

Kubernetes Handbook

Non Programmer’s Guide to Deploy

Applications with Kubernetes

© Copyright 2018 - All rights reserved.

The content contained within this book may not be

reproduced, duplicated or transmitted without direct written

permission from the author or the publisher.

Under no circumstances will any blame or legal

responsibility be held against the publisher, or author, for

any damages, reparation, or monetary loss due to the

information contained within this book. Either directly or

indirectly.

Legal Notice:

This book is copyright protected. This book is only for

personal use. You cannot amend, distribute, sell, use, quote

or paraphrase any part, or the content within this book,

without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document

is for educational and entertainment purposes only. All effort

has been executed to present accurate, up to date, and

reliable, complete information. No warranties of any kind are

declared or implied. Readers acknowledge that the author is

not engaging in the rendering of legal, financial, medical or

professional advice. The content within this book has been

derived from various sources. Please consult a licensed

professional before attempting any techniques outlined in

this book.

By reading this document, the reader agrees that under no

circumstances are is the author responsible for any losses,

direct or indirect, which are incurred as a result of the use of

the information contained within this document, including,

but not limited to, —errors, omissions, or inaccuracies.

Table of Contents

Introduction

Kubernetes Defined

Kubernetes Background

Advantages Of KUBERNETES

Chapter 1: How Kubernetes Operates: The NUTS and

Bolts

 Master

 Minion –

 Pod

 Replication Controller

 Label

 Kubecfg

 Service

Docker and Kubernetes

Pods: Running Containers in Kubernetes

Replication and Other Controllers

Replication Controller

Replication Sets

Deployments

Master and Nodes

Services

Service Discovery

Service Discovery with Environmental Variables

Cluster DNS

Direct Access

DIY Load Balancing

Managed Hosting

ReplicaSets-Replica Set Theory/Hands-on with

ReplicaSets

Daemon Sets

Jobs

Non-parallel Jobs

Parallel Job with a fixed completion count

Parallel Jobs with a work queue

CronJobs

ConfigMaps and Secrets

Secrets

ConfigMaps

Chapter 2: Deployments

Integrating Storage Solutions and Kubernetes

NetApp Trident

Deploying Real World Application

Parse

Fundamentals

Building the parse-server

Deploying the parse-server

Testing Parse

How to Perform a Rolling Update

Rolling Updates with a Replication Controller

Rolling Updates with a Deployment

Statefulness: Deploying Replicated Stateful

Applications

Deploying a Replicated Stateful Application

Understanding Kubernetes Internals

The Kubernetes Control Panel

Nodes

Add-on Components

Functioning of the Components

Kubernetes using etcd

Function Of The Api Server

The Function of Kubelet

Securing the Kubernetes API Server

Transport Security

Authentication

Authorization

Admission Control

Securing Cluster Nodes and Networks

Controlling Access to the Kubernetes API

Controlling access to the Kubelet

Controlling the capabilities of a workload or user at runtime

Protecting cluster components from compromise

Managing Pods Computational Resources

Running OF PODS with Resource limits

Automatic scaling of pods and cluster nodes

Extending Kubernetes Advanced Scheduling

Best Practices for Developing Apps

Building Containers

Container Internals

Deployments

How To Deploy Applications That Have Pods With

Persistent Dependencies

How To Handle Back-Up And Recovery Of Persistent

Storage In The Context Of Kubernetes

How To Deploy An Application With Geographic

Redundancy In Mind

Conclusion

Welcome

Dear Friend,

It’s great to assist you in your Continuous Development

Journey. You can check out my other books on DevOps and

Microservices also for all-round view on the topic.

I am providing you link to the Bonus Technology Booklet

which contains the latest technology updates on Technology

and Application Development Methodology.

“Get Instant Access to Free Booklet and Future

Updates”

“Click Here”

http://eepurl.com/dge23r

Preface

This book has been well written as a guide to getting started

with Kubernetes, how they operate and how they are

deployed.

The book also explains the features and functions of

Kubernetes and how it can be integrated into a total

operational strategy for any project.

Additionally, the reader will be able to learn how to deploy

real-world applications with Kubernetes.

The book has been written in a simple, easy to comprehend

language and can be used by Non-Programmers, Project

Managers, Business Consultants or any other persons with

an interest in Kubernetes.

Introduction

Kubernetes Defined

Kubernetes, also known as K8s is an open-source container-

orchestration system that can be used for programming

deployment, scaling, and management of containerized

applications. Kubernetes were innovated with the aim of

providing a way of automatically deploying, scaling and

running operations of container applications across a wide

range of hosts. A container is a standalone, lightweight and

executable package of a part of the software that is

composed of components required to run it, i.e., system

tools, code, runtime, system libraries, and settings.

Containers function to segregate software from its adjacent

environment, i.e., for instance, variances in development

and staging environments thereby enabling the reduction of

conflicts arising when teams run separate software on the

same network infrastructure.

Containers may be flexible and really fast, attributed to their

lightweight feature, but they are prone to one problem: they

have a short lifespan and are fragile. To overcome this

enormous problem and increase the stability of the whole

system, developers utilize Kubernetes to schedule and

orchestrate container systems instead of constructing each

small component, making up a container system bullet-

proof. With Kubernetes, a container is easily altered and re-

deployed when misbehaving or not functioning as required.

Kubernetes Background

The initial development of Kubernetes can be attributed to

engineers working in industries facing analogous scaling

problems. They started experimenting with smaller units of

deployment utilizing cgroups and kernel namespaces to

develop a process of individual deployment. With time, they

developed containers which faced limitations, such that

they were fragile, leading to a short lifetime; therefore,

Google came up with an innovation calling it Kubernetes, a

Greek name meaning “pilot” or “helmsman” in an effort

aimed at sharing their own infrastructure and technology

advantage with the community at large. The earliest

founders were Joe Beda, Brendan Burns and Craig McLuckie

who were later joined by Tim Hockin and Brian Grant from

Google. In mid-2014, Google announced the development of

Kubernetes based on its Borg System, unveiling a wheel

with seven spokes as its logo which each wheel spoke

representing a nod to the project’s code name.

Google released Kubernetes v1.0, the first version of their

development on July 21, 2015, announcing that they had

partnered with Linux Foundation to launch the Cloud Native

Computing Foundation (CNCF) to promote further innovation

and development of the Kubernetes. Currently, Kubernetes

provides organizations with a way of effectively dealing with

some of the main management and operational concerns

faced in almost all organizations worldwide, by offering a

solution for administration and managing several containers

deployed at scale, eliminating the practice of just working

with Docker on a manually-configured host.

Advantages of Kubernetes

While Kubernetes was innovated to offer an efficient way of

working with containers on Google systems, it has a wider

range of functionalities and can be used essentially by

anyone regardless of whether they are using the Google

Compute Engine on Android devices. They offer a wide

range of advantages, with one of them being the

combination of various tools for container deployments,

such as orchestration, services discovery and load

balancing. Kubernetes promotes interaction between

developers, providing a platform for an exchange of ideas

for the development of better versions. Additionally,

Kubernetes enables the easy discovery of bugs in containers

due to its beta version.

Chapter 1: How Kubernetes Operates:

The NUTS and Bolts

Kubernetes design features a set of components referred to

as primitives which jointly function to provide a mechanism

of deploying, maintaining and scaling applications. The

components are loosely coupled with the ability to be

extensible to meet a variety of workloads. Extensibility is

attributed to the Kubernetes API, which is utilized by internal

components coupled with extensions and containers that

operates on Kubernetes. In simple, understandable terms,

Kubernetes is basically an object store interacting with

various codes. Each object has three main components: the

metadata, a specification and current status that can be

observed; therefore, a user is required to provide metadata

with a specification describing the anticipated state of the

objects. Kubernetes will then function to implement the

request by reporting on the progress under the status key of

the object.

