

Pandas Workout V13

1. MEAP_VERSION_13
2. Welcome
3. 1_Series
4. 2_Data_frames
5. 3_Importing_and_exporting_data
6. 4_Indexes
7. 5_Cleaning_data
8. 6_Grouping,_joining,_and_sorting
9. 7_Midway_project

10. 8_Strings
11. 9_Dates_and_times
12. 10_Visualization
13. 11_Performance
14. 12_Final_project

MEAP VERSION 13

Welcome
Thank you for purchasing the MEAP for Pandas Workout. This book is all
about improving your understanding of the “pandas” library for Python —
but not by telling you about it. Rather, you’ll become more fluent with
“pandas” as you work through numerous exercises, improving your skill a
little bit at a time.

I’ve been using Python for about 30 years, and was a bit skeptical when I
heard about using NumPy and “pandas” for data analysis. After all, Python is
many things, but speedy and efficient aren’t two of them. It turns out that
NumPy and “pandas” are implemented in C, with a thin layer of Python that
makes them easy to use. You can analyze large quantities of data from within
Python, without

Many people use NumPy — but “pandas” extends NumPy, providing
additional functionality that makes it easy, and even fun, to do data analysis.
You can think of “pandas” as an automatic transmission, compared with
NumPy’s manual transmission. Both work, but “pandas” makes it easier, and
allows us to think at a higher level of abstraction.

The thing is, “pandas” uses data structures that look and act different from
regular Python data structures. And many of the classic techniques for
working with Python are a bad idea with “pandas”. So learning what you
should (and shouldn’t) do with “pandas” can take some time, even if you’re
an old hand with Python.

This book contains 50 main exercises, and another 150 smaller exercises,
aimed at helping you become more fluent with “pandas” through these sorts
of hands-on challenges. The solution will usually be very short, often
involving one line of code. But figuring out what to write, and which of the
many possible “pandas” techniques is most applicable, can take some time.

I’ve been teaching data science, including “pandas”, to companies around the
world for more than a decade. These exercises are taken from the courses that

I teach, and reflect the topics that my students have the greatest trouble
understanding. I’m confident that if you work through all of the exercises in
this book, you’ll have a much better sense of how to use “pandas” in your
work. You’ll write more idiomatic, easier to understand, and more efficient
code — and will enjoy yourself more, too!

As a MEAP, this book is still being written and edited. I welcome your
comments, corrections, and suggestions so that it can help as many people as
possible to use “pandas” more effectively. Please be sure to post any
questions, comments, or suggestions you have about the book in the liveBook
Discussion Forum.

-Reuven M. Lerner

In this book

MEAP VERSION 13 About this MEAP Welcome Brief Table of Contents 1
Series 2 Data frames 3 Importing and exporting data 4 Indexes 5 Cleaning
data 6 Grouping, joining, and sorting 7 Midway project 8 Strings 9 Dates and
times 10 Visualization 11 Performance 12 Final project

1 Series
If you have any experience with Pandas, then you know that we typically
work with data in two-dimensional tables, known as "data frames," with rows
and columns. But each column in a data frame is built from a "series," a one-
dimensional data structure, which means that you can think of a data frame as
a collection of series.

Figure 1.1. Each of a data frame’s columns is a series

This perspective is particularly useful once you learn what methods are
available on a series, because most of those methods are also available on
data frames—only instead of getting a single result, we’ll get one result for
each column in the data frame. For example, the mean method, when applied
to a series, returns the mean of the values in the series. If you invoke mean on
a data frame, then Pandas will invoke the mean method on each column,
returning a collection of mean values. Moreover, those values are themselves
returned as a series, on which you can invoke further methods.

Figure 1.2. Invoking a series method (such as mean) on a data frame often returns one value for
each column

Deep understanding of series can be useful in other ways, too. In particular,
with a "boolean index" (also known as a "mask index"), we can retrieve
selected rows and columns of a data frame. (If you aren’t familiar with
boolean indexes, see the sidebar, "Selecting values with booleans," below.)

One of the most important and powerful tools we have as Pandas users is the
index, used to retrieve values from both series and data frames. We’ll look at
indexes in greater depth in later chapters, but knowing how to set and modify
an index, as well as retrieve values using unique and non-unique values,
comes in handy just about every time you use Pandas. This chapter will thus
help you to better understand how to use indexes effectively.

 Note

I use a number of variable names throughout this book:

s refers to a series
df refers to a data frame
pd is an alias to the Pandas library, loaded with import pandas as pd

While I’m a big fan of using semantically powerful variable names, I tend to
use s and df quite a bit when teaching Pandas. Given that we’re normally
working with only one series or data frame at a time, I’ll assume that its
meaning will be clear. In the rare cases when I use more than one series or
data frame, I’ll normally add numbers to s and df.

1.1 Useful references
Table 1.1. What you need to know

Concept What is it? Example To learn more

Jupyter

Web-based
system for
programming

jupyter notebook http://mng.bz/BmYq

in Python
and data
science

f-strings

Strings into
which
expressions
can be
interpolated

f’It is currently

{datetime.datetime.now()}'

http://mng.bz/lWoz
and
http://mng.bz/a1dJ

data types (aka
dtype)

Data types
allowed in
series

np.int64 http://mng.bz/gBVR

pd.Series.mean

returns the
arithmetic
mean of the
series
contents

s.mean() http://mng.bz/e1DJ

np.random.randint

returns a
NumPy array
of randomly
selected
integers

np.random.randint(0, 10, 100) http://mng.bz/pPyP

np.random.rand

returns a
NumPy array
of randomly
selected
floats
between 0

`np.random.rand(10) http://mng.bz/Ox9P

and 1

np.random.normal

returns a
NumPy array
of random
floats in a
normal
distribution

`np.random.normal(100, 10, 5) http://mng.bz/Y1e7

s.std()

returns the
standard
deviation of
a series

`s.std() http://mng.bz/Gy4N

s.loc

access
elements of a
series by
labels or a
boolean
array

s.loc['a'] http://mng.bz/zXlZ

s.iloc

access
elements of a
series by
position

s.iloc[0] http://mng.bz/0K7z

s.value_counts

returns a
sorted
(descending
frequency)
series
counting

s.value_counts() http://mng.bz/WzOX

how many
times each
value
appears in s

s.round

returns a new
series based
on s, in
which the
values are
rounded to
the specified
number of
decimals.

s.round(2) http://mng.bz/8rzg

s.diff

returns a new
series based
on s, whose
values
contain the
differences
between each
value in s
and a
previous
row.

s.diff(1) http://mng.bz/jP59

s.describe

returns a
series
summarizing
all major
descriptive
statistics in s

s.describe() http://mng.bz/EQ1r

pd.cut

returns a
series with
the same
index as s,
but with
categorized
values based
on cut points

pd.cut(s, bins=[0, 10, 20],

labels=['a', 'b', 'c'])
http://mng.bz/N2eX

pd.read_csv with
squeeze

returns a new
series based
on a single-
column file

`s =
pd.read_csv('filename.csv').squeeze() http://mng.bz/D4N0

str.split

Breaks
strings apart,
returning a
list

'abc def ghi'.split() # returns

['abc', 'def', 'ghi']
http://mng.bz/aR4z

1.2 Exercise 1: Test scores

Create a series of 10 elements, random integers from 70-100, representing
scores on a monthly exam. Set the index to be the month names, starting in
September and ending in June. (If these months don’t match the school year
in your location, then feel free to make them more realistic.)

With this series, answer the following questions:

What is the student’s average test score for the entire year?
What is the student’s average test score during the first half of the year
(i.e., the first five months)?
What is the student’s average test score during the second half of the
year?

Did the student improve their performance in the second half? If so, then
by how much?

1.2.1 Discussion

In this first exercise, I asked you to create a series of 10 elements, with
random integers from 70-100.

This raises several questions:

How do we define a series?
How can we create 10 random integers from 70-100?
How can we set the index of the series to month names?

To define a Pandas series, we call Series, passing it an iterable—typically, a
Python list or NumPy array. For example:

s = Series([10, 20, 30, 40, 50])

Here, I asked you to define the series such that it contains 10 random
integers. There are certain areas in which Pandas defers to NumPy, including
when generating random numbers. We can get a NumPy array of random
integers by calling np.random.randint; its three arguments indicate the
range (minimum and maximum) ofthe random numbers, as well as how many
we want.

 Note

The Python standard library’s random module has a randint method, which
returns a random integer:

random.randint(0, 100)

In the case of random.randint, the returned values range from 0 to 100,
including 100.

It’s easy to confuse this behavior with that of NumPy’s np.random.randint
method:

np.random.randint(0, 100, 10)

The NumPy method differs from random.randint in two ways: First, it takes
a third argument, indicating the length of the returned series. Second, the
second argument is one more than the highest value we can get back. That is,
while random.randint(0, 100) could potentially return a value of 100,
np.random.randint(0, 100, 10) cannot.

I can thus get 10 random integers between 70 and 100 with:

np.random.randint(70, 101, 10) #1

I can use them to create a series:

s = Series(np.random.randint(70, 101, 10))

 Note

Since this is a book of exercises, you will likely want to compare your
solutions with mine. How can we do that, though, if we’re both generating
random numbers? We can set the "random seed," the number which kicks off
NumPy’s random number generator, to an agreed-upon number, such as 0.

If you call np.random.seed(0), and then ask for a random integer between
70 and 100, you’re guaranteed to get the same result (82) each time, just like
me. All of my exercises that use random numbers will thus start with
np.random.seed(0), and I suggest you do that, too.

That said, the NumPy documentation explicitly says that np.random.seed is
a convenience, legacy function, and that it doesn’t represent the best practice
for setting the random seed in a production program. You can see a
demonstration of their suggested replacement here: http://mng.bz/QPxw.

We now have a series of random integers between 70 and 100. But the index
contains integers from 0 through 9—much as would be the case in a NumPy
array, or a Python list. There’s nothing inherently wrong with a numeric
index, but Pandas gives us much more power and flexibility, letting us use a
wide variety of data types, including strings.

We can change the index by assigning to the index attribute:

np.random.randint(0)

s = Series(np.random.randint(70, 101, 10))

s.index = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()

Sure enough, printing the contents of s will show the same values, but with
our index:

Sep 82

Oct 85

Nov 91

Dec 70

Jan 73

Feb 97

Mar 73

Apr 77

May 79

Jun 89

dtype: int64

 Note

You can assign a list, NumPy array, or Pandas series as an index. However,
the data structure you pass must be of the same length as the series. If it isn’t,
you’ll get a ValueError exception, and the assignment will fail.

If we know what index we’ll want when we create the series, we can assign it
to the index keyword parameter:

np.random.randint(0)

months = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()

s = Series(np.random.randint(70, 101, 10),

 index=months)

This is my preferred method for creating a series, and I’ll be using this style
for most of the book. That said, if and when I ever want to change the index,
I can do that by assigning a new value to s.index.

Now that we’ve created our series, how can we perform the calculations that I
asked for?

We first want to find the student’s average test score for the entire year. We
can calculate that with the mean method, which runs on any numeric series.
(Even if the series only contains integers, mean will always return a float.
That’s because in Python, division always returns a float.)

print(f'Yearly average: {s.mean()}')

Note that I put the call to s.mean() inside of curly braces in a Python f-string.
F-strings (short for "format strings," although I like to call them "fancy
strings") allow any Python expression inside of the curly braces. The result is
a string, suitable for assigning, printing, or passing as argument to a function
or method.

Next, we want to find out the averages for the first and second halves of the
school year. In order to do that, we’ll need to retrieve the first five elements
in the series, and then the second five elements. There are a few different
ways to accomplish this.

If we were using a standard Python sequence, then we would be able to use a
"slice," using square brackets along with indications of where we want to
start and end. For example, given a string s, we can get the first five elements
with the slice s[:5]. That returns a new string with the elements of s, starting
with index 0 (the start), up to and not including index 5. Generally speaking,
whenever you provide a range in Python—be it in a slice or the range builtin
—the maximum is always "up to and not including."

It’s thus not a surprise that we can retrieve the first five elements from our
sequence using this same syntax, namely s[:5]. Since a slice always returns
an object of the same type, our slice here will return a five-element series.
Because it’s a series, we can then run the mean method on it, getting the mean
score for the first semester:

s[:5].mean() #1

What about the second semester? We can get those scores in a similar way,
creating a slice from index 5 until the end of the series, with s[5:]. It’s
actually important that we not provide an ending index here, because the max
index is always one more than we want. If we were to explicitly state s[5:9]

or s[5:-1], then we would miss the final value. And yes, we can say
s[5:10], even though there is no index 10, because slices tend to be
forgiving in Python:

s[5:].mean() #1

Figure 1.3. Retrieving slices from our slice

I would argue that it’s even better to use the .loc and .iloc accessors.
Whereas .loc retrieves one or more elements based on the index, .iloc
retrieves based on the numeric position—the default index. Let’s start with
.iloc, because its usage is quite similar to what we’ve already written:

s.iloc[:6].mean()

"But wait," you might be saying, "why are we using the positional, numeric
index? Didn’t we set an index with the names of the months?" And indeed,
we did. Moreover, we can use those to get our answers instead.

Once again, we want to get a slice. And once again, we can do that—Pandas
is smart enough to let us use the textual index with a slice. We can use the
loc accessor if we want, which is normally a good idea when working with
series and mandatory when working with data frames. It’s not mandatory
with a slice, but is definitely a good idea, to keep your code more readable.

If I want to get the scores from the first five months (September, October,
November, December, and January), then I can use the following slice:

first_half_average = s.loc['Sep':'Jan'].mean()

The endpoint of a slice is normally "up to and not including," but in this case
the slice endpoint is "up to and including." That is, our 'Sep':'Jan' slice
includes the value for January. What gives?

Simply put, when you use a custom index in Pandas, the slice end is no
longer "up to and not including," but is rather "up to and including." This
makes logical sense, since it’s not always obvious what "up to and not
including" a string would be. And yet, it’s often surprising for people with
Python experience who are starting to use Pandas. It’s also different from the
behavior we saw, on the same series, with the positional indexes.

 Note

Most of the time, I prefer to use textual indexes in Pandas, because they’re
easier to understand, and make the code more readable. But there is a cost: In
some simple benchmarking that I performed, I found that it took Pandas
twice as long to get the text-based slice (with .loc) as the number-based slice
(with .iloc). If your Pandas analysis takes a long time, consider trying
positional indexes with .iloc.

Figure 1.4. Retrieve via the index using .loc, and the position using .iloc.

I should add that there’s another way to get the first and second halves of the
year: The head and tail methods. The head method takes an integer
argument, and returns that many elements from the start of s. (If you don’t
pass a value, then it returns the first 5, which is quite convenient for our
purposes.) We can thus get the mean for the first five months of the year
with:

s.head().mean()

If you prefer to be explicit, you could say:

s.head(5).mean()

We can similarly use the tail method to to get the final five elements from s:

s.tail().mean()

Once again, the default argument value is 5, but we can make it explicit with:

s.tail(5).mean()

Finally, we can check the improvement by subtracting the first half’s average
from the second half. I decided to assign each half’s mean to a variable, and
then calculated the difference in an f-string:

first_half_average = s['Sep':'Jan'].mean()

second_half_average = s['Feb':'Jun'].mean()

print(f'First half average: {first_half_average}')

print(f'Second half average: {second_half_average}')

print(f'Improvement: {second_half_average - first_half_average}')

1.2.2 Solution

np.random.seed(0)

months = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()

s = Series(np.random.randint(70, 101, 10),

 index=months)

print(f'Yearly average: {s.mean()}')

first_half_average = s['Sep':'Jan'].mean()

second_half_average = s['Feb':'Jun'].mean()

print(f'First half average: {first_half_average}')

print(f'Second half average: {second_half_average}')

print(f'Improvement: {second_half_average - first_half_average}')

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%

20pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%

0Anp.random.seed%280%29%0A%0Amonths%20%3D%20'Sep%20Oct%20Nov%20Dec%20Jan%

20Feb%20Mar%20Apr%20May%20Jun'.split%28%29%0A%0As%20%3D%20Series%28np.

random.randint%2870,%20101,%2010%29,%0A%20%20%20%20%20%20%20%20%20%20

index%3Dmonths%29%0A%0Aprint%28f'Yearly%20average%3A%20%7Bs.mean%28%29%

7D'%29%0A%0Afirst_half_average%20%3D%20s%5B'Sep'%3A'Jan'%5D.mean%28%29%0A

second_half_average%20%3D%20s%5B'Feb'%3A'Jun'%5D.mean%28%29%0A&d=2022-11-08

&lang=py&v=v1

1.2.3 Beyond the exercise

Here are three additional exercises to help you better understand using .loc
and .iloc to retrieve data from s, the series used in this exercise:

In which month did this student get their highest score? Note that there
are at least two ways to accomplish this: You can sort the values, taking
the largest one, or you can use a boolean ("mask") index to find those
rows that match the value of s.max(), the highest value. (If you aren’t
yet familiar with boolean indexing, see the "Selecting values with
booleans" section, below.)
What were this student’s five highest scores?
Round the student’s scores to the nearest 10. So a score of 82 would be
rounded down to 80, but a score of 87 would be rounded up to 90. Be
sure to read the documentation for the round method
(https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.round.html), to understand its
arguments, as well as how it handles numbers like 15 and 75.

Understanding mean and standard deviation

Two of the most common and important calculations we can make on a
dataset are the mean and the standard deviation. Pandas lets us calculate the
mean on a series s with s.mean() , and the standard deviation with s.std().

But what are these calculations, anyway? And why do we care about them so
much?

The mean allows us to describe the middle point in a data set. (In a moment,
I’ll describe where this description can be flawed.) We add up all of the
values, and then divide by the number of values we had. In Pandas syntax, we
could say that s.mean() is the same as s.sum() / s.count(), since s.sum()
adds up the values and s.count() tells us how many non-NaN values are in
the series.

Is mean a truly good measurement of the "middle" of our data? The answer
is: It depends. On many occasions, it’s quite useful, because it gives us a
center point on which we can focus. For example, we could talk about mean

height, mean weight, mean age, or mean income in a population, and it’ll
give us a single number that represents the entire population under
discussion.

But the mean is flawed, in that a single large value can skew the mean. An
old statistical joke is that when Bill Gates enters a bar, everyone in the bar is
now, on average, a millionaire. For this reason, the mean isn’t the only way
we might calculate the "middle" of our values. A common alternative is the
"median," which is the value that’s precisely halfway from the smallest to the
largest values. (If there is an even number of values, then we take the average
of the two innermost ones.) In our Bill Gates example, the median income of
everyone in the bar will shift slightly when he enters, but won’t change any
assumptions we’ve made about the population.

Figure 1.5. To calculate the mean, we first sort the values, then take the middle one

Figure 1.6. By changing one value, we can see how the mean is more easily affected by outliers
than the median

Whether we’re using the mean or the median to find the central point in our
data set, we will almost certainly want to know the "standard deviation"—a
measurement of how much the values in our data set vary from one another.
In a data set with 0 standard deviation, the values are all identical to one
another. By contrast, a data set with a very large standard deviation will have
values that vary greatly from the mean value. So the higher the standard
deviation, the more the values in the data set vary from the mean.

To calculate the standard deviation on series s, we do the following:

Calculate the difference between each value in s and its mean
Square each of these values
Sum the squares
Divide by the number of elements in s. This is known as the variance.
Finally, we take the square root of the variance, which gives us the
standard deviation.

Expressed in Pandas, we say:

import math

math.sqrt(((s - s.mean()) ** 2).sum() / s.count())

Given our values of s from before, this results in a value of
8.380930735902785. If we then calculate s.std(), we get … uh, oh. We get
a different value, 8.83427667918797. What’s going on?

By default, Pandas assumes that we don’t actually want to divide by
s.count(), but rather by s.count() - 1. This is known as the "sample
standard deviation," and is typically used on a sample of the data, rather than
the entire population, and the Pandas authors decided to default to this
calculation. (NumPy’s std calculation doesn’t do this.)

If you really want to get the same result as we calculated, and as NumPy
provides, you can pass a value of 0 to the ddof ("delta degrees of freedom")
parameter, and get the same value as we calculated:

s.std(ddof=0)

This tells Pandas to subtract 0 (rather than 1) from s.count(), and thus

match our calculation for standard deviation. Note that In this book, I’m not
going to pass this parameter to std, and will use the default value of 1 for the
ddof parameter.

In a normal distribution, used for many statistical assumptions, we expect that
68% of a data set’s values will be within 1 standard distribution of the mean,
that 95% will be within two standard deviations, and 99.7 will be within three
standard deviations.

If you invoke np.random.randint (for integers) or np.random.rand (for
floats), you’ll get a truly random distribution. If you prefer to get a normal
distribution, in which the randomly selected numbers are centered around a
mean and within a particular standard deviation, you can instead use
np.random.normal. This method three arguments: The mean, the standard
deviation, and the number of values to generate. It returns a NumPy array of
with a dtype of np.float64, which we can then use to create a new series.

In this section, we used a number of so-called "aggregation methods," which
run on a series and return a single number—for example, sum, mean, median,
and std. We’ll use these quite a bit throughout the book, and in any data
analysis projects you work on.

 Warning

The sum method is quite useful, as you can imagine. You will likely want to
use it on numeric series, in order to combine the values. But it turns out that
if you run s.sum() when s is a series of strings, the result will be the strings
concatenated together.

s = Series('abcd efgh ijkl'.split())

s.sum() #1

Things get even weirder when your series contains strings, but those strings
are numeric:

s = Series('1234 5678 9012'.split())

s.mean() #1

Where does this number come from? The values of s are added together as
strings, resulting in '123456789012'. But then s.mean() converts this string
into an integer, and divides it by 3, the length of the series.

This is one of those cases when the behavior makes logical sense, but is
almost certainly not what you want.

Understanding dtype

In Python, we make constant use of our built-in core data types: int, float,
str, list, tuple, and dict. Pandas is a bit different, in that we don’t use
those types much. Rather, we use the types that we get from NumPy, which
provide us with a thin, Python-compatible layer over values defined in C.

Every series has a dtype attribute, and you can always read from that to know
the type of data it contains. Every value in a series is of that type; unlike a
Python list or tuple, you cannot have different types mixed together in a
series. That said, Pandas does allow us to define the dtype as object,
meaning that a series contains Python objects. When the dtype is object, we
can usually assume that the series contains Python strings; more on that in
chapter 8. Storing non-string objects is rare, and should generally be avoided,
but there are sometimes good reasons for it. You’ll also have a dtype of
object if there are multiple, different types in the series.

There are several standard types of dtype values, defined by NumPy and
used by Pandas. There are also some special, Pandas-specific types, some of
which we’ll discuss later in the book. The core ones to know are:

Integers of different sizes: np.int8, np.int16, np.int32, and np.int64.
Unsigned integers of different sizes: np.uint8, np.uint16, np.uint32,
and np.uint64
Floats of different sizes: np.float16, np.float32, and np.float64. (On
some computers, you also have np.float128.)
Python objects: object

When you create a series, Pandas normally assigns the dtype based on the
argument you pass to Series:

If all of the values are integers, then the dtype is set to be np.int64.
If at least one of the of the values is a float (including NaN), then the
dtype is set to be np.float64.
Otherwise, the dtype is set to be object.

You can override these choices by passing a value to the dtype parameter
when you create a series. For example:

s = Series([10, 20, 30], dtype=np.float16)

If you try to pass a value that’s incompatible with the dtype you’ve specified,
Pandas will raise a ValueError exception.

Why should you care about the dtype? Because getting the type right,
especially if you’re working with large data sets, allows you to balance
memory usage and accuracy. These are problems that we normally don’t
think about in standard Python, but they are front and center when working
with Pandas.

For example: The np.int8 type handles 8-bit signed numbers (i.e., both
positive and negative), which means that it handles numbers from -128
through 127. What happens if you add 1 to a number in such a series?

s = Series([127], dtype=np.int8)

s+1 #1

That’s right: In the world of 8-bit signed integers, 127+1 is -128. It’s sort of
like the odometer of your car rolling over back to 0 when you’ve driven it for
many years. Except that you won’t have any warning, and thus won’t know
whether your calculations are accurate or not.

Yes, this is a problem. And so, you need to make sure that whatever dtype
you use on your series will be big enough to store whatever data you’re
working with, including the results of any calculations you might perform. If
you’re planning to multiply your data by 10, for example, you’ll need to
ensure that the dtype is large enough to handle that, even if you won’t be
displaying or directly using such values.

Given this issue, why not just go for broke, and use 64-bit integers for

everything? After all, those are likely to handle just about any value you
might have.

Yes, but those will also use a lot of memory. Remember that 64 bits is 8
bytes, which doesn’t sound like very much for a modern computer. But if
you’re dealing with 1 billion numbers, using 64 bits means that the data will
consume 8 gigabytes of memory—without taking into consideration any
overhead that Python, your operating system, and the rest of Pandas might
need. And of course, you’re unlikely to have just those numbers in memory.

As a result, you’ll need to consider how many bits you’ll want and need to
use for your data. There’s no magic answer here; each case must be evaluated
on its own merits.

What if you want to change the dtype of a series once you’ve already created
it? You can’t set the dtype attribute; it’s read only. Instead, you will need to
create a new series based on the existing one by invoking the astype method:

s = Series('10 20 30'.split())

s.dtype #1

s = s.astype(np.int64)

s.dtype #2

If you try to invoke astype with a type that isn’t appropriate for the data,
you’ll get (as we saw when constructing a series) a ValueError exception.

1.3 Exercise 2: Scaling test scores

When I was in high school and college, our instructors would sometimes give
tests that were extremely hard. Rather than fail most of the class, they would
"scale" the test scores, known in some places as "grading on a curve." That is:
They would assume that the average test score should be 80, calculate the
difference between our actual mean and 80, then add that difference to each
of our scores.

For this exercise, I want you to generate 10 test scores between 40 and 60,
again using an index starting at September and ending with June. Find the

mean of the scores, and add the difference between the mean and 80 to each
of the scores.

1.3.1 Discussion

One of the most important ideas in Pandas (and in NumPy) is that of
vectorized operations. When you perform an operation on two different
series, the indexes are matched, and the operation is performed via the
indexes. For example, consider:

s1 = Series([10, 20, 30, 40])

s2 = Series([100, 200, 300, 400])

s1 + s2

The result is:

0 110

1 220

2 330

3 440

dtype: int64

Figure 1.7. When we add two series together, the result is a new series—the result of adding
elements at the same index.

What happens if we set an explicit index, rather than rely on the default
positional index?

s1 = Series([10, 20, 30, 40],

 index=list('abcd'))

s2 = Series([100, 200, 300, 400],

 index=list('dcba'))

s1+s2

The result is:

a 410

b 320

c 230

d 140

dtype: int64

Once again, Pandas added the values together according to index. Notice that
this happened despite the fact that the index in s1 was forwards (abcd)
whereas the index in s2 was backwards (dcba). The index values determine
the value match-ups, not their position.

Figure 1.8. Vectorized operations work use the index, not the position.

But what happens when we try to add not one series with another series, but
rather a series with a scalar value? Pandas does something known as
"broadcasting"—it applies the operator and that scalar value to each
individual value in the series, returning a new series. For example:

s = Series([10, 20, 30, 40],

 index=list('abcd'))

s + 3

the result is:

a 13

b 23

c 33

d 43

dtype: int64

Notice that we get a new series back from the operation, whose indexes
match those of s, and whose values are the result of adding each element of s
with the broadcast integer 3. We can do this with any operator, including
comparison operators such as == and <. (The result of the latter is a boolean
series, which we can then use as a "mask index" to keep only those rows that
we want.)

Figure 1.9. Operations involving a series and a scalar value result in "broadcasting" the
operation, resulting in a new series.

So if we want to generate 10 test scores between 40 and 60, and then add 10
points to them, we can do the following:

np.random.seed(0)

months = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()

s = Series(np.random.randint(40, 60, 10),

 index=months)

s+10

And sure enough, we’ll get the following:

Sep 62

Oct 65

Nov 50

Dec 53

Jan 53

Feb 57

Mar 59

Apr 69

May 68

Jun 54

dtype: int64

That’s nice, but the code still doesn’t quite do what we want. That’s because
we don’t know how many points we need to add to each score. What we need
to do is first find the mean of s, and then determine how far that is from 80.
We can do that by invoking s.mean() and then subtracting that from 80.
Whatever we get back is the scale factor we need to add.

In other words, we can say:

s + (80-s.mean())

And the result?

Sep 83.0

Oct 86.0

Nov 71.0

Dec 74.0

Jan 74.0

Feb 78.0

Mar 80.0

Apr 90.0

May 89.0

Jun 75.0

dtype: float64

Notice how this solution moved back and forth between scalar values and
series, which is common in Pandas calculations: The call to s.mean()
returned a scalar value. We then calculated 80 - s.mean(), resulting in a
scalar value. But then we added s and that number, adding (using broadcast)
our series with that scalar value.

 Note

The final series has a dtype of float64, whereas s had a dtype of int64.
Why the change? Because whenever we perform an operation on an int and a
float, we get back a float, even if there’s no need for it, as with addition. And
division in Python 3 always returns a float. So the call to s.mean(), because
it invokes division, will always return a float. And then when we add (via
broadcast) the integer values in s with the floating-point mean, we get a
series of floats.

1.3.2 Solution

s + (80 - s.mean())

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Anp.

random.seed%280%29%0A%0Amonths%20%3D%20'Sep%20Oct%20Nov%20Dec%20Jan%20

Feb%20Mar%20Apr%20May%20Jun'.split%28%29%0A%0As%20%3D%20Series%28np.

random.randint%2870,%20101,%2010%29,%0A%20%20%20%20%20%20%20%20%20%20

index%3Dmonths%29%0A%0Aprint%28f'Yearly%20average%3A%20%7Bs.mean%28%29%

7D'%29%0A%0Afirst_half_average%20%3D%20s%5B'Sep'%3A'Jan'%5D.mean%28%29%0A

second_half_average%20%3D%20s%5B'Feb'%3A'Jun'%5D.mean%28%29%0A%0As%20%2B%

20%2880%20-%20s.mean%28%29%29&d=2022-11-08&lang=py&v=v1

1.3.3 Beyond the exercise

Whether you’re performing an operation on two series, or using broadcasts to
combine a series and a scalar, the index is one of the most important ideas in
Pandas. It dictates the way in which vectorized operartions will be performed,
as well as the index of the new series created by the operation. Here are some
more exercises having to do with these topics:

There’s at least one other way to scale test scores, namely by looking at
both the mean of the scores and their standard deviation. We can say
anyone who scored within 1 standard deviation of the mean got a C
(below the mean) or a B (above the mean). Anyone who scored more
than 1 standard deviation above the mean got an A, and anyone who got
more than one standard deviation below the mean got a D. During which
months did our student get an A, B, C, and D?
Were there any test scores more than 2 standard deviations above or
below the mean? If so, in which months?
How close are the mean and median to one another? What does it mean
if they are close? What would it mean if they are far apart?

1.4 Exercise 3: Counting 10s digits

In this exercise, I want you to generate 10 random integers in the range 0 -
100. (Remember that the np.random.randint function returns numbers that
include the lower bound, but exclude the upper bound.) Create a series
containing those numbers' 10s digits. Thus, if our series contains 10, 25, 32,
we want the series 1, 2, 3.

1.4.1 Discussion

Given that we have created our series with np.random.randint(0, 100,
10), we know that the 10 integers are all going to range from 0 (at the low
end) to 99 (at the high end). We know that each number will contain either 1
or 2 digits.

To get the 10s digit, we can:

Divide our series by 10, turning the dtype into a floating type and
moving the decimal point 1 position to the left

Turn our series back into np.int8, removing the fractional part of the
number.
If the original number had two digits, we now have the tens digit. And if
the original number had one digit, then we are left with 0.

Sure enough, this works just fine, resulting in:

0 4

1 4

2 6

3 6

4 6

5 0

6 8

7 2

8 3

9 8

dtype: int8

Notice that the dtype here is int8.

Figure 1.10. Graphical depiction of dividing the series by 10, then converting to np.int8

There is another way to do this, which involves some more type conversions.
This time, won’t convert our series into floats, but rather to strings. Why?
Because when we turn our integers into strings, we can retrieve particular
elements from them, such as the second-to-last digit.

To do this, we will convert our series of integers (dtype of int8) into a series
of strings (dtype of str). We can do that with the astype method:

s.astype(str)

But then what? We’ll talk about this more in chapter 8, which discusses
strings in depth, but the key is the str accessor that lets us apply a string
method to every element in the series. The get method on that accessor
works like square brackets on a traditional Python string—so if we say
s.astype(str).str.get(0), we’ll get the first character in each integer, and
if we say s.astype(str).str.get(-1), we’ll get the final character in each
string. (In Python, negative string indexes count from the end.) We can thus
get the second-to-last digit, aka the tens digit, with
s.astype(str).str.get(-2).

But of course, that’s not quite enough: If we have a one-digit number, then
what will get(-2) return? It won’t give us an error or an empty string, but
rather NaN. Fortunately, we can use the fillna method to replace NaN with
any other value—for example, '0'. We then get back a series containing one-
character strings: the tens digits from our original series. Our code looks like
this:

s.astype(str).str.get(-2).fillna('0')

And the result is:

0 4

1 4

2 6

3 6

4 6

5 0

6 8

7 2

8 3

9 8

dtype: object

The result, as you can see from the dtype, is object, which typically means
Python strings. Can we turn it back into a series of integers? Yes, calling
astype with an integer argument. I’ll use np.int8, since all of our numbers
are small:

s.astype(str).str.get(-2).fillna('0').astype(np.int8)

And the result is:

0 4

1 4

2 6

3 6

4 6

5 0

6 8

7 2

8 3

9 8

dtype: int8

Figure 1.11. Graphical depiction of turning the series into strings, retrieving the item at index -2,
and replacing NaN with 0

I think that this is a cleaner way to do things than the int-to-float technique I
showed above. But this is also more complex, and if you know that you’ll
only have two-digit data, it might be overkill.

 Note

Pandas has traditionally used Python strings, and that’s what I’m going to
assume in this book. As of this writing, however, there is an experimental
new type, known as pd.StringDType, whch aims to replace str. This is part
of a larger movement in Pandas to create new data types, partly so that NaN
will no longer always be a float, but can represent a missing value from any
type. I wouldn’t be surprised if pd.StringDtype is a standard, recommended
part of Pandas in the coming years. But until then, we can keep using regular
ol' Python strings.

1.4.2 Solution

np.random.seed(0)

s = Series(np.random.randint(0, 100, 10))

(s / 10).astype(np.int8)

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Anp.

random.seed%280%29%0As%20%3D%20Series%28np.random.randint%280,%20100,%2010

%29%29%0A%28s%20/%2010%29.astype%28np.int8%29%0A&d=2022-11-08&lang=py&v=v1

1.4.3 Beyond the exercise

What if the range were from 0 - 10,000? How would that change your
strategy, if at all?
Given a range from 0 to 10,000, what’s the smallest dtype we should
use for our integers?
Create a new series, with 10 floating-point values between 0 and 1,000.
Find the numbers whose integer component (i.e., ignoring any fractional
part) are even.

Selecting values with booleans

In Python and other traditional programming languages, we can select
elements from a sequence using a combination of for loops and if
statements. While you could do that in Pandas, you almost certainly don’t
want to. Instead, you want to select items using a combination of techniques
known as a "boolean index" or a "mask index."

Mask indexes are useful and powerful, but their syntax can take some getting
used to.

First, consider that you can retrieve any element of a series via square
brackets and an index:

s = Series([10, 20, 30, 40, 50])

s.loc[3] #1

Instead of passing a single integer, we can also pass a list (or NumPy array,
or series) of boolean values (i.e., True and False):

s = Series([10, 20, 30, 40, 50])

s.loc[[True, True, False, False, True]] #1

Figure 1.12. Choosing items via a mask index

Notice that the list we used was of the same length as s, and that wherever we
passed a True value, the value from s was returned. That’s why this is called
a "mask index," because we’re using the list of booleans as a type of sieve, or
mask, to select only certain elements.

An explicitly defined list of booleans isn’t very useful or common. But we
can also use a series of booleans—and those are easy to create. All we need
to do is use a comparison operator (e.g., ==) which returns a boolean value.
Then we can broadcast the operation, and get a series back. For example:

s.loc[s < 30] #1

Figure 1.13. Generating a boolean series by broadcasting an operation

Figure 1.14. Using the boolean series as a mask index

This code looks very strange, even to experienced developers, in no small
part because s is both outside of the square brackets and inside of them. In
such cases, remember that we first evaluate the expression inside of the
square brackets. In this case, it’s s < 30, which will return a series of boolean
values indicating whether each element of s is less than 30. We get back
Series([True, True, False, False, False]).

That series of booleans is then applied to s as a mask index. Only those
elements matching the True values will be returned—in other words, just 10
and 20.

I can get more sophisticated, too:

s.loc[s <= s.mean()] #1

Now s appears three times in the expression: Once when we calculate
s.mean(), a second when we compare the mean with each element of s via
broadcast, and a third when we apply the resulting boolean series to s. We
can thus see all of the elements that are less than or equal to the mean.

Finally, we can use a mask index for assignment, as well as retrieval. For
example:

s.loc[s <= s.mean()] = 999

The result?

0 999

1 999

2 999

3 40

4 50

dtype: int64

In this way, we replaced the elements less than or equal to the mean with 999

This technique is worth learning and internalizing, because it’s both powerful
and efficient. It’s useful when working with individual series, as in this
chapter—but it’s also applicable to entire data frames, as we’ll see later in the

book.

One final note: Given a series s, you can retrieve multiple items, from
different indexes, using "fancy indexing"—passing a list, series, or similar
iterable inside of the square brackets. For example:

s.loc[[2,4]]

The above code returns a series containing two values—the elements at
s.loc[2] and s.loc[4].

The outer square brackets indicate that we want to retrieve from s using loc.
And the inner square brackets indicate that we want to retrieve more than one
item. Pandas returns a series, keeping the original indexes and values.

Don’t confuse fancy indexing with the application of a mask index; in the
former case, the inner square brackets contain a list of values from the index.
In the case of a mask index, the inner square brackets contain boolean (True
and False) values.

1.5 Exercise 4: Descriptive statistics

The mean, median, and standard deviation are three numbers we can use to
get a better picture of our data. But there are some other numbers that we can
use to fully understand it. These "descriptive statistics," as they’re called in
statistics and data analytics, typically include the mean, standard deviation,
minimum value, 25% quantile, median, 50% quantile, and maximum value.
Understanding and using descriptive statistics is a key skill for anyone
working with data, and in this exercise, you’ll practice doing so, with the
following:

Generate a series of 100,000 floats in a normal distribution, with a mean
at 0 and a standard deviation of 100.
Get the descriptive statistics for this series. How close are the mean and
median? (You don’t need to calculate the difference, but rather consider
why they aren’t the same.)
Replace the minimum value with 5 times the maximum value.
Get the descriptive statistics again. Did the mean, median, and standard

deviations change from their previous values? (Again, it’s enough to see
the difference without calculating it.) If so, why?

1.5.1 Discussion

In this exercise, we create a slightly different distribution than we did before:
Rather than using np.random.randint, we are instead using
np.random.normal, which I described in the sidebar about "Mean and
standard deviation." When we invoke np.random.normal, we’re still getting
random numbers, but they are picked from the normal distribution—and
we’re able to specify both the mean and the standard deviation.

We thus create our series as follows:

s = Series(np.random.normal(0, 100, 100_000))

We could call a number of different methods to find the descriptive statistics.
But fortunately for us, Pandas provides the describe method, which returns a
series of measurements:

count, the number of non-NaN values in the series
mean, the mean, same as s.mean()
std, the standard deviation, same as s.std()
min, the minimum value, same as s.min()
25%, the value in s you’ll choose if you line the values up, from smallest
to largest, and pick whatever is 25% of the way through, same as
s.quantile(0.25)

50%, the median value, same as s.median() or s.quantile(0.5)
75%, the value in s you’ll choose if you line the values up, from smallest
to largest, and pick whatever is 75% of the way through, same as
s.quantile(0.75)

max, the maximum value, same as s.max()

Note that you could get each of these values separately—but it’s often quite
useful to see and read them all at once.

Here’s the result we get:

count 100000.000000

mean 0.157670

std 99.734467

min -485.211765

25% -66.864170

50% 0.172022

75% 67.343870

max 424.177191

dtype: float64

The mean, as we can see, is 0.157670. Not quite zero, which is what we had
asked for, but these are random numbers picked from a distribution, which
means that there will always be a bit of wiggle room. The median, aka the
50% quantile, is 0.172022, which is very close to the mean. That makes
sense, given that in a normal distribution, half of the numbers will be below
the mean and half will be above it. The standard deviation here is roughly
100, meaning that if all goes well, 68% of the values in s will be between
-100 and +100.

What happens when we replace the minimum value with 5 times the max
value? Moreover, how can we do that?

First we need to find the index at which the minimum value is located. The
easiest way to do that is to first get a boolean series, indicating which
elements match the minimum value:

s == s.min()

This returns a boolean series, with True` wherever the value of s is the
minimum. We can then apply this boolean series as a mask index:

s.loc[s == s.min()]

Now we have a series of only one element, whose value is s.min(). We can
assign a new value in its place using assignment. But what do we want to
assign? Five times the max value:

s.loc[s == s.min()] = 5*s.max()

Now that we have modified our series, we can call s.describe() on it once
more. We want to compare the mean, median, and standard deviations. What

do we find?

count 100000.000000

mean 0.183731

std 99.947900

min -465.995297

25% -66.862839

50% 0.174214

75% 67.345174

max 2120.885956

dtype: float64

First, the mean value has gone up by a bit—which makes sense, given that
we took the smallest value and made it larger than the previously defined
largest value. That’s why the mean, while valuable, is sensitive to even a
handful of very large or very small values.

Second, we see that the standard deviation has also gone up. Once again, this
makes a great deal of sense, given that we have made a single value that’s
much larger than anything we had before. True, the standard deviation didn’t
change by that much, but it does reflect the fact that values in our series are
now spread out by more than before.

Finally, the median barely shifted. That’s because it tends to be the most
stable measurement, even when we have fluctuations at the extremes. This
doesn’t mean that you should always look at the median, but it can be useful.
For example, if a country is trying to determine the threshold for government-
sponsored benefits, a small number of very rich people would skew the mean
upward, thus depriving more people of receiving that help. The median
would allow us to say that (for example) the bottom 20% of earners will
receive help.

1.5.2 Solution

import pandas as pd

from pandas import Series, DataFrame

np.random.seed(0)

s = Series(np.random.normal(0, 100, 100_000))

print(s.describe())

s.loc[s == s.min()] = 5*s.max()

print(s.describe())

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Anp.

random.seed%280%29%0A%0As%20%3D%20Series%28np.random.normal%280,%20100,

%20100_000%29%29%0A%0Aprint%28s.describe%28%29%29%0A%0As.loc%5Bs%20%3D%3D

%20s.min%28%29%5D%20%3D%205*s.max%28%29%0As.describe%28%29%0A&d=2022-11-08

&lang=py&v=v1

1.5.3 Beyond the exercise

Demonstrate that 68%, 95%, and 99.7% of the values in s are indeed
within 1, 2, and 3 standard distributions of the mean.
Calculate the mean of numbers greater than s.mean(). Then calculate
the mean of numbers less than s.mean(). Is the average of these two
numbers the same as s.mean()?
What is the mean of the numbers beyond 3 standard deviations?

1.6 Exercise 5: Monday temperatures

Newcomers to Pandas often assume that a series index must be unique. After
all, the index in a Python string, list, or tuple is unique, as are the keys in a
Python dictionary. But the values in a Pandas index can repeat, making it
easier to retrieve values with the same index. If an index contains user IDs,
country codes, or e-mail addresses, you can then use it to retrieve data
associated with specific index values that would otherwise require a messier
and longer mask index.

In this exercise, I want you to create a series of 28 temperature readings in
Celsius, representing four seven-day weeks, randomly selected from a normal
distribution with a mean of 20 and a standard deviation of 5, rounded to the
nearest integer. (If you’re in a country that measures temperature in
Fahrenheit, then just pretend you’re looking at the weather in exotic foreign

location, rather than where you live.) The index should start with Sun,
continue through Sat, and then repeat Sun through Sat until each temperature
has a value.

The question is: What was the mean temperature on Mondays during this
period?

1.6.1 Discussion

This exercise has two parts: First, we need to create a series which contains
28 elements, but with a repeating index. Let’s start by creating a random
NumPy array of 28 elements, drawn from a normal distribution, in which the
mean is 20 and the standard deviation is 5. (This means, as we’ve seen, that
95% of the values will be within 10 degrees of 20, meaning between 10 and
30. An extreme swing for one month, perhaps, but let’s assume that it’s early
spring or late autumn.) I can do this using np.random.normal, as we’ve seen
before:

np.random.normal(20, 5, 28)

How can I create a 28-element index, with the days of the week? One option
is to simply create a list of 28 elements by hand. But I think that we can be a
bit more clever than that, taking advantage of some core Python functionality.
I can start by creating a seven-element list of strings, with the days of the
week:

days = 'Sun Mon Tue Wed Thu Fri Sat'.split()

If I had only seven data points in my series, then I could set the index with
index=days inside of the call to Series. But because we have 28 data points,
I want my list to repeat itself. I can actually create such a 28-element list by
multiplying my list by 4, as in days * 4. Notice that this is very different
behavior than the "broadcast" functionality of Pandas!

I can thus create my series as follows:

s = Series(np.random.normal(20, 5, 28),

 index=days*4)

But np.random.normal returns floats (specifically, np.float64 objects).
How, then, can we turn this into a series of integers?

One way would be to use astype(np.int8) on our numbers. (The
temperature is unlikely to get below -100 degrees or above 100 degrees, so
we should be fine.) And that would basically work, but it would truncate the
fractional part of the values, rather than round them. If I want to round them
to the nearest integer, I can call round on the series, thus getting back floats
with no fractional portion. And then I can call astype(np.int8) on what we
get back, resulting in a series of integers:

np.random.seed(0)

s = Series(np.random.normal(20, 5, 28),

 index=days*4).round().astype(np.int8)

We can now start to address the issue of repeated values in the index. Yes,
the index can have repeated values—not just integers, but also strings (as in
this example) and even other data structures, such as times and dates (as we’ll
see in chapter 9). Normally, when we retrieve a value from a series via loc,
we expect to get a single value back. But if the index is repeated, then we will
get back multiple values. And in Pandas, multiple values will be returned as a
series.

 Note

When you retrieve s.loc[i], for a given index value, you can’t know in
advance whether you will get a single, scalar value (if the index occurs only
once) or a series (if the index occurs multiple times). This is another case in
which you need to know your data, to know what type of value you’ll get
back.

In this case, we know that Mon exists four times in our series. And thus, when
we ask for s.loc['Mon'], we’ll get back a series of four values, all of which
have Mon as their index:

s.loc['Mon']

We get back:

Mon 22

Mon 19

Mon 22

Mon 24

dtype: int8

Since this is a series, we can run any series methods we might like on it. And
since we want to know the average temperature on Mondays in this location,
we can run s.loc['Mon'].mean(). And sure enough, we get the answer:
21.75.

1.6.2 Solution

days = 'Sun Mon Tue Wed Thu Fri Sat'.split()

np.random.seed(0)

s = Series(np.random.normal(20, 5, 28),

 index=days*4).round().astype(np.int8)

s.loc['Mon'].mean()

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adays

%20%3D%20'Sun%20Mon%20Tue%20Wed%20Thu%20Fri%20Sat'.split%28%29%0A%0Anp.

random.seed%280%29%0As%20%3D%20Series%28np.random.normal%2820,%205,%2028%

29,%0A%20%20%20%20%20%20%20%20%20%20index%3Ddays*4%29.round%28%29.astype%

28np.int8%29%0A%0As.loc%5B'Mon'%5D.mean%28%29%0A&d=2022-11-08&lang=py&v=v1

1.6.3 Beyond the exercise

What was the average temperature on weekends (i.e., Saturdays and
Sundays)?
How many times will the change in temperature from the previous day
be greater than 2 degrees?
What are the two most common temperatures in our data set, and how
often does each appear?

1.7 Exercise 6: Passenger frequency

In this exercise, we’re going to start to look at some real-world data, loaded
from a one-column CSV file. We’ll take a deeper look at reading from and
writing to files in Chapter 3, but we’ll start here by invoking pd.read_csv
and then calling squeeze on the one-column data frame it returns.

 Note

Pandas previously supported a squeeze parameter to read_csv. Passing
squeeze=True would accomplish the same thing as the two-step call to
read_csv followed by a call to squeeze. The squeeze parameter in read_csv
has been deprecated, which we reflect here in the code.

The data we’ll look at is in the file taxi-passenger-count.csv, available
along with the other data files used in this course. The data comes from 2015
data I retrieved from New York City’s open data site, from which you can get
enormous amounts of information about taxi rides in New York city over the
last few years. This file shows the number of passengers in each of 100,000
rides.

Your task in this exercise is to show what percentage of taxi rides had only 1
passenger, vs. the (theoretical) maximum of 6 passengers.

1.7.1 Discussion

Let’s start with reading the data into our series. read_csv is one of the most
powerful and commonly used functions in Pandas, reading a CSV file (or
anything resembling a CSV file) into a data structure. As I mentioned above,
read_csv returns a data frame—but if we read a file containing only one
column, we’ll get a data frame with a single column. We can then invoke
squeeze on that single-column data frame, getting a back a series. Because
all of the values in this file are integers, Pandas assumes that we want the
series dtype to be np.int64.

I also set the header parameter to be None, indicating that the first line in the
file should not be taken as a column name, but rather is data to be included in
our calculations:

s = pd.read_csv('data/taxi-passenger-count.csv',

 header=None).squeeze()

The resulting series will have a name value of 0, which we can safely ignore.

 Note

While many methods operate on a series (or data frame), read_csv is actually
a top-level function in the pd namespace. That’s because we’re not operating
on an existing series or data frame. Rather, we’re creating a new one based on
the contents of a file.

Once we have read these values into a series, how can we figure out how
often each value appears? One option is to use a mask index along with
count:

s.loc[s==1].count() #1

s.loc[s==6].count() #2

But wait, I asked you to give the proportion of elements in s with either 1 or a
6. Thus, we need to divide those results by s.count():

s.loc[s==1].count() / s.count() #1

s.loc[s==6].count() / s.count() #2

There’s nothing inherently wrong with doing things this way, but there’s a far
easier way: value_counts, a series method that is one of my favorites. If you
apply value_counts to the series s, you get back a new series whose keys are
the distinct values in s, and whose values are integers indicating how often
each value appeared. Thus, if we invoke s.value_counts(), we get:

1 7207

2 1313

5 520

3 406

6 369

4 182

0 2

Name: 0, dtype: int64

Notice that the values are automatically sorted from most common to least
common.

Because we get a series back from value_counts, we can use all of our series
tricks on it. For example, we can invoke head on it, to get the five most
common elements. We can also use fancy indexing, in order to retrieve the
counts for specific values. Since we’re interested in the frequency of 1- and
6-passenger rides, we can say:

s.value_counts()[[1,6]]

That returns:

1 7207

6 369

Name: 0, dtype: int64

But we’re actually interested in the percentages, not in the raw values.
Fortunately, value_counts has an optional normalize parameter, that if set
to True returns the fraction. We can thus say:

s.value_counts(normalize=True)[[1,6]]

which returns the values:

1 0.720772

6 0.036904

Name: 0, dtype: float64

1.7.2 Solution

import pandas as pd

from pandas import Series, DataFrame

s = pd.read_csv('data/taxi-passenger-count.csv', header=None).squeeze()

s.value_counts(normalize=True)[[1,6]]

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0As%20%

3D%20Series%28%5B1,%201,%206,%201,%205,%201,%201,%204,%201,%201,%203,%201,

%201,%202,%201,%202,%201,%201,%201,%201%5D%29%0A%0As.value_counts%28

normalize%3DTrue%29%5B%5B1,6%5D%5D%0A&d=2022-11-08&lang=py&v=v1

1.7.3 Beyond the exercise

Let’s analyze our taxi passenger data in a few more ways:

What are the 25%, 50% (median), and 75% quantiles for this data set?
Can you guess the results before you execute the code?
What proportion of taxi rides are for 3, 4, 5, or 6 passengers?
Consider that you’re in charge of vehicle licensing for New York taxis.
Given these numbers, would more people benefit from smaller taxis that
can take only one or two passengers, or larger taxis that can take five or
six passengers?

1.8 Exercise 7: Long, medium, and short taxi rides

In this exercise, we’re once again going to look at taxi data—but instead of
looking at the number of passengers, we’re instead going to look at the
distance (in miles) that each taxi ride went. Once again, I’ll ask you to create
a series based on a single-column CSV file, taxi-distance.csv.

First, load the data into a series. Then, show the number of rides in each of
three categories:

short, < = 2 miles
medium, > 2 miles, but < = 10 miles
long, > 10 miles

1.8.1 Discussion

It’s not unusual for us to want to take numeric values and convert them into
named categories. In this exercise, we took the taxi distances, and wanted to
turn them into "short," "medium," and "long" rides. How can we do that?

One approach would be to use a combination of comparisons and

assignments:

categories = s.astype(str) #1

categories.loc[:] = 'medium' #2

categories.loc[s<=2] = 'short' #3

categories.loc[s>10] = 'long' #4

categories.value_counts()

When we call value_counts, we get the following:

short 5890

medium 3402

long 707

Name: 0, dtype: int64

This will certainly work, but as you probably guessed, there is a more
efficient approach. The pd.cut method allows us to set numeric boundaries,
and then to cut a series into parts (known as "bins") based on those
boundaries. Moreover, it can assign labels to each of the bins.

Notice that pd.cut is not a series method, but rather a function in the top-
level pd namespace. We’ll pass it a few arguments:

our series, s
a list of four integers representing the boundaries of our three bins,
assigned to the bins parameter
a list of three strings, the labels for our three bins, assigned to the labels
parameter

Note that the bin boundaries are exclusive on the left, and inclusive on the
right. In other words, by specifying that the "medium" bin is between 2 and
10, that means >2 but < = 10.

This means that the first boundary needs to be less than the smallest value in
s. I often accomplish this by setting it to be s.min()-1.

