
[image: image]

MongoDB
Complete Guide

[image:]

Develop Strong Understanding of Administering
MongoDB, CRUD Operations, MongoDB
Commands, MongoDB Compass, MongoDB Server,
MongoDB Replication and MongoDB Sharding

[image:]

Manu Sharma

[image:]

www.bpbonline.com

FIRST EDITION 2021

Copyright © BPB Publications, India

ISBN: 978-93-89898-866

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers,

150 DN Rd. Next to Capital Cinema,

V.T. (C.S.T.) Station, MUMBAI-400 001

Ph: 22078296/22078297

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747

[image:]

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

www.bpbonline.com

Dedicated to

All My Family Members and Friends:

My Grandmother:
Shrimati Pushpa Devi

My Parents:
Shri Vijay Sharma
Shrimati Neelam Sharma

My Wife:
Anu Sharma

My Sister:
Neha Sharma

And Specially to My Angel Daughter:

Siya Sharma

About the Author

[image:] Manu Sharma (MPhil) is having more than 17 years of industry experience in Software Development at Architect Level, Web Administration, Project Management and Execution, Product Development and Team Management. He has worked in various Multinational Companies, Small to Mid-Sized Organizations, Universities as well as one of the Biggest Conglomerate of India. He is also the Founder, Architect and Developer of two Open Source Projects. In his free time, he loves to spend his time with his family and daughter. His other interests are singing and Arts, during some weekend you can find him Singing and Recording Music in Studios, Playing Flute and sometimes you can catch him with painting brushes in his hand while he paints.

About the Reviewers

Cindreen Clarence is a Technical Lead in Database Technologies and she is having more than 16 Years of Experience in IT, Project Management and Delivery. She carries a lot of Experience in various Databases like Oracle, Microsoft SQL Server and Modern Databases like MongoDB. She is currently working in Wipro Technologies

Dheeraj Chhabra is Techno-Functional Project Manager with more than 16 years’ experience in spearheading loosely coupled service oriented product and project development, architecture design and executing solutions for various initiatives – “Run the Business”, “Protect the Business” and “Change the Business”, having key focus on end-to-end project planning, execution and delivery management.

Dheeraj carries various certifications such as PSM, TOGAF, PMP, SAFe 4, PMI-ACP, SAFe 5 and He is currently working as Technical Project Manager in Ford Motor Pvt. Ltd.

Harish Kumar Buttolia is MSC (IT) from Punjab Technical University, Harish carries more than 18 years of experience in IT in different Private and Government organizations. He is having good knowledge in software and application development using open source technologies. He also has various articles/publications published in renewed India/International Journals. He always keen to learn new technologies. He is also interested in writing, reading music and travel.

Harish is currently working as a Scientist in ICMR (Indian Council of Medical Research), New Delhi where he is one of the core members of development team who develop and manage Covid19 patient’s National data collection application, data analytics and Antimicrobial Resistance Surveillance System (AMR).

Rohit Agarwal is a Sr. Data Architect at Virtustream (A Dell Technologies Business). He is specialize in providing end to end solutions to the various teams by creating data architecture, pipelines & managerial reporting system. This helps the Datacenter Platform & Operations folks to learn more about their data by taking better decisions, perform managerial reporting by using different tools, etc. He earned his master’s degree in information system from Northeastern University, Boston, in the year 2017. He have a keen interest in Entrepreneurship & Innovation, and He is learning the same in Harvard School, Boston. In his free time He love to get indulge in the new activities like Photography, reading, fitness (Kickboxing), etc.

Shailesh Soni is technically accomplished IT professional with enrich experience of more than 16 years in service and as well as product based organizations with insightful experience in various aspects of software development using multiple technologies.

Shailesh carries vast experience in software development and currently working as Solution Architect at Table Space Technologies.

Acknowledgement

First of all I am thankful to almighty God to provide me with the opportunity to write a Book, I am very thankful to Mr. Nrip Jain (Head, Business Development Group, BPB Publications) for believing in me and offering me to write this Book.

I would like to thank all Family Members and Friends for continuously encouraging me for writing the book — I could have never completed this book without their support.

I am also thankful to all my Gurus and Teachers in life for their teachings and blessings.

My Special Thanks to my Daughter “Siya” for supporting me during the Book Journey.

I feel great to have some college time friends most of them are still in touch with me including my college buddies from ET&T as well as few other friends Dr. Krishna Kabir, Sanjay Gupta, Amit Goel, Rajan Goel, Dharmender, Sunil Saini, S K Rai, Ron Buening, Amit Puri, Harsh Thukral – Thank You All

I am very thankful to Mr. Dheeraj Sareen who have been my life long mentor and Immediate Supervisor in 5 Organisations including the Present one. One of the Best Person whom I met in my Professional Life.

I am thankful to Prof. R.B. Solanki who has guide me when I was doing MPhil under his Guidance.

I am also very Thankful to David Hirschfeld (Founder, CEO and CTO of my ex-organisation, Tekyz Inc) and Yaseen Shaik (CTO of my Present Organisation, Spiralyze LLC) to be my Technical Mentors and always giving their best insights of Technology and Current Trends.

I would like to also thank few People from my Previous and Present Organisation(s): Amit Sood, Harish Buttolia, Sanjay Dagar (@ Webcom Systems) Hemant Malik, Kuldeep Singh Sidhu, Anurag Sharma, Dheeraj Chhabra, Sailesh Soni, Mahesh Pal, Vineet Malhotra (@ Infopro) Prof. S.P. Narang, Dr. Pratul Sharma, Anupam Kaushik, Vipin Sharma, Sourav Basu, Jatinder Jeet Singh (@ Shri Ram New Horizons) Anupam Srivastava (@ Miracle Technologies) Raj Bawa, LK Gahlot, Prakash Dutta, Sunil Kumar (@JBi Digital) Sailesh Tyagi, Joby Jose, Rajesh Singh, Shailendra Dixit (@TSI India) Gayathri P Borker (@ Tekyz Inc) Prof. A.K Bakshi, Dr. Vimal Rarh, Dr. Arun Julka (@ University of Delhi), Gajan Retnasba (One of the best CEOs that I worked with), Mamoon Mustaque, Nikunjkumar Balar, Yuriy Kycha-Kolot, Bhavesh Vavadiya (@ Spiralyze LLC)

My gratitude also goes to the entire team at BPB Publications for being always supportive during the entire Book Journey and whenever I need their help they were always available to help me.

Last but not the least I am very thankful to all the Technical Reviewers of this Book, I really appreciate their hard work during Technical Review of this Book and thankful to them whenever they have corrected me in some places which requires changes.

Preface

This book covers MongoDB in a manner keeping the view for the Beginners who wanted to learn MongoDB staring from the Introduction of MongoDB and why it is different from other traditional databases. The Chapters in this Book are divided into 3 Main Topics covering MongoDB from Its Basics to the Intermediate Level and then at last covering some very Advance topics.

So a Beginner who will start his journey to learn MongoDB can easily feel the progress from one Chapter to the next one. At last when reader will finish his journey he will have a great confidence of Mastering the MongoDB.

This book is written with a great thought process and covers almost every topic of MongoDB used in daily use cases. Every Chapter and Topics are explained in a detailed Step by Step Practical Manner with the use of Diagrams, Codes, Commands and Screenshots which will make this Book very interesting to read.

Whether it is the Introduction of MongoDB, Installation Part, Introduction to Storage Engines, MongoDB Shell, CRUD Methods, Indexes in MongoDB, Query Selectors, Projection, Aggregation, MongoDB Compass, MongoDB Administration and Management or some Advanced Topics like Replication or Sharding, each and every topic is well placed so that the flow of the reader will remain intact and reader will enjoy reading the entire Book by learning it Practically with the Code and Commands explained in the Book.

The First Main Topics are Basic Level Topics and will consist of the following 9 chapters, in which you will learn the following:

Chapter 1 will focus the Introduction to MongoDB and its Architecture, it will cover the basics and key terms of MongoDB in a manner which is easier for a beginner to understand very quickly. This Chapter also gives the introduction about the concept of Document based Database and NoSQL Databases and how these are different from SQL based databases. We will be also covering the MongoDB Architecture is a very easy manner with the help of Diagrams. In the last topic of this chapter we will also cover the Core Concepts and Vocabulary of MongoDB and will also compare these terms with respect to the SQL based Databases.

Chapter 2 will focus the Installation and Steps to Setting up MongoDB on Windows 10 powered machines. This chapter will also cover the post installation checks and the overview of MongoDB editions. So in this chapter you will be learning about how to download MongoDB for Windows and then how to install it correctly on your Windows Machine, This chapter also covers the Enterprise Advanced Edition of MongoDB and advantages to use it. This chapter is full of Step by Step method explained with Screenshots so that you are able to understand the Installation and Setup of MongoDB very easily on Windows OS Platforms. This chapter also covers the Post Installation Steps so that you can easily verify that if MongoDB is correctly installed on your Windows System.

Chapter 3 will focus the Installation and Steps to Setting up MongoDB on Machines powered by Linux Operating System (We have used Ubuntu OS the widely used variant of Linux Operating System). This chapter will also cover the post installation checks for MongoDB Installation for Linux Operating Systems. So in this chapter you will be learning about how to download MongoDB for Linux and then how to install it correctly on your Linux Machine. This chapter is full of Step by Step method explained with Screenshots so that you are able to understand the Installation and Setup of MongoDB very easily on Linux OS Platforms. This chapter also covers the Post Installation Steps so that you can easily verify that if MongoDB is correctly installed on your Linux System.

Chapter 4 will focus the Installation and Steps to Setting up MongoDB on Machines powered by macOS (Mac Operating System). This chapter will also cover the post installation checks for MongoDB Installation for Mac Operating Systems. So in this chapter you will be learning about how to download MongoDB for macOS and then how to install it correctly on your macOS Machine. This chapter is full of Step by Step method explained with Screenshots so that you are able to understand the Installation and Setup of MongoDB very easily on macOS Platforms. This chapter also covers the Post Installation Steps so that you can easily verify that if MongoDB has correctly installed on your macOS System.

Chapter 5 will learn the basics of MongoDB, including the overview of MongoDB Databases, MongoDB Collections and MongoDB Documents. This Chapter will explain you the difference between the terminologies used in the MongoDB, which is different from the other types of Databases like RDBMS in more detailed manner. This Chapter also gives you an overview of MongoDB Shell and covers some Basic Shell Commands. In last topic, this chapter will also give you an introduction to MongoDB Clients which can be useful to connect to MongoDB Server and perform various operations that you can perform easily using these MongoDB Clients.

Chapter 6 will learn the concept of Storage Engines in Database Management Systems and why they are used. This chapter also covers the concept of Storage Engines and explain the Storage Engine with the help of Diagram. This Chapter also covers the Storage Engines which are used in MongoDB such as WiredTiger Storage Engine as well as In-Memory Storage Engine. We will be also covering Encrypted Storage Engines and well as Third Party Pluggable Storage Engines in this chapter and also compare the Main Storage Engines with respect to their features. This Chapter will also cover the concept of Locks in the Database and also covers the overview of Locks in MongoDB.

Chapter 7 will learn the basic Commands and Methods which are used for Managing and Administrating MongoDB. We would be learning these Commands and Methods with the help of MongoDB Shell. We will learn how we can create, update and delete Databases, Collections and Documents using MongoDB Shell with the Help of MongoDB Shell Commands and Methods. We will also learn how we can create, update and delete documents using MongoDB Query and Write Operations Shell Commands and Methods. Later in this Chapter we will be learning MongoDB Authentication and Role Based Access Methods and how we can use them in MongoDB using MongoDB Shell Commands and Methods.

Chapter 8 will learn more about the MongoDB Shell Methods which are used to Connect to the MongoDB Server. We will start with the JavaScript in MongoDB and also covers and overview of list of various other Languages which are officially supported by MongoDB. We will also cover the commands related to the Database in which we will cover various methods related to Database Management, we will be also covering various methods related to Collections and how we can Manipulate MongoDB Collections using these Methods. At last we will be covering Cursor in MongoDB and what are various Cursor related Methods in MongoDB that we can use. These methods are very useful and we can use them in various scenarios while working with MongoDB.

Chapter 9 will learn about the Data Types which are can be used in MongoDB. We will start with the introduction of Data Type what exactly it is and then we will also cover an overview of the BSON Data Types. There are different types of Data Types which are used in MongoDB and each one of them are having different properties and structure and each of them are used in different scenarios some of them are widely used and some of them are not very frequently used.

The Second Main Topics are Intermediate Level Topics and will consist of the next following 7 chapters from Chapter 10 to Chapter 16, in which you will learn the following:

Chapter 10 will learn about the MongoDB CRUD Operations, we will be covering the operations which are helpful in Creating Documents, Reading Documents, Updating Documents and Deleting Documents in MongoDB. We will also be covering the Bulk Write Operation in MongoDB. All of these examples will be explained in Step by Step Manner. We will be covering all these by giving the Practical Example and also covers various Methods to perform all these Operations. There are multiple Methods for each Operation that we will be covering in this Chapter. We will be also learning about the various Options such as ordered, multi and justOne which we will be using in various MongoDB CRUD Methods and we will be also covering the Field Update Operators which are used in MongoDB Update Methods. These CRUD Operations are very important in day to day working with MongoDB and there are used by Application Developers quite frequently.

Chapter 11 will learn about the MongoDB Intermediate Concepts. In this Chapter we will be covering the topics like Atomicity and Atomicity in MongoDB, we will also learn about Consistency and Consistency in MongoDB, This Chapter also gives the Basic Introduction to Replication and Sharding and how they are useful. Later in this Chapter we will cover the MongoDB specific Distributed Operations and Queries in which we will look how the Read and Write Operations are performed when we use Replication and Sharding in MongoDB.

Chapter 12 will learn about the concept of Indexing, in this chapter will start from the introduction to Indexes and their benefits where we will learn that Indexes are special type of data structures in Data Base Management Systems like MongoDB which stores the data in easy to traverse form we will be also giving Introduction to MongoDB Default _id Index and learning more about its properties, we will then learn how we can create an Index in MongoDB. Later in this chapter we will study the different Types of Index which we can create in MongoDB with the step by step Practical Examples. We will also study some of the different Index Properties which we can use in MongoDB while we create an Index in MongoDB. We will also study how we can use Indexes with other MongoDB Methods, we will also learn about the Collation and how we can use it with MongoDB Index. In the Last part of this Chapter we will be covering about how we can view the existing Indexes and how we can delete the existing Indexes from the MongoDB Collection.

Chapter 13 will learn about the MongoDB Query Selectors, we will start with the basic Introduction to the Query Selectors and why they are useful, we will be covering different types of Query Selectors that are available in MongoDB and then we will be also covering these Query Selectors by Step by Step Practical Examples.

Chapter 14 will learn about the Projection in MongoDB by giving its introduction and what are the benefits of using Projection. In the Later Part of this Chapter we will be covering the Projection Operators by giving their Introduction and we will be covering the various Types of Projection Operators which are available in MongoDB. In the Last Section of this Chapter we will be covering some Projection Operators with Step by Step Practical Examples.

Chapter 15 we will get introduced to Aggregation in MongoDB and Benefits of using MongoDB Aggregation. We will be learning about Aggregation Expression Types and we will also covering Aggregation Expression Types with Step by Step Practical Examples. Later in this Chapter we will be covering the Map-Reduce in MongoDB, what are the benefits of using Map-Reduce and we will be learning Map-Reduce with some Practical Examples. In the last Section of this Book we will be covering the Aggregation Pipeline and its benefits, we will be covering how Aggregation Pipeline works in MongoDB in detailed manner and at last we will be using some Step by Step practical Examples to understand the Aggregation Pipeline in better way.+

Chapter 16 we will learn about MongoDB Compass which is the Official GUI Tool for MongoDB. We will be learning about the Benefits of using MongoDB Compass and how we can install MongoDB Compass on our Machine using Step by Step Method. Later in this Chapter we will be learning about how we can use MongoDB Compass to connect to MongoDB Server. In the Last Part of this Chapter we will be covering MongoDB Compass with some Step by Step Practical Examples which will give us more idea on what we can do with MongoDB Compass.

The Third and the Last Topics are Advanced Level Topics and will consist of the next following 3 chapters from Chapter 17 to Chapter 19, in which you will learn the following:

Chapter 17 we will learn the Advanced Administration Topics of MongoDB which is very helpful to the people who will perform various MongoDB Administrative tasks. In this Chapter we will learn about mongod Process and how to manage mongod process. We will learn about how to monitor and diagnose MongoDB. We will cover the step by step method to how to install MongoDB Tools on our Machine and how to use these MongoDB Tools and various other MongoDB commands to monitor and diagnose MongoDB. Later in this Chapter we will be learning about how we can take MongoDB backups and how we can restore these backups. In later sections of this Book we will cover how we can perform the export and import of MongoDB Data. In the Last Part of this Chapter we will be covering the various important points related to MongoDB Security which we should take care so that our MongoDB Database and its data will get secured.

Chapter 18 we will learn the Replication Part of MongoDB. In this Chapter we will learn about the Replication and Replica Set in a Quick Recap, We will be also learning about the MongoDB Heartbeats and how Heartbeats plays an important role in the replicated environment, We will be also learning that how the election of the new Primary Member takes Place. Later in this Chapter we will cover the Pre Configuration Steps before we start with the practical Step by Step method to create the Replicated Environment with MongoDB Primary and Secondary Instances, We will then also learn how to Setup the Replicated MongoDB Environment with the Step by Step method. In the last Part of this Chapter we will be learning on how we can verify the Replication Setup if it has been configured correctly with the help of the data.

Chapter 19 we will learn the Sharding Part of MongoDB. In this Chapter we will learn about the Sharding and Shaded Clusters in a Quick Recap, We will be also learning Importance of Config Database in the Sharded Environment, We will be also learning about the Shard Keys. Later in this Chapter we will cover the Pre Configuration Steps before we start with the practical Step by Step method to create the Sharded Environment with MongoDB Replica Sets, We will then also learn how to Setup the MongoDB Sharded Environment. We will learning the complete Step by Step Process of Sharding in easy to understand 8 Steps

Downloading the code
bundle and coloured images:

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/dfca4a

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit www.bpbonline.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/MongoDB-Complete-Guide. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/bpbpublications. Check them out!

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Table of Contents

1. Introduction to MongoDB

Structure

Objectives

Introduction

The definition of MongoDB

What is a document database?

What is JSON? How does it look?

Cross-platform

Scalable

Flexible

Classified as NoSQL database

What is a NoSQL database?

An overview of the MongoDB architecture

A quick look into the NoSQL database architecture

A quick look into the MongoDB architecture

MongoDB data platform

Difference from other databases

The concept of NoSQL databases

Types of NoSQL database management systems

Key-value paired databases

Column-oriented databases

Document databases

Graph databases

Introduction to MongoDB basics, core concepts, and vocabulary

Document database

Collections

Support for rich query language

Support multiple storage engines

Some basic MongoDB terminology

MongoDB terminology comparison with SQL databases

Conclusion

Questions

2. MongoDB Installation Setup on Windows

Structure

Objectives

Overview of MongoDB editions

Features of MongoDB Enterprise Advanced Edition

Comparison between MongoDB Community Edition and MongoDB Enterprise Advanced Edition

MongoDB setup on Windows

Installing MongoDB Community Edition on Windows operating system

Installation steps

Conclusion

Questions

3. MongoDB Installation and Setup on Linux (Ubuntu)

Structure

Objectives

MongoDB Setup on Linux

Installing MongoDB Community Edition on Linux Operating System

Installation steps

Method one (Browser method)

Step 1 – Download MongoDB Community Edition

Step 2 – Install MongoDB Community Edition on your Linux machine

Installation Steps

Method two (Shell method)

Steps for installing MongoDB clients (mongo-clients) on Linux based systems (Ubuntu)

Steps for installing MongoDB on Linux based systems (Ubuntu) using the Shell commands

Step 3 –Starting MongoDB on Linux (Ubuntu)

Step 4 – Connecting to MongoDB on Linux (Ubuntu)

Conclusion

Questions

4. MongoDB Installation and Setup on macOS

Structure

Objectives

MongoDB setup on macOS

Installing MongoDB Community Edition on macOS

Installation steps

Conclusion

Questions

5. Getting Started with MongoDB

Structure

Objectives

MongoDB databases

What is a database?

What is a relational database?

What is a NoSQL database?

What is a MongoDB database?

MongoDB collections

What is a table in RDBMS?

What is a collection in MongoDB?

MongoDB documents

Row and column in RDBMS

What is a document in MongoDB?

Introduction to MongoDB Shell

What is a MongoDB Shell?

Connecting to MongoDB Shell

Step 1 – Connecting to MongoDB Shell

Basic Shell commands

 MongoDB Shell basic command helpers

MongoDB Shell command history

Introduction to MongoDB clients

Conclusion

Questions

6. Storage Engines in MongoDB

Structure

Objectives

What are storage engines?

Types of storage engines in MongoDB

Introduction to the WiredTiger storage engine

Introduction to the in-memory storage engine

Encrypted storage engine

Third-party pluggable storage engines

MongoDB storage engines comparison

MongoDB locks

What is a database lock?

Database lock operations types

Database locks operations in MongoDB

Conclusion

Questions

7. Managing and Administering MongoDB

Structure

Objectives

MongoDB administration commands and methods

Create database command

Create collection command

Drop database command

Drop collection command

MongoDB query and write operation commands and methods

Insert document command

Read document command

Delete document command

MongoDB user authentication and role based commands and methods

What is database authentication?

What is role-based access control?

Role-based authentication in MongoDB

Conclusion

Questions

8. MongoDB Shell Methods

Structure

Objectives

JavaScript in MongoDB

Server Side JavaScript in MongoDB

What is map-reduce in MongoDB?

What is $where operator in MongoDB?

List of officially supported languages in MongoDB

MongoDB methods

Step 1 – Connecting to MongoDB Shell

MongoDB connection methods

connect(url,username,password)

Mongo(host, clientSideOptions)

Mongo.getDB(database)

MongoDB database methods

db.getMongo()

db.stats()

db.serverStatus()

MongoDB Collection methods

db.collection.count()

db.collection.stats()

db.collection.totalSize()

db.collection.validate()

db.collection.drop()

MongoDB cursor methods

What is a cursor in MongoDB?

cursor.count()

cursor.pretty()

cursor.sort()

Conclusion

Questions

9. Data Types in MongoDB

Structure

Objectives

What are data types?

Introduction to BSON data types

Data types in MongoDB

Integer data types

String data types

Double data types

Array data types

Object data types

Binary data types

ObjectId data types

Date data types

Null data types

Regular expression data types

JavaScript data types (without scope)

Javascript data types (with scope)

Timestamp data types

Boolean data types

Min and max key

Decimal128

Comparison and sort order

Conclusion

Questions

10. Introduction to MongoDB CRUD Operations

Structure

Objectives

MongoDB create operations

db.collection.insert() method

Method definition

Example 1 – Creating a single document in MongoDB collection

Example 2 – Creating multiple documents in MongoDB collection

db.collection.insertOne() method

Method definition

Example – Creating a single document in MongoDB Collection using insertOne() method

db.collection.insertMany() method

Method definition

Example – Creating multiple documents in MongoDB collection using insertMany() method

The _id Field

Example - Creating a new document by specifying _id key

The ordered option

MongoDB read operations

db.collection.find() Method

Method Definition

Example 1 – Reading documents in MongoDB collection without Query

Example 2 – Reading documents in MongoDB collection with Query

Using Pretty method with find()

Example 3 – Reading documents in MongoDB collection with Query and Pretty method

MongoDB update operations

The $set operator

The $unset operator

db.collection.update() method

Method definition

Example 1 – Updating a single document in MongoDB collection using update() method

Example 2 – Updating multiple documents in MongoDB collection using update() method

db.collection.updateOne() method

Method definition

Example – Updating a single document in MongoDB collection using updateOne() method

db.collection.updateMany() method

Method definition

Example – Updating multiple documents in MongoDB collection using updateMany() method

The upsert option

The multi option

MongoDB delete operations

db.collection.remove() method

Method definition

The justOne option

Example 1 – Deleting a single document in MongoDB collection using remove() method

Example 2 – Deleting multiple documents in MongoDB collection using remove() method

db.collection.deleteOne() method

Method definition

Example – Deleting a single document in MongoDB collection using deleteOne() method

db.collection.deleteMany() method

Method definition

Example – Deleting multiple documents in MongoDB collection using deleteMany() method

MongoDB bulk write operations

db.collection.bulkWrite() method

Method definition

Example – Bulk write in MongoDB collection using bulkwrite() method

Conclusion

Questions

11. MongoDB Intermediate Concepts

Structure

Objectives

Atomicity

What is atomicity?

Atomicity in MongoDB

MongoDB atomicity and multiple document transactions

Consistency

What is consistency?

Consistency in MongoDB

MongoDB and eventual consistency

Basic introduction to replication

Replica sets

Basic introduction to sharding

Sharded clusters

Distributed operations and queries

Read operations on replica sets

Write operations on replica sets

Read operations on sharded clusters

Write operations on sharded clusters

Conclusion

Questions

12. Introduction to MongoDB Indexes

Structure

Objectives

What are indexes?

Indexing and MongoDB

Benefits of indexing

Default _id index

The _id properties

Code 1

Code 2

Creating an index

db.collection.createIndex() method

Method definition

Example – Creating an index in MongoDB collection

Code 1

Index types in MongoDB

Single field index

Example – Creating a single field index in MongoDB collection

Code 1

Compound Index

Example – Creating a compound index in MongoDB collection

Code 1

Multikey index

Example – Creating a multikey index in a MongoDB collection

Code 1

Text index

Example – Creating a text index in a MongoDB collection

Code 1

Special types of index

Geospatial index

Hashed index

Index properties

Unique index

Example – Creating a unique index in a MongoDB Collection

Code 1

Partial index

Example – Creating a partial index in a MongoDB Collection

Code 1

Sparse index

Example – Creating a sparse index in a MongoDB collection

Code 1

TTL index

Example – Creating a TTL index in a MongoDB collection

Code 1

Using an index

Example – Creating and using an index in a MongoDB collection

Code 1

Code 2

Indexes and collation

Example – Creating an index with collation in a MongoDB Collection

Code 1

View index information

db.collection.getIndexes() method

Example – Viewing all the Indexes in a MongoDB Collection

Code 1

Deleting an index

db.collection.dropIndex() method

Method definition

Example 1 – Deleting an index in a MongoDB collection

Code 1

db.collection.dropIndexes() method

Method definition

Example 2 – Deleting multiple index in a MongoDB collection

Code 1

Example 3 – Deleting multiple index in a MongoDB collection using the array type values as parameter

Code 1

Example 4 – Deleting all the indexes in a MongoDB collection

Code 1

Some restrictions in MongoDB index

Conclusion

Points to Remember

Multiple choice questions

Answer

Questions

Key terms

13. MongoDB Query Selectors

Structure

Objectives

Introduction to query selectors

Comparison Selectors

Logical Selectors

Element Selectors

Evaluation Selectors

Geospatial Selectors

Bitwise Selectors

Comment Selector

Examples and use of query selectors

Code 1

Code 2

Examples of comparison selectors

Example 1 - $gt Comparison Selector

Code 1

Selector Details

Example 2 - $lte comparison selector

Code 1

Selector Details

Example 3 - $in comparison selector

Code 1

Selector Details

Examples of logical selectors

Example 1 - $and logical selector

Code 1

Selector Details

Example 2 - $not logical selector

Code 1

Selector details

Examples of element selectors

Example 1 - $exists element selector

Code 1

Selector details

Examples of array selectors

Example 1 - $all array selector

Code 1

Selector Details

Examples of evaluation selectors

Example 1 - $regex evaluation selector

Code 1

Selector details

Conclusion

Questions

14. Projection in MongoDB and Projection Operators

Structure

Objectives

Introduction to projection

How to use projection in MongoDB?

Examples of projection

Example 1 - Show only specific fields

Example 2 - Hide specific fields

Example 1 - Show only specific fields and hide the _id field

Introduction to projection operators

Examples of projection operators

Example 1 - $ projection operator

Operator details

Example 2 - $elemMatch projection operator

Operator details

Conclusion

Questions

15. Aggregation in MongoDB

Structure

Objectives

Introduction to MongoDB aggregation

Aggregation method syntax and use

Examples and use of aggregation method

Examples of aggregation

The MongoDB $group operator

Example 1 - $sum aggregation expression type

Expression type details

Example 2 - $sum aggregation expression type with operation in group output

Example 3 - $sum aggregation expression type with some other field

Example 4 - $avg aggregation expression type

Expression type details

Example 5 - $max aggregation expression type

Expression type details

Example 6 - $push aggregation expression type

Expression type details

Example 7 - $last aggregation expression type

Expression type details

Introduction to map-reduce

The mapReduce() method

Example 1 – mapReduce()

Introduction to aggregation pipeline

What is pipeline?

MongoDB aggregation pipeline

Example 1 – aggregate()

Example 2 – aggregate() with $out

Conclusion

Questions

16. MongoDB Data Manipulations Using MongoDB Compass

Structure

Objectives

Introduction to MongoDB Compass

Installing MongoDB Compass

Installing MongoDB Compass on Windows operating system

Connecting MongoDB Server with MongoDB Compass

Practical examples with MongoDB Compass

Example 1 –Browsing the collections in the database

Example 2–Creating new collection in the database

Example 3–Browsing documents in the database

Example 4–Performing CRUD operations in documents

Example 5–Editing a document

Conclusion

Questions

Points to remember

Multiple choice questions

Answer

Key terms

17. Managing and Administering MongoDB (Advanced Level)

Structure

Objectives

About mongod process

Managing mongod process

MongoDB service in Windows

Running mongod from command prompt

Stopping MongoDB services from Windows service manager

Stopping MongoDB Services from command line – MongoDB Shell method

Monitoring and diagnosing MongoDB

Installing MongoDB tools and utilities

Verifying the installation of MongoDB tools and utilities

Working with MongoDB tools and utilities

mongostat

mongotop

serverStatus

dbStats

collStats

buildInfo

hostInfo

listCommands

ping

getLog

Backup and restore with MongoDB

Taking a MongoDB backup using mongodump

Restoring a MongoDB database using mongorestore

Import and export with MongoDB

Exporting a MongoDB data using mongoexport

Importing a MongoDB data using mongoimport

MongoDB security

Enable authentication

Use role-based authorization (role-based access control)

Encrypt the communication channels and connections

Encrypt your MongoDB data

Use firewalls and restrict all the incoming and outgoing traffic

Regularly perform security audits

Conclusion

Questions

18. Replication in MongoDB

Structure

Objectives

Basic introduction to replication – quick recap

Replica sets

MongoDB heartbeats

Automatic election of the new primary member

Pre-configuration steps

Starting with the MongoDB replication on Windows machine

Verifying the MongoDB replication using data

Conclusion

Questions

19. Sharding in MongoDB

Structure

Objectives

Basic introduction to sharding – quick recap

Sharded clusters

Read and write operations and importance of config database

Shard key

Pre-configuration steps

Starting with MongoDB sharding on Windows machine

Step 1 –Stop the existing MongoDB services on Windows machine

Step 2 – Create the first replica set (our first shard)

Step 3 – Create the second replica set (our second shard)

Step 4 – Create the third replica set (our third shard)

Step 5 – Create the replica set of config servers in the sharded environment

Step 6 - Starting MongoDB in the sharded environment as "mongos"

Step 7 – Adding MongoDB in the shard keys

Step 8 - Verifying the MongoDB sharding using data

Conclusion

Questions

Index

CHAPTER 1

Introduction to MongoDB

This chapter covers the introduction to MongoDB and its architecture it will cover the basics and key terms of MongoDB in a manner that is easier for a beginner to understand. This chapter also gives an introduction to the concepts of document-based databases and NoSQL databases and how these are different from SQL-based databases. We will also cover the MongoDB architecture in a very simple manner with the help of easy-to-understand diagrams. In the last topic, we will cover the core concepts and vocabulary of MongoDB and compare these terms with respect to SQL-based databases.

Structure

In this chapter, we will discuss the following topics:

	Introduction to MongoDB and its architecture

	Basics and key terms of MongoDB

	Introduction to the concept of document-based databases and NoSQL databases

	Difference between the NoSQL databases and SQL based databases

	The MongoDB architecture overview

	Core concepts and vocabulary of the MongoDB

Objectives

After studying this unit, you should be able to understand what exactly is MongoDB and also understand the basics of MongoDB

	Understand what are NoSQL databases

	Compare between MongoDB and other databases

Introduction

MongoDB is one of the top most popular modern databases which is now widely used for building modern day applications. It is different from traditional RDBMS (Relational Database Management Systems) and it is categorized as NoSQL database because of the flexibility of schema which it provides. MongoDB is easy to use and the data is stored in the JSON (JavaScript Object Notation) like format which stores data in key-value pair and it is very easy for developers while they work on database related queries.

Simple to use, Flexible, Powerful, Scalable and Development Friendly are some of key reasons behind the popularity of MongoDB.

The definition of MongoDB

The best way to define MongoDB is from two main sources. The first is the official website of the creators of MongoDB, MongoDB Inc., and the other is Wikipedia.

Let's see how MongoDB is defined by the creators of MongoDB (MongoDB Inc.) and Wikipedia and let us go through these two definitions one-by-one.

According to the official website, MongoDB Inc. MongoDB is a general-purpose, document-based, distributed database built for modern application developers and for the cloud era.

Wikipedia defines MongoDB is a cross-platform document-oriented database program. Classified as a NoSQL database program, MongoDB uses JSON-like documents with an optional schema. MongoDB is developed by MongoDB Inc.

From the above two definitions, let's see the key pointers that define MongoDB:

	Document database

	Cross-platform

	Scalable

	Flexible

	Classified as a NoSQL database

Now, let's dive a little deeper into these concepts and see how these separate MongoDB from other database engines available.

What is a document database?

The document database is a type of non-relational database that is designed to store documents in JSON-like format.

What is JSON? How does it look?

JSON Stands for JavaScript Object Notation and it is one of the widely used open standard file formats which uses human-readable text to store and transmit data. It is a lightweight format for data transportation and is often used between the client and server architecture in software development.

JSON is very easy to understand and usually, it is "self-describing".

Simple JSON example:

#Example 1.1

{

"Students":[

{"firstName":"Siya", "lastName":"Sharma", "Location":"India"},

{"firstName":"Ron", "lastName":"Smith", "Location":"USA"},

{"firstName":"Bash", "lastName":"Tao","Location":"Philippines"}

],

"Teachers":[

{"firstName":"Dheeraj", "lastName":"Sareen", "Location":"India"},

{"firstName":"David", "lastName":"Baker", "Location":"Canada"}

]

}

In the preceding example:

	JSON data is specified in the name and value pairs

	Each data is separated by commas in JSON

	The square brackets in JSON are used to hold an array of object(s)

	The curly braces in JSON are used to hold object(s)

	It is highly flexible and easy to understand as you write JSON in a human-understandable format.

The document-based databases make the lives of developers easier as they allow them to store data in the same document-model format as developers use JSON while coding. It is easy for them to relate the name and value pairs while referring to the data entered in these databases.

Cross-platform

MongoDB is a cross-platform database, which means it can run on various operating systems and on various computer architectures. You can run MongoDB on Windows, Linux, and even Mac Operating Systems. It also supports various computer architectures that are machine-based and hardware-specific and depends on the processors and hardware plus operating systems that run that machine.

Officially MongoDB Inc. recommends these platforms for production use (as of now):

	Amazon Linux 2

	Debian 9 and 10

	RHEL/CentOS 6, 7, and 8

	SLES 12 and 15

	Ubuntu LTS 16.04 and 18.04

	Windows Server 2016 and 2019

We can see that there are a number of platforms supported by MongoDB for the production use. This also means that we can install and run MongoDB on a variety of platforms like Windows, Linux, etc., and their variants.

The 32-bit MongoDB processes are limited to about 2 GB of data. So if you have large data then please consider using 64-Bit architecture.

Note that 32 Bit processes are related to the 32-bit computer architecture, these kinds of architecture are present in the old processors. New Processors are capable of handling 64-bits of data per clock cycle.

You can refer to the official MongoDB documentation here for the latest updates: https://docs.mongodb.com/manual/administration/production-notes/

Scalable

MongoDB is extremely scalable, suppose you are developing an application that is presently not widely used and has limited usage but you believe that in the coming years, your application will have a huge increase in new users and there will be a multi-fold increase in the traffic. So the choice you make now for selecting a MongoDB database for your application is worth it. MongoDB is the first choice of Fortune 100 enterprises as well as startups. These organizations rely on MongoDB for their operations. The industry has seen a dramatic increase in the deployments of MongoDB, ranging from a single server to multi servers and clusters of MongoDB database.

MongoDB offers scalability for three different metrics:

	In terms of cluster

	In terms of performance

	Scalability in terms of data

We will cover all these topics related to Scalability in the coming chapters.

Flexible

MongoDB doesn't heavily enforce schema but uses dynamic schema, and hence, is also referred to as a schema-less database. This makes it a highly flexible database.

So first just a quick look at what is schema.

Schema is the database structure in Relational Database Management System (RDBMS) where you define it before using the database in the application. This means that you are creating a blueprint of your application data structure and defining the tables, fields, and relationships.

The advantages of using schema-less databases are as follows:

So this gives MongoDB an edge over the schema-related databases where we first define the schema and then add records or data. The problem with the schema-related databases is that each time we need to add one extra field, we have to update our schema as we cannot add a new record without adding an extra field.

MongoDB is flexible in terms of its data structure. As we have discussed earlier that MongoDB relies on the JSON-like data structure which is very flexible in itself. So when we need to add any new data in MongoDB which has or more fields and where each data is dynamic, we can easily add these records to our database in MongoDB without any issues as it won't restrict us and we are not bound to a specific data structure to be added in the database.

Many organizations throughout the world rely on MongoDB because it enables their development teams to build applications faster using different data types and also allows them to manage their applications more effectively and with high flexibility.

Classified as NoSQL database

We have already seen that MongoDB is a schema-less (or a dynamic schema-based) database. Let us now learn why it is called a NoSQL database.

But before that, let us understand what the term NoSQL is and what are NoSQL databases.

What is a NoSQL database?

The NoSQL databases, sometimes also called non-SQL, non-relational, or not only SQL databases are those that have a different mechanism to store and retrieve data other than the tabular relations which are used in relational databases. These types of databases have existed long ago but the term NoSQL is new, coined because of the requirements of today's companies that work on big, real-time data, and AI applications.

There are many kinds of NoSQL databases that we will cover in the next topic.

As we know, MongoDB uses JSON-like data structures that are different from what we use in RDBMS, so it is also called a NoSQL database. We will cover other NoSQL concepts later in this chapter.

An overview of the MongoDB architecture

We will now look into how the MongoDB architecture looks like. It would be easier if we explain this with the help of some diagrams. Below is a diagram of the NoSQL database. As MongoDB is also a type of NoSQL database it would be better if we cover this first.

A quick look into the NoSQL database architecture

[image:]

Figure 1.1: NoSQL database architecture

The important feature of NoSQL databases with respect to their architecture is that it provides nested, hierarchical structures in data entities. These hierarchical data structures can be easily described with the JSON and other formats used by the NoSQL databases. These structures also closely match with the data structures used in the programming languages.

A quick look into the MongoDB architecture

Now, we will cover the MongoDB architecture with the help of a diagram. If you see the diagram below, you will easily get a quick idea of how the MongoDB architecture looks like:

[image:]

Figure 1.2: MongoDB architecture

In the preceding diagram, you will see that the client-side application communicates with the MongoDB database with the help of MongoDB drivers. For any read and write operations, the MongoDB drivers play an important role to communicate with the MongoDB database. The MongoDB drivers depend on the programming language and help applications for various CRUD (Create, Read, Update, and Delete) and other operations with respect to the MongoDB database. The primary and secondary DBs ensure the high availability of data and the frequent synchronization provides eventually consistent data records.

MongoDB data platform

Let us have a quick look into the MongoDB database platform. As you can see in the following figure, the MongoDB database platform gives a lot of advantages as discussed in the following section:

[image:]

Figure 1.3: MongoDB Database Platform

So, MongoDB provides:

	Best way: MongoDB provides an easy, fast, and flexible way to work with data. It also provides a wide range of data types and expressive queries that are easy to understand.

	Best availability: MongoDB provides the best way for data availability. With MongoDB, you can place and scale your data on any device as well as at any geographic location whenever you need it.

	Best portability: MongoDB runs the same everywhere, whether it is a local server or cloud. MongoDB is also available as a service throughout the world with major cloud platforms supporting it.

We will cover more on the MongoDB architecture in the advanced chapters of this book, where we will also explain the MongoDB storage engines.

We will cover some more things like the MongoDB core concepts and the basics in the last topic of this chapter.

Difference from other databases

It is a well-known fact the SQL databases have ruled the world in data technologies for many decades. The SQL databases are used to access mainly relational databases.

With databases like Microsoft SQL server, Oracle, MySQL, and Postgres, whether they are commercial databases or open-source databases, all of them are relational databases, which rely heavily on the schema, and thus, are also schema-related databases. We have already gone through these topics in the previous section of this chapter.

The surprising thing about the NoSQL databases is that they have existed since the 1960s but are getting popular now because today's applications require a high level of scalability and availability of the data. Another factor that makes the NoSQL databases popular is the flexibility to use dynamic data on the fly without worrying about the data structure so much.

The major difference between the NoSQL databases and the SQL databases is that the traditional SQL databases use the row-column structure while the MongoDB, which is the NoSQL database, uses a rich data document model to store the data, thus allows any type of data for storage.

MongoDB removes the complex Object-Relation Mapping (ORM) layer and uses a flexible data model which helps in evolving the database with the business changing requirements. So, MongoDB adapts faster to the business requirements than the SQL databases.

We will cover more about the MongoDB vocabulary in the last topic of this chapter, the following table shows the basic comparison between the NoSQL database and the SQL database.

Basic comparison between the NoSQL database and the SQL database

	
SQL database

	
NoSQL database (MongoDB)

	
Relational database

	
Non-relational database

	
Supports SQL query language

	
Supports JSON query language

	
Table based

	
A collection based and key-value pair

	
Row-based

	
Document-based

	
Column-based

	
Field-based

	
Support for foreign key

	
No support for foreign key

	
Support for triggers

	
No Support for triggers

	
Contains a predefined schema

	
Contains a dynamic schema

	
Not fit for hierarchical data storage

	
Best fit for hierarchical data storage

	
Vertically scalable - increases RAM

	
Horizontally scalable - adds more servers

	
Emphasizes ACID properties (Atomicity, Consistency, Isolation, and Durability)

	
Emphasizes the CAP theorem (Consistency, Availability, and Partition tolerance)

Table 1.1: Basic Comparison between the NoSQL and SQL Databases

Now, we can easily compare and differentiate between the core terms and concepts which are used in the SQL databases and the NoSQL databases.

The concept of NoSQL databases

The NoSQL databases comprise a wide variety of database-related technologies to meet the dynamic demands of modern applications.

Today's developers work on various data types which can be structured, semi-structured, unstructured, or polymorphic. Relational databases are not designed to meet the demands of these applications and development environments. So, the developers feel stuck at some point in the development cycle, whether during the decision on the architecture of the application or during the scaling of the application at a later stage of the deployment cycle.

NoSQL databases, like MongoDB, play a very important role to allow the developers and the development teams to focus on the application programming part without worrying a lot about the data complexities.

Therefore, the developers feel a lot of flexibility and scalability. There are a lot of benefits that we can achieve when we use NoSQL databases as these are more scalable and give better performances.

So, for the contemporary development environment, which is rapid and uses agile methodologies, quick iterations, and frequent code pushes, the developers feel a lot easier to use NoSQL databases, like MongoDB in order to meet their demands.

Types of NoSQL database management systems

There are four major types of NoSQL database management systems. These are classified as follows.

	Key-value paired databases

	Column-oriented databases

	Document-oriented databases

	Graph databases

Let us look at them one by one.

Key-value paired databases

These are the simplest NoSQL databases. Here, the data is stored as a name (or key) with its value. Some key-value paired databases also have the feature to give the data type such as int or float.

Examples of key-value paired databases are:

	Berkeley DB

	Redis

Column-oriented databases

These types of NoSQL databases allow you to store the columns of data instead of rows. These are very effective in handling the queries of large data sets.

Examples of column-oriented databases are:

	Cassandra

	HBase

Document databases

These databases pair each key with a data structure called to document and these documents then contain key-value pairs, key-array pairs, and nested documents.

Examples of document databases are:

	MongoDB

	Couchbase

Graph databases

These databases are useful in storing data that are inter-connected as nodes just like a graph. These databases add an extra layer of highlighting the relationship among the documents.

Examples of document databases are:

	OrientDB

	Neo4j

Till now, we have studied different types of NoSQL databases, their advantages, and which databases come under this category.

Introduction to MongoDB basics, core concepts, and vocabulary

As we have acquired a good knowledge about the NoSQL database and MongoDB, now let us start with some basic concepts and terminology used specifically in MongoDB.

Document database

We have learned in the previous topic that MongoDB is a NoSQL database. MongoDB documents are similar to JSON objects and these documents can contain arrays, other documents, or an array of documents.

Collections

The MongoDB documents are stored in collections. So you can consider this as a table with respect to the relational database.

Support for rich query language

MongoDB uses rich query language to support the CRUD (Create, Read, Update, and Delete) operations. It also supports the queries related to data aggregation, search operations, as well as geospatial queries.

Support multiple storage engines

MongoDB supports multiple storage engines like:

	WiredTiger storage engine

	In-memory storage engine

MongoDB provides a pluggable storage engine, API, that lets the third parties develop their own engine type for MongoDB.

We will cover MongoDB storage engines in detail in the advanced chapters of this book.

Some basic MongoDB terminology

The following are the basic MongoDB specific terms we will use consistently in this book throughout all the chapters:

	MongoDB Database: A single MongoDB server consists of various databases where each database is a physical container of collections.

	MongoDB Collection: A collection in MongoDB is equivalent to a database table of the SQL-based databases and it exists within a single database. It includes a group of MongoDB documents.

	MongoDB Document: A document can be defined as an instance of a MongoDB collection. It includes a set of key-value pairs. All the documents include a dynamic schema which means the documents that comprise of the same collection do not need to have the same set of fields and structure.

We have now covered the basic concepts, vocabulary, and terminology of MongoDB and understood the MongoDB specific terms. In the next topic, we will compare these terms to the SQL databases so that you will easily understand them.

MongoDB terminology comparison with SQL databases

The following table compares the MongoDB terms and concepts with the SQL based databases:

	
SQL Terms/Concepts

	
MongoDB Terms/Concepts

	
database

	
database

	
table

	
collection

	
row

	
document or BSON (Binary JSON) document

	
column

	
field

	
index

	
index

	
table joins

	
embedded documents

	
primary key

	
primary key

	
Specify any unique column or column combination as the primary key.

	
The primary key is automatically set to the _id field.

Table 1.2: Basic MongoDB terms

We have compared the MongoDB terms to the SQL databases and so you should now get a clear idea about the core terms and concepts used in MongoDB. It will be helpful for readers as they will progress to the next chapter of this book.

Conclusion

In this chapter, we covered the basics of MongoDB including its definition. We covered the concept of NoSQL databases and how these are different from SQL databases.

We also covered the concepts of document-based databases. We also covered the architecture of MongoDB with the help of diagrams. We also covered different types of NoSQL databases and the specific terminologies of MongoDB, the vocabulary used, and also compared the MongoDB specific terms with the SQL databases.

In the next chapter, we will cover how to download and install MongoDB on Windows OS and how to verify that MongoDB is correctly installed on your Windows-based machine. We will also cover how to connect to MongoDB.

Questions

	What is MongoDB?

	How is MongoDB different from SQL-based databases?

	Explain the MongoDB architecture.

	What is a document database?

	What is a NoSQL database?

	Compare the MongoDB collections and documents with respect to the SQL based databases?

CHAPTER 2

MongoDB Installation Setup on Windows

This chapter covers the installation and steps to set up MongoDB on Windows powered machines. It will also cover the post-installation checks and the overview of MongoDB editions. You will learn how to download MongoDB for Windows and how to install it correctly on your Windows machine. This chapter also covers the Enterprise Advanced Edition of MongoDB and advantages of using it. You will get step-by-step explanation with screenshots to make you understand the installation and setup of MongoDB very easily on Windows operated machines and also covers the post-installation steps to easily verify if MongoDB is correctly installed on your Windows system.

Structure

In this chapter, we will discuss the following topics:

	Overview of MongoDB editions

	MongoDB setup on Windows

	Checking the installation

	Connecting to MongoDB

Objectives

After studying this unit, you should be able to understand the different editions of MongoDB and also learn the steps to install MongoDB on your Windows operated machine. Later in this chapter you will able to learn how to check if MongoDB has been installed correctly on your Windows operated machine. In the last section of this chapter you will learn how to connect to MongoDB and post-installation verification checks for MongoDB installation on your Windows operated machine.

Overview of MongoDB editions

MongoDB comes with two editions. The first one is the MongoDB Community Edition, which is an open source edition and is free. The second one is an Enterprise Advanced Edition, which is a paid version and comes with more advanced features that are not available in the Community Edition.

MongoDB Community License is available in 2 variants:

	Server side public license: This license is applicable to all the MongoDB Community Edition versions released after October 16, 2018 (including patch fixes for prior versions).

	Free software foundation's GNU AGPL v3.0: This license is applicable to all the MongoDB Community Edition versions released prior to October 16, 2018.

Therefore, we can see that all the MongoDB Community Edition versions which are released after October 16, 2018 come with a new Server Side Public License which is applicable to the current version of MongoDB.

Features of MongoDB Enterprise Advanced Edition

MongoDB Enterprise Advanced Edition has lot of functionalities which are very beneficial, especially if you or your organization is developing any hi-end application that needs some advanced requirements and support. In this scenario, it is recommended to take the benefits of the MongoDB Enterprise Advanced edition to save your development, R&D (research and development) and production costs.

Let us now read about the features of the Enterprise Advance Edition of MongoDB:

	Proactive support: The MongoDB Enterprise Advanced Edition comes with a proactive support from MongoDB Inc. The support is available 24*7*365 globally. It includes the emergency fixes, guidance on upgradations, deployments, scalability, and optimizations.

	Better management: The MongoDB Enterprise Advanced Edition comes with the tool called Ops Manager, manages MongoDB in a better way. This tool helps to monitor, automate, and backup processes related to MongoDB.

	Kubernetes integration: The MongoDB Enterprise Advanced Edition comes with the support and integration for Kubernetes, which is an open-source solution for automating application deployment.

	Better security: The MongoDB Enterprise Advanced Edition is built on the Advanced Security framework and comes with many high level security features such as Role-Based Access Controls, Public Key Infrastructure (PKI) certificates which (a technology used to authenticate users and devices), Transport Layer Security (TLS), and Client-Side Field Level Encryption. This edition also comes with MongoDB encrypted storage engine which helps in keeping the data secure without using the third-party solutions.

	Better analytics and visualization: The MongoDB Enterprise Advanced Edition comes with the feature of the MongoDB charts which is one of the best ways to visualize the MongoDB data.

	Availability of other storage engines: The MongoDB Enterprise Advanced Edition comes with in-built support for the in-memory storage engine which helps us to increase the speed and response time.

	Enterprise software integration: The MongoDB Enterprise Advanced Edition supports the integration with the other enterprise monitoring and management tools specific to an organization, and thus, provides more flexibility to use MongoDB according to their processes and IT infrastructure.

	Commercial license: The MongoDB Enterprise Advanced Edition offers a commercial license to meet the development and distribution needs of an organization that have specific policy requirements.

We can see that there are many enhanced features available in the MongoDB Enterprise Advanced Edition and their benefits. In the next topic, we will compare the MongoDB Enterprise Advanced Edition with the MongoDB Community Edition.

Comparison between MongoDB Community Edition and MongoDB Enterprise Advanced Edition

Followed is a detailed comparison of the MongoDB Community Edition with its Enterprise Advanced Version:

	
Security

	
MongoDB

Community Edition

	
MongoDB

Enterprise Advanced Edition

	
LDAP Authentication

	
No

	
Yes

	
LDAP Authorization

	
No

	
Yes

	
Kerberos

	
No

	
Yes

	
Auditing

	
No

	
Yes

	
Log Redaction

	
No

	
Yes

	
X509 Authentication

	
Yes

	
Yes

	
SNMP

	
No

	
Yes

	
Engines

	
MongoDB

Community Edition

	
MongoDB

Enterprise Advanced Edition

	
WiredTiger Engine

	
Yes

	
Yes

	
WiredTiger Encryption

	
No

	
Yes

	
In-Memory Engine

	
No

	
Yes

	
Features

	
MongoDB Community Edition

	
MongoDB

Enterprise Advanced Edition

	
Multi Document ACID Transactions

	
Yes

	
Yes

	
Sharding Zones

	
Yes

	
Yes

	
Faster Initial Sync

	
Yes

	
Yes

	
Auto-Balancing

	
Yes

	
Yes

	
Tunable Consistency

	
Yes

	
Yes

	
x64 Support

	
Yes

	
Yes

	
ARM support

	
Yes

	
Yes

	
Views

	
Yes

	
Yes

	
mongoreplay Tool

	
Yes

	
Yes

	
Collation

	
Yes

	
Yes

	
Decimal Type

	
Yes

	
Yes

	
Balancer on Config Primary

	
Yes

	
Yes

	
Parallel Balancing

	
Yes

	
Yes

	
Writes Consistent by Default

	
Yes

	
Yes

	
Linear Read Concern

	
Yes

	
Yes

	
Graph DB Functions

	
Yes

	
Yes

	
Faceted Search

	
Yes

	
Yes

	
Bucketed Aggregation

	
Yes

	
Yes

	
Sort by Bucket Count

	
Yes

	
Yes

	
Counts in Aggregation

	
Yes

	
Yes

	
Improved Aggregation Arrays

	
Yes

	
Yes

	
Improved Aggregation Strings

	
Yes

	
Yes

	
Add Aggregation Flow controls

	
Yes

	
Yes

	
Improved Aggregation Dates

	
Yes

	
Yes

	
collStats in Aggregation

	
Yes

	
Yes

	
Add Aggregation Type operator

	
Yes

	
Yes

	
Improved profiler and currentOp

	
Yes

	
Yes

	
Aggregation Operators for Type Conversion

	
Yes

	
Yes

	
Aggregation String Operators

	
Yes

	
Yes

	
Enhancements to Change Streams

	
Yes

	
Yes

Table 2.1: MongoDB Community Edition VS MongoDB Enterprise Advanced Edition

Now, you can easily compare what exactly are the differences between the features available in MongoDB Enterprise Advanced Edition and those not available in the Community Edition of MongoDB.