The Kubernetes architecture is composed of various pieces

which work together as an interconnected package. Each

component at play has a specified role, some of which are

discussed below. Additionally, some components are placed

in the container/cloud space.

Master- It is the overall managing component which runs

one or more minions.

Minion –Operates under the master to accomplish the

delegated task.

Pod- A piece of application responsible for running a minion.

It is also the basic unit of manipulation in Kubernetes.

Replication Controller- Tasked with confirming that

the requested number of pods are running on

minions every time.

Label- Refers to a key used by the Replication Controller for

service discovery.

Kubecfg- A command line used to configure tools.

Service- Denotes an endpoint providing load balancing

across a replicated group of pods.

With these components, Kubernetes operate by generating

a master which discloses the Kubernetes API, in turn,

allowing a user to request the accomplishment of a certain

task. The master then issues containers to perform the

requested task. Apart from running a Docker, each node is

responsible for running the Kubelet service whose main

function is to operate the container manifest and proxy

service. Each of the components is discussed in detail in this

chapter.

Docker and Kubernetes

While Docker and Kubernetes may appear similar and help

users run applications within containers, they are very

different and operate at different layers of the stack, and can

even be used together. A Docker is an open source package

of tools that help you "Build, Ship, and Run” any app

anywhere, and also enables you to develop and create

software with containers. The use of a Docker involves the

creation of a particular file known as a Dockerfile which

defines a build process and produces a Docker image when

the build process is integrated to the ‘Docker build’

command. Additionally, Docker offers a cloud-based

repository known as the Docker Hub which can be used to

store and allocate the created container images. Think of it

like GitHub for Docker Images. One limitation involved in the

use of Docker is that a lot of work is involved in running

multiple containers across multiple devices when using

microservices. For instance, the process involves running the

right containers at the right time; therefore, you have to

work out how the containers will communicate with each

other, figure out storage deliberations and handle or

redeploy failed containers or hardware. All this work could be

a nightmare, especially when you are doing it manually;

therefore, the need for Kubernetes.

Unlike Docker, Kubernetes is an open-source container

orchestration platform which allows lots of containers to

harmoniously function together automatically, rather than

integrating every container separately across multiple

machines, thus cutting down the operational cost involved.

Kubernetes has a wide range of functions, some of which are

outlined below:

Integrating containers across different machines.

Redeploying containers on different machines in case of

system failure.

Scaling up or down based on demand changes by adding or

removing containers.

They are essential in maintaining the consistent storage of

multiple instances of an application.

Important for distributing load between containers.

As much as Kubernetes is known for container management,

Docker also can manage containers using its own native

container management tool known as Docker Swarm, which

enables you to independently deploy containers as Swarms

which then interact as a single unit. It is worth noting that

Kubernetes interacts only with the Docker engine itself and

never with Docker Swarm.

As mentioned above, Kubernetes can be integrated with the

Docker engine with an intention of coordinating the

development and execution of Docker containers on Kubelet.

In this type of integration, the Docker engine is tasked with

running the actual container image built by running ‘Docker

build.' Kubernetes, additionally, handles higher level

concepts, including service-discovery, load balancing, and

network policies.

Interestingly, as much as Docker and Kubernetes are

essentially different from their core, they can be used

concurrently to efficiently develop modern cloud architecture

by facilitating the management and deployment of

containers in the distributed architecture.

Pods: Running Containers in

Kubernetes

Pods area group of containers and volumes which share the

same resource - usually an IP address or a filesystem,

therefore allowing them to be scheduled together. Basically,

a pod denotes one or more containers that can be controlled

as a single application. A pod can be described as the most

basic unit of an application that can be used directly with

Kubernetes and consists of containers that function in close

association by sharing a lifecycle and should always be

scheduled on the same node. Coupled containers

condensed in a pod are managed completely as a single

unit and share various components such as the

environment, volumes and IP space.

Generally, pods are made into two classes of containers: the

main container which functions to achieve the specified

purpose of the workload and some helper containers which

can optionally be used to accomplish closely-related tasks.

Pods are tightly tied to the main application, however, some

applications may benefit by being run and managed in their

containers. For instance, a pod may consist of one container

running the primary application server and a helper

container extracting files to the shared file system, making

an external repository detect the changes. Therefore, on the

pod level, horizontal scaling is generally discouraged as

there are other higher level tolls best suited for the task.

It is important to note that Kubernetes schedules and

orchestrates functionalities at the pod level rather than the

container level; therefore, containers running in the same

pod have to be managed together in a concept known as

the shared fate which is key in the underpinning of any

clustering system. Also, note that pods lack durability since

the master scheduler may expel a pod from its host by

deleting the pod and creating a new copy or bringing in a

new node.

Kubernetes assigns pods a shared IP enabling them to

communicate with each other through a component called a

localhost address, contrary to Docker configuration where

each pod is assigned a specific IP address.

Users are advised against managing pods by themselves as

they do not offer some key features needed in an

application, such as advanced lifecycle management and

scaling. Users are instead invigorated to work with

advanced level objects which use pods or work with pod

templates as base components to implement additional

functionality.

Replication and Other Controllers

Before we discuss replication controllers and other

controllers, it is important to understand Kubernetes

replication and its uses. To begin with, is a container

management tool, Kubernetes was intended to orchestrate

multiple containers and replication. Replication refers to

creating multiple versions of an application or container for

various reasons, including enhancing reliability, load

balancing, and scaling. Replication is necessary for various

situations, such as in microservices-based applications to

provide specific functionality, to implement native cloud

applications and to develop mobile applications. Replication

controllers, replica sets, and deployments are the forms of

replications and are discussed below:

Replication Controller

A replication controller is an object that describes a pod

template and regulates controls to outline identical replicas

of a pod horizontally by increasing or decreasing the

number of running copies. A Replication controller provides

an easier way of distributing load across the containers and

increasing availability natively within Kubernetes. This

controller knows how to develop new pods using a pod

template that closely takes after a pod definition which is

rooted in the replication controller configuration.

The replication controller is tasked to ensure that the

number of pods deployed in a cluster equals the number of

pods in its configuration. Thus, in case of failure in a pod or

an underlying host, the controller will create new pods to

replace the failed pods. Additionally, a change in the

number of replicas in the controller's configuration, the

controller will either initiate or kill containers to match the

anticipated number. Replication controllers are also tasked

to carry out rolling updates to roll over a package of pods to

develop a new version, thus minimizing the impact felt due

to application unavailability.

Replication Sets

Replication sets are advancement of replication controller

design with greater flexibility with how the controller

establishes the pods requiring management. Replication

sets have a greater enhanced replica selection capability;

however, they cannot perform rolling updates in addition to

cycling backends to a new version. Therefore, replication

sets can be used instead of higher level units which provide

similar functionalities.

Just like pods, replication controllers and replication sets

cannot be worked on directly as they lack some of the fine-

grained lifecycle management only found in more complex

tools.

Deployments

Deployments are meant to replace replication controls and

are built with replication sets as the building blocks.

Deployments offer a solution to problems associated with

the implementation of rolling updates. Deployments are

advanced tools designed to simplify the lifecycle of

replicated pods. It is easy to modify replication by changing

the configuration which will automatically adjust the replica

sets, manage transitions between different versions of the

same application, and optionally store records of events and

reverse capabilities automatically. With these great features,

it is certain that deployment will be the most common type

of replication tool used in Kubernetes.