The result of this call to pd.cut is a series of the same length as s, but with
the labels replacing the values:

pd.cut(s, bins=[s.min()-1, 2, 10, s.max()],

 labels=['short', 'medium', 'long'])

The result, as depicted in Jupyter, is as follows:

0 short

1 short

2 short

3 medium

4 short

 ...

9994 medium

9995 medium

9996 medium

9997 short

9998 medium

Name: 0, Length: 9999, dtype: category #1

Categories (3, object): ['short' < 'medium' < 'long'] #2

The task that I gave you for this exercise wasn’t to turn the ride lengths into
categories, but to see the number of rides in each category. For that, we’ll
need to call on our friend value_counts:

pd.cut(s, bins=[s.min()-1, 2, 10, s.max()],

 labels=['short', 'medium', 'long']).value_counts()

And sure enough, this gives us the answer that we wanted:

short 5890

medium 3402

long 707

Name: 0, dtype: int64

1.8.2 Solution

import pandas as pd

from pandas import Series, DataFrame

s = pd.read_csv('data/taxi-distance.csv', header=None).squeeze()

pd.cut(s, bins=[s.min(), 2, 10, s.max()],

 labels=['short', 'medium', 'long']).value_counts()

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0As%20%

3D%20Series%28%5B1.63,%200.46,%200.87,%202.13,%201.4,%201.4,%201.8,%2011.9,

%201.27,%0A%200.6,%200.01,%201.65,%201.14,%200.5,%201.28,%200.6,%201.41,

%200.7,%201.9,%201.1%5D%29%0A%0Apd.cut%28s,%20bins%3D%5Bs.min%28%29,%202,

%2010,%20s.max%28%29%5D,%0A%20%20%20%20%20%20%20labels%3D%5B'short',

%20'medium',%20'long'%5D%29.value_counts%28%29%0A&d=2022-11-08&lang=py&v=v1

1.8.3 Beyond the exercise

Compare the mean and median trip distances. What does that tell you
about the distribution of our data?
How many short, medium, and long trips were there for trips that had
only one passenger? Note that data for passenger count and trip length
are from the same data set, meaning that the indexes are the same.
What happens if we don’t pass explicit intervals, and instead ask pd.cut
to just create 3 bins, with bins=3?

1.9 Summary

In this chapter, we saw that a Pandas series provides us with some powerful
tools to analyze data. Whether it’s the index, reading data from files,
calculating descriptive statistics, retrieving values via fancy indexing, or even
categorizing our data via numeric boundaries, we were able to do quite a lot.

In the next chapter, we’ll expand our reach to look at data frames, the two-
dimensional data strucures that most people think of when they work with
Pandas.

2 Data frames
Starting long before the invention of computers, people have used tables to
present data. That’s because tables make it easy to enter, display, understand,
and analyze data. Each row in a table represents a single record or data point,
and every column describes an attribute associated with each point. For
example, consider this table of country names, sizes (in square km) and
population, with data taken from Wikipedia toward the end of 2022:

Table 2.1. Country data

Country Area (sq km) Population

United States 9,833,520 331,893,745

United Kingdom 93,628 67,326,569

Canada 9,984,670 38,654,738

France 248,573 67,897,000

Germany 357,022 84,079,811

If it seems obvious to arrange data in this way, that’s just because we’ve seen
them for so long, and in so many contexts. Indeed, here are some examples of
tables I’ve seen in just the last few days:

Stock-market updates—the rows are some stocks and popular indexes,
and the columns are the current value, the absolute change since

yesterday, and the percentage change since yesterday
Luggage allowances on international flights—the rows describe
different types of tickets, and the columns indicate how large or heavy
your carry-on and checked bags can be
Nutrition information on packaged food—the rows are different items
we want to know about (e.g., calories, fat, and sugar), and the columns
describe the quantity per 100 grams or for an entire package

Because each column contains one attribute, or category, it will typically
contain one type of data. Each row, however, might well contain several
different types of data, because it cuts across several columns. Adding a new
column means that we’re adding a new dimension, or aspect, to each record.
Adding a new row means that we’re adding a new record, with a value for
each column.

Computers have been used to store tabular information for decades, most
famously in spreadsheet software such as Excel. Pandas continues this
tradition, organizing tables in "data frames." Each column in a data frame is a
Pandas series object. The data frame has a single index, shared by all of its
columns. In many ways, a data frame is a collection of series with a common
index.

Because each column in a data frame is its own series, each can have a
distinct dtype. For example, you could have a data frame with one integer
column, one float column, and one string column.

Figure 2.1. The table defined above, as a Pandas data frame

A data frame typically contains more information than we need. Before we
can answer any questions, we’ll first need to pare our data down to a subset
of its original rows and columns. In this chapter, we’ll practice doing just that
—retrieving just the rows and columns that we want, based on criteria
appropriate for our query. We’ll see how the .loc accessor, boolean indexes,
and various Pandas methods allow us to work on just the data that we want
and need. (In Chapter 3, we’ll look at how to import data from external
sources. And in Chapter 5, we’ll look at how to clean real-world data so that
we can use it reliably.)

We’ll also practice creating, modifying, and updating data frames. Sometimes
we’ll do that because we have new information, and want the data frame to
reflect that change. And sometimes we’ll do it because we need to clean our
data, removing or modifying bad values.

After this chapter, you’ll be comfortable doing the most common tasks
associated with data frames. We’ll build on these basics in later chapters, so
that you can organize your data in more sophisicated and interesting ways.

2.1 Useful references
Table 2.2. What you need to know

Concept What is it? Example To learn more

DataFrame

returns a
new data
frame,
based on 2-
dimensional
data

DataFrame([[10, 20], [30, 40],

[50, 60]])
http://mng.bz/d1xz

access
elements of
a series by

s.loc labels or a
boolean
array

s.loc['a'] http://mng.bz/rWPE

df.loc

access one
or more
rows of a
data frame
via the
index

df.loc[5] http://mng.bz/V1Pr

s.iloc

access
elements of
a series by
position

s.iloc[0] http://mng.bz/x4lq

df.loc

access one
or more
rows of a
data frame
by position

df.iloc[5] http://mng.bz/AoNE

[]

access one
or more
columns in
a data
frame

df['a'] http://mng.bz/Zqej

s.quantile

Get the
value at a
particular
percentage

s.quantile(0.25) http://mng.bz/RxPn

of the
values

pd.concat

join
together
two data
frames

df = pd.concat([df,

new_products])
http://mng.bz/2DJN

df.query

Write an
SQL-like
query

df.query('v > 300') http://mng.bz/1qwZ

pd.read_csv

returns a
new series
based on a
single-
column file

`s =
pd.read_csv('filename.csv').squeeze() http://mng.bz/PzO2

interpolate

returns a
new data
frame with
NaN values
interpolated

df = df.interpolate() http://mng.bz/Jgzp

Brackets or dots?

When we’re working with a series, we can retrieve values in several different
ways: Using the index (and loc), using the position (and iloc), and also
using plain ol' square brackets, which is essentially equivalent to loc.

When we work with data frames, we must use loc or iloc to retrieve rows
via the index. That’s because square brackets refer to the columns.

For example, let’s create a data frame:

df = DataFrame([[10, 20, 30, 40],

 [50, 60, 70, 80],

 [90, 100, 110, 120]],

 index=list('xyz'),

 columns=list('abcd'))

Given this data frame, and the fact that square brackets refer to columns, we
can understand how df['a'] returns the a column, and df[['a', 'b']],
passing a list of columns inside of the square brackets (i.e., double square
brackets) will return a new, two-column data frame based on df. If we ask for
df['x'], Pandas will look for a column x, not see one, and raise a KeyError
exception.

If we want to retrieve the row at index x, we must say df.loc['x']. Or if we
prefer to retrieve it positionally, df.iloc[0].

There is, however, an exception to the "square brackets mean columns" rule:
If we use a slice, then Pandas will look at the data frame’s rows, rather than
its columns. So we can retrieve the rows from x through y with df['x':'y'].
The slice tells Pandas to use the rows, rather than the columns. Moreover, the
slice will return rows up to and including the endpoint, which is unusual for
Python (but typical in Pandas).

Figure 2.2. Our data frame

All of this is well and good, but it turns out that there’s another way to work
with columns, namely "dot notation." That is, if you want to retrieve the
column colname from data frame df, you can say df.colname.

This syntax appeals to many people, for a variety of reasons: It’s easier to
type, it has fewer characters and is thus easier to read, and it just seems to
flow a bit more naturally.

But there are reasons to dislike it, as well: Columns with spaces and other
illegal-in-Python-identifer characters won’t work. And I personally find that
it gets confusing to remember whether df.whatever is a column named
whatever or a Pandas method named whatever. There are so many Pandas
methods to remember, I’ll take any help I can get.

I personally use bracket notation, and will use it throughout this book. If you
prefer dot notation, you’re in good company—but do realize that there are
some places in which you won’t be able to use it.

2.2 Exercise 8: Net revenue

For many Pandas users, it’s rare to create a new data frame from scratch.
You’ll create it after importing CSV file, or you’ll perform some
transformations on an existing data frame (or several existing series). But
there are times when you’ll need to create a new data frame—for example,
when assembling data from non-standard sources, or just experimenting with
new Pandas techniques—and knowing how to do it can be quite useful.

For this exercise, I want you to create a data frame that represents a
company’s inventory of five products. Each product will have a unique ID
number (a two-digit integer will do), name, wholesale price, retail price, and
the number of sales in the last month. We’re just making it up here, so if
you’ve always wanted to be a profitable starship dealer, this is your chance!

Once you have created this data frame, calculate the total net revenue from all
of your products.

2.2.1 Discussion

The first part of this task involved creating a new data frame, by passing
values to the DataFrame class. There are basically four ways to do this:

Pass a list of lists. Each inner list represents one row. The inner lists
must all be the same length, and will fill the columns positionally.
Pass a list of dicts. Each dict represents one row, and the keys indicate
which columns should be filled.
Pass a dict of lists. Each key represents one column, and the values
(lists) are each column’s values.
Pass a 2-dimensional NumPy array.

Figure 2.3. Creating a data frame from a list of lists. Each inner list represents one row. Column
names are taken positionally.

Figure 2.4. Creating a data frame from a list of dicts. Each dict is a row, and the keys indicate
columns values.

Figure 2.5. Creating a data frame from a dict of lists. Each dict key is a column name, and the list
contains values for that column.

Figure 2.6. Creating a data frame from a two-dimensional NumPy array

Which of these is most appropriate depends on the task at hand. In this case,

since I want to create and describe individual products, I decided to use a list
of dicts.

One advantage of a list of dicts is that you don’t need to pass column names;
Pandas can infer their names from the dict keys. And the index was the
default positional index, so I didn’t have to set that.

With my data frame in place, how can I calculate my products' total revenue?
That’s going to require that for each product, we subtract the wholesale price
from the retail price, aka the net revenue:

df['retail_price'] - df['wholesale_price']

Here, we are retrieving the series df['retail_price'] and subtracting from
it the series df['wholesale_price']. Because these two series are parallel to
one another, with identical indexes, the subtraction will take place for each
row, and will return a new series with the same index, but with the difference
between them.

Once we have that series, we’ll multiply it by the number of sales we had for
each product:

(df['retail_price'] - df['wholesale_price']) * df['sales'] #1

This results in a new series, one which shares an index with df, but whose
values are the total sales for each product. We can sum this series with the
sum method:

((df['retail_price'] - df['wholesale_price']) * df['sales']).sum() #1

Figure 2.7. Graphical depiction of the solution for Exercise 8

2.2.2 Solution

df = DataFrame([{'product_id':23, 'name':'computer', 'wholesale_price': 500,

 'retail_price':1000, 'sales':100},

 {'product_id':96, 'name':'Python Workout', 'wholesale_price': 35,

 'retail_price':75, 'sales':1000},

 {'product_id':97, 'name':'Pandas Workout', 'wholesale_price': 35,

 'retail_price':75, 'sales':500},

 {'product_id':15, 'name':'banana', 'wholesale_price': 0.5,

 'retail_price':1, 'sales':200},

 {'product_id':87, 'name':'sandwich', 'wholesale_price': 3,

 'retail_price':5, 'sales':300},

])

((df['retail_price'] - df['wholesale_price']) * df['sales']).sum()#1

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20

%3D%20DataFrame%28%5B%7B'product_id'%3A23,%20'name'%3A'computer',%20'

wholesale_price'%3A%20500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'retail_price'%3A1000,%20'sales'%3A100%7D,%0A%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%20%7B'product_id'%3A96,%20'name'%3A'Python%20Wor

kout',%20'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%

20%20%20%20%20'retail_price'%3A75,%20'sales'%3A1000%7D,%0A%20%20%20%20%

20%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A97,%20'name'%3A'Pandas%

20Workout',%20'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20'retail_price'%3A75,%20'sales'%3A500%7D,%0A%20%20%20%20%

20%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A15,%20'name'%3A'banana',

%20'wholesale_price'%3A%200.5,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'retail_price'%3A1,%20'sales'%3A200%7D,%0A%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%7B'product_id'%3A87,%20'name'%3A'sandwich',%20'

wholesale_price'%3A%203,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'retail_price'%3A5,%20'sales'%3A300%7D,%0A%20%20%20%20%20%20%20%20%20%

20%20%20%20%20%20%5D%29%0A%0A%28%28df%5B'retail_price'%5D%20-%20df%5B'

wholesale_price'%5D%29%20*%20df%5B'sales'%5D%29.sum%28%29%0A&d=2022-11-08

&lang=py&v=v1

2.2.3 Beyond the exercise

On what products is our retail price more than twice the wholesale
price?

How much did the store make from food vs. computers vs. books? (You
can just retrieve based on the index values, not anything more
sophisticated.)
Because your store is doing so well, you’re able to negotiate a 30%
discount on the wholesale price of goods. Calculate the new net income.

2.3 Exercise 9: Tax planning

In the previous exercise, we created a data frame representing our store’s
products and sales. In this exercise, we’re going to extend that data frame,
quite literally. It’s pretty common to add new columns to an existing data
frame, either to add new information you’ve acquired, or to store the results
of per-row calculations—which is what we’ll do in this exercise. It’s
sometimes a good idea to add a new column to hold intermediate values, as a
convenience.

The backstory for this exercise is as follows: Our local government is
thinking about imposing a sales tax, and is considering 15, 20, and 25 percent
rates. Show how much less you would net with each of these tax amounts by
adding columns to the data frame for our net income under each of the
proposed rates, as well as our current net income.

2.3.1 Discussion

If two series share an index, then we can perform a variety of arithmetic
operations on them. The result will be a new series, with the same index as
each of the two inputs to the operation. Often, as in Exercise 8, we’ll perform
the operation on two of the columns in our data frame (which are both series,
after all) and view the result.

But sometimes we want to keep that result around, either because we’ll want
to use it in further calculations, or because we’ll want to reference it. In such
a case, it’s helpful to add one or more new columns to our data frame.

How can we do that? It’s surprisingly simple: We just assign to the data
frame, using the name of the column that we want to spring into being. It’s
typical to assign a series, but you can also assign a NumPy array or list, so

long as it is of the same length as the other, existing columns. Column names
are unique—so just as with a dictionary, assigning to an existing column will
replace it with the new one.

In the previous exercise, we calculated the total sales for each of our
products. To solve the first part of this exercise, we’ll take that calculation
and assign the resulting series to a new column in the data frame:

df['current_net'] = ((df['retail_price'] - df['wholesale_price'])

 * df['sales'])

 Note

There is another way to add a column to a Pandas data frame, namely the
assign method. I generally prefer to add a new column with assignment, as
you’ve seen throughout this book. assign returns a new data frame, rather
than modifying an existing one, which can come in handy. For example,

df['current_net'] = ((df['retail_price'] - df['wholesale_price']) * df['sales'])

we could instead use:

df.assign(current_net = (df['retail_price'] - df['wholesale_price']) * df['sales'])

Notice that any keyword arguments we pass to df.assign result in a new
column (with the same name as the keyword argument), whose values are the
keyword argument’s values. Some people prefer this style, saying that they
find it more readable and reproducible than assignment. I suggest that you try
solving some of the exercises in this book using assign; you might turn out
to prefer it.

What happens if we will be taxed at 15 percent? This reduces our net by 15
percent, which I can calculate and then assign to a new column:

df['after_15'] = df['current_net'] * 0.85

I can then repeat this assignment into two additional columns for the other tax
amounts:

df['after_20'] = df['current_net'] * 0.80

df['after_25'] = df['current_net'] * 0.75

Now my data frame has nine columns: product_id, name, wholesale_price,
retail_price, sales, current_net, after_15, after_20, and after_25.
Since the final four columns (where I show my net income) are all numeric, I
can grab those columns (with fancy indexing), returning a data frame with the
four columns we selected and our five products' rows:

df[['current_net', 'after_15', 'after_20', 'after_25']]

When we run sum on this data frame, we get back the sum of each of the
columns. The result is returned as a series, in which the column names serve
as the index:

current_net 110700.0

after_15 94095.0

after_20 88560.0

after_25 83025.0

dtype: float64

We can now see, rather clearly, how much we would earn under each of these
tax plans. We could even show the difference between our current net and
each of these tax plans, broadcasting the subtraction operation:

df['current_net'].sum() - df[['current_net',

 'after_15', 'after_20', 'after_25']].sum()

2.3.2 Solution

df['current_net'] = ((df['retail_price'] - df['wholesale_price'])

 * df['sales'])

df['after_15'] = df['current_net'] * 0.85

df['after_20'] = df['current_net'] * 0.80

df['after_25'] = df['current_net'] * 0.75

df[['current_net', 'after_15', 'after_20', 'after_25']].sum()

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20DataFrame%28%5B%7B'product_id'%3A23,%20'name'%3A'computer',%20'whole

sale_price'%3A%20500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'retail_price'%3A1000,%20'sales'%3A100%7D,%0A%20%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%7B'product_id'%3A96,%20'name'%3A'Python%20Workout',

%20'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'retail_price'%3A75,%20'sales'%3A1000%7D,%0A%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%20%7B'product_id'%3A97,%20'name'%3A'Pandas%20Workout'

,%20'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'retail_price'%3A75,%20'sales'%3A500%7D,%0A%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%7B'product_id'%3A15,%20'name'%3A'banana',%20'whole

sale_price'%3A%200.5,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'

retail_price'%3A1,%20'sales'%3A200%7D,%0A%20%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%7B'product_id'%3A87,%20'name'%3A'sandwich',%20'wholesale_price'

%3A%203,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_price'%3

A5,%20'sales'%3A300%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5D%

29%0A%0Adf%5B'current_net'%5D%20%3D%20%28%28df%5B'retail_price'%5D%20-%20df

%5B'wholesale_price'%5D%29%20*%20df%5B'sales'%5D%29%0Adf%5B'after_15'%5D%20

%3D%20df%5B'current_net'%5D%20*%200.85%0Adf%5B'after_20'%5D%20%3D%20df%5B'

current_net'%5D%20*%200.80%0Adf%5B'after_25'%5D%20%3D%20df%5B'current_net'

%5D%20*%200.75%0Adf%5B%5B'current_net',%20'after_15',%20'after_20',%20'

after_25'%5D%5D.sum%28%29%0A&d=2022-11-08&lang=py&v=v1

2.3.3 Beyond the exercise

An alternative tax plan would charge 25% tax, but only on those
products on which we would net more than 20,000. In such a case, how
much would we make?
Yet another alternative tax plan would charge 25% tax on products
whose retail price is greater than 80, 10% tax on products whose retail
price is between 30 and 80, and no tax on others. Implement and
calculate the result of such a tax scheme.
These long floating-point numbers are getting a bit hard to read. Set the
float_format option in Pandas such that the floating-point numbers
will be displayed with commas every three digits before the decimal
point, and only two digits after the decimal point. Note that this is a bit
tricky, in that it requires understanding Python callables and the
str.format method.

Retrieving and assigning with loc

It’s pretty straightforward to retrieve an entire row from a data frame, or even
replace a row’s values with new ones. For example, I can grab the values in

the row with index abcd with df.loc['abcd']. If I prefer to use the numeric
(positional) index, then I can instead use df.iloc[5]. In both cases, I get
back a series, created on the fly from the values in that row. By contrast, if
we retrieve a column, nothing new needs to be created, because each column
is stored as a series in memory.

What if want to retrieve only part of a row? More significantly, how could we
set values on only part of a row?

We can do this in several different ways, but my preference is loc, with two
arguments in the square brackets. The first argument describes the row(s) that
we want to retrieve ("row selector"), while the second describes the
column(s) we want to retrieve ("column selector"). You can do something
similar with .iloc, specifying the numeric position, but I

Let’s assume that we have a 5x5 data frame, with index a-e, columns v-z, and
values from 10 through 250.

Figure 2.8. Our sample data frame

To retrieve row a, I can say df.loc['a']. But to retrieve the item at index a
and column x, I can say

df.loc['a', 'x']

Especially as the arguments get longer and more complex, It can be easier to
put them on separate lines:

df.loc['a',#1

 'x']#2

Figure 2.9. Graphical depiction of df.loc['a', 'x']

Once you understand this syntax, you can start to use it in more sophisticated
ways. For example, let’s retrieve rows a and c, with column x:

df.loc[['a', 'c'],#1

 'x']#2

Figure 2.10. Graphical depiction of df.loc[['a', 'c'], 'x']

Notice that we can use fancy indexing to describe the rows we want to
retrieve, and a regular index (as the second value in the square brackets) to

describe the column we want. We can similarly retrieve more than one
column. In this example, I’ll retrieve row a, columns v and y:

df.loc['a',#1

 ['v','y']]#2

Figure 2.11. Graphical depiction of df.loc['a', ['v', 'y']]

What if I combine these, retrieving rows a and c, and columns v and y?

df.loc[['a', 'c'],#1

 ['v','y']]#2

Figure 2.12. Graphical depiction of df.loc[['a', 'c'], ['v', 'y']]

But wait, it gets even better: We can describe our rows using a boolean index.
That is, we can create a boolean series using a conditional operator (e.g., < or
==), and apply it to the rows and/or the columns.

For example, I can find all of the rows in which x is greater than 200:

df.loc[df['x']>200]#1

Figure 2.13. Graphical depiction of df.loc[df['x']>200]

I can then add a second value boolean index, after the comma, indicating
which columns we want:

df.loc[df['x']>200,#1

 df.loc['c'] > 135]#2

Figure 2.14. Graphical depiction of df.loc[df['x']>200, df.loc['c'] > 135]

The above expression will return all of those rows from df in which column x
was greater than 200, and all those columns from df in which c was greater
than 135.

I can also dial it back, saying that I’m interested in the row b, but only where
c is greater than 135:

df.loc['b',#1

 df.loc['c']>135]#2

Figure 2.15. Graphical depiction of df.loc['b', df.loc['c'] > 135]

Of course, our conditions can be far more complex than these. But as long as

you keep in mind that you want to select based on rows before the comma,
and based on columns after the comma, you should be fine.

In all of the above examples, I retrieved values from the data frame. What if I
want to modify these values? By putting the retrieval query on the left side of
an assignment statement. The only catch is that the value on the right must
either be a scalar (in which case it is broadcast, and assigned, to all matching
elements) or have a matching shape (i.e., rows and columns).

For example, let’s say that I want to set the element at in row b, column y, to
123. I can do that with:

df.loc['b',#1

 'y' #2

] = 123

Figure 2.16. Graphical depiction of df.loc['b', 'y'] = 123

What if I want to set new values in row b, where row c is greater than 125? I
can assign a list (or NumPy array, or Pandas series) of three items, matching
the three elements my query matched:

df.loc['b',#1

 df.loc['c'] > 125#2

] = [123, 456, 789]

Figure 2.17. Graphical depiction of df.loc['b', df.loc['c'] > 125] = [123, 456, 789]

Of course, this requires knowing precisely how many values will be needed.
In many cases, you won’t know that in advance, but will be assigning based
on another column—or even the selection values themselves! For example,
the below code doubles values in row b wherever the corresponding value in
row c is divisible by 3:

df.loc['b',#1

 df.loc['c'] % 3 == 0#2

] *= 2#3

Figure 2.18. Graphical depiction of df.loc['b', df.loc['c'] % 3 == 0] *= 2<3>

We can broadcast a scalar value to any of the above. For example:

df.loc[df['v'] > 100,#1

 df.loc['d'] > 180#2

] = 987

Figure 2.19. Graphical depiction of df.loc[df['v'] > 100, df.loc['d'] > 150] = 987

It takes a while to get used to this syntax. And yet, once you internalize it, it
becomes fairly straightforward and flexible. Moreover, this is efficient and
avoids potential problems you might encounter when applying square
brackets to the result of previous square brackets.

2.4 Exercise 10: Adding new products

Good news! Our store is making money, and we have decided to add some
new products. I’d like you to do that by creating a new data frame, and
adding it to the existing one. This new data frame should contain three
products (including product ID, name, wholesale price, and retail price):

Phone, with an ID of 24, a wholesale price of 200, and a retail price of
500
Apple, with an ID of 16, a wholesale price of 0.5, and a retail price of 1
Pear, with an ID of 17, a wholesale price of 0.6, and a retail price of 1.2

Because these are new products, don’t include the sales column. Also note
that in order to avoid problems and conflicts, ensure that the indexes for each
of these new products is different from existing product indexes. (In chapter
4, we’ll look at some ways to handle index problems more elegantly.)

Once you have added these new products, assign sales figures to each of
them.

Finally, recalculate the store’s total net income after including these new
products.

2.4.1 Discussion

We often think of data frames as representing data we’ve already collected,
or that we’ve imported from a file. But data frames are much more fluid than
that, allowing us to represent our data in a variety of ways and formats. We
should expect to modify a data frame over the course of its lifetime, either as
we’re gathering data, or simply because we want to analyze data that comes
from different sources.

In this exercise, I first asked you to create a new data frame, representing
three new products. This new data frame needed to have all of the same
values as the previous one did, except for the sales column.

The first step was the easiest, because it resembled the creation of a data

frame at the start of the chapter. The only difference was that we set the index
manually, using Python’s range builtin, to avoid collisions between the
indexes in our original data frame and this one. Pandas doesn’t care whether
our index repeats, but we often will care about such a thing, and I thus
decided to include it in the exercise.

I created a new data frame this way:

new_products = DataFrame([{'product_id':24, 'name':'phone',

 'wholesale_price': 200, 'retail_price':500},

 {'product_id':16, 'name':'apple', 'wholesale_price': 0.5,

 'retail_price':1},

 {'product_id':17, 'name':'pear', 'wholesale_price': 0.6,

 'retail_price':1.2}], index=range(5,8))

With this new data frame in hand, I wanted to add it to the previously
existing one. The pd.concat function does this, and it works a bit differently
than you might expect: It’s a top-level Pandas function, and takes a list of
data frames you would like to concatenate.

The result of pd.concat is a new data frame, which we then assign back to
df:

df = pd.concat([df, new_products])

Figure 2.20. Graphical depiction of pd.concat([df, new_products])

Now we have a data frame containing all of our products. But because we
didn’t include the sales column in new_products, there is some missing data
in sales:

 product_id name wholesale_price retail_price sales

0 23 computer 500.0 1000.0 100.0

1 96 Python Workout 35.0 75.0 1000.0

2 97 Pandas Workout 35.0 75.0 500.0

3 15 banana 0.5 1.0 200.0

4 87 sandwich 3.0 5.0 300.0

5 24 phone 200.0 500.0 NaN

6 16 apple 0.5 1.0 NaN

7 17 pear 0.6 1.2 NaN

Now the challenge is to fill in those sales numbers. We actually have several
different ways of doing this. My preferred method is to use loc on the data
frame, passing a list of rows as the row selector, and the sales column’s
name as the column selector:

df.loc[[5,6,7], 'sales'] #1

This returns:

5 NaN

6 NaN

7 NaN

Name: sales, dtype: float64

Sure enough, we have identified and retrieved all three NaN values. Also note
that the dtype for this column has been changed to float64. That’s because
NaN is a float value; whenever Pandas wants to use NaN, it will need to set the
column to have a floating-point dtype.

 Note

In NumPy, assigning a float value to an array with an integer dtype will
result in the float being truncated silently. And trying to assign NaN (which is
a float, albeit a weird float) to an array with an integer dtype will result in an
error, with NumPy indicating that there is no integer value for NaN.

Pandas, by contrast, tries to accommodate you, changing the dtype to
float64 in order to accommodate your NaN value. It doesn’t warn you about
this, though! You won’t lose data, but you might be surprised by the change
in dtype that you didn’t explicitly ask for.

How can we set these NaN values to integers? One way is to use our loc-
based retrieval to set values:

df.loc[[5,6,7], 'sales'] = [100, 200, 75]

This one line of code is hiding a lot of complexity, so let’s go through it:

df.loc accesses one or more rows from our data frame.
In this case, we’re using fancy indexing, retrieving three rows based on
their indexes.
If we were to stop here, then we would get all of the columns for these
three rows—meaning, we would get a data frame back. But instead, we
pass a second argument, which describes the column(s) that we want to
get back.
Since it’s only one column, we end up with three-element series of NaN
values.
Assigning to this df.loc selection results in the data frame being
updated, and the NaN values replaced by these numbers.
Note that the dtype does not change back to np.int64 automatically.

Figure 2.21. Graphical depiction of df.loc[[5,6,7], 'sales'] = [100, 200, 75]

If you’re a bit uncomfortable with such en masse assignments, then you could
do the equivalent in three lines:

df.loc[5, 'sales'] = 100

df.loc[6, 'sales'] = 200

df.loc[7, 'sales'] = 75

Either way, when we’re done with all of this, we have now ensured that we
have sales figures for all of our products. And once we’ve done that, we can
calculate the total sales, just as we’ve done before:

(df['retail_price'] - df['wholesale_price']) * df['sales'].sum()

2.4.2 Solution

new_products = DataFrame([{'product_id':24, 'name':'phone',

 'wholesale_price': 200, 'retail_price':500},

 {'product_id':16, 'name':'apple',

 'wholesale_price': 0.5, 'retail_price':1},

 {'product_id':17, 'name':'pear',

 'wholesale_price': 0.6, 'retail_price':1.2}],

 index=range(5,8)) #1

df = pd.concat([df, new_products]) #2

df.loc[[5,6,7], 'sales'] = [100, 200, 75] #3

(df['retail_price'] - df['wholesale_price']) * df['sales'].sum() #4

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20

%3D%20DataFrame%28%5B%7B'product_id'%3A23,%20'name'%3A'computer',%20'whole

sale_price'%3A%20500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'retail_price'%3A1000,%20'sales'%3A100%7D,%0A%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%7B'product_id'%3A96,%20'name'%3A'Python%20Workout',%20

'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20'retail_price'%3A75,%20'sales'%3A1000%7D,%0A%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%7B'product_id'%3A97,%20'name'%3A'Pandas%20Workout',%20

'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20'retail_price'%3A75,%20'sales'%3A500%7D,%0A%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%7B'product_id'%3A15,%20'name'%3A'banana',%20'whole

sale_price'%3A%200.5,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

'retail_price'%3A1,%20'sales'%3A200%7D,%0A%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%7B'product_id'%3A87,%20'name'%3A'sandwich',%20'wholesale

_price'%3A%203,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail

_price'%3A5,%20'sales'%3A300%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20%5D%29%0A%0Adf%5B'current_net'%5D%20%3D%20%28%28df%5B'retail_price

'%5D%20-%20df%5B'wholesale_price'%5D%29%20*%20df%5B'sales'%5D%29%0Adf%5B

'after_15'%5D%20%3D%20df%5B'current_net'%5D%20*%200.85%0Adf%5B'after_20

'%5D%20%3D%20df%5B'current_net'%5D%20*%200.80%0Adf%5B'after_25'%5D%20%3D%

20df%5B'current_net'%5D%20*%200.75%0Adf%5B%5B'current_net',%20'after_15',

%20'after_20',%20'after_25'%5D%5D.sum%28%29%0A%0Anew_products%20%3D%20Data

Frame%28%5B%7B'product_id'%3A24,%20'name'%3A'phone',%0A%20%20%20%20%20%20%

20%20'wholesale_price'%3A%20200,%20'retail_price'%3A500%7D,%0A%20%20%20%20

%20%7B'product_id

'%3A16,%20'name'%3A'apple',%0A%20%20%20%20%20%20%20%20'wholesale_price'%3A

%200.5,%20'retail_price'%3A1%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A17,%20'name'%3A'pear',

%0A%20%20%20%20%20%20%20%20'wholesale_price'%3A%200.6,%20'retail_price'%3A1

.2%7D%5D,%0A%20%20%20%20%20%20%20%20index%3Drange%285,8%29%29%20%0A%0Adf%

20%3D%20pd.concat%28%5Bdf,%20new_products%5D%29%20%0A%0Adf.loc%5B%5B5,6,

7%5D,%20'sales'%5D%20%3D%20%5B100,%20200,%2075%5D%20%0A%0A%28df%5B'retail

_price'%5D%20-%20df%5B'wholesale_price'%5D%29%20*%20df%5B'sales'%5D.sum%2

8%29%0A&d=2022-11-08&lang=py&v=v1

2.4.3 Beyond the exercise

Add one new product to the data frame, without using pd.concat.
What’s the advantage of pd.concat, and when should you use it?
Add a new column, department, to the data frame. Place each product in
a department. For example, in our data, we would have three
departments: electronics, books, and food. Calculate current_net on
the data frame, and then show the descriptive statisics for current_net
for food products.
Now use the query method to get the descriptive statistics for food
items.

Getting answers with query

The traditional way to select rows from a data frame, as we have seen, is via a
boolean index. But there is another way to do it, namely the query method.
This mehod might feel especially familiar if you have previously used SQL
and relational databases.

The basic idea behind query is simple: We provide a string that Pandas turns
into a full-fledged query. We get back a filtered set of rows from the original
data frame. For example, let’s say that I want all of the rows in which the
column v is greater than 300. Using a traditional boolean index, I would
write:

df[df['v'] > 300]

Using query, I can instead write:

df.query('v > 300')

These two techniques return the same results. When using query, though, we
can name columns without the clunky square brackets, or even the dot
notation. It becomes easier to understand.

What if I want to have a more complex query, such as where column v is
greater than 300 and column w is odd? We can write it as follows:

df.query('v > 300 & w % 2 == 1') #1

It’s not necessary, but I still like to use parentheses to make the query a bit
more readable:

df.query('(v > 300) & (w % 2 == 1)')

Note that query cannot be used on the left side of an assignment.

On smaller data frames, query can not only be overkill, but can actually slow
your code down. However, when you work on data frames with more than
10,000 rows, query can be significantly faster than the traditional way of
writing queries. Moreover, it can use far less memory. We’ll look at query in
greater depth in Chapter 11.

2.5 Exercise 11: Best sellers

We’re going to use our store’s products for one final exercise. This time, we
want to find the IDs and names of the products that have sold more than the
average number of units.

2.5.1 Discussion

Pandas is all about analyzing data. And a major part of the analysis that we
do in Pandas can be phrased as, "Where this is the case, show me that." The
possibilities are endless:

Show me the stocks in my portfolio that have performed poorly this year
Show me the people on my team who have fixed the most bugs
Show me the three highest-scoring sports teams in the league

In this exercise, I asked you to show the product_id and name columns for
those products that have sold better than average. There are, as usual with
Pandas, a number of ways to do this—but I believe that the easiest system to
remember and work with involves the use of loc. (See "Retrieving and
assigning with loc," earlier in this chapter.)

When you work with loc, you are by definition starting with the rows. We
are interested in those rows whose sales values are greater than the
minimum. We can thus create a boolean series with the following query:

df['sales'] > df['sales'].mean()

We can then use that series as a boolean index on our data frame, returning
only those rows where the sales figures were beter than average:

df.loc[df['sales'] > df['sales'].mean()] #1

However, we aren’t interested in all of the columns in the data frame. Rather,
we’re interested in only the product_id and name columns. We list the
columns we want in the second argument to loc, in our column selector:

df.loc[df['sales'] > df['sales'].mean(), #1

 ['product_id', 'name']] #2

Sure enough, this produces the desired output.

Figure 2.22. Graphical depiction of df.loc[df['sales'] > df['sales'].mean(), ['product_id', 'name']]

It’s also possible to solve this problem with the query method. Here’s how
we can get the appropriate rows:

df.query('sales > sales.mean()')

To get only the product_id and name columns, we’ll need to apply square
brackets to the result of df.query:

df.query('sales > sales.mean()')[['product_id', 'name']]

2.5.2 Solution

df.loc[df['sales'] > df['sales'].mean(), ['product_id', 'name']]

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20DataFrame%28%5B%7B'product_id'%3A23,%20'name'%3A'computer',%20'whole

sale_price'%3A%20500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'retail_price'%3A1000,%20'sales'%3A100%7D,%0A%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%7B'product_id'%3A96,%20'name'%3A'Python%20Workout',%20

'wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20'retail_price'%3A75,%20'sales'%3A1000%7D,%0A%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%7B'product_id'%3A97,%20'name'%3A'Pandas%20Workout',%20'

wholesale_price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'retail_price'%3A75,%20'sales'%3A500%7D,%0A%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%7B'product_id'%3A15,%20'name'%3A'banana',%20'wholesale_

price'%3A%200.5,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail

_price'%3A1,%20'sales'%3A200%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%20%7B'product_id'%3A87,%20'name'%3A'sandwich',%20'wholesale_price'%3A%

203,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_price'%3A5,

%20'sales'%3A300%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5D%29

%0A%0Adf%5B'current_net'%5D%20%3D%20%28%28df%5B'retail_price'%5D%20-%20df%5B

'wholesale_price'%5D%29%20*%20df%5B'sales'%5D%29%0Adf%5B'after_15'%5D%20%3D

%20df%5B'current_net'%5D%20*%200.85%0Adf%5B'after_20'%5D%20%3D%20df%5B

'current_net'%5D%20*%200.80%0Adf%5B'after_25'%5D%20%3D%20df%5B'current_net

'%5D%20*%200.75%0Adf%5B%5B'current_net',%20'after_15',%20'after_20',%20'

after_25'%5D%5D.sum%28%29%0A%0Anew_products%20%3D%20DataFrame%28%5B%7B'

product_id'%3A24,%20'name'%3A'phone',%0A%20%20%20%20%20%20%20%20'wholesale

_price'%3A%20200,%20'retail_price'%3A500%7D,%0A%20%20%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A16,%20'name'

%3A'apple',%0A%20%20%20%20%20%20%20%20'wholesale_price'%3A%200.5,%20'retail

_price'%3A1%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%7B'product_id'%3A17,%20'name'%3A'pear',%0A%20%20%20%20%20%

20%20%20'wholesale_price'%3A%200.6,%20'retail_price'%3A1.2%7D%5D,%0A%20%20

%20%20%20%20%20%20index%3Drange%285,8%29%29%20%0A%0Adf%20%3D%20pd.concat%

28%5Bdf,%20new_products%5D%29%20%0A%0Adf.loc%5B%5B5,6,7%5D,%20'sales'%5D%

20%3D%20%5B100,%20200,%2075%5D%20%0A%0A%28df%5B'retail_price'%5D%20-%20df%

5B'wholesale_price'%5D%29%20*%20df%5B'sales'%5D.sum%28%29%0Adf.loc%5Bdf%5B

'sales'%5D%20%3E%20df%5B'sales'%5D.mean%28%29,%20%5B'product_id',%20'name'

%5D%5D%0A&d=2022-11-08&lang=py&v=v1

2.5.3 Beyond the exercise

Here are some additional exercises that go beyond the task here. In each case,
practice using both loc and query:

Show the ID and name of those products whose net income is in the top
25% quantile.
Show the ID and name of products that have lower than average sales
numbers, and whose wholesale price is greater than the average.
Show the name, wholesale, and retail prices of products with product
IDs between 80 and 100, and which sold fewer than 400 units.

2.6 Exercise 12: Finding outliers

We’ve already seen how the mean, standard deviation, and median can help
us to understand our data. But they describe the bulk of our data, trying to
summarize where the majority of values lie. But sometimes, it’s useful to
look at the unusual values:

Which users had an unusually high number of unsuccessful login
attempts?
Which products were the most popular?
At which days and times are our sales the lowest?

These questions aren’t unique to data science. For example, bars have been
offering "happy hour" for many years now, discounting their products at a
time when they have fewer customers. Data science allows us to ask these
questions more formally, to get more precise answers, and then to check to
see if our changes have had the desired results.

 Note

The term "outliers" doesn’t have a precise, standard definition. Many people
define it using the "inter-quartile range," or "IQR" for short, which is the
value at the 75% point (aka quantile(0.75)) minus the value a the 25%
point (aka quantile(0.25)).

Outliers would then be values below the 25% point - 1.5 * IQR, or any values
above the 75% + 1.5 * IQR.

We’ll use that definition here, but you might find that a different definition—

say, anything below the mean - two standard deviations, or above the mean +
two standard deviations, might be a better fit for your data.

In this exercise, you are to create a two-column data frame from the taxi data
we looked at in Exercise 6. The first column will contain the passenger count
for each trip, and the second column will contain the distance (in miles) for
each trip. Once you have created this data frame, I want you to:

Count how many trip distances were outliers
Calculate the mean number of passengers for outliers. Is this any
different than the mean number of passengers for all trips?

2.6.1 Discussion

We have to do four separate things:

Create the data frame based on the individual series,
Calculate the IQR,
Find the outliers, and
Use the outliers we have found to analyze passenger counts.

To start, we want to create the data frame based on two separate series.
We’ve already seen how to create each of these series, which I here assign to
two separate variables:

trip_distance = pd.read_csv('data/taxi-distance.csv', header=None).squeeze()

passenger_count = pd.read_csv('data/taxi-passenger-count.csv',

 header=None).squeeze()

How can I turn these series into a data frame? The easiest technique is to
create the data frame as a dict, in which the keys are strings naming the
columns, and the values are the series themselves. This technique works well
when (as here) we have several lists or series containing our data. Note that
the series must be of the same length, as is the case here.

Creating the data frame thus requires the following code:

df = DataFrame({'trip_distance': trip_distance,

 'passenger_count': passenger_count})

With the data frame in place, I can start to calculate the IQR, and thus find
my outliers. Remember that the IQR is the difference between the 75%
percentile value and the 25% percentile value. This means that if we were to
line up all of the values, from smallest to largest, then we would be looking
for the values that are 25% of the way through and 75% of the way through.

Figure 2.23. Graphical depiction of creating a data frame via a dictionary

We can find these values by using the quantile method, and passing the
point we want to get, either 0.25 or 0.75. However, don’t make the mistake of
calling quantile on the data frame! Doing so will return the quantiles for
each of the columns; we’re only interested in the IQR for the trip_distance
column. We can thus say:

iqr = df['trip_distance'].quantile(0.75) - df['trip_distance'].quantile(0.25)

Of course, we didn’t really have to define an iqr variable. However, it makes
the later calculations easier to understand and read.

But with the iqr variable defined, we can now find outliers. Let’s start with
outliers on the low end: Those would be distances that are less than the 25%
quantile by at least 1.5 * the IQR. This is how that looks in Pandas:

df[df['trip_distance'] < df['trip_distance'].quantile(0.25) - 1.5*iqr]

The result? There are no outliers here! That’s probably because such a large
number of trips go a short distance, and the lowest distance you can go in a
taxi ride is zero miles.

However, there are a number of outliers at the high end:

df[df['trip_distance'] > df['trip_distance'].quantile(0.25) + 1.5*iqr]

Indeed, out of these 10,000 taxi rides, there are 1889 outliers on the high end!
Which means that about 19 percent of taxi rides are much longer than the
mean taxi ride.

Notice that I was able to get this result by creating a boolean series and
applying it as an index to df. However, I don’t have to apply it to the entire
data frame. I can apply it just to a single column. For example, I can apply it
to the passenger_count column, thus finding the number of passengers in
each of these extra-long rides:

df['passenger_count'][df['trip_distance'] >

 df['trip_distance'].quantile(0.25) + 1.5*iqr]

And if I want to get the mean of these values? The above expression returns a
series, on which I can run the mean method:

df['passenger_count'][df['trip_distance'] > df['trip_distance'].quantile(

 0.25) + 1.5*iqr].mean()

I end up with a value of about 1.70, which is almost identical to the mean of
the entire passenger_count column.

2.6.2 Solution

trip_distance = pd.read_csv('data/taxi-distance.csv',

 header=None).squeeze()

passenger_count = pd.read_csv('data/taxi-passenger-count.csv',

 header=None).squeeze()

df = DataFrame({'trip_distance': trip_distance,

 'passenger_count': passenger_count}) #1

iqr = df['trip_distance'].quantile(0.75)

 - df['trip_distance'].quantile(0.25)

df[df['trip_distance']

 < df['trip_distance'].quantile(0.25) - 1.5*iqr] #1

df[df['trip_distance']

 > df['trip_distance'].quantile(0.25) + 1.5*iqr] #2

df['passenger_count'][df['trip_distance']

 > df['trip_distance'].quantile(0.25) + 1.5*iqr].mean() #3

You can explore an abridged version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adata%

20%3D%20%7B'trip_distance'%3A%20%7B0%3A%201.63,%201%3A%200.46,%202%3A%200.

87,%203%3A%202.13,%204%3A%201.4%7D,%0A%20'passenger_count'%3A%20%7B0%3A%201

,%201%3A%201,%202%3A%201,%203%3A%201,%204%3A%201%7D%7D%0A%20%0Adf%20%3D%20

DataFrame%28data%29%0A%0Aiqr%20%3D%20df%5B'trip_distance'%5D.quantile%280.

75%29%20%20%20%20-%20df%5B'trip_distance'%5D.quantile%280.25%29%0A%0Adf%5B

df%5B'trip_distance'%5D%0A%20%20%20%20%3C%20df%5B'trip_distance'%5D.

quantile%280.25%29%20-%201.5*iqr%5D%20%0Adf%5Bdf%5B'trip_distance'%5D%0A%

20%20%20%20%3E%20df%5B'trip_distance'%5D.quantile%280.25%29%20%2B%201.5*

iqr%5D%20%20%0Adf%5B'passenger_count'%5D%5Bdf%5B'trip_distance'%5D%0A%20%

20%20%20%3E%20df%5B'trip_distance'%5D.quantile%280.25%29%20%2B%201.5*iqr%

5D.mean%28%29%20%0A&d=2022-11-08&lang=py&v=v1

2.6.3 Beyond the exercise

As I wrote above, there are a number of ways to define and find outliers.
Let’s try a few different techniques here.

If we define outliers to be the lowest 10% and highest 10% of values,
then how many are they? Why is (or isn’t) this a good measure?
How many short, medium, and long trips were there for trips that had
only one passenger? Note that data for passenger count and trip length
are from the same data set, meaning that the indexes are the same. If
we’re only interested in removing the non-outlier values, then we could
use the scipy.stats.trimboth function on our series. It takes a second
argument, the proportion we want to cut from both the top and bottom.
The scipy.stats.zscore function rescales and centers (i.e.,
normalizes) our data set. Our mean is set to 0, values can be above and
below that value. Find all of the distances for which the absolute value
of the z-score is greater than 3.

NaN and missing data

So far, we have seen that analyzing data with Pandas isn’t too difficult. We
need to know what questions to ask, and we need to know which methods to
apply in a given situation—but it’s easy to imagine that a data analyst’s job
isn’t too rough.

The time has come, then, to give you some bad news: Most data is
incomplete. Perhaps the computer responsible for collecting data was down
last week. Or perhaps the sensors were off. Or perhaps we surveyed our
users, and a number of them decided not to answer.

Whatever the reason, it’s common for analysts to contend with missing
values. (Indeed, I’ve often heard analysts and data scientists say that 70-80
percent of their job involves cleaning, scaling, and otherwise manipulating
data so that they can use it.) While it would be nice to simply ignore those
missing values, that’s not always possible. If we were to remove any record
with any missing data, then we might find ourselves without any data at all,
which is a problem.

How do we represent missing values in Pandas? It’s tempting to use 0, but as
you can imagine, that will quickly cause trouble when we try to calculate

mean values. Instead, then, Pandas uses something known as NaN, aka "not a
number." NaN is the Pandas style for writing nan, a value that’s also available
in NumPy. Both names are aliases to the same strange value, a float that
cannot be converted into an integer, and that is not equal to itself.

Note that as of this writing, the Pandas core developers are suggesting that
they will switch from NaN to their own pd.NA value in the future, as part of a
larger move to using internal Pandas data types that will be more flexible
than those from NumPy.

In NumPy, we typically search for NaN values with the isnan function.
Pandas has a different approach, though: We can replace the NaN values in a
series (or data frame) with the fillna method. And we can drop any row
with NaN values with the dropna method.

Both of these methods return a new series or data frame, rather than
modifying the original object. However, the new object you get back might
not have copied the data, which means that assigning to it might produce the
famous, dreaded SettingWithCopyWarning. If you plan to modify the series
or data frame that you get back from df.dropna, you should probably invoke
the copy method, just to be sure:

df = df.dropna().copy()

This ensures that you can then modify df without having to suffer from that
warning.

As you can imagine, it might be a bit extreme to remove any row containing
even a single NaN value. For that reason, the dropna method has a thresh
parameter, to which we can pass an integer—the number of good, non-NaN
values that a row must contain in order for it to be kept. You might need to
give some serious thought to how strictly you want to filter your data.

We’ll look more closely at how to clean data in chapter 5. For now,
remember to look for NaN in your data, and to then decide what you want to
do with it. Sometimes, you’ll want to remove the NaN values. But other times,
such as in Exercise 13 (below), you’ll want to assign values based on their
neighbors.

 Note

The count method on a series returns the number of non-NaN values. If there
are no NaN values at all, then the result will be the same as the size of the
series.

The count method on a data frame returns a series, with the columns' names
as the index. If any of the columns have a lower count result than the others,
it’s because they contain NaN values.

2.7 Exercise 13: Interpolation

When your data contains missing values, you have a few possible ways to
handle this. You can remove rows with missing values, but that might
remove a large number of otherwise useful rows. A standard alternative is
interpolation, in which you replace NaN with values that are likely to be close
to the orignal ones. The values might be wrong, but but they will be roughly
in the right ballpark.

In this exercise, we load some basic temperature data from New York City
from the end of 2018 and the start of 2019.

We’ll then simulate a simple recurring equipment failure at 3 and 6 a.m.,
preventing us from getting temperature readings at those hours. How well
does interpolation help us, and how far off are the interpolated mean and
median calculations from the original, true values?

Here are the steps I want you to take:

Load temperature data from New York City (from the end of 2018 and
the start of 2019, in a file called nyc-temps.txt) into a series. The
measurements are in degrees Celsius.
Create a data frame with two columns: temp, with the temperatures, and
hour, representing the hour at which the measurements were taken. The
hour values should be 0, 3, 6, 9, 12, 15, 18, and 21, repeated for all 728
data points.
Calculate the mean and median values. These are the real values, which

we hope to replicate via interpolation.
Set all of the values from 3 and 6 a.m. to NaN.
Interpolate the values with the interpolate method.
What are the mean and median? Are they similar to the real values?
Why or why not?

2.7.1 Discussion

In this exercise, we got closer to the real world of analytics, and having to
deal with missing data. The first task was to read the data into a series; we’ve
done this before, but it can’t hurt to review the code again:

s = pd.read_csv('data/nyc-temps.txt').squeeze()

We read the one-column data from nyc-temps.txt, and then tell Pandas that
we want it back as a series. (This will change in the next chapter, when we
start to read in complete data frames.) We can then use that series as one
column in a series.

The other column, hour, needs to contain the values 0, 3, 6, 9, 12, 15, 18, and
21, repeated for the length of the data. Since the data contains 728 rows, and
there are 8 different hours, we can create this by taking advantage of some
core Python functionality: We multiply the 8-element list of integers by 91,
and get a list of 728 elements.

Once we have created our data frame, we will remove some of the data to
simulate an outage at 3 and 6 a.m. We do this by selecting (with loc) the
rows that we want, along with the temp column, and assign it to NaN:

df.loc[(df['hour'] == 3) | (df['hour'] == 6), 'temp'] = NaN

Notice that this query has several pieces:

We look for df['hour'] to be 3, getting a boolean series back
We look for df['hour'] to be 6, getting a boolean series back
We use | to combine these boolean series into a new boolean series, in
which a True value in either one will return True
After the comma, where we choose columns, we pass temp

We then use loc not to retrieve rows, but to assign them en masse to
NaN.

Finally, we call df.interpolate, which returns a new data frame. In theory,
all of the columns will be interpolated—but in reality, there is only missing
data in the temp column. We then assign the new data frame back to df.

Figure 2.24. Graphical depiction of interpolate

By default, interpolate fills any NaN value with the average of the numbers
that come just before and after it. So if row 3 has a temperature of -1, row 4
has is NaN, and row 5 has a temperature of 5, interpolate will replace NaN
with a value of 2.0. If you have two NaN values in a row, then interpolate
will replace each NaN with half of the distance between the preceding non-NaN

value and the succeeding non-NaN value.

 Note

By passing a value to the method parameter, you can instruct interpolate to
use a different system for interpolation. For example, if you pass
method='nearest', then NaN values will be replaced by the closest non-NaN
value. Other methods are discussed in the documentation, at
http://mng.bz/MBo7.

Since temperature values don’t vary all that much from hour to hour, and can
be assumed to rise and fall on a continuum, I used the default "linear"
method, and felt like I was likely to be close to the actual values. By contrast,
hourly temperature readings from the oven in your kitchen cannot be
interpolated reliably in such a way. Before you use interpolate, consider if
it’s an appropriate way to fill in NaN values.

2.7.2 Solution

s = pd.read_csv('data/nyc-temps.txt').squeeze() #1

df = DataFrame({'temp': s,

 'hour': [0,3,6,9,12,15,18,21] * 91}) #2

df.loc[(df['hour'] == 3) | (df['hour'] == 6), 'temp'] = NaN #3

df = df.interpolate() #4

df['temp'].describe() #5

You can explore an abridged version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adata%

20%3D%20%7B'temp'%3A%20%7B0%3A%20-1.0,%201%3A%20np.nan,%202%3A%20np.nan,%

203%3A%205.0,%204%3A%20-1.0,%205%3A%20np.nan,%206%3A%203.0%7D,%0A%20'hour'

%3A%20%7B0%3A%200,%201%3A%203,%202%3A%206,%203%3A%209,%204%3A%2012,%205%3A

%2015,%206%3A%2018%7D%7D%0A%20%0Adf%20%3D%20DataFrame%28data%29%0A%0Adf.loc

%5B%28df%5B'hour'%5D%20%3D%3D%203%29%20%7C%20%28df%5B'hour'%5D%20%3D%3D%206

%29,%20'temp'%5D%20%3D%20np.nan%0Adf%20%3D%20df.interpolate%28%29%20%0A%0Ad

f%5B'temp'%5D.describe%28%29%20%0A&d=2022-11-08&lang=py&v=v1

2.7.3 Beyond the exercise

How does the behavior of interpolate change if we use
method='nearest'?
Let’s assume that the equipment works fine around the clock, but that it
fails to record a reading at -1 degrees and below. Are the interpolated
values similar to the real (missing) values they replace? Why or why
not?
A cheap solution to interpolation is to replace NaN values with the
column’s mean. Do this (with the missing values from -1 and below),
and compare the new mean and median. Again, why are (or aren’t) these
values similar to the original ones?