MongoDB setup on Windows

Let us explore how we can download, install, and setup the MongoDB Community Edition on machines that run on Windows OS.

Installing MongoDB Community Edition on Windows operating system

MongoDB installation is available for Windows, Linux, and MacOS. This chapter focuses on installing MongoDB on Windows 10. The installation process on Linux and macOS will be discussed in detail in the later chapters.

We will show you how you can install the MongoDB Community Edition (version 4.4) on Windows operating system. We will use the default installation method to install the MongoDB Community Edition on the machines that run on the Windows operating system.

Here, we will cover the MongoDB Community Edition (version 4.4) for 64-bit versions of Windows on x86_64 architecture. This includes the following version of the Windows operating system.

	Windows 10 / Windows Server 2016

	Windows Server 2019

In our example, we will use Windows 10 to install and setup MongoDB. To check the version of your operating system, right click on Properties of your computer, as shown in the following screenshot:

[image:]

Figure 2.1: Selecting Properties of your Computer

You can also check your Windows version by clicking on Properties, as shown in the following screenshot:

[image:]

Figure 2.2: Checking your Windows OS Version

Installation steps

Step 1 – Download the MongoDB Community Edition

	Open MongoDB Inc. official website – https://www.mongodb.com/ in your favorite browser, as shown in the following screenshot:

[image:]

Figure 2.3: MongoDB Inc. Official Website Home Page

	Click on the Software link on the top navigation bar of the website and then click on the Community Server link from the Software dropdown, as shown in the following screenshot:

[image:]

Figure 2.4: MongoDB Inc. Official Website Home Page – Community Server

	This will open a Download page from where you can download the MongoDB server, as shown in the following screenshot:

[image:]

Figure 2.5: MongoDB Inc. Official Download Page for Community Edition

	In this page, you will see a Download section where you will see the Available Downloads section. This section will auto detect your OS type, as shown in the following screenshot:

[image:]

Figure 2.6: MongoDB Inc. Official Download Center – MongoDB Server Download Screen

	Now, click the Download button to download the MongoDB Community Edition installer. The download will start automatically, as shown in the following screenshot:

[image:]

Figure 2.7: MongoDB Inc. Official Download Center – MongoDB Server Download – Thank You Page

	Once the download starts, you can easily see the process with the download icon and progress on your browser (this progress is displayed differently in different browsers). Wait until it is 100% complete, as shown in the following screenshot:

[image:]

Figure 2.8: MongoDB Download Process – MongoDB Server Download Started

	After the installer is downloaded, follow installation process as defined in step 2 – Installing the MongoDB Community Edition on Windows 2010 as follows, as shown in the following screenshot:

Here, we have covered how to download MongoDB from the official website. Next step is to install the MongoDB Community Server on Windows 2010.

Step 2 – Installing MongoDB Community Edition on Windows 2010

Once the download is complete and the installer file (MSI file) is fully downloaded, it will show a download complete icon, as shown in the following screenshot and you can proceed further:

[image:]

Figure 2.9: MongoDB Download Process – MongoDB Server Download Compete

	Now, open this MSI file. It is a Windows installer file, previously known as Microsoft installer, and it will start the MongoDB setup wizard which will guide you to complete the installation of MongoDB in your machine, as shown in the following screenshot:

[image:]

Figure 2.10: MongoDB Download Process – Open MongoDB MSI File.

	MongoDB installation requires administrative privileges. Usually, if you are using single user machine, it comes with you by default. But, during installation of any software on Windows, the prompt, as shown in the following screenshot, appears and asks you to Run this setup application or Cancel the application setup wizard. To Install MongoDB on your system, click Run:

[image:]

Figure 2.11: MongoDB Installation Wizard – Windows Security Prompt

	Once you click on Run you will see the startup screen of the installation wizard. You will also see some buttons that are easy to understand. You may click the Cancel button at any point of time to stop the installation or you may click the Back button to go back to the previous steps. In order to install MongoDB on your system, press the Next button, as shown in the following screenshot:

[image:]

Figure 2.12: MongoDB Installation Wizard – Startup Screen

	Once you click the Next button, you will see the next screen of the installation wizard which will display the MongoDB Server Side Public License and Terms and Conditions. It is recommended to read these Terms and Conditions before you follow the next steps.
After reading this, if you agree with MongoDB Inc. license and its terms and conditions, click on the checkbox where it says I accept the terms of License Agreement, so that it will enable the Next button of this screen and you can move further with the installation process of MongoDB. Now, click the Next button to continue with the installation process, as shown in the following screenshot:

[image:]

Figure 2.13: MongoDB Installation Wizard –MongoDB License and Terms and Agreement Screen

	Once you click on the Next button, you will see the next screen of the installation wizard. Here, you will have the following two options:

	Complete install, as shown in Figure 2.14

	Custom install, which has more options to choose, as shown in Figure 2.15:

[image:]

Figure 2.14: MongoDB Installation Wizard – MongoDB Complete Install

	Once you click the Custom Install button, you will see the screen, as shown in the following screenshot. In this screen, you will have multiple options to Choose the Program related to MongoDB, like client, server, monitoring tools, etc. You can also select the default directory of your choice where these files will be copied in your Windows machine. Click on the Back button to go to the previous screen, as we will do to complete the installation of MongoDB with its default settings:

[image:]

Figure 2.15: MongoDB Installation Wizard – MongoDB Custom Install

	Once you click the Back button, it will open the same screen, as shown in the preceding screenshot). Click the Complete button and you will be taken to the next screen, as shown in the following screenshot. In this screen, you will see few options related to the MongoDB service and its related option on how we need to start MongoDB on our machine. Another setting is related to the Data and Log Directory Paths which you can change if you want these to be stored in some other locations on your machine. In our example, we will keep these where they are and not change anything. You can now click the Next button and the next screen will appear for this MongoDB installation wizard:

[image:]

Figure 2.16: MongoDB Installation Wizard – MongoDB Complete Install (Service Configuration Settings)

Once you click Next button, it will open the new screen, as shown in the following screenshot. There, you will see a checkbox which will be checked by default and it is related to the installation of MongoDB compass. If that remains checked, this MongoDB setup wizard will also download and install the MongoDB Compass along with this wizard. We don't want to install the MongoDB Compass in this chapter, since we will cover the MongoDB Compass separately in the intermediate chapter (Chapter 16: MongoDB Data Manipulations using MongoDB Compass) of this book. Therefore, you need to uncheck this for now and press the Next button:

[image:]

Figure 2.17: MongoDB Installation Wizard – MongoDB Complete Install (Install Compass Checkbox)

	Once you click the Next button, it will open a new screen. Here, you will see the Install button. To start the MongoDB installation, click the Install button, as shown in the following screenshot:

[image:]

Figure 2.18: MongoDB Installation Wizard – MongoDB Complete Install (Install Button)

	Once you click the Install button, it will open the new screen and in this screen, MongoDB will copy the files in your machine and configure it on your Windows machine. You can also see the progress of the installation and setup, as shown in the following screenshot:

[image:]

Figure 2.19: MongoDB Installation Wizard – MongoDB Complete Install (Install Button)

	Once this installation is complete, it will display the next screen and a Finish button will appear, as shown in the following screenshot. Once you click the Finish button, the installation will be finished:

[image:]

Figure 2.20: MongoDB Installation Wizard – MongoDB Complete Install (Finish Button)

	Once you click the Finish button, sometimes, it asks you to restart your machine to fully complete the installation. You will get a prompt to restart your computer (you might get this message if you are using previous version of Windows such as Windows 7 and if you are installing MongoDB versions below 4.4), as shown in the following screenshot. You should always restart your system in order to use MongoDB on your machine without any issues.

	If you are installing MongoDB version 4.4 on Windows 10, as we are doing in our case, you might not get this message and you can ignore this step:

[image:]

Figure 2.21: MongoDB Installation Wizard – MongoDB Complete Install (Restart your System Prompt)

Step 3 – Post Installation Checks

To ensure that MongoDB has been correctly installed in your Windows machine, follow these steps:

	Once your machine restarts, you can now verify if the installation of MongoDB is correctly done on your machine. To check this, click the start button of your Windows machine and open Windows Control Panel, as shown in the following screenshot:

[image:]

Figure 2.22: Click Start Button and then Open Windows Control Panel.

	Once you are in the Windows Control Panel click on Programs, as shown in the following screenshot:

[image:]

Figure 2.23: Windows Control Panel – Programs

	After you click on the Programs icon, another window will open with two options. Here, you need to click on the Program and Features icon, as shown in the following screenshot:

[image:]

Figure 2.24: Windows Control Panel – Programs and Features

	After clicking on Programs and Features, another window will open with the list of all the programs installed in your system. If your MongoDB has been installed successfully, you will be easily able to see it here, as shown in the following screenshot:

[image:]

Figure 2.25: Windows Control Panel – Installed Programs List

Till now, we have covered how to verify if MongoDB is installed correctly in your Windows machine in a step-by-step manner. As we have done the default installation of MongoDB here, the installer creates an automatic MongoDB service in Windows and now we can connect to MongoDB using MongoDB Shell.

Step 4 – Connecting to MongoDB on Windows

Let us now try to connect MongoDB from command line from your Windows machine. To connect to MongoDB from your Windows machine, follow these steps:

	Open a command window and navigate to the bin directory of MongoDB.
The path could be as follows:

C:\Program Files\MongoDB\Server\4.4\bin

It is shown in the following screenshot:

[image:]

Figure 2.26: From Command Line – Navigate to MongoDB "bin" Directory.

	Now give the following command, as shown in the following screenshot: mongo and press Enter.

[image:]

Figure 2.27: From Command Line –Type "mongo" command and Press enter

	Once you run the preceding command and press Enter, it will open Mongo Shell and we can type Mongo related commands, as shown in the following screenshot:

[image:]

Figure 2.28: MongoDB Shell

	To test further, just issue the show databases Mongo command and press Enter, as shown in the following screenshot:

[image:]

Figure 2.29: Mongo Shell – "show databases" MongoDB Command

	To exit from MongoDB Shell type, click on the exit command and press the Enter key:
This will take you out from the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 2.30: Mongo Shell – "exit" MongoDB Command – To Exit from MongoDB

We now learned how to install MongoDB on Windows 10 and verify MongoDB installation and at last we learned how to connect to the MongoDB Shell.

Conclusion

MongoDB can be installed by downloading it from the MongoDB Inc. official website and choosing the platform as Windows. We need to run the MSI File (Windows installer file) to run the setup. Once the setup is complete, we can then verify the Installation by the steps mentioned in the post-installation section of this chapter.

You have also gained the knowledge on how to start and use Mongo shell.

In the next chapter, we will cover the installation of MongoDB on Linux-based systems. This would be helpful for the readers who use Linux-based machines.

Questions

	What is MSI File?

	From which source should you download the MongoDB setup file?

	What are the two editions of MongoDB server?

	How can you login to the MongoDB Shell? Explain the process.

	List a few MongoDB Shell commands you learned in this chapter.

CHAPTER 3

MongoDB Installation and Setup on Linux (Ubuntu)

This chapter covers the installation and steps to set up MongoDB on machines powered by Linux (we have used Ubuntu, the widely used variant of Linux). This chapter will also cover the post installation checks for MongoDB installation for Linux. So, in this chapter, you will learn how to download MongoDB for Linux and how to install it correctly on your Linux operated machine. This chapter covers step-by-step methods explained with screenshots to make you understand the installation and setup of MongoDB very easily on Linux operate machines. This chapter also covers the post installation steps to easily verify if MongoDB is correctly installed on your Linux system.

Structure

In this chapter, we will discuss the following topics:

	MongoDB setup on Linux operating system (Ubuntu)

	Checking the installation on Linux operating system

	Connecting to MongoDB on Linux operating system

Objectives

After studying this unit, you should be able to learn the steps to install MongoDB on your Linux operating system and also how to check if MongoDB has been installed correctly on your Linux operating system. Later in the Chapter you will learn that how you can connect to MongoDB for post-installation verification and checks on your Linux operating system.

MongoDB Setup on Linux

Let us explore how we can download, install, and setup MongoDB Community Edition on the machines running on Linux OS (Ubuntu).

Installing MongoDB Community Edition on Linux Operating System

We will show you how to install the MongoDB Community Edition (version 4.2) on Linux operating system (Ubuntu). We will use the default installation method to install the MongoDB Community Edition on the machines that run on Linux operating system.

Here, we will cover the MongoDB Community Edition (version 4.2) for 64-bit versions of Ubuntu on x86_64 architecture. This includes the following version of Linux operating system (Ubuntu):

	18.04 LTS ("Bionic")

	16.04 LTS ("Xenial")

Only 64-bit versions of these platforms are supported by MongoDB. In our example, we will use Ubuntu 18.04 to install and setup MongoDB. To check the version of your Linux operating system (Ubuntu), open your system settings by clicking the settings button on the top left corner of your Ubuntu OS (this varies from one Linux variant to another), as shown in the following screenshot:.

An alternate way is by using the following command on the command line terminal. Follow these steps:

	Open terminal using the keys [CTRL] + [ALT] + [T]

	Type the command - lsb_release-a and press Enter

	The terminal will show the Ubuntu versi on.

[image:]

Figure 3.1: Selecting system settings of your Ubuntu machine

It will then open another Window with many options. Click on the Details option at the bottom left corner of the screen, as shown in the following screenshot:

[image:]

Figure 3.2: Checking your Ubuntu OS version

After this, click on the Menu item. You will see the Ubuntu version, as shown in the following screenshot:

[image:]

Figure 3.3: Ubuntu OS version

Now, since we have checked our Linux operating system version, we can continue with the installation of MongoDB on our Linux machine.

Installation steps

Method one (Browser method)

Step 1 – Download MongoDB Community Edition

	Open the official website of MongoDB Inc.– https://www.mongodb.com/ in your favorite browser, as shown in the following screenshot:

[image:]

Figure 3.4: MongoDB Inc. official website home page

	Click on the Try Free green color button on the top right corner of the website, as shown in the following screenshot:

[image:]

Figure 3.5: MongoDB Inc. official website home page – Try Free Button

	This will open the MongoDB Download Center page where you will see 3 main tabs on the top section of the page. Click on the Server tab link, as shown in the following screenshot:

[image:]

Figure 3.6: MongoDB Inc. official download center page

	This will open a MongoDB Server Download screen. This screen will auto detect your OS type. You can change the OS type to correct version if not detected automatically, as shown in the following screenshot:

[image:]

Figure 3.7: MongoDB Inc. official download center – MongoDB server download screen

	Now, click on the Download button and MongoDB download will start automatically, as shown in the following screenshot:

[image:]

Figure 3.8: MongoDB Inc. Official Download Center – MongoDB Server Download – Thank You Page

	 Once the download starts, you will see a prompt window related to download which will ask you to either open this file with software install or to download this file. It is recommended to use the default settings, as shown in the following screenshot:

[image:]

Figure 3.9: MongoDB Download Process – MongoDB Server Download Started

As we have now downloaded the MongoDB Community Edition from MongoDB Inc. download page. We can now continue with the installation mentioned in the step 2 of this installation process.

Step 2 – Install MongoDB Community Edition on your Linux machine

In this step, we will cover how to install MongoDB with the help of Linux installer using the browser-based method as we have already downloaded it from MongoDB Inc. website.

	After the download is 100% complete, a new screen will open where you will find the install the Mongo DB server, as shown in the following screenshot:

[image:]

Figure 3.10: MongoDB Installation Process on Linux (Ubuntu)

	You can also see the details of the MongoDB package, its version, and license in the installation screen, as shown in the following screenshot:

[image:]

Figure 3.11: MongoDB Installation Process – MongoDB Package Details

	Once you click on Install, you will get a prompt window, as shown in the following screenshot, which will ask you to enter your password since it requires root access to install it on a Linux machine (in our case, Ubuntu):

[image:]

Figure 3.12: MongoDB Installation– Ubuntu Authentication Prompt

	So you need to type your password, and click the Authenticate button, as shown in the following screenshot:

[image:]

Figure 3.13: MongoDB Installation– Ubuntu Authentication Prompt

	Once you type your password and the MongoDB installation on Linux (Ubuntu) will start and the screen will show you the progress bar, as shown in the following screenshot:

[image:]

Figure 3.14: MongoDB Installation on Linux– Installation Progress

	Once the installation is complete, you will see a screen, as shown in the following screenshot, which has a Remove button if you want to remove MongoDB from your Linux machine (Ubuntu, in our case).

[image:]

Figure 3.15: MongoDB Installation on Linux – Installation Complete Screen

	You can also In order to verify if MongoDB is installed in your Linux (Ubuntu) machine, Click on the Ubuntu Software and Browsing, and then checking the list of installed software, as shown in the following screenshot:

[image:]

Figure 3.16: MongoDB Installation on Linux – Ubuntu Software Verification for MongoDB Installation

Now, we have covered how to install MongoDB using the browser-based method. In the next section, we will cover how to install MongoDB using the shell method.

Installation Steps

Method two (Shell method)

Sometimes, you might face some issues while installing MongoDB using the browser-based method. Sometimes, some Linux machines need some extra software, like MongoDB clients, to be installed properly before you can run MongoDB on your Linux machine. One example is explained in the following screenshot:

[image:]

Figure 3.17: MongoDB Installation on Linux – Post Installation Issues

Here in this example, when we try to run the mongo command from shell, it gives the issue that it is not found and we need some additional software or libraries, like mongo-clients in our example, to be installed before we run MongoDB on our Linux operated system.

So in order to resolve this, we can run the following command and get those software or libraries:

Steps for installing MongoDB clients (mongo-clients) on Linux based systems (Ubuntu)

Mongo clients libraries (mongo-clients) are used to connect to the MongoDB server. This step will show you how to install these on your Linux operated machine.

	You need to type the following command from your Linux Shell:
sudo apt install mongodb-clients

This will prompt you to enter your password to proceed ahead, as shown in the following screenshot:

[image:]

Figure 3.18: MongoDB Clients Installation on Linux – Authentication Prompt by Shell

	After you type your password and hit the Enter key, it will start downloading and installing the MongoDB client for Linux (Ubuntu). At times, there is an additional prompt where it will ask you to press the Y key and press Enter for your confirmation, as shown in the following screenshot:

[image:]

Figure 3.19: MongoDB Clients Installation on Linux – Confirmation Prompt by Shell

	You can see the progress for installation of the MongoDB clients, as shown in the following screenshot:

[image:]

Figure 3.20: MongoDB Clients Installation on Linux – Progress

	Once this installation of the MongoDB clients is complete, it will display the command prompt again, as shown in the following screenshot:

[image:]

Figure 3.21: MongoDB Clients Installation on Linux – Command Prompt available to type any command after MongoDB Clients installation is complete

Now, in the preceding step, we covered how to install mongo-clients library on the machines running on Linux. In the next step, we will cover the installation of MongoDB on Linux machine (Ubuntu, in our case) using the Shell commands.

Steps for installing MongoDB on Linux based systems (Ubuntu) using the Shell commands

In some scenarios, you might face an issue in starting MongoDB even when you have already installed it using the browser-based method. If you are unable to start the MongoDB services, as shown in the following screenshot, try to start it using the Shell command. For example, try the following command:

sudo systemctl start mongodb

And if you’re still unable to start the MongoDB services, follow the next steps to install MongoDB using the Shell method, which we will cover in the following steps:

[image:]

Figure 3.22: MongoDB Service – Unable to Start (MongoDB Service was not found)

Now, we will cover the step-by-step method to install MongoDB from the command line method using the Linux (Ubuntu) Shell.

	Type the following command from your Linux Shell:
wget -qO - https://www.mongodb.org/static/pgp/server-4.3.asc | sudo apt-key add -

This will import the public key (also known as the Public GPG Key) used by the package management system. Note that this command will return you an OK message, as shown in the following screenshot:

[image:]

Figure 3.23: MongoDB Installation (Command Line) – Importing Public GPG Key

If you receive any message other than OK, it is quite possible that the gnupg is not yet installed on your system. In this case, you need to install the gnupg on your Linux (Ubuntu) system, as shown in the following screenshot: sudo apt-get install gnupg

The above command requires gnupg to run and function to return the OK Message. If you receive any message other than OK, then it is quite possible that gnupg is not yet installed on your system. In this case you need to install the gnupg on your Linux (Ubuntu) System:

[image:]

Figure 3.24: MongoDB Installation (Command Line) – Install "gnupg"

After installing the gnupg, you should now follow Step 1.

	After completing step 1, follow the next step where you create a list file for MongoDB using the following commands, as shown in the following screenshot:
echo "deb [arch=amd64,arm64] https://repo.mongodb.org/apt/ubuntu bionic/mongodb-org/4.2 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-4.3.list

[image:]

Figure 3.25: MongoDB Installation (Command Line) – creating a list file for MongoDB

	Now, reload the local package database using the following command, as shown in the following screenshot:
sudo apt-get update

[image:]

Figure 3.26: MongoDB Installation (Command Line) – Reloading the local Package Database

	Now, follow the final step which will install MongoDB packages on your Linux (Ubuntu) system using the following command, as shown in the following screenshot:
sudo apt-get install -y mongodb-org

[image:]

Figure 3.27: MongoDB Installation (Command Line) – Installing MongoDB Packages

	Once MongoDB is installed on your Linux (Ubuntu) system, you will be taken back to the command prompt, as shown in the following screenshot:

[image:]

Figure 3.28: MongoDB Installation (Command Line) – MongoDB Packages Installation Completed

In step 2, we covered how to install MongoDB using the Shell method. In step 3, we will cover how to start MongoDB on your Linux machine (Ubuntu, in our case).

Step 3 –Starting MongoDB on Linux (Ubuntu)

To make it sure that MongoDB has been correctly installed in your Linux (Ubuntu) machine, follow these steps:

	Start the MongoDB service using the following command:
sudo systemctl start mongod

	This will start the MongoDB service on your Linux machine (Ubuntu, in our case), as shown in the following screenshot:

[image:]

Figure 3.29: Starting MongoDB Service on Linux (Ubuntu)

	You should check if the service has been started by checking MongoDB service status using the following command:
sudo systemctl status mongod

If the service has begun correctly, it will show you the status of the MongoDB service, as shown in the following screenshot:

[image:]

Figure 3.30: Checking the MongoDB Service Status

In step 3, we covered how to start MongoDB on your Linux machine (Ubuntu, in our case).; In step 4, we will cover how to connect to MongoDB Shell from the Linux machine.

Step 4 – Connecting to MongoDB on Linux (Ubuntu)

Let us now try to connect MongoDB command line from your Linux (Ubuntu) machine using the Shell command. To connect to MongoDB from your Linux machine, follow these steps:

	Open a separate Shell command window and run the following command:
mongo

This will open the MongoDB Shell interface to run various MongoDB commands, as shown in the following screenshot:

[image:]

Figure 3.31: From Command Line –Running "mongo" command and accessing MongoDB Shell.

	To test further, issue the following Mongo command and press Enter:
show databases

This will give you the list of MongoDB databases that are present in your system, as shown in the following screenshot:

[image:]

Figure 3.32: Mongo Shell – "show databases" MongoDB Command

	To exit from the MongoDB Shell, type the following command and press the Enter key:
exit

This will take you out of the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 3.33: Mongo Shell – "exit" MongoDB Command – To Exit from MongoDB

So, we learned how to install and setup MongoDB on Linux machines (in our case, Ubuntu), and verify the MongoDB installation. We also learned to start MongoDB using the Shell commands. At last, we learned how to connect to MongoDB Shell.

Conclusion

In this chapter, we learned to install MongoDB on our Linux based machine, using both the browser-based method, as well as the Linux Shell method.

MongoDB can be installed by downloading it from the MongoDB Inc. official website and choosing the platform as Linux. We have to run the installer file (Linux installer file) to run the setup. Once the setup is complete, we can then verify the installation by the post-installation verification steps. The reader also learned how to start the MongoDB service on Linux, and how to start and use the MongoDB Shell.

In the next chapter, we will cover the installation of MongoDB on macOS based systems. This would be helpful for the readers who use macOS based machines.

So far, we learned how to install and setup MongoDB on the Linux OS (Ubuntu) based machines and verify the MongoDB installation. We also learned to start MongoDB using the Shell commands, and at last we learned how to connect to the MongoDB Shell.

Questions

	Where should you download the MongoDB setup file from?

	Explain how to start the MongoDB service on a Linux machine.

	How can you install the MongoDB client libraries on your Linux machine?

	How can you verify if MongoDB has been successfully installed in your Linux based system?

	Explain the process of installing MongoDB using the Linux Shell method.

	How can you login to the MongoDB Shell on your Linux based machine? Explain the process.

CHAPTER 4

MongoDB Installation and Setup on macOS

This chapter covers the installation and steps to set up MongoDB on machines powered by macOS (Mac operating system). This chapter will also cover the post-installation checks for the MongoDB installation for Mac operating systems. So, in this chapter, you will learn how to download MongoDB for macOS and how to install it correctly on your macOS operated machine. This chapter is covers step-by-step method with screenshots to make you understand the installation and setup of MongoDB very easily on macOS platforms. This chapter also covers the post-installation steps to easily verify if MongoDB has been correctly installed on your macOS system.

Structure

In this chapter, we will discuss the following topics:

	MongoDB setup on macOS

	Checking the installation on macOS

	Connecting to MongoDB on macOS

Objectives

After studying this unit, you should be able to learn the steps required to install MongoDB on your macOS operated machine and check if MongoDB is correctly installed on your MacOS. Later in this chapter, you will learn to connect to MongoDB and post-installation and verification checks on MacOS.

MongoDB setup on macOS

Let us explore how we can install and setup the MongoDB Community Edition on machines running on macOS.

Installing MongoDB Community Edition on macOS

We will show you how you can install the MongoDB Community Edition on macOS. We will use the official installation method to install the MongoDB Community Edition on the machines that run on Mac operating system.

Here, we will cover the MongoDB Community Edition (version 4.4) for 64-bit versions of Mac on x86_64 architecture. This includes the following version of macOS.

macOS 10.13 or Later Ver0

In our example, we will use macOS 10.13 or the later version to install and setup MongoDB.

	To check the version of your macOS, click the Apple menu on your macOS and click the option About this Mac, as shown in the following screenshot:

[image:]

Figure 4.1: macOS Apple Menu > About this Mac

	Once you do this, you will see the details of the version of the MacOS, as shown in the following screenshot:

[image:]

Figure 4.2: Checking your macOS version

Installation steps

Step 1 – Install Homebrew

In this step, we will use Brew, a package manager for macOS to install MongoDB later in this chapter. By default, OSX does not have a Homebrew package manager pre-installed. So, we need to install Brew in our macOS. If you already have Homebrew Brew package manager installed in your macOS, you can skip this step and follow the next step to install the MongoDB community server with the Brew package manager.

	Open the Homebrew official website, https://brew.sh, in your favorite browser, as shown in the following screenshot:

[image:]

Figure 4.3: Homebrew Official Website Home Page

	You will see an installation script mentioned on the top section of the home page. Copy this script and open your terminal. Paste this script and press Enter to run the following command, as shown in the following screenshot:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

[image:]

Figure 4.4: macOS Terminal Screen - Script to install Homebrew in your MacOS

	This will install the Brew package manager for macOS and you can see the installation progress while it is being installed on your MacOS. as shown in the following screenshot:

[image:]

Figure 4.5: Homebrew is getting installed in MacOS

	Once the installation gets completed, you will see the Installation Successful message, as shown in the following screenshot:

[image:]

Figure 4.6: Homebrew Installation Successful on MacOS

Step 2 – Install MongoDB Community Edition on your macOS machine.

	After you have successfully installed the Homebrew Brew package manager for macOS, you can now start installing the MongoDB server Community Edition using Brew. To do this, open the URL: https://github.com/mongodb/homebrew-brew, which is the MongoDB Homebrew. Tap and follow the instructions, as shown in the following screenshot:

[image:]

Figure 4.7: Homebrew MongoDB Homebrew Tap – GitHub Official Home Page

	Here, we will follow the same instructions to install MongoDB on MacOS. Open the terminal in your macOS and run the following command, as shown in the following screenshot:
brew tap mongodb/brew

The preceding command will add the custom tap in your macOS terminal session:

[image:]

Figure 4.8: Adding MongoDB Tap using Brew in MacOS

	Once you have added the custom tap, run the following command to install the MongoDB Community Server, as shown in the following screenshot:
brew install mongodb-community

OR

brew install mongodb-community@<latest-version>

[image:]

Figure 4.9: MongoDB Installation using Brew on MacOS

	You will see the progress while the Homebrew Brew package manager is installing the MongoDB Community Server, as shown in the following screenshot:

[image:]

Figure 4.10: MongoDB Installation on macOS – Brew Installing MongoDB Community Edition

	Once the Homebrew Brew package manager has finished installing the MongoDB Community Server in your MacOS, you will see the message that the installation has successfully completed on your terminal screen, as shown in the following screenshot:

[image:]

Figure 4.11: MongoDB Community Edition Installation on macOS – Installation Complete

Step 3 – Starting MongoDB on macOS

To make sure that MongoDB has been correctly installed on your macOS machine, follow these steps:

	Start the MongoDB service using the following command:
brew services start mongodb-community

This will start the MongoDB service on your macOS based machine, as shown in the following screenshot:

[image:]

Figure 4.12: Starting MongoDB service on MacOS

Step 4 – Connecting to MongoDB on MacOS

Let us now try to connect MongoDB from the command line from your macOS machine by using terminal. To connect to MongoDB from your macOS machine, follow these steps:

	Open a separate terminal and run the following command:
mongo

This will open the MongoDB Shell interface to run various MongoDB commands, as shown in the following screenshot:

[image:]

Figure 4.13: From macOS terminal – Running "mongo" command and accessing MongoDB Shell

	To test further, issue the following MongoDB Shell command and press Enter:
show databases

This will give you the list of MongoDB databases that are present in your system, as shown in the following screenshot:

[image:]

Figure 4.14: Mongo Shell – "show databases" MongoDB command

	To exit from the MongoDB Shell, type the following command and press Enter:
exit

This will take you out from the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 4.15: Mongo Shell – "exit" MongoDB Command – To Exit from MongoDB

We learned how to install and setup MongoDB on macOS powered machines and how to verify MongoDB installation. We also learned to start MongoDB using some commands, and at last, we learned how to connect to MongoDB Shell.

Conclusion

In this chapter, we learned that MongoDB can be installed in macOS by first installing Homebrew, and then, by using the Homebrew tap, we can install the MongoDB Community Edition on our macOS operated machine. We have to run the Shell script in our terminal to first install the Homebrew on our macOS machine. Once Homebrew is installed, we can then use it to install the MongoDB Community Version on our macOS.

We also learned how to start the MongoDB service on macOS and how to start and use the Mongo Shell in macOS.

In next chapter, we will start with the basics of MongoDB. We will get the overview of the MongoDB database, MongoDB collections, and MongoDB documents. We will also learn about the difference between the terminologies used in MongoDB that are different from the other types of databases, like RDBMS in a detailed manner.

Questions

	What is Homebrew?

	How can we check the version of our MacOS?

	What is the process of installing the MongoDB Community Server on MacOS?

	How can we start the MongoDB server on MacOS?

	How can you connect to the MongoDB Shell?

CHAPTER 5

Getting Started with MongoDB

This chapter covers the basics of MongoDB including the overview of MongoDB databases, MongoDB collections and MongoDB documents. This chapter will explain you the difference between the terminologies used in MongoDB and how it is different from the other databases like RDBMS in a more detailed manner. This chapter also gives you an overview of MongoDB Shell and covers some basic Shell commands. In the last topic, this chapter will give you an introduction to MongoDB clients which can be useful to connect to MongoDB server and perform various operations that you can perform easily using these MongoDB clients.

Structure

In this chapter, we will discuss the following topics:

	MongoDB databases

	MongoDB collections

	MongoDB documents

	Introduction to MongoDB Shell

	Basic Shell commands

	Introduction to MongoDB clients

Objectives

After studying this unit, you should be able to understand MongoDB database in a more detailed manner. You will also able to understand about MongoDB Collections and Documents in a more detailed manner. In the Later section of this Chapter you will able to learn about MongoDB Shell and how to connect and exit properly from MongoDB Shell. In the last section of this Chapter you will learn about MongoDB clients and how to use them.

MongoDB databases

Let us explore what are MongoDB database in a detailed manner. Before we start with MongoDB databases, let's put some light on what exactly are databases, relational databases, and NoSQL databases.

What is a database?

A database is a collection of data stored in the Database Management Systems (DBMS). Data is a small unit which, after processing, is converted into information. So, this data stays in the database in a structured manner and is then processed by the help of a DBMS to be converted into some information which is helpful for analyzing and decision making process.

So overall, the database allows us to store data in some structured manner like table, rows, and columns with the help of database management systems.

The main function of any DBMS is to:

	Store the data

	Retrieve the data

	Manipulate the data

	Process the data

The preceding functions are performed using Data Query Languages, like Structured Query Language (SQL) or in our case, MongoDB Query Language.(MQL)

What is a relational database?

A relational database contains data having some sort of relationships among two or more data records. These kinds of databases usually have tables interlinked with key-value or field-value pairs. For example, if there is a table which has a unique primary key column in table A then it is linked with table B which has a column that stores the primary key of table A, (also known as foreign key) in table B in a manner such that these two are interlinked. These types of interrelated or interlinked data tables contribute to form relational databases, as shown in the following figure. To manage these types of databases, we have relational database management systems which helps us to store, retrieve or manipulate data from these types of databases:

[image:]

Figure 5.1: Relational Databases – Interconnected or Interlinked with Keys

So far, we have studied what are relational databases and how tables in relational databases are interlinked with each other. Now, we will study about the NoSQL databases in the next section.

What is a NoSQL database?

We have covered this in Chapter 1: Introduction to MongoDB also, but let's refresh it again. A NoSQL database is a kind of database that provides the mechanism of storage, retrieval and manipulations of data in a different approach than what the Relational Database Management System (an SQL based database) provides. It is sometimes called as a NoSQL database and sometimes "Not Only SQL".

MongoDB is one of the NoSQL databases which we will cover in this book.

It is a myth that NoSQL data cannot store relationship data while in reality NoSQL databases like MongoDB, stores relationship data in a different manner than SQL based databases. In case of NoSQL database like MongoDB, the relationship data is not stored and linked in a simpler manner because here, the relationship data doesn't split between the tables as it does in the SQL based databases.

NoSQL database provides us more flexibility in terms of storing the data and scaling, which is more developer-friendly.

What is a MongoDB database?

MongoDB database is a document oriented database which stores data in JSON like documents with the dynamic schema. The concept of dynamic schema is to store the records without worrying too much on the structural part of the database. MongoDB database is a collection of data, or documents that have JSON like structure and are not very rigid in terms of schema. One document can be different from another one in the same collection.

MongoDB database architecture is designed on collections and documents. Here, the basic unit (which is data) consists sets of key-value or field-value pairs and allows documents to have different fields and structures according to its flexibility and dynamic schema.

MongoDB collections

Let us explore what are MongoDB collections in a detailed manner. Before we start with MongoDB collections, let's have an overview of tables in RDBMS.

What is a table in RDBMS?

A table is a set of related data stored in RDBMS in a form of tabular fashion as columns and rows. Here, the columns provide the structure and it is common for all the rows that are inserted in the table.

The table rows can have data according to the column type. For example, string, integer, float, BLOB, etc. In RDBMS, as defined by E. F. Codd, the inventor and father of the RMDM, the tables are termed as relations and rows as tuples.

RDBMS is a collection of set of tables organized in a manner that they are related to each other. In a RDBMS, is a collection of data elements organized as rows and columns, as shown in the following table:

	
Student ID

	
Student Name

	
Student Class

	
Student Roll No

	
1

	
Siya Sharma

	
4A

	
007

	
2

	
Harry Dsouza

	
7A

	
009

	
3

	
John Mathew

	
5E

	
015

	
4

	
Md. Hussain

	
10B

	
030

	
5

	
Preet Kaur

	
6C

	
041

Table 5.1: A Typical table in RDBMS

We can easily get an idea from the preceding table about how a typical table in RDBMS looks like.

What is a collection in MongoDB?

A collection in MongoDB is a grouping of MongoDB documents that hold data, usually dynamic in nature, because collection does not enforce a schema.

A collection is equivalent to a table in RDBMS. Here, the important aspect of collection is that it allows dynamic schema, which means that a collection can hold documents that could be different in terms of their structure.

In RDBMS, we know that schema (or structure) is enforced by the table and thus, the data in the rows should be consistent in terms of the number of columns and column type as defined in a table while creating an it. But, in MongoDB, collection can hold multiple documents which can have different documents with different data in terms of key-value or field-value pairs and data types, as shown in the following figure:

[image:]

Figure 5.2: Example of a Collection in MongoDB

We saw in the preceding figure how the collection binds different documents together in MongoDB.

MongoDB documents

Let us explore what are MongoDB documents in a detailed manner. Before we start with MongoDB documents, we need to go through some of the terms used in RDBMS and their equivalent in MongoDB.

Row and column in RDBMS

We have studied in previous topics that row and columns constitute together to form a table in RDBMS. Same happens in MongoDB where the documents are bind by collections. The only difference in MongoDB is that the collection can store documents which are different in structure and have different data types and values.

To understand it in a better way, take a look at the following figure:

[image:]

Figure 5.3: RDBMS vs MongoDB Key Terms

We can have a collection which can have two different documents, one with 5 fields and another one with 25 fields with different key-value or field-value pairs (refer to Figure 5.4).

What is a document in MongoDB?

We know that MongoDB is a document based database and each record in MongoDB is termed as document. These documents are made up of key-value or field-value pairs which are just like JSON, as discussed in Chapter 1: Introduction to MongoDB of this book. These documents are stored in BSON (Binary JSON) format in MongoDB. A document in MongoDB is a binary format and is similar to JSON, as shown in the following figure:

[image:]

Figure 5.4: MongoDB Document

Let us see the practical example of how Mongo DB document looks with some real data, as shown in the following figure:

[image:]

Figure 5.5: MongoDB Document – Real Data Example

Introduction to MongoDB Shell

Let us explore what is a MongoDB Shell and how we can use it. We will give examples using the Windows platform as the Shell commands are the same for other platforms.

What is a MongoDB Shell?

MongoDB Shell is an interface used in MongoDB which allows users to interact with MongoDB database for database-related queries to perform various CRUD (Create, Read, Update, and Delete) operations as well as administration of MongoDB.

When you install MongoDB server on your machine, MongoDB Shell is installed automatically by MongoDB installer program. It is also available as a standalone program and you can install it separately from MongoDB Inc. official website.

In order to connect to MongoDB Shell and work with it, you need to have MongoDB running on your machine. Otherwise, you will get an error that MongoDB Shell cannot be connected to the MongoDB server.

Connecting to MongoDB Shell

To connect to MongoDB Shell, you need to follow these steps. These points are also mentioned in Chapter 2: MongoDB Installation and Setup on Windows of this book, but, we will cover it here also so that you can refresh them again. You may skip if you know these points

Step 1 – Connecting to MongoDB Shell

Let us now try to connect MongoDB from command line from your Windows machine. To connect to MongoDB from your Windows machine, follow these steps:

	Open a separate Shell command window and navigate to the bin directory of MongoDB.
The path could be as follows:

C:\Program Files\MongoDB\Server\4.4\bin

[image:]

Figure 5.6: From Command Line – Navigate to MongoDB "bin" Directory.

	Now, give the following command and press Enter, as shown in the following screenshot:
"mongo"

[image:]

Figure 5.7: From Command Line –Type "mongo" command and Press enter

	Once you give this command and press enter, it will open MongoDB Shell and you can type the MongoDB related commands, as shown in the following screenshot:

[image:]

Figure 5.8: From Command Line –Type "mongo" command and Press enter

	To test further, issue the following MongoDB command and press Enter, as shown in the following screenshot:
"show databases"

[image:]

Figure 5.9: Mongo Shell – "show databases" MongoDB Command

	To exit from MongoDB Shell, type the following command and press Enter:
"exit"

This will take you out from MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 5.10: Mongo Shell – "exit" MongoDB Command – To Exit from MongoDB

In Step 1, we studied how to connect to MongoDB Shell. In the next topic, we will cover some basic Shell commands so that you will learn using and working with MongoDB Shell.

Basic Shell commands

MongoDB Shell is a JavaScript based interface which allows you to run various CRUD (Create, Read, Update, and Delete) and administrative operations. As it is a JavaScript based interface, it has the ability to interpret JavaScript commands as well, other than MongoDB specific operations. A simple example is arithmetic operations like addition or multiplication, as shown in the following screenshot:

[image:]

Figure 5.11: Mongo Shell – Arithmetic Operations

By using MongoDB Shell, we can also run few other JavaScript methods, as shown in the following screenshot:

[image:]

Figure 5.12: Mongo Shell – JavaScript Replace method

 MongoDB Shell basic command helpers

There are many helpers available from MongoDB command line. Let us explore few important ones one-by-one.

	General Help Command
Type "help" in your MongoDB Shell

This command is a general purpose help command which will give us the details of all the basic help commands available from MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 5.13: Mongo Shell – General Help Command

	DB related help command
Type db.help() in your MongoDB Shell

This command will print the details of all the database methods available from MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 5.14: Mongo Shell – "db.help()" - DB Help Command Showsvarious DB Methods which we can use

	Show databases command
Type show databases in your MongoDB Shell.

This command will print the details of all the database methods available from the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 5.15: Mongo Shell – "show databases" - To Show Databases Command.

	Use <DB> Command
Type "use <db>" in your MongoDB Shell. Here, <db> is the name of your database.

Example: If the name of your database is BPBOnlineDB, then you will type: use BPBOnlineDB in the Shell prompt.

This command will now let us use or access BPBOnlineDB database so that we can perform some actions on this database, as shown in the following screenshot:

[image:]

Figure 5.16: Mongo Shell – "use <db>" - To access and Use Specific Database Command.

	Show collections command
Type show collections in your MongoDB Shell. Note that this command will only work if you have selected the database using use <db> command first.

This command will show you the list of collections that exists in the database you are using by use <db> command, as shown in the following screenshot:

[image:]

Figure 5.17: Mongo Shell – "show collections" Command - To show the list of Collections exists in the particular database.

	Collection related help commands
Type db.<collection-name>.help() in your MongoDB Shell, where <collection-name> is the name of your collection.

This command will show you the list of collection-related methods that you can use, as shown in the following screenshot:

[image:]

Figure 5.18: Mongo Shell –"db.<collection-name>.help()" Command - To show the list of Collections methods that are available to be used with particular collection.

In this section, we have covered many basic MongoDB commands that are helpful to work with MongoDB. MongoDB Shell also stores the history of the commands which we cover in the next section.

MongoDB Shell command history

MongoDB stores the history of the commands that you run in a session. You can easily retrieve the previous commands you have used by the up and down arrow keys.

	The up-arrow key is used to retrieve the previous command you have used from your current position.

	The down -arrow key is used to retrieve the next command you have used from your current position.

We have studied that by using the Up and Down arrow keys we can easily access the commands from the MongoDB Shell history. These commands are those commands which we have already used while working on MongoDB Shell. In the next section, we will get introduced to MongoDB clients.

Introduction to MongoDB clients

In MongoDB or database world, client is a program or application which provides user the interface, be it command line or GUI (Graphical User Interface) to connect, use, manage and administer the database.

There are various MongoDB clients available in the market to use, right from the simplest MongoDB client, a MongoDB command line Shell program to the MongoDB Inc. compass, a GUI (Graphical User Interface) system to manage and administer MongoDB. We also have various other tools available in the market. Few of them are as follows:

	MongoDB Inc Compass - https://www.mongodb.com/products/compass

	Studio 3T - https://studio3t.com/

	RoboMongo - https://robomongo.org

	NoSQL Manager - https://www.mongodbmanager.com

	NoSQL Booster - https://nosqlbooster.com

We will cover the official client, MongoDB Inc. compass, in Chapter 16: of this book in more detail.

Conclusion

In this chapter, we learned what is MongoDB database as well as the difference between the SQL Databases with NoSQL databases. We have also studied about MongoDB collections and MongoDB documents. We have also covered MongoDB Shell and how we can use it to run various commands related to MongoDB database.

In the last topic, we also gave a small overview of various MongoDB clients. We will cover more advanced topics in more detail in the upcoming chapters.

Questions

	What are NoSQL databases?

	How are NoSQL databases different from SQL-based databases?

	Explain MongoDB collection and MongoDB document in detail.

	How to create a database in MongoDB using MongoDB shell?

	What are database clients?

	Can you name some MongoDB clients?

CHAPTER 6

Storage Engines in MongoDB

In this chapter, we will cover the concept of storage engines in database management systems and why they are used. We will discuss the storage engine with the help of diagrams. We will also cover the storage engines that are used in MongoDB such as the WiredTiger storage engine as well as the in-memory storage engine. We will also cover encrypted storage engines and third-party pluggable storage en gines in this chapter and also compare the main storage engines with their features. In this chapter, we will also cover the concept of locks in the database and the overview of locks in MongoDB.

Structure

In this chapter, we will discuss the following topics:

	What are storage engines?

	Types of storage engines in MongoDB

	Introduction to the WiredTiger storage engine

	Introduction to the in-memory storage engine

	Encrypted storage engine

	Third-party pluggable storage engines

	MongoDB locks

Objectives

After studying this unit, you should be able to understand the concept of storage engines in the database management systems and learn about the storage engines used in MongoDB, including the MongoDB's WiredTiger storage engine, in-memory storage engine, and encrypted storage engine. Later in this chapter, you will also learn about the third-party pluggable storage engines that you can also use with MongoDB.

What are storage engines?

Storage engine is a software component that works in the Database Management System (DBMS) to provide the user CRUD (Create, Read, Update, and Delete) functionality. The database engine defines a way to store the data into the database and also the manner in which the data is stored in both the memory and the disk.

The database uses its database engine to store and retrieve data to and from the memory and disk. So, this means that with the help of storage engines, the user will be able to perform various operations like CRUD, etc.

Various databases use their own API (Application Programming Interface) that works in between the database engine and user to provide the medium for the user interaction with the database and database engine as shown in the following figure:

[image:]

Figure 6.1: Database Storage Engine

So, it is very important to select the right storage engine for your application from the beginning itself.

Types of storage engines in MongoDB

We know that storage engines are very vital components of the database management systems and they are used to manage and store data in the memory and disk. MongoDB supports multiple storage engines; each of which has some unique features. Let’s take a look at the major storage engines supported by MongoDB.

The following storage engines are supported by MongoDB:

	WiredTiger

	In-memory

	Encrypted

	MMAPv1 (from version 4.2 and above, this storage engine is not supported by MongoDB and it has been removed from the later versions)

Each application has different needs and different workloads. Some of the applications are write-intensive, some are read-intensive, and some applications may require data encryption. So, the development team chooses various storage engines according to the needs of the application.

Introduction to the WiredTiger storage engine

The WiredTiger storage engine is the default storage engine for MongoDB starting from MongoDB version 3.2 and above. This is best suited for most of the workloads and thus, it is recommended for most of the applications.

The WiredTiger storage engine uses document-level concurrency control for write operations, which means that it can handle multiple requests without conflicting with each other. In case, there is a conflict between two operations, then the WiredTiger storage engine will retry that operation with ease. While using WiredTiger as a storage engine, MongoDB utilizes the WiredTiger internal cache as well as the file system cache. WiredTiger is helpful in the efficient use the CPU and RAM and is also helpful when it comes to tuning the database storage engine. It can be tuned more than the MMAP storage engine.

WiredTiger allows up to 7 to 10 times more write performance than other storage engines. It also reduces the storage and achieves up to 80% less storage with compression. Compression also reduces the CPU load and overhead.

Introduction to the in-memory storage engine

The in-memory storage engine is available in the MongoDB Enterprise Edition only starting from version 3.2.6 and above. These provide high output with low latency and high availability. The in-memory storage engines support high-level infrastructure based on zonal sharding.

These also come with MongoDB rich query capability and indexing support.

Encrypted storage engine

MongoDB Enterprise provides encryption support for WiredTiger starting from the MongoDB Enterprise version 3.2 and above. This feature allows MongoDB to encrypt data and decrypt whenever required.

Many a times, data encryption is forced by the government bodies or some industry standards like HIPAA, PCI-DSS, and FERPA. These are some security standards and guidelines which help in ensuring compliance with security and privacy policies of the industry or organization.

Third-party pluggable storage engines

MongoDB also supports the third-part storage engines. These storage engines can be plugged in like modules and can also be independently updated. An example of the third-party storage engine is RocksDB developed by Facebook Inc. and designed to handle write-intensive workloads. The RocksDB storage engine is the first one to use the module system for the MongoDB storage integration layer.

MongoDB storage engines comparison

The comparison of storage engines in MongoDB is shown in the following table:

	
	
Wired Tiger

	
In-memory

	
Encrypted

	
Versions

	
From 3.0 + Community

	
Enterprise

	
Enterprise

	
Concurrency Level

	
Document

	
Document

	
Document

	
Write Performance

	
Excellent

	
Excellent

	
Good

	
Read Performance

	
Excellent

	
Excellent

	
Good

	
Disk Compression

	
Good

	
Excellent

	
Good

	
Query Language

	
Yes

	
Yes

	
Yes

	
Secondary Index Support

	
Yes

	
Yes

	
Yes

	
Replication Support

	
Yes

	
Yes

	
Yes

	
Sharding Support

	
Yes

	
Yes

	
Yes

	
Ops & Cloud Manager Support

	
Yes

	
Yes

	
Yes

	
Native Encryption (REST)

	
No

	
N/A

	
Yes

	
Read Concern

	
Yes

	
Yes

	
Yes

	
Security Controls

	
Yes

	
Yes

	
Yes

	
Larger than RAM Datasets

	
Yes

	
No

	
Yes

	
Platform Availability

	
Windows, Linux, Mac OSX

	
Windows, Linux, Mac OSX

	
Windows, Linux, Mac OSX

Table 6.1: Database Storage Engine in MongoDB – Comparison of Features

So far, we have learned what storage engines are and how they play an important role in the database management systems. We have also covered the available storage engines in MongoDB and their features and comparison.

MongoDB locks

While inserting data into the database, MongoDB creates locks with the help of its storage engine, like WiredTiger. Earlier, we learned how this is done in MongoDB. Now, let’s study what exactly a database lock is and why it is required.

What is a database lock?

A database lock is a mechanism used by the database to prevent a scenario where two users or two sessions modify the same data at the same time. What this means is that there could be a scenario where there are two or more database users who are working on the same set of data and want to update the same data or record. In this case, there would be lot of issues that would arise. The mostly aroused situation could be related to which data is latest and up-to-date.

In order to prevent this, a database creates a lock when any update is done to a particular set of data and after the update is done, it releases the lock so that other users or sessions can work on that particular data.

Therefore, in the database world, in order to achieve the concurrency, multiple users are concurrently working in the database and its records. This is then achieved by the database concurrency control mechanisms which are done by the help of database engines.

Database lock operations types

There are mainly three different types of locking operation that are mostly done in databases:

	Read lock operation

	Write lock operation

	Unlock operation

Lock operations can further be classified as shared lock or exclusive lock. Let us now learn about how the locks are used in MongoDB.

Database locks operations in MongoDB

MongoDB uses multiple granularity locking. This type of locking ensures that the database locking can be done at the child level (record level). MongoDB allows multiple clients to read and write data at the same time and thus, it uses locking at different levels and other concurrency control methods to achieve this.

MongoDB's WiredTiger engine uses intent locks as well as optimistic concurrency control and 1) Global 2) Database and 3) Collection Level, so it always prevents the conflicts. MongoDB also allows the database engines to implement their own concurrency and locking mechanisms at the document level.

In case WiredTiger detects any write conflict with any client, then that client will transparently retry its operation.

Conclusion

In this chapter, we studied about database storage engines with the help of diagrams. We also studied the storage engines available in MongoDB and their features. The concept of database locking was also covered and we learned the different types of locking available in MongoDB and how to achieve those.

In the next chapter, we will cover how to manage and administer MongoDB with the help of MongoDB Shell commands and this will be the intermediate level of MongoDB management.

Questions

	What are storage engines?

	Why are storage engines so useful in databases?

	What are the two major storage engines of MongoDB?

	Explain the WiredTiger storage engine with the help of some features.

	What are database locks?

	Why are locks used in databases?

CHAPTER 7

Managing and Administering MongoDB

This chapter will cover the basic commands and methods used to manage and administer MongoDB. We would learn these commands and methods with the help of MongoDB Shell. We will learn how to create, update, and delete databases, collections and documents using the MongoDB Shell with the help of MongoDB Shell commands and methods. We will also learn how to create, update, and delete documents using the MongoDB query and write operations Shell commands and methods. Later in this chapter, we will learn about the MongoDB authentication and role based access methods and how to use them in MongoDB using the MongoDB Shell commands and methods.

Structure

In this chapter, we will discuss the following topics:

	MongoDB administration commands and methods

	MongoDB query and write operation commands and methods

	Query and write operation commands MongoDB user authentication and role based commands and methods

Objectives

After studying this unit, you should be able to learn about MongoDB administrative command and methods and how to use them in MongoDB later in the chapter we will also learn query and write operation commands and methods in MongoDB and in the last section of this chapter we will learn about the user authentication and role based commands and methods in MongoDB.

MongoDB administration commands and methods

We will start this chapter with some administration commands and methods which are used very frequently and are used before any other command related to MongoDB. These commands and methods are used to create databases and collections and to insert a document. Let us check them one by one. To run these commands and methods, you need to run the MongoDB Shell as explained in the previous chapters.