Master and Nodes

Initially, minions were called nodes, but their names have

since been changed back to minions. In a collection of

networked machines common in data centres, one machine

hosts the working machines. The working machines are

known as nodes. The master machine is responsible for

running special co-ordinating software that schedules

containers on the nodes. A collection of masters and nodes

are known as clusters. Masters and nodes are defined by the

software component they run. The master is tasked to run

three main items:

API Server - The API server ensures that all the components

on the master and nodes achieve their respective tasks by

making API calls.

Etcd - This is a service responsible for keeping and

replicating the current configuration and run the state of the

cluster. It is implemented as a lightweight distributed key-

value store.

Scheduler and Controller Manager- These processes schedule

containers, specifically pods, onto target nodes. Additionally,

they may correct numbers of the running processes.

A node usually carries out three important processes, which

are discussed below:

Kubelet- It is an advanced background process (daemon)

that runs on each node and functions to respond to

commands from the master to create, destroy and monitor

containers on that host.

Proxy - It is a simple network proxy that can be used to

separate the IP address of a target container from the name

of the services it provides.

cAdvisor- It is an optional special daemon that collects,

aggregates, processes, and exports information about

running containers. The information may exclude information

on resource isolation, historical usage, and key network

statistics.

The main difference between a master and a node is based

on the set of the process being undertaken.

Services

In Kubernetes, a service is an important component that acts

as a central internal load balancer and representatives of the

pods. Services can also be defined as a long-lasting, well-

known endpoint that points to a set of pods in a cluster.

Services consist of three critical components: an external IP

address (known as a portal, or sometimes a portal IP), a port

and a label selector. Service is usually revealed through a

small proxy process. The service proxy is responsible for

deciding which pod to route to an endpoint request via a

label selector. It also acts as a thin look-up service to

determine a way of handling the request. The service proxy

is, therefore, in simple terms, a tuple that maps a portal,

port, and label selector.

A service abstraction is essential to allow you to scale out or

replace the backend work units as necessary. A service's IP

address remains unchanged and stable regardless of the

changes to the pods it routes too. When you deploy a

service, you are simply gaining discoverability and can

simplify your container designs. A service should be

configured any time you need to provide access to one or

more pods to another application or external consumers. For

example, if you have a set of pods running web servers that

should be accessible from the internet, a service will provide

the necessary concept. Similarly, if a web service needs to

store and recover data, an internal service is required to

authorize access to the database pods.

In most circumstances, services are only available via the

use of an internally routable IP address. However, they can

also be made available from their usual places through the

use of several strategies, such as the NodePort configuration

which works by opening a static port on each node’s external

networking interface. In this strategy, the traffic to the

external port is routed automatically using an internal cluster

IP service to the appropriate pods. Instead, the Load

Balancer service strategy can be used to create an external

load balancer which, in turn, routes to the services using a

cloud provider's load balancer integration. The cloud

controller manager, in turn, creates an appropriate resource

and configures it using an internal service address. In

summary, the main functionality of services in Kubernetes is

to expose a pod's unique IP address which is usually not

exposed outside the cluster without a service.

Service Discovery

Service discovery refers to the process of establishing how

to connect to a service. Services need dynamically to

discover each other to obtain IP addresses and port detail

which are essential in communicating with other services in

the cluster. Kubernetes offers two mechanisms of service

discovery: DNS and environmental variable. While there is a

service discovery option based on environmental variables

available, most users prefer the DNS-based service

discovery. Both are discussed below.

Service Discovery with Environmental Variables

This mechanism of service discovery occurs when a pod

exposes a service on a node, initiating Kubernetes to

develop a set of environmental variables on the exposed

node to describe the new service. This way, other pods on

the same node can consume it easily. Managing service

discovery using an environmental variable mechanism is not

scalable, therefore, most people prefer the Cluster DNS to

discover services.

Cluster DNS

Cluster DNS enables a pod to discover services in the

cluster, thereby enabling services to communicate with

each other without having to worry about IP addresses and

other fragile schemes. With cluster DNS, you can configure

your cluster to schedule a pod and service that expose DNS.

Then, when new pods are developed, they are informed of

this service and will use it for look-ups. The cluster DNS is

made of three special containers listed below:

Etcd - Important for storing all the actual look-up

information.

SkyDns- It is a special DNS server written to read from etcd.

Kube2sky - It is a Kubernetes-specific program that watches

the master for any changes to the list of services and then

publishes the information into etcd. SkyDns will then pick it

up.

Apart from environmental variables and cluster DNS, there

are other mechanisms which you can use to expose some of

the services in your cluster to the rest of the world. This

mechanism includes Direct Access, DIY Load Balancing, and

Managed Hosting.

Direct Access- Involves configuring the firewall to

pass traffic from the outside world to the portal IP of

your service. Then, the proxy located on the node

selects the container requested by the service.

However, direct access faces a problem of limitation

where you are constrained to only one pod to service

the request, therefore, fault intolerant.

DIY Load Balancing- Involves placing the load

balancer in front of the cluster and then populating it

with the portal IPs of your service; therefore, you will

have multiple pods available for the service request.

Managed Hosting- Most cloud providers supporting

Kubernetes offer an easier way to make your services

discoverable. All you need to do is to define your

service by including a flag named

CreateExternalLoadBalncer and set its value to true.

By doing this, the cloud provider automatically adds

the portal IPs for your service to a fleet of load

balancers thatare created on your behalf.

ReplicaSets-Replica Set

Theory/Hands-on with ReplicaSets

As mentioned earlier, ReplicaSets is an advanced version of

Replication Controller, offering greater flexibility in how the

controller establishes the pods it is meant to manage. A

ReplicaSet ensures that a specified number of pod replicas

are running at any given time. Deployment can be used to

effectively manage ReplicaSets as it enables it to provide

declarative updates to pods combined with a lot of other

useful features.

Using ReplicaSets is quite easy since most Kubernetes

commands supporting Replication Controllers also support

ReplicaSets except the rolling update command which is

best used in Deployments. While ReplicaSets can be used

independent of each other, it is best used by Deployments

as a mechanism of orchestrating pod creation, deletion, and

updates. By using Deployments, you will not have to worry

about managing the ReplicaSets they develop as they

deploy and manage their ReplicaSets.

Daemon Sets

Daemon Sets are a specialized form of pod controller which

runs a copy of a pod on each node in the cluster (or a

subset, if specified). Daemon Sets are useful when

deploying pods which help perform maintenance and

provide services for the nodes themselves by creating pods

on each added node, and garbage collects pods when nodes

are removed from the cluster. Daemon Sets can be used for

running daemons that require running on all nodes of a

cluster. Such things can be cluster storage daemons, such

as Qubyte, ceph, glusterd, etc., log collectors such as

Fluentd or Logstash, or monitoring daemons such as

Prometheus Node Exporter, Collected, New Relic agent, etc.

The daemon can be deployed to all nodes, but it's important

to split a single daemon to multiple daemons. Note that in

situations involving a cluster with nodes of different

hardware requiring adaption in the memory and CPU, you

may have to include for the daemon for effective

functionality.

There are other cases where you may require different

logging, monitoring, or storage solutions on separate nodes

of your cluster. In such circumstances where you prefer to

deploy the daemons only to a specific set of nodes rather

than the entire node, you may use a node selector to

specify a subdivision of the nodes linked to the Daemon Set.

