leaves on a tree), 
but that are somewhere in between (the prominent shape of a rock). Moving 
the eyes in this way can be shown to maximize a quantity called Bayesian 

	 46	 See (Chmiel & Schubert 2017).
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surprise (measured in units of ‘wow’), a proxy for how much an observer can 
learn from making that eye movement.47

RL algorithms can also be primed to explore where learning is most bene-
ficial. In tabular RL, a common approach is known as the upper confidence 
bound (or UCB) algorithm. The UCB adds a term to the action value which 
is inversely proportional to the number of times it has been sampled before, 
specified in such a way that exploration gradually gives way to exploitation.48 
Early in learning, this strongly encourages the agent to try out new actions. 
In domains where no two states are exactly alike, such as in Atari, proxies can 
be computed for how often an action has been tried in a specific situation. 
When exploration bonuses based on these pseudo-​counts were built into 
DQN, it learnt a policy which was able to navigate through at least 15 rooms 
of Montezuma’s Revenge, obtaining over 3000 points on average. However, 
this approach remains susceptible to the noisy TV problem—​as it encourages 
the seeking of novelty for novelty’s sake, rather than urging the agent to ex-
plore the Goldilocks zone. Thus, adopting a more sophisticated approach, the 
team from OpenAI used a fixed random neural network to pre-​process each 
game frame, and trained a predictor network with supervision to mimic the 
output of this network. The states where the predictor fails are those where 
there is the most interesting information to learn in the environment, and so 
this loss is used as the exploration bonus. Equipped with this random net-
work distillation (RND) bonus (and more than a few other tricks), their policy 
gradient agent was thus prone to exploring the most interesting parts of the 
world, which helped it achieve 8000 points and become the first AI system to 
play Montezuma’s Revenge at superhuman levels.49

More generally, curiosity is a salient characteristic of many animals—​and 
especially humans. It is the insatiable human drive for information that has 
urged us to dissect the microscopic wonders of biology, plumb the depths of 
the oceans, and scale the highest mountains, and even venture out into the 
cosmos. Currently, most RL systems are hampered by relatively primitive ex-
ploration policies that encourage randomness or endow agents with makeshift 
inquisitiveness. By contrast, humans have evolved sophisticated strategies for 
discovering the information needed to successfully implement a policy in 
advance of its execution. This allows them to engage in complex behaviours, 

	 47	 Work by (Kidd et al. 2012). See here for work on trivia questions (Kang et al. 2009). For Bayesian sur-
prise, see (Itti & Baldi 2009).
	 48	 In DQN, the value of epsilon was also gradually annealed towards zero over the first million steps.
	 49	 See (Burda et al. 2018).
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including—​among other things—​the commission of devilishly sophisticated 
jewellery robberies.

6.5  Is reward enough?

You probably know the story of King Midas. Recounted by Ovid in his epic 
narrative poem Metamorphoses, it tells the tale of Midas of Phyrgia, who tends 
patiently to the hoary old Satyr Silenus after he passes out drunk in a rose 
garden. As a reward for his kindness, Silenus’ foster father—​the wine god 
Dionysius—​grants Midas any wish of his own choosing. Foolishly, Midas asks 
that everything he touches turns to gold. Of course, Midas soon realizes his 
terrible mistake—​but has turned his bed, his dinner, and his daughter to cold, 
hard metal before Dionysius consents to reverse the spell.

The Midas myth is a classic fable of reward function misspecification. 
Midas knew that gold was valuable, and thus he sought to obtain as much 
of it as possible. Unfortunately, however, relentlessly seeking to maximize a 
single, monolithic objective can have catastrophic side effects. In his book 
Superintelligence, Nick Bostrom imagines a powerful AI system that is given 
an innocuous-​sounding objective—​to make as many paperclips as possible. 
His worry is that a superintelligent AI given this simple objective will make 
paperclips at all cost—​even if it involves diverting all the world’s resources and 
eliminating all the world’s population in the process.

Bostrom’s thought experiment is commonly quoted to motivate research into 
AI safety. However, it also serves to highlight a serious translation gap for con-
temporary AI research. RL agents are mostly developed and road-​tested in en-
vironments with universally agreed, clearly defined objectives: board games such 
as Go where the goal is to win, or video games such as Atari where the score pro-
vides a metric of success. However, in the messy reality of the real world, there are 
no points to be earned for a life well lived. What does a success at life look like? No 
doubt everyone from Donald Trump to the Dalai Lama has a different answer. In 
the natural world, nobody is keeping score (or counting paperclips).

The RL paradigm is premised on what is known as the reward hypothesis. 
One version of this hypothesis states that:50

	 50	 See (Silver et al. 2021). In an earlier blog post, Rich Sutton uses a slightly less ambitious formula-
tion: ‘that all of what we mean by goals and purposes can be well thought of as maximization of the expected 
value of the cumulative sum of a received scalar signal (reward)’.
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the generic objective of maximising reward is enough to drive behaviour that ex-
hibits most if not all abilities that are studied in natural and artificial intelligence.

The implication is that if AI researchers can manage to inject exactly the right 
constraints into the objective function, then hey presto—​the resulting agent 
will acquire a full set of intelligent behaviours, because doing so is the optimal 
route to maximizing reward. The hope is that such an agent—​endowed with 
general intelligence—​will then consent to do our bidding flexibly, safely, and 
effectively, and in a way that is aligned with human values.51

The 14 quadrillion dollar question is how to specify such a reward func-
tion.52 The Midas myth reminds us of the perils of the underspecified ob-
jective. Midas forgot to ask that his daughter and his lunch be exempted from 
the golden touch. But a perfect reward function for Midas would need to ex-
haustively list all the objects in the world, and whether (or how) they should 
be subject to his golden touch (cutlery—​sure, why not. Toothbrush? Fine—​
but only the handle, not the bristles. Shirt—​definitely not! But the buttons 
might be OK). The job of specifying such a reward function for an AGI, as-
suming this were even possible, would probably be even more daunting than 
designing the algorithm that attempts to satisfy it. In fact, the exhortation to 
build maximally general agents without researcher priors—​expounded in 
the bitter lesson—​often seems to surreptitiously offload the liberty to hand-​
engineer solutions into the reward function, substituting a handcrafted agent 
for a handcrafted objective. It is absolutely right that we cannot ‘special case’ 
our way towards intelligence by building agents with a unique capacity for 
every circumstance. But neither can we write down a reward function in suf-
ficient detail that an agent behaves appropriately in every possible scenario it 
encounters in the natural world.

The alternative is to build agents that reward themselves. This is, of course, 
exactly what biological systems do. In life, there are no points gained for eating 
chocolate or reading a thrilling novel, nor are there leader boards for happiness 
or well-​being. Instead, each organism is endowed with a function that maps 
observations onto internal (or intrinsic) rewards. We can thus replace the ex-
trinsic reward function (which is specified in the world) with an intrinsic re-
ward function (which is computed in the agent’s brain). Unfortunately, the 
nature of this computation—​the mapping from observations to intrinsic 

	 51	 Whatever those might be. I am not doing justice to the complexity of the alignment problem, but fortu-
nately two wonderful books give deep consideration to this issue (Christian 2020; Russell 2019a).
	 52	 That is Stuart Russell’s back-​of-​the-​envelope calculation of the value of AGI, as described in his 2021 
BBC Reith Lectures.
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rewards—​remains an open problem in AI research. For biological intelli-
gence, understanding the nature of the cost function for motivated behaviour 
is perhaps the greatest unsolved mystery of all. Knowing the true objective 
function for biological learning has the potential to unlock great secrets about 
how and why people behave the way they do.

Whilst the nature of the intrinsic reward function is unknown, there are at 
least three principles that might be helpful for cognitive scientists and com-
puter scientists alike to consider.53 Firstly, motivation can be homeostatic or 
heterostatic. Homeostasis is the computational principle by which a system 
attempts to keep some quantity in equilibrium. For example, a mechanic 
maintains the levels of oil, fuel, and water within a desired range in an engine, 
and a thermostat keeps your house at a comfortable temperature. In biology, 
motivation for basic needs is readily described by a homeostatic motivational 
system. When we are hungry, we eat until sated, and when we are thirsty, we 
drink until hydrated. Thus, a homeostatic intrinsic reward function will return 
negative values when various environmental states (e.g. our levels of food or 
liquid) fall below certain levels, encouraging the agent to take action to meet 
the relevant need. The idea that biological behaviour obeys drives that satisfy 
needs dates back to the theories of the psychologist Clark Hull in the 1940s.

By contrast, the extrinsic rewards provided in conventional RL studies are 
heterostatic. A heterostatic reward function is one in which the organism is 
encouraged to self-​perturbate out of its equilibrium, for example by reaping 
extreme quantities of a given asset. In Atari, this works just fine, because at-
taining a superlative score is precisely the goal. But in the natural world, 
heterostatic reward functions invite pathological behaviours. A third, fourth, 
or tenth slice of chocolate cake is not going to increase your health or happi-
ness. If Bostrom’s superintelligence had been asked to make exactly as many 
paperclips as people need and no more, then perhaps it would have spared 
humanity when meeting its objective. Economists, of course, are in favour of 
heterostatic objectives, because their theories assume that utility is a mono-
tonic function of monetary wealth. However, blind maximization of material 
assets by avaricious individuals is undoubtedly the root cause of many path-
ologies that afflict our society today.54

Secondly, an intrinsic reward function might be fixed or adaptable. We 
can think of a fixed reward function as one that is hardcoded into the brain, 

	 53	 I am indebted to the thinking of Pierre-​Yves Oudeyer for this summary. Oudeyer proposes the first 
two distinctions that I reference here in his 2009 paper (Oudeyer & Kaplan 2007).
	 54	 There is so much to say here. Where to start? Perhaps (Piketty & Goldhammer 2014) and (Saez & 
Zucman 2019).
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specified either by our genes or by the hard constraints of the network archi-
tecture, whereas an adaptable intrinsic reward function can be learnt from 
experience. An fully adaptable intrinsic reward function is a dangerous thing. 
An agent with dominion over its own reward function can simply decide to 
reward itself ad libitum, a shortcut sometimes known as wireheading in the 
AI community.55 When animals are given the opportunity to wirehead, they 
tend to lose all interest in everything else. This was the case for the rats in 
Olds and Milner’s experiments, which ignored offers of chow and water and 
spent all day tirelessly pressing the pleasure button. Humans have invented 
ways of wireheading too, using drugs of abuse to directly stimulate the brain’s 
transmitter systems. As everyone who has seen the film Trainspotting knows, 
this rarely ends well. On the other hand, a completely fixed intrinsic reward 
function risks being overly restrictive, unless it happens to be perfectly tai-
lored to demands of the environment. In the natural world, it seems probable 
that intrinsic reward functions are prespecified, but partly malleable—​leaving 
room for us to learn what we like. Presumably, this is why tastes, tempera-
ments, drives, proclivities, and preferences are, at least partly, shared within 
socially defined groups, and why we can acquire new tastes across the lifespan, 
like learning in adulthood to enjoy dissonant atonal music or the bitter taste 
of marmalade.

Finally, intrinsic rewards might be specific or generic. For example, humans 
have evolved some biases towards specific intrinsic rewards that are tailored 
to the requirements of our evolutionary history as foraging primates: chil-
dren, for example, have a strong tendency to accept sweet-​tasting foods and 
reject bitter ones, and we tend to find hairy spiders scary and koala bears cute. 
Monkeys who have never seen a snake before are nevertheless terrified of 
wriggly animals with swarthy skin, and cats leap in terror on sudden glimpse 
of a roughly snake-​shaped object such as a cucumber, to the amusement of 
millions of YouTube viewers. But the most generally useful intrinsic reward 
functions are those—​like a thirst for knowledge, an imperative for control, or 
a drive to explore—​which are not tied to specific sensory states.

As humans, many facets of our behaviour betray the ways in which intrinsic 
rewards are computed. For example, we engage enthusiastically in activities 
that can be tiring, taxing, or gruelling for no apparent hedonic gain. You 
might tussle with a cryptic crossword in the morning paper, play an explo-
sive game of badminton with your boss, or go shopping for an elderly neigh-
bour with no expectation that the favour will ever be returned. Some people 

	 55	 See (Russell 2019b).
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strive for positions of power influence or dream of being world champion, 
whereas others crave intimate knowledge of the personal lives of others, de-
light in poetic uses of language, or yearn for the vast emptiness of desolate 
places. Some people—​the most fearless and inured to hardship—​might take it 
upon themselves to climb a mountain in the Andes, risking life and limb just 
to be the first to ascend via a face that has not yet been conquered. Where do 
all these human desires come from?

In the previous section, we discussed one class of intrinsic reward—​the sat-
isfaction of curiosity, which may serve as an auxiliary objective for RL, for 
example by promoting exploration and thus reward harvesting. However, an-
other more radical conception is that we should do away with the concept of 
reward altogether.56 In many ways, this is the polar opposite to the reward 
hypothesis: it claims that rewards are just a convenient label for states that 
emerge as a by-​product of belief formation. The claim comes in various forms, 
but the shared theme is that organisms are guided by a cost function that is 
minimized when the world is predictable, controllable, or orderly. In one ver-
sion of this theory, known as active inference, actions are selected to make the 
world as predictable as possible. In another, known as empowerment, the con-
sequence of maximizing this intrinsic reward is that it furnishes maximal pre-
paredness, by maximizing the future degrees of freedom available for an agent 
to act in the world.

Unsurprisingly, these ideas have been controversial. However, the idea 
that people strive for orderliness in perception and cognition falls within a 
long psychological tradition dating back to Festinger’s Theory of Cognitive 
Dissonance in the 1950s. Festinger argued that we always seek to minimize 
inconsistency in our beliefs and values. His work was partly based on inter-
views with people holding strange prophetic or apocalyptic beliefs, such as 
a Chicago-​based group who believed they would be rescued from Earth by 
UFOs on Christmas Eve in 1954. Festinger studied the mental stresses that the 
group experienced and the coping mechanisms they adopted, when reality 
did not line up with their predictions. He concluded that people are motivated 
to seek psychological consistency between their expectations and their obser-
vations of the world—​to minimize cognitive dissonance.

One contemporary instantiation of this idea is a framework known as the 
free energy principle (FEP). The FEP has attracted criticism for the grandi-
osity of its claims and the impenetrability of its mathematical foundations. 
However, broadly, it claims that in order to resist a tendency to disorder, 

	 56	 See (Friston et al. 2012).
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biological systems seek to control their observations to minimize surprise 
(or its proxies).57 Surprise is a measure of how much a model of the world 
needs to be updated in order to account for new observations. The FEP pro-
poses that agents use a principle of active inference to choose actions that 
will render sensory signals as predictable as possible. An implementational 
scheme based on predictive coding has been proposed, and the FEP claims 
to explain canonical morphological and physiological features of the primate 
brain, such as neural responses to prediction errors, recurrent connectivity, 
and gain control.58

Is it really plausible that our ultimate goal in life is for sensation to be as 
predictable as possible? Philosophers and cognitive scientists disagree sharply 
on this point.59 One common critique of the FEP is that it seems to imply that 
people will strive to be left in peace—​in a ‘dark room’ with minimal sensory 
stimulation. This seems out of kilter with our irrepressible love of rock music, 
carnivals, and rollercoasters. More conceptually, the FEP collapses desires (I 
want an apple) entirely into beliefs (I want to satisfy the prediction that I will 
eat an apple when hungry, and so I do), which, for all its theoretical elegance, 
seems rather inconsistent with the quotidian experience of munching on a 
piece of fruit.

For AI research, the proof of any theory of intrinsic motivation is in the 
empirical pudding. Is it possible to train an agent to display intelligent be-
haviours without extrinsic reward, and with the goal of attempting to min-
imize its own surprise alone? Recently, a group led by the computer scientist 
Sergey Levine have begun to put this question to the test, using a paradigm 
called self-​supervised RL—​where the agent is trained with intrinsic rewards 
alone.60 They find that an agent that models a partially observable environ-
ment with a VAE and is optimized to minimize the belief updates on each 
state will not, in fact, learn to hide in a dark room, but will instead gravitate 
towards a ‘busy’ room where it can tag moving items to bring them to a halt. 
The same agent is successful at a 3D video game that involves rotating to shoot 
encroaching monsters. However, there is clearly a long way to go to demon-
strate that surprise-​minimizing agents can display intelligent behaviours in 
naturalistic environments.

A closely related idea is that an intrinsic reward function should drive 
agents to exert influence over their environment. In the 1950s, Harlow studied 

	 57	 Formally, the quantity minimized is free energy, which is a bound on surprise, and can be computed 
from sensory signals and brain states, rather than requiring a perfect model of the world.
	 58	 See (Friston 2009) and (Gershman 2019).
	 59	 See (Sun & Firestone 2020).
	 60	 See (Rhinehart et al. 2021).
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how monkeys behaved when a puzzle apparatus (Figure 6.6) was placed in 
their enclosure. Like a commuter doing battle with their morning Sudoku, the 
monkeys enthusiastically set to work and learnt to efficiently solve the puzzle 
apparently just for the fun of doing so. Remarkably, Harlow reports that when 
the monkeys were reinforced for solving the problem (with juicy raisins), this 
actually hurt, rather than helped, performance.61 Harlow’s monkeys were 
doing something familiar to every parent: they were playing. Play serves many 
potential roles, but one is learning how actions influence the world. For ex-
ample, Piaget famously described how his son Laurent learnt that he could 
provoke an interesting sound by touching a rattle and, delighted with this new 
knowledge, chose to do so over and over again.

This idea of environmental control as intrinsic reward comes in many 
guises, but the most influential modern version is probably the concept of em-
powerment, commonly associated with the computer scientist Daniel Polani. 
Here is his definition of empowerment:62

Empowerment aims to reformulate the options or degrees of freedom that an 
agent has as the agent’s control over its environment; and not only of its control —​ 
to be reproducible, the agent needs to be aware of its control influence and sense 
it. Thus, empowerment is a measure of both the control an agent has over its envir-
onment, as well as its ability to sense this control.

Fig. 6.6  The mechanical puzzle apparatus explored by macaque monkeys in the Harlow 
study (1950). It involves a hasp restrained by a hook restrained by a pin. Monkeys solved 
the problem more readily in the absence of an extrinsic reward.

	 61	 See (Harlow et al. 1950). We have already encountered Harlow in the context of learning to learn (see 
Chapter 4).
	 62	 From the simple primer here (Salge et al. 2013).
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Cast in the language of information theory, the concept of empowerment for-
malizes the degree of influence that an agent has over its future environment. 
Those actions with the highest empowerment are those that allow the greatest 
variety of subsequent observations to be experienced.63 If I am a cat locked in 
a cage, I will be determined to escape, to see the world beyond its bars. If I lack 
a corkscrew, I will search for one, so I can sample the fine wine my friend just 
gave me. If I am in a lowly professional role, I will seek promotion, so that I can 
have greater influence over the actions of my colleagues and the policies of my 
organization.

In AI research, empowerment can be estimated using an approach known 
as variational inference, and has proved to be a useful concept for skill 
learning in unsupervised RL. For example, empowerment has been used to 
discover options under the framework known as hierarchical RL, where the 
agent learns multi-​step macro-​actions, the completion of which is (pseudo-​)  
rewarded, leading to improved performance in studies requiring agents to 
navigate environments with bottleneck states (i.e. doors) or to push blocks 
around to reach a goal, or to learn complex motor skills in the MuJoCo physics 
simulation environment.64

In sum, thus, biological systems are powerfully motivated to act in their 
own interests. If we could understand the principles that animate natural be-
haviour and recreate them in AI systems, then this would be an important 
brick in the road towards intelligence. Of course, in the natural world, or-
ganisms ultimately evolved to maximize reproductive fitness. But given the 
difficulty of working out which actions will increase or decrease their fitness, 
animals have evolved proxies—​internal and external variables that they seek 
to maximize or minimize instead. Hedonic reward—​the pleasurable sensa-
tions that are evoked by consummatory behaviours—​is one such variable. The 
demand to explore the world, finding out what is around the next corner, over 
the next hill, or written on the next page, is another major impetus. The desire 
for order and control—​to exert influence over others, to solve a puzzle, to live 
in a tidy house and an orderly society, and to control our sensations, health, 
and mood—​is another. It seems likely that finding the right mix of extrinsic 
and intrinsic variables for RL in AI research is among the most significant out-
standing challenges today.

	 63	 Formally, empowerment is the channel capacity (maximum of mutual information) computed from 
the interventional conditional probability of action on observation (e.g. using the do-​operator or related 
causal approaches).
	 64	 See https://​muj​oco.org/​. The two results cited are (Gregor et al. 2016) and (Sharma et al. 2020).

https://mujoco.org/
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7
The control of memory

7.1  The eligibility of experience

At the denouement of Orson Welles’ 1941 masterpiece, the movie Citizen 
Kane, the tycoon Charles Kane has reached the end of the road. His second 
marriage is over, his political career is in tatters, and his friends have been scat-
tered to the winds by betrayal. In the last moments before death, he turns his 
violent temper on his ill-​gotten material gains and begins ransacking his pa-
latial mansion Xanadu. But when his glance falls on a snow globe that he used 
to own as a boy, he suddenly recollects the innocence of youth. He remembers 
playing in the snow with his beloved sledge Rosebud, before his descent into 
the corrupt world of money and politics. For a moment, he is mentally trans-
ported back across the decades, and his whole world turns on its axis. This rec-
ollection allows him to finally die in peace, with the word Rosebud on his lips.

Time moves ever forward. In the natural world, its passage is marked by the 
ticking of the clock and the slow rotation of the seasons. For an RL agent in a 
dynamic environment, time moves forward too—​tirelessly meted out by the 
cycle of observation, action, and reward.1 As time advances, the past recedes 
behind us. But evolution has endowed biological agents with a means to travel 
back through time and visit the past—​like Citizen Kane on his deathbed, who 
is transported back to his youthful self frolicking in the snow. For intelligent 
agents, remembering what occurred in the past can be useful. The world is 
structured in time, so what the past reveals is often relevant to the future and 
can be leveraged to make better decisions.

In Chapter 6, we saw how agents learn by reinforcement. By learning the 
value of states and actions, agents can follow policies that maximize reward. 
The most primitive of these mechanisms, the atoms of memory, are those that 
psychologists call classical and instrumental conditioning. Advances in RL 
theory have discovered algorithms—​such as TD learning—​that allow an agent 
to learn optimal behaviours by incrementally updating the value function 
from moment to moment. For example, in each cycle of TD learning, value 

	 1	 Albeit often on multiple threads of the CPU.
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is shared between two adjacent time points: the current and immediately pre-
ceding steps. Memory systems, however, allow agents to share information 
across broader expanses of time. This is particularly helpful in naturalistic en-
vironments, where events depend on variables which were signalled in the 
past but are latent and unobservable in the present. For example, on the first 
level of Montezuma’s Revenge, to know that you can open the door, you need 
to remember that you previously retrieved the key.

A simple form of memory in the RL methods toolkit is called an eligibility 
trace. In tabular RL, an eligibility trace is a scalar memory for state visitation 
recency. If we return for a moment to the example of navigating Hampton 
Court maze, you might recall that TD learning allows an agent to back up the 
value of the exit state (+​100) to the next-​to-​exit state. But why not back up 
further? An eligibility trace tags each state as fully ‘eligible’ when visited and 
decays the eligibility of all other states incrementally down towards zero on 
every step. Thus, when stumbling across the goal for the first time, those states 
that have been recently visited—​in the run-​up to the exit—​will carry eligi-
bility that is roughly proportional to their recency. In a class of method known 
as TD(λ), an eligibility trace is used to share the backed-​up value simultan-
eously with all eligible states, which greatly accelerates learning.2

In biological brains, memories are formed through the adjustment of syn-
aptic connections. When one neuron stimulates another, their shared synapse 
is strengthened in a process known as long-​term potentiation (LTP). When 
LTP is produced in the lab, for example through artificial tetanic stimulation 
in slices of tissue, it occurs in two stages: a short-​duration phase in which the 
cell is tagged as having been recently active, and a sustained phase in which 
new proteins are synthesized to produce lasting change. These latter plastic 
changes only occur in the presence of the tag, thereby creating a mechanism 
by which credit can be assigned on the basis of eligibility. In the context of 
RL, this mechanism could allow dopamine to selectively strengthen tagged 
synapses for the learning of associations between stimuli and actions or out-
comes, allowing for neural implementation of an eligibility trace. Indeed, 
humans seem to be able to back up a reward incurred by completion of a se-
quence of actions in a single shot, and reward prediction errors measured in 
pupil dilation signals obey the predictions of a TD-​learning model equipped 
with eligibility traces.3

	 2	 The parameter λ dictates the decay rate for state eligibility.
	 3	 For synaptic tagging (in the hippocampus), see (Frey & Morris 1997). For a review on eligibility traces in 
biology and human experiment with eligibility traces, see (Gerstner et al. 2018) and (Lehmann et al. 2019).
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In this chapter, we will consider how memory systems contribute to intelli-
gence. In biological agents, and especially in humans, memory has a complex, 
modular structure. As we shall see, different memory processes have evolved 
to solve specific computational problems that are posed by natural environ-
ments. Building on the RL paradigm, we will show how the elaboration of 
memory systems in deep RL agents can potentially allow them to solve the 
same problems. We focus on three well-​known computational challenges.