Create database command

This command is useful to create a database. Type the following command in your MongoDB Shell prompt to create a database in MongoDB:

"use <database-name>"

Here, <database-name> is the name of your database you want to create. In our example, let us create a database with the name BPBOnlineBooksDB, as shown in the following screenshot:

"use BPBOnlineBooksDB"

[image:]

Figure 7.1: MongoDB Administration Commands and Methods – Creating a Database "use <database-name>"

Note that this command use <database-name> can also be used to switch to any database. When you use this command to create a database, you must create a collection and insert at least one record so that the database gets created. This is done using the following method:

"db.<collection-name>.insert()"

db.BPBOnlineBooksDBCollection.insert({"book-title":"Mastering MongoDB"})

Once you run this method, it will create a collection in the database with a single document based on the key-pair values of the JSON string that you provide. This method will automatically create a collection if it doesn't exists. In our case, we have created a collection named BPBOnlineBooksDBCollection and a simple document with book-title as Mastering MongoDB, as shown in the following screenshot:

[image:]

Figure 7.2: MongoDB Administration Commands and Methods – Creating a Database, Collection and Document using "db.<collection-name>.insert()"

So, we have learnt about the MongoDB administration commands and methods and how to create database, collection, and documents using these administration commands and methods. Let us now learn some more MongoDB Shell commands and methods.

Create collection command

This command is used to create a collection in database in MongoDB. Before you run this command, you need to switch to a database with use <database-name> command we studied earlier.

Type the following command in your MongoDB Shell prompt to switch to your database:

"use <database-name>"

After this, type the following command to create a collection:

db.createCollection("<collection-name>")

db.createCollection("BPBOnlineBooksDBCollection-V2")

Once you run this command, it will create a collection in a database. In our case, we have created a new collection named BPBOnlineBooksDBCollection-V2, as shown in the following screenshot:

[image:]

Figure 7.3: MongoDB Administration Commands and Methods – Creating a Collection using db.createCollection(<collection-name>)"

MongoDB can create a collection automatically if a collection doesn't exist. So, type the following command to insert a document in a MongoDB selected database:

"db.<collection-name>.insert()"

db.BPBOnlineBooksDBCollection-V3.insert({"book-title":"Mastering MongoDB with JavaScript"})

	In the 1st step, we switched to our database named BPBOnlineBooksDB

	In the 2nd step, we printed the list of collections which are in the current database

	In the 3rd step, we inserted the document

	In the 4th step, we again printed the list of collections in the current database

It will automatically create a collection, as shown in the following screenshot:

[image:]

Figure 7.4: MongoDB Administration Commands and Methods – Creating a Collection using "db.<collection-name>.insert()" - Collection is automatically created even if doesn't exists

So far, we have learnt to create a collection using the MongoDB Shell commands and methods. Let us now learn some more interesting MongoDB Shell commands and methods with step-by-step practical examples.

Drop database command

This command is used to delete or remove a database in MongoDB. Before you run this command, you need to switch to a database with use <database-name> command that we have studied earlier.

Type the following command in your MongoDB Shell prompt to switch to your database:

"use <database-name>"

After this, type the following command to create a collection:

db.dropDatabase()

In our case, let’s try to delete the database BPBOnlineBooksDBV2Collection. To do so, we have to run the following commands and methods in the Shell prompt, as shown in the following screenshot:

use BPBOnlineBooksDBV2

db.BPBOnlineBooksDBV2Collection.insert({"book-title":"The introduction to Cobol"})

show dbs

db.dropDatabase()

show dbs

[image:]

Figure 7.5: MongoDB Administration Commands and Methods – Dropping a Database in MongoDB

So far, we learned how to drop or delete a database using the MongoDB Shell commands and methods. Let us now learn some more interesting MongoDB Shell commands and methods with step-by-step practical examples.

Drop collection command

This command is used to delete or remove collections in MongoDB. Before you run this command, you need to switch to a database with use <database-name> command that we studied earlier.

Type the following command in your MongoDB Shell prompt to switch to your database:

"use <database-name>"

After this, type the following command to create a collection:

db.<collection-name>.drop()

In our case, let us try to delete a collection named BPBOnlineBooksDBV3Collection. To do so, we have to run the following commands and methods in the Shell prompt, as shown in the following screenshot:

use BPBOnlineBooksDB

db.BPBOnlineBooksDBV3Collection.insert({"book-title":"The introduction to Pascal"})

show collections

db.BPBOnlineBooksDBV3Collection.drop()

show collections

[image:]

Figure 7.6: MongoDB Administration Commands and Methods – Dropping a Collection in MongoDB

So far, we learned how to drop or delete a collection using the MongoDB Shell commands and methods. Let us now learn some more interesting MongoDB Shell commands and methods with step-by-step practical examples.

MongoDB query and write operation commands and methods

There are certain Shell commands and methods which are very helpful for read and write operations. These commands and methods are used to perform the CRUD operations at document or collection level in MongoDB. Let us go through them one by one.

Insert document command

This command is used to insert a document in collection. Type the following command to insert a document in MongoDB. Before you run this command, you need to switch to a database with use <database-name> command.

Type the following command in your MongoDB Shell prompt to switch to your database:

"use <database-name>"

After this, type the following command to insert or create a document in a collection:

db.<collection-name>.insert()

In our case, let’s try to insert a document in a collection named BPBOnlineBooksDBV4Collection. To do so, we have to run the following commands and methods in the Shell prompt, as shown in the following screenshot:

use BPBOnlineBooksDB

db.BPBOnlineBooksDBV4Collection.insert(

{

"book-isbn-number":"1234567890",

"book-title":"The introduction to Qbasic",

"book-price": "INR 500"

}

)

show collections

[image:]

Figure 7.7: MongoDB Administration Commands and Methods – Inserting a Document "db.<collection-name>.insert()"

So far, we learned how to create a document using the MongoDB Shell commands and methods. Let us now learn some more interesting MongoDB Shell commands and methods with step-by-step practical examples.

Read document command

This command is used to read documents or a specific document in a collection. Before you run this command, you need to switch to a database with use <database-name> command.

Type the following command in your MongoDB Shell prompt to switch to your database:

"use <database-name>"

After this, type the following command to read a document in a collection:

db.<collection-name>.find()

In our case, let us try to read all documents in the collection named BPBOnlineBooksDBV4Collection. So, we need to run the following commands and methods in the Shell prompt, as shown in the following screenshot:

use BPBOnlineBooksDB

db.BPBOnlineBooksDBV4Collection.find()

[image:]

Figure 7.8: MongoDB Administration Commands and Methods – Reading Documents "db.<collection-name>.find()"

You can also format the results in a formatted manner to make it prettier to read. To do this, just add pretty() after find(). This will show you the documents in a more readable format, as shown in the following screenshot:

[image:]

Figure 7.9: MongoDB Administration Commands and Methods – Reading Documents in Formatted Manner"db.<collection-name>.find().pretty()"

So far, we have learnt how to read documents using the MongoDB Shell commands and methods. Let us now learn some more interesting MongoDB Shell commands and methods with step-by-step practical examples.

Delete document command

This command is useful to delete or remove documents or a specific document in collection. Before you run this command, you need to switch to a database with use <database-name> command.

Type the following command in your MongoDB Shell prompt to switch to your database:

"use <database-name>"

After this, type the following command to read a document in a collection:

db.<collection-name>.remove()

In our case, let’s try to delete or remove a document in a collection based on a specific _id from a collection named BPBOnlineBooksDBV4Collection. to do so, we need to run the following commands and methods in the Shell prompt, as shown in the following screenshot:

use BPBOnlineBooksDB

db.BPBOnlineBooksDBV4Collection.find().pretty()

db.BPBOnlineBooksDBV4Collection.remove({"_id" : ObjectId("5e8e94513c9f251e6d749109")})

db.BPBOnlineBooksDBV4Collection.find().pretty()

Note that in step 3 we have used the _id to delete a specific document which has this _id. By this, we have deleted only a specific document based on a key-value pair.

[image:]

Figure 7.10: MongoDB Administration Commands and Methods – Deleting a Document "db.<collection-name>.remove()"

So far, we have learnt how to delete documents using the MongoDB Shell commands and methods. Let us now learn some more interesting MongoDB Shell commands and methods with step-by-step practical examples.

MongoDB user authentication and role based commands and methods

Now, we will look into some of the MongoDB's authentication commands and methods. We will cover the basic authentication methods within the build roles and we will also cover advanced topics related to authentication in the following advanced chapters.

To start with, let us understand some basics.

What is database authentication?

Database authentication is a process of allowing access to the right user who has the right credentials to access the database. The credentials are username and password.

Some databases, like MongoDB, allow us to create a role based access control (RBAC).

What is role-based access control?

In a role-based access control, the users accessing a database are allowed only to access the database based on their roles in the organization. Not everyone needs full privileges or rights to access the database as super admin. Some people only require the read only access while some people, like system administrators, may require the full access to the database.

This allows the user to access the data (or information) which is only related to their jobs in the organization.

Role-based authentication in MongoDB

MongoDB comes with in-built roles. In our example, we will use userAdmin role. This role has the privileges of an administrator.

	Type the following command in your MongoDB Shell prompt:
"use <database-name>"

Here, <database-name> is the name of your database you want to give role based access to. In our example, let us create a database with the name BPBOnlineBooksDBWithAuth, as shown in the following screenshot:

"use BPBOnlineBooksDBWithAuth"

	–Now, we will use the following command and settings to setup the authentication to this database:
db.createUser(

{

user: "manusharma",

pwd: "admin1234",

roles:

[

{

role: "userAdmin",

db: "BPBOnlineBooksDBWithAuth"

}

]

}

)

[image:]

Figure 7.11: MongoDB Administration Commands and Methods – Creating a User with Role

In the previous step, we learned how to create a user with a role using the MongoDB Shell commands and methods. Let us now move on to the next step:

	Restart your mongod service with --auth parameter, as shown in the following screenshot:
mongod --auth --port 27017 --dbpath "c:\Program Files\MongoDB\Server\4.2\data\db"

[image:]

Figure 7.12: MongoDB Administration Commands and Methods – Restarting mongod Service with --auth parameter

	Authenticate with username, password and database using the mongo shell. In our example, we have used username, password and database name to authenticate, as shown in the following screenshot:
mongo -u "manusharma" -p "admin1234" --authenticationDatabase "BPBOnlineBooksDBWithAuth"

[image:]

Figure 7.13: MongoDB Administration Commands and Methods – Restarting mongod Shell with parameters

We can also authenticate using db.auth("<username>", "<password>") method. Here, <username> is your username and <password> is your password which you have used while creating this database user. In this case, we simply run the Mongo command to access the mongo Shell without any parameters and then use the db.auth() method, as shown in the following screenshot.

It will show "1" if the authentication is successful, else, it will show an error as shown in the following screenshot:

[image:]

Figure 7.14: MongoDB Administration Commands and Methods – Authentication using db.auth("<username>", "<password>") method

Conclusion

In this chapter, we learned the basic commands and methods used for managing and administrating MongoDB. We learned these commands and methods with the help of MongoDB Shell. We also learned how to create, update, and delete databases, collections and documents using the MongoDB Shell with the help of MongoDB Shell commands and methods. We also learned how to create, read and delete documents using the MongoDB query and write operations Shell commands and methods.

Later in this chapter, we learned about the MongoDB authentication and role-based access methods and how we can use these in MongoDB using the MongoDB Shell commands and methods.

In the next chapter, we will learn about the MongoDB Shell methods in a more detailed manner in which we will learn about the JavaScript in MongoDB, list of official supported languages in MongoDB, the MongoDB connection methods, MongoDB database methods, MongoDB collection methods, and MongoDB cursor methods.

Questions

How can we create database in MongoDB? Explain this by using the MongoDB Shell.

	How can we create a collection in MongoDB? Explain this by using the MongoDB Shell.

	How can we create a document in MongoDB with the help of MongoDB Shell?

	Is it possible to delete database with the MongoDB Shell? Explain the steps.

	How can we delete documents by using the MongoDB Shell?

	What do you understand by authentication?

	What is role based access?

CHAPTER 8

MongoDB Shell Methods

In the previous chapter, we learned about the MongoDB Shell commands and some methods. In this chapter, we will learn more about the MongoDB Shell methods used to connect to the MongoDB server. We will start with JavaScript in MongoDB and will cover and overview of list of various other languages which are officially supported by MongoDB. We will also cover the commands related to the database, various methods related to the database management and collections and how we can manipulate the MongoDB collections using these methods. Towards the end, we will cover cursor in MongoDB and various cursor related methods that we can use. These methods are very useful and we can use them in various scenarios while working with MongoDB and later when we will learn some advanced topics and application development using MongoDB.

Structure

In this chapter, we will discuss the following topics:

	MongoDB database methods

	MongoDB collection methods

	MongoDB cursor methods

Objectives

After studying this unit, you should be able to:

	Learn about JavaScript in MongoDB

	Learn about the other languages officially supported by MongoDB

	Learn about MongoDB connection using Shell methods

	Learn about MongoDB database Shell methods

	Learn about MongoDB collection Shell methods

	Learn about MongoDB cursor Shell methods

JavaScript in MongoDB

You have learnt in the previous chapter that the MongoDB Shell is a JavaScript based interface that allows you to run various commands. The MongoDB Shell has an ability to interpret JavaScript commands too other than the MongoDB specific operations which we have covered in our previous chapter.

Server Side JavaScript in MongoDB

MongoDB has various methods and operators which use server side execution of JavaScript. We will cover these in more details in our next chapters. But to give an overview of these, we will now cover the overview of two main topics:

	MapReduce

	$where

What is map-reduce in MongoDB?

Map-reduce is a process or method in MongoDB in which large volume of data is processed, filtered and then reduced to a set of small number of cluster of data. This is a group of data which is combined to form a set which contains some information. So, the map-reduce method is generally used to process a large set of data.

What is $where operator in MongoDB?

$where is an operator in JavaScript which is used to match documents in MongoDB which matches certain criteria given in a JavaScript expression. Normally, we pass the JavaScript expression or function in $where operator.

We will cover these topics in a more detailed manner in the advanced chapters.

List of officially supported languages in MongoDB

We learned in Chapter 1: Introduction to MongoDB of this book that MongoDB drivers depend on programming languages and help applications for various CRUD and other operations with respect to the MongoDB database. So, MongoDB supports many other languages other than JavaScript. So, while communicating with the apps, MongoDB communicates with the diversity of these languages.

Following is the list of languages officially supported by MongoDB:

	C

	C++

	C#

	Go

	Java

	Node.js

	Perl

	PHP

	Python

	Ruby

	Scala

	Swift

Other than these languages, there are many other languages supported by the MongoDB community, and their drivers have been built by the MongoDB community.

MongoDB methods

We will cover various MongoDB methods in this chapter. But before we do that, let us open up a MongoDB Shell.

Step 1 – Connecting to MongoDB Shell

Let us now try to connect MongoDB from the command line from your Windows machine. To connect to MongoDB from your Windows machine, follow these steps:

	Open a command window and navigate to the bin directory of MongoDB.
The path could be as shown in the following figure:

C:\Program Files\MongoDB\Server\4.2\bin

[image:]

Figure 8.1: From Command Line – Navigate to MongoDB "bin" Directory.

	Now, give the following command and press Enter, as shown in the following figure:
"mongo"

Press Enter

[image:]

Figure 8.2: From Command Line –Type "mongo" command and Press enter

	Once you give this command and press Enter, it will open the Mongo Shell and we can type the Mongo related commands, as shown in the following figure:

[image:]

Figure 8.3: The MongoDB Shell

Now, we have entered into the MongoDB Shell. We can now use various MongoDB methods using the MongoDB Shell. Let us now learn about these methods.

MongoDB connection methods

We will cover some most common and important methods related to connection which are helpful in connecting to the MongoDB server.

Some of these methods are as follows:

	connect()

	Mongo()

	Mongo.getDB()

Let us study them one-by-one.

connect(url,username,password)

	This method creates the connection to the MongoDB instance.

	This method returns the reference to the MongoDB database.

	It takes up to 3 parameters.

	The first parameter is mandatory and it takes the URL with host name, port and database.

	The last two parameters, which are username and password, are optional.

The first parameter value can be as follows:

	<hostname>:<port-number>/<database>

	<hostname>/<database>

	<database>

We will use the following example, as shown in the following figure:

db = connect("localhost:27017/bpbOnlineBooks");

[image:]

Figure 8.4: The MongoDB connect() Method

We can now see that after we run this method, it returns the reference to the MongoDB database. We can also use the Mongo() and Mongo.getDB() methods which are recommended methods to use.

Mongo(host, clientSideOptions)

	This method initiates the connection to the MongoDB database either from the MongoDB Shell or the JavaScript file.

	It takes up to 2 parameters.

	The first parameter is optional and it takes the host name or host name with port. If these values are omitted, it will initiate the connection to local host with the default port number, which is 27017, in case of MongoDB.

	The last parameter is also optional and it contains the parameters for client side field level encryption.

The first parameter value can be as follows:

	<hostname>

	<hostname>:<port-number>

We will use the example as shown in the following figure:

MongoDBConnection = Mongo("mongodb://localhost:27017/");

[image:]

Figure 8.5: The MongoDB Mongo() Method

After we run this method, we have the connection available to run our next methods. Let us now try to run the Mongo.getDB() method.

Mongo.getDB(database)

The following are the details of this method, explained with some points:

	This method provides the access to MongoDB database objects from the MongoDB Shell or the JavaScript file.

	It takes only 1 parameter.

	The parameter is mandatory and it takes the database name which we want the access to.

	In the previous command, we already have a MongoDB connection available with us. So, we will use that object to access the MongoDB database.

The first parameter value is as follows:

	<database>

We will use the example as shown in the following figure:

db = MongoDBConnection.getDB("BPBOnlineBooksDB");

We can also run the following command:

db = new Mongo().getDB("BPBOnlineBooksDB");

Either way, it will give us the reference to the MongoDB database:

[image:]

Figure 8.6: The MongoDB Mongo.getDB() Method

So far, we have learnt about Mongo.getDB() method. We will learn about some MongoDB database related methods in the next section.

MongoDB database methods

We will cover some most common and important methods related to the MongoDB database which are helpful in connecting to the MongoDB server.

Some of these methods are as follows:

	db.getMongo()

	db.hostInfo()

	db.stats()

	db.serverStatus()

Let us study this one-by-one.

db.getMongo()

Following are the details of this method, explained with some points:

	This method is used to test if the MongoDB Shell has a proper connection to the database instance.

	This method returns the database connection, as shown in the following figure:

[image:]

Figure 8.7: The db.getMongo() method

We can now see that after we run this method, it returns the database connection.

db.hostInfo()

This method returns the information about the host, which means that it will return the information about system in which MongoDB is running, as shown in the following figure:

[image:]

Figure 8.8: The db.hostInfo() Method

We can now see that after we run this method, it returns the system information.

db.stats()

Following are the details of this method, explained with some points:

	This method returns the statistics of the single database, as shown in the following figure.

	It takes only 1 parameter.

	The parameter is optional which is a scale number in which we would like our output in terms of bytes or kilobytes. For example, if you would like the results to be displayed in kilobytes, you should pass 1024 in the parameter.

[image:]

Figure 8.9: The db.stats() Method

We can now see that after we run this method, it returns the database statistics information.

db.serverStatus()

Following are the details of this method, explained with some points:

	This method returns the document which provides the complete overview of the database status and other process related information, as shown in the following figure.

[image:]

Figure 8.10: The db.serverStatus() Method

We can now see that after we run this method, it returns the document of database process related information.

MongoDB Collection methods

We will cover some most common and important methods related to the collections which are helpful in performing the collections-related tasks in the MongoDB server.

Some of these methods are as follows:

	db.collection.count()

	db.collection.stats()

	db.collection.totalSize()

	db.collection.validate()

	db.collection.drop()

Let us study these one-by-one.

db.collection.count()

Following are the details of this method, explained with some points:

	This method returns the count number of the documents in the collection, as shown in the following figure.

	It takes the query and options parameters, which we will study in the advanced chapters, where we will cover the CRUD operations.

[image:]

Figure 8.11: The MongoDB Collection count() Method

We can now see that after we run this method, it returns the total number of documents in the collection.

db.collection.stats()

Following are the details of this method, explained with some points:

	This method returns the statistics of the collection, as shown in the following figure.

	It takes only 1 parameter.

	The parameter is optional. It is a scale number in which we would like our

[image:]

Figure 8.12: The MongoDB Collection stats() Method

We can now see that after we run this method, it returns the statistical data of the collection.

db.collection.totalSize()

Following are the details of this method, explained with some points:

This method returns the total number of size of data and size of indexes in the collection in bytes, as shown in the following figure:

[image:]

Figure 8.13: The MongoDB Collection totalSize() Method

We can now see that after we run this method, it returns us the total size of the collection in bytes.

db.collection.validate()

Following are the details of this method, explained with some points:

	This method scans the collection data and its indices for its correctness and returns the validated output, as shown in the following figure.

	It takes only 1 parameter.

	The parameter is optional which is a Boolean value. If this value is true, this method will do the full scan of the collection data and index. Else, if the value is omitted or is set to false, it will do the normal scan, which is faster than the full scan.

	Note that this method is resource intensive and may impact the performance of the MongoDB instance while the scanning is under progress.

[image:]

Figure 8.14: The MongoDB Collection validate() Method

We can now see that after we run this method, it returns us the validated output of the collection data and index.

db.collection.drop()

Following are the details of this method, explained with some points:

	This method drops the collection and also removes any associated index with it, as shown in the following figure.

	This method will return true if the drop operation is successful.

[image:]

Figure 8.15: The MongoDB Collection drop() Method

We can now see that after we run this method, it returns True, which means that the drop operation was successful.

MongoDB cursor methods

We will cover some common and important methods related to the MongoDB cursors. But before we do that, let us understand the concept of cursors in MongoDB.

What is a cursor in MongoDB?

Whenever we use the db.collection.find() method in the MongoDB database to search the documents in a collection, it returns the pointer to these documents. This pointer, which is returned, is termed as cursor. We will read more about cursor in the advanced chapters. In this chapter, we will just cover few cursor related methods.

Some of these methods are as follows:

	cursor.count()

	cursor.pretty()

	cursor.sort()

Let us study them one-by-one.

cursor.count()

Following are the details of this method, explained with some points:

	This method is used to count the number of documents which are referenced by the cursor.

	In this method, we use find() to query and return the number of documents based on the criteria, as shown in the following figure:

[image:]

Figure 8.16: The cursor.count() Method

We can now see that after we run this method, it returns the count of number of documents based on the criteria given in the find method.

cursor.pretty()

This method is used to print results in easy-to-read format, as shown in the following figure:

[image:]

Figure 8.17: The cursor.pretty() Method

We can now see that after we run this method, it returns the results in easy-to-ready format.

cursor.sort()

Following are the details of this method, explained with some points:

	This method is used to sort the results either in ascending or in descending order, as shown in the following figure.

	If 1 is specified for a field, it means ascending order.

	If -1 is specified for a field, it means descending order.

[image:]

Figure 8.18: The cursor.sort() Method

We can now see that after we run this method, it returns the results in ascending manner.

Conclusion

In this chapter, we learned about the MongoDB Shell methods, use of JavaScript in MongoDB and that we can use other languages also that are officially supported by MongoDB.

We covered various Shell methods related to the MongoDB connections, MongoDB databases, and MongoDB collections. In the last topic of this chapter, we also covered the few methods related to cursors.

These methods are very useful and we can use them in various scenarios while working with MongoDB and later when we will learn some advanced topics and application development using MongoDB.

In the next chapter, we will study the data types in MongoDB where we will cover various data types available in MongoDB with examples.

Questions

	What is the default Shell language used in MongoDB?

	Does MongoDB support different languages other than JavaScript?

	Can you name few languages supported by MongoDB?

	Can you explain the MongoDB connect() method and the ways to connect to the MongoDB server, as explained in the connection methods topic?

	What is the method used to calculate the size of the collection?

	What is a cursor in MongoDB?

CHAPTER 9

Data Types in MongoDB

This chapter covers the data types used in MongoDB. We will start with the introduction of data type - what exactly it is, and then we will move on to the overview of the BSON data types. There are different data types used in MongoDB and each one of them have different properties and structure and are used in different scenarios. Some of them are widely used and some of them are not very frequently used.

Structure

In this chapter, we will discuss the following topics:

	What are data types?

	Introduction to BSON data types

	Integer

	Double

	String

	Object

	Array

	Binary data

	Object Id

	Boolean

	Date

	Null

	Regular expression

	JavaScript

	JavaScript with scope

	Timestamp

	Min key

	Max key

	Decimal128

	Comparison and Sort Order

Objectives

After studying this unit, you should be able to learn about the data types and BSON data types. Later, in this chapter, you will learn about the data types supported by MongoDB and understand those using practical methods.

What are data types?

Data types are the types of data used to store data in various formats that is understood by the programming language, or, in our case, the database. Normally, the data types can be represented by string type, integer type, float type, etc. The data types give the meaning to the data as well as types of operations that can be performed with these data types.

Introduction to BSON data types

The BSON data types are just like the JSON data types, but in the binary format. That’s why, they are called Binary JSON. BSON is the binary format and can have simple to complex data types, including the name-value pairs, such as associative arrays.

MongoDB stores the data types in a unique manner. It has an alias as well as associated number for identification.

Data types in MongoDB

Following is the list of data types available in MongoDB which includes data type, data type number, and data type alias:

	
Data Type

	
Data Type Number

	
Data Type Alias

	
Double

	
1

	
"double"

	
String

	
2

	
"string"

	
Object

	
3

	
"object"

	
Array

	
4

	
"array"

	
Binary data

	
5

	
"binData"

	
ObjectId

	
7

	
"objectId"

	
Boolean

	
8

	
"bool"

	
Date

	
9

	
"date"

	
Null

	
10

	
"null"

	
Regular Expression

	
11

	
"regex"

	
JavaScript

	
13

	
"javascript"

	
JavaScript (with scope)

	
15

	
"javascriptWithScope"

	
32-bit integer

	
16

	
"int"

	
Timestamp

	
17

	
"timestamp"

	
64-bit integer

	
18

	
"long"

	
Decimal128

	
19

	
"decimal"

	
Min key

	
-1

	
"minKey"

	
Max key

	
127

	
"maxKey"

Table 9.1: MongoDB Data Types

Let us now study the different data types one-by-one. We will cover all the different data types used in MongoDB, along with their practical examples using the MongoDB Shell.

Integer data types

Integer data types are used to store numeric values. MongoDB supports 32-bit or 64-bit integers which depend on the architecture of the machine on which MongoDB is running. 64-bit integers are also called as long int and have alias value as long and number value as 18 in the MongoDB data types.

In our example, we have inserted the integer data type value in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "int",

"Data Type Number": "16",

"Data Type Value": 7777

});

Code 2

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "int"

}).pretty();

[image:]

Figure 9.1: Creating a MongoDB Document with Integer Data Type

In the preceding example, we saw how to create a new document using data type having integer type value.

String data types

String data types are one of the most common data types used in MongoDB. You might be aware that many of the international languages use some special characters. In order to save these characters, the MongoDB drivers convert these characters to UTF-8 format during the serialization and de-serialization process, thus, making it possible to store most of these international characters in the BSON strings and validating the international characters to be stored in the database.

In our example, we have inserted the string data type value in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "string",

"Data Type Number": "2",

"Data Type Value": "BPB Publications – The Largest Online Resource for IT Books"

});

Code 2

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "string"

}).pretty();

[image:]

Figure 9.2: Creating a MongoDB Document with String Data Type

In the preceding example, we saw how to create a new document using data type having string type value.

Double data types

Double data types are used to store the floating point values. Floating point values have decimal points, which are somewhat similar to integer values but they have decimal values with them. For example, 777.27 or 12.10 are decimal type values and they are called double types in MongoDB.

In our example, we have inserted the double data type value in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "double",

"Data Type Number": "1",

"Data Type Value": 777.27

});

Code 2

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "double"

}).pretty();

[image:]

Figure 9.3: Creating a MongoDB Document with Double Data Type

In the preceding example, we saw how to create a new document using data type having double type value.

Array data types

The array data types are used to store the group of similar data type values which are linked or associated in the form of key and value.

In our example, we have defined 2 arrays and then we will insert these arrays as a value and the code for the same is as follows:

Code 1

var BPBBookStoresinIndia = ['New Delhi', 'Mumbai', 'Kolkata', 'Chennai'];

var BPBBookStoresinUSA = ['New York', 'Atlanta', 'Arizona', 'New Jersey'];

And then, we have inserted these arrays in our MongoDB collection and below are the code for the same, are shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "array",

"Data Type Number": "4",

"Data Type Value 1": BPBBookStoresinIndia,

"Data Type Value 2": BPBBookStoresinUSA

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "array"

}).pretty();

[image:]

Figure 9.4: Creating a MongoDB Document with Array Data Type

In the preceding example, we saw how to create a new document using data type having array type value.

Object data types

The object data types are used to store the embedded documents or the JSON data type which is a kind of JSON object or document and are sometimes called embedded documents.

In our example, we have created an object as follows:

Code 1

var BPBBooksLatestEditions = [{

'Title': 'Instant Approach to Software Testing: Principles, Applications, Techniques, and Practices',

'Year': '2019',

'ISBN': '9789388511162',

'Pages': 368,

'Weight': '677gm',

'Dimension': '24x18x2cm'

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm'

}];

And then, we have inserted this object type in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "object",

"Data Type Number": "3",

"Data Type Value": BPBBooksLatestEditions

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "object"

}).pretty();

[image:]

Figure 9.5: Creating a MongoDB Document with Object Data Type

In the preceding example, we saw how to create a new document using data type having array type value.

Binary data types

The binary data types are used to store the values in binary form such as Base64. Sometimes, there are scenarios where we store some objects like images (in a binary form) in database.

In our example, we have created a variable which contains a binary data as follows:

Code 1

var BPBBooksBinaryData = BinData(1, "SGVsbG8gV29ybGQgRnJvbSBCUEIgUHVibGljYXRpb25z");

And then, we have inserted this binary data type in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "binData",

"Data Type Number": "5",

"Data Type Value": BPBBooksBinaryData

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "binData"

}).pretty();

[image:]

Figure 9.6: Creating a MongoDB Document with Binary Data Type

In the preceding example, we saw how to create a new document using data type having the binary type value.

ObjectId data types

This is a special MongoDB specific data type which stores the unique key ID. In MongoDB, every document in a collection has unique ObjectId and every document has the _id field.

The size of the ObjectId is 12 bytes and it is divided into 4 parts, as shown in the following table:

	
Part name

	
Size(bytes)

	
Timestamp

	
4

	
Machine Id

	
3

	
Process Id

	
2

	
Counter

	
3

Table 9.2: Size Division of ObjectId

In our example, we have created a variable which contains an ObjectId value.

Code 1

var BPBBooksObjectId = ObjectId();

And then, we have inserted this ObjectId data type in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "objectid",

"Data Type Number": "7",

"Data Type Value": BPBBooksObjectId

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "objectid"

}).pretty();

[image:]

Figure 9.7: Creating a MongoDB Document with ObjectId Data Type

In the preceding example, we saw how to create a new document using the data type having the ObjectId type value.

Date data types

Date data type stores the date and time. These can be date or date and time combined. There are various methods in MongoDB to generate date and time, as shown in the following table:

	
Date method

	
Description

	
Date()

	
This method returns the current date in the string format.

	
New Date()

	
This method returns a date object. This method uses the ISODate() wrapper.

Table 9.3: Date Methods

In our example, we have created 2 variables which contain a string and a date object respectively.

Code 1

var BPBBooksDate1 = Date();

var BPBBooksDate2 = new Date();

And then, we have inserted these date data type variables in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "date",

"Data Type Number": "9",

"Data Type Value 1": BPBBooksDate1,

"Date Type Value 2": BPBBooksDate2

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "date"

}).pretty();

[image:]

Figure 9.8: Creating a MongoDB Document with Date Data Type

In the preceding example, we saw how to create a new document using data type having date type value.

Null data types

Null data type stores the null values. Null are the data types which has no type or value, so it is called as null. Sometimes, there are scenarios where we have to store something which exists but is yet to be defined and we are not sure what type and value it would have. In this case, we use null.

In our example, we have created a variable which contains a null type value.

Code 1

var BPBBooksNull = null;

And then, we have inserted this null data type variable in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "null",

"Data Type Number": "10",

"Data Type Value": BPBBooksNull

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "null"

}).pretty();

[image:]

Figure 9.9: Creating a MongoDB Document with Null Data Type

In the preceding example, we saw how to create a new document using data type having null type value.

Regular expression data types

Regular expression data type stores the regular expression values. Regular expression, or regex, is the sequence of characters which defines the search patterns and is used for find, replace, and validation operations.

In our example, we have created a variable which contains a regular expression value.

Code 1

var BPBBooksRegEx = RegExp("%BPB");

And then, we have inserted these regular expression data type variables in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "regex",

"Data Type Number": "11",

"Data Type Value": BPBBooksRegEx

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "regex"

}).pretty();

[image:]

Figure 9.10: Creating a MongoDB Document with Regular Expression Data Type

In the preceding example, we saw how to create a new document using data type having regular expression type value.

JavaScript data types (without scope)

We can store JavaScript functions in MongoDB documents and use these functions in our scenarios. In our example, we have created 2 variables where one contains a function definition and the other is a scope variable, but it will be empty and thus, it will be without scope.

Code 1

var BPBBooksFunction = "function(){var bpb; bpb=100;}";

var BPBBooksFunctionScope = {};

And then, we have inserted these variables in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "javascript",

"Data Type Number": "13",

"Data Type Value Function": BPBBooksFunction,

"Data Type Value Function Scope": BPBBooksFunctionScope

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "javascript"

}).pretty();

[image:]

Figure 9.11: Creating a MongoDB Document with JavaScript Data Type

In the preceding example, we saw how to create a new document using data type having JavaScript type value.

Javascript data types (with scope)

In our example, we have created two variables where one contains a function definition and the other one is a scope variable, and now we will define it.

Code 1

var BPBBooksFunction = "function(){var bpb; bpb=2000;}";

var BPBBooksFunctionScope = ["object"];

And then, we have inserted these variables in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "javascriptWithScope",

"Data Type Number": "15",

"Data Type Value Function": BPBBooksFunction,

"Data Type Value Function Scope": BPBBooksFunctionScope

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "javascriptWithScope"

}).pretty();

[image:]

Figure 9.12: Creating a MongoDB Document with JavaScript (With Scope) Data Type

In the preceding example, we saw how to create a new document using data type having JavaScript (with scope) type value.

Timestamp data types

Timestamp is the current time of event which is recorded by the computer and it is accurate to milliseconds. We can store timestamps in the MongoDB documents.

In our example, we have created a variable which contains a timestamp.

Code 1

var BPBBooksTimestamp = new Timestamp();

And then, we have inserted this variable in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "timestamp",

"Data Type Number": "17",

"Data Type Value": BPBBooksTimestamp

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "timestamp"

}).pretty();

[image:]

Figure 9.13: Creating a MongoDB Document with Timestamp Data Type

In the preceding example, we saw how to create a new document using data type having timestamp type value.

Boolean data types

Boolean data type stores the boolean data which is either true or false. In our example, we have created two variables which contains a "true value" and a "false value" respectively.

Code 1

var BPBBooksBoolean1 = true;

var BPBBooksBoolean2 = false;

And then, we have inserted these variables in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollection.insert({

"Data Type Alias": "bool",

"Data Type Number": "8",

"Data Type Value 1": BPBBooksBoolean1,

"Data Type Value 2": BPBBooksBoolean2

});

Code 3

db.BPBOnlineBooksDataTypesCollection.find({

"Data Type Alias": "bool"

}).pretty();

[image:]

Figure 9.14: Creating a MongoDB Document with Boolean Data Type

In the preceding example, we saw how to create a new document using data type having Boolean type value.

Min and max key

In MongoDB, the min and max keys compare a value against the lowest and the highest BSON elements. The min key compares the values of the lowest BSON element, whereas the max key compares the values of the highest BSON element.

The Min and max keys are both internal data types in MongoDB.

Decimal128

The Decimal128 data type has been introduced in the MongoDB version 3.4. There are some scenarios where the double data type has limited capacity to store the decimal values which are either very large or very small, and if we store the large decimal value, then the precision will be lost. In this case, MongoDB provides the Decimal128 data type so that we can store the decimal values with a lot more precision.

Decimal128 allows us to store the values up to 34 decimal digits of precision, which means we can store maximum and minimum values in the order of 10^6144 and 10^-6143, respectively, This is a lot of precision in terms of decimal values and this also prevents any rounding off of the values for the data which sometimes requires a lot of precision like in mathematical or scientific calculations.

Comparison and sort order

While comparing the values of different BSON types, MongoDB uses the following comparison order from the lowest to the highest:

	MinKey

	Null

	Numbers (ints, longs, doubles)

	Symbol, String

	Object

	Array

	BinData

	ObjectId

	Boolean

	Date

	Timestamp

	Regular expression

	MaxKey

In our example, we have created few variables which contain different data types values.

Code 1

var BPBBooksVar1 = 100000;

var BPBBooksVar2 = "BPB Publications";

var BPBBooksVar3 = 77.07;

var BPBBooksVar4 = true;

var BPBBooksVar5 = null;

var BPBBooksVar6 = MinKey;

var BPBBooksVar7 = MaxKey;

And then, we have inserted these variables in our MongoDB collection and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksDataTypesCollectionV2.insert([{

"Data Type Alias": "int",

"Data Type Value": BPBBooksVar1

}, {

"Data Type Alias": "string",

"Data Type Value": BPBBooksVar2

}, {

"Data Type Alias": "double",

"Data Type Value": BPBBooksVar3

}, {

"Data Type Alias": "bool",

"Data Type Value": BPBBooksVar4

}, {

"Data Type Alias": "null",

"Data Type Value": BPBBooksVar5

}, {

"Data Type Alias": "minKey",

"Data Type Value": BPBBooksVar6

}, {

"Data Type Alias": "maxKey",

"Data Type Value": BPBBooksVar7

}]);

[image:]

Figure 9.15: MongoDB Data Types – Comparison and Sort Order – Inserting Values

After the values are inserted, we can then use the sort method to sort and the values will be sorted according to the comparison and sort order. The code for the same is shown in the following screenshot.

Code 3

db.BPBOnlineBooksDataTypesCollectionV2.find().sort({

"Data Type Value": 1

});

[image:]

Figure 9.16: MongoDB Data Types – Comparison and Sort Order – Sort Results

In the preceding example, we saw how to create a new document using the data type having boolean type value.

Conclusion

In this chapter, we studied about the data types and their uses. We also learned about the BSON data types in MongoDB. We learned the different data types available in MongoDB and how we can use these data types in MongoDB to create any document. We also learned the uses of data types in various scenarios from our practical examples.

We learned about the comparison and sort order of the data types in MongoDB and learned about their sorting order with the practical examples.

In the next part of this book, we will cover the intermediate level of MongoDB and will start to learn the basics of programming with MongoDB. In the next chapter, will introduce the concept of CRUD and will cover the MongoDB CRUD operations.

Questions

	What are data types?

	Why data types are important?

	What are the BSON data types in MongoDB?

	Explain the three MongoDB data types with example.

	What is min key and max key in MongoDB?

CHAPTER 10

Introduction to MongoDB CRUD Operations

This chapter covers the MongoDB CRUD operations. We will cover the operations helpful in creating, reading, updating, and deleting in MongoDB. We will also be covering the bulk write operation in MongoDB. All of these examples will be explained in step-by-step manner. We will be covering all these by giving the practical example and also covers various methods to perform all these operations. There are multiple methods for each operation that we will cover in this chapter. We will also learn about the various options, such as ordered, multi, and just one which we will use in the various MongoDB CRUD methods and we will also cover the field update operators used in the MongoDB update methods. These CRUD operations are very important in day-to-day working with MongoDB and are used by the application developers quite frequently. These methods will also be used in the advanced chapters of this book where we will learn about the application development with other programming languages, such as PHP, JavaScript, and Python.

Structure

In this chapter, we will discuss the following topics:

	MongoDB create operations

	MongoDB read operations

	MongoDB update operations

	MongoDB delete operations

	MongoDB bulk write

Objectives

After studying this unit, you should be able to create documents using the MongoDB create operations, Read documents using the MongoDB read operations, Update documents using the MongoDB update operations, Delete documents using the MongoDB delete operations and Later in this Chapter you will learn how to perform various MongoDB CRUD operations using the MongoDB bulk write method.

MongoDB create operations

There are different ways in MongoDB by which we can create a document in the MongoDB collection. Few of the methods we can use are as follows:

	db.collection.insert()

	db.collection.insertOne()

	db.collection.insertMany()

As the name suggests, these methods are used to insert or create document(s) in the MongoDB collection. Let us study them one-by-one.

db.collection.insert() method

This method inserts one or more than one document in the MongoDB collection.

Method definition

db.collection.insert(

<single document or multiple documents in an array>,

{

ordered: <Boolean (true or false)>

}

)

In our example, we learned how we can use the MongoDB method to create one or multiple documents.

Example 1 – Creating a single document in MongoDB collection

We have created a variable BPBBooksBestSellingEditions which contains a JSON data to be inserted into the collection and the code for the same is as follows:

Code 1

var BPBBooksBestSellingEditions = {

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm'

};

And then, we have used the MongoDB insert() method to create a new document in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.insert(BPBBooksBestSellingEditions);

[image:]

Figure 10.1: Creating a single document in MongoDB Collection using insert() method

In the preceding example, we saw how to create a single document using the MongoDB insert() method.

Example 2 – Creating multiple documents in MongoDB collection

In our example, we have created a variable BPBBooksBestSellingEditions which contains a JSON array data to be inserted into the collection and the code for the same is as follows:

Code 1

var BPBBooksBestSellingEditions = [{

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm'

}];

And then, we have used the MongoDB insert() method to create two new documents in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.insert(BPBBooksBestSellingEditions);

[image:]

Figure 10.2: Creating Multiple Documents in MongoDB Collection using insert() method

In the preceding example, we saw how to create multiple documents using the MongoDB insert() method.

db.collection.insertOne() method

This method inserts a single document in the MongoDB collection.

Method definition

db.collection.insertOne(

<single document>

)

Example – Creating a single document in MongoDB Collection using insertOne() method

In our example, we have created a variable BPBBooksBestSellingEditions which contains a JSON data to be inserted into the collection and the code for the same is as follows:

Code 1

var BPBBooksBestSellingEditions = {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267

};

And then, we have used the MongoDB insertOne() method to create a new document in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.insertOne(BPBBooksBestSellingEditions);

[image:]

Figure 10.3: Creating a Single Document in MongoDB Collection using insertOne() Method

In the preceding example, we saw how to create a single document using the MongoDB insertOne() method.

db.collection.insertMany() method

This method inserts multiple documents in the MongoDB collection. Note that here, the documents can have different key values pairs and one document can be different from the others in terms of number of fields that it contains.

Method definition

db.collection.insertMany(

[<document 1>, <document 2>, … <document n>],

{

ordered: <boolean>

}

)

Example – Creating multiple documents in MongoDB collection using insertMany() method

In our example, we have created a variable BPBBooksBestSellingEditions which contains a JSON array data to be inserted into the collection and the code for the same is as follows:

Code 1

var BPBBooksBestSellingEditions = [{

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': '9789388511629',

'Pages': 188,

'Weight': '268gm'

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm'

}];

And then, we have used the MongoDB insertMany() method to create two new documents in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.insertMany(BPBBooksBestSellingEditions);

[image:]

Figure 10.4: Creating Multiple Documents in MongoDB Collection using insertMany() Method

In the preceding example, we saw how to create a single document using the MongoDB insertOne() method.

The _id Field

In MongoDB, every document must have an _id field and it should be unique. It acts as a primary key in the MongoDB collection.

MongoDB automatically creates the _id field if not specified during the creation of a new document and its value is assigned as the ObjectId type by default.

We can also specify the _id value and it can be any BSON data type other than array. But it must be unique in a collection, otherwise, the document will not be created and you will get an error if you try to insert a document having a non-unique _id value.

Example - Creating a new document by specifying _id key

In our example, we have created a variable BPBBooksBestSellingEditions which contains a JSON data to be inserted into the collection. This data also contains an _id key with value as 20021111 and the code for the same is as follows:

Code 1

var BPBBooksBestSellingEditions = {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342

};

And then, we have used the MongoDB insert() method to create a new document in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.insert(BPBBooksBestSellingEditions);

[image:]

Figure 10.5: Creating a Document in MongoDB Collection using insert() Method by specifying the _id

In the preceding example, we saw how to create a single document using the MongoDB insert() method by specifying the _id for the document.

The ordered option

The ordered option is by default set to true in the MongoDB insert() and insertMany() methods, and is used while we insert multiple documents in a collection.

If ordered option is set to true and if any error occurs while inserting any document while we are inserting multiple document, in that case, MongoDB will not process the remaining documents and will return back with an error.

If ordered option is set to false and if any error occurs while inserting any document while we are inserting multiple document, in that case, MongoDB will continue to process the remaining documents.

MongoDB read operations

In a MongoDB collection, we can read documents by using the find() method.

	db.collection.find()

As the name suggests, this method is used to find or read document(s) in the MongoDB collection.

db.collection.find() Method

This method finds or read one or more documents in the MongoDB collection.

Method Definition

db.collection.find(query, projection)

We will cover about projection in the advanced chapters, which are an optional value. So, we will only cover the Query part.

Example 1 – Reading documents in MongoDB collection without Query

In our example, we have used the find() method to read all the documents in a collection named BPBBooksBestSellingEditions and the code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollection.find();

[image:]

Figure 10.6: Reading MongoDB Documents using find() method

In the preceding example, we saw how to read documents using the MongoDB find() method.

Example 2 – Reading documents in MongoDB collection with Query

In our example, we have used the find() method to read all the documents in a collection named BPBBooksBestSellingEditions which has a key equal to Year and value equal to 2002, and the code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollection.find({'Year': '2002'});

[image:]

Figure 10.7: Reading MongoDB Documents using find() Method with Selection Query

In our example, we learned how we can use the MongoDB find() method to find and read documents with the help of selection query.

Using Pretty method with find()

In MongoDB, we can use the pretty() method along with the find() method to improve the readability of the results generated by the find() method.

By using the pretty() method, we will get the results in easy to read attractive format.

Example 3 – Reading documents in MongoDB collection with Query and Pretty method

In our example, we have used the find() method to read all the documents in the collection named BPBBooksBestSellingEditions which has a key equal to Year and value equal to 2019, and the code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollection.find({'Year': '2019'}).pretty();

[image:]

Figure 10.8: Reading MongoDB Documents using find() Method with Selection Query and pretty() Method

In our example, we learned how we can use the MongoDB find() method to find and read documents with the help of selection query and the pretty() method to display the documents in more readable form.

MongoDB update operations

There are different ways in MongoDB to update a document in the MongoDB collection.

Following are the few methods we can use:

	db.collection.update()

	db.collection.updateOne()

	db.collection.updateMany()

As the name suggests, these methods are used to update or change document(s) values in the MongoDB collection.

Let us study them one-by-one. But before we move on to our examples, let us understand the field update operators that will be used in these methods.

The $set operator

The $set operator sets the value of the field in a document. It is used to update the values of one or more fields in a document in conjugation with the selection query given in the update methods.

The $unset operator

The $unset operator removes the field in a document. It is used to delete one or more fields in a document in conjugation with the selection query given in the update methods.

db.collection.update() method

This method updates one or more documents in the MongoDB collection.

Method definition

The first part of this method is a selection query which is used to select our documents based on some criteria, and in the second part, we use the data to be updated in our documents. In both of these parts, we use the JSON format.

db.collection.update(

<selection query>,

<data to update>,

{

upsert: <boolean>,

multi: <boolean>

}

)

Let us now use this method with some practical examples.

Example 1 – Updating a single document in MongoDB collection using update() method

In our example, we have created two variables BPBBooksSelectionQuery and BPBBooksDatatoUpdate. The first one has a JSON data for selection query and the second one has a JSON data for updating the document. The code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Title': 'Introduction to Database Management'

};

var BPBBooksDatatoUpdate = {

'Title': 'Introduction to Database Management (The Complete Text Book for Computer Science Students)'

};

And then, we have used the MongoDB update() method to update a document based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.update(BPBBooksSelectionQuery, {

$set: BPBBooksDatatoUpdate

});

[image:]

Figure 10.9: Updating a Single Document in MongoDB Collection using update() Method

In the preceding example, we saw how to update a single document using the MongoDB update() method.

Example 2 – Updating multiple documents in MongoDB collection using update() method

In our example, we have created two variables “BPBBooksSelectionQuery” and “BPBBooksDatatoUpdate”. The first one has a JSON data for selection query and the second one has a JSON data for updating the document. The code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Year': '2019'

};

var BPBBooksDatatoUpdate = {

'Publisher': 'BPB Publications'

};

And then, we have used the MongoDB update() method to update all the documents based on our selection Query in the MongoDB collection, BPBOnlineBooksCollection, with multi option set to true. The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.update(BPBBooksSelectionQuery, {

$set: BPBBooksDatatoUpdate

}, {

multi: true

});

[image:]

Figure 10.10: Updating Multiple Documents in MongoDB Collection using update() Method

In the preceding example, we saw how to update multiple documents using the MongoDB update() method.

db.collection.updateOne() method

This method updates a single document in the MongoDB collection.

Method definition

db.collection.updateOne(

<filter>,

<update>,

{

upsert: <boolean>

}

)

Example – Updating a single document in MongoDB collection using updateOne() method

In our example, we have created two variables BPBBooksSelectionQuery and BPBBooksDatatoUpdate. The first one has a JSON data for selection query and the second one has a JSON data for updating the document. The code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide'

};

var BPBBooksDatatoUpdate = {

'Title': 'IOT and Smart Cities',

'Year': '2020'

};

And then, we have used the MongoDB updateOne() method to update a document based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.updateOne(BPBBooksSelectionQuery, {

$set: BPBBooksDatatoUpdate

});

[image:]

Figure 10.11: Updating a single document in MongoDB Collection using updateOne() method

In the preceding example, we saw how to update a single document using the MongoDB updateOne() method.

db.collection.updateMany() method

This method updates multiple documents in the MongoDB collection.

Method definition

db.collection.updateMany(

<filter>,

<update>,

{

upsert: <boolean>

}

)

Example – Updating multiple documents in MongoDB collection using updateMany() method

In our example, we have created two variables BPBBooksSelectionQuery and BPBBooksDatatoUpdate. The first one has a JSON data for the selection query and the second one has a JSON data for updating the document. The code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Year': '2019'

};

var BPBBooksDatatoUpdate = {

'Discount': '10%'

};

And then, we have used the MongoDB updateMany() method to update a document based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.updateMany(BPBBooksSelectionQuery, {

$set: BPBBooksDatatoUpdate

});

[image:]

Figure 10.12: Updating multiple documents in MongoDB Collection using updateMany() method

In the preceding example, we saw how to update a single document using the MongoDB updateOne() method.

The upsert option

The upsert option is by default set to false in the MongoDB update(), updateOne(), and updateMany() methods, and can be used while we are updating single or multiple documents in a collection.

If the upsert option is set to true and if there is no document in a collection that matches the selection query, a new document will automatically be created by the MongoDB update methods.

If the upsert option is set to false and if there is no document in a collection that matches the selection query, no new document will be created by the MongoDB update methods.

The multi option

The multi option is by default set to false in the MongoDB update() method, and can be used while we update documents in a collection.

If multi option is set to true, it will update multiple documents according to the selection query.

If multi option is set to false, it will update single document according to the selection query.

MongoDB delete operations

There are different ways in MongoDB by which we can delete a document in the MongoDB collection.

Following are the few methods which we can use:

	db.collection.remove()

	db.collection.deleteOne()

	db.collection.deleteMany()

As the name suggests, these methods are used to delete or remove the document(s) in the MongoDB collection.

Let us study them one-by-one.

db.collection.remove() method

This method deletes one or more documents in the MongoDB collection.

remove() method is a depreciated function and it is going to be unavailable in the future versions of MongoDB. So, it is better to use the deleteOne() and deleteMany() methods instead of the remove() method.

Method definition

db.collection.remove(

<selection query>,

{

justOne: <boolean>

}

)

The justOne option

The justOne option is by default set to false in the MongoDB remove() method and can be used while we are removing the documents in a collection.

If justOne option is set to true, it will remove only one document according to the selection query.

If justOne option is set to false, then it will remove multiple documents according to the selection query.

Example 1 – Deleting a single document in MongoDB collection using remove() method

In our example, we have created a variable BPBBooksSelectionQuery which is having a JSON data for selection query and the code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Year': '2002'

};

And then, we have used the MongoDB remove() method to delete a document based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.remove(

BPBBooksSelectionQuery,

{

justOne: true

}

);

[image:]

Figure 10.13: Deleting a Single Document in MongoDB Collection using remove() Method

In the preceding example, we saw how to delete a single document using MongoDB remove() method.

Example 2 – Deleting multiple documents in MongoDB collection using remove() method

In our example, we have created a variable BPBBooksSelectionQuery which is having a JSON data for selection query and the code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Year': '2019'

};

And then, we have used the MongoDB remove() method to delete multiple documents based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.remove(BPBBooksSelectionQuery);

[image:]

Figure 10.14: Deleting multiple documents in MongoDB Collection using remove() method

In the preceding example, we saw how to delete multiple documents using the MongoDB remove() method.

db.collection.deleteOne() method

This method deletes one document in the MongoDB collection.

Method definition

db.collection.deleteOne(

<filter>

)

Example – Deleting a single document in MongoDB collection using deleteOne() method

In our example, we have created a variable BPBBooksSelectionQuery having a JSON data for selection query, and the code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Year': '2020'

};

And then, we have used the MongoDB deleteOne() method to delete a single document based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.deleteOne(BPBBooksSelectionQuery);

[image:]

Figure 10.15: Deleting a single document in MongoDB Collection using deleteOne() method

In the preceding example, we saw how to delete a single document using the MongoDB deleteOne() method.

db.collection.deleteMany() method

This method deletes more than one documents in the MongoDB collection.

Method definition

db.collection.deleteMany(

<filter>

)

Example – Deleting multiple documents in MongoDB collection using deleteMany() method

In our example, we have created a variable BPBBooksSelectionQuery which is having a JSON data for selection query and the code for the same is as follows:

Code 1

var BPBBooksSelectionQuery = {

'Year': '2019'

};

And then, we have used the MongoDB deleteMany() method to delete multiple documents based on our selection query in the MongoDB collection, BPBOnlineBooksCollection, and the code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollection.deleteMany(BPBBooksSelectionQuery);

[image:]

Figure 10.16: Deleting multiple Documents in MongoDB Collection using deleteMany() Method

In the preceding example, we saw how to delete multiple documents using the MongoDB deleteMany() method.

MongoDB bulk write operations

MongoDB provides a way to perform multiple writing operations. By using the MongoDB bulk write, we can perform bulk insert, bulk update and bulk remove operations in one go.