For this to function effectively, you should have labelled

your nodes consequently.

There are four main mechanisms in which you can

communicate to the daemons discussed below:

Push - In this mechanism, the pods are configured to push

data to a service, making the services undiscoverable to

clients.

NodeIP and known port - The pods utilize a host port,

enabling clients to access each NodeIP via this port.

DNS - In this mechanism, pods are accessed via a headless

service by either the use of an endpoints resource or

obtaining several A Records from DNS.

Service - The pods are accessible via the standard service.

The client can access a daemon on a random node using

the same service; however, in this mechanism, you may not

be able to access a specific node.

Since Daemon Sets are tasked to provide essential services

and are required throughout the fleet, they, therefore, are

allowed to bypass pod scheduling restrictions which limit

other controllers from delegating pods to certain hosts. For

instance, attributed to its unique responsibilities, the master

server is usually configured to be inaccessible for normal

pod scheduling, providing Daemon Sets with the ability to

override the limitation on the pod-by-pod basis to ensure

that essential services are running.

As per now, Kubernetes does not offer a mechanism of

automatically updating a node. Therefore, you can only use

the semi-automatic way of updating the pods by deleting

the daemon set with the –cascade=false option, so that the

pods may allot on the nodes; then you can develop a new

Daemon Set with an identical pod selector and an updated

pod template. The new Daemon Set will automatically

recognize the previous pods, but will not automatically

update them; however, you will need to use the new pod

templates after manually deleting the previous pods from

the nodes.

Jobs

Jobs are workloads used by Kubernetes to offer a more task-

built workflow where the running containers are expected to

exit successfully after completing the workload. Unlike the

characteristic pod which is used to run long-running

processes, jobs allow you to manage pods that are required

to be terminated rather than being redeployed. A job can

create one or more pods and guarantees the termination of

a particular number of pods. Jobs can be used to achieve a

typical batch-job such as backing up a database or

deploying workers that need to function off a specific queue,

i.e., image or video converters. There are various types of

jobs as discussed below:

Non-parallel Jobs

In this type of job, one pod is usually initiated and goes on

to complete the job after it has been terminated

successfully. In case of a failure in the pod, another one is

created almost immediately to take its place.

Parallel Job with a fixed completion count

In a parallel job with a fixed completion count, a job is

considered complete when there is one successful pod for

every value between 1 and the number of completions

specified.

Parallel Jobs with a work queue

With parallel jobs with a work queue, no pod is terminated

lest the work queue is empty. This means that even if the

worker performed its job, the pod could only be terminated

successfully when the worker approves that all its fellow

workers are also done. Consequently, all other pods are

required to be terminated in the process of existing.

Requested parallelism can be defined by parallel Jobs. For

instance, if a job is set to 0, then the job is fundamentally

paused until it is increased. It is worth noting that parallel

jobs cannot support situations which require closely-

communicating parallel processes, for example, in scientific

computations.

CronJobs

CronJobs are used to schedule jobs or program the

repetition of jobs at a specific point in time. They are

analogous to jobs but with the addition of a schedule in Cron

format.

ConfigMaps and Secrets

Kubernetes offers two separate storage locations for storing

configuration information: Secrets for storing sensitive

information and ConfigMaps for storing general

configuration. Secrets and ConfigMaps are very similar in

usage and support some use cases. ConfigMaps provides a

mechanism of storing configuration in the environment

rather than using code. It is important to store an

application’s configuration in the environment since an

application can change configuration through development,

staging, production, etc.; therefore, storing configuration in

the environment increases portability of applications.

ConfigMaps and Secrets are discussed below in detail.

Secrets

As mentioned above, Secrets are important for storing

miniature amounts, i.e., less than I MB each of sensitive

information such as keys, tokens, and passwords, etc.

Kubernetes has a mechanism of creating and using Secrets

automatically, for instance, Service Account token for

accessing the API from a pod and it is also easy for users to

create their passwords. It is quite simple to use passwords;

you just have to reference them in a pod and then utilize

them as either file at your own specified mount points, or as

environmental variables in your pod. Note that each

container in your pod is supposed to access the Secret

needs to request it explicitly. However, there is no

understood mechanism of sharing of Secrets inside the pod.

PullSecrets are a special type of Secret that can be used to

bypass a Docker or another container image registry login

to the Kubelet so that it can extract a private image for your

pod. You need to be extremely cautious when updating

Secrets that are in use by running pods since the pods in

operation would not automatically pull the updated Secret.

Additionally, you will need to explicitly update your pods,

i.e., using the rolling update functionality of Deployments

discussed above, or by restarting or recreating them. Put in

mind that a Secret is namespaced, meaning that they are

placed on a specific namespace, and only pods in the same

namespace can access the Secret.

Secrets are stored in tmpfs and only stored on nodes that

run pods which utilize those Secrets. The tmpfs keep Secrets

from being accessible by the rest of the nodes in an

application. Secrets are transmitted to and from the API

server in plain text; therefore, you have to implement the

SSL/TLS protected connections between user and API server

and additionally between the API server and kubelets.

To enhance security for secrets, you should encrypt secrets

in etcd. To add another layer of security, you should enable

Node Authorization in Kubernetes, so that a kubelet can only

request Secrets of Pods about its node. This function is to

decrease the blast radius of a security breach on a node.

ConfigMaps

ConfigMaps are arguably similar to Secrets, only that they

are designed to efficiently support working with strings that

do not contain sensitive information. ConfigMaps can be

used to store individual properties in the form of key-value

pairs; however, the values can also be entirely used to

configure files or JSON blobs to store more information.

Configuration data can then be used to:

Configure the environmental variable.

Command-line arguments for a container.

Configure files in a volume.

Storing configuration files for tools like Redis or Prometheus

which allows you to change the configuration of containers

without having to rebuild the entire container.

ConfigMaps differs from Secrets in that it necessarily gets

updated without the need to restart the pods which use

them. Nevertheless, depending on how to implement the

configuration provided, you may need to reload the configs,

e.g., using an API call to Prometheus to reload. This is often

done through a sidecar container in the same pod watching

for changes in the config file.

The most important thing about ConfigMaps and Secrets is

that they function to enhance the versatility of containers

by limiting their specificities which allow users to deploy

them in different ways. Therefore, users are provided with a

choice of reusing containers or among teams, or even

outside the organization due to the elimination of container

specificity. Secrets are especially helpful when sharing with

other teams and organizations, or even when sharing

publicly. This enables you to freely share images, for

instance, via a public respiratory, without having to worry

about any company-specific or sensitive data being

published.

How is it going till now? Before moving to the deployment

part just recap the topics you just went through. Also, can

you spare some time and review the book?

Chapter 2: Deployments

In Kubernetes, deployments are essential for deploying and

managing software; therefore, it is important to comprehend

how they function and how to use effectively. Before

deployment, there were Replication Controllers, which

managed pods and ensured a certain number of them were

operating. With deployments, we moved to ReplicaSets,

which replaced Replication Controllers later on. ReplicaSets

are not usually managed; rather they get managed by

Deployments we define through a definite chain, i.e.,

Deployment-ReplicaSet-Pod(s). In addition to what

ReplicaSets offer, Deployment offers you declarative control

over the update strategy used for the pods. This replaces

the old kubectl rolling-update way of updating, but offers

similar flexibility regarding defining maxSurge and

maxUnavailable, i.e., how many additional and how many

unavailable pods are allowed.