2.8 Exercise 14: Selective updating

In this exercise, I want you to create the same two-column data frame as we
did in the last exercise. Then, update values in the temp column such that any
value that is less than 0 is set to 0.

2.8.1 Discussion

If you’re like many Pandas users, then you might have thought about things
like this:

Get a boolean index, for when df['temp'] is less than 0
Apply that boolean index to the data frame
Retrieve the column, by using ['temp'] on the data frame
Assign the new value

The code would look like this:

df[df['temp'] < 0]['temp'] = 0

Logically, this makes perfect sense. There’s just one problem: You cannot
know in advance if it will work. That’s because Pandas does a lot of internal
analysis and optimization when it’s putting together our queries. You thus
cannot know if your assignment will actually change the temp column on df,

or—and this is the important thing—if Pandas has decided to cache the
results of your first query, applying ['temp'] to that cached, internal value
rather than to the original one.

As a result, it’s common—and maddening!—to get a
SettingWithCopyWarning from Pandas. It looks like this:

<ipython-input-2-acedf13a3438>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

When you get this warning, it’s because Pandas is trying to be helpful and
nice, telling you that your assignment might have no effect. The warning, by
the way, isn’t telling you that the assignment won’t work, because it might. It
all depends on the amount of data you have, and how Pandas thinks it can or
should optimize things.

The telltale sign that you might get this warning is the use of double square
brackets—not nested, with one pair inside of the other, but with one right
after the other. Whenever you see][in Pandas queries, you should try hard
to avoid it, because it might spell trouble when you assign to it. Retrieving
with this syntax, is also going to be less efficient than using loc with the
"row selector, column selector" selection syntax that we’ve seen and
discussed.

So, how should we actually set these values? It’s actually pretty
straightforward:

We use df.loc
We put our boolean index for the rows inside of the square brackets, as
before
We put our column selector, which is just 'temp' in this case, inside of
the same square brackets, following a comma
We can assign to that value

In other words, broken up across lines:

df.loc[

 df['temp'] < 0, #1

 'temp' #2

] = 0

If you use this syntax for all of your assignments, you won’t ever see that
dreaded SettingWithCopyWarning message. You’ll be able to use the same
syntax for retrieval and assignment. And you can even be sure that things are
running pretty efficiently.

2.8.2 Solution

df.loc[df['temp'] < 0, 'temp'] = 0

You can explore an abridged version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adata%

20%3D%20%7B'temp'%3A%20%7B0%3A%20-1.0,%201%3A%20np.nan,%202%3A%20np.nan,%

203%3A%205.0,%204%3A%20-1.0,%205%3A%20np.nan,%206%3A%203.0%7D,%0A%20'hour'

%3A%20%7B0%3A%200,%201%3A%203,%202%3A%206,%203%3A%209,%204%3A%2012,%205%3A

%2015,%206%3A%2018%7D%7D%0A%20%0Adf%20%3D%20DataFrame%28data%29%0A%0Adf.

loc%5B%28df%5B'hour'%5D%20%3D%3D%203%29%20%7C%20%28df%5B'hour'%5D%20%3D%

3D%206%29,%20'temp'%5D%20%3D%20np.nan%0Adf%20%3D%20df.interpolate%28%29%

20%0A%0Adf.loc%5Bdf%5B'temp'%5D%20%3C%200,%20'temp'%5D%20%20%3D%200%0Adf

&d=2022-11-08&lang=py&v=v1

2.8.3 Beyond the exercise

Set all of the odd temperatures to the mean of all temperatures
Set the even temperatures at hours 9 and 18 to 3
If the hour is odd, then set the temperature to 5

2.9 Summary

In this chapter, we started to work with data frames—creating them, adding
data to them, retrieving data from them, analyzing them, and even cleaning
up when data is missing. These techniques, along with those from the
previous chapter, are the building blocks upon which we work with data in
Pandas.

Starting in the next chapter, we’ll start to tackle more complex, real-world

scenarios, using data from the real world.

3 Importing and exporting data
So far, we’ve been creating data frames manually, or using random values. In
the real world, data frames contain actual, useful values, typically imported
from CSV files, Excel spreadsheets, or relational databases. Similarly, when
we’re done analyzing data, we’ll want to share our analysis by saving data to
files in those (or other) formats.

In this chapter, we’ll explore how to import data from a variety of formats,
emphasizing CSV files, because they’re so common. We’ll look at ways in
which we can not only read from such files, but customize the reading either
to improve the quality of our data or to optimize the process.

3.1 Useful references
Table 3.1. What you need to know

Concept What is it? Example To learn more

pd.read_csv

returns a
new data
frame
based on
CSV input

df =

pd.read_csv('myfile.csv') http://mng.bz/wvl7

df.to_csv

Writes a
data frame
to a CSV-
formatted
file or
string

df.to_csv('myfile.csv') http://mng.bz/7Dzx

pd.read_json

returns a
new data
frame
based on
JSON input

df =

pd.read_json('myfile.json') http://mng.bz/mV4n

df.corr

Show the
correlations
among the
columns

df.corr() http://mng.bz/6DQG

df.dropna

Return a
new data
frame,
without any
NaN values

df.dropna() http://mng.bz/o1PN

df.loc

Retrieve
selected
rows and
columns

df.loc[df['trip_distance']

> 10, 'passenger_count']
http://mng.bz/nWPv

pd.read_html

returns a
list of data
frames
based on
HTML
input

df = df.read_html('0 http://mng.bz/vnxx

returns a
sorted
(descending

s.value_counts

frequency)
series
counting
how many
times each
value
appears in s

s.value_counts() http://mng.bz/yQyJ

s.round

returns a
new series
based on s,
in which
the values
are rounded
to the
specified
number of
decimals.

s.round(2) http://mng.bz/QPym

df.memory_usage

Indicates
how many
bytes are
being used
by a data
frame and
its
associated
data

df.memory_usage() http://mng.bz/XNPY

CSV, the non-standard standard

Computer scientist Andrew S. Tanenbaum once said, "The good thing about
standards is that there are so many to choose from." The same could be said,
in many ways, for files in comma-separated values ("CSV") format, which

are the overwhelming favorite in the world of data. Sure, there are plenty of
people using Excel and relational databases. But if you download a dataset
from the Internet, odds are that you’ll be downloading a CSV file.

At its heart, CSV assumes that your data can be described as a two-
dimensional table. The rows are represented as rows in the file, and the
columns are separated by… well, they’re separated by commas, at least by
default. CSV files are text files, which means that you can read (and edit)
them without special tools.

For all its popularity, CSV doesn’t have a formal specification. There is an
RFC (4110, available at https://datatracker.ietf.org/doc/html/rfc4180), but it’s
informational, from 2005. And while we can generally agree on what
constitutes legal CSV, there are lots of variants and gray areas that make
writing and parsing CSV difficult, or at least ambiguous.

Rather than take a stand on how CSV files should be formatted, Pandas tries
to be open and flexible. When we read from a CSV file (with pd.read_csv)
or write a data frame to CSV (with df.to_csv), you can choose from many,
many parameters, each of which can affect the way in which it is written.
Among the most common are:

sep, the field separator, which is (perhaps obviously) a comma by
default, but can often be a tab ('\t')
header, whether there are headers describing column names, and on
which line of the file they appear, which can be controlled by the header
parameter
index_col, which column, if any, should be set to be the index of our
data frame
usecols, which columns from the file should be included in the data
frame

For example, I could say:

pd.read_csv('mydata.csv', #1

 sep='\t', #2

 index_col='w', #3

 usecols=['w', 'x', 'z'], #4

 header=0) #5

Figure 3.1. Graphical depiction of reading a CSV file with common keyword arguments

It’s worth looking through the documentation for pd.read_csv, in no small
part because the sheer number of parameters will likely overwhelm you the
first time you try to understand what you can configure, and how. We’ll
explore a number of these parameters in this book, but many that we don’t
cover might be useful in your work.

 Note

When teaching data science, I often use the phrase "know your data." That’s
because it’s important to really know as much about your data as you can
before willy-nilly reading it into memory. You probably don’t want to load
all of the columns into Pandas. And you might want to specify the type of
data that’s in each column, rather than let Pandas just guess.

Most data sets come with a "data dictionary," a file that describes the
columns, their types, their meanings, and their ranges. It’s almost always
worth your while to examine a data dictionary when starting to analyze the
data. In many cases, the dictionary will give you insights that will help you
decide what and how you want to read into Pandas.

3.2 Exercise 15: Weird taxi rides

Back when I was growing up, taking a taxi in New York City was a pretty
simple affair: You would hail a cab, and tell the driver where you wanted to
go. When you got there, you would pay whatever was on the meter, add a tip,
and get a receipt. Of course, the payment was in cash.

Nowadays, things are a bit different: New York taxis now have TV screens,
on which they show advertisements and something resembling entertainment.
But those screens aren’t just there to annoy you; they also function as credit-
card terminals, allowing you to use your card to pay for your trip and even
add a tip. These screens are also computers, storing information about the trip
and sending it to the Taxi and Limousine Commission, the city department
that regulates taxis. The TLC then uses this information to make decisions
regarding transportation policy.

Fortunately for the world of data science, the data collected by New York
taxis is also available to us, the general public. We can retrieve information
about every trip made over the last decade or so, learning where people went,
how much they spent, how they paid, and even how much they tipped. This is
one of my favorite data sets, so we’ll be using it quite a bit in this book. In
particular, we’ll be looking at several columns from the data set:

passenger_count, the number of passengers who took that taxi ride
trip_distance, the distance traveled, in miles
total_amount, the total owed to the driver, including the fare, tolls,
taxes, and tips
payment_type, an integer number describing how the passenger paid for
the trip. The most important values are 1 (credit card) and 2 (cash).

For this first exercise, I want you to create a data frame from the CSV data
for January 2019:

Load the CSV file into a data frame, using only the four columns
mentioned above: passenger_count, trip_distance, payment_type,
and total_amount.
How many taxi rides had more than 8 passengers?
How many taxi rides had zero passengers?
How many taxi rides were paid for in cash, and cost more than $1,000?
How many rides cost less than 0?
How many rides traveled a below-average distance, but cost an above-
average amount?

 Note

Why do we read CSV files with the pd.read_csv function, rather than with a
method on an existing data frame? Because the goal of read_csv is to create
(and return) a new data frame based on the contents of the CSV file, not to
modify or update the contents of an existing one.

3.2.1 Discussion

The first thing we need to do to solve this problem is create a new data frame

from the CSV file. Fortunately, the data is formatted in such a way that
pd.read_csv will work just fine with its defaults, returning a data frame with
named columns. But this file contains a lot of data—7,667,792 rides, to be
exact—and if we only keep the columns we need, we’ll reduce the memory
footprint by quite a lot. (Indeed, I found that loading only the columns we
asked for reduced the memory usage from 2.4 GB to 234 MB. We’ll talk
more about optimizing and measuring memory usage in Chapter 10.)

The usecols parameter to pd.read_csv allows us to select which columns
from the CSV file will be kept around. The parameter takes a list as an
argument, and that list can either contain integers (indicating the numeric
index of each column) or strings representing the column names. I generally
prefer to use strings, since they’re more readable, and that’s what I did here.

The result was a data frame with four columns and more than 7.6 million
rows, each representing one taxi ride in New York City during January 2019.
With that data in hand, I was able to start answering the questions asked by
this exercise.

For starters, I wanted to know how many taxi rides had more than 8
passengers. The most standard way to get this information is to create a
boolean series with our query, and then to apply it as an index. We can find
all rows in which there were more than 8 passengers with:

df['passenger_count'] > 8

We can then apply the boolean series as a mask index to the entire data
frame, via the loc accessor:

df.loc[df['passenger_count'] > 8]

I could even run the count method on every column in the data frame:

df.loc[df['passenger_count'] > 8].count()

 Note

When we run count on a series, we get back a single integer, indicating how

many non-NaN values are in that series. When we run it on a data frame, then
we get back a series, in which the index represents the data frame’s columns,
and the numbers indicate how many non-NaN values there are in each column.
For example:

s = Series([10, 20, np.NaN, 40, 50])

s.count()

The result of the above code is 4. However:

df = DataFrame([[10, 20, np.NaN, 40],

 [50, np.NaN, np.NaN, np.NaN],

 [np.NaN, 60, 70, 80]],

 index=list('abc'),

 columns=list('wxyz'))

df.count()

The result of the above code is a series, showing the number of non-NaN
values are in each column:

w 2

x 2

y 1

z 2

dtype: int64

Right now, we’re only interested in the passenger_count column, and in
calculating how many such rides there were. We can thus trim the columns
by using loc:

df.loc[df['passenger_count'] > 8, #1

 'passenger_count' #2

].count() #3

Sure enough, this tells us that in January 2019, there were 9 trips with more
than 8 people. (I hope that these took place in larger-than-usual taxis.)

Figure 3.2. Graphical depiction of selecting rows where passenger_count > 8, then invoking sum.

Next, how many taxi rides in January 2019 had zero passengers? I would
guess that when there aren’t any passengers, it’s because the taxi is being
used as a package-delivery service. Or, perhaps the driver simply neglected to
enter that information; the data dictionary provided by New York City
indicates that the number of passengers is entered manually by the driver,
which makes it far more error-prone.

Once again, we can query passenger_count:

df['passenger_count'] == 0

This gives us a boolean series, which we can use in another query that uses
loc and a column selector, along with a call to count:

df.loc[df['passenger_count'] == 0, #1

 'passenger_count' #2

].count() #3

It turns out that ther were 117,381 such rides in that month. Which sounds
like a lot, but it turns out to be only 1.5 percent of all rides taken that month.

While it’s true that most people pay for their taxi rides using credit cards,
there are still those that pay in cash, for a variety of reasons. How many rides
in that month were paid in cash, and had a total_amount of more than
$1,000?

This question is a bit harder to answer, because we’re going to need to
combine two different boolean series: The first will find rides in which the
payment method was cash (i.e., 2), and the second series will find where
total_amount is greater than 1000. We can then join the two together using
&, as in:

(df['payment_type'] == 2) & (df['total_amount'] > 1000)

This returns a boolean series, with a value of True for every index where both
are True, and False everywhere else. We can then apply it to the data frame
using loc, retrieving the total_amount column via the second argument and
then calling count on it:

df.loc[(df['payment_type'] == 2) & (df['total_amount'] > 1000), #1

 'passenger_count' #2

].count() #3

Figure 3.3. Graphical depiction of selecting rows where payment_type == 2 and total_amount >
1000, and counting the elements of passenger_count

I might be extreme in using very little cash, but I was still shocked to
discover that there were any rides paid in cash for such a large amount of
money. Granted, it’s only a handful of taxi rides, but still—can you imagine
pulling $1,000 out of your wallet to pay for a taxi?

But I digress.

Next, I asked you to find rides that cost less than 0. This would presumably
mean that the rider was getting a refund, but it could be for all sorts of other
reasons. How many such rides took place in January 2019?

Once again, we’ll use a query to create a boolean series:

df['total_amount'] < 0

We’ll apply this boolean series as a mask index on the total_amount
column, and run count:

df.loc[df['total_amount'] < 0, 'total_amount'].count()

The total is 7,131, meaning that only .01 percent of all taxi rides give you
money back. Which are better odds than the lottery, but probably not a good
idea if you’re looking for a new career.

Finally, I asked how many trips traveled a below-average distance, but cost
an above-average amount? To do this, we’ll once again need to find all of the
trips that traveled a below-average distance:

df['trip_distance'] < df['trip_distance'].mean()

Then let’s find all of the trips that cost an above-average amount:

df['total_amount'] > df['total_amount'].mean()

We’ll combine them using &, to get a new boolean series:

(df['trip_distance'] < df['trip_distance'].mean()) &

 (df['total_amount'] > df['total_amount'].mean())

Finally, we’ll use loc on this boolean series, applying it to trip_distance
and then counting the results:

df.loc[(df['trip_distance'] < df['trip_distance'].mean()) & #1

 (df['total_amount'] > df['total_amount'].mean()), #2

 'trip_distance' #3

].count() #4

Figure 3.4. Graphical depiction of counting rows where where trip_distance is less than the
mean, but total_amount is greater than the mean

We get a total of 411,255 rides, which is about 5% of the total rides in the

data set.

3.2.2 Solution

df = pd.read_csv('../data/nyc_taxi_2019-01.csv',

 usecols=['passenger_count', 'trip_distance',

 'total_amount', 'payment_type'])

df.loc[df['passenger_count'] > 8, 'passenger_count'].count()

df.loc[df['passenger_count'] == 0, 'passenger_count'].count()

df.loc[(df['payment_type'] == 2) & (df['total_amount'] > 1000),

 'passenger_count'].count()

df.loc[df['total_amount'] < 0, 'total_amount'].count()

df.loc[(df['trip_distance'] < df['trip_distance'].mean()) &

 (df['total_amount'] > df['total_amount'].mean()), 'trip_distance'].count()

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20DataFrame%28%7B'passenger_count'%3A%20%7B6947990%3A%203,%0A%20%20314702

%3A%201,%0A%20%206523713%3A%202,%0A%20%206576788%3A%201,%0A%20%20508911%3A%

201,%0A%20%202207659%3A%201,%0A%20%201027824%3A%204,%0A%20%207634444%3A%201

,%0A%20%203300408%3A%201,%0A%20%202299180%3A%205%7D,%0A%20'trip_distance'

%3A%20%7B6947990%3A%200.74,%0A%20%20314702%3A%201.31,%0A%20%206523713%3A%

202.1,%0A%20%206576788%3A%201.1,%0A%20%20508911%3A%2011.14,%0A%20%202207659

%3A%200.93,%0A%20%201027824%3A%201.97,%0A%20%207634444%3A%202.4,%0A%20%2033

00408%3A%202.82,%0A%20%202299180%3A%201.92%7D,%0A%20'payment_type'%3A%20%7

B6947990%3A%201,%0A%20%20314702%3A%202,%0A%20%206523713%3A%201,%0A%20%20657

6788%3A%202,%0A%20%20508911%3A%201,%0A%20%202207659%3A%201,%0A%20%201027824

%3A%202,%0A%20%207634444%3A%202,%0A%20%203300408%3A%201,%0A%20%202299180%3

A%202%7D,%0A%20'total_amount'%3A%20%7B6947990%3A%206.1,%0A%20%20314702%3A%

208.3,%0A%20%206523713%3A%2014.16,%0A%20%206576788%3A%206.8,%0A%20%2050891

1%3A%2042.13,%0A%20%202207659%3A%208.76,%0A%20%201027824%3A%2010.3,%0A%20%

207634444%3A%2013.3,%0A%20%203300408%3A%2015.36,%0A%20%202299180%3A%208.8%

7D%7D%29%0A%20%20%0Adf.loc%5Bdf%5B'passenger_count'%5D%20%3E%208,%20'passen

ger_count'%5D.count%28%29%0Adf.loc%5Bdf%5B'passenger_count'%5D%20%3D%3D%200

,%20'passenger_count'%5D.count%28%29%0Adf.loc%5B%28df%5B'payment_type'%5D%2

0%3D%3D%202%29%20%26%20%28df%5B'total_amount'%5D%20%3E%201000%29,%0A%20%20%

20%20%20%20%20'passenger_count'%5D.count%28%29%0Adf.loc%5Bdf%5B'total_amount

'%5D%20%3C%200,%20'total_amount'%5D.count%28%29%0Adf.loc%5B%28df%5B'trip_dis

tance'%5D%20%3C%20df%5B'trip_distance'%5D.mean%28%29%29%20%26%0A%20%20%20%

20%20%20%20%28df%5B'total_amount'%5D%20%3E%20df%5B'total_amount'%5D.mean%28

%29%29,%20'trip_distance'%5D.count%28%29%0A&d=2022-11-14&lang=py&v=v1

3.2.3 Beyond the exercise

Repeat this exercise, but using the query method rather than a boolean
index and loc.
How many of the rides that cost less than 0 were for either a dispute
(payment_type of 4) or a voided trip (payment_type of 6)?
I stated above that most people pay for their taxi rides using a credit
card. Show this, and find what percentages normally pay in cash vs. a
credit card.

3.3 Exercise 16: Pandemic taxis

Not surprisingly, the coronavirus pandemic that caused widespread illness,
death, and economic havoc around the world starting in early 2020 affected
taxi rides in New York. In this exercise, we’ll look at how we can load data
from multiple files into a single data frame, and then do some simple
comparisons between data before the pandemic and while New York was in
the middle of it.

In this exercise, I want you to create a data frame from two different CSV
files containing New York taxi data—one from July 2019 (before the
pandemic), and a second from July 2020 (near the height of the pandemic, at
least in New York). The data frame should contain three columns from the
files: passenger_count, total_amount, and payment_type. It should also
include a fifth column, year, which should be set to either 2019 or 2020,
depending on the file from which the data was loaded.

With that data in hand, I want you to answer a few questions:

How many rides were taken in 2019 and 2020, and what is the
difference between these two figures?
How much money (in total) was collected in 2019 and 2020, and what
was the difference between these two figures?
Did the proportion of trips with more than passenger change
dramatically?
Did people use cash (i.e., payment_type of 2) less in 2020 than in 2019?

 Note

There are some great techniques in Pandas having to do with grouping and
with date-time parsing that would make answering these problems a bit
easier. We’ll discuss those techniques in Chapters 6 and 9, respectively. For
now, see if you can solve these problems without such assistance.

3.3.1 Discussion

There are countless ways to measure the impact that the pandemic had on our
lives and on our world. I find that this data set certainly provides us some
interesting insights.

For starters, I wanted you to take information from two different files and
join them together into a single data frame. We already saw, in Chapter 1,
how we can use pd.concat to combine two existing series objects into a
single series. It turns out that you can also use pd.concat on data frames,
which is what we want to do here. We can thus load the data into two
separate data frames, and combine them:

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'])

df_2020_jul = pd.read_csv('../data/nyc_taxi_2020-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'])

df = pd.concat([df_2019_jul, df_2020_jul])

If we were only interested in getting aggregate answers, that would be
enough. But we want to separate the answers by year via a year column. My
preferred solution to this is to add a new column to each of the file-based data
frames, and then concatenate them:

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'])

df_2019_jul['year'] = 2019 #1

df_2020_jul = pd.read_csv('../data/nyc_taxi_2020-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'])

df_2020_jul['year'] = 2020 #2

df = pd.concat([df_2019_jul, df_2020_jul]) #3

Figure 3.5. Concatenating two data frames into a single one

Once we have done that, we have a single data frame, df, on which we can
ask our questions. For starters, I wanted to know how many rides were taken
in 2019 vs. 2020. That can be done by invoking count on any of our
columns, subtracting the 2020 count from the 2019 count:

df.loc[df['year'] == 2019, 'total_amount'].count() - df.loc[df['year']

 == 2020, 'total_amount'].count()

Figure 3.6. Comparing number of rides in 2019 with 2020

The result is 5,510,007. That’s right—in July 2020, New Yorkers took 5.5
million fewer taxi rides than in 2019. Now, that’s a lot of taxi rides. But how
much less money did they make as a result? Now, instead of using count,
we’ll use sum to total up the numbers before we subtract them:

df.loc[df['year'] == 2019, 'total_amount'].sum() - df.loc[df['year']

 == 2020, 'total_amount'].sum()

The answer that I get is 108848979.24000001, or more than $108 million. I
don’t know about you, but I look at those and am simply astonished by the
huge sums.

Figure 3.7. Comparing the total amount earned in 2019 with 2020

 Note

If you’re bothered by the long number of numbers after the decimal point,
you can always use the round method on a series to keep it limited to two

digits.

df.loc[df['year'] == 2019, 'total_amount'].sum().round(2) -

 df.loc[df['year'] == 2020, 'total_amount'].sum().round(2)

It makes sense that the number of trips declined during the pandemic.
However, we might ask if people’s behavior changed, as well. For example,
given that the pandemic was in full swing during July 2020, and there wasn’t
yet a vaccine, people were avoiding each other to a very large degree. As a
result, we might wonder whether people were less likely to take taxis with
other people. The next question asked you to compare the proportion (not raw
number) of multi-person taxi rides in 2019 with those in 2020. In order to do
that, we can take the number of multi-person rides and divide it by the
number of overall rides. Here’s how I did that:

df.loc[(df['year'] == 2019) &

 (df['passenger_count'] > 1), 'passenger_count'].count() /

 df.loc[df['year'] == 2019, 'payment_type'].count()

df.loc[(df['year'] == 2020) &

 (df['passenger_count'] > 1), 'passenger_count'].count() /

 df.loc[df['year'] == 2020, 'payment_type'].count()

I get about 28% in 2019, and about 21% in 2020. Meaning that people were
less likely to share a taxi during the pandemic. Another interpretation would
be that there were fewer family vacations and trips in New York, raising the
proportion of single passengers commuting to work.

Finally, I was curious to know if people were more or less likely to use cash
during the pandemic, given that we were trying to avoid physical contact.
Here’s how we can calculate that:

df.loc[(df['year'] == 2019) &

 (df['payment_type'] == 2), 'payment_type'].count() /

 df.loc[df['year'] == 2019, 'payment_type'].count()

df.loc[(df['year'] == 2020) &

 (df['payment_type'] == 2), 'payment_type'].count() /

 df.loc[df['year'] == 2020, 'payment_type'].count()

Figure 3.8. Comparing the number of cash payments 2019 with 2020

Here, the answer was a bit surprising: In July 2019, about 29% of the trips
were paid in cash. But in July 2020, that number went up to 32%—exactly
the opposite direction from what I would have expected. One theory, floated
by members of my family, is that the only people going to work during the
pandemic were those who had to do so, the so-called "essential workers."
They tend to earn less money, and use more cash. Regardless of whether

that’s the reason, the numbers bear out the increased use of cash.

3.3.2 Solution

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'])

df_2019_jul['year'] = 2019

df_2020_jul = pd.read_csv('../data/nyc_taxi_2020-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'])

df_2020_jul['year'] = 2020

df = pd.concat([df_2019_jul, df_2020_jul])

df.loc[df['year'] == 2019, 'total_amount'].count() - df.loc[df['year'] ==

 2020, 'total_amount'].count()

df.loc[df['year'] == 2019, 'total_amount'].sum() - df.loc[df['year'] ==

 2020, 'total_amount'].sum()

df.loc[(df['year'] == 2019) &

 (df['passenger_count'] > 1), 'passenger_count'].count() /

 df.loc[df['year'] == 2019, 'payment_type'].count()

df.loc[(df['year'] == 2020) &

 (df['passenger_count'] > 1), 'passenger_count'].count() /

 df.loc[df['year'] == 2020, 'payment_type'].count()

df.loc[(df['year'] == 2019) &

 (df['payment_type'] == 2), 'payment_type'].count() /

 df.loc[df['year'] == 2019, 'payment_type'].count()

df.loc[(df['year'] == 2020) &

 (df['payment_type'] == 2), 'payment_type'].count() /

 df.loc[df['year'] == 2020, 'payment_type'].count()

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20DataFrame%28%7B'passenger_count'%3A%20%7B3052891%3A%205.0,%0A%20%20771

260%3A%20np.nan,%0A%20%202080921%3A%201.0,%0A%20%201691203%3A%201.0,%0A%20%

203257780%3A%202.0,%0A%20%204454807%3A%201.0,%0A%20%206250323%3A%202.0,%0A%

20%204105125%3A%205.0,%0A%20%20789467%3A%202.0,%0A%20%204930582%3A%202.0,

%0A%20%204873064%3A%201.0,%0A%20%20502123%3A%201.0,%0A%20%202320995%3A%201.

0,%0A%20%204967113%3A%201.0,%0A%20%20750140%3A%201.0,%0A%20%204097766%3A%

201.0,%0A%20%201263539%3A%205.0,%0A%20%206049031%3A%201.0,%0A%20%202851774

%3A%202.0,%0A%20%201080571%3A%201.0,%0A%20%205743779%3A%201.0,%0A%20%20615

3072%3A%201.0,%0A%20%203200119%3A%201.0,%0A%20%204884860%3A%202.0,%0A%20%

206106585%3A%201.0%7D,%0A%20'payment_type'%3A%20%7B3052891%3A%201.0,%0A%20

%20771260%3A%20np.nan,%0A%20%202080921%3A%201.0,%0A%20%201691203%3A%201.0,

%0A%20%203257780%3A%201.0,%0A%20%204454807%3A%201.0,%0A%20%206250323%3A%201

.0,%0A%20%204105125%3A%201.0,%0A%20%20789467%3A%202.0,%0A%20%204930582%3A%

201.0,%0A%20%204873064%3A%202.0,%0A%20%20502123%3A%201.0,%0A%20%202320995%

3A%202.0,%0A%20%204967113%3A%201.0,%0A%20%20750140%3A%201.0,%0A%20%20409776

6%3A%201.0,%0A%20%201263539%3A%201.0,%0A%20%206049031%3A%201.0,%0A%20%20285

1774%3A%201.0,%0A%20%201080571%3A%201.0,%0A%20%205743779%3A%201.0,%0A%20%20

6153072%3A%201.0,%0A%20%203200119%3A%201.0,%0A%20%204884860%3A%201.0,%0A%20

%206106585%3A%201.0%7D,%0A%20'total_amount'%3A%20%7B3052891%3A%2020.16,%0A%

20%20771260%3A%2010.78,%0A%20%202080921%3A%2017.8,%0A%20%201691203%3A%2019.

56,%0A%20%203257780%3A%2017.76,%0A%20%204454807%3A%2011.3,%0A%20%206250323%

3A%2035.8,%0A%20%204105125%3A%2015.36,%0A%20%20789467%3A%2014.3,%0A%20%2049

30582%3A%2010.56,%0A%20%204873064%3A%2044.92,%0A%20%20502123%3A%2015.8,%0A%

20%202320995%3A%2010.3,%0A%20%204967113%3A%2021.36,%0A%20%20750140%3A%208.

16,%0A%20%204097766%3A%2016.55,%0A%20%201263539%3A%2016.64,%0A%20%206049031

%3A%2021.23,%0A%20%202851774%3A%2011.6,%0A%20%201080571%3A%2012.96,%0A%20%2

05743779%3A%2011.75,%0A%20%206153072%3A%2020.16,%0A%20%203200119%3A%2015.96

,%0A%20%204884860%3A%2019.8,%0A%20%206106585%3A%2050.75%7D,%0A%20'year'%3A%

20%7B3052891%3A%202019,%0A%20%20771260%3A%202020,%0A%20%202080921%3A%202019

,%0A%20%201691203%3A%202019,%0A%20%203257780%3A%202019,%0A%20%204454807%3A%

202019,%0A%20%206250323%3A%202019,%0A%20%204105125%3A%202019,%0A%20%2078946

7%3A%202019,%0A%20%204930582%3A%202019,%0A%20%204873064%3A%202019,%0A%20%2

0502123%3A%202020,%0A%20%202320995%3A%202019,%0A%20%204967113%3A%202019,%0A

%20%20750140%3A%202019,%0A%20%204097766%3A%202019,%0A%20%201263539%3A%20201

9,%0A%20%206049031%3A%202019,%0A%20%202851774%3A%202019,%0A%20%201080571%3A

%202019,%0A%20%205743779%3A%202019,%0A%20%206153072%3A%202019,%0A%20%203200

119%3A%202019,%0A%20%204884860%3A%202019,%0A%20%206106585%3A%202019%7D%7D%2

9%0A%20%20%0Adf.loc%5Bdf%5B'year'%5D%20%3D%3D%202019,%20'total_amount'%5D.

count%28%29%20-%20df.loc%5Bdf%5B'year'%5D%20%3D%3D%202020,%20'total_amount'

%5D.count%28%29%0Adf.loc%5Bdf%5B'year'%5D%20%3D%3D%202019,%20'total_amount'

%5D.sum%28%29%20-%20df.loc%5Bdf%5B'year'%5D%20%3D%3D%202020,%20'total_amount

'%5D.sum%28%29%0A%0Adf.loc%5B%28df%5B'year'%5D%20%3D%3D%202019%29%20%26%0A%

20%20%20%20%20%20%20%28df%5B'passenger_count'%5D%20%3E%201%29,%20'passenger

_count'%5D.count%28%29%20/%20df.loc%5Bdf%5B'year'%5D%20%3D%3D%202019,%20

'payment_type'%5D.count%28%29%0Adf.loc%5B%28df%5B'year'%5D%20%3D%3D%202020%

29%20%26%0A%20%20%20%20%20%20%20%28df%5B'passenger_count'%5D%20%3E%201%29,

%20'passenger_count'%5D.count%28%29%20/%20df.loc%5Bdf%5B'year'%5D%20%3D%3D%

202020,%20'payment_type'%5D.count%28%29%0A%0Adf.loc%5B%28df%5B'year'%5D%20%

3D%3D%202019%29%20%26%0A%20%20%20%20%20%20%20%28df%5B'payment_type'%5D%20%

3D%3D%202%29,%20'payment_type'%5D.count%28%29%20/%20df.loc%5Bdf%5B'year'%5D

%20%3D%3D%202019,%20'payment_type'%5D.count%28%29%0Adf.loc%5B%28df%5B'year'

%5D%20%3D%3D%202020%29%20%26%0A%20%20%20%20%20%20%20%28df%5B'payment_type'

%5D%20%3D%3D%202%29,%20'payment_type'%5D.count%28%29%20/%20df.loc%5Bdf%5B'

year'%5D%20%3D%3D%202020,%20'payment_type'%5D.count%28%29%0A&d=2022-11-14&

lang=py&v=v1

3.3.3 Beyond the exercise

Use the corr method on df to find the correlations among the columns.
How would you interpret these results?
Show, with a single command, the difference in descriptive statistics for
total_amount beween 2019 and 2020. Round values to use no more
than 2 digits after the decimal point.
If we assume that zero-passenger trips are for delivering packages, how
were those affected during the pandemic? Show the proportion of such
trips in 2019 vs. 2020.

Data frames and dtype

In Chapter 1, we saw that every series has as dtype describing the type of
data that it contains. We can retrieve this data using the dtype attribute, and
we can tell Pandas what dtype to use when creating a series using the dtype
parameter when we invoke the Series class.

In a data frame, each column is a separate Pandas series, and thus has its own
dtype. By invoking the dtypes (notice the plural!) method on our data frame,
we can find out what the dtype is of each column. This information, along
with additional details about the data frame, is also available by invoking the
info method on our data frame.

When we read data from a CSV file, Pandas tries its best to infer the dtype of
each column. Remember that CSV files are really text files, so Pandas has to
examine the data to choose the best dtype. It will basically choose between
three types:

If the values can all be turned into integers, then it chooses int64.
If the values can all be turned into floats—which includes NaN—then it
chooses float64.
Otherwise, it chooses object, meaning core Python objects.

However, there are several problems with letting Pandas analyze and choose
the data in this way.

First, while these default choices aren’t bad, they can be overly large for
many values. We often don’t need 64-bit numbers, so choosing int64 or
float64 will waste memory.

The second problem is much more subtle: If Pandas is to correctly guess the
dtype for a column, then it needs to examine all of the values in that column.
But if you have millions of rows in a column, then that process can use a
huge amount of memory. For this reason, read_csv reads the file into
memory in pieces, examining each piece in turn and then creating a single
data frame from all of them. You normally won’t know that this is
happening; Pandas does this in order to save memory.

This can potentially lead to a problem, if it finds (for example) values that
look like integers at the top of the file, and values that look like strings at the
bottom of the file. In such a case, you end up with a dtype of object, and
with values of different types. This is almost certainly a bad thing, and
Pandas warns you about this with a DtypeWarning. If you load the New York
City taxi data from January 2020 into Pandas without specifying usecols,
then you might well get this warning—I often did, on my computer.

One way to avoid this mixed-dtype problem is to tell Pandas not to skimp on
memory, and that it’s OK to examine all of the data. You can do that by
passing a False values to the low_memory parameter in read_csv. By default,
low_memory is set to True, resulting in the behavior that I’ve described here.
But remember that setting low_memory to False might indeed use lots of
memory, a potentially big problem if your dataset is large.

A better solution is to tell Pandas that you don’t want it to guess the dtype,
and that you would rather tell it explicitly. You can do that by passing a
dtype parameter to read_csv, with a Python dictionary as its argument. The
dict’s keys will be strings, the names of the columns being read from disk,
and the values will be the data types you want to use. It’s typical to use data
types from Pandas and NumPy, but if you specify int or float, then Pandas
will simply use np.int64 or np.float64. And if you specify str, then
Pandas will store the data as Python strings, assigning a dtype of object.

For example:

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',

 usecols=['passenger_count',

 'total_amount', 'payment_type'],

 dtype={'passenger_count':np.int8,

 'total_amount':np.float32,

 'payment_type':np.int8})

Finally: It’s often tempting to set a dtype to be an integer value. But
remember that if the column contains NaN, then it cannot be defined as an
integer dtype. Instead, you’ll need to read the column as floating-point data,
remove or interpolate the NaN values, and then convert the column (using
astype) to the integer type you want.

3.4 Exercise 17: Setting column types

Once again, I want you to create a data frame based on New York taxi data
from January 2020. This time, however, I want to ensure that our data is in
the most appropriate and compact form it can be, and will use as little
memory as possible when being loaded. As a result, I want you to:

Specify the dtype for each column as you read it in
Identify rows containing NaN values. Which columns are NaN, and why?
Remove any rows containing any NaN values
Set the dtype for each column to the smallest, most appropriate value

3.4.1 Discussion

While this exercise was ostensibly about setting the dtype when reading from
files, there was much more to it—in particular, you started to see that
cleaning data, and setting appropriate data types, can be a multi-step process.

We started by reading the data from January 2020, much as we had done
before, with read_csv. However, this time I wanted you to specify the dtype
of each column. In theory, the best choices for the dtype assignments would
have been int8 for both passenger_count and payment_type, since both are
integers that won’t ever go above 128. I also decided that float16 would
give more than enough space for total_amount, given that its max value is
65,500.

But if you try to set the dtype for passenger_count and payment_type to
int8, you quickly discover a problem: Pandas raises an error, indicating that
there are NaN values in those columns. Since NaN is a float that cannot be
converted into an integer, we need to keep those columns set to float16, at
least for now.

It might seem odd for us to set the dtype to a not-quite-correct value. Why
not just let Pandas guess, as we have done so far, and then change it
afterward? Because in a large data set, we run the risk of having multiple
dtype values for a single column. That’s a result of Pandas reading our file in
chunks, and choosing a dtype for each chunk. If all of the chunks have the
same dtype, then the entire column matches. If not, then the column is set to
a dtype of object, meaning a collection of Python objects.

 Note

The chunking I’m describing here is done automatically, as Pandas reads data
from the file. Separate functionality allows us to read files in chunks; we’ll
discuss that in Chapter 11.

Why would passenger_count and payment_type contain NaN values?
Perhaps because both of them are manually set by the driver. However, it
doesn’t happen very often: Out of 6.4 million taxi rides in our data set, only
65,441 had NaN values, which works out to about 1 percent. It doesn’t seem
unreasonable for drivers to neglect to indicate the number of passengers in
one out of every 100 rides.

Regardless, to change those two columns' dtype to be int8, we need to
remove the NaN values. We can do that with df.dropna(), which returns a
new data frame identical to df but without rows containing NaN. We can
assign the result of df.dropna() back to df:

df = df.dropna()

Here’s a depiction of that:

Figure 3.9. Removing rows containing NaN with dropna

Even though df.dropna() returns a new data frame, it’s possible that its data
is shared with other data frames, for the sake of efficiency. Modifying our

data frame might thus result in a SettingWithCopyWarning. To avoid that,
we can use the copy method on our data frame, to ensure that there isn’t any
shared data behind the scenes:

df = df.dropna().copy()

If you don’t use copy, then you might get the warning, and it might be
harmless… but it also might mean that any changes you make won’t stick.

Now that we have removed all of the NaN values, we can finally assign the
dtype values that we wanted to use all along:

df['passenger_count'] = df['passenger_count'].astype(np.int8)

df['payment_type'] = df['payment_type'].astype(np.int8)

3.4.2 Solution

df = pd.read_csv('../data/nyc_taxi_2020-01.csv',

 usecols=['passenger_count',

 'total_amount' , 'payment_type'],

 dtype={'passenger_count':float16,

 'total_amount':float16,

 'payment_type':float16}) #1

df.count() #2

df = df.dropna().copy() #3

df['passenger_count'] = df['passenger_count'].astype(np.int8) #4

df['payment_type'] = df['payment_type'].astype(np.int8)

You can explore this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20DataFrame%28%7B'passenger_count'%3A%20%7B4283684%3A%201.0,%0A%20%20350

3176%3A%202.0,%0A%20%20573177%3A%201.0,%0A%20%20635083%3A%201.0,%0A%20%2037

54203%3A%202.0,%0A%20%202948285%3A%201.0,%0A%20%205908133%3A%201.0,%0A%20%2

05202157%3A%203.0,%0A%20%202491647%3A%201.0,%0A%20%204454508%3A%202.0%7D,%0

A%20'payment_type'%3A%20%7B4283684%3A%201.0,%0A%20%203503176%3A%202.0,%0A%2

0%20573177%3A%201.0,%0A%20%20635083%3A%201.0,%0A%20%203754203%3A%201.0,%0A%

20%202948285%3A%201.0,%0A%20%205908133%3A%201.0,%0A%20%205202157%3A%201.0,%

0A%20%202491647%3A%201.0,%0A%20%204454508%3A%201.0%7D,%0A%20'total_amount'%

3A%20%7B4283684%3A%2012.9609375,%0A%20%203503176%3A%208.796875,%0A%20%20573

177%3A%2012.9609375,%0A%20%20635083%3A%2015.9609375,%0A%20%203754203%3A%20

10.296875,%0A%20%202948285%3A%2014.0,%0A%20%205908133%3A%2012.359375,%0A%20

%205202157%3A%2019.296875,%0A%20%202491647%3A%2048.375,%0A%20%204454508%3A

%2017.25%7D%7D%29%0A%20%20%0Adf.count%28%29%20%0Adf%20%3D%20df.dropna%28%29

.copy%28%29%20%0A%0Adf%5B'passenger_count'%5D%20%3D%20df%5B'passenger_count

'%5D.astype%28np.int8%29%20%0Adf%5B'payment_type'%5D%20%3D%20df%5B'payment

_type'%5D.astype%28np.int8%29%0A&d=2022-11-15&lang=py&v=v1

3.4.3 Beyond the exercise

Create a data frame from four other columns (VendorID,
trip_distance, tip_amount, and total_amount), specifying the dtype
for each. What types are most appropriate? Can you use them directly,
or must you first clean the data?
Instead of removing NaN values from the VendorID column, set it to a
new value, 3. How does that affect your specifications and cleaning of
the data?
We’ll talk more about this Chapter 11, but the memory_usage method
allows you to see how much memory is being used by each column in a
data frame. It returns a series of integers, in which the index lists the
columns and the values represent the memory used by each column.
Compare the memory used by the data frame with float16 (which
you’ve already used) and when you use float64 instead for the final
three columns.

3.5 Exercise 18: passwd to df

As we’ve seen, CSV is a very flexible format. Many files that you wouldn’t
necessarily think of as being CSV files can be imported into Pandas with
read_csv, thanks to a huge number of parameters that you can assign.

In this exercise, I want you to create a data frame from a file that you
wouldn’t normally think of as CSV, but which actually fits the format just
fine: The Unix passwd file. This file, which is standard on Unix and Linux
systems, used to contain usernames and passwords. Over the years, it has
evolved such that it no longer contains the actual passwords. And while
MacOS is based on Unix, it doesn’t really use the passwd file for most user
logins.

Specifically:

Create a data frame based on linux-etc-passwd.txt
Notice that this file contains comment lines (starting with #) and blank
lines (which you should ignore)
The field separator is :
You should add column names; I typically use username, password,
userid, groupid, name, homedir, shell.
The username column should be the data frame’s index.

Don’t worry if you know nothing about Unix or the passwd file—the point is
to explore read_csv, and its many options.

3.5.1 Discussion

For this exercise, we pulled out all the stops, passing more arguments to
read_csv than ever before. Each of these was necessary in order to parse the
passwd file correctly, turning it into a data frame which we can then query.
Over time, you’ll discover that certain parameters to read_csv are used in
nearly every project, making it easier to remember them.

Let’s go through each of the keyword arguments that I passed to read_csv,
look at what it does, and how the value I passed allowed us to read passwd
into a data frame.

For starters, CSV files are named for the default field separator, the comma.
By default, Pandas assumes that we have comma-separated values. It’s fine if
we want to use another character, but then we’ll need to specify that in the
sep keyword argument. In this case, our separator is :, so we’ll pass sep=':'
to read_csv.

Next, we’ll deal with the fact that this passwd file contains comments.
Comments all start with # characters, and extend to the end of the line. Not
many companies put comments into their passwd files, but given that some
do, we should probably handle them. And read_csv does this very elegantly,
letting us specify the string that marks the start of a comment line. By passing
it comment='#', we indicate that the parser should simply ignore such lines.

The next keyword argument is header. By default, read_csv assumes that the
first line of the file is a header, containing column names. It also uses that
first line to figure out how many fields will be on each line. If a file contains
headers, but not on the file’s first line, then you can set header to an integer
value, indicating on which line read_csv should look for them. But
/etc/passwd isn’t really a CSV file, and it definitely doesn’t have headers.
Fortunately, you can tell read_csv that there is no header with header=None.

What about the blank lines? We actually got off pretty easy here, in that
read_csv ignores blank lines by default. If you want to treat blank lines as
NaN values, then you can pass skip_blank_lines=False, rather than
accepting the default value of True.

The final keyword argument we’ll pass is names. If we don’t give any names,
then the data frame’s columns will be labeled with integers, starting with 0.
There’s nothing technically wrong with this, but it’s harder to work with data
in this way. Besides, it’s easy enough to pass the names we want to give our
columns, as a list of strings. Here, I pass the same list of strings I described in
the exercise description.

Figure 3.10. Turning the passwd file into a data frame

With all of this in place, the passwd file can easily be turned into a data
frame. And along the way, I hope that your conception of a CSV file has
become a bit more flexible.

 Note

I’m often asked if we can specify more than one separator. For example, what
if fields can be separated by either : or by ,? What do we do then?

Pandas actually has a great solution: If sep contains more than one character,
then it is treated as a regular expression. So if you want to allow for either
colons or commas, you could pass a separator of [:,]. If that looks
reasonable to you, then congratulations: You probably know about regular
expressions. If you don’t know them, then I strongly encourage you to learn
them! Regular expressions are extremely useful to anyone working with text,
which is nearly every programmer. I have a free tutorial on regular
expressions using PPython at https://RegexpCrashCourse.com/, if you’re
interested.

Normally, Pandas parses CSV files using a library written in C. If your field
separator uses regular expressions, then it needs to use a parser written in
Python, which executes more slowly and uses more memory. Consider
whether you really need this functionality, and thus the performance hit that
the Python-based parser creates.

3.5.2 Solution

df = pd.read_csv('../data/linux-etc-passwd.txt',

 sep=':', comment='#', header=None,

 names=['username', 'password', 'userid', 'groupid', 'name',

 'homedir', 'shell'])

You can explore an abridged version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20DataFrame%28%7B'username'%3A%20%7B0%3A%20'root',%0A%20%201%3A%20'daemo

n',%0A%20%202%3A%20'bin',%0A%20%203%3A%20'sys',%0A%20%204%3A%20'sync',%0A%2

0%205%3A%20'games',%0A%20%206%3A%20'man',%0A%20%207%3A%20'lp',%0A%20%208%3A

%20'mail',%0A%20%209%3A%20'news',%0A%20%2010%3A%20'uucp',%0A%20%2011%3A%20'

proxy',%0A%20%2012%3A%20'www-data',%0A%20%2013%3A%20'backup',%0A%20%2014%3A%

20'list',%0A%20%2015%3A%20'irc',%0A%20%2016%3A%20'gnats',%0A%20%2017%3A%20'

nobody',%0A%20%2018%3A%20'syslog',%0A%20%2019%3A%20'messagebus'%7D,%0A%20'

password'%3A%20%7B0%3A%20'x',%0A%20%201%3A%20'x',%0A%20%202%3A%20'x',%0A%2

0%203%3A%20'x',%0A%20%204%3A%20'x',%0A%20%205%3A%20'x',%0A%20%206%3A%20'x'

,%0A%20%207%3A%20'x',%0A%20%208%3A%20'x',%0A%20%209%3A%20'x',%0A%20%2010%3

A%20'x',%0A%20%2011%3A%20'x',%0A%20%2012%3A%20'x',%0A%20%2013%3A%20'x',%0A%

20%2014%3A%20'x',%0A%20%2015%3A%20'x',%0A%20%2016%3A%20'x',%0A%20%2017%3A%20

'x',%0A%20%2018%3A%20'x',%0A%20%2019%3A%20'x'%7D,%0A%20'userid'%3A%20%7B0%3A

%200,%0A%20%201%3A%201,%0A%20%202%3A%202,%0A%20%203%3A%203,%0A%20%204%3A%204

,%0A%20%205%3A%205,%0A%20%206%3A%206,%0A%20%207%3A%207,%0A%20%208%3A%208,%0A

%20%209%3A%209,%0A%20%2010%3A%2010,%0A%20%2011%3A%2013,%0A%20%2012%3A%2033,

%0A%20%2013%3A%2034,%0A%20%2014%3A%2038,%0A%20%2015%3A%2039,%0A%20%2016%3A%2

041,%0A%20%2017%3A%2065534,%0A%20%2018%3A%20101,%0A%20%2019%3A%20102%7D,%0A%

20'groupid'%3A%20%7B0%3A%200,%0A%20%201%3A%201,%0A%20%202%3A%202,%0A%20%203

%3A%203,%0A%20%204%3A%2065534,%0A%20%205%3A%2060,%0A%20%206%3A%2012,%0A%20%

207%3A%207,%0A%20%208%3A%208,%0A%20%209%3A%209,%0A%20%2010%3A%2010,%0A%20%2

011%3A%2013,%0A%20%2012%3A%2033,%0A%20%2013%3A%2034,%0A%20%2014%3A%2038,%0A

%20%2015%3A%2039,%0A%20%2016%3A%2041,%0A%20%2017%3A%2065534,%0A%20%2018%3A%

20104,%0A%20%2019%3A%20106%7D,%0A%20'name'%3A%20%7B0%3A%20'root',%0A%20%201

%3A%20'daemon',%0A%20%202%3A%20'bin',%0A%20%203%3A%20'sys',%0A%20%204%3A%20

'sync',%0A%20%205%3A%20'games',%0A%20%206%3A%20'man',%0A%20%207%3A%20'lp',

%0A%20%208%3A%20'mail',%0A%20%209%3A%20'news',%0A%20%2010%3A%20'uucp',%0A%20

%2011%3A%20'proxy',%0A%20%2012%3A%20'www-data',%0A%20%2013%3A%20'backup',%0

A%20%2014%3A%20'Mailing%20List%20Manager',%0A%20%2015%3A%20'ircd',%0A%20%20

16%3A%20'Gnats%20Bug-Reporting%20System%20%28admin%29',%0A%20%2017%3A%20'

nobody',%0A%20%2018%3A%20np.nan,%0A%20%2019%3A%20np.nan%7D,%0A%20'homedir

'%3A%20%7B0%3A%20'/root',%0A%20%201%3A%20'/usr/sbin',%0A%20%202%3A%20'/bin'

,%0A%20%203%3A%20'/dev',%0A%20%204%3A%20'/bin',%0A%20%205%3A%20'/usr/games'

,%0A%20%206%3A%20'/var/cache/man',%0A%20%207%3A%20'/var/spool/lpd',%0A%20%2

08%3A%20'/var/mail',%0A%20%209%3A%20'/var/spool/news',%0A%20%2010%3A%20'

/var/spool/uucp',%0A%20%2011%3A%20'/bin',%0A%20%2012%3A%20'/var/www',%0A%2

0%2013%3A%20'/var/backups',%0A%20%2014%3A%20'/var/list',%0A%20%2015%3A%20'

/var/run/ircd',%0A%20%2016%3A%20'/var/lib/gnats',%0A%20%2017%3A%20'/nonexi

stent',%0A%20%2018%3A%20'/home/syslog',%0A%20%2019%3A%20'/var/run/dbus'%7D

,%0A%20'shell'%3A%20%7B0%3A%20'/bin/bash',%0A%20%201%3A%20'/usr/sbin/nologin

',%0A%20%202%3A%20'/usr/sbin/nologin',%0A%20%203%3A%20'/usr/sbin/nologin',

%0A%20%204%3A%20'/bin/sync',%0A%20%205%3A%20'/usr/sbin/nologin',%0A%20%206%

3A%20'/usr/sbin/nologin',%0A%20%207%3A%20'/usr/sbin/nologin',%0A%20%208%3A%

20'/usr/sbin/nologin',%0A%20%209%3A%20'/usr/sbin/nologin',%0A%20%2010%3A%20

'/usr/sbin/nologin',%0A%20%2011%3A%20'/usr/sbin/nologin',%0A%20%2012%3A%20

'/usr/sbin/nologin',%0A%20%2013%3A%20'/usr/sbin/nologin',%0A%20%2014%3A%20

'/usr/sbin/nologin',%0A%20%2015%3A%20'/usr/sbin/nologin',%0A%20%2016%3A%20

'/usr/sbin/nologin',%0A%20%2017%3A%20'/usr/sbin/nologin',%0A%20%2018%3A%20

'/bin/false',%0A%20%2019%3A%20'/bin/false'%7D%7D%29%0A%20%20%0Adf&d=2022-11

-21&lang=py&v=v1

3.5.3 Beyond the exercise

Now that we’ve seen how parameters to read_csv can help us turn CSV files

into data frames. Here are a few questions to further help you understand how
to massage our passwd file into various types of data frames:

Ignore the password and groupid fields, such that they don’t appear in
the data frame.
Unix systems typically reserve user IDs below 1000 to special accounts.
Show the non-special usernames in this passwd file.
Immediately after logging into a Unix system, a command interpreter,
known as a "shell," fires up. What are the different shells in this file?