The first is the problem of data efficiency. Deep RL agents are very ineffi-
cient. For example, DQN was trained with 50 million frames of each game, 
equivalent to 38 days of continuous play in the real world. The authors of a 
landmark paper discussing DQN’s significance for biology point out that it 
is possible for a human to approximate the level achieved by the expert base-
line with as little as 5-​ to 10-​minute practice, highlighting the remarkable 
disparity in sample efficiency between humans and deep learning agents.4 
Understanding how to build agents that learn efficiently—​including those 
that learn effectively from single experiences (one-​shot learning)—​remains a 
key outstanding problem for the field.

The second is the problem of lifelong learning. In 2015, news outlets around 
the world reported that a female pupil by the name of Priscilla Sitienei was at-
tending the local school in her village in the Rift Valley, Kenya, hoping to learn 
to read and write. Nothing unusual about that—​except that this remarkable 
student was 90 years of age, and six of her classmates were her great-​great-​
grandchildren. The case of Ms Sitienei reminds us that humans are able to 
learn continually over the lifespan, from our earliest months right through to 
a venerable old age. Unfortunately, the same is not immediately true of deep 
neural networks. When coming across a novel task or context, deep networks 
learn in ways that catastrophically overwrite the knowledge they have learnt 
previously. It is as if when you learn to cook lasagne, you suddenly forget how 
to speak French, or when learning to play tennis, you forget how to dance 
the tango.

For this reason, although in the original paper, there was one DQN archi-
tecture, there was a different DQN model for each game.5 The model trained 
on Pong was unable to play Breakout—​the authors were obliged to reinitialize 
DQN’s weights for each new game. Effectvely, thus, the agent had the luxury 

	 4	 See (Lake et al. 2017) and (Tsividis et al. 2017). Of course, this comparison is not entirely fair, because 
humans have a lifetime of experience to bring to bear on the problem, including possibly of some other 
video games made by humans. The authors also admitted to preparing by watching videos of people playing 
on YouTube. There have been more recent attempts to compare humans and agents learning video games 
with appropriate priors (Tsividis et al. 2021).
	 5	 Where a model is an instance of the architecture trained from scratch with a unique weight initialization.
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of an entirely new brain for every task it encountered. Learning a single model 
that can play multiple games—​or, more generally, that can learn many tasks in 
series—​is called the problem of continual learning.6 Despite recent progress, 
continual learning remains an outstanding challenge for the field.

The third is the problem of task generalization. Previously, we discussed 
how brains and neural networks might form abstractions, which are complex 
invariances over sensory inputs (images and words) that allow us to under-
stand the meaning of cat, inside, politics, Asia, and Easter. But humans can 
also abstract over tasks. After having learnt to ride a bicycle, you know some 
bike-​specific information about handlebars and pedals. But you also acquire 
more general motor skills, such as how to shift your body to remain upright 
on two wheels, the concept of how gears control propulsion, and the rules of 
the road—​all of which would be useful for learning to ride a scooter. Similarly, 
when you switch operating system from Mac to Linux, the interface is dif-
ferent, but concepts like drop-​down menu, window, and terminal can be trans-
ferred from one domain to the other. When you visit a new city, the language 
and currency may be alien, but you can generalize your understanding of 
greeting and taxi to help negotiate it with minimal mishap.

Understanding how to build AI systems that generalize effectively to novel 
tasks remains a frontier topic in AI research. For example, Breakout and Pong 
both involve the use of a paddle, a tool that can be moved horizontally or ver-
tically to prevent a ball from hitting the ground, and thus incurring a negative 
outcome. However, despite the near-​identical game logic implied by the use 
of a paddle in both games, DQN had to learn a unique policy in each game. 
As we shall see, thinking about task abstraction revives the theme we encoun-
tered with Harlow’s monkeys, which are able to transfer information about 
one bandit problem to another. A major area of research called meta-​RL pro-
vides a suite of computational solutions that allow agents to learn how to learn, 
so that they can potentially solve wholly new tasks on the first encounter.

These three problems—​one-​shot learning, continual learning, and meta-​
learning—​are core themes in AI research today. In this chapter, we will discuss 
how these challenges may be met in the human brain, and highlight machine 
learning research that has drawn inspiration from neurobiology to build 
agents that can exhibit complex behaviours in naturalistic environments.

	 6	 This term and lifelong learning are often used interchangeably.



The butcher on the bus  221

7.2  The butcher on the bus

Édouard Claparède was a Swiss neurologist with a mischievous streak. In 
1907, he published a report of a patient suffering from anterograde amnesia 
brought on by Korsakoff ’s syndrome. Anterograde amnesia spares most past 
learning but precludes the formation of new memories for facts or experi-
ences, usually without incurring a more generalized loss of cognitive func-
tion.7. His patient retained learning that had occurred before the illness onset, 
and, for example, was able to recite the capitals of European countries and per-
form accurate mental arithmetic. She was also able to learn some new skills, 
such as finding her way to the bathroom in the hospital where she was in-
terned. However, her amnesia left her unable to recognize the faces of medical 
staff that she had seen every day for five years—​including Claparède, whom 
she met for regular appointments. Famously, on one visit, he secreted a sharp 
pin in his hand, which pricked her painfully when they greeted. On the next 
visit, the patient once again failed to recognize Claparède, but she refused to 
shake hands—​without being able to explain why.

This turn-​of-​the-​century report anticipates the seminal study of Henry 
Molaison (patient H.M.) by Brenda Milner in the 1950s, on which modern 
understanding of the human memory system is founded.8 Like Claparède’s 
unnamed patient, H.M. was able to slowly acquire new motor skills, such as 
drawing in a mirror, and became gradually familiar with his environment 
through laborious interaction. However, new facts and events systematically 
failed to lodge in his mind. The site of the damage to the brain of Claparède’s 
patient is unknown, but H.M.’s lesion, which has been mapped in detail with 
structural MRI, encompasses the hippocampus and adjoining structures in 
the MTL.9

The study of H.M. offered an early inkling of how the brain divides labour 
between the neocortex and the hippocampus. Hippocampal patients are 
unable to encode specific instances into memory but remain familiar with 
previously learnt facts and events. This dissociation implies the need for a 

	 7	 This is often called declarative memory (and is distinct from procedural memory, which are for skills 
like riding a bicycle). The original text is translated with commentary here (Nicolas 1996).
	 8	 The late Sue Corkin at MIT also made very significant contributions to the study of H.M, as described 
in her book Permanent Present Tense (Corkin 2014). Brenda Milner was born in Manchester, England but 
went to Canada to study for her PhD under the supervision of Donald Hebb. She was married to Peter 
Milner, whose work on rodent self-​stimulation is discussed above. At the time of writing, she is 103, and 
probably the living person whose work has had the greatest impact on the field.
	 9	 In fact, a recent reanalysis suggests some hippocampal sparing. The implications of this finding for 
studies involving H.M. remain unclear.
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dual-​process model of memory. Accordingly, in the 1970s, the idea took root 
that there are two sorts of long-​term store: one where memories are approxi-
mate, gist-​based, generalizable, and gradually formed; and another where 
memories are vivid and specific and can be learnt in a single shot. The former 
store is said to support familiarity, and it depends on the neocortex. The latter 
is called recollection and it relies on the hippocampus.10

This distinction between recollection and familiarity is perhaps one to 
which you can relate. Many people report an experience known as the butcher 
on the bus phenomenon, whereby a familiar person encountered out of con-
text cannot be placed. We owe this term to the psychologist George Mandler, 
who gave this example in a classic paper:11

Consider seeing a man on a bus whom you are sure that you have seen before; you 
‘know’ him in that sense. Such a recognition is usually followed by a search pro-
cess asking, in effect, Where could I know him from? Who is he? The search process 
generates likely contexts (Do I know him from work; is he a movie star, a TV com-
mentator, the milkman?). Eventually the search may end with the insight, That’s 
the butcher from the supermarket!

Thus, in the healthy mind, familiarity precedes recollection—​but the source 
of a memory (‘oh! it’s the butcher’) can usually be identified. However, in pa-
tients with damage to the MTL, familiarity exists in a vacuum. Here is an an-
ecdote from Claparède about the same patient.

One day we read a story to the patient about a 64-​year-​old woman who took her 
cattle to graze and was bitten by a snake. The next day, we asked her to relate the 
story we had told her. She could not do so and could not even recall having seen 
us the day before. We urged her to answer, saying that it was about a woman and 
asking her how old the woman was. She then asked us: ‘Wasn’t the woman 64 years 
old?’ and then she quickly added that it was merely an idea that ‘crossed her mind’ 
and that she could have just as easily said something else.

In the lab, recollection and familiarity are studied using more prosaic 
methods. Participants are given lists of words or pictures to learn, and then 
asked to judge each item as old or new, and to report whether they ‘remember’ 

	 10	 A common framing of this distinction employs the terms ‘episodic’ and ‘semantic’ memory. I avoid 
these terms here because I find them misleading. The episodic vs semantic distinction mixes up the content 
of the memory (personal episodes vs impersonal semantic knowledge) with the nature of the retrieval (spe-
cific vs general).
	 11	 See (Mandler 1980).
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or ‘know’ that it had been presented.12 In combination with a statistical model 
known as signal detection theory, this approach allows sensitivity scores for 
both recollection and familiarity to be computed from the same retrieval data. 
The plot in Figure 7.1, which is assembled from three comparable studies, 
illustrates how damage to the hippocampus selectively impairs recollec-
tion, whereas damage to the adjacent neocortex seems to impact familiarity. 
Consistent with these findings, patients with damage to both regions have a 
generalized impairment that encompasses both retrieval processes. Data from 
neuroimaging experiments support the same dissociation between a neural 
system for recollection in the hippocampus and a familiarity-​based system in 
the adjacent neocortex.13

We can thus think of familiarity and recollection as the fruits of retrieval 
from neocortical and hippocampal memory stores, respectively. These two 
repositories retain memories in different, but complementary, ways. The 
neocortical familiarity system is parametric: it encodes structured patterns, 
summaries, or averages from big sensory data.14 This allows it to privilege 

	 12	 This technique requires that you explain this distinction to participants, and the simpler terminology 
and ‘remember’ and ‘know’ seem to make it more intuitive.
	 13	 The lesion data are described in this review paper (Yonelinas et al. 2010). See this earlier review, with a 
very authoritative historical overview (Yonelinas 2002). The imaging data are from (Wais et al. 2008). Data 
in the figure are from (Aggleton et al. 2005) and (Yonelinas et al. 1998).
	 14	 It is perhaps worth clarifying that in both epsiodes with Claparède’s patient, familiarity is established in 
a single shot—​even without recollection. However, in the more typical case, familiarity builds up gradually. 
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Fig. 7.1  Performance on measures of recollection and familiarity after damage to 
the hippocampus (left), perirhinal cortex (PRC; centre), and whole medial temporal 
lobe (MTL; right), relative to controls. Hippocampal damage impairs recollection; PRC 
damage impairs familiarity, and MTL damage impairs both. Stars show significant 
differences between patients and controls.
Data from Yonelinas et al. (1998) and Aggleton et al. (2005).
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generalities over specifics, yielding an overall sense of gist (‘I know that face’) 
that is dissociated from unique instances of experience (‘I saw him behind the 
meat counter at the supermarket’). By contrast, the hippocampus allows new 
memory traces to be laid down in a single shot. When the hippocampus is 
damaged or removed, major impairments occur. For example, removal of the 
entire hippocampus drastically impairs the ability of a rat to swim directly to 
a hidden platform in a circular pool, even after having reached it by random 
waterborne exploration on the immediately preceding trials.15 Similarly, 
hippocampal patients cannot lay down new memory traces without pro-
longed experience. H.M. was unable to recognize new acquaintances, navigate 
unfamiliar neighbourhoods, or recall world events that post-​dated his 1953 
surgery. The hippocampus and neocortex thus act together to allow agents to 
learn about both the many-​off (averages) and the one-​off (instances).16

As we have seen, deep networks give us a plausible computational theory 
for the neocortical system. Neural representations in the ventral stream, that 
visual highway linking V1 to the temporal lobes, closely resemble those in 
deep convolutional networks trained to label natural images. Indeed, connec-
tionist models share both the strengths and shortcomings of the neocortical 
familiarity system. On the one hand, they learn slowly, with parameters in-
crementally tuned by exposure to large, diverse, well-​mixed data sets. On the 
other hand, they encode input structure, allowing pattern recognition in held-​
out data. In fact, much-​vaunted failures of robustness in deep networks have 
been ascribed to an overreliance on a general sense of familiarity. Just as you 
might strain to place the butcher on the bus, deep networks struggle to rec-
ognize objects in rare contexts. For example, they tend to misclassify cows on 
a beach but have no problem detecting them in a lush alpine pasture (Figure 
7.2).17

One-​shot learning is especially useful in the natural world because the stat-
istics of experience can sometimes be hard to model and predict. Earlier we 
noted that the world is clumpy, that is, most stimuli belong to categories in 
which intrinsic variation is lower than extrinsic variation. For example, birds 

For example, when H.M. moved house after his lesion, he gradually learnt the organization of rooms in his 
new residence.

	 15	 This environment is known as the Morris Water Maze. Here is the classic reference (Morris et al. 1982).
	 16	 It is worth pointing out that the status of the PRC, which is a neocortical region lying between the 
ventral visual stream and the hippocampus proper, has been controversial. It seems to play a role that lies 
midway between perception and memory—​it supports perception of complex visual information and 
memory for simpler stimuli. In fact, CNNs trained on a range of visual discrimination tasks behave a lot like 
patients with PRC damage (Bonnen et al. 2021).
	 17	 See (Beery et al. 2018).
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are warm-​blooded animals with wings that can fly; toasters are not. Neural 
networks can learn categories by encoding their shared structure, for ex-
ample inferring that sparrows, eagles, and parrots are all birds. However, our 
clumps of knowledge are studded with exceptions. A bat, for example, is a 
warm-​blooded animal with wings that can fly, but it is not a bird; and pen-
guins cannot fly, and yet they are birds. In English syntax, most regular plurals 
are created by adding ‘s’, but not the nouns sheep or fish. Most calendar dates 
crop up annually, but 29 February only occurs in a leap year. Most heavenly 
bodies in the night sky are stars, but Mars and Venus are planets. We might say 
that the world is clumpy, but with exceptions. A system that learns summaries 
of the clumps alone will be prone to misassign the exceptions—​for example, 
assuming that bats are birds—​a phenomenon known as overgeneralization.

In the context of reinforced behaviour, learning from one-​off, unique 
events helps agents assign credit for reward and punishment. For example, 
in the Atari game Seaquest, a submarine must be dextrously manoeuvred 
through a thicket of hungry sharks to rescue human divers whilst moni-
toring a rapidly depleting air supply. Although there are small-​beer points 
available for shooting enemies, a major bonus occurs if you surface to collect 
oxygen, having picked up exactly six divers. An agent that can learn from the 
rare large rewards associated with that behaviour—​and thus repeat it in fu-
ture trajectories—​will be quick to master the game. In the real world, one-​shot 
learning can be critical to survival. Nobody would want to learn by dint of 

(A) Cow: 0.99, Pasture:
0.99, Grass: 0.99, No person:

0.98, Mammal: 0.98

(B) No Person: 0.99, Water:
0.98, Beach: 0.97, Outdoors:

0.97, Seashore: 0.97

(C) No Person: 0.97, 
Mammal: 0.96, Water: 0.94,

Beach: 0.94, Two: 0.94

Fig. 7.2  Three images of cows with labels produced by a deep network. The network has 
no problem recognizing the cow in the Alpine pasture but does not propose ‘cow’ as a 
label for either image of the cow on a beach.
Images reprinted with permission from Beery (2018).



226  The control of memory

repetition that week-​old shellfish are toxic or that black widow spiders pack a 
poisonous bite.

Exactly how the hippocampus might facilitate one-​shot learning remains 
unknown. However, the functional neuroanatomy of the MTL gives us some 
powerful clues. Sensory inputs flow into the hippocampus from the ERC, from 
where they project via a trisynaptic pathway to the DG, CA3, and finally CA1 
regions of the hippocampus.18 One critical computational step occurs in the 
DG where memories are sparsified, being mapped from a code that is distrib-
uted across a whole neuronal population onto a representation that relies on 
just a handful of cells. This sparsification minimizes overlap among memories, 
pushing the hippocampal memory module closer to being a non-​parametric 
system, where information is stored in a list or buffer, with each instance in a 
unique slot.19 These sparse memories are then throughput to neurons in the 
CA3 region of the hippocampus, onto which they connect with unique deton-
ator synapses, which can activate the post-​synaptic neuron with even a single 
spike. Mice bred to lack a specific N-​methyl-​D aspartate (NMDA) receptor 
subunit on these cells fail on tests of one-​shot learning, such as a match-​to-​
place water maze task.20 Eventually, memories are encoded in the CA1 region 
as highly individuated, pattern-​separated units of experience, each one dis-
tinctive from the others.

AI researchers have leveraged this dual-​process model as a blueprint for 
neural networks that can learn rapidly from limited experience. For example, 
memory neural networks21 maintain a slot-​based memory, into which snap-
shots of experience (such as sentences or images) are systematically written. 
Given any new query, the network can perform retrieval using two mod-
ules: one that produces output features by matching current inputs to one or 
more past outputs; and another that processes retrieved features (potentially 
over timesteps) to produce a response. The architecture allows similar experi-
ences to be grouped and slotted into a long-​term store, and was able to handle 
a range of Question Answering (QA) tasks when trained with supervision. 
Another architecture called the differential neural computer employs a recur-
rent neural network (RNN) to learn to both write to, and read from, a slot-​
based memory, which allowed it to solve complex planning problems, such 

	 18	 CA stands for Cornu Ammonis, apparently because this region resembles the horns of a ram in 
Egyptian mythology. An important theory proposes that the trisynaptic pathway is accompanied by a 
monosynaptic pathway that projects directly from the ERC to CA1, which may explain the otherwise para-
doxical involvement of the hippocampus in slow associative structure learning discussed in Chapter 5. We 
owe this theory to Anna Schapiro (Schapiro et al. 2017).
	 19	 Recalling the memory system of Funes el Memorioso in Chapter 4.
	 20	 That is, a task in which the same invisible platform must be found twice in a row (Nakazawa et al. 2003).
	 21	 See (Weston et al. 2015).
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as charting a journey through the London Tube system after being given a 
start and a goal station. In fact, the network was trained end-​to-​end to solve 
variants of the classic AI puzzle game SHUDLU, responding to queries and in-
structions made in a symbolic language.22

Neural networks with external memory may be particularly useful in 
the RL setting. In a classic theory paper from 2007, Peter Dayan and Máté 
Lengyel proposed a mechanism called episodic control, in which samples from 
an instance-​based memory system were used to learn a control policy. They 
argued that it provided a ‘third way’ for RL that combined the efficiency of 
model-​free methods with the versatility of a fully planned (model-​based) so-
lution. More recently, AI researchers have road-​tested this idea at scale in a 
deep network architecture called neural episodic control.23 It uses a neurally 
inspired dual-​process architecture, comprising complementary systems for 
neocortical learning and an episodic memory store which the authors call the 
differentiable neural dictionary (DND). Each state s (e.g. a video frame from 
an Atari game) is first processed by a deep CNN, mapping it onto a key h, 
which is used to look up the Q-​values in the DND, which is an instance-​based 
memory architecture that resembles the hippocampus (or the orbitofrontal 
cortex).24 This lookup generates a linear weighting of Q-​values based on simi-
larity in the embedding of h, so that each key elicits an average of past ex-
periences, allowing for generalization to new settings. The addition of neural 
episodic control allows the network to learn rapidly in more strategic games 
with intermittent rewards, such as Frostbite, in which players jump among 
ice floes in order to build in igloo, whilst avoiding a polar bear prowling on 
the shore.

In cognitive psychology, several theories of memory and control are based 
on the comparison between a current stimulus and recalled examples of ex-
perience. These are usually called exemplar-​based models, and were originally 
developed to account for the effect of exceptional or outlying information on 
category judgements. In fact, there is evidence from experimental neurosci-
ence that humans use episodic memory to encode state–​action values, in add-
ition to the averages of experience predicted by TD learning. In one study, 
participants tracked the latent value of two bandits that were intermittently 
paired with random, but salient, images. Presenting the images as reminders 
on a subsequent trial biased responses towards those choices made when they 

	 22	 See (Graves et al. 2016).
	 23	 The third way paper is (Lengyel & Dayan 2007).
	 24	 The system encodes the observed return that is directly encoded after having taken several steps, so 
that the stored values can be reliable.
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were initially viewed, suggesting that the participants had attached value to 
the instance-​based memory and were learning via the ‘third way’.25

7.3  The problem of a changing world

When a motion picture is being produced, individual shots are edited into scenes. 
Each scene is a segment of the film that takes place in continuous time in roughly 
the same location. In the natural world, ongoing experience is structured in a 
similar way. We experience life as a series of scenes (or contexts) which are defined 
by consistent sensory signals and common objectives to fulfil.26 Imagine you are 
leaving the office after a long day at work. As you grab your coat and head for the 
door, you might leave behind the desks and computers, strip lighting, hushed 
tones, and the buttoned-​down attire of your colleagues. If you are heading to 
a bar or a restaurant, the context will probably be entirely different: noisy, col-
ourful, and crowded, full of unfamiliar people who may be eating, drinking, or 
dancing.27 The way you are expected to comport yourself in these settings is quite 
different. If you push back your chair and crack open a beer whilst chairing a 
work meeting, your colleagues might look aghast. But your friends may be just as 
outraged if you fire up your laptop and start reply to e-​mails whilst propping up 
the bar. We might say that the optimal policy thus varies from context to context, 
along with the sensory signals.

In AI research, an environment with slowly changing signals and objectives 
is referred to as non-​stationary. Taken as a whole, the ALE is non-​stationary, 
because every game is different. Some games oblige you to drive a submarine, 
and others to accurately roll a bowling ball to knock down ninepins. In fact, 
the Atari environment tends to be non-​stationary even within each individual 
game, because developers have engineered the games so that different policies 
are needed for each stage or level. This is one of the key reasons why using 
deep learning for RL remains a significant challenge.

Take the popular game Ms. Pac-​Man. For most of the time, players are 
tenaciously chased down by scary ghosts with whom collision costs a life. 
However, after munching on the power pellet, the ghosts suddenly morph 
from predators into prey. The optimal policy thus reverses from one moment 
to the next: whereas before, the ghosts were best avoided, now they should be 

	 25	 The empirical study is by (Bornstein et al. 2017). For a comprehensive review, see (Gershman & 
Daw 2017).
	 26	 In fact, even if life does not have this structure objectively, we mentally experienced it as a sequence of 
distinct, meaningful events with discernible boundaries, akin to the scenes in a film (Kurby & Zacks 2008).
	 27	 This is assuming the reader has a more vibrant social life than the author.
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chased to gain points. To make things even more complicated, both the visual 
appearance and the functionality of the game objects change systematically 
over time. The Ms. Pac-​Man maze is pink in levels 1 and 2, but cycles through 
blue and brown on subsequent levels, continuing to vary deep into the game. 
The power pellet gradually works for shorter and shorter periods and even-
tually becomes wholly ineffectual. Thus, a policy that is optimal early in the 
game will not be advantageous later.

Deep neural networks are parametric learning systems, because they store 
memories in the model weights (or parameters), which are incrementally ad-
justed until convergence. Non-​stationary environments pose a basic computa-
tional problem for parametric learning systems, called the stability–​plasticity 
dilemma. If parameters are changed in tiny steps, the system will adapt very 
slowly to change (too stable). However, if parameters are changed in large 
jumps, the system will adjust excessively—​so that weight changes provoke for-
getting of past learning (too plastic). Learning systems thus need to learn in 
ways that admit retrieval of effective policies both now and in the unknown 
future.

Imagine you are headed to the beach for a week of holiday. You might pack 
your suitcase with swimsuit, towel, and snorkel. However, if you subsequently 
decide to spend an extra week in the mountains, you will have to throw your 
boots, binoculars, and raincoat on top of your already packed beachwear. This 
means that when you arrive at the beach, it will be troublesome to retrieve 
your swimming trunks from your luggage—​because they are buried under 
your warm clothes. This is the basic problem that besets vanilla neural net-
works when they encounter tasks sequentially. When learning task A, it lays 
down memories in neural connection weights without due concern for what 
might be learnt next. On later encountering task B, new learning is layered 
on top of the old—​potentially rendering the original policy that solves task 
A inaccessible and jeopardizing performance. Thus, in Ms. Pac-​Man, learning 
to approach ghosts after swallowing the power pellet has the potential to 
undo learning about how to avoid the ghosts in the default case. In machine 
learning research, this overwriting is called catastrophic interference. It occurs 
in a parametric system when there are many distinct minima in weight space 
that can potentially solve either task A or task B, or both tasks A and B. If 
task A has been learnt and task B is being trained, the network has no incen-
tive to learn a minimum for B that also solves A, so the original learning is 
overwritten. Over multiple task cycles, learning in the network oscillates from 
one task to the other, never mastering both—​in a fruitless tug-​of-​war process 
(Figure 7.3).
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Humans are much less prone to suffer from catastrophic forgetting than 
neural networks. Of course, anecdotally, we know that people can remain in-
tellectually sprightly well into old age. But humans also seem to have evolved 
mechanisms that protect learning from interference. A classic demonstra-
tion of the resilience of human memory to interference dates back to the 
1980s.28 Human participants and neural networks first learnt to associate a 
series of pairs of words, such as apple–​bicycle (task A), before learning new 
overlapping associations, such as apple–​sofa (task B). In neural networks, 
performance on probed recall of task A associations (apple, _​_​_​_​_​) fell rap-
idly to chance during learning of task B, indicative of dramatic catastrophic 
interference (Figure 7.4). Interestingly, humans faced with the same task re-
tained memory for task A associations whilst learning task B, suggesting that 
biological brains have evolved mechanisms that protect old learning during 
new learning. Perhaps this should be obvious. Learning to drive a car does 
not eradicate your ability to ride a bicycle. Mastering Space Invaders does 
not overwrite your skill at Frogger. In fact, there are numerous settings where 
humans seem to benefit from encountering tasks in a highly structured se-
quence. This is presumably why school timetables usually schedule Spanish 
and French classes in different slots, rather than teaching them both together 
in a single lesson.
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Fig. 7.3  Schematic illustration of catastrophic interference for a network with just 
two weights. The weights are initialized to random values. In solving task A, during the 
course of optimization, they move to a new setting. However, in the course of learning 
task B, they are moved out of this setting, and towards a new location that solves task 
B. There is no guarantee that this setting also solves task A, so on re-​encountering task A, 
learning begins again from scratch.

