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Preface


Data is the fuel in the current information age. Data analysis is quickly becoming a popular topic due to the rapid growth and collection of data. To comprehend data insights and uncover hidden patterns, we require a data analyst who can collect, understand, and analyze data that helps make data-driven decisions.

This book is the first step in learning data analysis for students. This book lays the groundwork for an absolute beginner in the field of Python Data Analysis. Because Python is the language of choice for data analysts and data scientists, this book covers the essential Python tools for data analysis. For each topic, there are various hands-on examples in this book. This book's content covers the fundamentals of core Python programming, as well as Python's widely used data analysis libraries such as Pandas and NumPy, and the data visualization library matplotlib. It also includes the fundamental concepts and process flow of Data Analysis, as well as a real-time use case to give you an idea of how to solve real-time Data analysis problems.

This book is divided into 12 chapters. They will cover Python basics, Data Analysis, and Python Libraries for Data Analysis. Following are the details of the chapter's content.

Chapter 1 covers the introduction to Python; in this chapter, we will get information about the history of Python and its evaluation. Also, learn Python's various features and versions 1. x, 2. x, and 3. x. We discussed the real-time use cases of Python.

Chapter 2 covers the installation of Python and other Data Analysis Libraries in order to set up a Data Analysis environment.

Chapter 3 starts with the Python programming building blocks such as Variable in Python, Operators, Number, String, Boolean data types, Lists, Tuples, Sets, and Dictionaries. All the programing concepts have been explained with hands-on examples.

Chapter 4 will explore another essential programming construct, how to write conditional statements in Python. In this chapter, we will learn how to write the conditional instructions in Python using if…else, elif, and nested if. All the programing concepts have been explained with hands-on examples.

Chapter 5 covers the concepts of loops in Python. This chapter has a good explanation with appropriate hands-on examples for the while loop, for loop, and nested loops.

Chapter 6 will have content about the functions and modules in Python. It explained how to write the functions in Python and how to use them. Also, this chapter has information about the Python modules and other essential concepts of functional programming like lambda function, map(), reduce(), and filter() functions.

Chapter 7 will cover how to work with file I/O in Python. How to read and write on the external files with various modes and to save the data on file. All concepts have been explained with hands-on examples.

Chapter 8 covers the Introduction to Data Analysis fundamental concepts. This chapter discusses the data analysis concepts, why we need that, and the steps involved in performing a data analysis task. This chapter covers all the basic foundations we need to understand the real-time data analysis problem and the steps to solve the data analysis problem.

Chapter 9 covers the introduction to Pandas Library, a famous and vastly used Data Analysis Library. This chapter has a detailed explanation of features and methods provided by this Library with rich hands-on examples.

Chapter 10 covers the introduction to NumPy Library, a famous and vastly used Numerical Data Analysis Library. This chapter has a detailed explanation of features and methods provided by this Library with rich hands-on examples.

Chapter 11 covers the introduction to Matplotlib Library, a famous and vastly used Data Visualization Library. Data Visualization is a significant part of the Data Analysis process; it is always important to present the Data Analysis results or summaries with an appropriate visual graph or plot. This chapter has a detailed explanation of features and methods provided by this Library with rich hands-on examples of various types of graph plots.

Chapter 12 includes a data analysis use case with a given data set. This chapter has explained one data analysis problem statement and performed an end-to-end data analysis task with a step-by-step explanation to answer the questions mentioned in the problem statement so that learners can clearly understand how to analyze data in real-time.
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CHAPTER 1

Introducing Python


These days Python is getting more attention among developers, especially from data scientists, data analysts, and AI/ML practitioners. In this chapter, we will discuss the history, evaluation, and features of Python, due to which it is one of the most popular programming languages today.

According to the latest TIOBE Programming Community Index (https://www.tiobe.com/tiobe-index/), Python is ranked first among the most popular programming languages of 2022.

Structure

In this chapter, we will discuss the following topics:


	A brief history of Python

	Different versions of Python

	Features of Python

	Use cases of Python



Objectives

After studying this chapter, you should be able to:


	get information about the creator of Python

	get information about the evaluation of Python

	discuss the feature and use cases of Python



A brief history of Python

Python is a general-purpose and high-level programming language; it supports the programming’s procedural, object-oriented, and functional paradigms.

Python was conceived by Guido van Rossum in the late 1980s at Centrum Wiskunde & Informatica (CWI) in Nederland as a successor of the ABC language. Python was initially released in 1991.

Python was named after the BBC TV show Monty Python’s Flying Circus, as Guido liked this show very much.

Versions of Python

Python version 1.0 was released in 1994; in 2000, it introduced Python 2.0, and Python 3.0 (also called “Python 3000” or “Py3K”) was released in 2008. Most of the projects in the industry now use Python 3.x. For this book, we are using Python 3.8:



	
Python Version


	
Release Date





	
0.9


	
2/20/1991





	
1


	
1/26/1994





	
1.1


	
10/11/1994





	
1.2


	
4/13/1995





	
1.3


	
10/13/1995





	
1.4


	
10/25/1996





	
1.5


	
1/3/1998





	
1.6


	
9/5/2000





	
2


	
10/16/2000





	
2.1


	
4/15/2001





	
2.2


	
12/21/2001





	
2.3


	
6/29/2003





	
2.4


	
11/30/2004





	
2.5


	
9/19/2006





	
2.6


	
10/1/2008





	
2.7


	
7/3/2010





	
3


	
12/3/2008





	
3.1


	
6/27/2009





	
3.2


	
2/20/2011





	
3.3


	
9/29/2012





	
3.4


	
3/16/2014





	
3.5


	
9/13/2015





	
3.6


	
12/23/2016





	
3.7


	
6/27/2018





	
3.8


	
10/14/2019





	
3.9


	
10/5/2020





	
3.10


	
10/4/2021







Table 1.1: Different versions of Python (Source: https://en.wikipedia.org)

Note: Official support for Python 2 ended in Jan 2020.

Features of Python

Here, we will see the various properties/features of Python, which make Python more popular among all other programming languages.

General purpose

A programming language, which can develop the various applications of domains, not restrict within the specific use of the area, is known as the general-purpose programming language. Python is a general-purpose programming language as we can develop web applications, desktop applications, scientific applications, data analytics, AI/ML applications, and many more applications of various domains.

Interpreted

Python is an interpreted programming language, which means it executes the code line by line.

High level

Python is a high-level programming language like C, C++, and Java. A high-level programming language is more readable and easier to understand for humans as it abstracts to machine languages, which is close to the machine, less human-readable.

Multiparadigm

Python programming language supports multiple programming paradigms; this made Python more powerful and flexible in developing the solution for complex problems. Python supports procedural programming, but it has object-oriented programming, functional programming, and aspect-oriented programming features.

Open source

Python is open source and has excellent developer community support. It has a rich list of standard libraries developed by the Python community, which supports rapid development.

Portable

Python is a portable programming language; Portable means we can execute the same code on multiple platforms without making any code changes. If we write any code in the mac machine and want to run it on the Windows computer, we can execute it without making any code change.

Extensible

Python provides the interface to extend the Python code with other programming languages like C, C++, and so on. In Python, various libraries and modules are built using C and C++.

Embeddable/Integrated

Unlike the extensible, embeddable means, we can call Python code from other programming languages, which means we can easily integrate Python with other programming languages.

Interactive

Interactive Python Shell mode provides the Read, Eval Print, and Loop (REPL) feature, which gives instant interactive feedback to the user. It is one of the features that offers Python more popularity among data analysts and data scientists.

The steps in the REPL process are as follows:


	Read: takes user input.

	Eval: evaluates the input.

	Print: exposes the output to the user.

	Loop: repeat.



Due to this REPL feature, prototyping in Python is easier than other programming languages like C, C++, and Java.

Dynamically typed

Python is a dynamically typed programming language, unlike C, C++, and Java. Programming languages for which type checking occurred at run-time are known as dynamically typed.

Garbage collected: Python automatically takes care of the allocation and deallocation of memory. The programmer doesn’t need to allocate or deallocate memory in Python as it does in C and C++.

Python use cases

Python is one of the fastest evolving and most popular programming languages today. Python is used from automation of day-to-day manual works to AI implementations. In this section of the chapter, we discuss how Python is used to solve our business problems and the applications of Python.

Automation

For automation, Python is widely used to write automation scripts, utilities, and tools. For example, in automation testing, various Python frameworks are used by the developers.

Web scraping

Collecting a large amount of data or information from the web pages is a tedious and manual task, but Python has various efficient libraries like Beautiful Soup, Scrapy, and so on, for web scraping

Healthcare

Advanced Machine Learning solutions are used in medical diagnostics systems and disease prognosis predictions. Developed system is capable of disease diagnosis by analyzing MRI and CT scan images.

Finance and banking

Finance and banking fields are widely using Python in analyzing and visualizing finance datasets. Applications for risk management and fraud detection is developed using Python and then used by many Banking organizations.

Weather forecasting: We can forecast or predict the weather conditions by analyzing the weather sensor data and applying machine learning.

Data analytics

Data analytics is one of the most famous use cases of Python, and we have many powerful tools and libraries in Python for data analysis and data interpretation, using the various visualizations methods. Pandas, NumPy, Matplotlib, seaborn many more libraries are available for data analytics and data visualization. We can analyze the multi nature of data using Python and can explore new insights. We will focus on this use case in this book.

AI/ML

Artificial Intelligence and Machine Learning give more popularity to Python; Python is one of the best suited programming languages for AI and ML. There are many libraries like SciPy, Scikit-learn, PyTorch, TensorFlow, Keras, and so on, available in Python for AI and ML.

Conclusion

In this chapter, we have learned that Python is an open-source, high-level, interpreted programming language, which supports the programming’s procedural, object-oriented, and functional paradigms. It is used to develop various applications (Scripting, Web application, desktop GUI applications, Command Line utilities, and tools). We get information on how the Python programming language gets developed and evolved over years and years.

After completing this chapter, you can clearly understand the programming language’s nature and where we can use this.

In the next chapter, we will learn how to set up and configure Python and its developmental environment to learn Python and data analysis.

Questions


	What is Python, and why is it so popular?

	Who has developed the Python programming language?

	Does Python support Object Oriented programming?

	List some use cases where we can use Python programming

	What are the different ways to run the Python program?

	What are the features of Python programming?



Points to remember


	Guido van Rossum developed Python, and in 1991 it was released publicly.

	Python is a high level, interpreted, dynamically typed programming language.

	Python is a multiparadigm programming language.

	Due to interactive REPEL, future prototyping is easy with Python.

	Python is easy to learn but takes time to master.







CHAPTER 2

Environment Setup for Development


This chapter will demonstrate step by step how to install the Anaconda package manager and Jupyter Notebook for Python development on Windows machine for a data science project.

Like any other programming language, we need the Python software for installation; also, we need to install many other libraries specific to the task. For data analysis and data science, the project Anaconda is quite popular, as it is easy to install and use.

Anaconda is a robust package manager that has many pre-installed open-source essential packages (Pandas, NumPy, Matplotlib, and so on). We will use Python Version 3.8 and Jupyter Notebook throughout this book.

Structure

In this chapter, we will discuss the following topics:


	Environment setup for Python development

	Installing Anaconda

	Setting up Jupyter IPython Notebook

	Testing the environment



Objectives

After studying this chapter, you should be able to:


	Set up Python development environment on the local machine

	Work with Jupyter Notebook

	Execute Python code to test the installation



Downloading and installing the Anaconda package

Here, we have the Anaconda installation steps on the Microsoft Windows 10 machine.

Step 1: Go to the https://www.anaconda.com/distribution/#download-section, you will get the screen as shown below, and click on the Download button.


[image: ]

Figure 2.1: Anaconda download page

Step 2: Once you click on the download page, it will start downloading the installation exe file (Anaconda3-2021.05-Windows-x86_64.exe).


[image: ]

Figure 2.2: Anaconda downloading in progress

In the screenshot above, you can see the download start for the Anaconda exe.

Step 3: Once the download is completed, right-click on the installation file (Anaconda3-2021.05-Windows-x86_64.exe) and select Run as Administrator.


[image: ]

Figure 2.3: Running the exe to install the Anaconda

Step 4: Click on the Next button, as shown in following screenshot:


[image: ]

Figure 2.4: Anaconda installation – Welcome screen

Step 5: Click on the I Agree button after reading the License Agreement.


[image: ]

Figure 2.5: Anaconda installation – License Agreement screen

Step 6: Click on the Next button after choosing the Just me/All users radio button, as shown below. In this case, it is All Users.


[image: ]

Figure 2.6: Anaconda installation – Installation type screen

Step 7: Now, specify the installation folder path and click on the Next button.


[image: ]

Figure 2.7: Anaconda installation – choose installation location screen

Step 8: Now, check both the checkboxes and click on the Install button.


[image: ]

Figure 2.8: Anaconda installation – advanced options screen

Step 9: After clicking the Install button, it will start installing. You will get the following screens; wait until installation is complete:


[image: ]

Figure 2.9: Anaconda installation – installation in progress screen



[image: ]

Figure 2.10: Anaconda installation – installation in progress with detailed information screen

Step 10: Once it is complete, click on the Next button.


[image: ]

Figure 2.11: Anaconda installation – installation complete screen



[image: ]

Figure 2.12: Anaconda installation – Anaconda setup screen

Step 11: Click on the Finish button on the new screen. Now, Anaconda is installed successfully.


[image: ]

Figure 2.13: Anaconda installation – Installation finish screen

Once you click on the Finish button, it will open up a web page on the browser for more information related to the Anaconda product, which you can ignore. At this stage, we have completed our Anaconda installation. Now, time to test our installation and understand the Python and anaconda development environment.

Testing the installation

After completing the Anaconda installation, we will check our setup of Python and Jupyter Notebook; are they successfully installed or not? To verify our installation, you need to perform the following steps:

Testing Python in interactive shell

Step 1: Press Windows + R to open the Run box and hit enter after typing cmd inside the prompt.


[image: ]

Figure 2.14: Opening the cmd window

Step 2: To check if Python is installed or not, type Python –version in command prompt and hit Enter. If you get output like the following screenshot, it means Python got installed successfully:


[image: ]

Figure 2.15: Checking the installed Python version

Step 3: Now, type Python and hit Enter to initialize the Interactive Python Shell. You will get output like the following screenshot:


[image: ]

Figure 2.16: Opening the Python interactive shell

Step 4: Now type print(“Data Analysis with Python”) and enter to execute this print instruction. If the installation was successful, you would get output like the following screenshot:


[image: ]

Figure 2.17: Testing the print function with Python interactive shell

Step 4: To get out from the Interactive Python Shell, type quit() and hit Enter.


[image: ]

Figure 2.18: Closing the Python Interactive shell

Now, we have seen how to run the Python code using the Python interactive shell. Let’s see how we can use Jupiter Notebook to run the Python code.

Running and testing Jupyter Notebook

Jupyter Notebook is a popular platform for writing and executing Python code among data scientists and data analysts.

This section of the chapter will demonstrate how to run the Jupyter Notebook and how to execute the Python code.

Step 1: First, let’s create a working directory (simple windows folder) by typing the following command on cmd:

mkdir Data_Analysis_with_python



[image: ]

Figure 2.19: Creating the project directory

Step 2: Then, change the directory.


[image: ]

Figure 2.20: Change the current directory to a specified directory

Step 3: Now, type Jupyter Notebook in cmd and hit Enter.


[image: ]

Figure 2.21: Running the command to launch the Jupyter Notebook

It will start the local server, and you will get a Jupyter Notebook web page as shown below.


[image: ]

Figure 2.22: Starting up the Jupyter notebook local server

You will have a Jupyter Notebook webpage like the following screenshot:


[image: ]

Figure 2.23: Jupyter Notebook home page

Step 2: Change the click on the new drop-down button on the upper right side and select Python3.


[image: ]

Figure 2.24: Selecting the Python3 and opening the new notebook Page

Step 3: You will get a page like the following screenshot, where each row is called a cell. We can add and remove the cell by using the option mentioned in the File menu.


[image: ]

Figure 2.25: New Jupyter notebook page

Step 4: Now, we will write and execute the python print instruction. First, write the Python code given below into the cell, and to execute it press Shift+Enter (or use the menu option); it will run the code, and you will get the following:

print(“Welcome to Data Analysis with Python Course”)


[image: ]

Figure 2.26: Testing the print function in Notebook

If all steps, as mentioned earlier, have been completed successfully by you, it means you have successfully installed the Anaconda package for Python development.

Conclusion

In this chapter, we installed and tested the Anaconda-Python development environment. There are many IDEs available for Python Development in the marketplace. It is totally up to the developer to choose the IDEs; it depends on the developer’s convenience and choice. In general, most data scientists and analysts use Jupyter Notebook for their initial development.

In the next chapter, we will learn the basics of Python programming with hands-on coding examples.

Questions


	What is Anaconda?

	List some pre-installed Packages/Libraries in Anaconda.

	How to check the installed Python version?

	How to open Python interactive shell?

	What is Jupyter Notebook, and how can it be launched through cmd?







CHAPTER 3

Operators and Built-in Data Types


In the last chapter, we demonstrated how to install and run Anaconda and Jupyter notebook to develop and execute a Python program. In this chapter, we are going to learn about operators and built-in data types in Python. Operators and data types are necessary elements of any programming language. Data types are essential to store and retrieve the values in a program.

Structure

In this chapter, we will discuss the following topics:


	Variables in Python

	Operators in Python

	Built-in data types in Python

	Lists

	Tuples

	Sets

	Dictionaries



Objectives

After studying this chapter, you will be able to:


	Define a variable in Python

	Use appropriate data types in the Python program

	Work with a list, a tuple, sets, and a dictionary in Python



Variables in Python?

A variable is the name of a reserved memory location that holds some value.

For example: Let’s take a = 10. Here, ‘a’ is the variable name, the equal sign (=) is an assignment operator, and 10 is the value or literal. So, by using an assignment operator (=) in Python, we can reserve memory for value without explicitly declaring it.

Rules for defining a variable name in Python


	A variable name must begin with a letter or underscore (_); it cannot start with a number.

	It can contain only (A-Z, a-z, 0-9, and _ ).

	In Python, variable names are case-sensitive.



Operators in Python

To perform operations, we need operators, which are the function of the operation, and operands are the input to that operation. For example, 10+6 = 16; here, in this expression, 10 and 6 are the operands, and + is the operator.

Various types of operators in Python are depicted with their implementation in Python as follows.

Arithmetic operators

Arithmetic operators are required to perform arithmetic operations like addition, subtraction, multiplication, division, and so on. The following table is the list of arithmetic operators in Python:









	
Operator name


	
Operator symbol


	
Description


	
Example





	
addition


	
+


	
Add the two operands


	
a+b





	
subtraction


	
-


	
Subtract the right operands from the left operand


	
a-b





	
multiplication


	
*


	
Multiply the two operands


	
a*b





	
division or float division


	
/


	
Left operand divide by the right operand and gives the float value as a result


	
a/b





	
floor division


	
//


	
Left operand divide by the right operand and gives the floor value of division as a result


	
a//b





	
exponent


	
**


	
Raised the left operand to the power of right


	
a**b (3**2 means 3 to the power of 2)





	
modules


	
%


	
Gives the remainder of the division of the left operand by the right operand


	
a%b







Table 3.1: Arithmetic operators in Python

The following are some codes where we used arithmetic operators on the variables a and b:

Coding example(s)

a = 10

b = 8

# Addition (+)

addition =  a + b

print(‘addition       =>  a + b  =’,addition)

# Subtraction (-)

Subtraction =  a - b

print(‘Subtraction    =>  a - b  =’,Subtraction)

# Multiplication (*)

multiplication =  a * b

print(‘Multiplication =>  a * b  =’,multiplication)

# Division or float division (/)

division_float =  a / b

print(‘division_float =>  a / b  =’,division_float)

# Floor Division (//)

division_floor =  a // b

print(‘division_floor =>  a // b =’,division_floor)

# Modulus (%)

modulus =  a % b

print(‘modulus        =>  a % b  =’,modulus)

# exponent (**)

exponent = a**2

print(‘exponent       =>  a**2   =’,exponent)

Output:

addition       =>  a + b  = 18

Subtraction    =>  a - b  = 2

Multiplication =>  a * b  = 80

division_float =>  a / b  = 1.25

division_floor =>  a // b = 1

modulus        =>  a % b  = 2

exponent       =>  a**2   = 100

Relational operators

Relational operators are used for checking the relation between operand and to compare the values. According to the condition, these operators return ‘True’ or ‘False’ as a result. Please go through the relational operators in Python listed as follows:









	
Operator name


	
Operator symbol


	
Description


	
Example





	
equal to


	
==


	
compare if the value of the left operand is equal to the value of the right operand


	
a==b





	
not equal to


	
!=


	
compare if the value of the left operand is not equal to the value of the right operand


	
a!=b





	
less than


	
<


	
compare if the value of the left operand is less than the value of the right operand


	
a<b





	
greater than


	
>


	
compare if the value of the left operand is greater than the value of the right operand


	
a>b





	
less than or equal to


	
<=


	
compare the value of the left operand is less than or equal to the value of the right operand


	
a<=b





	
greater than or equal to


	
>=


	
compare the value of the left operand is greater than or equal to the value of the right operand


	
a>=b







Table 3.2: Relational operators in Python

The following codes depict the use of relational operators on the variables a and b:

Coding example(s)

a = 10

b = 8

# equal to relation (==)

print(“equal to relation => (a==b) is”, a==b)

# not equal to relation (!=)

print(“not equal to relation => (a!=b) is”, a!=b)

# less than relation (<)

print(“less than relation => (a < b) is”, a < b)

# greater than relation (>)

print(“greater than relation => (a > b) is”, a > b)

# less than or equal to relation (<=)

print(“less than relation => (a <= b) is”, a <= b)

# greater than or equal to relation (>=)

print(“greater than relation => (a >= b) is”, a >= b)

Output

equal to relation => (a==b) is False

not equal to relation => (a!=b) is True

less than relation => (a < b) is False

greater than relation => (a > b) is True

less than relation => (a <= b) is False

greater than relation => (a >= b) is True

Assignment operator

For assigning the value to a variable, we use assignment operators. The following is a list of assignment operators in Python:









	
Operator name


	
Operator symbol


	
Description


	
Example





	
Assign


	
=


	
Assign the value of the right operand to the left operand


	
a=b





	
Addition and Assign


	
+=


	
Add the value of the right operand to the left and assign the result to the left operand


	
a+=10 (a = a+10)





	
Subtract and Assign


	
-=


	
Subtract the value of right operand to the left and assign the result to the left operand


	
a-=10 (a = a-20)





	
Multiply and Assign


	
*=


	
Multiply the value of right operand to the left and assign the result to the left operand


	
a*=10 (a = a*5)





	
Divide and Assign


	
/=


	
Divide the value of right operand to the left and assign the result to left operand


	
a/=2 (a = a/2)





	
Floor Divide and Assign


	
//=


	
Floor divide the value of the right operand to the left and assign the result to the left operand


	
a//=9 (a = a//9)





	
Modulus and Assign


	
%=


	
Perform the modulus by the value of the right operand on the left and assign the result to the left operand


	
a%=3 (a = a%3)





	
Exponent and Assign


	
**=


	
Perform the exponent of operands and assign the result to the left operand


	
a**=2 (a = a**2)







Table 3.3: Assignment Operators in Python

Let us show how assignment operators work on variables a and b:

Coding example(s)

# Assign (=) --Assign  value to left variable

a = 15

print(“Assign(a=15) => “,a)

b =  8

print(“Assign(b=8) =>”,b)

# Addition and Assign (+=) --

a+=10

print (“Addition and Assign(a +=10) =>”,a)

# Subtract  and Assign (-=)

a-=10

print(“Subtract  and Assign (a -=10) =>”,a)

# Multiply  and Assign (*=)

a*=10

print(“Multiply  and Assign (a*=10) =>”,a)

# Divide  and Assign (/=)

a/=10

print(“Divide  and Assign(a/=10) =>”,a)

# Floor-Divide and Assign (//=)

b//=3

print(“Floor-Divide and Assign(a//=4) =>”,b)

# Modulus and Assign (%=)

b%=3

print(“Modulus and Assign(b%=3) =>”,b)

# exponent and Assign (**=)

b**=3

print(“exponent and Assign(b**=2) =>”,b)

Output

Assign(a=15) =>  15

Assign(b=8) => 8

Addition and Assign(a +=10) => 25

Subtract  and Assign (a -=10) => 15

Multiply  and Assign (a*=10) => 150

Divide  and Assign(a/=10) => 15.0

Floor-Divide and Assign(a//=4) => 2

Modulus and Assign(b%=3) => 2

exponent and Assign(b**=2) => 8

Logical operators

These operators are used to combine conditional expressions in Python.

The following table has the complete information on logical operators in Python.









	
Operator name


	
Operator symbol


	
Description


	
Example





	
Logical AND


	
and


	
It gives ‘True’ as a result if both operands are ‘True’ and ‘False’ otherwise.


	
a and b





	
Logical OR


	
or


	
It gives ‘True’ as a result if any one of operands is ‘True’ and ‘False’ otherwise.


	
a or b





	
Logical NOT


	
not


	
It gives ‘True’ as a result if an operand is ‘False’ and ‘True’ if an operand is ‘True’.


	
not a







Table 3.4: Logical Operators in Python

In the following example, we see how logical operators work:

Coding Example(s)

a= False

b= True

# Logical AND operator (and)

print(“ Logical AND => a and b is “, a and b)

# Logical OR operator (or)

print(“ Logical OR => a or b is “, a or b)

# Logical NOT operator (not)

print(“ Logical  NOT => not b is “, not b)

Output

 Logical AND => a and b is  False

 Logical OR => a or b is  True

 Logical  NOT => not b is  False

Bitwise operators

Bitwise operators are used to perform bit-by-bit operations on integers in Python. First, they convert the Python integer value of operands into binary; then, they execute the mentioned Bitwise operation after getting the binary result. They translate the final value back into an integer, and return that integer value as a result.

Various Bitwise operators in Python have been depicted as follows:









	
Operator name


	
Operator symbol


	
Description


	
Example





	
Bitwise AND


	
&


	
performs bit by bit AND operation on the bits of binary value left and right operands


	
a & b





	
Bitwise OR


	
|


	
perform bit by bit OR operation on the bits of binary value left and right operands


	
a | b





	
Bitwise NOT


	
~


	
one’s complement in Python means it gives – (binary value of operand +1) in decimal


	
~a means –(binary value of a+1)





	
Bitwise XOR


	
^


	
perform bit by bit XOR operation on the bits of binary value left and right operands


	
a ^ b





	
Bitwise right shift


	
>>


	
left operand shifted towards the right by the bits mentioned in the right operand


	
a>>1





	
Bitwise left shift


	
<<


	
left operand shifted towards left by the bits mentioned in right operand


	
a<<1







Table 3.5: Bitwise Operators in Python

Now, we will see how the bitwise operators can be applied on variables a and b:

Coding Example(s)

a = 10  # 1010

b = 8   #1000

#Bitwise AND (&)

print(“Bitwise AND (&) => a & b ->”,a & b)

#Bitwise OR (|)

print(“Bitwise OR (|) => a | b ->”,a | b)

#Bitwise NOT (~)

print(“Bitwise NOT (~) =>  ~ b ->”, ~ b)  # -(1000+1) = -(1001) = -(9)

#Bitwise XOR (^)

print(“Bitwise XOR (^) => a ^ b ->”,a ^ b)

#Bitwise right shift (>>)

print(“Bitwise right shift by one bit (>>) => a >> b ->”,a >> 1)

#Bitwise left shift (<<)

print(“Bitwise left shift by one bit (<<) => a << b ->”,a << 1)

Output

Bitwise AND (&) => a & b -> 8

Bitwise OR (|) => a | b -> 10

Bitwise NOT (~) =>  ~ b -> -9

Bitwise XOR (^) => a ^ b -> 2

Bitwise right shift by one bit (>>) => a >> b -> 5

Bitwise left shift by one bit (<<) => a << b -> 20

Membership operators

These operators are used to check the membership with a sequence in Python (list, string, tuple, and so on). Please check the following table of membership operators in Python:









	
Operator name


	
Operator symbol


	
Description


	
Example





	
In


	
in


	
This operator will check if an element is present in a sequence.


	
‘Data’ in “Data Analysis with Python”





	
Not in


	
not in


	
This operator will check if an element is not present in a sequence.


	
‘data’ not in “Data Analysis with Python”







Table 3.6: Membership operators in Python

The following are the coding examples to demonstrate the membership operators.

Coding example(s)

fruits = [‘apple’, ‘orange’, ‘banana’]

astring = “Data Analysis with Python”

# in

print (“orange in fruits =>”,’orange’ in fruits)

print(“Data in astring =>”,’Data’ in astring)

# not in

print (“mango not in fruits =>”,’mango’ not in fruits)

print(“spark not in astring =>”,’spark’ not in astring)

Output

orange in fruits => True

Data in astring => True

mango not in fruits => True

spark not in astring => True

Identity operators

Identity operators are used for checking the identity of the two objects. If they are equal, i.e., they are identical, then they will share the exact memory locations, otherwise not. The following is a list of identity operators in Python:









	
Operator name


	
Operator symbol


	
Description


	
Example





	
Is


	
Is


	
This operator will check if an element is present in a sequence.


	
A is B





	
Is not


	
is not


	
This operator will check if an element is not present in a sequence.


	
A is not B







Table 3.7: Identity operators in Python

The following are the coding examples to demonstrate the identity opreateres:

Example (Python Code)

‘apple’ is ‘mango’

Output

False

Example (Python Code)

‘apple’ is not ‘mango’

Output

True

Built-in data types in Python

In this section of the chapter, we will discuss the built-in data types in Python. Important built-in data types are listed as follows:

Numeric type

Working with numbers, we need numeric data types. In Python, numbers are immutable. In Python 3.x, we have three numeric data types.


	Int or Integer: Integers are positive or negative whole numbers; that means, they have no decimal point.
Example (Python code)

# example of int data type

a = 10 # positive Integer value

a1 = -10 # Negative Integer value

#printing the value

print (“a = “,a)

print (“a1 = “,a1)

# check the type of variable a

print(“Type of variable a is :”, type(a))

print(“Type of variable a1 is :”, type(a1))

Output

a =  10

a1 =  -10

Type of variable a is : <class ‘int’>

Type of variable a1 is : <class ‘int’>


	Float: These are floating numeric type values or real values; unlike the integers, the float has a decimal point.
Coding example(s)

# example for float data type

b = 10.5 # positive float value

b1 = -10.5 # Negative float value

#printing the value

print (“b = “,b)

print (“b1 = “,b1)

# check the type of variable a

print(“Type of variable b is :”, type(b))

print(“Type of variable b1 is :”, type(b1))

Output

b =  10.5

b1 =  -10.5

Type of variable b is : <class ‘float’>

Type of variable b1 is : <class ‘float’>


	Complex 
Complex numbers can be expressed in the form a + bi, here, a is the real part and b is the imaginary part [a and b are the whole numbers but i is the imaginary number (square root of -1)].

Coding example(s)

# example for complex data type

c = 10+5j

d = 5j

e = 10-5j

f = -5j

#printing the value of a

print (“c = “,c)

# check the type of variable a

print(“Type of variable c is :”, type(c))

print(“Type of variable d is :”, type(d))

print(“Type of variable d is :”, type(e))

print(“Type of variable d is :”, type(f))

Output

c =  (10+5j)

Type of variable c is : <class ‘complex’>

Type of variable d is : <class ‘complex’>

Type of variable d is : <class ‘complex’>

Type of variable d is : <class ‘complex’>




Type conversion or type casting

In Python, we can convert the types from int to float or float to int or int to complex using int (), float (), and complex () methods. We can check the type for any variable using the type() method. Also, we can cast an int or float to String using str () or any numeric string to Int or float using int() and float() method.

Coding example(s)

# from int to float

a=10 # Integer type

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a = float(a)

print(“After casting to float from int value and type : {} and {} “.format(a,type(a)))

# from float to int

a=10.5 # Integer type

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a = int(a)

print(“cAfter casting to int from float value and type : {} and {} “.format(a,type(a)))

# from int to Complex

a=10 # Integer type

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a = complex(a) # this will be the complex number with zero imaginary part

print(“After casting to complex type from int value and type : {} and {} “.format(a,type(a)))

# let’s take two integers a=10 and b =5  now let try to convert them into complex number

a = 11

b = 8

z= complex(a,b) # this will give non zero imaginary complex number

print(“\nAfter casting to complex type from int value and type : {} and {} “.format(z,type(z)))

# str to int

a= “10”  # string

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a= int(a)    # use int() to cast string into int

print(“After casting to int from string value and type : {} and {} “.format(a,type(a)))   # printing the type of a

# str to float

a= “10.5”  # string type

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a= float(a)    # use float() to cast string into float

print(“After casting to float from string value and type : {} and {} “.format(a,type(a)))  # printing the type of a

# int  to string

a= 10

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a = str(a)  #  casting a integer value into string

print(“After casting to string from int value and type : {} and {} “.format(a,type(a)))

# float to string

a= 11.8

print(“\noriginal value and type : {} and {} “.format(a,type(a)))

a = str(a)  #  casting a integer value into string

print(“After casting to string from float value and type : {} and {} “.format(a,type(a)))

Output

original value and type : 10 and <class ‘int’>

After casting to float from int value and type : 10.0 and <class ‘float’>

original value and type : 10.5 and <class ‘float’>

After casting to int from float value and type : 10 and <class ‘int’>

original value and type : 10 and <class ‘int’>

After casting to complex type from int value and type : (10+0j) and <class ‘complex’>

After casting to complex type from int value and type : (11+8j) and <class ‘complex’>

original value and type : 10 and <class ‘str’>

After casting to int from string value and type : 10 and <class ‘int’>

original value and type : 10.5 and <class ‘str’>

After casting to float from string value and type : 10.5 and <class ‘float’>

original value and type : 10 and <class ‘int’>

After casting to string from int value and type : 10 and <class ‘str’>

original value and type : 11.8 and <class ‘float’>

After casting to string from float value and type : 11.8 and <class ‘str’>

String

Strings are a sequence of characters enclosed with single, double, or triple single quotes or triple double quotes. Single and double quotes are used to write a single line string, but triple quotes are used to write a multiline string.

Coding example(s)

str1 = ‘This is a string enclosed with single quotes’

str2 = “This is a string enclosed with double quotes”

str3 = ‘’’  

Line one

Line two

Line Three’’’ # multiline string

print (str1)

print (str2)

print (str3)

Output

This is a string enclosed with single quotes

This is a string enclosed with double quotes

Line one

Line two

Line Three

Accessing string components

A string in Python is a sequence type, so it supports indexing. In Python, indexing starts from 0. For example, language = “Python”; language [0] => P (this way, we can assess the first element of String). Similarly, language [1] => y, language [2] => t, and so on. Python also supports negative indexes, meaning -1, -2, and so on.; -1 index means the last element of a string, -2 means the second last character of a string, and so on. For example, language [-1] will give ‘n’ from a string.

Coding example(s)

language = “Python”

print(“language[0] => “, language[0])

print(“\nlanguage[-1] => “, language[-1])   # negative index start from -1 (last element of string)

Output

language[0] =>  P

language[1] =>  y

String concatenation

In Python, to concatenate the two strings, we use + operator. String1 + String2, gives a new concatenated string for string1 and string2.

Coding example(s)

# Concatenating two strings

str1 = “Hello”

str2 = “Python”

str3 = str1+str2 # Concatenating two string using + operator

print(“Concatenated string is :”,str3)

Output

Concatenated string is: HelloPython

String operations and built-in methods

We have rich built-in methods in Python to perform various operations with strings. The basis syntax is - str.String_method(). Some of the most important string methods are given as follows:


	upper(): It returns a string with upper-case.

	lower(): It returns a string with lower-case.

	capitalize(): It returns a string by making the first letter capital.

	split(): It splits a string based on a separator and returns a list. The default separator is white space.

	strip (): It removes the leading and trailing characters from a string. In the default case, it will remove leading and trailing white space from a string.

	rstrip(): It removes the specified characters from the right side of a string. In the default case, it will remove white space from the right side of a string.

	lstrip(): It removes the specified characters from the left side of a string. In the default case, it will remove white space from the left side of a string.

	len(): It gives the length of a string.

	replace(): It replaces the substring in a string.

	find(): It finds the first occurrence of a specified substring in a string.

	startswith(): This method will check and return ‘True’ if a string starts with a specified substring.

	endswith(): This method will check and return ‘True’ if a string ends with a specified substring.

	isdigit(): This method will check and return ‘True’ if all string characters are digits.

	isdecimal(): This method will check and return ‘True’ if all string characters are decimals.

	isalpha(): This method will check and return ‘True’ if all characters in a string are alphabets.

	islower(): This method will check and return ‘True’ if the string is lower-case.

	isupper(): This method will check and return ‘True’ if the string is in upper-case.

	isalnum(): This method will check and return ‘True’ if all string characters are alphanumeric.