3.6 Exercise 19: Bitcoin values

When we think about CSV files, it’s often in the context of data that has been
collected once, and which we now want to examine and analyze. But there
are numerous examples of computer systems that publish updated data on a
regular basis, and which make their findings known via CSV files. It thus
shouldn’t come as a surprise to discover that `read_csv’s first argument,
which we normally think of as a filename, can actually contain several
different types of values:

strings containing filenames (as we have already seen in this chapter)
readable file-like objects, typically the result of calling open, but also
including StringIO objects
path objects, such as instances of pathlib.Path
strings containing URLs

It’s this last case that is most interesting, and which will be the focus of this
exercise. You can pass a URL to read_csv, and assuming that the URL
returns a CSV file, Pandas will return a new data frame. The rest of the
parameters are the same as any other call to read_csv. The only difference is
that you’re reading from a URL, rather than from a file on a filesystem.

Why is this important and useful? Because there are numerous systems that
produce hourly or hourly reports, publishing in CSV format to a URL that
doesn’t change. If you retrieve data from that URL, then you’re guaranteed to
get a CSV file reflecting the latest and greatest data. Thanks to the URL
provisions of read_csv, you can include Pandas in your daily reporting

routine, summarizing and extracting the most important data from this report.

 Note

In many cases, CSV files published to a URL will require authentication via a
username and password. In some cases, sites allow you to include such
authentication details in the URL. For those that don’t, you won’t be able to
retrieve directly via read_csv. Rather, you’ll need to retrieve the data
separately, perhaps using the excellent third-party requests package, and
then create a StringIO with the contents of the retrieved data.

For example, you could say:

import requests

from io import StringIO

r = requests.get('https://data_for_you.com/data.csv') #1

s = StringIO(r.content.decode()) #2

df = pd.read_csv(s) #3

In this exercise, I want you to retrieve the dates and values for Bitcoin over
the most recent year, as of when you read this. (For that reason, your results
will look different from mine, even if you use the same code.) Once you have
retrieved this data, I want you to produce a report showing:

The closing price for the most recent trading day
The lowest historical price, and the date of that price
The highest historical price, and the date of that price

As of this writing, you can retrieve S&P 500 history in CSV format via the
URL:

https://api.blockchain.info/charts/market-price?format=csv

 Note

Many stock-history sites require that you register and log in before retrieving
data, but as of this writing, the URL I provided here does not.

3.6.1 Discussion

What always amazes me about using pd.read_csv is how easy it is to read
CSV data from a URL. Other than the fact that the data comes from the
network, it works the same as reading from a file. Among other things, we
can select which columns we want to read using the usecols parameter.

And indeed, I was able to read the CSV file into memory passing URL to
pd.read_csv. There were only two columns to read, but there were no
headers—so I had to say header=None, and then I decided to give names to
my columns, date and value.

df = pd.read_csv('https://api.blockchain.info/charts/market-price?format=csv',

 header=None,

 names=['date', 'value'])

Once I have created my data frame, I want to retrieve the closing price for the
most recent day. Given that this kind of program could be run daily, in order
to automatically summarize market information, it’s important to standardize
how we retrieve the most recent information. A quick look at the data,
especially via pd.head() and pd.tail(), shows that the file is in
chronological order, with the newest data at the end. We can thus retrieve the
most recent record with pd.tail(1). If we run this program every day,
pd.tail(1) will always contain the most recent data.

But I didn’t ask you to display all of the data from the most recent update.
Rather, I only wanted to see the value. How can I get that? By realizing that I
get a data frame back from df.tail(1). I can request a particular column
from that data frame, namely value.

 Note

df.tail(1) returns the final row of df, which contains both the date and
value columns. If I only want value, what can I do?

One option is to think of df.tail(1) as a one-row data frame. Each column
of a data frame is a series, so we can retrieve the value with:

df.tail(1)['value']

Sure enough, we’ll get a one-element series back. But remember that we can
retrieve more than one column from a data frame, by passing a list of
columns—that is, in double square brackets. What if we use double square
brackets, but only list one column? That is:

df.tail(1)[['value']]

Now the result will be a data frame containing one row (same as df.tail(1))
and one column (value).

Which syntax you choose depends on what you want to do with the data. In
this particular case, though, it doesn’t really matter.

Next, I asked you to find the minimum and maximum values, and to show the
corresponding date and value. Here, we use a boolean index to find the rows
—or more likely, one single row—that matches the minimum closing price.
We then pass a second value to .loc, allowing us to choose which columns
are displayed. Notice that I look for the minimum value of value, and then
find all of the rows equal to that, effectively finding the row with the min
value. In theory, two rows might both have the same value, in which case
we’ll show both of them. I then repeat this for the max value:

df.loc[df['value'] == df['value'].min(), ['date', 'value']]

df.loc[df['value'] == df['value'].max(), ['date', 'value']]

Figure 3.11. Selecting the minimum value from a data frame with a mask index

3.6.2 Solution

import pandas as pd

from pandas import Series, DataFrame

df = pd.read_csv('https://api.blockchain.info/charts/market-price?format=csv',

 header=None,

 names=['date', 'value']) #1

df.tail(1)[['value']] #2

df.loc[df['value'] == df['value'].min(), ['date', 'value']] #3

df.loc[df['value'] == df['value'].max(), ['date', 'value']] #4

You can explore an abridged version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20

%3D%20DataFrame%28%7B'date'%3A%20%7B356%3A%20'2022-11-15%2000%3A00%3A00',%

0A%20%20357%3A%20'2022-11-16%2000%3A00%3A00',%0A%20%20358%3A%20'2022-11-17%

2000%3A00%3A00',%0A%20%20359%3A%20'2022-11-18%2000%3A00%3A00',%0A%20%20360%

3A%20'2022-11-19%2000%3A00%3A00',%0A%20%20361%3A%20'2022-11-20%2000%3A00%3

A00',%0A%20%20362%3A%20'2022-11-21%2000%3A00%3A00',%0A%20%20363%3A%20'2022

-11-22%2000%3A00%3A00',%0A%20%20364%3A%20'2022-11-23%2000%3A00%3A00',%0A%20

%20365%3A%20'2022-11-24%2000%3A00%3A00'%7D,%0A%20'value'%3A%20%7B356%3A%20

16587.96,%0A%20%20357%3A%2016873.56,%0A%20%20358%3A%2016662.24,%0A%20%20359

%3A%2016682.44,%0A%20%20360%3A%2016683.22,%0A%20%20361%3A%2016687.8,%0A%20%

20362%3A%2016260.41,%0A%20%20363%3A%2015759.61,%0A%20%20364%3A%2016194.75,

%0A%20%20365%3A%2016606.77%7D%7D,%0A%20%20columns%3D%5B'date',%20'value'%5

D%29%0A%20%20%0Adf.tail%281%29%5B%5B'value'%5D%5D%0Adf.loc%5Bdf%5B'value'%

5D%20%3D%3D%20df%5B'value'%5D.min%28%29,%20%5B'date',%20'value'%5D%5D%20%0

Adf.loc%5Bdf%5B'value'%5D%20%3D%3D%20df%5B'value'%5D.max%28%29,%20%5B'date'

,%20'value'%5D%5D%20%0A%0A%0A%0A&d=2022-11-24&lang=py&v=v1

3.6.3 Beyond the exercise

Pandas is full of amazing functionality that lets us retrieve data from the
Internet in a variety of formats. Here are a few additional exercises for you to
try, to see how this works and how you can integrate it into your workflow.

In this exercise, we downloaded the information into a data frame, and
then performed calculations on it. Without assigning the downloaded
data to an interim variable, can you return the current value? Your

solution should consist of a single line of code, which includes the
download, selection, and calculation.
The pd.read_html function, like pd.read_csv, takes a file-like object or
a URL. It assumes that it’ll encounter HTML-formatted text containing
at least one table. It turns each table into a data frame, then returns a list
of those data frames. With this in mind, retrieve 1 year of historical S&P
500 data from Yahoo Finance
(https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC),
looking only at the Date, Close, and Volume columns. Show the date and
volume of the days with the highest and lowest Close values.
Create a two-row data frame with the highest and lowest closing prices
for the S&P 500. Use the to_csv function to write this data to a new
CSV file.

3.7 Exercise 20: Big cities

There’s no doubt that CSV is an important, useful, and popular format. But in
some ways, it has been eclipsed by another format: JSON, aka "JavaScript
Object Notation." JSON allows us to store numbers, text, lists, and
dictionaries in a text format that’s both readable and writable with a wide
variety of programming languages. Because it’s both easier to work with and
smaller than XML, while also more expressive than CSV, it’s no surprise that
JSON has become a common format for both storing and exchanging data.
JSON has also become the standard format for Internet APIs, allowing us to
access a variety of services in a cross-platform manner.

Just as we can retrieve CSV-formatted data with pd.read_csv, we can
retrieve JSON-formatted data with pd.read_json. In this exercise, I want you
to read in data about the 1,000 largest cities in the United States. (This data is
from 2013, so if your hometown doesn’t appear here, I apologize.) Once you
have created a data frame from this city data, I want you to answer the
following questions:

What are the mean and median populations for these 1,000 largest
cities? What does that tell us?
Along these lines: If we remove the 50 most populous cities, what
happens to the mean population? What happens to the median?

What is the northernmost city, and where does it rank?
Which state has the largest number of cities in this list?
Which state has the smallest number of cities in this list?

3.7.1 Discussion

Reading a JSON file into a data frame doesn’t have to be difficult—and in
this case, it was actually rather easy. That’s partly because this particular
JSON file is an array of objects, or what Python people would call a "list of
dicts." When read_json sees this file, it sees each of those dicts as a record,
using the keys are column names. In many ways, reading this kind of JSON
file is similar to creating a data frame with a list of dicts, something we saw
in Chapter 2.

Once we have created the data frame, we can work with it like any other data
frame.

First, I asked you to compare the mean and median city populations. We can
do that with describe, on the population column, which returns a series.
Since we’re only interested in two elements from that series, we can limit the
output to the mean and 50% (i.e., median) values:

df['population'].describe()[['mean', '50%']]

We find that the mean population is 131,132, whereas the median is 68,207.
This means that there are a few big values pulling the mean higher than the
median. And indeed, the United States has a few very large cities, along with
a great many medium- and small-size cities. By definition, half of these 1,000
cities have populations smaller than 68,207.

The next question then asks: What if we ignore the 50 largest cities? What
will that do to the mean and median? For that, we will use a slice along with
loc:

df.loc[50:, 'population'].describe()[['mean', '50%']]

Remember that when we pass loc two values, the first describes what rows
we want, and the second describes what columns we want. Here, we’re

indicating that we want all of the rows, starting with index 50. And we only
want one column, namely population. Once again, we run describe, and
then grab only the mean and median values. We find that the mean has
dropped quite a lot, to 87,027, while the median has dropped to 65,796, a
much smaller difference. This shows the power of the median; it isn’t
affected nearly as much as the mean if there are a few large or small values in
the data set.

Next, I asked you to find the northernmost city. That means that maximum
positive value for latitude. We can find that by getting the max latitude, and
then finding which rows of df have that same value. Once again, I use loc to
retrieve only those rows, and then pass a list of columns to retrieve only those
values:

df.loc[df['latitude'] == df['latitude'].max(), ['city', 'state', 'rank']]

The result, not surprisingly, is Anchorage, Alaska, which is the 63rd largest
city in the United States—a much higher rank than I would have expected, to
be honest!

Finally, I asked you to find the states with the largest and smallest number of
cities on this list. This is a perfect use of value_counts on the state column.
California, with 212 cities, was the clear winner:

df['state'].value_counts().head(1)

Remember that by default, value_counts sorts the results from most
common to least common. We thus know that the item at head(1) is the most
popular, assuming that the next-most-common state doesn’t have the same
value. (So far as I know, there isn’t a good way to avoid such problems.)

What about the states with the fewest number of cities on this list? I used
tail(10) to look at the 10 lowest-ranked states, and found that the bottom 5
states (including Washington, DC) all had a single city:

df['state'].value_counts().tail(5)

3.7.2 Solution

filename = '../data/cities.json'

df = pd.read_json(filename)

df['population'].describe()[['mean', '50%']] #1

df.loc[50:, 'population'].describe()[['mean', '50%']]#2

df.loc[df['latitude'] == df['latitude'].max(), ['city', 'state', 'rank']]#3

df['state'].value_counts().head(1) #4

df['state'].value_counts().tail(5) #5

You can explore an abridged version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Aimport%20

pandas%20as%20pd%0Afrom%20pandas%20import%20Series,%20DataFrame%0A%0Adf%20%

3D%20pd.read_json%28'%7B%22city%22%3A%7B%220%22%3A%22New%20York%22,%221%22%

3A%22Los%20Angeles%22,%222%22%3A%22Chicago%22,%223%22%3A%22Houston%22,%224%

22%3A%22Philadelphia%22,%225%22%3A%22Phoenix%22,%226%22%3A%22San%20Antonio

%22,%227%22%3A%22San%20Diego%22,%228%22%3A%22Dallas%22,%229%22%3A%22San%20

Jose%22,%2210%22%3A%22Austin%22,%2211%22%3A%22Indianapolis%22,%2212%22%3A

%22Jacksonville%22,%2213%22%3A%22San%20Francisco%22,%2214%22%3A%22Columbus

%22,%2215%22%3A%22Charlotte%22,%2216%22%3A%22Fort%20Worth%22,%2217%22%3A%2

2Detroit%22,%2218%22%3A%22El%20Paso%22,%2219%22%3A%22Memphis%22%7D,%22grow

th_from_2000_to_2013%22%3A%7B%220%22%3A%224.8%25%22,%221%22%3A%224.8%25%22,

%222%22%3A%22-6.1%25%22,%223%22%3A%2211.0%25%22,%224%22%3A%222.6%25%22,%225

%22%3A%2214.0%25%22,%226%22%3A%2221.0%25%22,%227%22%3A%2210.5%25%22,%228%22

%3A%225.6%25%22,%229%22%3A%2210.5%25%22,%2210%22%3A%2231.7%25%22,%2211%22%3

A%227.8%25%22,%2212%22%3A%2214.3%25%22,%2213%22%3A%227.7%25%22,%2214%22%3A%

2214.8%25%22,%2215%22%3A%2239.1%25%22,%2216%22%3A%2245.1%25%22,%2217%22%3A%

22-27.1%25%22,%2218%22%3A%2219.4%25%22,%2219%22%3A%22-5.3%25%22%7D,%22lati

tude%22%3A%7B%220%22%3A40.7127837,%221%22%3A34.0522342,%222%22%3A41.8781136,

%223%22%3A29.7604267,%224%22%3A39.9525839,%225%22%3A3.4483771,%226%22%3A29.

4241219,%227%22%3A32.715738,%228%22%3A32.7766642,%229%22%3A37.3382082,%2210

%22%3A30.267153,%2211%22%3A39.768403,%2212%22%3A30.3321838,%2213%22%3A37.

7749295,%2214%22%3A39.9611755,%2215%22%3A35.2270869,%2216%22%3A32.7554883,

%2217%22%3A42.331427,%2218%22%3A31.7775757,%2219%22%3A35.1495343%7D,%22long

itude%22%3A%7B%220%22%3A-74.0059413,%221%22%3A-118.2436849,%222%22%3A-87.

6297982,%223%22%3A-95.3698028,%224%22%3A-75.1652215,%225%22%3A-112.0740373,

%226%22%3A-98.4936282,%227%22%3A-117.1610838,%228%22%3A-96.7969879,%229%22

%3A-121.8863286,%2210%22%3A-97.7430608,%2211%22%3A-86.158068,%2212%22%3A-81

.655651,%2213%22%3A-122.4194155,%2214%22%3A-82.9987942,%2215%22%3A-80.8431

267,%2216%22%3A-97.3307658,%2217%22%3A-83.0457538,%2218%22%3A-106.4424559,

%2219%22%3A90.0489801%7D,%22population%22%3A%7B%220%22%3A8405837,%221%22

%3A3884307,%222%22%3A2718782,%223%22%3A2195914,%224%22%3A1553165,%225%22%3

A1513367,%226%22%3A1409019,%227%22%3A1355896,%228%22%3A1257676,%229%22%3A9

98537,%2210%22%3A885400,%2211%22%3A843393,%2212%22%3A842583,%2213%22%3A837

442,%2214%22%3A822553,%2215%22%3A792862,%2216%22%3A792727,%2217%22%3A688701,

%2218%22%3A674433,%2219%22%3A653450%7D,%22rank%22%3A%7B%220%22%3A1,%221%22

%3A2,%222%22%3A3,%223%22%3A4,%224%22%3A5,%225%22%3A6,%226%22%3A7,%227%22%

3A8,%228%22%3A9,%229%22%3A10,%2210%22%3A11,%2211%22%3A12,%2212%22%3A13,%22

13%22%3A14,%2214%22%3A15,%2215%22%3A16,%2216%22%3A17,%2217%22%3A18,%2218%2

2%3A19,%2219%22%3A20%7D,%22state%22%3A%7B%220%22%3A%22New%20York%22,%221%22

%3A%22California%22,%222%22%3A%22Illinois%22,%223%22%3A%22Texas%22,%224%22

%3A%22Pennsylvania%22,%225%22%3A%22Arizona%22,%226%22%3A%22Texas%22,%227%2

2%3A%22California%22,%228%22%3A%22Texas%22,%229%22%3A%22California%22,%221

0%22%3A%22Texas%22,%2211%22%3A%22Indiana%22,%2212%22%3A%22Florida%22,%2213

%22%3A%22California%22,%2214%22%3A%22Ohio%22,%2215%22%3A%22North%20Carolina

%22,%2216%22%3A%22Texas%22,%2217%22%3A%22Michigan%22,%2218%22%3A%22Texas%22,

%2219%22%3A%22Tennessee%22%7D%7D'%29%0A%0Adf%5B'population'%5D.describe%28

%29%5B%5B'mean',%20'50%25'%5D%5D%20%0Adf.loc%5B50%3A,%20'population'%5D.

describe%28%29%5B%5B'mean',%20'50%25'%5D%5D%0Adf.loc%5Bdf%5B'latitude'%5D%

20%3D%3D%20df%5B'latitude'%5D.max%28%29,%20%5B'city',%20'state',%20'rank'

%5D%5D%0A&d=2022-11-24&lang=py&v=v1

3.7.3 Beyond the exercise

Convert the growth_from_2000_to_2013 column into a floating-point
number. Then find the mean and median changes in city size between
2000 and 2013. If a city doesn’t have any recorded growth, then set it to
be 0.
How many cities had positive growth in this period, and how many had
negative growth?
Find the city or cities whose latitude is more than two standard
deviations away from the mean.

3.8 Summary

In this chapter, we started to work with real-world data. We read data from a
CSV, JSON, and even HTML tables, and saw how Pandas provides us with a
wide variety of parameters that can control and modify how file inputs are
parsed and read. Given that the overwhelming majority of our data comes
from such files, it’s worthwhile taking some time to learn how to read data
from them—specifying the dtype for each column and even which columns
we want to see.

4 Indexes
My parents introduced me to the wonders of the public library at a young age.
It held an immense number of books, on every subject you could possibly
imagine.

But wait: With so many books, on so many subjects, by so many authors,
how can you possibly find what you want? Or even know what’s available?

The answer was an index. In those days, libraries typically had three different
indexes, known as the "card catalog," containing hundreds of drawers full of
index cards. These cards allowed you to find books (a) by author, (b) by title,
or (c) by subject. Beyond that, the books were shelved according to their
subjects, either according to the Dewey Decimal system or by the Library of
Congress system.

If you were familiar with all of these systems, you could easily find what you
were looking for: A particular book that had been mentioned in the
newspaper, other books written by your favorite author, or books on a
particular subject you were researching for school.

Nowadays, of course, the indexes are all computerized, allowing you to find
books more flexibly and easily than we ever imagined in the days of the card
catalog.

Could you have a library without an index? Yes, but it would be much less
useful. It would be harder to find what you want, and every search would
take significantly longer. How to best catalog information so that it’s easily
findable is so important that there’s an entire branch of academia, "library
science," dedicated to it.

Just as an index can help us to find books in a library, it can help us to find
data in Pandas. We’ve already seen that a series has one index (for its
elements), and a data frame has two (one for the rows, and a second for the
columns). We’ve seen how .loc, along with row selectors and column

selectors, can be quite powerful.

But indexes in Pandas far more flexible than we’ve seen so far: We can make
an existing column into an index, or turn an index back into a regular column.
We can combine multiple columns into a hierarchical "multi-index," and then
perform searches on specific parts of that hierarchy. Indeed, knowing how to
create, query, and manipulate multi-indexed data frames is key to fluent work
with Pandas. We can also create "pivot tables," in which the rows and
columns reflect not our original data, but rather aggregate summaries of that
data.

In this chapter, we’ll practice using all of these techniques, to better
understand how to create, modify, and manipulate a variety of types of
indexes. After working through these exercises, you’ll better know how to
use Pandas indexes to retrieve data more flexibly and easily.

4.1 Useful references
Table 4.1. What you need to know

Concept What is it? Example

pd.set_index

returns a
new data
frame with
a new index

df = df.set_index('name')

pd.reset_index

returns a
new data
frame with
a default
(numeric,
positional)
index

df = df.reset_index()

df.loc

Retrieve
selected
rows and
columns

df.loc[:, 'passenger_count']

= df['passenger_count']

s.value_counts

returns a
sorted
(descending
frequency)
series
counting
how many
times each
value
appears in s

s.value_counts()

s.isin

returns a
boolean
series
indicating
whether a
value in s is
an element
of the
argument

s.isin(['A', 'B', 'C')

df.pivot

creates a
pivot table
based on a
data frame,
without
aggregation

df.pivot(index='month',

columns='year', values='A')

df.pivot_table

creates a
pivot table
based on a
data frame,
with
aggregation,
if needed

df.pivot_table(index='month',

columns='year', values='A')

s.is_monotonic_increasing

Contains
True if
values in
the series
are sorted in
increasing
order.

s.is_monotonic_increasing

df.xs

Returns a
cross-
section
from a data
frame

df.xs(2016, level='Year')

IndexSlice

Produce an
object for
easier
querying of
data frames
using xs

IndexSlice[:, 2016]

4.2 Exercise 21: Parking tickets

We have already seen numerous examples of how to retrieve one or more
rows from a data frame using its index, along with the loc attribute. We don’t

necessarily need to use the index to select rows from a data frame, but it does
make things easier to understand and for clearer code. For this reason, we
often want to use one of a data frame’s existing columns as an index.
Sometimes, we’ll want to do this permanently, while at other times, we’ll
want to do it briefly, just to make our queries clearer.

In this exercise, I’ll ask you to perform some queries on another data set from
New York City, one that tracked all of the parking tickets during the year
2020—more than 12 million of them. You could, in theory, perform these
queries without modifying the data frame’s index. However, I want you to
get some practice setting and resetting the index. We’re going to be doing
that a lot in this chapter, and you’ll likely end up doing it a great deal as you
work with Pandas with real-life data sets, as well.

With that in mind, I want you to:

Create a data frame from the file nyc-parking-violations-2020.csv.
We are only interested in a handful of the columns:

Date First Observed

Plate ID

Registration State

Issue Date (a string in MM/DD/YYYY format, always followed
by 12:00:00 AM)
Vehicle Make

Street Name

Vehicle Color

Set the data frame’s index to be the Issue Date column.
What three makes were most frequently ticketed on January 2nd, 2020?
On what five streets did cars get the most tickets on June 1st, 2020?
Now set the index to be Vehicle Color.
What was the most common make of vehicles that were either red or
blue?

4.2.1 Discussion

We have already seen that if we want to retrieve rows from a data frame that

meet a particular condition, we can use a boolean series as a mask index.
Often, especially if we are looking for specific values from a column, it
makes more sense to turn that column into the data frame’s index, reducing
our code’s complexity and length. Pandas makes it easy to do this, with the
set_index method. In this exercise, I asked you to make a number of queries
against the dataset of New York City parking tickets in 2020, and to set the
index in order to do this.

First, we had to read the data from a CSV file, limiting the columns from the
input file:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Date First Observed',

 'Registration State', 'Plate ID',

 'Issue Date', 'Vehicle Make',

 'Street Name', 'Vehicle Color'])

Once the data frame was loaded, we were going to perform several queries
based on the parking tickets' issue date. As a result, it made sense to set the
index to the Issue Date column:

df = df.set_index('Issue Date')

Figure 4.1. Graphical depiction of turning "Issue Date" from a column into the index

Notice that set_index returns a new data frame, based on the original one,
which we assign back to df. As of this point, if we make queries that involve
the index (typically using loc), it’ll be based on the value of issue date. Also:
As far as the data frame is concerned, there is no longer an Issue Date
column! Its identity as a named column is gone, at least for now.

 Note

As of this writing, the set_index method (along with many others in Pandas)
supports the inplace parameter. If you call set_index and pass
inplace=True, then the method will return None, and will modify the data
frame. The core Pandas developers have warned that this is a bad idea,
because it makes incorrect assumptions about memory and performance.
There is, they say, no benefit to using inplace=True. As a result, the inplace
parameter is likely to go away in a future version of Pandas.

Thus while it might seem wasteful to call set_index and then assign its result
back to df, this is the preferred, idiomatic way that we are to do things in
Pandas.

With this index in place, it’s relatively straightforward to find all of the
tickets that were issued on January 2nd. We can retrieve all of those rows
with:

df.loc['01/02/2020 12:00:00 AM']

However, this also returns all of the columns. And the first question we’re
trying to answer with this newly re-indexed data frame is which vehicle
makes received the most tickets on January 2nd. Let’s thus limit the results of
our query to the Vehicle Make column:

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make']

Once again, we see that the two-argument form of loc means first passing a
row selector, then passing a column selector. In this case, we’re only
interested in a single column, Vehicle Make.

But we’re still not quite done: How can we find the three most commonly
ticketed vehicle makes on January 2nd? We’ll use the value_counts method:

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make'].value_counts()

This returns a series in which the index contains the different vehicle makes,
and the values are the counts, sorted from highest to lowest. We can limit our
results to the three most common makes by adding head(3) to our call:

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make'].value_counts().head(3)

Once we have this information, we can also check other columns. For
example, on what five streets were the most tickets issued on June 1st?

df.loc['06/01/2020 12:00:00 AM', 'Street Name'].value_counts().head(5)

Once again, we’re selecting rows via the index, and then selecting a column.
We pass this along to value_counts, and get the top five results.

But now we want to make queries against the Vehicle Color column. We
thus want to remove Issue Date from being the index, and put Vehicle
Color in its place. We could, in theory, do this in two lines of code:

df = df.reset_index()

df = df.set_index('Vehicle Color')

But thanks to method chaining, we can do this in a single line of code:

df = df.reset_index().set_index('Vehicle Color')

Figure 4.2. Graphical depiction of returning "Issue Date" from the index to a column, and
making "Vehicle Color" the new index

The information in our data frame hasn’t changed, but the index has—thus
giving us easier access to the data from this perspective. That will come in
handy when answering the next question, which asks to show which vehicle
make received the greatest number of parking tickets, if we only take blue
and red cars into consideration.

First, we’ll need to find only those cars that are blue or red. We can do that
by passing a list to loc:

df.loc[['BLUE', 'RED']]

Once I’ve done that, I can now apply a column selector:

df.loc[['BLUE', 'RED'], 'Vehicle Make']

This returns all of the rows in the data frame that have a blue or red car, but
only the Vehicle Make column. With that in place, we can use value_counts
to find the most common make, and restrict it to the top-ranking brand with
head(1):

df.loc[['BLUE', 'RED'], 'Vehicle Make'].value_counts().head(1)

4.2.2 Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Date First Observed', 'Registration State', 'Plate ID',

 'Issue Date', 'Vehicle Make', 'Street Name', 'Vehicle Color'])

df = df.set_index('Issue Date') #1

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make'].value_counts().head(3) #2

df.loc['06/01/2020 12:00:00 AM', 'Street Name'].value_counts().head(5) #3

df = df.reset_index().set_index('Vehicle Color') #4

df.loc[['BLUE', 'RED'], 'Vehicle Make'].value_counts().head(1) #5

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Str

ingIO%28'''%0AIssue%20Date,Vehicle%20Make%5Cn01/02/2020%2012%3A00%3A00%20AM

,MAZDA%5Cn01/02/2020%2012%3A00%3A00%20AM,TOYOT%5Cn01/02/2020%2012%3A00%3A00%

20AM,NISSA%5Cn01/02/2020%2012%3A00%3A00%20AM,FORD%5Cn01/02/2020%2012%3A00%3

A00%20AM,HIN%5Cn01/02/2020%2012%3A00%3A00%20AM,FORD%5Cn01/02/2020%2012%3A00

%3A00%20AM,FORD%5Cn01/02/2020%2012%3A00%3A00%20AM,KENWO%5Cn01/02/2020%2012%

3A00%3A00%20AM,CHRYS%5Cn01/02/2020%2012%3A00%3A00%20AM,TOYOT%5Cn01/02/2020%

2012%3A00%3A00%20AM,TOYOT%5Cn01/02/2020%2012%3A00%3A00%20AM,GMC%5Cn01/02/2

020%2012%3A00%3A00%20AM,VPG%5Cn01/02/2020%2012%3A00%3A00%20AM,ME/BE%5Cn01/0

2/2020%2012%3A00%3A00%20AM,INFIN%5Cn01/02/2020%2012%3A00%3A00%20AM,ACURA%5C

n01/02/2020%2012%3A00%3A00%20AM,KIA%5Cn01/02/2020%2012%3A00%3A00%20AM,INFI

N%5Cn01/02/2020%2012%3A00%3A00%20AM,NISSA%5Cn01/02/2020%2012%3A00%3A00%20A

M,HONDA%5Cn01/02/2020%2012%3A00%3A00%20AM,TOYOT%5Cn01/02/2020%2012%3A00%3A

00%20AM,NISSA%5Cn01/02/2020%2012%3A00%3A00%20AM,BUICK%5Cn01/02/2020%2012%3A

00%3A00%20AM,NISSA%5Cn01/02/2020%2012%3A00%3A00%20AM,NISSA%5Cn01/02/2020%20

12%3A00%3A00%20AM,DODGE%5Cn01/02/2020%2012%3A00%3A00%20AM,NISSA%5Cn01/02/20

20%2012%3A00%3A00%20AM,HONDA%5Cn01/02/2020%2012%3A00%3A00%20AM,HONDA%5Cn01

/02/2020%2012%3A00%3A00%20AM,MINI%5Cn%0A'''%29%0A%0Adf%20%3D%20pd.read_csv

%28data,%20index_col%3D'Issue%20Date'%29%0Adf.loc%5B'01/02/2020%2012%3A00%

3A00%20AM',%20'Vehicle%20Make'%5D.value_counts%28%29.head%283%29%0A%0A%0A&

d=2022-12-25&lang=py&v=v1

4.2.3 Beyond the exercise

Just as changing your perspective on a problem can often help you to solve it,
setting (or resetting) the index on a data frame can dramatically simplify the
code you need to write. Here are some additional problems, based on the data
frame that we created in this exercise:

What three car makes were most often ticketed from January 2nd
through January 10th?
How many tickets did the second-most-ticketed car get in 2020? (And
why am I not interested in the most-ticketed plate?) What state was that
car from, and was it always ticketed in the same location?

Working with multi-indexes

Every data frame has an index, giving labels to the rows. We have already
seen that we can use the loc accessor to retrieve one or more rows using the
index. For example, I can say

df.loc['a']

to retrieve all of the rows with the index value a. Remember that the index

doesn’t necessarily contain unique values; retrieving loc['a'] might return a
series of values representing a single row, but it also might return a data
frame whose rows all have the index value a.

This sort of index often serves us quite well. But there are many cases in
which it’s not quite enough. That’s because the world is full of hierarchical
information, or information that is easier to process if we make it
hierarchical.

For example, every business wants to know their sales figures. But just
getting a single number doesn’t let you analyze the information in a truly
useful way. So you might want to break it down by product, in order to know
how well each product is selling well, and which is contributing the most to
your bottom line. (We saw a version of this in Exercise 8.) However, even
that isn’t quite enough; you probably want to know how well each product is
selling per month. If your store has been around for a while, you might want
to break it down even further than that, finding the quantity of each product
you’ve sold, per month, per year. A multi-index will let you do precisely that.

For example, let’s create some random sales data for three products (cleverly
called A, B, and C) over the 36 months from January 2018 through December
2020:

let's assume 3 products * 3 years * 12 months = 108 sales figures

np.random.seed(0)

df = DataFrame(np.random.randint(0, 100, [36, 3]),

 columns=list('ABC'))

df['year'] = [2018] * 12 + [2019] * 12 + [2020] * 12

df['month'] = 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec'.split() * 3

I could set the index, based on the year column, as follows:

df = df.set_index('year')

But that won’t give me any special access to the month data, which I would
like to have part of my index. I can create a multi-index by passing a list of
columns to set_index:

df = df.set_index(['year', 'month'])

Figure 4.3. Graphical depiction of creating a multi-index from the "year" and "month" columns

Remember that when you’re creating a multi-index, you want the most
general part to be on the outside, and thus be mentioned first. If you were to
create a multi-index with dates, you would do it using year, month, and day,
in that order. If you were to create a multi-index for your company’s sales
data, you might use region, country, and city. This allows you to retrieve all
rows for a given region, or a given country, or a given city, relatively easily.
Usually (but not always), a multi-index will reflect a hierarchy.

With this in place, we can now retrieve in a variety of different ways. For
example, I can get all of the sales data, for all products, in 2018:

df.loc[2018]

I can get all sales data for just products A and C in 2018:

df.loc[2018, ['A', 'C']]

Notice that I’m still applying the same rule as we’ve always used with loc—
the first argument describes the row(s) we want, and the second argument
describes the column(s) we want. Without a second argument, we get all of
the columns.

I’ve got a multi-index on this data frame, which means that I can break the
data down not just by year, but also by month. For example, what did it look
like for all three products in June, 2018?

df.loc[(2018, 'Jun')]

Notice that I’m still using square brackets with loc. However, the first (and
only) argument is a tuple (i.e., round parentheses). Tuples are typically used
in a multi-index situation when you want to specify a specific combination of
index levels and values. For example, I’m looking for 2018 and Jun—the
outermost level and the inner level—so I use the tuple (2018, 'Jun'). I can,
of course, retrieve the sales data just for products A and C here, too:

df.loc[(2018, 'Jun'), ['A', 'C']]

Figure 4.4. Graphical depiction of retrieving rows from June 2018, columns A and C, from a
multi-index

What if I want to see more than one year at a time? For example, let’s say
that I want to see all data for 2018 and 2020. I can say:

df.loc[[2018, 2020]]

And if I want to see all data for 2018 and 2020, but only products B and C?

df.loc[[2018, 2020], ['B', 'C']]

What if I want to get all of the data from June in both 2018 and 2020? It’s
going to be a bit complicated:

I use square brackets with loc
The first argument in the square brackets describes the rows I want—
and I want all columns, so there won’t be a second argument
I want to select multiple combinations from the multi-index, so I’ll need
a list
Each year-month combination will be a separate tuple in the list.

The result is:

df.loc[[(2018, 'Jun'), (2020, 'Jun')]]

What if I want to look at all of the values that took place in June, July, or
August, across all three years? We could, of course, do it manually:

df.loc[[(2018, 'Jun'), (2018, 'Jul'), (2018, 'Aug'),

 (2019, 'Jun'), (2019, 'Jul'), (2019, 'Aug'),

 (2020, 'Jun'), (2020, 'Jul'), (2020, 'Aug')]]

This worked well, but it seems a bit wordy. Isn’t there another way that we
could do this? The answer is "yes." Intuitively, we might guess that we can
tell Pandas we want all of the years (2018, 2019, and 2020), and only three
months (Jun, Jul, and Aug). We could, thus, write the following:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug'])]

But this won’t work! And it’s rather surprising and confusing to find that it
doesn’t work, when it seems so obvious and intuitive, given everything else

we know about Pandas. So, what’s missing? An indicator of which columns
we want, what’s what:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug']),

 ['A', 'B', 'C']]

While the second argument (i.e., a selection of columns) is generally optional
when using loc, here it isn’t: You need to indicate which column, or
columns, you want, along with the rows. Typically, you won’t want all of the
columns, because the analysis you’ll want to do will involve a subset of the
full data frame.

You can do it explicitly, as I did above, or you can use Python’s "slice"
syntax:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug']),

 'A':'C']

If you want all of the columns, you can use a colon all by itself:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug']),

 :]

Assuming that the index is sorted, you can even select the years using a slice:

df.loc[(:, ['Jun', 'Jul', 'Aug']), 'A':'B'] #1

Oh, wait—actually, you can’t do that here. That’s because Python only
allows the colon within square brackets. And we tried to use the colon within
a tuple, which uses regular, round parentheses. However, we can use the
builtin slice function with None as an argument for the same result:

df.loc[(slice(None), ['Jun', 'Jul', 'Aug']), 'A':'B']

And sure enough, that works. You can think of slice(None) as a way of
indicating to Pandas that we are willing to have all values, as a wildcard.

As you can see, loc is extremely versatile, allowing us to retrieve from a
multi-index in a variety of ways.

4.3 Exercise 22: State SAT scores

As we have seen, setting the index can make it easier for us to create queries
about our data. But sometimes our data is hierarchical in nature. That’s where
the Pandas concept of a "multi-index" comes into play. With a multi-index,
you can set the index not just to be a single column, but multiple columns.
Imagine, for example, a data frame containing sales data: You might want to
have sales broken down by year, and then further broken down by region.
Once you use the phrase "further broken down by," a multi-index is almost
certainly a good idea. (See the sidebar above, "Working with multi-indexes,"
for a fuller description.)

In this exercise, we’ll look at a summary of scores from the SAT, a
standardized university-admissions test widely used in the United States. The
CSV file (sat-scores.csv) has 99 columns and 577 rows, describing all 50
US states and three non-states (Puerto Rico, the Virgin Islands, and
Washington, DC), from 2005 through 2015.

In this exercise, I want you to:

Read in the scores file, only keeping the Year, State.Code, Total.Math,
Total.Test-takers, and Total.Verbal columns.
Create a multi-index based on the year and the two-letter state code.
How many people took the SAT in 2005?
What was the average SAT math score in 2010 from New York (NY),
New Jersey (NJ), Massachusetts (MA), and Illinois (IL)?
What was the average SAT verbal score in 2012-2015 from Arizona
(AZ), California (CA), and Texas (TX)?

4.3.1 Discussion

In this exercise, you started to discover the power and flexibility of a multi-
index. For starters, I asked you to load the CSV file and create a multi-index
based on the "Year" and "State.Code" columns. We could do this in two
stages, first reading the file, including the columns that we wanted, into a
data frame, and then choosing two columns to serve as our index:

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,

 usecols=['Year', 'State.Code',

 'Total.Math', 'Total.Test-takers',

 'Total.Verbal'])

df = df.set_index(['Year', 'State.Code'])

Notice that, as always, the result of set_index is a new data frame, one
which we assign back to df.

You might remember that read_csv also has a index_col parameter. If we
pass an argument to that parameter, then we can tell read_csv to do it all in
one step—reading in the data frame, and setting the index to be the column
that we request. We can pass a list of columns as the argument to index_col,
thus creating the multi-index as the data frame is collected. For example:

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,

 usecols=['Year', 'State.Code',

 'Total.Math', 'Total.Test-takers',

 'Total.Verbal'],

 index_col=['Year', 'State.Code'])

Now that we have loaded our data frame, we can start to explore our data and
answer some questions.

First, I wanted to know how many people took the SAT in 2005. This will
mean finding all rows from 2005, and the column Total.Test-takers, which
tells us how many people took the test in each year, for each state, and
summing those values:

df.loc[2005, 'Total.Test-takers'].sum()

Next, I wanted to find out the mean math score for students in four states—
New York, New Jersey, Massachusetts, and Illinois, in the year 2010. As
usual, we’ll want to use loc to retrieve the data that’s of interest to us. But
we’ll need to combine three things to create the right query:

From the first part (Year) of the multi-index, we only want 2010.

From the second part (State.Code) of the multi-index, we only want NY,
NJ, MA, and IL.
From the columns, we are interested in Total.Math.

Remember that when we’re retrieving from a multi-index, we need to put the
parts together inside of a tuple. Moreover, we can indicate that we want more
than one value by using a list. The result is:

df.loc[(2010, ['NY', 'NJ', 'MA', 'IL']), #1

 'Total.Math'].mean() #2

The above query retrieves rows with a year of 2010, and coming from any of
those four states. We only get the Total.Math column, on which we then
calculate the mean.

Figure 4.5. Graphical breakdown of .loc with a multi-index

The next question asks for a similar calculation, but on several years, as well
as several states. Once again, that’s not an issue, if we think carefully about
how to construct the query:

From the first part (Year) of the multi-index, we want 2012, 2013, 2014,
and 2015.
From the second part (State.Code) of the multi-index, we want AZ, CA,
and TX.
From the columns, we are again interested in Total.Math.

The query then becomes:

df.loc[([2012,2013,2014,2015], ['AZ', 'CA', 'TX']), #1

 'Total.Math'].mean() #2

Notice how Pandas figures out how to combine the parts of our multi-index,
such that we get only the rows that match both parts.

4.3.2 Solution

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,

 usecols=['Year',

 'State.Code',

 'Total.Math',

 'Total.Test-takers',

 'Total.Verbal'])

df = df.set_index(['Year', 'State.Code']) #1

df.loc[2005, 'Total.Test-takers'].sum() #2

df.loc[(2010, ['NY', 'NJ', 'MA', 'IL']),

 'Total.Math'].mean() #3

df.loc[([2012,2013,2014,2015],

 ['AZ', 'CA', 'TX']),

 'Total.Math'].mean()#4

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28'''%0AYear,State.Code,Total.Math,Total.Test-takers,Total.Verbal%5Cn2

005,AL,559,3985,567%5Cn2005,AK,519,3996,523%5Cn2005,AZ,530,18184,526%5Cn2005

,AR,552,1600,563%5Cn2005,CA,522,186552,504%5Cn2005,CO,560,11990,560%5Cn2005,

CT,517,34313,517%5Cn2005,DE,502,6257,503%5Cn2005,DC,478,3622,490%5Cn2005,FL

,498,93505,498%5Cn2005,GA,496,59842,497%5Cn2005,HI,516,7878,490%5Cn2005,ID,

542,3506,544%5Cn2005,IL,606,12970,594%5Cn2005,IN,508,41553,504%5Cn2005,IA,

608,1671,596%5Cn2005,KS,588,2667,585%5Cn2005,KY,559,4666,561%5Cn2005,LA,562

,3290,565%5Cn2005,ME,505,10985,509%5Cn2005,MD,515,44458,511%5Cn2005,MA,527,

59104,520%5Cn2005,MI,579,10965,568%5Cn2005,MN,597,6470,592%5Cn2005,MS,554,1

106,564%5Cn2005,MO,588,4413,588%5Cn2005,MT,540,3326,540%5Cn2005,NE,579,1684

,574%5Cn2005,NV,513,7065,508%5Cn2005,NH,525,12350,525%5Cn2005,NJ,517,81479,

503%5Cn2005,NM,547,2536,558%5Cn2005,NY,511,154897,497%5Cn2005,NC,511,53314,

499%5Cn2005,ND,605,351,590%5Cn2005,OH,543,35155,539%5Cn2005,OK,563,2699,570

%5Cn2005,OR,528,19535,526%5Cn2005,PA,503,104155,501%5Cn2005,PR,458,1891,462

%5Cn2005,RI,505,8200,503%5Cn2005,SC,499,23488,494%5Cn2005,SD,589,450,589%5Cn

2005,TN,563,7642,572%5Cn2005,TX,502,133115,493%5Cn2005,UT,557,2112,566%5Cn2

005,VT,517,5548,521%5Cn2005,VI,405,898,422%5Cn2005,VA,511,3480,523%5Cn2005,

WA,534,35020,532%5Cn2005,WI,599,4230,592%5Cn2005,WY,543,656,544%5Cn2006,AL,

562,3879,566%5Cn2006,AK,519,3945,517%5Cn2006,AZ,529,18615,520%5Cn2006,AR,56

8,1489,574%5Cn2006,CA,520,191740,501%5Cn2006,CO,565,11806,557%5Cn2006,CT,51

7,34522,512%5Cn2006,DE,502,6406,495%5Cn2006,DC,473,3593,487%5Cn2006,FL,497,

94601,496%5Cn2006,GA,496,58309,494%5Cn2006,HI,511,7821,481%5Cn2006,ID,545,3

163,542%5Cn2006,IL,609,12694,591%5Cn2006,IN,511,41568,498%5Cn2006,IA,614,1

477,603%5Cn2006,KS,591,2545,582%5Cn2006,KY,563,4417,561%5Cn2006,LA,573,2622

,571%5Cn2006,ME,503,10895,501%5Cn2006,MD,510,45231,503%5Cn2006,MA,524,59529

,513%5Cn2006,MI,584,10405,569%5Cn'''%29%0A%0Adf%20%3D%20pd.read_csv%28data,%

0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20usecols%3D%5B'Year',%0A%2

0%20'S

tate.Code',%0A%20%

20%20%20%20%20'Total.Math',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%20%20%20'Total.Test-takers',%0A%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'Total.Verbal'%5D%29%0A

df%20%3D%20df.set_index%28%5B'Year',%20'State.Code'%5D%29%20%20%20%20%20%20%

20%0Adf.loc%5B2005

,%20'Total.Test-takers'%5D.sum%28%29%20%0A&d=2022-12-25&lang=py&v=v1

4.3.3 Beyond the exercise

What were the average math and verbal scores for Florida, Indiana, and
Idaho across all years? (Don’t break out the values by state.)
Which state received the highest verbal score, and in which year?
Was the average math score in 2005 higher or lower than that in 2015?

Sorting by index

When we talk about sorting in Pandas, we’re usually referring to sorting the
data. For example, I might want to have the rows in my data frame sorted by
price or by regional sales code. We’ll talk more about that kind of sorting in
Chapter 6.

But Pandas also lets us sort our data frames based on the index. We can do
that with the sort_index method, which (like so many others) returns a new
data frame with the same content as the original, with rows sorted based on
index’s values. We can thus say:

df = df.sort_index()

If your data frame contains a multi-index, then the sorting will be done
primarily along the first level, then along the second level, and so forth.

In addition to having some esthetic benefits, sorting a data frame by index
can make certain tasks easier, or even possible. For example, if you try to
retrieve a slice, such as df.loc['a':'c'], Pandas will insist that the index be
sorted, to avoid problems if a and c are interspersed.

If your data frame is unsorted and has a multi-index, then performing some
operations might result in a warning:

PerformanceWarning: indexing past lexsort depth may impact performance

This is Pandas trying to tell you that the combination of large size, multi-
index, and an unsorted index are likely to cause you trouble. You can avoid
the warning by sorting your data frame via its index.

If you want to check whether a data frame is sorted, you can check this
attribute:

df.index.is_monotonic_increasing

Saying that the index is "monotonically increasing," by the way, simply
means that it only goes up. Similarly, if the values only go down, then we
would say that it’s "monotonically decreasing," which we can check with

is_monotonic_decreasing. Note that these are not methods, but rather
boolean attributes. They exist on all series objects, not just on indexes. Some
older documentation and blogs mentions the method is_lexsorted, which
has been deprecated in recent versions of Pandas.

4.4 Exercise 23: Olympic games

The modern-day Olympic games have been around for more than a century,
and even people like me who rarely pay attention to sports are often excited
to see a variety of international competitions take place. Fortunately, the
Olympics aren’t only about sports; they also generate a great deal of data,
which we can enjoy and analyze using Pandas.

In the previous exercise, we took an initial look at building and using a multi-
index. A multi-index doesn’t have to stop at just two levels; Pandas will, in
theory, allow us to set as many as we want. Consider a large corporation that
has broken down sales reports by region, country, and department; a multi-
index would make it possible to retrieve that data in a variety of different
ways, be it from the top of the hierarchy or by reaching "inside" of the multi-
index and creating a cross-regional departmental report.

In this exercise, we’re going to build a deep multi-index, allowing us to
retrieve data from a variety of levels and in a number of ways. Specifically, I
want you to find the following:

Read the data file (olympic_athlete_events.csv) into a data frame.
We only care about some of the columns: Age, Height, Team, Year,
Season, City, Sport, Event, and Medal. And the multi-index should be
based on Year, Season, Sport, and Event.
What is the average age for winning athletes in summer games held
between 1936 and 2000?
What team has won the greatest number of medals for all archery
events?
Starting in 1980, what is the average height of the event known as
"Table Tennis Women’s Team"?
Starting in 1980, what is the average height of either "Table Tennis
Women’s Team" or "Table Tennis Men’s Team"?

How tall was the tallest-ever tennis player in Olympic games from 1980
until 2016?

4.4.1 Discussion

In this exercise, we created a multi-index with four levels, and then used
those levels to ask and answer a variety of questions. I hope that this exercise
gave you a chance to see how powerful multi-indexes can be.

First, we had to load the data. As before, I chose to load a subset of the
columns, and used four of them as a multi-index:

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename,

 index_col=['Year', 'Season',

 'Sport', 'Event'], #1

 usecols=['Age', 'Height', 'Team',

 'Year', 'Season', 'City',

 'Sport', 'Event', 'Medal']) #2

df = df.sort_index() #3

By passing a list of columns to the index_col parameter, I was able to create
the multi-index while creating the data frame, rather than doing it in a
separate, second step.

Figure 4.6. Graphical depiction of our data frame with four columns in its multi-index

I then used sort_index, which returned a new data frame—one which
contained the same data as what I read from the CSV file, but in which the
rows were ordered according to the multi-index. When running sort_index
on a multi-indexed data frame, the result will be that we first index on the
first level (i.e., Year), then on Season, then on Sport, and then finally on
Event.

 Note

You can invoke set_index with inplace=True. If you do this, then
set_index will modify the existing data frame object, and will return None.
But as with all other uses of inplace=True in Pandas, the core developers
strongly recommend against doing this. Instead, you should invoke it
regularly (i.e., with a default value of inplace=False), and then assign the
result to a variable—which could be the variable already referring to the data
frame, as I’ve done here.

While we don’t necessarily need to sort our data frame by its index, certain
Pandas operations will work better if we do. Moreover, if we don’t sort the
data frame, we might get the PerformanceWarning that I mentioned earlier in
this chapter. So especially when we’re going to be doing operations with a
multi-index, it’s a good idea to sort by the index at the get-go.

Now that we have our data frame all set, we can start to answer the questions
that I posed. For starters, I asked for us to find the average age for winning
athletes who participated in summer games held between 1936 and 2000.
This means that we’re going to want a subset of the years (i.e., the first level
of our multi-index) and a subset of the seasons (i.e., just the games for which
the second level of the multi-index, aka our Season column, has a value of
Summer). We want all of the values from the third and fourth levels of the
multi-index, which means that we can ignore them in our query; by ignoring
them, we get all of the values.

In other words, we’re going to want our query to retrieve:

All years from 1936 - 2000, which we can express as range(1936,2000)

All games in which the Season is set to Summer
The Age column from the resulting data frame

Figure 4.7. Graphical depiction of applying our multi-index row selector

Finally, we’ll want to find the mean of those ages. We can express this as:

df.loc[(slice(1936,2000), 'Summer'), #1

 'Age' #2

].mean() #3

The answer that I got is a float, 25.026883940421765.

Next, I asked you to find which team has won the greatest number of medals
for all archery events. How will we construct this query? We need to think
through each of the levels in our multi-index:

We’re interested in all years, which means that we’ll specify
slice(None) for the first index level
Archery is only a summer sport, so we can either indicate Summer for the
second level or we can use slice(None)
In the third level, we’ll explicitly specify Archery, so that we only get
those rows for archery events.
Finally, we’ll ignore the fourth level, effectively making it a wildcard.

We’re interested in calculating which team won the greatest number of
medals. As a result, we’ll be asking for the Team column. Then we can run
value_counts to identify which team won the greatest number of events. The
query will thus look like:

df.loc[(slice(None), 'Summer', 'Archery'), #1

 'Team' #2

].value_counts() #3

Here are the first five results:

United States 155

France 151

Great Britain 133

South Korea 102

China 98

Because value_counts sorts its values in descending order, we see that the
United States has had the greatest number of archery participants, with
France, Great Britain, and South Korea in the next few places.

Next, I asked you to find the average height of athletes in one specific event,
namely Table Tennis Women’s Team. Once again, we can consider all of the
parts of our multi-index:

We want to get results from all years
Table tennis is only played in the summer games, so we can either
specify Summer or slice(None)
The sport is "Table tennis," so we can specify that if we want—but
given that all of these events fall under the same sport, we can also leave
it as a wildcard with slice(None).
Finally, we specify Table Tennis Women’s Team for the event.

We are only interested in the Height column, which means that our query
will look like this:

df.loc[(slice(None), #1

 'Summer', #2

 slice(None), #3

 "Table Tennis Women's Team"), #4

 'Height' #5

].mean() #6

The answer that I got back from our data set was the float
165.04827586206898, or just over 165 cm.

For the next query, I wanted to expand our population a bit, looking at not
just the women’s team version of table tennis, but also the men’s version. In
other words, our first three selectors will be identical to what we did before,
but now the final (fourth) multi-index selector will be a list, rather than a
string:

df.loc[(slice(None), #1

 'Summer', #2

 slice(None), #3

 ["Table Tennis Men's Team",

 "Table Tennis Women's Team"]), #4

 'Height' #5

].mean() #6

Given that men are generally taller than women, it’s not a surprise that adding
men’s events has greatly increased the average athlete’s height. The answer

that I get is 171.26643598615917.