These operations can be ordered or unordered.

If the ordered option is set to true and if any error occurs while performing bulk write, in that case, MongoDB will not process the remaining write operations and will return an error.

If the ordered option is set to false and if any error occurs while performing bulk write, in that case, MongoDB will still process the remaining write operations.

db.collection.bulkWrite() method

This method performs the multiple write operations in the MongoDB collection.

Method definition

db.collection.bulkWrite(

[<operation 1>, <operation 2>, … <operation N>],

{

ordered : <boolean>

}

)

bulkWrite() supports the following write operations:

	insertOne

	updateOne

	updateMany

	replaceOne

	deleteOne

	deleteMany

Let us go through the definitions of these Write operations.

db.collection.bulkWrite([

{insertOne : {"document" : <document>}}

])

db.collection.bulkWrite([

{updateOne :

{

"filter": <document>,

"update": <document or pipeline>,

"upsert": <boolean>

}

}

])

db.collection.bulkWrite([

{updateMany :

{

"filter": <document>,

"update": <document or pipeline>,

"upsert": <boolean>

}

}

])

db.collection.bulkWrite([

{replaceOne :

{

"filter" : <document>,

"replacement" : <document>,

"upsert" : <boolean>

}

}

])

db.collection.bulkWrite([

{deleteOne : {

"filter" : <document>

}}

])

db.collection.bulkWrite([

{deleteMany : {

"filter" : <document>

}}

])

Example – Bulk write in MongoDB collection using bulkwrite() method

The following code will perform bulk write with six operations:

db.collection.bulkWrite(

[

{insertOne : <document>},

{updateOne : <document>},

{updateMany : <document>},

{replaceOne : <document>},

{deleteOne : <document>},

{deleteMany : <document>}

]

)

In the preceding code, bulk write will be executed in an ordered way as it is, by default, set to true. So, the first operation which will be executed is insertOne and last operation which will be executed is deleteMany.

Let us assume we have 3 documents already existing in our collection BPBOnlineBooksCollection.

{"_id" : 1, "Title" : "Introduction to Python", "Year" : "2017", "Price" : 500},

{"_id" : 2, "Title" : "Mastering MySQL", "Year" : "2010", "Price" : 600},

{"_id" : 3, "Title" : "Learn JavaScript in 24 Hrs", "Year" : "2015", "Price" : 400}

Now, we will perform bulk write in our MongoDB collection and will see the effect. The code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollection.bulkWrite([

{insertOne: {"document": {"_id": 4, "Title": "Learn C++", "Year": "2000", "Price": 450}}},

{insertOne: {"document": {"_id": 5, "Title": "Mastering Java", "Year": "2005", "Price": 700}}},

{updateOne : {

"filter" : {"Title" : "Learn C++"},

"update" : {$set : {"Publisher" : "BPB Publication"}}

}},

{deleteOne : {"filter" : {"Year" : "2010"}}},

{replaceOne : {

"filter" : {"Title" : "Introduction to Python"},

"replacement" : {"Title" : "Mastering Python", "Year" : "2020", "Price": 800}

}}

]);

[image:]

Figure 10.17: Bulk Write Operation in MongoDB Collection using bulkWrite() Method

In the preceding example, we saw how to perform bulk write in the MongoDB collection using the MongoDB bulkWrite() method.

Conclusion

In this chapter, we studied the MongoDB CRUD operations, and learned how to create, read, update, and delete using the various MongoDB methods, specifically used to perform these CRUD Operations.

We also learned about the MongoDB bulk write method in which we covered how to perform bulk write in order to achieve multiple operations in a single go. We also learned about the various options such, as ordered, multi, and justOne which are used in the various MongoDB CRUD methods and learned about the field update operators used in MongoDB update methods.

In the next chapter of this book, we will cover MongoDB CRUD concepts wherein we will cover the topics like atomicity, consistency, distributed operations, query plan, and performance and analysis.

Questions

	Give examples of two create document methods used in MongoDB?

	What is multi option and how can we use it? Give example.

	Give examples of two document update methods used in MongoDB?

	Explain the use of field update operators and where are they useful?

	Give example of bulk write operation in MongoDB

CHAPTER 11

MongoDB Intermediate Concepts

This chapter covers the MongoDB intermediate concepts. In this chapter, we will cover the topics like atomicity and atomicity in MongoDB. We will also learn about consistency and consistency in MongoDB. This chapter also gives the basic introduction to replication and why it is useful. We will also learn about sharding and why it is useful. Later in this chapter, we will cover the MongoDB specific distributed operations and queries in which we will look how the read and write operations are performed when we use replication and sharding in MongoDB

Structure

In this chapter, we will discuss the following topics:

	Atomicity

	Consistency

	Basic introduction to replication

	Basic introduction to sharding

	Distributed operations and queries

Objectives

After studying this unit, you should be able to understand the atomicity and consistency in MongoDB. Later in this chapter, you will get a brief introduction to replication and sharding in MongoDB, which are also covered in the advanced chapters in this book. In the last section of this chapter, you will learn about the distributed operations in MongoDB.

Atomicity

Before we learn about the atomicity in MongoDB, let us first understand what exactly atomicity is in terms of database management systems.

What is atomicity?

Atomicity is the property of the database management systems in which all the operations, like insert, update, and delete will happen for a transaction or nothing will happen at all. In this, either all the operations will complete or they will roll back.

Atomicity in MongoDB

MongoDB supports atomicity at the single document level. In MongoDB, if there is a document which contains hundreds of fields, then an update statement will update all the fields or none. So, MongoDB maintains the atomicity at the single document level.

We know that in MongoDB, we can have a single document which can have multiple documents. So, in MongoDB, the write operation for a single document is atomic in nature, even if it updates multiple embedded documents inside a single document.

MongoDB atomicity and multiple document transactions

MongoDB does not support the atomicity for multiple document transactions. For example, in some cases, we use single write operation which can update multiple documents, like, when we use the method such as the db.collection.updateMany() method which can modify multiple documents. Even in this case, the modification in a single document level is atomic but the overall operation is not atomic.

Consistency

Before we learn about the consistency in MongoDB, let us first understand what exactly is consistency in terms of database management systems.

What is consistency?

Consistency is the property of the database management systems in which a consistent state is maintained in the database. This means whatsoever happens during that transaction, it will never leave the database in a half-consistent state or a non-consistent state. For example:

	If the transaction happened successfully, all the changes will be applied to the database

	If the transaction does not happen successfully due to any error or system failure, in this case, the changes will be rolled back and the database will be maintained to its original state where it was before the transaction began.

Consistency in MongoDB

MongoDB supports consistency and in it, the data is consistent by default. The applications can read and write to MongoDB replica sets, so:

	For MongoDB, the primary members of replica set, the read and write are consistent.

	Sometimes, the applications also read from the secondary replica sets. In this case, for the MongoDB secondary members of the replica set, the data is eventually consistent by default.

MongoDB and eventual consistency

Eventual consistency is the modal in MongoDB which guarantees that if there are no new updates made in a given object (let’s assume a document), then all the accesses to that object will be returned with the last updated value only.

Let us explain this model with an example. Let us assume there are 2 clients whose requirements are reading and writing on a document with the current value (Example booktitle = "Mysql"), and then, at some point of time, the 1st client wants to update the value to a new value (Example booktitle = "MongoDB"). In this case, the 2nd client needs to record its new value (Example bookpublisher = "BPB Publications") just before the 1st client makes the changes to the current document or wait till the 1st client has updated the document and made the changes and the database write lock gets released.

[image:]

Figure 11.1: Consistency in MongoDB

Basic introduction to replication

Replication is a process of duplicating the same set of databases so that we have multiple copies of the same data available to us on different servers because of which we have redundancy and high availability of data.

Following are some of the benefits of replication:

	Replication helps in the fail-over recovery, such as, in case one server fails, or in case of hardware failure, or any other service interruptions.

	Replication also helps in the increased performance because clients can send their requests to different servers.

	Replication helps in delivering the data to the distributed applications from various data center locations across the globe.

Replica sets

Replica sets are the groups of MongoDB processes or instances that host the same data set. There is one primary and many secondary nodes that form a group to create replica sets, as shown in the following figure:

[image:]

Figure 11.2: Replication in MongoDB

We will cover more about replication in the advanced chapters of this book.

Basic introduction to sharding

Replication is a process of distributing large data across multiple machines or servers. There are cases where the applications have large sets of data that cannot be served by a single machine or server due to their hardware limits. These limits can be due to the CPU capacities or sometimes memory capacities like the RAM or disk drives.

In this case, MongoDB provides the feature of sharding where we can distribute our large data across different machines or servers. By doing this, we can serve this large data easily with the increased computational power which we gained by using more machines or servers instead of a single machine or server.

Following are some benefits of sharding:

	Increase in computational power due to the use of multiple machines or servers.

	Lower costs because instead of increasing the computational capacities of one machine, which has a limitation too, we increase the computational capacities by involving multiple machines which together create a lot of computational power and is a cheaper option too.

	MongoDB supports horizontal scaling by using sharding which is a more effective solution. Many a times, it is not practically possible to increase the CPU and memory capacities of a single machine as it has a maximum limit and is expensive. Increasing a computational capacity of a single machine is also termed as vertical scaling. So, it is always a better and cheaper option to increase the computational power by using multiple machines. This is also called horizontal scaling.

Sharded clusters

In simple terms, sharded clusters are groups of MongoDB instances used to serve large data. Here, the data is served to the applications by splitting the large data into multiple sharded clusters, as shown in the following figure:

[image:]

Figure 11.3: Sharding in MongoDB

We will cover more about sharding in the advanced chapters of this book.

Distributed operations and queries

As we have studied, in MongoDB, we can have replication as well as sharding, and we are also aware of their usefulness and advantages. Let us now understand how the read and write operations are performed in these distributed replica sets or sharded clusters.

Read operations on replica sets

Normally, in MongoDB, the clients usually read from the primary replica set, but they may also opt to use the secondary replica set or the nearest member of the replica set to avoid various factors, like the reduction in the latency due to multiple data center locations or sometimes to improve the read performance.

Write operations on replica sets

In MongoDB, all the write operations are done on the primary replica set. Whenever the clients send the write requests to MongoDB, the requests go to the primary replica set. Here, the primary replica set then maintains the operation log, or Oplog. This operation log has a set of sequence of the operations that are performed by the primary replica set. This operation log is then used by the secondary replica sets to reproduce the same sequence of operations in order to sync themselves so that they have the replicated (or duplicate) data of the primary replica set.

Read operations on sharded clusters

As we studied earlier in this chapter, in MongoDB, we can distribute the large data into small data using sharding. So, when we divide the large data in smaller subsets using sharding, it is totally transparent to an application.

Whenever we perform sharding, we specify a sharding key for the MongoDB collections so that the data will be handled in an effective manner. So, whenever the clients send any requests, they should include this sharded key so that the data will be fetched directly from the particular shard (subset of the sharded data). If the clients do not send their query with the shard key, then the read operation will take more time since in this operation every shard has to be involved in the query.

In the sharded clusters, the config database is maintained and is very helpful in routing the queries to the shards. So, if any client sends the query with the sharded key, then, by using the metadata from the config database, the queries are redirected or routed to the particular shard.

Write operations on sharded clusters

Whenever there is a write request from the client for the sharded collections in the sharded cluster, the request goes to the particular shard (subset of the sharded data) which is responsible for that particular data set.

Here, the write operation is performed using the metadata which is in config database and based on this metadata, the redirection or routing is done for the write operation to the particular shard in the sharded cluster.

Conclusion

In this chapter, we studied the intermediate concepts like atomicity and atomicity in MongoDB. We also learned about the consistency and consistency in MongoDB. Later in this chapter, we learned about the concept of replication in MongoDB and we its advantages. We also learned about the concept of sharding in MongoDB and its advantages.

In the last part of this chapter, we learned about the distributed operations and queries and how the read and write operations are handled when we use replication and sharding in MongoDB.

In the next chapter of this book, we will cover the concept of index in MongoDB and its usage. We will also cover the default _id index and how we can create an index in MongoDB. We will also discuss the various types of indexes in MongoDB and will cover the index properties and how we can use the index in MongoDB.

Questions

	What is atomicity in database management systems?

	Explain how MongoDB supports atomicity.

	What is consistency in database management systems?

	Explain how MongoDB supports consistency.

	Explain the concept of replication in MongoDB.

	Explain the concept of sharding in MongoDB.

CHAPTER 12

Introduction to MongoDB Indexes

In the previous chapter, we covered intermediate topics like atomicity and atomicity in MongoDB. We also learned about consistency and consistency in MongoDB. We also covered the basic introduction to replication and why it is useful. And finally, we learned about sharding and why it is useful. This chapter covers the concept of indexing. In this chapter, we will start from the introduction to indexes and their benefits wherein we will learn that indexes are special types of data structures in database management systems, like MongoDB, that store the data in an easy-to-traverse form. We will also give an introduction to the MongoDB default _id index and learn more about its properties. We will then learn how to create an index in MongoDB. Later in this chapter, we will study the different types of indexes that we can create in MongoDB with step-by-step practical examples. We will also study some of the different index properties that we can use in MongoDB while we create an index in MongoDB. We will also study how we can use indexes with other MongoDB methods. We will also learn about the collation and how we can use it with the MongoDB index. In the last part of this chapter, we will cover how we can view the existing indexes and how we can delete the existing indexes from the MongoDB collection. Additionally, we will also learn about some restrictions in MongoDB indexing.

Structure

In this chapter, we will discuss the following topics:

	What are indexes?

	Default _id index

	Creating an index

	Index types in MongoDB

	Index properties

	Using an index

	Indexes and collation

	Viewing index information

	Deleting an index

	Some restrictions in MongoDB index

Objectives

After studying this unit, you should be able to understand about indexing in MongoDB and also about the default _id index in MongoDB. Later in this chapter will learn how to create an index in MongoDB, Understand different types of indexes used in MongoDB, Understand about MongoDB index properties and learn how to use indexes along with some MongoDB methods. We will also learn how to create an index with collation and view existing index information in a MongoDB collection. In the Last Section of this chapter we will learn how to delete the indexes using different MongoDB methods and also understand about some restrictions in MongoDB index.

What are indexes?

Indexes are special types of data structures in database management systems, like MongoDB, that store data in an easy-to-traverse form. These data are related to the MongoDB document's field. In MongoDB, we can create indexes for a single field or on a set of fields. These indexes store the values of these fields in an orderly manner.

Indexing and MongoDB

The following points are specific to the indexing in MongoDB:

	In MongoDB, indexes are defined at the collection level

	MongoDB supports indexing on any field or sub-field of MongoDB collection

We will cover the practical examples in the next sections of this chapter.

Benefits of indexing

Indexing plays an important role in terms of the efficient execution of queries in MongoDB. It improves the performance of the application. If no indexing is done for a collection, then the MongoDB query has to scan the entire documents in a collection to match a query to any document in a collection.

When we define index in the MongoDB collection, the query will limit the scanning of the documents based on the index, and this way, the MongoDB query will not scan the entire documents in the MongoDB collection.

Proper indexing improves the performance and speed of the application running the MongoDB database significantly. We should take care while adding a new index. We should properly plan and check our application queries and analyze whether we really need a new index or not since too many indexes might lead to performance issues in the create, update and delete operations because of the additional data space used by these indexes as well as the additional write operations required by each of these operations due to too many indexes.

Default _id index

Whenever we create a document in a MongoDB collection, the _id index is created automatically with the type ObjectId. ObjectId is a special MongoDB-specific data type that stores the unique key ID. In MongoDB, every document in a collection has a unique ObjectId and every document has the _id field.

The size of the ObjectId is 12 bytes and it is divided into 4 parts, as shown in the following table:

	
Part name

	
Size (bytes)

	
Timestamp

	
4

	
Machine Id

	
3

	
Process Id

	
2

	
Counter

	
3

Table 12.1: Size Division of ObjectId

The _id properties

	In MongoDB, an automatic _id index is created in a collection whenever we create a collection.

	In MongoDB, the _id field is the first field in MongoDB documents.

	In MongoDB, while creating a document, we can specify the _id field and its value.

	In MongoDB, we can have the _id field of any BSON data type except the array. The array data type is not a valid _id type and is not supported by MongoDB.

	In MongoDB, whenever we define the _id type by ourselves and if MongoDB receives any document in which the _id is not defined in the beginning, then MongoDB automatically pushes this _id at the beginning of the document.

Thus, the _id index prevents the insertion of two documents having the same _id value. Also, in MongoDB, we cannot drop the _id index. Before we start creating an index in our collection, let’s populate our new collection with the new data.

In our example, we have created a variable named "BPBBooksBestSelling EditionsWithIndex" and the code for the same is as follows:

Code 1

var BPBBooksBestSellingEditionsWithIndex = [{

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm',

'Tags': ['Cloud Computing', 'Cloud Computing Concepts', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 3000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

],

'SpecialOfferDiscount': '100'

}, {

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464,

'Tags': ['Digital Marketing', 'Digital Marketing Tips', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 2300

}

]

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm',

'Tags': ['Internet of Things', 'IoT', 'Smart City', 'Planning Guide', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2000

},

{

'Type': 'Hardcover',

'Quantity': 1000

}

] ,

'SpecialOfferDiscount': '200'

}, {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4500

},

{

'Type': 'Hardcover',

'Quantity': 1300

}

]

}, {

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': ' 9789388511629',

'Pages': 188,

'Weight': '268gm',

'Tags': ['Artificial Intelligence', 'International Law', 'AI', 'Artificial Intelligence Ethics', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 5200

},

{

'Type': 'Hardcover',

'Quantity': 3300

}

]

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm',

'Tags': ['Machine Learning', 'Deep Learning', 'Algorithms', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2800

},

{

'Type': 'Hardcover',

'Quantity': 1250

}

] ,

'SpecialOfferDiscount': '150'

}, {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342,

'Tags': ['Database Management', 'DBMS', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 3450

}

]

}];

And then, we have used the MongoDB insert() method to create a new documents in the MongoDB collection, BPBOnlineBooksCollectionWithIndex. The code for the same is shown in the following figure:

Code 2

db.BPBOnlineBooksCollectionWithIndex.insert(BPBBooksBestSellingEditionsWithIndex);

[image:]

Figure 12.1: Creating a new Collection and Inserting a new Data

Since we are done creating a new collection and inserting new documents in it, let us now create an index to our new collection.

Creating an index

To create an index in MongoDB, we use the following method:

	db.collection.createIndex()

Let us study this method in detail.

db.collection.createIndex() method

This method creates one or more indexes in the MongoDB collection based on the key and value.

Method definition

db.collection.createIndex(<key and index type>, <options>)

In this method:

	Key is the name of the field in MongoDB document

	Index type is the value of the index which is generally 1 or -1. 1 specifies the ascending index in the field while -1 specifies the descending index in the field.

	Options are optional and these are related to the index properties which we will cover later in this chapter.

Therefore, in order to create an index for MongoDB collection, we use the createIndex() method in the following manner:

db.collection.createIndex({key: value})

Example – Creating an index in MongoDB collection

In our example, we have created an index in our collection "BPBOnline BooksCollectionWithIndex" in the field “Title” in the ascending order. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({Title : 1});

[image:]

Figure 12.2: Creating an Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create an index using the MongoDB createIndex() method.

Index types in MongoDB

MongoDB supports many types of indexes. These are as follows:

Single field index

These are used to create an index on a single field and can be user-defined.

Example – Creating a single field index in MongoDB collection

In our example, we have created an index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "Year" in the ascending order. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({Year : 1});

[image:]

Figure 12.3: Creating a Single Field Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a single field index using the MongoDB createIndex() method.

Compound Index

These are user-defined indexes on multiple fields.

Example – Creating a compound index in MongoDB collection

In our example, we have created a compound index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "Title" in the ascending order and "Year" in the descending order. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({Title : 1, Year : -1});

[image:]

Figure 12.4: Creating a Compound Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a compound index using the MongoDB createIndex() method.

Multikey index

MongoDB creates multikey indexes to store arrays. Here, MongoDB creates a separate index for each element of an array and automatically identifies where to create a multikey index if an index contains an array.

Example – Creating a multikey index in a MongoDB collection

In our example, we have created a multikey index in our collection BPBOnlineBooksCollectionWithIndex in the field InStock.Type in the ascending order and InStock.Quantity, also in the ascending order. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({"InStock.Type" : 1, "InStock.Quantity" : 1});

[image:]

Figure 12.5: Creating a Multi Key Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a multikey index using the MongoDB createIndex() method.

Text index

Text indexes are useful where we want to search and query the text related data in the collection. Text Indexes prevents some language-specific stop words. Following are some of the stop words in English:

	a

	an

	the

	or

	and

Example – Creating a text index in a MongoDB collection

In our example, we have created a text key index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "Title" with the index type as text. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({Title: "text"});

[image:]

Figure 12.6: Creating a Text Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a text index using the MongoDB createIndex() method.

Special types of index

MongoDB supports few special types of indexes which are as follows:

Geospatial index

These types of indexes are used to support the queries related to the data that are geospatial in nature and are usually in the form of coordinates.

Hashed index

Hashed indexes are used in sharding. Hashed indexes support sharding using the hashed shard keys. We will learn more about sharding in the advanced chapters of this book.

Index properties

In MongoDB, indexes have some properties which we can use while creating one.

Unique index

As the name suggests, if we apply this unique property of the index while creating one for a document field, it will only allow to have unique value for that field and discard any duplicate value.

Example – Creating a unique index in a MongoDB Collection

In our example, we have created a unique index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "ISBN" in the ascending order with "unique" values set to true. The code for the same is as follows:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex(

{ISBN: 1},

{unique: true}

);

Partial index

The partial index property is very useful when we want to index documents based on some criteria. So, the partial index is applied to a document if it meets the specific filter criteria. If we create an index with some conditions, it is a partial index. The partial index takes few resources in terms of space and performance costs.

Example – Creating a partial index in a MongoDB Collection

In our example, we have created a partial index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "Title" in the descending order by giving 2019 as the partial index for "Year". The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex(

{Title: -1},

{partialFilterExpression: {Year: "2019"}}

);

[image:]

Figure 12.7: Creating a Partial Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a partial index using the MongoDB createIndex() method.

Sparse index

This is a very interesting property of a MongoDB index. This property ensures that any new document being inserted into the MongoDB collection gets indexed only when it contains an indexed field, otherwise, not.

Example – Creating a sparse index in a MongoDB collection

In our example, we have created a sparse index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "ISBN" in the ascending order along with "sparse" value set to true. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex(

{ISBN: 1},

{sparse: true}

);

[image:]

Figure 12.8: Creating a Sparse Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a sparse index using the MongoDB createIndex() method.

TTL index

This is another very interesting property of a MongoDB index and is very useful. TTL means "time to live", which is in seconds. If we apply the TTL index to any document, these documents will be removed from the MongoDB collection after the defined specific time while applying this index property.

This type of index is very useful in the data management of certain type, like machine logs, events data, session based information, etc.

Example – Creating a TTL index in a MongoDB collection

In our example, we have created a TTL index in our collection BPBOnlineBooksCollectionWithIndex in the field SpecialOfferDiscount in the ascending order along with the TTL parameter expireAfterSeconds value set to 604800 (equals to 7 days). The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex(

{SpecialOfferDiscount: 1},

{expireAfterSeconds: 604800}

);

[image:]

Figure 12.9: Creating a TTL Index in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create a TTL index using the MongoDB createIndex() method.

Using an index

We can use an index after we create it on any field. The easiest way to use an index is to use the MongoDB find() method and to query the database with the indexed fields.

Example – Creating and using an index in a MongoDB collection

In our example, we have created an index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "Title" in the ascending order and "Year", also in the ascending order. The codes for the same are shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({Title : 1, Year : 1});

Then using the sort() method, we can easily sort the indexed fields in the MongoDB collection.

Code 2

db.BPBOnlineBooksCollectionWithIndex.find().sort({Title : 1, Year : 1}).pretty();

[image:]

Figure 12.10: Using an Index in a MongoDB Collection

In the preceding example, we saw how we can use an index in the MongoDB sort() method.

Indexes and collation

Sometimes it is useful to create an index that is helpful to perform the language-specific tasks. Some language contains some special characters and during the search queries, they play significant roles in terms of searching the right set of data strings. So, whenever we have a language-specific need, we can create an index with the collation property of the index.

Following are the fields of the collation property:

collation: {

locale: <string>,

caseLevel: <boolean>,

caseFirst: <string>,

strength: <int>,

numericOrdering: <boolean>,

alternate: <string>,

maxVariable: <string>,

backwards: <boolean>

}

In MongoDB, if you create an index with the collation property, you must specify the "locale" field as it is mandatory. Rest all the other collation fields are optional.

Example – Creating an index with collation in a MongoDB Collection

In our example, we have created an index in our collection "BPBOnlineBooksCollectionWithIndex" in the field "Title" in the ascending order and "Tags" too in the ascending order along with the collation property of the index and the locale set to "en_US", which is for English (United States). The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.createIndex({Title : 1, Tags: 1}, {collation: {locale: "en_US"}});

[image:]

Figure 12.11: Creating an Index with Collation in a MongoDB Collection using createIndex() Method

In the preceding example, we saw how to create an index with the collation using the MongoDB createIndex() method.

View index information

Sometimes we need information about the indexes that are already created in the collection. In this case, we can get the list of the index created in the collection by using the following method:

	db.collection.getIndexes()

db.collection.getIndexes() method

This method returns the array of all the indexes with their details that exist in the collection.

Example – Viewing all the Indexes in a MongoDB Collection

In our example, we used the getIndexes() method in our collection "BPBOnlineBooksCollectionWithIndex" to view all the indexes that exist in our collection. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.getIndexes();

[image:]

Figure 12.12: Viewing all the Indexes in a MongoDB Collection using getIndexes() Method – Screen 1

[image:]

Figure 12.13: Viewing all the Indexes in a MongoDB Collection using getIndexes() Method – Screen 2

In the preceding example, we saw how to view all the indexes in the MongoDB collection using the MongoDB getIndexes() method.

Deleting an index

Sometimes we need to remove one or more indexes from the MongoDB collection, or, in some cases, we need to delete all the indexes from the MongoDB collection. In these cases, we can use the following methods:

	db.collection.dropIndex()

	db.collection.dropIndexes()

Note that we cannot remove the default _id index with any of these methods.

db.collection.dropIndex() method

This method deletes the index from the collection.

Method definition

db.collection.dropIndex(index)

Here, the index can be one of the following:

	Name of the index

	Index specification document

Example 1 – Deleting an index in a MongoDB collection

In the earlier section, we used the getIndexes() method in our collection "BPBOnlineBooksCollectionWithIndex" to view all the indexes that exist in our collection, as earlier shown in figure 12.12 and figure 12.13. If there is a name and key listed, these two values can be used to remove an index from the MongoDB collection.

Now, let us remove the index having the "Index Specification Document" value equal to {Title:1}. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.dropIndex({Title:1});

[image:]

Figure 12.14: Deleting an Index in a MongoDB Collection using dropIndex() Method

In the preceding example, we saw how to delete an index in a MongoDB collection using the MongoDB dropIndex() method.

db.collection.dropIndexes() method

This method deletes the index from the collection.

Method definition

db.collection.dropIndex(indexes)

Here, the indexes’ parameter is optional but it has to be one of the following:

	Name of the index

	Index specification document

	Names of the indexes in an array

If there is no index value specified in the parameter of the method, it will remove all the indexes except the default _id index from the MongoDB collection.

Example 2 – Deleting multiple index in a MongoDB collection

Now, let us remove multiple indexes having "Index Specification Document" values equal to {Title:1, Year:1}. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.dropIndexes({Title:1, Year:1});

[image:]

Figure 12.15: Deleting Multiple Index in a MongoDB Collection using dropIndexes() Method

In the preceding example, we saw how to delete multiple indexes in a MongoDB collection using the MongoDB dropIndexes() method.

Example 3 – Deleting multiple index in a MongoDB collection using the array type values as parameter

Now, let us remove multiple indexes having "Name" values given in an array ["Title_1_Tags_1", "ISBN_1", "SpecialOfferDiscount_1"]. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.dropIndexes(["Title_1_Tags_1", "ISBN_1", "SpecialOfferDiscount_1"]);

[image:]

Figure 12.16: Deleting Multiple Index in a MongoDB Collection using Array TypeValues as Parameter and dropIndexes() Method

In the preceding example, we saw how to delete multiple indexes in a MongoDB collection using the array type values as parameter and the dropIndexes() method.

Example 4 – Deleting all the indexes in a MongoDB collection

To delete all the indexes from the collection, we can use the dropIndexes() method without passing any parameter value. So, let us now remove all the indexes from the MongoDB collection. The code for the same is shown in the following figure:

Code 1

db.BPBOnlineBooksCollectionWithIndex.dropIndexes();

[image:]

Figure 12.17: Deleting All Indexes in a MongoDB Collection using dropIndexes() Method

In the preceding example, we saw how to delete all the indexes in a MongoDB collection using the dropIndexes() method.

Some restrictions in MongoDB index

When we do indexing, it takes up the memory space during certain operations, such as insert, update, etc. Following are some of the restrictions in MongoDB indexing:

	In case you don't need to read the collections frequently, try to avoid indexing

	As the MongoDB index uses memory space (RAM), it is recommended that indexing does not exceed the memory limits

	If the index exceeds the memory limits, then MongoDB can remove some of the indexes that can lead to performance issues

	The index name should be less than or equal to 164 characters

	A MongoDB collection cannot have index more than 64

	A compound index cannot have more than 31 fields

Conclusion

In this chapter, we studied the concept of indexing in a detailed manner. We also learned about the indexes and their benefits. We also studied about the MongoDB default _id index and its properties. We learned how to create an index in MongoDB and about the different types of indexes that can be created with the step-by-step practical examples. Further in this chapter, we studied some of the index properties used in MongoDB to create an index. We also studied how we can use indexes with other MongoDB methods. Additionally, we also learned about the collation and how we can use it with the MongoDB index. In the last part of this chapter, we learned how to view and delete the existing indexes from the MongoDB collection. Additionally, we also learned about some of the restrictions in the MongoDB indexing.

In the next chapter, we will cover the data modeling in MongoDB where we will cover the topics like introduction to data modeling, data modeling concepts and design, data model examples, data model patterns, and model relationships between documents.

Points to Remember

	Proper indexing improves the performance and speed of the application running the MongoDB database significantly.

	Whenever we create a document in a MongoDB collection, the _id Index is created automatically with the type ObjectId.

	To create an index in MongoDB, we use the method: db.collection.createIndex()

	If we apply TTL index to the documents, these documents will be removed from the MongoDB collection after the defined specific time while applying the index property. This type of index is very useful in the data management of certain type like machine logs, events data, session based information, etc.

	Whenever we have language-specific needs, we can create an index with the collation property of the index.

	Sometimes we need to remove one or more indexes from the MongoDB collection, or, sometimes, in some cases, we need to delete all the indexes from the MongoDB collection. In these cases, the few methods which we can use are db.collection.dropIndex() and db.collection.dropIndexes()

Multiple choice questions

	The default index _id is of the type:

	String

	Integer

	ObjectId

	None of these

	To create an index in MongoDB, which of the following methods is used:

	db.collection.addIndex()

	db.collection.createIndex()

	db.collection.Index()

	db.collection.newIndex()

	To create an index with the collation property in MongoDB, which of the following methods is used:

	db.collection.Index({Field1 : 1, Field2: 1}, {collation: {locale: "en_US"}});

	db.collection.createIndex({Field1 : 1, Field2: 1}, {collation: 1});

	db.collection.createIndex({Field1 : 1, Field2: 1});

	db.collection.createIndex({Field1 : 1, Field2: 1}, {collation: {locale: "en_US"}});

	To delete all the indexes from the collection, we can use:

	db.collection.dropIndexes();

	db.collection.deleteIndex();

	db.collection.createIndex({Field1 : -1, Field2: -1});

	db.collection.noIndex();

Answer

	c

	b

	d

	a

Questions

	What is indexing and why is it useful?

	Explain the MongoDB default _id index with some of its properties?

	How can we create an index in MongoDB?

	List three different types of MongoDB index.

	List two MongoDB index properties.

	How can we view the existing indexes in a MongoDB collection?

	List the various methods to delete an index in a MongoDB collection.

Key terms

	Indexes: These are the special types of data structures in database management systems, like MongoDB, that store the data in an easy-to-traverse form.

	Default _id index: Whenever we create a document in a MongoDB collection, the _id index is created automatically with the type ObjectId.

	TTL: It means "time to live", which is in seconds.

CHAPTER 13

MongoDB Query Selectors

This chapter covers the MongoDB query selectors. We will start with the basic introduction to the query selectors and why they are useful. Further, we will cover different types of query selectors available in MongoDB and then we will move on to cover these query selectors with step-by-step practical examples..

Structure

In this chapter, we will discuss the following topics:

	Introduction to query selectors

	Examples and use of query selectors

Objectives

After studying this unit, you should be able to:

	Understand query selectors in MongoDB

	Understand different types of query selectors

	Use query selectors with practical examples

	Use projection operators with practical examples

Introduction to query selectors

Whenever we query a MongoDB database, it fetches some data stored in the MongoDB documents from various MongoDB collections. There are different requirements of data throughout the application. Sometimes, we need to use some small portion of data for a specific action in the application, sometimes, we need to update this data based on some criteria, and sometimes, we need to delete some old documents based on some condition. In these situations, we need something which will help us to work on only those documents which are needed for CRUD operations.

So, the query selectors are helpful for the following:

	Fetch the MongoDB documents from the collections based on some conditions

	Modify the multiple documents based on some conditions

	Delete the multiple documents based on some conditions

There are various types of query selectors we can use based on our requirements. In MongoDB, these query selectors are divided into the following types:

	Comparison Selectors

	Logical Selectors

	Element Selectors

	Array Selectors

	Evaluation Selectors

	Geospatial Selectors

	Bitwise Selectors

	Comment Selector

Comparison Selectors

These types of selectors are helpful to perform the CRUD operations based on the comparison. The following table has the list of \comparison selectors:

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$eq

	
This selector matches the documents that have values equal to the specified value

	
{<document field> : {$eq : <value to match>}}

	
$gt

	
This selector matches the documents that have values greater than the specified value

	
{<document field> : {$gt : <value to match>} }

	
$gte

	
This selector matches the documents that have values greater than or equal to the specified value

	
{<document field> : {$gte : <value to match>} }

	
$in

	
This selector matches the documents that have any of the values specified in an array

	
{<document field> : {$in : [<array value1>, <array value2>, … <array valueN>]}}

	
$lt

	
This selector matches the documents that have values less than the specified value

	
{<document field> : {$lt : <value to match>} }

	
$lte

	
This selector matches the documents that have values less than or equal to the specified value

	
{<document field> : {$lte : <value to match>} }

	
$ne

	
This selector matches the documents that have values not equal to the specified value

	
{<document field> : {$ne : <value to match>}}

	
$nin

	
This selector matches the documents that have none of the values specified in an array

	
{<document field> : {$nin : [<array value1>, <array value2>, … <array valueN>]}}

Table 13.1: Comparison Selectors

Logical Selectors

These types of selectors are helpful to perform the CRUD operations based on the logical conditions. The following table has the list of logical selectors:

	
Selector

	
Description

	
Selector Use and Syntax

	
$and

	
This selector performs the logical AND operation on different expressions and joins both the queries to deliver the combined result by returning all the documents based on the Join

	
se{$and : [{<expression1>}, {<expression2>}, …, {<expressionN>}]}

	
$not

	
This selector performs the logical NOT operation and returns the documents that do not match the expression

	
{<document field> : {$not : {<expression>}}}

	
$or

	
This selector performs the logical OR operation on different expressions and joins both the queries to deliver the combined result by returning all the documents based on the Join

	
{$or : [{<expression1>}, {<expression2>}, …, {<expressionN>}]}

	
$nor

	
This selector performs the logical NOR operation on different expressions and selects all the documents that fail all the query expressions

	
{$nor: [{<expression1>}, {<expression2>}, … {<expressionN>}]}

Table 13.2: Logical Selectors

Element Selectors

These types of selectors are helpful to perform the CRUD operations based on the element-based conditions. The following table has the list of element selectors:

	
Selector

	
Description

	
Selector Use and Syntax

	
$exists

	
This selector matches the documents that have the specified field in the documents. It accepts the Boolean value. If the value is set to "true", it returns all the documents that have the specified field. If the value is set to "false", it returns all the documents that do not contain the specified field.

	
{<document field> : {$exists: <boolean>}}

	
$type

	
This selector matches the documents that have the specified field with a BSON type in the documents. We can query with BSON type to get the results according to the BSON-type field in the documents.

	
{< document field> : {$type: <BSON type>}}

Table 13.3: Element Selectors

Array Selectors

These types of selectors are helpful to perform the CRUD operations based on the array fields conditions. The following table has the list of array selectors:

	
Selector

	
Description

	
Selector Use and Syntax

	
$all

	
This selector matches the documents that contain all the elements in an array type field of a document that contain all the elements specified in the query.

	
{<document field> : {$all : [<array value1>, <array value2> … <array valueN>]}}

	
$elemMatch

	
This selector matches all the documents based on the array type field in the document. It selects the documents if at least one element in the document’s array field matches all the specified conditions given in the query criteria to match the elements.

	
{<document field> : {$elemMatch : {<query1>, <query2>, … <queryN>}}}

	
$size

	
This selector selects all the documents if the array field in the document is of a specific size given in the query.

	
{<document field> : {$size: <number>}}

Table 13.4: Array Selectors

Evaluation Selectors

These types of selectors are helpful to perform the evaluation operations based on the expressions. The following table has the list of evaluation selectors:

	
Selector

	
Description

	
Selector Use and Syntax

	
$expr

	
This selector allows the use of the aggregation expressions. We will learn more about aggregation in the next chapter of this book.

	
{$expr : {<expression>}}

	
$jsonSchema

	
This selector helps to validate the documents with the given JSON schema. The schema will match all the documents that satisfy the valid schema

	
{$jsonSchema : <JSON Schema object>}

	
$mod

	
This selector performs the modulo operation on the value of a field and selects the documents with a specified result.

	
{<document field> : {$mod: [divisor, remainder]}}

	
$regex

	
This selector selects all the documents where values are matched with the specified regular expression. We can use various ways (as shown in the selector use and syntax) to use this selector.

	
{<document field> : {$regex: /pattern/, $options: '<options>'}}

{<document field> : {$regex: 'pattern', $options: '<options>'}}

{<document field> : {$regex: /pattern/<options>}}

	
$text

	
This selector performs the text search and selects all the documents with the searched terms. Here, in the searched terms, we can search it using various ways like "single word search", "multiple word search", "complete phrase", "excludes documents based on the search term"

	
$text : {$search : "<search terms>"}

	
$where

	
This selector performs the matches on the documents that satisfy a JavaScript expression. We can pass the JavaScript expression or the full JavaScript function to query the system. This selector gives us lot of flexibility in terms of querying the database, but, at the same time, it requires the database to process each document with the JavaScript expression or function.

	
$where : function() {

}

Table 13.5: Evaluation Selectors

Geospatial Selectors

These types of selectors are used to perform operations based on the data which is geographical in nature while we select the documents from the database, data like coordinates, address, city, or ZIP code. GIS data are some examples of the data formats which are geospatial in nature.

Bitwise Selectors

These types of selectors are used to perform bitwise operations while we select the documents from the database. The bitwise operations are done at a bit-level, which is the smallest unit of data in the computer system. While we compare the bitwise data, the document field against which we are comparing the data should be numeric type or BinData Type (binary data type).

Comment Selector

The comment selector has only one type of query operator, $comment. It helps to associate comments to the expression while querying. These comments are propagated to the MongoDB profile log.

You might know that profiling is the process to measure and collect the information about the code, program, or, in our case, the database-related queries and operations. Generally, profiling is done to capture various information, such as the query execution time, errors, etc. All this information is stored in the form of logs. These profile logs analyze the application and make it more optimized by performing the required changes after analyzing these profile logs.

In MongoDB, these profile logs are generated by the MongoDB database profiler that collects a detailed information on all the database commands, such as the CRUD operations, configuration commands, as well as the administrative commands. The advantage of using the comment selector is that it makes our profile data easier to understand and therefore, helps in the better tracing of the profile log data.

Selector Use and Syntax

{<query>, $comment : <comment>}

Examples and use of query selectors

In the previous section, we studied about the different types of query selectors. Now, let us see how we can use them with some practical examples. Before we start using the query selectors, let’s populate our new collection with the new data.

In our example, we have created a variable named "BPBBooksBestSellingEditionsQuerySelectors". The code for the same is as follows:

Code 1

var BPBBooksBestSellingEditionsQuerySelectors = [{

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm',

'Tags': ['Cloud Computing', 'Cloud Computing Concepts', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 3000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

],

'SpecialOfferDiscount': '100'

}, {

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464,

'Tags': ['Digital Marketing', 'Digital Marketing Tips', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 2300

}

]

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm',

'Tags': ['Internet of Things', 'IoT', 'Smart City', 'Planning Guide', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2000

},

{

'Type': 'Hardcover',

'Quantity': 1000

}

] ,

'SpecialOfferDiscount': '200'

}, {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4500

},

{

'Type': 'Hardcover',

'Quantity': 1300

}

]

}, {

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': ' 9789388511629',

'Pages': 188,

'Weight': '268gm',

'Tags': ['Artificial Intelligence', 'International Law', 'AI', 'Artificial Intelligence Ethics', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 5200

},

{

'Type': 'Hardcover',

'Quantity': 3300

}

]

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm',

'Tags': ['Machine Learning', 'Deep Learning', 'Algorithms', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2800

},

{

'Type': 'Hardcover',

'Quantity': 1250

}

] ,

'SpecialOfferDiscount': '150'

}, {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342,

'Tags': ['Database Management', 'DBMS', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 3450

}

]

}];

Then, we have used the MongoDB insert() method to create a new document in the MongoDB collection "BPBOnlineBooksCollectionQuerySelectors". The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollectionQuerySelectors.insert(BPBBooksBestSellingEditionsQuerySelectors);

[image:]

Figure 13.1: Creating a New Collection and Inserting a New Data

We are done with creating a new collection and inserting new documents in it. Let us now create an index to our new collection.

Examples of comparison selectors

The following are some examples of the comparison selectors. You may run different examples by changing the comparison selectors, fields, and values.

Example 1 - $gt Comparison Selector

In our example, we have used the "$gt" comparison selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "InStock.Quantity" to find all the documents that have their "InStock.Quantity" greater than 2500. The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

"InStock.Quantity": {

$gt: 2500

}

}).pretty();

Selector Details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$gt

	
This selector matches the documents that have values greater than the specified value

	
{<document field> : {$gt : <value to match>}}

Table 13.6: Using $gt Comparison Selector - Details

[image:]

Figure 13.2: Using $gt Comparison Selector

Example 2 - $lte comparison selector

In our example, we have used the "$lte" comparison selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "InStock.Quantity" to find all the documents that have their "InStock.Quantity" less than or equal to 1300. The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

"InStock.Quantity": {

$lte: 1300

}

}).pretty();

Selector Details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$lte

	
This selector matches the documents that have values less than or equal to the specified value.

	
{<document field> : {$lte : <value to match>}}

Table 13.7: Using $lte Comparison Selector - Details

[image:]

Figure 13.3: Using $lte Comparison Selector

Example 3 - $in comparison selector

In our example, we have used the "$in" comparison selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "Tags" to find all the documents that have the "Tags" containing the values "Machine Learning" or "DBMS" or "AI". The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

"Tags": {

$in: ["Machine Learning", "DBMS", "AI"]

}

}).pretty();

Selector Details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$in

	
This selector matches the documents that have any of the values specified in an array.

	
{<document field> : {$in : [<array value1>, <array value2>, … <array valueN>]}}

Table 13.8: Using $in Comparison Selector - Details

[image:]

Figure 13.4: Using $in Comparison Selector

Examples of logical selectors

The following are some examples of the logical selectors. You may run different examples by changing the logical selectors, fields, and values.

Example 1 - $and logical selector

In our example, we have used the "$and" logical selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the fields "SpecialOfferDiscount" and "Year" to find all the documents that have the "SpecialOfferDiscount" greater than or equal to 150 and "Year" equal to 2019. The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

$and: [{

SpecialOfferDiscount: {

$gte: 150

}

}, {

Year: {

$eq: "2019"

}

}]

}).pretty();

Selector Details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$and

	
This selector performs the Logical AND operation on different expressions and joins both the queries to deliver the combined result by returning all the documents based on the join.

	
{$and : [{<expression1>}, {<expression2>}, …, {<expressionN>}]}

Table 13.9: Using $and Logical Selector - Details

[image:]

Figure 13.5: Using $and Logical Selector

Example 2 - $not logical selector

In our example, we have used the "$not" logical selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "Year" to find all the documents that have the "Year" not equal to 2019. The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

Year: {

$not: {

$eq: "2019"

}

}

}).pretty();

Selector details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$not

	
This selector performs the logical NOT operation and returns the documents that do not match with the expression.

	
{<document field> : {$not : {<expression>}}}

Table 13.10: Using $not Logical Selector - Details

[image:]

Figure 13.6: Using $not Logical Selector

Examples of element selectors

The following are some examples of the element selectors. You may run different examples by changing the element selectors, fields, and values.

Example 1 - $exists element selector

In our example, we have used the "$and" element selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "SpecialOffer Discount" to find all the documents that have the "SpecialOfferDiscount" field present. The query will not select the documents that do not have "Special OfferDiscount" field. The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

SpecialOfferDiscount: {

$exists: true

}

}).pretty();

Selector Details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$exists

	
This selector matches the documents that have the specified field in the documents. It accepts the Boolean value. If the value is set to "true", it returns all the documents that have the specified field. If the value is set to "false", it returns all the documents that do not contain the specified field.

	
{<document field> : {$exists: <boolean>}}

Table 13.11: Using $exists Element Selector - Details

[image:]

Figure 13.7: Using $exists Element Selector

Examples of array selectors

The following are some examples of the array selectors. You may run different examples by changing the array selectors, fields, and values.

Example 1 - $all array selector

In our example, we have used the "$all" array selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "Tags" to find all the documents that have the "Tags" having the values "Machine Learning" as well as "Programming" present in them. The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

Tags: {

$all: ["Machine Learning", "Programming"]

}

}).pretty();

Selector Details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$all

	
This selector matches the documents that contain all the elements in an array type field of a document that contains all the elements specified in the query.

	
{<document field> : {$all : [<array value1>, <array value2> … <array valueN>]}}

Table 13.12: Using $all Array Selector - Details

[image:]

Figure 13.8: Using $all Array Selector

Examples of evaluation selectors

The following are some examples of the evaluation selectors. You may run different examples by changing the evaluation selectors, fields, and values.

Example 1 - $regex evaluation selector

In our example, we have used the "$regex" evaluation selector in our collection "BPBOnlineBooksCollectionQuerySelectors" in the field "Title" to find all the documents that have the word "Machine" present in the "Title". The code and the selector details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionQuerySelectors.find({

Title: {

$regex: /Machine/

}

}).pretty();

Selector details

	
Selector

	
Selector Description

	
Selector Use and Syntax

	
$regex

	
This selector selects all the documents where values are matched with the specified regular expression. We can use various ways (as shown in selector use and syntax) to use this selector.

	
{<document field> : {$regex: /pattern/, $options: '<options>'}}

{<document field> : {$regex: 'pattern', $options: '<options>'}}

{<document field> : {$regex: /pattern/<options>}}

Table 13.13: Using $regex Evaluation Selector - Details

[image:]

Figure 13.9: Using $regex Evaluation Selector

Conclusion

In this chapter, we studied about the query selectors and their benefits. We studied the various types of query selectors available in MongoDB. We also covered the query selectors with the practical examples.

In the next chapter of this book, we will study about the projection in MongoDB. We will learn about the benefits of using the projection and then, we will learn about the various types of projection operators available in MongoDB. We will also cover the projection operators with step-by-step practical examples.

Questions

	What are the uses of query selectors?

	List the four different types of query selectors.

	What are the logical query selectors? Explain them with some examples.

	Give one example of the element selector.

	Give one example of the array selector.

CHAPTER 14

Projection in MongoDB and Projection Operators

This chapter covers the projection in MongoDB. We will begin with an introduction of the projection and the benefits of using the projection. In this chapter, we will also cover the various types of projection operators available in MongoDB. The last section of this chapter has some step-by-step practical examples of the projection operators.

Structure

In this chapter, we will discuss the following topics:

	Introduction to projection

	Introduction to the projection operators

	Examples and use of the projection operators

Objectives

After studying this unit, you should be able to understand projection in MongoDB and also the benefits of using projection. Later in this chapter you will learn different types of projection operators and how to use projection operators with practical examples.

Introduction to projection

Whenever we select some documents from the collections in MongoDB using queries, it gives us the list of all the fields present in those documents. Most of the times, we do not require all the fields, but only some specific fields. In these cases, projection comes into picture. In MongoDB, projection means to select only the required data rather than selecting the entire data.

Suppose, there is a collection that has many documents of varied sizes in terms of field structure. Some documents have 10 fields, some have 15, etc. However, during our query; we want to fetch only 2 fields. In this case, if we use projection, we will get lesser data from MongoDB which makes good sense in many scenarios during the application development, where projection helps in the query optimization with respect to time, speed, and even memory.

Before we start using projection and the projection operators, let's populate our new collection with new data. In our example, we have created a variable named BPBBooksBestSellingEditionsProjection. The code for the same is as follows:

Code 1

var BPBBooksBestSellingEditionsProjection = [{

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm',

'Tags': ['Cloud Computing', 'Cloud Computing Concepts', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 3000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

],

'SpecialOfferDiscount': '100'

}, {

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464,

'Tags': ['Digital Marketing', 'Digital Marketing Tips', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 2300

}

]

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm',

'Tags': ['Internet of Things', 'IoT', 'Smart City', 'Planning Guide', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2000

},

{

'Type': 'Hardcover',

'Quantity': 1000

}

] ,

'SpecialOfferDiscount': '200'

}, {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4500

},

{

'Type': 'Hardcover',

'Quantity': 1300

}

]

}, {

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': ' 9789388511629',

'Pages': 188,

'Weight': '268gm',

'Tags': ['Artificial Intelligence', 'International Law', 'AI', 'Artificial Intelligence Ethics', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 5200

},

{

'Type': 'Hardcover',

'Quantity': 3300

}

]

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm',

'Tags': ['Machine Learning', 'Deep Learning', 'Algorithms', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2800

},

{

'Type': 'Hardcover',

'Quantity': 1250

}

] ,

'SpecialOfferDiscount': '150'

}, {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342,

'Tags': ['Database Management', 'DBMS', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 3450

}

]

}];

Then, we have used the MongoDB insert() method to create new documents in the MongoDB Collection BPBOnlineBooksCollectionProjection. The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollectionProjection.insert(BPBBooksBestSellingEditionsProjection);

[image:]

Figure 14.1: Creating a New Collection and Inserting a New Data

Since we are done with creating a new collection and inserting new documents in it, let us now create an index to our new collection.

How to use projection in MongoDB?

It is very simple to use projection with the MongoDB queries. There is the following two ways to use projection:

	Show Only Specific Fields – In this method, we can specify the fields we would like to display by the query. The fields can be set with a value of 1 or 0, and in this way, after the query, we can specify the field with 1 as an option. Here, 1 means to display those fields only among all the other fields in the document. In this case, only the fields that have 1 as an option will be displayed and the rest of the fields will remain hidden.

	Hide Specific Fields – In this method, we can specify which fields we would like to hide by the query, and in this way, after the query, we can specify the field with 0 as an option. Here, 0 means to hide those fields among all the other fields in the document. In this case, only the fields that have 0 as an option will be hidden and the rest of the fields will be displayed.

Note that we cannot combine and use both of these methods in a single query as this is not permitted in MongoDB and will result in an error. Mixing of 1 and 0 is only allowed to hide the _id field which is always displayed. We will cover all this with the practical examples.

Examples of projection

The following are some examples of how to use projection in MongoDB. You may run different examples by changing the query and the fields.

Example 1 - Show only specific fields

In our example, we have used projection in our collection BPBOnlineBooksCollectionProjection. This query will show all the documents that have their Year as 2019 but will only show 2 Fields, Title and Year, in addition to the _id field which is displayed by default. The code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionProjection.find({

Year: "2019"

}, {

Title: 1,

Year: 1

}).pretty();

[image:]

Figure 14.2: Projection - Show Only Specific Fields

Example 2 - Hide specific fields

In our example, we have used projection in our collection BPBOnlineBooksCollectionProjection. This query will display all the documents that have their Year as 2019, but will not show 2 fields, Tags and InStock. The code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionProjection.find({

Year: "2019"

}, {

Tags: 0,

InStock: 0

}).pretty();

[image:]

Figure 14.3: Projection - Hide Specific Fields

Example 1 - Show only specific fields and hide the _id field

In our example, we have used projection in our collection BPBOnlineBooksCollectionProjection. This query will display all the documents that have their Year as 2019, but will only show 2 fields Title and Year. Here, the _id field will not be displayed, since we will set it to 0. The code for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionProjection.find({

Year: "2019"

}, {

_id: 0,

Title: 1,

Year: 1

});

[image:]

Figure 14.4: Show Only Specific Fields and Hide _id Field

Introduction to projection operators

The projection operators help perform the projection operations and implement various logics required in some scenarios. The following table has the list of the projection operators:

	
Operator

	
Operator Description

	
Operator Use and Syntax

	
$

	
This operator projects the first element in the array type field that matches the query condition.

	
{<query>},{<array type field>.$: 1}

	
$elemMatch

	
This operator projects the first element in the array type field that matches the condition given in the $elemMatch

	
{<array type field>: {$elemMatch: {<query>}}}

	
$slice

	
This operator limits the number of elements projected from an array. We can also use skip and limit in this operator.

	
{<array type field>: {$slice: <number of elements>}}

Table 14.1: Projection Operators

Examples of projection operators

The following are some examples of the projection operators. You may run different examples by changing the query, fields, and values.

Example 1 - $ projection operator

In our example, we have used the $ projection operator in our collection BPBOnlineBooksCollectionProjection in the field Tags to find all the documents that have Tags with both the values, Programming and Machine Learning, present in them. Then, we have used the $ projection operator on Tags array type field to project the first element. The code and the operator details for the same as shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionProjection.find({

Tags: {

$all: ["Programming", "Machine Learning"]

}

}, {

"Tags.$": 1

}).pretty();

Operator details

	
Operator

	
Operator Description

	
Operator Use and Syntax

	
$

	
This operator projects the first element in the array type field that matches the query condition.