The following examples show the application of a few string methods:

Coding example(s)

# Converting all lower-case letters to upper-case

book_title = “Data Analysis with Python”

book_title_with_upper_case = book_title.upper() # upper() method will convert all lower-case letters to upper-case

print(book_title_with_upper_case)

Output

DATA ANALYSIS WITH PYTHON

List

A list is an ordered collection of elements. Lists are mutable, it means that we can update the list item at the index level. Though, a list is also a kind of sequence, so it supports indexing. To create the list, we need to put elements inside the square brackets ([]) by separating them with a comma. For example, a = [], represents an empty list and num_list = [1,2,3,4,5]. Here, num_list is a list of numbers from 1 to 5.

Coding example(s)

# creating a list in Python

number_list = [1,2,3,4,5]

fruits = [‘apple’,’orange’,’mango’]

print(number_list)

print(fruits)

Output

[1, 2, 3, 4, 5]

[‘apple’, ‘orange’, ‘mango’]

Working with list

In this section, we will demonstrate the essential list of operations using the built-in functions and methods of Python list.

Accessing the list items

The list supports the indexing (starting from 0), so, to access the elements of a Python list, we will use the index of that element. The Python list also supports negative indexing (starting from -1, the last element of the Python list).

Coding Example(s)

list_demo = [1,2,3,4,’Five’,6]

# first element of list @ index => [0]

print(“1st element of list =”,list_demo[0] )

print(“1st element of list =”,list_demo[1] )

# last element of list @ index => [-1], negative index

print(“1st element of list =”,list_demo[-1] )

Output

1st element of list = 1

1st element of list = 2

1st element of list = 6

Adding element(s) in list

To add value or element into the Python list, we have append(value) and insert(index, value) functions; append () will add the value at the end of the Python list, but insert() will add value at the specified index of list.

Coding example(s)

# append()

# append() will add a new element in the specified list after last #index of initial list

list_demo = [1,2,3,4,’Five’,6]

print(“Initial list :”,list_demo)

# used append() method to add a new item into the list

list_demo.append(“new_element”)  

print(“updated list by appending new element :”,list_demo)

# insert()

# insert(index,value) will add the value or new item into the list # at specified index number.

list_demo = [1,2,3,4,’Five’,6]

print(“Initial list :”,list_demo)

list_demo.insert(4,5)

print(“updated list by appending new element :”,list_demo)

Output

Initial list : [1, 2, 3, 4, ‘Five’, 6]

updated list by appending new element : [1, 2, 3, 4, ‘Five’, 6, ‘new element’]

Initial list : [1, 2, 3, 4, ‘Five’, 6]

updated list by appending new element : [1, 2, 3, 4, 5, ‘Five’, 6]

Concatenation and repetition

To concatenate two Python lists, we can use the “+” operator or extend(sequence ) function.

Coding example(s)

# using + operator

even = [2,4,6,8,10]

odd = [1,3,5,7]

numbers = even+odd

print(numbers)

# extend(sequence)

odd.extend(even)

print(odd)

Output

[2, 4, 6, 8, 10, 1, 3, 5, 7]

[1, 3, 5, 7, 9, 2, 4, 6, 8, 10]

Updating the Python list

Using indexing, we can update the specified indexed value in a list.

Coding example(s)

numbers = [1,2,3,4,5,6]

numbers[1] = 22 # updating the value at index 1

print(numbers)

Output

[1, 22, 3, 4, 5, 6]

Removing an item from Python list

Python lists have functions remove() and pop() to remove an element from the list.

remove(value): It takes a value or list object as an argument and removes that item from the list.

pop(index): It takes index as an argument, removes, and returns the value at the given index. If we pass no index as an argument, it will remove and return the value from the last index of the list.

Coding example(s)

numbers = [1,2,3,4,5,6]

numbers.remove(6)

print(numbers)

# pop(index)

removed_value = numbers.pop(1)

print(“\nremoved_value =”,removed_value)

print(numbers)

Output

[1, 2, 3, 4, 5]

removed_value = 2

[1, 3, 4, 5]

Checking for membership of an element

By using the ‘in’ operator, we can check if any value is present in the list or not. If the value exists in the list, it will return ‘True’.

Coding example(s)

fruits  = [“Mango”,”Apple”,”Orange”]

print(“Checking if mango in list :”,”Mango” in fruits)

print(“Checking if Kiwi in list :”,”Kiwi” in fruits)

Output

Checking if mango in list : True

Checking if Kiwi in list : False

Sorting the list items

Using the sort() method, we can sort list items.

Coding example(s)

numbers = [11,45,2,1,40,20]

print(“initial list :”,numbers)

numbers.sort() # sort(), used to sort a list

print(“sorted list :”,numbers)

# By passing reverse = True we can sort a list in descending order, # by default it will sort list in ascending order.

numbers.sort(reverse = True)

print(“sorted list in descending:”,numbers)

Output

initial list : [11, 45, 2, 1, 40, 20]

sorted list : [1, 2, 11, 20, 40, 45]

sorted list in descending: [45, 40, 20, 11, 2, 1]

Length of a list and count of an element in the list

To get the length of any list (size of the list), we can use the len() function. And to get the count of how many occurrences of the specified item or element, we can use the count() function.

Coding example(s)

numbers = [11,45,2,1,20,2,1,2]

list_length = len(numbers)

print(list_length)

list_count = numbers.count(1)

print(list_count)

Output

8
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List slicing

List slicing is a handy way to get the subset of a list or a slice of a list, and it is based on indexing.

Syntax: list[start:stop:step]

start: Slice object will start from this index.

stop: Slice object will stop at this index, which means the value at this index will not be included in a returned slice of the list.

step: Slicing step determines the increment from one index to another index. The default is 1.

Here is an example:

Coding example(s)

mylist = [“P”,”Y”,”T”,”H”,”O”,”N”]

# mylist[1:5] => gives a list slice from 1st  index till 5th index

print(mylist[1:5])

# if stop is not mentioned then it will give till the end of the # list

print(mylist[1:])

# if start is not mentioned then it will give till the end of                       # list

print(mylist[:3])

# if neither start nor stop indexes mentioned then it returns    # complete list as list slice

print(mylist[:])

# supports negative indexes as well

print(mylist[-3:-1])

# list slice with step=2

print(mylist[1:6:2])

Output

[‘Y’, ‘T’, ‘H’, ‘O’]

[‘Y’, ‘T’, ‘H’, ‘O’, ‘N’]

[‘P’, ‘Y’, ‘T’]

[‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’]

[‘H’, ‘O’]

[‘Y’, ‘H’, ‘N’]

Note: We can also do slicing with Python Strings and Python Tuples.

Converting string and tuple into the list

Using the list(seq), we can convert sequence (string, tuple) into list type.

Coding example(s)

astring = “PYTHON”

atuple = (“p”,”Y”,”T”,”H”,”o”,”N”)

print(“type of astring = {} is :{}”.format(astring,type(astring)))

print(“type of atuple= {} is :{}”.format(atuple,type(atuple)))

print(“Converting astring into a list :”,list(astring))

print(“Converting atuple into a list :”,list(atuple))

Output

type of astring = PYTHON is :<class ‘str’>

type of atuple= (‘p’, ‘Y’, ‘T’, ‘H’, ‘o’, ‘N’) is :<class ‘tuple’>

Converting astring into a list : [‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’]

Converting atuple into a list : [‘p’, ‘Y’, ‘T’, ‘H’, ‘o’, ‘N’

Tuples

A tuple is also an ordered collection of elements like a list, but tuples are immutable, i.e., we cannot change or modify the value of the elements in the tuple.

Coding example(s)

# creating a list in Python

number_list = [1,2,3,4,5]

fruits = [‘apple’,’orange’,’mango’]

print(number_list)

print(fruits)

Output

[1, 2, 3, 4, 5]

[‘apple’, ‘orange’, ‘mango’]

Working with list

In this section, we will demonstrate the essential Tuple operations by using the built-in functions and methods of Python tuple.

Accessing the Tuple items

Tuples also support indexing (starting from 0 in the positive index and -1 in the case of a negative index). We need to pass the index in square bracket ([]) to access the value of tuple (tuple[index]).

Coding example(s)

tuple_demo = (1,2,3,4,’Five’,6)

# first element of tuple @ index => [0]

print(“1st element of tuple =”,tuple_demo[0] )

print(“1st element of tuple =”,tuple_demo[1] )

# last element of tuple @ index => [-1], negative index

print(“last  element of tuple =”,tuple_demo[-1] )

Output

1st element of tuple = 1

1st element of tuple = 2

last  element of tuple = 6

Adding element(s) in tuple

As tuples are immutable, we cannot add or modify the existing tuple. But in another way, we can use the concatenation operator “+” and concatenate the new tuple with a single element in the existing one and create a new tuple reference.

Coding example(s)

t1 = (1,2,3) 3 # initial Tuple t1

print(“tuple t1 =”,t1)

# created new tuple t1 by adding (4,), tuple with single element in # initial tuple t1

t1 = t1 + (4,)

print(“tuple t1 =”,t1)

Output

tuple t1 = (1, 2, 3)

tuple t1 = (1, 2, 3, 4)

Concatenation and repetition

To concatenate two Python tuples, we can use “+”. We use the “*” operator with the int value (number of repeats) for repetition.

Coding example(s)

# Concatenation

t1 = (1,2,3)

t2 = (‘one’,’two’,’three’)

t3 = t1 +t2

print(t3)

#Repetition

t1 = (1,2,3) * 2

print(t1)

Output

(1, 2, 3, ‘one’, ‘two’, ‘three’)

(1, 2, 3, 1, 2, 3)

Checking for membership of an element

By using the in operator, we can check if any value is present in the tuple or not. If the value exists in the tuple, it will return ‘True’.

Coding example(s)

fruits  = [“Mango”,”Apple”,”Orange”]

print(“Checking if mango in list :”,”Mango” in fruits)

print(“Checking if Kiwi in list :”,”Kiwi” in fruits)

Output

Checking if mango is in list: True

Checking if Kiwi is in list: False

Tuple slicing

We can slice a tuple in a similar way to the list.

Syntax: Tuple[start:stop:step]

start: Slice object will start from this index.

stop: Slice object will stop at this index, which means the value at this index will not be included in a returned slice of the list.

step: Slicing step determines the increment from one index to another index. The default is 1.

Let’s see the following example:

Coding example(s)

mytuple = [“P”,”Y”,”T”,”H”,”O”,”N”]

# mytuple[1:5] => gives a tuple slice from 1st  index till 5th     # index

print(mytuple[1:5])

# if stop is not mentioned then it will give till the end of the # tuple

print(mytuple[1:])

# if start is not mentioned then it will give till the end of                       # tuple

print(mytuple[:3])

# if neither start nor stop indexes mentioned, then it returns    # complete tuple as tuple slice

print(mytuple[:])

# supports negative indexes as well

print(mytuple[-3:-1])

# tuple slice with step=2

print(mytuple[1:6:2])

Output

[‘Y’, ‘T’, ‘H’, ‘O’]

[‘Y’, ‘T’, ‘H’, ‘O’, ‘N’]

[‘P’, ‘Y’, ‘T’]

[‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’]

[‘H’, ‘O’]

[‘Y’, ‘H’, ‘N’]

Converting string and list into the tuple

Using the tuple (seq), we can convert sequence (string or list) into tuple type.

Coding example(s)

astring = “PYTHON”

alist = [“p”,”Y”,”T”,”H”,”o”,”N”]

print(“type of astring = {} is :{}”.format(astring,type(astring)))

print(“type of alist= {} is :{}”.format(alist,type(alist)))

print(“Converting astring into a tuple :”,tuple(astring))

print(“Converting alist into a tuple :”,tuple(alist))

Output

type of astring = PYTHON is :<class ‘str’>

type of alist= [‘p’, ‘Y’, ‘T’, ‘H’, ‘o’, ‘N’] is :<class ‘list’>

Converting astring into a tuple : (‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

Converting alist into a tuple : (‘p’, ‘Y’, ‘T’, ‘H’, ‘o’, ‘N’)

Note: Tuples are immutable, so adding/deleting or updating at the index level is not allowed. This means we cannot add, delete, or update elements in the existing tuple reference.

Sets

Sets are unordered and un-indexed collections of unique elements. In Python, sets are represented by the curly braces {}; for example, set_a = {1,2,3,4,5}, here set_a is a set of numbers from 1 to 5.

Coding example(s)

# creating a Set in Python

set_a = {2,3,4,5,6,}

print(“set_a = {} type=>{}”.format(A,type(A)))

Output

set_a = {2, 3, 4, 5, 6, 7} type=><class ‘set’>

Working with set

This section will demonstrate the essential set operations using the built-in Python set functions and methods.

Accessing the set items

As Python sets are unindexed, wecannot access the set by using an index like string, list, or tuple. We can iterate the set elements one by one through a loop.

Coding example(s)

set_a  = {1,2,3}

for element in set_a:

print(element)

Output

1

2

3

Adding element(s) in set

To add element(s) in set add() function can be used.

Coding example(s)

# add(value)

set_a = {2,3,4,5,6,}

print(“initial set set_a = “,set_a)

set_a.add(7)

print(“After adding 7 in initial set”,set_a)

Output

initial set set_a =  {2, 3, 4, 5, 6}

After adding 7 in initial set {2, 3, 4, 5, 6, 7}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, ‘7’, ‘6’, ‘5’}

Removing an item from Python set

Python sets have functions remove(), discard() and pop() to remove an element from the list.


	remove(value): It takes a value or list object as an argument, removes that item from the list, and gives an error if the specified value is not in the set.

	discard(value): It works like remove(), but it will not give an error in case value is not found in the set, instead of that, it returns ‘None’.

	pop(): With set, pop works without an index. It removes and returns the random value from the set.



Here are the codes where the preceding functions are applied:

Coding example(s)

#remove()

set_a = {1,2,3,4}

print(set_a)

set_a.remove(3)

print(set_a)

# gives error in case value is not present in set

print(set_a.remove(8))

#discard()

set_a = {1,2,3,4}

print(set_a)

set_a.discard(3)

print(set_a)

# Return None if specified value is not in set

print(set_a.discard(8))

# pop()

set_a = {2,3,4}

print(set_a.pop())

Output

{1, 2, 3, 4}

{1, 2, 4}

---------------------------------------------------------------------------

KeyError Traceback (most recent call last)

<ipython-input-195-248aa3cbeebd> in <module>

6

7 # gives error in case value is not present in set

----> 8 print(set_a.remove(8))

9

 10 #discard()

KeyError: 8

{1, 2, 3, 4}

{1, 2, 4}

None
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Checking for membership of an element

By using the in operator, we can check if any value is present in the set or not. If the value exists in the set, it will return ‘True’.

Coding example(s)

fruits  = {“Mango”,”Apple”,”Orange}

print(“Checking if mango in list :”,”Mango” in fruits)

print(“Checking if Kiwi in list :”,”Kiwi” in fruits)

Output

Checking if mango in list : True

Checking if Kiwi in list : False

Set operations

Python set supports mathematic set operations like set union, set intersection, set difference, set symmetric-difference, and so on. Some of the essential set operations are demonstrated as follows:


	Union(): It returns a set of unique elements from both sets.

	intersection(): It returns a set of unique common elements from both sets.

	difference(): It returns a set of elements that are not present in another one.

	symmetric_difference(): It returns a set of elements that are not common in two specified sets.

	issubset(): It returns ‘True’ if another set is a subset.

	issuperset(): It returns ‘True’ if another set is a superset.

	isdisjoint(): It returns ‘True’ if there is no intersection between two sets.



Some examples are shown here using these operations:

Coding example(s)

set_a = {1,2,3,4}

set_b = {3,4,5}

set_c = {1,2}

set_d = {10,11,12}

### Union()

a_union_b = set_a.union(set_b)

print(“\nUnion() => a_union_b :”,a_union_b)

### intersection()

a_intersect_b = set_a.intersection(set_b)

print(“\nintersection() => a_intersect_b :”,a_intersect_b)

### difference()

a_diff_b = set_a.difference(set_b)

print(“\ndifference() => a_diff_b :”,a_diff_b)

b_diff_a = set_b.difference(set_a)

print(“difference() => b_diff_a :”,b_diff_a)

### symmetric_difference()

a_symm_diff_b = set_a.symmetric_difference(set_b)

print(“\nsymmetric_difference() => a_diff_b :”,a_symm_diff_b)

### issubset()

print(“\nissubset() => is set b subset of set a :”,set_b.issubset(set_a))

print(“issubset() => is set c subset of set a :”,set_c.issubset(set_a))

### issuperset()

print(“\nissuperset() => is set a superset of set b :”,set_a.issuperset(set_b))

print(“issuperset() => is set a superset of set c :”,set_a.issuperset(set_c))

### isdisjoint()

# True if there is no intersection between specified two sets

print(“\nisdisjoint() => is set a and d are disjoint :”,set_a.isdisjoint(set_d))

Output

Union() => a_union_b : {1, 2, 3, 4, 5}

intersection() => a_intersect_b : {3, 4}

difference() => a_diff_b : {1, 2}

difference() => b_diff_a : {5}

symmetric_difference() => a_diff_b : {1, 2, 5}

issubset() => is set b subset of set a : False

issubset() => is set c subset of set a : True

issuperset() => is set a superset of set b : False

issuperset() => is set a superset of set c : True

isdisjoint() => is set a and d are disjoint : True

Converting string, tuple, and list into the set

Using the Tuple (seq), we can convert sequence (String, Tuple) into list type.

Coding example(s)

astring = “Hello”

atuple = (“H”,”e”,”l”,”l”,”o”)

alist = [“H”,”e”,”l”,”l”,”o”]

print(“type of astring = {} is :{}”.format(astring,type(astring)))

print(“type of atuple= {} is :{}”.format(atuple,type(atuple)))

print(“type of alist= {} is :{}”.format(alist,type(alist)))

print(“\nConverting astring into a list :”,set(astring))

print(“Converting atuple into a list :”,set(atuple))

print(“Converting atuple into a list :”,set(alist))

Output

type of astring = Hello is :<class ‘str’>

type of atuple= (‘H’, ‘e’, ‘l’, ‘l’, ‘o’) is :<class ‘tuple’>

type of alist= [‘H’, ‘e’, ‘l’, ‘l’, ‘o’] is :<class ‘list’>

Converting astring into a list : {‘o’, ‘l’, ‘e’, ‘H’}

Converting atuple into a list : {‘o’, ‘l’, ‘e’, ‘H’}

Converting atuple into a list : {‘o’, ‘l’, ‘e’, ‘H’}

Dictionaries

Python dictionaries are the un-ordered collection key, value pairs.

dict_demo = {1:”60%”,2:”50%”,3:”30%”}, here my_dict is the dictionary with 3 key, value pairs.

Coding example(s)

# creating a Dictionary in Python

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(dict_demo)

Output

 {1: ‘one’, 2: ‘two’, 3: ‘Three’}

Working with dictionaries

In this section, we will demonstrate the essential dictionary operations.

Accessing the dictionaries items

In the Python dictionary, we can access the value by specifying the key inside the square bracket([]) or pass the key as an argument in the get() method to obtain the value of a specified key.

If the specified key is not available in a dictionary, it will raise an error, but it will return ‘None’ with get() methods.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

# dict[key] => return the vaue for specified key

print(“Value for Key 2 is “,dict_demo[2])

traffic_light = {“Red”:”Stop”,”Yellow”:” Ready to GO”,”Green”: “ Good to GO”}

print(traffic_light[“Yellow”])

# using get()

print(my_dict.get(2))

Output

Value for Key 2 is  50%

Ready to GO

two

Adding element(s) in the dictionary

Using the key and passing the value, we can add a new key, value pair, in the dictionary. If a key is already present, then it will update the value for that key.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(“Initial :”,dict_demo)

dict_demo[4]=”25%”

print(“After adding an element  :”,dict_demo)

Output

Initial : {1: ‘60%’, 2: ‘50%’, 3: ‘30%’}

After adding an element  : {1: ‘60%’, 2: ‘50%’, 3: ‘30%’, 4: ‘25%’}

Removing an item from Python dictionary

We can delete the specified key’s value from the dictionary by mentioning the key in the square bracket with the del keyword (del dict[key]). Another way is to use the popitem() method, but it will remove and return a random key, value pair, from a dictionary.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(“Initial :”,dict_demo)

del dict_demo[3]

print(“Update dictionary after deleting element :”,dict_demo)

# popitem(Key) Random

print(dict_demo.popitem())

Output

Initial : {1: ‘60%’, 2: ‘50%’, 3: ‘30%’}

Update dictionary after deleting element : {1: ‘60%’, 2: ‘50%’}

(2, ‘50%’)

Checking for membership of an element

By using the in operator, we can check if any value is present in the dictionary or not. If the value exists in the dictionary, it will return ‘True’.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(“Key 2 is in my_dict :”,1 in dict_demo)

print(“Key 8 is in my_dict :”,8 in dict_demo)

Output

Key 2 is in dict_demo : True

Key 8 is in dict_demo : False

Getting the list of all keys of a dictionary

Method dict.keys() returns the list of all keys of a dictionary.

Coding Example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(dict_demo.keys())

Output

dict_keys([1, 2, 3])

Getting the list of all values of a dictionary

Method dict.values() returns the list of all values of a dictionary.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(dict_demo.values())

Output

dict_values([‘60%’, ‘50%’, ‘30%’])

Getting the list of key, value pair tuples

Method dict.items() returns the list of all keys or value tuples of a dictionary.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

print(dict_demo.items())

Output

dict_items([(1, ‘60%’), (2, ‘50%’), (3, ‘30%’)])

Iterating a dictionary

By using for loop, we can iterate a dictionary.

Coding example(s)

dict_demo = {1:”60%”,2:”50%”,3:”30%”}

for k,v in dict_demo.items():

print(“Value for Key {} is {}”.format(k,v))

Output

Value for Key 1 is 60%

Value for Key 2 is 50%

Value for Key 3 is 30%

Converting key, value iterable into dictionary

By passing the key or value iterable as an argument into function dict(), we can convert key or value iterable into a dictionary.

Coding example(s)

my_tuple = [(1,”60%”),(2,”50%”),(3,”30%”)]

dict_demo = dict(my_tuple)

print(dict_demo)

Output

{1: ‘60%’, 2: ‘50%’, 3: ‘30%’}

Conclusion

In this chapter, we demonstrated various operators and data types in Python with hands-on examples. We know how to work with built-in data types like strings, numbers, lists, sets, and dictionaries in Python. Also, have a bright idea of what immutable and mutable data types are in Python.

In the next chapter, we will use these data types and operators with some other Python programming constructs.

Questions


	Summarize the list of the built-in data types in Python.

	What do you mean by immutable and mutable data types?

	What is the difference between the tuple and the list data type in Python?

	What is a dictionary in Python?

	How to print the list of all keys of a dictionary?

	How to print the list of all values of a dictionary?

	Can we access the set using an index?







CHAPTER 4

Conditional Expressions in Python


In the last chapter, we have learned about Python operators and built-in data types and seen various hands-on examples in Python. In this chapter, we will explore another essential programming construct: how to write the conditional statements in Python? After completing this chapter, you can write a program that can execute or take predefined actions based on the outcome of a specified condition or expression.

Structure

In this chapter, we will discuss the following topics:


	Indentation in Python

	How to write conditional statements in Python

	‘If’ condition statement

	‘If-else’ condition statement

	‘elif’ condition statement

	‘Nested if’ conditional statement

	‘AND/OR’ with ‘if’ statements



Objectives

After completing this chapter, you should be able to:


	Understand and write the Python code using the correct indentation

	Write conditional expressions in Python



Indentation in Python

To define a block of code, many programming languages like C, C++, and Java use curly braces {}. But Python uses Indentation to determine a code block (in general, it means the body of a function, loop, and so on). We used four spaces or a tab for Indentation, but spaces are preferred to tabs.

Code block starts with indentation followed by statement and end with first unintended line. A Python error can be caused by wrongly used indentation.

Conditional expressions in Python

Writing code for a conditional expression means we need to write a code that can take the decision (means can execute or process some specified action) against a given condition (or outcome of a conditional expression).

The following are the conditional statements in Python:

‘If’ statement

‘If’ is a conditional statement, which contains a condition or logical expression and executes the action if the condition or expression’s result gets evaluated to ‘True’.

Syntax:

if condition/expression:

action/decision statement(s)

Coding example(s):

Example 1: Let us see the following example for a simple ‘if’ statement:


[image: ]

Figure 4.1: ‘If’ statement with a passed case

In the preceding example, in line 2, the string value “Red” has been assigned to the variables traffic_light, and in line 4, it checks if the variable has string value Red or not. If it is true, it will display the next print() statement; otherwise, it will not display anything in output.

Example 2:

Let’s see the following example to see what happens if the condition fails:


[image: ]

Figure 4.2: ‘If’ statement with a failed case

Let’s discuss this example: at line 1, we can see that the variable traffic_light has been assigned the string value Green. Now, at line 4, if variable traffic light has the value Red, it will be returned as ‘False’, so it will not go to execute the print() function. That is why in the output, it will print nothing.

If…else statement

Now, it will be clear how the ‘if’ statement works. Still, the question remains, how to handle if any statements fail. This means, we have some situation where if some condition is passed, then do task1 otherwise do task2. In Python, we can achieve such a requirement using the ‘if…else’ statement.

In this, the ‘if…else’ statement, we have an else statement combined with the ‘if’ statement. The ‘else’ block contains the statement(s), which will be executed if the conditional expression is evaluated as ‘False’.

Syntax:

if condition/expression:

action/decision statement(s)

else:

action/decision statement(s)

Coding Example(s):

Example 1: Let us see the following simple ‘if…else’ example:
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Figure 4.3: ‘If…else’ with the failed case

Now, we need to check if this variable ‘a’ is greater than 101. If yes, then it’ll print the message: a is greater than 101; otherwise, it’ll print the message: a is not greater than 101. So, to achieve this, we have used the ‘if…else’ statement in the code. Here, in line 2 variable a is assigned with the value 101. At line 4, it will check the condition if variable a is greater than 101, though 101 is not greater than the value assigned to variable a (a=101).

The condition will be evaluated and returned as False; then the program control will skip line 5, fall under the ‘else’ part, and will execute the print() function at line 7.

Example 1: The following is an example when the ‘else’ part will not execute as paired if the condition is evaluated as ‘True’.
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Figure 4.4: ‘If…else’ with the passed case

Let’s understand the example: at line 1, variable a has been assigned the value 103. When it got evaluated at line 4 for the condition of greater than 101, it returned ‘true’. The program control fell under the ‘if’ block of the program and executed the print() function mentioned in line 5.

Nested if (if..elif or if…if statements)

‘Nested if’ statement means one or more than ‘if’ or ‘elif’ or ‘else’ conditional statements inside an ‘if’ statement. In case we have multiple conditions and actions, we use this ‘nested if’.

Syntax:

if condition1/expression1:

action/decision statement(s)

if condition2/xpresssion2:

action/decision statement(s)

else:

action/decision statement(s)

 elif condition3/expression3:

action/decision statement(s)

else:

action/decision statement(s)

We will understand the implementation of this with an example given in the following:

Example:

We have to give the grade to the students based on the number of the attempts they have taken and the percentage of marks obtained by the student, so the rules are as follows:


	If any student obtained 90% marks in their first attempt, then the grade awarded to a student will be A.

	Students who obtain 90% marks, but have taken two attempts will be awarded grade B.

	If any student is neither in the first or the second criteria, the grade will be C.



Let’s see the following coding snippet, which has implemented the preceding requirement.
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Figure 4.5: ‘Nested if’ case#1

In this coding snippet, we have two variables obtained_marks_percentage and number_of_attempt, and we have assigned value 90 as obtained_marks_percentage and 1 to number_of_attempt; now, we can see it has returned grade A as output, which is correct. Here, we can see how we use ‘nested if’ statements to fulfill this requirement.

If we change the value of variable number_of_attempt to 2, this will come under the second rule and it should be assigned grade B. Same has been evaluated by the following coding example:
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Figure 4.6: Nested if case#2

Similar to the preceding example, the following code demonstrates the third rule of grade-awarding logic:
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Figure 4.7: ‘Nested if’ case#3

By going through the preceding coding examples, we have an excellent idea of using ‘nested if’ statements in Python.

AND/OR condition with IF statements

Sometimes, we have such a need to check two or more conditions simultaneously to execute some actions. For example, we have C1 and C2, and we have a task T1, now we have a case:


	In the first case, we need to perform task T1 if and only if both conditions C1 and C2 are fulfilled.

	The second case is that we have to perform task T1 if at least one condition of either C1 or C2 is fulfilled.



Let’s understand the same with an example; suppose XYZ e-commerce site has offered a discount of 20%, if the user has spent Rs. 5000/- and held a Gold membership.

The following is the code snippet to demonstrate the preceding example:


[image: ]

Figure 4.8: ‘If’ statement with ‘and’ condition

In the preceding code snippet, we have to check two conditions: first, the billed amount should be equal to or greater than 5k, and second, the membership type should be Gold; the only offered discount will be 20%. So, in such a case, we can use the AND logic if the same statement has been implemented at line 6 or above.

Now, to understand how to use OR with the if statement, let’s consider that XYZ has another offer of a 20% discount. Still, the condition is like this – either the billed amount should be greater or equal to 10K, or the customer should be a Platinum member. So here, we can use the ‘if’ statement with OR logic. In the following snippet, the code demonstrates the same situation:
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Figure 4.9: ‘If’ statement with ‘or’ condition

In this example, we have two conditioned in If statement with OR, so if any one of them is true, it will be treated das Pass and execute the print() function, in above the first condition (billed amount >= 10000) got fulfilled, so it offered 20% discount.

Conclusion

In this chapter of this book, we have learned how to write conditional expressions or decision statements in Python using ‘if’, ‘if…else’, and ‘nested if’ constructs. In programming, we use these constructs very often.

In the next chapter, we will see how to write loops in Python to execute a block of code multiple times (not infinite); and the benefits of the loop construct.

Questions


	Give an example of an ‘if’ statement.

	What is the ‘if…else’ statement in Python? Give an example.

	What do you mean by ‘nested if’ statements in Python? Explain with the help of an example.

	Write a program in Python to check if the given number is even or odd.







CHAPTER 5

Loops in Python


In the last Chapter, we demonstrated how to write conditional expressions in Python. Now, in this chapter of the book, we will learn how to write loops in Python.

Loops are essential constructs of programming languages. Loops provide an excellent approach for executing a code block multiple times without writing the same code multiple times.

Structure

In this chapter, we will discuss the following topics:


	Loop construct in Python

	‘For’ loop

	‘While’ loop

	‘Nested’ loop

	‘Else’ statement with loop

	Loop control statements

	break

	continue

	pass






Objectives

After studying this chapter, you should be able to:


	Understand and implement loop constructs in Python.

	Use ‘for’, ‘while’, and ‘nested’ loop programming constructs in Python.

	Work with loops control statements—break, continue, pass, and exit.



Loop construct in Python

When we must execute a block of code repeatedly fixed multiple times, we can use the Loop construct to avoid repeating the same code multiple times. For example, to print the title of this book, Data Analysis with Python ten times, one approach is to; use the print function ten times, but it is not an efficient way for this problem. So, instead of printing the print function ten times, we can use a looping construct here.

Types of loops in Python

The following are the types of loops in Python:


	‘While’ loop in Python
In a ‘while’ loop, the first/expression is evaluated, and then it executes the loop’s body until the condition is True.

Syntax:

while expression or test condition:

body of loop (statement(s))

Example 1: The following snippet demonstrates a simple while loop to print the numbers from 1 to 5:
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Figure 5.1: while loop example

In the preceding example, we have four parts—the first one is the starting point of the loop (i.e., line#1 i=1), the second loop condition indicates how long we must repeat the loop for, the third part shows which action needs to be performed at each iteration of the loop, i.e., in the preceding example it is printing the value of variable i, and the fourth part is increasing/decreasing value of the loop variables, in the preceding example, we are increasing the value of i with 1 step forward. Thus, this while loop is executed and the number from 1 to 5 is printed.

Example 1: Let us see another example. In the following example, we need to tag even or odd for the numbers from 1 to 10:
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Figure 5.2: The ‘while’ loop, tagging whether the number is even or odd

In this example, we have initialized variable num with value one, and then put the while loop condition to repeat the loop till num <=10. In the action part, we have the logic to check whether the number is even or odd. So this way, we have printed the number 1 to 10 with a tag of even or odd.


	‘For’ loop in Python
Generally, the use of ‘for’ loop in Python is iterating over the sequences (List, Tuple, Set, Strings, and range ()). Like other programming languages, ‘for’ loop in Python is not as typical as it is in those. It will execute and the loop body (Python statement(s)) for each element of the Python sequence.

Syntax:

for loop_var in Python_sequence:

body of loop (Python statement(s))

Let’s see the following example that demonstrates the ‘for’ loop:
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Figure 5.3: An example of ‘for’ loop

Let’s understand the preceding example. In this code, we have given a list of numbers from 1 to 10, now, we need to print all the numbers from this list with a tag, even or not. In line 6, we have used ‘for’ loop and ‘traversed’ over the list one by one using the in keyword. After that, we apply the action block to check whether the number present in the list is even or odd. So, this loop will be repeated until it traverses over all the elements of the list.


	‘Nested’ loop in Python
Writing a loop within another loop is known as a nested loop. The following are examples of the nested loop. We can write a ‘while’ loop inside another ‘while’ loop, ‘for’ loop inside another ‘for’ loop, ‘while’ loop inside another ‘for’ loop, or vice versa.

It is recommended not to use more than 2-3 levels of the loop as that would be more difficult to read and to maintain the code.

‘Nested while’ loop

The ‘while’ loop executes a block of code repeatedly until the condition is TRUE, the following is the example for the same:
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Figure 5.4: Nested while loop example

The preceding coding snippet has demonstrated the ‘nested while’ loop here. We printed the table of 2 using the ‘nested while’ loop.

‘Nested for’ loop

The ‘for’ loop needs some iterable (a sequence object like Lists, tuples, dictionaries, sets, etc.). This way, it can help to iterate over the sequence and apply the compatible function over the elements of iterable. In the following example, we are adding each element of numlist_1 to numlist_2, and printing the result.
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Figure 5.5: Nested for loop example

This coding snippet demonstrates the ‘nested for’ loop. The example above for a loop at line 10 is the inner ‘for’ loop of the ‘for’ loop mentioned at line 8.




Else clause with loops

In Python, we can use the else statement with loops. The else block will be executed once the loop is typically complete without a break.
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Figure 5.6: An example of the ‘else’ clause with the ‘while’ loop

In this example, the kiwi is not in the fruits’ basket and the loop completes typically, so this ‘else’ got executed. If we search for grapes and that can be found in the basket, it will break the loop and the else block will not be executed, see the following example:
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Figure 5.7: else clause with for loop example

In this example, this time loop is not completed typically (not exhausted completely; it breaks before completing), so, this time, the ‘else’ part is not executed. This way, it is clear that if we use ‘else with’ loop, that block will be executed only if the loop is exhausted completely.

Loop control statements

Loop control statements provide the facility to control the flow of a loop. For example, to terminate the loop or to skip the loop execution, and so on. Python has the following loop control statements:


	break
It is used to break or terminate the loop. It will end the loop’s execution and pass the execution control to the following statement in the program:
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Figure 5.8: Using ‘break’ with the loop

In this coding snippet, when the value for the fruit variable is updated with Apple, it immediately breaks the loop.


	continue
It is used to skip the current iteration. It ignores the loop’s current iteration, gives the execution control to the very first line of loop construct, and continues from the next iteration of the loop.
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Figure 5.9: Using ‘continue’ with the loop

In this coding snippet, when the value for the fruit variable was updated with Apple, it skipped the current state (not printed Apple), and continued with the next one (Orange).


	pass
In Python, the pass statement does nothing, while it is a valid logical statement. Whenever you need to write some logical statements but you want nothing to execute, use pass. Generally, the pass is used in some functions in the body, which we want to write in the future. Pass is not like a comment, as the interpreter ignores the comments while it is not incase of the pass keyword it means do nothing.
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Figure 5.10: Pass keyword

The coding snippet shows that when the value for the fruit variable is updated with Apple, it activates the pass and does nothing; otherwise, it falls under ‘else’ block and executes the print() function.




Note: The pass can also be used in ‘if…else’ constructs in the function’s body.

Conclusion

In this chapter, we learnt how to work with loops in Python. We also got familiar with the different types of loops (for and while) with the loop control statements—break, continue, and pass.

In the next chapter, we will demonstrate how to write and work with functions in Python, an essential construct of any programming language.

Questions


	What is the benefit of loops in programming?

	What is the difference between ‘for’ and ‘while’ loops?

	What is range() function?

	When should we use ‘else’ clause with a loop?

	What is pass, break, and continue statements in Python?







CHAPTER 6

Functions and Modules in Python


In the last chapter, we learned about loop and control statements in Python, which helps if we want to execute the same code multiple times.

Now, in this chapter, we will learn an essential construct of Python that is function. The function helps to write readable and reusable code. Writing task-specific function code is easy to maintain and is reusable. For example, suppose we need to write the same functionality multiple times instead of writing the same code block numerous times. In that case, it is better to write a function for that and call it whenever needed.