Deployments can manage your updates and even go as far

as checking whether or not a new version being rolled out is

working, and stop the rollout in case it is not. Additionally,

you can indicate a wait time needed by a pod to be ready

without any of its containers crashing before it’s considered

available, prevents “bad updates” giving your containers

plenty of time to get ready to handle traffic. Furthermore,

Deployments store a history of their revisions which can be

used in rollback situations, as well as an event log, that can

be used to audit releases and changes to your Deployment.

Integrating Storage Solutions and

Kubernetes

Today, organizations are struggling to deliver solutions

which will allow them to meet quickly changing business

needs, as well as to address competitive pressure. To

achieve this, they are utilizing various technologies such as

containers, Kubernetes, and programmable infrastructure to

achieve continuous integration/continuous development

(CI/CD) and DevOps transformations.

For organizations deploying these technologies, they have

to ensure tenacious storage across containers as it is

important to maximize the number of applications in the

model. One such example of an integrated storage solution

which can be integrated to Kubernetes is NetApp Trident

which is discussed in detail below.

NetApp Trident

Unlike competitive application container orchestration and

dynamic storage provisioning plugins, NetApp Trident

integrates with Kubernetes' persistent volume (PV)

framework. Red Hat OpenShift with Trident provides one

interface for dynamic provision of a persistent volume of

applications across storage classes. These interfaces can be

allocated to any of the storage platforms from NetApp to

deliver the optimal storage management capabilities and

performance for each application.

Trident was developed as an open source project by NetApp

to offer Kubernetes users an external mechanism of

monitoring Kubernetes volume and to completely automate

the provisioning process. Trident can be integrated to

Kubernetes and deployed as a physical server for storage, a

virtual host, or a Kubernetes Pod. Trident offers Kubernetes a

persistent storage solution and can be used in situations

such as:

In cloud-native applications and microservices.

Traditional enterprise applications deployed in a hybrid

cloud.

DevOps teams who want to accelerate the CI/CD pipeline.

Trident also provides a boost of advanced features which are

designed to offer deployment flexibility in Kubernetes

containerized applications, in addition to providing basic

persistent volume integration. With Trident, you can:

Configure storage via a simple Representational State

Transfer application programming interface (REST API) with

unique concepts that contain specific capabilities to

Kubernetes storage classes.

Protect and manage application data with NetApp

enterprise-class storage. Current storage objects, such as

volumes and logical unit numbers (LUNs), can easily be used

by Trident.

Based on your choice, you can use separate NetApp storage

backends and deploy each with different configurations,

thus allowing Trident to provide and consume storage with

separate features, and present that storage to container-

deployed workloads in a straightforward fashion.

Integrating the Trident dynamic storage provider to

Kubernetes as a storage solution offers numerous benefits

outlined below:

Enables you to develop and deploy applications faster with

rapid iterative testing.

It provides a dynamic storage solution across storage

classes of the entire storage portfolio of SolidFire, E-Series,

NetApp, and ONTAP storage platforms.

Improves efficiency when developing applications using

Kubernetes.

Deploying Real World Application

To give you a better idea on how to deploy the real-world

application, we are going to use a real-world application,

i.e., Parse.

Parse

Parse is a cloud API designed to provide easy-to-use storage

for mobile applications. It offers a variety of different client

libraries making it easy to integrate with Android, iOS and

other mobile platforms. Here is how you can deploy Parse in

Kubernetes:

Fundamentals

Parse utilizes MongoDB cluster for its storage, therefore, you

have to set up a replicated MongoDB using Kubernetes

StatefulSets. Additionally, you should have a Kubernetes

cluster deployed and ensure that the kubectl tool is properly

configured.

Building the parse-server

The open source parse-server comes with a Dockerfile for

easy containerization of the clone Parse repository.

$ git clone https://github.com/ParsePlatform/parse-server

Then move into that directory and build the image:

$ cd parse-server

$ docker build -t ${DOCKER_USER}/parse-server.

Finally, push that image up to the Docker hub:

$ docker push ${DOCKER_USER}/parse-server

Deploying the parse-server

Once a container image is developed, it is easy to deploy the

parse-server into your cluster using the configuration of the

environmental variable below:

APPLICATION-ID-An identifier for authorizing your application.

MASTER-KEY-An identifier that authorizes the master user.

DATABASE-URI-It is the URI for your MongoDB cluster.

When all these are placed together, it is possible to deploy

Parse as a Kubernetes Deployment using the YAML as

illustrated below:

Testing Parse

It is important to test the deployment and this can be done

by exposing it as a Kubernetes service as illustrated below:

After testing confirms its operation, the parse then knows to

receive a request from any mobile application; however, you

should always remember to secure the connection with

HTTPS after deploying it.

How to Perform a Rolling Update

A rolling update refers to the process of updating an

application regarding its configuration or just when it is new.

Updates are important as they keep applications up and

running; however, it is impossible to update all features of

an application all at once since the application will likely

experience a downtime. Performing a rolling update is

therefore important as it allows you to catch errors during

the process so that you can rollback before it affects all of

your users.

Rolling updates can be achieved through the use of

Kubernetes Replication Controllers and the kubectl rolling-

update command; however, in the latest version, i.e.,

Kubernetes 1.2, the Deployment object API was released in

beta. Deployments function at a more advanced level as

compared to Controllers and therefore are the preferred

mechanism of performing rolling updates. First, let's look at

how to complete a rolling update with a replication

controller then later using Deployment API.

Rolling Updates with a Replication Controller

You will need a new Replication Controller with the updated

configuration. The rolling update process synchronizes the

rise of the replica count for the new Replication Controller

while lowering the number of replicas for the previous

Replication Controller. This process lasts until the desired

number of pods are operating with the new configuration

defined in the new Replication Controller. After the process

is completed, the old replication is then deleted from the

system. Below is an illustration of updating a deployed

application to a newer version using Replication Controller:

To perform an update, kubectl rolling-update is used to

stipulate that we want to update the running k8s-

deployment-demo-controller-v1 Replication controller to k8-

deployment-demo-controller-v2as illustrated below:

Rolling updates with a Replication Controller faces some

limitations, such that if you store your Kubernetes displays

in source control, you may need to change at least two

manifests to co-ordinate between releases. Additionally, the

rolling update is more susceptible to network disruptions,

coupled with the complexity of performing rollbacks, as it

requires performing another rolling update back to another

Replication Controller with an earlier configuration thereby

lacking an audit trail. An easier method was developed to

perform rolling updates with a deployment as discussed

below:

Rolling Updates with a Deployment

Rolling updates with deployment is quite simple, and similar

rolling updates with Replication Control with a few

differences are shown below:

The differences are

The selector uses match labels since the Deployment

objects support set-based label requirements.

The version label is excluded by the selector. The same

deployment object supports multiple versions of the

application.

The kubectl create function is used to run the deployment

as illustrated below:

This function saves the command together with the

resource located in the Kubernetes API server. When using a

deployment, four pods run the application to create the

Deployment objects as shown below:

As mentioned earlier on, one advantage of using

deployment is that the update history is always stored in

Kubernetes and the kubectl rollout command can be used to

view the update history illustrated below:

In conclusion, rolling updates is an essential feature in

Kubernetes, and its efficiency is improved with each

released version. The new Deployment feature in

Kubernetes 1.2 provides a well-designed mechanism of

managing application deployment.

Statefulness: Deploying Replicated

Stateful Applications

Statefulness is essential in the case of the following

application needs:

Stable, persistent storage.

Stable, unique network identifiers.

Ordered, automated rolling updates.

Ordered, graceful deletion and termination.

Ordered, graceful deployment and scaling.