Finally, I was curious to know the height of the tallest-ever tennis player
from 1980 until 2020. Once again, let’s go through our query-building
process:

I want years from 1980 through 2016. This can most easily be handled
with range(1980,2016).
Since tennis is only at summer games, it doesn’t really matter whether I
specify the Season selector as Summer, or just use slice(None).
I then specify Tennis as the sport
I’ll allow any events, so I don’t need to pass a fourth element in the
tuple

Finally, I’m looking for the Height column, so I specify that in my query.
And I want the maximum value for Height, so I’ll use the max method. The
final query looks like this:

df.loc[(slice(1980,2016), #1

 'Summer', #2

 'Tennis'), #3

 'Height' #4

].max() #5

Which means that the tallest-ever tennis player was 208 cm tall—known in
some countries as 6 feet, 10 inches tall. That’s pretty tall!

4.4.2 Solution

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename,

 index_col=['Year', 'Season',

 'Sport', 'Event'],

 usecols=['Age', 'Height', 'Team',

 'Year', 'Season', 'City',

 'Sport', 'Event', 'Medal']) #1

df = df.sort_index() #2

df.loc[(slice(1936,2000), 'Summer'), 'Age'].mean() #3

df.loc[(slice(None), 'Summer', 'Archery'),

 'Team'].value_counts() #4

df.loc[(slice(None), 'Summer', slice(None),

 "Table Tennis Women's Team"),

 'Height'].mean() #5

df.loc[(slice(None),

 'Summer', slice(None),

 ["Table Tennis Men's Team",

 "Table Tennis Women's Team"]),

 'Height'].mean() #6

df.loc[(slice(1980,2016),

 'Summer',

 'Tennis'), 'Height'].max() #7

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28'''%0AYear,Season,Sport,Event,Age%5Cn1936,Summer,Aeronautics,Aeronaut

ics%20Mixed%20Aeronautics,26.0%5Cn1936,Summer,Alpinism,Alpinism%20Mixed%20Al

pinism,49.0%5Cn1936,Summer,Alpinism,Alpinism%20Mixed%20Alpinism,43.0%5Cn193

6,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Architecture,%2

0Architectural%20Designs%22,47.0%5Cn1936,Summer,Art%20Competitions,%22Art%2

0Competitions%20Mixed%20Architecture,%20Architectural%20Designs%22,47.0%5Cn

1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Architecture

,%20Architectural%20Designs%22,47.0%5Cn1936,Summer,Art%20Competitions,%22Ar

t%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%22,47.0%5

Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Architectu

re,%20Architectural%20Designs%22,47.0%5Cn1936,Summer,Art%20Competitions,%22

Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%22,50.

0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Architec

ture,%20Architectural%20Designs%22,42.0%5Cn1936,Summer,Art%20Competitions,%2

2Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%22,42.

0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Archite

cture,%20Architectural%20Designs%22,42.0%5Cn1936,Summer,Art%20Competitions,

%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%22,

42.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Arch

itecture,%20Architectural%20Designs%22,42.0%5Cn1936,Summer,Art%20Competitio

ns,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%2

2,42.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Arc

hitecture,%20Architectural%20Designs%22,42.0%5Cn1936,Summer,Art%20Competitio

ns,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%2

2,41.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20Ar

chitecture,%20Architectural%20Designs%22,55.0%5Cn1936,Summer,Art%20Competit

ions,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Design

s%22,45.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%2

0Architecture,%20Architectural%20Designs%22,31.0%5Cn1936,Summer,Art%20Compe

titions,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Desi

gns%22,34.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed

%20Architecture,%20Architectural%20Designs%22,%5Cn1936,Summer,Art%20Competi

tions,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Design

s%22,48.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%2

0Architecture,%20Architectural%20Designs%22,51.0%5Cn1936,Summer,Art%20Compe

titions,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Des

igns%22,%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20

Architecture,%20Architectural%20Designs%22,%5Cn1936,Summer,Art%20Competitio

ns,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Designs%

22,36.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%20

Architecture,%20Architectural%20Designs%22,48.0%5Cn1936,Summer,Art%20Competi

tions,%22Art%20Competitions%20Mixed%20Architecture,%20Architectural%20Desig

ns%22,49.0%5Cn1936,Summer,Art%20Competitions,%22Art%20Competitions%20Mixed%

20Architecture,%20Architectural%20Designs%22,37.0%5Cn%0A'''%29%0A%0Adf%20%3

D%20pd.read_csv%28data,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20i

ndex_col%3D%5B'Year',%20'Season',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%20%20%20%20%20%20%20'Sport',%20'Event'%5D,%0A%20%20%2

0%20%20%20%20%20%20%20%20%20%20%20%20%20usecols%3D%5B'Age',%20%0A%20%20%20%

20%20'Year',%20

'Season',%0A%20%2

0%20%20%20%20'Sport',%20'Event'%5D%29%20%0Adf%20%3D%20df.sort_index%28%29%2

0%0Adf.loc%5B%28slice%281936,2000%29,%20'Summer'%29,%20'Age'%5D.mean%28%29%

20%20%0A&d=2022-12-25&lang=py&v=v1

Going deep

As we have already seen, loc makes it pretty straightforward to retrieve data
from our multi-indexed data frames. However, there are times when we
might want to use a multi-index in a different kind of way. Pandas provides
us with a few other methods for doing so, one being xs and the other
IndexSlice.

Because multi-indexed data frames are both common and important, Pandas
provides a number of ways to retrieve data from them.

Let’s start with xs, which lets us accomplish what we did in Exercise 23,
namely find matches for certain levels within a multi-index. For example, one
question in the previous exercise asked you to find the mean height of
participants in the "Table Tennis Women’s Team" event from all years of the
Olympics. Using loc, we had to tell Pandas to accept all values for year, all
values for season, and all values for sport—in other words, we were only
checking the fourth level of the multi-index, namely the event. Our query
looked like this:

df.loc[(slice(None), #1

 'Summer', #2

 slice(None), #3

 "Table Tennis Women's Team"), #4

 'Height' #5

].mean() #6

Using xs, we could shorten that query to:

df.xs("Table Tennis Women's Team", #1

 level='Event' #2

).mean() #3

You might have noticed that I actually lied a bit, when I said that we didn’t
search by season. As you can see in the loc-based query, we actually did
include that in our search. Fortunately, I can handle that by passing a list of
levels to the level parameter, and a tuple of values as the first argument:

df.xs(('Summer', "Table Tennis Women's Team"), #1

 level=['Season', 'Event']).mean() #2

Notice that xs is a method, and is thus invoked with round parentheses. By
contrast, loc is an accessor attribute, and is invoked with square brackets.
And yes, it’s often hard to keep track of these things.

You can, by the way, use integers as the arguments to level, rather than
names. I find column names to be far easier to understand, though, and
encourage you to do the same.

A more general way to retrieve from a multi-index is known as IndexSlice.
Remember when I mentioned earlier that we cannot use : inside of round
parentheses, and thus need to say range(None)? Well, IndexSlice solves
that problem: It uses square brackets, and can use slice syntax for any set of
values.

For example, I can say:

from pandas import IndexSlice as idx

df.loc[idx[1980:2016, :, 'Swimming':'Table tennis'], :] #1

The above code allows us to select a range of values for each of the levels of

the multi-index. No longer do we need to call the slice function. Now we
can use the standard Python : syntax for slicing within each level. The result
of calling IndexSlice (or idx, as I aliased it here) is a tuple of Python slice
objects:

(slice(1980, 2016, None),

 slice(None, None, None),

 slice('Swimming', 'Table tennis', None))

In other words, IndexSlice is syntactic sugar, allowing Pandas to look and
feel more like a standard Python data structure, even when the index is far
more complex.

One final note: A data frame can have a multi-index on its rows, its columns,
or both. By default, xs assumes that the multi-index is on the rows. If and
when you want to use it on multi-index columns, pass axis='columns' as a
keyword argument.

4.4.3 Beyond the exercise

Events take place in either summer or winter Olympic games, but not in
both. As a result, the "Season" level in our multi-index is often
unnecessary. Remove the "Season" level, and then find (again) the
height of the tallest tennis player between 1980 and 2016.
In which city were the greatest number of gold medals awarded from
1980 onward?
How many gold medals were received by the United States since 1980?
(Use the index to select the values.)

Pivot tables

So far, we have seen how to use indexes to restructure our data, making it
easier to retrieve different slices of the information that it contains, and thus
answer particular questions more easily. But the questions we have been
asking have all had a single answer. In many cases, we want to apply a
particular aggregate function to many different combinations of columns and
rows. One of the most common and powerful ways to accomplish this is with
a "pivot table."

A pivot table allows us to create a new table (data frame) from a subset of an
existing data frame. Here’s the basic idea:

Our data frame contains two columns that have categorical, repeating,
non-hierarchical data. For example: Years, country names, colors, and
divisions of a company.
Our data frame has a third column that is numeric.

We then create a new data frame from those three columns, as follows:

All of the unique values from the first categorical column become
the index, or row labels.
All of the unique values from the second categorical column
become the column labels.
Wherever the two categories match up, we get either the single
value where those two intersect, or the mean of all values where
they intersect.

It takes a while to understand how a pivot table works. But once you get it,
it’s hard to un-see: You start to find uses for it everywhere.

For example, consider this simple data frame:

np.random.seed(0)

df = DataFrame(np.random.randint(0, 100, [8, 3]),

 columns=list('ABC'))

df['year'] = [2018] * 4 + [2019] * 4

df['quarter'] = 'Q1 Q2 Q3 Q4'.split() * 2

This table shows the sales of each product per year and quarter. And you can
certainly understand the data, if you look at it in a certain way. But what if we
were interested in seeing sales figures for product A? It might make more
sense, and be easier to parse, if we were to use the quarters (a categorical,
repeating value) as the rows, the years (again, a categorical, repeating value)
as the columns, and then the figures for product A as the values. We can
create such a pivot table as follows:

df.pivot_table(index='quarter', columns='year', values='A')

The result, on my computer, is a data frame that looks like this:

year 2018 2019

quarter

Q1 44 88

Q2 67 65

Q3 83 46

Q4 87 37

Figure 4.8. Graphical depiction of creating a pivot table with index "quarter", columns "year",
and values "A"

The quarters are sorted in alphabetical order, which is fine here. In some
cases, such as if you use month names for your index, you can pass
sort=False.

What if more than one row has the same values for year and month? By
default, pivot_table will then run the mean aggregation method on all of the
values. (Pandas also offers a pivot method, which doesn’t do aggregation,
which cannot handle duplicate values for index-column combinations.) To
use a different aggregation function, pass an argument to aggfunc in your call
to pivot_table. For example, you can count the values in each intersection
box by passing the np.size function:

df.pivot_table(index='quarter', columns='year',

 values='A', sort=False, aggfunc=np.size)

The result on this data frame isn’t very interesting, because there aren’t any
repeated intersections:

year 2018 2019

quarter

Q1 1 1

Q2 1 1

Q3 1 1

Q4 1 1

Remember that a pivot table will have one row for each unique value in your
first chosen column, and a column for each unique value in your second
chosen column. If there are hundreds of unique values in either (or even
worse, in both), then you could end up with a gargantuan pivot table. This
will not only be hard to understand and analyze, but will also consume large
amounts of memory. Moreover, if your data isn’t very lean (see Chapter 5),
then you might well find all sorts of junk values in your pivot table’s index
and columns.

4.5 Exercise 24: Olympic pivots

In this exercise, we’re going to examine the Olympic data one more time—
but we’re going to do it using pivot tables, so that we can examine and

compare more information at a time than we could do before. Pivot tables are
a popular way to summarize information in a larger, more complex table.

Read in our Olympic data once again

Only use these columns: Age, Height, Team, Year, Season, Sport,
Medal

Only include games from 1980 to the present.
Only include data from these countries: Great Britain, France,
United States, Switzerland, China, and India

What was the average age of olympic athletes? In which country do
players appear to consistently be the youngest?
How tall were the tallest athletes in each sport in each year?
How many medals did each country get in each year? Why does
Switzerland seem to have more medals in years when other countries
have fewer medals?

4.5.1 Discussion

The first challenge in this exercise is to create the data frame on which we’ll
base our pivot tables. We’ll be loading the same CSV file as we did in the
previous exercise, but we’re interested in fewer rows and columns.

The first step is to read the CSV file into a data frame, limiting the columns
that we request:

df = pd.read_csv(filename,

 usecols=['Age', 'Height',

 'Team', 'Year',

 'Season', 'Sport', 'Medal'])

Notice that I didn’t set the index. That’s because we’re basically going to
ignore the index in this exercise, focusing instead on our pivot tables. Since
the pivot tables are constructed based on actual columns, and not the index,
we’ll stick with the default, numeric index that Pandas assigns to every data
frame.

Now we want to remove all of the rows that aren’t from the countries that
I’ve named. (I chose these countries, because I traveled there in the months

before the pandemic. This is not meant to be any sort of representative
sample, except of where I’ve done corporate training in Python and data
science.) We’ve often kept (or removed) rows that had a particular value, but
how can we keep rows whose Team column is one of several values? We
could use a long query with \| (the boolean "or" operator), but that would be
long and complex.

Instead, we can use the isin method, which allows us to pass a list of
possibilities, and get a True value whenever the Team column is equal to one
of those possible strings. In my experience, the isin method is one of those
things that seems so obvious when you start to use it, but that is far from
obvious until you know to look for it.

I can thus keep only those countries in this way:

df = df.loc[df['Team'].isin(['Great Britain', 'France',

 'United States', 'Switzerland',

 'China', 'India'])]

Now I’ll remove any rows in which the Year is before 1980. This is a more
standard operation, one that we’ve done many times before:

df = df.loc[df['Year'] >= 1980]

With our data frame in place, we can now start to create some pivot tables, to
examine our data from a new perspective. I first asked to compare the
average age of players for each team, for all sports and all years. As usual,
when we’re creating pivot tables, we need to consider what will be the rows,
the columns, and the values:

The rows (index) will be the unique values from the Year column
The columns will be the unique values from the Team column
The values themselves will be from the Age column

Sure enough, we can then create our pivot table as follows:

df.pivot_table(index='Year', #1

 columns='Team', #2

 values='Age') #3

Now, these numbers are across all sports, and not every country has entrants
in every sport. But if we take these numbers at face value, we’ll see that
China consistently has younger athletes at Olympic games. Here was the
output from my query:

Team China France Great India Switzerland United

 Britain States

Year

1980 21.868421 23.524590 22.882507 25.506667 24.557823 22.770992

1984 22.076336 24.369830 24.445423 24.905660 23.589744 24.437118

1988 22.358447 24.520076 25.439560 24.000000 26.218868 24.904977

1992 21.955752 25.140187 25.584055 24.184615 25.413194 25.474866

1994 20.627907 24.601307 25.282051 NaN 25.500000 24.976744

1996 22.021531 25.296629 26.746032 24.629630 27.122093 26.273277

1998 21.784091 25.462069 27.243902 16.000000 25.641509 25.146154

2000 22.515306 25.982833 26.406948 25.400000 27.376812 26.576203

2002 23.127451 25.737805 26.833333 20.000000 26.238710 25.726316

2004 23.006122 26.139073 26.303977 24.728395 27.343284 26.439093

2006 23.457143 26.303226 26.851852 25.200000 26.284848 25.637288

2008 23.903955 26.285714 25.200969 25.402985 27.312500 26.225806

2010 23.239669 25.911458 26.147059 25.666667 26.548387 25.841584

2012 23.894168 26.606635 25.922619 25.637363 27.172131 26.461883

2014 23.400000 25.708995 25.628571 25.000000 25.855814 26.189189

2016 23.873706 27.095238 26.653191 26.100000 25.891892 26.217454

Next, I wanted to find the tallest players in each sport from each year. Given
that we are looking at a large number of sports, and a relatively small number
of years, I thought that it would be wise to use the years in the columns this
time around:

The rows (index) will be the unique values from the Sport column
The columns will be the unique values from the Year column
The values themselves will come from the Height column. We’re
interested in the highest value, and will thus provide a function
argument to the aggfunc parameter, namely np.max.

In the end, we create the pivot table as follows:

df.pivot_table(index='Sport', #1

 columns='Year', #2

 values='Height', #3

 aggfunc=np.max) #4

We can see, from the large number of NaN values, that height information
isn’t as readily available for all sports and teams than many other
measurements. This is not an unusual problem to have to face with real-world
data; sometimes, you have to make due with the data that is available, even if
it’s far from reliable and complete.

Finally, I asked you to find how many medals each country received at each
of the games. Once again, let’s do a bit of planning before creating our pivot
table:

The rows (index) will be the unique values from the Year column
The columns will be the unique values from the Team column
The values themselves will come from the Medal column. However,
we’re interested in counting the medals, not in getting their average
values (as if that’s even possible). This means that we’ll need to provide
a function argument to the aggfunc parameter, namely np.size.

Our code to create the pivot table can look like this:

df.pivot_table(index='Year', #1

 columns='Team', #2

 values='Medal', #3

 aggfunc=np.size) #4

We can now see, for each year, how many medals each country won. We can
also see that in winter Olympic games, Switzerland tends to get more medals
than it does during summer games. All of the other countries in our pivot
table tend to get more medals in summer games than in winter games—
perhaps, I would guess, because they don’t have the native advantage of
heavy snowfall each winter.

4.5.2 Solution

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename,

 usecols=['Age', 'Height', 'Team',

 'Year', 'Season',

 'Sport', 'Medal'])#1

df = df.loc[df['Team'].isin(['Great Britain', 'France',

 'United States', 'Switzerland',

 'China', 'India'])]#2

df = df.loc[df['Year'] >= 1980]#3

df.pivot_table(index='Year', columns='Team',

 values='Age') #4

df.pivot_table(index='Sport',

 columns='Year', values='Height',

 aggfunc=np.max)#5

df.pivot_table(index='Year',

 columns='Team', values='Medal',

 aggfunc=np.size)#6

You can explore a version of this, in color, in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%20

Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Strin

gIO%28'''%0A,Age,Height,Team,Year,Season,Sport,Medal%5Cn90722,23.0,160.0,Un

ited%20States,2002,Winter,Freestyle%20Skiing,%5Cn21261,14.0,142.0,China,1996

,Summer,Gymnastics,%5Cn89632,25.0,174.0,China,2008,Summer,Football,%5Cn15034

1,22.0,170.0,Great%20Britain,2004,Summer,Swimming,%5Cn241146,24.0,163.0,Unit

ed%20States,1992,Summer,Athletics,%5Cn79399,34.0,178.0,Great%20Britain,1996

,Summer,Shooting,%5Cn165043,18.0,183.0,France,2008,Summer,Swimming,%5Cn1382

45,19.0,198.0,China,1996,Summer,Basketball,%5Cn185088,27.0,178.0,United%20S

tates,1996,Summer,Handball,%5Cn202888,22.0,171.0,United%20States,1992,Summe

r,Gymnastics,%5Cn189582,23.0,186.0,Great%20Britain,2016,Summer,Table%20Tenn

is,%5Cn60422,23.0,168.0,France,1992,Winter,Alpine%20Skiing,%5Cn61523,20.0,1

75.0,United%20States,1984,Summer,Basketball,Gold%5Cn266653,22.0,174.0,China,

1984,Summer,Athletics,%5Cn41254,20.0,180.0,United%20States,1980,Winter,Ice%

20Hockey,Gold%5Cn192712,20.0,,India,1992,Summer,Boxing,%5Cn27195,26.0,171.0

,Switzerland,1994,Winter,Alpine%20Skiing,%5Cn193744,27.0,170.0,United%20Sta

tes,2016,Summer,Sailing,%5Cn121607,19.0,183.0,United%20States,1984,Summer,C

ycling,Bronze%5Cn267959,20.0,170.0,Switzerland,1992,Winter,Nordic%20Combine

d,%5Cn196395,16.0,157.0,France,2000,Summer,Gymnastics,%5Cn108394,21.0,175.0

,China,2008,Summer,Synchronized%20Swimming,Bronze%5Cn145335,16.0,152.0,Fran

ce,1992,Summer,Gymnastics,%5Cn44301,34.0,160.0,United%20States,2014,Winter,

Freestyle%20Skiing,%5Cn124270,25.0,180.0,France,2004,Summer,Handball,%5Cn14

2785,20.0,172.0,China,1992,Summer,Swimming,%5Cn182794,28.0,169.0,France,200

2,Winter,Alpine%20Skiing,%5Cn37558,19.0,173.0,United%20States,2010,Winter,S

hort%20Track%20Speed%20Skating,Bronze%5Cn215080,25.0,189.0,Great%20Britain,

2008,Summer,Athletics,%5Cn239906,22.0,165.0,China,1988,Summer,Athletics,%5C

n%0A'''%29%0A%0Adf%20%3D%20pd.read_csv%28data,%0A%20%20%20%20%20%20%20%20%2

0%20%20%20%20%20%20%20usecols%3D%5B'Age',%20'Height',%20'Team',%0A%20%20%20

%20'Year',%2

0'Season',%0A%20%2

0%20%20%20%20'Sport',%20'Medal'%5D%29%0A%0Adf%20%3D%20df.loc%5Bdf%5B'Team'%

5D.isin%28%5B'Great%20Britain',%20'France',%0A%20%20%20%20%20%20%20%20%20%2

0%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'United%20States',%2

0'Switzerland',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%20%20'China',%20'India'%5D%29%5D%0Adf%20%3D%20df.loc%

5Bdf%5B'Year'%5D%20%3E%3D%201980%5D%20%20%20%20%20%20%20%20%20%0Adf.pivot_

table%28index%3D'Year',%20columns%3D'Team',%0A%20%20%20%20%20%20%20%20%20%2

0%20%20%20%20%20values%3D'Age'%29&d=2022-12-25&lang=py&v=v1

4.5.3 Beyond the exercise

Create a pivot table that shows the number of medals that each team
won per year, with the index including not just the year but also the
season in which the games took place.
Create a pivot table that shows both the average age the the average
height per year, per team.
Create a pivot table that shows both the average age the the average
height per year, per team, broken up by year and season.

4.6 Summary

In this chapter, we saw that a data frame’s index is not just a way to keep
track of the rows, but one that can be used to reshape a data frame, making it
easier for us to extract useful information from it. This is particularly true
when we create pivot tables, choosing values from an existing data frame for
comparison.

5 Cleaning data
In the late 1980s, my employer wanted to know how much rain had fallen in
various places. Their solution? They gave me a list of cities and phone
numbers, and asked me to call each of them in sequence, recording the
previous day’s rainfall in an Excel spreadsheet. Nowadays, getting that sort
of information—and many other types of information—is pretty easy. Not
only do many governments provide data sets for free, but numerous
companies make data available for a price. No matter what topic you’re
researching, data is almost certainly available. The only questions are where
you can get it, how much it’ll cost, and what format the data comes in.

Actually, you should ask another question, too: How accurate is the data
you’re using?

It’s easy to assume that a CSV file from an official-looking Web site will
contain good data. But all too often, it’ll have problems. That shouldn’t
surprise us, given that the data comes from people (who can make a variety
of types of mistakes) and machines (which make different types of mistakes).
Maybe someone accidentally misnamed a file, or entered data into the wrong
field. Maybe the automatic sensors whose inputs were used in collecting the
data were broken, or offline. Maybe the servers were down for a day, or
someone misconfigured the XML feed-reading system, or the routers were
being rebooted, or a backhoe cut the Internet line.

All of this assumes that there was actually data to begin with. Often we’ll
have missing data because there wasn’t any data to record.

This is why I’ve often heard data scientists say that 80 percent of their job
involves cleaning data. What does it mean to "clean data"? Here is a partial
list:

rename columns
rename the index
remove irrelevant columns

split one column into two
combine two or more columns into one
remove non-data rows
remove repeated rows
remove rows with missing data (aka NaN)
replace NaN data with a single value
replace NaN data via interpolation
standardize strings
fix typos in strings
remove whitespace from strings
correct the types used for columns
identify and remove outliers

We have already discussed some of these techniques in previous chapters.
But the importance of cleaning your data, and thus ensuring that your
analysis is as accuraet is possible, cannot be overstated.

In this chapter, we’ll thus be looking at a few Pandas techniques for cleaning
our data. We’ll look at a few ways in which we can handle NaN values. We’ll
consider how to preserve as much data as possible, even when it’s pretty
dirty. We’ll see how to better understand our data and its limitations. And
we’ll look at a few more advanced techniques for massaging our data into a
form that’s more easily analyzed.

5.1 Useful references
Table 5.1. What you need to know

Concept What is it? Example To learn more

df.shape

A two-
element
tuple
indicating
the number
of rows and
columns in

df.shape http://mng.bz/8rpg

a data
frame

len(df) or
len(df.index)

Get the
number of
rows in a
data frame

len(df) or len(df.index) http://mng.bz/EQdr

s.isnull

Returns a
boolean
series
indicating
where there
are null
(typically
NaN) values
in the series
s

s.isnull() http://mng.bz/N2KX

s.notnull

Returns a
boolean
series
indicating
where there
are non-
null values
in the series
s

s.notnull() http://mng.bz/D420

Returns a
boolean
data frame
indicating
where there

df.isnull are null
(typically
NaN) values
in the data
frame df

df.isnull() http://mng.bz/lWGz

df.replace

Replace
values in
one or more
columns
with other
values

df.replace('a':{'b':'c'),

'd')
http://mng.bz/Bm2q

s.map

Apply a
function to
each
element of
a series,
returning
the result of
that
application
on each
element

s.map(lambda x: x**2) http://mng.bz/d1yz

df.fillna

Replace
NaN with
other
values

df.fillna(10) http://mng.bz/rWrE

df.dropna

Remove
rows with
NaN values

df = df.dropna() http://mng.bz/V1gr

s.str

Working
with textual
data

df['colname'].str http://mng.bz/x4Wq

str.isdigit

Returns a
boolean
series,
indicating
which
strings
contain
only the
digits 0-9

df['colname'].str.isdigit() http://mng.bz/AoAE

pd.to_numeric

Returns a
series of
integers or
floats,
based on a
series of
strings

pd.to_numeric(df['colname']) http://mng.bz/Zq2j

df.sort_index

Reorder the
rows of a
data frame
based on
the values
in its index,
in
ascending
order

df = df.sort_index() http://mng.bz/RxAn

pd.read_excel

Create a
data frame
based on an
Excel
spreadsheet

df =

pd.read_excel('myfile.xlsx') http://mng.bz/2DXN

s.value_counts

returns a
sorted
(descending
frequency)
series
counting
how many
times each
value
appears in s

s.value_counts() http://mng.bz/1qzZ

s.unique

returns a
series with
the unique
(i.e.,
distinct)
values in s,
including
NaN (if it
occurs in s)

s.unique() http://mng.bz/PzA2

How much is missing?

We’ve already seen, on a number of occasions, that data frames (and series)
can contain NaN values. One question we often want to answer is: How many
NaN values are there in a given column? Or, for that matter, in a data frame?

One solution is to calculate things yourself. There is a count method you can

run on a series, which returns the number of non-null values in the series.
That, combined with the shape of the series, can tell you how many NaN
values there are:

s.shape[0] - s.count() #1

This is tedious and annoying. And besides, shouldn’t Pandas provide us with
a way to do this? Indeed it does, in the form of the isnull method. If you call
isnull on a column, it returns a boolean series, one that has True where there
is a NaN value, and False in other places. You can then apply the sum method
to the series, which will return the number of True values, thanks to the fact
that Python’s boolean values inherit from integers, and can be in place of 1
(True) and 0 (False) if you need:

s.isnull().sum() #1

If you run isnull on a data frame, then you will get a new data frame back,
with True and False values indicating whether there is a null value in that
particular row-column combination. And of course, then you can run sum on
the resulting data frame, finding how many NaN values there are in each
column:

df.isnull().sum() #1

Finally, the df.info method returns a wealth of information about the data
frame on which it’s run, including the name and type of each column, a
summary of how many columns there are of each type, and the estimated
memory usage. (We’ll talk more about this memory usage in Chapter 11.) If
the data frame is small enough, then it’ll also show you how many null values
there are in each column. However, this calculation can take some time.
Thus, the df.info will only count null values below a certain threshold. If
you’re above that threshold (the pd.options.display.max_info_columns
option), then you’ll need to tell Pandas explicitly to count, by passing
show_counts=True:

df.info(show_counts=True)#1

 Note

Pandas defines both isna and isnull for both series and data frames. What’s
the difference between them? Actually, there is no difference. If you look at
the Pandas documentation, you’ll find that they’re identical except for the
name of the method being called. In this book, I’ll use isnull, but if you
prefer to go with isna, then be my guest.

Note that both of these are different from np.isnan, a method defined in
NumPy, on top of which Pandas is defined. I try to stick with the methods
that Pandas defines, which integrate better into the rest of the system, in my
experience.

Rather than using ~, which Pandas uses to invert boolean series and data
frames, you can often use the notnull methods, for both series and data
frame.

5.2 Exercise 25: Parking cleanup

In Chapter 4, we looked at the parking tickets given in New York City during
the year 2020. We were certainly able to analyze that data, and were able to
draw some interesting conclusions from it. But let’s consider that this data is
entered by a police officer, parking inspector, or another person—which
means that there is a good chance that it’ll sometimes have missing or
incorrect data. That might seem like a minor issue, but it can mean everything
from cars being ticketed incorrectly, to bad statistics in the system, to people
getting out of fines due to incorrect information. (As as side note: When
you’re issued a parking ticket in Israel, you also get a photograph of your car,
including the license plate, taken by the inspector when they issued the ticket.
That makes it a bit harder to wriggle out of fines, but people manage to do it
anyway.)

In this exercise, we’re going to identify missing values, one of the most
common problems that you will encounter. We’ll see just how often there are
missing values, and what effect they might have. Note that for the purposes
of this exercise, I’m going to assume that a parking ticket that is missing data
might be dismissed; don’t blame me if this defense doesn’t work when
appealing any tickets you get in New York.

Create a data frame from the file nyc-parking-violations-2020.csv.
We are only interested in a handful of the columns:

Plate ID

Registration State

Vehicle Make

Vehicle Color

Violation Time

Street Name

How many rows are in the data frame when it is read into memory?
Remove rows with any missing data (i.e., a NaN value). How many rows
remain after doing this pruning? If each parking ticket brings $100 into
the city, and missing data means that the ticket can be successfully
contested, how much money might New York City lose as a result of
such missing data?
Let’s instead assume that a ticket can only be dismissed if the license
plate, state, car make, and/or street name are missing. Remove rows that
are missing one or more of these. How many rows remain? Assuming
$100/ticket, how much money would the city lose as as result of this
missing data?
Now let’s assume that tickets can be dismissed if the license plate, state,
and/or street name are missing—that is, the same as the previous
question, but without requiring the make of car. Remove rows that are
missing one or more of these. How many rows remain? Assuming
$100/ticket, how much money would the city lose as as result of this
missing data?

5.2.1 Discussion

When you’re first starting off with data anlytics, it’s reasonable to think that
we can just toss out imperfect data. After all, if something is missing, then we
cannot use it, right? In this exercise, I hope that you saw not only how to
remove rows that have some data missing, but the potential problems
assocaited with doing that.

For starters, let’s load the CSV file into a data frame. We are only interested
in a few columns, which means that our loading will look like this:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Plate ID',

 'Registration State',

 'Vehicle Make',

 'Vehicle Color',

 'Violation Time',

 'Street Name'])

We can find out the number of rows in our data frame by getting the first
element (i.e., index 0) from the shape attribute:

df.shape[0]

It turns out that there’s a better way, though: We can invoke the Python
builtin len on our data frame, thus getting the number of rows:

len(df)

Not only does this give us the same answer, but in my testing, I found that
len was twice as fast as shape[0]. But it turns out that we can do even better
than this, by running len on df.index:

len(df.index)

In my tests, I found that len(df.index) runs about 45 percent faster than
len(df), and about 65 percent faster than df.shape[0].

 Note

The count method often seems like the most natural, obvious way to count
the rows. But it has several issues:

It ignores NaN values
On a large data frame, it takes a long time to run

For these reasons, I generally prefer to call len on my data frame, or (better
yet) on its index, as in len(df.index).

With that data frame in place, we can start to make a few queries, looking for
tickets that could potentially be dismissed for lack of data. Our first query
will apply the naive (but well-meaning) approach, in which we remove any
rows that have any missing data. We can do this with the df.dropna method.
That method returns a new data frame, identical to our original df, but
without any rows that have any NaN values.

Figure 5.1. Sample of df, including NaN values

This means, by the way, that if every row in your data frame contains a single
NaN value, then the result of calling df.dropna will be an empty data frame.
Its columns will be identical to your existing data frame, but it will have zero
rows.

all_good_df = df.dropna()

Figure 5.2. Running dropa on a data frame removes all NaN values, and the rows containing them.

Just how many rows did we remove when we used dropna? We can calculate
that:

len(df.index) - len(all_good_df.index)

I get quite a large number, 447,359, as a result. That represents about 3.5
percent of the data in the original data frame. Which doesn’t sound like very
much at all, until you consider the next question, namely how much money
New York City would lose if all of these tickets were thrown out. Assuming
that each parking ticket costs $100, I can calculate it as:

(len(df.index) - len(all_good_df.index)) * 100

That works out to a pretty shockingly high number, namely $44.7 million
dollars. I decided to display this result as a string, taking advantage of the fact
that Python’s f-strings have a special , format code that, when put after : on
an integer, puts commas before every three digits:

f'${(len(df.index) - len(all_good_df.index)) * 100:,}'

As we can see in this (somewhat contrived) example, removing bad data can
give us a better sense of confidence—but even when we remove a small
amount (3.5 percent!), it can add up very quickly.

I thus asked you to apply a slightly lighter standard, removing rows only if
we find NaN in one of four columns: Plate ID, Registration State,
Vehicle Make, or Street Name. But this raises another question, namely how
can we select only particular columns?

One possible approach is to remember that each column is a series, and that
we can apply notnull to that series, giving us a boolean series. We can then
combine those four series with &, giving us a boolean series in which True
indicates that all of the values are non-null. Finally, we can then apply that
boolean series to our original df, giving us a data frame in which most (but
not all) data is non-null:

semi_good_df = df[df['Plate ID'].notnull() &

 df['Registration State'].notnull() &

 df['Vehicle Make'].notnull() &

 df['Street Name'].notnull()]

This works. But there’s a better way to do things, using dropna. Normally, as
we just saw, dropna removes any row that contains any NaN value. But we
can tell it to look only in a subset of the columns, ignoring NaN values in any
other columns. The result is a much cleaner query:

semi_good_df = df.dropna(subset=['Plate ID',

 'Registration State',

 'Vehicle Make',

 'Street Name'])

Figure 5.3. Running dropa on a data frame, only looking at a subset of columns

How many rows did we remove as a result of this? And how much money
might New York give up, if we only remove these rows?

f'${(len(df.index) - len(semi_good_df.index)) * 100:,}

According to my calculation, we’re the result is $6,378,500. Still a fair
amount of money, but a far cry from what we would have lost had we
removed any and all problematic records.

But let’s get looser still with our rules, mandating only that three of the
columns lack NaN values: Plate ID, Registration State, and Street Name.

Once again, we can use df.dropna along with its subset parameter to
remove only those rows that lack all three of these columns:

loosest_df = df.dropna(subset=['Plate ID',

 'Registration State',

 'Street Name'])

In the end, this removed only 1,618 rows from our original data frame. How
much money would that translate into?

f'${(len(df.index) - len(loosest_df.index)) * 100:,}

According to this calculation, that would work out to $161,800, which seems
like a far more reasonable amount in lost revenue.

5.2.2 Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Plate ID',

 'Registration State',

 'Vehicle Make',

 'Vehicle Color',

 'Violation Time',

 'Street Name'])#1

all_good_df = df.dropna()#2

len(df.index) - len(all_good_df.index) #3

f'${(len(df.index) - len(all_good_df.index)) * 100:,}' #4

semi_good_df = df.dropna(subset=['Plate ID',

 'Registration State',

 'Vehicle Make',

 'Street Name']) #5

len(df.index) - len(semi_good_df.index) #6

f'${(len(df.index) - len(semi_good_df.index)) * 100:,}' #7

loosest_df = df.dropna(subset=['Plate ID',

 'Registration State',

 'Street Name']) #8

len(df.index) - len(loosest_df.index)#9

f'${(len(df.index) - len(loosest_df.index)) * 100:,}'#10

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28'''%0A,Plate%20ID,Registration%20State,Vehicle%20Make,Violation%20Ti

me,Street%20Name,Vehicle%20Color%5Cn10593908,JNF3973,NY,HONDA,0641A,Ocean%2

0Pky,TN%5Cn2094855,HGT5674,NY,TOYOT,0347P,SB%20FRANCIS%20LEWIS%20BLV,GY%5Cn

1023441,FYP8649,NY,LEXUS,1012A,W%2088th%20St,WH%5Cn5724834,XBHV52,NJ,FORD,0

355P,W%2039th%20St,YELLO%5Cn6198229,XGVG21,NJ,ISUZU,0515P,E%2028TH%20ST,WHI

%5Cn8906434,GVJ1560,NY,HONDA,0514P,41st%20Ave,BK%5Cn7310172,JLV3263,NY,CHEVR

,0116P,120th%20St,GY%5Cn6208658,CH0925,WA,FORD,0954A,Classon%20Ave,RED%5Cn1

881534,JLC6965,NY,JEEP,0843A,WB%20SEAVIEW%20AVE%20%40%20E%201,GY%5Cn214795,

JCZ1313,NY,ME/BE,0737A,BROADWAY,BLACK%5Cn'''%29%0A%0Adf%20%3D%20pd.read_

csv%28data%29%0Asemi_good_df%20%3D%20df.dropna%28subset%3D%5B'Plate%20ID',

%0A%20%

20%20%20%20%20%20%20%20%20%20%20'Registration%20State',%0A%20%20%20%20%20%

20%20

%20%20%20%20'Vehicle%20Make',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20

%20'Street%20Name'

%5D%29%20&d=2022-12-29&lang=py&v=v1

5.2.3 Beyond the exercise

So far, we have specified which columns must all be non-null. But
sometimes, it’s OK for some number of columns to have null values, so
long as it’s not too many. How many rows would we eliminate if we
require at least three non-null values from the four columns Plate ID,
Registration State, Vehicle Make, and Street Name?

Which of the columns that we’ve imported has the greatest number of
NaN values? Is this a problem?
Null data is bad, but there is plenty of non-null bad data, too. For
example, many cars with BLANKPLATE as a plate ID were ticketed. Turn
these into NaN values, and then re-run the previous query.

Combining and splitting columns

One common aspect of data cleaning involves creating one new column from
several existing columns, as well as the reverse—creating multiple columns
from a single existing column.

For example, back in Exercise 8, we saw how we can create a new column,
current_net, by calculating the net price of each product and then
multiplying that by the quantity sold:

df['current_net'] = ((df['retail_price'] -

 df['wholesale_price']) * df['sales'])

This might not seem like "cleaning" to you, but it’s a common way to make
our data clearer and easier to understand. Plus, we can then identify holes and
issues in our data, and fix it accordingly.

I’ll also add something that I often told my children when they were studying
math in school: A large part of mathemetics involves finding ways to rewrite
problems so that they’re easier to undertand, and then solve. The same is true
in programming regarding data structures. And it’s also true in data science,
where having clearer and more easily understood columns can help clarify
our analysis.

Perhaps even more frequently, though, cleaning data involves taking one
complex column, and turning it into one or more simpler columns. For
example, you can imagine taking a column with a float64 dtype, and turning
it into two int64 columns, one with the integer portion and one with the
floating-point portion.

This is especially true in the case of two complex data structures, about
which we’ll have much more to say in Chapters 8 (Strings) and 9 (Dates and

times). Let’s look at one particularly common example, when you have string
data, and you want to grab certain substrings from within that data. In a
normal Python program, we would use a "slice" to retrieve a substring. For
example:

s = '00:11:22'

print(s[3:5]) # prints '11'

Remember that Python slices are always of the form [start:end+1]. So if
we want the characters at index 3 and index 4, we ask for 3:5, which means
"starting at 3, up to and not including 5."

Let’s now assume that s isn’t a single string, but rather a series that contains
strings. If we want to retrieve the slice 3:5 from each of those strings, then
we can use the str accessor on the series, followed by the slice method. The
syntax is a bit different than what we used with Python strings, but it should
still feel somewhat familiar:

s.str.slice(3,5)

The result of the above code is a new series of string objects, of the same
length as s, containing two-element strings taken from indexes 3 and 4 of
each row in s.

It’s common to slice and dice the columns of a data frame in this way,
retrieving only those parts that are of interest to us. This not only makes the
problem easier to see, understand, and solve, but it also allows us to remove
the original (larger) column, saving memory and improving computation
speed.

5.3 Exercise 26: Celebrity deaths

Sometimes, as in the previous exercise, only a small fraction of the data is
unreadable, missing, or corrupt. In other cases, a much larger proportion is
problematic—and if you want to use the data set, then you’ll need to not only
remove bad data, but massage and salvage the good data.

For this exercise, we’ll look at a (slightly morbid) data set, a list of celebrities

who died in 2016, and whose passing was recorded in Wikipedia—including
the date of death, a short biography, and the cause of death. The problem is
that this data set is messy, with some missing data, and some erroneous data
that’ll prevent us from easily working with it as we might like.

The goal of this exercise is to find the average age of celebrities who died in
February - July, 2016. Getting there will take a number of steps:

Create a data frame from the file celebrity_deaths_2016.csv. For this
exercise, we’ll use only two columns:

dateofdeath

age

Create a new month column, containing the month from the
dateofdeath column.
Make the month column the index of the data frame
Sort the data frame by the index
Clean all non-integers from the age column
Turn the age column into an integer value
Find the average age of celebrities who died during that period

 Note

Normally, we can turn a string column into an integer column with:

df['colname'] = df['colname'].astype(np.int64)

However, this will fail if any of the rows in df['colname'] cannot be turned
into integers. That’s because the strings are either empty or contain non-digit
characters.

You can find which rows in a column can be successfully turned into integers
by applying the isdigit method via the str accessor:

df['colname'].str.isdigit()

This returns a boolean series, in which True values correspond with NaN in
df['colname'], and False values correspond to non-NaN values in

df['colname']. This boolean series can then be applied as a mask index to
the original column. This technique comes in handy when working with dirty
data—as we are doing here.

5.3.1 Discussion

In this exercise, we create and then clean up a two-column data frame. Each
of these columns needs to be cleaned in a different way, in order for us to be
able to answer the question I asked, namely: What was the average age of
celebrities who died in February through July?

We start off by loading the CSV file into a data frame. We are only interested
in two of the columns, so we load the file as follows:

filename = '../data/celebrity_deaths_2016.csv'

df = pd.read_csv(filename,

 usecols=['dateofdeath', 'age'])

With that in place, we now have to tackle our two cleaning tasks.

Because we’re only interested in celebrity deaths during particular months,
we’ll need to grab the month value from the dateofdeath columns. (There
are other ways to attack this problem; in Chapter 9, we’ll discuss a few of
them.) Because dateofdeath is a string column, we can use the slice
method of the str accessor to get the months—which happen to be in indexes
5 and 6 of the date string. This means that we can retrieve the two-digit
month as:

df['dateofdeath'].str.slice(5,7)

and we can assign that value to a new column, month, as follows:

df['month'] = df['dateofdeath'].str.slice(5,7)

Notice that we aren’t turning the column into an integer. We could do that,
but the leading 0 on the two-digit months makes that a bit trickier. Besides,
we don’t really need to do that, and the data set is relatively small, so we
don’t have to worry about the memory implications.

Figure 5.4. Adding a new month column to our data frame, based on the month in dateofdeath

Now that we have created the month column, we want to turn it into the
index:

df = df.set_index('month')

I next asked you to sort the data frame by the index—meaning, that we
should sort the rows such that the index will be in ascending order. We do
this because we want to retrieve a number of rows via a slice, and when an
index contains repeated values, it needs to be sorted before you can retrieve
slices from it. So let’s then sort by the index:

df = df.sort_index()

We are now set to retrieve rows from a single month, or from a range of
months. But we’re not quite done yet, because we want to find the average
age at which celebrities died in 2016. And in order to do that, we need to turn
the age column into a numeric value, most likely an integer. We can thus try
to do that:

df['age'] = df['age'].astype(np.int64)

However, this will fail. It’ll actually fail for two different reasons: First, some
of the values contain characters other than digits. Second, some of the values
are NaN, which as floating-point values, cannot be coerced into integers.
Before willy-nilly removing the NaN values, though, we should probably
check to see how many there are. We can do that with the isnull().sum()
trick that we’ve already seen, and combine that with the shape method to find
the percentage of null values:

df['age'].isnull().sum() / len(df['age'])

I get an answer of 0.004, meaning that 0.4 percent of the values are NaN. I
think that we can sacrifice that many rows and not worry about how much
data we’re losing. As a result, we can remove the NaN values:

df = df.dropna(subset=['age'])

Notice that I’m once again using the subset parameter. Not that there are any
rows in the index with NaN values, but it’s always a good idea to be specific,

just in case.

How can I remove the rest of the troublesome data, though? That is, how can
I remove those rows that contain non-digit characters? One way would be to
rely on the str.isdigit method, which returns True if a string contains only
digits (and isn’t empty). (It’ll return False if there is a - sign or decimal
point, so it’s not fail-safe for finding numbers, but will work with ages.) I can
apply that to df['age'] as follows:

df['age'].str.isdigit()

I can then use this boolean series as a mask index to remove rows in df
whose ages cannot be turned into integers:

df = df[df['age'].str.isdigit()]

But as is so often the case, Pandas has a more elegant solution, namely the
pd.to_numeric function. This function—which is defined at the top pd level,
rather than on a series or data frame—tried to create a new series with
numeric values. The function tries to turn the values into integers, but if it
cannot, then it returns floats, instead:

df['age'] = pd.to_numeric(df['age'])

But wait: It turns out that pd.to_numeric has some additional functionality,
allowing us to skip the step of using str.isdigit: By default,
pd.to_numeric will raise an exception if it encounters a string that cannot be
turned into an int or float. But if we pass the keyword argument
errors='coerce', then it’ll turn any values it can’t convert into NaN. We can
thus ignore all use of str.isdigit, and simply say:

df['age'] = pd.to_numeric(df['age'], errors='coerce')

Before we go any further, let’s check the numbers that we got using
describe:

df['age'].describe()

Here’s what I got:

count 6505.000000

mean 100.960338

std 413.994127

min 7.000000

25% 69.000000

50% 81.000000

75% 89.000000

max 9394.000000

Name: age, dtype: float64

I don’t know about you, but a mean age of 100 seems pretty suspicious. And
a maximum age of 9,394 seems a bit high, as well. This is the result of a
string containing the value '9394', which pd.to_numeric happily converted
into a number.

Let’s keep only those people younger than 120 years old:

df = df.loc[df['age'] < 120]

Our data frame is now ready for our final calculation, what we’ve been
working up to this entire time:

df.loc['02':'07', 'age'].mean()

Notice that because our index uses strings, we need to specify the slice with
strings, from '02' to '07'. The answer I get is 77.1788.

5.3.2 Solution

filename = '../data/celebrity_deaths_2016.csv'

df = pd.read_csv(filename,

 usecols=['dateofdeath', 'age'])#1

df['month'] = df['dateofdeath'].str.slice(5,7)#2

df = df.set_index('month')#3

df = df.sort_index()#4

df = df.dropna(subset=['age'])#5

df['age'] = pd.to_numeric(df['age'], errors='coerce')#6

df.loc['02':'07', 'age'].mean()#7

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20St

ringIO%28'''%0Amonth,dateofdeath,age%5Cn08,2016-08-14,89%5Cn02,2016-02-15,5

7%5Cn07,2016-07-16,90%5Cn03,2016-03-14,91%5Cn10,2016-10-24,91%5Cn11,2016-11

-11,82%5Cn11,2016-11-05,88%5Cn01,2016-01-17,90%5Cn06,2016-06-16,65%5Cn11,20

16-11-19,83%5Cn07,2016-07-22,79%5Cn05,2016-05-27,60%5Cn05,2016-05-10,93%5Cn

01,2016-01-07,68%5Cn08,2016-08-27,71%5Cn09,2016-09-06,77%5Cn03,2016-03-09,9

4%5Cn05,2016-05-23,90%5Cn02,2016-02-02,59%5Cn12,2016-12-20,28%5Cn'''%29%0A

%0Adf%20%3D%20pd.read_csv%28data%29%0Adf%5B'month'%5D%20%3D%20df%5B'dateof

death'%5D.str.slice%285,7%29%0Adf%20%3D%20df.set_index%28'month'%29%0Adf%20

%3D%20df.sort_index%28%29%0Adf%20%3D%20df.dropna%28subset%3D%5B'age'%5D%29

&d=2022-12-29&lang=py&v=v1

5.3.3 Beyond the exercise

Add a new column, day, from the day of the month in which the
celebrity died. Then create a multi-index (from month and day). What
was the average age of death from Feb. 15th through July 15th?
The CSV file contains another column, causeofdeath. Load that into a
data frame, and find the five most common causes of death. Now
replace any NaN values in that column with the string 'unknown', and
again find the five most common causes of death.
If someone asks whether cancer is in the top 10 causes, what would you
say? Can we be more specific than that?

5.4 Exercise 27: Titanic interpolation

When our data contains NaN values, we have a few options:

remove them
leave them
replace them with something else

What is the right choice? The answer, of course, is "it depends." If you’re
getting your data ready to feed into a machine-learning model, then you’ll
likely need to get rid of the NaN values, either by removing those rows or by
replacing them with something else. If you’re calculating basic sales
information, then you might be OK with null values, since they aren’t going
to affect your numbers too much. And of course, there are many variations on

these.

If you choose option 3, namely "replace them with something else," then that
raises another question: What do you want to replace the NaN values with? A
value that you have chosen? Something calculated from the data frame itself?
Something calculated on a per-column basis? Any and all of these are
appropriate under different circumstances.

In this exercise, we are going to fill in missing data from the famous Titanic
data set—a table of all passengers on that famous, doomed ship. Many of the
columns in this file are complete, but several are missing data. It’ll be up to
you to decide whether and how to fill in that missing data. We have already
seen (in Exercise 13) how we can use the interpolate method on a data
frame to perform this task automatically.

For this exercise, I would like you to do the following:

Load the titanic3.xls data into a data frame. Note that this file is an
Excel spreadsheet, so you won’t be able to use read_csv. Rather, you’ll
have to use read_excel.
Which columns contain null values?
For each column containing null values, decide whether you will fill it
with a value—and if so, then with what value, whether it’s calculated or
otherwise.

Unlike many of the other exercises in this book, here there is no obviously
right or wrong answer. There are, of course, techniques for calculating values
—such as the mean and the mode for a column—but I’m hoping that you’ll
consider not just how to make such calculations, but also why you would do
so, and when it’s most appropriate.

5.4.1 Discussion

This exercise is practical, but it’s also a bit philosphical. That’s because there
often is no "right" answer to the question of what you should do with missing
data. As I often tell my corporate training clients, you have to know your data
—and that means not only being famliar with the data itself, but also how it
will be analyzed and used. You also might choose incorrectly, or discover

that a decision you made was appropriate for one type of analysis, but isn’t
appropriate for a separate type of analysis.

That’s one reason why it’s useful to have your work in a Jupyter notebook, or
in a similar, reproducible format. When you need to, you can modify one part
of the code, keeping the rest intact.

Let’s then go through each of the steps in this exercise, and see what
decisions we could have made—as well as the actual decision I did make.

First, I asked you to create a data frame based on the Excel file
titanic3.xls. You can do this with the read_excel method:

filename = '../data/titanic3.xls'

df = pd.read_excel(filename)

 Note

Just like read_csv, read_excel is a method that we run on pd, rather than on
an individual data frame object. That’s because we’re not trying to modify an
existing data frame, but rather to create a new one. Also like read_csv, the
read_excel method has index_col, usecols, and names parameters,
allowing you to specify which columns should be used for the data frame,
what they should be called, and whether one or more should be used as the
data frame’s index.

Now that we have created our data frame, we should check to see if there are
any null values. I did that in two different ways, first using isnull.sum() to
find out how many NaN values were in each column of the data frame. I can
then check to see which of these columns have a non-zero number of NaN
values. This returns a boolean series, which I can then apply as a mask index
to df.columns:

df.columns[df.isnull().sum() > 0]

I got the following result:

Index(['age', 'fare', 'cabin', 'embarked', 'boat', 'body', 'home.dest'],

 dtype='object')

Notice that the column names are stored in an Index object, which works
similarly to series objects.

I also ran df.isnull().sum() by itself, to see how many NaN values were in
each column:

df.isnull().sum()

I got the following result:

pclass 0

survived 0

name 0

sex 0

age 263

sibsp 0

parch 0

ticket 0

fare 1

cabin 1014

embarked 2

boat 823

body 1188

home.dest 564

dtype: int64

Figure 5.5. Finding the number of NaN values in a column by summing the result of isnull()

Deciding what we should do with each NaN-containing column depends on a
variety of factors, including the type of data that the column contains.
Another factor is just how many rows have null values. In two cases—fare

and embarked we have one and two null rows, respectively. Given that our
data frame has more than 1,300 rows, missing 1 or 2 of them won’t make any
significant difference. I thus suggest that we remove those rows from the data
frame:

df = df.loc[df['fare'].notnull()]

df = df.loc[df['embarked'].notnull()]

Figure 5.6. Removing rows in which a column contains NaN

When it comes to the age column, though, we might want to consider our
steps carefully. I’m inclined to use the mean here. But you could use the
mode. You could also use a more sophisticated technique, using the mean
from within a particular cabin. You could even try to get the complete set of
ages on the Titanic, and choose from a random distribution built from that.

Using the mean age has some advantages: It won’t affect the mean age,
although it will reduce the standard deviation. It’s not necessarily wrong,

even though we know that it’s not totally right, either. In another context,
such as sales of a particular product in an online store, replacing missing
values with the mean can sometimes work, especially if you have similar
products with a similar sales history.

In any event, we can replace NaN in the age column with the following:

df['age'] = df['age'].fillna(df['age'].mean())

Figure 5.7. Replacing NaN in the age column with the mean of age

Let’s break this into several parts, starting with the expression on the right
side:

First, we calculate df['age'].mean(). Pandas ignores NaN values by
default, which means that this calculation is based on the non-null
numeric values in that column. We’ll get a single float value back from
this calculation—specifically, 29.8811345124283.