As we move forward with this chapter, we will learn essential concepts and ways to use the function in Python.

Structure

In this chapter, we will discuss the following topics:


	Defining a function

	Using a function

	Passing the arguments in function

	Lambda function

	Map, filter, and reduce in Python

	Module in Python



Objectives

After studying this chapter, you should be able to:


	Understand and implement Python functions.

	Understand various types of arguments.

	Understand what lambda function is and its use.

	Understand the use of functions map(), filter(), and reduce().

	Understand the module in Python and its use.



Defining a function

In general, a function is a block of code with statements written to perform a specific task. Functions make the code reusable and modular, making the code easy to read, manage, and maintain. The function will execute when they get a function call.

Syntax:

def yourFunctionName(input_parameter(s)):

“””function doc string”””

statement(s)

return returning_expression

The following is the coding snippet to demonstrate the defining and calling function.
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Figure 6.1: myPythonFunction()

Here, in this example, we have defined a Python function myPythonFunction() with the help of keyword def, and line 2 and 3 is the function body (in this part, we are supposed to write our action or the logic we want to perform when this function is going to be called. In line 7, we have called this function using its name with open and closed parentheses, meaning myPythonFunction(). So, when program control comes at this line, it will invoke the function and immediately trigger the function action/task mentioned in the function body.

Parameter(s) and argument(s) in a function

In a function, parameter(s) is a variable mentioned inside the parentheses while defining a function but argument(s) is the value passed while making a function call to invoke the function.

Types of arguments

In Python, we have the following types of arguments:


	Positional arguments (required): Positional arguments or required arguments must follow the positional order; also, the number of arguments must be the same as per the definition of the function. The following is the coding snippet to demonstrate how to use positional argument:
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Figure 6.2: Positional arguments

In this example, argument 10 and 30 are the positional arguments, meaning they will assign the parameters to position, i.e., in this example, 10 will be assigned to a, and 20 will be assigned to b. If we change the positions, meaning, if we call the function like divisionOfTwoNumbers(30,10), then we will get different output so that it will be 30/10 =3.0. Another observation at line 3 is that we can see a return keyword, this is a keyword used to return the outcome of the function.

Note: It is necessary to pass all arguments for all positional parameters defined in the function. For example, if we call function divisionOfTwoNumbers(10) will cause an error.


	Keyword arguments: The keyword argument is a way to pass the information into a function as key=value pairs; where the parameter name defined in the function’s definition is a Key. Unlike the positional arguments with keyword arguments, it is not necessary to follow the orders to their definition. Given below is the coding snippet to demonstrate the same concept:
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Figure 6.3: Keyword arguments

Here in this example, we can see that we used keywords a and b with their values, while calling the function, so we don’t need to bother about their positions.


	Default arguments: Default arguments assume a predefined default value when the argument is not given while calling a function. We can overwrite the default argument by providing the value at the time of calling the function.
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Figure 6.4: Keyword arguments

In this example, we have used 10 as a default value for parameter b, so in this case, if we do not pass any argument for b, it will take 10 as a default value. But if we give any argument, it will overwrite the default value.


	Variable-length/Arbitrary arguments: Sometimes, we don’t know the number of arguments passed into the Python function. Python has a variable-length argument passing option to handle such a situation. In the positional variable-length argument, we define a function with asterisk (*) before the parameter name. We define a function with two asterisks (**) before the parameter name for the keyword variable-length argument.
Syntax:

# Positional variable-length function

def yourFunctionName(*args):

“””function doc string”””

statement(s)

return returning_expression

# Key-Word variable-length

def yourFunctionName(**kwargs):

“””function doc string”””

statement(s)

return returning_expression


	Positional variable-length arguments
Given below is the coding snippet to demonstrate the positional variable-length argument:
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Figure 6.5: Positional variable length arguments

In this example, we have defined *args as a parameter in the function. We will pass 1,11,111,1111 as multiple arguments, we can even pass more, and at last it will calculate the sum of them as defined in the function’s body.


	Key-word variable-length arguments
Given below is the coding snippet to demonstrate the positional key-word variable-length argument:
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Figure 6.6: Key-word variable length arguments

In this example, we have used **kwargs as a parameter for the function and passed the multiple key-value pairs as arguments at the function’s call time.








Lambda function/anonyms function in Python

In Python, lambda functions or anonymous functions do not have a formal function definition. We can write a lambda function using the lambda keyword.

Syntax:

lambda input_parameters: function_expression

Let us see the following example for the lambda function:
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Figure 6.7: Lambda function

In this example, we used a lambda function to add two numbers.

The map(), filter(), and reduce() functions in Python

In Python, mostly, we use the lambda function with map(), reduce(), and filter() functions to manipulate the elements of iterables (list, tuple, and so on) by using some specific function.


	map()
This map() function will execute the specific function using each iterable element.

Syntax:

map(some_function,iterables)
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Figure 6.8: map()

We print the squad values for the list elements using the map() function in this example.


	filter()
This function applies some Python function on all elements of an iterable and gives a filtered list of values, for which specified function returns ‘True’.

Syntax:

filter(some_function,iterables)
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Figure 6.9: filter ()

We filter out the odd numbers from the list and print only even numbers in this example.


	reduce()
This function is a folding function; that means it takes a sequence or iterable and applies the specified position on a sequential pair of sequence values in a rolling fashion and gives a cumulative computed value as a result. For example, suppose we want the total sum from a list of numbers.

To use the reduce() function, we need to import the functools module as this function is for the functools module. We will see the Python module and learn how to use them in detail, in the upcoming topic. To use any function from a Python module, first, we need to import that and only then can we use that.

Syntax:

# to use reduce() function we need import functools module

import functools

reduce ( some_function, iterables[, initial])
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Figure 6.10: reduce()

Here in this example, first, we import the functools module as reduce() function belong to this module. We get the total sum of the series using reduce() function.





Note:


	We can do all the stuff done by these functions (map, reduce, and filter) using Python loops, which is not recommended to handle such cases.

	We have used the lambda function with the map, reduce, and filter functions in the example above, but we can also pass a formally defined function name instead of the lambda function.





Python modules

Python modules are the Python code files with the .py extension, which contains Python code blocks and statements.

Modulus helps to logically organize Python code-specific modules, which also increases the code readability.

Python has various built-in modules like the system module, OS module, RE, and so on. In the previous topic, while we’re doing an example of the reduce() function, we have used the functools module to access and use the reduce() function.

Not only can we use the built-in function, but we can also create and use our custom Python modules. In the next part of this chapter, we will see how to create and use custom Python modules.

How to create and use Python modules

In this section of the chapter, we will see how to create and use Python modules.

Creating a Python module

The simplest way to create a custom module in Python is to create a file with Python code and put it with .py extension; for example, to create a module with the name mypythonmodule, you need to create a mypythonmodule.py and write the required Python code inside this file.

Given below is the mypythonmodule.py custom Python module with trafficLightAction() and vehicleSpeedCheck() functions. We have created our first Python module. Next, we need to use this module in our current code.

mypythonmodule.py
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Figure 6.11: Custom python module python script

Using a Python module: Using the import statement, we can import the other modules in the current Python code, and then use functions from the imported module. There are various ways to write the import statements; the following are some of them:

Import statement: We need to use the import statement to import any other module in the current Python code. The following are the variations in writing import statements. We can choose any of them according to requirements.


	Import module_name: This will import the complete Python module with all its functions.
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Figure 6.12: import module

In this example, we used the keyword import to import the custom module mypythonmodule.


	import module1[, module2, module3…]: This way, we can import more than one modulus in one statement.
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Figure 6.13: Import multiple modules

We imported two Python built-in modules in this example and used their functions.


	import module_name as some_alias: In the first example, everywhere we use the imported module function, we have to give the complete name of the module rather than the function name (mypythonmodule. vehicleSpeedCheck()). If we need to change some directory structure of the modules, then we need to go and change it everywhere in code, which is not a good practice, so to solve this problem, we can create an alias while importing a module and then we can use that alias as the module name.
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Figure 6.14: Import module with alias

In this example, we have an import module with the alias mypymod. This is another way to import modules. Alias name makes it easy to read.




From… import and from… import * statements: Using the ‘from….import’ statement, we can import specific objects from the module, and ‘from…import *’ will import all objects from the imported module.

In the following example, we have imported trafficLightAction and vehicleSpeedCheck functions from our custom module.
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Figure 6.15: An example of from…import …

This is the most recommended way to import the modules and their functions; we are not supposed to import all functions from a module that causes unnecessary memory consumption.

Note: While importing the objects from other modules, importing only the required attributes is always recommended. Never use import all kinds of statements. This will cause more memory consumption.

Conclusion

In this chapter, we have seen how to write a function in Python and the various ways to call and pass the arguments to a function. Also, get familiar with a Python module and how to use them, a custom module, and built-in modules.

In the next chapter, we will demonstrate how to read and write a file in Python.

Questions


	Why do we need functions in Python?

	What is a lambda function? Write a lambda function for adding two numbers.

	What is the difference between parameter and argument?

	What is the use of map (), reduce (), and filter () functions? Explain with a suitable example.

	What is the Python module?

	How can we import and use the other module’s function in another program? Explain with a suitable example using the Python code.







CHAPTER 7

Working with Files I/O in Python


In the last chapter, we learned about Python functions and modules that help write the Python code in a more reusable and modular way. In day-to-day work, it is a widespread need to read the information from text files and write the data into those files to store them for future purposes or further downstream processing. Python has provided various methods and functions to work with file handling. So, in this chapter we will cover how to read, write, and manipulate files in Python.

Structure

In this chapter, we will discuss the following topics:


	Opening a file and its various modes

	Reading the file’s content using multiple functions

	Important I/O functions of a file in Python

	Writing the content into a file



Objectives

After studying this chapter, you should be able to:


	Understand how to open a file

	Understand the various file opening modes

	Know the important I/O functions of a file

	Write the content into a file



Opening a file in Python

To open a file with Python, we will have an open() function, which we will use to open a file.

Syntax:

fle_object = open(<file_path>,<file_mode>)

Here, <file_path> is the file name which we want to open (python_wiki.txt) if the file is present in the current directory of Python code, else, we need to give a full path starting from the root folder.

And <file_mode> is the mode in which the file has been opened, like r for reading, w for write, a for append, and so on. Given below is a list of various file modes:







	
File Mode


	
Description





	
R


	
Read-only mode opens a file for reading.





	
W


	
Write-only mode opens a file for writing the content. The existing file will be overwritten, but it will create a new file if it does not exist on a specified path.





	
X


	
EXCLUSIVE mode opens a file for exclusive creation. If the file already exists, the operation fails.





	
A


	
Append mode opens a file for appending at the end of the file. It also creates a new file if it does not exist.





	
T


	
Text mode opens in text mode.





	
B


	
Binary mode opens in a binary way.





	
+


	
Update mode opens a file for both reading and writing.







Table 7.1: Various file modes

The following is a coding snippet to demonstrate how to open a file using the Python method:
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Figure 7.1: Open file

Let’s understand the given coding snippet. Here, in this piece of code at line 4, we have defined a variable named input_file_path, which contains the full path of the file. In this example, only the filename (python_wiki.txt) is given, so the programme will try to check in the current directory for this file. In case your file is not in the current directory, you can give an absolute path for this. In line 7, we used the open() function by passing the file path with the mode of working (r for reading mode only) and created an object assigned to the variable file_object. In line 13, we used the invoked closed method (file_object.closed), so if the file connection is open, it will return ‘False’ else ‘True’. In our case, we can see that the output for this is False, which means that the file connection is active and ready to use. At line 16, we are printing in the mode of file operation using the model method, and we can see it returned r, which is correct as we have opened this connection with r mode.

Closing a file in Python

After completing the work with the file object, we are supposed to close the file-object connection to release the resources. You will not get any error if you don’t close the file connection, but that is not recommended. To close the file connection, we have the close() method.

As it is always recommended to close the file connection after use, the following example demonstrates how to close active file connections:
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Figure 7.2: Closing the file

In this example, we can see that at line 3 we used the close() function to close the file connection. And now, if we check the connection status for the file, we should see that it is closed, as shown in line 7, which returned ‘True’, indicating that the file is closed.

There is another way to open a Python file using the “with” clause, where it will automatically close the file connection once after its use. So, you do need to explicitly close the file connection. The snippet given below shows how to open a file using the “with” clause.
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Figure 7.3: Closing the file

In this example, we used another approach to open a file, which has a ‘with’ clause, so in this approach, you don’t need to bother about closing the file explicitly. If you are using this method to open a file, close the file connection automatically and destroy the file object once you are done with the file operation programme. We can confirm the same by seeing the output for this coding snippet. At line 8, you can see that, we have printed the file object connection status, and we are getting ‘True’ for closed, so it is confirmed that with this approach closing the connection is automatically taken care of.

So, we always recommend using this approach.

Reading the content of a file in Python

In Python, to read the file, we need to open a file that will give the file object and then use the appropriate method to read(), readline(), or readlines() according to our needs.

Given below is a text file that we will use to demonstrate other concepts:
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Figure 7.4: python_wiki.txt

Let’s see the following functions that are used to read data from a text file:


	read(): it reads the data character-wise. If we pass the argument (number of characters to read) to this function, it will read a specified number of characters from the file. But in default, it will read all the characters from the file. The following snippet is the code that demonstrates reading the file’s data using the read() function.
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Figure 7.5: read() function

In this example, we have used the read() function to read the data from an input file. We have given 50 as argument value in reading () function, which means it will read only 50 characters from the starting of the file pointer. We can see the same in the output which has printed the data.


	readline(): This method will read the current line from the file. The following is a snippet of a code that demonstrates reading the file’s data using the readline() function:
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Figure 7.6: read() function

In this example, we have used the function readline() to read the data from the file. As we have discussed, the readline() function reads the first line from the file pointer, and we can see the output of the same with print(data).


	readlines(): It gives a list of all the lines from a file. The following is a snippet of a code that demonstrates reading the data from the file using the readlines() function.
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Figure 7.7: readlines() function

This example shows that it used the readlines() function to read the data, which reads, streams, and returns the list of lines.




Writing the content into a file in Python

Python has a write() function; we can write the content into a file using this function. First, we need to create a file object using open() with the correct mode (w, a, and so on.); after that, we can pass the content string on the writing function to write the data into the file. In the following example, we will first write some content to a file and then read the same file to verify if the data has been correctly written into the file.

The following is the snippet of a code that demonstrates writing the data onto the file:
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Figure 7.8: write() function

We used the open function with mode w (write mode) and the write() to write the information onto the file.

Following is the file that the previous example has produced:
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Figure 7.9: Output file with written data

Following is the coding snippet to read the previously written file:
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Figure 7.10: To read the output file

In this example, we read the file output_file.txt using the read() function.

Conclusion

In this chapter, we learned how to work with file I/O in Python, the various ways to read the file, like open() and with clauses, and we also learned how to write information onto an external file. We have also become familiar with the various modes of opening a file.

Now, we have enough Python programming knowledge to learn data analysis using Python tools.

In the next chapter, we will learn the various data analysis concepts and their tools.

Questions


	Write the pseudo code to read the file (emp.txt) in Python.

	Write the pseudo code to write the “Data Analysis using Python” string to file “DataFile.txt”.

	What are the different modes to open a file?

	What is the benefit of using ‘with’ open clause when we need to open the file?

	Explain the functionality of read(), readline(), and readlines() methods.







CHAPTER 8

Introducing Data Analysis


In the previous chapter, we learned how to work with file I/O with Python. We have gone through various hands-on examples of reading and writing files using Python. So far, we have learned most of the essential building blocks of core Python programming, which is the elementary prerequisite in learning data analysis using Python.

The current age is the age of data, and data is increasing rapidly day by day. For any data-driven business, it is essential to get good insights into its data to make improved decisions. So, it is necessary for anyone who wants to learn data analysis to understand fundamental concepts and methods.

This chapter will build up an understanding of the basic concepts of data analysis, which will help you understand what data analysis is and the basic steps that need to be followed to get it done correctly.

Structure

In this chapter, we will discuss the following topics:


	What is data analysis?

	Data analysis versus data analytics

	Why do we need data analysis?

	Types of data analysis

	Process flow of data analysis

	Types of data

	Tools for data analysis in Python



Objectives

After studying this chapter, you should be able to understand the following:


	Definition of data analysis and why it is essential in business

	What is the process flow of data analysis and its fundamental concepts?

	Different types of data and the various tools needed to perform data analysis work



What is data analysis

Different data scientists and data analysts have different views on data analysis definition. But, in general, we can say that Data analysis is the process of discovering useful information from the raw data to empower data-driven business decisions.

As per Wikipedia – Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making.

Link to Wikipedia: https://en.wikipedia.org/wiki/Data_analysis

If we look at the implementation or working view of data analysis, it is a process of some sequential steps; by applying those, we will discover the insights from the raw data.

Data analysis versus data analytics

Data analysis and analytics are often used interchangeably in the current world, so are they identical? The answer is no, and they have different meanings. The dictionary meaning of both terms are as follows:

Data analysis: It is a detailed examination of the elements or structure of something.

Data analytics: It is a systematic computational analysis of data or statistics.

Data analysis is a subpart of data analytics, and it is a process of collecting, transforming, and examining the data to uncover profound insights of the data. We analyze the past data to understand the contributing factors or reasons behind some activities that have already occurred. In contrast, data analytics uses the outcome of data analysis and goes to the next level of analysis. It uses compressive computational models to analyze data at the next level, predicting future possibilities.

In simple words, data analysis gives insight into what happened or the current trend; however, data analytics provides insight into what may happen in the future.

Why data analysis?

Now we clearly understand the definition of data analysis and how data analysis differs from data analytics. However, one question remains: Why do we need data analysis?

If we see in our lives, we often do data analysis knowingly or unknowingly to make day-to-day decisions. For example, to purchase any product from the e-commerce site, often, we see the previous customer’s ratings and feedback on that product. Then, after analyzing product rating, feedback, and other factors, we buy a new product.

In the previous example, we review and analyze the available data related to our interest and then decide that this is nothing but a simple data analysis.

Similarly, data analysis helps organizations make better decisions and make their business more profitable.

So, we can say that data analysis is the backbone of any data-driven business decision.

Types of data analysis

In general, there are four types of data analysis. The following are the details and examples for those various types of data analysis:

Descriptive data analysis

Descriptive analysis is one of the most common and primary forms of data analysis. Descriptive data analysis is helpful to find the “what is/has happening/happened?” in business. Usually, we take the help of descriptive data analysis to track the Key Performance Indicators (KPIs), sales profit/loss, and so on. Example: publishing weekly sales report.

Diagnostic data analysis – (Why something happened in the past?)

Diagnostic data analysis helps find out the “Why did something happen?” Once we get the report of what happened from descriptive analysis, diagnostic data analysis helps us understand which factors caused something to happen. It has more complexities than descriptive analysis.

Example: analyzing the reasons/factors for fewer sales in the previous year.

Predictive data analysis – (What can happen in the future?)

Predictive data analysis is used to forecast or predict what can likely happen by analyzing the historical data, which helps us understand “what will probably happen in the future?“ For example, by analyzing the past years of sales reports, it is possible to predict the coming year’s sales, but this task does not come easily. It is needed in advanced data analysis and Machine Learning (ML).

Example: predicting the unemployment ratio for upcoming years.

Prescriptive data analysis – (What actions should I take?)

Predictive analysis is not always sufficient to make improved business decisions; instead, we need corrective actions to improve decisions. For that, prescriptive data analysis comes into the picture. Prescriptive data analysis uses the outcomes of all the data analysis. It will help find the “what action should be taken?” to counter a problem or predicted problem. So, it prescribes the action(s) as a solution to counter the specific situation. It needs advanced machine learning and real-time artificial intelligence.

Example: Dynamic pricing of taxi fares depends on demand, weather, and social conditions.

Process flow of data analysis

Now, you are clear about data analysis and its types. Next, let’s see the various steps we need to follow in data analysis. The following are the different steps in the data analysis process:
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Figure 8.1: Data Analysis Process flow

Requirements: gathering and planning

In the requirement gathering step, we understand the problem statement and set the goals for the data analysis task. Here, we try to get answers to the following questions:

Why do we need data analysis? What is the business domain of the problem statement? What type of data analysis should we apply? What data do we need to deal with? What are the possible challenges/gaps with data? And how to overcome those?

So, this phase is for understanding/brainstorming the problem statement and its domain and then creating/planning the roadmap for the data analysis process.

Data collection

In this step, we will collect data from different sources (From the web, some transactional systems, data from users in flat files or data from sensors or machines, and so on). In data collection, only collecting the data is not enough, but the timing of data (at which time and how frequent) is also essential. So, always consider this point while going for the data collection step.

Data cleaning

The data collected at the data collection step is raw; it may have some corrupt, irrelevant, or dirty data. For example, it may have white spaces, quotes, inconsistencies, corrupted records, or some part/records of that collected data that are irrelevant to our problem.

So, here, we will detect and remove the corrupted, inaccurate, and irrelevant data from the collected raw data set and build a cleaner subset from that.

Data preparation

Here, at this data preparation step, we manipulate the data and add the required derived variable (columns/fields) to make it ready for accurate and consistent data analysis. For example, suppose we have a user’s contact number with the country code (like +91-1234567890); now, if we split this into two columns, contact_number (124567890) and country (India), here, the country is a derived column.

Data analysis

We will analyze previously prepared data by following the finalized approach and plan, which we decided at the requirements gathering and planning step. Here, we do data analysis with the help of a data analysis framework, tools, and utilities like Excel, R, SAS, Python, Hadoop, Spark, and so on.

Data interpretation and result summarization

This is where we will interpret the results from the data analysis step and build the conclusion by summarizing the findings.

Data visualization

Data visualization is the final step. Here, we will represent our findings and conclusion graphically with the help of an appropriate visual plot, like Bar Charts, Histograms, Pie charts, and so on.

Also, we must communicate the data analysis insights in Reports/Dashboards with the higher management for their review and information.

Type of data

It is essential to understand the different data types for data analysis. Based on the organizing structure of data, we can categorize the data into three classes as follows:

Structured data

Structured data have a fixed, predefined, and consistent structure. This type of data is most effective for analysis. For example, relational data is organized in rows and columns.

Semi-structured data

Semi-structure has a partially defined structure. Though it does not have entire relational data, it is manageable to understand the data structure and process. For example, CSV data, JSON data, XML data, and so on.

Unstructured data

Unstructured data means there is no predefined structure of the data. This is a bit complex to process and store, and we need some advanced capacity, tools, and methods to analyze and process such data. For example, pdf, image, text log, audio/video data, and so on.

Tools for data analysis in Python

Python has many libraries for data analysis, data visualization, and data modeling like IPython, Pandas, NumPy, Matplotlib, Seaborn, Scikit-Learn, NLTK, Keras, TensorFlow, and so on. All are not in scope for this book, but some are common and used by the data science and data analytics community.

IPython

IPython is a web-based interactive shell notebook for several programming languages but is mainly used with Python to write, test, and execute the Python programme to analyze and visualize the data.

Pandas

Pandas is a trendy data analysis and data exploration library that provides a structured representation of data. It helps to do data manipulation, cleansing, aggregation, merging, and so on effortlessly.

NumPy

NumPy is a fundamental library for doing array and vector-based mathematical operations.

Matplotlib

Matplotlib library is a vastly used data visualization library. It helps us represent the data in various visual graphs, such as line plots, bar charts, histograms, etc.

Conclusion

In this chapter, we have developed our understanding of the data analysis concepts. We have learned what data analysis is and how essential it is to make data-driven decisions. We have seen different data analytics types and the different steps in the data analysis process.

Also, we learned about the three types of data and got some ideas on different data analysis tools.

The following chapters will explore the data analysis library Pandas with good hands-on examples. Pandas is a prosperous Library in terms of methods and features for doing data analysis, so it is essential to learn if we want to do data analysis using Python.

Questions


	What is data analysis, and why is it important?

	What are the different types of data analysis?

	List some Python libraries that help in the data analysis task.

	What are the different types of data based on their organizing structures?

	What are the different steps in the data analysis process?







CHAPTER 9

Introducing Pandas


In the previous chapter, we have learned about the fundamentals of data analysis, like what is data analysis, its types, and the different steps to perform a data analysis task. Also, we got a brief introduction to the data analysis tools/utilities in Python. Having a good understanding of all these concepts is very important and helpful to perform any data analysis task.

This chapter will explore a wildly used data analysis library, pandas, in-depth. It makes data analysis in Python easy and has a rich collection of features and functions.

Structure

In this chapter, we will discuss the following topics:


	What is pandas?

	Why use pandas?

	Pandas data structure

	Creating pandas’ data frame using Python collections

	Importing the data from external files into pandas’ data frame

	Importing the data from a CSV file

	Importing the data from an Excel file

	Importing the data from JSON file




	Exploring the data of a DataFrame

	Selecting and filtering the data from DataFrame

	Data cleaning in pandas DataFrame

	Handling duplicate data

	Handling missing values in data




	Grouping and aggregation

	Sorting and ranking

	Adding/appending row/column in DataFrame

	Deleting/dropping the row/column from DataFrame

	Concatenating the dataframes

	Merging/Joining the dataframes

	Writing the dataframes content to external files

	Writing the CSV file

	Writing the Excel file

	Writing the JSON file






Objectives

After studying this chapter, you should be able to:


	Understand about pandas.

	Work with pandas’ data structures.

	Create DataFrame from Python collections.

	Load data from different external files (CSV, EXCEL, and JSON).

	Explore, select, and filter the data using pandas’ essential functions.

	Understand how to handle duplicate data and missing values in DataFrame.

	Group, aggregate, sort and rank the data.

	Append and drop the row or column into/from DataFrame.

	Concatenate, merge, and join the dataframes.

	Write the dataframes content to external files (CSV, EXCEL, and JSON).



Defining pandas library

Pandas is an open-source data analysis library for Python.

According to pandas’ official document: pandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

Why do we need pandas library?

Why do we need pandas, and how does data analysis make life easy? Let’s solve a straightforward problem with and without pandas to understand this.

Suppose we have been given an input file with employee details like emp_name, emp_salary, emp_department, and so on. Now, we need to find the sum of employees’ salaries for each department (or sum of salaries department wise).

Following are the solutions to solve this problem with two approaches:


	The first approach uses core Python programming to solve it without using the pandas library.

	In a second approach, we used the pandas library to solve the problem.



If we observe the following solutions, it is self-explanatory that approach one has approximately four times more lines of code than approach two, and approach two will take less time to compute the following solution.

So, now it is well observed that pandas is quite helpful, easy, and fast to perform the data analysis work, compared to core Python programming.
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Figure 9.1: Solution - Without using the pandas library
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Figure 9.2: Output of the Solution - Without using the pandas library

Now, let’s see the solution with the pandas library:
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Figure 9.3: Solution using the pandas library
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Figure 9.4: Output of the solution using pandas library

Pandas data structure

We will start with a brief, non-comprehensive overview of the data structures in pandas. Given below are the important data structures in pandas:


	Series
Pandas series is a one-dimensional array with index labels, more in technical term, these labels are also referred to as axis index. So, in other words, the pandas series is the collection of objects in one dimension with an axis index.


	Creating the pandas series
We have the function pandas.Series(data,index=index) and it can create a pandas series. In the following example, we have created a pandas series from the Python list.
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Figure 9.5: Pandas series





	DataFrame
Pandas DataFrame is the data structure with two-dimensional labels, one is axis index (row label), and the second is axis column (column label). We can think of it as a table in SQL where data is organized in rows and columns. DataFrame is the most commonly used data structure of pandas. In the next part of this chapter, we will explore various features and functions of pandas DataFrame.


	Creating pandas DataFrame
In pandas library, we have the function Pandas.DataFrame(data,index=index,columns=[column(s)]), which can be used to create a pandas DataFrame. We have created pandas DataFrame from the Python list and Python dictionary in the following examples:

If you see in the first example, where we have created DataFrame using Python list, we have passed ‘number’ as a column name (Pandas.DataFrame(num_list, columns = [‘number’])) but we have not given the indexes as an argument in the function. So pandas automatically assigned the index labels [0,1,2,3,4] to the DataFrame and now we know that if we haven’t passed index labels or column labels, pandas will automatically create them.

Coding example(s)

Creating the pandas DataFrame from Python list:
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Figure 9.6: Creating the pandas DataFrame from the Python list

Creating the pandas DataFrame from Python dictionary :
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Figure 9.7: Creating the pandas DataFrame from python Dictionary







Loading data from external files into DataFrame

Pandas library has various functions to read and load the data from different files into the DataFrame. The following are examples of loading the data from commonly used file formats like CSV, EXCEL, and JSON:


	Loading the data from CSV into DataFrame:
CSV is the abbreviation of Comma Separated Values, so typically, the CSV file contains the common separated values. Given below is the snapshot of a CSV file with a header:
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Figure 9.8: CSV file

We have the read_csv() function in the pandas library to create the DataFrame by reading the data from a CSV file. There could be various scenarios working with CSV files; some of them are the following:


	CSV file which contains header information

	CSV file which doesn’t have header information

	Instead of a common separator, there will be some other character separator like the pipe (“|”)



We will see the hands-on examples for all the above cases.


	Loading data from CSV file with a header into a DataFrame
The read_csv() function automatically picked up the first line as header and assigned the column names in DataFrame accordingly. Following is the snapshot of a CSV with a header. Now, we will load data from this file into a DataFrame.

Input CSV file snap-shot:
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Figure 9.9: Input CSV file

The code snippet is to import/load the CSV file and display the first five rows from DataFrame.
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Figure 9.10: Importing CSV file and creating pandas the frame


	Loading data from CSV file without header into a DataFrame:
If the CSV file doesn’t have a header, we have to pass header or column details as an argument during calling the read_csv() function to load the data from CSV to a data frame. The function will be like – Pandas.read_csv(<Input_CSV_file_Path>,names = [col1,col2…coln]). If neither file has a header nor applies the values to the names keyword, then by default, pandas will assign the first row’s value(s) as a column name(s) to the DataFrame.

Given below is the snapshot of a CSV file without a header. Now, we will load data from this file into a DataFrame.

Input CSV File without header snapshot
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Figure 9.11: Input CSV file without header

Given below is the code snippet to import/load the CSV file above and display the first five rows from DataFrame:
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Figure 9.12: Import the CSV file (without header) and create a data frame with a custom head


	Loading data from pipe (“|”) separated file into a DataFrame
If a flat-file contains data, separated by some other character except comma (“,”), then to load that file into a DataFrame, need to explicitly specify the separator as an argument while calling the read_csv() function.

Following is the snippet of a pipe-separated file, now we will load data from this file into a DataFrame:

Input file snippet
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Figure 9.13: Pipe delimited input file

The code snippet is to import/load the data from the pipe separated file above into a DataFrame and display the first five records.
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Figure 9.14: Importing pipe-delimited input file and creating pandas dataframe

The following is the output of this code:
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Figure 9.15: Output from example


	Loading the data from excel file into DataFrame
To load data from a Microsoft Excel file into a DataFrame, we have the read_excel() function. It will be – pd.read_excel(<excel_file_path>,sheet_name=<excel_sheet_name>)

Given below is the code snippet to load data from Excel into a DataFrame and display the first five rows:
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Figure 9.16: Importing excel data into the pandas dataframe


	Loading the data from JSON file into DataFrame:
A JSON file format is the commonly used file format across the system and platforms. It organizes the data in key-value pairs and the order’s list. The following is the snippet of a JSON file:
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Figure 9.17: Input JSON file’s example

We have the read_json( ) function in the pandas library to load the JSON file data into a DataFrame.

Let’s see the following code snippet in which we are loading the data from a data frame and displaying its first five rows:
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Figure 9.18: Importing the JSON file into the pandas dataframe




Exploring the data of a DataFrame

So far, we have a good idea of the pandas DataFrame and how we can create them. Now, we will learn some essential functions to explore the data of a DataFrame.

The following are some important functions/methods of the pandas library:


	DataFrame.shape
The shape will return a tuple containing the number of rows and columns of the DataFrame. The following is the code snippet to demonstrate this:
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Figure 9.19: dataframes shape method


	DataFrame.head(n)
The head(n) function returns a DataFrame containing the first n rows from the Input DataFrame. The following is the code snippet to demonstrate this function:
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Figure 9.20: head() function


	DataFrame.tail(n)
The tail(n) function returns a DataFrame containing the last n rows of the input DataFrame. The following is the code snippet to demonstrate this function:
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Figure 9.21: tail() function


	DataFrame.info()
The info() function prints the data frame information like index, columns, not null values, and so on. The following is the code snippet to demonstrate this function:
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Figure 9.22: info() function


	DataFrame.describe()
The describe() function generates the descriptive statistics. By default, it returns the statistics for the numeric column, but it explicitly applies this to some other type like string column; it will generate the respective statistics. Given below is the code snippet to demonstrate this function:
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Figure 9.23: Describe() function

The following is the code snippet to describe() the non-numeric column:
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Figure 9.24: describe() function -non numeric


	DataFrame.dtypes:
The dtypes() function returns the data types in DataFrame. The following is the code snippet to demonstrate this function:
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Figure 9.25: The dtypes() function


	DataFrame.columns
The columns method returns the column labels of the DataFrame. The following is the code snippet to demonstrate this function:
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Figure 9.26: The columns method




Selecting data from DataFrame

There are various ways to select and filter the data from the pandas DataFrame. Some of them (like DataFrame.head(n), DataFrame.tail(n), and so on) we have already discussed in the last part of this chapter. We can use the following methods to select and filter the data as per our needs:


	Selecting the data for the subset of columns
To select the subset of columns out of all, we can use a function like - <dataframe name>[ [col1,col2…]]. This will return a DataFrame with selected columns. The following is an example where we will select the name and city from emp_df and will display the first five rows from the returned DataFrame.

Coding example(s)
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Figure 9.27: Selecting the specific column’s values from dataframe


	Selecting the data using simple conditions
It is like selecting some data from a table in SQL with the ‘where’ clause. Similarly, in pandas’ also, we can select the data from the pandas DataFrame with some condition. For example, from an employee data frame (emp_df), we want to get all the records of the city Sanzeno (meaning, city = Sanzeno). The following is an example for selecting the data with the condition:

Coding example(s)
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Figure 9.28: Selecting data from the data frame using simple condition -example#1

Let’s take another example to explore it more. For example, let’s assume that now we need to select all the employee names from the data frame emp_df with a salary of less than $6000. The following is a code snippet where we’re doing the same:

Coding example(s)
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Figure 9.29: Selecting data from the data frame using simple condition – example#2


	Selecting the data with multiple conditions
Sometimes, just selecting the data on simple conditions is not enough to fill our requirements. In real-world problems, we have to select data by applying multiple conditions. We will see such cases in the following:

 CASE 1 : Condition 1 AND Condition 2 :

We often have to select data by applying two or more conditions simultaneously. For example, suppose we need to select all such records from emp_df where:

Condition 1: Salary is less than or equal to $10000.

Condition 2: City is Sanzeno.

So, in case of AND condition, we can select only those records that qualify for both the conditions. The following is an example to demonstrate this case:

Coding example(s)
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Figure 9.30: CASE #1 : Condition1 AND Condition2

 CASE 2: Condition 1 OR Condition 2

Let’s assume that we need to fetch out such records from the emp_df, where:

Condition 1: Salary is less than or equal to $5000.

Condition 2: City is Sanzeno.

So, in this case, we can select records that either qualify condition 1 or condition 2. Such arrangement of the condition is OR, meaning if any one of the conditions is True or gets passed, we will pick up that record. The following is an example to demonstrate the case #2 (OR)
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Figure 9.31: CASE# 2: Condition1 OR Condition2




Data cleaning in pandas DataFrame

It is essential for unbiased, accurate, and consistent results to have data free from the impurities like duplicate values/records, missing values, irrelevant data points, and so on. So, to solve the data problem, either we can manipulate and fix these impurities or remove such bad data records. In pandas, we have various functions/methods for the data cleaning task. Some of their essential methods/functions are the following:


	Handling duplicate data
Duplicates in the data is a prevalent problem; it takes more space to save the identical records and can lead to inaccuracy in resultant insights. So, it is better if we should remove such duplicate records from our data. But before removing them, it is essential to identify the duplicate records first, and to understand the different ways to consider any record duplicate.


	If the complete record is duplicate
Duplicate record means if more than one record has the same values for all columns. In the following snippet, employee_id = 149 has duplicate records:


[image: ]

Figure 9.32: If the complete record is duplicate


	A subset of columns has duplicate values: Here, we will consider a record as duplicate if one or a subset of DataFrame columns (we can say those columns as key columns) instead of all columns have duplicate values. In the following example, employee_id =111 has more than one column with the same values, but all columns don’t.
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Figure 9.33: One or more columns have duplicate values

The following are examples of identifying and dropping duplicate records from a DataFrame.

Getting the number of duplicate records present in data.