	
{<query>},{<array type field>.$: 1}

Table 14.2: $ Projection Operator - Details

[image:]

Figure 14.5: Using $ Projection Operator

Example 2 - $elemMatch projection operator

In our example, we have used the $elemMatch projection operator in our collection BPBOnlineBooksCollectionProjection. We have first used the query to find all the documents that have Year equal to 2019 and then we have used the $elemMatch projection operator on InStock array type field to project the element Quantity having the value equal to 4000. The code and the operator details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionProjection.find({

Year: "2019"

}, {

InStock: {

$elemMatch: {

Quantity: 4000

}

}

});

Operator details

	
Operator

	
Operator Description

	
Operator Use and Syntax

	
$elemMatch

	
This operator projects the first element in the array type field that matches the condition given in the $elemMatch.

	
{<array type field>: {$elemMatch: {<query>}}}

Table 14.3: $elemMatch Projection Operator - Details

[image:]

Figure 14.6: Using $elemMatch Projection Operator

Conclusion

In this chapter, we studied about projection in MongoDB. We also learned the benefits of using projection and the various types of projection operators available in MongoDB. In the last part of this chapter, we covered projection and the projection operators with practical examples.

In the next chapter of this book, we will cover aggregation in MongoDB. We will learn about aggregation and the benefits of using it. We will also cover the map-reduce method of aggregation. Finally, we will also cover the aggregation methods and how to use them with some practical examples.

Questions

	What is projection in MongoDB?

	Explain some benefits of using projection.

	Give two examples of the projection operators.

	How can we use the $ projection operator?

	Give an example of the slice projection operator.

CHAPTER 15

Aggregation in MongoDB

This chapter covers the MongoDB aggregation. We will begin with an introduction to the aggregation in MongoDB and will learn the benefits of using MongoDB aggregation. We will learning about aggregation expression types and will cover it with step-by-step practical examples. Later in this chapter, we will learn Map-reduce in MongoDB and the benefits of using it, with some practical examples. In the last section of this chapter, we will cover the aggregation pipeline and its benefits and the working of aggregation pipeline in MongoDB in a detailed manner. At last, we will use some step-by-step practical examples to understand the aggregation pipeline in an easy-to-understand way.

Structure

In this chapter, we will discuss the following topics:

	Introduction to MongoDB aggregation

	Introduction to aggregation expression types

	Step-by-step practical examples of aggregation expression types

	Introduction to map-reduce

	Step-by-step examples of map-reduce

	Introduction to aggregation pipeline

	Aggregation pipeline in MongoDB

	Step-by-step practical examples of MongoDB aggregation pipeline

Objectives

After studying this unit, you should be able to understand the MongoDB aggregation and the MongoDB aggregation expression types. You will also learn the aggregation expression types. Later in this chapter, you will learn about MongoDB map-reduce and aggregation pipeline and how it works in MongoDB using the step-by-step practical examples.

Introduction to MongoDB aggregation

Aggregation means the gathering of things together. In Computer Science, data aggregation means the grouping of data to prepare combined data sets helpful in generating better information. Aggregation in MongoDB groups the data from various collections and then performs various operations to generate one combined result.

The aggregation method in MongoDB groups the data from various collections, then, in turn, performs some operations, like the total number (sum), average, minimum, maximum, etc. out of the selected groups.

Aggregation method syntax and use

db.collection.aggregate(<AGGREGATE OPERATION>)

We can use the MongoDB aggregate method to perform the aggregate operation on the documents in MongoDB. We will understand this method better with the help of some practical examples. First, let us take a look at various expressions used in the aggregate operation. Following are the expression types used in the MongoDB aggregate operation.

	
Expression type

	
Expression type description

	
Expression type use and syntax

	
$sum

	
Sums up the defined value from all the documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$sum : <Field Name, Number or Operation>}}}])

	
$avg

	
Calculates the average values from all the documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$avg : <Field Name, Number or Operation>}}}])

	
$min

	
Gives the minimum of all the values of documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$min : <Field Name, Number or Operation>}}}])

	
$max

	
Gives the maximum of all the values of documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$max : <Field Name, Number or Operation>}}}])

	
$push

	
Inserts values to an array of the resulting document.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$push : <Field Name>}}}])

	
$addToSet

	
Inserts values to an array of the resulting document, but does not create duplicates in the resulting document.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$addToSet : <Field Name>}}}])

	
$first

	
Gives the first document from the source document.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$first : <Field Name>}}}])

	
$last

	
Gives the last document from the source document.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$last : <Field Name>}}}])

Table 15.1: MongoDB Aggregate Operation – Expression Types

Examples and use of aggregation method

Before we start using aggregation, let's populate our new collection with the new data.

In our example, we have created a variable named BPBBooksBestSelling EditionsAggregation. The code for the same is as follows:

Code 1

var BPBBooksBestSellingEditionsAggregation = [{

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm',

'Tags': ['Cloud Computing', 'Cloud Computing Concepts', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 3000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

],

'SpecialOfferDiscount': '100'

}, {

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464,

'Tags': ['Digital Marketing', 'Digital Marketing Tips', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 2300

}

]

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm',

'Tags': ['Internet of Things', 'IoT', 'Smart City', 'Planning Guide', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2000

},

{

'Type': 'Hardcover',

'Quantity': 1000

}

] ,

'SpecialOfferDiscount': '200'

}, {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4500

},

{

'Type': 'Hardcover',

'Quantity': 1300

}

]

},{

'Title': 'Programming In Python',

'Year': '2018',

'ISBN': '9789386551276',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

]

}, {

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': ' 9789388511629',

'Pages': 188,

'Weight': '268gm',

'Tags': ['Artificial Intelligence', 'International Law', 'AI', 'Artificial Intelligence Ethics', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 5200

},

{

'Type': 'Hardcover',

'Quantity': 3300

}

]

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm',

'Tags': ['Machine Learning', 'Deep Learning', 'Algorithms', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2800

},

{

'Type': 'Hardcover',

'Quantity': 1250

}

] ,

'SpecialOfferDiscount': '150'

}, {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342,

'Tags': ['Database Management', 'DBMS', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 3450

}

]

}];

And then, we have used the MongoDB insert() method to create a new document in the MongoDB collection BPBOnlineBooksCollectionAggregation. The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollectionAggregation.insert(BPBBooksBestSellingEditionsAggregation);

[image:]

Figure 15.1: Creating a new Collection and Inserting a new Data

Since we are done with creating a new collection and inserting new documents in it, let us now use aggregation with our new collection.

Examples of aggregation

The following are some examples of aggregation. You may run different examples by changing the expression type, fields, and values.

The MongoDB $group operator

What we are doing by using the aggregation operation is grouping the documents in the collections based on some fields and then using the expression types to output the result performed in the documents by grouping.

We use the MongoDB $group operator in the aggregate method to perform the aggregation operation.

Example 1 - $sum aggregation expression type

In our example, we have used the $sum aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year, and then, output their total sum. The code and the expression type details for the same are shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

Number of Published Books: {

$sum: 1

}

}

}]);

Expression type details

	
Expression type

	
Expression type description

	
Expression type use and syntax

	
$sum

	
Sums up the defined value from all the documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$sum : <Field Name, Number or Operation>}}}])

Table 15.2: $sum aggregation expression type - Details

[image:]

Figure 15.2: $sum Aggregation Expression Type

In our example, we saw how we can use the $sum aggregate expression type in the MongoDB aggregate() method.

Example 2 - $sum aggregation expression type with operation in group output

In our example, we have used the $sum aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year, and then, output their total sum multiplied by 10. The code and the expression type details for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

Number of Published Books Multiplied by 10: {

$sum: 1*10

}

}

}]);

[image:]

Figure 15.3: $sum Aggregation Expression Types with Operation in Group Output

In our example, we saw how we can use the $sum aggregate expression type with the operation in group output using the MongoDB aggregate() method.

Example 3 - $sum aggregation expression type with some other field

In our example, we have used the $sum aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year and then using $Pages as the option to the $sum expression type to output the total number of pages from all the books according to their respective years. The code and the expression type details for the same is as shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

Total Number of Pages Published in all the Books: {

$sum: $Pages

}

}

}]);

[image:]

Figure 15.4: $sum Aggregation Expression Type with Some Other Field

In our example, we saw how we can use the $sum aggregate expression type with another field using the MongoDB aggregate() method.

Example 4 - $avg aggregation expression type

In our example, we have used the $avg aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year, and then, using $Pages as the option to the $avg expression type to output the average number of pages from all the books according to their respective years. The code and the expression type details for the same as shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

Average Number of Pages Published in all the Books: {

$sum: $Pages

}

}

}]);

Expression type details

	
Expression type

	
Expression type description

	
Expression type use and syntax

	
$avg

	
Calculates the average values from all the documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$avg : <Field Name, Number or Operation>}}}])

Table 15.3: $avg aggregation expression type - Details

[image:]

Figure 15.5: $avg Aggregation Expression Type with Some Other Field

In our example, we saw how we can use the $avg aggregate expression type with some another field using the MongoDB aggregate() method.

Example 5 - $max aggregation expression type

In our example, we have used the $max aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year, and then, using $Pages as the option to the $max expression type to output the maximum pages of a book in the collection with respect to the year. The code and the expression type details for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

Maximum Pages Published in a Book: {

$max: $Pages

}

}

}]);

Expression type details

	
Expression type

	
Expression type description

	
Expression type use and syntax

	
$max

	
Gives the maximum of all the values of documents in a collection.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$max : <Field Name, Number or Operation>}}}])

Table 15.4: $max aggregation expression type - Details

[image:]

Figure 15.6: $max aggregation expression type with some other field

In our example, we saw how we can use the $max aggregate expression type with another field using the MongoDB aggregate() method.

Example 6 - $push aggregation expression type

In our example, we have used the $push aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year, and then, using $Tags as option to the $push expression type to output all the tags used in the books with respect to the year. The code and the expression type details for the same is shown in the following screenshots respectively. We have used the MongoDB pretty() method to make our output look better.

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

All the Tags used in the Books: {

$push: $Tags

}

}

}]).pretty();

Expression type details

	
Expression type

	
Expression type description

	
Expression type use and syntax

	
$push

	
Inserts the values to an array of the resulting document.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$push : <Field Name>}}}])

Table 15.5: $push aggregation expression type - Details

[image:]

Figure 15.7: $push Aggregation Expression Type with Some Other Field – 1st Screen

[image:]

Figure 15.8: $push Aggregation Expression Type with Some Other Field – 2nd Screen

In our example, we saw how we can use the $push aggregate expression type with some another field using the MongoDB aggregate() method.

Example 7 - $last aggregation expression type

In our example, we have used the $last aggregation expression type in our collection BPBOnlineBooksCollectionAggregation with the help of $group operator in the field Year to group all the documents together by the field Year, and then, using $Title as the option to the $last expression type to output the title of the last or the latest published books with respect to the year. The code and the expression type details for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregation.aggregate([{

$group: {

_id: $Year,

Latest Title the Books Published: {

$last: $Title

}

}

}]);

Expression type details

	
Expression type

	
Expression type description

	
Expression type use and syntax

	
$last

	
Gives the last document from the source document.

	
db.collection.aggregate([{$group : {_id : $<Field Name>, <Field Label> : {$last : <Field Name>}}}])

Table 15.6: $last aggregation expression type - Details

[image:]

Figure 15.9: $last Aggregation Expression Type

In our example, we saw how we can use the $push aggregate expression type with some another field using the MongoDB aggregate() method.

Introduction to map-reduce

In the previous section, we learned that the aggregation method can group documents and perform various operations that are helpful when we need to filter some information out of the large set of documents and collections.

The basic concept of map-reduce is to first map each document, then reduce or filter these documents by logic or condition. These are usually done using the JavaScript functions.

MongoDB provides the mapReduce() method to use map-reduce.

The mapReduce() method

db.collection.mapReduce(

function() {

emit(key, value);

}, /* Map : Function to Map */

function(key, values) {

return reduceFunctionResult

}, {

/* Reduce : Function to Reduce */

out: < collection or screen > ,

query: < document > ,

sort: < document > ,

limit: < number >

}

);

The following table is for your reference to help you to understand this function better:

	
Property

	
Property Description

	
Map

	
This is the JavaScript function to map a value with a key and also emit a key-value pair with respect to the documents.

	
Reduce

	
This JavaScript function reduces or groups all the documents having the same key with respect to the documents.

	
out

	
This option is used to locate the map-reduce query result. It can create a new collection or print results on the screen.

	
query

	
This option is optional and can be used as selection criteria to select the documents based on some query.

	
sort

	
This option is optional and can be used to sort the documents based on some query.

	
limit

	
This option is optional and can be used to limit the number of documents to be returned based on some query.

Table 15.7: Map-Reduce Method Property Details

How map-reduce function works?

	Step 1 – The map-reduce method first queries the collection

	Step 2 – It then maps the documents with the key-value pairs

	Step 3 – In the last step, the reduction is done based on the keys that have multiple values which group them into the aggregated result.

Let us now use map-reduce with some practical examples. In our example, we have created a variable named BPBBooksBestSellingEditionsMapReduce. The code for the same is as follows:

Code 1

var BPBBooksBestSellingEditionsMapReduce = [{

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm',

'Tags': ['Cloud Computing', 'Cloud Computing Concepts', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 3000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

],

'SpecialOfferDiscount': '100'

}, {

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464,

'Tags': ['Digital Marketing', 'Digital Marketing Tips', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 2300

}

]

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm',

'Tags': ['Internet of Things', 'IoT', 'Smart City', 'Planning Guide', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2000

},

{

'Type': 'Hardcover',

'Quantity': 1000

}

] ,

'SpecialOfferDiscount': '200'

}, {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4500

},

{

'Type': 'Hardcover',

'Quantity': 1300

}

]

},{

'Title': 'Programming In Python',

'Year': '2018',

'ISBN': '9789386551276',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

]

}, {

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': ' 9789388511629',

'Pages': 188,

'Weight': '268gm',

'Tags': ['Artificial Intelligence', 'International Law', 'AI', 'Artificial Intelligence Ethics', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 5200

},

{

'Type': 'Hardcover',

'Quantity': 3300

}

]

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm',

'Tags': ['Machine Learning', 'Deep Learning', 'Algorithms', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2800

},

{

'Type': 'Hardcover',

'Quantity': 1250

}

] ,

'SpecialOfferDiscount': '150'

}, {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342,

'Tags': ['Database Management', 'DBMS', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 3450

}

]

}];

And then, we have used the MongoDB insert() method to create a new document in the MongoDB collection BPBOnlineBooksCollectionMapReduce. The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollectionMapReduce.insert(BPBBooksBestSellingEditionsMapReduce);

[image:]

Figure 15.10: Creating a new Collection and Inserting a new Data

Since we are done with creating a new collection and inserting new documents in it, let us now use map-reduce with our new collection.

Example 1 – mapReduce()

In our example, we have used the mapReduce() method in our collection BPBOnlineBooksCollectionMapReduce with the help of the map function to emit the field Year. Then, we have used the reduce function so that the deduction based on the query {Tags:{$in:['Programming']}} reduces the documents having the field named Tagshaving Programming in them. The final output is the sum of all the documents grouped by year. With the out parameter, the output is saved in a new collection named MapReduceCollection.

The code and details for the same is shown in the following screenshots:

Code 1

db.BPBOnlineBooksCollectionMapReduce.mapReduce(

function() {emit(this.Year,1);},

function(key, values) {return Array.sum(values)}, {

query:{Tags:{$in:['Programming']}},

out:MapReduceCollection

};

Let us understand this code with the help of a diagram:

[image:]

Figure 15.11: Map Reduce Example 1

The output of the mapReduce() method is as follows:

[image:]

Figure 15.12: Map Reduce Example 1 – Output

In our example, we saw how we can use map-reduce with the help of MongoDB mapReduce() method.

In the preceding code, the output result is stored in the new collection. If we want to display these results, we can simply use the find() method along with the mapReduce() method. The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollectionMapReduce.mapReduce(

function() {emit(this.Year,1);},

function(key, values) {return Array.sum(values)}, {

query:{Tags:{$in:['Programming']}},

out:MapReduceCollection

}

).find();

[image:]

Figure 15.13: mapReduce() Method – Example 2 with find()

In our example, we saw how we can use map-reduce with the help of MongoDB mapReduce() method in conjugation with the find() method. Here, if you check your collections using show collections, you will find that a new collection has been created by the mapReduce() method in your database, as shown in the following screenshot:

[image:]

Figure 15.14: New Collection Created - MapReduceCollection created by the out Option of mapReduce() Method

We have verified how a new collection is created using the mapReduce() method. If we don't want the mapReduce() method to create any new collection, there is a way to prevent that. We can use {inline: 1} as a parameter to the out option. The code for the same is shown in the following screenshots:

Code 3

db.BPBOnlineBooksCollectionMapReduce.mapReduce(

function() {emit(this.Year,1);},

function(key, values) {return Array.sum(values)}, {

query:{Tags:{$in:['Programming']}},

out: {inline: 1}

}

).find();

We are running this in steps:

	Show DB

	Show collections in DB

	Drop (or delete) the MapReduceCollection collection

	Run the mapReduce() method – Code 3

[image:]

Figure 15.15: Running mapReduce() Method without creating additional collection

	Check the output as printed on the screen

	Verify that no additional collection has been created by the mapReduce() method

[image:]

Figure 15.16: Running mapReduce() Method without creating additional collection

We have verified how we can prevent the creation of a new collection using the mapReduce() method by using {inline: 1} as a parameter to the out option.

Let us explore the aggregation pipeline in MongoDB in the next section.

Introduction to aggregation pipeline

MongoDB provides us a better way to filter the complex data, perform some operations on the data, and then, give us the final result out of the data. This process is termed as aggregation pipeline.

What is pipeline?

In computer terminology, the pipeline is a process to execute a sequence of steps where the output of one step is input to the next step. All the steps are executed in the same sequence as defined to produce the final result as output.

The concept of pipeline is used in many ways in IT, like the execution of UNIX commands, wherein the commands are piped and executed in steps, taking the output of the previous steps as input, and giving their outputs to the next steps. We can also see the concept of pipeline in the server deployments, wherein during deployments on the servers or on cloud, the application code is deployed on the servers using the pipeline methods and follows the same concept.

MongoDB aggregation pipeline

In MongoDB, the aggregation pipeline is better and flexible than the MongoDB map-reduce() method. The MongoDB aggregation pipeline is divided in the stages in which the data is projected, matched, manipulated, segregated, and grouped, before the final result is delivered.

The MongoDB aggregation pipeline framework has the following steps or stages, as shown in the following table:

	
Aggregation pipeline operator (step or stage)

	
Description

	
$project

	
This stage is used to select the specific fields from a collection.

	
$match

	
In this stage, a filtering operation is conducted on the documents, which then results in the reduction of the documents.

	
$group

	
In this stage, the aggregation happens and the documents are grouped.

	
$sort

	
This stage sorts the documents.

	
$skip

	
By using this step, it is possible to skip and forward the documents.

	
$limit

	
By using this step, we can limit the number of documents.

	
$unwind

	
We can use this stage to have some documents added again for the next stage. In this stage, we can increase the number of documents for the next stage that are required sometimes to justify some logic.

Table 15.8: MongoDB Aggregate Framework – Step or Stage

Let us understand the MongoDB aggregation pipeline with the help of the following diagram:

[image:]

Figure 15.17: MongoDB Aggregation Pipeline Stages

Let us now use the aggregation pipeline with some practical examples.

In our example, we have created a variable named BPBBooksBestSelling EditionsAggregationPipeline. The code for the same is as follows:

Code 1

var BPBBooksBestSellingEditionsAggregationPipeline = [{

'Title': 'Cloud Computing',

'Year': '2019',

'ISBN': '9789388511407',

'Pages': 330,

'Weight': '570gm',

'Dimension': '23x19x1.5cm',

'Tags': ['Cloud Computing', 'Cloud Computing Concepts', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 3000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

],

'SpecialOfferDiscount': '100'

}, {

'Title': 'Introduction to Digital Marketing 101 : Easy to Learn and Implement Hands-on Guide for Digital Marketing',

'Year': '2019',

'ISBN': '9789389328189',

'Pages': 464,

'Tags': ['Digital Marketing', 'Digital Marketing Tips', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 2300

}

]

}, {

'Title': 'IOT and Smart Cities: Your Smart City Planning Guide',

'Year': '2019',

'ISBN': '9789388511322',

'Pages': 242,

'Weight': '357gm',

'Dimension': '22.5x15x1.5gm',

'Tags': ['Internet of Things', 'IoT', 'Smart City', 'Planning Guide', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2000

},

{

'Type': 'Hardcover',

'Quantity': 1000

}

] ,

'SpecialOfferDiscount': '200'

}, {

'Title': 'Machine Learning with Python',

'Year': '2018',

'ISBN': '9789386551931',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4500

},

{

'Type': 'Hardcover',

'Quantity': 1300

}

]

},{

'Title': 'Programming In Python',

'Year': '2018',

'ISBN': '9789386551276',

'Pages': 267,

'Tags': ['Python', 'Machine Learning', 'Python Programming', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 1500

}

]

}, {

'Title': 'Artificial Intelligence Ethics and International Law: An Introduction',

'Year': '2019',

'ISBN': ' 9789388511629',

'Pages': 188,

'Weight': '268gm',

'Tags': ['Artificial Intelligence', 'International Law', 'AI', 'Artificial Intelligence Ethics', 'Non Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 5200

},

{

'Type': 'Hardcover',

'Quantity': 3300

}

]

}, {

'Title': 'A Practical Approach for Machine Learning and Deep Learning Algorithms',

'Year': '2019',

'ISBN': '9789388511131',

'Pages': 280,

'Weight': '424gm',

'Tags': ['Machine Learning', 'Deep Learning', 'Algorithms', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 2800

},

{

'Type': 'Hardcover',

'Quantity': 1250

}

] ,

'SpecialOfferDiscount': '150'

}, {

'_id': '20021111',

'Title': 'Introduction to Database Management',

'Year': '2002',

'ISBN': ' 9788176566384',

'Pages': 342,

'Tags': ['Database Management', 'DBMS', 'Programming'],

'InStock': [{

'Type': 'Paperback',

'Quantity': 4000

},

{

'Type': 'Hardcover',

'Quantity': 3450

}

]

}];

And then, we have used the MongoDB insert() method to create new documents in the MongoDB collection BPBBooksBestSellingEditionsAggregationPipeline. The code for the same is shown in the following screenshot:

Code 2

db.BPBOnlineBooksCollectionAggregationPipeline.insert(BPBBooksBestSellingEditionsAggregationPipeline);

[image:]

Figure 15.18: Creating a new Collection and Inserting a new Data

Since we are done with creating a new collection and inserting new documents in it, let us now use the aggregation pipeline with our new collection.

Example 1 – aggregate()

In our example, we have used the aggregate() method in our collection BPBOnlineBooksCollectionAggregationPipeline. With the help of the $project operator, we will project the Year and Tags fields. Then, with the help of the $match operator, we will match all the documents that have tags field having programming as a value {Tags:{$in:['Programming']}} to reduce the documents. Then, with the help of the $group operator, we will group the documents. Here, with the help of the $sum operator, we will sum up all documents grouped by Year. Then, with the help of the $sort, operator the results will be sorted in descending order. All the results will then be printed on the screen using the pretty() method. So, by running these aggregation pipeline operations, we will print the sum of all the documents that have Programming as value in the tags field grouped by year.

Code 1

db.BPBOnlineBooksCollectionAggregationPipeline.aggregate([

{$project : {Year: 1, Tags: 1}},

{$match : {Tags:{$in:['Programming']}}},

{$group : {_id: '$Year', 'Total Number of Books Having Programming Tag' : {$sum : 1}}},

{$sort : {_id : -1}}

]).pretty()

Let us understand this code with the help of the following diagram:

[image:]

Figure 15.19: MongoDB Aggregation Pipeline - Stages

This method will be executed by the following steps:

	Projection stage

	Matching or filtering stage

	Grouping stage

	Sorting stage

	Printing the result or output

The output of the aggregate pipeline method is shown in the following screenshot:

[image:]

Figure 15.20: Aggregation Pipeline Example 1 – Output

In our example, we saw how we can use the MongoDB aggregation pipeline with the help of the MongoDB aggregate() method.

In the preceding code, the output result is printed instead of creating any new collection. If we want this operation to create a new collection, we need to add the $out operator in the aggregate() method. The code for the same is shown in the following screenshot:

Example 2 – aggregate() with $out

In our example, we have used the aggregate() method in our collection BPBOnlineBooksCollectionAggregationPipeline. With the help of the $project operator, we will project the Year and Tags fields. Then, with the help of the $match operator, we will match all the documents that have the tags field having programming as a value {Tags:{$in:['Programming']}} to reduce the documents. Then, with the help of the $group operator, we will group the documents. Here, with the help of the $sum operator, we will sum up all the documents grouped by year. Then, with the help of the $sort operator, the results will be sorted in descending order. All the results are stored into the new collection AggregationPipelineCollection.

By running this aggregation pipeline operation, we will print the sum of all the documents that have Programming as value in the tags field grouped by year.

The code and details for the same is shown in the following screenshot:

Code 1

db.BPBOnlineBooksCollectionAggregationPipeline.aggregate([

{$project : {Year: 1, Tags: 1}},

{$match : {Tags:{$in:['Programming']}}},

{$group : {_id: '$Year', 'Total Number of Books Having Programming Tag' : {$sum : 1}}},

{$sort : {_id : -1}},

{$out : 'AggregationPipelineCollection'}

]);

We will do the following steps here:

	Run the aggregation pipeline using the aggregate() method (use the preceding code 1).

	Check for the newly created collection AggregationPipelineCollection using the show collections command.

	Read all the records from the AggregationPipelineCollection collection using the db.AggregationPipelineCollection.find() method.

[image:]

Figure 15.21: aggregate() Method with $out Option

We saw in the preceding code that the output result has created a new collection AggregationPipelineCollection with the help of the $out operator in the aggregate() method.

Conclusion

In this chapter, we learned about the MongoDB aggregation and the benefits of using it. We also learned about the aggregation expression types and how to use those using the step-by-step practical examples. We also covered the map-reduce method in MongoDB and the benefits of using map-reduce with the help of practical examples to understand it better. Further in this chapter, we covered the aggregation pipeline and its benefits and learned the working of the aggregation pipeline in MongoDB in a very detailed manner. In the last part of this chapter, we did some step-by-step practical examples to understand the aggregation pipeline in a better way.

In the next chapter of this book, we will learn about the MongoDB compass which is the official GUI client for MongoDB. We will also learn to install the MongoDB compass using step-by-step method and to use the MongoDB compass GUI application to connect to the MongoDB server and perform various database related operations.

Questions

	What is aggregation and why is it useful?

	List any three aggregation expression types in MongoDB.

	How can we use aggregation with the $sum aggregation expression type operator in MongoDB?

	How can we use map-reduce in MongoDB?

	What are the benefits of using map-reduce in MongoDB?

	What are the benefits of the aggregation pipeline?

	How does the aggregation pipeline work in MongoDB? Give an example with the help of the stages in the aggregation pipeline.

CHAPTER 16

MongoDB Data Manipulations Using MongoDB Compass

This chapter covers the MongoDB Compass. We will learn about the MongoDB Compass and the benefits of using it. We will also learn how to install it on our system using step-by-step method. Later in this chapter, we will learn about the usage of MongoDB Compass to connect to the MongoDB server. In the last part of this chapter, we will cover the MongoDB Compass with some step-by-step practical examples to give us more idea on what we can do with the MongoDB Compass.

Structure

In this chapter, we will discuss the following topics:

	Introduction to MongoDB Compass

	Installing MongoDB Compass

	Connecting MongoDB server with MongoDB Compass

	Practical examples with MongoDB Compass

Objectives

After studying this unit, you will should be able to understand about the MongoDB Compass and benefits of MongoDB Compass. We will also learn how to install MongoDB Compass. Later in this chapter we will learn how we can connect MongoDB server using MongoDB Compass. In the last section of this chapter we will learn MongoDB Compass using practical examples.

Introduction to MongoDB Compass

The MongoDB Compass is the GUI (Graphical User Interface) tool to connect to the MongoDB server very easily and do a lot of things using the GUI which are time consuming with the commands or queries. The MongoDB Compass also provides many features to visualize and manipulate the data in the collections. The MongoDB Compass is more than just a visual GUI client or data manipulation tool.

Some of the features that the MongoDB Compass provides are as follows:

	Rich visual GUI interface to connect to the MongoDB server

	Rich visual GUI interface to visualize the MongoDB databases, collections, and documents

	Rich visual GUI interface to manipulate the MongoDB databases, collections, and documents

	Easy interface to create, update as well as delete databases, collections, and documents

	We can easily perform the CRUD operations on the documents with the help of the MongoDB Compass visual editing tools

	With the help of MongoDB Compass, we can optimize our database and application performance using visual graphs to understand how our queries perform

	The MongoDB Compass also helps in the management of indexes. We can easily view the existing indexes and their properties and we can easily add a new index or remove existing index from the collection using the MongoDB Compass

	With the help of MongoDB Compass, we can also validate our data with the help of JSON schema validation rules. For this purpose, MongoDB provides us the editor which auto suggests the field names, BSON data types and more.

	MongoDB Compass is a very good tool for the aggregation pipeline. By using the drag and drop features to add the stages to the MongoDB aggregation pipeline, we can easily check if the aggregation pipeline is working as per the expected behavior and then we can export this code to our application

	The MongoDB Compass has a lot of plugins available so that you can add more features to it and it is extensible as per our needs

Installing MongoDB Compass

MongoDB Compass is available for all the major operating systems, such as Windows, Linux, and MacOS. For this chapter, we will use Windows OS to install and explore MongoDB Compass. If you would like to use the MongoDB Compass for other operating systems like Linux or MacOS, you can follow the same steps. You just need to select the operating system of your choice. The basic interface of the MongoDB Compass is almost similar for every OS.

Let us explore how to download, install, and setup the MongoDB Compass on machines running on the Windows OS.

Installing MongoDB Compass on Windows operating system

We will show you how you can install MongoDB Compass on the Windows operating system. We will use the default installation method to install MongoDB Compass on the machines that run on Windows operating system.

Installation steps

Let us start with the installation of MongoDB on our machine. The steps required to install MongoDB Compass are as follows:

Step 1 – Download MongoDB Compass

	Open the MongoDB Inc. Official Website – https://www.mongodb.com/ in your favorite browser, as shown in the following screenshot:

[image:]

Figure 16.1: MongoDB Inc. Official Website Home Page

	Click the Software link on the top navigation of the home page and then click Compass from the drop down menu, as shown in the following screenshot:

[image:]

Figure 16.2: MongoDB Inc. Official Website Home Page – Software Menu > Compass

	This will open the MongoDB Compass page. Click the green button which says Try it now, as shown in the following screenshot:

[image:]

Figure 16.3: MongoDB Inc. – MongoDB Compass Page

	This will open the MongoDB Compass download page. This page will auto detect your OS type. You can select any platform according to your OS. For our example, we have chosen Windows 64-bit MSI method, as shown in the following screenshot:

[image:]

Figure 16.4: MongoDB Inc. – MongoDB Compass Download Page

	Now, click on the Download button and MongoDB Compass download will start automatically, as shown in the following screenshot:

[image:]

Figure 16.5: MongoDB Compass Download Page – Download Started

	Once the download starts, you can easily see the download process with the download icon and progress on your browser (this progress shows different in every browser. The screenshot is of Google Chrome. Every browser shows this in different manner). Wait till the download is 100% complete, as shown in the following screenshot:

[image:]

Figure 16.6: MongoDB Compass Download Page – Download 100% Complete

	Once the download is 100% complete, follow the next steps, as shown in the following screenshot:

In step 1, we covered how to download MongoDB Compass from the official website. The next steps are related to the installation process covered in step 2 of the MongoDB Compass installation process.

Step 2 – Install MongoDB Compass on your Windows machine

Once the download is complete and the installer file (MSI File) is fully downloaded, it will show a download complete icon, as shown in the following screenshot, and you can proceed further.

[image:]

Figure 16.7: MongoDB Compass Download Page – Download 100% Complete – Next Steps

	Now, open this MSI file, which is a Windows installer file (previously known as Microsoft Installer) and it will start MongoDB setup wizard which will guide you to complete the installation of MongoDB Compass in your machine, as shown in the following screenshot:

[image:]

Figure 16.8: MongoDB Compass Installation Process – Open MongoDB MSI File.

	Once you click on Open, you will see the startup screen of the installation wizard. You will see a few buttons which are easy to understand and you may cancel or go back to previous steps at any point of time. In order to install MongoDB Compass on your system, press the Next button, as shown in the following screenshot:

[image:]

Figure 16.9: MongoDB Compass Installation Wizard – Startup Screen

	Once you click on the Next button, you will see the next screen of the installation wizard which will display the current destination folder where the MongoDB Compass will get installed. You may change the location if you want to or keep this as it is and press the Next button, as shown in the following screenshot:

[image:]

Figure 16.10: MongoDB Compass Installation Wizard – Choose Destination Folder

	Once you click on the Next button, you will see the next screen of the installation wizard. Click on the Install button to install MongoDB Compass, as shown in the following screenshot:

[image:]

Figure 16.11: MongoDB Compass Installation Wizard – Install

	Once you click on the Install button, you will see a setup wizard which will install the MongoDB Compass related files, as shown in the following screenshot:

[image:]

Figure 16.12: MongoDB Compass Installation Wizard – Setup Wizard Installing Files

	Once this installation is 100% complete, it will show you the next screen with a Finish button, as shown in the following screenshot. Once you click on the Finish button, the installation will be finished. Click the Finish button to complete the setup process. Now, MongoDB Compass is installed on your computer.

[image:]

Figure 16.13: MongoDB Compass Installation Wizard – Complete Install (Finish Button)

Step 3 – Post installation checks

To make it sure that MongoDB Compass has been correctly installed in your Windows machine, follow these steps:

	Click the search area of your taskbar and type Compass. You will see that compass app will appear along with the details, as shown in the following screenshot:

[image:]

Figure 16.14: MongoDB Compass – Post Installation Checks

Connecting MongoDB Server with MongoDB Compass

We have installed MongoDB Compass on our Machine. Now, we can start using the MongoDB Compass. In step 4, we will connect to the MongoDB server using the MongoDB Compass.

Step 4 – Connecting to the MongoDB Server on Windows using MongoDB Compass

Let us now try to connect the MongoDB server using MongoDB Compass from your Windows machine. To connect to the MongoDB server from your Windows machine, follow these steps:

	Click the search area of your taskbar and type Compass. You will see that compass app will appear along with the details. Click Run as administrator. This will open MongoDB Compass with the administrative privileges, as shown in the following screenshot:

[image:]

Figure 16.15: MongoDB Compass – Open MongoDB Compass

	After you click on Run as administrator, it will open the MongoDB Compass application. Since we are using this application for the first time, it will show up the slider displaying the features of MongoDB Compass. At this point, you may read these features or may close the slider Window, as shown in the following screenshot:

[image:]

Figure 16.16: MongoDB Compass – Application Main Screen

	Before you can start using MongoDB Compass, the application will ask you to decide on the Privacy Settings. These privacy settings are out of the scope of this book and it is up to the user to decide, based on his/her personal or organizational preferences, and it is advisable to read the MongoDB privacy policy by clicking MongoDB Privacy Policy link to get more information on this part. You may check or uncheck all of them, as shown in the following screenshot:

[image:]

Figure 16.17: MongoDB Compass – Privacy Settings.

	There are two ways to connect to the MongoDB Server with the MongoDB Compass. The first method is by using the connection string and the second one is by filling the connection fields individually. Let us explore the second method. Click on the link which says, Fill in connection fields individually, as shown in the following screenshot:

[image:]

Figure 16.18: MongoDB Compass – Connecting to MongoDB Server - Fill in connection fields individual

	In our example, we have entered the following values:
Hostname: localhost

Port: 27017

	Now click on the CONNECT button to connect the MongoDB Server, which is already running on our local machine on port 27017 (this is the default port for MongoDB Server), as shown in the following screenshot:

[image:]

Figure 16.19: MongoDB Compass – Connecting to MongoDB Server – Connecting to Local MongoDB Server

	After we click to connect, we can see the list of databases. Few of the Databases we might see are related to the MongoDB system and these are created by MongoDB by default as listed below:
admin

config

local

	We will working on the database BPBOnlineBooksDB which we have created in the previous chapters, as shown in the following screenshot:

[image:]

Figure 16.20: MongoDB Compass – List of Databases

So far, we have learnt how to connect to the MongoDB Server using MongoDB Compass. In the next section, we will understand MongoDB Compass with some more practical examples.

Practical examples with MongoDB Compass

The following are some practical examples of MongoDB Compass to understand it in a better way:

Example 1 –Browsing the collections in the database

To browse the collections in the database, follow the steps, as shown in the following screenshot:

	Connect to the MongoDB server, as explained in the previous section of this chapter.

	Click on the database of your choice.

	You will get the list of collections present in that particular database.

[image:]

Figure 16.21: Example 1 – Browsing the Collections in the Database

In our example, we saw how we can browse the list of MongoDB Collection in the database.

Example 2–Creating new collection in the database

To create a new collection in the database, follow these steps:

	Connect to the MongoDB server, as explained in the previous section of this chapter.

	Click on the database of your choice.

	You will get the list of collections present in that particular database.

	To create a new collection in this database, click the CREATE COLLECTION button on top left of the right part of the screen in which you are browsing your collections, as shown in the following screenshot:

[image:]

Figure 16.22: Example 2 – Create New Collection – Screen 1

	This will open up the new popup window in which you can enter your Collection's name. After you have entered your collection’s name, click on the CREATE COLLECTION button. This will create a new collection in the database, as shown in the following screenshot:

[image:]

Figure 16.23: Example 2 – Create New Collection – Screen 2

	You can browse the list of collections in the database to verify that this collection has been created by the MongoDB Compass, as shown in the following screenshot:

[image:]

Figure 16.24: Example 2 – Create New Collection – Screen 3

So, in our example, we saw how to create a new MongoDB collection in the database by using MongoDB Compass.

Example 3–Browsing documents in the database

To browse documents in the database, follow these steps, as shown in the following screenshot:

	Connect to the MongoDB server, as explained in the previous section of this chapter.

	Click on the database of your choice.

	You will get the list of collections that are present in that particular database.

	Click on the collection of your choice.

	Once you select the collection of your choice, you will get the list of documents present in that particular collection.

	Click the expand icon on the left side on the document to see all the data inside the document.

[image:]

Figure 16.25: Example 2 – Browsing the Documents in the Database

In our example, we saw how we can browse the list of MongoDB documents in the collection.

Example 4–Performing CRUD operations in documents

There is lot of features available in MongoDB Compass to manipulate the data, as shown in the following screenshot:

	Connect to the MongoDB server, as explained in the previous section of this chapter.

	Click on the database of your choice.

	You will get the list of collections that are present in that particular database.

	Click on the collection of your choice.

	Once you select the collection of your choice you, will get the list of documents that are present in that particular collection.

	On the right side of the document you will see lot of CRUD options, like editing, copying, cloning, and deleting. You can also add a new document by clicking the ADD DATA button.

[image:]

Figure 16.26: Example 4 – Performing CRUD Operations in Documents

In our example, we saw how we can perform the CRUD operations in the documents.

Example 5–Editing a document

To edit a document using MongoDB Compass, follow these steps, as shown in the following screenshot:

	Connect to the MongoDB server, as explained in the previous section of this chapter.

	Click on the database of your choice.

	You will get the list of collections that are present in that particular database.

	Click on the collection of your choice.

	Once you select the collection of your choice you, will get the list of documents that are present in that particular collection.

	On the right side of the document you will see lot of CRUD options, like editing, copying, cloning, and deleting. Click on Edit and it will open a new window where you can very easily manipulate or edit your data.

	Click on the UPDATE button to make the changes or on the CANCEL button to ignore.

[image:]

Figure 16.27: Example 5 – Editing a Document

In our example, we saw how we can edit or manipulate the documents using MongoDB Compass. We will use MongoDB Compass in our next chapters also where we will learn how to develop applications with MongoDB.

Conclusion

In this chapter, we covered the MongoDB Compass and learned about the benefits of using it. We also learned how to install MongoDB Compass on our machine using step-by-step method. We also learned how we can use MongoDB Compass to connect to the MongoDB server. In the last part of this chapter, we learned more about the MongoDB Compass with some step-by-step practical examples to give us more insights about MongoDB Compass.

In the next chapter of this book, we will cover the managing and administering MongoDB at advanced level which is very helpful to the people who will perform various MongoDB administrative tasks. We will learn about mongod process and how to manage mongod process. We will learn how to monitor and diagnose MongoDB. We will also cover the step-by-step methods to install MongoDB tools on our machine and how to use these tools and various other MongoDB commands to monitor and diagnose MongoDB as well as backup and restore with MongoDB and MongoDB security.

Questions

	What is MongoDB Compass?

	List any four features of MongoDB Compass.

	Can we use MongoDB Compass on Linux or MacOS machines?

	List the steps by which you can connect MongoDB Compass to the MongoDB server.

	How can you create a new collection in the MongoDB database using MongoDB Compass?

	Can we perform CRUD operations with MongoDB Compass?

Points to remember

	MongoDB Compass is the GUI (Graphical User Interface) tool which helps us to connect to the MongoDB server very easily and do a lot of things using GUI which takes lot of time if we do them via commands or queries.

	MongoDB Compass is available for all the major operating systems, such as Windows, Linux, or MacOS.

	Before using MongoDB Compass, make sure that the MongoDB server is running on your machine.

Multiple choice questions

	What is MongoDB Compass?

	Command Line Interface

	Programing Language

	GUI (Graphical User Interface) Tool

	None of these

	MongoDB Compass is available for:

	Windows

	Linux

	Mac OS

	All of the Above

	With MongoDB Compass you can edit and delete:

	Documents

	Collections

	All of the Above

	None of the Above

	Before you connect the MongoDB server using MongoDB Compass, is it required that MongoDB server should be running?

	Yes

	No

	Not required when you run MongoDB Compass as an administrator

	Sometimes Required

Answer

	c

	d

	c

	a

Key terms

	GUI: Graphical User Interface.

	CRUD: In computer programming, the acronym CRUD stands for create, read, update, and delete.

	MSI: This is the extension used by the installer file for the Windows operating systems and it is called Microsoft installer or later as Windows installer.

CHAPTER 17

Managing and Administering MongoDB (Advanced Level)

This chapter covers the advanced administration topics of MongoDB which is very helpful to the people who will perform various MongoDB administrative tasks. In this chapter, we will learn about mongod process and how to manage mongod process. We will learn how to monitor and diagnose MongoDB. We will cover the step-by-step method to install MongoDB tools on our machine and how to use these MongoDB tools and various other MongoDB commands to monitor and diagnose MongoDB. Later in this chapter, we will learn how to take MongoDB backups and how to restore these backups. In the later sections of this chapter, we will cover how to perform the export and import of the MongoDB data. In the last part of this chapter, we will cover various important points related to MongoDB security which we should take care of so that our MongoDB database and its data will get secured.

Structure

In this chapter, we will discuss the following topics:

	Managing mongod process

	Monitoring and diagnosing MongoDB

	Installing MongoDB tools

	Using MongoDB tools

	Backup and restore with MongoDB

	Export and import with MongoDB

	MongoDB security

Objectives

After studying this unit, you should be able to understand the mongod process and how to manage the mongod process. You should also be able to monitor and diagnose MongoDB. You will learn how to install MongoDB tools and also how to use these tools and commands to monitor and diagnose MongoDB. Later in this chapter, you will learn how to take backups and how to restore backups with MongoDB and perform export and import with MongoDB. In the last section of this chapter, you will understand about the MongoDB security and various important points to implement the MongoDB security.

About mongod process

The mongod process is the "primary process" as well as the "daemon process" for MongoDB. The mongod process runs in the background and that is why it is called daemon process. This MongoDB process is responsible for the following things:

	Handling data requests

	Managing data access

	Performing background management process

mongod is a program which can be run from the command line. In Windows, mongod also runs as the service and by default, when we install MongoDB in Windows, the MongoDB installer automatically creates the service named "MongoDB Server (MongoDB)", which uses mongod for this service.

Managing mongod process

We know when we install MongoDB on Windows; it automatically creates MongoDB service, which is responsible to start the mongod process in the background. Let us now understand how we can check the MongoDB service in Windows.

MongoDB service in Windows

If you want to see the MongoDB service and related settings in Windows, follow these steps:

	Type services in the search box of your Windows. You will see that the Windows Services Manager application icon will appear. Click on Open to open this, as shown in the following screenshot:

[image:]

Figure 17.1: Windows Search Box – Opening Windows Services Manager

	This will open the Windows Services Manager. You can now navigate to the MongoDB server (MongoDB) and can see the status of these services. There is an option available to start, stop, or restart these services, as shown in the following screenshot:

[image:]

Figure 17.2: Windows Services Manager – MongoDB Server (MongoDB) Service

	Now, to view some more information, right click the MongoDB server (MongoDB) from the Windows services list and then click on the Properties option from the menu, as shown in the following screenshot:

[image:]

Figure 17.3: MongoDB Server (MongoDB) Service - Properties

	The previous step will open the service properties window where you will get all the details about the MongoDB service. If you see properly, you will also get the information about the mongod under Path to executable and you will see something similar as the following path, as shown in the following screenshot:
Path to executable: "C:\Program Files\MongoDB\Server\4.4\bin\mongod.exe" --config "C:\Program Files\MongoDB\Server\4.4\bin\mongod.cfg" –service

[image:]

Figure 17.4: MongoDB Server (MongoDB) Service – Properties Details

Here, under the "Path to executable", you will see the location of "mongod" and its related configuration file, "mongod.cfg". This file contains the various default configuration options that come pre-configured when you install the MongoDB server on your Windows machine.

	You may open this file in any text editor or code editor, like Visual Studio Code, to view its contents, as shown in the following screenshot:

[image:]

Figure 17.5: "mongod.cfg" – Configuration File

Running mongod from command prompt

We can also run "mongod" from the command prompt and we can use multiple options while running mongod from the command line or shell.

The simple way to run MongoDB is to navigate to the bin directory of your MongoDB server installation path and type "mongod". To start mongod from the command prompt, follow these steps:

	Click the Windows start button and type "cmd" in the search box. You will see the Windows Command Shell program. Open this program as an administrator, as shown in the following screenshot:

[image:]

Figure 17.6: Opening Command Prompt as an Administrator.

	This will open a command prompt. Here you need to navigate to your MongoDB installation path, as shown in the following screenshot, which could be something like this: C:\Program Files\MongoDB\.

[image:]

Figure 17.7: From Command Line – Navigate to MongoDB Installation Directory.

	Now, we need to further navigate to the child directories so that we reach to the "bin" directory under \Server\4.4\bin. The complete path would be something like this: C:\Program Files\MongoDB\Server\4.4\bin, as shown in the following screenshot:

[image:]

Figure 17.8: From Command Line – Navigate to MongoDB "bin" Directory.

	Now, we need to run MongoDB using the following command, as shown in the following screenshot:
mongod --port 27017 --dbpath "c:\Program Files\MongoDB\Server\4.4\data\db"

Note that if you haven't created the "db" directory under this path: "c:\Program Files\MongoDB\Server\4.4\data\", you should first create the "db" directory.

This command will try to run MongoDB on the port: 27017 with a DB path:

"c:\Program Files\MongoDB\Server\4.4\data\db"

[image:]

Figure 17.9: From Command Line – Navigate to MongoDB "bin" Directory.

	After this command successfully gets completed, MongoDB will start, as shown in the following screenshot:
mongod --port 27017 --dbpath "c:\Program Files\MongoDB\Server\4.4\data\db"

This command will try to run MongoDB on port: 27017 with a DB path: "c:\Program Files\MongoDB\Server\4.4\data\db"

Do not close this window. You can minimize it so that MongoDB will work and the listen to the requests. In case you want to stop it, use Ctrl + C keys to stop it on your Windows machine.

[image:]

Figure 17.10: From Command Line – MongoDB Service gets started

Stopping MongoDB services from Windows service manager

If you want to see the MongoDB service and related settings in Windows, follow these steps:

	Type services in the search box of your Windows. You will see that Services Windows Services Manager application icon will appear. Click on Open to open this, as shown in the following screenshot:

[image:]

Figure 17.11: MongoDB Inc. Official Website Home Page

	This will open the Windows Services Manager. You can then navigate to the MongoDB server (MongoDB) and see the status of these services. There is an option available to start, stop, or restart these services. Click on the Stop button to stop the MongoDB services, as shown in the following screenshot:

[image:]

Figure 17.12: Stopping the MongoDB Service from Windows Service Manager

Stopping MongoDB Services from command line – MongoDB Shell method

	Click the Windows start button and type cmd in the search box. You will see the windows command shell program. Open this program as an administrator, as shown in the following screenshot:

[image:]

Figure 17.13: Opening Command Prompt as an Administrator.

	This will open a command prompt. Here, you need to navigate to your MongoDB bin directory path, as shown in the following screenshot, which could be something like this: C:\Program Files\MongoDB\Server\4.4\bin.

[image:]

Figure 17.14: From Command Line – Navigate to MongoDB Installation Directory.

	Now, login to MongoDB Shell by typing "mongo". It will start the MongoDB Shell prompt, as shown in the following screenshot:

[image:]

Figure 17.15: From Command Line – Navigate to MongoDB "bin" directory.

	Now, first select the database admin by issuing the command, use admin, and then, issue the following method to stop the MongoDB server and to gracefully shutdown it, as shown in the following screenshot:
db.shutdownServer()

[image:]

Figure 17.16: MongoDB Shell - db.shutdownServer() Method to shut down the MongoDB Server

	Once you do this, MongoDB will try to stop MongoDB gracefully by properly closing all the data files and flushing the data files and then stopping MongoDB. You can exit from the MongoDB Shell and then try to issue the mongo command again. You will see that the MongoDB Shell could not start as the MongoDB server is not running now, as shown in the following screenshot:

[image:]

Figure 17.17: mongo Command could connect to MongoDB Server

Monitoring and diagnosing MongoDB

Monitoring and diagnosing MongoDB are one of the advanced level administration tasks for MongoDB. In this, we first try to monitor our MongoDB databases for their proper working by analyzing the logs and other metrics provided by MongoDB when there are query executions and during the input and output of the data. Monitoring gives us the picture of what is happening in our MongoDB instance and helps us to prevent any failure of the MongoDB instance or any other issue related to various factors, like slow query responses, traffics, etc.

We can monitor our MongoDB server at various levels, such as at the MongoDB instance level, the database level, or the collection level, etc. Sometimes we might experience some issue with our MongoDB server. Then, we need to diagnose and quickly understand the issue and take the required action to resolve it, so that it does not get escalated or result in the down time or system failure.

So, analyzing and diagnosing the issue with the help of proper tools and commands help MongoDB administrators to tackle the issues as they come. With the help of proper monitoring and preventive diagnosing, we can have our MongoDB server and related services up and running without any major issues.

In order to monitor and diagnose MongoDB, we need to have some tools that will show us the related data as well as help in diagnosing and troubleshooting the issues. For this, we need to install the MongoDB Reporting Tools from the MongoDB Inc. official website.

Let us first install the MongoDB Reporting Tools and Utilities and then we can further look on how to use these tools.

Installing MongoDB tools and utilities

In order to install the MongoDB Tools, follow these steps:

	Visit the MongoDB Inc. official website home page https://www.mongodb.com/. On the top navigation section, move your mouse pointer to the Software link. This will open the Software menu. Under this menu, click the Community Server, which will open the new page related to the Community Edition of the MongoDB Server, as shown in the following screenshot:

[image:]

Figure 17.18: MongoDB Inc. Official Website Home Page

	In the MongoDB Community Edition page, you will see the 3 sections (or cards) on the top. Click the section (or card) which has a title Tools, as shown in the following screenshot:

[image:]

Figure 17.19: MongoDB Inc. Official Website – Community Page – Tools Section

	One you click on the Tools, this will open the MongoDB Tools screen which has the MongoDB tools related links at the bottom of the page, as shown in the following screenshot:

[image:]

Figure 17.20: MongoDB Inc. Official Website – Tools Screen - MongoDB Database Tools Link

	Click on the MongoDB Database Tools. This will further expand the MongoDB Database Tools screen. Here, you will see the Available Download section at the right side of the page. Select the Package option as MSI (which is a Windows installer file) and click on the Download button, as shown in the following screenshot:

[image:]

Figure 17.21: MongoDB Inc. Official Website – MongoDB Database Tools Download Section

	Once you click the Download button, the download process will start, as shown in the following screenshot:

[image:]

Figure 17.22: MongoDB Inc. Official Website – MongoDB Database Tools - Download

	After the download is 100% complete, we can now open this Windows installer file so that the installer can install the MongoDB tools, as shown in the following screenshot:

[image:]

Figure 17.23: MongoDB Inc. Official Website – MongoDB Database Tools – Download Complete

	After you click on the Open button, the MongoDB tools setup wizard will launch and it will guide you to install the MongoDB tools on your machine. You can click on the Next button to continue. During the MongoDB tools installation process, the setup wizard will ask you to accept the License Agreement or other terms and conditions. It is suggested to go through them, as shown in the following screenshot:

[image:]

Figure 17.24: MongoDB Database Tools - Setup

	The MongoDB tools setup wizard will ask you to choose the location to install the MongoDB tools in your local machine. It is recommended to keep the default settings as it is, unless you have some specific reason to choose another location, as shown in the following screenshot:

[image:]

Figure 17.25: MongoDB Database Tools – Setup Process

	Once the setup wizard completes the installation of the MongoDB tools, click on the Finish button to complete the installation of MongoDB tools, as shown in the following screenshot:

[image:]

Figure 17.26: MongoDB Database Tools – Setup Process Complete

Verifying the installation of MongoDB tools and utilities

In order to verify the installation of the MongoDB Tools, follow these steps:

	Open the command prompt and navigate to the directory where you have installed MongoDB, which is, C:\Program Files\MongoDB\Tools, in our case, as shown in the following screenshot:

[image:]

Figure 17.27: Command Prompt - Verifying the Installation of MongoDB Tools and Utilities

	Now, further navigate to the bin directory which is under the version directory of the MongoDB tools, which is, C:\Program Files\MongoDB\Tools\100\bin, in our case, as shown in the following screenshot:

[image:]

Figure 17.28: Command Prompt - Verifying the Installation of MongoDB Tools and Utilities – Navigating to "bin" Directory

	Now, to list the contents of this directory, type dir command which will print the contents of this directory and you will see a lot of .exe (windows executable) files in the bin directory. Each of these files are helpful and together, these are a bundle of MongoDB tools and utilities, as shown in the following screenshot:

[image:]

Figure 17.29: Command Prompt - Verifying the Installation of MongoDB Tools and Utilities – Viewing the contents of "bin" Directory

Working with MongoDB tools and utilities

mongostat

This MongoDB tool helps to view the database operations. It gives the statistics of the database operations, like insert, query, update, delete, etc. To use this tool, navigate to the bin directory under the MongoDB tools installation parent directory and type mongostat and press the enter key to execute this tool. Once this tool executes, it will continuously give you all the data related to the MongoDB database operations, as shown in the following screenshot:

[image:]

Figure 17.30: Working with MongoDB Tools and Utilities - mongostat

You can see that there is no activity related to any database operations as of now and all the operations counts can be seen with zero count (0). Now, let’s open the MongoDB Compass and try to view some MongoDB collections and keep on running the mongostat in the command prompt. As we do this, we can see that there is an increase under the database operations query counts, as shown in the following screenshot:

[image:]

Figure 17.31: Working with MongoDB Tools and Utilities – mongostat – Increase in "query" counts

If you do any other database operations, like insert, update, or delete, then mongostat will show this to you. We have seen that mongostat is a very helpful tool to monitor the MongoDB server database operations and we can use this tool in our day-to-day MongoDB monitoring purposes.

mongotop

This MongoDB tool helps to view the read and write activities of the MongoDB instances at collection level. It gives the statistics of the collection level activity which are the total number of reads and writes per collection.