Next, we run fillna on df['age']. And what value do we want to put
instead of NaN? What we just calculated, the mean of df['age']. And
yes, it looks a bit confusing to use df['age'] twice. The result of
invoking fillna will be a new series, identical to df['age'], except
that the NaN values will be replaced with 29.8811345124283, the float
we got back in the previous step.
The result of df['age'].fillna is a new series, which we than assign
back to df['age'], replacing the original values.

In the end, we’ve replaced any NaN values in df['age'] with the mean of the
existing values.

Finally, I want to set the home.dest column similarly to what I did with the
age column—but instead of using the mean, I’ll use the mode (i.e., the most
common value). I’ll do this for two reasons: First, because you can only
calculate the mean from a numeric value, and the destination is a
categorical/textual value. Secondly, because this means that given no other
information, we might be able to assume that a passenger is going where
most others are going. We might be wrong, but this is the least wrong choice
that we can make. We could, of course, be a bit more sophisticated than this,
choosing the mode of home.dest for all passengers who embarked at the
same place, but we’ll ignore that for now.

Our code will look very similar to what we did for the age column, but using
mode instead of mean:

df['home.dest'] = df['home.dest'].fillna(df['home.dest'].mode())

Once again, let’s break this apart:

First, we calculate df['home.dest'].mode(), which returns the most
common value from this column. Another way to get the same value
would be to invoke df['home.dest'].value_counts().index[0],
which counts how often each value appears in home.dest and returns a
series with this information. We then get the index from that series (i.e.,
the different data points from df['home.dest'], and then get the first
(i.e., most common) item from the index.
Once we’ve grabbed the most common destination, we then pass that as

an argument to fillna, which we invoke on df['home.dest']. In other
words, we’ll replace all null values in home.dest the non-null mode
from home.dest.
Since fillna returns a series, we then assign the result back to
df['home.dest'], replacing the original column with the new, null-free,
column.

5.4.2 Solution

filename = '../data/titanic3.xls'

df = pd.read_excel(filename)#1

df.columns[df.isnull().sum() > 0]#2

df.isnull().sum()#3

df['age'] = df['age'].fillna(df['age'].mean())#4

df = df[df['fare'].notnull()]#5

df = df[df['embarked'].notnull()] #6

df['home.dest'] = df['home.dest'].fillna(df['home.dest'].mode())#7

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28'''%0A,pclass,survived,name,sex,age,sibsp,parch,ticket,fare,cabin,em

barked,boat,body,home.dest%5Cn1139,3,0,%22Rekic,%20Mr.%20Tido%22,male,38.0,

0,0,349249,7.8958,,S,,,%5Cn533,2,1,%22Phillips,%20Miss.%20Alice%20Frances%2

0Louisa%22,female,21.0,0,1,S.O./P.P.%202,21.0,,S,12,,%22Ilfracombe,%20Devon

%22%5Cn459,2,0,%22Jacobsohn,%20Mr.%20Sidney%20Samuel%22,male,42.0,1,0,24384

7,27.0,,S,,,London%5Cn1150,3,0,%22Risien,%20Mr.%20Samuel%20Beard%22,male,,0

,0,364498,14.5,,S,,,%5Cn393,2,0,%22Denbury,%20Mr.%20Herbert%22,male,25.0,0,

0,C.A.%2031029,31.5,,S,,,%22Guernsey%20/%20Elizabeth,%20NJ%22%5Cn1189,3,1,%

22Sandstrom,%20Miss.%20Marguerite%20Rut%22,female,4.0,1,1,PP%209549,16.7,G6

,S,13,,%5Cn5,1,1,%22Anderson,%20Mr.%20Harry%22,male,48.0,0,0,19952,26.55,E1

2,S,3,,%22New%20York,%20NY%22%5Cn231,1,1,%22Peuchen,%20Major.%20Arthur%20Go

dfrey%22,male,52.0,0,0,113786,30.5,C104,S,6,,%22Toronto,%20ON%22%5Cn330,2,0

,%22Ashby,%20Mr.%20John%22,male,57.0,0,0,244346,13.0,,S,,,%22West%20Hoboken

,%20NJ%22%5Cn887,3,1,%22Johannesen-Bratthammer,%20Mr.%20Bernt%22,male,,0,0,

65306,8.1125,,S,13,,%5Cn%0A'''%29%0A%0Adf%20%3D%20pd.read_csv%28data%29%0Ad

f.columns%5Bdf.isnull%28%29.sum%28%29%20%3E%200%20%5D%0Adf.isnull%28%29.sum

%28%29%0Adf%5B'age'%5D%20%3D%20df%5B'age'%5D.fillna%28df%5B'age'%5D.mean%28

%29%29&d=2023-01-04&lang=py&v=v1

5.4.3 Beyond the exercise

In these tasks, we’re going to do something that I mentioned in the discussion
section, namely replace NaN values in the home.dest column with the most
common value from that person’s embarked column. This will take several
steps:

Create a series (most_common_destinations) in which the index
contains the unique values from the embarked column, and the values
are the most common destination for each value of embarked.
Now replace NaN values in the home.dest coumn with values from
embarked. (Since values in embarked and home.dest and distinct, this is
an OK middle step.)
Now use the most_common_destinations series to replace values in
home.dest with the most common values for each embarkation point.

5.5 Exercise 28: Inconsistent data

Missing data is a common issue that you’ll need to deal with when importing
data sets. But equally common is inconsistent data, when the same value is
represented by a number of different values.

I once encountered this while doing a project for a university’s fund-raising
department. Their database had been written years before, and was quite a
mess. In particular, I remember that the database column for "country"
contained all of the following values:

United States of America

USA

U.S.A.

U.S.A

United States

US

U.S.

While people understand that these all refer to the same country, a computer
doesn’t. If your data is inconsistent, then it’ll be hard for you to analyze it in

any sort of serious way. Thus, a big part of cleaning real-world data involves
making it more consistent—or to use a term from the world of databases,
"normalizing" it.

In this exercise, we’re going to return to our parking tickets database, trying
to make it more consistent, and thus easier to analyze. I am sure that in a data
set this large that even after this exercise, it’ll still have some inconsistencies.
Here is what I want you to do:

Create a data frame from the file nyc-parking-violations-2020.csv.
We are only interested in a handful of the columns:

Plate ID

Registration State

Vehicle Make

Vehicle Color

Street Name

How many different vehicle colors (the Vehicle Color column) are
there?
Look at the 30 most common colors, and identify colors that appear
multiple times, but written differently. For example, the color WHITE is
also written as WT and also as WT. and also as WHT.
Prepare a Python dict in which the keys represent the various color-
name inputs, and the values represent the values that you want them to
have in the end. I suggest aiming to use the longer names, such as WHITE,
rather than the shorter ones.
Replace the existing (old) colors with your translations. How many
colors are there now?
Look through the top 50 colors, now that you have removed a bunch of
them. Are there any you could still clean up? Are there any you cannot
figure out? Can you identify some consistent typos and errors in the
colors?

5.5.1 Discussion

We’re all guilty of typos—but if you make a mistaken writing e-mail, your
friend or colleague will (hopefully) forgive you. In the case of data science,

such typos and other errors are often more insidious, because they take place
one at a time, as a small and seemingly unnoticeable drip. When you finally
start to analyze the data, you discover how many mistakes occurred, and how
many of them repeated themselves. This is especially true when we’re getting
data from people, rather than from sensors and other automated equipment,
although those can cause all sorts of interesting and weird problems, too.

In this exercise, I asked you to look at the colors of the vehicles that had been
received parking tickets in New York City in 2020. As it turns out, there are
many opportunities for the people issuing tickets to make mistakes,
something that could potentially affect our analysis. (Although it’s unlikely
that we would do any serious analysis over the vehicle colors.)

Before we can fix up the color names, we first need to understand what we’re
dealing with. After all, maybe it isn’t even a problem. After reading the data
into a data frame, we can quickly check to see how many distinct vehicle
colors were listed in the parking-ticket database:

len(df['Vehicle Color'].value_counts().index)

value_counts is a fantastic method for not only getting the unique values
from a series, but for finding out how often each of those values appears, and
also sorting them from most to least common. Because value_counts returns
a series, you can ask for its index, and call len on it.

In this way, I found that there were a total of 1,896 different colors recorded
for parking tickets. Color experts might argue that this is a small number of
colors compared to what the human eye can distinguish, but it seems a bit
high for the purposes of distinguishing cars that have been ticketed.

What were the 30 most common colors in 2020 parking tickets? Let’s take a
look:

df['Vehicle Color'].value_counts().head(30)

We can already see that there is little or no standardization here, and that the
people giving tickets are wildly inconsistent in how they describe colors. And
that’s just from looking at the first 30 colors—there are nearly 1,900 other
ways that they’ve described colors that we haven’t even looked at.

To clean this up, we’ll create a regular Python dictionary. We could also use
a series, but a dict seems like the easiest and most straightforward solution:

colormap = {'WH': 'WHITE', 'GY':'GRAY', 'BK':'BLACK',

 'BL':'BLUE', 'RD':'RED', 'SILVE':'SILVER',

 'GR':'GRAY', 'TN':'TAN', 'BR':'BROWN',

 'YW':'YELLO', 'BLK':'BLACK', 'GRY':'GRAY',

 'WHT':'WHITE', 'WHI':'WHITE', 'OR':'ORANGE',

 'BK.':'BLACK', 'WT':'WHITE', 'WT.':'WHITE'}

The above dict has 18 key-value pairs, in order to standardize 18 color
names.

In this dict, the keys are the strings that we’ve found describing the colors,
while the values are the strings that we want to see. This sort of translation
table is pretty common in data-cleaning pipelines, and over time you’ll likely
find yourself adding new key-value pairs, as you discover new (and
surprisingly creative) ways for people to misspell color names.

By applying the replace method to our series (i.e., the Vehicle Color
column), we can get a new series back. That new series can then be assigned
back to df['Vehicle Color'], replacing our existing one:

df['Vehicle Color'] = df['Vehicle Color'].replace(colormap)

 Note

Any values not in colormap will remain unchanged. And the match in
colormap must be a precise match—including whitespace, punctuation, and
case.

If we check the number of distinct colors again:

len(df['Vehicle Color'].value_counts().index)

I get 1880, which is 16 less than before. Which means that at two of the
colors didn’t really change anything. How can that be? Well, it turns out that
I made a mistake here. In fact, I made two mistakes.

First, I said that we should look for the shortened color name SILVE and turn
it into SILVER. The problem is that the back-end system into which parking
tickets are enetered limits the Vehicle Color field to five characters. So I
changed SILVE to SILVER, but that didn’t combine two values into a single
value. Rather, it just changed SILVE to SILVER, keeping the count of that
color constant. I thus removed SILVER from the colormap dictionary, since it
wasn’t shortened at all.

What about OR? When I mapped OR to ORANGE, I accidentally used a six-letter
color name. So OR was a duplicate, but of ORANG, rather than of ORANGE. By
changing colormap to switch from OR to ORANG, I did indeed reduce the
number of different colors by one, uniting all of the orange cars under one
(very bright and tacky) roof.

My final, working replacement dictionary is thus:

colormap = {'WH': 'WHITE', 'GY':'GRAY',

 'BK':'BLACK', 'BL':'BLUE',

 'RD':'RED', 'GR':'GRAY',

 'TN':'TAN', 'BR':'BROWN',

 'YW':'YELLO', 'BLK':'BLACK',

 'GRY':'GRAY', 'WHT':'WHITE',

 'WHI':'WHITE', 'OR':'ORANG',

 'BK.':'BLACK', 'WT':'WHITE',

 'WT.':'WHITE'}

I can then apply colormap to the colors using replace:

df['Vehicle Color'] = df['Vehicle Color'].replace(colormap)

The call to replace returns a new series, one in which any value in
df['Vehicle Color'] that matches a key in colormap is changed to be the
corresponding value in colormap. After doing this, we can check to see how
many different colors we’re now tracking:

len(df['Vehicle Color'].value_counts().index)

The result is 1,879. If we’re taking the issue of color standardization
seriously, then we’ll still have a lot of work cut out for us. And this is just for
one column in one data set—you can see why data cleaning is both important
and time-consuming.

5.5.2 Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Plate ID',

 'Registration State',

 'Vehicle Make',

 'Vehicle Color',

 'Street Name'])

len(df['Vehicle Color'].value_counts().index)#1

df['Vehicle Color'].value_counts().head(30)#2

colormap = {'WH': 'WHITE', 'GY':'GRAY',

 'BK':'BLACK', 'BL':'BLUE',

 'RD':'RED', 'GR':'GRAY',

 'TN':'TAN', 'BR':'BROWN',

 'YW':'YELLO', 'BLK':'BLACK',

 'GRY':'GRAY', 'WHT':'WHITE',

 'WHI':'WHITE', 'OR':'ORANG',

 'BK.':'BLACK', 'WT':'WHITE',

 'WT.':'WHITE'}#3

df['Vehicle Color'] = df[

 'Vehicle Color'].replace(colormap)#4

len(df['Vehicle Color'].value_counts().index)#5

df['Vehicle Color'].value_counts().head(50)#6

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28'''%0A,Vehicle%20Color%5Cn2752511,RED%5Cn964568,BLUE%5Cn5049760,BK%5

Cn4248515,GY%5Cn6899272,RED%5Cn11549116,BL%5Cn9816025,BK%5Cn11346931,WH%5Cn

2772528,BK%5Cn3663790,WH%5Cn7179841,WH%5Cn661128,BLUE%5Cn5401291,BLACK%5Cn

526821,WHITE%5Cn4014922,BK%5Cn6166605,RED%5Cn11905504,BLACK%5Cn428139,BK%5C

n5328844,WHITE%5Cn492842,SILVE%5Cn920426,BL%5Cn1979514,GY%5Cn2105457,WH%5Cn

11996578,RD%5Cn3992380,WH%5Cn12480694,GY%5Cn1009122,GY%5Cn9539409,WH%5Cn115

21484,BK%5Cn8954222,WHITE%5Cn%0A'''%29%0A%0Adf%20%3D%20pd.read_csv%28data,%

20index_col%3D0%29%0A%0A%0Acolormap%20%3D%20%7B'WH'%3A%20'WHITE',%20%0A%20%

20%20%20%20%20%20%20%20%20'GY'%3A'GRAY',%20%0A%20%20%20%20%20%20%20%20%20%2

0%20%20%20'BK'%3A'BLACK',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20'BL'%3A'

BLUE',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20'RD'%3A'RED',%20%0A%20%20%2

0%20%20%20%20%20%20%20%20%20%20'GR'%3A'GRAY',%0A%20%20%20%20%20%20%20%20%20

%20%20%20%20'TN'%3A'TAN',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20'BR'%3A'

BROWN',%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20'YW'%3A'YELLO',%20%0A%

20%20%20%20%20%20%20%20%20%20%20%20%20'BLK'%3A'BLACK',%0A%20%20%20%20%20%20

%20%20%20%20%20%20%20'GRY'%3A'GRAY',%20%0A%20%20%20%20%20%20%20%20%20%20%20

%20%20'WHT'%3A'WHITE',%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20'WHI'%3A

'WHITE',%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20'OR'%3A'ORANG',%0A%20%

20%20%20%20%20%20%20%20%20%20%20%20'BK.'%3A'BLACK',%0A%20%20%20%20%20%20%2

0%20%20%20%20%20%20'WT'%3A'WHITE',%0A%20%20%20%20%20%20%20%20%20%20%20%20'

WT.'%3A'WHITE'%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%0Adf%5B'Vehicle%2

0Color'%5D%20%3D%20df%5B'Vehicle%20Color'%5D.replace%28colormap%29%20%20%2

0%20%20%20%20%20%20%20%20%20&d=2023-01-04&lang=py&v=v1

5.5.3 Beyond the exercise

Run value_counts on the Vehicle Make column, and look at some of
the vehicle names. (There are more than 5,200 distinct makes, which
almost certainly indicates that there is a lot of inconsistency in this data.)
What problems do you see? Write a function that, given a value, cleans
it up—putting the name in all caps, removing punctuation, and
standardizing whatever names you can, and then use the apply method
to fix up the column. How many distinct vehicle makes are there when
you’re done?
How standardized are the street names in the data set? What changes
could you apply to improve things?
Would you need to clean up the Registration State column? Why or
why not?

5.6 Summary

Cleaning data is one of the most important parts of data analysis, although
it’s not very glamorous. In this chapter, we saw that effective cleaning of data
requires not just knowing the techniques, but also applying judgment—
knowing when you can allow null or duplicate values, and then what you
should do with them. Pandas comes with a wide variety of tools that we can
use in cleaning our data, from removing NaN values to replacing them, to
replacing existing values, to running custom functions on each row in a series
or data frame. The techniques that we explored in this chapter, along with the

interpolate method that we saw back in Exercise 13, are important tools in
your data-cleaning toolbox, and will likely come up in many of the projects
you work on.

6 Grouping, joining, and sorting
So far, we have looked at how to create data frames, read data into them,
clean the data, and then analyze that clean, imported data in a number of
ways. But analysis often requires more than just the basics: We often need to
break our input data apart, to zoom in on particularly interesting subsets, to
combine data from different sources, to transform the data into a new format
or value, and then to sort it according to a variety of criteria. This type of
action is known in the Pandas world as "split-apply-combine," and is our
focus in this chapter. If you have experience with SQL and relational
databases, then you’ll find many similarities, in both principle and name,
with functionality in Pandas.

For example: A company might want to find out its total sales in the last
quarter. But it might want to find out which countries have done particularly
well (or poorly). Or perhaps the head of sales would like to see how much
each individual salesperson has brought in, or how much each product has
contributed to the company’s income.

These types of questions can be answered using a technique known as
"grouping." Much like the GROUP BY clause in an SQL query, we can use
grouping in Pandas to ask the same question for various subsets of our data.

Another common SQL technique is "joining," which lets us keep our data in
small, specific data frames, combining them when only when we need to. For
example, one data frame might list each sales region and that region’s
manager, while a second might contain this quarter’s regional sales results. In
order to show the monthly sales results for each region along with each
region’s manager, you’ll want to join the data frames together.

A third technique, one which you have likely seen in other languages and
frameworks, is that of sorting. In Chapter 5, we already saw how to use
sort_index to order a data frame’s rows by the values in the index. In this
chapter, we’ll look at sort_values, which reorders the rows based on the
values in one or more columns.

You’ll want to have each of these techniques—grouping, joining, and sorting
—at your fingertips when solving problems with Pandas. In this chapter,
you’ll see how to use them for solving some of the most common types of
problems you’ll encounter.

6.1 Useful references
Table 6.1. What you need to know

Concept What is it? Example To learn more

s.isnull

Returns a
boolean series
indicating where
there are null
(typically NaN)
values in the
series s

s.isnull() http://mng.bz/Jgyp

df.sort_index

Reorder the rows
of a data frame
based on the
values in its
index, in
ascending order

df = df.sort_index() http://mng.bz/wvB7

df.sort_values

Reorder the rows
of a data frame
based on the
values in one or
more specified
columns

df =

df.sort_values('distance')
http://mng.bz/qrMK

df.transpose()

or df.T

Returns a new
data frame with
the same values
as df, but with
the columns and
index exchanged

df.transpose() or df.T http://mng.bz/7DXx

df.expanding

Lets us run
window functions
on an expanding
(growing) set of
rows.

df.expanding().sum() http://mng.bz/mVBn

df.rolling

Lets us run
window functions
on an expanding
(growing) set of
rows.

df.rolling(3).mean() http://mng.bz/5wp4

df.pct_change

For a given data
frame, indicates
the percentage
difference
between each cell
and the
corresponding
cell in the
previous row.

df.pct_change() http://mng.bz/4DBB

df.groupby

Allows us to
invoke one or
more aggregate
methods for each df.groupby('year') http://mng.bz/vn9x

value in a
particular
column.

df.loc

Retrieve selected
rows and
columns

df.loc[:,

'passenger_count'] =

df['passenger_count']
http://mng.bz/nWzv

s.iloc

access elements
of a series by
position

s.iloc[0] http://mng.bz/QPxm

df.dropna
Remove rows
with NaN values

df = df.dropna() http://mng.bz/XN0Y

s.unique

Get the unique
values in a series
NOTE Pandas
drop_duplicates

is better

s.unique() http://mng.bz/yQrJ

df.join

Join two data
frames together
based on their
indexes

df.join(other_df) http://mng.bz/MBo2

df.merge

Join two data
frames together
based on any
columns

df.merge(other_df) http://mng.bz/a1wJ

df.corr

Show the
correlation
between the
numeric columns
of a data frame

df.corr() http://mng.bz/gBgR

s.to_frame

Turn a series into
a one-column
data frame

s.to_frame() http://mng.bz/5wp1

s.removesuffix

Returns a new
string with the
same contents as
s, but without a
specified suffix
(if it’s there)

s.removesuffix('.csv') http://mng.bz/6DAD

s.removeprefix

Returns a new
string with the
same contents as
s, but without a
specified prefix
(if it’s there)

s.removeprefix('abcd') http://mng.bz/o1Rr

s.title

Returns a new
string based on s,
in which each
word starts with a
capital letter

s.title('hello out there') http://mng.bz/nWzg

Returns one new
data frame based

pd.concat on a list of data
frames passed to
pd.concat

pd.concat([df1, df2, df3]) http://mng.bz/vn9J

6.2 Exercise 29: Longest taxi rides

When I first started to work with relational (SQL) databases, I was surprised
to learn that data isn’t stored in any particular order. As I soon learned, there
are several reasons for this:

The order in which the rows are stored doesn’t affect many queries,
It’s more efficient for the database itself to figure out the order in which
rows should be stored, and
There are so many ways in which we might want to sort the data that the
database shouldn’t guess. Rather, it should allow us to choose how we
want to sort and extract the information.

Now Pandas does keep the rows of our data frame ordered, so it’s not exactly
like a relational database. But it’s true that for many types of analysis, the
order of the rows doesn’t matter. After all, if you’re calculating a column’s
mean, then it doesn’t matter where you start or end.

If you want to display data—say, sales records, network statistics, or inflation
projections—then you’ll likely want to order them. How you order them
depends on the context, though. Sales records might need to be ordered by
department, network statistics might need to be ordered by subnets, and
inflation projections might need to be ordered chronologically.

Another reason to sort is to get the highest or lowest values from a particular
column in the data frame. And in this exercise, I’m asking you to do exactly
that. Specifically, I want you to make a few queries with the New York City
taxi data from January 2019:

Load the CSV file into a data frame, using only the columns
passenger_count, trip_distance, and total_amount.
Using a descending sort, find the average cost of the 20 longest (in

distance) taxi rides in January 2019.
Now using an ascending sort, find the average cost of the 20 longest (in
distance) taxi rides in January 2019. Are the results any different?
Sort by ascending passenger count and descending trip distance. (So
we’ll start with the longest trip with 0 passengers and end with the
shortest trip with 9 passengers.) What is the average price paid for the
top 50 rides?

6.2.1 Discussion

When we want to sort a data frame in Pandas, we first have to decide whether
we want to sort it via the index or by the values. We’ve already seen that if
we invoke sort_index on a data frame, we get back a new data frame whose
rows are identical to the existing data frame, but ordered such that the index
is ascending.

In this exercise, we again want to sort the rows of our data frame—but we
want to do it based on the values in a particular column, rather than the index.
You could argue that there isn’t really much difference between the two; we
could take a column, temporarily make it the index, sort by the index, and
then return the column back to the data frame. But the difference between
sort_index and sort_values isn’t just technical. We’re thinking about our
data, and how we want to access it, in different ways.

sort_values is also different from sort_index in another way, namely that
we can sort by any number of columns. Imagine, once again, that your data
frame contains sales data. You might want to sort it by price, by region, or by
salesperson—or even by a combination of these. When we sort by the index,
by contrast, we’re effectively sorting by a single column.

In the first part of the exercise, I asked you to create a data frame with our
favorite (and familiar) columns, passenger_count, trip_distance, and
total_amount.

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,

 usecols=['passenger_count',

 'trip_distance',

 'total_amount'])

With the data frame in place, we can start to analyze the data. The first task
was to find the 20 longest (in distance) taxi rides in our data set, and then to
find their average cost. We’ll thus first need to sort our data set by distance—
and I asked you to do that via a descending sort.

To sort our data frame by the trip_distance column, we can say:

df.sort_values('trip_distance')

This will return a new data frame, identical to df, but with the rows sorted
according to trip_distance in ascending order. While we could (and will)
work with the data in this form, I find it easier in such cases to sort in
descending order. We can do that by passing False as an argument to the
ascending parameter:

df.sort_values('trip_distance',

 ascending=False)

Figure 6.1. Running sort_values on a data frame returns a new data frame with the same rows,
but ordered according to the named column

Our analysis will be of the total_amount column. With the data already
sorted by trip_distance, we can now retrieve just that one column, using
square brackets:

df.sort_values('trip_distance',

 ascending=False

)['total_amount']

Figure 6.2. Running sort_values on a data frame, then keeping only one column

But we’re not interested in calculating the mean of all rows in total_amount,
merely those from the 20 longest trips. How can we retrieve the top 20 rows?
One way would be to use head(20). Another possibility, which I’ve used
here, is to retrieve the first 20 rows via iloc:

df.sort_values('trip_distance',

 ascending=False

)['total_amount'].iloc[:20]

Figure 6.3. Running sort_values on a data frame, then keeping only one column, then getting
only the first rows with iloc

Notice that we have to use iloc here, and not loc. That’s because loc works
with the actual index values—which, now that we’ve sorted the data frame by
trip_distance, will be unordered. Asking for loc[:20] will return many
more than 20 rows.

Having retrieved total_amount from the 20 longest-distance taxi rides, we
can finally calculate the mean value:

df.sort_values('trip_distance',

 ascending=False

)['total_amount'].iloc[:20].mean()

I got a result of 290.01000000000000076, which I think we can reasonably
round to an average of $290 for those 20 longest taxi rides.

Next, I asked you to make the same calculation, but this time I wanted you to
do an ascending sort. First, we sort our data frame by values:

df.sort_values('trip_distance')

Remember that by default, sort_values sorts in ascending order, so we don’t
need to specify anything there. Once again, we keep only the total_amount
column:

df.sort_values('trip_distance')['total_amount']

And once again, we’re only interested in the 20 longest trips. This time,
however, we sorted in ascending order, which means that the 20 longest trips
will be at the end of the series, rather than at the top.

As before, we have two basic ways to do this: One would be to use tail(20)
to retrieve the final 20 elements. But I’m going to again use iloc, and get the
20 final rows from our new data frame:

df.sort_values('trip_distance')[

 'total_amount'].iloc[-20:]

Remember that in Python, a negative index means that we count from the end
of the data structure, rather than from the beginning. Thus index -1 gives us

the final element, -2 the second-to-final element, and so forth. Moreover, our
slice can be empty on one side, indicating that we want to go through the end
of that side. Here, the use of iloc[-20:] means that we want the final 20
elements in the series.

 Note

Wondering whether it’s faster to run tail or iloc with a slice? From some
performance checks that I did, they were almost exactly the same.

Finally, we invoke mean() on the 20 longest-ride fares:

df.sort_values('trip_distance')[

 'total_amount'].iloc[-20:].mean()

And the result is… 290.0100000000001. Which is, let’s face it, basically the
same thing as 290, which we got before. And yet, if you’re like me, you’ll
find the (slight) difference between our two results to be a bit troubling.
What’s going on here?

The answer, simply put, is that floating-point math is a bit strange, and can
surprise you. A good, full explanation of floating-point problems is at
https://0.30000000000000004.com/, but is there anything that we can do to
avoid such problems?

The answer is: Sort of. If we use longer (i.e., more bits) floats, then such
problems will crop up less often. For example, we can instruct Pandas to read
the total_amount column into 128-bit floats, rather than 64-bit floats, which
are the default:

df = pd.read_csv(filename,

 usecols=['passenger_count',

 'trip_distance',

 'total_amount'],

 dtype={'total_amount':np.float128})

With this in place, both of our calculations—forward and backward—give us
the same result, namely 290.01000000000000076. But of course, now our
column consumes twice as much memory as before.

 Note

If 128-bit floats are the most accurate, then why not always use them?

First, because they’re very large, at 16 bytes (!) per number. If you have 1
million floats, that translates into about 16 MB of data. Not every problem
you’re trying to solve needs such extreme accuracy.

But there’s a second problem, namely that I’ve found 128-bit floats cause
some problems. On my Mac, some Pandas methods didn’t work when my
columns had a dtype of np.float128. And it seems that np.float128
doesn’t even exist on computers running Windows.

So if you need the precision, and if you’re on a platform that supports them,
and if the Pandas methods you need can use them, then sure—go ahead and
use np.float128. But keep in mind that this will make your program less
portable.

Next, I asked you to sort by two columns. This is something that we do
naturally all of the time, but we don’t think about it. For example, telephone
books are—or "were," I guess—sorted first by last name, and then by first
name. Which means that the names appear in alphabetical order by last name.
If more than one person has the same last name, then we order the people by
first name.

The sort that I asked you to do primarily looked at passenger_count,
meaning that we should sort the rows of df in ascending order, from the
smallest number of passengers to the greatest number of passengers. And in
resolving ties between rows with the same passenger count, I asked you to
use the trip_distance column. However, whereas passenger_count is
sorted in ascending order, I asked you to sort trip_distance in descending
order.

Pandas allows us to do this by passing a list of columns as the first argument
to sort_values. We then pass a list of boolean values to ascending, with
each element in the list corresponding to one of the sort columns:

df.sort_values(['passenger_count', 'trip_distance'],

 ascending=[True, False])

Figure 6.4. Sorting a data frame by passenger_count (ascending order), then trip_distance
(descending order)

The above code returns a new data frame with three columns, in which the
rows are first sorted by (ascending) passenger_count, and then by
(descending) trip_distance. The first row of the returned data frame has the
longest trip for the smallest number of passengers, while its final row has the
shortest trip for the largest number of passengers.

We then retrieve the total_amount column from the returned data frame,
grab its first 50 rows using iloc (although we could just as easily have used
head(50), and calculate the mean:

df.sort_values(['passenger_count',

 'trip_distance'],

 ascending=[True, False])[

 'total_amount'].iloc[:50].mean()

I get a result of 135.4974000000001.

6.2.2 Solution

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,

 usecols=['passenger_count',

 'trip_distance',

 'total_amount'],

 dtype={'total_amount':np.float128})

df.sort_values('trip_distance',

 ascending=False)[

 'total_amount'].iloc[:20].mean()#1

df.sort_values('trip_distance')[

 'total_amount'].iloc[-20:].mean()#2

df.sort_values(['passenger_count',

 'trip_distance'],

 ascending=[True, False])[

 'total_amount'].iloc[:50].mean()#3

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28''',passenger_count,trip_distance,total_amount%5Cn0,1,1.5,9.94999999

99999992895%5Cn1,1,2.6,16.30000000000000071%5Cn2,3,0.0,5.7999999999999998224

%5Cn3,5,0.0,7.5499999999999998224%5Cn4,5,0.0,55.549999999999997158%5Cn5,5,0

.0,13.310000000000000497%5Cn6,5,0.0,55.549999999999997158%5Cn7,1,1.3,9.0500

000000000007105%5Cn8,1,3.7,18.5%5Cn9,2,2.1,13.0%5Cn10,2,2.8,19.550000000000

00071%5Cn11,1,0.7,8.5%5Cn12,1,8.7,42.950000000000002842%5Cn13,1,6.3,28.5%5

Cn14,1,2.7,15.3000000000000007105%5Cn15,1,0.38,4.7999999999999998224%5Cn16

,1,0.55,9.75%5Cn17,1,0.3,6.3600000000000003197%5Cn18,1,1.42,9.359999999999

9994316%5Cn19,1,1.72,10.3000000000000007105%5Cn'''%29%0A%0Adf%20%3D%20pd.re

ad_csv%28data%29%0A%0Adf.sort_values%28'trip_distance',%20%0A%20%20%20%20%

20%20%20%20%20%20%20%20%20%20%20ascending%3DFalse%29%5B'total_amount'%5D.

iloc%5B%3A20%5D.mean%28%29&d=2023-02-08&lang=py&v=v1

6.2.3 Beyond the exercise

In which five rides did people pay the most per mile? How far did
people go on those trips?
Let’s assume that multi-passenger rides are split evenly among the
passengers. Given that assumption, in which 10 multi-passenger rides
did each individual pay the greatest amount?
In the exercise solution, I showed that we needed to use iloc or
head/tail to retrieve the first/last 20 rows, because the index was all
scrambled after our sort operation. But you can pass
ignore_index=True to sort_values, and then the resulting data frame
will have a numeric index, starting at 0. Use this option, and loc, to get
the mean total_amount for 20 longest trips.

Grouping

We’ve already seen how aggregate functions, such as mean and std, allow us
to better understand our data. But sometimes we want to run an aggregate
function on each piece of our data. For example, you might want to know the
number of sales per region, or the average cost of living per city, or the
standard deviation for each of the age groups in a population. You could, of
course, run the aggregate function numerous times, each time retrieving a
different group from the data frame. But that gets tedious—and why work
hard, when Pandas can do it for you?

This functionality, known as "grouping," should also be familiar to you if
you’ve worked with relational databases. In this exercise, we’ll try to learn

whether the number of people taking a taxi affects, on average, the distance
that the taxi has to travel. In other words, if I’m a taxi driver who moonlights
as a data analyst (or if you prefer, a data analyst who moonlights as a taxi
driver), and I can choose between one rider and a group of riders, which is
likelier to go farther—and thus pay me more?

As an example, let’s go back to the data frame of products that we created
back in chapter 2:

df = DataFrame([{'product_id':23, 'name':'computer',

 'wholesale_price': 500,

 'retail_price':1000, 'sales':100,

 'department':'electronics'},

 {'product_id':96, 'name':'Python Workout',

 'wholesale_price': 35,

 'retail_price':75, 'sales':1000,

 'department':'books'},

 {'product_id':97, 'name':'Pandas Workout',

 'wholesale_price': 35,

 'retail_price':75, 'sales':500,

 'department':'books'},

 {'product_id':15, 'name':'banana',

 'wholesale_price': 0.5,

 'retail_price':1, 'sales':200,

 'department':'food'},

 {'product_id':87, 'name':'sandwich',

 'wholesale_price': 3,

 'retail_price':5, 'sales':300,

 'department': 'food'},

])

As you might have noticed, I’ve modified the data frame ever so slightly,
adding a new column, department, which contains a string value. We’ll use
this in just a moment.

If I want to find out how many products I sell in my store (i.e., how many
rows are in my data frame), then I can use the count method:

df.count()

This is certainly interesting and useful information, but we might well want
to break it down further. For example, how many produts are we selling in
each department? To answer that question, we’ll use the groupby method on

our data frame:

df.groupby('department')

Notice that the argument to groupby needs to be the name of a column. And
the result of running the groupby method?

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x13174f970>

As you can see, we get a DataFrameGroupBy object, which is useful to us
because of the aggregate methods we can invoke on it. For example, I can
call count, and thus find out how many items we have in each department:

df.groupby('department').count()

The result of this code is a data frame, whose columns are the same as df,
and whose rows are the different values in the department column. Because
there are three distinct departments in our store, there will thus be three rows:
electronics, books, and food.

Much of the time, we don’t want all of the columns returned to us, but rather
a subset of them. We could, in theory, thus use square brackets on the result
of the above code. For example, we could count product_id:

df.groupby('department').count()['product_id']

The result is a series whose index contains the different values in
department, and whose values contains the count of items per department.
And the answer is accurate.

However, this is unnecessarily wasteful. The way that we wrote this code, we
first applied count to the DataFrameGroupBy object, and only after removed
all columns by product_id. It’s far more efficient, especially with a large
data frame, to apply the square brackets to the DataFrameGroupBy object, and
only then to invoke our method:

df.groupby('department')['product_id'].count()

You can see this visually here:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0A%0Adf%20%3D%20DataFrame%28%5B%7B'product_id'%3A23,

%20'name'%3A'computer',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'wholesale_price'%3A%20500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'retail_price'%3A1000,%20'sales'%3A100,%0A%20%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%20'department'%3A'electronics'%7D,%0A%20%20%20%20%2

0%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A96,%20'name'%3A'Python%20

Workout',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'wholesale_

price'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retai

l_price'%3A75,%20'sales'%3A1000,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20%20'department'%3A'books'%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%2

0%20%20%20%7B'product_id'%3A97,%20'name'%3A'Pandas%20Workout',%0A%20%20%20%

20%20%20%20%20%20%20%20%20%20%20%20%20%20'wholesale_price'%3A%2035,%0A%20%2

0%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_price'%3A75,%20'sale

s'%3A500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'department'

%3A'books'%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%7B'product_i

d'%3A15,%20'name'%3A'banana',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'wholesale_price'%3A%200.5,%0A%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20%20%20'retail_price'%3A1,%20'sales'%3A200,%0A%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%20%20'department'%3A'food'%7D,%0A%20%20%20%20%20%20

%20%20%20%20%20%20%20%20%20%7B'product_id'%3A87,%20'name'%3A'sandwich',%0A%

20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'wholesale_price'%3A%203

,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_price'%3A5,

%20'sales'%3A300,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'depa

rtment'%3A%20'food'%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5D

%29%0A%0Adf.groupby%28'department'%29%5B'product_id'%5D.count%28%29%0A&d=2

023-02-08&lang=py&v=v1

Again, you’ll get the same results—but this second version will run more
quickly.

While I’ve used count in my examples here, you can use any aggregation
method when grouping, such as mean, std, min, max, and sum. So we could
get the average product price, per department, in our store as follows:

df.groupby('department')['retail_price'].mean()

What if we want to know both the mean and the standard deviation of prices
in our store, grouped by department? You can actually do that, by altering the
syntax somewhat: Instead of calling an aggregation method directly, we can
apply the agg method to our DataFrameGroupBy object. That method then
takes a list of methods, each of which will be applied to

df.groupby('department')['retail_price'].agg([np.mean, np.std])

In this case, we’ll get a data frame back with two columns (mean and std) and
three rows (for each of the departments in our data frame). We’ll find out the
mean and standard deviation for the retail prices in each department. You can
see this visually in the Pandas Tutor:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0A%0Adf%20%3D%20DataFrame%28%5B%7B'product_id'%3A23,

%20'name'%3A'computer',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20'wholesale_price'%3A%20500,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2

0%20%20'retail_price'%3A1000,%20'sales'%3A100,%0A%20%20%20%20%20%20%20%20%2

0%20%20%20%20%20%20%20%20'department'%3A'electronics'%7D,%0A%20%20%20%20%20

%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A96,%20'name'%3A'Python%20Wo

rkout',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'wholesale_pri

ce'%3A%2035,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_p

rice'%3A75,%20'sales'%3A1000,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'department'%3A'books'%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%2

0%20%20%7B'product_id'%3A97,%20'name'%3A'Pandas%20Workout',%0A%20%20%20%20%2

0%20%20%20%20%20%20%20%20%20%20%20%20'wholesale_price'%3A%2035,%0A%20%20%20

%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_price'%3A75,%20'sales'%3A5

00,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'department'%3A'bo

oks'%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%7B'product_id'%3A15

,%20'name'%3A'banana',%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2

0'wholesale_price'%3A%200.5,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20'retail_price'%3A1,%20'sales'%3A200,%0A%20%20%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20'department'%3A'food'%7D,%0A%20%20%20%20%20%20%20%20

%20%20%20%20%20%20%20%7B'product_id'%3A87,%20'name'%3A'sandwich',%0A%20%20%

20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'wholesale_price'%3A%203,%0A%2

0%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'retail_price'%3A5,%20'sal

es'%3A300,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20'department

'%3A%20'food'%7D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5D%29%0A%

0Adf.groupby%28'department'%29%5B'retail_price'%5D.agg%28%5Bnp.mean,%20np.

std%5D%29%0A&d=2023-02-08&lang=py&v=v1

What if we want to run mulitple aggregations on separate columns? In such a
case, we don’t need to filter columns via square brackets. Rather, we can pass
the entire DataFrameGroupBy object to agg. We then pass multiple keyword
arguments to agg:

The key to each keyword argument will be the name of an output
column

The value to each keyword argument is a two-element tuple:

The first element in the tuple is a string, the name of the column in
the original data frame we want to analyze
The second element in the tuple is also a string, the name (yes, as a
string) of an aggregation method we wish to run on that column.

For example, we can get the mean and standard deviation of retail_price
per department, as well as find the max sales for each department:

df.groupby('department').agg(mean_price=('retail_price', 'mean'),

 std_price=('retail_price', 'std'),

 max_sales=('sales', 'max'))

 Note

Normally, groupby sorts the group keys. If you don’t want to see this, or if
you are concerned that it’s making your query too slow, you can pass
sort=False to groupby:

df.groupby('department', sort=False)['retail_price'].agg([np.mean, np.std])

6.3 Exercise 30: Taxi ride comparisons

So far, we have taken several looks at our January 2019 taxi data. But we’ve
always looked at the overall data, or effectively done manual grouping. In
this exercise, we’re going to use grouping to get a better understanding of the
data. Specifically, I’d like you to:

Load taxi data from January 2019 into a data frame, using only the
columns passenger_count, trip_distance, and total_amount.
For each number of passengers, find the mean cost of a taxi ride. Sort
this result from lowest (i.e., cheapest) to highest (i.e., most expensive).
Sort the results once again, in increasing number of passengers.
Now create a new column, trip_distance_group, in which the values
will be short (< 2 miles), medium (>= 2 miles and ⇐ 10 miles), or long
(> 10 miles). What was the average number of passengers per trip length

category? Sort this result from highest (greatest number of passengers)
to lowest (smallest number of passengers).

6.3.1 Discussion

Grouping is a simple idea, but it has profound implications. It means that we
can measure different parts of our data in a single query, producing a data
frame that can itself then be analyzed, sorted, and displayed. In this exercise,
I once again loaded the CSV file into a data frame:

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,

 usecols=['passenger_count',

 'trip_distance',

 'total_amount'])

I then asked you to find the mean cost of a taxi ride for each number of
passengers. When we’re using groupby, we have to keep several things in
mind:

On what data frame are we operating?
Which column will supply the groups? This column will almost always
be categorical in nature, either with a limited number of string values or
with a limited set of integers (as is the case here). The distinct values
from this column will be the rows in the output from our aggregation
method.
Which column(s) do we want to analyze? That is, on which columns
will we run our aggregation methods?
Finally, which aggregation method(s) will we be running?

In this case, the question provided us with all of the answers:

We’re going to work on the data frame df
We’re going to get our groups from passenger_count
We’re going to analyze total_amount
We’re going to run the mean method

In other words, we’re going to do the following:

df.groupby('passenger_count')['total_amount'].mean()

This returns a series. The index in the series contains each of the unique
values in the passenger_count column. The values in the series are the result
of running mean on each of the subsets of df['total_amount']. You can
think of this as similar to the following:

for i in range(df['passenger_count'].max() + 1):

 print(i, #1

 df.loc[df['passenger_count'] == i, #2

 'total_amount' #3

].mean()) #4

The above code uses a Python for loop to iterate over each of the values in
df['passenger_count'], and then runs mean on that subset of the
total_amount column. it calculates the same results, but it’s far less efficient
than using groupby. Moreover, it doesn’t put the results in a data structure
that we can easily use. For these and other reasons, it’s almost never a good
idea to use a for loop on Pandas data structures—and you should aim to use
groupby and other native Pandas functionality, instead.

That said, seeing this for loop can give you an idea of what’s happening
inside of the groupby, and what values we’re getting in the series it returns.

Figure 6.5. Graphical depiction of how groupby and then mean work together

Now that we have the mean price of a taxi fare for each number of
passengers, we might want to sort it by value, in ascending order. We can do
that by applying sort_values to the resulting series:

df.groupby('passenger_count')[

 'total_amount'].mean().sort_values()

Figure 6.6. Graphical depiction of how you can run sort_values on the groupby result

The next request was for you to perform the same calculation, but to sort the
result by the number of passengers, in ascending order. Remember that when
we invoke mean on the grouped result, we get a series. The index of the series
contains the unique values from df['passenger_count']. To sort by the
number of passengers, we’ll need to sort this series by its index:

df.groupby('passenger_count')[

 'total_amount'].mean().sort_index()

Next, I asked you to create a new column, `trip_distance_group`, whose
values would be `short`, `medium`, and `long`, corresponding to trips up to 2
miles, from 2-10 miles, and then greater than 10 miles. We can accomplish
this with `pd.cut`, which takes our column, lets us set the values we want to
set as separators, and the strings we want to assign to each category:

df['trip_distance_group'] = pd.cut(#1

 df['trip_distance'], #2

 [df['trip_distance'].min(), 2, 10,

 df['trip_distance'].max()], #3

 labels=['short', 'medium', 'long'], #4

 include_lowest=True) #5

With this new column in place, we can use it in a groupby query.
Specifically, I asked you to find the average number of passengers for each
passenger group. We can do this as follows:

df.groupby('trip_distance_group')[

 'passenger_count'].mean().sort_values(ascending=False)

The above says: We are looking to get the mean passenger count for each
distinct value of trip_distance_group. We’ll get those results back in a
series, where the index will be the distint values of trip_distance_group,
and the values will be the means we calculated for each trip-distance
category.

Once we’re done with those calculations, we sort the values of the resulting
data frame in descending order. And in doing so, we find that there’s very
little difference between these averages. In other words, our moonlighting
data scientist/taxi driver has no financial incentive to pick up a large group

vs. a small one, because they’ll likely get paid the same.

6.3.2 Solution

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,

 usecols=['passenger_count',

 'trip_distance',

 'total_amount'])

df.groupby('passenger_count')['total_amount'

].mean().sort_values()#1

df.groupby('passenger_count')['total_amount'

].mean().sort_index()#2

df['trip_distance_group'] = pd.cut(

 df['trip_distance'],

 [df['trip_distance'].min(), 2, 10,

 df['trip_distance'].max()],

 labels=['short', 'medium', 'long']) #3

df.groupby('trip_distance_group')['passenger_count'

].mean().sort_values(ascending=False) #4

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Stri

ngIO%28'''%0A,passenger_count,trip_distance,total_amount,trip_distance_grou

p%5Cn7457997,1,0.3,5.8,short%5Cn5176884,5,0.78,7.8,short%5Cn3808538,1,2.09,

13.0,medium%5Cn4746439,6,0.74,5.8,short%5Cn6897983,1,2.66,16.56,medium%5Cn3

093558,1,2.7,16.0,medium%5Cn3354288,1,2.61,18.3,medium%5Cn5492350,1,1.7,13.

0,short%5Cn6451927,1,0.76,8.8,short%5Cn3070078,1,2.2,13.5,medium%5Cn502287,

2,1.0,11.62,short%5Cn1924539,1,2.11,14.76,medium%5Cn858620,3,4.1,17.8,mediu

m%5Cn7037227,1,0.95,10.7,short%5Cn2237791,1,2.11,10.3,medium%5Cn2805107,1,2

.7,11.8,medium%5Cn3601249,1,1.21,6.3,short%5Cn4306225,1,1.9,16.56,short%5Cn

1934421,2,6.3,32.56,medium%5Cn4333172,3,0.78,9.96,short%5Cn%0A'''%29%0A%0Ad

f%20%3D%20pd.read_csv%28data%29%0Adf%5B'trip_distance_group'%5D%20%3D%20pd.

cut%28df%5B'trip_distance'%5D,%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20

%20%5B-1,%20

2,%2010,%2030%5D,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%

20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20labels%3D%5B'short',%20'mediu

m',%20'long'%5D%29%0Adf.groupby%28'trip_distance_group'%29%5B'passenger_cou

nt'%0A%20%20%20%20%5D.mean%28%29.sort_values%28ascending%3DFalse%29%0A&d=20

23-02-09&lang=py&v=v1

6.3.3 Beyond the exercise

Create a single data frame containing rides from both January 2019 and
January 2020, with a column year indicating which year it came from.
Use groupby to compare the average cost of a taxi in January of each of
these two years.
Now create a two-level grouping, first by year and then by
passenger_count.
Finally, the corr method allows us to see how strongly two columns
correlate with one another. Use corr and then sort_values to find
which have the highest correlation.

Joining

Like grouping, joining is a concept that you might have encountered
previously, when working with relational databases. The joining functionality
in Pandas is quite similar to that sort of database, although the syntax is quite
different.

Consider, for example, the data frame that we looked at earlier in this
chapter:

df = DataFrame([{'product_id':23, 'name':'computer',

 'wholesale_price': 500,

 'retail_price':1000, 'sales':100,

 'department':'electronics'},

 {'product_id':96, 'name':'Python Workout',

 'wholesale_price': 35,

 'retail_price':75, 'sales':1000,

 'department':'books'},

 {'product_id':97, 'name':'Pandas Workout',

 'wholesale_price': 35,

 'retail_price':75, 'sales':500,

 'department':'books'},

 {'product_id':15, 'name':'banana',

 'wholesale_price': 0.5,

 'retail_price':1, 'sales':200,

 'department':'food'},

 {'product_id':87, 'name':'sandwich',

 'wholesale_price': 3,

 'retail_price':5, 'sales':300,

 'department': 'food'},

])

But now consider that instead of keeping track of sales numbers in this data
frame, we instead break the data into two parts:

One data frame will describe each of the products we sell, while
A second data frame will describe each sale that we made.

Here is a simple example of how we could divide the data:

products_df = DataFrame([{'product_id':23, 'name':'computer',

 'wholesale_price': 500,

 'retail_price':1000,

 'department':'electronics'},

 {'product_id':96, 'name':'Python Workout',

 'wholesale_price': 35,

 'retail_price':75, 'department':'books'},

 {'product_id':97, 'name':'Pandas Workout',

 'wholesale_price': 35,

 'retail_price':75, 'department':'books'},

 {'product_id':15, 'name':'banana',

 'wholesale_price': 0.5,

 'retail_price':1, 'department':'food'},

 {'product_id':87, 'name':'sandwich',

 'wholesale_price': 3,

 'retail_price':5, 'department': 'food'},

])

sales_df = DataFrame([{'product_id': 23, 'date':'2021-August-10',

 'quantity':1},

 {'product_id': 96, 'date':'2021-August-10',

 'quantity':5},

 {'product_id': 15, 'date':'2021-August-10',

 'quantity':3},

 {'product_id': 87, 'date':'2021-August-10',

 'quantity':2},

 {'product_id': 15, 'date':'2021-August-11',

 'quantity':1},

 {'product_id': 96, 'date':'2021-August-11',

 'quantity':1},

 {'product_id': 23, 'date':'2021-August-11',

 'quantity':2},

 {'product_id': 87, 'date':'2021-August-12',

 'quantity':2},

 {'product_id': 97, 'date':'2021-August-12',

 'quantity':6},

 {'product_id': 97, 'date':'2021-August-12',

 'quantity':1},

 {'product_id': 87, 'date':'2021-August-13',

 'quantity':2},

 {'product_id': 23, 'date':'2021-August-13',

 'quantity':1},

 {'product_id': 15, 'date':'2021-August-14',

 'quantity':2}

])

What have I done here? I’ve put all of our product information, which is less
likely to change, into products_df. Every time I add a new product to my
store, or change the name or price of an existing product, I update that data
frame.

But each time I make a sale, I don’t touch products_df. Rather, I add a new
row to sales_df, describing which product was sold, how many we sold, and
when we sold it.

Figure 6.7. Graphical depiction of products_df

Figure 6.8. Graphical depiction of sales_df

This is all well and good, but how can I describe how much has been sold of
each product? This is where joining comes in: We can combine products_df
and sales_df into a new, single data frame that contains all of the columns
from both of the input data frames.

But wait a second—how does Pandas know which rows on the left should be
joined with which rows on the right? The answer, at least by default, is that it
uses the index. Wherever the index of the left side matches the index of the
right side, it’ll join them together, giving them a new row that contains all
columns from both left and right.

This means that we’ll want to change our data frames, such that both are
using the same values for their indexes. The obvious choice here would be
product_id, which appears in both products_df and sales_df:

products_df = products_df.set_index('product_id')

sales_df = sales_df.set_index('product_id')

Figure 6.9. Graphical depiction of products_df with product_id as the index

Figure 6.10. Graphical depiction of sales_df with product_id as the index

Now that our data frames have a common reference point in the index, we
can create a new data frame combining the two:

products_df.join(sales_df)

The result of this join is a new table with 13 rows and 6 columns. The
columns would combine all of the columns from products_df, and then all
of the columns from sales_df:

name
wholesale_price
retail_price
department
date
quantity

Each row is the result of a match between the index (product_id) on the left
(from products_df) and the index (product_id) on the right (from
sales_df). Because several products had multiple sales, we end up with more
rows than either of the original tables contained.

Figure 6.11. Graphical depiction of joining products_df and sales_df

We can now perform whatever queries we might like on this new, combined
data frame. For example, we can find out how many of each product were
sold:

products_df.join(sales_df).groupby(

 'name')['quantity'].sum()

Or we can find out how much income we got from each product, and then
sort them from lowest to highest source of income:

products_df.join(sales_df).groupby(

 'name')['retail_price'].sum().sort_values()

We can even find out how much income we had on each individual day:

products_df.join(sales_df).groupby(

 'date')['retail_price'].sum().sort_index()

And while our data set is tiny, we can even find out how much each product
contributed to our income, per day:

products_df.join(sales_df).groupby(

 ['date','name'])['retail_price'].sum().sort_index()

Separating your data into two or more pieces, so that each piece of
information appears only a single time, is known as "normalization." There
are all sorts of formal theories and descriptions of normalization, but it all
boils down to keeping the information in separate places, and joining data
frames when necessary.

Sometimes, you’ll normalize your own data. But sometimes, you’ll receive
data that has been normalized, and then separated into separate pices. For
example, many data sets are distributed in separate CSV file, which almost
always means that you’ll need to join two or more data frames together in
order to analyze the information. Other times, you might want to normalize
the data yourself, in order to gain flexibility or performance.

One final point: The join that I’ve shown you here is known as a "left join,"
in that values of product_id on the left (i.e., in products_df) drive which
rows will be selected on the right (i.e., sales_df). More advanced joins,
known as "outer joins," allow us to tell Pandas that even if there isn’t a
corresponding row on the left or the right, we will want to have a row in the
result, albeit one filled with null values. We’ll explore those in Exercise 35, at
the end of this chapter.