In Example 1, we will apply the duplicated() function on a complete data frame, which means it is considered a record duplicate if two or more than two records have the same values for all columns, while in Example 2, we are using duplicated() by passing the subset of dataframes columns, so it will consider any record duplicate if they have identical values for the subset of the key column(s).
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Figure 9.34: Duplicate rows count

Displaying the duplicate records

The following example shows the records from DataFrame that have duplicate values for column employee_id.
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Figure 9.35: Printing the duplicate records from dataframe

Dropping/deleting the duplicate records

To get rid of the duplicate records, we can drop them from our DataFrame. We can do it with the help of the drop_duplicates() function. If we did not pass any list of subset columns to this, it would drop only these records from the data frame, which have duplicity in the value s for all columns, but if we pass the essential columns list, it will drop records that show duplicity in values for specified columns only. In the following example, we will drop all duplicate row(s) from the data frame; duplicate values for employee_id columns:
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Figure 9.36: Dropping the duplicate rows


	Handling missing values in data
Handling the missing values is a very crucial and essential task. The most straightforward approach is removing the records from the DataFrame that have missing values. But it will not help since in all cases we can lose some important facts from our data. So, another way is to impute the values for the missing data, and there is no single or fixed method to find such values. It depends on several factors like what type of problem it is, its domain, and the business need, or how it will impact our outcomes. In pandas, we have a good list of functions/methods to handle missing data in DataFrame.


	Dropping the rows which have missing data
In pandas, we have the dropna() function to drop the rows with the missing values. We can use this function with various options like:


	If all columns have missing values (dropna(how=’all’))…

	If any column has missing values (dropna(how=’any’)…

	If subset of columns or specified columns have missing value (drop_na(subset=[col1,col2…])…



The following are the examples for the same:

Example: Use of dropna(how=’all’)
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Figure 9.37: Dropping the rows using dropna(how=’all’)

Example: Use of dropna(how=’any’)
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Figure 9.38: Dropping the rows using dropna(how=’any’)

Example: Use of dropna(subset)
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Figure 9.39: Dropping the rows using dropna(subset)


	Filling the missing values
As discussed already, it is not always helpful to delete the records from DataFrame with the missing values. In many cases, we need to infer some values which we can fill or impute in place of missing data. So, to fill the missing values, we can use the fillna() or replace() function. These can be used with various options depending on our needs. The following is the code snippet to create a DataFrame df from a Python dictionary with missing values.
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Figure 9.40: Creating sample dataframe using dict




In the above DataFrame, all Not a Number (NaN) means missing values. In pandas, NaN is the missing value (means zero, blank, or space, and NA will not be considered as missing values by pandas).

Let’s see how we can use fillna() and replace() functions to fill/replace the values in DataFrame.

DataFrame.fillna():

We can use this function as follows:


	DataFrame.fillna(<value_to_be filled>)
Whatever we pass in the fillna() function will replace all NaN by default. See the following example where all NaN values were filled with the MissingValue.
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Figure 9.41: Using fillna() to fill missing values

Here, we can see the coding snippet, where we’re using the fillna() function to fill the NaN values in DataFrame. Line 5 is a custom display function, which will display the Input data frame, and line 6 will show the dataframe df_fillna after applying the fillna() function. The following is the output screenshot:
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Figure 9.42: Output for fillna() functions demo


	DataFrame.fillna(method = ‘ffill’)
If we use the forward fill method option with fillna(), all NaN values will be filled with the previous value of that column. The following example demonstrates this:
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Figure 9.43: Output for fillna(method=’ffill’)


	DataFrame.fillna(method = ‘bfill’)
If we use the ‘backward fill’ option with fillna(), all NaN values will be filled from the next value of its column. The following example demonstrates this:
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Figure 9.44: Output for fillna(method=’bfill’)


	fillna() with mean(), median(),mode()
We can fill the missing values with more appropriate ones using the fillna() function’s statistical function. For example, suppose we found some missing values in the salary column. In that case, filling with some constant value is not good; rather, filing that with average of all salaries or median of all salaries will be more appropriate. See the following examples where we will handle the missing values with mean(), median() and mode() functions:

The following example demonstrates how to use the fillna() function with mean() of specific columns value.
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Figure 9.45: Output for fillna() with means()

The following example demonstrates how to use the fillna() function with median() of specific columns value:
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Figure 9.46: Output for fillna() with median()

The following example demonstrates how to use the fillna() function with mode() of specific columns value.
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Figure 9.47: Output for fillna() with mode()

DataFrame.replace()

If you observed the previous examples for fillna() function, it deals with only the NaN values (as pandas consider NaN as missing value ); it does not replace values like ‘NA,’ 0, blank/space, but these values can also be considered as missing in real-time problem cases. For example, we have a city column, but it has blank/space for some cell or 0 in the salary column, which is also supposed to be considered missing values. So, if we can replace these values with some other values using replace() function, we need to pass old_value and new_value in this function to get new_value by replacing the old_value. Following are the examples which demonstrates how to implement this replace() function with various options.

The following example demonstrates the uses of replace() function with all columns:
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Figure 9.48: replace() function – for all columns

The following example demonstrates uses of replace() function with specific columns:
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Figure 9.49: The replace() function -with specific column at a time




Grouping and aggregation

Whenever we need to get the summary out from data, grouping and aggregation functions can be used. For grouping, pandas has groupby() function and for aggregation, it has various functions like min(), max(),count(), sun(), and so on. According to our requirements, we can choose the most appropriate function and use them.

Grouping

Let’s understand how to use the groupby() function. In the following example, at:

Step#1: At this step, we need to import the emp_agg.csv file into emp_df dataframe

Step#2: At this step, groupby() function gets called with the ‘Department’ as argument and prints the grouped object, which will create a grouped object for the column Department where all distinct values of this column will represent the group keys.

Step#3: At this step, we will print all group keys from the grouped object.
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Figure 9.50: Use of groupby() function and display groups

So, if you want to do grouping on one or more than one column(s), you can use the function groupby() as – DataFrame.groupby([col1,col2…con])

Aggregation

Let us discuss how to use the aggregate function with the group () function. The syntax will look like DataFrame.groupby([col1,col2…]).<aggregate_function>(). We can apply the aggregate function to the grouped data to get the aggregation result. For example, suppose we need to display the salaries for each department. In that case, we first need to do grouping of the data on the column department, then apply aggregate function sum() on Salary column. The following is an example of this:
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Figure 9.51: Use of groupby() with aggregate function sum()

There is another way to write the aggregation statements; we can use agg({agg_function1(),agg_function2()…}) instead of directly calling the aggregation function on top of grouped data. As you see in the following example, we have solved the same query using agg() function. We can call aggregate functions by passing the dictionary inside the agg() function.
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Figure 9.52: The use of groupby() with multiple aggregate functions using agg()

Sorting and ranking

We often have such requirements that we have to arrange the data in some order or rank in our data. For example, get the salaries in ascending order or give the rank to the students based on their obtained marks. So, to do such activities, pandas have provided sorting and ranking functions. We will discuss them with examples.


	Sorting
Pandas has provided sort_index() and sort_value() functions to sort the data. Function sort_index() will sort the data based on the dataframes index values, while sort_values() will sort the data based on the column values. The function will sort the data. By default, these functions will sort the data in ascending order.

In the following example, we have sorted the data using the sort_index() function. If we see in the input dataframe, the index has values 1,4,2,3, but after using the sort_index(), it sorts the dataframe, and in the output dataframe, we have 1,2,3,4.
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Figure 9.53: Use of sort_index()

The functions sort_values() will sort the data in the column values; in the following example, we have sorted the input data frame’s data based on emp_id column’s values in the ascending order.
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Figure 9.54: Use of sort_values()

If you see in the preceding examples, all sorting is done in ascending order by default. But to get the sorted data in descending order, we must pass the ascending=False as an argument with the ascending order sorting functions. In the following example, we have sorted the data based on emp_id in the descending order, meaning higher to lower order.
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Figure 9.55: Use of sort_values() with descending order


	Ranking
For ranking, we have the rank() function. This function assigns the ranks to the values of a column starting from 1. The rank() function also has options to order the data in ascending and descending order. The following are the examples for this:
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Figure 9.56: Use of rank() function

In this example, if you see it, it assigns the rank based on the ascending order of the values, which means lower to higher.

Let’s see how we can assign the rank from higher to lower; the following is the example for this, where we pass ascending =False in rank function, assigning the ranks from higher to lower.
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Figure 9.57: Use of rank() function in descending order




Adding row into DataFrame

Using the append() function, we can add a new row in the existing data frame.

We can pass a new row as dictionary, panda in this function: series and Pandas.DataFrame. Let’s consider that the following DataFrame is the existing data frame, and we are supposed to add a new row in this data frame.

Input DataFrame :
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Figure 9.58: Creating a sample dataframe using dict

The following is an example of adding a new row of type Dict into the above DataFrame df.
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Figure 9.59: Adding new row in existing dataframe

The following is an example. We will add a new row of type pandas series into the above DataFrame df.
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Figure 9.60: Adding new row in existing dataframe with type pandas series

The following is the example of adding a new row of type pandas DataFrame into the existing DataFrame df.
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Figure 9.61: Adding a new row in the existing dataframe with type pandas dataframe

Adding column into DataFrame

We can add a new column in the existing data frame using the following ways:


	Adding New Column with one constant value
We can follow the following method if we need to add a new column into the pandas DataFrame by assigning the fixed constant value for all records.
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Figure 9.62: Adding a new column in the existing dataframe with a default value

In the preceding example, we added a new column named constant_value_col by assigning the constant string value (New_value) to that column.


	Adding a column with a list of values
Sometimes, we need to add a new column into the dataframe with predefined different values (list of values). So, in such cases, we can follow the following method.
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Figure 9.63: adding new column in existing dataframe with a list of values

In the preceding example, we added a new column named new_col by assigning the list values [1,2,3,4].


	Adding column by applying the transformation logic
This is a prevalent scenario in data analysis when we need to add a new column into the exiting data frame by applying some transformation function to populate its values. For example, suppose we have a dataframe with employee salary detail. Now, we need to add a new column updated_salary by increasing the salary of all employees by ten percentage. We can perform this using the apply() function.

The apply() function allows us to write our custom Python function and use that on the dataframe or any one of its columns.

The following is the coding example for this. In this example, first, we have created the dataframe df and written a Python function sal_with_10_percent_hike(), which will return the new salary by increasing the 10 % in the old one. After that, we used apply() function by passing the Python custom function and assigned the values to a new column named updated_salary.
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Figure 9.64: Adding new column and using transformation function to assign its values.

The following screenshot shows the output from this coding example:
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Figure 9.65: Output of the executed code

We can use the lambda function here also, instead of the regular Python function. See the following example to achieve the same using the lambda function.
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Figure 9.66: :Output of the executed code.

The following is the output from this example:
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Figure 9.67: Output from the example

Here, it is recommended to use the lambda function as much as possible whenever you need to apply the custom function on the data frame to fulfill your requirement.




Dropping the row/column from DataFrame

Pandas have provided the drop() function to drop the row or column from the DataFrame. We need to pass index label and axis information (axis= 0 for row and axis=1 for the column) in this drop() function to drop a row or column. Let’s understand this from the coding examples given below.

In the following example, we are dropping the row with index=2.
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Figure 9.68: Use of drop() function – to drop row from the data frame

The following is the output from this example:


[image: ]

Figure 9.69: Output from the example.

Now, let’s see how to drop a column from DataFrame. In the following coding snippet, we drop the column sal from the DataFrame. So, we need to pass column_name and axis=1 in drop() function. But here, you can see another option. We have used that is in place=True, which means it will first drop the column and update the existing data frame with a new result (see the previous example of dropping the row from DataFrame where we haven’t used this function). So, we capture the output in a new DataFrame named new_df.
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Figure 9.70: drop() function – to drop a column from dataframe.

Following is the output from this example:
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Figure 9.71: Output from the example.

Concatenating the dataframes

We have concat() and append() functions to concat the pandas DataFrame of series objects.

To use concat(), we must pass the list of dataframe objects and the axis information. By default, it considered axis=0. If we haven’t given any axis, it will try to append the next DataFrame at the bottom of the previous. We will explore these functions by doing some hands-on examples.

The following is the code snippet where we create the three dataframes df1, df2, and df3, which we will use to understand the concatenation examples:
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Figure 9.72: sample data frames

Now, see the following examples where we concatenate the df1 and df2 using the default options of function concate().
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Figure 9.73: Use of concat() function with default options

In this example, we have concatenated df1 and df2 and get a new dataframe, but if you observe the result, we can see that the index values have been preserved from both dataframes. Suppose we want the indexes in the result as [0,1,2,….N-1], then, in that case, we can use the ignore_index=True option with this function. The following is an example to demonstrate the same:
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Figure 9.74: use of concat() function with ignore_index=True

Now, let’s see one more example of how to use the option axis=1. In the following example, we concatenate df1 and df3 with option axis=1.
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Figure 9.75: Use of concat() function with axis=1

We can also concatenate two dataframes using the append() function. Let’s see how we can do it.
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Figure 9.76: Use of append() function

Here, in this example, we concatenate df1 and df2 with the append()function, which gives the same result as the concat() function in the previous example.

Merging/joining the dataframes

Pandas provided a fully featured facility to merge and join the different data frames, which have features almost like an SQL join.

We will discuss both merge () and join () functions with their primary and essential options going forward.

The following are the dataframes emp_df and dept_df that we will use to demonstrate our examples:
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Figure 9.77: Sample dataframes

The merge() function

Pandas merge function takes two dataframes as input and returned merged DataFrame as output. Let’s understand the syntax of the merge() function and some of its essential parameters.

Syntax: pandas.merge(left, right, how=’inner’, on=None, left_on=None, right_on=None)

The following are the details about its parameters:

left: Left DataFrame object

right: Right DataFrame object

how : How we want to merge dataframes [‘inner’, ‘left’, ‘right’, ‘outer’]; default is inner

on : Column or index lable to join in must be present in both the dataframes

left_on : Column or index lable to join in from left DataFrame

right_on : Column or index lable to join in from right DataFrame

The following are the examples of using the merge() function with various options:


	If both dataframes have the same column name key to merge on:
Let’s take the first case when both dataframes have a key column with the same name. For example, suppose we want to join the dataframes mentioned above emp_df and dept_df, where emp_df have columns emp_id and city other side dept_df have columns emp_id and dept. Now, we can see that our joining key column is present in both the dataframes with the same name. In this case, we can pass the column name as value to parameter ‘on’ (on=’emp_id’).

The following are the examples with different types of joins with the same name key column:

Example #1 (how =’ inner ‘):

Performing the merge with how=inner option can think like inner join operation in SQL. This will return the DataFrame with the records from both dataframes, with the matching key. See the following examples where we get records for emp_id 101,105, and 108 as these employee ids are present in both dataframes.
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Figure 9.78: Use of merge() function

Example #2 (how=’left’):

Performing the merge with the how=left option, we can think of it as a left join operation in SQL. This will return a DataFrame with all records from the left (emp_df) DataFrame and matching key records from the right (dept_df) dataframe. In the following example, we can observe that:


	Output dataframe (merged_df_left) have all records from left (emp_df) DataFrame and only matching records for key from right (dept_df) DataFrame. Record for emp_id=100 has been discorded in output as there is no matching emp_id present in left (emp_df) dataframe.

	If there is no matching key record present in right(dept_df) dataframe, then all columns for right (dept_df) dataframe will be assigned with value NaN in returned and merged dataframe. Record for emp_id=111 has dept=NaN in output as it does not have matching emp_id in right(dept_df) dataframe.
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Figure 9.79: Use of merge() function with how=left

Example #3 (how=right) :

Performing the merge with the how=right option, we can think of it as the correct join operation in SQL. This will return the dataframe with all records from the right dataframe(dept_df) and matching key records from the left dataframe(emp_df_df). In the following example, we can observe that:


	Output dataframe (merged_df_right) has all records from the right (dept_df) DataFrame and only matching records for the key from the left (emp_df) DataFrame. The record for emp_id=111 has been discorded in output as there is no matching emp_id present in the right (dept_df) DataFrame.

	If there is no matching key record present in the left(emp_df) dataframe, then all columns for left(emp_df) dataframe will be assigned with the value NaN in the returned and merged DataFrame. Record for emp_id=100 has dept=NaN in output as it does not have matching emp_id in left(emp_df) DataFrame.
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Figure 9.80: The use of merge() function with how=right

Example #4 (how=’outer ‘) :

Performing the merge with the how=’outer’ option, we can think of it as an outer join operation in SQL. This will return a DataFrame with all the records from both dataframes. In the following example, we can observe that:


	Output DataFrame (merged_df_right) has all the records from both DataFrame.

	If there is no matching key record present in the left(emp_df) DataFrame, all columns for the left(emp_df) dataframe will be assigned with the value NaN, which is the returned and merged dataframe. We can see this case for emp_id=100.

	If there is no matching key record present in the right(dept_df) DataFrame, all the columns for the right (dept_df) DataFrame will be assigned with the value NaN, which is the returned and merged DataFrame. We can see this case for emp_id=111.
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Figure 9.81: Use of merge() function with how=outer


	If both the dataframes have different column names as key to merge on :
So, for the examples we have seen above, for the merge() function has the same key column name present in both the dataframes, what if we have different name’s key columns? We can pass key columns information using left_on and right_on parameters in such a case.

For example, we have two dataframes, emp_df and dept_df; both dataframes have employee ides, but the key column name in emp_df is emp_id, and dept_df is id. As we keep emp_df as left DataFrame and dept_df as the right DataFrame, the values for parameter lef_on and eight_on will be left_on=’emp_id’ right_on=’id’.

In the following example, we have explained the merging of emp_df and dep_df using left_on and right_on with parameter how =’inner’.
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Figure 9.82: Use of merge() function with how=inner

Now, the output is:
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Figure 9.83: Output from merge() function with how=inner

Similarly, we can go for left, right, and outer merge also.




The join() function

The join() function is used to join the columns from another DataFrame. It is somehow like the merge() function, but the join() function joined the data on the dataframes indexes.

Let’s understand the important parameters for this function.

Syntax: DataFrame.join(other, on=None, how=’left’, lsuffix=’’, rsuffix=’’)

The following are the details about its parameters:

other: Left DataFrame object

how: How to join data frames? [‘inner’, ‘left’, ‘right’, ‘outer’,] Default is left.

on: Column or index lable to join on, must be present in both DataFrame.

lsuffix: Add a suffix to the left DataFrames overlapping columns.

rsufficx: Add a suffix to the right data frame’s overlapping columns.

Let’s understand the join() function more by doing some examples.

The following code snippet is for creating the two dataframes emp_df with index: [1,2,3,4] and dept_df with indexes :[0,1,5,4].



[image: ]

Figure 9.84: Sample dataframes

We can use a join() function in two ways, the first is joined on indexes values, and the second is by making a key column as the index.


	Use the join() on the index
In the following example, we join the emp_df with dep_df using how= inner, lsuffix=’_left’ and rsuffi=’_right’.

Also, we can observe that in the result DataFrame (joined_df).


	As we are using how=’inner’ so, in output, we have only records that have common indexes (key index values present in both).

	You can see in the output that the overlapping columns from both DataFrame have suffi =x values which we have passed, which means emp_id has emp_id_left and emp_id_right.
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Figure 9.85: Inner join() function

With join() function also we can pass all other values like the merge() function for parameter “how” as per our need. As we have seen in the merge() function examples, this will have the same behavior.


	Use the join() function on the key column by making that as index
Now, let us assume that instead of indexes, we have a common column in both dataframes, and we want to join the DataFrame on that column. In this case, we first have to make the column index in both dataframes then apply the join() function. For example, in our sample dataframes emp-df and dept_df, both have the emp_id column; now, we want to join both the DataFrame using how=inner.

So, first, we have to make those columns the index in both dataframes; we can use function DataFrame.set_index(<col_name>) for this. After that, we will use the join() function.

Setting the column emp_id as index:
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Figure 9.86: Setting column emp_id as index

Joining the dataframes:
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Figure 9.87: join() when the key column is an index

In the example above, we can see no overlapping column present in dataframes, so we haven’t used lsuffix and rsuffix parameters this time.




Writing the DataFrame to external files

So far, we have learned various functions/methods in pandas which we use in data analysis by going through many examples. Let’s see how to export/write the output dataframes results to the external file like CSV, Excel, and so on.

Pandas support various file formats to write the data frames onto CSV, Excel, JSON, Parquet, ORC, and so on. The following are the examples to show how to work with some of them file formats.

We will use the following DataFrame as input for the next set of examples, writing the dataframes to external files:
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Figure 9.88: Sample dataframe

The following are the examples to demonstrate how to use pandas’ different functions to write the dataframes on various file formats:


	Writing the CSV file
To write the DataFrame to the CSV file, pandas has provided the to_csv() function. Let’s see some examples to understand this function better.

Example#1: DataFrame.to_csv(<file_path>)

In the following examples, we pass the output file path into the to_csv() function. By default, it will write the comma-separated file with indexes on the specified file path (complete path with filename).
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Figure 9.89: writing the dataframe content into a CSV file.

The following is the CSV file content that we have written on this:
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Figure 9.90: CSV file’s snippet

Example#1: DataFrame.to_csv(<file_path>,index=False)

In the last example, if you see, you will find that in the first column, the index column is generated by the pandas automatically. If you don’t want the index column’s data on the output file, you can use the parameter index =False in the to_csv() function. The following is an example of this:
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Figure 9.91: Write the dataframe content into a CSV file without an index

The following is the snippet of the CSV file without having an index column:
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Figure 9.92: Written CSV without index column

Example#1: DataFrame.to_csv(<file_path>,index=False,sep=<char>)

Instead of the comma, we can write the file’s output on a flat-file with some other characters. For example, pipe (“|”). In the following example, we used parameter sep and given that value as “|” to write the dataframes output on file with pipe separator.
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Figure 9.93: Writing the dataframe content into a text file with the pipe as a delimiter

The following is the snippet of the flat(.txt) file with the pipe separator:
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Figure 9.94: Written data into a file with pipe delimiter


	Writing the Excel file
Pandas is provided to_excel() function to write the content of DataFrame on excel file. See the following example:
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Figure 9.95: Writing the dataframes content into an excel file

The following is the snippet of the output excel file that we have generated from the code above by writing the content of the DataFrame.
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Figure 9.96: Excel file with data frame’s content which we have written in the example


	Writing the JSON file
Pandas is provided to_json() function to write the content of dataframe on the JSON file. See the following example:
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Figure 9.97: writing the dataframes content into a JSON file

The following is the snippet of the output JSON file that we have generated from the code above by writing the content of the dataframe:
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Figure 9.98: JSON has written the dataframes content.




Conclusion

In this chapter, we have learned about the various features and functions of the pandas library. We have got the understanding and a good hands-on practice on what pandas is. We also understand how helpful it is in data analysis activities like creating the DataFrame, importing the data into DataFrame, cleaning and preprocessing, analyzing, summarizing the results, and exporting those onto the external files for reporting.

In the next chapter, we will learn another important Python library, Numpy. Numpy is quite helpful in the case of numerical data analysis.

Questions


	What is pandas, and why is it so popular?

	What is the difference between the pandas series and pandas dataframe?

	How will you create a pandas dataframe using python list and dictionary?

	What are the different ways to sort the data for pandas dataframe?

	What are the important aggregate function pandas? Explain with examples.







CHAPTER 10

Introduction to NumPy


In the last chapter, we learned about pandas, the famous data analysis library. We have learned the various functions and features of this library.

Pandas is quite good at handling and analyzing labeled and relational data, but it is not optimized enough in the case of numeric or scientific data analysis. So, when we need to deal with numeric data analysis, the NumPy library comes into the picture.

NumPy library is specially used for numerical data analysis and scientific computation. It is pretty famous among the data scientists community. It is much more memory efficient than pandas. Also, it has a rich collection of functions to analyze numeric data like numeric series data, multidimensional numeric arrays like matrix, and so on. So, in this chapter, we are going to learn how to use NumPy for numeric data analysis.

Structure

In this chapter, we will discuss the following topics:


	What is NumPy?

	NumPy array object

	Creating the NumPy array

	Creating NumPy arrays using the Python list and tuple

	Creating the array using numeric range series

	Indexing and slicing in NumPy array

	Data types in NumPy

	Getting the datatype and memory storage information of the NumPy Array

	Creating the NumPy array with defined datatype

	Structured datatype or record type




	NumPy array shape manipulation

	Inserting and deleting array element(s)

	Joining and splitting NumPy arrays

	Statistical functions in NumPy

	Numeric operations in NumPy

	Sorting in NumPy

	Writing data into files

	Reading data from files



Objectives

After studying this chapter, you should be able to:


	Know what NumPy is, and why we need it for numeric data analysis.

	Create the 1-D and n-D arrays.

	Do array manipulation and data analysis using various in-built functions and methods.

	Understand various functions to import that data from file to an array.

	Write or export the n-D array’s data into an external file.



What is NumPy?

NumPy (Numerical Python) is a vastly used Python library for scientific computation; it is memory efficient and fast. It has N-dimensional array objects and a rich collection of routines to process and analyze them. NumPy is suitable for numeric and scientific data analysis. The following are some important areas where we can use NumPy:


	Mathematical/logical functions on numeric series and multidimensional numeric arrays

	Statical operations on numeric series

	Performing the function of linear algebra



NumPy array object

In NumPy, a multidimensional homogeneous array is a fundamental object. NumPy array can contain only the same types of elements (like an array of integers), unlike the Python list. In the NumPy array, the dimension of array is referred to as axes. For example, a 1-D array ([1,2,3]) would behave like one axis with three elements. More precisely, we can say that it has a length of 3. For 2-D arrays [[1.0,2.0,3.0],[4.0,6.0,7.0]], it would be two axes: the first axis (axis=0) has a length of 2, and the second axis (axis=1) has a length of 3.

Creating the NumPy array

In NumPy, we can create the N-D array using the array() function; We can create a NumPy array by passing any regular Python list or tuple in the array () function. The following is an example of the same:
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Figure 10.1: Creating the 1-D NumPy array

In this example, we have used a regular Python list to create the one dimensional array (array1_1D), and second, we have used a standard Python tuple and made a 1-D NumPy array (array2_1D).

We can also explicitly pass the datatypes of the array using the dtype option of the array () function. Let’s see the following example:
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Figure 10.2: Creating the 1-D NumPy array

So, if we want to datatype int or float, and so on, that can be passed instead of complex datatype. Later in the chapter, we will see the various types of data types in NumPy.

From this example, we can make another observation that the array() function transforms the sequences ( [1,2,3,4,5] and (2,3,4,5)) into 1-D Array. So, if we need to create a 2-D Array, then we have to pass sequences of sequences, and if we need a 3-D Array, then sequences of sequences, and so on. Let’s see the following example of 2-D array creation using the array() function:
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Figure 10.3: Creating the 2-D NumPy array

We passed the two tuples list in this coding snippet, and the array function transformed it into a 2-D array. Here, the length of the first axis is two and the second, three.

In NumPy, we can create special arrays, such as an array of zeros, ones, and an empty array, and so on.

The following are the examples for some special arrays:


	Array with zeros
NumPy has the zeros() function to create an n-D array. See the following example:
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Figure 10.4: Creating the array with zeros

In this example, we have created an array of zeroes by passing the shape (2,3) in the np. The Zeros () function, as we can see, created a two-dimensional array with three elements.


	Array with ones
Numpy has the ones() function to create an n-D array. See the

following example:
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Figure 10.5: Creating the array with ones

In this example, we have created an array of zeroes by passing the shape (2,3) in the np.ones() function. As we can see in this example’s output, it created a two-dimensional array with three elements.


	Empty array
Numpy has the empty() function to create an n-D array, this empty() function() is not like the zeros() function. The Zeros() function always returns the array with zeros of the chosen datatype, while empty() may or may not.
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Figure 10.6: Creating the empty array

This example shows that it returns a 3,3 array with random values.




Creating NumPy arrays using the Python list and tuple

We can create the NumPy array using the existing Python list or tuple, using the function as array(). The following are the example for the same:
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Figure 10.7: Creating the NumPy array from python List

In this example, we have passed list t1 to assarry() function with dtype=’int16’ and it has returned the respective 1-D array, and in others we passed the 2-D list to create a 2-D array.

We can create the NumPy array using the Python tuple as well, and we can pass any tuple to the assarry() function like we passed the list in the last example. Let’s see the following example to understand this:
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Figure 10.8: Creating the NumPy array from Python tuple

In this example, the first part creates the 1-D array using a tuple, and the second creates the 2-D array.

Creating the array using numeric range series

We have the option to create an array from a numeric range; NumPy has the function arange(star, stop, step). With the help of this function, we can create an array as well.

Let’s see the following example:
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Figure 10.9: Creating the NumPy array using arange()

In this example, we have used the arange() function, where we have passed 1,10 and 2 as arguments. The first argument is the starting point (1) of the number series, and second (10) is the ending point of this series, but it is not included in returned numeric series, and third is Step (2), which jumps the given number of steps from the previous to next pint, in our example. So, as we have passed 1,10 and 2, it returned an array starting from 1 till 9 with a 2-step gap from the previous to the next, meaning 1,3,5,7,9.

Indexing and slicing in NumPy array

To access the content of an ndarray object, we have a mechanism of indexing and slicing.

For ndarray object, indexing and slicing work similar to the Python list, which we have already seen in the previous chapters.

NumPy ndarray object is also a zero-based index, which means the first element of the ndarray object assigned 0 indexes. It also supports the negative index like -1, which means the last element of the array.

Syntax: array[start: end]; the start indexed value is included in a returned slice of the array, but the end is excluded.

The following is an example to explain this concept better:
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Figure 10.10: 1-D Array Slicing

In this example at line#3, we have created a 1-D array- [10 12 14 16 18] using the arange() function. Let us see the following cases that we have used in the example:

For the [:], the full array will be returned in this case.

For the [0:2], the slice of the array starting from index 0 and till index 1, means [10 12], will be returned.

For the [:3], the elements from array staring from index 0 till 2 will be returned, slice is [10 12 14].

For the [3:], in this case, we have mentioned stop here so that it will take max value of this, which means the sliced array starting from 0 till the end [16 18] will be returned.

For the [-3:-1], here, we have given negative index so it will start -3 index, means, the third element from last to -1 first element, but it will be excluded so index -3,-2 values as sliced array [14 16] will be returned.

# Multi-dimensional slicing

For a multidimensional array, the syntax will be like a 1-D array, but we have separately defined the slices for each dimension. For example, in 2-D array, we have two dimensions (rows and columns), so we have to define the slices for the row and column both, the syntax will be like array [dim1_slice,cdim2_slice], or it can also represent it as array [row_slice,column_slice], similar in the case of n dimensions.

It would be like array [dim_1_slice : dim_1_slice: dim1_slice…dim_n_slie], where the start index value is included in the returned slice of the slice array, but the end is excluded.

The following is the example of slicing on 2 dimensional array; though the basic concept will be like the last example, the dimension scope will increase:
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Figure 10.11: 2-D array slicing

In this example, we have a 2-dimensional array b; let’s see the various examples referred to in the given coding snippet.

Example#1: b[0], this means we have just defined the slice for rows only, so the 0th index for row 1, thus we have array [0 1 2 3 4 5] as output.

Example#2: b[0:2], here also, it defines the row slice 0:2, meaning starting from row index 0 till 1 ( excluding the index 2) so the returned array will be [[0 1 2 3 4 5 ] [6 7 8 9 10 11]].

Example#3: b[0:2, 0:2], for this example, we have to define slices for both the dimensions, meaning row and column, so in this case, it will be the returned element from row starting from index 0 till 1 (as index 2nd is excluding ). It will pick row 1 and row 2 from the 2D array and from the column class, it will return the sliced array starting from index 0 to till 1 (excluding index 2) meaning column 1 and column 2 values from a 2-D array. So, the output will be [[0 1] [6 7]].

Example#4: b[2:,4:] in this example, we can see for both dimensions we have not defined the end index, so it means it will return all the elements from start till end for both rows and columns. The input array b has 4 rows (index 0,1,2,3) and 6 columns (index 0,1,2,3,4,5), so the returned sliced 2D array will be like [[index 2,3] [index 4,5]] so the final output will be [[16 17][0 0]].

Data types in NumPy

NumPy supports a bigger number of numeric types than Python does. Table 10.1 is the list of basic data types in NumPy.








	
Data type


	
Character code


	
Description





	
int


	
i


	
signed integer : int8,int16,int32,int64 or int1,int2,int4,int8 (here int8 means 8-bit integer, int16 means 16bit integer and so on)





	
uint


	
u


	
unsigned integer : unit8,uint16,uint32 and unit64





	
float


	
f


	
floating-point : float16, float32, float64





	
bool


	
?


	
boolean: True or False, stored as byte





	
complex


	
c


	
complex number : complex64, complex128(real and imaginary components)





	
string


	
S


	






	
Unicode string


	
U


	






	
datetime


	
m


	






	
timedelta


	
M


	








Table 10.1: Basic data types in NumPy

In NumPy array, all the elements have the same data type, which means, if there is any n-D array, ‘a’ is a type of int8 (8-bit integer), then each element of this array will be able to store an 8-bit integer value.


	Getting the datatype and memory storage information of NumPy array
In NumPy, we have numpy.dtype class with the help for this, we can get the information about the data type of the array, and by using the itemsize attribute of this class, we can get the info about one element of the array.

The following is the coding snippet demonstrating the same:
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Figure 10.12: Example of dtype and itemsize

In this example, first, we have created an array a, and then used the a.dtype to get the information about the data type of array a, which is int32, means the array type is a 32-bit integer. After line #8, in this line, we printed the memory size in bytes for one element of this array, which we got as 16 bytes. In line #10, we calculated the total memory size consumed by this array a. Last, we used the direct option ndarray.nbytes to get the total memory size consumed by the array a.


	Creating the NumPy array with defined datatype
If we want to create an array with a defined datatype, we must pass the datatype argument with a valid NumPy type value in the np. Array () function while creating the NumPy array.

The following coding snippet are examples to create the NumPy array with int type.
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Figure 10.13: Datatype -int examples(s)

Let’s understand the examples mentioned in this coding snippet.

Example#1: We created an array with an integer type by passing the dtype=int; this will create the array with an integer type with default storage; in this case, it is a 32-bit integer.

Example#2: If we want some defined storage size of array elements, we can pass the valid datatype with storage values like int8, int 16, and so on. So, in this example, we create an array with a 16-bit integer.

Example#3: In this example, we used the character code with storage value (bytes) means dtype=i2, which is the same as int16, so this is another way to achieve the same.

In a similar way, we can create arrays as per need. The following are the examples to create an array with float datatype:
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Figure 10.14: Datatype -float examples(s)

The following is the coding snippet to demonstrate the array creation with boolean type:
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Figure 10.15: Datatype -boolean examples(s)

The following is the coding snippet to demonstrate the array creation with String and Unicode string types.
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Figure 10.16: Datatype -String(s)

In this coding snippet, we can observe that we have just passed the type only. Still, in output, we can see some numbers also along with S and U. This is the length of string which will be assigned automatically according to the longest element of the array, which means if we put some string size with S and U while creating an array, it will truncate the data which have more characters that defined.


	Structured DataType or record type
The structure data type is like Struct in C, or we can think of it like a row in SQL. This means it has a collection for fields that may or may not have the same data type, unlike the typically NumPy Array. We can create structured datatype using the function NumPy.dtype(). There are several ways to define the structured data type. One of them is passing the list of tuples with (field_name, data_type).

Syntax: struct_type = numpy.dtype([(filed1,filed1_type),(filed2,filed2_type)…(filedn,filedn_type)])

Here, the field type will be the valid Numpy data types like int8,int16, float, and so on.

The following is an example where we have created a structured data type of employee:
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Figure 10.17: Datatype -Structure example

In this example, we have first created the structured data type employed, which has three fields names, dept, and sal associated with datatypes S10 (String with size ten chars), S10, i4 (32-bit integer), respectively. Line #5 has a statement to create an array with datatype=employee. We can see line #6 print the dtype, which we have defined already.

Similarly, if we can do the same in the case of a multidimensional array, we have to pass the third argument shape along with the field name and type.




NumPy array shape manipulation

We often have to deal with resizing or reshaping the shape of the NumPy array. The following is a list of essential functions we need for daily data analysis work:







	
Function/method


	
Description





	
reshape()


	
a returned new array with a specified shape without modifying data





	
flat()


	
flattens the array then returns the element of a specified index





	
flatten()


	
returns the one-dimentional copy of input array





	
ravel()


	
returns the one-dimentional view of input array





	
transpose()


	
transposes the axes





	
resize()


	
same as reshape(), but resize modifies the input array on which this has been applied, or modifies the referred array







Table 10.2: Essential functions for data analysis

See the following coding examples to understand these functions better:
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Figure 10.18: Array manipulation functions

We have shown all the examples for the previously discussed functions; the following is the output after executing these examples:
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Figure 10.19: Array manipulation functions -output

This snippet has the output for all the examples which we have executed.

Inserting and deleting array element(s)

This is a common need when adding an element(s) into the array or deleting the element(s) from the existing array; the following are the functions to achieve the same:


	numpy.append()
This function returns a new array by appending the values at the last of the input array. Dimensions of the values we want to append must match the input array; otherwise, it will give an error.