To use this tool, navigate to the bin directory under the MongoDB tools installation parent directory and type mongotop and press the enter key to execute this tool. Once this tool executes, it will continuously give you all the data related to the MongoDB collections read and write activities, as shown in the following screenshot:

[image:]

Figure 17.32: Working with MongoDB Tools and Utilities – mongotop

You can see that there is no read or write activity related to any collection as of now, and all the activities counts can be seen with the zero count (0). Now, let’s open the MongoDB Compass and try to view some MongoDB collections and keep on running mongotop in the command prompt. As we do this, we can see that there is an increase under the collection activity read counts, as shown in the following screenshot:

[image:]

Figure 17.33: Working with MongoDB Tools and Utilities – mongotop – Increase in collection activity "read" counts

If you do any other database operations, like insert, update or delete, then mongotop will show the increase in write counts due to the write activities. So, we have seen that mongotop is a very helpful tool to monitor the MongoDB server collection related activities and we can use this tool in our day-to-day MongoDB collection monitoring purposes.

There are some other ways to monitor MongoDB by using the MongoDB Shell commands and methods. To use these commands, we first need to log into the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 17.34: Working with MongoDB Tools and Utilities – log into MongoDB Shell

serverStatus

This MongoDB Shell command returns the state of the MongoDB instance in a document form. When you run this command, it will return the state information of the MongoDB instance. To run the command, type the following command in your MongoDB Shell, as shown in the following screenshot:

db.runCommand({serverStatus: 1})

[image:]

Figure 17.35: Working with MongoDB Tools and Utilities – MongoDB Shell - serverStatus

Thus, by using this command, you will be able to see all the related details which are very helpful in gathering the current state of the MongoDB instance.

dbStats

This MongoDB Shell command returns the storage details of the MongoDB database. When you run this command, it will return the storage information of the given MongoDB database. To run the command, first select the database for which you would like to get the information and then type the following command in your MongoDB Shell, as shown in the following screenshot:

db.runCommand({dbStats: 1})

[image:]

Figure 17.36: Working with MongoDB Tools and Utilities – MongoDB Shell - dbStats

Thus, by using this command, you will be able to see all the related storage details of the MongoDB database.

collStats

This MongoDB Shell command returns the storage details of the MongoDB collection. When you run this command, it will return the storage information of the given MongoDB collection. To run the command, first select the database for which you would like to get the information and then type the following command in your MongoDB Shell, as shown in the following screenshot:

db.runCommand({collStats: "<collection-name>"})

Here, the <collection-name> is the name of the collection.

In our example, we are using the Database as BPBCatalogDB and the collection as BPBCatalogCollection. First, we need to select the DB with the following command:

use BPBCatalogDB

Then, we need to run the following command:

db.runCommand({collStats: "BPBCatalogCollection"})

[image:]

Figure 17.37: Working with MongoDB Tools and Utilities – MongoDB Shell - collStats

Thus, by using this command, you will be able to see all the storage related details of the MongoDB collections in a database.

buildInfo

This MongoDB Shell command returns the details of the current build of mongod. You can run the following command to get the details about the mongod build, as shown in the following screenshot:

db.runCommand({buildInfo: 1})

[image:]

Figure 17.38: Working with MongoDB Tools and Utilities – MongoDB Shell – buildInfo

Thus, by using this command, you will be able to see all the build related details of "mongod".

hostInfo

This MongoDB Shell command returns the system information of mongod or mongos (in case of sharding, where we have sharded cluster). You can run the following command to get the details about the system information, as shown in the following screenshot:

db.hostInfo()

or

db.adminCommand({"hostInfo" : 1})

[image:]

Figure 17.39: Working with MongoDB Tools and Utilities – MongoDB Shell – hostInfo

Thus, by using this command, you will be able to see all the system information of "mongod" or "mongos".

listCommands

This MongoDB Shell command returns the list of all the database related commands that are supported by the current version of mongod or mongos (in case of sharding, where we have sharded clusters), as shown in the following screenshot:

db.runCommand({listCommands: 1})

[image:]

Figure 17.40: Working with MongoDB Tools and Utilities – MongoDB Shell – listCommands

Thus, by using this command, you will get a long list of all the database related commands with their details, as shown in the following screenshot:

[image:]

Figure 17.41: Working with MongoDB Tools and Utilities – MongoDB Shell – listCommands (Specific Command Information)

ping

This MongoDB Shell command is very helpful to diagnosing whether the server is responding to the commands or not. This command even works when the server is write-locked, as shown in the following screenshot:

db.runCommand({ping: 1})

[image:]

Figure 17.42: Working with MongoDB Tools and Utilities – MongoDB Shell – ping

Thus, by using this command, you can diagnose the server whether it is responding to the other database commands or not.

getLog

This MongoDB Shell command is very helpful in the administrative command which will print the list of the latest 1024 logs logged by mongod events. This command takes one of the three values described, as shown in the following screenshot:

db.adminCommand({getLog: "<value>"})

Here, <value> can have any one of the following three types:

	*– All the available values which we can use with the getLog command, as shown in figure 17.43.

	global – It will print all recent log entries, as shown in figure 17.44

	startupWarnings – It will print the log entries that contain the warnings or error occurred during the "mongod" startup, if any. In case of no warnings or errors, this will print an empty array, as shown in the following screenshot:

[image:]

Figure 17.43: Working with MongoDB Tools and Utilities – MongoDB Shell – getLog - {getLog: "*"}

Thus, by using db.adminCommand({getLog: "*"}), we can get the details of the available values that we can use with the getLog command. Using the db.adminCommand({getLog: "global"}), we will get the list of all the latest log entries, as shown in the following screenshot:

[image:]

Figure 17.44: Working with MongoDB Tools and Utilities – MongoDB Shell – getLog - {getLog: "global"}

Using the db.adminCommand({getLog: "startupWarnings"}), we will get the list of all the log entries which are logged during the startup of the mongod due to any warnings or errors, as shown in the following screenshot:

[image:]

Figure 17.45: Working with MongoDB Tools and Utilities – MongoDB Shell – getLog - {getLog: "startupWarnings"}

Backup and restore with MongoDB

The MongoDB tools provide ways to take the backup of your MongoDB databases and restore them whenever they are required to be restored. In general, every organization (or a database administrator) must have a solid database backup policy in place according to your requirements. Database backups play a very important role. In case of any disastrous situation, if we have a database backup, we can easily restore them using the MongoDB tools.

So, keeping this in mind, we must always create database backups from time-to-time so that we can restore it, in case there is a need to do that.

Taking a MongoDB backup using mongodump

By using the mongodump tool (utility), we can very easily take backups of our MongoDB database. We can use the mongodump with the following options:

Simple method

mongodump --host=<hostname> --port=<port-number> --db=<db-name> --collection=<collection-name>out=<output-path>

With access control

mongodump--host=<hostname> --port=<port-number>--db=<db-name> --collection=<collection-name>--username=<user> --authenticationDatabase=admin --out=<output-path>

Where:

	<hostname>: Hostname of MongoDB, where the MongoDB instance is hosted. localhost, in our case.

	<port-number>: Port of the MongoDB server. Generally, it is, by default 27017. 27017, in our case.

	<db-name>: Name of the database for which you need to take the dump.

	<collection-name>: Name of the collection for which you need to take the dump. This is optional and if you don't give, mongodump will take the dump of all the collections in the database.

	<user>: MongoDB database user, in case of access control.

	<output-path>: The output location, where mongodump will dump or save the database backup.

Starting from version 4.4, "mongodump" is released separately. Earlier, it used to bundle with the MongoDB server and in the old releases of MongoDB, it can be found in the MongoDB bin directory. But now, it is released with the MongoDB tools.

To take the backup, follow these steps:

	Navigate to the bin directory which is under the version directory of the MongoDB tools, which is, C:\Program Files\MongoDB\Tools\100\bin, in our case, as shown in the following screenshot:

[image:]

Figure 17.46: Navigating to MongoDB Tools "bin" Directory

	Now, give the following command to take the database backup. Note that we are using the BPBCatalogDB database in our example, which is a sample database that contains the catalog of BPB publication house latest books. In our case, we can take this backup at any location. In our system, it is something like D:\Manu\bpb-db-dump. You can change the location as well as the database according to your system, as shown in the following screenshot:
mongodump --host=localhost --port=27017 --db=BPBCatalogDB --out="D:\Manu\bpb-db-dump"

As we haven't specified the collection name, in our case, it will take the dump of all the collections in the database.

[image:]

Figure 17.47: Running "mongodump" Command

	We can verify if mongodump has successfully created the dump files by browsing the folder's content of our output directory that we have specified during the mongodump command with the --out option. It is D:\Manu\bpb-db-dump in our case. To do this, open this folder on our machine to view its content, as shown in the following screenshot:

[image:]

Figure 17.48: Verifying the "mongodump" Command – Viewing the Output Directory

	You can now see that mongodump has successfully created the folder named as BPBCatalogDB inside our output directory, which is the same as our database. We can further open this folder to see its content, in which we will see the files related to the dump (or backups) of all the collections in the database, as shown in the following screenshot:

[image:]

Figure 17.49: Verifying the "mongodump" Command – Viewing the Output Backup Files

Restoring a MongoDB database using mongorestore

By using the mongorestore tool (utility), we can very easily restore the backups of our MongoDB database. We can use mongorestore with the following options:

Simple method

mongorestore --host=<hostname> --port=<port-number> --db=<db-name><db-dump-path>

With access control

mongorestore --host=<hostname> --port=<port-number> --db=<db-name> --username=<user> --authenticationDatabase=admin <db-dump-path>

Where:

	<hostname>: Hostname of MongoDB, where the MongoDB instance is hosted. localhost, in our case.

	<port-number>: Port of the MongoDB server. Generally, it is, by default, 27017. 27017, in our case.

	<db-name>: Name of the database for which you need to take the dump.

	<user>: MongoDB database user, in case of access control.

	<db-dump-path>: The Location where the MongoDB database dump is present.

Starting from version 4.4, mongorestore is released separately. Earlier, it used to bundle with the MongoDB server, and in the old releases of MongoDB, it can be found in the MongoDB bin directory. But now, it is released with the MongoDB tools.

To restore the backup, follow these steps:

	Navigate to the bin directory which is under the version directory of the MongoDB tools, which is, C:\Program Files\MongoDB\Tools\100\bin, in our case, as shown in the following screenshot:

[image:]

Figure 17.50: Navigating to MongoDB Tools "bin" Directory

	Now, give the following command to restore the database backup. Note that we are using the BPBCatalogDB-Backup database in our example, and in our case, we can take this backup from the location on our system, which is something like D:\Manu\bpb-db-dump. You can change the location as well as the database according to your system and requirements, as shown in the following screenshot:
mongorestore --host=localhost --port=27017 --db=BPBCatalogDB-Backup "D:\Manu\bpb-db-dump"

[image:]

Figure 17.51: Running "mongorestore" Command

	To verify if the mongorestore command has successfully restored our database, open the MongoDB Compass and check for the newly created database, which is BPBCatalogDB-Backup in our case, and also view the collections and documents inside this database, as shown in the following screenshot:

[image:]

Figure 17.52: Verifying the "mongorestore" command - Vewing the restored Database and Collection data using MongoDB Compass

Import and export with MongoDB

Sometimes, we want to use some methods which allow us to export or import the data into various formats. The MongoDB tools also provide ways by which we can export and import our MongoDB data to and from various formats, like JSON and CSV.

Exporting a MongoDB data using mongoexport

By using the mongoexport tool (utility), we can very easily export our MongoDB data to the formats, like JSON and CSV. We can use mongoexport with the following options:

Simple method

mongoexport --host=<hostname> --port=<port-number> --db=<db-name> --collection=<collection-name>--type=<output-type>out=<output-path>

With access control

mongoexport --host=<hostname> --port=<port-number> --db=<db-name> --collection=<collection-name>--username=<user> --authenticationDatabase=admin –type=<output-type> --out=<output-path>

Where:

	<hostname>: Hostname of MongoDB, where the MongoDB instance is hosted. localhost, in our case.

	<port-number>: Port of the MongoDB server. Generally, it is, by default, 27017. 27017, in our case.

	<db-name>: Name of the database for which you need to take the dump.

	<collection-name>: Name of the collection for which you need to take the dump. This is optional and if you don't give, then mongoexport will take the dump of all the collections in the database.

	<user>: MongoDB database user, in case of access control.

	<output-type>: The output type, JSON or CSV

	<output-path>: The output location where the mongoexport will dump or save the database export. You must also specify the filename with the location.

Note: that starting from version 4.4, mongoexport is released separately. Earlier, it used to bundle with the MongoDB server, and in the old releases of MongoDB, it can be found in the MongoDB bin directory. But now, it is released with the MongoDB tools.

Follow the below steps to learn how we can use mongoexport:

	Navigate to the bin directory, which is under the version directory of the MongoDB tools, which is C:\Program Files\MongoDB\Tools\100\bin, in our case, as shown in the following screenshot:

[image:]

Figure 17.53: Navigating to MongoDB Tools "bin" Directory

	Now, give the following command to export the collection. Note that we are using the BPBCatalogDB database in our example, which is a sample database that contains the catalog of BPB Publication house latest books, and in our case, we can take the export of this database collection BPBCatalogCollection at any location. In our system, it is something like D:\Manu\bpb-db-export. You can change the location as well as the database and collection according to your system, as shown in the following screenshot:
mongoexport --host=localhost --port=27017 --db=BPBCatalogDB --collection=BPBCatalogCollection--type=json --out="D:\Manu\bpb-db-export\BPBCatalogCollection.json"

[image:]

Figure 17.54: Running "mongoexport" Command

	We can verify if mongoexport has successfully created the JSON file by browsing the folder's content of our output directory that we have specified during the mongoexport command with the --out option, and it is D:\Manu\bpb-db-export (excluding JSON file name), in our case. To do this, open this folder on our machine to view its content, as shown in the following screenshot:

[image:]

Figure 17.55: Verifying the "mongoexport" Command – Viewing the Contents of the Output Folder

	You can also view the contents of this file easily by opening this file in any text editor or IDE of your choice, such as Microsoft Visual Studio Code, as shown in the following screenshot:

[image:]

Figure 17.56: Opening the JSON File in the Microsoft Visual Studio Code – Viewing the contents of the exported JSON file

Importing a MongoDB data using mongoimport

By using the mongoimport tool (utility), we can very easily import our MongoDB data to the formats, like JSON and CSV. We can use mongoimport with the following options:

Simple method

mongoimport --host=<hostname> --port=<port-number> --db=<db-name> --collection=<collection-name><file-path>

With access control

mongoimport --host=<hostname> --port=<port-number> --db=<db-name> --collection=<collection-name>--username=<user> --authenticationDatabase =admin –type=<file-type><file-path>

Where:

	<hostname>: Hostname of MongoDB, where the MongoDB instance is hosted. localhost, in our case.

	<port-number>: Port of the MongoDB server. Generally, it is, by default, 27017. 27017, in our case.

	<db-name>: Name of the database for which you need to take the dump.

	<collection-name>: Name of the collection for which you need to take the dump. This is optional and if you don't give, mongoimport will take the dump of all the collections in the database.

	<user>: MongoDB database user, in case of access control.

	<file-type>: File type, JSON or CSV.

	<file-path>: The location where mongoimport will get the file. You must also specify the filename with the location.

Note: that starting from version 4.4, mongoimport is released separately. Earlier, it used to bundle with the MongoDB server, and in the old releases of MongoDB, it can be found in the MongoDB bin directory. But now, it is released with the MongoDB tools.

To take the backup follow the following steps:

	Navigate to the bin directory, which is under the version directory of the MongoDB tools, which is C:\Program Files\MongoDB\Tools\100\bin, in our case as shown in the following screenshot:

[image:]

Figure 17.57: Navigating to MongoDB Tools "bin" Directory

	Now, give the following command to import the collection. Note that we are using BPBCatalogDB-Import database in our example and BPBCatalogCollection. Our import file path is D:\Manu\bpb-db-export\BPBCatalogCollection.json, which contains the JSON file that we have earlier exported using mongoexport. You can change the location as well as the database and collection according to your system, as shown in the following screenshot:
mongoimport --host=localhost --port=27017 --db=BPBCatalogDB-Import --collection=BPBCatalogCollection--type=json "D:\Manu\bpb-db-export\BPBCatalogCollection.json"

[image:]

Figure 17.58: Running "mongoimport" Command

	To verify if the mongoimport command has successfully imported our database and collection, we can open the MongoDB Compass and check for the newly created database and collection, which is BPBCatalogDB-Import, and we can see the collection and its documents, as shown in the following screenshot:

[image:]

Figure 17.59: Verifying the "mongoimport" command - Vewing the restored Collection data using MongoDB Compass

We have seen how we can use various MongoDB tools to take and restore backups with the help of mongodump, mongorestore, mongoexport and mongoimport.

MongoDB security

Information and data security is very important for any organization and every organization must have good security policies and practices in place, which also include regular security related audits. There are many factors that we can consider to make our database secure. In this section, we will study some important points that any database administrator should be aware of and plan according to their corporate or company environments. This section doesn't include any practical demonstration as it is not possible to practically cover all these points in a single chapter and it is out of the scope of this book. But we will study some important points that we can take care of during the production level implementation of MongoDB in our organization.

Enable authentication

MongoDB provides the authentication methods so that when any client tries to connect to the MongoDB database, it should authenticate itself using the valid username and password.

If the authentication is enabled in MongoDB, we have to use the mongo command-line authentication options, such as --username, --password, and –authenticationDatabase, while connecting to mongod or mongos (in case of sharding, where the sharded clusters are used).

Use role-based authorization (role-based access control)

It is always recommended to have a role-based access control in place so that each person has limited access to the data. Every organization must have a strong role-based policy in place through the departments and organizational structure so that a person can only be able to see the data which is intended to be seen or modified by him/her.

MongoDB provides in-build as well as user defined roles and we can use the MongoDB "User Management" and "Role Management" commands, such as createUser and createRole, to create the user and allocate the right type of roles to a particular user and group.

Take a note that "not every user is a super user or administrator". So, we should always take care of giving limited access to the users according to their job profiles. This will make sure that our data is always protected and the sensitive information of an organization is not available to anyone who is not authorized for that data or information.

Encrypt the communication channels and connections

Encryption plays a very important role in protecting the data from the evil hands. Make sure your connections are secure and encrypted. It is recommended to configure your MongoDB to use TLS (Transport Layer Security)/SSL (Secure Sockets Layer).

If we have TLS/SSL in place, then any communication between MongoDB and the applications which are connected to it always flows in a secure and encrypted channel.

Encrypt your MongoDB data

Like the network or communication channel encryption, data encryption is also very important. If your data is encrypted, it is very difficult to decode it, even if it reaches into the wrong hands. Staring from version 3.2, MongoDB provides the method to encrypt the MongoDB data with the WiredTiger storage engine's native "Encryption at Rest".

We should always make sure that all the MongoDB data, which includes data files, logs files, configuration files, audit files, or any other key files, are encrypted at the storage level.

Use firewalls and restrict all the incoming and outgoing traffic

Make sure that your network, where your MongoDB server resides, is properly protected with firewalls, and only the applications that are allowed to use the MongoDB database or instance has the permission, and no other applications can access the MongoDB instances.

Regularly perform security audits

As an organization or network administrator, you should regularly perform the network and security audits. At every regular interval, make sure your MongoDB database has the correct roles and users and correct application servers who has the right to access your MongoDB instance. If you find any breach, first restrict the access, and then take the appropriate organization level action.

Conclusion

In this chapter, we covered the advanced administration topics of MongoDB which is very helpful to the people who will perform various MongoDB administrative tasks. In this chapter, we learned about the mongod process and how to manage it. We also learned how to monitor and diagnose MongoDB. We covered the step-by-step method to install the MongoDB tools in our machine and how to use these MongoDB tools and various other MongoDB commands to monitor and diagnose MongoDB. Later in this chapter, we learned how to take MongoDB backups and how to restore these backups. We also covered how to perform the export and import of the MongoDB data. In the last part of this chapter, we covered various important points related to MongoDB security which we should take care of, so that our MongoDB database and its data are secured.

Questions

	What do you understand by mongod? Explain in detail.

	What is the daemon or background process?

	How can we start MongoDB from the command line?

	Why should we monitor our MongoDB instance at regular intervals? What are the benefits of doing so?

	List any seven MongoDB tools and commands helpful for monitoring and diagnosing MongoDB?

	How can you take MongoDB backups?

	What are the two main formats we can use during mongoexport?

	List three ways to make your MongoDB instance secure?

CHAPTER 18

Replication in MongoDB

This chapter covers the replication part of MongoDB. In this chapter, we will learn about the replication and replica set in a quick recap. We will also learn about the MongoDB heartbeats and how the heartbeats play an important role in the replicated environment. We will also learn how the election of the new primary member takes place. Later in this chapter, we will cover the pre-configuration steps before we start with the practical step-by-step method to create the replicated environment with the MongoDB primary and secondary instances. We will then learn how to setup the replicated MongoDB environment with the step-by-step method. In the last part of this chapter, we will learn how to verify the replication setup if it has been configured correctly with the help of the data.

Structure

In this chapter, we will discuss the following topics:

	Basic introduction to replication – quick recap

	Basic introduction to the MongoDB replication

	Replica sets

	MongoDB heartbeats

	Election of the new primary member

	Pre-configuration steps for replication

	Starting with the MongoDB replication on Windows machine

	Verifying the MongoDB replication using data

Objectives

After studying this unit, you should be able to get an introduction to the MongoDB replication in a quick recap and also get introduced to the replica sets. You should be able to understand MongoDB heartbeats and how the election of the new primary member takes place. You should be able to learn the pre-configuration steps before you start with the practical step-by-step configuration process. You should also be able to learn and understand how to perform the MongoDB replication on Windows machine and also understand how to verify the MongoDB replication using data.

Basic introduction to replication – quick recap

Let us quickly recap the replication process. We have already covered the basic introduction in our previous chapter. In this chapter, we will learn how we can practically do the replication on our machine using MongoDB.

Replication is a process of duplicating the same set of databases so that we have multiple copies of the same data available to us on different servers because of which we have redundancy and high availability of data.

Following are some benefits of replication:

	Replication helps in the fail-over recovery, in case one server fails, or the hardware fails, or in case of any other service interruptions.

	Replication also helps in the increased performance because the clients are able to send their requests to different servers.

	Replication helps in delivering the data to the distributed applications from various data center locations across the globe.

Replica sets

Replica sets are the groups of MongoDB processes or instances which host the same data set. There is one primary and many secondary nodes that form a group to create replica sets, as shown in the following figure:

[image:]

Figure 18.1: Replication in MongoDB

MongoDB heartbeats

In the MongoDB replication environment, the replica group members send the "Heartbeats" or pings every 2 seconds to communicate with each other. This ensures that the replication is actually happening between the servers, as shown in the following figure: If any of the member does not respond to the others within 10 seconds, in that case, it is treated as inaccessible.

[image:]

Figure 18.2: MongoDB Heartbeats

Automatic election of the new primary member

In case there is no communication taking place between the primary server and the secondary server, and when the primary server is not able to send heartbeats or pings for more than 10 seconds to the secondary server in the replica sets, the election of a new primary automatically takes place between the secondary server and the new primary is elected among the secondary members of the replica sets.

[image:]

Figure 18.3: MongoDB Election of a new Primary

Pre-configuration steps

In order to perform the replication on our machine, let us first understand the steps we need to take to correctly setup a replication environment on our machine using MongoDB.

To start the replication process, we need to follow these steps:

	We will use Windows Operating System that already has MongoDB installed in it

	We will stop the existing MongoDB service on our Windows machine

	We will create a replica set of 3 MongoDB nodes that will form a group of replica sets

	We will create one MongoDB instance which will act like a primary server or a node of the replica set

	We will create two MongoDB instances which will act like secondary servers or nodes of the replica set

	So, basically, we will form a group of replica sets having one primary and two secondary servers

	We will create a new database and collection and will then confirm that the replication is taking place on these two secondary servers and we can view this database and collection on our secondary servers too.

The diagram of our MongoDB replica sets group on our Windows machine is shown in the following figure:

[image:]

Figure 18.4: MongoDB Replication on Windows

Starting with the MongoDB replication on Windows machine

The step-by-step process to do the replication of MongoDB is as follows:

	In the search box of your Windows, type services and open the Windows Service Manager, as shown in the the following figure:

[image:]

Figure 18.5: Open Windows Services Manager

	Now, in the Windows Service Manager, navigate to the MongoDB service and right click on the service. This will open up a service-related menu which has the Stop option. Click this option to stop the MongoDB service, as shown in the the following figure:

[image:]

Figure 18.6: Windows Service Manager – Stop MongoDB Service

	Now, as the MongoDB service will stop, you will see that the running status is blank. Now you can close the Windows Service Manager, as shown in the following figure:

[image:]

Figure 18.7: Windows Service Manager – MongoDB Service has been Stopped

	Now, open the location of the folder where you have installed MongoDB. In our case, it is, C:\Program Files\MongoDB\Server\4.4. You will see the data and log directories under this folder location, as shown in the following figure:

[image:]

Figure 18.8: MongoDB Installation Folder Location

	We need to create a few folders under both the data and the log directories as follows:
Under the data directory (or folder), we need to create three new folders which will contain the MongoDB data files:

	C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBPS (Data Directory for our Primary Server or Instance)

	C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBSS1 (Data Directory for our Secondary Server 1)

	C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBSS2 (Data Directory for our Secondary Server 2)

Under the log directory (or folder), we need to create three new folders which will contain the MongoDB log files:

	C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBPS (Log Directory for our Primary Server or Instance)

	C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBSS1 (Log Directory for our Secondary Server 1)

	C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBSS2 (Log Directory for our Secondary Server 2)

	Let us first create new folders under the data directory (or folder), as shown in the the following figure:

[image:]

Figure 18.9: MongoDB Installation "data" Directory Location – Creating new Folders

	After you have created new folders under the "data" directory (or folder), these should look similar to the screenshot, as shown in the the following figure:

[image:]

Figure 18.10: MongoDB Installation Folder Location

	Let us now create new folders under the log directory (or folder), as shown in the the following figure:

[image:]

Figure 18.11: MongoDB Installation "log" Directory Location – Creating new Folders

	After you create new folders under the log directory (or folder), these should look similar to the screenshot, as shown in the the following figure:

[image:]

Figure 18.12: MongoDB Installation Folder Location

	Now, we need to create few files with the name mongod.log under each of our newly created folders under the parent directory log, as follows:

	C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBPS\mongod.log (Log file for our primary server or instance)

	C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBSS1\mongod.log (Log file for our secondary server 1)

	C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBSS2\mongod.log (Log file for our secondary server 2)

To do this, we need to open any text editor like windows Notepad in the administrative mode. Or we can also use IDE like Microsoft Visual Studio Code in the administrative mode. In this step, we will use Visual Studio Code in the administrative mode to create three blank files with the name mongod.log in the location mentioned earlier.

	Open Visual Studio Code in the administrative mode, as shown in the following figure:

[image:]

Figure 18.13: Opening Visual Studio Code with Administrative Mode

	Open the location of your MongoDB installation path in the Visual Studio from the Add Folder button, as shown in the following figure:

[image:]

Figure 18.14: Opening the Folder Location of your MongoDB Installation in Visual Studio Code

	Now you can create the new files under the sub-folders of log created in the previous steps. You need create a new blank file named mongod.log under each of these folders, as shown in the following figure:

[image:]

Figure 18.15: Creating the "mongod.log" Files under Sub-Folders of "log"

	After you have successfully created these three blank mongod.log files in each of these folders, you will see something similar the screenshot, as shown in the following figure. You should close the Visual Studio Code after creating the blank mongod.log files.

[image:]

Figure 18.16: Creating the "mongod.log" Files under Sub-Folders of "log"

	Now we will start our first server with the help of mongod command with the few parameters as follows:
mongod --dbpath "C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBPS" --logpath "C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBPS\mongod.log" --port 27017 –storageEngine wiredTiger --journal --replSet BPBOnlineReplicaSet

This command needs to be run from the command prompt opened in the administrator mode. Here, the parameters given in the mongod command are described as follows:

	--dbpath: Path of our DB directory location

	--logpath: Path of our DB log file location

	--port: For primary server, we will use 27017

	--storageEngine: We will use "wiredTiger"

	--journal: This will enable the MongoDB journaling

	--replSet: In our case, we will use BPBOnlineReplicaSet, which is common for all the three member nodes or instances in the replica set.

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is, C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following figure:

[image:]

Figure 18.17: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Type the following command with all the parameters that will start our first server in the replica set as primary server as follows:
mongod --dbpath "C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBPS" --logpath "C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBPS\mongod.log" --port 27017 –storageEngine wiredTiger --journal --replSet BPBOnlineReplicaSet

Once you enter this command, you will get a response something similar to the screenshot, as shown in the following figure:

[image:]

Figure 18.18: Starting the "mongod" with Replication parameters

	Now open another command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is, C:\Program Files\MongoDB\Server\4.4\bin, in our case, and then type the following command:
mongo --host localhost --port 27017

This command will connect us to the MongoDB Shell, as shown in the following figure.

Note that you should not close the another command prompt. Keep it open so that the mongod instance will keep on running on the port 27017:

[image:]

Figure 18.19: Connected to the MongoDB Shell

	After we get connected to the MongoDB Shell, try to run any MongoDB Shell command like the following:
show dbs

You will see that the MongoDB Shell will return the error, as shown in the following figure. At this point, we haven't initiated the replica set and we need to give some MongoDB Shell commands to initiate the replication process:

[image:]

Figure 18.20: "show dbs" returned error in MongoDB Shell

	Now, we need to initiate the replication process and for this we need to add our first member which will act as the primary member in the replica set. To do this, first create a variable with the details of the members of the replica set. In our case, we will create a variable with the name replicaSetConfig having the _id same as of our replica set, which is BPBOnlineReplicaSet and the members details will have the _id as 0 (for the first member in the replica set) and their host value which is the host and port values and it is localhost:2701, in our case:
replicaSetConfig = {

_id: "BPBOnlineReplicaSet",

members: [{

_id: 0,

host: "localhost:27017"

}]

}

Enter the preceding code in the MongoDB Shell and you will get the result similar to the screenshot, as shown in the following figure:

[image:]

Figure 18.21: "show dbs" returned error in MongoDB Shell

	Now, we can use this variable replicaSetConfig during the initialization command for the replica set creation. Type the following command to initiate the replication process:
rs.initiate(replicaSetConfig)

Enter the preceding command in the MongoDB Shell and you will get the result similar to the screenshot, as shown in the following figure:

[image:]

Figure 18.22: Initializing the Replication with "rs.initiate()" Command in MongoDB Shell

	If you see carefully in our MongoDB Shell, you will find that our MongoDB prompt has changed to BPBOnlineReplicaSet:SECONDARY>:
Just press the Enter key without typing anything and this will change the prompt to BPBOnlineReplicaSet:PRIMARY> and you will get the result similar to the screenshot, as shown in the following figure:

[image:]

Figure 18.23: Changing the MongoDB Shell from SECONDARY to PRIMARY with a Enter key

	We can now verify the status of our replica set using the following command:
rs.status()

Just enter the aforementioned command in your MongoDB Shell of the primary instance and you will get the result similar to the following screenshot. You will get the information about the replica set members and the status, which is OK in our case, as shown in the following figure:

[image:]

Figure 18.24: "rs.status()" – Checking the status of the Replica Set

	Now we can add new members to this replica set. But before we do so, we need to start the secondary members (these members will run the MongoDB instances in different ports) and add them after these secondary instances will start. To do this, we should start our first secondary member with the help of the mongod command similar to what we have used at the beginning of our primary member of the replica set.
To do this, open another command prompt in the administrative mode without closing any other command prompts that are already open. Navigate to the bin directory of the MongoDB installation and type the following command, as shown in the following figure:

mongod --dbpath "C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBSS1" --logpath "C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBSS1\mongod.log" --port 27018 –storageEngine wiredTiger --journal --replSet BPBOnlineReplicaSet

Here, the parameters given in the mongod command are described as follows:

	--dbpath: Path of our DB directory location

	--logpath: Path of our DB log file location

	--port: For our first secondary server, we will use 27018

	--storageEngine: We will use "wiredTiger"

	--journal: This will enable the MongoDB journaling

	--replSet: In our case, we will use BPBOnlineReplicaSet, which is common for all the three member nodes or instances in the replica set.

[image:]

Figure 18.25: Starting the Secondary Server Instance using "mongod"

	Now, as the first secondary instance has started successfully on the port number 27018, we can add this instance to our replica set. To do this, open the existing shell window of the primary instance and type the following command in the Shell prompt of the primary instance:
rs.add("localhost:27018")

After you enter the preceding command in your MongoDB Shell of the primary instance, you will get the result similar to the following screenshot. You will see that in our case, the status is OK, as shown in the following figure:

[image:]

Figure 18.26: "rs.add()" – Adding new Secondary Members to the Replica Set

	Now we can add our third member to this replica set. But before we do so, we need to start the third instance on a different port. To do this, we need to start our second secondary member with the help of the mongod command which is similar to what we used during the starting of our first and second member of the replica set.
To do this, open another command prompt in the administrative mode without closing any other command prompt that are already open. Navigate to the bin directory of the MongoDB installation and type the following command, as shown in the following figure:

mongod --dbpath "C:\Program Files\MongoDB\Server\4.4\data\BPBOnlineDBSS2" --logpath "C:\Program Files\MongoDB\Server\4.4\log\BPBOnlineDBSS2\mongod.log" --port 27019 –storageEngine wiredTiger --journal --replSet BPBOnlineReplicaSet

Here, the parameters that are given in the mongod command are described as follows:

	--dbpath: Path of our DB directory location

	--logpath: Path of our DB log file location

	--port: For our first secondary server, we will use 27019

	--storageEngine: We will use "wiredTiger"

	--journal: This will enable the MongoDB journaling

	--replSet: In our case, we will use BPBOnlineReplicaSet, which is common for all the three member nodes or instances in the replica set.

[image:]

Figure 18.27: Starting the Secondary Server Instance using "mongod"

	Now, as the second secondary instance has started successfully on the port number 27019, we can add this instance into our replica set. To do this, open the existing shell window of the primary instance and type the following command in the Shell prompt of the primary instance:
rs.add("localhost:27019")

Once you enter the preceding command in your MongoDB Shell of the primary instance, you will get the result similar to the following screenshot. You will see that in our case the status is OK, as shown in the following figure:

[image:]

Figure 18.28: "rs.add()" – Adding new Secondary Members to the Replica Set

	We can again verify the status of our replica set using the following command:
rs.status()

Just enter the preceding command in your MongoDB Shell of the primary instance and you will get the result similar to the following screenshot. You will get the information about the replica set members and the status for which is OK, in our case, as shown in the following figure:

[image:]

Figure 18.29: "rs.status()" – Checking the status of the Replica Set

	We can run one more command that will give the status of our primary replica set, Ether the following command in the MongoDB Shell of the primary instance:
rs.isMaster()

Just enter the preceding command in your MongoDB Shell of the primary instance. You will get the result similar to the following screenshot. You will get the information about the primary server and you will see that it has the value true, in our case, as shown in the following figure:

[image:]

Figure 18.30: "rs.isMaster()" – Checking the status of the Primary Member of Replica Set

Now, we have successfully created the replica set with three members. But to check whether the replication is happening correctly or not, we need to verify with the help of some process. Let us verify this with some MongoDB database and collection and create new documents under the MongoDB collection.

Verifying the MongoDB replication using data

For the verification process, we need to follow these steps:

	Go to the MongoDB Shell of the primary instance and create a new database and collection and insert some documents. We will run the following command in the MongoDB Shell of our primary server, as shown in the following figure:
use BPBOnlineRepliationDB

db. BPBOnlineRepliationCollection.insert({"booktitle":"Docker Demystified"})

db. BPBOnlineRepliationCollection.insert({"booktitle":"Hardware Description Language Demystified"})

db.BPBOnlineRepliationCollection.find().pretty()

[image:]

Figure 18.31: Running few Data Related commands on the MongoDB Shell of Primary Server

	Now, open the MongoDB Shell of our secondary server in the replica set using the new command prompt in the administrative mode and run the following command. It will then open the MongoDB Shell prompt of our secondary server in the replica set. Please keep all the earlier command prompts open, as shown in the following figure:
mongo --host localhost --port 27018

[image:]

Figure 18.32: Opening MongoDB Shell of the Secondary Server

	In the same MongoDB Shell (secondary server), type the following command to verify if the replication has taken place and you will be able to see the documents under the collection created by us from our primary server Shell:
use BPBOnlineRepliationDB

db.BPBOnlineRepliationCollection.find().pretty()

Once you run the preceding commands from the secondary server first time, it will give you an error as some configuration needs to take place from our secondary servers Shell, as shown in the following figure:

[image:]

Figure 18.33: Secondary Server giving error on db.collection.find()

	In order to resolve this issue, we need to run the following command on the MongoDB Shell of both of our secondary servers, as shown in the following figure:
rs.secondaryOk()

rs.status()

[image:]

Figure 18.34: Secondary Server – Resolving the Issues

	Now go back to the MongoDB Shell prompt of the primary server and add one more document in the same collection by giving the following command, as shown in the following figure:
db.BPBOnlineRepliationCollection.insert({"booktitle":"MongoDB Replication"})

[image:]

Figure 18.35: Primary Server adding one more record to the document

	Now, in the MongoDB Shell of any of the secondary servers, type the following command to verify if the replication has taken place. You will be able to see the documents including the newly created document under the collection created by us from our primary server Shell:
use BPBOnlineRepliationDB

db.BPBOnlineRepliationCollection.find().pretty()

Once you run the preceding command from the both of the secondary servers for the first time, it will show you all the documents present in the collection, and thus, we can verify now that the replication is taking place correctly on the replica set created by us, as shown in the following figure:

[image:]

Figure 18.36: Secondary Server displaying documents with db.collection.find()

Conclusion

In this chapter, we covered the replication part of MongoDB. We learned about the replication and the replica sets in a quick recap. We also learned about the MongoDB heartbeats and how the heartbeats play an important role in the replicated environment. We also learned how the election of the new primary member takes place and when this election process starts. Later in this chapter, we covered the pre-configuration steps before we started with the practical step-by-step method to create the replicated environment with the MongoDB primary and secondary instances. We also learned how to setup the replicated MongoDB environment with the step-by-step method. In the last part of this chapter, we learned how to verify the replication setup if it has been configured correctly with the help of the data.

Questions

	What do you understand by replication?

	What is a replica set?

	What do you understand by the MongoDB heartbeats?

	How does the election of the primary member take place and when does it happen usually between the other members of the replica set?

	Explain the process of creating the replicated environment in your Windows machine?

	Name the command by which we can check the status of the replica set.

	Explain the process of verifying the replicated environment you created with the step-by-step method explained in this chapter.

CHAPTER 19

Sharding in MongoDB

This chapter covers the sharding part of MongoDB. In this chapter, we will learn about sharding and shaded clusters in a quick recap. We will also learn the importance of the config database in a sharded environment. We will also learn about the shard keys. Later in this chapter, we will cover the pre-configuration steps before we start with the practical step-by-step method to create a sharded environment with the MongoDB replica sets. We will then also learn how to setup the MongoDB sharded environment. We will learn the complete the step-by-step process of sharding in an easy-to-understand 8 steps.

Structure

In this chapter, we will discuss the following topics:

	Basic introduction to sharding – quick recap

	Sharded clusters

	Read and write operations and the importance of config database

	Shard key

	Pre-configuration steps

	Starting with MongoDB sharding on Windows machine

	The complete step-by-step process of sharding

	Step 1 – Stop the existing MongoDB services on Windows machine

	Step 2 – Create the first replica set (our first shard)

	Step 3 – Create the second replica set (our second shard)

	Step 4 – Create the third replica set (our third shard)

	Step 5 – Create the replica set of the config servers in a sharded environment

	Step 6 - Start MongoDB in sharded environment as "mongos"

	Step 7 - Add MongoDB in shard keys

	Step 8 - Verify MongoDB sharding using data

Objectives

After studying this unit, you should be able to get a quick recap and introduction to the process of sharding and sharded clusters. You will also understand the read and write operations in sharding and the importance of config database. You will also learn about the shard keys. Later in this chapter, you will learn the pre-configuration steps to setup the sharded environment and also learn how we can setup MongoDB sharding on Windows machine. Major part of this chapter is focused on the step-by-step process of sharding in an easy-to-understand 8 steps to give you the practical knowledge on this topic.

Basic introduction to sharding – quick recap

Sharding is a process of distributing the large data across multiple machines or servers. There are cases where the applications have large sets of data which cannot be served by a single machine or server due to its hardware limits. These limits can be due to the CPU capacities or sometimes due to the memory capacities like RAM or disk drives.

In this case, MongoDB provides the feature of sharding where we can distribute our large data across different machines or servers. By doing this, we can serve this large data easily by an increased computational power we gained by using more machines or servers instead of a single machine or server.

Some of the benefits of sharding are as follows:

	An increase in the computational power due to the use of multiple machines or servers.

	Lower costs because instead of increasing the computational capacities of one machine, which also has a limitation, we increase the computational capacities by involving multiple machines which can together create a lot of computational power and is a cheaper option.

	MongoDB supports horizontal scaling by using sharding which is a more effective solution. Many a times, it is not practically possible to increase the CPU and memory capacities of a single machine as it has a maximum limit and is expensive. Increasing the computational capacity of a single machine is also termed as vertical scaling. So, it is always a better and cheaper option to increase the computational power by using multiple machines. This is called horizontal scaling.

Sharded clusters

In simple terms, sharded clusters are groups of MongoDB instances used to serve large data. Here, the data is served to the applications by splitting the large data into the multiple sharded clusters, as shown in the following figure:

[image:]

Figure 19.1: Sharding in MongoDB

Read and write operations and importance of config database

As we studied earlier in this chapter, in MongoDB, we can distribute the large data into small data using sharding. So, when we divide the larger data into smaller subsets using sharding, it is totally transparent to an application.

Whenever we perform sharding, we specify a sharding key for the MongoDB collections so that the data can be handled in an effective manner. So, whenever the clients send any requests, they should include this sharded key so that the data can be fetched directly from the particular shard (subset of the sharded data). If the client does not send its query with the shard key, then the read operation will take more time since every shard has to be involved in the query.

In the sharded clusters, the config database is maintained and is very helpful in routing the queries to the shards. So, if any client sends the query with the sharded key, then by using the metadata from the config database, the queries are redirected or routed to a particular shard.

Whenever there is a write request from the client for the sharded collections in the sharded cluster, the request goes to the particular shard (subset of the sharded data) which is responsible for that particular data set.

Here, the write operation is performed using the metadata which is in the config database. Based on this metadata, the redirection or routing is done for the write operation to the particular shard in the sharded cluster. The write operations are done only on the primary nodes of the sharded cluster.

Shard key

In a MongoDB sharded environment, the shard key plays an important role in distributing the MongoDB collection data to different shards. Shard key is an indexed field or indexed compound field of a collection. We need to specify the shard key during the implementation of the sharded environment.

During any read or write request from the client in a shaded environment, the query router redirects the requests to the related shard based on these shard keys, as shown in the following figure:

[image:]

Figure 19.2: Shard Key in MongoDB

Pre-configuration steps

In order to perform sharding on our machine, let us first understand the steps we need to take to correctly setup a replication environment on our machine using MongoDB.

To start the sharding process, we need to follow these steps:

	We will use Windows operating system having MongoDB installed

	We will stop the existing MongoDB service on our Windows machine

	We will create 3 replica sets which has 3 MongoDB nodes to form a group of replica sets

	In each of the 3 replica sets, we will create one MongoDB instance which will act as the primary server or node of the replica set

	In each of the 3 replica sets, we will create two MongoDB instances which will act like the secondary servers or nodes of the replica set

	So, basically we will form 3 groups of replica sets having one primary and two secondary servers

	We will then create a set of 3 configuration servers

	After that, we will create a sharding server with a sharded key on a collection.

	We will now insert a few documents in the sharded collection to check if it is working properly.

The following diagram depicts our MongoDB replica sets grouped with sharded environment on our Windows machine:

[image:]

Figure 19.3: Sharding in MongoDB on Windows Machine

Starting with MongoDB sharding on Windows machine

Note that here we will create MongoDB instances (cluster nodes) with the help of Windows service option of mongod. Instead of starting mongod from the command prompt and keep that running, we do this to prevent opening of so many command prompt windows so that our system won't get messy as we need to create 12 MongoDB instances on our Windows machine and then we need to start mongos (MongoDB sharing environment) from the Windows command prompt.

Following is the step-by-step process to do the sharding of MongoDB:

Step 1 –Stop the existing MongoDB services on Windows machine

	In the Search Box of your Windows, type services and open Windows service manager, as shown in the following screenshot:

[image:]

Figure 19.4: Open Windows Services Manager

	Now, in the Windows service manager, navigate to MongoDB service, then right click on the Service. This will open up a service related Menu which has the Stop option. Click this option to stop the MongoDB service, as shown in the following screenshot:

[image:]

Figure 19.5: Windows Service Manager – Stop MongoDB Service

	Now, as the MongoDB service will stop, you will see that the running status is blank. Now, you can close the Windows service manager, as shown in the following screenshot:

[image:]

Figure 19.6: Windows Service Manager – MongoDB Service has been stopped

Step 2 – Create the first replica set (our first shard)

Let us create the first replica set for the MongoDB sharded environment. To do this, we need to perform the following steps:

	We need to create few folders to keep the MongoDB instances data and log files. Now, instead of doing it manually one-by-one, we will create these folders with the help of the following commands which will automatically create these folders:
For MongoDB data files:

mkdir "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplica Set1\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3"

For MongoDB log files:

mkdir "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3"

If you look this closely, you will find that our main directory is MongoDB-Sharding under the c: drive on your Windows machine (you may change the name and the directory according to your wish).

Then, under the "ongoDB-Sharding directory, there will be 2 child directories, data, which will keep the MongoDB data files, and log, which will keep the MongoDB log files.

So, till now, the structure will be as follows:

	c:\MongoDB-Sharding\data

	c:\MongoDB-Sharding\log

Then, in both the data and log directories, we will have two common types of directories, BPBOnlineShard1 (which is the name of our first shard), and under this directory there would be another directory, BPBOnlineReplicaSet1 (which is the name of our first replica set).

At last, under the BPBOnlineReplicaSet1 directory, we will have 3 different directories which will cater to each one of the 3 MongoDB instances in the replica set for these directories as follows:

For MongoDB data files (complete path):

	<Main Directory>\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1

	<Main Directory>\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2

	<Main Directory>\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3

For MongoDB log files (complete path):

	<Main Directory>\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1

	<Main Directory>\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2

	<Main Directory>\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3

Here:

	<Main Directory> = c:\MongoDB-Sharding\

	"BPBOnlineDBS1", "BPBOnlineDBS2" and "BPBOnlineDBS3" are the names of the database server directories

If you closely look at the directory structure, it looks perfect to create the first replica set in the sharded environment.

	Let us first create new directories which will be the data directories for our MongoDB instances. To do this, open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3"

[image:]

Figure 19.7: MongoDB Data Folders - Creating new Folders

	After you have created the new directories, you should see them under the c: drive, similar to what is shown in the following screenshot:

[image:]

Figure 19.8: MongoDB Data Folders – New Folders gets created

	Now, let's first create the new directories which would be the log directories for our MongoDB instances. To do this, open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3"

[image:]

Figure 19.9: MongoDB Log Folders - Creating new Folders

	After you have created new directories, you should see them under the c: drive, similar to what is shown in the following screenshot:

[image:]

Figure 19.10: MongoDB Log Folders – New Folders gets created

	Now, we will start our first server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1\mongod.log" --port 37017 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37017" --serviceDisplayName "BPBOnlineSharding MongoDB 37017" --serviceDescription "MongoDB on Port 37017 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS1"

This command needs to run in the command prompt in the administrator mode. Here, the parameters given in the mongod command are described as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "37017"

--replSet= In our case we will be using "BPBOnlineReplicaSet1", which is common for all 3 Member Nodes or Instances in the Replica Set 1 under the MongoDB Sharded Environment 1 "BPBOnlineShard1".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 37017"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 37017"

--serviceDescription= Description of the Windows Service, in our case we will be using"MongoDB on Port 37017 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS1"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.11: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create Windows service for our first server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1\mongod.log" --port 37017 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37017" --serviceDisplayName "BPBOnlineSharding MongoDB 37017" --serviceDescription "MongoDB on Port 37017 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS1"

Once you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.12: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt which is already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 37017"

[image:]

Figure 19.13: Starting the new MongoDB Windows Service

	Now, we will start our second server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2\mongod.log" --port 37018 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37018" --serviceDisplayName "BPBOnlineSharding MongoDB 37018" --serviceDescription "MongoDB on Port 37018 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS2"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are described as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "37018"

--replSet= In our case we will be using "BPBOnlineReplicaSet1", which is common for all 3 Member Nodes or Instances in the Replica Set 1 under the MongoDB Sharded Environment 1 "BPBOnlineShard1".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 37018"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 37018"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 37018 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS2"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.14: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create Windows service for our second server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS2\mongod.log" --port 37018 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37018" --serviceDisplayName "BPBOnlineSharding MongoDB 37018" --serviceDescription "MongoDB on Port 37018 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS2"

After you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.15: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 37018"

[image:]

Figure 19.16: Starting the new MongoDB Windows Service

	Now, we will start our third server with the help of the mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3\mongod.log" --port 37019 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37019" --serviceDisplayName "BPBOnlineSharding MongoDB 37019" --serviceDescription "MongoDB on Port 37019 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS3"

This command needs to run in the command prompt in the administrator mode. Here, the parameters given in the mongod command are described as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "37019"

--replSet= In our case we will be using "BPBOnlineReplicaSet1", which is common for all 3 Member Nodes or Instances in the Replica Set 1 under the MongoDB Sharded Environment 1 "BPBOnlineShard1".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 37019"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 37019"

--serviceDescription= Description of the Windows Service, in our case we will be using"MongoDB on Port 37019 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS3"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.17: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create Windows service for our third server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS3\mongod.log" --port 37019 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37019" --serviceDisplayName "BPBOnlineSharding MongoDB 37019" --serviceDescription "MongoDB on Port 37019 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS3"

After you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.18: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 37019"

[image:]

Figure 19.19: Starting the new MongoDB Windows Service

	Now, as our all the three MongoDB server mongod instances have successfully started, we can open the Windows Service Manager (as explained in the previous step of this chapter, where we have explained the process of opening the Windows service manager using the Windows search box) and then navigate to the service named, BPBOnlineSharding MongoDB<Port Number>. You will see that all the MongoDB instances are created in the background and their status should be Running, as shown in the following screenshot:

[image:]

Figure 19.20: Windows Service Manager – MongoDB Replica Set Instances (Running in Background)

	Now, open the existing command prompt (which is already open in the administrator mode). If you are not already in the bin directory of your MongoDB installation path, first navigate to it, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, and then type the following command:
mongo --port 37017

This command will connect us to the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 19.21: Connected to the MongoDB Shell

	Now, we need to initiate the replication process, and for this, we need to add all the member details with their host and port. In our case, we will create a variable named BPBOnlineReplicaSet1Config with the _id same as our replica set, which is BPBOnlineReplicaSet1, and the member details have the _id 0, 1, and 2 (for the first, second, and third members in the replica set), and their host and port values, which are localhost:37017, localhost:37018, and localhost:37019 (for the first, second, and third members in the replica set). In our case, it is as follows.
BPBOnlineReplicaSet1Config = {

_id: "BPBOnlineReplicaSet1",

members: [{

_id: 0,

host: "localhost:37017"

},

{

_id: 1,

host: "localhost:37018"

},

{

_id: 2,

host: "localhost:37019"

}

]

};

Enter the preceding code in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.22: MongoDB Shell – Replication Config Variable

	Now, we can use the variable BPBOnlineReplicaSet1Config during the initialization command for the replica set creation. Type the following command to initiate the replication process:
rs.initiate(BPBOnlineReplicaSet1Config)

Enter the preceding command in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.23: Initializing the Replication with "rs.initiate()" Command in MongoDB Shell

	If you see carefully in our MongoDB Shell, you will find that your MongoDB prompt has changed to BPBOnlineReplicaSet1:SECONDARY>.
Usually, it takes some time to decide for the primary and it can be any member chosen to be the primary member of the replica set. But usually, the first member in the configuration file becomes the Primary Member. This process can take a few seconds. So, if you just press the Enter key without typing anything, this could change the prompt to BPBOnlineReplicaSet1:PRIMARY> and you can get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.24: Changing the MongoDB Shell from SECONDARY to PRIMARY with an Enter key

	We can verify the status of our replica set using the following command:
rs.status()

Just enter the preceding command in your MongoDB Shell of the primary instance and you will get the result similar to the following screenshot. You will get the information about the replica set members and their status, which is O", in our case, as shown in the following screenshot:

[image:]

Figure 19.25: "rs.status()" – Checking the status of the Replica Set

So, we have successfully created our first shard with the replica set of three members. Now, let us repeat this entire process to create the other two shards having the replica set of three members each.