	 28	 See (McCloskey & Cohen 1988).
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How then do biological systems learn continually? In the suitcase example, 
there is, of course, a straightforward solution. When you learn that your visit 
will take in both the coast and the hills, then you can reorganize your luggage 
to maximize access, perhaps repacking the warm weather clothes on one side 
of your suitcase and the cool weather clothes on the other. Similarly, a neural 
system that is able to consider the likely demands of task A when learning task 
B will be able to organize memories, such that both tasks can be retrieved in 
tandem—​by learning a minimum in weight space that satisfies both object-
ives. Understanding how to achieve this is a whole subfield within machine 
learning, referred to as the domain of continual learning. It asks how we can 
build agents that learn continually across their lifespan, like the admirable Ms 
Sitienei was able to do.

The problem of continual learning has inspired many creative solutions 
in AI research.29 Some focus on how to allocate new memories to network 
weights in a way that minimizes catastrophic forgetting. This idea references 
mechanisms for lifelong learning in neurobiology, which have recently been 
revealed using advanced imaging methods such as two-​photon microscopy. 
For example, in mice, new dendritic spines form in the motor cortex within 
two days of learning a new skill that involves balancing on a rotating rod.30 
When mice are trained to perform two distinct tasks, such as running forward 
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Fig. 7.4  Results of the study by McCloskey & Cohen (1989).

	 29	 For an excellent review, see (Hadsell et al. 2020).
	 30	 Dendritic spines are the post-​synaptic sites of excitatory synapses. Similar results were found in the 
somatosensory cortex after exposure to an enriched program of whisker stimulation.
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and backward, these spines form in a spatially segregated way, across different 
apical tuft branches. Remarkably, a sizeable fraction of these new spines is 
maintained stably across the entire lifespan of the animal, despite many fur-
ther experiences to which the animal is exposed.31 Moreover, the number of 
such persistent spines predicts how well the animals retain task memories 
over time. Biological systems thus seem to have evolved synaptic mechanisms 
that facilitate lifelong learning by explicitly protecting existing synapses from 
interference by new learning.

In 2017, two machine learning papers published more or less simultan-
eously proposed a solution to continual learning that drew heavily on these 
neurobiological insights. The idea was to estimate the importance of each 
weight in the network to past learning, and to penalize new synaptic changes in 
proportion to this measure. This additional penalty regularizes new learning 
towards the old, thus minimizing forgetting of past tasks. The method proved 
successful in allowing the same deep network model to learn up to ten ran-
domly chosen Atari games, as well as navigate non-​stationary problems in a 
supervised learning paradigm.32

However, many other approaches to continual learning implicitly or expli-
citly invoke a modular memory system. The stability–​plasticity dilemma can 
be circumvented by a two-​speed memory system, with one module that learns 
fast (allowing plasticity) and another that learns slowly (allowing stability).33 
Of course, the human brain has evolved a highly structured memory system 
that retains information over multiple intervals—​from milliseconds (iconic 
memory) to seconds (working memory) to years (episodic, semantic, and 
procedural forms of long-​term memory). One possibility is that two-​speed 
learning relies on the distinction highlighted above between the neocortex 
and the hippocampus. There is powerful evidence that the neocortex allows 
slow learning of the structure of the world via a parametric model, whereas 
the hippocampus and adjacent structures retain information rapidly in a 
sparse (non-​overlapping) neural code, more akin to a non-​parametric model. 
By working together, these two systems furnish a solution to the intertwined 
problems of continual and one-​shot learning.

Like so many core tenets of computational neuroscience today, we can trace 
the initial sketch of this idea back to David Marr, the visionary theorist whose 
career was tragically cut short by leukaemia at the age of 35. In his 1971 article 

	 31	 For more than 90 months. This is about as long as a pampered pet mouse could be expected to live, and 
much longer than an average mouse would last in the wild.
	 32	 The method proposed was variously called elastic weight consolidation (Kirkpatrick et al. 2017) and 
synaptic intelligence (Zenke et al. 2017). There are minor differences to the two methods.
	 33	 See (Botvinick et al. 2019).
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entitled Simple Memory: A Theory for Archicortex, Marr describes his bipartite 
vision of the neocortex and hippocampus (which he called the archicortex), 
arguing that:

the neocortex [ . . . ] changes the language in which incoming information is ex-
pressed by reclassifying it, as well as carrying out routine storage of associations 
between existing classes. [ . . . ] archicortex cannot reclassify information in this 
way, [and instead] it performs a simple memorizing function—​storing information 
in the language in which it is presented.

Marr proposes that the function of the neocortex, acting like a neural net-
work, is to restructure incoming knowledge.34 However, the hippocampus 
stores information in a native format (in ‘the language in which it was pre-
sented’), akin to a non-​parametric model, which buffers its inputs instead of 
summarizing them in a statistical model.

How can the two-​speed systems be deployed to tackle continual learning? 
In 1995, researchers based at Stanford University proposed a model of bio-
logical learning called complementary learning systems (CLS) theory. Like 
Marr’s model of simple memory, CLS theory proposes that the neocortex 
and hippocampus fulfil complementary roles in information encoding and 
storage, with the former learning slowly and the latter learning fast (Figure 
7.5). Critically, however, CLS theory initially proposed that the hippocampus 
is wired to gradually repeat, rehearse, and replay our past experiences at 
quasi-​random times during ongoing task performance, projecting this infor-
mation back to the neocortex. This allows virtual intermixing of current and 
past experiences—​perhaps task A and task B—​so that they can be learnt con-
jointly. In terms of our earlier metaphor, we might think of this as the compu-
tational equivalent of repacking the suitcase for optimal access. By virtually 
interleaving past with current experience, this consolidation mechanism cre-
ates ensemble memories that are robust to continual learning.35

It was this idea that would go on to inspire DQN—​and the first generation 
of deep learning agents to circumvent the non-​stationarity problem and learn 
to play Atari games at superhuman levels. DQN includes a separate non-​
parametric memory system, perhaps akin to a primitive hippocampus, where 
instances of past experience are buffered. During ongoing game play, they 
are sampled and replayed, so that new experiences (task B) are re-​encoded 

	 34	 This is the idea articulated in Chapter 4.
	 35	 Although this depends on the level of variability in experience. For an interesting theoretical treatment 
of this point, see (Sun et al. 2021).
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alongside old experiences (task A) in a virtual interleaving process. This was 
the major innovation that allowed DQN to circumvent the instabilities of pre-
vious architectures.

In his 1971 paper on simple memory, Marr first proposed the transfer of 
memory from the hippocampus to the neocortex during sleep:

[Marr] proposed that the hippocampal system stored experiences as they hap-
pened during the day and then replayed the memories stored in the hippocampal 
system back to the neocortex overnight to provide data for the category formation 
process as he envisioned it.

However, in 1995, when CLS theory was first proposed, hippocampal replay 
remained a conjecture. The first neurophysiological evidence had just begun 
to emerge, with the report that pairs of hippocampal place cells that have 
been coactivated during spatial learning tend to reactivate together when the 
rat is asleep.36 Since then, a slew of studies painted the now classical picture 
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	 36	 The first demonstration of single place cell reactivation during sleep was by (Pavlides & Winson 
1989), and the first demonstration of pairwise correlations was by (Wilson & McNaughton 1994). Bruce 
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of replay as a mechanism by which sequences of experiences are rapidly re-
instated offline. During bursts of irregular hippocampal activity, known as 
sharp-​wave ripples, extended sequences of place cell activity are reinstated, at 
about 20 times the rate at which they were experienced during the waking 
state. Importantly, replay occurs both forward and backward, during both 
sleep and wakefulness, and in the latter case is related to experiences that are 
both remote (spatially removed from the current state) and proximal (Figure 
7.6).37 Over the past 20 years, replay has become one of the most intensively 
studied phenomena in systems neurobiology.

McNaughton, who led the latter paper, is a co-​author on the CLS paper. There are many excellent reviews on 
hippocampal replay, but these may be particularly helpful (Foster 2017; Ólafsdóttir et al. 2018).

	 37	 The reference in the figure is (Carr et al. 2011).
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The functional significance of hippocampal replay remains controversial. 
Because it tends to occur backward in time from a rewarded goal, replay may 
accelerate learning of a state value function, by mentally linking states and 
outcomes through offline backup.38 When replay targets states that are suc-
cessors to the current one (as has been observed in both rodents and humans) 
or that predict future behavioural choices, such as the taking of shortcuts, it 
seems reasonable to propose a role in planning. For example, in one human 
study, participants were asked to plan a route through a non-​spatial maze 
composed of object images, such as navigating from the hairbrush to the kite 
via the watermelon. Using a neuroimaging technique that relies on measuring 
magnetic fields evoked by brain activity, the researchers could identify neural 
patterns associated with each object, and thus measure the instantiation of 
these patterns during planning. They found that people tended to ‘replay’ the 
objects that would be found on their intended route in reverse order, as if they 
were planning backward from the goal.39

However, there is also good evidence for its role in the consolidation of 
instance-​based memories back into the neocortical ensemble via an inter-
leaving process, as predicted by CLS theory. For example, disruption of replay 
hinders subsequent retrieval of spatial memories; and replay events seem to be 
propagated to the neocortex, where they are synchronized with fluctuations in 
activity states in several regions, including both the PFC and the visual cortex. 
There is thus still room for replay to play a role in solving continual learning 
for biological agents.

Some memories may be more useful than others. Indeed, people are prone 
to encoding and rehearsing events which are novel, surprising, or motivation-
ally salient, a phenomenon known as the von Restorff effect.40 During episodic 
encoding, BOLD signals in the hippocampus are particularly responsive to 
events which are perceptually, semantically, or emotionally salient, and these 
enhanced responses are predictive of successful memory formation.41 When 
a rat is given uneven exposure to two spatial memory tasks, the less familiar of 
the two is replayed more often.42 Privileging surprising events for replay may 
allow those exceptions that are most relevant for behaviour a greater weight 
in shaping agent policies. In fact, a later version of DQN that was biased to 

	 38	 See (Mattar & Daw 2018).
	 39	 The imaging technique is called magnetoencephalography (MEG). The paper is (Kurth-​Nelson 
et al. 2016).
	 40	 Named after the German psychologist Hedwig von Restorff, who discovered it in the 1930s (von 
Restorff 1933).
	 41	 See (Strange et al. 2000).
	 42	 See (Gupta et al. 2010).
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replay events that led to larger TD errors, using a method called prioritized 
experience replay, outstripped the performance of the original DQN on the 
ALE suite.43

In previous chapters, we argued that the natural world is highly struc-
tured, and advances in AI systems should capitalize on that structure to build 
stronger agents. Here, the same argument is made. In this case, the structure 
is in time: it is given by the autocorrelation of sensory inputs and task object-
ives in a dynamic RL environment. Biological agents have evolved complex 
memory systems to handle the dependencies that exist between different mo-
ments in time. As we shall see, those relations can be idiosyncratic, which is 
why our memory system has a complex modular structure. To build advanced 
systems for RL in the real world, our agents will need to account for the tem-
poral structure of natural experience.

7.4  Finding structure in time

Memory systems allow agents to share information with themselves across 
time. So far, we have highlighted a single computational principle for 
memory: the experience-​dependent modification of synaptic weights. This is 
the mechanism by which feedforward deep networks like AlexNet or DQN 
slowly learn a function that maps image pixels onto outputs. It is how the neo-
cortex learns stable, generalizable representations from long-​term averages of 
experience, and is also the basis for fast plastic changes in the hippocampus 
that permit immediate storage of salient events. We have seen that when the 
world is structured in time, learning with synaptic memory alone can be chal-
lenging for deep RL agents such as DQN. Correlations in observations and 
rewards inflate the variance of gradients calculated during optimization, cre-
ating unstable learning dynamics, and expose the network to catastrophic 
forgetting.

However, this is a paradoxical claim. Structure in time should help—​not 
hurt—​learning in neural networks. Networks should be able to harness tem-
poral structure to make predictions about the future. In the 1980s, researchers 
began to realize this. A paper published by the cognitive scientist Jeffrey 
Elman with the title Finding Structure in Time provided an early demonstra-
tion of how neural networks can use activation memory (or recurrence) to 
maintain information without synaptic change, with applications in sequence 

	 43	 See (Schaul et al. 2016).
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prediction in simple NLP tasks. Recurrence resembles the process by which 
biological brains share information with themselves using time-​varying pat-
terns of population activity. This innovation opened the door to the recurrent 
neural network, one of the most powerful tools in AI research today.44

Consider the Atari game of Pong. Playing in 2D, two opponents control a 
paddle, each trying to bounce a ball past the other. Obeying the physics of the 
game, the ball flies in a straight line between the sides of the screen. Imagine 
trying to predict where the ball will land from a short segment of game play. 
If the duration of the glimpse is just a single frame, the ball is frozen in time, 
and you can’t know where it will land—​or even which way it is headed. With 
two successive frames, you can make a rough and ready guess at where to 
move the paddle. However, for a precise estimate of where the ball will end 
up, you need to see several frames in series and to integrate across these obser-
vations to estimate its trajectory. This benefit of integration over time is even 
greater in the real world where sensory signals are inherently noisy—​subject 
to random variation too complex to be modelled. For example, the behav-
iourist B. F. Skinner famously taught pigeons to play a real-​world version of 
Pong by shaping them gradually with food rewards (Figure 7.7). In Skinner’s 
version, the ball can move in unpredictable ways due to the unevenness of the 
table surface, or buffeting by a gust of light wind or spin that was invisibly ap-
plied by a devious pigeon opponent. Where a signal is noisy, it can be encoded 
more precisely by sampling and averaging several independent estimates.45

If DQN learnt to map single frames of Pong onto actions, it would prob-
ably have floundered, because each frame carries virtually no information 
about the direction in which the ball is headed. In practice, however, DQN 
was able to achieve 132% of human expert performance. This is because on 
each timestep, the researchers fed it the last four frames of play, so that its 
game experience arrived already integrated across a short temporal window. 
Biological brains have evolved a similar trick for visual perception. In 1960, 
the psychologist George Sperling asked participants to recall random letters 
that had been flashed briefly on the screen in a 3 × 3 matrix. Participants could 
usually name about half of the characters shown. However, Sperling realized 
that if cued to report just a single row or column, they could usually name all 

	 44	 The Elman paper is here (Elman 1990). It builds on the earlier work of Michael Jordan in 1986. The 
Hopfield network, a different class of RNN, was developed in 1982 (Hopfield 1982).
	 45	 Assuming the noise added on each trial is independent and identically distributed (IID), then this 
follows from the law of large numbers, whereby the average of estimates of a noisy signal will tend towards 
its expectation over trials. You can try this for yourself, as my research group did at a recent lab retreat, by 
playing table tennis under stroboscopic conditions (it is basically impossible below about 5 Hz due to the 
paucity of samples).
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three letters. In other words, people have capacity to remember all the items—​
but their memory decays very quickly. Sperling realized that he had identified 
a new sensory memory buffer, and he called it iconic memory. We might say 
that DQN was thus endowed with a four-​frame iconic memory.46

Iconic memory occurs because after visual stimulation has ceased, neural 
activity does not shut down immediately but instead slowly relaxes back to 
baseline. In macaque V1, this neural decay constant predicts the retention 
duration for visual items in iconic memory.47 Neural activity peters out slowly 
because neurons connected in a network stimulate one another, a process 
called recurrent excitation. The anatomical basis for recurrent excitation in a 
local circuit of neurons was first described by Rafael Lorente de Nó, a student 
of the towering Spanish neuroscientist Santiago Ramón y Cajal, whose micro-
scopic investigation of brain circuitry won him a share of the 1906 Nobel Prize 
for Medicine. In 1933, Lorente de Nó wrote:48

The conception of the reflex arc as a unidirectional chain of neurons has neither 
anatomic nor functional basis. Histologic studies with Golgi’s method show the uni-
versality of the existence of plural parallel connections and of recurrent, reciprocal 
connections.

Fig. 7.7  Pong in natural and artificial intelligence.
(A) Skinner’s pigeons playing Pong (with a ping pong ball).
Photo by Yale Joel, June 1950, © Time Inc.

(B) The Atari 2600 game of Pong. Players move the paddles on the left and right to hit the 
ball to one another.

	 46	 For Sperling’s classic paper, see (Sperling 1960).
	 47	 See (Teeuwen et al. 2021).
	 48	 For a historical perspective, see (Larriva-​Sahd 2014).
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Thus, as neuron i becomes active, it excites neuron j, which, in turn, feeds back 
more excitation to neuron i, and so on. Like voices that grow ever louder in a 
restaurant as diners strain to hear one another through the din, cells that mu-
tually excite each other drive a self-​perpetuating activity loop that serves as a 
primitive memory trace.

One well-​studied example of recurrent excitation occurs in the parietal 
cortex. Neurons in the lateral intraparietal (LIP) area (part of PPC) fire just 
before a macaque monkey makes an eye movement to a specific location in 
visual space. The response properties of these cells have been explored using 
a popular psychophysical task in which monkeys learn to respond to the net 
direction of motion in a field of randomly moving dots by directing their gaze 
towards one of two targets. The animals are rewarded for making the correct 
choice, and thus learn slowly by instrumental conditioning. After training 
is complete, LIP signals come to code in advance for the decision that the 
monkey will make. The now canonical finding is that during motion stimu-
lation, the firing rates of these LIP neurons will ramp up or down in concert 
with the momentary evidence that the saccade should be made to a target in 
their response field. This means that each neuron’s instantaneous firing rate 
depends on both its inputs and recurrent excitation from other neurons with 
which it shares a response field. During decision-​making, two populations 
with recurrent excitation—​each coding for a different target—​mutually in-
hibit each other, creating a balanced dynamic system that competes to drive 
the monkey’s response. This model, first described by Xiao-​Jing Wang in 2001, 
can explain the firing rate patterns of individual neurons (which tend to build 
up towards an attractor state, at which point a saccade is initiated), as well as 
the shape of psychometric and chronometric functions recorded from mon-
keys performing the task.49

In machine learning research, this model is an instance of a wider class of 
neural network with activation memory called an RNN. At first glance, the 
architecture of an RNN resembles that of a feedforward network, in that 
inputs x flow from the input layer via the hidden layer h to output units y, 
transformed at each stage by a bank of trainable weights. However, the RNN 
allows for an additional set of recurrent weights V that map the hidden state 
onto itself between timesteps, in combination with the feedforward input. 
For example, if weights V are set to the identity matrix, then the network will 

	 49	 See (Wang 2002). The build-​up in LIP was first identified by Mike Shadlen and Bill Newsome in 2001 
(Shadlen & Newsome 2001). For the modelling of this problem with RL, see (Law & Gold 2009). For a more 
general review of this area of neuroscience research, see (Hanks & Summerfield 2017).
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simply add up x over successive timesteps.50 However, other weight settings 
will allow information to be dynamically transformed over time in potentially 
complex ways. For example, the model described by Wang requires both focal 
excitation and broad inhibition from a pool of theoretical interneurons. Of 
course, RNN weights do not have to be set by hand. Using an elaboration of 
backpropagation in which gradients flow back in time, they can be trained to 
meet a supervised or RL objective. In fact, many classical neural and behav-
ioural motifs are also exhibited by a model that is trained to solve the dot mo-
tion task using a recurrent neural network trained with RL, via a variant of the 
actor–​critic approach.51

RNNs are now a ubiquitous tool for processing time series data in AI re-
search. One major use case is in natural language processing. RNNs were the 
basis for the first NLP models, known as sequence-​to-​sequence (seq2seq) 
neural networks because they learnt to predict the next word, phrase, 
or sentence in a text corpus. For example, consider the following quasi-​
Shakespearean excerpt:

QUEENE:
I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,
Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.

This was generated by training a simple recurrent neural network to pre-
dict sequences from the Bard’s complete works. The text has a vague aura of 
Jacobean plausibility until you attempt to seriously fathom its meaning, at 
which point it is revealed to be entirely gibberish.52 As we have seen, modern 
NLP models that rely on transformers tend to perform a lot better.

The recurrent weights in an RNN learn to map activity patterns flexibly 
across time, allowing for flexible memory dynamics. Similarly, in biological 
brains, neural circuits are capable of maintaining complex, self-​sustaining ac-
tivity patterns, with dynamics that depend on network morphology and bio-
physics: membrane properties, connectivity patterns, transmission velocities, 

	 50	 On timestep t, the hidden layer activity ht =​ tanh[Wxt +​ Vht − 1], where W denotes the first layer weights 
and the bias term is omitted. The identity matrix has ones on the diagonal and zeros elsewhere. Any matrix 
multiplied by the identity matrix is itself. Thus, if V is the identity matrix, then Δht =​ tanh[Wxt].
	 51	 In fact, the authors show that it is possible to capture a number of key neural observations that depend 
on recurrent dynamics using the same model (Song et al. 2017).
	 52	 You can try for yourself here, with instructions from Andrej Karpathy’s blog (Karpathy 2015).
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and the relative strength and timing of excitatory and inhibitory signals. The 
complex patterns of recurrent neural activity that unfold in time allow in-
formation to be maintained or manipulated in sophisticated ways, making 
activation memory a powerful tool for sensorimotor behaviour and more 
complex decision-​making.53

In the late 1960s, a neurophysiologist by the name of Joaquin Fuster moved 
to California from his native Spain to take up a position at UCLA. He brought 
with him a research agenda that pioneered the use of newly available extra-
cellular recording methods to study the PFC of the macaque monkey. At the 
time, the functional organization of memory in the neocortex remained a 
mystery. In 1950, Karl Lashley had published a report documenting his search 
for the engram—​the elusive trace of memory in the brain—​by lesioning in-
creasingly larger portions of rat neocortex. However, Lashley’s findings im-
plied that lesion location mattered less than lesion volume—​larger lesions 
invariably provoking greater impairment. He concluded that memory was 
distributed widely across the brain, a principle he called mass action.54

Fuster was inspired by experiments conducted at Yale University in the 
1930s. In a series of studies, Carlyle Jacobsen measured the effect of lesions in 
the vicinity of the sulcus principalis, the major fissure that divides the dorsolat-
eral from the ventrolateral PFC, in the macaque monkey. In one test, food was 
hidden under one of two cups in full view of the monkey, but the animal was 
only allowed to retrieve a morsel after a delay period lasting up to a few min-
utes. Jacobsen describes the results as follows:

The tests of delayed response, however, revealed a profound deficit in what may 
be termed the recent or ‘immediate memory’. Before operation the animal scored 
a high percentage of correct responses after delays of fifteen, thirty and forty-​five 
seconds. As the delays increased beyond one minute, however, the accuracy of per-
formance decreased rapidly until after delays of one hundred and twenty seconds, 
the percentage of correct choices had no greater than a chance value.

Jacobsen’s work had thus suggested that the PFC plays a role in maintaining 
information over the short term. Using invasive electrodes, Fuster set out to 
identify the neurons mediating this effect, recording from the PFC whilst 
monkeys performed a similar delayed memory task. He succeeded in dramatic 

	 53	 Recurrent processing may be due to either local circuit dynamics or long-​range interactions between 
the cortex and subcortical structures such as the thalamus.
	 54	 See work by the late, great Howard Eichenbaum, who put Lashley’s work in a modern context 
(Eichenbaum 2016).
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form. His experiments revealed the existence of PFC neurons which fired per-
sistently over the delay period, spanning delays of as long as a minute.55 If 
their chain of persistence was broken, the baited side was more likely to slip 
the monkey’s mind, resulting in an error. Fuster conjectured that these cells 
were retaining information about which side was baited, and thus dubbed 
them ‘memory cells’. In the 1980s, Patricia Goldman-​Rakic built on his find-
ings, showing that individual PFC cells are tuned for short-​term memories 
of locations and objects that are maintained over the delay. Today, it is widely 
accepted that these cells in the PFC form a neural substrate for short-​term 
memory.56

Like sensorimotor integration in area LIP, the maintenance of information 
in short-​term memory relies on recurrent excitation, and persistent activity in 
the dorsolateral portion of PFC (known as the DLPFC) can be modelled with 
an RNN.57 As a model of memory processes, the RNN has proved a valuable 
tool in understanding the computational solutions that the brain may have 
evolved for maintaining information over time, and a means to explain their 
normative properties. One central claim has been that memories are main-
tained in a neural attractor state, which is a stable pattern of reverberatory 
activity into which a network settles over time. For example, in a mouse pre-
motor area that is a likely homologue to the primate DLPFC, it can be shown 
that persistent delay-​period activity in single cells is resistant to perturbation, 
confirming that it depends on the dynamics of the whole network, rather 
than on the biophysics of a single cell. It is likely that in the case of short-​term 
memory, recurrent activation is sustained by interactions among cortical and 
subcortical regions (such as the thalamus), as well as within the local network.