In the above set of conditions, synonymous refers to

tenacity across pod (re)scheduling.

Statefulness can be used instead of using ReplicaSet to

operate and provide a stable identity for each pod.

StatefulSet resources are personalized to applications where

instances of the application must be treated as non-fungible

individuals, with each having a stable name and state. A

StatefulSet ensures that those pods are rescheduled in such

a way that they maintain their identity and state.

Additionally, it allows one to easily and efficiently scale the

number of pets up and down. Just like ReplicaSets,

StatefulSet has an anticipated replica count field which

determines the number of pets you want operating at a

given time. StatefulSet created pods from pod templates

specific to the parts of the StatefulSet; however, unlike pods

developed by ReplicaSets, pods created by the StatefulSet

are not identical to each other. Each pod has its own set of

volumes, i.e., storage, which differentiates it from its peers.

Pet pods have a foreseeable and stable identity as opposed

to new pods which gets a completely random number.

Every pod created by StatefulSet is allocated a zero index,

which is then utilized to acquire the pod's name and

hostname and to ascribe stable storage to the pod;

therefore, the names of the pods are predictable since each

pod’s name is retrieved from the StatefulSet's name and the

original index of the instance. The pods are well organized

rather than being given random names.

In some situations, unlike regular pods, Stateful pods require

to be addressable by their hostname, but this is not the

case with regular pods.

Attributed to this, StatefulSet needs you to develop a

corresponding governing headless service that is used to

offer the actual network distinctiveness to each pod. In this

service, each pod, therefore, gets its unique DNS entry;

thus, its aristocracies and perhaps other clients in the

network can address the pod by its hostname.

Deploying a Replicated Stateful Application

To deploy an app through StatefulSet, you will first need to

create two or more separate types of objects outlined below:

The StatefulSet itself.

The governing service required by the StatefulSet.

PersistentVolume for storing the data files.

The StatefulSet is programmed to develop a

PersistantVolumeClaim for every pod instance which will

then bind to a persistent volume; however, if your cluster

does not support dynamic provisioning, you will need to

manually create PersistentVolume using the requirements

outlined above.

To create the PersistentVolume required to scale the

StatefulSet to more than tree replicas, you will first need to

develop an authentic GCE Persistent Disks like the one

illustrated below:

The GCE Persistent Storage Disk is used as the fundamental

storage mechanism in Google’s Kubernetes Engine.

The next step in deploying a replicated Stateful application is

to create a governing service which is essential to provide

the Stateful pods with a network identity. The governing

service should contain:

Name of the Service.

The StatefulSet’s governing service which should be

headless.

Pods which should be allotted labels synonymous to the

service, i.e., app=kubia label.

After completing this step, you can then create the

StatefulSet manifest as listed below:

Later on, create the StatefulSet and a list of pods. The final

product is that the StatefulSet will be configured to develop

two replicas and will build a single pod. The second pod is

then created after the first pod has started operating.

Understanding Kubernetes Internals

To understand Kubernetes internals, let’s first discuss the

two major divisions of the Kubernetes cluster:

The Kubernetes Control Plane

Nodes

Add-on Components

The Kubernetes Control Panel

The control panel is responsible for overseeing the functions

of the cluster. The components of the control panel include:

The etcd distributed persistent storage

The Controller Manager

The Scheduler

The API server

The components function is in unison to store and manage

the state of the cluster.

Nodes

The nodes function to run the containers and have the

following components:

The Kubelet

The Container Runtime (Docker, rkt, or others)

The Kubernetes Service Proxy (kube-proxy)

Add-on Components

Apart from the nodes and control panel, other components

are required for Kubernetes to operate effectively. This

includes:

An Ingress controller

The Dashboard

The Kubernetes DNS server

Heapster

The Container Network Interface network plugin

The functioning of the Components

All the components outlined above interdepend among each

other to function effectively; however, some components

can carry out some operations independently without the

other components. The components only communicate with

the API server and not to each other directly. The only

component that communicates with the etcd is the API

server. Rather than the other components communicating

directly with the etcd, they amend the cluster state by

interacting with the API server. The system components

always initiate the integration between the API server and

other components. However, when using the command

kubectl to retrieve system logs, the API server does not

connect to the Kubelet and you will need to use

kubectlattachorkubectl port-forward to connect to an

operating container.

The components of the worker nodes can be distributed

across multiple servers, despite components placed on the

worker nodes operating on the same node. Additionally,

only a single instance of a Scheduler and Controller

Manager can be active at a time in spite of multiple

instances of etcd and the API server being active

concurrently performing their tasks in parallel.

The Control Plane components, along with the kube-proxy,

run by either being deployed on the system directly or as

pods. The Kubelet operates other components, such as

pods, in addition to being the only components which

operate as a regular system component. The Kubelet is

always deployed on the master, to operate the Control

Plane components as pods.

Kubernetes using etcd

Kubernetes uses etcd which is a distributed, fast, and

reliable key-value store to prevent the API servers from

failing and restarting due to the operating pressure

experienced by storing the other components. As previously

mentioned, Kubernetes is the only system component which

directly communicates to etcd, thereby has a few benefits

which include enhancing the optimistic locking system

coupled with validation, and providing the only storage

location for storing cluster state and metadata.

Function Of The Api Server

In Kubernetes, the API server is the primary component

used by another system component as well as clients such

as kubectl. The API server offers a CRUD (Create, Read,

Update, and Delete) interface, which is important for

querying and modifying the cluster state over a RESTful API

in addition to storing the state in etcd. The API server is also

a validation of objects to prevent clients from storing

improperly constructed objects. Additionally, it also

performs optimistic locking, therefore, variations in an

object are never superseded by other clients in the situation

of concurrent updates.

It is important to note that the API server does not perform

any other task away from what is discussed above. For

instance, it does not create pods when you develop a

ReplicaSet resource, nor does it overlook the endpoints of a

service. Additionally, the API server is not responsible for

directing controllers to perform their task; rather, it allows

controllers and other system components to monitor

changes to deployed resources.

kubectlis an example of an API server's client tool and is

essential for supporting watching resources. For instance,

when deploying a pod, you don't have to continuously poll

the list of pods by repeatedly executing kubectl get pods.

Rather, you may use the watch flag to be notified of each

development, modification, or deletion of a pod.

The Function of Kubelet

In summary, Kubelet is in charge of every operation on a

worker node. Its main task is to register the node it is

operating by creating a node resource in the API server.

Also, it needs to constantly oversee the API server for pods

that have been scheduled to the node, and the start of the

pod’s container. Additionally, it continuously monitors

running containers and informs the API server of their

resource consumption, status, and events.

The other functionality of Kubelet is to run the container

liveness probes and restarting containers following the

failure of probes, in addition to terminating containers when

their pod is deleted from the API server and notifies the

server that the pod has been terminated.