Syntax : numpy.append(existing_array,values,axis)
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Figure 10.20: numpy.append()

In this coding snippet, we have a 1-D array num_array, and we append the value 10 at the end of input array num_array, and create a new array num_num_array. In the following example, let’s see how we work with 2-D arrays or array with multidimensions:
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Figure 10.21: Example of numpy.append() with axis argument

In this example, we have an existing array, a 2-D array. Now, at line#5, we have created an array a1 by appending the values [7,8,9], but at this time, no argument value has been passed in the append() function, so, in this case, it will return a flattened input array with appended value(s), The same we can see in output as well.

Now, let’s see at line#8 and 9, array a2 and a3 is created with axis=0 and axis=1 with append the function respectively. For axis=0, we can see that array ‘a’ has append values at row level or axis =0 (we can see that there is one more row [7 8 9 ] added) and in array a3, we can see values [[0],[1]] appended in the last of axis =1 or columns of the array.


	numpy.insert()
This function is used to insert the values in the existing array at the specified index.

See the following coding snippet where value [10] has been inserted at index 1 of the existing array nym-array.

Syntax: numpy.insert(existing_array,index,value(s))
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Figure 10.22: numpy.insert()


	numpy.delete()
This function will return an array by deleting the value(s) from the specified index of the existing g array.

Syntax: numpy.delete(existing_array,index)

Let us see the following example where the value of index 1 has been deleted from the existing array num_array and created a new array new_num_array.
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Figure 10.23: numpy.delete()




Joining and splitting NumPy arrays

To join two arrays or split the array, we have various functions like concate(), hstack(), vstack(), vslpit(), and many more; we will understand them with the help of the following examples:


	numpy.concatenate()
This function is used to concate two or more arrays into one array along an axis. If we haven’t passed any argument in NumPy.concatenate(), it considers axis=0 by default and does concatenation along axis=0. But if we want to concatenate two or more arrays other than axis=0, we need to pass the specified axis value an argument of this function. For example, in the following coding snipped in example#2, we have concatenated array_1 and array_2 along axis=1 or column level concatenation in case of a 2-D array. But we can see that we haven’t passed any axis argument in example#1, in that case, it concatenated the input arrays array_1 and array_2 along with axis =0, which is default value for parameter axis. Please note that we want to concatenate input arrays in simple shape; otherwise, it will make an error.

Syntax: numpy.concatenate((array1, array1, … arrayn), axis)
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Figure 10.24: numpy.concatenate()


	numpy.hstack()
This function is similar to the numpy.concate() with axis=1. In the following example, we have used function hstack() to concatenate two arrays horizontally.
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Figure 10.25: numpy.hstack()


	numpy.vstack()
This function is similar to the numpy.concate() with axis=0. In the following example, we have used function vstacke() to concatenate two arrays vertically or column-wise:
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Figure 10.26: numpy.vstack()


	numpy.split()
As per the name, this function splits the array into multiple sub-arrays along the defined axes. The following is a coding snipped to understand the implementation of this function. In the case of a multidimensional array, we can also opt to pass the axis along which we want to split. Also, please note that when we request the split, the number for splits must be a divisor of the total number of elements in the array; otherwise, it will throw an error.
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Figure 10.27: Example of a numpy.split()

We split the array into 4 sub-arrays using this example’s split() function.


	numpy.hsplit()
This function is used to split the input array horizontally. For example, in the case of a 2-D array, it will split the array column-wise. This function is equivalent to split() with axis=1.
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Figure 10.28: numpy.hsplit()

In this example, we used the function hsplit(): it splits the input array array_input in two arrays horizontally into array_1 and arry_2.


	numpy.vsplit()
This function is used to split the input array vertically. For example, in the case of a 2-D array, it will split the array column-wise. This functions is equivalent to split() with axis=0.
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Figure 10.29: numpy.vsplit()

Here in this example, vsplit() function split array_input in two arrays (array_1 and array_2).




Statistical functions in NumPy

To understand the data and its nature, we often take the help of some statistical information methods like mean, median, and so on. So, here in Numpy also we have such functions to get the statistical information of the data. The following are some important functions and their uses.


	NumPy.amin() and NumPy.amax()
These functions NumPy.amin() and NumPy.amaz() give the minimum and maximum from the elements of the given array along the axis. If we haven’t passed any axis information to this function, it will flatten the array and give a minimum or maximum value from the filter array, respectively.

Syntax:


	numy.amin(input_array) / numpy.amax(input_array)

	numy.amin(input_array,axis) / numpy.amax(input_array, axis)



The following are the examples of amin() and amax() functions:
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Figure 10.30: Examples of amin() and amax() functions


	numpy.mean()
This function gives the mean value of the given array. The following is the coding snippet in which we have passed the array an into the mean() function and got the mean value 26.33:
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Figure 10.31: Example of mean() function


	numpy.average()
This function returns the weighted average, if we pass the weights array along with the input array. But if we do not give the weights as arguments, this will be like a mean() function.
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Figure 10.32: Example of a mean() function

In this example, we have an array input_arr as input array and we pass this array as an argument in the average() function without giving the weights. It returns 26.33 as the average value of the array, the same as the mean() in the last example. At line#9, we have defined another array, wt_arry array with weights, and at line #10, we calculate the weighted average by passing the weights ( np. average(input_arr,weights=wt_arr)), and this time we got a value of 24.45 which is a weighted average.


	NumPy.median()
This function returns the median value of the given array. The following is a coding snippet to demonstrate the use of the function numpy.median():


[image: ]

Figure 10.33: Example of median() function


	numpy.std() 
This function returns the standard deviation of the given array. The following is a coding snippet to demonstrate the use of the function numpy.std():
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Figure 10.34: std() function


	numpy.var() 
This function returns the variance of the given array. The following is a coding snippet to demonstrate the use of the function numpy.var():
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Figure 10.35: Example of var() function


	numpy.percentile()
This function returns the nth percentile of the given array along the specified axis. In case no axis is given, it will provide the scalar value, else it will return the array of nth percentile values along the axis.

Syntax: numpy.percentile(input_array,q,axis):

Here, input_arry is the array for which we need the nth percentile value, q is the percentile value, and axis is the axis along which we want to calculate the percentile value.

The following coding snippet demonstrates the function numpy.percentile():
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Figure 10.36: Example of percentile() function




Numeric operations in NumPy

NumPy also has various numeric functions to process the mentioned operations like addition, subtraction, division, and so on. The following are some essential numeric options in NumPy:


	Add, subtract, multiply, and divide:
We have functions in NumPy to add, subtract, multiply, and divide. All these functions perform element-wise operations on input NumPy arrays. Let’s see the following examples:
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Figure 10.37: Example of addition, subtraction, multiplication, and division with NumPy arrays

For these coding examples, the following is the output snippet:
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Figure 10.38: The output


	numpy.power() 
This function returns the first array elements raised to powers from the second array or scalar value, element-wise.
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Figure 10.39: power() function

In this example, we can see each element of the input array rise to the power of two.


	numpy.mod()
This function returns the remainder of the division between two arrays corresponding to the elements of both the arrays. In the following example, we can see that if we pass arr1 and arr2 as the arguments of the function NumPy.mod(),it returns element-wise the reminders:
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Figure 10.40: mod() function


	numpy.reciprocal()
This function returns the mathematical reciprocal of the input array. In the case of an integer type array, it will return 0 if the array element is greater than 1; the following coding snippet demonstrates examples to understand this function:
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Figure 10.41: reciprocal() function

In Example#2, we can see the type of input array is int, so it returns 0 for the array elements greater than 1.




Sorting in NumPy

Sorting means keeping the data in some order, and it is a common need while you are doing data analysis. NumPy has numpy.sort() function to sort the data. This function takes the input array and returns the sorted array.

Syntax: numpy.sort(input_array, axis=- 1, kind=None, order=None), where

input_array : is input array that needs to be sorted .

axis : this parameter specified the axis along with input array that needs to be sorted. If axis= None, the array is flattened before sorting. The default is -1, which sorts along the last axis.

kind: this parameter is optional sorting algorithm (‘quicksort,’ ‘mergesort’, ‘heapsort’, ‘stable’) .The default is ‘quicksort’.

order: this parameter used to sort the input array in order to the specified field name

The following is a coding snippet where various examples have been demonstrated:
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Figure 10.42: Examples of sort()

Let’s understand these examples one by one:

Example#1: In example#1, we have sorted the array using function sort() without mentioning any information about an axis. In this case, it took default value for axis, i.e., row wise.

Example#2: In example 2, we have mentioned axis=None, which means no axis, so in this case, it will return the flat sorted array. The same we can see in the output.

Example#3: Example#3 has the sort() function with argument axis=0, which means it is the first axis to sort the array along the axis=0, i.e., column-wise. We can see in the output that the sorted array has values in columns.

Now, let’s discuss the parameter order. This is optional, but if you have an array with field names to sort array to some field, this option can be useful. Let’s see the following example to understand it better:
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Figure 10.43: Example of sort() with order field name

In this example, we must first create a struct type(emp_dt), which has fields emp_name and dept_no. create an array arr_input at Line #7 with dtype=emp_dt. After that, at line#12, we created another array out_arr, which is the copy of the input array in sorted order by field name emp_name. So, we sort the input array arr_input order by the emp_namefield. Similarly, we can sort this array into other fields also.

Writing data into files

NumPy has numpy.save() and numpy.svetxt() functions to store the data into the files. The following are more details and coding examples for the same functions:


	numpy.save()
This function stores the ndarry object to file with npy (NumPy internal file format) extension. This function stores the data and stores the metadata related to that array, for example, shape and all.

The following example shows how to use numpy.save() function to store the ndarray on a file:
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Figure 10.44: The save() function


	numpy.savetxt()
This function stores the ndarry data to a plain text file (e.g., CSV, txt, etc.) with a user-specified delimiter and header.

The following examples show how to use numpy.savetxt() function to store the ndarray on a file:
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Figure 10.45: The savetxt() function

In this example, we first created an array arr_input with struct datatype emp_dt. After that, we have used np.savetxt(“data/emp_dt.csv”, arr_input, fmt = ‘%s’, delimiter=’,’, header=’emp_name, dept_no’) where “data/emp_dt.csv” is output file name with the folder path

 fmt: is the format in which we want the same file for string %S, and for int, it would be %d.

arr_input: is the NumPy Array array which we want to save on file.

delimiter = ‘,’ : means want to save the file with comma delimiter also we can give other character as delimiter according to need .

header=’emp_name, dept_no’: want to header in the file, if not, we will not pass any value for this parameter it will save array data on file without any header. So this way, we can save the file using savetxt() function.

Example #2 first created an array names ad num_array, then stored the num_array data on file using the savetxt() function. Similar to example #1.




Reading data from files

We can read the file data into an ndarray using numpy.load() or numpy.loadtxt() function. The following are more about these functions and their uses:


	numpy.load()
This function loads the ndarry object with the npy (numpy file format) extension.
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Figure 10.46: load() function

In this example, we have loaded file emp_dt.npy into the array array_read1.


	numpy.loadtxt()
This function loads the data into an ndarray object from delimited plain text files like CSV, txt, and so on.

The following examples demonstrate how to use function loadtxt():
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Figure 10.47: loadtxt() function




In this coding snippet, we have two examples. Let us understand them one by one.

Example#1: In this example, we are trying to load struct type data from a comma-delimited CSV file. So, first at line #2 we defined the struct datatype emp_dt and at line #4 we loaded data into array array_read2 using np.loadtxt(“data/emp_dt.csv”, delimiter=’,’, skiprows=1, dtype= emp_dt) ; where –

“data/emp_dt.csv”: is the file path with directory location, which we need to load into an n array.

 delimiter=’,’: is the field delimiter.

skiprows=1: will skip the first row while loading the data from the file into an array.

dtype= emp_dt : data type, as in this example it is struct data type so giving emp_dt.

In the output for this example, we can see that now array_read2 has loaded the correct data from the file and displayed it in output.

Example#2, here as the data file has built in types, in this case, it is int, so we don’t need to define any struct type unlike example#1. Also, if you observe, we haven’t passed skiprows parameter while loading the data using the savetxt() function as there is no herder in the input file. In this way, we can load data from files.

Conclusion

In this chapter, we have learned about the various features and functions of the NumPy library. We understand and have a good hands-on practice of NumPy, how to use that,and various other useful functions and methods that we need to do numerical analysis.

In the next chapter, we will teach another important Python library, matplotlib. Matplotlib is also a popular library for data visualization.

Questions


	What is NumPy, and why is it so popular?

	What is array slicing?

	What are the different ways to create the NumPy array?

	How can we sort the ndarray data?

	What are the essential statistical and arithmetic functions in NumPy? Explain with examples.







CHAPTER 11

Introduction to Matplotlib


In the last chapter, we learned about the NumPy library, a famous numerical data analysis library. We learned various functions and features of this library.

The data analysis process is not enough to conclude the results or summarize the data’s insights. Since we have to present the data analysis results effectively and we need some graphs or charts to represent the analyzed results, hence, data visualization came into the picture.

Data visualization is an essential part of data analysis; in this chapter, we will learn the basics of data visualization with the help of Matplotlib library, a widely used Python library for data visualization.

Structure

In this chapter, we will discuss the following topics:


	What is data visualization?

	What is Matplotlib?

	Getting started with Matplotlib

	Simple line plot using Matplotlib

	Object-oriented API in Matplotlib

	The subplot() function in Matplotlib

	Customizing the plot

	Adding a title

	Adding axis labels

	Adding text in plot

	Adding markers

	Adding the line style, line color, and line width

	Adding gridlines

	Setting the axis limits

	Adding the ticks and ticklables




	Some basic types of plots in Matplotlib

	Bar graph

	Histograms

	Scatter plots

	Pie charts




	Exporting the plot into a file

	Export the plot into a pdf file

	Export the plot into a jpeg file






Objectives

After studying this chapter, you should be able to answer:


	What is Matplotlib, and why do we need data visualization?

	How to plot data using matplotlib’s various methods and options?

	How to customize the plots as per need?

	How to export the plot into a pdf and jpeg file?



What is data visualization

Data visualization is the representation of data graphically, using visual charts, visual graphics, and so on. Data visualization aims to represent data in visuals to understand the story behind the data in an interactive manner. In other words, we can say data visualization is a way of telling the story of facts that we gathered or concluded from the data analysis process.

Various tools are available specifically for data visualization, like Tableau and Power BI. Python also has effective and useful libraries like Matplotlib, Seaborn, Ploty, Bokeh, and so on.

What is Matplotlib?

Matplotlib is a vastly used and powerful Python library which is used to represent information visually with the help of visual charts and graphs. It has various graphs to represent the data according to the need and specification.

We will cover the basics of Matplotlib in the upcoming part of this chapter.

Getting started with Matplotlib

If you use the Anaconda platform for Python, then Matplotlib is preinstalled. Otherwise, you need to install this using a repository manager like pip using the following command:
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Figure 11.1: pip install matplotlib


	Once you install the matplotlib, we have to import this. Then, we can use the underlying functions and methods for the plots. Let’s see how we can import the matplotlib and print that version.
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Figure 11.2: Checking the version




Simple line plot using Matplotlib

In Matplotlib, we have a submodule plot. So, with the help of this module we can plot our graph/chart. Let’s see the following example to create a simple line graph:
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Figure 11.3: Simple line plot

Let’s understand this example; here, first, we have imported the pyplot module of Matplotlib from.

In line#1, we have imported the pyplot submodule of Matpotlib with alias name plt.

In line#3 and #4, we have created two lists x and y with numbers that can be considered coordinates of the x-axis and y-axis on a two-dimensional graph.

In line#5, now we invoked the plot() function, which will take x and y coordinate values and plot the values on the graph. As we are using the Jupyter Notebook, we don’t need to call the show() function here. But if there are more than one plot in one cell, we need to call show() after each plot to display all; otherwise in a notebook, it will display the very last plot. Now in the graph, we can see it draw a line graph.

Object-oriented API in matplotlib

We have seen the example of plotting a simple plot using the Matplotlib. pyplot module, which is a functional method and uses a state-based interface. But Matplotlib has another interface, which is the object-oriented interface. In this case, we use the instance or object of matplotlib.axis.Axis class on the instance or object of the matplotlib.figure.Figure class. Let’s take a quick look at what figures and axis mean in Matplotlib.

The Matplotlib figure is the top-level container to draw all the plot elements, the figure can contain one or more axis, and axis is the added area on the figure used to plot the data, or we can say that axis is the individual plot on the figure.

Let’s see the following example: use an object-oriented interface to plot the simple line we plotted using the previous pyplot interface.
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Figure 11.4: Simple line plot with figure and axis

Let’s understand this Object-Oriented Interface example. In line #2, we have created an instance object fig of the figure.

In line#3, we added axis object with values 0.1,0.1,1,1, corresponding values for the axis or subplots left, bottom, width, and height. In lines #5 and #6, we have given the x-axis and y-axis values list.

In line#7, we called up the method plot() on axis ax passing the x and y-axis values, which plotted the corresponding plot in axis ax.

In line#8, we called the function show() to display the plot.

The subplot() function in matplotlib

Suppose we need to plot multiple plots in one figure in matplotlib, then we can use the subplot() function. This function takes a number of rows and a number of columns as arguments to generate the subplot.

The following is the coding example to understand the function subplot():

Example#1 (1 by 2 subplot)
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Figure 11.5: The subplot() function -Example#1

In this coding snippet, at line#2, we have invoked the function subplot(), with the arguments nrows=1 and ncols=2, meaning we want one row and two columns subplots grid. This will return the figure and array of axis.

We can access the subplots using indexes like axis[0], meaning the first subplot, and axis[1], meaning the 2nd subplot. It follows the simple array indexing concept to access the subplot object. Line#7 and #8 are instructed to pass the data to the plot on the subplots.

Example#2 (2 by 2 subplot)

Let’s see the following code snippet, where we create a 2 by 2 subplot, meaning 4 subplots.
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Figure 11.6: The subplot() function -Example#2

In this example, we have created a two by two subplots grid on the figure. Also, we can see in line #9, and subsequent others, how we have used the indexing concept to access the specific subplot object.

Customizing the plot

We have a basic idea of creating a plot and subplots in Matplotlib. Let’s learn more about customizing the plots, like setting titles, axis names, and other essential elements to create the plots according to your need. The following are some important settings to customize the plot.


	Adding a title
To add the title of a subplot, we have the function matplotlib.set_title(); this function takes the title text and location of the tile as arguments.

In the following coding snippet, we can see that in line#8, we used the function set_titile () with the “Simple line plot” and loc=’center’ as arguments passed to this:
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Figure 11.7: Adding Title to plot


	Adding axis labels
We have matplotlib.set_xlable() and matplotlib.set_ylable() functions to set the axis lables. Let us see the following example to understand it better.

In the following coding snippet, at lines #11 and #12, we passed the “X-Axis” as the label of the x-axis and “Y-Axis” as the label for the y-axis.
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Figure 11.8: Adding axis labels


	Adding text in plot
Sometimes, we have to add some text to the plot, so we have the function matlotlib. text(<x-axis position>, <y-axis position> <text>). This function needs three arguments x-axis position, y-axis position, and the text which we want to put on the plot; see the following example to understand it better.

In the following example, we added the text “Simple Line” at position (3,4), which means x-axis=3 and y-axis=4.
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Figure 11.9: Adding text to plot


	Adding markers
We can use the plot() function with the keyword argument marker to specify the (x,y) points on the plot with the specified symbol. In line#18, we set the plot with a circle using ax.plot(x,y, marker=’o’), We can also use markers like marker=’s’, marker=’v’, and others mentioned in the following table:
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Figure 11.10: Adding markers



	
Marker values


	
Description





	
marker=’o’


	
Circle





	
marker=’*’


	
Star





	
marker=’.’


	
Point





	
marker=’,’


	
Pixel





	
marker=’x’


	
X





	
marker=’X’


	
Filled X





	
marker=’+’


	
Plus





	
marker=’P’


	
Filled Plus





	
marker=’s’


	
Square





	
marker=’D’


	
Diamond





	
marker=’d’


	
Thin Diamond





	
marker=’p’


	
Pentagon





	
marker=’H’


	
Hexagon





	
marker=’h’


	
Hexagon





	
marker=’v’


	
Downside triangle





	
marker=’^’


	
Upside triangle





	
marker=’<’


	
Left side triangle





	
‘>’


	
Triangle right





	
‘1’


	
Tri down





	
‘2’


	
Tri up





	
‘3’


	
Tri left





	
‘4’


	
Tri right





	
‘|’


	
Vline





	
‘_’


	
Hline








	Adding the line style, line color, and line width
To customize the plot’s line style, we can pass the argument linestyle in the plot() function with the valid value like ‘:’ for dotted line, ‘--’ for the dashed line, and so on. Similarly, we can use the argument color and linewidth to set the color and width of the plotline.

In the following example, we can see that in line #18, we have used argument linestyle=”--” to set the plotline as a dashed line, color =’red’ to set the line color Red, and linewidth=’3’ to set the width of line 3 pt:
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Figure 11.11: Line style, color, and width

We can also use ‘-‘ solid, ‘:’ doted,’-.’ dash-dot as linestyle values.


	Adding gridlines
We can add the grid lines on the plot using the grid() function. Let’s see the following example#1 where we have used the ax. grid() function at line #21 and added the x and y axis grid lines on the plot.

We can also add the grid line specific to the axis; we can see that in example#2 and example#3, where we have added grid lines corresponding to the x and y-axis, respectively.




Example#1: grid()
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Figure 11.12: The grid() -example#1

Example#2: grid(axis=’x’)

In the following example, we have used an ax. grid(axis=’x’) function to draw the gridline concerning the x-axis:
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Figure 11.13: The grid() -example#2

Example#3: grid(axis=’y’)

In the following example, we have used an ax.grid(axis=’y’) function to draw the gridline concerning the y-axis:
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Figure 11.14: The grid() -example#3


	Setting the axis limits
Though, Matplotlib automatically puts the minimum and maximum values which have been displayed among the axis (like x-axis or y-axis), it also provides the function like set_xlim() and set_ylim() functions to set the limit of the axis values.
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Figure 11.15: Setting axis limits


	Adding the ticks and ticklables
Matplotlib provided the functions set_xticks(), set_xticklables(), set_ytickes() and set_yticklables() to set the ticks and tick lables along the x and y axis. Let’s see the following example to understand this better:

Example#1 set_xticks() and set_xticklables()

In this example, we can see in the following coding snippet that in lines #15 and line #16, we set the ticks and tick labels for the x-axis:
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Figure 11.16: Adding Ticks and Ticklables -Example#1

Example#2 set_yticks() and set_yticklables()

In this example, we can see in the following coding snippet that in lines #15 and line #16, we set the ticks and tick labels for the y-axis:
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Figure 11.17: Adding ticks and ticklables -Example#1




Some basic types of plots in matplotlib

Matplotlib has various functions to plot multiple plots representing the data for specific purposes: bar graphs, histograms, and so on. Some of them we will discuss below:


	Bar graph
A bar graph has been used to plot the categorical data. Matplotlib has the function bar() to plot the bar graph.
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Figure 11.18: Bar graph


	Histograms
Histograms are good for showing the frequency distributions of numerical data. Matplotlib has the function hist() to plot the histogram. In the following coding snippet, we have plotted a histogram to see the range of employee salaries distributed among employees:
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Figure 11.19: Histograms


	Scatter plots
A scatter plot is used to compare the variables and also to compare how much one variable is affected by another. Matplotlib has the function scatter() to plot the scatter graph.

The following example is a scattered plot with scaled dots to see the profits among products:


[image: ]

Figure 11.20: Scatter plot


	Pie charts
Pie charts are suitable to represent the contribution of data. Matplotlib has the function pie() to plot the pie chart. In the following example, we planned a pie chart of the student numbers and enrollment in the different courses:
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Figure 11.21: Pie Chart




Export the plot into a file

We can export the plot into a pdf file and a jpeg image file. Matplotlib has functions for both methods. Let’s see the following examples:


	Export the plot into a jpeg file
We can save the plot into a pdf file and a jpeg image file. Matplotlib has the function savefig(). In line #11, we save the fig (plotted pie chart ) as a jpeg file in the following example:
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Figure 11.22: Export to jpeg

The following is the jpeg image of the plot that we have saved:
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Figure 11.23: Exported plot into jpeg


	Export the plot into a pdf file
Exporting the plot to a pdf file cannot be done directly; we will use the savefig() function, but to accomplish this, we need to take the help of the pdf pages module from matplotlib.backend.backendpdf. Let’s understand the following example. In the following example, we have imported Pdf pages in line#2, then created the mypdf as an object using Pdfpages() in line #12 with the file name as an argument. After that, we executed the savefig() function by passing object fig as the argument value.
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Figure 11.24: Export to pdf

The following is the snippet of the pdf for the plot we have exported to the pdf file:
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Figure 11.25: Exported plot in pdf

So, by using these approaches that we discussed earlier, we can export or save our plot into the files for future use.




Conclusion

In this chapter, we have learned about the various features and functions of the Matplotlib library. We understand and have good hands-on practice on Matplotlib, how to use that, and various other useful functions and methods that we need for data visualization.

We have covered all the essential basics of data analysis concepts, tools, and necessary Python libraries, which we need for data analysis. In the next chapter, we will connect all the pictures and solve a full-length data analysis task using our gathered knowledge.

Questions


	What is Matplotlib, and why is it so popular?

	What is the figure and axis in matplotlib?

	Is object-oriented API available for plotting the data in matplotlib?

	How can we plot a bar graph, histogram, scatter plot, and pie chart in matplotlib?

	How to export the plot into a pdf and jpeg file?







CHAPTER 12

Connecting Dots – Step-by-step Data Analysis and Hands-on Use Case


We have covered the basic building block of Python programming language, the basics of data analysis, and some important Python libraries like Pandas, NumPy, and Matplotlib. So, to perform any basic data analysis task now, we are ready with all the necessary prerequisites.

In this chapter, we will discuss an end-to-end data analysis problem and perform an end–to–end data analysis task where we can utilize our past knowledge, which we have learned in previous chapters.

Structure

In this chapter, we will discuss the following topics:


	Understanding the data set

	Understanding the problem statement

	Importing the dataset into DataFrame

	Exploring, selecting, cleaning, and preparing the data

	Performing the data analysis and plotting the summary



Objectives

After studying this chapter, you should be able to:


	Understanding how to solve real-time data analysis problems

	Reading and analyzing the data from an external file

	Finding answers by analyzing the data and plotting the results



Understanding the Dataset

Our dataset will be taken from the World Bank (https://data.worldbank.org/). Youth Global Unemployment Rate information: unemployment is a significant indicator. This data set contains 267 countries’ youth unemployment information from 1991 to 2021.

This dataset has the following columns:

‘Country Name’, ‘Country Code’, ‘1991’, ‘1992’, ‘1993’, ‘1994’, ‘1995’,

 ‘1996’, ‘1997’, ‘1998’, ‘1999’, ‘2000’, ‘2001’, ‘2002’, ‘2003’, ‘2004’,

 ‘2005’, ‘2006’, ‘2007’, ‘2008’, ‘2009’, ‘2010’, ‘2011’, ‘2012’, ‘2013’,

 ‘2014’, ‘2015’, ‘2016’, ‘2017’, ‘2018’, ‘2019’, ‘2020’, ‘2021

Country Name column contains the name of the country, the Country Code has the three character country code, and the rest of the columns with year (like 1991,1992….2021) contain the unemployment rate for that particular year.

Problem statement

We need to analyze the youth global unemployment dataset for the last five years, from 2017 to 2021, to get the answers for the following points and plot the results:


	List all the countries where youth unemployment is greater than or equal to 25% in 2021.

	List all countries where youth unemployment is less than or equal to 1% in 2021.

	Top 10 countries that have an average high rate of youth unemployment from 2017 to 2021

	Top 10 countries that have an average low rate of youth unemployment from 2017 to 2021

	Top 10 countries that have a high COVID impact (for years 2019 and 2020)

	Top 10 countries that have a less COVID impact (for years 2019 and 2020)



Step by step example to perform the data analysis on a given dataset

Now, we have an idea about our dataset, and we also know about the problem statement and the points we need to analyze and get the information about those from the given dataset. The following is the step-by-step process for this:


	Importing the dataset into DataFrame:
The very first task is to import the required libraries. In this case, we need Pandas and Matplotlib, so you can see in the following coding snippet that we imported these libraries:
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Figure 12.1: Importing Data

Also, in line #3, we imported the dataset CSV into the pandas DataFrame.


	Exploring, selecting, cleaning, and preparing the data:

	See the columns:
We can use the data.columns to get all columns from the dataframe data.
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Figure 12.2: Display the columns


	Display the top 5 rows from the DataFrame data:
In the following coding snippet, we used data.head() to display the top five rows of the DataFrame data:
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Figure 12.3: head()


	Display the last five rows from the data frame data:
In the following coding snippet, we used data.tail() to display the bottom five rows of the data frame data:
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Figure 12.4: tail()


	Display the shape of the DataFrame (rows and columns):
In the following coding snippet, we used data.shape() to display the shape of the DataFrame data; it has 266 rows and 33 columns.
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Figure 12.5: Display the shape


	Selecting the subset of data from the given dataset:
As mentioned in the problem statement, we need to do our data analysis for the given points from 2017 to 2021. So, it is better if we select only that subset of data. In the following coding snippet, we did the same:

As you see in the following coding snippet, we used the iloc function and passed the range of rows and subset of columns to slice the specific data from the DataFrame and created a new DataFrame data_5yr.

Data.iloc[:,[0,1,28,29,30,32,32]], here 0,1,28,29,30,31,32 are the corresponding column index for the columns: Country Name, Country Code, 2017, 2018, 2019, 2020 and 2021 of the DataFrame.
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Figure 12.6: Slicing the data

We can see the columns of the new DataFrame (data_5yr) by using data_5yr.columns.
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Figure 12.7: Display the columns


	Check for null values.
We used the isnull() function to check the null values present in the data frame. In the following example, we can see that some columns have null values:
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Figure 12.8: Checking for the nulls count


	Dropping the rows with null values.
The following coding snippet contains the code to drop the rows that have null values in columns 2017, 2018, 2019,2020, and 2021; if any country does not have unemployment information, then it’s better to drop that row. We did the same in the following coding snippet:
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Figure 12.9: Dropping null values

We can see no null present after dropping the null rows from the DataFrame.


	Check for the duplicates:
In the following coding snippet, I have checked for duplicates and found that there is no duplicate data present:
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Figure 12.10: Checking for the duplicates


	Checking the datatypes of the columns:
In the following coding snippet, we printed the data types for all columns in the DataFrame:
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Figure 12.11: Display the data types of columns


	Sorting the DataFrame:
In the following coding snippet, we sorted the data frame on the column Country Name:
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Figure 12.12: Sorting the data frame


	Setting the index :
We set the Country Code column as an index in the following coding snippet:
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Figure 12.13: Set the columns as an index


	Adding two new columns, 5yrs_avg and covid_Yr_diff :
To analyze some points, we need the latest five years (from 2017 to 2021) of average unemployment information. So for that, we have to calculate the average values using from 2017 to 2021 information and we need to store them in some columns in an existing data frame. In our case, we are using the column name 5yrs_avg.

In the following coding, the snippet has the code for the same; in line #1, we took the subset of columns (2017, 2018, 2019, 2020, and 2021) and calculated the average row-wise (axis =1), then stored that in column 5yrs_avg, in data frame data_5r.

In line #2, we displayed the same data frame with a new column 5yrs_avg.
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Figure 12.14: Adding column 5yrs_avg

Similarly, we need another column with the difference between 2019 and 2020 information to be used on the impact of the COVID situation on unemployment. Here, we have the assumption to ignore all other factors for a change in unemployment except COVID. The following is the coding snippet where we calculated a new column covid_Yr_diff in the existing DataFrame:
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Figure 12.15: Adding column covid_Yr_diff


	Plotting the 5yer_avg unemployment data:
The following is the coding snippet and the plotted bar graph for the 5yer_avg unemployment rate corresponding to all countries (x-axis: countries, y-axis: unemployment rate):
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Figure 12.16: The 5yer_avg unemployment data plot







So, we have prepared a complete data frame for the following analysis task:


	Performing the data analysis and plotting the summary of them:
So, we have prepared a complete data frame ready for the subsequent analysis task.


	List all countries where youth unemployment is greater than or equal to 25% in 2021.
In the following coding, we have tried to select all records with an unemployment rate of more than or equal to 25%: so we got three countries under this condition:
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Figure 12.17: Unemployment >=25





	List all countries where youth unemployment is less than or equal to 1% in 2021.
In the following coding, we have tried to select all records with an unemployment rate less than or equal to 1 %: so we got three countries under this condition:
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Figure 12.18: unemployment <=1


	Top 10 countries that have an average high rate of youth unemployment from 2017 to 2021.
In the following coding snippet in line #1, we have the first sort of the data for column 5yr_avg in descending order, which means the highest value at the top. We sliced the top ten rows from this, and this way, we got the top 10 countries with a high average youth unemployment rate from 2017 to 2021.
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Figure 12.19: Top 10 countries that have an avg. high unemployment from 2017 to 2021

In the following coding snippet, the plot of the top 10 countries with a high average youth unemployment rate from 2017 to 2021 is shown:
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Figure 12.20: Plot for the top 10 countries that have an avg high unemployment from 2017 to 2021


	Top 10 countries that have an average low rate of youth unemployment from 2017 to 2021.

	In the following coding snippet in line #1, we have the first sort of the data for column 5yr_avg in ascending order, which means the lowest value at the op. Then, we sliced the top ten rows from this, and this way, we have got the information about top ten countries that have an average low rate of youth unemployment from 2017 to 2021.

[image: ]

Figure 12.21: Top 10 countries that have an Avg low unemployment from 2017 to 2021

In the following coding snippet, the plot of the top 10 countries with a low average youth unemployment rate from 2017 to 2021 is shown:
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Figure 12.22: Plot for the Top 10 countries that have an Avg low unemployment from 2017 to 2021





	Top 10 countries that have a high covid impact on the unemployment rate (for the immediate year 2019 and the covid year 2020).
In the following coding snippet in line #1, we have the first sort of the data for the column covid_Yr_diff (this column calculated as 2020 - 2019 values) in descending order, which means the highest value at the top. We sliced the top ten rows from this, and this way, we got the top 10 that have a high COVID impact (for the immediate year 2019 and the COVID year 2020).
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Figure 12.23: Top 10 countries that have a high COVID impact on unemployment

The following is the coding snippet of the plot of the top ten countries with a high COVID impact (for the immediate year 2019 and the COVID year 2020):
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Figure 12.24: Plot for Top 10 countries that have a high COVID impact on unemployment


	Top 10 countries that have a less COVID impact (for the immediate year 2019 and the COVID year 2020).
In the following coding snippet in line #1, we have the first sort of the data for column covid_Yr_diff (this column is calculated as 2020 - 2019 for values) in ascending order, which means the highest value is at the top. We sliced the top ten rows from this, and this way, we got the top 10 that have a less COVID impact (for the immediate year 2019 and the COVID year 2020).
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Figure 12.25: Top 10 countries that have a less COVID impact on unemployment

The following is the coding snippet to plot the top ten countries with less COVID impact (for the immediate year 2019 and the COVID year 2020):
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Figure 12.26: Plot for top 10 countries that have a less COVID impact on unemployment




Conclusion

In this chapter, we have solved a complete data analysis problem step by step. We perform various tasks importing the data into the DataFrame, exploring and understanding the nature of data, and cleaning and preparing the data according to the problem so that it can be used to answer the question by analyzing the data.

We completed a full hands-on example in this chapter. Also, we have plotted our results which we have got after doing data analysis.

If you have completed till here, you will now understand the Python basic blocks, data analysis, and some famous data analysis libraries. You will also have a good idea of solving real-time data analysis problems.