However, the nature of the dynamic code for short-​term memory remains a 
major open question in systems neuroscience. Attractor states remain a major 
candidate, and indeed, the stable delay-​period activity reported by Fuster and 
Goldman-​Rakic seems to signify an attractor state. However, neural activity 
is overwhelmingly heterogenous both across time and across neurons. Even 
where just a few, simple experimental variables are manipulated during sen-
sorimotor control, relatively few neurons form readily interpretable activity 

	 55	 Conducted with his postdoc Garrett Alexander
	 56	 Fuster and Alexander’s 1971 paper is (Fuster & Alexander 1971) and Jacobsen’s earlier work is 
(Jacobsen 1935). In fact, as so often happens, another group (in Kyoto, Japan) independently reported the 
same finding at the same time as Fuster (Kubota & Niki 1971). There is also an excellent review on lesion 
work in the PFC here (Szczepanski & Knight 2014) and on the computational processes underlying short-​
term memory here (Wang 2021). Patricia Goldman-​Rakic was tragically killed in a road accident in 2003. 
Her thoughts about working memory are summarized in this review from 1995 (Goldman-​Rakic 1995).
	 57	 Computational models of working memory that build heavily on Goldman-​Rakic’s work are described 
here (Durstewitz et al. 2000).
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patterns. For example, during the discrimination of random dot motion 
stimuli, a veritable zoo of different responses accompany the canonical target-​
evoked and stable ramping patterns that have been consistently reported 
for over 20 years. One possibility is that short-​term memory relies on non-​
stationary attractor states, such as oscillations or more complex chaotic pat-
terns. Another possibility is that stable patterns ride upon a background of 
more idiosyncratic activity that is evoked by activities that are unrelated to 
task performance.58

Alternatively, a different theory suggests that memories may be encoded 
in a sequence of transiently encoded neuronal states, each different from the 
next. One study used an RNN as a normative tool for understanding when 
activation memory should be stable and when it should be sequential with 
no one single attractor state, finding that different factors shaped the short-​
term memory code. For example, if delay periods are of variable duration, 
then the RNN learns a more persistent memory code, presumably so that 
the network is in a common state whenever the probe arrives. By contrast, 
tasks with higher temporal complexity and networks with stronger intrinsic 
coupling tended to give rise to sequential dynamic codes for short-​term 
memory. RNNs can thus fruitfully be used to make predictions about the 
neural activity underlying memory processes that can be tested in future 
experiments.59

Another school of thought rejects the idea that activity should be inter-
pretable at the level of single neurons. We have encountered this argument 
before, in the context of supervised CNN models of the visual cortex, where 
neural codes for objects are proposed to be fundamentally entangled, high-​
dimensional, and uninterpretable. Transposed to the parietal cortex, the same 
argument is made to explain the indecipherable patterns of neural activity 
that unfold as monkeys decide whether two successive dot motion patterns 
belong in the same category. An RNN trained to perform the task shows the 
same heterogeneity of neural coding patterns is observed in single recurrent 
units. However, when neural activity is plotted at the level of the population, 
rather than of single cells, for example by reducing the dimensionality of the 
population code and projecting onto the axes, of stimulus, context, or task, 
the data suddenly become easy to interpret in both the RNN and the neural 
circuit (Figure 7.8). Similar to the results of fitting CNN models to the ventral 

	 58	 For examples of the zoo of activity in area LIP, see (Park et al. 2014). For evidence that the attractor 
state lives in a subspace of neural activity, see (Murray et al. 2017).
	 59	 See (Orhan & Ma 2019).



Finding structure in time  245

visual stream, this had led to the suggestion that neural coding is only mean-
ingful at the level of populations, and not of individual cells.60

Above, we detail three examples of activation memory in the primate 
brain: those subserving iconic memory in the visual cortex; sensorimotor inte-
gration in the LIP area; and short-​term memory in the PFC. In each, informa-
tion is maintained over time through the recurrent activity of a neural circuit, 
whereby neurons mutually drive one another within a network. Notably, how-
ever, the three examples involve very different time courses of memory. In the 
early visual cortex, recurrent dynamics fade away over tens of milliseconds, 
allowing flashes of visual information to loiter just long enough for immediate 
recall (as in the Sperling task), but no more. In the parietal cortex, LIP neurons 
can integrate motion signals over a few seconds up to a saccadic response. This 
is enough to allow a weak momentary signal to be aggregated over time into 
a reliable estimate for fast and accurate sensorimotor control. By contrast, in 
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Fig. 7.8  (A) Upper panels: the principal components 1 and 2 of multineuron activity 
from macaque lateral intraparietal area (LIP) as a function of dot direction (colour) 
and motion strength (light/​dark lines). Lower panels: the same for the hidden units of 
a recurrent neural network (RNN) trained to perform the same task. Both monkey and 
network activity are idiosyncratic. (B) Projection of average activity into 2D. Both RNN 
and LIP neurons form a similar, highly structured representation of the stimulus.

	 60	 Neural activity is heterogenous during dot motion discrimination (Park et al. 2014) and categorization 
(Chaisangmongkon et al. 2017). See also (Mante et al. 2013). For papers advocating for population over 
neuron doctrine, see (Saxena & Cunningham 2019) and (Yuste 2015).
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the PFC—​as we saw from Fuster’s original experiments—​short-​term memory 
maintenance can persist for up to a minute or more.

This trichotomy also coheres with a general organizing principle for brain 
circuits, which is that windows of temporal integration grow as one moves an-
teriorly across the neocortex. This principle was originally proposed by Fuster, 
who argued that the basic function of the brain is to bridge the gap between 
perception and action at multiple different levels of temporal scale.61 In 2008, 
a clever experiment mapped this temporal hierarchy onto different regions 
of the human brain by showing participants in the fMRI scanner excerpts of 
classic silent movies directed by Buster Keaton and Charlie Chaplin. Movies 
were scrambled at different timescales, so that at the longest scale, long seg-
ments of narrative (of more than half a minute, such as when the drunken 
millionaire is saved from suicide in City Lights) remained intact, whereas at 
shorter scales (scrambled segments of 4 seconds or less) the event sequence of 
individual scenes became nonsensical. The authors measured the correlation 
in BOLD signals across two presentations of a scrambled film.

The logic of this experiment was that brain regions with short time constants 
of integration should be relatively immune to scrambling, as their neural dy-
namics carry no memory beyond a few seconds, and thus should correlate 
across presentations even at shorter scales. However, correlations for brain 
regions that integrated information over longer time periods should only re-
sist when scrambling occurred for prolonged segments. The authors observed 
hierarchy temporal receptive fields that unfolded along the posterior–​anterior 
axis, from the earliest visual cortical regions with rapid decay constants to the 
PFC in which longer narrative segments were integrated and understood.

This finding echoes the detailed study of intrinsic timescales (autocorrel-
ations in neuronal fluctuation) across data from several research groups (26 
monkeys in total). Intrinsic timescales for different regions were remarkably 
conserved across different groups and studies, ranging from about 50 ms in 
the visual cortex to 200 ms in the PFC, with even longer integration windows 
in the orbitofrontal cortex, at the anterior pole of the frontal cortex. Building 
a hierarchical RNN model that is constrained to respect these time constants, 
one report simulated a response to a pulsed visual input, finding that it recre-
ated the idiosyncratic patterns of dynamic activity across 29 different brain 
areas.62

	 61	 See (Fuster 2001).
	 62	 See (Murray et al. 2014) and (Chaudhuri et al. 2015).
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7.5  Mental gymnastics

With 19 gold medals in world championship competitions, Simone Biles is 
the most decorated gymnast of all time. She took a historic four gold medals 
in the 2016 Summer Olympic Games in Rio de Janeiro, including the indi-
vidual all-​round artistic event, which requires athletes to excel at the vault, 
uneven bars, balance beam, and floor exercise. Each of these four exercises 
demands a finely choreographed routine with several elements. For example, 
on the balance beam, gymnasts mount a thin 5 metre-​long beam of wood that 
is suspended more than a metre off the ground, and perform a sequence of 
dance moves, twirls, jumps, and handstands, before leaping acrobatically to 
the ground. In the women’s final, Biles was awarded the highest scores on all 
four exercises. Each component of each exercise is itself minutely scripted and 
practised to perfection. For example, Biles’ dismount from the balance beam 
began with a back handspring, launching her high into the air from the edge 
of the beam, allowing time for a somersault with full lateral rotation and a 
second somersault on the descent, culminating in a flawless landing (Figure 
7.9). She was the only female competitor to score over 15 points on this exer-
cise at the 2016 games.

Intelligence is often defined as the ability to perform a diversity of tasks. In 
English, the word task refers to a unit of purposive behaviour: a task is defined 
by an objective that we wish to satisfy in a given context, and the rules that 
constrain how it might be achieved. Thus, in the modern, developed world, 
we might find ourselves tackling tasks such as assembling a flat-​pack chest 
of drawers, booking a city break in Prague, solving a long division problem 
alongside a confused child, or preparing a baked Alaska for a special dessert. 
For Simone Biles, there was a more daunting task to be solved in summer of 
2016—​to come home with a gold medal. It is instructive to consider the nature 
of this challenge and how it was met, as it gives us a window into how tasks are 
represented in the brain, and how control processes can be deployed to allow 
the execution of complex behaviours.

Tasks can be represented hierarchically. Most tasks contain subtasks, which 
may themselves be composed of smaller units of purpose.63 For Biles and 
her fellow gymnasts, the task of winning gold in the all-​round event can be 

	 63	 In cognitive science, the term ‘schema’ is often used to describe a subcomponent of a task, although, 
as we have seen in Chapter 4, the term is sometimes used interchangeably with ‘representation’ or ‘mental 
category’.

 



248  The control of memory

decomposed into the subtasks of gaining high scores on each of the four indi-
vidual exercises. Each exercise score, in turn, depends on the quality of execu-
tion of individual components or moves, such as the complexity of the jump 
when leaping over the vault. Ultimately, the execution of individual moves 
requires the sequential activation of patterns of muscles which move the body. 
We can thus see tasks—​from tying your shoelaces to delivering a parcel—​as 
behavioural objects, much as shoes, shoelaces, and packages are basic entities 
that make up our visual world. The perceptual hierarchy of scenes, objects, 
and features is mirrored by a hierarchy of control for action. As we shall see, 
there are also shared principles by which these hierarchies are implemented in 
the brain.

Mentally organizing tasks as hierarchies confers two benefits, which we call 
abstraction and composition. As we have seen, in the context of perception, 
an abstract representation is one that is invariant over certain properties of 
an entity, for example, the concept of cat abstracts over whether the animal 
being referenced is Siamese, Abyssinian, or Moggy. In a similar vein, tasks 
are abstract when they are not tied to specific stimuli or context. For example, 
the abstract task of assembling flat-​pack furniture can be applied to a chest of 
drawers or a bunk bed, and the abstract task of booking a city break can be de-
ployed for Barcelona as easily as for Prague. At the Rio Olympics, each gym-
nast set out to tackle the task of winning in a different way. Each floor exercise 
had a distinct set of acrobatic tumble lines, a unique aesthetic style, choreo-
graphed dance moves, and a special musical playlist. An important principle 
is that abstraction increases as you ascend the task hierarchy. There are many 

Fig. 7.9  Simone Biles on the balance beam.
From https://​www.nyti​mes.com/​inte​ract​ive/​2016/​08/​11/​spo​rts/​olymp​ics/​sim​one-​biles-​winn​ing-​
moves.html.

https://www.nytimes.com/interactive/2016/08/11/sports/olympics/simone-biles-winning-moves.html
https://www.nytimes.com/interactive/2016/08/11/sports/olympics/simone-biles-winning-moves.html
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routes to a place in the history books, but only a handful of ways to perform 
the perfect backflip.

The second property of hierarchical task representations is their potential 
for composition. Composition means that tasks are composed of subtasks 
that can be completed independently, and often in any order. For example, 
when arranging a short break in a foreign city, you can book transport before 
searching for a hotel, or vice versa. When making a baked Alaska, you can pre-
pare the ice cream and sponge cake in any order, as long as they are both ready 
in time to coat with stiffly whipped meringue before popping your master-
piece in the freezer. Composition is important because it allows new tasks to 
be solved on the basis of existing skills. For example, if I know how to ride a 
bicycle with no hands and I also know how to play the trumpet, then I might 
be able to do both at once—​even if I have never practised. It is our ability to 
compose new actions from existing building blocks that allows us to generate 
entirely new sentences every time we open our mouth. In the words of the lin-
guist Wilhelm von Humboldt, composition allows us to make infinite use of 
finite means.64

Previously, we saw that successful task execution depends on the integrity 
of the PFC (and especially the DLPFC). In the classic studies of Burgess and 
Shallice, patients with PFC damage caused chaos when asked to perform er-
rands in an unfamiliar high street. The behaviour of patients with PFC damage 
is particularly disrupted in novel contexts, where well-​worn habits and rou-
tines cannot be recruited to scaffold action selection. Exactly how the PFC 
contributes to task performance, however, remains one of the great unsolved 
questions in neuroscience.

In the 1980s, on the basis of the extant neuropsychological findings, Tim 
Shallice developed an influential model in which the PFC exerted a super-
visory role over perception and action. This model helped carve out one of the 
major distinctions in modern cognitive science: that actions could be selected 
using automatic or controlled brain processes. Automatic processes are those 
that relied on familiar links between stimulus and action, such as those that 
have been extensively practised or reinforced during instrumental learning. 
If I am approaching a set of traffic lights, and they turn red, my automatic, 
overlearnt response might be to press the brake pedal. However, cognitive con-
trol is needed when the situation is novel or unexpected. Imagine that instead 

	 64	 Despite Chomsky’s popularization of this pithy phrase, von Humboldt was actually pretty lukewarm 
about notions of a generative grammar or linguistic universals. See https://​plato.stanf​ord.edu/​entr​ies/​wilh​
elm-​humbo​ldt/​.

https://plato.stanford.edu/entries/wilhelm-humboldt/
https://plato.stanford.edu/entries/wilhelm-humboldt/
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the traffic lights simply switch off as I approach. What should I do? Stop or go? 
This, Shallice argues, is where the PFC takes charge, bypassing the automatic 
stimulus–​response pathway and using a more deliberative strategy that an-
ticipates the future consequences of action. Perhaps it reasons that there has 
been a citywide power cut and that the other lights at the junction are off—​so 
barrelling through the lights at speed is probably a bad idea.65

In the early 2000s, on the basis of emerging fMRI results, the psychologist 
Jonathan Cohen and his group elaborated this theory to argue that an adja-
cent medial frontal structure, the dorsal anterior cingulate cortex (dACC), 
is responsible for detecting the need for control, whereas the DLPFC is en-
gaged to implementing cognitive control processes. This theory was built on 
studies showing that when the brain first detects conflict—​a clash of different 
possible responses (Stop? Go?)—​then BOLD signals increase in the dACC, 
whereas DLPFC BOLD is highest whenever conflict needs resolved. They 
describedree an influential computational model, in the form of a (hand-
crafted) connectionist model, in a classic paper by Miller and Cohen from 
2001.66

How does the lateral PFC implement cognitive control to guide behaviour 
in novel situations? Shallice, Miller, and Cohen conceive of the lateral PFC 
as a supervisory system that regulates activity in the sensory and motor cor-
tices using top-​down attentional regulation. However, whilst this theory spe-
cifies a putative control mechanism, it is silent about how tasks are learnt and 
represented in the PFC. Nor does it specify how the frontal lobe is organized 
to allow task abstraction and composition. Over the intervening 20 years, we 
have learnt much about neural coding and macroscopic organization in the 
primate PFC. There is now good evidence that PFC neurons represent rele-
vant stimuli, the context provided by a task, and the interaction between these 
two variables.

One important early finding was the identification of neurons that rep-
resent abstract properties of tasks. In a classic study, the neuroscientist Joni 
Wallis trained macaques to match novel images across a delay. On each trial, 
monkeys saw an initial image (A) delivered alongside a cue, followed by a 

	 65	 For the classic Shallice theory, with Don Norman, see (Norman & Shallice 1986). The original distinc-
tion between automatic and controlled processing goes back to (Shiffrin & Schneider 1977). Note that use 
of the word ‘control’ as used here is potentially confusing because in machine learning, ‘control’ usually 
means ‘computation of optimal actions in an MDP’. By contrast, cognitive neuroscientists tend to distin-
guish motor control (selecting actions) from cognitive control (deploying special mechanisms for dealing 
with unfamiliar or conflicting choices).
	 66	 For the integrated theory, written with Earl Miller, see (Miller & Cohen 2001). My favourite evidence 
for the conflict detection/​resolution story comes from an ingenious study by Tobias Egner, in which partici-
pants judged whether conflicting words/​faces referred to actors or politicians (Egner & Hirsch 2005).
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probe image (A or B). For some cues, the monkey had to release a lever if the 
probe matched the initial image (match subtask), whereas for others, releasing 
the lever was only rewarded if the initial and probe images did not match 
(non-​match subtask). After monkeys had learnt to perform the task, neurons 
in the DLPFC exhibited delay-​period activity that depended on whether the 
monkey was performing the match or non-​match task. Critically, this activity 
did not depend on the precise nature of the cue or response and was observed 
even when the images were entirely novel. In other words, these PFC neurons 
were signalling the abstract concept of ‘match’ or ‘non-​match’, rather than an 
instruction about how to respond to specific images. Since then, many other 
studies have reported comparable results. Cells coding for abstract rules have 
also been isolated in the endbrain of crows, a corvid species known to have re-
markable problem-​solving abilities.67

Another macaque paper from 2007 offers a striking window into the com-
putations performed by PFC neurons.68 The group of Jun Tanji trained mon-
keys to make sequences of four actions using a manipulandum that could 
be turned, pushed, or pulled. Each sequence comprised two sorts of actions 
(e.g. push [A]‌ and turn [B]), and they cued monkeys to perform sequences 
involving pairs (AABB), alternation (ABAB), and repetition (AAAA). 
Critically, cells in the DLPFC became active after the cue (but before action 
initiation) in a way that predicted the sequence type. For example, Figure 7.10 
shows a cell that responded on alternation trials, those that had an ABAB 
structure, irrespective of whether the actions A and B were turn–​push, turn–​
pull, or pull–​turn. Like in the Wallis study, the DLPFC neurons are coding for 
the task in an abstract fashion. In both cases, we can think of PFC neurons as 
encoding a set of mental operations, like the steps implementing a program or 
function, but being invariant to the specific inputs received by that program 
(particular images or lever movements). Findings like these begin to put com-
putational meat on the bone for the theories dating back to Craik and Tolman, 
which argue that intelligence requires the conduct of operations on mental 
representations.

In the late twentieth century, neuroscientists studying the PFC tended 
to fall into one of two rival camps. The first camp saw the PFC as control-
ling action selection for complex behaviour, whereas the second, continuing 
the tradition of Fuster and Goldman-​Rakic, highlighted its contribution to 

	 67	 See (Wallis et al. 2001). For a review detailing related findings, see (Freedman & Miller 2008). For 
the study on crows, see (Veit & Nieder 2013). The precise region of the endbrain is called the nidopallium 
caudolaterale, and it is a putative homologue of the primate PFC.
	 68	 For the original paper, see (Shima et al. 2007). For a helpful review, see (Tanji et al. 2007).
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short-​term memory maintenance. Fortunately, in the intervening period, the 
field has coalesced around a view that reconciles these two theories. The key 
is that short-​term memory tasks themselves demand abstract mental oper-
ations, for example to encode and maintain a sensory stimulus before map-
ping the memory trace onto a matching or recall response. In most paradigms, 
the same operations are required for a varying stimulus set, comprising a di-
verse set of pictures or locations. Thus, we can think of the neurons in Fuster’s 
study as performing the (abstract) operation of maintaining information until 
a response is required. In other words, putative short-​term memory neurons 
are not maintaining specific stimulus content, but instead contributing to the 
overall operational demands of the task.

The neural division of labour across the surface of the lateral PFC has 
also been a long-​standing puzzle. However, a 2003 brain imaging study 
led by Etienne Koechlin revealed an organizing principle for how mental 
operations are assigned to frontal cortical sites, called the cascade model, 
which has now become widely accepted. Closing the circle with studies 

Fig. 7.10  Cells coding for abstract movement patterns in macaque prefrontal cortex 
(PFC). The cell illustrated responded in advance of, and during, a cued movement 
sequence of the form ABAB, irrespective of whether A and B were push, pull, or turn. It 
did not respond to other sequences, like AABB.
Reprinted with permission from Shima et al. (2007).
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showing delay-​period activity, the claim is that the principal axis on which 
PFC processing is organized is time. The posterior-​to-​anterior (or caudal-​
to-​rostral)69 axis of the PFC is structured, so that more caudal regions per-
form more immediate or punctate task operations, whereas more rostral 
regions coordinate action over longer periods of time. Returning to Simone 
Biles, who is midway through her floor exercise routine—​how does she se-
lect which action comes next? Her next move can be partly inferred from 
immediate contextual signals, such as her position on the mat. But given 
that she will visit the same spot multiple times, she needs a mental rep-
resentation of which segment from the full task (her routine) is currently 
being executed. Koechlin and colleagues argued that selecting actions on 
the basis of cues that spanned longer temporal periods was the province of 
more anterior regions of the PFC. This idea neatly unites the two themes 
that reoccur in theorizing about the PFC: Fuster’s notion of hierarchically 
ordered memory processes for bridging perception and action, and the 
idea that the PFC generates control signals that transcend the immediacy 
of stimulus and response, a view that we owe to Shallice, Miller, and Cohen, 
among others.70

To test this theory, Koechlin and colleagues designed an imaging experi-
ment in which human participants selected responses to three different 
types of cue, organized according to a hierarchy of temporal abstraction. 
The first level involved simple mappings between stimulus and response; 
the second required conditional action selection, with an immediately 
prior context signal that changed the S–​R mapping, as in the broken traffic 
lights example; and the third level displaced the cue to an earlier time, with 
or without yet another layer of selection demand.71 Given this task, it was 
possible to use the information theory to compute the demand for control 
associated with decisions made under each type of cue.

The authors found that response selection inevitably led to increases 
in BOLD signal in the premotor cortex, the most posterior aspect of the 

	 69	 The terms ‘rostral’ and ‘caudal’ refer to positions along the axis of the neocortex. In the frontal lobes, 
the caudal areas are nearest to the middle (sulcus of Roland) where the motor cortex lies. The most rostral 
portions lie at the front, near the frontal pole.
	 70	 For the original paper, see (Koechlin et al. 2003). For a summary and review, see (Koechlin & 
Summerfield 2007). For related hierarchical theories of the PFC, see (Badre & D’Esposito 2009) and (Fine 
& Hayden 2022).
	 71	 As if, for example, I told you in advance that the traffic lights were broken, and so you should wait 
for a roadworker to signal when to proceed, and you maintained this instruction up to the point where 
you reached the lights. In the original paper, this type of control signal that is maintained across time was 
referred to as ‘episodic’, but this is potentially confusing because ‘episodic memory’ typically refers to long-​
term memory for past episodes.
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frontal lobe, adjacent to the primary motor cortex. This is consistent with 
the well-​known deficit that premotor lesions provoke deficits in movement 
and simple action selection, both in monkey lesion studies and in human 
neuropsychological patients.72 However, when a response was selected on 
the basis of a contextual cue, there was additional BOLD activity in the 
caudal DLPFC (Brodmann’s area 8). Only when the contextual cue was 
displaced back in time was there also activity in the rostral portion, or 
Brodmann’s area 46, the human equivalent to the sulcus principalis region 
that had shown delay-​period activity in the recording studies by Fuster, 
Goldman-​Rakic, and Wallis (Figure 7.11).

This finding betrays a key principle for PFC organization, called subsidi-
arity. The most posterior regions were always active during task perform-
ance, even for simple action selection. Thus, Simone Biles needs a premotor 
cortex to execute a handstand. But the more anterior regions were add-
itionally recruited only as required. Thus, to know where she has reached 
in her floor exercise routine, without mat position as a guide, the DLPFC is 
additionally active. At the most abstract level, to strategize about her overall 
approach to the competition, over the full time course of the games, the 
most anterior PFC regions come online. One speculation is that evolution 
has furnished primates with the ability to extend tasks over longer intervals 
through the successive addition of more anterior cortical real estate.

Time is fundamental to cognitive control because tasks are temporally 
structured, usually involving extended sequences of actions and events. 
Short-​term memory is the glue that holds tasks together in time, so that 
information from early in the task is maintained to impact later choices. 
Thus, if you discover low prices at your favourite Prague hotel on a certain 
date, in the next subtask, you can choose your train tickets accordingly. 
Knowing that you have tightened the bolts on the bedframe, in the next 
subtask, you can then add the slats and mattress to your new bunk bed. 
The finding that increasingly anterior PFC regions integrate information 
over longer and longer spans to solve more and more complex tasks is, of 
course, compatible with the idea that the brain is wired as a series of re-
current loops with an increasing time constant. As proposed by these the-
ories, information cascades across time to allow for behavioural control 
over multiple temporal scales.73

	 72	 See (Passingham & Wise 2012).
	 73	 For example, see (Murray et al. 2014).
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7.6  Banishing the homunculus

In the 2015 Pixar animated movie Inside Out, a young girl called Riley is going 
through turbulent times after her family move from rural Minnesota to the 
big city. The conceit of the film is that Riley’s emotions are personified as 

instruction + context +

context +

go? go

sensorimotor
association

stop go

4 mm
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stop go
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Fig. 7.11  Schematic illustration of the results from Koechlin (2003). The authors 
reported a rostro-​caudal axis of control in the prefrontal cortex (PFC). Most caudally, 
the premotor cortex (green) codes for the demand for simple action selection, such as 
choosing stop vs go at a traffic light. More anteriorly, in the dorsolateral PFC (yellow), 
BOLD signals scale with the demand of context-​mediated action selection, such as 
choosing to go through a red light when a sign indicates that the traffic lights are broken. 
Control that extends over longer time periods is associated with yet more rostral 
regions (red).
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characters inside her head, and that her behaviour depends on their choices 
about which levers to pull or buttons to press on a giant internal control panel. 
When the emotions make some dubious choices early in the film, things go 
haywire for Riley, and the rest of the story describes how the crisis first un-
ravels and then is finally resolved.