6.4 Exercise 31: Tourist spending per country

Before the covid-19 pandemic, I used to travel internationally on a very
regular basis, both for work (giving classes to companies around the world)
and also for pleasure. The pandemic, of course, changed all of that, with
many countries restricting who could enter and leave, and under what
circumstances.

This was certainly a serious problem for corporate Python trainers. But it was
an even bigger problem for the tourism industry. That’s because tourists
bring in a great deal of money to countries around the world. In this exercise,
we’ll look at pre-pandemic data from the OECD (Organization for Economic
Cooperation and Development), which the Economist describes as "a club of
mostly-rich countries," to see how much they were earning in tourist dollars.
As we’ll see, the data covers countries beyond the OECD itself.

Here’s what I would like you to do:

Load the OECD tourism data (from oecd_tourism.oecd) into a data
frame. We’re interested in the following columns:

LOCATION, a three-letter abbreviation for the country name
SUBJECT, either INT_REC (for tourist funds received) or INT-EXP (for
tourist expenses).
TIME, a year (integer)
Value, a float indicating thousands of dollars.

Find the five countries that received the greatest amount of tourist
dollars, on average, across years in the data set.
Find the five countries whose citizens spent the least amount of tourist
dollars, on average, across years in the data set.
I’ve created a separate CSV file, oecd_locations.csv, with two
columns. One contains the three-letter abbreviated location name you
saw in the first CSV file. The second is the full country name. Load this
into a data frame, using the abbreviated data as an index.
Join these two data frames together into a new one, In the new data
frame, there will be no LOCATION column. Instead, there will be a name
column, with the full name of the country.
Re-run the two queries from above, finding the five countries that spent
and received the greatest amount, on average, on tourism. But this time,
you’ll want to get the name of each country, rather than its abbreviation,

in your reports.
Ignoring the names, did we get the same results as before? Why or why
not?

 Note

The column names and values in this data set demonstrate the type of
inconsistency that can creep into a project. The SUBJECT column can contain
one of two strings, INT_REC or INT-EXP. Why does one use an underscore,
whereas the other uses a hyphen? Good question! Similarly, why are all
column names in all caps, whereas Value has only its first letter capitalized?
Another good question!

This happens in a large number of real-world datatsets. Be on the lookout for
these sorts of issues when you first look at a dataset.

And if you’re creating a dataset for others? Try to keep things as consistent as
possible.

6.4.1 Discussion

In this exercise, we created two separate data frames, and then joined them
together. In so doing, we were able to create a report that used countries' full
names, rather than three-letter abbreivations. Let’s walk through each of the
steps needed to achieve that.

For starters, I asked you to load the OECD tourism data into a data frame.
This CSV file included a number of columns that weren’t going to help with
our analysis, so I asked you to select only a subset of those in the file:

tourism_filename = '../data/oecd_tourism.csv'

tourism_df = pd.read_csv(tourism_filename,

 usecols=['LOCATION',

 'SUBJECT',

 'TIME',

 'Value'])

This data frame, tourism_df, contains information about the total amount

spent, and the total amount received, by a number of countries, over about a
decade. If, for example, we want to find out how much money the French
economy received, in total, from tourists during 2016, we can look at the row
in which SUBJECT is INT_REC, LOCATION is FRA, and TIME is 2016. That’ll
return a single row from the data frame; if we retrieve the Value column in
that row, we’ll find out the total amount of tourism income.

What if we want to find out the average amount of income that countries
received in our data set? We could say:

tourism_df.loc[tourism_df['SUBJECT'] ==

 'INT_REC']['Value'].mean()

But this isn’t very useful. (You could even say it isn’t very *mean*ingful.)
That’s because countries differ in how much tourist income they receive.
Breaking it apart by country will give us many more insights than an overall
mean.

How can we get the mean tourist income per country? By grouping the call to
mean by the LOCATION column:

tourism_df.loc[tourism_df['SUBJECT'] ==

 'INT_REC'].groupby(

 'LOCATION')['Value'].mean()

Here’s what I did in this code:

I selected those rows in which SUBJECT was INT_REC, for received
tourism funds
I grouped by LOCATION, meaning that we’ll get one result per value of
LOCATION, aka country
I asked for only the Value column
I invoked the mean method on each locations' values.

This produces a series—a single column, in which the index contains the
three-lettter country abbreviations, and with the values being the mean
income per country.

I then asked you to find the five countries that received the most (on average,

per year) from tourism. To do this, I sorted our results in descending order,
and then used head to get the five top-grossing locations:

tourism_df.loc[tourism_df['SUBJECT'] ==

 'INT_REC'].groupby('LOCATION')[

 'Value'].mean().sort_values(

 ascending=False).head()

Next, I asked you to perform a second, similar query, finding the countries
that had spent the least amount on tourism. In other words, we’re now
interested in the INT-EXP value from SUBJECT, and we want to look at the five
lowest-spending (on average, per year) tourism countries. The solution is:

tourism_df.loc[tourism_df['SUBJECT'] ==

 'INT-EXP'].groupby('LOCATION')[

 'Value'].mean().sort_values().head()

Beyond the difference in string that we’re matching in SUBJECT, I also
reversed the call to sort_values, using the default of ascending sort. In this
way, head retrieved the five least-spending countries.

With these initial queries out of the way, we can now use join to make an
easier-to-read report from what we’ve created. To help with that, I created a
two-column CSV file that you can read. However, you’ll quickly discover
that this CSV file needs a bit of massaging if we’re going to use it. For one,
there isn’t a header row, so we both need to state that and provide our own
names.

But I’m also planning to use the imported data for joining with tourism_df.
I’ll want to use the three-letter country abbreviation for joining, so I might as
well make that the index of the locations_df. Here’s what I did:

locations_filename = '../data/oecd_locations.csv'

locations_df = pd.read_csv(locations_filename,

 header=None,

 names=['LOCATION', 'NAME'],

 index_col='LOCATION')

Now we’ll bring this all together: I’ll create a new data frame, the result of
joining locations_df and tourism_df. The problem is that while the three-
letter abbreviation (i.e., LOCATION) is the index of locations_df, it’s just a

plain ol' column in tourism_df. And yes, you can join on non-index columns
in Pandas, but it makes the code a bit shorter and clearer to have the data
frames share index values.

I’ll thus do the following:

Create a new (anonymous) data frame based on tourism_df, but whose
index is set to LOCATION
I’ll then run join on locations_df and the new, LOCATION-indexed
version of tourism_df
Finally, we’ll assign this to a new data frame, which I call fullname_df.

Figure 6.12. Graphical depiction of making the LOCATION column the index of tourism_df

fullname_df = locations_df.join(tourism_df.set_index('LOCATION'))

 Note

fullname_df is significantly smaller than tourism_df—364 rows, instead of
1234. That’s because the joined data frame’s rows are the result of finding a
match between the left and right sides of the join. Because locations_df
doesn’t include all of the countries listed in tourism_df, the result will be
smaller.

Figure 6.13. Graphical depiction of making the LOCATION column the index of locations_df

The index of fullname_df is the three-character country codes. Its columns
are:

NAME, the full name, which we got from locations_df
SUBJECT, which tells us whether we’re dealing with income or expenses
TIME, which tells us the year in which the measurement was taken, and
Value, which tells us the dollar amount that was measured.

By using NAME for our grouping operations, we’ll be able to get a report that
displays each country’s full name, rather than the three-letter abbreviation.
And indeed, I asked you to re-run our earlier queries on the result of our join.

Figure 6.14. Graphical depiction of joining locations_df and tourism_df. Notice that any rows
referring to a country not in locations_df is dropped from the result.

Here’s how we can get the five countries with the greatest income from
tourism, on average, during the years of the data set:

fullname_df.loc[fullname_df['SUBJECT'] ==

 'INT_REC'].groupby('NAME')[

 'Value'].mean().sort_values(

 ascending=False).head()

And here are the five countries that spent the least on tourism, on average,
during the years of the data set:

fullname_df.loc[fullname_df['SUBJECT'] ==

 'INT-EXP'].groupby('NAME')[

 'Value'].mean().sort_values().head()

Finally, I asked whether the results are the same as before. Besides the
obvious, that these results give us the countries' full names rather than their
abbreviations, the countries themselves will be different. That’s a result of
locations_df not including all of the countries in tourism_df. We lost some
data as a result of our join.

6.4.2 Solution

tourism_filename = '../data/oecd_tourism.csv'

tourism_df = pd.read_csv(tourism_filename,#1

 usecols=['LOCATION',

 'SUBJECT', 'TIME', 'Value'])

tourism_df.loc[tourism_df['SUBJECT'] ==

 'INT_REC'].groupby('LOCATION')[

 'Value'].mean().sort_values(ascending=False).head()#2

tourism_df.loc[tourism_df['SUBJECT'] ==

 'INT-EXP'].groupby('LOCATION')[

 'Value'].mean().sort_values().head()#3

locations_filename = '../data/oecd_locations.csv'

locations_df = pd.read_csv(locations_filename,

 header=None,

 names=['LOCATION', 'NAME'],

 index_col='LOCATION')#4

fullname_df = locations_df.join(

 tourism_df.set_index('LOCATION'))#5

fullname_df.loc[fullname_df['SUBJECT'] ==

 'INT_REC'].groupby('NAME')[

 'Value'].mean().sort_values(ascending=False).head()#6

fullname_df.loc[fullname_df['SUBJECT'] ==

 'INT-EXP'].groupby('NAME')[

 'Value'].mean().sort_values().head()#7

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%2

0Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Atourism_data%20%3

D%20StringIO%28'''%0A,LOCATION,SUBJECT,TIME,Value%5Cn665,USA,INT-EXP,2013,1

32324.0%5Cn45,AUT,INT-EXP,2018,14272.0%5Cn231,HUN,INT_REC,2015,6934.2%5Cn8

44,EST,INT_REC,2012,1593.8%5Cn895,IDN,INT_REC,2017,14691.072%5Cn700,BGR,INT_

REC,2012,4043.182%5Cn1133,SVN,INT-EXP,2014,1642.6%5Cn1141,ZAF,INT_REC,2011,

10706.33%5Cn52,BEL,INT_REC,2014,15234.9%5Cn618,TUR,INT-EXP,2011,5372.0%5Cn28

3,IRL,INT-EXP,2012,6026.0%5Cn1003,MAR,INT_REC,2013,8201.688%5Cn5,AUS,INT_RE

C,2013,36965.0%5Cn386,MEX,INT_REC,2014,16606.9%5Cn1137,SVN,INT-EXP,2018,176

1.2%5Cn18,AUS,INT-EXP,2014,38774.5%5Cn184,DEU,INT_REC,2012,51727.2%5Cn513,P

RT,INT-EXP,2018,6544.0%5Cn1149,ZAF,INT_REC,2019,9063.867%5Cn156,FIN,INT-EXP

,2017,6640.8%5Cn247,ISL,INT_REC,2009,1257.888%5Cn1196,KAZ,INT_REC,2018,2650

.685%5Cn916,ISR,INT_REC,2014,6616.2%5Cn317,JPN,INT_REC,2013,16904.6%5Cn1154

,ZAF,INT-EXP,2012,7144.71%5Cn390,MEX,INT_REC,2018,23802.7%5Cn55,BEL,INT_REC

,2017,9598.9%5Cn299,ITA,INT_REC,2017,46245.7%5Cn677,BRA,INT_REC,2013,6783.6

8%5Cn1231,SRB,INT-EXP,2017,1549.183%5Cn492,PRT,INT_REC,2008,13949.258%5Cn94

1,LVA,INT_REC,2015,1282.1%5Cn298,ITA,INT_REC,2016,42309.8%5Cn142,FIN,INT_RE

C,2014,5459.5%5Cn459,NOR,INT-EXP,2008,13794.1%5Cn1001,MAR,INT_REC,2011,9100

.423%5Cn692,BRA,INT-EXP,2016,17067.798%5Cn808,HRV,INT-EXP,2012,961.806%5Cn9

98,MAR,INT_REC,2008,8885.294%5Cn726,CHL,INT_REC,2014,3202.0%5Cn412,NLD,INT_

REC,2018,26043.5%5Cn418,NLD,INT-EXP,2013,21008.6%5Cn85,CAN,INT-EXP,2013,457

46.3%5Cn108,CZE,INT-EXP,2013,4697.9%5Cn461,NOR,INT-EXP,2010,13501.1%5Cn'''%2

9%0A%0Alocation_data%20%3D%20StringIO%28'''%0ALOCATION,NAME%5CnAUS,Australia

%5CnAUT,Austria%5CnBEL,Belgium%5CnCAN,Canada%5CnDNK,Denmark%5CnFIN,Finland%

5CnFRA,France%5CnDEU,Germany%5CnHUN,Hungary%5CnITA,Italy%5CnJPN,Japan%5CnKOR

,Korea%5CnGBR,United%20Kingdom%5CnUSA,United%20States%5CnBRA,Brazil%5CnISR,

Israel%5Cn%0A'''%29%0A%0Atourism_df%20%3D%20pd.read_csv%28tourism_data%29%0

Alocations_df%20%3D%20pd.read_csv%28location_data%29%0A%0Alocations_df.join

%28tourism_df.set_index%28'LOCATION'%29%29%0A&d=2023-02-09&lang=py&v=v1

6.4.3 Beyond the exercise

What happens if we perform the join in the other direction? That is, if

we invoke join on tourism_df, passing it an argument of
locations_df? Do we get the same result?
Get the mean tourism income per year, rather than by country. Do we
see any evidence of less tourism income during the time of the Great
Recession, which started in 2008?
Reset the index on locations_df, such that it has a (default) numeric
index, and two columns (LOCATION and NAME). Now run join on
locations_df, specifying that you want to use the LOCATION column on
the caller, rather than its index. (The data frame passed as an argument
to join will always be joined on its index.)

6.5 Exercise 32: Multi-city temperatures

Grouping is one of the most useful, and common, functions that we use when
analyzing data. That’s because while it’s helpful to get an overall view of a
dataset, it’s even more useful to learn about the different pieces of the
dataset, so that we can compare them with one another. For example, we
might want to know how many people voted in the most recent election. But
if we’re interested in running a campaign that encourages more people to
vote, then we’ll want to count voters from each age range, location, or
ethnicity, in order to target our campaign more effectively.

In this exercise, we’re going to get some additional practice with grouping.
But I’ve added another challenge—creating the data frame on which you’ll
perform the grouping. That’s because I want you to create the data frame
based on eight different CSV files, each of which contains weather data from
a different city. Moreover, the eight cities come from four different US states
—and I’ll want the data frame to contain city and state columns, so that we
can work with them individually in that way.

Each of the files you’ll be loading has the same column names and format.
Take advantage of that when loading the data into our data frame.

Specifically, I’d like you to:

Take the eight CSV files containing weather data that I’ve provided,
from eight different cities (spanning four states), and turn them into a

data frame:

The files are: san+francisco,ca.csv, new+york,ny.csv,
springfield,ma.csv, boston,ma.csv, springfield,il.csv,
albany,ny.csv, los+angeles,ca.csv, and chicago,il.csv.
We are only interested in the first three columns from each CSV
file, namely the date and time, the max temperature, and the min
temperature.
Add city and state columns, which will contain the city and state
from the filename, and will allow us to distinguish between rows.

Once you’ve done all of that, answer the following questions:

Does the data for each city and state start and end at (roughly) the same
time? How do we know?
What is the lowest minimum temperature recorded for each city in our
data set?
What is the highest maximum temperature recorded in each state in our
data set?

6.5.1 Discussion

One of the most important things that I tell newcomers to programming is
that your choice and design of data structure has a huge impact on the
programs you write. When you’re working with Python, you should think
carefully about whether you’ll use a list, tuple, dictionary, or some
combination of those.

The Pandas analog to this advice is that you should design your data frames
such that they include all of the information you need in order to simplify
your queries. This sometimes means that you’ll need to do some additional
manipulations and calculations when loading data from files—but for the
most part, having your data in a clear and organized data frame opens the
door to straightforward, easy-to-understand, and efficient queries.

And indeed, in this exercise, the queries that we had to run once our data
frame was in place weren’t overly complex. But getting there might have
taken some time, especially if you don’t have a strong background in the

Python language. (And if you don’t, might I recommend my book, "Python
Workout," also published by Manning?)

Let’s thus start by thinking about how we might want to create our data
frame. The goal is to have one large data frame with the dates, minimum, and
maximum temperatures, as well as the city and state names, for each of eight
cities. I provided you with eight CSV files, each of which is named
city,state.csv. This means that you’ll need to iterate over the filenames,
creating a data frame from each one.

But wait a second—didn’t I write earlier in this chapter that if you’re using a
for loop in Pandas, then you’re probably doing something wrong? Yes, I did.
But I meant that you shouldn’t iterate over a series or data frame. If you’re
working with a list or other Python-language iterable, then you want to iterate
over it in a for loop. So, iterating over the rows in a data frame? Bad idea.
But iterating over the elements of a list, in order to create a data frame?
Totally fine.

With that in mind, let’s consider how I can create a data frame from the
combination of all of these CSV files. We already know how to read in a
single CSV file:

one_filename = 'new+york,ny.csv'

df = pd.read_csv(one_filename)

Let’s say that we want to get the city and state names from the filename.
Given that one_filename is a Python string, we can play some games to
retrieve them from the string. We could use something like
os.path.splitext, to which we can pass a filename string and get back a
tuple containing the base filename and the extension. But given that we know
all of these are CSV files with a .csv suffix, we can just use a new method,
str.removesuffix, that was introduced in Python 3.9:

base_filename = one_filename.removesuffix('.csv')

But wait a second—the filenames, at least as I’ve defined them for the
Jupyter notebooks I’m using for this book, are all in a parallel directory
called ../data. So the real filename would be ../data/new+york,ny.csv.
Which means we need to remove both the prefix and the suffix. We can do

that in one line via method chaining:

one_filename.removeprefix('../data/').removesuffix('.csv')

Now, this whole expression returns a string. And I could assign that string to
a new variable. But really, what I want to do with this string is break it apart
into the city and state. So I’ll run the Python str.split method, which
returns a list of items based on breaking a string into multiple parts. All I
have to do is indicate what character serves as a field delimiter in this string
—which in this case is a comma. Here’s what I can do:

one_filename.removeprefix('../data/').removesuffix('.csv').split(',')

Given that I know how these files are named, I can be sure that the result of
calling str.split will be a two-element list, in which the first element is the
city name and the second element is the two-letter state abbreviation. Thanks
to Python’s "tuple unpacking" feature, I can assign the elements of this list to
two variables:

city, state = one_filename.removeprefix('../data/').removesuffix('.csv').

 split(',')

Just like that, the city variable contains the city name from the filename, and
the state variable contains the state abbreviation.

We want all of the rows that we just read to have the same city and state,
reflecting the file from which they were input. Assigning a scalar value to a
new column gives that value to all rows in the column. We can thus say:

df['city'] = city

df['state'] = state

But there’s something wrong here: The city name contains + signs instead of
space characters, and are written in lowercase letters. Similarly, the state
abbreviations are in lowercase letters. We can fix that up a bit, though, using
some additional Python string methods:

df['city'] = city.replace('+', ' ').title()

df['state'] = state.upper()

With this code in place, we have succeessfully created a data frame that
contains the day, min temperature, and max temperature for our city, along
with the city and state names for that city.

But that’s not enough: We have eight cities whose files we need to read in
and turn into data frames. And we somehow need to combine all of these
individual data frames, each of which is based on a CSV file, into one, large
data frame.

My favorite solution to this is pd.concat, which we have used in some
previous exercises. pd.concat returns a single data frame based on a list of
data frames passed as its first argument. If I can create a list of eight data
frames, each of which is based on a different CSV file, then we’ll have the
data as we need it.

How can I create that list of eight data frames, reading from eight separate
files? I’ll use a for loop to iterate over a list of filenames. And just to make
things interesting, I won’t explicitly name the files. Rather, I’ll describe a
pattern of filenames, and then hand it to glob.glob, a function in the Python
standard library. I’ll iterate over each filename I get from glob.glob, create a
data frame from its data, add the city and state, and append that data frame to
our list. Then I can use pd.concat to put them all together. Here’s how that
looks:

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):

 print(f'Loading {one_filename}...')

 city, state = one_filename.removeprefix('../data/').removesuffix(

 '.csv').split(',')

 one_df = pd.read_csv(one_filename)

 one_df['city'] = city.replace('+', ' ').title()

 one_df['state'] = state.upper()

 all_dfs.append(one_df)

df = pd.concat(all_dfs)

In the above code, I iterate over each filename that matches the pattern ,.csv.
I create a new data frame from that CSV file, and then add a new city

column (based on the city name, which we got from one_filename) and a
new state column (again, based on the state abbreviation, which we also got
from one_filename).

But after creating the new data frame from this CSV file, I append it to the
all_dfs list. This means that we’ll grow the list with one new data frame per
CSV file. When we’re done with all of the data frames, we then create df, the
result of concatenating them together. Which means that df will have city
and state columns whose values were taken from the filenames we read.

Figure 6.15. Graphical depiction of using pd.concat to join separate data frames into a single one

There are a few more housekeeping things to do in creating the data frame,
though: Chief among them is the fact that I’m only interested in a handful of
the columns in the file—namely column indexes 0, 1, and 2. And when we do
load these, I’ll give them easier-to-remember names. While I’m at it, I’ll
explicitly tell Pandas that the first (i.e., 0-index) line of the file contains the
header names. However, since the names are different in each file (reflecting
the city and state for which the measurements are taken), we should assign
generic names to the columns that we want.

Put that all together, and we have our loading code:

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):

 print(f'Loading {one_filename}...')

 city, state = city_and_state.removeprefix(

 '../data/').removesuffix(

 '.csv').split(',')

 one_df = pd.read_csv(one_filename,

 usecols=[0, 1, 2],

 names=['date_time',

 'max_temp',

 'min_temp'],

 header=0)

 one_df['city'] = city.replace('+', ' ').title()

 one_df['state'] = state.upper()

 all_dfs.append(one_df)

df = pd.concat(all_dfs)

Now that we have created our five-column data frame with information from
all eight cities, we can start to tackle the questions that I raised in the
exercise.

First, I asked whether the data for each city and state start at roughly the same
time. How can we know such a thing? Well, each row has a date_time
column indicating when the temperature readings were taken. If I can get the
mininum and maximum values for each city’s rows, then I could do a quick
comparison.

This, of course, is precisely what groupby was designed to do: Take a data

frame, and run an aggregation method (e.g., min or max) for each of the
distinct values in one column.

However, there’s a twist here: While we could group by city alone, I’m going
to group by two different columns, first state and then city. Why not just
city? Because several of the city names appear twice. Which means that if
we were to only group results by city, the information from Springfield,
Illinois would be mixed up with that from Springfield, Massachusetts. Also,
grouping by both state and city ensures that we get a nice report of our data.
My query will thus look like this:

df.groupby(['state', 'city'])['date_time'].min().sort_values()

In the above code, I tell Pandas that I want to get the minimum value of
date_time for each distinct combination of state and city. I then want to
sort the values, so that I can easily find the earliest one—as well as find out if
they’re all from the same period of time. I can similarly run max on the
values, to find the highest one:

df.groupby(['state', 'city'])['date_time'].max().sort_values()

In running these queries, I see that all of the data files are from the same
period, starting on December 11, 2018, and going through March 11, 2019.
As we’ll see in Chapter 9, Pandas allows us to work with actual dates and
times, performing calculations and comparisons on them. Here, the
date_time column was a string, which made it possible to do some basic
queries, but nothing as sophisticated as what is possible with actual
timestamp objects, as you’ll see.

I then asked you to find the lowest minimum temperature recorded for each
city in our data set. Once again, we’ll be running a groupby query, but this
time we’re interested in the actual values, not just in comparing them with
one another. The minimum temperature is located in the min_temp column.
So if we want to get the lowest minimum temperature for each city-state
combination, we can say:

df.groupby(['state', 'city'])['min_temp'].min()

This returns a series in which the index is the combination of state and city,

and the values are the minimum temperatures in each city. We can see that
the data was taken in the winter, given how many of the temperatures were
below 0 Celsius.

Finally, I asked you to find the highest maximum temperature recorded
during this period, but on a per-state basis, rather than on a per-city basis.
This means grouping just by state:

df.groupby('state')['max_temp'].max()

Sure enough, we get the maximum temperature for each state. Notice that
because we have eight cities, but that they’re spread across only four states,
we’ll get four results, rather than eight. The number of results you get from a
grouping action reflects the number of unique values in the grouping column
(or columns).

6.5.2 Solution

import glob

all_dfs = [] #1

for one_filename in glob.glob('../data/*,*.csv'): #2

 print(f'Loading {one_filename}...')

 city, state = one_filename..removeprefix(

 '../data/').removesuffix(

 '.csv').split(',') #3

 one_df = pd.read_csv(one_filename,

 usecols=[0, 1, 2], #4

 names=['date_time',

 'max_temp',

 'min_temp'], #5

 header=0) #6

 one_df['city'] = city.replace('+', ' ').title() #7

 one_df['state'] = state.upper() #8

 all_dfs.append(one_df) #9

df = pd.concat(all_dfs) #10

df.groupby(['state', 'city'])[

 'date_time'].min().sort_values() #11

df.groupby(['state', 'city'])[

 'date_time'].max().sort_values() #12

df.groupby(['state', 'city'])['min_temp'].min() #13

df.groupby('state')['max_temp'].max() #14

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20St

ringIO%28'''%0A,date_time,max_temp,min_temp,city,state%5Cn272,2019-01-14%20

00%3A00%3A00,-3,-11,Springfield,IL%5Cn210,2019-01-06%2006%3A00%3A00,7,0,Spr

ingfield,IL%5Cn89,2018-12-22%2003%3A00%3A00,13,2,Boston,MA%5Cn443,2019-02-0

4%2009%3A00%3A00,11,4,Boston,MA%5Cn272,2019-01-14%2000%3A00%3A00,-1,-7,Bost

on,MA%5Cn604,2019-02-24%2012%3A00%3A00,7,-1,Springfield,MA%5Cn630,2019-02-2

7%2018%3A00%3A00,14,8,San%20Francisco,CA%5Cn485,2019-02-09%2015%3A00%3A00,-2

,-6,Boston,MA%5Cn507,2019-02-12%2009%3A00%3A00,-4,-10,Springfield,MA%5Cn363

,2019-01-25%2009%3A00%3A00,-15,-20,Chicago,IL%5Cn699,2019-03-08%2009%3A00%3

A00,15,11,Los%20Angeles,CA%5Cn53,2018-12-17%2015%3A00%3A00,3,0,Chicago,IL%5

Cn506,2019-02-12%2006%3A00%3A00,2,0,Chicago,IL%5Cn296,2019-01-17%2000%3A00%

3A00,-1,-6,New%20York,NY%5Cn536,2019-02-16%2000%3A00%3A00,14,10,Los%20Angel

es,CA%5Cn575,2019-02-20%2021%3A00%3A00,11,5,San%20Francisco,CA%5Cn416,2019-

02-01%2000%3A00%3A00,-8,-17,Albany,NY%5Cn404,2019-01-30%2012%3A00%3A00,13,9

,San%20Francisco,CA%5Cn18,2018-12-13%2006%3A00%3A00,15,10,San%20Francisco,C

A%5Cn467,2019-02-07%2009%3A00%3A00,12,6,San%20Francisco,CA%5Cn487,2019-02-0

9%2021%3A00%3A00,-2,-6,Boston,MA%5Cn362,2019-01-25%2006%3A00%3A00,-15,-20,

Chicago,IL%5Cn638,2019-02-28%2018%3A00%3A00,14,9,San%20Francisco,CA%5Cn634

,2019-02-28%2006%3A00%3A00,-2,-13,Springfield,MA%5Cn510,2019-02-12%2018%3A0

0%3A00,2,-1,Springfield,IL%5Cn42,2018-12-16%2006%3A00%3A00,2,0,Springfield,

MA%5Cn60,2018-12-18%2012%3A00%3A00,4,-1,New%20York,NY%5Cn440,2019-02-04%200

0%3A00%3A00,14,10,Los%20Angeles,CA%5Cn600,2019-02-24%2000%3A00%3A00,13,3,

New%20York,NY%5Cn292,2019-01-16%2012%3A00%3A00,16,11,Los%20Angeles,CA%5Cn%

0A'''%29%0A%0Adf%20%3D%20pd.read_csv%28data%29%0A%0Adf.groupby%28%5B'state'

,%20'city'%5D%29%5B'min_temp'%5D.min%28%29%20%0A&d=2023-02-10&lang=py&v=v1

6.5.3 Beyond the exercise

Run describe on the minimum and maximum temperature for each
state-city combination
Running describe works, but we only see the first and last few rows
from each result. Using pd.set_option to change the value of
display_max_rows, make it possible to see all of the results in Jupyter,
then reset the option to 10 rows.
What is the average difference in temperature (i.e., max - min) for each
of the cities in our data set?

Window functions

Let’s assume that I my data frame contains sales information for last year:

df = DataFrame({'sales':[100, 150, 200, 250,

 200, 150, 300, 400,

 500, 100, 300, 200],

 'quarters':'Q1 Q2 Q3 Q4'.split() * 3})

We’ve already seen how we can evaluate the data here in a few different
ways:

We can get the mean (and other aggregate information) for all sales
quarters, by applying mean to the sales column.
We can use groupby on the quarters column, and then run mean on the
DataFrameGroupBy object we get back, to find out how well we did, on
average, in each quarter.

What I’ve described are important, common, and useful analyses. But what if
we want to find out how much we sold, total, through the current quarter?
That is, I want to know how much we sold in Q1. Then in Q1+Q2. Then
Q1+Q2+Q3. And so on, until the final result will be df['sales'].sum().

To perform this kind of operation, Pandas provides us with "window
functions." There are several different types of window functions, but the
basic idea is that they allow us to run an aggregate function, such as mean, on
subsections of our data frame.

What I described earlier, that we would like to know, for each quarter, how
much we revenue we had through that quarter, is a classic example of a
window function. This is known as an "expanding window," because we run
the function with an ever-expanding number of lines—first one line, then
two, then three… all the way up to the entire data frame.

For example, we could run:

df['sales'].expanding().sum()

This returns a series whose values are the cumulative sum of values in sales

up to that point. Since the first four values in the sales column are 100, 150,
200, and 250, the output of our call to expanding will be 100, 250, 450, and
700.

Figure 6.16. Graphical depiction of an expanding window function with sum.

Perhaps we don’t want to get a cumulative total, but rather want to get a
running average of how much we’ve sold per quarter. We can run mean, or
any other aggregation method:

df['sales'].expanding().mean()

In this case, the output from expanding will be 100, 125, 150, and 175.

We can also use a "rolling" window function. In this case, we determine how
many rows will be considered to be part of the window. For example, if the
window size is 3, then we’ll run the aggregation function on row index 0-2,
then 1-3, then 2-4, etc., until we get to the end of the data frame. For
example, if you want to find out the mean of rows that are close to one
another, you can do it as follows:

df['sales'].rolling(3).mean()

Figure 6.17. Graphical depiction of a rolling window function (looking at 3 lines) with sum.

In the above code, rolling is how I indicate that I want to run a rolling
window function, and the argument 3 indicates that I want to have three rows
in each window. We’ll thus invoke mean on rows 0-2, then 1-3, then 2-4, then
3-5, etc. The series that we get back from this call will put the result of mean
in the same location as the third (and final) row in our rolling window. This
means that row indexes 0 and 1 will have NaN values.

A third type of window function is pct_change. When we run this on a
series, we get back a new series, with NaN at row index 0. The remaining rows
indicate the percentage change from the previous row to the current one:

df['sales'].pct_change()

For example, the output from the above code is:

0 NaN

1 0.500000

2 0.333333

3 0.250000

The result is calculated as (later_row - earlier_row) / earlier_row:

index 0 is always NaN
index 1 is the result of calculating (150 - 100) / 100
index 2 is the result of calculating (200 - 150) / 150
index 3 is the result of calculating (250 - 200) / 200

pct_change is great for finding how much your values have gone up, or
down, from row to row.

6.6 Exercise 33: SAT scores, revisited

Back in Exercise 22, we looked at SAT scores. There have long been
accusations that the SAT isn’t a fair test for college admissions, because
wealthier students generally do better than poorer students. Given the data
that we have about the SAT, can we conclude that wealthier students do
indeed, on average, score better? We will examine the math portion of the
SAT, seeing if we can indeed see any such issues in the data.

Here’s what I would like for you to do:

Read in the scores file (sat-scores.csv). This time, we want the
following columns: Year, State.Code, Total.Math, Family
Income.Less than 20k.Math, Family Income.Between 20-40k.Math,
Family Income.Between 40-60k.Math, Family Income.Between 60-
80k.Math, Family Income.Between 80-100k.Math, and Family
Income.More than 100k.Math.
Rename the income-related column names to something shorter. I
recommend income<20k, 20k<income<40k, 40k<income<60k,
60k<income<80k, 80k<income100k, and income>100k.
Find the average SAT math score for each income level, grouped and
then sorted by year.
For each year in our data set, find out how much better each income
group did, on average, than the next-poorer group of students. Do we see
(just by looking at the data) any income group that did worse, in any
year, than the next-poorer students?
Which income bracket, on average, had the greatest advantage over the
next-poorer income bracket?
Can we find, in a calculated and automated way, which income levels
consistently (i.e., across all years) did worse than the next-poorest
group?

6.6.1 Discussion

In this exercise, we were able to use data to gain some insight into a real-
world issue. (What we do with this analysis is another question entirely.) For
starters, we’ll need to load data from our CSV file into a data frame. I was
only interested in the math scores—but I was actually more interested in the
math scores when broken down by family income. As a result, I loaded the
CSV file as follows:

df = pd.read_csv(filename,

 usecols=['Year', 'State.Code', 'Total.Math',

 'Family Income.Less than 20k.Math',

 'Family Income.Between 20-40k.Math',

 'Family Income.Between 40-60k.Math',

 'Family Income.Between 60-80k.Math',

 'Family Income.Between 80-100k.Math',

 'Family Income.More than 100k.Math'])

What I find particularly interesting here is what I didn’t include in my call to
pd.read_csv: First and foremost, I didn’t assign any index. While it’s often
useful to set an index, I decided that the analysis we’re going to do here will
all use grouping. And while you can still use groupby on a column you’ve set
to be the index, there’s no added value there. For that reason, I stuck with the
default, numeric index starting at 0.

I also asked you to change the names of the columns from these long,
unweildy names to something a bit easier to type and read. In theory, we
could have done that by giving a value to the name parameter. But if you give
names to columns, then you need to use integers to indicate which columns
should be imported from CSV. And to be honest, I always find that to be a bit
hard to read, debug, and understand.

So I instead loaded the columns with their full, original names, as per the file.
I then changed the column names by assigning to df.columns:

df.columns = ['Year', 'State.Code', 'Total.Math',

 'income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k',

]

So long as the assigned list of strings contains the same number of elements
as df has columns, this assignment will work just fine.

Now that our data frame has the rows and columns that we want, and that the
columns have easy-to-understand names, we can start to actually analyze
things.

First, I asked you to find the average SAT math score for each income level,
grouped and then sorted by year:

df.groupby('Year').mean(numeric_only=True).sort_index()

This query is similar to what we’ve done before: We want to invoke mean on
every column in df, grouping the results by year. We’ll thus be able to say,
for each income bracket, what the average SAT math score was across the
United States in each year.

Because we’re grouping by the Year column, it won’t be included in our
output. But why wasn’t State.Code included in our output? Because I passed
numeric_only=True, thus removing any of the non-numeric columns. In
previous versions of Pandas, non-numeric columns were silently ignored.
Now, however, we need to either explicitly choose numeric columns, or ask
mean to do it for us with this keyword argument.

Moreover, because we grouped by Year, the index of the resulting data frame
had an index of Year. It so happens that because the data set come sorted by
Year that the results appear to be sorted. But just to be on the safe side, I
invoked sort_index on the data frame, ensuring that the result we got back
was sorted, from the earliest year in the data set through the final year in the
data set.

But then I asked you to do something else: I asked you to find how much
better each income bracket did than the next-poorer income bracket. That is,
let’s find the average SAT math score for students in the lowest bracket,
namely income<20k. Then we want to find out how much better (or worse)
the next bracket (i.e., 20k<income<40k) did. Perhaps we’ll see that there’s a
negligible difference between them in which case we can say, to some
degree, that SAT scores aren’t correlated with student income.

How can we make this comparison? We’ll use pct_change, described in the
above "Window functions" sidebar.

We want to compare the scores by year and income brackets. But pct_change
works on rows, not on columns—and right now, our data frame has the
brackets as columns. We thus need to flip the data frame on its side, such that
the years will be the columns and the income brackets will be the columns.

The solution is to use the transpose method, more easily abbreviated as T,
which returns a new data frame in which the rows and columns have
exchanged places:

df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T

 Note

The transpose method is invoked like any other method in Pandas, using
parentheses:

df.transpose()

Its convenient alias, T, is not a method, and thus should not be invoked with
parentheses:

df.T

In both cases, we get a new data frame back; the original data frame is
unmodified.

Figure 6.18. Example of using T to transpose a data frame

df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change()

We can now invoke pct_change on this new data frame. We’ll get back a
data frame in which the columns are years (2005 - 2015), and the rows are
income brackets. The values in the data frame will be floats, with each
number indicating by what percentage the math scores for that income
bracket, in that year, differed from the next-poorer income bracket. The
lowest income bracket will have NaN values, since there is no previous row.

Figure 6.19. Get the mean after transposing

From a visual scan of the data, we can see that nearly each income bracket
did better than the next-lower bracket. Thus, families with an income
between $20,000 and $40,000 per year, did about 3 to 7 percent better on
their math SAT than people in the lowest bracket. And in families making
$40,000 to $60,000 per year, they generally did 2-3 percent better than those
in the next-lower bracket.

However, we also see that across the years, those earning between $80,000
and $100,000 per year did slightly worse than those than those in the next-
lowest income bracket (i.e., between $60,000 and $80,000 per year). What’s
the reason for this? I’m not at all sure, but we see that this is consistently true
across all of the years.

Next, I asked you to find which income bracket, on average, had the greatest
advantage over the next-poorer income bracket. In order to do this, I started
with the result of our call to pct_change. But I wanted to find out how much
better, on average, each bracket did than the next-poorer bracket. To do this, I
would want to use mean—but not on the data frame we got back from
pct_change. Rather, I want to re-transpose the data frame, such that the
income brackets are the columns, and the years are the rows:

df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change().T.mean()

 Note

Another option would be to pass mean the axis keyword argument:

df.mean(axis='columns')

The default value for axis is 'rows', giving us a new row with the mean
from each column. If we pass axis='columns', then we’ll get a new column
back, with the same index as the data frame.

If the data set isn’t too large, then I’m fine with transposing twice, which I
see as a way to return to our earlier state. But if you feel more comfortable
passing the axis keyword argument, or if your data set is large enough that
transposing will take too much time or memory, then you could try that.

I now know how much each income bracket did better, on average, than the
next-poorer bracket. Where was there the greatest jump in SAT math
performance? We can find out by invoking sort_values, and asking for the
values to be in decending order. Then we can invoke head() to see the top-
ranking income brackets:

df.groupby('Year')[

 ['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change(

).T.mean().sort_values(

 ascending=False).head()

All of this is fine, but relying on our visual scan of the data is not a very good
way to go about things. Rather, I’d like to have an automated way to find
which, if any, of the income brackets did worse than the next-lower bracket.
How can we do that?

Well, we know that the result of calling pct_change is a data frame. As such,
we have all of our Pandas analysis tools at our disposal. We can, for example,
assign the result of pct_change to a data frame, and then look for values that
are ⇐ 0:

change = df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change()

change <= 0

We’re applying a comparison operator to a data frame, which means that
we’ll get back a boolean data frame. Just as applying a boolean series to a

series only shows the elements corresponding to True values, so too does
applying a data frame to a boolean data frame show the items corresponding
to True values. The difference is that the data frame will have the same shape
—and thus any filtered-out values will be replaced with NaN:

change[change <= 0]

We can then remove any rows that contain any NaN values, showing only
those rows in which we consistently see a change for the worse as the income
level rises:

change[change <= 0].dropna()

Sure enough, we see that only one income bracket, namely families earning
between $80,000 and $100,000 dollars per year, had lower SAT math scores
than people earning slightly less than they did. Moreover, we see that this is
the case in every year for which we have data.

6.6.2 Solution

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,

 usecols=['Year', 'State.Code', 'Total.Math',

 'Family Income.Less than 20k.Math',

 'Family Income.Between 20-40k.Math',

 'Family Income.Between 40-60k.Math',

 'Family Income.Between 60-80k.Math',

 'Family Income.Between 80-100k.Math',

 'Family Income.More than 100k.Math']) #1

df.columns = ['Year', 'State.Code', 'Total.Math',

 'income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k',

] #2

df.groupby('Year').mean(

 numeric_only=True).sort_index() #3

df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change() #4

df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change(

).T.mean().sort_values(

 ascending=False).head()#5

change = df.groupby('Year')[['income<20k',

 '20k<income<40k',

 '40k<income<60k',

 '60k<income<80k',

 '80k<income<100k',

 'income>100k']].mean().T.pct_change() #6

change[change <= 0].dropna() #7

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Str

ingIO%28'''%0A,Year,State.Code,Total.Math,income%3C20k,20k%3Cincome%3C40k,

40k%3Cincome%3C60k,60k%3Cincome%3C80k,80k%3Cincome%3C100k,income%3E100k%5Cn

162,2008,CO,572,555,567,571,578,533,583%5Cn428,2013,GA,488,451,470,484,496,

426,530%5Cn263,2010,AZ,527,491,506,523,531,472,553%5Cn490,2014,ME,471,494,

520,535,555,468,569%5Cn334,2011,MI,605,549,565,590,609,528,626%5Cn550,2015,

MT,558,545,545,559,548,521,568%5Cn90,2006,PA,500,467,492,503,521,433,554%5C

n210,2009,AL,554,533,560,565,585,468,596%5Cn319,2011,DE,491,453,474,488,503

,417,538%5Cn480,2014,FL,485,465,485,497,510,426,531%5Cn443,2013,MO,596,530,

552,567,574,498,605%5Cn96,2006,TX,506,473,501,514,531,438,559%5Cn568,2015,

TX,487,465,483,497,515,432,543%5Cn330,2011,LA,553,488,525,539,538,453,584%

5Cn64,2006,ID,545,529,531,546,551,530,568%5Cn338,2011,MT,537,528,526,540,

532,504,557%5Cn538,2015,IN,501,463,487,500,512,436,538%5Cn75,2006,MN,601,

560,583,587,601,544,616%5Cn505,2014,ND,619,588,537,548,635,520,487%5Cn336,

2011,MS,546,497,530,547,569,427,576%5Cn'''%29%0A%0Adf%20%3D%20pd.read_csv%

28data%29%0Adf&d=2023-02-14&lang=py&v=v1

6.6.3 Beyond the exercise

Calculate descriptive statistics for all of the changes in income brackets.
Where do we see the largest difference between income brackets?
Which five states have the greatest gap in SAT math scores between the
richest and poorest students?
We analyzed math scores. If we perform the same analysis on verbal
SAT scores, will we similarly see that wealthier students generally do
better than poorer students? Are there any income brackets that do worse
than the next-poorer bracket?

Filtering and transforming

We’ve already seen how we can use groupby to run aggregate methods on
each portion of our data, so that we can get the average rainfall per city or the
total sales figures per quarter. We’ve also seen, in earlier chapters, how we
can use a boolean index to filter out rows that fail to match particular criteria.

For example, consider a data frame containing the year-end math scores for
each student. The rows of the data frame describe the students. The columns
of the data frame, name, year, and score, describe those three student
attributes. Here’s how I can create a simple form of this data frame:

import numpy as np

np.random.seed(0)

df = DataFrame({'name': list('ABCDEFGHIJ'),

 'year': [2018, 2019, 2020] * 3 + [2021],

 'score':np.random.randint(80, 100, 10)})

Our data frame is:

 name year score

0 A 2018 92

1 B 2019 95

2 C 2020 80

3 D 2018 83

4 E 2019 83

5 F 2020 87

6 G 2018 89

7 H 2019 99

8 I 2020 98

9 J 2021 84

We can perform a number of calculations:

We can get the mean score by running df['score'].mean(). This will
return a single floating-point value, 89.0.
We can get all of the students who scored above 90 with
df[df['score'] > 90]. This will return the original data frame, minus
those students who got less than 90—in our case, row indexes 0, 1, 7,
and 8.
We can get the mean score per year by running df.groupby('year')
['score'].mean(). If the school has eight grades, then the result of this
query will be a series whose index contains the distinct values of year
from df, and whose values are the average grades for each year. Here,
we get four different results (one for each year).

So far, so good. But consider this: I want to find out which years in our
school had an average score of at least 90, and see all of the students in those
years. In other words, I want to filter out specific groups of students, based on
a per-year aggregate calculation. How can I do that?

The answer, it turns out, is to apply the filter method to our
DataFrameGroupBy object. All we need is to pass filter a function that,
given one group of rows, returns either True or False, to indicate if those
rows should be in the result data frame.

In other words:

I’ll start off by running df.groupby
The result will be a new data frame, with some or all of the rows in df
missing.
We want to decide whether to include or exclude rows based on the
year, so we’ll run df.groupby('year')
On that DataFrameGroupBy object, we’ll run the filter method.
filter takes a function as an argument.
The function we pass will be invoked once per group. It receives a data
frame—a subset of df—as its argument.

The function must return True or False. to indicate whether rows from
that group should be included or excluded in the resulting data frame.
The function can either be a full-fledged Python function (i.e., one
defined with def), or it can be use lambda for an inline, anonymous
function.

Here’s an example of such a function, as well as how I could invoke it:

def year_average_is_at_least_90(df):

 return df['score'].mean() > 90

df.groupby('year').filter(year_average_is_at_least_90)

The result of running this code will be a data frame whose rows all come
from df, from years in which the average final-exam math score was at least
90. That would only be in the year 2019, so we get the rows with indexes 1,
4, and 7.

Here are some examples of how we might use filter in real-world data sets:

Show all of the products coming from factories that brought in more
than $1m last year.
List the staff working for divisions with below-average salaries.
Find networks whose segments have had more than 10 outages in the
last week.

Another, related method that you can use on a GroupBy object is transform.
In this case, the point is not to remove rows from the original data frame, but
rather to transform them in some way. For example, let’s say that we want to
turn the score into a percentage, expressed as a float. We could say:

df.groupby('year')['score'].transform(lambda x: x/100)

In this example, we’re grouping by year—so the function is run once for each
year:

It’s invoked with a 3-element series with all rows from 2018,
It’s invoked with a 3-element series with all rows from 2019,
It’s invoked with a 3-element series with all rows from 2019, and

It’s invoked with a 1-element series with the only row from 2021.

The function is expected to return a series with the same dimensions as the
input, which happens naturally in our example, since our lambda function
invokes the division (/) operator on the series. Thanks to broadcasting (i.e.,
that an operation on a series and a scalar is repeated on each element of the
series), we’re guaranteed to get a result of the correct dimensions. We can
then replace the original score column with our transformed column:

df['score'] = df.groupby('year')['score'].transform(lambda x: x/100)

But we can do much more than this. After all, our lambda function has access
to all of the rows from each year. This means that we could run aggregate
functions, such as sum or mean. For example, let’s say that we pass np.max as
our function:

df.groupby('year')['score'].transform(np.max)

This means that we want to invoke our function (np.max) once for each value
of year in the data frame. And the input to our function will be the column
score, with the rows for each year. The result is as follows:

0 92

1 99

2 98

3 92

4 99

5 98

6 92

7 99

8 98

9 84

Name: score, dtype: int64

In the resulting series, the value in each row is the highest value of score
from that particular year. In other words, we have replaced every score the
maximum score for that year. (This is probably not the best way to evaluate
students, I’ll admit.)

We can then assign the transformed row back to our data frame:

df['score'] = df.groupby('year')['score'].transform(np.max)

As you can see, the grouped version of transform is useful when we want to
transform values in a data frame on a group-by-group basis, much as the
grouped version of filter is useful when we want to filter values on a group-
by-group basis.

Here are some ways that we might use transform with real-world data sets:

Find the difference between each value in the group and the group’s
mean
Find the proportion that each value in the group has vs. the group’s sum
Calculate the z-score (i.e., the number of standard deviations) that each
value is from its group’s mean

 Note

In the case of both filter and transform, an attribute name is added to the
df parameter with the name of the current group.

 Note

The filter method for GroupBy is very similar to Python’s builtin filter
function, and that the transform method for GroupBy is very similar to
Python’s builtin map function. They work a bit differently, since they’re
acting on data frames rather than simple iterables, but the usage is similar.

6.7 Exercise 34: Snowy, rainy cities

One constant theme, wherever I’ve lived, is that people complain about the
weather. In a hot climate, people will complain it’s too hot. In a cold climate,
people will complain it’s too cold. In a city with hot summers and cold
winters, they’ll complain about both. And of course, people will tell visitors
and newcomers that their city’s weather is worse than anywhere else. There
isn’t much that we can do about people’s complaints. But maybe we can use
data to find out which city does indeed have the most extreme weather.

Because you know, if someone is complaining about the weather, they want
nothing more than to be corrected with hard data.

The calculations we’ll be making in this exercise will all take advantage of
the filter and transform methods on DataFrameGroupBy objects. These
methods allow us to conditionally keep (filter) and modify (transform)
rows in a data frame, while having access to all rows of the group when
deciding and calculating.

 Note

The DataFrameGroupBy versions of filter and transform are, in my
experience, among the most complex pieces of functionality that Pandas
provides. It might take you a while to think through what calculation you
want to perform, and then to find the right way to express it in Pandas.

In this exercise, I want you to:

Read in the data frames for our city weather, as in Exercise 32.
However, this time I want to read in three columns: max_temp,
min_temp, and precipMM.
Which cities had, on at least 3 occasions, precipitation of 15 mm or
more?
Find cities that had at least 3 measurements of 10 mm precipitation or
more, when the temperature was below 0 Celsuius.
For each precipitation measurement, calculate the proportion of that
city’s total precipitation.
For each city, what was the greatest proportion of that city’s total
precipitation to fall in a given period?

6.7.1 Discussion

In this exercise, we used filter and transform on DataFrameGroupBy
objects in order to selectively filter and transform rows according to their
aggregate properties.

We started by loading the weather data from six different cities, similarly to

how we did it in Exercise 32. This time, however, I wanted to load three
columns: `max_temp`, `min_temp`, and `precipMM` (i.e., the amount of
precipitation that fell, in millimeters). Because it's so similar to what we did
before, I'll show the code here without comment:

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):

 print(f'Loading {one_filename}...')

 city, state = one_filename.removeprefix(

 '../data/').removesuffix('.csv').split(',')

 one_df = pd.read_csv(one_filename,

 usecols=[1, 2, 19],

 names=['max_temp', 'min_temp', 'precipMM'],

 header=0)

 one_df['city'] = city.replace('+', ' ').title()

 one_df['state'] = state.upper()

 all_dfs.append(one_df)

df = pd.concat(all_dfs)

Once we have our data frame in place, we can start to perform the analysis
that I requested. For starters, I wanted to find cities which had measured
precipitation of 15 mm or more on at least three occasions. This means:

We’ll need to group our data frame by city
We’ll check to see which cities had 15 mm of precipitation at least three
times

The way filter on a DataFrameGroupBy object works, the check will be
done with a function. The function will return True (indicating that the group
passed the criteria) or False (indicating that it did not). Rows from groups
that passed will be returned in the final data frame.

Since we want to find the precipitation on a per-city basis, you might think
that we should group by city name:

df.groupby('city')

However, we can’t do this, because there are two different cities with the

name "Springfield"—both in Illinois and Massachusetts. For that reason,
we’ll need to group not just by city, but also by state. We can do that, of
course, by passing a list of columns to groupby, rather than just a single
column:

df.groupby(['city', 'state'])

This gives us our groupby object, which we’ve previously used to apply
aggregate functions on distinct subsets of our data. But here, we’re going to
use the Groupby object in a different way, to include and exclude rows from
df based on properties of their city and state. That is, I want to filter out rows,
but I want to do it by group—such that for each group, all of the rows are
included or excluded. (You can think of this as the collective punishment
feature of Pandas.)

We do this by calling filter on our GroupBy object. Whereas filter on a
data frame works on a row-by-row basis, filter on a GroupBy works on a
group-by-group basis. The argument to filter is a function, one which
expects to get a data frame as its argument. The function will be called once
for each group in the GroupBy, and the data frame passed to it will be a
subset of the original data frame, containing only those rows in the current
group.

The function passed to filter should return True or False. If the function
returns True, then the rows from this sub-frame will be kept. If the function
returns False, then the rows from this sub-frame will not be included.
Because its argument is a data frame with all of the rows in the current group,
filter can perform all sorts of calculations in determining whether to return
True or False.

In our case, we want to preserve rows from cities that had 15 mm of
precipitation on at least three occasions. Our function will thus need to
determine whether the sub-frame it is passed contains at least three such
rows. Our function can look like this:

def has_multiple_readings_at_least(df):

 return df['precipMM'][df['precipMM'] >= 15].count() > 3

If we were to invoke this function ourselves on a data frame, it would return a

single True or False value, indicating whether the complete data frame had
recorded at least 15 mm of precipitation on at least three occasions. By
running it via filter, though, we can find out which cities had such records:

df.groupby(['city', 'state']).filter(has_multiple_readings_at_least)

The result of this query is a subset of our original data frame. But my
question to you wasn’t which rows would pass the filter. Rather, I asked you
which cities had such precipitation. One way to do this would be to retrieve
just the city and state columns from the resulting data frame:

df.groupby(['city', 'state']).filter(

 has_multiple_readings_at_least)[['city', 'state']]

However, this will give us the city and state for each row. That’s a bit more
than we need. Another way to do this might be to create a new column based
on the combination of city and state, then apply the unique method to that
column:

output = df.groupby(['city', 'state']).filter(

 has_multiple_readings_at_least)[['city', 'state']]

(output['city'] + ', ' + output['state']).unique()

In the first row, we create a new data frame, output, containing only the city
and state columns from the output of our GroupBy filter. In the second row,
we use the + operator to add together multiple Python strings one per row.
This returns a series. We then ask for the unique values in this series with the
unique method.