Securing the Kubernetes API Server

Think of this situation; you have an operational Kubernetes

cluster which is functioning on a non-secure port accessible

to anyone in the organization. This is extremely dangerous

as data in the API server is exceptionally susceptible to

breaches; therefore, you have to secure the API server to

maintain data integrity. To secure the API server, you must

first retrieve the server and client certificates by using a

token to stipulate a service account, and then you configure

the API server to find a secure port and update the

Kubernetes master and node configurations. Here is a

detailed explanation:

Transport Security

The API server usually presents a self-signed certificate on

the user’s machine in this format: $USER/. kube/config. The

API server’s certificate is usually contained in the root

certificate which, when specified, can be used in the place

of the system default root certificate. The root certificate is

automatically placed in $USER/. kube/config upon creating a

cluster using kube-up.sh

Authentication

The authentication step is next after a TLS is confirmed. In

this step, the cluster creation script or cluster admin

configure the API server to operate one or more

Authenticator Modules made up of key components,

including Client Certificate, Password, Bootstrap Tokens,

Plain Tokens and JWT Tokens. Several authentication

modules can be stated after trial and error until the perfect

match succeeds. However, if the request cannot be

authenticated, it is automatically rejected with HTTP status

code 401. In the case of authentication, the user is provided

with a specific username which can be used in subsequent

steps. Authenticators vary widely with others providing

usernames for group members, while others decline them

altogether. Kubernetes uses usernames for access control

decisions and in request logging.

Authorization

The next step is the authorization of an authenticated

request from a specified user. The request should include

the username of a requester, the requested action, and the

object to be initiated by request. The request is only

authorized by an available policy affirming that the user has

been granted the approval to accomplish the requested

action.

With Kubernetes authorization, the user is mandated to use

common REST attributes to interact with existing

organization-wide or cloud-provider-wide access control

systems. Kubernetes is compatible with various multiple

authorization modules such as ABAC mode, RBAC Mode, and

Webhook mode.

Admission Control

This is a software module that functions to reject or modify

user requests. These modules can access the object's

contents which are being created or updated. They function

on objects being created, deleted, updated or connected. It

is possible to configure various admission controllers to

each other through an order. Contrary to Authentication and

Authorization Modules, the Admission Control Module can

reject a request leading to the termination of the entire

request. However, once a request has been accepted by all

the admission controllers' modules, then it is validated via

the conforming API object, and then written to the object

store.

Securing Cluster Nodes and Networks

In addition to securing a Kubernetes API server, it is also

extremely important to secure cluster nodes and networks

as it is the first line of defence to limit and control users who

can access the cluster and the actions they are allowed to

perform. Securing cluster nodes and networks involves

various dimensions which are listed below and are later

discussed in detail:

Controlling access to the Kubernetes API

Controlling access to the Kubelet

Controlling the capabilities of a workload or user at runtime

Protecting cluster components from compromise

Controlling Access to the Kubernetes API

The central functionality of Kubernetes lies with the API,

therefore, should be the first component to be secured.

Access to the Kubernetes API can be achieved through:

Using Transport Level Security (TLS) for all API traffic - It a

requirement by Kubernetes that all API communication

should be encrypted by default with TLS, and the majority of

the installation mechanism should allow the required

certificates to be developed and distributed to the cluster

component.

API Authentication - The user should choose the most

appropriate mechanism of authentication, such that the

accessed pattern used should match those used in the

cluster node. Additionally, all clients must be authenticated,

including those who are part of the infrastructure like nodes,

proxies, the scheduler and volume plugins.

API Authorization - Authorization happens after

authentication, and every request should pass an

authorization check. Broad and straightforward roles may be

appropriate for smaller clusters and may be necessary to

separate teams into separate namespaces when more users

interact with the cluster.

Controlling access to the Kubelet

Believe it or not, Kubelets allow unauthenticated access to

the API server as it exposes HTTPS endpoints, thereby

providing a strong control over the node and containers.

However, production clusters, when used effectively, enable

Kubelet to authorize and authenticate requests thus

securing cluster nodes and networks

Controlling the capabilities of a workload or user at

runtime

Controlling the capabilities of a workload can secure cluster

nodes by ensuring high-level authorization in Kubernetes.

This can be done through:

Limiting resource usage on a cluster

Controlling which privileges containers run with

Restricting network access

Restricting cloud metadata API access

Controlling which nodes Pods may access

Protecting cluster components from compromise

By protecting cluster components from compromise, you

can secure cluster nodes and networks by:

Restricting access to etcd

Enable audit logging

Restricting access to alpha and beta features

Reviewing third-party integrations before enabling them

Encrypting secrets at rest

Receiving security alert updates and reporting

vulnerabilities

Managing Pods Computational

Resources

When creating pods, it is important to consider how much

CPU and computer memory a pod is likely to consume, and

the maximum amount it is required to consume. This

ensures that a pod is only allocated the required resources

by the Kubernetes cluster, in addition to determining how

they will be scheduled across the cluster. When developing

pods, it is possible to indicate how much CPU and memory

each container requires. After the specifications have been

indicated, the scheduler then decides on how to allocate

each pod to a node.

Each container of a pod can specify the required resources

as shown below:

While computational resources requests and limits can only

be specified to individual containers, it is essential to

indicate pod resource and request as well. A pod resource

limit stipulates the amount of resource required for each

container in the pod.

When a pod is created, the Kubernetes scheduler picks a

node in which the pod will operate on. Each node has a

maximum limit for each of the resource type, i.e., the

memory and CPU. The scheduler is tasked to ensure that the

amount of each requested resource of the scheduled

containers should always be less than the capacity of the

node. The scheduler is highly effective that it declines to

place a pod on a node if the actual CPU or memory usage is

extremely low and that the capacity check has failed. This is

important to guard against a shortage in the resource on a

node incase of an increase in resource usage later, for

instance, during a period peak in the service request rate.

Running OF PODS with Resource limits

When a container of a pod is started by Kubelet, it passes

the CPU and memory limits to the container runtime as a

confirmatory test. In this test, if a container surpasses the

set memory limit, it might be terminated. However, if it is

restartable, the Kubelet will restart it, together with any

form of runtime failure. In the case that a container exceeds

its memory specifications, the pod will likely be evicted

every time the node’s available memory is exhausted. A

container is not allowed to outdo its CPU limit for extended

periods of time, although it will not be terminated for

excessive CPU usage.

Automatic scaling of pods and cluster

nodes

Pods and cluster nodes can be manually scaled, mostly in

the case of expected load spikes in advance, or when the

load changes gradually over a longer period, requiring

manual intervention to manage a sudden, unpredictable

increase in traffic or service request. Manual scaling is not

efficient and it is ideal, therefore, that Kubernetes provides

an automatic mechanism to monitor pods and automatically

scale them up in situations of increased CPU usage

attributed to an increase in traffic.

The process of autoscaling pods and cluster nodes is divided

into three main steps:

Acquiring metrics off all the pods that are managed by the

scaled resource object.

Calculating the number of pods required to maintain the

metrics at the specified target value.

Update the replicas field of the scaled resource.

The process commences with the horizontal pod autoscaler

controller, obtaining the metrics of all the pods by querying

Heapster through REST calls. The Heapster should be

running in the cluster for autoscaling to function once the

Autoscaler obtains the metrics for the pod belonging to the

system component in a question of being scaled. The

Autoscaler then uses the obtained metrics to determine the

number that will lower the average value of the metric

across all the replicas as close as possible. This is done by

adding the metric values obtained from all the pods and

dividing the value by the target value set on the

HorizontalPodAutoscaler resource and then rounding the

value to the next larger value. The final step of autoscaling

is updating the anticipated replica count field on the scaled

component and then allowing the Replica-Set controller to

spin up additional pods or delete the ones in excess

altogether.

Extending Kubernetes Advanced

Scheduling

Kubernetes has an attribute of being an advanced

scheduler; therefore, it provides a variety of options to users

to stipulate conditions for allocating pods to particular

nodes that meet a certain condition, rather than basing it on

available resources of the node. Kubernetes advanced

scheduling is achieved through the master API which is a

component that provides offers to read/write access to the

cluster's desired and current state. The scheduler uses the

master API to retrieve existing information, carry out some

calculations and then update the API with new information

relating to the desired state.