Inside Out is a whimsical film, but it raises a serious question: who con-
trols the controller? The characters inside Riley’s head experience their own 
emotions and make their own voluntary choices, so according to the film’s 
logic, they also have controllers in their head, who, in turn, need controllers—​
leading to an infinite regress. Similarly, theories of PFC function that appeal to 
control processes have long been critiqued for succumbing to the homuncular 
fallacy—​a theoretical sleight of hand whereby complex decision-​making 
is ascribed to ‘little person’ (or homunculus) who enjoys executive powers, 
without providing a concrete, mechanistic account of how decisions are 
made.74 In the words of Tom Hazy, Michael Frank, and Randy O’Reilly in a 
seminal article from 2005, we need to banish the homunculus—​and describe 
how memory and cognitive control actually work at the computational level.75

Consider a popular assay of frontal lobe function called the 1-​2-​AX task.76 
Participants view a sequence of numbers and letters, and the rules for re-
sponding to sequential letter pairs are modified by the occurrence of num-
bers. For example, following a 1, participants must respond to any X preceded 
by an A; whereas following a 2, a response is required to any Y preceded by a 
B. Thus, like in the Koechlin paradigm, actions must be selected after com-
bining information from an (shorter) inner loop (was the last letter A or B?) 
and a (longer) outer loop (was the last digit 1 or 2?). This paradigm matches 
our conception of a task as a hierarchical action selection problem that un-
folds in time.

A natural choice of computational tool for solving this type of problem is 
the recurrent neural network. In fact, although an RNN can learn to solve 
the 1-​2-​AX task by multiplexing information about the last letter and the 
last number in the recurrent weights, training it can be slow and unreliable. 
A more effective solution would associate each state not just with an action 
(via the readout weights), but also with internal operations that allow it to be 
written to (encoded), or read from (retrieved), a separate memory store. In 

	 74	 Perhaps the best known of these is the nebulous concept of a ‘central executive’ in the classic model of 
working memory (Baddeley & Hitch 1974).
	 75	 Key papers from this group include these: (Hazy et al. 2006) and (O’Reilly & Frank 2006).
	 76	 This is an extension of the AX-​CPT task, which was used in one of the very first papers showing that 
human BOLD signals in the PFC vary with short-​term memory load (Cohen et al. 1997).
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this way, some signals (e.g. the digit) could be cached over the longer term and 
only retrieved when needed, whereas other information could be constantly 
maintained in active memory using recurrent dynamics.

The architecture that embodies this principle was first described in 1997 and 
is among the most enduring tools in machine learning research.77 It is called 
(somewhat oxymoronically) the long short-​term memory (LSTM) archi-
tecture and was originally designed by the Swiss computer scientists Jürgen 
Schmidhuber and Seth Hochreiter to deal with the problem of vanishing gra-
dients.78 The LSTM rises to the challenge posed by environments—​such as 
the 1-​2-​AX task—​that exhibit dependencies over two or more timescales. In 
an LSTM cell, the hidden state units h are complemented by a second, parallel 
activation memory called the cell state c. The network learns to control gates 
which dynamically swap information between h and c on each timestep or 
erase (forget) information that is irrelevant to performing the task. This en-
dows the LSTM with two memory states that can share information with each 
other across time, allowing control signals to be passed forward on two dif-
ferent timescales for task performance.

A common metaphor for the functioning of the PFC is that it behaves like a 
computer program. A program transforms input variables through a sequence 
of operations, often using recursion (maintaining and/​or incrementing vari-
ables across cycles) or branching (switching variables in or out of different 
states according to contextual signals). One striking demonstration of the 
power of LSTM takes this metaphor literally. The researchers trained an LSTM 
to predict the latent state of variables from raw computer code written in the 
Python programming language. For example, if the input consists of:

j=​8584
for x in range(8):

j+​=​920 b=​(1500+​j)
print((b+​7567))

then the target value should be 25011. The network did remarkably well, es-
pecially when combined with a curriculum that, like a class in coding school, 

	 77	 As of 2022, the original publication has been cited more than 60,000 times—​making it one of the most 
influential papers in the field.
	 78	 Schmidhuber has become a somewhat controversial figure in machine learning, due to his relentless 
self-​publicization and strident claims of intellectual priority for many of the field’s major advances. LSTMs 
are, however, truly one of the most historically significant contributions to AI research. Vanishing gradients 
occur during backpropagation when partial derivatives become numerically negligible when many small 
values are multiplied together during repeated application of the chain rule, as is necessary when training 
RNNs across multiple past timesteps.
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begins with simple scripts and gradually ramps up in complexity.79 As might 
be expected, the LSTM and related tools similarly have no trouble with the 1-​
2-​AX task.

The LSTM was not built to model biology. Nevertheless, the gating function 
it proposes has inspired a number of computational theories of task learning 
in the PFC.80 Perhaps the most elaborate and plausible is the ‘Prefrontal Basal 
Ganglia Working Memory’ (PBWM) model that was proposed by Michael 
Frank and colleagues.81 As we have seen, PFC neurons maintain information 
via recurrent excitation, probably mediated both by thalamocortical loops 
and by intrinsic cortical connectivity. However, PFC neurons are prone to 
complex dynamics—​seemingly allowing them to fulfil different roles at dif-
ferent times. For example, when a neuron is persistently coding for a stimulus 
in short-​term memory, an irrelevant distracter can transiently activate the cell 
with a signal that fails to hijack its tonic firing. In other words, the cell switches 
from coding the relevant to the irrelevant stimulus, and back again. Relatedly, 
when a monkey is asked to report a stimulus identity and position in suc-
cessive portions of the trial, the same PFC neurons represent both variables, 
changing their coding properties midway through the trial.82 These observa-
tions are hard to reconcile with straightforward recurrent excitation alone. 
Instead, they imply that PFC neurons show switching dynamics, whereby they 
can switch between different coding schemes according to a latent contextual 
variables. These switching dynamics either could rely on intracellular mech-
anisms that modulate whether the cell is a strongly or weakly responsive mode 
or may be mediated by fast plastic mechanisms that occur at the synapse.

In the PBWM model, the PFC and basal ganglia work together to learn 
these switching dynamics. In the standard neurobiological portrait of 
learning by reinforcement, sensorimotor loops passing through the striatum 
are strengthened in the presence of dopamine-​mediated reward prediction 
errors via three-​factor learning rules, as discussed in Chapter 6. Here, how-
ever, dopamine acts to strengthen or weaken striatal signals that instead toggle 
information flow in the PFC, by enabling or disabling recurrent dynamics. 
PFC neurons are organized into a patchy topographic map in which nearby 
neurons have similar coding properties, referred to as stripes, and striatal 

	 79	 See (Zaremba & Sutskever 2014). In fact, the curriculum that works best is one that sprinkles hard ex-
amples among the easy ones early in training. One of the authors of this paper Ilya Sutskever went on to be 
head of research at OpenAI.
	 80	 Including (Alexander & Brown 2018) and (Lloyd et al. 2012), as well as the Frank and O’Reilly model 
(O’Reilly & Frank 2006).
	 81	 Originally described here (Frank et al. 2001).
	 82	 See (Rao et al. 1997) and (Watanabe & Funahashi 2014).
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signals may occur at the level of PFC stripes.83 Thus, the striatum can act to set 
the switches in the PFC, so that information can be maintained, overwritten, 
or forgotten at appropriate times. The entire model can be trained using an 
actor–​critic approach, with the striatal system taking actions and being cri-
tiqued by dopamine signals. Thus, in this model, the PFC gating mechanism is 
learnt in the striatum, rather than directly in the PFC.

Learning gating signals in this way can confer robustness on memories, 
especially for longer-​term maintenance—​which was the original motivation 
for Schmidhuber’s LSTM. But another major benefit is the circumvention of 
a catch-​22 that occurs when assigning credit to recurrent dynamics in short-​
term memory tasks. For persistent dynamics to be reinforced, they need to 
occur in the first place—​but if they have not been reinforced, they will not 
occur. A standard RNN thus learns to bridge the perception–​action cycle only 
very gradually. However, learning to open and close gates that enable or dis-
able recurrence sidesteps this problem entirely. A simpler architecture that 
learns to gate in and out of memory using SARSA captures the way in which 
rats reverse between match and non-​match rules in a maze task.84

One possible mechanism for gating relies on short-​term synaptic plasticity. 
In one influential model of this process, a synaptic resource (such as a trans-
mitter availability) can build up and deplete across the delay period, acting 
as an independent memory repository that does not require spiking activity. 
In fact, the resource goes through a cycle of depletion (by spike generation) 
and replenishment (in the refractory period) which keeps memories in an 
oscillating latent state during delay, and with biologically realistic parameters, 
the frequency of this rhythm is about 4–​8 Hz, precisely matching the (theta) 
frequency of oscillatory activity that has been observed during the delay pe-
riod of short-​term memory studies. The model is more robust to noise than 
variants based on attractor states. It could thus be that the maintenance pro-
cesses underlying memory and control processes rely on ‘activity-​silent’ states 
forged with fast synaptic plasticity.85

This theory is tricky to test empirically, but one line of support has come 
from human brain imaging studies. The neuroscientist Mark Stokes and 

	 83	 See the work from Jennifer Lund’s group at UCL, using staining methods to track patterns of intrinsic 
connectivity (Levitt et al. 1993). These are reminiscent of the hypercolumns observed in the early visual 
cortex, whereby neurons with similar orientation selectivity are found in close proximity, that were origin-
ally discovered by Hubel and Wiesel.
	 84	 See (Lloyd et al. 2012).
	 85	 For this model, see (Mongillo et al. 2008). For a review, see (Barak & Tsodyks 2014). For a comprehen-
sive introduction to ‘activity-​silent’ activity, see (Stokes 2015).
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his team cued human participants to remember one of two gratings across 
a delay period and used multivariate methods to assess the moment-​by-​
moment stimulus representation of both cued and uncued gratings in 
electroencephalographic (EEG) signals. The cued stimulus representation died 
away over the delay period but could be revived with a ‘pinging’ stimulus—​a 
blast of energy provided by a random visual event which occurred unexpect-
edly during the delay period. This is consistent with the idea that synapses, not 
spikes, were responsible for maintaining the memory, and thus with a gating 
account. A similar reawakening of latent working memories in BOLD has 
been reported when transcranial magnetic stimulation is applied during the 
delay period.86

Gating thus is almost certainly part of the brain’s computational reper-
toire and may be critical to cognitive processes involving memory and con-
trol. Simultaneously, it is a major algorithmic innovation that has allowed 
AI systems to share information effectively over longer time periods and 
to train faster and more stably. LSTMs were, until very recently, the tool 
of choice for all complex machine learning applications, from sentence 
prediction in NLP and variable prediction in computer code to complex 
strategic control in dynamic games such as StarCraft. However, in 2017, 
AI researchers discovered a more sophisticated algorithmic component, 
known as the transformer, that tends to outperform the LSTM in almost 
every domain.

On a first reading, the sentence ‘the old man the boat’ does not make 
grammatical sense—​it seems to be lacking a verb. But on a second glance, 
it is, in fact, legitimate, because in English, ‘man’ can be a verb as well as 
a noun (as in ‘to crew the boat’). Misleadingly, sentences beginning with 
‘the old man’ usually have an elderly male human as their subject. This type 
of sentence is called a garden path sentence, because it initially leads you 
astray,87 and to grasp the meaning of a garden path sentence, you have to 
mentally restructure it after the event, revising your interpretation of indi-
vidual words.

The LSTM allows information to be gated in and out of its cell state, affording 
sophisticated control over memory. But it has an important limitation: it pro-
cesses sequences of data (words, music, or images) item by item, and so it 
cannot revise its past activation states on the basis of new information. Thus, 

	 86	 See (Rose et al. 2016) and (Wolff et al. 2017).
	 87	 Or up the garden path.
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if it has discarded some part of its memory—​using the forget gate—​then it 
cannot later go back and retrieve it. However, as seen with garden path sen-
tences, even sophisticated agents (like humans) can be initially misled, and 
thus benefit from being able to retrospectively revise and reweigh information 
they have been given in the past.

This is exactly what a transformer permits. The transformer buffers its in-
puts and dynamically reweighs them using a process called self-​attention, 
which allows outputs to depend on the unfolding context. Thus, in the 
clause ‘the child ate the cake because it . . .’, an LSTM will always process the 
word ‘it’ in the same way. However, a transformer can retrospectively, and 
on-​the-​fly, change its encoding of ‘it’ according to whether the sentence 
continues ‘. . . was hungry’ (meaning ‘it’ refers to the child) or ‘. . . was deli-
cious’ (‘it’ refers to the cake). The transformer thus has a significant advan-
tage in predicting the next chunk of text, because it can revise the weight 
given to ‘child’ and ‘cake’ according to the subsequently revealed context. 
Interestingly, to achieve this, the transformer explicitly learns separate 
mapping functions for each item (e.g. cake) and position (e.g. fifth word 
in the input phrase). By explicitly encoding both position and item, trans-
formers can effectively learn to factorize ‘what’ the input is and ‘where’ it is 
in the input stream, allowing it to explicitly encode the relations between 
words. One possibility is that it is this encoding of item and position—​
or objects and space—​that gives transformers their remarkable ability to 
seemingly compose new meaning in text and image.

The transformer is the reason for the startling success of foundation 
models such as GPT-​3 and Gopher, and has widespread application beyond 
NLP. Currently, for example, state-​of-​the-​art performance on ImageNet is 
dominated by approaches that use vision transformers to model the rela-
tions between pixels in an image, and Tesla is currently using transformers 
for processing image data in their driverless cars.88 Transformers will prob-
ably continue to shape progress in AI research for some time, but it remains 
to be seen whether the computations they perform have a plausible coun-
terpart in biology.89

	 88	 The original transformer paper is this one (Vaswani et al. 2017). The first vision transformer model, 
released in late 2020, is this one (Dosovitskiy et al. 2021). For some reflections on transformers and biology, 
see (Mumford 2020).
	 89	 Although see (Whittington et al. 2021).
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7.7  Learning simple programs

The celebrated anthropologist Jared Diamond trained as a medical student 
before gravitating to the field of ornithology. It was the study of birds that 
first took him to Papua New Guinea, where he met people whose culture was 
radically different to his own—​and yet strangely familiar too. As he recounts 
in his bestselling book The World Until Yesterday, many of the New Guinea 
Highlander practices that initially seem unfathomable—​their taboos about 
relationships, feasting rituals, marriage practices, or trade systems—​have rec-
ognizable counterparts in the Western world. For example, if one native hurts 
another in an accident, a formalized ceremony involving the affected parties 
allowed for compensation to be paid and relationships to be re-​established. 
This practice can help forestall a costly blood feud between indignant parties, 
much as the Western courtroom trial is an act of theatre geared at providing 
the aggrieved with justice and bringing closure to an event.90

Thus, whilst many situations Diamond encountered were alien to him, they 
involved familiar concepts such as bartering, greeting, feasting, and warfare. 
Even if the native people behaved in unexpected ways, their activities shared 
a common structure and purpose with those in the West. Diamond was thus 
able to reuse task knowledge obtained on the streets of his native downtown 
Los Angeles to adapt to life in the highlands of Papua New Guinea. This ability 
to perform tasks in novel environments by recycling knowledge about how to 
achieve goals is a critical component for any general AI system. And yet, it is 
an area where AI research has so far made only limited progress.

As we have seen, recurrence and gating in memory systems allow agents to 
learn sophisticated control policies. How, then, do intertwined memory and 
control processes allow agents to adapt rapidly to new tasks? In recent years, 
machine learning researchers have tackled this challenge by building deep 
networks that are able to learn how to learn.

Recall that Harlow’s monkeys were able to learn each new bandit task faster 
than the last, even though they involved entirely novel objects.91 The rapid 
progress that monkeys made on each new bandit problem—​with perform-
ance eventually plateauing after just a single trial—​is in sharp contrast to that 
of deep networks, which are bedevilled by sluggish learning and a hunger for 
data. Harlow conjectured that with repeated exposure to many tasks with 
similar structure, the monkeys had learnt how to learn.92 Recent work has 

	 90	 See (Diamond 2012).
	 91	 See Chapter 4.
	 92	 Harlow called it learning set.
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suggested that learning to learn may be a ubiquitous feature of natural in-
telligence, exhibited even in the mouse, a small mammal with a rudimental 
neocortex. For example, when confronted with successive tasks in which new 
odours predict rewards with a shared temporal sequence, or when performing 
different reversal learning problems encountered in novel spatial layouts, 
neural populations in the mouse frontal cortex encoded abstract components 
(or schemas) that were shared across tasks, such as the need to alternate re-
sponses on a certain schedule, irrespective of odour or position.93

In machine learning, 2016 brought a sudden flurry of interest in meta-​
learning—​the training of deep networks to learn how to learn.94 One simple, 
but effective, approach is to first learn a good initialization for the network, so 
that learning a new task reduces to fine tuning from weights set to propitious 
values. This is perhaps similar to how evolution sculpts the innate connections 
in biological brains, so that neonates can quickly form useful representations 
like place cells and face representations, preparing them for inevitable real-​
world challenges like navigation and social interaction.95 An alternative, and 
arguably more sophisticated, approach is to meta-​learn a control policy for 
memory, so that a network can rapidly adapt to new problems on the fly using 
the activation dynamics in its recurrent units.96 Married with an RL objective, 
this method is known as meta-​RL, and it holds great promise for AI research. 
One algorithm, proposed in a paper led by Jane Wang from DeepMind, was 
directly inspired by theories of learning in biological brains, and especially the 
neurophysiology of the PFC.

To understand how meta-​RL works, it is helpful to formalize our definition 
of task in the context of a typical laboratory study where stimuli elicit actions 
leading to rewards over a sequence of discrete trials. Here, we can think of a 
task as fully described by how stimuli and actions (and their interactions) map 
to outcomes over successive trials. For example, in a 2-​back memory task, the 
outcome on trial t depends on whether the agent faithfully responds that the 
current stimulus matches that on trial t − 2 or not. Absent explicit instruction, 
and provided with sufficient examples of stimulus, action, and outcome his-
tories, an agent should eventually be able to learn the rule and successfully 
perform the task. The principle of meta-​learning is that an RNN exposed to 
many such task examples (during meta-​training) will eventually learn to use 
the evolving history of actions and outcomes (held in recurrent memory) for 

	 93	 See (Samborska et al. 2021) and (Zhou et al. 2021).
	 94	 This interest was built on earlier work (Hochreiter et al. 2001).
	 95	 See (Finn et al. 2017).
	 96	 See (Duan et al. 2016) and (Wang et al. 2017).
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a similar new task, to begin to respond correctly as the trials progress. Thus, 
having performed a myriad of tasks that require matching one step back (1-​
back) and three steps back (3-​back), the agent can use the history of outcomes 
incurred by its actions over successive trials to infer that this time it is sup-
posed to be performing a 2-​back task. During its training, the agent is not 
learning to perform any single task or even a fixed distribution of tasks. It is 
learning how to learn new tasks that it has never seen before.

Typically, at the core of the meta-​RL agent is an LSTM that receives as in-
puts both the current stimulus and the history of actions and rewards, and is 
trained using policy gradient methods to predict the state and action values. 
Interestingly, when monkeys perform a bandit task, PFC neurons code for the 
history of actions, rewards, and their interaction—​the very information that 
is needed for meta-​learning. Like monkeys performing the bandit task, the 
meta-​RL agent can use this history to construct a choice signal that allows 
it to optimally trade off exploration with exploitation, by tailoring response 
frequencies to the probability of reward (matching) and adjusting the rate at 
which it learns to match the volatility in the environment.97 It was also able to 
perform reward-​guided learning tasks where the value of some stimuli could 
only be inferred from the correlation structure of the task. For example, in a 
task by Bromberg-​Martin and colleagues, monkeys inferred that because sac-
cade to one location was rewarded, the other was not, or vice versa.98 Meta-​RL 
displayed the same pattern of behaviour and even exhibited reward predic-
tion errors that resembled those in the monkeys. Learning that the value of 
one object can be learnt from another is, of course, the essence of the Harlow 
task, and meta-​RL was able to faithfully recreate the accelerating learning over 
many novel tasks that is the central feature of Harlow’s data.

Consistent with the definition provided by Legg and Hutter, the meta-​
learning approach commits to a picture of intelligence as solving a succession 
of tasks. During meta-​training, the network is optimized to find a sample-​
efficient adaptive strategy for a broad distribution of problems. Harnessing 
the power of function approximation that is intrinsic to deep learning, it then 
generalizes this strategy to new tasks that are sampled from the same distri-
bution. In fact, we know that for a wide range of circumstances, meta-​trained 
agents discover Bayes optimal solutions, in which the prior for a new task is a 
weighted mixture of past experience. For example, after training on a succes-
sion of bandit tasks, the meta-​learner acquires a policy that optimally trades 
off exploration and exploitation, selecting actions according to the highest 

	 97	 See (Tsutsui et al. 2016) and (Behrens et al. 2007).
	 98	 See (Bromberg-​Martin et al. 2010).
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Gittins index per timestep.99 In a different setting, meta-​trained agents can 
learn to represent a distribution over a family of functions, so that they can 
adapt rapidly to fit new data, mimicking the flexibility and data efficiency of 
probabilistic approaches such as Gaussian processes.100

In Chapter 3, we discussed a tradition for AI research that relies on symbol 
manipulation and compositional cognition, including the use of probabilistic 
computation to infer the structure of a generative process for tasks (i.e. the 
grammar that generates data produced by a formal language). In parallel, ma-
chine learning researchers have asked whether deep learning can be trained 
to compose and interpret structured programs for complex behaviours. One 
interesting example of this is training deep networks to perform mathemat-
ical operations, including arithmetic, algebra, and numerical sorting. Because 
maths is a tightly structured systems requiring a high degree of precision 
(17 +​ 17 =​ 3.4 is not ‘nearly right’), it is challenging to learn with unrestricted 
gradient descent. This means that even sophisticated architectures, such as 
transformers, often give plausible-​sounding, but incorrect, answers.101 In 
humans, mathematical cognition relies on the implementation of a series of 
structured operations that require storing and retrieving exact numerical 
values in working memory, rather than learning to guesstimate a quantity by 
summarizing a long history of examples.102

Over recent years, a method known as neural program induction (NPI) has 
been developed to tackle this class of problem. In NPI, a neural controller 
(usually an LSTM) learns to issue instructions conditional on the current exe-
cution state of a program. These instructions have predetermined semantics 
that can transform the program state, allowing the network to learn to per-
form a structured sequence of operations on data. The system can thus learn 
either via supervised learning to imitate a teacher executing a program or with 
RL to maximize metrics for accuracy and efficiency. NPI has been applied to 
domains such as sorting numbers, searching lists, or combinatorial optimiza-
tion problems such as the knapsack problem.103

A familiar feature of NPI systems is the ability to read and write to an 
external (often content-​addressable) memory, storing information in 

	 99	 See (Mikulik et al. 2020).
	 100	 See (Garnelo et al. 2018).
	 101	 For example, factorizing 235232673 as 3, 11, 13, 19, 23, 1487 (the correct answer is 3, 13, 19, 317453). 
See (Saxton et al. 2019). Although transformer-​based foundation models are getting much better at maths, 
including maths word problems (Cobbe et al. 2021).
	 102	 See (Menon 2016).
	 103	 A resource allocation problem such as that faced by an air traveller in which a set of items with dif-
ferent weights and values are chosen to maximize utility whilst not exceeding a weight limit placed on their 
luggage.
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dedicated slots where required, much like the hard disk of a computer with 
von Neumann’s architecture. This choice is naturally inspired by Turing’s pro-
posal for a universal computer that writes to, and reads from, a ticker tape 
of infinite length. One such system, called the differentiable neural computer 
(DNC), learnt to control read and write heads to store information in struc-
tured ways in addressable memory. It was able to solve intricate sequential 
control problems, such as planning a route through the London Tube system 
after viewing a single instance of the map in symbolic form (along with a start 
and destination station). The DNC was even able to learn end-​to-​end to solve 
a version of SHRDLU, a paradigmatic challenge for classic AI in which blocks 
are manipulated according to verbal instructions.104

As we saw with Bayesian program learning, the central question for NPI 
is what the primitive program elements should be. For example, one report 
showed that many architectures fail to meet the challenge of generalizing 
from simple problems (such as 2 +​ 4 =​ 6 and 3 × 5 =​ 15) to more complex ones 
(4 +​ 3 +​ 5 × 7 =​ 42), and proposes that recursion should itself be a building 
block for program induction.105 Another approach scaffolds computation by 
endowing the program with function calls, but without specifying the con-
tents of each function. This allows the program to ‘divide and conquer’ a task, 
breaking it down into subroutines in a way that encourages reusability and 
composition, and led to stronger forms of generalization.106

A traditional conception of memory is as a storage system, in which useful 
information can be deposited for future use. Across this chapter, however, we 
have encountered a different view, in which memory is a sophisticated adap-
tation to the control system that releases action selection from the immediacy 
of the current senses. Memory processes serve up information from the past 
to control processes, and reward learning shapes the way in which informa-
tion is encoded, maintained, and retrieved over time. This allows agents to 
solve theoretical computational challenges, such as grounding behaviour on 
a single event (one-​shot learning), partitioning knowledge between different 
temporal contexts without catastrophic interference (continual learning), and 
reusing past knowledge to adapt to new tasks (meta-​learning).