Index


A

aggregate function 142

Anaconda

downloading 10

installation, testing 17

installing 10-16

AND/OR condition

with if statements 69, 70

anonymous functions 88

append() function 146

arguments

keyword arguments 86

key-word variable-length arguments 88

positional arguments 85, 86

positional variable-length arguments 87

variable-length/arbitrary arguments 86

arithmetic operators 24

coding example 25

array() function 173

assignment operators 28

coding examples 29

B

bar graph 228

bitwise operators

coding examples 31

Bitwise operators 31

built-in data types 34

dictionaries 57

list 41

numeric 34

sets 52

string 38

tuples 48

C

Centrum Wiskunde & Informatica (CWI) 2

close() function 98

concat() function 154

conditional statements

AND/OR condition, with if statements 69, 70

if…else statement 65, 66

if statement 64, 65

nested if statement 67-69

D

data analysis 106

data types 111

descriptive data analysis 107

diagnostic data analysis 108

importance 107

predictive data analysis 108

prescriptive data analysis 108

tools, using 111

use case 237-250

versus, data analytics 106, 107

data analysis process flow 108

data analysis 110

data cleaning 110

data collection 109

data interpretation and result summarization 110

data preparation 110

data visualization 110

requirements, gathering and planning 109

DataFrame. See pandas DataFrame

DataFrame.columns 127

DataFrame.describe() 126

DataFrame.dtypes 127

DataFrame.head(n) 125

DataFrame.info() 126

DataFrame.replace() 140

DataFrame.shape 124

DataFrame.tail(n) 125

data structures, in Pandas

DataFrame 117

pandas series 117

data types, for data analysis

semi-structured data 111

structured data 111

unstructured data 111

data types, in NumPy 181, 182

examples 185

float data type 184

int examples 183

structure data type 185, 186

data visualization 210, 211

default arguments 86

descriptive data analysis 107

diagnostic data analysis 108

dictionaries 57

element membership, checking 59

elements, adding 58

item, removing 59

items, accessing 58

iterating 60

key or value iterable, converting into 61

list of keys, obtaining 60

list of tuples, obtaining 60

list of values, obtaining 60

working with 58

drop_duplicates() function 133

drop() function 152

dropna() function 134

dropna(subset) 135

duplicated() function 132

E

else statement

using, with loops 78, 79

F

file

closing 97, 98

content, reading 99-101

content, writing 101, 102

opening 96, 97

fillna() function 136

filter() function

using 89

for loop 76

function

arguments 85

definition 84, 85

parameters 85

G

groupby() function 141

H

histograms 228

I

identity operators 33

code examples 33

if…else statement 65, 66

if statement 64, 65

indentation 64

IPython 111

J

join() function 162-165

Jupyter Notebook

running 18-20

testing 21

K

Key Performance Indicators (KPIs) 107

keyword argument 86

key-word variable-length arguments 88

L

lambda function

using, with filter() 89

using, with map() 89

using, with reduce() 90

writing 88

list 41

concatenation 43

element count 46

element membership, checking 45

elements, adding 42

item, removing 44

items, accessing 42

items, sorting 45

length 46

repetition 43

slicing 46

string, converting into 47

tuple, converting into 47

updating 44

working with 42

logical operators 30

coding examples 30

loop control statements 79

break 79

continue 80

pass 80

loops

else statement, using with 78, 79

for loop 76

nested loop 77

while loop 74, 75

M

map() function

using 89

Matplotlib 112, 211

object-oriented API 213, 214

plot, customizing 216-227

simple line plot 212

subplot() function 214

working with 211

membership operators 32

coding examples 33

merge() function 157-161

N

nested if statement 67-69

nested loop 77

for loop 77, 78

while loop 77

numeric data types 34

casting 36

complex 35

conversion 36

float 35

integers 34

numeric operations, in NumPy 199

numpy.mod() 201

numpy.power() 200

numpy.reciprocal() 201, 202

Numpy

numeric operations 199-202

statistical functions 195-198

NumPy 112, 171, 172

data, reading from files 206, 207

data types 181

data, writing into files 204-206

sorting 202-204

numpy.append() 188

NumPy array 173

creating 173-176

creating, from numeric range series 177, 178

creating, with list and tuple 176, 177

elements, deleting 188-190

elements, inserting 188-190

indexing 178-180

joining 191-195

reshaping 186-188

slicing 178-180

splitting 191-194

numpy.concatenate() 191

numpy.hsplit() 194

numpy.hstack() 192

numpy.insert() 190

numpy.load() 206

numpy.loadtxt() 206, 207

numpy.save() 204

numpy.savetxt() 205

numpy.sort() function 202

numpy.split() 194

numpy.vstack() 193

O

object-oriented interface, in Matplotlib 213, 214

open() function 96

operators 24

arithmetic operators 24, 25

assignment operators 28, 29

Bitwise operators 31

identity operators 33

logical operators 30

membership operators 32, 33

relational operators 26, 27

P

Pandas 111, 115

data structure 117

pandas DataFrame

aggregation 142, 143

column, adding 148-151

concatenating 154-156

creating 117-119

data cleaning 131-140

data, exploring 124-127

data, loading from CSV 119-121

data, loading from Excel file 123

data, loading from external files 119

data, loading from JSON file 123, 124

data, loading from pipe-delimited input file 122

data, selecting from 128, 129

data, selecting with multiple conditions 130

grouping 141, 142

merging/joining 157

ranking 145, 146

row, adding 146-148

row/column, dropping 152, 153

sorting 143-145

writing, to external files 165-168

pandas library

defining 115

need for 115, 116

pandas series 117

creating 117

pie chart 230

plot

bar graph 228

customizing 216-227

exporting, into file 231-233

histograms 228, 229

pie charts 230

scatter plot 229, 230

types 227

positional arguments 85

positional variable-length argument 87

predictive data analysis 108

prescriptive data analysis 108

Python

conditional statements 64

features 3-5

file, working with 96

history 2

indentation 64

loop construct 74

testing, in interactive shell 17, 18

use cases 5

versions 2

Python modules 91

creating 91

using 92-94

R

rank() function 145

read() function 99, 100

readline() function 100

readlines() function 101

reduce() function

using 90

relational operators 26

coding examples 27

replace() function 136

S

scatter plot 229

sets 52

element membership, checking 54

elements, adding 52

items, accessing 52

items, removing 53

list, converting into 57

operations 55

string, converting into 57

tuple, converting into 57

working with 52

simple line plot

creating 212

sort_index() function 143

sorting, in NumPy 202

examples 203, 204

sort_value() function 143

statistical functions, in NumPy

numPy.amaz() 195

numPy.amin() 195

numpy.average() 197

numpy.mean() 196

numPy.median() 197

numpy.percentile() 198, 199

numpy.std() 198

numpy.var() 198

string 38

built-in methods 40, 41

components 39

concatenation 40

operations 40

subplot() function 214

example 214, 215

T

tools, for data analysis

IPython 111

Matplotlib 112

NumPy 112

Pandas 111

tuple 48

concatenation 49

element membership, checking 50

elements, adding 49

items, accessing 48

list, converting into 51

repetition 49

slicing 50

string, converting into 51

working with 48

U

use case

data analysis, on dataset 237-250

dataset 236

problem statement 236

use cases, Python

Artificial Intelligence and Machine Learning 6

automation 5

data analytics 6

finance and banking 6

healthcare 5

web scraping 5

V

variable-length/arbitrary arguments 86

variables 24

defining rules 24

W

while loop 74

example 75

write() function 101


OEBPS/images/Figure-12.5.jpg
1 data.shape

(266, 33)





OEBPS/images/Figure-5.3.jpg
# print the even and odd numbers from the given List of numbers

num_list = [1,2,3,4,5,6,7,8,9,10]

print("output :")

6 for num in nun_list:

1f numi;
print("(} is even number” . format(num))

else:

10 print("{} is odd nusber” . format (num))

output :
is odd nuaber
is even number
is odd number
is even number
is odd number
is even number
is odd number
is even nunber
is odd number
10 is even nuaber





OEBPS/images/Figure-9.9.jpg
Name, Department, Salary_in_dollor,city
Porter,Advertising, 5383, Connah's Quay
Abraham,Media Relations, 8181,Beauwelz
Victoria,Accounting, 7921, Neerrepen

Hiroko,Customer Relations,7443,Sanzeno

4





OEBPS/images/Figure-12.4.jpg
L)





OEBPS/images/Figure-5.2.jpg
# print the even and odd numbers from 1 to 10:
um = 1

print(“output:”
while nun <=10
3¢ nunttz==
print("
else:
print("(} is odd number”. format (num))
num = nume1

} i even number” format (num))

output:

1is
2 s
3 s
ais
5 s
6is
7 s
8 is
9 is
1

0dd number
even number
odd number
even number
odd number
even number
odd number
even number
odd number

@ is even number





OEBPS/images/Figure-9.89.jpg
1 # writing the output on csv file with default to_csv() funtion
2 df.to_csv("data/out.csv")|





OEBPS/images/Figure-12.7.jpg
data_Syr.colums.

Index([ *Country Name', ‘Country Code’, '2017°, "2018°, '2019°, '2020°, '2021'], dtype






OEBPS/images/Figure-5.10.jpg
1 fruits_basket=['Mango’,'Apple’, ‘Orange’,'Grapes’]

pass
8 else
print("fruit:",fruit)

output
fruit: Mango
fruit: orange
fruit: Grapes





OEBPS/images/Figure-9.88.jpg
emp_dict = {'emp_id’:[101,105,108,111,],
‘city”:['Sanzeno’, 'Beauwelz",
3 |'Minneapolis’,'Carterton’1}

5 df=pd.DataFrame(emp_dict)
df

emp_id ity
101 Sanzeno
105 Beauwelz
108 Minneapolis

w [ - &

111 Carterton





OEBPS/images/Figure-12.6.jpg
1 data_syr = data.iloc[:,(0,1,28,29,30,31,32]].copy()

data_syr
CounuyName CounryCode 2017 2018 a9 220 zomt

o anba AW NN NN NN RN NN

1 Affca Eastem and Soutnem AFE 6714955 6731163 6914353 7S63E 8 1I7EY

2 Agharisian AFG 11180000 11152000 11217000 11710000 13263000

3 Afica Westem and Central AW 601905 GOMOS 60582 6774914 683009

‘ Angoa AGO TADSOOD 7421000 7421000 835000 8530000

2 Kesovo XK NN NN NeN NN NaN
%2 Yemen, Rep. YEM 13267000 13145000 13056000 13391000 13574000
% SoutAca 2ZAF 27040001 26910000 25469999 29219969 33559988
24 Zambia 2B 11630000 12010000 12520000 12848000 13026000
25 Zmbabue ZWE 4785000 4796000 483000 5351000 5174000

266 rows x 7 columns.





OEBPS/images/Figure-5.1.jpg
VNP

VAW R

# using while Loop
i=1
while i<= 5:
print(i)
i=i+1





OEBPS/images/Figure-9.87.jpg
1 # Joining the datfrome
2 Joined_af = emp_f.Join(dept ¢
Jotned_af

o tmmer)

5 custon_display(enp_f, dep

. Joined_0f, t1tles="enp_4F", "dept_40F","emp_af Join(dept_oF,how="snner*)"])

emp_af depr ot emp._dt oin(dept_df how=Tnner)
ay o E
o emp.ia emid
W0 e 01 Costomer Roltors 1 Senaens Cosomr Retors
105 Beswes 105 LogalDepariment 105 Besuwelz  LogalDepariment
108 Mnespois 8 pubtc Reltons 108 Moosspols  Publc Rlatons

o Cototan 0 Advrsing





OEBPS/images/Figure-12.9.jpg
1 data_syr.dropna(how="al1", subset=['2017",'2018","2019",'2020",'2021'], inplace=True)
2 datasyr.isnull().sun()

Country Hame
Country Code
2017
2018
2019
2020
2001
dtype: intes





OEBPS/images/Figure-4.9.jpg
bill_ant - 10000
menbership_type = "Platinun”

if (bill_ant>~10000) or (membership_type=='Gold'):

1
2
3
4 print("output:")
5
6 print ("Discount = 20%")

output:
Discount = 20%





OEBPS/images/Figure-9.86.jpg
1 # setting up emp_id column as index in Data frames
2 emp_df = emp_df.set_index("emp_id")

dept_df = dept_df.set_index("emp_id")

4 custom_display(emp_df,dept_df,titles=["emp_df’,"dept_df'])

emp_df dept_df
city dept
emp_id emp_id
101 Sanzeno 101 Customer Relations
105 Beauwsiz 105 Legal Department
108 Minneapolis 108 Public Relations

M Carterton 100 Advertising





OEBPS/images/Figure-12.8.jpg
data_5yr.isnull().sum()

Country Name 0
Country Code 0
2017 31
2018 31
2019 31
2020 31
2021 31

dtype: intéa





OEBPS/images/Figure-4.8.jpg
bill_ant - Seee
# membership_type = "Platinun”
menbership_type = “Gold"

print(“output:")
if (bill_amt>-seee) and (membership_type=='Gold'):
print ("Discount = 26%")

output:
Discount = 20%





OEBPS/images/Figure-9.85.jpg
#oining on index.

2 Joined of = amp_o¢.Join(dept_oF, LsuFFixe’_lefe” esuffise

e powntoner)

Joinedor
cstongspiemp. o, e 1 Jooes o, it g 56,
enp 3. Join(dept_4F LsuF i _Lefe’rsuffixe"_right' houe'imer)"])
et opat amp_toin{dept_osulf’_Jotssuflx=_right how=Tnner)
iy ewa e ey iy amp W sht P
T Swwe 0 01 Coue e T s [
2w meme 1 U5 LagDien M cen 0 A
3 Mok 5 00 Pucrutes
w4 0 Adeg





OEBPS/images/Figure-4.7.jpg
scasens

obtained_sarks _percentag
nuosber_of attenpt - 1

print(‘output:®)
16 cbtatned_aarks percentage>-09:

L elif mumber_of attespt--2;
2 print(“Garde 87)

i edse:

20 print("arade )






OEBPS/images/Figure-9.84.jpg
# Creating the dataframe to explain the join() ffunction

emp_dict = {*esp_id':[101,165,108,111,],
“eity s["Sanzeno’, ‘Beawel? ", ‘Winneagolis®, ‘Carterton’]}

6 dept_dice = (em
7 R

< (101,105, 108, 160],
“Custoner Relations’, Legal Department’, Public Relations’, Advertising']}

10
11 emp_df = pd.DataFrame(emp_dict,index=(1,2,3,4])

12 dept_df = pd.DataFrame(dept_dict,index=(0,1,5,4])

15 # print(emp_df)

14 # print(dept_df)

15

16 custon_display(emp_df, dept_df, titles=[ emp_df", dept_df'])

emp_at dept_df
omp_id city empid dopt
101 Semmo 0 101 CustomerRelatons

W05 Beawer 1 105 Lagal Deparment
3108 Mimeapols 5 108 PublcRelatons
4 m Caen 4 0 Advoriing





OEBPS/images/Figure-2.1.jpg
O ANacoNDA

Q

Individual Edition

Your data science Arsconds s Edtion
toolkit D






OEBPS/images/Figure-4.6.jpg
1 scasen
# nested if statenent

2

3

= obtained_narks_percentage -6
5 nusben_of_attempt - 2
s
6

prine("Output:”)

46 abtatned_aarks percentages:
101 nusbar_of attespt -

1 print{"Garde A°)
12 elif nusber_of_attenpt
5 print(“Garde £°)
16 else:

15 print(“orade )

16

7

output;





OEBPS/images/Figure-9.83.jpg
SO e SRS e e —)

om0 “ - wopa oy oot
T T 01 Comare Rastons T 01 Saneeno 101 oo Rt
105 Bawr 1105 LaguDwpument PR S——
28 Meoeuss 2 108 PubkcResions 20 Mo 18 Ptc s
3 M Cwmtm 3 W A





OEBPS/images/Figure-9.82.jpg
sexampens
# Creating the data frase to explain the function

emp_dict = {“emp_id’:[101,105,108,111,],
“city”:[*Sanzeno", ‘Beauwel:’, ‘Ninneapolis", “Carterton’]}

dept_stct = {*14:[101,105,108,100],
*dept”:[Customen Relations’,"Legal Department’, Public Relations', Advertising'])

enp_af = pd.Dataframe (emp_dict)
depi_of = pa.DataFrane(dept_dict)

erged_df = pd.merge (enp_df,dept_df, eft_ons"enp_1d’,r1ght_ona"1d" hows’ inner’)
merged df

custon_display (enp_df, dept_df,merged_df,
titlest[anp_of", "depi_oF",
‘d.merge (enp_f, dept_3f, 1aFt_ons"esp_id",right_on="1d"how="inner*)"])






OEBPS/images/Figure-5.5.jpg
# 4dd each eleent fron nunlist1 to each elemts of numlist2 and print the result List.

for numt in nualist 1:
9 ‘temp=( ]

10 for num in nunlist 2:

1 tenp. append (nuni snun2)
1 result.append(tenp)

15 print(result)

output ¢
[(3, 4 51, [4 5, 6, [5, 6, 7])






OEBPS/images/Figure-5.4.jpg
1
221

4 print(“output :")

5 while ic=2:

6 while jc o
7 print("{}*{} = {}".format(i,3,i*}))
8 j=j+1






OEBPS/images/Figure-9.90.jpg
Howow |

LRSS

Jemp_id, city
0,101, Sanzeno
1,105, Beauwelz

2,108, Minneapolis
3,111,Carterton





OEBPS/images/Figure-4.2.jpg
# if

traffic_light = “Green”

print("Output: ")

if (traffic_light == "Red"):
print("Please Stop!™)

o awN R

Output:





OEBPS/images/Figure-9.8.jpg
Name, Department, Salary_in_dollor,city
Porter,Advertising, 5383, Connah's Quay
Abraham,Media Relations, 8181,Beauwelz
Victoria,Accounting, 7921, Neerrepen
Hiroko,Customer Relations,7443,Sanzeno
Rathleen, Legal Department, $476,Minneapolis
Amela, Public Relations, 9900,Carterton
Timon, Advertising, 5222, Portland

Barclay, Accounting, 8224, Sanzeno

Knox, Finances, 6089, Alken

Malachi,Quality Assurance,5858,Wazirabad
Macy, Public Relations, 9470,Richmond Hill
Demetria,Advertising, 8282, Wannerco
Lawrence, Payroll, 7538, Sanzeno

Lavinia, Tech Support, 9775, Temuka





OEBPS/images/Figure-4.1.jpg
#if
traffic_l1ght
print("Gutput

1
2 “Red”

3

4 1F (traffic light == "Red"):
s

print(“Please stop!™)






OEBPS/images/Figure-9.79.jpg
sexomles
rged_df_Left - pd.nenge(sup_oF,dept_df,on-"enn_id how-"1eft")
merged af left

custon_ d1splay (emp_df, dept_df merged_df left, titless[ smp oF","dept of",
“pa-merke(enp_af, dept_df,on"esp_1d" how="1eFt")"])

emp_at deptat  pamerge(emp_dtdept_dton=emp_id' Row=Teft)

iy omota oot omiaay aont
0 W Swmme 0 101 Cuamerremon 0 01 Swawme CustomerReatens
1105 Beewss 1 105 LegaDepatment 1105 Beawer  Laga Deparment
2 18 wmewoss 2 108 PubkcRestons 2 100 Mmesols  PusicRetons
5 om cuem 3 Aversing 3 m ceten N





OEBPS/images/Figure-2.9.jpg
O Anaconda3 2021.05 (64-bit) Setup -

. nstaling
O ANACONDA.  picase it i Anacondas 202105 (54450 s beng sl

Setting p the package cache:

‘Show detals

Anaconds, Inc






OEBPS/images/Figure-9.78.jpg
sexamplent
merged_df_inmer - pd.merge (eap_df dept_6F,on-"enp_id" how" e}
merged_df_taner

custon_display (smp_0F, cept_of merged_of_iner, titles-["emp_df", cept_of",
“pdnerge(emp_3F,dept_df one"emp_14" bows"inner’)"])

omp_at deptar  pamerge(emp_atdept_afon'emp.idnow'inner)

ey emia et i oy et
0w Semw 0 101 CuemerRemton, 00 Semeo Cusomar s
1105 beawez 1 105 LegaDeparnent 105 semwer  Lepa Depatment
2 s mewels 2 108 PubscRostons 2 108 Menaspois  PubicRosbons
5 om cwewm 3w Aoy






OEBPS/images/Figure-2.8.jpg
O Anaconda3 2021.05 (64-bit) Setup -

% Advanced Installation Options.
D) ANACONDA.  Custonize how Anaconds ntegrates ith Windows

Advanced Options
|Add Anaconda3 to the system PATH environment varizble

Not recommended. Instead, open Anaconda3 with the Windows Start
menu and select “Anaconda (64-bit)" This “add to PATH" option makes
Anaconda get found before previously nstaled software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

tegister Anaconda3 as the system Python 3.8

This il low other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda s the primary Python 3.8 on the system.

s, I

<bock | O






OEBPS/images/Figure-9.77.jpg
1 # Creating the data frame to explain the function

emp_dict 101,105, 108,111,1,

eaivel:’, ‘Ninneapolis’, Carterton']}

G dept_dict - {"emp_id':[101,105,108,100],
7 *dept”7["Custoner Relations’, ‘Legal Department, Public Relations', Advertising']}

emp_of - pd.DataFrame (emp_dict)
dept_cf - pd.Datarrame(dept_dict)

custon_display(emp_df, dept_df, titles=[ emp_df ", ‘dept df'])

emp_at dept_af

emp_ia ciy omp_ia aont
W0 sawsme 0 101 CustomerReatons
105 Boawez 1 105 LogaiDaparimen
108 Mimespols 2 108 PublcReatons

W ocametsn 3 100 Advertsing.





OEBPS/images/Figure-2.7.jpg
O Anaconda3 2021.05 (64-bit) Setup. = X

. Choose Install Locaion
D) ANACONDA.  choose the foldr i ichto nstal Anaconda 202105 (5441,

Setup wilnstal Anaconda3 2021.05 (64-bit) in the folowing foldr. To nstal in a different
foldr, cick Browse and select another folder. Cick Next to contiue.

Space required: 2.968
Space avaiable: 280,868

Anaconda, Inc

<bock |[@hexs | | Concel






OEBPS/images/Figure-9.76.jpg
out_df =df1.append(df2)

:::E::_display(m,dfz,out_nf,titles: *Input : df1’, ‘Input : df2',
‘0/P :df1.append(df2)'])

Input : df1 Input:df2  O/P :df.append(df2)
emp_id city empid  city emp_id city
0 101 sanzeno M Dem 0 101  Sanzeno
1 105 Beawwe:z 112 Bangoe 1 105 Beauvelz
2 108 Minneapols 13 Panab 2 108 Minneapois
3 100 Carterton 114 Chemai 3 100 Carterton
o m e
1 12 Bangore
2 M Pama
R —





OEBPS/images/Figure-2.6.jpg
O Anaconda3 2021.05 (64-bit) Setup = x

3 Scloct Installation Type:
D ANACONDA.  picase st th tpe of nsalation you woul e fo prfom for
Anaconda3 2021.05 (64-bit).

Instal for:

O ust Me (recommended)

@ Al Users (requires adrin privieges)

Anaconds, Inc

<ok |[@nexs | [ Concel






OEBPS/images/Figure-9.75.jpg
1 df_concat_axis_1 - pd.concat([df1,df3],axis-1)
2 ¢f concat_axis_1
cuSton_display(df1,df3,df_concat_axis_1,titles-['Input : df1’, ‘Input : df3’,
*0/P : pd.concat([df1,df3], axis=1)'1)

Input: of Input:df3  OIP : pd.concat([df1.dfa]axis=1)

emp_ia city iasal emp.ia ity i sal
0 101 Sewew 0 101 555 0 101 Sazeno 101 5555
1 105 Beawez 1 105 665 1 105 Beawez 105 6566
2 108 Mimespols 2 108 7777 2 108 Mimeapois 108 7777
3 100 Caeon 3 100 8888 3 100 Carlerton 100 8888





OEBPS/images/Figure-2.5.jpg
O Anaconda3 202105 (64-bit) Setup

License Agreement

) ANACONDA.  plsce reviw thekcense tems before nstaling Anoconda
202105 (54-bit).

Press Page Down to see the rest of the agreement.

[Copyright 2015-2021, Anaconda, Inc.
|l rights reserved under the 3-cause BSD License:

[This End User License Agreement (the "Agreement?) i a egal agreement between you
Jand Anacond, Inc. (‘Anaconda’) and governs your use of Anaconda Indvidual Edion
|Gwhich was formerly known as Anaconda Distrbuton).

1f you accept the terms of the agreement, cick  Agree to continue. You must accept the.
agreement to install Anaconda’ 202105 (5441,

Anaconda, In,

<gack || Tagres Concel






OEBPS/images/Figure-9.74.jpg
1 out_df - pd.concat([df1,df2], keys-|
2 outdf

3 custon_display(dF1,72, out_0F,titles=[‘Input : 6fL’, “Input : d72",|

. “0/P + pd.concat([df1,df2], ignore._index-True)'1)

*6F1°,"dF2'],ignore_index-True)

Input: art Input: df2  OIP : pd.concat{di dtz] ignore_index=True)
‘emp_id city emp_id city ‘emp_id city
0w smee 0 m oem 0 o1 see
t 05 Beawez 1 12 Bangore 1105 Beames
2 00 Mmemols 2 10 Pan 2 108 Mmessols
3 0 Catewn 3 14 Cremai 3 1 Coreron
4 m o
5 m o
6 s pame
7 e crema






OEBPS/images/Figure-9.73.jpg
1 # When 2 dfs has same column name and number

df_concat_axis_@ - pd.concat([df1,df2])|

df_concat_axis_0

4 custom_display(df1,df2, df concat_axis_0,titles=['Input : ¢f1’, 'Input : df2’,

k *0/P : pd.concat([df1,¢f2])",1)

Input: dft Input: df2 /P : pd.coneat([af1,f2])
emp.id city empid city emp_id city
o 101 sazew 0 1 Dem 0 101 saweno
1 105 Beawez 1 112 Bangore 1 105 Beawer
2 108 Mimesois 2 113 Pamab 2 108 Mimeapols
3 100 Catetn 3 114 Chemnai 3 100 Carteton
o m oeni
1 m sangore
2 m P

3 s Chemal






OEBPS/images/Figure-4.5.jpg
scasen1

obtained_narks_percentage +90
nusber_of_attempt - 1

print("output:")

4 obtatned_marks_percentage>=:
if nunber_of_attenpt -
print("Garde A")
©lif number_of_attempt:
print("Garde £7)

else:
print("Grade c*)






OEBPS/images/Figure-4.4.jpg
# 1f...else

a-103

print(“Output:")

if axier:
print("a is greater than 1017)

else:

print("a is not greater than 101")

Output:
a is greater than 101





OEBPS/images/Figure-9.81.jpg
1 sExamplens
merged_df_outer = pd.merge(esp_df,dept_aF,on="enp_1d" hows"outer)
merged_af_outer

" custon_a1splay(omp_oF, dept_df merged_df_outer, titless( emp 3", "dept_df"

. merge(emp_af,dept_df on="enp_1a" how"outer’) 1)
amp_at GepLar  pamerge(emp_dt dept_df on='emp._id: ow='outer)
mpidciy omp.id o iy ot
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1 #if...else
2 a-01

3 print(“output:")
4 if a>te1]
s print("a is greater than 101")

6 else:

7 print(" a is not greater than 101")

output:
a is not greater than 101
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# opening a file in python and checking status

# variable containg filepath
input_file_path = r*python wiki.txt"

# dfining the file object
File_object = open(input_file_path,"r")

10 print("output:")

12 #printing the file status
13 print(“Is file closed 7:",file_object.closed)

15 #printing the file open mode
16 print("File is open with node :",file_object.node)

output:
Ts File closed 2: False
File is open with mode : r
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1 #filter()

2 number_list = [1,5,67,89,99,4,5,7,45]

> even_number_list = list(filter(lanbda num:nunic2:
2

5 print(“output:")

6 print("even_number_list :",even_number_list)
output:

even_number_list : [90, 4]





OEBPS/images/Figure-6.8.jpg
nap
nunber_List = [1,11,111,1111]

squared_number._list = list(nap(lanbda num:nun**2,nusber_list))

6 print(output:")
7 print("squared_number_list

sauared_nusber. 1ik%)

output:
squared_number_list : [1, 121, 12321, 1234321]
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# 2 number addition
twoNumberAddition = lambda a,b:a+b

PSRN

print(“output:")
#calling the Lambda function
‘twoNumberAddition(10,30)

o w

output:
40
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1 # Keyworld paraneter
2 def selfIntro(**kwargs):
values = list(kwargs.values())

5 print(*'Hil by name is ().
6 T am vorking in {} department.
7 T am from (}.'".format(values[o],values[1],values(2]))

9 print(“output:")
10
11 selfIntro(Name="Rohit" ,dept="TT",city="Delhi")

output:
Hil My name is Rohit.

I am working in IT department.
1 am from Delhi.
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# Non-keyword/Positional variabl-length parameter
def numberaddition(*args):
result=0
for num in args:
result=result+num
6 return result

print("output:")|
nhumberAddition(1,11,111,1111)

© N

©

output:
1234
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def divisionofTwoNumbers(a,b=10):
return a/b

print("output:")

1
2
a
5 divisionofTwoNumbers(100)

output:

10.0





OEBPS/images/Figure-6.3.jpg
def divisionOfTuoliunbers(a,b):
return a/b

print("Output :*)

1
2
3
5 divisionofTuoNumbers(b-2,3-10)

output :
5.0
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1 # defining a function
2 def division0fTuotiumbers (a,b):

2 retun as

4 #calling o function os passing the argurents
5 print("output:") |

© divisiondf TuoNumbers(10,30)

7

0.3333333333333333
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# inparting the python modute
from mypythonnodle. smport trafficLightaction, vehiclespesdcheck

traffic_Light_color - “Green”
Speed-53

print(“output:™)
print(-trafic_lignt color

traffic_Light color)

¥ calting the trafficLightaction function of mypythonmodule
print(traficLightaction(traffic_light_color))

# catling the vehiclespeedcheck function of mypythonsodute
print(“\nVehicle Speed Chck :",vehicleSpeedCheck(Speed))

output:
trafFic_light_color : Green
Keep Going!

Vehicle Speed Check : Violation: Vehicle speed (30 kaph) is less than or equal o allowd speed (50 kaph)
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inport datetine,math|

print("Log 1 value =",math.1og(1))
print("Honth=", datetine. datetine.nou(). strftine("%8"))

Log 1 value = 0.0
Honth= December
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# taporting the python module
import nypythonaodule

* eraffic_igne color - “Green”
5 spesc:
8

print(‘output:")
10 prine("TrafFic_Light color :, trafFlc_light_color)

12 # calling the trafficLightaction function of mypythonsodute
£ print (aypythomodule. trafficLightaction(traffic.1ight_color))

15 ¥ colling the vehictespeedcheck function of mypythonsodute
16 prine("\nenicle Speed Check :*,mypythonmodule. vehiclespeedcheck(speed))

Traftic_1ght_color : Grsen
Keep Golng!

Vehicle Speed Check : Violation: Vehicle speed (89 knph) 1s less than or equal to allowd spesd (0 kaph)
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L

def traificLightAction(color of Light)s
color_of_light = color of light.lowor()
if color of lightes'red
roturn "stopn
1f color_of _ligntem
return oo b
1E color_of_lightmm
return “Keep Going!®

green®:

def vehiclespesdCheck (speed_of_vehicle) :
max_speed_Linit = 50
i€ spesd of_vehicle <= max_cpeed Limits
zeturn ("Pass: Vohiclo spood (() kwph) is loss than or squal to allowod

peod () knh) " format (speod_of vohiclo,max_speod_Limit))
ole
zetum (Violation: Vshicle speed((] kmph) is higher than allowed spesd(()
knioh) . format (speed_of_vehicle,max_speed_limit))
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1 # reduce

2 import functools |# explain this part in later in this chapter

5 number_list = [1,34,56,78,91,11,23,44]

4 sum_of number_list = functools.reduce(lambda numi,num2:numi+nun2,number list)

6 print("output
7 print("sun_of_number_list :",sun_of_number_list)

output:
sum_of_number_list

338
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1 # writing the dtafrma content to json file
2 df.to_json("data/out.json")





OEBPS/images/Figure-6.1.jpg
def mypythonFunction():
**'This fucntion willpring a string
print("welcome to Data Analysis with Python Courselll™)

1
2
3
2
5 # calling a function

6 print(“output :")

7 mypythonFunction()

output :

welcome to Data Analysis with Python Coursel!!l
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1 fruits_basket=[ 'Mango’, 'Apple’, ‘Orange’, 'Grapes']
2
3 print(“output :*)
4
5 for fruit in fruits_basket:

it

6 if fruif
7 continue
print(“fruit:", fruit)

©

s
10 print(“\napple got skipped”)

output
fruit: Mango
fruit: Orange
fruit: Grapes

Apple got skipped
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1 # wrtiitng the df to excel
2 df.to_excel("data/out.x1sx",index=False)|
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fruits_basket=['Mango’, 'Apple*, ‘Orange", ‘Grapes' ]

1
2
3 print("output :")

4
5 for fruit in fruits_basket:
6 if fruit=="Apple’:

7 break

8 print("fruit:",fruit)

10 print("\nloop got terminated”)

output :
fruit: Mango

Loop got terminated
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1 fruits_basket=[ Mango",'Apple’, ‘Orange’ , ‘Grapes' ]

7 print("Grapes are in fruit's basket”)
8 break
o else:
10 #will excute this block if Loops complete normally
11 # here Loop get break before it's completion so this else will not execute.
12 print("Kiwi is not in fruit's basket")
3
output :

Grapes are in fruit's basket
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1 # Writing the delimited file with other delimeter Like pipe ([)
2 df.to_csv("data/out_pipe.txt",index=False,sep="|")|
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# serching for Kiwi in fruits_basket

fruits_basket=[ ‘Mango’,Apple’, ‘Orange’, "Grapes’]

for fruit in fruit:
if fruif
° break
10 else:
1 # will excute this block if Loops complete normally
12 print("Kiwi is not in fruit's basket")

1
2

3

2

5 print("output :")
6

7 asket]:
8

*Kiwi

output :
Kiwi is not in fruit's basket
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1 ¢ writing Df to file excluding indexes
2 df.to_csv("data/out_wo_index.csv”,index=False)
3
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# taporting the python module with altos
‘nport mypythonsodule a5 mypysod

traffic_Lignt_color - “Green”
Speed-5

prine("output:)
print(trafic_light color :",traffic_light_color)

# colting the troffictightaction function of mypythonsodute
print(aypyaod. crafFicLightact lon(raffic_Light color))

# calling the vehicLespeeacheck function of mypythonmodule
print("\nvenicle Speed Check <, mypyaod.vehiclespeedcheck(speed))

output:
craffic Light_color 5 Green
Keep Going!

Vehicle Speed Check  Vilation: Vehicle spesd (30 kaph) 1 less than on equal o alloud speed (50 kaph)
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1 # loading the JSON file data
2 json_df = pd.read_json('data/emp.json")|
json_df.head()
Name Department ~Salary city
Rosalyn Customer Relations  $8757 Ibadan
Bell Media Relations  $8915 Senneville
Salvador Payroll $5134  Adia
Reece AssetManagement $5451  Balfour
Jermaine  Asset Management $5146  Recoleta
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({"Name": "Rosalyn”, "Department”:"Customer Relations","Salary":"S8757,"city":"Ibadan"),
("Nama":"5e117, "Departnent: Media Relations","salary":"S8SI5*, “city":"Senneville),
{"Name" :Salvadoz*, "Dopaztment : "Payzoll", "Salary" :$5134%, "city": "Mri

("Name" :"Roace", "Dopazement™: "Aaset. Management, “Salary” i$S4SLn, "city"
("Name" i Jornaine*, “Department®: "Asset Management”, "Salary’
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1 # Loading the data from excel file|

excel_df = pd.read_excel("data/emp.x1sx",sheet_name="emp’)

excel_df.head()

Name Department  Salary_in_dollor city
0 Porter Advertising 5383 Connah's Quay
1 Abraham  Media Relations 8181 Beauwelz
2 Victoria Accounting 7921 Neerrepen
3 Hiroko Customer Relations 7443 Sanzeno
4 Kathleen  Legal Department 9476 Minneapolis
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Name

Department

Salary_in_dollor

city

s woN

Porter
Abraham
Victoria
Hiroko

Kathleen

Advertising
Media Relations
Accounting
Customer Relations

Legal Department

5383
8181
7921
7443
9476

Connah's Quay
Beauwelz
Neerrepen
Sanzeno

Minneapolis
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import pandas as pd # importing the pandas Library
import numpy as np

text_file_df = pd.read_csv("data/emp.txt",sep =
text_file_df.head()
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Name | Department |Salary_in_dollor|city
Porter|Advertising|5383|Connah's Quay
Abraham|Media Relations|8181|Beauwelz
VictorialAccounting|7921|Neerrepen

Hiroko|Customer Relations|7443|Sanzeno
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1 import pandas as pd # importing the pandas Library
2 import numpy as np
3 my_header= ['name’,"department’,’salary_in_dollor’,’city’]

# passing the header information explicitly to names parameter

5 no_header_csv_df =

pd.read_csv("data/enp_no_header.csv”,names=my_header)

no_header_csv_df.head(|) # printing the first 5 records from DataFrame

name. department _salary_in_dollor

0 Porter Advertising 5383 Connah's Quay
1 Abaham  Media Relations 8181 Beauvielz
2 Victoria Accounting 7921 Neemepen
3 Hioko Customer Relations 7483 Sanzeno
4 Kathleen  Legal Department 9476 Minneapolis
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Porter,Advertising, 5383,Connah's Quay
Abraham,Media Relations, 8181,Beauwelz
Victoria,Accounting, 7921, Neerrepen
Hiroko,Customer Relations,7443,Sanzeno
Rathleen, Legal Department, $476,Minneapolis
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1 import pandas as pd # importing the pandas Library
2 import nunpy as np

3 # sy

4 csv_df = pd.read_csv("data/enp.csv”) # Wil take elemnt(s) of first Line as column(s)
5 csv_df.head() # printing the first 5 records from DataFrame

Name Department _Salary_in_dolior city
0 Poter Adverising 5383 Connah's Quay
1 Abrsham  Media Relations 8181 Beawelz
2 Vicwors Accounting 7921 Nesmepen
3 Hicko CustomerRelations 7483 Sanzano

4 Katleen  Legal Department %476 Minneapolis
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import numpy as np

#1D array in Numpy|
array1_1D - np.array([1,2,3,4,51)
array2_ 1D = np.array((2,3,4,5))

print("Output: ")
print("arrayl_10:", arrayl_1D)
print("array2_10:", array2_1D)

Output:
array1 1D: [123 4 5]
array2_1D: [2 3 4 5]
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input_file path
with pen(input_f

tata/enp. csv’
ile_path,'r') as f:

Lines = f.readlines()

header = lines[0]
Lines_wo_header =
dept_ist = [rou.
dept_1ist_no_dups.