Step 3 – Create the second replica set (our second shard)

Let us create the second replica set for the MongoDB sharded environment. To do this, we need to perform the following steps:

	We need to create few folders to keep the MongoDB instances data and log files. Now, instead of doing it manually one-by-one, we will create these folders with the help of few commands which will automatically create these folders:
For MongoDB data files:

mkdir "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3"

For MongoDB log files:

mkdir "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3"

If you look this closely, you will find that here, our main directory is MongoDB-Sharding under the c: drive of your Windows machine (you may change the name and directory according to your wish).

Then, under the MongoDB-Sharding directory, there would be 2 child directories, data, which will keep the MongoDB data files, and log, which will keep the MongoDB log files.

So, till now, the structure will be as follows:

	c:\MongoDB-Sharding\data

	c:\MongoDB-Sharding\log

In both the data and log directories we will have two common types of directories, which would be BPBOnlineShard2 (which is the name of our second shard), and under this directory there would be another directory, BPBOnlineReplicaSet2 (which is the name of our second replica set). At last, under the BPBOnlineReplicaSet2 directory, we will have 3 different directories which will cater to each one of the 3 MongoDB instances in the replica set in these directories as follows:

For MongoDB data files (complete path):

	<Main Directory>\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1

	<Main Directory>\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2

	<Main Directory>\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3

For MongoDB log files (complete path):

	<Main Directory>\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1

	<Main Directory>\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2

	<Main Directory>\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3

Here:

	<Main Directory> = c:\MongoDB-Sharding\

	"BPBOnlineDBS1", "BPBOnlineDBS2" and "BPBOnlineDBS3" are the names of the Database Server Directories

If you closely look at the directory structure, it looks perfect to create a second replica set in the sharded environment.

	Let us first create the new directories which will be the data directory for our MongoDB instances. To do this, first open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3"

[image:]

Figure 19.26: MongoDB Data Folders - Creating new Folders

	After you have created new directories, you should see them under the "c:" drive, similar to the screenshot, as shown in the following screenshot:

[image:]

Figure 19.27: MongoDB Data Folders – New Folders gets created

	Now, let us first create the new directories which would be the log directories for our MongoDB instances. To do this, first open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3"

[image:]

Figure 19.28: MongoDB Log Folders - Creating new Folders

	After you created new directories, you should see them under the c: drive, similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.29: MongoDB Log Folders – New Folders gets created

	Now, we will start our first server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet2 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS1\mongod.log" --port 47017 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 47017" --serviceDisplayName "BPBOnlineSharding MongoDB 47017" --serviceDescription "MongoDB on Port 47017 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS1"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "47017"

--replSet= In our case we will be using "BPBOnlineReplicaSet2", which is common for all 3 Member Nodes or Instances in the Replica Set 2 under the MongoDB Sharded Environment 2 "BPBOnlineShard2".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 47017"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 47017"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 47017 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS1"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.30: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now type the following command with all the parameters that we will create Windows service for our first server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet1 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard1\BPBOnlineReplicaSet1\BPBOnlineDBS1\mongod.log" --port 37017 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 37017" --serviceDisplayName "BPBOnlineSharding MongoDB 37017" --serviceDescription "MongoDB on Port 37017 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS1"

Once you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.31: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt which is already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 47017"

[image:]

Figure 19.32: Starting the new MongoDB Windows Service

	Now, we will start our second server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet2 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2\mongod.log" --port 47018 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 47018" --serviceDisplayName "BPBOnlineSharding MongoDB 47018" --serviceDescription "MongoDB on Port 47018 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS2"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "47018"

--replSet= In our case we will be using "BPBOnlineReplicaSet2", which is common for all 3 Member Nodes or Instances in the Replica Set 2 under the MongoDB Sharded Environment 2 "BPBOnlineShard2".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 47018"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 47018"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 47018 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS2"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.33: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create Windows service for our second server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet2 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS2\mongod.log" --port 47018 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 47018" --serviceDisplayName "BPBOnlineSharding MongoDB 47018" --serviceDescription "MongoDB on Port 47018 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS2"

Once you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.34: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt which is already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 47018"

[image:]

Figure 19.35: Starting the new MongoDB Windows Service

	Now, we will start our third server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet2 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3\mongod.log" --port 47019 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 47019" --serviceDisplayName "BPBOnlineSharding MongoDB 47019" --serviceDescription "MongoDB on Port 47019 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS3"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "47019"

--replSet= In our case we will be using "BPBOnlineReplicaSet2", which is common for all 3 Member Nodes or Instances in the Replica Set 2 under the MongoDB Sharded Environment 2 "BPBOnlineShard2".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 47019"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 47019"

--serviceDescription= Description of the Windows Service, in our case we will be using"MongoDB on Port 47019 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS3"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.36: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create a Windows service for our third server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet2 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard2\BPBOnlineReplicaSet2\BPBOnlineDBS3\mongod.log" --port 47019 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 47019" --serviceDisplayName "BPBOnlineSharding MongoDB 47019" --serviceDescription "MongoDB on Port 47019 BPBOnlineShard2-BPBOnlineReplicaSet2-BPBOnlineDBS3"

Once you enter this command, you will get a response something similar to the screenshot, as shown in the following screenshot:

[image:]

Figure 19.37: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 47019"

[image:]

Figure 19.38: Starting the new MongoDB Windows Service

	Now, as all our three MongoDB server mongod instances have successfully started, we can open the Windows Service Manager (as explained in the previous step of this chapter where we have explained the process of opening the Windows service manager using the Windows search box), and then navigate to the services named BPBOnlineSharding MongoDB<Port Number>. You will see that all the MongoDB instances are created in background and their status should be Running, as shown in the following screenshot:

[image:]

Figure 19.39: Windows Service Manager – MongoDB Replica Set Instances (Running in Background)

	Now, open the existing command prompt (which is already open in the administrator mode). If you are not already in the bin directory of your MongoDB installation path, first navigate to it, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case and then type the following command:
mongo --port 47017

This command will connect us to the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 19.40: Connected to the MongoDB Shell

	Now, we need to initiate the replication process. For this, we need to add all the member details with their host and port. In our case, we will create a variable named BPBOnlineReplicaSet2Config with the _id same as our replica set, which is BPBOnlineReplicaSet2, and the member details have the _id 0, 1, and 2 (for the first, second, and third members in the replica set) and their host and port values which are localhost:47017, localhost:47018, and localhost:47019 (for the first, second, and third members in the replica set). In our case, it is as follows:
BPBOnlineReplicaSet2Config = {

_id: "BPBOnlineReplicaSet2",

members: [{

_id: 0,

host: "localhost:47017"

},

{

_id: 1,

host: "localhost:47018"

},

{

_id: 2,

host: "localhost:47019"

}

]

};

Enter the preceding code in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.41: MongoDB Shell – Replication Config Variable

	Now, we can use the variable BPBOnlineReplicaSet2Config during the initialization command for the replica set creation. Type the following command to initiate the replication process:
rs.initiate(BPBOnlineReplicaSet2Config)

Enter the preceding command in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.42: Initializing the Replication with "rs.initiate()" Command in MongoDB Shell

	If you see carefully in our MongoDB Shell, you will find that your MongoDB prompt has changed to BPBOnlineReplicaSet2:SECONDARY>.
Usually, it takes some time to decide for the primary and it could be any member chosen to be the primary member of the replica set. But usually, the first member in the configuration file becomes the Primary Member. This process can take a few seconds. So, if you just press the Enter key without typing anything, this could change the prompt to BPBOnlineReplicaSet2:PRIMARY> and you can get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.43: Changing the MongoDB Shell from SECONDARY to PRIMARY with an Enter key

	We can verify the status of our replica set using the following command:
rs.status()

Just enter the preceding command in your MongoDB Shell of the primary instance and you will get the result similar to the following screenshot. You will get the information about the replica set members and their status, which is OK, in our case, as shown in the following screenshot:

[image:]

Figure 19.44: "rs.status()" – Checking the status of the Replica Set

So, we have successfully created our second shard with the replica set of three members. Now, let us repeat this entire process to create the third shard having the replica set of three members.

Step 4 – Create the third replica set (our third shard)

Let us create the third replica set for the MongoDB sharded environment. To do this, we need to perform the following steps:

	We need to create few folders which will keep the MongoDB instances data and log files. Now, instead of doing it manually one-by-one, we will create these folders with the help of few commands which will automatically create these folders:
For MongoDB data files:

mkdir "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3"

For MongoDB log files:

mkdir "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3"

If you look this closely, you can find that here our main directory is MongoDB-Sharding under the c: drive of your Windows machine (you may change the name and directory according to your wish).

Then, under the MongoDB-Sharding directory, there would be 2 child directories, data, which will keep the MongoDB data files, and log which will keep the MongoDB log files. So, till now, the structure will be as follows:

	c:\MongoDB-Sharding\data

	c:\MongoDB-Sharding\log

Then, in both the data and log directories, we will have two common types of directories which would be, BPBOnlineShard3 (which is the name of our third shard), and under this directory, there would be another directory, BPBOnlineReplicaSet1 (which is the name of our third replica set).

At last, under the BPBOnlineReplicaSet3 directory, we will have 3 different directories which will cater to each one of the 3 MongoDB instances in the replica set in these directories as follows:

For MongoDB data files (complete path):

	<Main Directory>\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1

	<Main Directory>\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2

	<Main Directory>\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3

For MongoDB log files (complete path):

	<Main Directory>\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1

	<Main Directory>\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2

	<Main Directory>\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3

Here:

	<Main Directory> = c:\MongoDB-Sharding\

	"BPBOnlineDBS1", "BPBOnlineDBS2" and "BPBOnlineDBS3" are the names of the Database Server Directories

If you closely look at the directory structure, it looks perfect to create a third replica set in the sharded environment.

	Let us first create the new directories which will be the data directory for our MongoDB instances. To do this, first open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplica Set3\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3"

[image:]

Figure 19.45: MongoDB Data Folders - Creating new Folders

	After you have created new directories, you should see them under the c: drive, similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.46: MongoDB Data Folders – New Folders gets created

	Now, let us first create the new directories which would be the log directories for our MongoDB instances. To do this, first open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplica Set3\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3"

[image:]

Figure 19.47: MongoDB Log Folders - Creating new Folders

	After you have created new directories, you should see them under the c: drive, similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.48: MongoDB Log Folders – New Folders gets created

	Now, we will start our first server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet3 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1\mongod.log" --port 57017 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 57017" --serviceDisplayName "BPBOnlineSharding MongoDB 57017" --serviceDescription "MongoDB on Port 57017 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS1"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "57017"

--replSet= In our case we will be using "BPBOnlineReplicaSet3", which is common for all 3 Member Nodes or Instances in the Replica Set 3 under the MongoDB Sharded Environment 3 "BPBOnlineShard3".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 57017"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 57017"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 57017 BPBOnlineShard1-BPBOnlineReplicaSet1-BPBOnlineDBS1"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.49: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create a Windows service for our first server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet3 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS1\mongod.log" --port 57017 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 57017" --serviceDisplayName "BPBOnlineSharding MongoDB 57017" --serviceDescription "MongoDB on Port 57017 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS1"

Once you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.50: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 57017"

[image:]

Figure 19.51: Starting the new MongoDB Windows Service

	Now, we will start our second server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet3 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2\mongod.log" --port 57018 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 57018" --serviceDisplayName "BPBOnlineSharding MongoDB 57018" --serviceDescription "MongoDB on Port 57018 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS2"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "57018"

--replSet= In our case we will be using "BPBOnlineReplicaSet3", which is common for all 3 Member Nodes or Instances in the Replica Set 3 under the MongoDB Sharded Environment 3 "BPBOnlineShard3".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 57018"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 57018"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 57018 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS2"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.52: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create a Windows service for our second server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet3 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS2\mongod.log" --port 57018 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 57018" --serviceDisplayName "BPBOnlineSharding MongoDB 57018" --serviceDescription "MongoDB on Port 57018 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS2"

After you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.53: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 57018"

[image:]

Figure 19.54: Starting the new MongoDB Windows Service

	Now, we will start our third server with the help of mongod command by giving few parameters as follows (note that here, we will run this as a Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineReplicaSet3 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3\mongod.log" --port 57019 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 57019" --serviceDisplayName "BPBOnlineSharding MongoDB 57019" --serviceDescription "MongoDB on Port 57019 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS3"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "57019"

--replSet= In our case we will be using "BPBOnlineReplicaSet3", which is common for all 3 Member Nodes or Instances in the Replica Set 3 under the MongoDB Sharded Environment 3 "BPBOnlineShard3".

--shardsvr = MongoDB Option for Sharding (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 57019"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 57019"

--serviceDescription= Description of the Windows Service, in our case we will be using"MongoDB on Port 57019 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS3"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.55: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create Windows service for our third server in the replica set as follows:
mongod --replSet BPBOnlineReplicaSet3 --dbpath "c:\MongoDB-Sharding\data\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineShard3\BPBOnlineReplicaSet3\BPBOnlineDBS3\mongod.log" --port 57019 --shardsvr --install --serviceName "BPBOnlineSharding MongoDB 57019" --serviceDisplayName "BPBOnlineSharding MongoDB 57019" --serviceDescription "MongoDB on Port 57019 BPBOnlineShard3-BPBOnlineReplicaSet3-BPBOnlineDBS3"

Once you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.56: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 57019"

[image:]

Figure 19.57: Starting the new MongoDB Windows Service

	Now, as all our three MongoDB server mongod instances have successfully started, we can open the "Windows Service Manager"(as explained in the previous step of this chapter where we have explained the process of opening the Windows service manager using the Windows search box), and then navigate to the service named BPBOnlineSharding MongoDB<Port Number>. You will see that all the MongoDB instances are created in the background and their status should be Running, as shown in the following screenshot:

[image:]

Figure 19.58: Windows Service Manager – MongoDB Replica Set Instances (Running in Background)

	Now, open the existing command prompt (which is already open in the administrator mode). If you are not already in the bin directory of your MongoDB installation path, first navigate to it, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case and then type the following command:
mongo --port 57017

This command will connect us to the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 19.59: Connected to the MongoDB Shell

	Now, we need to initiate the replication process. For this, we need to add all the member details with their host and port. In our case, we will create a variable named BPBOnlineReplicaSet3Config with the _id same as our replica set, which is BPBOnlineReplicaSet3, and the member details have the _id 0, 1, and 2 (for the first, second, and third members in the replica set), and their host and port values which are localhost:57017, localhost:57018, and localhost:57019 (for the first, second, and third members in the replica set). In our case, it is as follows:
BPBOnlineReplicaSet3Config = {

_id: "BPBOnlineReplicaSet3",

members: [{

_id: 0,

host: "localhost:57017"

},

{

_id: 1,

host: "localhost:57018"

},

{

_id: 2,

host: "localhost:57019"

}

]

};

Enter the preceding code in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.60: MongoDB Shell – Replication Config Variable

	Now, we can use the variable BPBOnlineReplicaSet3Config during the initialization command for the replica set creation. Type the following command to initiate the replication process:
rs.initiate(BPBOnlineReplicaSet3Config)

Enter the preceding command in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.61: Initializing the Replication with "rs.initiate()" Command in MongoDB Shell

	If you see carefully in our MongoDB Shell, you will find that your MongoDB prompt has changed to BPBOnlineReplicaSet3:SECONDARY>.
Usually, it takes some time to decide for the primary and it could be any member which is chosen to be the primary member of the replica set. But usually, the first member in the configuration file becomes the Primary Member. This process can take a few seconds. So, if you just press the Enter key without typing anything, this could change the prompt to BPBOnlineReplicaSet3:PRIMARY> and you can get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.62: Changing the MongoDB Shell from SECONDARY to PRIMARY with an Enter key

	We can verify the status of our replica set using the following command:
rs.status()

Just enter the preceding command in your MongoDB Shell of the primary instance and you will get the result similar to the following screenshot. You will get the information about the replica set members and their status, which is OK, in our case, as shown in the following screenshot:

[image:]

Figure 19.63: "rs.status()" – Checking the status of the Replica Set

So, we have successfully created the third shard with the replica set of three members. Now, let us setup our replica set of the config servers with the three members.

Step 5 – Create the replica set of config servers in the sharded environment

Let us create the replica set for the config servers in the MongoDB sharded environment. To do this, we need to perform the following steps:

	We need to create few folders to keep the MongoDB instances data and log files. Now, instead of doing it manually one-by-one, we will create these folders with the help of a few commands which will automatically create these folders:
For MongoDB data files:

mkdir "c:\MongoDB-Sharding\data\ BPBOnlineConfigServer\BPBOn lineDBS1" "c:\MongoDB-Sharding \data\BPBOnline ConfigServer\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS3"

For MongoDB log files:

mkdir "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS3"

If you look this closely, you can find that here our main directory would be MongoDB-Sharding under the c: drive of our Windows machine (you may change the name and directory according to your wish).

Then, under the MongoDB-Sharding directory, there would be 2 child directories, data, which will keep the MongoDB data files, and log, which will keep the MongoDB log files.

So, till now, the structure will be as follows:

	c:\MongoDB-Sharding\data

	c:\MongoDB-Sharding\log

Then, in both the data and log directories, we will have one common type of directory which would be BPBOnlineConfigServer (which is the name of our config server).

At last, under the BPBOnlineConfigServer directory, we will have 3 different directories which will cater to each one of the 3 MongoDB instances in the replica set in these directories as follows:

For MongoDB data files (complete path):

	<Main Directory>\data\BPBOnlineConfigServer\BPBOnlineDBS1

	<Main Directory>\data\BPBOnlineConfigServer\BPBOnlineDBS2

	<Main Directory>\data\BPBOnlineConfigServer\BPBOnlineDBS3

For MongoDB log files (complete path):

	<Main Directory>\log\BPBOnlineConfigServer\BPBOnlineDBS1

	<Main Directory\log\BPBOnlineConfigServer\BPBOnlineDBS2

	<Main Directory>\log\BPBOnlineConfigServer\BPBOnlineDBS3

Here:

	<Main Directory> = c:\MongoDB-Sharding\

	"BPBOnlineDBS1", "BPBOnlineDBS2" and "BPBOnlineDBS3" are the names of the Database Server Directories

If you closely look at the directory structure, it looks perfect to create a config replica set in the sharded environment.

	Let us first create the new directories which will be the data directories for our MongoDB config instances. to do this, first open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS1" "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS2" "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS3"

[image:]

Figure 19.64: MongoDB Data Folders - Creating new Folders

	After you have created new directories, you should see them under the c: drive, similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.65: MongoDB Data Folders – New Folders gets created

	Now, let us first create the new directories which would be the log directories for our MongoDB config instances. To do this, first open the Windows command prompt in the administrator mode and then enter the following command, as shown in the following screenshot:
mkdir "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS1" "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS2" "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS3"

[image:]

Figure 19.66: MongoDB Log Folders - Creating new Folders

	After you have created the new directories, you should see them under the c: drive, similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.67: MongoDB Log Folders – New Folders gets created

	Now, we will start our first config server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod –replSet BPBOnlineConfReplicaSet --dbpath "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS1\config.log" --port 27040 --configsvr --install --serviceName "BPBOnlineSharding MongoDB 27040" --serviceDisplayName "BPBOnlineSharding MongoDB 27040" --serviceDescription "MongoDB on Port 27040 BPBOnlineConfigServer-BPBOnlineDBS1"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "27040"

--replSet= Replica Set ID for our Instances which is "BPBOnlineConfReplicaSet" in our case

--configsvr= MongoDB Option for Config Server (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 27040"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 27040"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 27040 BPBOnlineConfigServer-BPBOnlineDBS1"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.68: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create Windows service for our first server in the replica set as follows:
mongod –replSet BPBOnlineConfReplicaSet --dbpath "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS1" --logpath "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS1\config.log" --port 27040 --configsvr --install --serviceName "BPBOnlineSharding MongoDB 27040" --serviceDisplayName "BPBOnlineSharding MongoDB 27040" --serviceDescription "MongoDB on Port 27040 BPBOnlineConfigServer-BPBOnlineDBS1"

After you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.69: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 27040"

[image:]

Figure 19.70: Starting the new MongoDB Windows Service

	Now, we will start our second config server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineConfReplicaSet --dbpath "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS2\config.log" --port 27041 --configsvr --install --serviceName "BPBOnlineSharding MongoDB 27041" --serviceDisplayName "BPBOnlineSharding MongoDB 27041" --serviceDescription "MongoDB on Port 27041 BPBOnlineConfigServer-BPBOnlineDBS2"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "27041"

--replSet= Replica Set ID for our Config Servers, which is "BPBOnlineConfReplicaSet" in our case.

--configsvr= MongoDB Option for Config Server (Sharded Environment)

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 27041"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 27041"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 27041 BPBOnlineConfigServer-BPBOnlineDBS2"

	Now, open the Command Prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.71: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create a Windows service for our second server in the replica set as follows:
mongod --replSet BPBOnlineConfReplicaSet --dbpath "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS2" --logpath "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS2\config.log" --port 27041 --configsvr --install --serviceName "BPBOnlineSharding MongoDB 27041" --serviceDisplayName "BPBOnlineSharding MongoDB 27041" --serviceDescription "MongoDB on Port 27041 BPBOnlineConfigServer-BPBOnlineDBS2"

After you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.72: Adding the new MongoDB Windows Service - "mongod" with Replication parameter

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 27041"

[image:]

Figure 19.73: Connected to the MongoDB Shell

	Now, we will start our third config server with the help of mongod command by giving few parameters as follows (note that here, we will run this as Windows service as explained in the previous section of this chapter):
mongod --replSet BPBOnlineConfReplicaSet --dbpath "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS3\config.log" --port 27042 --configsvr --install --serviceName "BPBOnlineSharding MongoDB 27042" --serviceDisplayName "BPBOnlineSharding MongoDB 27042" --serviceDescription "MongoDB on Port 27042 BPBOnlineConfigServer-BPBOnlineDBS3"

This command needs to run in the command prompt open in the administrator mode. Here, the parameters given in the mongod command are as follows:

--dbpath= Path of our DB Directory Location

--logpath= Path of our DB Log File Location

--port = Port Number for MongoDB Instance, in our case we will use "27042"

--configsvr= MongoDB Option for Config Server (Sharded Environment)

--replSet= Replica Set ID for our Config Servers, which is "BPBOnlineConfReplicaSet" in our case.

--install = To Install the MongoDB as Service

--serviceName= Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 27042"

--serviceDisplayName= Display Name of the Windows Service, in our case we will be using "BPBOnlineSharding MongoDB 27042"

--serviceDescription= Description of the Windows Service, in our case we will be using "MongoDB on Port 27042 BPBOnlineConfigServer-BPBOnlineDBS3"

	Now, open the command prompt in the administrator mode and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, as shown in the following screenshot:

[image:]

Figure 19.74: Opening Command Prompt with Administrator Mode and navigating to MongoDB "bin" directory

	Now, type the following command with all the parameters that we will create a Windows service for our third server in the replica set as follows:
mongod --replSet BPBOnlineConfReplicaSet --dbpath "c:\MongoDB-Sharding\data\BPBOnlineConfigServer\BPBOnlineDBS3" --logpath "c:\MongoDB-Sharding\log\BPBOnlineConfigServer\BPBOnlineDBS3\config.log" --port 27042 --configsvr --install --serviceName "BPBOnlineSharding MongoDB 27042" --serviceDisplayName "BPBOnlineSharding MongoDB 27042" --serviceDescription "MongoDB on Port 27042 BPBOnlineConfigServer-BPBOnlineDBS3"

After you enter this command, you will get a response something similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.75: Adding the new MongoDB Windows Service - "mongod" with Replication parameters

	Now, type the following command to start this Windows service from your command prompt already open in the administrative mode, as shown in the following screenshot:
net start "<Name of the Windows Service>"

In our case, it is as follows:

net start "BPBOnlineSharding MongoDB 27042"

[image:]

Figure 19.76: Starting the new MongoDB Windows Service

	Now, as our all three MongoDB server mongod instances have successfully started, we can open the Windows Service Manager (as explained in the previous step of this chapter where we have explained the process of opening the Windows service manager using the Windows search box), and then navigate to the service named BPBOnlineSharding MongoDB<Port Number>. You will see that all the MongoDB instances are created in the background and their status should be Running, as shown in the following screenshot:

[image:]

Figure 19.77: Windows Service Manager – MongoDB Replica Set Instances (Running in Background)

	Now, open the existing command prompt (which is already open in the administrator mode). If you are not already in the bin directory of your MongoDB installation path, first navigate to it, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, and then type the following command:
mongo --port 27040

This command will connect us to the MongoDB Shell, as shown in the following screenshot:

[image:]

Figure 19.78: Connected to the MongoDB Shell

	Now, we need to initiate the replication process and for this we need to add our all the member details with their host and port. In our case, we will create a variable named BPBOnlineConfReplicaSetConfig with the _id same as our replica set, which is BPBOnlineConfReplicaSet and the member details have the _id 0, 1, and 2 (for the first, second, and third members in the replica set) and their host and port values which are localhost:27040, localhost:27041, and localhost:27042 (for the first, second, and third members in the replica set). In our case, it is as follows:
BPBOnlineConfReplicaSetConfig = {

_id: "BPBOnlineConfReplicaSet",

members: [{

_id: 0,

host: "localhost:27040"

},

{

_id: 1,

host: "localhost:27041"

},

{

_id: 2,

host: "localhost:27042"

}

]

};

Enter the preceding code in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.79: MongoDB Shell – Replication Config Variable

	Now, we can use the variable BPBOnlineConfReplicaSetConfig during the initialization command for the replica set creation. Type the following command to initiate the replication process:
s.initiate(BPBOnlineConfReplicaSetConfig)

Enter the preceding command in the MongoDB Shell and you will get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.80: Initializing the Replication with "rs.initiate()" Command in MongoDB Shell

	If you see carefully in your MongoDB Shell, you will find that your MongoDB prompt has changed to BPBOnlineConfReplicaSet:SECONDARY>.
Usually, it takes some time to decide for the primary and it could be any member chosen to be the primary member of the replica set. But usually, the first member in the configuration file becomes the Primary Member. This process can take a few seconds. So, if you just press the Enter key without typing anything, this could change the prompt to BPBOnlineConfReplicaSet:PRIMARY> and you can get the result similar to the screenshot shown in the following screenshot:

[image:]

Figure 19.81: Changing the MongoDB Shell from SECONDARY to PRIMARY with an Enter key

	We can verify the status of our replica set using the following command:
rs.status()

Just enter the preceding command in your MongoDB Shell of the primary instance and you will get the result similar to the following screenshot. You will get the information about the replica set members and their status, which is OK, in our case, as shown in the following screenshot:

[image:]

Figure 19.82: "rs.status()" – Checking the status of the Replica Set

So, we have successfully created the config servers with the replica set of three members. Now, let us start our MongoDB in the sharded environment as mongos.

Step 6 - Starting MongoDB in the sharded environment as "mongos"

To start MongoDB in the sharded environment, we need to follow these steps:

	Open the existing command prompt (which is already open in the administrator mode). If you are not already in the bin directory of your MongoDB installation path, first navigate to it, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, and then type the following command:
mongos --logpath "c:\MongoDB-Sharding\mongos.log" --configdb BPBOnlineConfReplicaSet/localhost:27040,localhost:27041,localhost:27042 --port 27043

Note that in –configdb, you must specify the replica set ID for your config servers.

This will start MongoDB in the sharded environment mongos on the port 27043 and will take few seconds to start, as shown in the following screenshot:

[image:]

Figure 19.83: Starting MongoDB in Sharded Environment "mongos"

	Now, open the new command prompt (in the administrator mode) and navigate to the bin directory of your MongoDB installation path, which is C:\Program Files\MongoDB\Server\4.4\bin, in our case, and then type the following command:
mongo --port 27043

The preceding command will start the MongoDB Shell and you can now see that the Shell prompt will come as mongos, as shown in the following screenshot:

[image:]

Figure 19.84: Connected to the MongoDB Shell "mongos"

Step 7 – Adding MongoDB in the shard keys

As in the preceding step, you have logged into the MongoDB Shell (sharding) mongos (MongoDB sharded environment running at mongo --port 27043), keep that open and you need to follow these instructions mentioned:

	In this MongoDB Shell mongos, we need to add shards which are the primary members of our replica sets that we have created. To do this, type the following commands:
db.adminCommand({addshard : "BPBOnlineReplicaSet1/"+"localhost:37017"});

db.adminCommand({addshard : "BPBOnlineReplicaSet2/"+"localhost:47017"});

db.adminCommand({addshard : "BPBOnlineReplicaSet3/"+"localhost:57017"});

Here, the db.adminCommand() method takes the parameter with the addshard key and the value is the string with the Name Space of the replica set ID that we have created earlier. Then it is concatenated with the host and the IP address of the primary member of the replica set. We can also write the preceding command without concatenation as follows:

db.adminCommand({addshard : "BPBOnlineReplicaSet1/localhost:37017"});

The preceding command will add the primary members of each of the replica sets that we have created earlier in the sharded environment. Once each replica set is added, you will see the success message with OK status, as shown in the following screenshot:

[image:]

Figure 19.85: Adding Shards

Once all the primary members of each of the replica sets that we have created earlier have been successfully added into the sharded environment, you will receive OK status, as shown in the following screenshot:

[image:]

Figure 19.86: Adding Shards

	Now, we need to enable sharding for our database which we would like to use in the sharded environment. We can do this by using the following command:
db.adminCommand({enableSharding: "BPBOnlineShardedDB"})

Here, the db.adminCommand() method takes the parameter with the enableSharding key and the value is the string which is the database name that we would like to use for sharding. The preceding command will enable sharding to the MongoDB database mentioned in the preceding command and you will see the status as OK once this command gets successfully completed, as shown in the following screenshot:

[image:]

Figure 19.87: Enabling Sharding on Database

	Now, we will add the sharded collection and specify the shard key. We can do this by using the following command:
db.adminCommand({shardCollection: "BPBOnlineShardedDB.BPBOnlineShardedCollection", key: {_id:1}})

Here, the db.adminCommand() method takes the first parameter with the shardCollection key and the value is the string which is a combination of the database and collection name <DatabaseName.CollectionName> we would like to use for sharding.

The second parameter of this command is the key which is the Sharded Key and we can specify the value of our sharded key in this parameter.

The preceding command will enable the shard key to the MongoDB collection mentioned in the preceding command and you will see the status as OK once this command gets successfully completed, as shown in the following screenshot:

[image:]

Figure 19.88: Adding Shard Collection with Shard Key

Step 8 - Verifying the MongoDB sharding using data

For the verification process, we need to follow these steps:

Go to the MongoDB Shell of the sharded environment where mongos is running (MongoDB sharded environment running at mongo --port 27043) and create a new database and collection and insert some documents. We will run the following command on the MongoDB Shell of the sharded environment where "mongos" is running, as shown in the following screenshot:

use BPBOnlineShardedDB

db.BPBOnlineShardedCollection.insert([{

"booktitle": ".Net Interview Questions - 7th Revised Edition"

}, {

"booktitle": "101 Challenges In C Programming"

}, {

"booktitle": "101 Challenges In C++ Programming"

}, {

"booktitle": "21 Internet Of Things (IOT) Experiments"

}, {

"booktitle": "3D Game Weapons (Modeling UV Mapping & Texturing)"

}, {

"booktitle": "3D Printing Made Simple"

}, {

"booktitle": "A Practical Approach for Machine Learning and Deep Learning Algorithms"

}, {

"booktitle": "ARTIFICIAL INTELLIGENCE"

}]);

[image:]

Figure 19.89: Running few Database commands on the MongoDB Shell of the Sharded Environment where "mongos" is running

	Now, run the following command to view the inserted documents, as shown in the following screenshot:
db.BPBOnlineShardedCollection.find().pretty()

[image:]

Figure 19.90: Viewing the Inserted Documents

	In the same MongoDB Shell, type the following command to verify if the sharding has taken place and its status around the shards:
db.printShardingStatus(true)

After you run the preceding commands, you will see the result similar to the screenshot, as shown in the following screenshot:

[image:]

Figure 19.91: Printing the Sharding Status

Note that here, true in the parameter value of the command is used to print all the output and you can see that it can print large output related to the sharding, as shown in the following screenshot:

[image:]

Figure 19.92: Printing the Sharding Status – with "true" value of the parameter

	We can also run another command to verify if everything is working fine at the collection level in the sharded environment of MongoDB, as shown in the following screenshot:
db.BPBOnlineShardedCollection.getShardDistribution()

[image:]

Figure 19.93: View the Shard Distribution of the Collection's Documents

So, we can see that right now all the eight documents get stored in the replica set BPBOnlineReplicaSet2. Once we have more records, other replica sets will get distributed in the documents around all the three replica sets of the sharded environment. We can go to the primary server of our replica set 2, BPBOnlineReplicaSet2, which runs on port 47017 and run the following commands. We can see all the 8 records entered by us will be displayed as this replica set contains these 8 records. First, login to your primary instance of the replica set 2 BPBOnlineReplicaSet2 and then give the following commands in the MongoDB Shell of the primary server, as shown in the following screenshot:

To login to the MongoDB Shell of the primary server of the replica set 2 BPBOnlineReplicaSet2, type the following command:

mongo --port 47017

After you login successfully to the MongoDB Shell, type the following commands:

use BPBOnlineShardedDB

db.BPBOnlineShardedCollection.find().pretty()

[image:]

Figure 19.94: View the Documents in the Primary Instance of the Replica Set

Once your documents in the collection keep on adding in the MongoDB sharded environment, they will keep on distributing to the other replica sets too, and this is decided by mongos.

So, we are finished with the step-by-step implementation of MongoDB sharding and we learned the concept of MongoDB sharding in a practical manner.

	We have showed the sharding and created the replica sets on the same machine only to make you understand sharding in a practical manner so that it becomes easier for you to do it practically on your machine.

	It is very important to note that in the real environment, it is done on separate servers and each replica member is created on separate server instance.

	Live and production environments have separate servers for every instance in the replica sets and instead of using the localhost, we use the IP Address of the instances.

Conclusion

So, in this chapter, we covered the sharding part of MongoDB. We also learned about the sharding and shaded clusters in a quick recap. We also learned the importance of the config database in the sharded environment and also learned about the shard keys. Later in this chapter, we covered the pre-configuration steps before covering the practical step-by-step method to create the sharded environment with MongoDB replica sets. We then learned how to setup the MongoDB sharded environment. We learned the complete step-by-step process of sharding in an easy-to-understand 8 steps.

Questions

	What do you understand by sharding?

	What are sharded clusters?

	What do you understand by config servers and how do they play an important role in sharding?

	What is a shard key?

	Explain the process of creating the sharded environment on a Windows machine?

	Explain the process to start the mongos?

	Name the command by which we can add the shards into our MongoDB sharded environment.

	Name the command to add the sharded collection with a shard key in the MongoDB sharded environment.

	Explain the process to verify the shaded environment that you have created with the step-by-step method explained in this chapter.

Index

Symbols

32-bit MongoDB processes 4

$all array selector

about 219

using 220

$and logical selector

about 215

using 216

$avg aggregation expression type

about 245

using 246

$elemMatch projection operator

about 233

using 233

$exists element selector

about 218

using 218

$gt comparison selector

about 212

using 212

$in comparison selector

about 214

using 214

$last aggregation expression type

about 249

using 249

$lte comparison selector

about 213

using 213

$max aggregation expression type

about 246

using 247

$not logical selector

about 216

using 217

$ projection operator

about 232

using 232

$push aggregation expression type

about 247

using 248

$regex evaluation selector

about 220

using 221

$set operator 151

$sum aggregation expression type

about 243

using 243

with operation in group output 244

with some other field 244, 245

$unset operator 151

$where operator, in MongoDB 104

_id field

about 147

used, for creating new document 147, 148

A

administration commands and methods, MongoDB

collection command, creating 91, 92

database command, creating 90, 91

drop collection command 93, 94

drop database command 92, 93

aggregation method

examples 237, 242

syntax 236

aggregation pipeline 260

API (Application Programming Interface) 84

array data types

about 124

example 124, 125

array selectors

$all array selector 219

about 204

examples 219

list 204

atomicity 168

atomicity, in MongoDB

about 168

for multiple document transactions 168

B

backup and restore, with MongoDB

about 318

backup, performing with mongodump 318-320

database, restoring with mongorestore 320-322

basic command helpers, MongoDB Shell

collection related help commands 79

DB related help command 78

General Help Command 77

Show collections command 79

Show databases command 78

use <DB> Command 78

basic concepts, MongoDB

collections 12

document database 12

support for multiple storage engines 12

support for rich query language 12

basic terminology, MongoDB

comparing, with SQL databases 13

MongoDB collection 13

MongoDB database 13

MongoDB document 13

binary data types

about 127

example 127

bitwise selectors 206

boolean data types

about 135

example 135, 136

BSON data types 120

buildInfo 314

C

collation property

used, for creating index 190, 191

collection, MongoDB 71

collection related help commands 79

collStats 313, 314

column-oriented databases

about 11

examples 11

comment selector 206, 207

comparison and sort order

example 137-139

using 137

comparison selectors

$gt comparison selector 212

$in comparison selector 214

$lte comparison selector 213

about 202

examples 212

list 202, 203

compound index

about 184

creating, in MongoDB collection 184

connect() method 107

consistency 169

consistency, in MongoDB

about 169

eventual consistency 169

cross-platform 4

CRUD (Create, Read, Update, and Delete) operations 74

cursor.count() method 114, 115

cursor, in MongoDB 114

cursor.pretty() method 115

cursor.sort() method 115, 116

D

database 68

database authentication 97

database lock

about 87

operations types 88

database locks operations, MongoDB 88

Database Management Systems (DBMS)

about 68

main function 68

database storage engine 84

Data Query Languages

MongoDB Query Language (MQL) 68

Structured Query Language (SQL) 68

data types 120

data types, MongoDB

about 120, 121

array data types 124, 125

binary data types 127

boolean data types 135

date data types 129, 130

Decimal128 data type 136

double data types 123, 124

integer data types 121, 122

JavaScript data types (without scope) 132

JavaScript data types (with scope) 133

null data types 130, 131

object data types 125, 126

ObjectId data types 127, 128

regular expression data types 131, 132

string data types 122, 123

timestamp data types 134

date data types

about 129

example 129, 130

db.collection.bulkWrite() method

definition 162

used, for performing bulk write in MongoDB collection 163-165

db.collection.count() method 111, 112

db.collection.createIndex() method

about 182

definition 183

used, for creating index in MongoDB collection 183

db.collection.deleteMany() method

definition 160

used, for deleting multiple documents in MongoDB collection 161

db.collection.deleteOne() method

definition 159

used, for deleting single document in MongoDB collection 160

db.collection.dropIndexes() method

definition 194

used, for deleting all indexes in MongoDB collection 196

used, for deleting multiple index in MongoDB collection 195

used, for deleting multiple index in MongoDB collection with array type values as parameter 195

db.collection.dropIndex() method

definition 193

used, for deleting index in MongoDB collection 194

db.collection.drop() method 114

db.collection.find() method

definition 149

pretty() method, using with 150

used, for reading documents in MongoDB collection without Query 149

used, for reading documents in MongoDB collection with Query 149, 150

db.collection.getIndexes() method

about 192

used, for creating indexes in MongoDB collection 192, 193

db.collection.insertMany() method

definition 146

used, for creating multiple documents in MongoDB collection 146, 147

db.collection.insert() method

definition 142

used, for creating multiple documents in MongoDB collection 143, 144

used, for creating single document in MongoDB collection 142, 143

db.collection.insertOne() method

definition 144

used, for creating single document in MongoDB collection 145

db.collection.remove() method

definition 157

justOne option 158

used, for deleting multiple documents in MongoDB collection 159

used, for deleting single document in MongoDB collection 158

db.collection.stats() method 112

db.collection.totalSize() method 113

db.collection.updateMany() method

definition 155

used, for updating multiple documents in MongoDB collection 155, 156

db.collection.update() method

definition 151

used, for updating multiple documents in MongoDB collection 153, 154

used, for updating single document in MongoDB collection 152, 153

db.collection.updateOne() method

definition 154

used, for updating single document in MongoDB collection 154, 155

db.collection.validate() method 113

db.getMongo() method 109

db.hostInfo() method 109

DB related help command 78

db.serverStatus() method 110, 111

dbStats 313

db.stats() method 110

Decimal128 data type 136

delete document command 96, 97

distributed operations and queries

about 172

read operations, on replica sets 173

read operations on sharded clusters 173

write operations, on replica sets 173

write operations on sharded clusters 173

document databases

about 3, 11

examples 11

double data types

about 123

example 123, 124

E

element selectors

$exists element selector 218

about 204

examples 217

list 204

encrypted storage engine 86

evaluation selectors

$regex evaluation selector 220

about 205

examples 220

list 205

eventual consistency

about 169

example 169

expression types, MongoDB aggregate operation

$avg aggregation expression type 245

$last aggregation expression type 249

$max aggregation expression type 246

$push aggregation expression type 247

$sum aggregation expression type 243

$sum aggregation expression type, with operation in group output 244

$sum aggregation expression type, with some other field 244, 245

F

flexibility 5

G

General Help Command 77

geospatial index 186

geospatial selectors 206

getLog 317, 318

graph databases

about 11

examples 11

GUI (Graphical User Interface) tool 272

H

hashed index 186

hostInfo 315

I

indexes 176

indexing, in MongoDB

about 176

benefits 177

collation property 190

default _id index 177, 178

index, creating 182, 189

restrictions 196

index properties

about 186

partial index property 187

sparse index property 188

TTL index 188

unique index property 186

index types, in MongoDB

compound index 184

multikey index 185

single field index 183

special types of index 186

text index 185

in-memory storage engine 86

insert document command 94, 95

integer data types

example 121, 122

J

JavaScript data types (without scope)

about 132

example 132, 133

JavaScript data types (with scope)

example 133, 134

JavaScript, in MongoDB

about 104

Server Side JavaScript 104

JavaScript Object Notation (JSON)

about 3

example 3

K

key-value paired databases

about 11

examples 11

L

Linux

MongoDB installation 36

listCommands 315, 316

logical selectors

$and logical selector 215

$not logical selector 216

examples 215

list 203

M

macOS

MongoDB installation 55

map-reduce in MongoDB 104

mapReduce() method

about 250

examples 251, 255

output 257

running 259

using 256, 258

working 251

min and max keys 136

MongoDB

about 2

administration commands and methods 90

backup and restore 318

basic concepts 12

classified, as NoSQL database 5

connecting to, on Windows 32, 33

cross-platform 4

cursor 114

database locks operations 88

data types 120

definitions 2

diagnosing 303

document database 3

flexibility 5

indexing 176

index properties 186

index types 183

JavaScript 104

key pointers 2

min and max keys 136

monitoring 303

officially supported languages 105

projection 224

query and write operation commands and methods 94

query selectors 202

role-based authentication 98

scalable 4

storage engine, types 85

user authentication and role based commands and methods 97

MongoDB $group operator

about 242

using 242

MongoDB aggregation

about 236

aggregation method 236

examples 242

MongoDB aggregation pipeline

about 260

aggregate() method 266-268

aggregate() method, with $out 268, 269

framework 261

using, with practical examples 261-266

MongoDB architecture

about 6, 7

MongoDB data platform 8

NoSQL database architecture 6, 7

MongoDB backup

performing, mongodump used 318-320

MongoDB bulk write operations

about 161

db.collection.bulkWrite() method 162

MongoDB clients 80

MongoDB collection methods

db.collection.count() 111, 112

db.collection.drop() 114

db.collection.stats() 112

db.collection.totalSize() 113

db.collection.validate() 113

MongoDB collections

about 70, 71

example 71

table in RDBMS 70

MongoDB Community Edition

free software foundation's GNU AGPL v3.0 16

installing, on Windows 2010 19-30

post installation checks 31, 32

server side public license 16

versus, MongoDB Enterprise Advanced Edition 17-19

MongoDB Community Edition installation, on Linux

browser method 38-43

MongoDB clients, installing 44-46

performing 36-38

Shell commands, used 47-49

shell method 44

MongoDB Community Edition installation, on macOS

Homebrew, installing 57-59

MongoDB, connecting to 63, 64

MongoDB, starting 62

performing 56-62

MongoDB Compass

about 271, 272

downloading 273-276

features 272

installing 273

installing, on Windows 273-279

MongoDB Server, connecting with 281-284

post installation checks 280

practical examples 284

MongoDB connection methods

about 106

connect() 107

Mongo.getDB() 108

Mongo() 107, 108

MongoDB create operations

about 142

db.collection.insertMany() method 146

db.collection.insert() method 142

db.collection.insertOne() method 144

_id field 147

ordered option 148

MongoDB CRUD operations

about 141

MongoDB bulk write operations 161

MongoDB create operations 142

MongoDB delete operations 157

MongoDB read operations 148

MongoDB update operations 151

MongoDB cursor methods

about 114

cursor.count() 114, 115

cursor.pretty() 115

cursor.sort() 115, 116

MongoDB data

exporting, mongoexport used 322-324

importing, mongoimport used 324-326

MongoDB database

about 68, 70

NoSQL database 69

restoring, mongorestore used 320-322

MongoDB database methods

about 109

db.getMongo() 109

db.serverStatus() 110, 111

db.stats() 110

MongoDB database platform

about 8

advantages 8

MongoDB delete operations

db.collection.deleteMany() method 160

db.collection.deleteOne() method 159

db.collection.remove() method 157

MongoDB documents

about 72

example 72, 73

MongoDB editions

MongoDB Community Edition 16

MongoDB Enterprise Advanced Edition 16

overview 16

MongoDB Enterprise Advanced Edition

features 16, 17

MongoDB heartbeats

about 333

new primary member, automatic election 334

MongoDB Inc Compass

URL 80

MongoDB index

creating 189

creating, with collation property 190

deleting 193

index information, viewing 191

restrictions 196

using 189, 190

MongoDB installation, in macOS

about 55

MongoDB Community Edition, installing 56, 57

MongoDB installation setup, on Linux

about 36

MongoDB Community Edition, installing 36

MongoDB, connecting to 50-52

MongoDB, starting on Linux 50

MongoDB installation setup, on Windows

about 15

MongoDB Community Edition, installing 19-30

MongoDB intermediate concepts

about 167

atomicity 168

consistency 169

distributed operations and queries 172

replication 170

sharding 171

MongoDB locks 87

MongoDB methods 105

MongoDB read operations

about 148

db.collection.find() method 149

MongoDB replication

verifying, data used 352-355

MongoDB replication, on Windows

step-by-step process 335-352

MongoDB security

about 326, 327

authentication, enabling 327

communication channel encryption 328

data encryption 328

firewalls, using 328

role-based authorization, using 327

security audits, performing regularly 328

MongoDB sharding, on Windows

existing MongoDB services on Windows, stopping 363, 364

first replica set, creating 365-377

MongoDB, adding in shard keys 414-417

MongoDB, starting in sharded environment as mongos 413, 414

replica set of config servers, creating in sharded environment 401-413

second replica set, creating 377-389

starting 362, 363

third replica set, creating 389-401

verifying, data used 417-421

MongoDB Shell

about 74

basic command helpers 77

commands 76, 77

connecting to 33, 34, 74, 75, 105, 106

exiting from 76

history, of commands 80

MongoDB Shell methods

about 103

MongoDB collection methods 111

MongoDB connection methods 106

MongoDB cursor methods 114

MongoDB database methods 109

MongoDB tools and utilities

buildInfo 314

collStats 313, 314

dbStats 313

getLog 317

hostInfo 315

installation, verifying 308, 309

installing 304-308

listCommands 315, 316

mongostat 309, 310

mongotop 310-312

ping 316, 317

serverStatus 312, 313

MongoDB update operations

db.collection.updateMany() method 155

db.collection.update() method 151

db.collection.updateOne() method 154

multi option 157

upsert option 156

mongod process

about 294

managing 294

MongoDB service, in Windows 294-297

MongoDB services, stopping from command line 301, 302

MongoDB services, stopping from Windows service manager 300

running, from command prompt 297-299

Mongo.getDB() method 108

Mongo() method 107

mongostat 309, 310

mongotop 310-312

multikey index

about 185

creating, in MongoDB collection 185

multi option 157

N

NoSQL Booster

URL 80

NoSQL database

about 5, 6, 10, 69

comparing, with SQL database 9

database management systems 10

NoSQL database management systems

about 10

column-oriented databases 11

document databases 11

graph databases 11

key-value paired databases 11

NoSQL Manager

URL 80

null data types

about 130, 131

example 130

O

object data types

about 125

example 125, 126

ObjectId data types

about 127

example 128

Object-Relation Mapping (ORM) 9

officially supported languages, MongoDB 105

ordered option 148

P

partial index

about 187

creating, in MongoDB collection 187, 188

ping 316

pipeline 260

practical examples, of MongoDB Compass

collections, browsing in database 284, 285

CRUD operations, performing in documents 288

document, editing 289, 290

documents, browsing in database 287

new collection, creating in database 285, 286

pretty() method

used, for reading documents in MongoDB collection 150

using 150

projection, in MongoDB

about 224, 228

examples 229, 230

Hide Specific Fields 229, 230

Show Only Specific Fields 228, 229

Show Only Specific Fields and Hide _id Field 230

using 228

projection operators

$elemMatch projection operator 233

$ projection operator 232

examples 232

list 231

Public Key Infrastructure (PKI) certificates 17

Q

query and write operation commands and methods, MongoDB

delete document command 96, 97

insert document command 94, 95

read document command 95, 96

query selectors

about 202

array selectors 204

bitwise selectors 206

comment selector 206

comparison selectors 202

element selectors 204

evaluation selectors 205

examples 207

geospatial selectors 206

logical selectors 203

using 207-211

R

read document command 95, 96

regular expression data types 131, 132

relational database 68, 69

Relational Database Management System (RDBMS)

about 5, 70

row and column 72

table 70

replica sets

about 170, 332

creating 170

replication

about 170, 332

benefits 170, 332

pre-configuration steps 334, 335

restrictions, MongoDB index 196

RoboMongo

URL 80

role-based access control 98

role-based authentication, in MongoDB 98-100

S

scalability 4, 5

schema 5

schema-less databases

advantages 5

Server Side JavaScript, in MongoDB

$where operator 104

about 104

map-reduce 104

serverStatus 312

sharded clusters

about 172, 359

config database 360

read and write operations 360

sharding

about 171, 358

benefits 171, 358, 359

pre-configuration steps 361, 362

shard key 360

Show collections command 79

Show databases command 78

single field index

about 183

creating, in MongoDB collection 184

sparse index

about 188

creating, in MongoDB collection 188

special types of indexes

about 186

geospatial index 186

hashed index 186

storage engines 84

storage engines, MongoDB

comparison 86, 87

encrypted storage engine 86

in-memory storage engine 86

third-party storage engines 86

types 85

WiredTiger storage engine 85

string data types

about 122

example 122, 123

Studio 3T

URL 80

T

table, in RDBMS 70

text index

about 185

creating, in MongoDB collection 186

third-party pluggable storage engines 86

timestamp data types

about 134

example 134, 135

Transport Layer Security (TLS) 17

TTL index

about 188

creating, in MongoDB collection 189

U

Ubuntu. See Linux

unique index

about 186

creating, in MongoDB collection 187

upsert option 156, 157

use <DB> Command 78

user authentication and role based commands and methods

database authentication 97

role-based access control 98

W

Windows

MongoDB installation 15

WiredTiger storage engine 85

OEBPS/images/Figure_17.39.jpg

OEBPS/images/Figure_19.62.jpg

OEBPS/images/Figure_5.16.jpg

OEBPS/images/Figure_17.38.jpg

OEBPS/images/Figure_19.61.jpg

OEBPS/images/Figure_5.15.jpg

OEBPS/images/Figure_17.37.jpg

OEBPS/images/Figure_19.60.jpg

OEBPS/images/Figure_5.14.jpg

OEBPS/images/Figure_17.36.jpg

OEBPS/images/Figure_19.6.jpg
comOas aE e

it

e e = o —

OEBPS/images/Figure_5.13.jpg

OEBPS/images/Figure_17.35.jpg

OEBPS/images/Figure_19.59.jpg

OEBPS/images/Figure_5.12.jpg

OEBPS/images/Figure_17.34.jpg

OEBPS/images/Figure_19.58.jpg
LT T
St

N1 IR

OEBPS/images/Figure_5.11.jpg

OEBPS/images/Figure_17.33.jpg

OEBPS/images/Figure_19.57.jpg

OEBPS/images/Figure_5.10.jpg

OEBPS/images/Figure_17.32.jpg

OEBPS/images/Figure_19.56.jpg

OEBPS/images/Figure_5.1.jpg

OEBPS/images/Figure_19.55.jpg

OEBPS/images/Figure_4.9.jpg
LX)
manushaznagPeters-MacBook-pro ~ % brew install mongodb-conmunity

OEBPS/images/Figure_4.8.jpg
Imanusharma@Peters-MacBook-Pro ~ % brew tap mongodb/brew
manusharmaGpeters-Hacook-pro - %

OEBPS/images/Figure_17.40.jpg

OEBPS/images/Figure_17.4.jpg

OEBPS/images/Figure_19.63.jpg

OEBPS/images/Figure_17.29.jpg

OEBPS/images/Figure_19.52.jpg

OEBPS/images/Figure_4.6.jpg
intears. Fiasss comider donstine

Cloning inke - 7uss 10 Hosebcen/LibeseyTapahomebsen/bosesen-co
Erumerating objectes ve, dane.
Gotnting sbjects 1eox (oL/ot}, con
Gonpresting Splectst d0en (an/is), dne.
TERL 79039 Cdents 530, couoed 19 (enlia 20, pack-zeused 790280
Receiving oajertes 1008 (9037417503741, F04-29 Mo | 107 WS Te, done-
ind siis formatne

Los, 300,590

S

LiLsasLsLsLY

]
]

OEBPS/images/Figure_17.28.jpg

OEBPS/images/Figure_19.51.jpg

OEBPS/images/Figure_4.5.jpg
i e iy oo o o et/ oo ttion

I S e .