In earlier chapters, we encountered a theoretical distinction that has 
powerfully impacted how neuroscientists think about learning and decision-​
making: that between model-​free and model-​based processes. A model-​free 

	 104	 The DNC was adapted from an architecture called the Neural Turing Machine. See (Graves 
et al. 2016).
	 105	 See (Cai et al. 2017).
	 106	 See (Li et al. 2020).
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agent learns a value function from experience, by taking repeated actions and 
sharing value estimates between states that were experienced in close prox-
imity. A model-​based agent uses knowledge of the transition structure of the 
environment (a ‘model of the world’) to mentally simulate possible courses of 
action and their outcomes, leveraging these offline calculations to decide how 
to act. It is interesting to note that this distinction becomes blurred once agents 
are equipped with sophisticated forms of memory, such as those we have met 
in this chapter. This is because in conjunction with RL methods, memory pro-
cesses allow agents to share value estimates between current and past states 
in flexible ways. For example, one-​shot learning and continual learning allow 
credit to be assigned to specific instances in the past or to temporal episodes 
defined by a contextual variable. Meta-​learning agents—​even with wholly 
model-​free training—​are able to learn an adaptable control policy that gener-
alizes to new tasks, behaving as if they were forging new plans on the fly.

This is vividly revealed by the patterns of behaviour that meta-​trained agents 
display when confronted with standard assays of model-​based inference from 
the psychology literature.107 A well-​known probe for model-​based decision-​
making is known as the two-​step task. The two-​step task is a modified bandit 
paradigm in which rewards are only reached after choosing two successive 
actions that move the participant through a miniature non-​spatial maze. 
Making the first transition probabilistic allows researchers to distinguish be-
tween model-​based and model-​free accounts of behaviour following expected 
and unexpected transitions. A purely model-​free participant, who ignores the 
transition structure, should repeat successful actions, irrespective of whether 
the first transition was expected or unexpected. A model-​based agent should 
learn that if a positive outcome occurs from an unexpected (low-​probability) 
transition, then reward will most likely be maximized by choosing an alter-
nate action on the next trial. In practice, human participants show a mixture 
of model-​free and model-​based behaviours, with various factors shifting the 
balance between these strategies, including age, stress, dopaminergic medica-
tion, and the cover story used to explain the task.108 Extensive use of this task 
has cemented the distinction between model-​free and model-​based learning 
in the neuroscience literature.

However, meta-​RL agents trained in a fully model-​free fashion solve the 
two-​step task, displaying a pattern of behaviour that closely resembles that of 

	 107	 See (Daw et al. 2005) and (Dolan & Dayan 2013).
	 108	 For the original task, see (Daw et al. 2011). Dopamine makes you more model-​based (Wunderlich 
et al. 2012). Stress makes you less so (Otto & Gershman 2013). Children become more model-​based as 
they mature (Decker et al. 2016). People become much more model-​based if you provide a comprehensible 
cover story (Feher da Silva & Hare 2020).
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humans. They are able to do this because they have learnt a control policy that 
maximizes, contingent on the history of actions and observations from com-
parable games. The meta-​RL agent also captured human behaviours on other 
tasks that cannot be solved with vanilla TD learning, such as a bandit para-
digm in which the volatility (rate of change of the latent bandit values) was 
itself a stochastic variable.109 One interesting future question for neuroscien-
tists is whether purported signatures of model-​based inference are, in fact, 
just a product of sophisticated memory and control processes that depend on 
the primate PFC.110

	 109	 See (Behrens et al. 2007). These results are reported in (Wang et al. 2018a).
	 110	 (Botvinick et al. 2019).
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8
A picture of the mind

8.1  Where is my mind?

One of A. A. Milne’s much-​loved stories about Winnie the Pooh begins with 
Christopher Robin announcing that the friends are going on an ‘expotition’ 
to find the North Pole. They round up the other animals and set off, and 
after some distance has been travelled, their provisions have been eaten, and 
a nasty thistle narrowly avoided (except by the morose donkey Eeyore), the 
story continues:

Rabbit and Christopher Robin have wandered a little way up the stream to have a 
private conversation, because Christopher Robin is not entirely sure what a North 
Pole would look like if you were standing right in front of one, and he wants to ask 
Rabbit’s advice. They both say that they used to know, although now they’ve for-
gotten, but then they decide that it must be just a pole stuck in the ground, and 
hence the name.

The problem that the animals face is a familiar one. When setting out to find 
something, it is important to know what you are looking for.

AI researchers hope to discover how to build AGI. The problem is that no-
body really knows exactly what an AGI would look like. What would it be able 
to do? What purpose would it have? What form would it take, and under what 
constraints would it operate? Is the goal to build something that lives on your 
phone and doles out advice in natural language? Is it an embodied robot that 
is able to do your laundry and walk the dog? Or is it an algorithm embedded 
in our societal infrastructure to solve complex optimization problems, such 
as coordinating a fleet of autonomous vehicles, running a scientific research 
laboratory, or stabilizing the economy by holding the reins of macroeconomic 
policy? Should we aim to build a single agent that can do all of these things, or 
a suite of more narrow technologies, each tailored for a single problem?

Lacking a singular vision for the Singularity, AI researchers have instead 
turned to human generality as a blueprint. Humans are not constrained to 
perform a single, narrow task. A human could give sensible advice to her sister 
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on the phone whilst commuting back from her job at the World Bank, and 
then take the dog for a walk before bed. In fact, for some people, these would 
be perfectly routine daily activities, a far cry from the mind-​bending feats of 
strategy or abstraction that grandmasters display when competing for world 
titles in StarCraft or Go. This is the bewildering paradox at the heart of AI 
research: that many activities that humans find impossibly hard turn out to 
be relatively simple to solve with enough computation, whereas the basics—​
performing mundane chores and dispensing common sense advice—​are way 
beyond the reach of even our most sophisticated current AI systems.

Since the 1950s, the vision for general AI has ebbed and flowed. In each 
era, the animating force was an implicit theory of the computational process 
that makes people smart. In the age of classical AI, research was framed by the 
vestiges of positivist philosophy, in which the critical human faculty was the 
ability to use formal systems to work out what was true. The earliest pioneers 
fashioned AI in the image of early twentieth-​century luminaries like Russell 
and Frege, who sought to rebuild our systems of thought in the language of 
logic. However, by the 1970s, it began to dawn that most humans are, in fact, 
quite unreliable logicians.1 Instead, the focus shifted to our privileged ability 
to communicate in natural language: a highly structured, generative, open-​
ended system for sharing ideas. Over the next decades, many AI researchers 
instead tried to ground intelligence in the human capacity for drawing infer-
ences using semantic knowledge. Serious attempts were made to build sys-
tems that could solve general problems by reasoning from means to end, using 
hand-​coded fact bases and inference engines, or clever heuristics that make 
planning tractable in very large search spaces. This led to the advent of expert 
systems and the genesis of algorithms such alpha-​beta search, which drove the 
success of Deep Blue at Chess at the end of the twentieth century.

In the modern era, deep learning has come to the fore. Deep neural net-
works learn complex discriminative or generative functions from training 
data and transfer performance to novel settings. With the rise of deep 
learning, the focus has again shifted. Deep learning models meld computa-
tion and memory, so that the power of their inference is enmeshed with their 
knowledge of the world. To handle novel settings, neural networks need to 
grasp information in the most general way possible, which means repre-
senting maximally invariant concepts. Thus, the prevailing vision of human 
intelligence has turned again on its axis, and now it seems that the signature 
human mental ability is to learn and generalize abstractions. People know that 

	 1	 See the discussion of heuristics and biases below.
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keys open doors, that snakes bite, and that gold is valuable; they thus still hold 
their own against deep RL systems playing Montezuma’s Revenge. Humans 
know that objects can be grasped, that people feel pain, and that yesterday is 
gone forever. They grasp that equality is relevant both when paying taxes and 
when dividing cakes, that tsunami can refer to a terrifying wave of water or 
a burdensome torrent of e-​mails, and that higher can refer to a relationship 
in space, or quality, or society. People can even compose new understanding 
from existing building blocks of semantic knowledge—​without ever having 
thought about it before, we can infer that there are no elephants on Jupiter, 
that vampires do not like pesto, and that Aristotle never owned a laptop.

In parallel with the advance of neural networks, researchers have devised 
RL methods that motivate agents to learn to solve problems for themselves. 
This subfield has drawn inspiration from a long tradition in psychology 
and animal learning that has envisaged behaviour as an attempt to reap 
rewards, satisfy needs, and obey drives. It places front and central our 
powerful motivation to meet the demands of both our bodies and the local 
environment. These signals drive us to seek out hedonic signals from pri-
mary reinforcers such as food, sex, and warmth. But we also create sophis-
ticated goals for ourselves—​to reach that destination, beat that personal 
best, or finish writing that book—​generating internal motivational signals 
that urge us onwards towards these milestones. The RL framework for in-
telligence is more ambitious than its rivals. It seeks to explain the breadth 
of motivated animal behaviour, from the circumscribed habits of simple 
animals like flies and worms to the intricate policies by which humans try 
to realize their basest desires and loftiest dreams in the spheres of family, 
friends, work, and leisure.

Thus, the twin projects of understanding the mind and building a brain 
have historically gone hand in hand. We see in natural intelligence a vision 
for what AI could be: its potential for versatility, robustness, and creativity. 
And yet, opinion is divided. Is studying natural general intelligence a pathway 
towards building AGI? Will simple algorithmic solutions suffice, if they are 
scaled to the proportions of biological computation, with billions of neurons 
and trillions of connections? Or is there a special ingredient or combination of 
ingredients that natural intelligence enjoys, but that AI is currently missing? 
Do we need to build agents that form richer abstractions for strong generaliza-
tion, that learn rapidly from minimal experience, or that can infer causation, 
exhibit curiosity, plan deeper, or display metacognition? Are there algorithms, 
architectures, or cognitive functions that give humans their generality, but 
that current AI systems lack?
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8.2  Inductive biases

AI researchers and cognitive scientists continue to be divided by the ques-
tion of whether knowledge obtained from the study of natural intelligence is 
relevant for building AGI. This issue and the clash of views it provokes have 
been discussed across this book.2 Should the computations in our AI systems 
be hand-​engineered by the researcher or learnt from experience? Should we 
populate the minds of our agents with dedicated constraints (or inductive 
biases) that are tailored to solve the problems that the agent is likely to en-
counter? Alternatively, should we take simplicity as our mantra and search for 
a single, undifferentiated principle or algorithm that can be scaled to massive 
proportions with galaxies of parameters and gallons of computation? In the 
modern era, the neurosymbolic architectures that IBM has used to compete at 
college debating championships and TV quiz shows are most emblematic of 
the former approach. The giant foundation models for natural language and 
image processing—​in which a single computational tool, the transformer, is 
replicated millions of times—​are the epitome of the latter.

As we saw, AI research was conceived in the former tradition but, in ma-
turity, has gravitated towards the latter. Over for the past 10 years, the theor-
etical winds have blown powerfully towards systems, with minimal inductive 
biases. We want AI systems that learn about verbs and about faces, but the 
prevailing view is that we should not build modules that are wired to process 
the structure of sentences or arrangements of anatomical features. Instead, it 
is claimed, we need maximally generic algorithms that allow agents to acquire 
computation for themselves by learning from data. Knowledge about faces 
and verbs may emerge during training, but so could knowledge about tools 
and adjectives or about buildings and declensions. These unstructured sys-
tems thus offer not only the virtue of simplicity, but also the promise of max-
imally general solutions. This promise has paid off in practice. For example, 
after eye-​popping successes in the domain of NLP, the transformer was rap-
idly generalized to multimodal data (mapping from text to image, and back 
again). By contrast, IBM’s DeepQA system will never do more than answer 
questions—​because it is tailored exclusively to that task. This motivates the 
pursuit of maximally neat, simple, and general solutions espoused by Sutton’s 
bitter lesson.

	 2	 Especially in Chapter 2.
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In psychology, exactly the same debate between advocates of nativist and 
empiricist theories of the mind has played out across the history of the dis-
cipline. These opposing views have risen and fallen from vogue in predict-
able alternation. The empiricist tradition, which dates back to Locke, sees the 
neonatal brain as a blank slate, ready to take its shape from the impress of the 
world. It found its first radical expression in the behaviourist movement of the 
early twentieth century, when psychologists conceived of behaviour as driven 
entirely by learning from reward. The later rise of cognitivism, in the era of 
Chomsky, Marr, and Fodor, unseated this view with a nativist rallying cry that 
emphasized the inevitability of language development, the hardwired struc-
ture of information processing, and the modularity of the mind. However, em-
piricism resurged in the 1980s, when connectionist modellers argued that the 
brain is initialized tabula rasa, allowing a maximally general set of skills and 
knowledge to be acquired over the training provided by the lifespan. The turn 
towards Bayesian models of perception and cognition in the early 2000s cut a 
path back to nativism, by focussing on rational inference without large-​scale 
parameter estimation. Thus, for a century or more, psychology has danced a 
theoretical jig from one pole to the other of the nativist-​empiricist debate.

Today, the nativist–​empiricist wheel of fortune is turning again in psych-
ology and neuroscience. The renaissance of connectionism in the form of 
powerful deep learning has piqued biologists’ interest in undifferentiated 
processing systems. Biological brains are themselves multibillion param-
eter neural networks, which display simple, endlessly reduplicated com-
putational motifs, such as the canonical microcircuit in the mammalian 
neocortex. Should we also see biological brains as monolithic processing 
architectures? Has evolution itself cleaved to the warning of the bitter 
lesson?

A resurgent idea is that our neurobiological theories are convenient fictions 
that serve to bend massive, messy parallel processing into recognizable form. 
This argument takes its cue from observations that weakly structured deep net-
works are currently our best model for explaining neural representation in the 
ventral stream of primates and humans. In the sensory neocortex, like in deep 
networks, computation seems to be messy and hard to interpret at the level 
of single neurons or local circuits. Thus, the idea has begun to circulate that 
hard-​fought theories of brain organization and function—​founded on a trove 
of evidence that neurons code for faces, or task rules, or spatial locations—​
might, in fact, be ‘just-​so’ stories. Neuroscientists may be prone to reading 
complex, high-​dimensional neural signals like tea leaves—​optimistically 
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finding structured coding patterns that do not actually exist. As the Princeton 
neuroscientist Uri Hasson has put it:

Both [artificial and biological neural networks] produce solutions that are mis-
takenly interpreted in terms of elegant design principles but in fact reflect the 
interdigitation of ‘mindless’ optimization processes and the structure of the world.

This is quite a claim. We have heard the case for ‘mindless’ optimization in ma-
chine learning, and here it is repeated in neurobiology. Put simply, Hasson’s 
argument is that neural computation is itself largely unstructured. However, 
signals from the natural world are highly organized, and so the illusion of 
structured computation occurs as they refract through biological networks 
and are read out in neural recording experiments.3

Neuroscientists are undoubtedly prone to see their experimental results 
through an optimistic lens. It is also true that the six-​layer neocortex—​a 
brain structure found only in mammals—​has a repeating local circuit motif. 
But as we have seen, this idea that the brain is simple and undifferentiated 
is hard to defend. Biological brains are made up of a mosaic of functionally 
distinct regions, populated by an army of different cell types that exchange 
signals using a rainbow of different transmitters and peptides. All animals—​
irrespective of their bodies, habitat, or niche—​exhibit brains with an intricate 
neurofunctional design that is strikingly conserved across healthy individ-
uals of that species. Humans differ in many ways—​we may have darker or 
lighter skin, speak Japanese or Portuguese, and live in the Arctic tundra or the 
Namibian desert. But all healthy people have a hippocampus, a cerebellum, 
and a thalamus. Even within the neocortex, neuroimaging studies have 
shown that patterns of regional specialization are striking conserved across 
individuals. Evolution has thus placed remarkably strict constraints on how 
the brain is organized. In natural intelligence, computation does not emerge 
blindly from the imprint of data alone. It is shaped by fundamental design 
principles that have been sculpted by natural selection playing out in deep 
evolutionary time.

Across previous chapters, we have traversed the contours of this diversity. 
It is seeded from the basal ganglia and hippocampus, core neural structures 
that have been conserved for half a billion years, phenotypes that allowed the 
first vertebrates to learn associations between stimuli, actions, and outcomes. 
In mammals, these regions share stereotyped patterns of connectivity with 

	 3	 See (Richards et al. 2019), (McClelland et al. 2010), and (Hasson et al. 2020).
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the neocortex, forming a dynamic partnership that allows animals to learn 
habitual actions, engage in sequential motor behaviours, form memories 
over multiple timescales, process objects in space, and represent the world in 
meaningful ways.

From this heterogenous brain structure springs our unique cognitive fin-
gerprint, combining perception, attention, memory, language, and control. In 
the 1950s, Karl Lashley proposed the principle of mass action—​the view that 
the brain is an undifferentiated processing device, with each zone contrib-
uting monolithically to intelligence. However, Lashley was wrong. Decades of 
neuropsychological evidence have since shone a light on the modular nature 
of the brain, with localized patterns of damage provoking extremely special-
ized patterns of impairment. For example, circumscribed lesions can cause an 
inability to recognize faces, animals, or inanimate objects;4 failure to assume 
ownership of one’s own body parts; generation of semantically incoherent 
sentences; specific impairments of gait and balance; an inability to lay down 
memories for autobiographical events; difficulties with planning or dealing 
with novelty; and unwillingness to voluntarily take any actions at all, despite 
no physical barriers to doing so.5 This vivid patchwork of regional specializa-
tion implies that the brain has evolved solutions that are tailored to the stereo-
typed problems that the natural world produces.

Today only pockets of renegades cling to the fully fledged vision of symbolic 
AI that was articulated by Newell and Simon in their 1975 Turing Lecture. 
However, critics of deep learning—​those who are quickest to highlight its un-
reliable image labelling, nonsensical dialogue, and failures of basic common 
sense—​often appeal loosely to something that sounds like classical AI as an 
alternative. In the closing chapters of Rebooting AI, for example, Gary Marcus 
finds himself proposing that:

Common sense needs to start with [ . . . ] either formal logic or some alternative that 
does similar work, which is to say a way of clearly and unambiguously representing 
all the stuff that ordinary people know.

Marcus’ argument is that evolution has tailored the brain for the world, and 
that AI researchers should embrace the nativist tradition and do likewise. 
Drawing on the work of developmental psychologists, such as Elizabeth 

	 4	 Whilst most prosopagnosic patients have difficulty recognizing people (such as their spouse), but not 
animals (such as their pets), for at least one patient, the converse was true (Bornstein et al. 1969).
	 5	 Respectively: somatoparaphrenia, Wernicke’s aphasia, bradykinesia, anterograde amnesia, executive 
dysfunction, and akinetic mutism.
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Spelke, Alison Gopnik, and Susan Carey, he argues that human children are 
born with cognitive start-​up tools that allow core functions to develop with 
dogged inevitability. These include strong prior assumptions about how time, 
space, and objects interact, and powerful tendencies to pay attention to bio-
logically and socially relevant stimuli, and a predilection for language, casual 
inference, and theory of mind. His claim is that the shortcomings of current 
AI systems—​their narrowness, brittleness, and sample inefficiency—​can be 
mitigated by building in better inductive biases. Marcus has been criticized 
for failure to propose plausible alternatives to the current cult of simplicity.6 
However, he is not alone in harbouring a sense of unease with the tidy vision 
that one generic master algorithm (or simple cost function) will ultimately 
rule them all. Depending on your viewpoint, this nativist vision offers either a 
refreshing counterweight to a monochrome empiricist view in current AI re-
search or a naive throwback to the failed methods of a century past.

Thus, we have a conundrum. Natural intelligence, our existence of proof for 
generality, relies on inborn computation implemented in highly stereotyped 
neural circuits. However, AI researchers claim that the field has consistently 
advanced by shedding inductive biases and allowing big data and computa-
tion to work their magic. So what gives? Unfortunately, this debate between 
AI nativists and empiricists has morphed from a sober academic debate into 
something of a heated culture war, in which protagonists on either side talk 
past each other in mutual incomprehension. However, if we take a closer look, 
there may be more agreement than is commonly realized.

Firstly, it is unclear whether the algorithmic purity that epitomises the em-
piricist view is, in fact, a real driver of progress, as the bitter lesson proposes. 
Strident empiricists argue that inbuilt inductive biases hold back research, 
drawing their lesson from the history of AI. One popular refrain is a quote at-
tributed to Fred Jelinek, a pioneer of NLP at IBM: ‘Every time I fire a linguist, 
the performance of the speech recognizer goes up’. As the field embraced deep 
learning and rejected the baggage of hand-​engineered computation, AI’s most 
sacred milestones began to tumble. However, these coincidences of these two 
variables need not imply that they are causally related. Instead, they could 
both be driven by a third confounding factor. A plausible culprit is that over 
the same time period, computational power has increased a trillionfold and 
massive sources of digital data have become available from the internet. Thus, 
the fact that empiricism has stolen the zeitgeist in AI research need not be the 
cause of the field’s progress—​perhaps yet stronger inductive biases really do 

	 6	 He has also not helped his own case by combining a combative style with a certain naivety about what 
neural networks can and cannot be expected to do.
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help AI progress, but they are masked by the historical trend that as AI phil-
osophy has tended towards empiricism, it has been powered by digital tech-
nologies that have advanced beyond measure. If this is the case, then stern 
warnings about not repeating the errors of symbolic AI are, in fact, simply ex-
hortations to not revisit a bygone era of punch cards and vacuum tubes. This is 
a view that presumably everyone can get behind.

The main issue, however, seems as always to be a basic disagreement about 
the nature of the problem itself. Nativists like Marcus argue that progress in 
AI research is held back by a reluctance to build in strong inductive biases. 
But in fact, machine learning researchers are constantly developing new in-
ductive biases, and this creativity is undoubtedly the critical engine of pro-
gress in the field.

One reason that we cannot avoid inductive bias is that the yardstick of 
performance in machine learning research is always the ability to generalize 
from training to test. By focussing on held-​out evaluation conditions, AI re-
searchers sensibly prime their agents for deployment in a world where all ex-
periences are novel and all challenges unfamiliar. Once released in the wild, 
agents will not perform a single, narrow task that has been written down by 
the researcher but face the unknown ‘meta-​task’ that is set by the demands of 
an uncertain future. However, there is a basic principle, familiar to all AI re-
searchers, that sometimes goes unvoiced in this debate. There are an infinite 
number of equally viable ways to solve an optimization problem, and thus a 
limitless number of routes to meeting the objective provided by the training 
data. This means that it is impossible to assert that any algorithmic approach—​
from the scruffiest to the neatest—​is better or worse unless you consider the 
nature of the generalization problem that the network will ultimately tackle.7

This intuition was neatly exposed in a paper from 2016, in which the au-
thors showed that it is perfectly possible to train deep convolutional networks 
to convergence on ImageNet, even after randomly shuffling the object labels. 
The network simply learns an extremely convoluted discriminant function 
that maps pixels onto the nonsensical supervision, effectively memorizing 
the training set in its entirety. In doing so, it learns nothing about flamingos, 
shirts, or ambulances, and thus totally fails to generalize to new objects—​so its 
performance on the test set is at chance.8 The wider lesson is that the problem 
of how to optimize an agent for generalization is inherently underspecified. 
The right way to learn depends on information to which an agent has no 

	 7	 This is related to the no free lunch theorem, and it states that any two optimization algorithms are 
equivalent when their performance is averaged across all possible problems.
	 8	 See (Zhang et al. 2017).
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access—​the tasks or problems that it will face in the future. In practice, it is 
the AI researcher who knows (or guesses) what the validation conditions will 
be. Thus, out of all the possible ways in which the network could learn, the re-
searcher is obliged to bias it towards that which is best suited for the expected 
test set—​that which allows it to generalize as effectively as possible.

Thus, inductive biases are not algorithmic gremlins that cognitive scien-
tists foist upon AI researchers to the detriment of progress. They are the bread 
and butter of everyday machine learning research. The familiar algorithms to 
which we owe the success of deep learning—​such as the convolutional filter, 
the LSTM, and now the transformer—​are inductive biases. Each of these in-
novations tailors the network to a class of problem that it can expect to meet in 
the generalization set. As we have seen, convolutions adapt the network for a 
world in which objects are translation invariant, LSTMs prepare the network 
for environments in which decision-​relevant information is available over 
multiple timescales, and transformers equip it to dynamically reweigh past in-
formation as new context comes to light. Each of these algorithms has super-
charged progress in AI research. But each is an inductive bias, and implicitly a 
microtheory about the nature of the problem that AI is destined to solve.

One corollary of this observation is that it is perfectly possible for both the 
apparently irreconcilable views of both nativists and empiricists to be correct. 
The optimal strength of an inductive bias for AI depends on the breadth of the 
generalization conditions that an agent can reasonably expect to encounter in 
the future. We have seen repeatedly that the computations observed in biology 
are helpfully adapted to the true structure of the natural world. For humans, 
this means the existence of cognitive functions are tailored to account for the 
nature of space, time, objects, words, bodily actions, and rewards—​the fun-
damental building blocks of our existence. But there are limits to our gen-
erality: it is bounded by what is needed, given the structure of the world. 
Our brain expects the world to be smooth and coherent, so we cannot cope 
with randomly permuted sensory signals. It expects the distant past to have 
diminishing relevance, so we cannot remember everything. It expects us to 
learn to speak a single language, so there is an early critical period for lan-
guage acquisition (and many people struggle to learn a second tongue). It ex-
pects the world to be Euclidean and three-​dimensional, so we cannot readily 
navigate in four dimensions or readily reason about high-​dimensional non-​
linear systems.