Lines(1:]
spLit(",")[1] for rou in Lines_wo_header ]
List(set(dept_list))

sun_sal_dept_wise_dict=(}
for dept in dept_Tist_no_dups:
su_sal_dept_wise_dict[dept] = 0

for line in lines_wo_header:

line = line.s
sum_sal_dept_y

print("output :\n’

print(“Departnent

For k in sorted(l
print(,” +

PLIEC", ") (1:2]
wise_dict(line[o])

")

sun_of_sal")
ist(sum_sal_dept_wise_dict.keys())):
, sun_sal_dept_wise_dict[k])

int(sun_sal_dept_wise_dict[Line[0]])+ int(line[1])
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inport nuapy as np.

a - np.arange(10, 20, 2)
print(*Input Array:\na

print(*\nSlicing Examples:®)

print(*\nExamples1 :
9 print("\nExamples2
10 print(*\nExanples3
11 print(*\nExanpless.
12 print(*\nExanplens

Input Array:
3= [10 12 16 16 18)

Slictng Examples:
Examplest : al:] = [10 12 14 16 18]

Exanples2 ©

1 - 10 12

Exanpless : a[:3] = [16 12 14]
Exanpless : a[3:] - [16 18]

Examplese : a(-3:-1] = [14 16]
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1 import numpy as np
# indexing and sclicing in Nultidientiont arra

b = np.arange(20)

b.resize(d, 6)

print(“Inplt aulti-diemstional Array:\n be", b)

print("\n Slicing Examples:
print("\nExampler1

print(*\nexampler2
print(*\nexamplers
print("\nExampless :

Input mlti-diemstional Array:
(0123 45
{678 91

[12 13 14 15
(19 00

1

of

1
11
Slicing Examples:

Exampless : b[o) - [012345]

Eabule ¢ 0(ei0) = (L8 8, 1203 ¥ &
[67 8 910 1]

Examplers :
6711

Exempless : b[2:, 4:] = [[16 17]
Te el
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# get the datatype and storage info of any array

smport nunpy 3s np
amnp.array([1,2,3,451)

print(“Array datatype 1s {).".format(a.dtype))

print(“Henory size of one array element is {} byte(s).”.format(a. itemsize))

10 print("Total menory size of array is {} byte(s).".format(a.size * a.itemsize))
12 # e can use nbytes also to get the information about tosal memory size
13 print(“Total memory size of array s {) byte().".forsst(a.nbytes))

Array datatype 1s int32.
Hesory size of one array element is 4 byte(s).
Total memory size of array iz 16 byte(s).
Total memory size of array is 16 byte(s).
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sexomple #1
import numpy a3 np
a=np.array([1,2,3,45, ], deypes ' int")
print("Array 1",8,"\rdatalype:"a.dtype)

Aeray 1 [1 2 345)
DataType: int32

sExample 42
import numpy as np
enp.array([1,2,3,45, ], dtype="int16')
print("Array i*,a,"\nbataType:",a.dtype)

aeray 1 [1 2 345]
DataType: intls

1 sexample #3
2 import nupy a3 np

> amnp.array([1,2,3,45, ], deype="12')

4 print(“array "), \iOatalype:"a.dtype)

aeray : [1 2 345]
BetaTupis datin
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sexamplest

import numpy as np

amnp.array([1,2,3,45,1,dtype="float")
J"\rDataType: ",a.deype)

Arcay : [1. 2. 3.45.]
DataType: floatés

sExamples2
inport numpy as np
senp.array([[1,2,1,[3,45, 11, dtype="float1s")
print("Array :",a,"\nDataype:",a.dtype)

aeray : [[ 1. 2.]
[ 3. 45.]]
DataType: floatls

sxampless
inport numpy as np

a-np.array([[1,2,], (3,45, 1], deype="2")
print("Array i+, \nDstaType:”,a.dtype)

Aeray ¢ [[ 1. 2.]
[ 3. 45.]]
DataType: floatls
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1 #Examplel

p.array([True, False, True], dtype="bool ")
print("array :",b,"\nDataType:",b.dtype)

sexanped
ay ([True, False, True], deype="2")
"ray <6, \oataTyp: " b.dtype)

Array : [ True False True]
DataType: bool
Array : [ True False True]
DataType: bool
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1 #Examplest
b=np.array(["Python" ,"Numpy’
3 print("Array :",b,"\nDataType:

Pandas"],dtype='s")
b.dtype)

Array : [b'Python’ b'Numpy’ b'Pandas’]

b=np.array(["Pythor

1 #Examples?
3 print("Array :",b,

Pands="],dtype="")
Jb.dtype)
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employee - mp.dtype([(*name’, 5101, (gt S10%), ('sal’, '14)])
Print(-Struckired oata Trpe i employee)

Structured Data Type ¢ [('name’, "SI0, (dept’, 187, ('sal’, "ets')]
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ut filesxt - No

File Edit

Format View Help

[this is Line#1 in output file.

This
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is Line#2 in
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is Line#d in
is Line#S in

output file.
output file.
output file.
output file.
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# writing a the conent into a file
with open("Outfile.txt”,"w") as f:
data = '** This is Line number 1 in output file.
This is Line number 2 in output file.
This is Line number 3 in output file.
This is Line number 4 in output file.
5
6

This is Line number 5 in output file.
This is Line number 6 in output file.

f.urite(data)
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1 #readline()
2 with open(input_file path,
5 datasf.readlines{)

6 print("Display the data from ile using readlines() :*
print(data)
8

Display the data fro file using readlines()

[*Python is an interpreted high-level general -purpose programming language.\n', ‘Its design philosoph
¥ enphasizes code readability with its use of significant indentation. \n', 'Its language constructs
as well as its object-oriented approach ain to help programsers write clear, logical code for small a
nd large-scale projects.\n’, "Python is dynamically-typed and garbage-collected. It supports multiple
programing paradigas, including structured (particularly, procedural), object-oriented and functiona
1 programing.\n', "It is often described as a “batteries included” language due to its comprehensive
Standard Library.\n", "6uido van Rossua began working on Python in the late 19805, as a successor to
the ABC programming language, and first released it in 1991 as Python 0.9.0.\n", ‘Python 2.0 was rele
ased in 2000 and introduced new features, such as list conprehensions and a cycle-detecting garbage ¢
ollection system (in addition to reference counting).\n’, ‘Python 3.0 was released in 2008 and was a
major revision of the language that is not completely backuard-conpatible.\n’, “Python 2 was disconti
Pued with version 2.7.18 in 2020.]
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1 #readLine()

> with open(input_file path,"r") as f:
data=F.readline()

a

3
5 print("Display the data from file using readline() :")
7 print(data)

s

pisplay the data fron file using readline() :
Python is an interpreted high-level general-purpose programming language.
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1 #read()
with open(input_file_path,
data=f.read(50)

6 print("Display the data from file using readline()
7 print(data)

Display the data from file using readline()
Python is an interpreted high-level general-purpos
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Bython Ts an interpreted Figh-level general-purpose programning language-
Its design philosophy enphasizes code readability with its use of significant
indentation.

Its language constructs as well as its object-oriented approach ain to help
programmers write clear, logical code for small and large-scale projects.
bython i dynamically-typed and qarbage-collected. It supports multiple
programming paradigms, including structured (particularly, procedural), object
“oriented and functional programming.

Tt is often described as & "batteries included” language due to its
ocaprehensive standard Library.

Guido van Rossun began working on Python in the late 19805, as a successor to
the AeC programming language, and first released it in 1991 as Python 0.9.0.
bychon 2.0 was released in 2000 and introduced new features, such as List
comprehensions and a cyele-detacting garbage collection system (in addition t
o xeference counting) .

Bython 3.0 was released in 2000 and vas a major revision of the language that
15 not completely backward-conpat ible.

Bython 2 was discontinued with version 2.7.18 in 2020
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1 # opening a Files using with clause |

2

5 with open(input_file path,”r") as :

4 #printing tehe file status

5 print("Is file closed ?:",f.closed)

7 # printing tehe file status
& print("Is file closed 2:",f.closed)
9

Is file closed 2: False
6 File closed 73 True
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# Closing the file
file_object.close()

#prining the file status

1
2

4

5 print(“output :")
6

7 rrint("ls file closed ?:",file_object.closed)
8

9

output :
Is file closed ?: True
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1 #read()
2 with open("output_file.txt","r") as f:
3 print(f.read())

This is Line#1 in output file.
This is Line#2 in output file.
This is Line#3 in output file.
This is Line#4 in output file.
This is Line#5 in output file.
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1 # Droptng or deleting the duplicate recods fron Datafrane
2 #Drop ALL DupLicate Rows Keep only single record

3 emp_f_ran_no_dups = esp_df_rau.drop_duplicates( enployes_id')

¢ dups_reord_count = emp_dF_ran_no_dups.duplicated([‘erployee_id'1).sun()
Print(“Duplicate recods count «*dups.reord_count)

& # Now no dups df have only single record for employes_{d-111
emp_éf_rau_no_dups enp_ . rau_no_dups.eeployee_idus'111']

Duplicate recods count = 0

employss_d_employes_name_omployse_salary_in_dollr_mployee_city_employee_depariment_employe joning_doe
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OEBPS/images/Figure-9.35.jpg
# displaying the duplicate records|

2 emp_dé_rau{esp_af_rau.duplicated("employee_14)] # Show Only Duplicate Rous
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sExamptest
% get the count of Duplicate Records [if complete row is duplicate then it will consider it duplicote ]
o_of_dups = amp_df_raw.duplicatad() . sum()

Printl"nuaber of rous having cosplete rou duplicate :*no_of_dups)

seramptes2
SFinding the duplicate recodrs on the basts of key column(s) instead of cosplete record
Ro_of_dups = emp_d_rau-duplicated([ enployee. 1a']).sum()

Print{"nusber of rous having duplicate employse 1ds:",n0_of dups)

nusber. of rous having conplete row duplicate : &
nusber. of rous having duplicate esployee 1ds: 8
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1 out_df = emp_df[(emp_df.Salary_in_dollor < 5000) | (emp_df.city == 'Sanzeno')]
2 out_df

Name Department Salary_in_dollor _city
3 Hioko Customer Relations 7443 Sanzeno

Barday Accounting 8224 Sanzeno
12 Lawrence Payroll 7538 Sanzeno
2 Tashya Legal Department 8826 Sanzeno
26 Hakeem Legal Department 6232 Sanzeno
77 Ezekiel Advertsing 6848 Sanzeno
29 Charly Research and Development 5135 Sanzeno
34 Dors Asset Management 8262 Sanzeno
39 Keran Tech Support 8061 Sanzeno
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out_df = emp_df[ (emp_df.Salary_in_dollor <= 10000) & (emp_df.city

2 outlaf |

Name Department Salary_in_dollor city
3 ok Customer Relatons Ta33 Sanzeno
7 Bty Accouning -
12 Lowence Payeol 753 Sanzeno
2 Tasye LogalDaparment 8826 Sanzeno
5 Hakeom LagalDeparment 6232 Sanzeno
7 skl Advrisng 684t Sanzeno
2 Charty Resesch and Dvelopment 5135 Sanzeno
3 Dois  AssetManagement w22 sanzeno
1 kean Tech Suppart 6061 Sweno

*Sanzeno’)]
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4f = pd.read_csv("data/emp.csv”)

sal_dept_by_3f = df.groupby("Departeent”).sun("Salary_in_dollor").reset_index()
sa1_dept_by_df.colums = ['Department, "sus_of_sal']

print(*Output :\n")

sal_dept_by_df
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# display employe name which have salary Less that $6000 .
enp_nanes_sa1_It_6k = enp_df[emp_af Salary_in_dollor < 5000](["Niane’]]
# print(emp_names_sal_Lt_6k)

enp_nanes_sal_1t_6K

Cassidy
Walker
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1 #filter the data
2 # display all reconds which have city="Sanzeno".
3 new_df= emp_df[emp_df.city == ‘Sanzeno']|
o et

Name Department Salary_in_dollor city
3 ho Costomar Raatons 743 Sanzeno
7 ey Accouning a4 Sanzeno

12 Lowrence Payl 75% Sanzeno

2 e LogalDeparimont 826 Sanzeno

% Haeem LegalDepariment 6232 Sanzeno

7 e Advotsing 6es Sanzano

29 Charty Research and Development 5135 Sanzeno

3 oo Asset Management w242 Sanzeno

® Ken Tech Suppert 8061 Sanzeno
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print(*Columns present in Datafrane: ", enp_df.coluans)

2 prine(*Sexecting the data for lase and city corom from DataFrese”)

3 new.af = enp_of([ Nase’, city"1]

o new_6f.head() # Displaying the Firse 5 rous from new datafrane with column Nome and cicy

Coluans present i Dotafrane: Index([“liame, “Department’, “Salary_in_dollor’, ‘city'], dtype='object’)
Selacting the data for Nase snd city colum’ from DataFrame

Nome ciy
0 Ponar Comans Cuny
PR —
2 Voo Nesnspen
3 Mo Seeno
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1 # print the all columns of the data frame
2 print (“Columns in the DataFrame :\n",emp_df.columns)

Columns in the DataFrame :
Index(['Name', 'Department’, 'Salary_in_dollor', 'city'], dtype='object')
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# Return the DataTypes in Dataframe
emp_df . dtypes|

Name object
Department object
Salary_in_dollor int64
city object

dtype: object
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1 # Generating the Statistics for non numeric column
2 emp_df[['city’]].describe()

city
count 50
unique 3

top Sanzeno

freq 9
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1 # Generating the Statistics for numeric column
2 emp_df.describe()|

Salary_in_dollor
50000000
7183.020000
1360504866
5015.000000
6099250000
7161000000
8213250000
9900.000000
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1 emp_df.info()

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 50 entries, @ to 49
Data columns (total 4 columns):
#  Column Non-Null Count

Name 50 non-null

[

1  Department 50 non-null
2 salary_in_dollor 5@ non-null
3 city 50 non-null

dtypes: int64(1), object(3)
memory usage: 1.7+ KB

Dtype

object
object
int64

object
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print("Dispalying the last 6 Rows from DataFrame”)
emp_df.tail(6)

Dispalying the last 6 Rows from DataFrame

Name Department Salary_in_dollor
4 Ceciia Customer Relations 7480 Cumberland
45 Tobias  Media Relations 8619 Westlock
46 Palmer  Quality Assurance 7076 Ospedaletto d'Alpinolo
4T Hayes AssetManagement 6381 Malahide
48 Xyla AssetManagement 6531 Poole
49 Orando  Customer Service 8524 Caramanico Terme
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1 print("Dispalying the first 6 Rows from DataFrame")
emp_df.head(6)

Dispalying the first 6 Rows from DataFrame

Name Department  Salary_in_dollor
0 Porter Advertising 5383 Connah's Quay
1 Abraham  Media Relations 8181 Beauwelz

2 Victoria Accounting 7921 Neerrepen
3 Hiroko Customer Relations 7443 Sanzeno
4 Kathleen  Legal Department 9476 Minneapolis
5 Amela  PublicRelations 9900 Carterton
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Output :

Department : sum_of_sal

Accounting : 22500
Advertising : 45609
Asset Management : 26885
Custoner Relations : 34930
Customer Service : 15687
Finances : 26259

Human Resources : 7919
Legal Department : 24534
Media Relations : 22325
Payroll : 22079

Public Relations : 28010
Quality Assurance : 12034
Research and Development : 30320

Sales and Marketing : 15919
Tech Support : 23232





OEBPS/images/Figure-9.19.jpg
# createing the dataframe from a csv file
emp_df = pd.read_csv("data/emp.csv")

_df = emp_df.shape
shape_of_df :",shape_of_df)

shape_of_df : (50, 4)
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import numpy as np

#1D array with dtype
array1_1D = np.array([1,3,5], dtype="conplex")

print("Output: ")
print("array1_1D

, array1_1D)|

Output:
arrayl_1D: [1.+6.] 3.40.3 5.40.5]
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1 # appending the element n existing array

2 a - mp.array([[1,2,3],14,5,61])

3 print(*\nexisting Array:\n",num_array

5 a1 - np.append(a, (7,8,91)

© print("\nliew array with appended element (without axis):\n",a1)
7

8

a2 - np.append(a, [[7,5,9]],axis-0)
9 prant(*\nliew array with appended element (uithout axis):\n",a2)

11 33 = np.append(a, (0], [1]],axis-1)
12 print(*\aew array with appended elesent (without axis):\n",a3)

Existing Array:
123
tés 61l

New array with appended elesent (vithout axis):
23856789

New array with appended element (uithout axis):
23]
[és el
78 91]

New array utth appended element (uithout axis):
[1230]
6561
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# appending the element in existing array
num_array = np.array([1,2,3,45,6,])

print("\nExisting Array:\n",num_array)
6 new_num_array = np.append(nun_array,[16])
7 print("\nNew array with appended element:\n",new_num_array)
Existing Array:

[12 345 6]

New array with appended element:
[1 2 345 610]
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# deleting an element in existing array
# np.deLete(ndarray, index)

num_array = np.array([1,2,3,45,6])
print("\nExisting Array:\n",num_array)

6

new_num_array = np.delete(nun_array,1)
print("\nhew arry with inserted element:\n",new_num_array)

Existing Array:
[12 345 6]

New arry with inserted element:
[1 345 6]
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# inserting a new element in existing array
#np. insert (existing_arry, index, value)
nun_array = np.array([1,2,3,45,6])
print("\nExisting Array:\n",num_array)|

new_num_array = np.insert(nun_array,1,[16])
print("\nhew arry with inserted element:\n",new_num_array)

Existing Array:
[12 345 6]

New arry with inserted element:
[110 2 345 6]
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10

#mp.hstack() : stack the arrays horizontly Like concat with oxis=1

array_1 = np.array([[1,2],[3,41])
Print("\nFirst array :\n",array_1)

array 2 = np.array([[5,61, [7.811)
Print(“\nsecond array :\n",array_2)

array_hstacked = np.hstack((array_1,array_2))
print("\nConcated Array with hstack() :\n",array_hstacked)

First arnay
(2
Bl

Second array :
Ifs 6]
(]

Concated Array with hstack() :
[[1256]
[ERRE]
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1 # Input arrays
2 array_1 - npareay(([1,21,[2,41])

5 array 2 - mp.areay(t(5,61,17,811)
4 print{"\First arrey \n",array_1)
5 print(*\nsecond array :\n',array_2)

sExomples - Row wise
array_concat - np.concatenate((array_1,array_2))
oncated Array with defailt axis f\n",array_concat)

print(*\nExanpler. :
.
11 sExamples2 ~Column wise
12 arvay_concat - np.concatenate((array_1,arvay_2),axis-1)
13 prant("\nExamples? :Concated Array with axisel F\n",array_concat)

First array ¢
112
G el

Second array :
115 61
]

Examplest :Concated Array uith default axis ©
(12
e
(56
7811

Examples2 :Concated Array uith axls:
(256
Baran
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#np.vstack() : stack the arrays vertically Like concat with oxiso

1
> 0 Row wise

4 array 1 - np.array([(1,2],(3,411)

S printC"\nFirst array A array_1)

s

7 array_2 = np.arcay([(5,61,(7,811)

5 print("\nsecond arvay 1\n',array_2)

16 array vstacked - np.vstack((array_1,array_2))

11 print("\nconcated Array with vstack() +\n",array_vstacked)
First array ¢

2]

Bl
Second array ¢

(s 61

il
Concated Array with vstack() ©

2

G4

56l

)]
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OEBPS/images/Figure-10.28.jpg
array_input = np.array([(1,2,3,4),(6,7,8,9)])
array_1, array_2 - np.hsplit(array_input, 2)

print("\nArray Before hsplit()\n",array_input)
print("\nHorizontal split array 1\n:*,anray_1)
print("\norizontal split array 2\n:",array_2)

Array Before hsplit()
t1234)
t6 78 91

Horizontal split array 1
21
[CR4))

Horizontal split array 2
: [[3.4]
8 211
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import numpy as np

a- np.array([1,2,3,4,5,6,7,8])
print("\nInput array Before split()\n",a)

print("\nOutput array Aefore split()\n”,np.split(a,4))

Input array Before split()
[12345678]

Output array Aefore split()
[array([1, 21), array([3, 41), array([s, 61), array([7, 81)]
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import numpy as np

# 2D Array

import numpy as np

nun_arry_2d = np.array([(1,3,5),(2,4,6)1)
print("Output:")
num_arry_2d

Output:

array([[1, 3, 5],
[2, 4, 6]])
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array_input = np.array([(1,2,3,4,16,11),(6,7,8,9,10,11)])

array_1, array_2 = np.vsplit(array_input, 2)

print("\narray Before vsplit()\n®,array_input)
print("\nvertically splited array 1:",array_1)|
print(“\nvertically splited array 2:",array_2)

Array Before vsplit()
M1 2 3 ate1)
[67 8 910m]]
vertically splited array 1: [[1 2 3 410 11]]

vertically splited array 2: [[ 6 7 8 9 10 11]]
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# numpy.mean()
import numpy as np

import numpy as np

a = np.array([23,45,11])
print("Input Array a:\n",a)
print("Hean value of the input array

np.mean(a))

PPN

Input Array
[23 45 11]
Mean value of the input array: 26.333333333333332
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import nuepy a5
e {12545, 11, 20,58, 651, (2,65,3511)
print(“Toput Arcay ai\n®ia)

 rimpy.omin() - returns the mintmum elenent from arroy
e - rp.amin(a)

Print(“\inimin value from input array o 15 : {}".format(a_sin))
& rimpy.omax()- returns the minisum elasent fro orray

femglmt
Print(Haximn value from input array o 15 ¢ () format(e_mex))

2 mewrmin() - retrts e minimm eleere frem rvey
np.amin(a, s 5]
i\ vl siong anls= from g arry 8 1 1 () formst(o.sin 90)
() et e ininm eleer frem vy
rp.snax(a, axis )
e harimi walue slong sxissd from it arroy 8 15 1 () format(om0x.9))

' rumpy.amin() - returns the mininum elesent From array
mind g amin(a,mized)

Print("\inimm value along axts-d from dnput array a iz : . formst(s_sin 1))
& rumpy.om0x()- returns the mininum elasent foon orrey

vt < g am(a i)

PrineCHaxime value slong Sxise1 from input array 8 1 : ()" forast(s_sax 1))

Topue sy o
1123 35 11)
[2058 23]

[20 65 331

Hinieun volue from input array » 15
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n
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# numpy.median()

inport numpy as np
input_are = np.array([23,45,11,3,1])
print("Input Array 2:\n",input_arr)
print("\nMedish value of the input array:

*,np.median(a))

Input Array a:
34511 3 1]

Median value of the input array: 23.0
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1 # numpy.average()

2 inport numpy as np

3 input_arr = np.array([;
4 print(“Input Array a:
5 # average() fucntion without weights
6 print(*\nAverage() without weights :",np.average(input_arr))
8

1

2

# average() fucntion with weights
wt_arr - np.array([0.5,2,3])
Print("\nAverage() with welghts :",np.average(input_arr, weights-it_arr))

Input Array a:
(2385 1]

Average() without weights : 26.333333333333332

Average() with weights : 24.45455454545453
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# numpy .var()
import numpy as np
input_arr = np.array([23,45,11,3,1])
4 print("Input Array a:\n",input_arr)
print("\nvariance of the give data:

Lnp.var(input_arr))

Input Array a:
234511 3 1]

Variance of the give data: 261.44000800000605
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1 # numpy.std()

2 import numpy as np

3 input_are - np.array([23,45,11,3,1])
4 print("Input Array a:\n",input_arr)
6
7

print("\nStandard Deviation of the give data:",np.std(input_arr))

Input Array a:
234511 3 1]

Standard Deviation of the give data: 16.169106345126192
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1 # numpy.percentile()
2 tnport numpy as

5 dmput_are - ([1,2,3,4],

4 [s.6.7.31,

s Gies.60]

© print("Tnput Array a:\n", tnput_are)

# percentile when axis=hone
9 print(*\n25th Pencentile of input_are, axis = Mone ¢ ,np.percentile(input_are, 25))

11 8 percentile with oxis - 0
12 print(“\n2sth Percentile of input_srr, axis - 0 : *,np.percentile(input_are, 25, axis

)

14 # percentile with axis = 1
15 print(*\n2sth Percentile of input_arr, axis = 1 : ",np.percentile(input_arr, 25, axis 1))

P—
T 2,5, 81, 15,6, 7,81 13, 4, 5, 611

25th percentile of input_arr, axis = lone ;3.0

25th percentile of tnput_arr, axts = 0 ¢ [2. 3. 4. 5.]

25th Percentile of input_arr, axis = 1 : [1.75 5.75 3.75]
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First array - arri:
e 1. 2. 3.]
[ 5 B 7.]

[8 o 10.11.])
second array - arr2:
[ 2. 3. 4.7

Result after adding arrl with arr2 (arri+arr2) :
08 3 s 7]
[5 7 8. mi]
(o 1113 15.])

Result after subtracting arr2 from arrl (arri-arr2) @
-1 -1 -1 -1.]
[l Bhoa a3
Eh e @ 70

Result after multiplying arrl with arr2 (arr1*arr2):
[Le. 2. 6. 12.]
[ 10.18. 28.]
[ 8. 18. 30. 44.]]

Result after dividing arrl by arr2 (arri/arr2) :

tre. 0.5 ©.66666667 .75 1
[a. 2.5 2 1.75 b
[s. 4.5 3.33333333 2.75 n
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import numpy as np
arrl - np.arange(12, dtype = np.float_).reshape(3,4)
arr2 - np.array([[1,2,3,4]],dtype - np.float )

print("First array - arri:\n",arr1)
print("second array - arr2:\n",arr2)

result_add - np.add(arr1,arr2) # arrisarr2s
result_subtract - np.subtract(arrl,arr2) # arrl-arr2¢
result_nultiply = np.multiply(arri,arr2) # arrl®arr2s
result_divide =np.divide(arri,arr2) # arr1/arr2s

print("\nResult after adding arr1 with arr2 (arri+arr2) :\n",result_add)
print("\nResult after subtracting arr2 from arrl (arri-arr2)
print("\nResult after multiplying arri with arr2 (arri*arr2):\n",result_multiply)
print("\nResult after dividing arrl by arr2 (arri/arr2) :\n",result_divide)

n",result_subtract)
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import numpy as np

# Array with zeros
array_zeros = np.zeros((2,3))

print("Output:")
array_zeros

Output:

array([[e., ©., 8.1,
fe-, 6., 0.1)
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import numpy as np
arr1 - np.arange(12, dtype = np.float_).reshape(3,4)
print(“Input array -> arri:\n®,arr1)

power_2_array = np.power(arr1,2)
print("Onput array :\n",power_2_array)|

Input array -> arr:
(e 1. 3.]
[ s & 7]
[8 9. 10 11.]]
onput array :

(e 1 a 9]
[16. 25. 36. 49.]
[ 6e. 81. 100, 121.]]
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import numpy as np
input_arr = np.array([[0.5,3,0.8],4,1,711)
input_arr2 = np.array([[2,3,4],[4,1,7]])

#Examplel when array tyepe is float
print(“Input array - arri:\n",input_arr)
print("Reciprocal of arri:\n",np.reciprocal(input_arr))

#Example2 when array type is int
16 print("\nInput array - arr2:\n",input_arr2)
print("Reciprocal of arr2:\n",np.reciprocal (input_arr2))

Tnput array - arri:

[fe.s 3. e.8]
(. 1. 7.1

Reciprocal of arrl:

2. 0.33333333 1.25 ]
fo.25 @ e.14285714]]
Input array - arr2:

[[23 4]

[417]]

Reciprocal of arr2:

[[eoo]

e1e]]
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inport numpy as np
ared = np.array([16,23,21,11])
arr2 = np.array([1,2,3,4])

print("First array - arri:\n”,arr1)
print("Second array - arr2:\n",arr2)

out_arr= np.mod(arrd, arr2)
print("Output array after mod(arr1,arr2):\n",out_arr)

First array - arri:
[10 23 21 1]

Second array - arr2:
[1234]

Output array after mod(arr1,arr2):
fe103]
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10
1
12
13
1
15

# Sort() function with order parameter
inport numpy as np

emp_dt = np.dtype([(*emp_name’, 'S10°),('dept_no’, int)])

,101),
,103),

Sudesh”,101), (“Indra”, 102),
‘Aparna”,101)], dtype = emp_dt)

arr_input = np.array([(“Garin
(“Chitr.

print (“Input array is :\n",arr_input)
out_arr = np.sort(arr_input, order = ‘emp_name')

print("\nOutptut sorted array order by emp_name field\n:",out_arr)

Input array is :
[(b'Garima’, 101) (b'Sudesh’, 101) (b'Indra’, 102) (b’Chitra’, 103)

(bAparna’, 101)]

Outptut sorted array order by emp_name field
: [(b'Aparna’, 101) (b’Chitra’, 103) (b'Garima’, 101) (b'Indra’, 102)
(b'Sudesh”, 101)]
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1 2= mpuarray(((11,14],(13,11]])
5 print(“Input Array 15 1\",a)

# sort along the Lost axis
5 outt = np.sort(a)
7 print("\nExamples1 :0utput sorted anray when no axis defined means defalut axis:\n",out1)

9 # sort the flattened arroy
10 out2 - np.sort(a, axis-None)

11 print(*\néxanples2 :Output sorted array uhen axisHone: \n",0ut2)
13 2 sort along the first axis

16 out3 = mp.sort(a, axis-e)

15 print("\néxanpless :Output sorted array when axised :\n",out3)

Input Areay 1s ¢
11 2¢
sy

Examplent
[ 29
nrng

utput sorted array when no axis defined means defalut axis:

Examples2 :output sorted array vhen axtsstone:
1111 13 16]

Examples3 :utput sorted array when axisso.
0 a1
3 141
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1 import numpy as np

emp_dt = np.dtype([("emp_name’, 'U10"),(*dept_no’, ‘int')])
4 arr_input = np.array([(“Ankit",101), ("Ravi®, 101), (*John", 102),
("sam",103)], deype = emp_dt)

print (“Input array is :\n",arr_input)

#Example#1 save()

11 np.save("data/esp_dt.npy" are_input)
12 print("\nfile {} been written using fucntion np.save()!

+format("data/emp_dt.npy"))

Input array 1 :
[CAnkit’, 101) (‘Ravi’, 101) (‘John’, 102) (*Sam’, 103)]

file data/esp_dt.npy been written using fucntion np.save()!!
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1 import numpy as np
3 #Example#l

4 array_readl = np.load("data/enp_dt.npy")
P

print("Array read from file (data/emp_dt.npy) using np.load() :\n",array_read1)
7

Array read from file (data/emp_dt.npy) using np.load() :
[("Ankit’, 101) (‘'Ravi’, 101) ('John’, 1€2) ('Sam’, 103)]
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Amport numpy as np

emp_dt = np.dtype([(*emp_nane’, "UL0"), (*dept_no’, “int’)])

sen_tmt = . sroay( (A0, Chavt, 101, (o, 102,
("Sam",163)1], deype = emp_dt)

print (“Input array s :\n",arr_input)

#Examples1 savetxt()

np.savetxt(“dsta/emp_dt.cov”are_input,fat = %', delimiter=", " headers"enp name,dept_no’)
9 print(*\nfile {} been uritten using fucntion np.savetxt()!1”. format("data/emp_dt.csv’))

1L #Examplen2 savetxt()
12 nun_array = np.areay([[1,2,3,2]1, [5,6,7,81,(3,4,5,611)

14 print ("\nInput array is :\n",num_array)
15 np.savetxt("data/nun_array.csv”,num_array, fat = '%d",deliniters’,")
16 print(*\nfile {} been uritten using fucntion np.savetxt()!1".format("data/nun_array.csv’))

Input array 1s
[CAnkit®, 101) (‘Ravi’, 101) (‘John’, 102) (‘Sam’, 103)]

file data/emp_dt.csv been uritten using fucntion np.savetxt()!1

Input array s :
23 4]
[5678]
(456l

file data/nus_arra)

esv been written using fucntion np.savetxt()!1
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import numpy as np

#Array with ones
array_ones = np.ones((2,3))

print("Output: ")
array_ones

Output:

array([[1., 1., 1.],
[1., 1., 1.1
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#ExampLe#1
enp_dt = np.dtype([(*emp_nane’, ‘UL0"),(*dept_no’, “int’)])

array_read2 = np.loadext("data/emp_de.csy",deliniters, ", skiprowss1, deype= emp_dt)
Print("\nArray read from file (data/emp_dt.csv) using np.loadtxt() :\n',array_read2)

#Example #2
array_read3 = np. loadtxt("data/nun_array.csv”,deliniter=", ", dtype= int)
print("\ndrray read from file (data/nun_array.csv) using np.loadtxt() :\n",array_read3)

Array read from file (data/emp_dt.csv) using np.loadtxt() :
[C‘Ankit’, 101) (‘Ravi’, 101) (‘John', 102) (‘Sam’, 103)]

Array read from file (data/num_array.csv) using np.loadtxt() :
[1234]
5678
[3456]]
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import numpy as np
# creating array with python List

t1-[1,2,3]

print("\n1-D Array from Python list:\n",np.asarray(t1,dtype='int16'))

12-[[1,2,3],[2,3,4]]
Print("\n2-D Array from Python 1ist:\n",np.asarray(t2,dtype="int16"))

1-D Array from Python list:
23]

2.0 Array from Python list:
23]
2341
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import numpy as np
# creating an empty array
array_empty = np.empty((3,3))

5 print(“Output:")
6 array_empty

output:

array([[0.68000006+000, ©.00600000e+000, ©.00600000e+000],
[0.60000800¢+080, 0.800000802+000, .88026250e-321],
[9.34608431e-367, 1.42410074e-366, 2.56761491e-312]])
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import numpy as np
#creating array using arange() fucntion
#np.arange(start, stop, step, dtype)
np.arange(1,16,2)

Bwne

array([1, 3, 5, 7, 91)
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import numpy as np

# Creating array with Python tuple

t1=((1,2,3))

print("\n1-D Array from Python Tuble:\n",np.asarray(t1,dtype="int16'))

(1,2,3),(2,3,4))
print("\n2-D Array from Python Tuble;

",np.asarray(t1,dtype-"int15))

1-D Array from Python Tuble:
23]

2-D Array from Python Tuble:
23]
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isport matplotlib.pyplot as plt
g - plt.Flgure()

ax'= lg.add-anes([9.1,0.1,1,11)
x 2,38,

yo[2.50.5

7

# secting the Titte
ax.set_title("sinple 1ine Plot”,loc

enter) # adding the ticte

sseceing che x and ¥ axts text
x.set xlabel("X-Acts") ¥ odding the x-axts Label
xiset ylabel("V-Acis") # odding the y-axts Label

#aading coxt to ploc
PI.text (3,4, Simple Line")

sxplot(xy,marken-"a") ¥ setting the marker style to circle
plt.snou)
Simpl ne it
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>pip install matplotlib
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inport matplotls pyplot as plt
113 - plt.Figure()

o A mso.1040.0)
Ye[3.5,4,58,71

# setting the Ticle
S sec_itla("sinpie dine Ploc,loce'center) # ading the cicte

#Setting che X and ¥ axts text

ax.set xlsbel (X is")  adding the x-axis Lobel
axset yIabel(V-als™)  addtng the y-axis Label

sadding text to plot
PIt.texc(3,4, "Simple Line)

¥ setting the morker to circte ond Line as dashed Line with red color ond custonised Line wideh
ax.plot(h,y,marker="o"  Linestyle-"--" color-'red"  Lineuidthe'3")

Pl snout)

Sinplene it
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import pandas as pd # importing the pandas Library
import numpy as np

#pandas Sertes|

num_list = [1,2,3,4,5]

num_series= pd.Series(num_list)

print("data type of num_series :{}".format(type(nun_series)))
nun_series

Bwne

data type of num_series :<class 'pandas.core.series.Series’>

°
1
2
3
a

wewn e

dtype: int6d
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# Replacing ALL selected columns values
salary_replaced = df[['Salary_in_dollor']].replace({0:5000,np.nan:5080})
custom_display(¢¢[['Salary_in_dollor']],salary_replaced, titles=

| |Input : Raw DataFrame|”,”|Output : df with replace() "])

lInput : Raw DataFrame|  [Output : df with replace()

Salary_in_dollor Salary_in_dollor
] 79210 ) 79210
2T 00 [ 50000
2 79210 2 79210
3 NeN 3 50000
4 74430 4 74430
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ioport metplotiis.pyplet o5 plt

= [, 56
Tabnasen

# setting ohe Titte
xies_tieia("siople Tine Plot”,locw'canar’) ¢ odtng th tite

ssetting the X and ¥ axis toxt
et amel () sesing ehe xox Lovel
eV i the -axts Lobel

siding cext co plot
Pt tene(3,8, Sinple Line")

# setting the marker £ circte g Line s dashed Lin with red color and custonised Line width
S Rlaty,marker o Nimertyle oo red Mneridehe 3)

s griaa- ')  o38ing the 9o Unes o the plot for x-oxis only
sit.shout)
Simle e it
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1 # Replacing ALL datd| frames values
2 f_replace = df.replace({ A" ot spplicable’,0:5000, " Blanknp.nan: ot 3 omber})
custon_display(af,df_replace, titless(" |nput : Raw DataFrame|”,"[Output : df with replace() 1)

Input: Raw DatsFrame| [Output : f with replace()
in_dollr ciy. Nomo_Depariment_Salory._n_dolor ciy
TR0 ComasQuay 0 Parer  Advedsng 7521 Connas Gy
00 Smmo 1 Avamam NotaNom S0 Swo
210 NN 2 Notappicabe  Accouning 7521 Nota Number
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import matglotlib.pyplot as plt
Fig - pit.rigurel)

)

o seeeing ere Titte
Sxsen_Siele("Simie e 1

loce-center”) # assing the cicte

sseceing ehe x ond v oxts text
oxset labed (ks ¢ oasing the x-oxi Lobel
IRV Aisr) £ osaing the y-onts Lobel

sisding ceve to ploe
1S et (34, -t Line")

# setting the morker to cirele ond Live o5 doshed Line with red cotor ond custontsed Line wideh

Lot pmarker o imestylec- reotorred s Lneridthe s1)

10 s the grid Lines to the piot

Fit.shont)
sl e
—F
s
L
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1 #fiLlna() with mean(),median() or mode
2 df_fillna_w_mode = df[['city’]].fillna(df[ city'].mode()[0])
3 custom_display(df[[ city’]],df_fillna_w_mode,

4 titles=["|Input : Raw DataFrame|

|output : ¢f_fillna_u_mode 1)

[Input : Raw DataFrame|  [Output : df_fillna_w_mode
city city

‘Connahis Quay. ‘Connahis Quay

Sanzeno Sanzeno

NaN Sanzeno

Sanzeno Sanzeno

NaN

o o
1 1

2 2

3 Neerpen 3 Neerpen
0 0

5 5 Sanzeno
6 6
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I tmport matplotlib.pyplot as pit
2 g - pit.figwre()

5 o' fig.add smes(le.
& % (1,213,500

L01,0,41)
R )

7 seting ohe e
© axiset_ticla("Slaple line plot”,loce'center") # odding the cite

10 ssetetng the X ond ¥ oxis test
11 axset Xlabel(KXAs") ¢ odng the s-axis Lobel
12 et ylabel("V-AdST) # odding the y-axis obel

14 st xlin(0,10) # setcign the x-axis Linte
© SCIetyLia(o.) # seceian the yoonis Liait

15 sadtng text to plot
19 plt.text (3,8, Staple Lioe")

51 # seteing the morker €0 circte ond Line z doshed Line with red color and customtsed Line width
22 weplot(r,y,marker- o' Linstyler - color- red" Lnewddth='3")

28 ax.grid() # odotng the grid Lines to the plot.