" ergiimer

TR ok w055 L e HOWEBREONL

OEBPS/images/Figure_17.27.jpg

OEBPS/images/Figure_19.50.jpg

OEBPS/images/Figure_4.4.jpg

OEBPS/images/Figure_17.26.jpg
g s o

MongeDB Database Tools

OEBPS/images/Figure_19.5.jpg
comhasan
Sttt

OEBPS/images/Figure_4.3.jpg
®

Homebrew
st
—

Install Homebrew

What Does Homebrew Do?

OEBPS/images/Figure_17.25.jpg
g i o s

MongoD8 Database Tooks

T T
1o s ety b VergeDB Serf
[————————

“re

J— B

OEBPS/images/Figure_19.49.jpg

OEBPS/images/Figure_4.2.jpg

OEBPS/images/Figure_17.24.jpg
g i o s

MongeDB Database Tools [——

OEBPS/images/Figure_19.48.jpg

OEBPS/images/Figure_4.15.jpg

OEBPS/images/Figure_17.23.jpg
0 Sergern oy Sees ¢ (Y
€3 0 8 mepm——————

[E—

MongsDB Database Tools

T x5 Dt Tt o o ko o wring Wi darant T
1o e oty Ko o VDB S € 51 o e A A 0
o st 3 0 2y it Se e orgeDB s ok ot o s .

OEBPS/images/Figure_19.47.jpg

OEBPS/images/Figure_4.14.jpg

OEBPS/images/Figure_19.46.jpg

OEBPS/images/Figure_4.13.jpg

OEBPS/images/Figure_4.12.jpg
Tapping hosebeenservic

Cloning into +/usr/1ocal /Hondbew/Library/Taps /hamebren/namebren-services

Enumerating objects: 4, done.
Counting objects: 106K (4/4), dons
Compressing abiects: 100N (4/4)
Total 516 (et . o
Recoiving abjects: 100% (916/916), 286.46 Kib | 1.94 MibJs, Son
Resolving daltss: 1005 (374/374), dons

Tapoea 1 conmand (40 filer, 397.968)

Succesatully starte
eanutharestPeters Hacbook-Peo < ¥ |

“aongodb-comunity” (1abel: honabrem.mxcl. mongods-comunity)

OEBPS/images/Figure_17.31.jpg

OEBPS/images/Figure_17.30.jpg

OEBPS/images/Figure_19.54.jpg

OEBPS/images/Figure_17.3.jpg

OEBPS/images/Figure_19.53.jpg

OEBPS/images/Figure_4.7.jpg
Omongoss B

The MongoDB Homebrew Tap

OEBPS/images/Figure_17.59.jpg
J— el

OEBPS/images/Figure_17.58.jpg

OEBPS/images/Figure_19.81.jpg

OEBPS/images/Figure_17.57.jpg

OEBPS/images/Figure_19.80.jpg

OEBPS/images/Figure_7.4.jpg

OEBPS/images/Figure_17.56.jpg
e e

OEBPS/images/Figure_19.8.jpg

OEBPS/images/Figure_7.3.jpg

OEBPS/images/Figure_17.55.jpg

OEBPS/images/Figure_19.79.jpg

OEBPS/images/Figure_7.2.jpg

OEBPS/images/Figure_17.54.jpg

OEBPS/images/Figure_19.78.jpg

OEBPS/images/Figure_7.14.jpg

OEBPS/images/Figure_17.53.jpg

OEBPS/images/Figure_19.77.jpg
¥

1|

it
1

SREEINE) RENRIRIENS)

i

OEBPS/images/Figure_7.13.jpg

OEBPS/images/Figure_17.52.jpg
J— I

OEBPS/images/Figure_19.76.jpg

OEBPS/images/Figure_7.12.jpg

OEBPS/images/Figure_17.51.jpg

OEBPS/images/Figure_19.75.jpg

OEBPS/images/Figure_7.11.jpg

OEBPS/images/Figure_17.50.jpg

OEBPS/images/Figure_19.74.jpg

OEBPS/images/Figure_7.10.jpg

OEBPS/images/Figure_19.73.jpg

OEBPS/images/Figure_7.1.jpg

OEBPS/images/Figure_6.1.jpg
OtherUis | [intemet of
Web Clents (e AP Galls and “Things
i Devices (ton)

User Interfaces and Devices

CLENTS

>

Consistent Access to Data

SERVER DATABASE

STORAGE ENGINE

MEMORY
&
STORAGE

OEBPS/images/cover.jpg
- MongoDB
Complete
Guide

Develop St

OEBPS/images/Figure_17.49.jpg

OEBPS/images/Figure_19.72.jpg

OEBPS/images/Figure_17.48.jpg
e e @) Ol

OEBPS/images/Figure_19.71.jpg

OEBPS/images/Figure_5.9.jpg

OEBPS/images/Figure_17.47.jpg

OEBPS/images/Figure_19.70.jpg

OEBPS/images/Figure_5.8.jpg

OEBPS/images/Figure_17.46.jpg

OEBPS/images/Figure_19.7.jpg

OEBPS/images/Figure_5.7.jpg

OEBPS/images/Figure_17.45.jpg

OEBPS/images/Figure_19.69.jpg

OEBPS/images/Figure_5.6.jpg

OEBPS/images/Figure_17.44.jpg

OEBPS/images/Figure_19.68.jpg

OEBPS/images/Figure_5.5.jpg
[

{
"employee_id"; "001",
“fname': "Manish”,
"Iname": "Sharma",
"department’; "IT"
A
{
"employee_id"; "002",
"fname: "Pooja’,
“Iname’; "Kaushik’,
"department": "HR"
17

{
"employee_id"; "003",
"fname"; "Shahid",

"Iname": "Reza",

OEBPS/images/Figure_17.43.jpg

OEBPS/images/Figure_19.67.jpg

OEBPS/images/Figure_5.4.jpg
{
key1: valuel,
key2: value2,
key3: value3,

key4: value4,

keyN: valueN
}

T

field1: valuel,
field2: value2,
field3: value3,

field4: value4,

fieldN: valueN

OEBPS/images/Figure_17.42.jpg

OEBPS/images/Figure_19.66.jpg

OEBPS/images/Figure_5.3.jpg
= L

e | —— [

OEBPS/images/Figure_17.41.jpg

OEBPS/images/Figure_19.65.jpg

OEBPS/images/Figure_5.2.jpg
A Collection of Documents in MongoDB

{

“student i

i,
“student_name”"Siya Sharma”,
“student_class":"4A”,
“student_hobbies"{“Singing”, “Painting’, “Dance”]
1
{

i

“student_id"4,
“student_name”:"Md. Hussain”",
“student_class”:" 108",
“student_hobbies":[“Poetry’]

i

“student id"2,
“student_name":Harry Dsouza”,
“student_class”:"7A",
“student_hobbies"[“Cricket”, “Football"],

“student_bus_route”:"E9”

OEBPS/images/Figure_19.64.jpg

OEBPS/images/Figure_5.18.jpg

OEBPS/images/Figure_5.17.jpg

OEBPS/images/Figure_17.5.jpg
@ rome et

OEBPS/images/Figure_18.23.jpg
Rl | @

OEBPS/images/Figure_18.22.jpg

OEBPS/images/Figure_2.14.jpg
e ey S
s
Bt ptna
[— ettt
ik [ronsmieing

OEBPS/images/Figure_18.21.jpg

OEBPS/images/Figure_2.13.jpg
e eyt e o e

frecumrsynsg

Herse0B st

OEBPS/images/Figure_18.20.jpg

OEBPS/images/Figure_2.12.jpg
[——

OEBPS/images/Figure_18.2.jpg
MongoD8 Instance
Replication
(Primary Se

MongoDB Heartbeats o Pings

OEBPS/images/Figure_2.11.jpg
Want an alternative
MongaD8 yourself?

Get the fully manages
AWS, Azure, and GC

@ mEEmnImm

OEBPS/images/Figure_18.19.jpg

OEBPS/images/Figure_2.10.jpg
vesty i

»e

OEBPS/images/Figure_18.18.jpg

OEBPS/images/Figure_2.1.jpg

OEBPS/images/Figure_18.17.jpg

OEBPS/images/Figure_19.94.jpg

OEBPS/images/Figure_18.16.jpg
e

OEBPS/images/Figure_19.93.jpg

OEBPS/images/aut.jpg

OEBPS/images/Figure_18.15.jpg

OEBPS/images/Figure_19.92.jpg

OEBPS/images/Figure_1.1.jpg

OEBPS/images/Figure_19.91.jpg

OEBPS/images/Figure_1.2.jpg
L]

Client Communication

Driver Communication ﬁ Read / Write Operations.

Primary DB

MongoDB
Secondary DB Heartbeat Secondary DB

OEBPS/images/Figure_1.3.jpg
MongoDB Data Platform

MongoDB MongoDB

provides Best provides best
way to work way for Data
with Data Portability

OEBPS/images/Figure_10.1.jpg
MongoD8 insert) Method

OEBPS/images/Figure_10.10.jpg
MongoD8 update(Method - Updating
Mulliple Documents

OEBPS/images/Figure_10.11.jpg
"MongaDB updsteOna() Method - Updating &
Single Document

OEBPS/images/Figure_10.12.jpg
MongoDB updateMany() Method - Updating
Muitpie Documents

OEBPS/images/Figure_10.13.jpg
MongaDB remove(Method -Dei
Documant

gaSinge

OEBPS/images/Figure_18.14.jpg

OEBPS/images/Figure_18.13.jpg

OEBPS/images/Figure_19.90.jpg

OEBPS/images/Figure_18.12.jpg

OEBPS/images/Figure_19.9.jpg

OEBPS/images/Figure_18.11.jpg

OEBPS/images/Figure_19.89.jpg

OEBPS/images/Figure_18.10.jpg
.
il
Py
Do
o
=

OEBPS/images/Figure_19.88.jpg

OEBPS/images/Figure_18.1.jpg
(]ILnl l

Secondary Server

Replication

Secondary Server

Replication

OEBPS/images/Figure_19.87.jpg
f

OEBPS/images/Figure_17.9.jpg

OEBPS/images/Figure_19.86.jpg

OEBPS/images/Figure_17.8.jpg

OEBPS/images/Figure_19.85.jpg

OEBPS/images/Figure_17.7.jpg

OEBPS/images/Figure_19.84.jpg

OEBPS/images/Figure_17.6.jpg

OEBPS/images/Figure_19.83.jpg

OEBPS/images/Figure_19.82.jpg

OEBPS/images/Figure_18.9.jpg

OEBPS/images/Figure_18.8.jpg

OEBPS/images/Figure_18.7.jpg
I

OEBPS/images/Figure_18.6.jpg
comhasan
Sttt

OEBPS/images/Figure_18.5.jpg
»e

B . e
. . =
- n

OEBPS/images/Figure_18.4.jpg

OEBPS/images/Figure_18.36.jpg

OEBPS/images/Figure_18.35.jpg

OEBPS/images/Figure_18.34.jpg

OEBPS/images/Figure_18.33.jpg

OEBPS/images/Figure_18.32.jpg

OEBPS/images/Figure_18.31.jpg

OEBPS/images/Figure_18.30.jpg

OEBPS/images/Figure_18.3.jpg
MongoD8 Instance with
Replication
(Primary Server Inaccessible)

MongoDB Instance with

MongoDB Heartbeats or Pings.

OEBPS/images/Figure_18.29.jpg

OEBPS/images/Figure_18.28.jpg

OEBPS/images/Figure_18.27.jpg

OEBPS/images/Figure_18.26.jpg

OEBPS/images/Figure_18.25.jpg

OEBPS/images/Figure_18.24.jpg

OEBPS/images/Figure_10.14.jpg
MongaDB remove() Method-Dalating Multple
Bocumer

OEBPS/images/Figure_10.16.jpg
MongoDB deletehany() Method - Deleting
20 ipls Datumens

OEBPS/images/Figure_10.15.jpg
MongoD8 deleteOne() Method - Deleting »
"Singie Document

OEBPS/images/Figure_10.2.jpg
MongaDB insert) Mathod - Crasting
Muliple Documents

OEBPS/images/Figure_10.17.jpg
MongoDB bulkWiite() Method - Buk Wrie
Oporation

OEBPS/images/Figure_10.4.jpg
MongaDB inserthany(Method - Creating
Mullplo Documents

OEBPS/images/Figure_10.3.jpg
‘MongaDB inserOr
Singe Documant

0

‘od - Creatin

OEBPS/images/Figure_10.6.jpg

OEBPS/images/Figure_10.5.jpg

OEBPS/images/Figure_10.7.jpg
"MongaDB find() Method - with
‘Selacion Quary

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Reviewers

		Acknowledgement

		Preface

		Errata

		Table of Contents

		1. Introduction to MongoDB

		Structure

		Objectives

		Introduction

		The definition of MongoDB

		What is a document database?

		What is JSON? How does it look?

		Cross-platform

		Scalable

		Flexible

		Classified as NoSQL database

		What is a NoSQL database?

		An overview of the MongoDB architecture

		A quick look into the NoSQL database architecture

		A quick look into the MongoDB architecture

		MongoDB data platform

		Difference from other databases

		The concept of NoSQL databases

		Types of NoSQL database management systems

		Key-value paired databases

		Column-oriented databases

		Document databases

		Graph databases

		Introduction to MongoDB basics, core concepts, and vocabulary

		Document database

		Collections

		Support for rich query language

		Support multiple storage engines

		Some basic MongoDB terminology

		MongoDB terminology comparison with SQL databases

		Conclusion

		Questions

		2. MongoDB Installation Setup on Windows

		Structure

		Objectives

		Overview of MongoDB editions

		Features of MongoDB Enterprise Advanced Edition

		Comparison between MongoDB Community Edition and MongoDB Enterprise Advanced Edition

		MongoDB setup on Windows

		Installing MongoDB Community Edition on Windows operating system

		Installation steps

		Conclusion

		Questions

		3. MongoDB Installation and Setup on Linux (Ubuntu)

		Structure

		Objectives

		MongoDB Setup on Linux

		Installing MongoDB Community Edition on Linux Operating System

		Installation steps

		Method one (Browser method)

		Step 1 – Download MongoDB Community Edition

		Step 2 – Install MongoDB Community Edition on your Linux machine

		Installation Steps

		Method two (Shell method)

		Steps for installing MongoDB clients (mongo-clients) on Linux based systems (Ubuntu)

		Steps for installing MongoDB on Linux based systems (Ubuntu) using the Shell commands

		Step 3 –Starting MongoDB on Linux (Ubuntu)

		Step 4 – Connecting to MongoDB on Linux (Ubuntu)

		Conclusion

		Questions

		4. MongoDB Installation and Setup on macOS

		Structure

		Objectives

		MongoDB setup on macOS

		Installing MongoDB Community Edition on macOS

		Installation steps

		Conclusion

		Questions

		5. Getting Started with MongoDB

		Structure

		Objectives

		MongoDB databases

		What is a database?

		What is a relational database?

		What is a NoSQL database?

		What is a MongoDB database?

		MongoDB collections

		What is a table in RDBMS?

		What is a collection in MongoDB?

		MongoDB documents

		Row and column in RDBMS

		What is a document in MongoDB?

		Introduction to MongoDB Shell

		What is a MongoDB Shell?

		Connecting to MongoDB Shell

		Step 1 – Connecting to MongoDB Shell

		Basic Shell commands

		 MongoDB Shell basic command helpers

		MongoDB Shell command history

		Introduction to MongoDB clients

		Conclusion

		Questions

		6. Storage Engines in MongoDB

		Structure

		Objectives

		What are storage engines?

		Types of storage engines in MongoDB

		Introduction to the WiredTiger storage engine

		Introduction to the in-memory storage engine

		Encrypted storage engine

		Third-party pluggable storage engines

		MongoDB storage engines comparison

		MongoDB locks

		What is a database lock?

		Database lock operations types

		Database locks operations in MongoDB

		Conclusion

		Questions

		7. Managing and Administering MongoDB

		Structure

		Objectives

		MongoDB administration commands and methods

		Create database command

		Create collection command

		Drop database command

		Drop collection command

		MongoDB query and write operation commands and methods

		Insert document command

		Read document command

		Delete document command

		MongoDB user authentication and role based commands and methods

		What is database authentication?

		What is role-based access control?

		Role-based authentication in MongoDB

		Conclusion

		Questions

		8. MongoDB Shell Methods

		Structure

		Objectives

		JavaScript in MongoDB

		Server Side JavaScript in MongoDB

		What is map-reduce in MongoDB?

		What is $where operator in MongoDB?

		List of officially supported languages in MongoDB

		MongoDB methods

		Step 1 – Connecting to MongoDB Shell

		MongoDB connection methods

		connect(url,username,password)

		Mongo(host, clientSideOptions)

		Mongo.getDB(database)

		MongoDB database methods

		db.getMongo()

		db.stats()

		db.serverStatus()

		MongoDB Collection methods

		db.collection.count()

		db.collection.stats()

		db.collection.totalSize()

		db.collection.validate()

		db.collection.drop()

		MongoDB cursor methods

		What is a cursor in MongoDB?

		cursor.count()

		cursor.pretty()

		cursor.sort()

		Conclusion

		Questions

		9. Data Types in MongoDB

		Structure

		Objectives

		What are data types?

		Introduction to BSON data types

		Data types in MongoDB

		Integer data types

		String data types

		Double data types

		Array data types

		Object data types

		Binary data types

		ObjectId data types

		Date data types

		Null data types

		Regular expression data types

		JavaScript data types (without scope)

		Javascript data types (with scope)

		Timestamp data types

		Boolean data types

		Min and max key

		Decimal128

		Comparison and sort order

		Conclusion

		Questions

		10. Introduction to MongoDB CRUD Operations

		Structure

		Objectives

		MongoDB create operations

		db.collection.insert() method

		Method definition

		Example 1 – Creating a single document in MongoDB collection

		Example 2 – Creating multiple documents in MongoDB collection

		db.collection.insertOne() method

		Method definition

		Example – Creating a single document in MongoDB Collection using insertOne() method

		db.collection.insertMany() method

		Method definition

		Example – Creating multiple documents in MongoDB collection using insertMany() method

		The _id Field

		Example - Creating a new document by specifying _id key

		The ordered option

		MongoDB read operations

		db.collection.find() Method

		Method Definition

		Example 1 – Reading documents in MongoDB collection without Query

		Example 2 – Reading documents in MongoDB collection with Query

		Using Pretty method with find()

		Example 3 – Reading documents in MongoDB collection with Query and Pretty method

		MongoDB update operations

		The $set operator

		The $unset operator

		db.collection.update() method

		Method definition

		Example 1 – Updating a single document in MongoDB collection using update() method

		Example 2 – Updating multiple documents in MongoDB collection using update() method

		db.collection.updateOne() method

		Method definition

		Example – Updating a single document in MongoDB collection using updateOne() method

		db.collection.updateMany() method

		Method definition

		Example – Updating multiple documents in MongoDB collection using updateMany() method

		The upsert option

		The multi option

		MongoDB delete operations

		db.collection.remove() method

		Method definition

		The justOne option

		Example 1 – Deleting a single document in MongoDB collection using remove() method

		Example 2 – Deleting multiple documents in MongoDB collection using remove() method

		db.collection.deleteOne() method

		Method definition

		Example – Deleting a single document in MongoDB collection using deleteOne() method

		db.collection.deleteMany() method

		Method definition

		Example – Deleting multiple documents in MongoDB collection using deleteMany() method

		MongoDB bulk write operations

		db.collection.bulkWrite() method

		Method definition

		Example – Bulk write in MongoDB collection using bulkwrite() method

		Conclusion

		Questions

		11. MongoDB Intermediate Concepts

		Structure

		Objectives

		Atomicity

		What is atomicity?

		Atomicity in MongoDB

		MongoDB atomicity and multiple document transactions

		Consistency

		What is consistency?

		Consistency in MongoDB

		MongoDB and eventual consistency

		Basic introduction to replication

		Replica sets

		Basic introduction to sharding

		Sharded clusters

		Distributed operations and queries

		Read operations on replica sets

		Write operations on replica sets

		Read operations on sharded clusters

		Write operations on sharded clusters

		Conclusion

		Questions

		12. Introduction to MongoDB Indexes

		Structure

		Objectives

		What are indexes?

		Indexing and MongoDB

		Benefits of indexing

		Default _id index

		The _id properties

		Code 1

		Code 2

		Creating an index

		db.collection.createIndex() method

		Method definition

		Example – Creating an index in MongoDB collection

		Code 1

		Index types in MongoDB

		Single field index

		Example – Creating a single field index in MongoDB collection

		Code 1

		Compound Index

		Example – Creating a compound index in MongoDB collection

		Code 1

		Multikey index

		Example – Creating a multikey index in a MongoDB collection

		Code 1

		Text index

		Example – Creating a text index in a MongoDB collection

		Code 1

		Special types of index

		Geospatial index

		Hashed index

		Index properties

		Unique index

		Example – Creating a unique index in a MongoDB Collection

		Code 1

		Partial index

		Example – Creating a partial index in a MongoDB Collection

		Code 1

		Sparse index

		Example – Creating a sparse index in a MongoDB collection

		Code 1

		TTL index

		Example – Creating a TTL index in a MongoDB collection

		Code 1

		Using an index

		Example – Creating and using an index in a MongoDB collection

		Code 1

		Code 2

		Indexes and collation

		Example – Creating an index with collation in a MongoDB Collection

		Code 1

		View index information

		db.collection.getIndexes() method

		Example – Viewing all the Indexes in a MongoDB Collection

		Code 1

		Deleting an index

		db.collection.dropIndex() method

		Method definition

		Example 1 – Deleting an index in a MongoDB collection

		Code 1

		db.collection.dropIndexes() method

		Method definition

		Example 2 – Deleting multiple index in a MongoDB collection

		Code 1

		Example 3 – Deleting multiple index in a MongoDB collection using the array type values as parameter

		Code 1

		Example 4 – Deleting all the indexes in a MongoDB collection

		Code 1

		Some restrictions in MongoDB index

		Conclusion

		Points to Remember

		Multiple choice questions

		Answer

		Questions

		Key terms

		13. MongoDB Query Selectors

		Structure

		Objectives

		Introduction to query selectors

		Comparison Selectors

		Logical Selectors

		Element Selectors

		Evaluation Selectors

		Geospatial Selectors

		Bitwise Selectors

		Comment Selector

		Examples and use of query selectors

		Code 1

		Code 2

		Examples of comparison selectors

		Example 1 - $gt Comparison Selector

		Code 1

		Selector Details

		Example 2 - $lte comparison selector

		Code 1

		Selector Details

		Example 3 - $in comparison selector

		Code 1

		Selector Details

		Examples of logical selectors

		Example 1 - $and logical selector

		Code 1

		Selector Details

		Example 2 - $not logical selector

		Code 1

		Selector details

		Examples of element selectors

		Example 1 - $exists element selector

		Code 1

		Selector details

		Examples of array selectors

		Example 1 - $all array selector

		Code 1

		Selector Details

		Examples of evaluation selectors

		Example 1 - $regex evaluation selector

		Code 1

		Selector details

		Conclusion

		Questions

		14. Projection in MongoDB and Projection Operators

		Structure

		Objectives

		Introduction to projection

		How to use projection in MongoDB?

		Examples of projection

		Example 1 - Show only specific fields

		Example 2 - Hide specific fields

		Example 1 - Show only specific fields and hide the _id field

		Introduction to projection operators

		Examples of projection operators

		Example 1 - $ projection operator

		Operator details

		Example 2 - $elemMatch projection operator

		Operator details

		Conclusion

		Questions

		15. Aggregation in MongoDB

		Structure

		Objectives

		Introduction to MongoDB aggregation

		Aggregation method syntax and use

		Examples and use of aggregation method

		Examples of aggregation

		The MongoDB $group operator

		Example 1 - $sum aggregation expression type

		Expression type details

		Example 2 - $sum aggregation expression type with operation in group output

		Example 3 - $sum aggregation expression type with some other field

		Example 4 - $avg aggregation expression type

		Expression type details

		Example 5 - $max aggregation expression type

		Expression type details

		Example 6 - $push aggregation expression type

		Expression type details

		Example 7 - $last aggregation expression type

		Expression type details

		Introduction to map-reduce

		The mapReduce() method

		Example 1 – mapReduce()

		Introduction to aggregation pipeline

		What is pipeline?

		MongoDB aggregation pipeline

		Example 1 – aggregate()

		Example 2 – aggregate() with $out

		Conclusion

		Questions

		16. MongoDB Data Manipulations Using MongoDB Compass

		Structure

		Objectives

		Introduction to MongoDB Compass

		Installing MongoDB Compass

		Installing MongoDB Compass on Windows operating system

		Connecting MongoDB Server with MongoDB Compass

		Practical examples with MongoDB Compass

		Example 1 –Browsing the collections in the database

		Example 2–Creating new collection in the database

		Example 3–Browsing documents in the database

		Example 4–Performing CRUD operations in documents

		Example 5–Editing a document

		Conclusion

		Questions

		Points to remember

		Multiple choice questions

		Answer

		Key terms

		17. Managing and Administering MongoDB (Advanced Level)

		Structure

		Objectives

		About mongod process

		Managing mongod process

		MongoDB service in Windows

		Running mongod from command prompt

		Stopping MongoDB services from Windows service manager

		Stopping MongoDB Services from command line – MongoDB Shell method

		Monitoring and diagnosing MongoDB

		Installing MongoDB tools and utilities

		Verifying the installation of MongoDB tools and utilities

		Working with MongoDB tools and utilities

		mongostat

		mongotop

		serverStatus

		dbStats

		collStats

		buildInfo

		hostInfo

		listCommands

		ping

		getLog

		Backup and restore with MongoDB

		Taking a MongoDB backup using mongodump

		Restoring a MongoDB database using mongorestore

		Import and export with MongoDB

		Exporting a MongoDB data using mongoexport

		Importing a MongoDB data using mongoimport

		MongoDB security

		Enable authentication

		Use role-based authorization (role-based access control)

		Encrypt the communication channels and connections

		Encrypt your MongoDB data

		Use firewalls and restrict all the incoming and outgoing traffic

		Regularly perform security audits

		Conclusion

		Questions

		18. Replication in MongoDB

		Structure

		Objectives

		Basic introduction to replication – quick recap

		Replica sets

		MongoDB heartbeats

		Automatic election of the new primary member

		Pre-configuration steps

		Starting with the MongoDB replication on Windows machine

		Verifying the MongoDB replication using data

		Conclusion

		Questions

		19. Sharding in MongoDB

		Structure

		Objectives

		Basic introduction to sharding – quick recap

		Sharded clusters

		Read and write operations and importance of config database

		Shard key

		Pre-configuration steps

		Starting with MongoDB sharding on Windows machine

		Step 1 –Stop the existing MongoDB services on Windows machine

		Step 2 – Create the first replica set (our first shard)

		Step 3 – Create the second replica set (our second shard)

		Step 4 – Create the third replica set (our third shard)

		Step 5 – Create the replica set of config servers in the sharded environment

		Step 6 - Starting MongoDB in the sharded environment as "mongos"

		Step 7 – Adding MongoDB in the shard keys

		Step 8 - Verifying the MongoDB sharding using data

		Conclusion

		Questions

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to MongoDB

OEBPS/images/Figure_10.9.jpg
. "MongaDB update() Method - Updating a
Engie Document

OEBPS/images/Figure_10.8.jpg
MongaD8 find) Wethod wih Selscion
Guery and Prty

OEBPS/images/Figure_11.2.jpg
Read Request

Read

Write

Primary Server

Replication

Replication

Write Request

Secondary Server

Secondary Server

OEBPS/images/Figure_11.1.jpg
Client 1 Client 2

Secondary Server

Eventual
Consistent Reads Consistent Reads.

Replication
Primary Server

Secondary Server

OEBPS/images/Figure_12.1.jpg

OEBPS/images/Figure_11.3.jpg
Client 1

1

MongoDB Driver

Replica

Secondary Server Secondary Server Secondary Server Secondary Server

Secondary Server Secondary Server Secondary Server Secondary Server
\ \
\ Yy 9 4 2 =

OEBPS/images/Figure_12.11.jpg

OEBPS/images/Figure_12.10.jpg

OEBPS/images/Figure_12.13.jpg

OEBPS/images/Figure_12.12.jpg

OEBPS/images/Figure_12.14.jpg

OEBPS/images/Figure_12.16.jpg

OEBPS/images/Figure_12.15.jpg

OEBPS/images/Figure_12.2.jpg

OEBPS/images/Figure_12.17.jpg

OEBPS/images/Figure_12.4.jpg

OEBPS/images/Figure_12.3.jpg

OEBPS/images/Figure_12.6.jpg

OEBPS/images/Figure_12.5.jpg

OEBPS/images/Figure_12.7.jpg

OEBPS/images/Figure_12.9.jpg

OEBPS/images/Figure_12.8.jpg

OEBPS/images/Figure_13.2.jpg

OEBPS/images/Figure_13.1.jpg

OEBPS/images/Figure_13.4.jpg

OEBPS/images/Figure_13.3.jpg

OEBPS/images/Figure_13.6.jpg

OEBPS/images/Figure_13.5.jpg

OEBPS/images/Figure_13.8.jpg

OEBPS/images/Figure_13.7.jpg

OEBPS/images/Figure_13.9.jpg

OEBPS/images/Figure_14.2.jpg

OEBPS/images/Figure_14.1.jpg

OEBPS/images/Figure_14.4.jpg

OEBPS/images/Figure_14.3.jpg

OEBPS/images/Figure_14.6.jpg

OEBPS/images/Figure_14.5.jpg

OEBPS/images/Figure_15.10.jpg

OEBPS/images/Figure_15.1.jpg

OEBPS/images/Figure_15.11.jpg
Collection

e

db.BPBON1ineBooksCollectionMapReduce . mapReduce (
function() { emit(this.Year,1); }, «—
function(key, values) {return Array.sum(values)}, {

query:{Tags:{$in:['Programming'1}},
out:"MapReduceCollection”
}

OEBPS/images/Figure_15.13.jpg
Totar

There o 2acords whichhos same
o they 1o Grouped

S Documents whieh has Tag 35

nd Rodocadto
“umol nam ars 2

OEBPS/images/Figure_15.12.jpg
Tota umber of Documents which has Tag a5
rogramming: a0 4

There ae 2ecords which hs same Yesr s0 thoy
ro Grouped and Roduced o 1

OEBPS/images/Figure_15.15.jpg
fosnowce
2 o Cotections n 0

® 5B oGt apRcucecatictan Clecian
1 R apraasd oo

OEBPS/images/Figure_15.14.jpg
“MapRecucaColecton crestea by he
“ou Opton of ‘mapReducel)” Method

OEBPS/images/Figure_15.17.jpg
i Collection)

Step 1-Data
Projection

Step 2 - Data Filtration

-—-l

b
-

OEBPS/images/Figure_15.16.jpg
5 Check the Output s Privac on Screon
) Varty tht o actonsl collecion s crestod by
[meprciscaq Matod

OEBPS/images/Figure_15.19.jpg
Collection

db.BPBON1ineBooksCollectionProjectionPipeline. aggregate([
{ $project : { Year: 1, Tags: 1} },
{ $match : (lag :{$in:['Programming'1}} },
{ $group : { "$Year’, 'Total Number of Books Having
Programming Tag' : { $sum : 1} } },
{$sort : { _id : -1} }
1).pretty()

Group Operation

Match Operation

OEBPS/images/Figure_15.18.jpg

OEBPS/images/Figure_15.20.jpg
) racton e
e
5 G Se

S S

5 o e R i

OEBPS/images/Figure_15.2.jpg
Nambar of Pulishad Books Grouped by e

o Publaton

OEBPS/images/Figure_15.21.jpg
i s copeice
3 [Ao sineCallocbor”
e e i

OEBPS/images/Figure_15.4.jpg
Yotal Numbr o Pages n sl he Bocks Grauped
) i respocive Yeor of Publcaon by wing
Snotnar Fiald a2 ne Opton

OEBPS/images/Figure_15.3.jpg
Numier of Publshad Books Grouped by thir
Taspacive aar o Publzaton win Arthais
‘Gperatonn the Group Outp

OEBPS/images/Figure_15.6.jpg
Maimum Number o Pages n allhe Books
Grouped by el respactive st o Publeaton by
g another Fiid o3 the Option

OEBPS/images/Figure_15.5.jpg
nvarage Number of Pages n ol the Sooke
rouped by el respectivs yoar of Publcaon by |
ueing snotner i 55 ths Opton

OEBPS/images/Figure_15.8.jpg
T
(rouped by i 1espacive
uiig anothe Field 35 the Opion

Tags which are used nal e Bocks
\ of Publeaton by

OEBPS/images/Figure_15.7.jpg
A1 e Tage which are used i il i Gooke
Grouped by e rospecive Yoarof Publcaton by
g anotherField 33 ths Opton

OEBPS/images/Figure_16.1.jpg
The database for
modern applications

OEBPS/images/Figure_15.9.jpg
Latos i of he Books Grovped by tor
specia Year o Publestion by ueing anather
Fied a5 the Opton

OEBPS/images/Figure_16.10.jpg
it s o

[
e —y

o

OEBPS/images/Figure_16.12.jpg
- |

P — -

OooegoDp Cot S e S O

MongoD8 Compass

A6 U8 o g8, g8 Comps

Tt ot orgs08 o,

it e 0 s

o Eonon

OEBPS/images/Figure_16.11.jpg
PR ———

MongaDB Compaze.
s Ut g8 ergoB Comps
e et i s e Con

Morun08 s’ st s v

Compass
T it v o orgs08 Copass.
[

(SR - |

il Dounioncs o

OEBPS/images/Figure_16.14.jpg

OEBPS/images/Figure_16.13.jpg
PR S——

MongeD8 Compase. i e

G |

[

Tre oo st orgs0B s, T
it s 0 s

[

“e
(SR - |
R —— o

OEBPS/images/Figure_16.16.jpg
Welcome to MongoDB Compass

Performance Charts

OEBPS/images/Figure_16.15.jpg

OEBPS/images/Figure_16.18.jpg
New Connection

g e

OEBPS/images/Figure_16.17.jpg

OEBPS/images/Figure_16.2.jpg
database for
n applications

OEBPS/images/Figure_16.19.jpg
New Gonnection

-0

OEBPS/images/Figure_16.20.jpg
[—

OEBPS/images/Figure_16.22.jpg

OEBPS/images/Figure_16.21.jpg

OEBPS/images/Figure_16.24.jpg
[—— pre

OEBPS/images/Figure_16.23.jpg

OEBPS/images/Figure_16.26.jpg
J—

BPBOneBocksDB BPBONIneBoksCallecionProjectonPpeline

[nde Now Documant

|Other CRUD Oprations Like

1) Edi Document
12 Gopy Bocumant
3) Clone Document
/4 Deets Documant

-

OEBPS/images/Figure_16.25.jpg
J—
[EPEOTeB5008 BPEONIeBoaKeCalTToPoReiorPpeine

T

OEBPS/images/Figure_16.3.jpg
MongoDB Compass

OEBPS/images/Figure_16.27.jpg
J—

BPBONIneBocksDB.BPBONInsBocksCallcionProjectonPpeline

New Tag Added n Tage
Fioid

OEBPS/images/Figure_16.4.jpg
0 Sonrtt tengnconen! # (8 =N

PR S—" “e:
QmmgsDB. G S L St Gt g - |
MongeDB Compass. pr— =
2515 08 g8, orgB Compss ios o'k e G sotcuman s a2

e, otk s Comre rgco o e o Morgs08 oo =
@ s

MergeDB Copas st s v Ssrons o, F o st o wen s s e

— o
Tt oo, gt O - B
nitairreboggpli et s

et

OEBPS/images/Figure_8.16.jpg
Basad on the Find Crafria we get
he numberof Books which
yoar_of_publicaton” =194

OEBPS/images/Figure_8.15.jpg

OEBPS/images/Figure_8.14.jpg

OEBPS/images/Figure_8.6.jpg

OEBPS/images/Figure_8.5.jpg

OEBPS/images/Figure_8.4.jpg

OEBPS/images/Figure_8.3.jpg

OEBPS/images/Figure_8.2.jpg

OEBPS/images/Figure_8.18.jpg

OEBPS/images/Figure_8.17.jpg

OEBPS/images/Figure_7.6.jpg

OEBPS/images/Figure_7.5.jpg

OEBPS/images/Figure_8.13.jpg

OEBPS/images/Figure_8.12.jpg

OEBPS/images/Figure_8.11.jpg
s ramed 5
Documents

OEBPS/images/Figure_8.10.jpg

OEBPS/images/Figure_8.1.jpg

OEBPS/images/Figure_7.9.jpg
proty() Method to display documantsin more readsbie format

OEBPS/images/Figure_7.8.jpg

OEBPS/images/Figure_7.7.jpg

OEBPS/images/Figure_2.27.jpg

OEBPS/images/Figure_9.5.jpg
Data Type Valus i an Objoct

OEBPS/images/Figure_2.26.jpg

OEBPS/images/Figure_9.4.jpg
Data Typo Value is an Ariay

OEBPS/images/Figure_2.25.jpg
— [—

OEBPS/images/Figure_9.3.jpg
Data Type Valus is Double

OEBPS/images/Figure_2.24.jpg

OEBPS/images/Figure_9.2.jpg
Data Type Value i Siring

OEBPS/images/Figure_9.16.jpg

OEBPS/images/Figure_2.5.jpg
Choose which type of deployment is best for you

MongoDB Enter

MengaDB Cor

OEBPS/images/Figure_2.4.jpg

OEBPS/images/line.jpg

OEBPS/images/Figure_2.30.jpg

OEBPS/images/Figure_9.9.jpg
Data Type Valua i Nul

OEBPS/images/Figure_2.3.jpg
The database for
modern applications

OEBPS/images/Figure_9.8.jpg

OEBPS/images/Figure_2.29.jpg

OEBPS/images/Figure_9.7.jpg
Data Type Valua is Objoctid

OEBPS/images/Figure_2.28.jpg

OEBPS/images/Figure_9.6.jpg
Dats Typa Valus i Binary Dsta

OEBPS/images/Figure_2.17.jpg
——

Gesatas
NongeDf Atis

OEBPS/images/Figure_9.1.jpg
Data Type Value isIntager

OEBPS/images/Figure_2.16.jpg
PR ——— e s re
Oomgodn. G e g

i
P ep——r—

Henge08 st

Gntsatag

MongoDB Ats

OEBPS/images/Figure_8.9.jpg

OEBPS/images/Figure_2.15.jpg
[—
ik

OEBPS/images/Figure_8.8.jpg

OEBPS/images/Figure_8.7.jpg

OEBPS/images/Figure_2.23.jpg

OEBPS/images/Figure_2.22.jpg

OEBPS/images/Figure_9.15.jpg

OEBPS/images/Figure_2.21.jpg
kot e o0 oy e Yo o g iy x

Want an alternative to
MongaDB yourself?

Getthe fuly managed Mongo] | O EESEE,

Aaure, and GCP.

< Do oy g
[kl =

D ————— < som
oo s

PR———

o ot b RIS i A =

P —

<

OEBPS/images/Figure_9.14.jpg
1 Daa Type Valuois Boolean

OEBPS/images/Figure_2.20.jpg
e

OEBPS/images/Figure_9.13.jpg
Data Type Value is Timestamp

OEBPS/images/Figure_2.2.jpg
=8 Windows10

OEBPS/images/Figure_9.12.jpg
| DanType v

OEBPS/images/Figure_2.19.jpg

OEBPS/images/Figure_9.11.jpg
————— DanTypeVeluois avaSeript

OEBPS/images/Figure_2.18.jpg
e

Herse08 st

OEBPS/images/Figure_9.10.jpg
ata Typo Value is Rogular Expression

OEBPS/images/Figure_19.22.jpg

OEBPS/images/Figure_3.2.jpg

OEBPS/images/Figure_19.21.jpg

OEBPS/images/Figure_3.19.jpg
it i
s e o3 o e
I e R AT e

i Pkt 1t skttt tated snd ae o orer e

TR T —

OEBPS/images/Figure_19.20.jpg
coEOas aE ey

OEBPS/images/Figure_3.18.jpg

OEBPS/images/Figure_19.2.jpg
Query Router (mongos)

‘ Key Range 1-100 ‘ ‘ Key Range 101200 ‘ ‘ Key Range 201300 ‘
L U
s:m a Shard 2. Shard 3
(Replica Set) (Replica Set) (Replica Set)
Primary Server Primary Server Primary Server
Secondary Server 1 Secondary Server 1 Secondary Server 1

Secondary Server 2 Secondary Server 2 Secondary Server 2

OEBPS/images/Figure_3.17.jpg

OEBPS/images/Figure_19.19.jpg

OEBPS/images/Figure_3.16.jpg
sBoai#e

OEBPS/images/Figure_3.15.jpg
sBoa

OEBPS/images/Figure_19.27.jpg

OEBPS/images/Figure_19.26.jpg

OEBPS/images/Figure_3.23.jpg

OEBPS/images/Figure_19.25.jpg

OEBPS/images/Figure_3.22.jpg

OEBPS/images/Figure_19.24.jpg

OEBPS/images/Figure_3.21.jpg
SRR iy etaeas ik oprtibvm
ey fo o i et o i 4 .-
i)

Frepring Stk ALy o v 1 ine i e

g e s el T s
St e s s

OEBPS/images/Figure_19.23.jpg

OEBPS/images/Figure_3.20.jpg
R —— e oI
g 00
et v e et
AT a1t i om bt boncfnate i hborat.pt g sotems 3.1 st 10,141 bt (137 18]
G AT I U MENIND S NN R LA I
G4 Mg AT I T M S RN, S TR el
G2 M UGN I ST MG T e S e
PR R e e R e v
i
e S it
LS Rl T
e e s et et L,

OEBPS/images/Figure_19.12.jpg

OEBPS/images/Figure_3.1.jpg
LT

OEBPS/images/Figure_19.11.jpg

OEBPS/images/Figure_2.9.jpg
Want an aiternative o nstaling and running ottt oo s e
MongoD8 yoursal?
ot the fully managed MongoDB service on
AWS, Azure, and GCP.
Merge08 ssssoss

» ') =

OEBPS/images/Figure_19.10.jpg
T]) e
v [i—= P
o b= e sz @
s ¢

OEBPS/images/Figure_2.8.jpg
Want an aiternative to nstaling and running
MongoD8 yoursal?

ot the fully managed MongoDB service on
AWS, Azure, and GCP.

T R ———

ot st o

OEBPS/images/Figure_19.1.jpg
| 2

U

Shard 1
(Replica Set)

Primary Server

Secondary Server 1

Secondary Server 2

Shard2
(Replica Set)

Primary Server

Secondary Server 1

Secondary Server 2

Shard3.
(Replica Set)

Primary Server

Secondary Server 1

Secondary Server 2

Shard 4.
(Replica Set)

Primary Server

Secondary Server 1

Secondary Server 2

OEBPS/images/Figure_2.7.jpg

OEBPS/images/Figure_2.6.jpg
0 Segerncommaiy teies * [i

« 5 O [t | @ “re
S IS |
MongoDB Enerpre Sener -
MongoDB Cammunty Sener e vomis]
et 0 e s Coneyveon o pvcd Bt e s NorgB pripey

Ermrn s 3o st brbrrOB e Abmcas g o Py | oo

opt 0 s LAt i Tt v vt W0 et it v | | woams

Corpreerse e i 4 s 0 s A, o e o A

 mamoyStorgeErgoe [v—r— ° =
Detrhgh o spresete Seceyou sy LOAPw
 Encoprd Snpn Evins powrprien

st = 9

OEBPS/images/logo1.jpg
To View Complete
898 Publcations Catslogue

Scan the QR Code:

OEBPS/images/logo.jpg

OEBPS/images/Figure_19.18.jpg

OEBPS/images/Figure_19.17.jpg

OEBPS/images/Figure_3.14.jpg
Pamoa

OEBPS/images/Figure_19.16.jpg

OEBPS/images/Figure_3.13.jpg
p, otz

OEBPS/images/Figure_19.15.jpg

OEBPS/images/Figure_3.12.jpg

OEBPS/images/Figure_19.14.jpg

OEBPS/images/Figure_3.11.jpg
sBoa#e

OEBPS/images/Figure_19.13.jpg

OEBPS/images/Figure_3.10.jpg
yHoa#e

OEBPS/images/Figure_17.19.jpg
Choose which type of deployment is best for you

OEBPS/images/Figure_19.42.jpg

OEBPS/images/Figure_4.1.jpg

OEBPS/images/Figure_17.18.jpg
database for
n applications

OEBPS/images/Figure_19.41.jpg

OEBPS/images/Figure_3.9.jpg
ooy e

MONGODE YOUISEI? sttt s s

et thefull managed A
Aaue,and GCP.

OEBPS/images/Figure_17.17.jpg
S S R S s v e v s vy e

OEBPS/images/Figure_19.40.jpg

OEBPS/images/Figure_3.8.jpg

OEBPS/images/Figure_17.16.jpg

OEBPS/images/Figure_19.4.jpg
»e

B . e
. . =
- n

OEBPS/images/Figure_3.7.jpg

OEBPS/images/Figure_17.15.jpg

OEBPS/images/Figure_19.39.jpg
CE LN T
iy

i
i
¥

03 LRI

OEBPS/images/Figure_3.6.jpg

OEBPS/images/Figure_17.14.jpg

OEBPS/images/Figure_19.38.jpg

OEBPS/images/Figure_3.5.jpg

OEBPS/images/Figure_19.37.jpg

OEBPS/images/Figure_3.4.jpg
The database for
modern applications

OEBPS/images/Figure_3.33.jpg
B s L e

s
HARIRALAEN o v ano the 21 teson o vy rcomntes

p—

e
famaisten)
it
R R]

et e’ e clou-bsed st s, e w1 he cceve, s sty
iR itk e R

e trtg ot 1 b ottt o 3 et st 4 e . o oy
10 Sl S S Tt SR S L
L et it B St s

10 ot fre etotng, rn e fototng oo b ettt
o Ry SEE R e B e S ot

e D g rgcsepesias fteyson

OEBPS/images/Figure_17.22.jpg
e

MengoDB CLifor Cloud

MengoDB Datassse Tooks

T 08 Dssbae T s ctcin o o i ot Wi dorar T
o e oty Ko o VegeD8 S £ S0 14 e e A R R
o et 4 00 2y ri See o ergaR Db ok ot e it

Dz - |@

“re
R -
S — n

- Q

OEBPS/images/Figure_17.21.jpg
“re

MongoDB CLi for loud

MongoDB Database Tols @ Jor— "

The ongeD8 Dtabee oo r st of commad e o wesking i MonguDS depoyment These Toor

bl o eyt | 2
[

OEBPS/images/Figure_19.45.jpg

OEBPS/images/Figure_17.20.jpg
MangaDB Shel

MongeDB Compass.

MongaDB CLI for loud

VorgoDs Dataoae Too) @

MongoDE Connectar or BI

OEBPS/images/Figure_19.44.jpg

OEBPS/images/Figure_4.11.jpg
@ Torminal Shell Edit View Window Help

ese
anushornaGPoters-Hacsaok-pro - ¥ brew install mongods-community
Instalting mongod-community fron songods/bren

Ture/ocat/con
Tnataling mongeds/bren/mongods-camunity
Cove
To have Launchd start nongods/brew/mongodo-conaunity now and restart at login

brew services start mangods/bren/mongods-conaunity
Or, 57 yau don't nant/need 3 background service you can Just run:

Rongod —-contly Just/locol/ote/mangod:cont
- Simnary
1 Juse/locol /Collor/mongodb—cammunity/4.4.0: 11 Files, 136746, bullt in 3 seconds
= Cavente

ngods-community

0 Launcha start mongodb/bren/mongods-conaunity now and restart ot Login

brew services start mangods/bren/mongod-conaunity
0, 57 yau don't nant/need 8 background service you can Just zun: o

fongod ~-confiy fust/local /ete/mangod:cont
manoeaeeadPaters-Hachok Pro - %

OEBPS/images/Figure_17.2.jpg
P T oow])

Sttt

. A . bepen et e e provtoned
e

— [T i e i e N ot e

e SrmnITSIUSSOTIIN el
A e aey M Lo
S I T T R
A e e e e froacentt
Sy T L, ey
Arrbmemer e s vt o Mt e
Shoiidusuen Sy gt i S ot s P

OEBPS/images/Figure_19.43.jpg

OEBPS/images/Figure_4.10.jpg
@ Terminal Shell Edit View Window Help

manushareaGhoters-MacBook-Pro - X brew install mongodb-comsunity

2 e
Tnstaning mon

mongod-database-taols
bren/mongods-community dependency: mongods-database-taois

OEBPS/images/Figure_16.9.jpg
MongaDB Compaze.

et e o onps
A Gl e o8 Corps et

e et o e Comres

e — S

T it v o orgs08 Copass.
ik oaew s s

S TR

0
o
—

OEBPS/images/Figure_19.32.jpg

OEBPS/images/Figure_3.3.jpg
Ubuntu 18.04.4 LTS

OEBPS/images/Figure_16.8.jpg
0 Ot uengnconeen! # [
PR

MongaDB Compase.

251 08 o g8, org Comps s o' e s st e S ok
e, ot s Conre sr g e g Morg 808 Comgo.

VergnB Copass s s s vsons dsrns o Fs st sen s s e

Mordu08 Copas Dcumerson
Compass Resdony Eonon

T o s 0B Corpss, T e sy 158
s o o epans st s ot

Pt

“e:

e

e —

OEBPS/images/Figure_19.31.jpg

OEBPS/images/Figure_3.29.jpg

OEBPS/images/Figure_16.7.jpg
© Sesrwgttcomsen # () =9 x

€5 0 B e—— “e
L T v Y ERESea. - |
MongeDB Compass e — o
00 U M, g Compt o i e G s ot e, Tz

Iobeung dmt it nd .o gt o i mpon o orgo08 Coness. =

o8 Conpae i ama vl rsior,dadb: o o frninc o i e

Torgs8 Compers s
. e o oo et
o RPN s e O [I
m— o
i et
et oo oot WSl uhuseb oot
a0 s possiinineend Q
=) !

80 i

OEBPS/images/Figure_19.30.jpg

OEBPS/images/Figure_3.28.jpg
o s o s onrrsoh .3\ e rengdhrg 0 .33 (3,33 1

R e)
B i o, e oy s 1 et
U SR B TR 2.5

OEBPS/images/Figure_16.6.jpg
© Sesrwgttcomsen # () =9 x

€5 0 B e—— “e
L T v Y ERESea. - |
MongeDB Compass e — o
00 U M, g Compt o i e G s ot e, Tz

Iobeung dmt it nd .o gt o i mpon o orgo08 Coness. =

o8 Conpae i ama vl rsior,dadb: o o frninc o i e

Torgs8 Compers s
. e o oo et
o RPN s e O [I
m— o
i et
et oo oot WSl uhuseb oot
a0 s possiinineend Q
=) !

80 i

OEBPS/images/Figure_19.3.jpg
Query Router
(The mongos Instance Port 27043)

Key Ranges X ‘ Key RangesY Key Ranges Z |
Shard 1 Shard 2 Shard 3
(Replica Set 1) (Replica Set 2) (Replica Set 3)
Primary Server Primary Server Primary Server
Port 37017 Porté7oi7 Port 57017
Secondary Server Secondary Server Secondary Server
Port 37018 Port 47018 Port 57018
Secondary Server Secondary Server Secondary Server
Port 37019 Port 47019 Port 57019

OEBPS/images/Figure_3.27.jpg
e i
f—— 020

s 8 s ecaty oot as ar 2 o ceut
e it R —

e et .n,‘.u:_ et ety s

2 b]

OEBPS/images/Figure_16.5.jpg
0 St uengnconen! # [
P e ——

MongeD8 Compase.
A6 08 o g8, orgeB Comss s ' e s s e S by
e, ot e s o Comscl gt vt e orgeD8 Campi

MergiR Copas ¢ Bt v vsons desrad ko, F o st o sn e e 00

WongaDB Coms
v i downioad geting staried
Tre o 0B Corpss, T s sy s
s o o g e st s
et
ntts Eston CommuntyEaton
comactos st Ducamctorts CammedySoe it
i —" st vt
Conpass.

(T

we

e

R S——
Tirawn

OEBPS/images/Figure_19.29.jpg

OEBPS/images/Figure_3.26.jpg
e g

8 on
s e a3 e (o 1
st e s et [

e e s Sanc o g e v ke (4003 8)
i e e e R e)
B 2 ST e T
o Lt o bt s or et

OEBPS/images/Figure_19.28.jpg

OEBPS/images/Figure_3.25.jpg
R R
TR T on et

OEBPS/images/Figure_3.24.jpg

OEBPS/images/Figure_17.13.jpg

OEBPS/images/Figure_17.12.jpg

OEBPS/images/Figure_19.36.jpg

OEBPS/images/Figure_17.11.jpg
“re
L@ .
B . e
. - :
- s B

OEBPS/images/Figure_19.35.jpg

OEBPS/images/Figure_3.32.jpg
St v g cauns

st (ttmesen)
SRS FAIAD] + wonns wstr the 15 ftepsten o strnty oot wh e st sor

s S s, gt st et

S

I3 e e etatng, rn e ooty o a1
St A s et —

OEBPS/images/Figure_17.10.jpg

OEBPS/images/Figure_19.34.jpg

OEBPS/images/Figure_3.31.jpg
v et
BRIERITE | SR RANRUID] v v the 25 tepsen s strnty cocomenes st he wedtae ser

T B 1 st) < i e
i A Boiaisnr oriaii | Comr fintimatiten) o o bt ke Sers TD £ SN ¢ wmrstrtcen
RSN S NIas]

eRPLCS Sk ot eplopmnt (4 wHTLEaRo, P, opration stotskLen 260

e ettt o 0 b Ll c 3 e st 8 e LR s o v
123 S e Tl P L e
L i it Bt St s 5 o

s Srnannkly hosie Sha Fenraer 1o he fooeing Commnce 8 GLAEFetnetor 1)

OEBPS/images/Figure_17.1.jpg
“re
L@ .
B . e
. - :
- s B

OEBPS/images/Figure_19.33.jpg

OEBPS/images/Figure_3.30.jpg
O e,
e R——

RHETpR SR ———