This means that if we imagine that AGI will experience the natural world 
in which we live, it will need at least the same level of generality that we enjoy. 
It will not need to cope with a world in which objects pop randomly in and 
out of existence, where gravity is inverted or time runs backwards, or where 
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all people look exactly the same. But if the inductive biases are too strong, 
the system will show limited generalization. For example, if we handcraft lan-
guage according to the principles handed down from psycholinguistics, an 
agent may be unable to capitalize on its knowledge of syntax to program in 
Python, read Braille, or signal in semaphore. The battle between nativists and 
empiricists is cast as being about whether inductive biases are a good idea. But 
it is ultimately a debate about what AI is for.

AI researchers are thus architects of inductive biases. But the question re-
mains of whether it is to the human brain that we should look for inspiration 
when designing algorithms. Is the human brain up to the job? Do we really 
want AI systems that mimic natural intelligence, or might something better 
be possible?

8.3  The best of all possible brains?

In the opening lines of his recent book What Makes Us Smart, the psychologist 
Sam Gershman asks a simple question: how can we apparently be so stupid 
and smart at the same time?

He goes on to explain this paradox:

On the one hand, the catalogue of human error is vast: we perceive things that 
aren’t there and fail to perceive things right in front of us, we forget things that hap-
pened and remember things that didn’t, we say things we don’t mean and mean 
things we don’t say [ . . . ] and yet there is an equally vast catalogue of findings in 
support of human rationality: we come close to optimal performance on domains 
ranging from motor control and sensory perception to prediction, communication, 
decision-​making and logical reasoning.

We do indeed like to think of ourselves as rational beings. In fact, vast swathes 
of theory in psychology and neuroscience have been hewn from this opti-
mistic vision of our mental powers. The idea was forged in a rationalist trad-
ition dating back to Descartes. It was nurtured by experiments that explored 
our ability to think strategically in chess or infer the validity of syllogisms. Its 
most recent incarnation is a focus on our propensity to reason like intuitive 
Bayesians.9 Even without formal training in statistics, people can often accur-
ately guesstimate quantities and likelihoods, from the outcomes of sporting 

	 9	 In Chapter 3.
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events to elections to the probable length of a poem or a monarch’s reign. 
Thus, a long tradition argues that we make credible decisions based on the in-
formation available to hand.

Others attribute credit for the trajectory of our success as a species to our 
ineffable powers of reason. One popular perspective is that humans occupy 
a cognitive niche—​that we have eked out a special place for ourselves in the 
hierarchy of species by evolving dedicated cognitive abilities for solving prob-
lems.10 This view goes hand in hand with the idea that life is a race for survival, 
in which all animals must run just to stand still, because in the competition 
for resources, one organism’s predator is another’s prey.11 The niche we have 
found is to outwit other species through both dedicated and general-​purpose 
systems for goal-​directed thought. Our superlative brains allow us to reason 
in sophisticated ways about physical and social systems, and thus to fashion 
tools from the objects around us, formulate plans of entrapment, use plants 
as medicines, and coordinate with social others, allowing mutualism, condi-
tional cooperation, and the emergence of cumulative culture. Evolution, it is 
argued, has selected directly for clear-​sightedness and a penchant for reality 
over falsehood.12 In the words of Steven Pinker:

a hominid that soothed itself by believing that a lion was a turtle, or that eating 
sand would nourish its body would be out-​reproduced by its reality-​based rivals.

It is certainly comforting to believe that we earned our role as apex predator 
through brains, rather than through brawn. But are people actually as ra-
tional as this view implies? What about those shortcomings which induce 
even healthy, educated adult humans to fall cognitively flat on our faces? What 
about our tendency to make diabolical life choices, to get involved in crime 
or substance abuse and end up behind bars? To remain trapped for decades 
in a hopeless marriage or a thankless career? What about our ability to dupe 
ourselves with infeasible stories, and to fall prey to the tall tales of fraudsters 
or the fantasies of cultists and conspiracy theorists? For example, one study 
from the 1980s showed that 99% of US college students believed in some 
form of supernatural phenomenon, such as telepathy, levitation, or ghosts, 
and 65% reported having personally experienced these phenomena. More re-
cently, during the 2019 coronavirus (Covid-​19) pandemic, false beliefs about 

	 10	 Discussed in Chapter 2.
	 11	 This is known as the Red Queen hypothesis, from the character in Lewis Carroll’s magical fable 
Through the Looking Glass, who explains to Alice: ‘Now, here, you see, it takes all the running you can do, to 
keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!’
	 12	 For a contrary view, see (Prakash et al. 2021).
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quack remedies spread like wildfire, and many people believed the illness was 
a hoax. It is hard to reconcile Pinker’s rational hominid with these distinctly 
irrational beliefs.13

Thus, as Gershman noted, there is a flipside to this story: a tirade of work 
suggesting that people, in fact, reason poorly about both validity and prob-
ability. This idea began with a trickle of evidence in the 1960s and 1970s, a 
time when most psychologists were still enthusing about human rationality. 
Two psychologists—​Daniel Kahneman and Amos Tversky—​began to quietly 
dissent. Over the intervening decades, the trickle has become a roar.

Kahneman and Tversky noted that in many contexts, humans seemed to 
ignore or abuse the laws of probability, leading to biased and suboptimal de-
cisions. For example, the basic tenet of the Bayesian decision theory is that 
priors and likelihoods should carry equal weight when computing pos-
terior beliefs. However, in their experiments, people were unduly prone to 
overlooking base rate (or prior) probabilities when new evidence came along. 
For example, when a medical test is good, but not perfect (e.g. 99% accurate), 
and the prevalence of the condition for which it is testing in the population 
was very low (say one in a million), an affirmative result has a very high prob-
ability of being a false positive. However, participants—​including trained 
medical staff—​often failed to appreciate this, seemingly placing too much 
faith in the likelihood (test result) over the prior (base rate).

Similarly, people often failed to grasp the basic statistical principle that 
larger sample sizes imply more reliable results. For example, participants did 
not understand that if 55% of a sample of 10,000 people said they would vote 
Republican in the next elections, this is better news for the Grand Old Party 
than if 55% of only 100 people reported the same.14 When making economic 
choices, for example when choosing between gambles described by a sum of 
money and a probability of receipt, people often seemed to behave as if there 
was a premium on certainty—​so whilst a sure bet of £100 should be worth 
just £1 more than a 99% chance of £100, people would pay a higher premium 
to move from uncertainty to certainty—​a result on which the multibillion-​
dollar insurance industry is founded. People can even accept or reject the very 
same option, depending on how the choice is framed. In a classic experiment, 
the psychologist Eldar Shafir asked participants to choose between multi-​
attribute alternatives, such as vacation packages, that differed in price and 
glamour. For example, they might have been asked to choose between a cheap, 
but relatively unexciting, trip to Baltimore, and a costly, but exotic, holiday in 

	 13	 See (Messer & Griggs 1989).
	 14	 See (Kahneman et al. 1982).
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Bali. When asked which one they preferred, they chose Bali—​presumably be-
cause it was exciting. But when asked which they dispreferred, they also chose 
Bali—​presumably because it was expensive.15

These findings jumpstarted an industrious academic subdiscipline aimed 
at cataloguing the frailty and fallibility of human reason. We are unduly 
optimistic—​we overestimate how much we will enjoy our next summer 
holiday. We are overconfident—​we are sure that the capital of Australia is 
Sydney (it is Canberra). We seek to blindly confirm, rather than question, our 
theories about the world—​attributing information that is inconvenient for our 
beliefs to error, chance, or malfeasant intervention. We show an unreasonable 
preference for the status quo—​we will pay more to hang onto our possessions 
than what they are actually worth, and neglect to make self-​interested finan-
cial choices unless they are presented as a default. We can prefer or disprefer 
a choice option, depending on whether it is pitched as a gain or an avoidance 
of loss. We see patterns in randomness and form superstitious beliefs about 
coincident events, believing that misfortune comes in streaks, or convincing 
ourselves that a chance meeting with an old friend is destiny and not seren-
dipity. Our preferences and beliefs change from day to day like the weather, 
and we can find ourselves supporting diametrically opposing arguments in 
short succession.16 It seems that despite flashes of apparent rationality, we are 
not always so smart.

Thus, is human rationality a self-​serving fiction? If so, this casts doubt on 
the nativist argument. What if, in the attempt to build in human virtues, we 
inadvertently build in human vices?

Infants arrive in the world with strong constraints on time courses and 
pathways for learning, and their brains are highly structured in ways that are 
consistent across individuals. Thus, nativists argue that because natural in-
telligence does not start with a blank slate, neither should AI. However, this 
critique only makes sense if one sees the trajectory of learning in a neural net-
work as recapitulating the development of an individual (ontogeny), but not 
the evolution of the species (phylogeny). In the natural world, computation 
did ultimately emerge from scratch and was entirely sculpted by experience—​
only this happened over evolutionary time, rather than during a single life-
time. Thus, whilst at first glance, it looks like natural intelligence owes its 
success to the invisible sway of our genes, acting like a researcher that adeptly 

	 15	 See (Shafir 1993).
	 16	 Optimism bias (Sharot 2011), overconfidence (Yates et al. 1997), status quo bias (Samuelson & 
Zeckhauser 1988), and numerous other fallacies of judgement and decision-​making (Kahneman 
et al. 1982).
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builds in face perception or sentence comprehension, ultimately these abil-
ities were acquired from a learning algorithm that acted upon either our syn-
apses or our DNA.

If we see the training of a deep learning agent as recapitulating the whole 
trajectory of evolution, then the question arises of whether the general intel-
ligence that we happened to have evolved—​the human flavour—​is the best 
possible solution. As far as we know, the tree of life has a single set of roots—​
evolution only happened once. In fact, we have already seen that diverse intel-
ligences can emerge across animal species that occupy distinct environmental 
niches. Some empiricists might argue that there is a sort of naive exception-
alism to the view that we should try to build in the particular intelligence that 
we humans happen to have evolved. The philosopher Gottfried Leibniz fam-
ously proposed that we live in the best of all possible worlds, a view that is 
pilloried in Voltaire’s satirical tale Candide. It is possible that nativist advo-
cates of enhancing AI with human-​like cognition have simply fallen prey to 
the Panglossian fallacy that we happen to have evolved the best of all possible 
brains.17 If untried computational pathways are more effective, might we be 
stymying our AI systems by building in natural intelligence?

Gershman’s answer to this question seeks to rescue us from unreason. He 
argues that human intelligence is uniquely adapted to make the best possible 
decisions under the natural constraints of limited data, computation, and 
time. To negotiate the real world, we harness two principles: we rely on our 
prior beliefs when sensory evidence is noisy, and on frugal approximations 
when computation is costly. The first principle entails that perception, cogni-
tion, and action are inevitably shaped by inductive biases that are just strong 
enough to compensate for the paucity of data that the senses are able to col-
lect and process. These biases instantiate ways we tend to see and understand 
the world. They are moulded in an intertwined way by experience and hard-
wired developmental pathways, which carefully steer our world model to-
wards stereotyped intuitive beliefs about physical things (how objects interact 
in space) and social others (how people interact in social settings). Thus, when 
sensory evidence is weak, noisy, or ambiguous, we can fall back on these prior 
biases, using the probability calculus laid out by Bayes’ rule to factor them op-
timally into our inferences about the world.

Thus, we might say that there are good and bad news for biological agents. 
The bad news is that the world is an uncertain place. Sensory signals are noisy 
and ambiguous, information is only partially observable, and biologically 

	 17	 I am indebted to Sam Gershman for this metaphor (albeit in a different context).
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relevant variables are volatile, stochastic, or chaotic. We have limited time and 
resources to make sense of it all. The good news is that we know a lot of stuff. 
Our generously endowed brains allow for richly structured inductive biases—​
prior tendencies and knowledge that help us make judicious choices in the 
face of the unknown. We know how sentences work, so we can guess what is 
being said in a noisy bar. We know how scenes work, so we interpret a blurry 
oblong on the sidewalk as a pedestrian.18 These priors are our model of the 
world. This model encodes our understanding of things, processes, and their 
interactions: our common-​sense beliefs about how the world works.

However, under this view, we sink or swim, based on the quality of our 
priors. Where our model of the world is accurate, we appear smart—​seemingly 
miraculous reasoners who make finely honed judgements on the scantiest of 
evidence. When it is fallacious, we appear dumb—​we fall prey to perceptual 
illusions, cognitive misjudgement, and economic irrationality—​leaving us 
at risk of gambling away our life savings or forming delusional beliefs about 
aliens or the dangers of vaccination. Rationality and irrationality are two sides 
of the same coin; they are both a hallmark of neural machinery adapted to 
deal with the natural world where time, information, and computation are 
scarce—​a world where the brain runs on the power of a lightbulb, the slowest 
organism starves or gets eaten, billions of neurons are packed into the limited 
confines of the skull, and the evidence of our senses is forever uncertain.

This answer to the question thus is unfailingly optimistic. Human brains 
are not perfect, but they are just as good as they should be. Echoing the argu-
ment above, the claim is that the mind is exactly as structured as it needs to 
be, given the regularities of the natural world and the inevitable constraints 
of biology. Even where we fail—​where our beliefs are delusional or our pol-
icies self-​defeating—​we do so whilst employing a computational logic that is 
as good as it can be, given what the world is like.

What does this mean for AI research? This picture of the mind agrees that 
the constraints we should impose on, or inculcate in, an AI system depends 
on the nature of the problem that it will be deployed to solve. If our compu-
tational budget is constrained, or agents will be obliged to make rapid, high-​
stakes decisions in a noisy environment, then copying human inductive biases 
is probably a good idea. However, if we can draw upon limitless computa-
tional resources, or permit our agents to ponder indefinitely, then other path-
ways to success may be more fruitful.

	 18	 See (Bar 2004) and (Oliva & Torralba 2007).
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8.4  Is the mind flat?

In Douglas Adams’ comedy Hitchhiker’s Guide to the Galaxy, a hapless 
Englishman called Arthur Dent narrowly escapes the destruction of planet 
Earth and is forced against his will into an intergalactic adventure, clad only 
in a shabby dressing gown. As the story unfolds, Dent is, in turn, befuddled, 
daunted, and exasperated by a series of alien concepts: that a towel is essential 
for space travel, that Vogon poetry is a form of torture, that the Earth was a 
supercomputer run by mice, and that to understand foreign languages, you 
need to insert a small fish in your ear.19 Adrift in the far reaches of the uni-
verse, Dent never really grasps the basic tenets of extraterrestrial culture and 
technology. He finds it all very illogical, and spends most of the story wishing 
he could head back home and put the kettle on for a nice cup of tea.

When we imagine AGI, we think of a system that can deal judiciously 
with the unexpected. Perhaps we imagine an agent that (despite an earth-
bound past) can grasp the idiosyncrasies of the galaxy with similar adroitness 
to Arthur’s friend Ford Prefect, a seasoned space traveller whose relentless 
savvy helps extricate them from every calamity. Back home on planet Earth, 
we hope that AGI will be versatile, creative, and resourceful. A generally in-
telligent agent can adapt rapidly to an unfamiliar social situation, master the 
strategy demanded by a new game, or grasp the structure of a foreign lan-
guage. Over the past chapters, we discussed pictures of the mind that revolve 
around thinking and knowing or that emphasize the learning of abstractions, 
or a value function, or complex memory systems. So what is it that makes gen-
eral intelligence possible?

A recurring theme of this book is that humans owe their intellectual powers 
to an unusually lavish model of the world. We heard this argument in the im-
mediately preceding section, with the proposal that people form powerful 
causal models that can be used to make sense of an inherently uncertain world. 
Earlier, we discussed the knowledge structures and concepts that people har-
ness to join the dots between objects, events, and words. Abstractions allow 
people to express their experiences using analogies, metaphors, and stories. 
We saw that the human hippocampus is a nexus for high-​level abstractions, 
housing concept cells that encode semantic knowledge in ways that transcend 
the physical properties of the referenced item.20 Subsequently, we argued 
that the PFC may be important for reuse of past task knowledge, by encoding 

	 19	 Vogons are green slug-​like aliens with a love of bureaucracy and ‘as much sex appeal as a road accident’.
	 20	 In Chapter 5.
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action sequences and plans in ways that were divorced from their immediate 
targets of action, allowing Jared Diamond to make sense of the rituals of New 
Guinea Highlanders that were initially as alien to him as Vogon culture was to 
Arthur Dent.21

By harnessing a world model, agents can bring existing knowledge to bear 
on new problems. When you meet a new acquaintance, you know nothing 
about them, but you understand the niceties of social introductions. When 
you encounter a new board game, you don’t know the rules, but you under-
stand the concepts of turn-​taking, meeples, and winners and losers. When 
you hear a new language, you don’t know the vocabulary, but you understand 
that there will probably be nouns, verbs, and adjectives. This knowledge—​
our model of the world—​is our toolkit for dealing with the future. Like the 
Hitchhiker’s Guide itself, it equips us to make sense of forthcoming events, 
even if they are exotic, astonishing, or alien.

However, there is a caveat to this story. Unfortunately, there is good evi-
dence that human mental models are much less reliable and versatile than we 
might hope. This invites a view that the mind is flat—​that a tendency towards 
mental shallowness, rather than depth, is our most distinctive human trait.

In 2002, Frank Keil and Leonid Rozenblit published a seminal paper ar-
guing that people suffer from a powerful illusion of explanatory depth that is 
distinctive to theory-​like knowledge. People are marvellous storytellers, cap-
able of finding a thousand inventive ways to reason about cause and effect. If 
I ask you why water looks blue, you might confidently tell me that it is because 
it reflects the sky. However, when subject to scrutiny, our stories turn out to 
be flimsy and self-​contradictory. For example, when graduate students at Yale 
University were asked to assess their own knowledge of how the heart pumps 
blood, or how a sewing machine works, they initially reported high levels of 
confidence. However, when asked to provide explanations, they stuttered and 
stumbled. Keil and Rozenbilt found that after this botched attempt to explain, 
participants’ faith in their own understanding plummeted. Thus, their mental 
models were shallower and more fragile than they realized (in fact, water 
appears blue because it absorbs more long-​wavelength light, removing red, 
yellow, and green from the light it reflects back).

Adopting a similar position, the psychologist Nick Chater has argued con-
vincingly that our mental models are flimsy and improvised.22 He suggests 
that the human mind cobbles percepts and ideas together on the fly, makes 
up stories and fills in gaps, and fabricates our beliefs and preferences in an ad 

	 21	 In Chapter 7.
	 22	 In his book called The Mind is Flat.
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hoc fashion. We do not, he argues, really know what we want, or understand, 
or believe—​or even grasp the detail of what we are actually seeing or hearing. 
In fact, psychologists have long puzzled over the confused or downright bi-
zarre responses that people often give when debriefed about the experiments 
in which they have just participated, or the elaborate, but implausible, jus-
tifications that they give for life decisions, political views, or preferences for 
consumer products.23 Contrary to the hopes of both economists and RL re-
searchers, who wish us to have a stable, consistent, and well-​defined internal 
value function, people seem to be remarkably suggestible—​even where their 
own subjective preferences are concerned.

One fascinating instance of this is the phenomenon known as choice blind-
ness. In a study conducted in Sweden, people were asked to fill out question-
naires about their political views. After submitting their answers, they received 
them back and were asked to verbally explain their views. Unbeknownst to 
participants, researchers switched the answer sheets, so that left-​leaning 
people received right-​leaning answers back, and vice versa. Of the 75% who 
failed to notice, many were happy to provide elaborate justifications for pol-
itical positions opposing their own, apparently blind to the choices they had 
just made. Similar effects have been described with preferences about facial 
attractiveness and the taste of tea or jam.24

Choice blindness is an instance of post hoc rationalization, the tendency 
to invent motives in the light of actions, rather than choosing actions to sat-
isfy motives. We have already encountered the post hoc rationalizations of 
disappointed millenarians who woke up to find that the world has not ended 
as prophesied.25 But rationalization is ubiquitous in more mundane settings. 
For example, rationalization can satisfy a bias for optimism when a punter 
believes that the horse they have just bet on is more likely to win. It can give 
our decisions a sheen of morality, as when a partygoer explains to themselves 
that eating the last slice of cake spared the other guests from feeling awkward. 
Nick Chater proposes that our beliefs and preferences are invented on the fly 
by retrieving and interpreting memories of actions we have taken in the past. 
For example, I know that I like apples more than oranges because I remember 
that I ate a Granny Smith for lunch every day last week. Instability of prefer-
ence can thus arise when we randomly sample different memories (e.g. on one 
random occasion, I recall eating a delicious satsuma, and thus briefly assume 
I have a preference for oranges over apples).26

	 23	 See (Nisbett & Wilson 1977).
	 24	 See (Hall et al. 2010), (Johansson et al. 2005), and (Strandberg et al. 2020).
	 25	 In the discussion of cognitive dissonance in Chapter 6.
	 26	 See (Stewart et al. 2006).
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Of course, our beliefs, preferences, and values are not entirely stochastic, 
so they cannot be driven entirely by what we happened to do in the past. 
Otherwise, people would be equally likely to be scared of kittens as of snakes, 
because that subset of people who initially (randomly) ran from a kitten 
would interpret this as meaning that kittens are dangerous, prompting them 
to flee in the future and further reinforcing the belief. A softer version of this 
theory limits its application to our declarative knowledge, allowing prefer-
ences to be ultimately grounded in implicit behaviours, such as innate reflexes 
or overlearnt habits. If I am innately afraid of snakes, or implicitly desirious 
of cake, then my rationalized beliefs (that cake is the right way to celebrate a 
birthday, and that snakes are dangerous venomous animals) are ways by which 
I explain these implicit tendencies to myself. The psychologist Fiery Cushman 
has argued that rationalization may, in fact, be adaptive, because it allows us 
to distil our implicit habits into causal models, shoring them up more firmly 
within an integrated web of explicit knowledge.27

If our mental models (and even value functions) are unreliable and make-
shift, then this places limits on our ability to generalize between old and new 
settings. This is important, because in both neuroscience and AI research, 
the idea has taken root that the special magic of the human intellect—​not 
shared by current AI systems—​is our ability to transfer. This is betrayed by 
the opening lines of many of the most influential research papers cited in the 
preceding chapters, which fondly assert that the human ability to form ab-
stractions and generalize from a single learning example is the key to our su-
perlative intelligence.28 However, these claims should be placed in the context 
of a voluminous literature that—​for more than a hundred years—​has tried to 
assess the efficacy of human transfer learning. The answers have not always 
been clear-​cut.

Across the twentieth century, there were numerous reports of seemingly 
impressive human transfer—​that after tackling one problem, humans were 
faster at solving other problems that were related, but different. In one classic 
study from 1980, conducted by Mary Gick and Keith Holyoak, participants 
were presented with a challenging puzzle in which rays of variable strength 
had to be deployed to destroy a tumour without damaging the overlying 
healthy tissue. The counterintuitive solution is to angle several weak rays, so 
that their beams converge at the tumour, giving it their cumulative force, but 

	 27	 See (Cushman 2020).
	 28	 ‘Humans have a remarkable capacity for generalizing experiences to novel circumstances,’ reads 
one. ‘People learning new concepts often generalise successfully from just a single example,’ reads at least 
one other. Or more pithily: ‘Abstract reasoning is a hallmark of human intelligence.’ These assertions are 
unreferenced, presumably because it is hard to know what to cite.
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sparing the tissue through which they pass. Participants were found to solve 
this more readily if they had previously encountered an apparently different 
reasoning problem with a similar structure that involved commanding troops 
to storm a castle through multiple entrances at once.29 This is, of course, an 
attempt to study in the laboratory the sorts of analogical processes evoked 
earlier, where scientists conceived of atoms as planets, or gases as billiard balls, 
or chemical bonds as ballroom dancers.30

However, others are more sceptical. Thorndike, for example, had serious 
doubts about whether people were able to transfer learning between domains. 
In an early experiment, he asked human participants to estimate the area of 
differently sized shapes. After training for a few thousand trials on rectangles, 
participants improved on estimating the area of rectangles, but not of other 
shapes such a circles and triangles.31 In 1901, he wrote:

Improvements in any single mental function rarely brings about equal improve-
ment in any other function, no matter how similar, for the working of every mental 
function-​group is conditioned by the nature of the data in each particular case.

Almost a century later, in a comprehensive survey of human transfer learning, 
Douglas Detterman sums up with a similarly pessimistic view:32

First, significant transfer is probably rare and accounts for very little human behav-
iour. Studies that claim transfer often tell subjects to transfer or use a ‘trick’ to call 
the subject’s attention to the similarity of the two problems. Such studies cannot 
be taken as evidence for transfer. We generally do what we have learned to do and 
no more. The lesson learned from studies of transfer is that, if you want people to 
learn something, teach it to them. Don’t teach them something else and expect 
them to figure out what you really want them to do.

Detterman notes that in many studies purporting to show transfer, like Gick 
and Holyoak, participants may not spontaneously redeploy knowledge from 
one domain to another. Rather, there are typically two tasks, and participants 
receive strong hints or verbal encouragement to use knowledge obtained from 
one to solve the other. Transfer thus may be less of an experimental result and 

	 29	 Known as the Dunker radiation problem and the Attack–​Dispersion story, respectively (Gick & 
Holyoak 1980).
	 30	 In Chapter 5.
	 31	 See (Woodworth & Thorndike 1901).
	 32	 See (Detterman 1993).