2 pie.shout)

Simple e it
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1 #fillna() median()
2 ¢ fillna_u_median = df[[*Salary_in_dollon']].fillna(¢f[ Salary_in_dollor'].median())

custon_display(df[[*Salary_in_dollor’]],0f_fillna_u_median,
titles=["|Tnput : Raw DataFrame|"," |Output : df_fillna_u_median ")

lInput : Raw DataFrame|  [Output : df_filina_w_median

Salary_in_dollor Salary_in_dollor
o 79210 o 9210
1 0 1 10
2 210 2 9210
3 NaN 3 70
4 430 4 4430
5 NeN 5 870
6 00 6 00





OEBPS/images/Figure-11.14.jpg
Anport metplotlib.pyplot as plt
g - gt sigurel)
- fig.sodaxes([0.1,
= [1,2,5,6,5,61
23,

# secting the Ticte
axset_title(simple line Plot”,loce'center") # odding the title

LD

sseteing che x ond ¥ oxis text
. sex XLabel (X Axis") 5 odding the x-axis Lobel
set LabeL(V-AKS") # adding the y-axis Lobel

sidsing eexe o plo
Pl text(s,4, "Sinple Line™)

= seteing the morker €0 clrcle and Line as doshed Line with red cotor ond customised Line wideh
plot(hy markera'o” Lnestyler - colore red: Lnenldthe'3')

xgridaxias"y") # odding the grid Uines o the plot for y-oxiz only

Plt.shon()
Simple e ot






OEBPS/images/Figure-11.17.jpg
1,225,6,5,61
Ve

seccing ohe Ticte
& axset_tielaCslaple Line plox”,locconter") # odding he citie

5 Hatting thex ond ¥ ext text

1 amsen yntcks((1,2,3,0,5,
16 o set yeicklabels([ ane’ s i ehree

As) ¥ oddeg the x-axts Labet

o)

16 sasding cexe 1o ploe
15 pIE tene (3,6, Steple Line")

20 DRt momer o ctrete o
21 axplot(e,y markers
22 A0 ¥ sdoing the'gris Lines 0 th piot

tinestyte-”

ey
. Splte ot
-
- o
- o
= e

seceing ohe y-ants eichs

nine","ten']) # secting the y-arts tichiobles

s dashed Line with red color and customtsad Line wideh
e






OEBPS/images/Figure-11.16.jpg
+ import matplotlib.pyplot as plt
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from matplotlib import pyplot as plt
mport numpy as np

fig,ax = plt.subplots(1,1)

x = np.array([99,91,98,99,100,105,107,178,160,140,122,89,])
ax.hist(x, bins = [80,9,100,125,150,200])
ax.set_title("Emp salary - Histogran")
ax.set_xticks([80,90,100,110,120,130,140,150,160,170] )
ax.set_xlabel(*Annual Salry in $')

ax.set_ylabel("no. of Employees’)

plt.show()

SBomvounswne

Emp Salary - Histogram

a0

s
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import matplotlib.pyplot as plt
course = ["Python’, 'Java’, ‘Hadoop', 'Spark’] # x vaLues
students - [11,12,23,50] # heights for the bars

Fig - plt.figure()

ax - fig.add_axes((0,0,1,1])

ax.bar(course, students,uldth-0.6, color=['b", ", 8",y 1)
p1t. show()
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1 import matplotlib
2
3 print("Running Version of Matplotlib is :",matplotlib.__version_)

Running Version of Matplotlib is : 3.3.4
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sort_values()

4f_sorted_on_values = df.sort_values(["emp_id'])

print("Using sort_values() with default ")

Custon_display(df,df_sorted_on_values,|
titles=["|Input DataFrame

1
2
a 0/P :sort_values([‘emp_id'1)]"1)

Using sort_values() with default

linput DataFrame| [/ :sort_values([emp_id7)|
emp_id city  sal emp_id city  sal
101 Sanzeno 5000

100 Cartortn 9634
105 Beawwetz 8989
108 Minneapalis 5634
00 Cartarton 9634

101 Sanzeno 5000
105 Beauwelz 8989
108 Minneapolis 5634
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sort_index()

1 # sample Data frame
2 emp_dict = {'emp_id':[101,105,108,100],

3 ‘city':['Sanzeno, 'Beauvelz’, Minneapolis’, 'Carterton'],
2 *sal’:[5000,8989,5634,9634]}

df = pd.DataFrame(emp_dict,index=[1,4,2,3])

# sorting the data usinf sort_index()
df_sorted_on_index = ¢f.sort_index()
10 custon_display(df,df_sorted on_index,
titles=["|Input DataFrame|",

"|o/P: df.sort_index()|"1)

lInput DataFrame| [0/P: df.sort_index()|
city  sal emp_id city  sal

101 Sanzeno 5000 101 Sanzeno 5000
105 Beauwelz 8989
108 Minneapolis 5634

100 Carterton 9634

108 Minneapolis 5634
100 Carerton 9634

o oa s
T &

105  Beauwelz 8989
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I emp_df.groupby ([ Department’])[[*Salary_in_dollor*]].sum()

Salary_in_dollor
Department
Accounting 97504
Advertising 85610
Customer Relations 43819
Legal Department 41351
Media Relations 43013

Public Relations 47854
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import matplotlib.pyplot as plt

fig = plt.figure()
4 ax= fig.add aes([0.1,0.1,1,1])

o_of_students = np.array([35,30,25,451)
coirsas = [*python”, “Java’, “Data Science”, “Big-ata"]
ax.ple(no_of_students, Labels = courses)

ax.set_title("pi chart”)
1 plE.show()

Fichan
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© tmport matplotlib.pyplot a2 plt

+ fig = plt.figure()
2 ax = fig.add_axes((0.1,0.1,1,1))

15, 1.2, .15 # Profit
7 product = [1,2,3,,5,81 #'6 differn product p1,p2,p3,p4,p5,p6

5 profi€+200 to scate-up the size of dot on plot
10 Scalex{p+200 for p in profit]

12 ax.acotten(xcproduct, yeprofit, sescale)
1 ax.set_title("product-Profit")
15 ax.set_xlabel("Product 4")

16 ax.set ylabel ("Profic®)
17 gl shor()
productprofi
2 0
-
.
T T 7 T 3 7
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snport natplotlib.pyplot as plt

fig = plt.Figure()
ax = ig.add_axes((0.1,0.1,1,1))

o of_students = np.array([35,30,25,451)
coirass = [“pythont, “sava, “Data Science”, "oig-oata’]
Sw.pia(no of students, labels = courses)
axSet_CHEeC P chart™)

Fig.savefig("data\outimplot. peg,dpi=200)

# saving the plot in myplot.joeg file
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1 df_drop_na_sl1 = df .dropna(hows"all’)
3 custon, 4s71ey(af,0f_6rop.ta.s11,t8tless[* | Input : Raw Datafrane],”[Output : df with dropna(hoe="a11") 1)

Input: Raw DataFrame] i<y osci
Nome_Dapariment_Saay_indolor iy Noma_Deparimant_Saary i dolor
T um Adwrsng N0 Comsouey 0 am Ay T2ie on-n-&w
A dwan e IO Swswo 1 mabm  Naw e Sanswo
2 pose Accaing 10 [ R —, rat0 naw
3 Veons " NN Nesopn 3 Vi e NN Nearopen
4 ko Accag 70 S 4 Mok Aoy T
5 onew o nan 6w 0
s om 00





OEBPS/images/Figure-11.25.jpg





OEBPS/images/Figure-11.24.jpg
nport matplotlib.pyplot as plt
from matplotlib.backends. backend_pdf isport Pdfpages

1t figure()
Fig.add axes([0.1,0.1,1,1])

2

7 no_of_students = np.array([35,30,25,45])

8 courses = ["python”, *Java®, “Data Science”, "Big-Data"]

o ax.pie(no_of_students, labels = courses)

10 1E160"pi chart™)

12 mypdf = PdfPages("data\out\myplotpdf.pdf')

15 mypdf.savefig(Fig) # saving the fig in mypdf.pdf file
14 mypdf.close()
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#Object-Oriented Inteface
import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_axes([0.1,0.1,1,1]) # [left, bottom, width, height]
x= [1,2,3,4,5,6]

y=[2,3,4,5,6,7]

ax.plot(x,y)

plt.show()
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1 import matplotlib.pyplot as plt
2

3 %= [1,2,3,4,5,6]

4 1,2,3,4,5,6]

6 plt.plot(x,y)
7 # plt.show()

[<matplotlib.lines.Line2d at @x1b49d7ee0ad>]

6
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1 inport matplotlib.pyplot as plt
2 fig,axes = plt.subplots(nrows=2,ncols=2)

3 fig.set_facecolor('lightgray) # setting the display color for figure
4 x= [1,2,3,8,5,6]

5 ¥=(2,3,4,5,6,7]

© x_squre

7 ysqure

9 axes[0][0].plot(x,y)
10 axes[o][0].set_title("I") # setting the title of subplot
11 axes[0][1].plot(x,x_squre)

12 axes[o][1].set_title("11") # setting the title of subplot

14 axes[1][0].plot(y,y_squre)
15 axes[1][0] set_title("IIT") # setting the title of subplot

17 axes[1][1].plot(x_squre,y_squre)
16 axes[1][1].set_title("IV") # setting the title of subplot

20 plt.show()
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»
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import matplotlib.pyplot as plt

fig,axes = plt.subplots(nrows=1,ncols=2)
fig.set_facecolor('lightgray') # setting the display color for figure
x= [1,2,3,4,5,6]

x_squre = [x*x for x in x]

axes[0].plot(x,y)

8 axes[1].plot(x,x_squre)
10 plt.show()
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>
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1 #fiLlna() with mean()
2 df _fillnaumean = Gf[['Salary_in dollon']].fillna(df[ Salary_in dollor'].mean())

4 custon_display(df[['Salary_in_dollor']],df_fillna u_nean,
5 titles=[*|Tnput : Raw DataFrame|",
’ “lOutput + df_fillna_w_mean *1)

lInput : Raw DataFrame|  [Output : df_fillna_w_mean

Salary_in_dollor Salary_in_dollor
o 79210 o 75210
1 1870 1 11870
2 75210 2 75210
3 NaN 3 2144
0 74830 4 74430
5 NaN 5 s
5 00 5 00
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1 salry_w_bfill = of[['Salary_in_dollor’]].fillna(method="bfi11")
2 custon_display(¢f[['Salary_in_dollor']],
salry_w_bfill,titles=["|Input : Raw DataFrame|",
“|Output : Applyng method="bfill" function|"])

linput : Raw DataFrame|  [Output : Applyng method="bfll’ function|

Salary_in_dollor Salary_in_dollor
0 79210 0 79210
1 7870 1 7870
2 79210 2 79210
3 NaN 3 74430
4 74430 4 74430
5 NaN 5 00
6 00 6 00
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#fiLina(sethod = ‘FFILL).
66_11Ina.u_£F411 = 0F. £511na(msthods" FFA11")

sa1_fi1Ina 66111 = af[["Salary_in_dollor” ] FAllna(aethods"££111°)
Custon_dfaplay(¢f{[ Salary_in corlor]], 291 fillna v frill,
tlesal" [ Tnput © Rou Do 17, Tostput © Applyng F11lna(method="¢F111°) function| 1)

nput: Raw DataFramel  [Output: Applyng filna(method =) function|
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lInput : Raw DataFrame|
Name Department Salary.

dollor

ity

0 Jim  Advertising 79210 Connah's Quay
1 Abraham NaN 77870 Sanzeno
2 Poter Accounting 79210 NaN
3 Victoria HR NaN Neerrepen
4 Hiroko  Accounting 74430 Sanzeno
5 NaN NaN NaN NaN
6 NA 00
|Output : Applyng fillna() function|

Name Department Salary_in_dollor city
0 Jim  Advertising 7921 Connah's Quay
1 Abraham MissingValue 7787 Sanzeno
2 Porter  Accounting 7921 MissingValue
3 Victoria HR  MissingValue Neerrepen
4 Hiroko  Accounting 7443 Sanzeno
5 MissingValue MissingValue — MissingValue  MissingValue
6 NA 0
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inport matplotlib.pyplot as plt
Fig = plt.Figure()

ax = fig.add axes([0.1,6.1,1,11)
= [1,2,3,4,5,6]
¥=[2,3,4,5,6,7]

# setting the Title
ax.set_title("simple line Plot",locs"center’)
ax.plot(x,y)

plt.shou()

simple line Plot
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# using fillna() , will fill all NaN values with new value

# print(" NaN filled with Missingvalue string :")

¢f_fillna = df.fillna("MissingValue")

#displaying the df side by side using custom function
custom_display(df,titles=["|Input : Raw DataFrame|"])
custom_display(df_fillna,titles=["|Output : Applyng fillna() function|"])
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1 # creating a sample df
2 # np.nan means inserting the NaN values

emp_dict = {'Name':
4 Department’:['Advertising’,np.nan, 'Accounting’,
6

*Porter, "Abraham’,"NA", "Victoria’, "Hiroko'],
»"Accounting’],

*Salary_in_dollor':[7921,0,7921,np.nan,7443],

*city”:["Connah’s Quay”,

Sanzeno” ,np.nan, "Neerrepen”, "Sanzeno" ]}
& df = pd.DataFrame(emp_dict)
9 af

Name Department ~Salary_in_dollor city
0 Poter Advertising 79210 Connah's Quay
1 Abraham NaN 00 Sanzeno
2 NA  Accounting 79210 NaN
3 Victoria NaN  Neemrepen

4 Hioko  Accounting 7443.0 Sanzeno
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4mport matplotlib.pyplot as plt
Fig = plt. figure()
fig.add_axes((0.1,0.1,1,1])
= 1,2,3,0,5,6]
Vi12,3,4,5,6,71

# seteing the Title

ax.s0t_title("Simple Line Plot*,locs"center") # odding the title

#setting the X and ¥ axis text
.0t xlabel("X Axis") # odding the x-axis Lobel
ax.set ylabel("Y-axis™) # odding the y-axis Lobel

sadding text to plot
Pt text(3,,"Siple Line")

ax.plot(ny)
Pt shou()
Simple ne ot
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1 import pandas as pd # importing the pandas Library
import numpy as np

# creating Pandas data frame using Python List

num_list_df = pd.DataFrame(num_list, columns=[number’])

print (“"data type of num_list_df is {}".format(type(num_list_df)))
print("printing the datl frame num_list_df:")

num_list_df

data type of num_list_df is <class 'pandas.core.frame.DataFrame’>
printing the data frame nun_list_df:

number
] 1
1 2
2 B
3 4
4 5
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import matplotlib.pyplot as plt
fig = plt.figure()

ax = fig.add_axes([0.1,0.1,1,1])
x= [1,2,3,4,5,6]
¥212,3,4,5,6,7]

# setting the Title
ax.set_title("Sinple line Plot",loc="center')

#5etting the X and ¥ axis text
ax.set_xlabel ("X-Axis")
ax.set_ylabel ("Y-Axis")
ax.plot(x,y)

plt.show()

Matplotiib-Plot#1
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Input Data Frame
emp_id city

0 101 Sanzeno
1 105 Beaunel
2 108 Minneapois
3 100 Caterton

Output Data Frame

emp_i city
0 101 Sanzeno
1 105 Beauwelz

3 100 Carterton
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data_syr.duplicated() .sum()
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# creating dataframe df

emp_dict = {"emp_id’ :[101,105,168,166],
*city’:['Sanzeno’, 'Beauwelz’, "Minneapolis’,’Carterton’],
*sal’ :[5000,8989,5634,9634]}

custom_display(df, titles=

“Input Data Frame”])

# deleting the row from DataFrame|

# Here only row will be delete but existing ddataframe willnot update
new_df - df.drop([2],axis-e)
new_df

custon_display (new_df, titles

"Output Data Frame”])
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3 data = pd.read_csv("./data/in/Word_UnemploymentData_91-21.csv")
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OEBPS/images/Figure-9.67.jpg
Input Data Frame
emp_id city sal

101 Sanzeno 5000
105  Beauwelz 8989
108 Minneapolis 5634
100 Carterton 9634

w N = o
o

Output DataFrame with New Added column

emp_id city sal updated_salary
0 101 Sanzeno 5000 5500.0
1 105  Beauwelz 8989 9887.9
2 108 Minneapolis 5634 61974
3 100 Carterton 9634 10597 .4





OEBPS/images/Figure-12.12.jpg
1 data_syr.sort_values('Country Nane')

CountyName CountyCode 2017 2018 2019 2020 2021
2 Aghanistan AFG 11180000 11152000 11217000 11710000 13283000
1 Alica Easiem and Southem AFE 671055 673116 691433 7563167 8111783
3 Affica Westem and entrl AFW 6019505 6041092 60532 6774914 68309
s Abania ALB 13620000 12300000 11470000 13329000 11819000
& Agera DZA 10333000 10.420000 10513000 12550000 12704000
19 WestBankand Gaza PSE 25690000 26250000 2540000 25889999 26903000
2 Word WD SSSTTI1 5389613 S3ST086 657U 6177160
%2 Yemen, Rep. YEM 13267000 13145000 13056000 13391000 13574000
2 Zambia 2MB 11630000 12010000 12520000 12848000 13026000
265 Zimbatue ZWE 4785000 4796000 483300 5351000 5174000

235 rows x 7 columns.
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# creating dataframe df

emp_dict = {'emp_id':[101,105,108,100],

*Sanzeno’, ‘Beauwelz’, Hinneapolis', 'Carterton’],

Y
*sal’:[5000,8989,5634,9634]}

f = pd.DataFrame(emp_dict)

# print(data frame df =>\
custom_display(df,titles=[

5 df).
Input Data Frame"])

# Adding new colum updated_salary using Lambda fucntion

df['updated_salary'] = df["

custom_display(df, titles=

"Output DataFrame with New Added column”])

sal'].apply(lambda sal:int(sal)+int(sal)*.1)
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data_syr.dtypes

Country Name  object
Country Code  object
2017 floate4a
2018 float64
2019 floatéea
2020 floate4a
2021 float6a

dtype: object
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Input Data Frame
emp_id city  sal

101 Sanzeno 5000
105 Beauwelz 8989
108 Minneapolis 5634
100 Carterton 9634

oL Y S

Output DataFrame with New Added column

emp_id city sal updated_salary
0 101  Sanzeno 5000 5500.0
1 105  Beauwelz 8989 98879
2 108 Minneapolis 5634 61974
3 100  Carterton 9634 10597.4
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1 data_syr['syrs_avg']

data_syr(['2017","2018","2019°,'2020",'2021"] ] .mean(axis=1)

2 data syr
CounryNome 2017 208 iy 20w 2021 Sy
Country Code.
AFE AficaEasiem and Souhem 6714956 6731163 6914353 7563187 8111783 7207088
Ao Afghanisian 11180000 11152000 11217000 11710000 13283000 11708400
AFW  Aficaliestemand Central 6019505 6041062 6083362 6774914 6839009 6347576
a0 Angola 740000 7421000 7421000 833000 8530000 7822600
as Abania 13620000 12300000 1470000 13329000 11815000 12507600
wsm Samoa B57E000 8695000 8406000 9143000 9837000 6931200
e Yemen, Rep. 13297000 13.145000 13056000 13391000 13574000 13262600
¢ SouhAfica 27040001 26910000 28469999 29219969 33556998 29039708
me Zambia 11630000 12010000 12520000 12845000 13026000 12406800
2we Zmbabwe 4785000 4796000 483300 5351000 5174000 4967800

B o T G





OEBPS/images/Figure-9.64.jpg
# creating dataframe df
emp_dict = {'enp_id':[101,105,108,100],
‘city’:[*Sanzeno’, ‘Beauwelz’, ‘Minneapolis’, ‘Carterton'],
*sal’:[5000,8989,5634,9634] )

4f = pd.DataFrane(emp_dict)
# print("data frane df =>\n",df)
custon_display(of, titles=["Tnput Data Frame'])

# adding a column in df with applying somefucntion to calculate value
def sal_uith_10_percent_hike(old_sal):

Funcelo i) hew salary by adding d0Bedchicuneac salry
return int(old_sal)+int(old_sal)*.1

# Adding new column updated_salary by apply the fucntion saluwith 10_percent_hike
df["updated_salary'] = df['sal’].apply(sal_with_10_percent_hike)

af

custon_display(df, titles=["Output DataFrame with New Added column®])
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1 data_syr.set_index("Country Code’,inplace=True)

2 datasyr
CountyName 2017 2018 2019 200 2021
Country Code
AFE Afica Eastemand Souhem 6714955 6731163 6914353 7563187 6111783
e Alghanistan 11.160000 11152000 11217000 11710000 13283000
AFW  AfcaWestemand Cenral 6019505 6041092 6063362 6774914 6839008
aco Agola 7408000 7421000 7421000 8333000 8530000
as Abania 13620000 12300000 11470000 13326000 11813000

wsw Samoa BSTA0N0 B6IB000 BAOSO00 0149000 9EIT000
Yem Yemen, Rep. 13267000 13145000 13056000 13391000 13574000
2F SounAfica 27040001 26910000 28466999 29213999 33559998
8 Zamtia 11630000 12010000 12520000 12848000 13026000
2we Zmbabue 4785000 4756000 483000 5351000 5174000

235 rows x 6 columns.
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1 data_Syr(['covid.¥rdiff'] = data_Syr( 2020’ ]-data _Syr{'2019']

2 datazsyr
CoumyMame 7 aoMe a9 20 202 Sy covd vedn
Country Cade
APE Aca Easomand Souem 6714955 6701100 691433 756317 6117E) 7207088 064eeas
Y Aghanisan 11160000 11152000 11217000 11710000 13283000 11708400 0483000
APW Afica Westemand Cental 6019505 6041002 60GIE2 6774614 6HIA9 GITSTS  0THSS
a0 Angda 74000 7421000 7421000 B3N BSX000 TE2800 0912000
as Abania 13620000 12300000 1470000 1332000 181000 1250700 1856000
wm Samca BSTAOOD 00D 84000 914000 OENO0 8SHNO 07400
veu Yemen Rep. 13297000 13145000 13056000 13391000 1357400 13262600 0336000
e SouhAfica 27040001 25910000 28469060 29219009 WS VT OTE00
e Zamba 11630000 12010000 12620000 12643000 13026000 12406900 0327998
e Zmbsbwe ATESOOO ATOEOOD ASHO00 SISUN0 SITAOD 4RO 0516000

o -
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O Anaconda3 2021.05 (64-bit) Setup =

) ANACONDA.

Welcome to Anaconda3 2021.05
(64-bit) Setup

Setup wil guide you through the nstalation of Anaconda3
202105 (6+bi).

Itis recommended that you dose al other appications
before starting Setup. Tris il make it possbl to update
relevant system fles without having to reboot your
computer,

Clck Next to continue.
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# Creating the dataframes
emp_dict1l = {'emp_id':[101,105,108,100],

*city’:['Sanzeno’, 'Beauwelz’, "Minneapolis’, 'Carterton']}

emp_dict2 - {'emp_id':[111,112,113,114],
*city:['Delhi’, 'Banglore’, ‘Panjab’, ‘Chennai’]}

emp_dict3 - {'id’:[101,165,108,100] ,#111,112,113,114],
*sal’:[5555,6666,7777,8388] }#, 9999, 6543, 7654, 8765] }

df1 = pd.DataFrame(emp_dict1)
4£2 = pd.DataFrame(emp_dict2)
4f3 - pd.DataFrame(emp_dict3)

custon_display(dF1,42,df3, titles=['df1", df2’,"d¢3'])

df1 dr2 df3
emp_id city empid  city id  sal

0 101 Sazeno 0 111 Dehi 0 101 5555

1 105 Beawelz 1 112 Banglore 1 105 6666
2 108 Minneapoiis 2 M3 Pamad 2 108 7777
3 100 Carterton 3 114 Chennai 3 100 8888
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1 #list ALL Countries where Youth Unemploynent is greater than or equal to 25% in 2021
2 data_Syr[data_Syr['2021']>=25.00][[*Country Name',"2021']]

CounuyName 2021
Country Code
ot Dibout 28386000
w2 Eswan 25758001

2AF  SaumAvica 33558908
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Input Data Frame

emp_id city sal

101 Sanzeno 5000
105 Beauwelz 8989
108 Minneapolis 5634
100 Carterton 9534

Output Data Frame
emp_id city

101 Sanzeno
105 Beauwelz
108 Minneapolis
100 Carterton
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1 # creating dataframe df
2 emp_dict = {"emp_id’:[101,105,168,160],

‘city’:['Sanzeno’, 'Beauwelz’, "Minneapolis’,’Carterton’],
" *sal’ :[5000,8989,5634,0634]}

6 df = pd.DataFrame(emp_dict)

2 custon_display(df, titles

“Input Data Frame"])

# deleting the column from DataFrame
df.drop("sal’,axis-1,inplace-True)

# new_df
custo_display(df, titles

“Output Data Frame"])
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1 top_10_countries_high uemp = data_Syr.sort_values('syrs_avg',ascending =False) [0:10] .copy()
2 top_10_countries_high_uemp

CoumyName  mir a8 e 2w wm Gresw

Country Cose
e SouhAca 27040001 20910000 28 469999 29219999 32556560 2909799
ou Obous 25050069 26186699 25357000 28369669 28386000 27076400
pse WestBank and Gaza 25650000 25260000 25340000 25 689999 24903000 25614600
sz Esvates 22753000 22792000 22857000 25509001 25756001 2326400
150 Lesomo 23200001 22613000 2244001 24563000 24566000 23522800
Bwa Botsvana 21500000 22070669 Z2610001 24530000 24722000 23179000
oo Congo,Rep. 20559000 20614000 20622000 22843000 23011000 21529600
s Gabon 20721001 20740001 0782001 21972000 22640 21269800
N Namia 21639000 19879999 19566001 21446999 21677959 20926200

VCT St Vincentand he Grenadnes 19181699 10180000 19260001 21002001 21616000 20052400
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import pandas as pd # importing the pandas Library
import numpy as np|

# Pandas DataFrame

num_list = [1,2,3,4,5]

num_df= pd.DataFrame(num_list,columns = ['number’])
print("data type of num_series :{}".format(type(nun_df)))
num_df

data type of num_series :<class 'pandas.core.frame.DataFrame’s

A wN =

number
1
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1 #list ALL Countries where Youth unemployment is less than or equal to 1% in 2021
> data_syr[data_syr['2021 ]<=1.00][["Country Name','2021']]

Country Name 2021

Gountry Code
KHM  Camboda 0612
NeR Niger 0751

QAT Qatar 0258
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# Adding a new row, When new row type is Dict

row =

{"emp_id’:999, "city’:

print(type(row))

Minneapolis’, sal’:6789}

df = df.append(row,ignore_index=True)

df

emp_id
101
105
108
100
888
e
999

‘dict’>

Sanzeno
Beauwelz
Minneapolis
Carterton
Minneapolis
Minneapolis

Minneapolis

sal
5000
8989
5634
9634
6789
6789
6789
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12 It xticks(rotations vertical ', fontsize=is)
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# Adding Row

emp_dict = {'emp_id’:[101,105,108,100],
‘city’:['Sanzeno’, 'Beauwelz’, 'Minneapolis’,'Carterton'],
*sal’:[5000,8989,5634,9634] }

df = pd.DataFrame(emp_dict)
df

emp_id city sal
101 Sanzeno 5000
105  Beauwelz 8989
108 Minneapolis 5634
100 Carterton 9634

w [ = &
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data. columns

Index(['Country Name', 'Country Code', '1991', '1992', '1993', '1994', '1595',
'1996', '1997°, '1998', '1999', '2000', '2001', '2002', '2003', '2004',
*2005', '2006°, '2007°, '2008', '2009', '2010', '2011', '2012°, '2013',
‘2014°, '2015', ‘2016, '2017', '2018', '2019', '2020', '2021'],
dtype="object’)
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df["sal_rank_desc’

df["sal’].rank(ascendin

df

emp_id city sal sal_rank asc sal_rank_desc
1 101 Sanzeno 5000 10 40
4 105 Beauwelz 8959 30 20
2 108 Minneapolis 5634 20 30
3 100 Carterton 9634 40 10
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Anport matplotlib.pyplot as plt
uemp = top_16_countries_low_uesp[ syrs_avg']

# countries = top_10_countries_ high_uesp] ‘Country Name']
countries = List(top_10_countries_Low_uemp. index)

fig,ax = plt.subplots(urous=1,ncols=1)

ax.bar(countries, uemp)

10 plt.xlabel(*Country Code’, fontsize=12)

11 plt.ylabel('s vrs Avg unemploysent Rate’, fontsizes1z)

12 plt.xticks(rotation="vertical’, fontsizes1s)

13 plt title("Top 10 Countries with low Unemploynent Rate",fontsizes1s)

15 axgrid()
16 plt-show)

Top 10 Countries with low Unemployment Rate
Y

20
I

o0
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o
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1 df['sal_rank_asc']= df['sal’].rank()

df

emp_id city sal sal_rank_asc
1 101 Sanzeno 5000 10
4 105 Beauwelz 8989 30
2 108 Minneapolis 5634 20
3 100 Carerton 9634 40
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1 top_10_countries_low_uemp=
2 top_10_countries_low_uemp

fata_Syr.sort_values('syrs_avg')[0:10]

Country Name 2017 2018 2019 2020 2021 Syrs_avg

Country Code
QAT Gatar 0140 0110 0.100 0214 0258 01644
KHM  Cambodia 0140 0143 0147 0331 0612 02746
Ner Nger 0542 0545 0554 0624 0751 08032
SLB Solomonisiands 0707 0724 0755 0916 1020 08262
o L2oPDR 0805 0827 0852 1034 1258 09552
™A Thaiand 0830 0770 0720 1100 1418 09676
MMR  Myanmar 1560 0870 0500 1058 2173 1232
RWA Ruanda 1137 1111 1098 1485 1607 12676
Tco Chad 1119 1130 1123 1742 182 13992

BHR Bahrain 1183 1201 1196 1781 1874 14470
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print(“Using sort_values() with option ascending-False )
2 Gf_sorted_on_valuas_desc = df.sort_values([ emp_id-], ascending=Falze)
custon_display(4f,d_sorced_on_values desc,
it1esa" | Input DataFrame| ", " |0/P:df .sort_values ([ "enp_id], ascending=False) | ")

Usiag sort_values() with option ascending=False

I Osrramel 0Pt e Temp i asconsingerts)
P wid oy
01 Swaens 5000 [
105 seamet 8309 105 seaet 8309
108 et 5634 01 Saeno 5000
0 caneron 5634 0 Caneron 5634
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1 high_impact_of covid = data_Syr.sort_values('covid vr_diff',ascending=False)[0:10]

2 high_impact_of covid
CounyNeme 2017 2018 2018 2020 2021 Syrsavg covidYr_dif
‘Country Code
PAN  Panama 385000 3830000 4726000 12654000 12086000 7472000 8126000
oe0 Georgia 13940000 12670000 11570000 18500000 10656000 13467800 6930000
ORI CosRica 8140000 9630000 11490000 17410000 17954000 12924800 5520000
COL  Cobmbia 8870000 11000 9960000 1500000 1433000 11463200 5080000
USA  UntedStates 4350000 3900000 3670000 8050000 5484000 5088800 4360000
NAC NorhAmerca 4STE02 AT27S1 3891084 8205108 S6UNAT 5296605 4316014
soL Boivia 3650000 3520000 3820000 7900000 850900 547900 4080000
cHL Chile 6950000 7230000 7290000 11180000 9126000 83STE0 380000
can Ganada 6340000 5830000 5650000 9460000 7510000 G900 3800000
PER Pery 3690000 3430000 3380000 7180000 4833000 4514600 3800000
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1 # adding a column with List of values
2 df['new_col'] = [1,2,3,4]

3 df

emp_id sal constant_value_col new_col
101 Sanzeno 5000 Nev_value 1
105 Beauwelz 8989 Nev_value 2
108 Minneapolis 5634 Nev_value 3
100 Carterton 9634 Nev_value 4
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1 # adding a column with constant singel value for each row in dataframe
2 df[constant_value col'] = 'New_value’

3 df

emp_id city sal constant value_col
0 101 Sanzeno 5000 New_value
1 105 Beauvelz 8989 New_value
2 108 Minneapolis 5634 New_value
3 100 Careton 9634 New_value
4 999 Minneapolis 6769 New_value
6 888 Minneapolis 6769 New_value
0

777 Minneapolis 6789 New_value
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5 CWindowstsystem32\cmd.exe - python

- \python

[5.5 (default, Apr 13 2021, 15 Tne. on uins2

[03) [MSC v.1916 64 bit (R4064)]

thon iaterpreter 1 in a conda environment, but the environment has
bean sctivated. Libraries may fail to load. To activate this enviromment
Tease see https://conda. io/act ivation

'ype “help", “copyright”, “credits* or "license” for more information.
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1

# adding a column with constant singel value for each row in dataframe

df[ " constant_value_col'] = ‘New_value'
3 df

emp_id city sal constant_value_col
0 101 Sanzeno 5000 Nev_value
1 105 Beauwelz 8989 Nevi_value
2 108 Minneapolis 5634 Nev_value
3 100 Carterton 9634 Nevi_value
4 999 Minneapolis 6789 Nev_value
6 888 Minneapolis 6789 Nev_value
0 777 Minneapolis 6789 Nev_value
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1 # Adding a new row, When new row type is Pandas series
2 rou = pd.Series(data = {'emp_id':888, city’: ‘Minneapolis’,’sal’:6789},name=6)
3 print(type(row))
s

df = df.append(row, ignore_index=False)
6 af

<class 'pandas.core.series.Series’>

emp_id city sal
101
105
108
100
999 Minneapolis 6789
883 Minneapolis 6789