Kubernetes utilizes controller patterns to uphold and update

the cluster state where the scheduler controller is

particularly responsible for pod-scheduling decisions. The

scheduler constantly monitors the Kubernetes API to find

unscheduled pods and decides on which node the pods will

be placed on. The decision to create a new pod by the

scheduler is achieved after three stages:

Node filtering

Node priority calculation

Actual scheduling operation

In the first stage, the scheduler identifies a node which is

compatible with the running workload. A compatible node is

identified by passing all nodes via a set of filters and

eliminating those which are not compatible with the

required configurations. The following filters are used:

Volume filters

Resource filters

Affinity selectors

In addition to scheduling, cluster users and administrators

can update the cluster state by viewing it via the

Kubernetes dashboard which enables them to access the

API.

Best Practices for Developing Apps

After going through much of the content in developing

applications with Kubernetes, here are some of the tips for

creating, deploying and running applications on Kubernetes.

Building Containers

Keep base images small - It is an important practice to start

building containers from the smallest viable image and then

advancing with bigger packages as you continue with the

development. Smaller base images have some advantages

including it builds faster, it has less storage, it is less likely

to attack surface and occupies less storage.

Don't trust just any base image - Most people would just

take a created image from DockerHub, and this is

dangerous. For instance, you may be using a wrong version

of the code, or the image could have a bug in it, or, even

worse, it could be a malware. Always ensure that you use

your base image.

Container Internals

Always use a non-root user inside the container - A non-root

user is important in the situation that someone hacks into

your container and you haven't changed the user from a

root. In this situation, the hacker can access the host via a

simple container escape but, on changing the user to non-

root, the hacker will need numerous hack attempts to gain

root access.

Ensure one process per container - It is possible to run more

than one process in a container; however, it is advised to

run only a single process since Kubernetes manages

containers based on their health.

Deployments

Use plenty of descriptive labels when deploying - Labels are

arbitrary key-value pairs, therefore, are very powerful

deployment tools.

Use sidecars for Proxies, watchers, etc. - A group of

processes may be needed to communicate with one

another, but they should not run on a single container.

How To Deploy Applications That

Have Pods With Persistent

Dependencies

You can have applications having persistent pod

dependencies using the Blue-Green Deployment

mechanism. This mechanism involves operating two

versions of an application concurrently and moving

production traffic between the old and new version. The

Blue-Green deployment mechanism switches between two

different versions of an application which support N-1

compatibility. The old and new versions of the application

are used to distinguish between the two apps.

How To Handle Back-Up And Recovery

Of Persistent Storage In The Context

Of Kubernetes

Persistent storage in Kubernetes can be handled with etcd

which is a consistent and essential key-value store since it

acts as a storage location for all Kubernetes' cluster data.

They ensure the correct functioning of etcd, and the

following requirements are needed:

Check out for resource starvation

Run etcd as a cluster of odd members

Ensure that the etcd leader timely relays heartbeats to

followers to keep the followers stable

To ensure a smooth back-up, you may operate etcd with

limited resources. Persistent storage problems can be

eliminated by periodically backing up the cluster data which

is essential in recovering the clusters in the case of losing

master nodes. The Kubernetes states any critical

information, i.e., secrets are contained in the snapshot file

which can be encrypted to prevent unauthorized entry.

Backing up Kubernetes clusters into the etcd cluster can be

accomplished in two major ways: built-in snapshot and

volume snapshot.

etcd clusters can be restored from snapshots which are

taken and obtained from an etcd process of the major and

minor version. etcd also supports the restoration of clusters

with different patch versions. A restore operation is usually

employed to recover the data of a failed cluster.

In the case of failure in the majority of etcd members, the

etcd cluster is considered failed and therefore Kubernetes

cannot make any changes to its current state. In this case,

the user can recover the etcd cluster and potentially

reconfigure the Kubernetes API server to fix the issue.

How To Deploy An Application With

Geographic Redundancy In Mind

Geo-Redundant applications can be deployed using

Kubernetes via a linked pair of SDN-C. This is still a new

concept developed in ONAP Beijing and involves using one

site as an active site and the other site acting as a warm

standby, which could also be used as an active site. The

operator is tasked to monitor the health of the active site by

establishing failures and initiating a scripted failover. They

are also responsible for updating the DNS server so that the

clients would direct their messaging towards the now-active

site. A PROM component, which was added later on, can

automatically update the DNS server and monitor health,

thereby eliminating the need of having an operator. PROM

relays the status of the site health and can make informed

decisions.

Conclusion

In conclusion, while this guide offers you a good

understanding of the essential components of Kubernetes,

you have to carry out practical examples to gain a deeper

understanding of the concepts. This guide only explains the

basic functionalities but does delve deeper into fundamental

concepts. It is important to note that Kubernetes is a

sophisticated resource for creating and deploying; therefore,

you need to start with the basics as you go deeper into key

functionalities. We hope this guide has been key in

understanding the basic concepts of Kubernetes which are

still a developing concept. Thank you

** How did you like the book? Could you spare some time

and review it.

	Kubernetes Handbook
	Introduction
	Kubernetes Defined
	Kubernetes Background
	Advantages Of KUBERNETES
	Chapter 1: How Kubernetes Operates: The NUTS and Bolts
	 Master
	 Minion –
	 Pod
	 Replication Controller
	 Label
	 Kubecfg
	 Service
	Docker and Kubernetes
	Pods: Running Containers in Kubernetes
	Replication and Other Controllers
	Replication Controller
	Replication Sets
	Deployments
	Master and Nodes
	Services
	Service Discovery
	Service Discovery with Environmental Variables
	Cluster DNS
	Direct Access
	DIY Load Balancing
	Managed Hosting
	ReplicaSets-Replica Set Theory/Hands-on with ReplicaSets
	Daemon Sets
	Jobs
	Non-parallel Jobs
	Parallel Job with a fixed completion count
	Parallel Jobs with a work queue
	CronJobs
	ConfigMaps and Secrets
	Secrets
	ConfigMaps
	Chapter 2: Deployments
	Integrating Storage Solutions and Kubernetes
	NetApp Trident
	Deploying Real World Application
	Parse
	Fundamentals
	Building the parse-server
	Deploying the parse-server
	Testing Parse
	How to Perform a Rolling Update
	Rolling Updates with a Replication Controller
	Rolling Updates with a Deployment
	Statefulness: Deploying Replicated Stateful Applications
	Deploying a Replicated Stateful Application
	Understanding Kubernetes Internals
	The Kubernetes Control Panel
	Nodes
	Add-on Components
	Functioning of the Components
	Kubernetes using etcd
	Function Of The Api Server
	The Function of Kubelet
	Securing the Kubernetes API Server
	Transport Security
	Authentication
	Authorization
	Admission Control
	Securing Cluster Nodes and Networks
	Controlling Access to the Kubernetes API
	Controlling access to the Kubelet
	Controlling the capabilities of a workload or user at runtime
	Protecting cluster components from compromise
	Managing Pods Computational Resources
	Running OF PODS with Resource limits
	Automatic scaling of pods and cluster nodes
	Extending Kubernetes Advanced Scheduling
	Best Practices for Developing Apps
	Building Containers
	Container Internals
	Deployments
	How To Deploy Applications That Have Pods With Persistent Dependencies
	How To Handle Back-Up And Recovery Of Persistent Storage In The Context Of Kubernetes
	How To Deploy An Application With Geographic Redundancy In Mind
	Conclusion