290  A picture of the mind

more of a demand characteristic of the study.33 Like other fleeting and spon-
taneous effects, transfer is hard to capture in the lab, raising doubts about its 
ubiquity in the wider world.

How can we understand the generality of human intelligence in the light of 
these failures of generalization? One answer is to note that not all generaliza-
tion conditions are created equal. When studying humans, cognitive scientists 
have helpfully distinguished between near and far transfer.34 Near transfer is 
the routine recycling of past knowledge to deal with similar, but non-​identical, 
experiences. For example, if I know how to ride a bicycle, I might reuse those 
skills when learning to ride a scooter. Skills are readily shared between do-
mains because bikes and scooters look alike—​they both have two wheels, 
brakes, and a saddle—​and thus afford a similar set of actions. Humans and 
other animals are good at near transfer, as are some deep RL agents.35 For ex-
ample, after training on rectangles, Thorndike’s participants were able to es-
timate the area of new rectangles that they had not seen before. Near transfer 
allows us to cope with a natural world that is infinitely variable, but highly 
structured, so that we encounter similar streets, chores, and conversations 
from one day to the next.

By contrast, far transfer requires inference to transcend the physical proper-
ties of a stimulus and focus on relational properties, such as how the parts re-
late to one another. This is the sort of process that Gick and Holyoak set out to 
interrogate in the lab. For example, having learnt that a firebreak can be used 
to contain a forest fire, I might infer that social distancing can be used to stem 
the spread of a disease through the human population. Here, any knowledge 
being transferred is not about trees or people. Instead, it is about the relational 
property that is shared between domains. But here, the evidence that humans 
can spontaneously transfer relational abstractions is mixed or dubious. We 
may have learnt the concept of ‘firebreak’ in the context of geography, and we 
may understand its use in the context of medicine, but we cannot reliably use 
this abstraction to spontaneously generate solutions to reasoning problems 
involving the spread of one entity through the medium of another.

It is plausible that we struggle to deploy abstractions to solve far transfer 
problems because—​as Chater argues—​our mental models are much more 
shallow or fragmentary than they appear. We know a lot of facts. We can re-
count information about people, places, and events. We can tell stories about 

	 33	 A demand characteristic is a feature of the task that strongly cues participants to behave in the way that 
the experimenter wishes them to.
	 34	 See (Haskell 2001).
	 35	 See (Kirk et al. 2022).
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past occurrences and dream up plausible-​sounding explanations for ob-
served phenomena. But our mental theories lack depth. Even educated people 
struggle to explain basic facts about the world. How does oxygen keep you 
alive? How is electricity produced? To whom government debt is owed? For 
the most part, our understanding of even basic processes is quite patchy. Thus, 
our human repertoire of abstractions and our ability to use them for transfer 
may be more limited than we would hope.

If our mental models can be unreliable and far transfer is elusive, then where 
does our generality come from? What makes us quotidian polymaths? How is 
it that we can readily navigate the streets of a new town, conduct transactions 
in an unfamiliar currency, or rapidly learn the niceties of a formal social oc-
casion? How is it that after learning five languages, we are quick on the uptake 
with the sixth? What makes a chess player be faster to master three-​way chess, 
or hexagonal chess, or the Indian variant called chaturanga?

8.5  Concepts and programs

Eratosthenes of Cyrene was the John von Neumann of the third century bc. 
Many of his contributions to mathematics, astronomy, and geography have 
been handed down to the modern era. He is credited with computing the cir-
cumference of the Earth with less than 2% error, a remarkable feat for an era 
when intercity distances were still measured by professional pacers with con-
stant stride length.36 He also famously invented the Sieve of Eratosthenes, a 
tool for discovering prime numbers. It works by gradually eliminating mul-
tiples of successive integers starting from 2, each forming a sort of numerical 
colander that catches the composites and allows the primes to fall through. 
His algorithm is used to this day in number theory.

We marvel at the creative mind that solved these problems more than 
two millennia ago. But there are at least two lenses through which to view 
Eratosthenes’ feat. Through one, we see a triumph of reasoning. Primes are not 
composites; composites are multiple integers; thus, successively remove these 
multiples and primes remain. Through the other, we see a masterful feat of ab-
straction. The sieve, a basic tool which may be as old as agriculture itself, sifts 
the fine grains from coarse; Eratosthenes transfers this knowledge to invent a 
mathematical sieve, which separates desired from undesired numbers. Thus, 

	 36	 To achieve this, he used visionary flights of reasoning: he measured the distance between two cities on 
the same meridian, and the angles of the shadows cast at noon on the solstice, and combed them using the 
newly discovered trigonometric theory about how to combine the arc and chord of a circle.
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Eratosthenes might be using Hebb’s intelligence A, by thinking logically about 
sequences of integers; or he could be drawing on Hebb’s intelligence B, by 
generalizing his world knowledge from the kitchen cupboard to the number 
theory. These are the two routes to intelligence—​thinking and knowing—​that 
have been weaved together across the pages of this book to tell a story about 
natural intelligence.

The natural world is infinitely restless, and each experience is at least partly 
novel. This means that intelligent agents are obliged to generalize. The problem 
that agents face—​the meta-​task for natural intelligence—​is thus to learn about 
the environment in a way that prepares for an unspecified transfer problem in 
an uncertain world. The most general forms of understanding, and the strongest 
forms of generalization, occur when agents can acquire abstract concepts. Thus, 
in psychology and neuroscience, a great deal of research has been directed 
to studying how humans acquire the knowledge that populates their mental 
landscape—​including semantic knowledge about people and places, and even 
more abstract relational knowledge such as the fact that family trees and bio-
logical taxa share a common hierarchical structure. As we have seen, the world 
has a stereotyped structure, so agents that learn and develop in ways that prepare 
for that structure will be maximally adapted to solve the meta-​task.

We typically think of generalization as relying on neural codes for per-
ceptual, semantic, or relational information in memory. For a vanilla deep 
learning system, such as a convolutional neural network trained to recognize 
natural scenes, the formation of abstractions allows sophisticated forms of 
pattern recognition. For example, we have seen that deep networks trained 
on ImageNet learn neural codes that signal both objects and high-​level cat-
egories. When we use multimodal input signals that mix language and visual 
information—​as in giant foundation models—​deep networks can even learn 
highly abstract semantic categories, such as Christmas and African. In this 
class of model, in which mappings are learnt among iconic representations 
(e.g. images) and symbolic representations (e.g. words), concepts act like keys 
that automatically unlock meaning. Thus, the concept of a cat automatically 
links together words and images referring to Cruikshanks, the Song of the 
Jellicles, and Halle Berry.37 Similarly, an abstract representation coding for 
small spheres in orbit around a large sphere jointly refers to both atoms and 
solar systems, allowing a person equipped with such a representation (such 
as Bohr) to make the analogy. For this type of model, abstractions act like a 

	 37	 Halle Berry is the actress that plays Catwoman. The Jellicle Song features in T. S. Elliot’s poetry collec-
tion Old Possum’s Book of Practical Cats.
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multifaceted bunch of keys, allowing us to recognize the common ways in 
which the world is structured.

However, this class of computation alone is not sufficient for intelligence. 
Learning abstract patterns in data is undoubtedly an important part of what 
makes natural intelligence special. However, intelligent agents also need to 
act. Taking actions means engaging in a reciprocal cycle of interaction with 
the world, governed by a control policy. To date, RL is the most promising 
framework for describing how this happens, as demonstrated by the many re-
cent successes in training agents to master complex tasks, such as MuZero. 
However, it seems unlikely—​despite what some have argued—​that ‘RL is 
enough’. The RL framework is very well suited to problems (like board and 
video games) that have simple objectives, like winning or maximizing score. 
But life is not a game. Life is an open-​ended problem with unclear objectives. 
Living long and well probably requires agents to optimize over homeostatic 
goals (keeping many things in balance, such as hunger and thirst) as much as 
heterostatic goals (obtaining as much of one thing as possible). Thus, it seems 
very likely that we will need to make significant advances in understanding in-
trinsic rewards—​the way in which motivated behaviour is structured towards 
self-​generated goals—​before RL agents are viable across a wide range of nat-
uralistic settings.

One of the most important innovations of recent years is the development of 
complex memory systems for RL agents. Memory systems untether RL agents 
from the present, and allow them to learn sophisticated, structured control 
policies that depend on past information. Memory is not just a temporary 
store for data. Memory systems allow agents to acquire highly structured con-
trol policies that can be reused in novel situations. For example, meta-​RL can 
be used to train agents to rapidly adapt to new tasks. Thus, whereas large gen-
erative models allow us to transfer abstract concepts, sophisticated RL systems 
are beginning to allow us to generalize structured programs. This means that 
in addition to recognizing new patterns in data—​to rapidly make sense of new 
sensory experiences—​intelligent agents are beginning to be able to generalize 
control policy tasks, to grapple strategically with unseen tasks and achieve 
novel goals.

Both cognitive scientists and AI researchers have attempted to discover 
the primitive mental operations from which tasks in the real world tend 
to be composed. For example, neural networks or probabilistic programs 
have been equipped with operations like gating, recursion, or branching; 
or the computation of conjunction (AND) and disjunction (NOT) oper-
ations for program induction. This is a very fundamental project: to define 
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the natural space of tasks, the atomic set of operations that an intelligent 
agent needs, given the way that sensory data, time, space, objects, rela-
tions, and rewards are organized in the natural world. This work is the 
modern-​day descendent of the earliest approaches to AI that were based 
on symbolic computation and highly constrained logical inference. 
However, unlike the classic approaches, in which these operations were 
endowed by hand, in many modern systems, they are partly or wholly 
learnt from experience.

As always, researchers have to decide how to trade off the generality and 
data efficiency of their systems. Bayesian approaches to this problem usually 
involve a hand-​engineered state space or specific assumptions about the prior, 
which can limit their generality. By contrast, connectionist approaches are 
more flexible, but often painfully hungry for data. The highly structured pat-
terns of computation that are observed in the PFC and hippocampus of hu-
mans and other primates seem to imply that natural intelligence has settled on 
a good compromise, involving a minimal set of maximally general constraints 
on control processes. Meta-​RL similarly offers a promising compromise, but 
via a different approach. It eschews handcrafting but instead uses curriculum 
learning—​control over the set of tasks encountered during meta-​training—​to 
constrain the neural programs that can be learnt and generalized. As such, it 
evokes a principle observed in the natural world, whereby young members 
of a species are raised in highly stereotyped conditions that shepherd their 
learning in directions that are favourable for the adult environment. For hu-
mans, this prominently includes the fact that, where possible, we send our 
children to school.

By generalizing both programs and concepts, intelligent agents can use 
both thinking and knowing to solve new problems. Where one route fails, 
the other can take up the slack. It is interesting to observe that many of the 
oft-​quoted feats of extraordinary human abstraction—​from Eratosthenes 
devising his sieve for prime numbers to Bohr seeing the analogy between 
atoms and the solar system—​seem to involve exceptional, once-​in-​a-​
generation geniuses whose flashes of creative insight dramatically reshaped 
the course of their field. Thus, whilst generalization of the most abstract 
concepts—​spontaneously grasping the relational similarities across wildly 
different domains—​is a characteristic of human thinking, it may be a vanish-
ingly rare one. For the rest of us, intellectual mere mortals, our quotidian pol-
ymathy probably does not come from such grandiose feats of undertanding. 
Rather, our mental models are more patchy and fragmentary than we would 
hope—​the mind is flat. A more ragged conceptual universe makes it hard to 
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apprehend complex problems with a single take or to spot deep relational 
patterns at a single glance, so we have to fall back on other means.

Fortunately, another route exists. We can generalize an ability to deploy 
mental operations—​or transfer programs—​to devise new solutions on 
the fly. Thus, where knowing falls short, thinking steps up. By generalizing 
programs for control, we can rapidly adapt to new settings. Thus, whilst 
most people’s capacity for zero-​shot far transfer is limited, we can solve com-
plex tasks by rapidly composing new policies out of a handful of primitive 
building blocks, just as meta-​RL agents redeploy the task solutions acquired 
during meta-​training. When asked to tidy a room, items of different shapes 
and sizes might be strewn in random positions, but you apply a structure 
program for gathering, sorting, shelving, and discarding the various items. If 
you are finding your way through a new city, you can apply a program that in-
volves following major thoroughfares, keeping track of landmarks, or asking 
for directions. Of course, language—​the substrate we use both to commu-
nicate and to order our own thoughts—​is fundamentally compositional in 
nature. Thus, whilst you have probably never imagined an elephant playing 
a trumpet whilst riding a bicycle before, you can do so effortlessly now you 
have read those words. The ability to think compositionally is at the heart of 
natural intelligence.

Composition promotes representational efficiency, by allowing infinite 
productivity from finite means. Thus, natural systems have evolved a bias 
to learn neural programs that facilitate the on-​the-​fly composition of ad 
hoc solutions to novel problems. This is presumably how we all become 
quotidian polymaths: we learn to think. The immense complexity of the 
natural world and the limits that physics and biology place on the time 
and capacity available for information processing mean that we all come 
to rely on a minimal set of useful mental operations. These include biases 
to explore the world in ways that facilitate this very process, by seeking 
out information, satisfying curiosity, exerting control, and meeting self-​
generated objectives. In other words, natural intelligence learns how to 
learn over multiple timescales, from the cradle to the grave. It seems likely 
that building systems that learn increasingly sophisticated forms of struc-
tured computation—​that learn to generate and compose yet more versatile 
programs over longer timescales—​is going to be an important way forward 
for AGI research.

This leaves one final question. What is the outlook for AGI? Is it plausible 
that we will ever actually build a general intelligence—​an AI system whose in-
tellectual versatility rivals our own?
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8.6  Artificial intelligibility

The iconic image known as The March of Progress has inspired a thousand 
imitators (Figure 8.1A). First published in 1965, it shows a line of anthropoid 
figures. The forms at the rear are ape-​like, but they gradually give way to the 
noble, upright, and hairless form of modern man. The image conveys a com-
pelling idea: that evolution is synonymous with progress towards the well-​
groomed ideal represented by modern-​day Homo sapiens.

However, that idea is wrong. Evolution does not march along a single axis, 
gradually perfecting organisms towards human likeness. Rather, it branches 

Village idiot

EinsteinChimp

Mouse

(A)

(B)

Fig. 8.1  (A) The abbreviated version of ‘The Road to Homo Sapiens’, also known as ‘The 
March of Progress’ from Early Man (1965).
(B) A one-​dimensional view of intelligence.
Adapted from Superintelligence, 2014 (Figure 8).
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and buckles as each organism adapts idiosyncratically to its environment—​
acquiring the physical and behavioural characteristics best suited to its niche. 
In his book Wonderful Life, the evolutionary biologist Stephen Jay Gould de-
scribed the many pathways that evolution has followed and then abandoned 
(such as five-​eyed fish discovered in the fossil-​bearing deposit known as the 
Burgess Shale).38 His conclusion is that:

life is a copiously branching bush, continually pruned by the grim reaper of extinc-
tion, not a ladder of predictable progress.

Today, orthogenic theories of evolution—​the idea that organisms evolve to-
wards a single, well-​defined goal—​are discredited and largely obsolete.

However, our vision of intelligence still has this teleological ring to it. AI 
researchers, cognitive scientists, and assorted futurists conceive of mental 
ability as varying on a single axis that runs from subhuman to human to 
superhuman intelligence. The lowliest organisms are defined by their lack of 
human-​like capacities, and we imagine future AI systems as those with human 
brains scaled to extraordinary heights. We administer tests of reasoning such 
as RPM to our primate cousins and note where they fail, and we imagine that 
AGI will use superlative reason to turbocharge science and technology be-
yond human limits. We question whether non-​human species are capable of 
metacognition, whilst imagining that future AI systems will read our minds. 
In his book Superintelligence, Nick Bostrom depicts this march of intelligence, 
with mouse and chimp giving way to village idiot and then Einstein, but with 
the axis continuing on the way into the far reaches of intellectual omnipotence 
(Figure 8.1B).

However, this picture ignores the diversity in intelligence that is found in 
the natural world. In his book Are We Smart Enough to Know How Smart 
Animals Are?, the ethologist Frans de Waal charts the extraordinary variation 
in cognitive abilities across the animal kingdom.39 Simultaneously, he decries 
our narrow view of the intellect:

We love to compare and contrast animal and human intelligence, taking ourselves 
as the touchstone. [But] the comparison is not between humans and animals, but 
between one animal species—​ours—​and a vast array of others. I look at human 
cognition as a variety of animal cognition. It is not even clear how special ours is 
relative to a cognition distributed over eight independently moving arms, each 

	 38	 See (Gould 1989).
	 39	 See (de Waal 2016). His answer is a resounding ‘no’.
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with its own neural supply, or one that enables a flying organism to catch mobile 
prey by picking up the echoes of its own shrieks.

The theme of de Waal’s book is that every animal displays its own unique form 
of intelligence, adapted to its goals and environment. Humans are blind to the 
intelligence that other animals display. With typical human exceptionalism, 
we tend to recognize that animals are smart only when this claim fits with our 
own anthropocentric vision of what intelligence entails. We struggle to under-
stand the politics that unfold in a community of orangutangs, we are per-
plexed by the games dolphins play whilst hunting, and we cannot fathom the 
principles of collective organization that allow a colony of termites to build 
megastructures a thousand times their height. Thus, psychologists are scep-
tical that animals can form abstract concepts, and whether they strategize, 
plan, or think creatively—​because they assume that animals equipped with 
these skills will display them in exactly the same way that people do.

We fail to recognize the intelligence of other species because we do not 
share their umwelt. The concept of the umwelt was developed by the biolo-
gist Jakob von Uexküll in the early twentieth century. It refers to the internal 
model by which an animal understands the world. An animal’s umwelt de-
pends on its local environment, its embodied form, its desires and goals, and 
its interactions with conspecifics. Thus, agents with different bodies, habitats, 
and social structures struggle to understand one another. This is why your cat 
looks at you with such disdain, why you probably haven’t yet persuaded your 
dog to play hide-​and-​seek, and why zoo animals occasionally eat their keeper. 
It is also the basis of the philosophical argument that we cannot understand 
what it is like to be a bat, or that if a lion could speak, we would not be able to 
understand it.40 Even humans from different societies struggle to understand 
each other, which is, of course, why Western psychologists have historically 
demeaned or dismissed the intelligence of cultural groups living outside of 
their own WEIRD enclave.

If we ever build strong AI, it will have its own umwelt. This umwelt will 
be moulded by the information provided to its sensors, its action space, the 
structure of its world knowledge, the organization of its memory, the nature 
of its goals, and how it is motivated to act. For AI researchers, there are a vast 
number of ways in which these variables can be specified. One important 
consideration is that we are not attempting to build AGI just to satisfy our 
scientific curiosity. We are doing so for a purpose—​to help humans in their 

	 40	 Thomas Nagel and Ludwig Wittgenstein, respectively.
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endeavours. In the words of optimistic start-​ups and frontline tech com-
panies, we are building AI to make the world a better place. But if we want AI to 
be useful to people, it will need to share our umwelt. If we build an AI that sees 
the world in a radically different way to us, its behaviour and mental states will 
be unintelligible. Such an agent will be at best unreliable and at worst unsafe.41 
Thus, the probability that we will succeed—​building a system with which we 
can usefully interact—​depends on whether the design principles we choose 
lend themselves to AI systems that share our unwelt. In other words, when 
building Artificial Intelligence, we need to consider Artificial Intelligibility.

During the heyday of classical AI, one of the field’s most excoriating critics 
was the philosopher Hubert Dreyfus. Dreyfus is best known for a prescient 
endorsement of sub-​symbolic AI systems at a time when the field was largely 
contemptuous of neural networks. But in his 1986 book Mind Over Machine, 
he makes a more subtle point that is levelled at connectionist models:

If it is to learn from its own ‘experiences’ to make associations that are humanlike 
rather than be taught to make associations that have been specified by its trainer, a 
net must also share our sense of appropriateness of output, and this means it must 
share our needs, desires, and emotions and have a humanlike body with appro-
priate physical movements, abilities, and vulnerability to injury.

Dreyfus is arguing that if we want to build AI systems that exhibit human-​like 
intelligence, with whom we can interact in pursuit of human-​centred goals, 
these agents will need to think in ways that make sense to us. Presumably, we 
want systems with which we can converse, which will be able to use theory of 
mind to infer our beliefs and desires, and that perform tasks in ways that we 
think are reasonable, effective, and safe. For this to be realized, AI systems will 
need to at least partially form mental states that overlap with ours, via experi-
ences that at least partly resemble our own, using a brain that is not radically 
different from those found in the natural world.

Dreyfus also notes the extent to which the ways that we understand the 
world are grounded in our physical nature (we have bodies) and our social 
and affective nature (we occupy a place in the community). Critically, it seems 
questionable whether AI systems will ever share these properties with us. If 
we were to build AGI, it would probably not have a body like ours. It would be 
unlikely to have feelings or desires that resemble those of people. We would 

	 41	 The argument being made here is related to the idea that we need to build AI that is aligned to human 
values. But here, a stronger case is being made. I am arguing that if AI systems do not share our way of 
looking at the world, they will not be considered ‘intelligent’ by any reasonable definition of the term.
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presumably not want it to occupy the same place in society as humans do. 
Thus, it seems quite unlikely that any system we build will ever share our um-
welt. However, it is incumbent upon us, as we build stronger systems, to con-
sider the extent to which their intelligence is intelligible to us. This project has 
already begun, with an upswing of interest in the ethics and safety of machine 
learning research and the foregrounding of human value alignment as a pri-
mary desideratum for AI.

Across this book, we discussed the question: should we try to build AI sys-
tems that emulate the structure and function of the human mind? In the AI 
community, some people advocate strongly against this view. The prevailing 
view among many researchers—​those who accept the bitter lesson—​is that at-
tempts to mimic the way humans learn, or to copy the way biological brains 
have evolved, are a distraction that will lead us astray in our pursuit of general 
intelligence. Instead, they argue that we should allow structured computation 
to emerge by itself, fostered by the twin engines of powerful optimization and 
massive computation.

The use of self-​play to solve board games—​a method that allows for 
the development of novel strategies, beyond those that humans may have 
discovered—​is emblematic of this approach. For example, AlphaZero played 
against instances of themselves to gradually learn from scratch, to becomes 
the strongest ever player of Chess, Shogi, and Go—​even beating variants of 
itself that had been trained directly on human data.42 The resulting policies 
were, in some cases, unrecognizable to other human players. For example, in 
Shogi, AlphaZero was prone to moving its King to the centre of the board, 
defying conventional wisdom. In chess, a whole book was written discussing 
the merits of its unconventional play.43

The fact that AlphaZero made discoveries that enlarged human knowledge 
of chess and Go is remarkable. But adversarial games are special in that they 
entail a crisply defined goal. As we move out of the sandbox and into the real 
world, the risk is that allowing AI systems to learn in ways that are untethered 
to human knowledge and thought will encourage agents to spiral off into 
modes of thinking and patterns of behaviour that are unintelligible to people. 
If future AI systems learn sophisticated policies that are divorced from human 
goals or concerns, or form mental states that we do not either agree with or 
understand, then their utility to us will be limited. We can already begin to 
see what happens when the data on which AI systems are trained are chosen 
indiscriminately. When supervised models learn from large-​scale digital data 

	 42	 See (Silver et al. 2018).
	 43	 See (Sadler & Regan 2019).
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selected for their availability and convenience, they often make decisions 
which are unfair, opaque, or illogical. This is because these data are not cur-
ated to align their decisions with those that humans might make.

The argument made here thus is that AI systems without human-​like in-
telligence risk being either useless or unsafe. This further motivates the 
argument that when building AI, we should study and learn from natural in-
telligence. David Marr—​a pioneer of theoretical neuroscience who died tra-
gically young—​bequeathed to the field a tripartite structure for describing a 
computational system. The highest level defines its computational goals, the 
intermediate level describes the algorithms developed to meet those goals, 
and the lowest level specifies the substrate in which those algorithms are im-
plemented.44 When I say that we should emulate nature, I do not mean that 
we should slavishly try to mirror how neurons produce action potentials or 
mimic the varieties of transmitters and peptides it uses for signalling. The 
utility of studying natural intelligence is at the computational and algorithmic 
levels.

At the computational level, the natural world constrains the ways in which 
intelligence works. Time runs forwards, and so we need memory systems. The 
world is composed of features, objects, and scenes, so our sensory systems 
must be hierarchically organized. The world varies smoothly, so we need to 
learn generalizable functions; but it also contains exceptions, so we need to 
store instances and one-​off events. Many courses of action are possible, so we 
need to reason, plan, and strategize. Our goals can be far off, and the trajec-
tory towards them uncertain, so we need intrinsic and extrinsic motivational 
signals to keep us going. The world is noisy and uncertain, so our policies and 
inferences must be robust. The world contains other agents, so we need to im-
pute and infer beliefs and desires and learn socially adaptive responses. As we 
have seen, natural intelligence is exquisitely honed to account for the way the 
world is structured.

It remains to be seen whether we will ever build systems with human-​like 
general intelligence. But if we want any such systems to be safe, and if we 
wish to employ them to make the world a better place, then we should think 
carefully about the way in which evolution has given rise to natural general 
intelligence.

	 44	 Other terminology that has been used to make this distinction includes ‘semantic, syntactic, and phys-
ical’, or ‘content, form, and medium’. See (Glass et al. 1979) and (Pylyshyn 1989).
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