This certainly works, but I prefer a slightly different way of doing things,
mostly for aesthetic reasons: I turn the city and state columns into a multi-
index, and then run unique on the index. That gives me roughly the same
results:

output = df.groupby(['city', 'state']).filter(

 has_multiple_readings_at_least)[['city', 'state', 'precipMM']]

output.set_index(['city', 'state']).index.unique()

This works, and gives us the answer we wanted—namely, that only New
York and Los Angeles had three occasions on which at least 15 mm of

precipitation fell. However, if you’ve been programming for any length of
time, the has_multiple_readings_at_least function might have seemed a
bit odd. Do we really want to hard-code the values of 15 mm and 3 times into
the function? It might make more sense to write a more generic function, one
which can take additional arguments.

But how can we do that? After all, we’re not calling
has_multiple_readings_at_least directly. Rather, we’re passing it to the
filter method, which calls the function on our behalf. And there isn’t an
obvious way for us to pass arguments to our function when it’s being invoked
via filter.

Here, Pandas does something clever: Any additional arguments passed to
filter are passed along to our function. This is done using the standard
Python constructs of *args and **kwargs, for arbitrary positional and
keyword arguments. (For a tutorial on this subject, check out my blog post at
https://lerner.co.il/2021/06/07/python-parameters-primer/ .)

We can thus rewrite our function as follows:

def has_multiple_readings_at_least(df, min_mm, times):

 return df['precipMM'][(df['precipMM'] > min_mm) &

 (df['min_temp'] <= 0)].count() > times

Now it looks more like a regular Python function, taking three arguments.
The first will still be the sub-frame that was passed before, containing all of
the rows in the current group. But the second two arguments will be assigned
values based on either the additional positional arguments passed to filter
or the additional keyword arguments:

output = df.groupby(['city', 'state']).filter(

 has_multiple_readings_at_least,

 min_mm=10, times=3)[['city', 'state', 'precipMM']]

output.set_index(['city', 'state']).index.unique()

In the above code, you can see that we’re calling filter, and passing it our
function, has_multiple_readings_at_least. In theory, we could then pass
values for min_mm and times as positional arguments. But if we do that, we’ll
also have to pass a second positional argument to filter, called dropna.

Rather than calling filter(func, True, 10, 3), I decided to call
filter(func, min_mm=10, times=3). This is an aesthetic choice, rather than
a technical one, but I think it makes sense in this case.

The next part of this exercise asked you to find the proportion of that city’s
precipitation that fell with each measurement. If our data frame contains two
precipitation measurements for a given city, and we see that 3 mm fell on the
first day, while 7 mm fell on the second day, I’d want to find that 30% fell in
the first measurement, and 70% fell in the second.

In other words, we’re going to calculate one value for each row. But the
value we calculate for each row will depend on an aggregate calculation for
the row’s group. It’s precisely for these situations that Pandas provides us
with a Groupby transform method. Similar to what we did with filter,
we’ll pass a function as the first argument to transform. This function will be
invoked once per group, and the function will be passed a series—the column
that we want to transform. The function must then return a series, of the same
length and with the same index, as its argument.

Let’s assume that we have a series of numbers, each representing one
measurement of precipitation. What function could I write that would return a
new series, one with the same length and index as the original, but whose
values would indicate the proportion of the whole? It might look like this:

def proportion_of_city_precip(s):

 return s / s.sum()

Our function takes a series s as input, and then returns the result of dividing
each row by the sum total of all rows. This is how we would do it if all of the
values were from the same city. How can we do it, then, if we have many
different cities? That’s part of the magic—the groupby transform method
takes care of that for us. The rows from each group are passed, one at a time,
to the function proportion_of_city_precip. The return value is then a
series in which the parallel rows from the input series have their new values.
We can assign the resulting series back to the column from which it was
transformed, add a new column to a data frame, or just save the transformed
column.

The difference between the standard transform method and Groupby’s
transform is that in the latter, we have access to the entire series, and can
thus make calculations using aggregation functions.

Here’s how we would use our proportion_of_city_precip function along
with Groupby’s transform:

df['precip_pct'] = df.groupby('city')[

 'precipMM'].transform(proportion_of_city_precip)

Notice that in this example, I’ve assigned the returned series to the data frame
as a new column. With this column in place, I can then answer the final
question for this exercise: For each city, what was the greatest proportion of
that city’s total precipitation to fall in a given period? In other words, which
measurement reflected the greatest proportion of precipitation that we
measured?

To answer this question, I’ll use a simple, classic groupby: I’ll apply an
aggregate function (max) to each city in our system. Of course, since we have
a duplicate city name, I’ll actually group on both city and state. That gives me
the following:

df.groupby(['city', 'state'])['precip_pct'].max()

6.7.2 Solution

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):

 print(f'Loading {one_filename}...')

 city, state = one_filename.removeprefix(

 '../data/').removesuffix('.csv').split(',')

 one_df = pd.read_csv(one_filename,

 usecols=[1, 2, 19],

 names=['max_temp', 'min_temp', 'precipMM'],

 header=0)

 one_df['city'] = city.replace('+', ' ').title()

 one_df['state'] = state.upper()

 all_dfs.append(one_df) #1

df = pd.concat(all_dfs) #2

def has_multiple_readings_at_least(df):

 return df['precipMM'][df['precipMM'] >= 15].count() > 3 #3

output = df.groupby(['city', 'state']).filter(

 has_multiple_readings_at_least)[

 ['city', 'state', 'precipMM']] #4

output.set_index(['city', 'state']).index.unique() #5

def has_multiple_readings_at_least(df, min_mm, times):

 return df['precipMM'][(df['precipMM'] > min_mm) &

 (df['min_temp'] <= 0)].count() > times #6

output = df.groupby(['city', 'state']).filter(

 has_multiple_readings_at_least,

 min_mm=10, times=3)[['city', 'state', 'precipMM']] #7

output.set_index(['city', 'state']).index.unique() #8

def proportion_of_city_precip(s):

 return s / s.sum() #9

df['precip_pct'] = df.groupby('city')[

 'precipMM'].transform(proportion_of_city_precip) #10

df.groupby(['city', 'state'])['precip_pct'].max() #11

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20St

ringIO%28'''%0A,max_temp,min_temp,precipMM,city,state,precip_pct%5Cn513,4,

-6,0.0,Springfield,IL,0.0%5Cn117,2,-4,0.0,Springfield,MA,0.0%5Cn472,11,7,

0.0,San%20Francisco,CA,0.0%5Cn582,0,-5,0.0,Chicago,IL,0.0%5Cn528,11,8,0.9,

San%20Francisco,CA,0.002145922746781116%5Cn77,7,-3,0.0,Springfield,MA,0.0%5

Cn35,4,1,0.0,Chicago,IL,0.0%5Cn491,1,-6,0.2,Springfield,IL,0.00060150375939

84963%5Cn483,-3,-7,0.0,Springfield,MA,0.0%5Cn702,3,-9,0.0,New%20York,NY,0.0

%5Cn349,5,-3,0.0,Boston,MA,0.0%5Cn721,5,-2,0.0,Springfield,MA,0.0%5Cn486,-2

,-6,0.0,Boston,MA,0.0%5Cn265,0,-3,0.6,Chicago,IL,0.002188183807439825%5Cn1,

1,-2,0.0,Chicago,IL,0.0%5Cn201,6,3,0.0,Boston,MA,0.0%5Cn647,1,-11,0.0,

Albany,NY,0.0%5Cn489,10,7,1.4,San%20Francisco,CA,0.003338102050548402%5Cn14

2,13,8,0.0,San%20Francisco,CA,0.0%5Cn137,7,-1,2.3,Albany,NY,0.0051316376617

58143%5Cn716,3,-1,0.0,Chicago,IL,0.0%5Cn287,-2,-10,0.0,Albany,NY,0.0%5Cn37,

9,2,0.0,Springfield,IL,0.0%5Cn195,3,-4,0.0,Springfield,MA,0.0%5Cn130,13,7,0

.0,Springfield,IL,0.0%5Cn466,2,1,5.5,Boston,MA,0.013151602104256336%5Cn461,

6,1,0.0,New%20York,NY,0.0%5Cn490,1,-6,0.0,Springfield,IL,0.0%5Cn180,-3,-6,0

.1,Chicago,IL,0.0003646973012399709%5Cn587,4,-1,0.0,Boston,MA,0.0%5Cn187,4,

-1,0.0,Springfield,MA,0.0%5Cn88,12,1,0.0,Springfield,MA,0.0%5Cn630,2,-3,0.0

,Springfield,IL,0.0%5Cn0,1,-7,0.0,Springfield,MA,0.0%5Cn15,15,11,0.0,San%20

Francisco,CA,0.0%5Cn404,-1,-5,0.0,Boston,MA,0.0%5Cn726,5,-2,0.0,Springfield

,MA,0.0%5Cn618,-3,-10,0.0,Albany,NY,0.0%5Cn317,-5,-9,0.2,Albany,NY,0.00044

62293618920125%5Cn267,16,9,0.0,Los%20Angeles,CA,0.0%5Cn%0A'''%29%0Adf%20%3D

%20pd.read_csv%28data%29%0A%0Adef%20has_multiple_readings_at_least%28df%29%3

A%0A%20%20%20%20return%20df%5B'precipMM'%5D%5Bdf%5B'precipMM'%5D%20%3E%2015

%5D.count%28%29%20%3E%203%0A%20%20%20%20%0Aoutput%20%3D%20df.groupby%28%5B'

city',%20'state'%5D%29.filter%28has_multiple_readings_at_least%29%5B%5B'

city',%20'state',%20'precipMM'%5D%5D%0A&d=2023-02-14&lang=py&v=v1

6.7.3 Beyond the exercise

Implement the first version of has_multiple_readings_at_least,
which just takes a single argument (df), but with lambda.
Implement the second version of has_multiple_readings_at_least,
which just takes a three arguments (df, min_mm, and times), but with
lambda.
Implement our transformation, but replacing
proportion_of_city_precip with a lambda. Then find the reading that
represented the greatest proportion of rainfall for each city.

6.8 Exercise 35: Wine scores and tourism spending

Earlier in this chapter, we used join to combine two data frames into a single
one. In this exercise, we’re going to go deeper into uses for join, exploring
how we can join more than two data frames, how we can combine joining
with grouping, and the different types of joins we can perform. We’re also
going to look for correlations among our joined data sets.

This time, we’re going to combine several data sets to answer a question that
I’m sure you’ve often thought about: Does a country that spends more on
tourism also make better wines? Our data will come not only from the OECD
tourism data we’ve previously explored, but also more than 150,000 rankings
of wines.

To perform this analysis, I’d like you to do the following:

Create a data frame, oecd_df, from oecd_locations.csv, containing a
subset of all OECD countries. The resulting data set should have a single
column, called country. The index should be based on the country’s
abbreviation.
Create a second data frame, oecd_tourism_df, from oecd_tourism.csv.
We’re only interested in three columns, namely LOCATION (which will
serve as our index) TIME (containing the year in which the measure was
taken) and Value (the amount spent in each year).
Create a new series, tourism_spending, in which the index reflects the
country names (i.e., not abbreviations), and the value contains the
average tourism spending for that country.
Create a third data frame, wine_df, based on winemag-150k-
reviews.csv. We only need two columns, country and points.
Get the mean wine score for each country, across all wine reviews,
sorted in descending order.
Perform a standard join between the average wine scores per country
and the average tourism spending per country. Where do you see NaN
values? What do those NaN values mean?
Now perform an outer join between the average wine scores per country
and the average tourism spending per country. Where do you see NaN
values? What do they mean now?
Find the correlation between average wine score and average tourism
spending. What can you say about these two values? Is there any
correlation?

6.8.1 Discussion

This exercise was meant to demonstrate how we can bring together many of
the ideas that we’ve seen in this chapter, and do so on a grander scale—
joining multiple data frames, moving between series and data frames, and
even finding correlations across different data sets.

The first thing that I asked you to do was create oecd_df, a data frame with a
subset of OECD members. The input CSV file, as we saw in Exercise 31,
contains just two columns, and doesn’t have any headers, which means that
we need to set the column names to abbrev and country. I asked that you set
the input data frame’s index column to be abbrev. To do all of this, we can

use the following code:

oecd_df = pd.read_csv('../data/oecd_locations.csv', header=None,

 names=['abbrev', 'country'],

 index_col='abbrev')

Let’s take a look at oecd_df.head():

abbrev country

AUS Australia

AUT Austria

BEL Belgium

CAN Canada

DNK Denmark

This data frame isn’t really that useful on its own. The point of loading this is
to get a translation table between the country names (the country column)
and the country abbreviations (the abbrev column). We will need the country
names in order to work with the wine ratings, but we will need the country
abbreviations in order to work with the tourism spending data. It’s not
uncommon to have such data frames when working with data from different
sources.

With this data frame created and in place, we can create the second one,
which I call oecd_tourism_df. This data frame comes from a CSV file that
does have headers, so we don’t need to name them. However, we are only
interested in three of the input columns, meaning that we will need to select
them using usecols. Furthermore, I asked that you set the LOCATION column
(i.e., the country abbreviation) as the index. We can do all of this with the
following code:

oecd_tourism_df = pd.read_csv('../data/oecd_tourism.csv',

 usecols=['LOCATION', 'TIME', 'Value'],

 index_col='LOCATION')

Here’s the result of invoking oecd_tourism_df.head():

LOCATION TIME Value

AUS 2008 31159.8

AUS 2009 29980.7

AUS 2010 35165.5

AUS 2011 38710.1

AUS 2012 38003.7

We now have two data frames, both of which are using the same country
abbreviations for their indexes. Never mind the fact that in oecd_tourism_df,
the index contains repeat values, while in oecd_df, the index contains unique
values; the join system knows what to do in such cases, and will handle
things just fine. The key (no pun intended) thing here is that the two data
frames' indexes contain the same elements. (What happens if one or both of
them contains values that aren’t in the other? We’ll deal with that later in this
exercise.)

The next section of this exercise asks you to find the mean tourist spending
per country in our OECD subset. That is, we have tourist spending figures
from a number of different OECD countries, across several years. I want to
find out how much each country spent on tourism, on average, across all
years in the data set. Moreover, I want the results to show the countries'
names, not their abbreviations.

Finding the mean tourist spending per country, across all years, is a classic
use of grouping. We could, for example, do it as follows:

oecd_tourism_df.groupby('LOCATION')['Value'].mean()

The above code says that we want to get the mean of the Value column for
each distinct LOCATION. (Notice that even though LOCATION is now the index
of this data frame, we can still use it for grouping.) However, we don’t want
LOCATION, containing the country abbreviations. Rather, we want to use the
country names, which are in oecd_df.

We’ll thus need to join these two data frames together. Both use the
abbreviations as an index, which makes this possible. (It doesn’t matter that
the columns have different names; joining typically works on the data frames'
indexes.) When we join, we basically say that we want to create a new, wider
data frame containing all of the columns from the first and all of the columns
of the second, with the indexes overlapping. So the resulting data frame will
have a total of four columns: An index containing the location abbreviations,
as before, a country column (from oecd_df), and TIME and Value columns
(from oecd_tourism_df). The left and right sides will be joined together

wherever the index of oecd_df matches the index of oecd_tourism_df,
which means that it’s not a problem to have repeated values in the indexes of
one or both data frames.

We can join them together in this way:

oecd_df.join(oecd_tourism_df)

We invoke join on oecd_df, which is seen as the "left data frame," and we
pass oecd_tourism_df as an argument to join. It is, of course, the right
data frame in the join. The result is a new data frame. We then run groupby
on this data frame, grouping by country—the full names of the countries
we’re looking at. We then retrieve only the Value column, and calculate the
mean:

oecd_df.join(oecd_tourism_df).groupby(

 'country')['Value'].mean()

In this way, we’ve again calculated and retrieved the mean tourism spending,
per country, over all years in the data set. But the result that we get back uses
the full country names, rather than the abbreviations. Moreover, because the
result has an index (country names) and a single value column, it’s returned
to us as a series, rather than as a data frame. I asked you to assign the
resulting series to a variable, tourism_spending, for easier manipulation later
on:

tourism_spending = oecd_df.join(

 oecd_tourism_df).groupby(

 'country')['Value'].mean()

Here is the result of invoking tourism_spending.head():

country Value

Australia 37634.433333333334

Austria 16673.886363636364

Belgium 16525.237545454547

Brazil 13942.913958333333

Canada 32593.6125

Now it’s time to load our third CSV file into a data frame. In this case, I’m
only interested in two columns from the CSV file, country and points:

wine_df = pd.read_csv(

 '../data/winemag-150k-reviews.csv',

 usecols=['country', 'points'])

Here’s the result of running wine_df.head():

 country points

0 US 96

1 Spain 96

2 US 96

3 US 96

4 France 95

As soon as I’ve created this data frame, I want to calculate the mean score
(points) that each country received. Once again, I can perform a grouping
operation:

country_points = wine_df.groupby(

 'country')['points'].mean()

Here’s the result of runinng country_points.head():

country points

Albania 88.0

Argentina 85.9960930562955

Australia 87.89247528747227

Austria 89.27674190382729

Bos + Herz 84.75

This returns a series in which the index contains the country names, and the
values are the mean points per country. I assigned this to a variable,
country_points, so that I can use it in additional tasks.

The first task I want to do with it is sort the average scores, from highest to
lowest. This can be done with a call to sort_values, passing
ascending=False, to ensure that we sort the values in descending order:

country_points.sort_values(ascending=False)

We get back a new series showing which countries had the highest average
wine scores, and which had the lowest. Here are the first five rows from my
result:

country

England 92.888889

Austria 89.276742

France 88.925870

Germany 88.626427

Italy 88.413664

But now we come to the climax of this exercise: I want to join together the
wine scores and the tourism spending. How can I do that?

Well, it makes sense that I’d want to use join again, with country_points
on the left (i.e., as the data frame on which we invoke join) and with
tourism_spending on the right (i.e., as the data frame passed as an argument
to join). There’s just one problem with this, namely that country_points is
a series, and you can only invoke join on a data frame. (You can pass a
series as the argument to join, though—so a series can be the right side, but
not the left side, of a Pandas join.)

Fortunately, we can call the to_frame method on our series, and get back a
single-column data frame with the same index as we had in the series:

country_points.to_frame()

With our new data frame in place, we can then invoke join, passing
tourism_spending as the argument:

country_points.to_frame().join(tourism_spending)

Once again, it’s important to remember that a join links the left data frame
with the right one, connecting them along their indexes. In this case, we’ll
end up with three columns: country, the index column that is shared by the
left and right, points from the left, and Value from the right.

Here’s what the first five rows looked like after performing the above join:

country points Value

Albania 88.0 NaN

Argentina 85.9960930562955 NaN

Australia 87.89247528747227 37634.433333333334

Austria 89.27674190382729 16673.886363636364

Bos and Herz 84.75 NaN

 Note

What happens if the left and right data frames have identically named
columns? After all, while Pandas indexes don’t need to have unique
elements, column names must be unique. If you try to join frames such that
you’ll end up with more than one column with the same name, you’ll get a
ValueError exception, saying, "columns overlap but no suffix specified."
And indeed, Pandas allows you to specify what the suffixes should be for the
left side (lsuffix) and right side (rsuffix) when you invoke join. For
example, we can join oecd_df with itself (already a wild idea known as a
"self join," for which there are actually practical uses) with

oecd_df.join(oecd_df, lsuffix='_l', rsuffix='_r')

The data frame we get back has the abbrev index, and then two identical
columns, named country_l and country_r.

The good news is that this join worked. But as you look at it, you’ll likely
notice that there are NaN values in many rows of the Value column. That’s
because the index left data frame (in this case, country_points.to_frame())
dictates the index of the resulting data frame. As a result, this is knowon as a
"left join." In a left join, columns from the right frame will be missing values
(and thus have NaN) wherever there was no corresponding row for the left’s
index.

For example, after performing this join, you’ll see that while we have both
points and Value for Australia and Austria, we have a NaN in Value (i.e.,
tourism information) for Albania, Bulgaria, and Chile (among others). That’s
because while we had wine-quality information for these countries (and thus
an entry in the left side’s index), we didn’t have tourism information (in the
right-side’s index).

There are other types of joins, too: If we want to use the right data frame’s
index in the result, then we can use a "right join." You can accomplish that in
Pandas by passing how='right' to the join method. (By default, the method
assumes how='left'.) In such a case, you’ll get NaN values on columns from
the left frame wherever it has no index entry corresponding to the right.

We can also be fancy, and do an "outer join," in which case the output
frame’s index is the combination of the left’s index and the right’s index.
You might thus end up with NaN values in columns from both the left and
right, depending on which index value was missing. And indeed, that’s what I
asked you to do for the final part, to perform an outer join:

country_points.to_frame().join(tourism_spending,

 how='outer')

The resulting data frame now has 54 rows, rather than 48, reflecting the union
of the indexes from the left and right. And we now have NaN values from the
left, such as for Belgium and Denmark, along with NaN values from the right.
Outer joins ensure that you don’t lose any data when combining data sources,
but they don’t automatically interpolate values, either—so you will almost
certainly end up with some null values, which (as we’ve seen in Chapter 5)
need cleaning in various ways.

Here are the first five rows from this outer join. Notice that Belgium now
appears, with a NaN for points, indicating

country points Value

Albania 88.0 NaN

Argentina 85.9960930562955 NaN

Australia 87.89247528747227 37634.433333333334

Austria 89.27674190382729 16673.886363636364

Belgium NaN 16525.237545454547

Finally, I asked you to find out if there’s any correlation between the scores
that a country received from the wine magazine’s judges and the amount that
its citizens spend on tourism. To find this, you can use the corr method:

country_points.to_frame().join(

 tourism_spending, how='outer').corr()

This finds how highly correlated each column is to the other columns in the
data set. A score of 1 indicates that it’s 100% positively correlated, meaning
that when one column goes up, the other column goes up by the same degree.
A score of -1 indicates that it’s 100% negatively correlated, meaning that
when one column goes up, the other goes down by the same degree. A score
of 0 indicates that there is no correlation at all. Generally speaking, we say

that the closer to 1 (or -1) the score, the more highly correlated two columns
will be. By default, corr uses what’s known as the "Pearson correlation,"
about which you can read more here:
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

The output from corr is a data frame with an identical index and columns.
We can thus see how highly correlated (or not) any two columns are by
finding one along the index and the other along the columns. (The data is
duplicated; you can do it either way.) Along the diagonal, you’ll always see a
correlation of 1, since a column is 100% positively correlated with itself.

6.8.2 Solution

oecd_df = pd.read_csv('../data/oecd_locations.csv',

 header=None,

 names=['abbrev', 'country'],

 index_col='abbrev')

oecd_tourism_df = pd.read_csv(

 '../data/oecd_tourism.csv',

 usecols=['LOCATION', 'TIME', 'Value'],

 index_col='LOCATION')

tourism_spending = oecd_df.join(

 oecd_tourism_df).groupby(

 'country')['Value'].mean()

wine_df = pd.read_csv(

 '../data/winemag-150k-reviews.csv',

 usecols=['country', 'points'])

country_points = wine_df.groupby(

 'country')['points'].mean()

country_points.sort_values(ascending=False)

country_points.to_frame().join(tourism_spending)

country_points.to_frame().join(tourism_spending,

 how='outer')

country_points.to_frame().join(tourism_spending,

 how='outer').corr()

You can explore a version of this in the Pandas Tutor at:

https://pandastutor.com/vis.html#code=import%20numpy%20as%20np%0Afrom%20

numpy%20import%20nan%0Aimport%20pandas%20as%20pd%0Afrom%20pandas%20import%

20Series,%20DataFrame%0Afrom%20io%20import%20StringIO%0A%0Adata%20%3D%20Str

ingIO%28'''%0Acountry,points,Value%5CnAlbania,88.0,%5CnArgentina,85.9960930

562955,%5CnAustralia,87.89247528747227,37634.433333333334%5CnAustria,89.276

74190382729,16673.886363636364%5CnBelgium,,16525.237545454547%5CnBosnia%20a

nd%20Herzegovina,84.75,%5CnBrazil,83.24,13942.913958333333%5CnBulgaria,85.4

6753246753246,%5CnCanada,88.23979591836735,32593.6125%5CnChile,86.296767537

82668,%5CnChina,82.0,%5CnCroatia,86.28089887640449,%5CnCyprus,85.8709677419

3549,%5CnCzech%20Republic,85.83333333333333,%5CnDenmark,,10362.563636363637

%5CnEgypt,83.66666666666667,%5CnEngland,92.88888888888889,%5CnFinland,,5288

.658590909091%5CnFrance,88.92586975068727,58228.804000000004%5CnGeorgia,85.

51162790697674,%5CnGermany,88.62642740619903,75011.82309090909%5CnGreece,86

.11764705882354,%5CnHungary,87.32900432900433,5108.871590909091%5CnIndia,87

.625,%5CnIsrael,87.17619047619047,6634.454041666667%5CnItaly,88.41366385552

432,39539.56%5CnJapan,85.0,28606.891666666666%5CnKorea,,21677.13181818182%5

CnLebanon,85.70270270270271,%5CnLithuania,84.25,%5CnLuxembourg,87.0,%5CnMac

edonia,84.8125,%5CnMexico,84.76190476190476,%5CnMoldova,84.71830985915493,%

5CnMontenegro,82.0,%5CnMorocco,88.16666666666667,%5CnNew%20Zealand,87.55421

686746988,%5CnPortugal,88.05768508079669,%5CnRomania,84.92086330935251,%5Cn

Serbia,87.71428571428571,%5CnSlovakia,83.66666666666667,%5CnSlovenia,88.234

04255319149,%5CnSouth%20Africa,87.22542072630647,%5CnSouth%20Korea,81.5,%5C

nSpain,86.64658925979681,%5CnSwitzerland,87.25,%5CnTunisia,86.0,%5CnTurkey,

88.09615384615384,%5CnUS,87.81878936487331,%5CnUS-France,88.0,%5CnUkraine,

84.6,%5CnUnited%20Kingdom,,63507.15909090909%5CnUnited%20States,,171847.08

333333334%5CnUruguay,84.47826086956522,%5Cn%0A'''%29%0Adf%20%3D%20pd.read_

csv%28data%29%0A%0Adf.dropna%28%29&d=2023-02-14&lang=py&v=v1

6.8.3 Beyond the exercise

Read in the three data frames, but without setting an index. Ensure that
the column names in oecd_tourism_df are abbrev, TIME, and Value,
and that the dtype of the Value column is np.int64.
Perform the same joins as before, but using merge, rather than join.
How is the default merge different from the default join, when it comes
to NaN values?

6.9 Summary

Once you’ve read data into a data frame, there are many ways in which you
can split, combine, and analyze it. In this chapter, we looked at some of the
most common tasks—from grouping for analysis, to grouping for
including/excluding rows, to joining and merging data frames. Having these

skills at your fingertips makes it easy to perform particularly complex types
of analysis. The exercises in this chapter showed you how and when you can
use these tools to explore your data in ways that analysts perform on a regular
basis, with the "split-apply-combine" approach to things that’s pervasive in
Pandas.

7 Midway project
Congratulations! You’ve made it halfway through this book. If you’ve truly
been doing the exercises, then I hope that you’ve found your pandas skills
improving, little by little. (And if you opened up to this chapter without doing
the exercises first? Shame on you!)

Are you forgetting some of the syntax, method names, and parameter names?
Are you making frustrating, "stupid" mistakes? That’s only natural, and it
happens to everyone, no matter how long they’ve been using pandas, or any
other large software library. Over time, though, it’ll become more natural and
more obvious, at least when using the functinality that’s most common in
your work.

The whole point of this book is to gain experience and fluency through
practice. Such gains happen incrementally, and over time. But they do
happen, even if it doesn’t always feel that way.

In this chapter, we’re taking a break from the exercises that concentrate on
particular topics and themes. Instead, I’m going to ask you to do a small
project, one that’ll require you use many of the parts of pandas that you’ve
learned to use over the last few chapters. I hope that this project gives you a
chance to integrate the different skills you’ve learned so far.

We’ll look at data from the 2020 Python Developer Survey, alongside the
2021 survey from Stack Overflow. The Python survey, which is run by
JetBrains (the company behind the popular PyCharm editor for Python,
among others), is our best snapshot of the global Python community—who
they are, and what they do. Separately, the well-known programming Q&A
site Stack Overflow runs an annual survey of programmers of all types,
including those using Python.

7.1 Problem

Here is what I’d like you to do:

Load the CSV file with results from the Python survey into a data frame.
Let’s call that py_df.

Turn the columns into a multi-index. How you do this depends on the
column:

Most of the columns have the form first.second.third, with two
or more words separated by . characters. Divide the column name
into two parts, one before the final . and one after. The multi-index
column for this example would then be ('first.second',
'third'). If there were only two parts, it would be ('first',
'second').

In the case of about 20 columns, the top level should be general,
and the second level should be the original column name. The
columns you should treat this way are:

age,
are.you.datascientist,
is.python.main,
company.size,
country.live,
employment.status,
first.learn.about.main.ide,
how.often.use.main.ide,
is.python.main,
main.purposes

missing.features.main.ide

nps.main.ide,
python.version.most,
python.years,
python2.version.most,
python3.version.most,
several.projects,
team.size,
use.python.most,
years.of.coding

Use the function pd.MultiIndex.from_tuples to create the multi-

index, and then reassign it back to df.columns. (Hint: A function,
along with a Python for loop or list comprehension, will come in
handy here.)

Sort the columns, such that they’re in alphabetical order. (This isn’t
technically necessary, but it makes the data easier to see and
understand.)
Which 10 IDEs were most commonly listed as the main editor (i.e., in
the ide column)?
Which 10 other programming languages (other.lang) are most
commonly used by Python developers?
According to the Python survey, what proportion of Python developers
have each level of experience?
Which country has the greatest number of Python developers with 11+
years of experience?
Which country has the greatest proportion of Python developers with
11+ years of experience?
Now load the Stack Overflow data into a data frame. Let’s call that
so_df.
Show the average salary for different types of employment. Contractors
and freelancers like to say that they earn more than full-time employees.
What does the data here show us?
Create a pivot table in which the index contains countries, the columns
are education levels, and the cells contain the average salary for each
education level per country.
Create this pivot table again, only including countries in our OECD
subset. In which of these countries does someone with an associate
degree earn the most? In which of them does someone with a doctoral
degree earn the most?
Remove rows from so_df in which LanguageHaveWorkedWith is NaN.
Remove rows from so_df in which Python isn’t included as a commonly
used language (LanguageHaveWorkedWith). How many rows remain?
Remove rows from so_df in which YearsCode is NaN. How many rows
remain?
Replace the string value Less than 1 year in YearsCode with 0.
Replace the string value More than 50 years with 51.
Turn YearsCode into an integer column.

Create a new column in so_df, called experience, which will categorize
the values in the YearsCode. Values can be:

Less than 1 year
1–2 years
3–5 years
6–10 years
11+ years

According to the Stack Overflow survey, what proportion of Python
developers have each level of experience? # Create a data frame in
which the index contains the level of experience, and the two columns
are the proportion of Python developers with that level from each of the
two surveys. Would you say that the Stack Overflow respondents are
less experienced, more experienced, or the same as those in the Python
community survey?

7.1.1 Discussion

This project was all about understanding the world of Python developers a bit
better, using data from two different surveys. There are hundreds, if not
thousands, of other questions that you could ask (and answer) using this data;
if you find this project of interest, then I encourage you to continue the
analysis on your own.

We started off by loading the data from the Python community survey into a
data frame. On the face of it, this shouldn’t be too hard:

py_filename = '../data/2020_sharing_data_outside.csv'

py_df = pd.read_csv(py_filename)

If you load the data in this way, you’ll likely get a warning from pandas
indicating that some columns had mixed types. We’ve seen this problem
before; the issue is that pandas does a good job of guessing a column’s
dtype, but that consumes a great deal of memory. The warning tells us that
we can either explicitly specify the dtypes of our columns in our call to
pd.read_csv, or (if we have sufficient memory) we can let pandas read all of
the data in and guess. The fact is that we won’t be using very many columns
in our analysis for this project, and thus the real-life, practical solution would

be to specify which columns we want to load with usecols. However, I want
you to get some practice creating a multi-index, and also have the data
available for further exploration after this project is complete. Thus, we’ll
read all of the data in, and tell pandas to use as much memory as it needs in
order to guess the dtype correctly:

py_filename = '../data/2020_sharing_data_outside.csv'

py_df = pd.read_csv(py_filename, low_memory=False)

 Note

I’m assuming that your computer has enough memory to load all of the
columns. If not, then you should indeed pass usecols to read_csv,
specifying only the columns that we’ll be using in this exercise. That will
reduce the memory usage enough to let pandas guess correctly without over-
burdening your computer.

There’s nothing technically wrong with using the data frame as we have
loaded and defined it. But as loaded, it contains 264 (!) columns, too many
for most people to understand and think about. Moreover, while a CSV file
cannot have hierarchical column names, the names were clearly designed to
give us a sense of hierarchy. For example, we have other.lang.Java,
other.lang.JavaScript, other.lang.C/C++, and so forth —all of which
could really fit under an other.lang category. Can we take a flat list of
columns, and turn it into a multi-index, thus making it easier to think about
and also to work with?

The answer is "yes," but it’ll take a little bit of work. The first thing to notice
(which I also mentioned in the instructions for this exercise) is that each
column name is of the type first.second.third. If we break the column
name apart at the final . character, we can create a multi-index in which the
column becomes first.second and then third. In other words, we would
have a top-level multi-index column of other.lang, with second-level
columns of Java, JavaScript, C/C++, and so on.

This sounds very nice, but how can we do it? How can we create a multi-
index, and then apply it to our data frame?

We can use pd.MultiIndex.from_tuples, a function that pandas provides
for precisely this purpose. If we pass a list of tuples to this function, it returns
a multi-index object, one which we can then assign to a data frame’s index or
columns attribute, as appropriate. In our case, we’ll want to assign it to
columns, replacing the existing index object used on the columns.

That’s nice, but we’ll first need to create the list of tuples. Each tuple’s first
element will be all of the text up to the final . in the column name, and the
second element will be the word following that final .. We can do this using
Python’s str.rsplit method, which works similarly to str.split, but
works from the right, rather than from the left. By itself, str.rsplit won’t
make a difference. But if we pass a second, integer argument of 1, it’ll return
a list of two element, split from the final .:

s = 'abcd.efgh.ijkl'

s.rsplit('.', 1)

The above code will return ['abcd.efgh', 'ijkl'], perfect for our
purposes. (Except that it’s a list, not a tuple.)

But wait, it gets even more complex: For a bunch of otherwise uncategorized
column names, I indicated that we’ll give it a top-level column of general.
I’ll define those columns in a list:

general_columns = ['age',

 'are.you.datascientist',

 'is.python.main',

 'company.size',

 'country.live',

 'employment.status',

 'first.learn.about.main.ide',

 'how.often.use.main.ide',

 'is.python.main',

 'main.purposes'

 'missing.features.main.ide'

 'nps.main.ide',

 'python.version.most',

 'python.years',

 'python2.version.most',

 'python3.version.most',

 'several.projects',

 'team.size',

 'use.python.most',

 'years.of.coding'

]

In order for all of this to work, I think that it’ll be easiest to write a function,
column_multi_name, which takes a single column name (i.e., a string). If the
column name is one of those which will get a general top-level column, then
we’ll return a two-element tuple containing general and then the existing
column name. But in all other cases, we’ll return a two-element tuple based
on a list we get back from str.rsplit. Here’s how the function could look:

def column_multi_name(column_name):

 if column_name in general_columns:

 return ('general', column_name)

 else:

 first, rest = column_name.rsplit('.', 1)

 return (first, rest)

What do I want to do with this function? Invoke it on each of the column
names in py_df. Then I want to take all of those results, and pass them as a
list to pd.MultiIndex.from_tuples. To create such a list, I’ll use a list
comprehension:

pd.MultiIndex.from_tuples([column_multi_name(one_column_name)

 for one_column_name in py_df.columns])

I’ll then assign the result of this function call back to py_df.columns,
replacing the original columns with my multi-index:

py_df.columns = pd.MultiIndex.from_tuples([column_multi_name(one_column_name)

 for one_column_name in py_df.columns])

Most of the time, it doesn’t matter whether your columns are sorted. But I’ve
found that when working with a multi-index, it’s often best to sort the column
names, if only to make it easier to skim through them. In order to do this, we
take advantage of the fact that we can pass a list of columns to py_df to get
those columns back. If we sort the list before we apply it, then we can get the
columns back in a particular order. Assigning that back to py_df will thus
sort the columns:

py_df = py_df[sorted(py_df.columns)]

Whew! I’ll admit that this involved a lot of steps, some of which used builtin
Python (i.e., not pandas) knowledge. But now we can think about and work
with our columns in a much smarter way.

Let’s start off by finding out what IDEs Python developers use most often.
We can get that from the ide top-level column, and the main second-level
column. (This is a multi-index column, remember.) We can retrieve this by
passing a tuple in the square brackets:

py_df[('ide', 'main')]

Now that we have our column, we can count how often each of the IDEs
appears in the survey. And because value_counts returns a series, we can
limit the output to the 10 most popular IDEs:

py_df[('ide', 'main')].value_counts().head(10)

Next, I asked you to find what other languages are most commonly used by
Python developers. This requires figuring out which columns contain this
information, how it is structured, and then how to perform such a calculation.
As you might have discovered, non-Python languages were listed under the
other.lang top-level index, with the particular language that each developer
used as a second-level index entry. Thus, asking for py_df['other.lang']
returns all of the columns under the other.lang top-level index as a data
frame—one with 54,462 rows (one for each survey respondent) and 24
columns (one for each non-Python language). Each cell either contains the
name of the language or NaN (indicating that the survey respondent does not
use this language). With this data, how can we calculate how many people
use each of these languages?

The answer is easier than it might at first appear: The count method returns
the number of non-NaN values in a series. When applied to a data frame, the
count method returns a series whose indexes are the data frame’s columns,
and whose values are the number of non-null values in that column. In other
words, we can run:

py_df['other.lang'].count()

The result will be the following series:

Bash / Shell 13793

C# 4460

C/C++ 11623

Clojure 361

CoffeeScript 319

Go 3398

Groovy 719

HTML/CSS 15469

Java 8109

JavaScript 16662

Kotlin 1384

None 6402

Objective-C 583

Other 3592

PHP 4060

Perl 886

R 2465

Ruby 1165

Rust 1853

SQL 13391

Scala 927

Swift 854

TypeScript 3717

Visual Basic 1604

dtype: int64

Now that we have this series, we can find the 10 most popular non-Python
languages. We do this by sorting the values in descending order:

py_df['other.lang'].count().sort_values(ascending=False)

Finally, we can get the 10 first values:

py_df['other.lang'].count().sort_values(ascending=False).head(10)

The next question asked for the names of the 10 countries with the greatest
number of survey respondents. That information is in the general top-level
index, and the country.live second-level index. We can retrieve that
specific column with:

py_df['general', 'country.live']

This returns the country name for each of the survey respondents. To count
the number of times each country appears in this column, we can use

value_counts:

py_df['general', 'country.live'].value_counts()

The result of running value_counts is to return a series, one in which
country names form the index and the number of appearances of each country
form the values. An added bonus is that value_counts automatically sorts its
results by descending value, so we don’t need to worry about that. Finally,
we can use head(10) to retrieve the 10 most commonly named countries in
the survey:

py_df['general', 'country.live'].value_counts().head(10)

Next, I asked you to find what proportion of Python developers have each
level of experience. Once again, we can turn to value_counts to do this work
for us. Normally, value_counts returns the raw numbers. However, passing
normalize=True to value_counts outputs floating-point values, indicating
the percentage for each level:

py_df[('general', 'python.years')].value_counts(normalize=True)

Since value_counts automatically orders the values from highest to lowest,
we can see that in this survey, the greatest proportion of developers have 3-5
years of experience, followed by those with less than 1 year, followed by
those with between 1-2 years. All told, about 75 percent of the respondents to
the survey have been using Python for up to five years, and half of them have
been using it for less than two years.

What about the most experienced Python developers? In particular, what
countries have the greatest number of Python developers with 11+ years of
experience using the language? To do that, we’ll first need to get only those
rows of py_df in which the experience is 11+ years:

py_df[py_df[('general','python.years')] == '11+ years']

But wait: We’re going to want to group by country.live, whose top-level
index is general—the same as python.years. We can thus restrict our query,
applying our boolean index only to those columns within general:

py_df['general'][py_df[('general','python.years')] == '11+ years']

Now that we only have the columns in general, we can prepare a new query,
one that’ll give us results on a per-country basis:

py_df['general'][py_df[('general','python.years')] == '11+ years'].groupby('country.live')

This sets up the grouping query to operate on a per-country basis, but doesn’t
actually ask any questions. Let’s find out how many non-null values each
column has, for each country:

py_df['general'][py_df[('general','python.years')] == '11+ years'].groupby('country.live').count()

The resulting data frame is a bit big and daunting, but gives us a ton of
information: The rows are the country names, the columns are all from
general, and the values are integers, indicating how many non-null rows
there were for each column, for each country. The numbers in each column
will be similar, but not identical, reflecting the fact that there will be some
occasional null values. But given that we’re only interested in finding out
how many super-experienced Python developers there are in each country,
we would be wise to cut our result down to one column only, namely
python.years:

py_df['general'][py_df[('general','python.years')] == '11+ years']['python.years'].groupby('country.live').count()

This returns a series in which the index contains country names, and the
values are integers, the number of 11+ year veterans of Python. We’re not
quite done yet, though—we want to know which country has the greatest
number of very experienced Python developers. It might seem like we could
use the max method here, but that’ll return the highest value—and we want to
know the index (i.e., country name) corresponding to that value. For this
reason, we’ll once again call sort_values, from highest to lowest. Then
we’ll apply head(1), returning the name of the country with the greatest
number, as well as the number itself:

py_df['general'][py_df[('general','python.years')] == '11+ years'].groupby('country.live')['python.years'].count().sort_values(ascending=False).head(1)

You might not be surprised to find that the United States tops this list. After
all, the US has a large number of Python developers, and is also a large

country. But that’s often a problem with finding "the greatest number per
country" for anything, since it depends so greatly on the size of the country.
So perhaps a more interesting question would be: Which country has the
greatest proportion of Python developers with 11+ years of experience?

To get this calclation, we’ll need to find out how many total developers there
are in each country. To do that, I created a new variable called
country_experience, taken from py_df['general'] and consisting of two
columns—country.live and python.years:

country_experience = py_df['general'][['country.live', 'python.years']]

all_per_country = country_experience['country.live'].value_counts()

We’ll also need to get the number of senior Python developers in each
country. We did that in a previous part of this exericse, but with
country_experience in place, I have another method for finding this out:

expert_per_country = country_experience.loc[country_experience['python.years'] == '11+ years', 'country.live'].value_counts()

We now have two series (expert_per_country and all_per_country) with
matching indexes (country names). We can now take advantage of the fact
that pandas will use the index when dividing one series by another:

(expert_per_country / all_per_country).sort_values(ascending=False).dropna().head(10)

In the above calculation, I first divided the number of experts by the total
number of Python developers per country. I then sorted the values in
descending order, so that we could find the country with the greatest
proportions of experienced Python developers. In order to avoid null values, I
used dropna on the resulting series. The result looked quite different:

Norway 0.265432

Ireland 0.225490

Australia 0.225420

Belgium 0.225108

Slovenia 0.224490

New Zealand 0.197917

Sweden 0.194030

Finland 0.190141

United Kingdom 0.186486

Austria 0.186170

Name: country.live, dtype: float64

While the United States certainly has a very large number of senior Python
developers, things look dramatically different when we take country size into
account.

However, this raises the question of whether the data is an accurate portrait of
the modern Python community. Do one quarter of Norwegian Python
developers really have more than a decade of experience with the language?
Maybe it’s just me, but I’m a bit skeptical. Instead, I have to wonder whether
the type of person who fills out such a survey is also more enthusiastic than
the average Python developer—and thus skews to a more experienced
population.

Next, we switched gears, and started to look at the Stack Overflow survey. I
loaded the CSV file into a data frame:

so_filename = '../data/so_2021_survey_results.csv'

so_df = pd.read_csv(so_filename, low_memory=False)

Once again, I passed low_memory=False, telling pandas that it should use as
much memory as it needs in order to guess the dtype correctly.

The Stack Overflow survey includes a great deal of information about
people’s jobs and salaries. I asked you to verify if, based on the data collected
here, freelancers and contractors really do earn more than full-time
employees, as if often assumed to be the case. In order to find this out, I took
my data frame and ran groupby on Employment:

so_df.groupby('Employment')

This means that whatever query we run, the rows will be the distinct values in
the Employment column. We’re interested in the mean annual salary, reported
here in dollars as ConvertedCompYearly, per type of employment, which we
can calculate as follows:

so_df.groupby('Employment')['ConvertedCompYearly'].mean()

This is good, but we can make it easier to compare the data points by sorting

them:

so_df.groupby('Employment')['ConvertedCompYearly'].mean().sort_values(ascending=False)

We can see, from these results, that from this survey, it would seem that
people who are employed full time earn the most, followed by retirees,
followed by contractors:

Employed full-time 129913.094086

Retired 120252.500000

Independent contractor, freelancer, or self-employed 111160.260190

I prefer not to say 44589.437500

Employed part-time 43344.532974

Not employed, and not looking for work NaN

Not employed, but looking for work NaN

Student, full-time NaN

Student, part-time NaN

Name: ConvertedCompYearly, dtype: float64

I find this a bit hard to believe, and especially wonder whether it’s accurate to
say that retirees are earning almost as much as full-time employees.

While it’s not part of the exercise, I’d like to spend a bit more time on this
output. There’s nothing technically wrong with it, but if we were to present
this data to a non-programmer, it might seem a bit messy, or hard to read. For
one, we might want to remove the NaN values. For another, dollar figures can
generally be rounded to two digits after the decimal point. And it’s often nice
to put separators between every set of three digits in a large number.
Dropping the null values is easy with dropna. But is there a good way to
format our floating-point values?

The answer is "yes," and there are a few possible solutions. I prefer to use
Python’s f-strings, which include a great deal of formatting logic and power.

This functionality is provided by Python’s f-strings, which let us apply a
number of formatting directives to strings, and other data structures,
following a : (colon). For example:

x = 12345.6789

print(f'{x:,.2f}') #1

I can’t use an f-string directly on each element of a series. But I can use a
function to do it for me. In particular, I can use apply to run a function on
each element, and then use lambda to create an anonymous function that
applies the f-string to each one, thus giving me a column of strings:

so_df.groupby('Employment')['ConvertedCompYearly'].mean().sort_values(ascending=False).dropna().apply(lambda n: f'{n:,.2f}')

Many Python developers dislike using lambda. How, then, could we ensure
that our floats are formatted nicely? One alternative to the above would be to
use the str.format method, which was commonly used before f-strings were
introduced in Python 3.8. Because str.format is a method, we can hand it to
apply, without needing to rely on lambda:

so_df.groupby('Employment')['ConvertedCompYearly'].mean().sort_values(ascending=False).dropna().apply('{:,.2f}'.format)

Notice that we’re not invoking the method, but rather passing it to apply,
where it’ll be invoked on each value. Moreover, notice that there isn’t any
value preceding the : in the curly braces; that’s because str.format was able
to implicitly handle positional arguments, without naming or numbering
them.

If we know that we’ll want to display all floats this way, then we can avoid
using apply explicitly, and tell pandas that we always want this to be our
display format:

pd.options.display.float_format = '{:,.2f}'.format

The above basically does what we did with apply, telling pandas that
whenever it sees a floating-point value, it should output the format with
commas and only two numbers after the decimal point. However, this now
applies across the board to all floats in the current session, which might be
more than you want. That said, I’ll use it so as to avoid needing to set
formatting.

Now let’s ask a different question: Rather than looking at average salaries for
different types of work, let’s instead look at average salaries for different
levels of education. Moreover, let’s further divide that up by country. What
I’m asking for, of course, is a pivot table—one in which the index will
contain country names, the columns will contain the distinct values from

EdLevel, and the cells will contain the mean of ConvertedCompYearly for
each country-education combination:

so_df.pivot_table(index='Country', columns='EdLevel', values='ConvertedCompYearly')

Next, I asked you to load the subset of OECD countries into a data frame:

oecd_filename = '../data/oecd_locations.csv'

oecd_df = pd.read_csv(oecd_filename, header=None, index_col=1, names=['abbrev', 'Country'])

The data frame we created in the above code used the country name for the
index. That’s because I’m next going to use it in a join with so_df, which
means that the indexes need to be aligned. We’ll use the country names, and
assume (hope?) that the spellings and punctuation of our OECD subset are all
the same in both data frames. Regardless, we’ll need to have the country
name as the index.

Then we want to join our OECD subset data frame with the Stack Overflow
data, and then recreate our pivot table. The effect will be to reduce the
number of rows (i.e., countries) in our output. And indeed, once we run our
join, we get back only 13 rows, one for each country in our OECD subset:

oecd_df.join(so_df.set_index('Country')).pivot_table(index='Country',

 columns='EdLevel',

 values='ConvertedCompYearly')

Notice that we called so_df.set_index('Country') so as to temporarily set
the country to be the index of so_df. That allows us to join it with oecd_df—
and then to create the pivot table, which is our ultimate goal.

Now that we know average salaries in all of these countries and all education
levels, we can ask some questions of the data. For example, I asked you to
find in which country someone with an associate’s degree can expect to earn
the most. I could have stored the pivot table to a variable, but instead I
decided to chain the relevant methods together:

oecd_df.join(so_df.set_index('Country')).pivot_table(index='Country',

 columns='EdLevel',

 values='ConvertedCompYearly')[

 'Associate degree (A.A., A.S., etc.)'].sort_values(ascending=False)

After creating the pivot table, I then retrieved the column for associate’s
degrees, and then sorted them from highest to lowest. From the results we see
here, it looks like the country that offers the best pay for people with an
associate’s degree is Australia, followed by Germany and Israel.

What about PhDs? Do countries that pay you well with an associate’s degree
also pay you well if you have a PhD or similar post-graduate degree? We can
perform a similar query:

oecd_df.join(so_df.set_index('Country')).pivot_table(index='Country',

 columns='EdLevel',

 values='ConvertedCompYearly')[

 'Other doctoral degree (Ph.D., Ed.D., etc.)'].sort_values(ascending=False)

There does seem to be some overlap; the highest-paying countries for PhDs
are Japan, Australia, France, Israel, and Germany. But there might also be
some reason to suspect that this data isn’t totally accurate; is it really possible
that the mean salary in Hungary for someone with an associate’s degree is
$63k/year, whereas with a PhD it’s only $52k/year? Or that there would be a
salary difference of only $12k/year between Germans with an associate’s
degree and a PhD? It’s certainly possible, but my point here is that data
analysis requires more than just number crunching—you also have to ask
whether the numbers make sense. And if they don’t, we should ask ourselves
why that might be the case. For example, perhaps the sample sizes are so
small that the data isn’t truly representative of the total population.

Next, I wanted to analyze Python programmers in the Stack Overflow survey.
The LanguageHaveWorkedWith column will allow us to identify who they are
—but that column contains text, with languages separated from one another
with ; characters. So someone who works with both Python and JavaScript
could have a value of Python;JavaScript. If we’re going to find people who
work with Python, then we’ll need to find those who have "Python" in that
column. For that, we’ll want to use str.contains, to look inside of the
string. But there’s a problem with that: Some survey respondents didn’t fill
out this information, which means that it’s NaN. And trying to run
str.contains on a NaN value will result in an error.

We’ll thus need to first remove all of the rows that contain NaN for
LanguageHaveWorkedWith. After that, we’ll find people who have worked

with Python:

so_df = so_df[~so_df['LanguageHaveWorkedWith'].isna()]

so_df = so_df[so_df['LanguageHaveWorkedWith'].str.contains('Python')]

Notice that we couldn’t use dropna, which would let us remove all NaN values
from a column or data frame. That’s because we are interested in dropping
rows where LanguageHaveWorkedWith is null, and dropna doesn’t let us do
that. Instead, we’ll use isna, which indicates whether a particular cell
contains a null value. We can then use that as a boolean index to identify
rows with non-null values for this column, which we’ll keep.

Once we’ve done that, we can be sure that all of the values in
LanguageHaveWorkedWith are strings. We apply str.contains and look for
Python. We end up with nearly 40,000 people who use Python—a smaller
sample than the 54,000 who responded to the Python survey, but still a
substantial sample size. Also, while the survey asked what languages people
had used in the last year, we don’t know whether that they used Python once
in the last year year, every day, or somewhere in between.

Now that we have found the Python developers from Stack Overflow, I
would like to compare them with the respondents to the Python community
survey. In particular, I’d like to know if they have similar levels of
experience. The problem is that in the data’s original form, that’s not going to
be possible: Whereas the Python community survey lumps people into
categories (e.g., "Less than 1 year," and "1–2 years"), the Stack Overflow
survey asks for a specific number of years of experience.

In order to compare these, I asked you to create a new column in the Stack
Overflow data frame, called experience, which would turn the raw year
numbers into categories. I know that I can use pd.cut in order to accomplish
this, but pd.cut will only work if all of the values in a column are numeric—
and two options were non-numeric, Less than 1 year and More than 50
years. My first task was thus to turn those into numbers:

so_df.loc[so_df['YearsCode'] == 'Less than 1 year', 'YearsCode'] = 0

so_df.loc[so_df['YearsCode'] == 'More than 50 years', 'YearsCode'] = 51

In other words, I assigned the integer 0 to anyone with Less than year as

their value, and the integer 51 to anyone with More than 50 years as their
value. With those in place, we can then turn YearsCode into an integer
column:

so_df['YearsCode'] = so_df['YearsCode'].astype(int)

Now I can use pd.cut to recreate the same categories as we had in the Python
community survey:

so_df['experience'] = pd.cut(so_df['YearsCode'],

 bins=[-1, 1, 2, 5, 10, 100],

 labels=['Less than 1 year',

 '1-2 years',

 '3-5 years',

 '6-10 years',

 '11+ years'])

Remember that pd.cut uses the bins as the extreme edges of the bins—which
means that if we want to give the first label to a number of 0, we should start
the bin at -1. And yes, there is the option of including values on the left (or
right), but I decided that this was easier, and would ensure that bins didn’t
overlap.

Next, I wanted to see the distribution of experience levels in the Stack
Overflow survey. I once again used value_counts:

11+ years 0.373388

6-10 years 0.318589

3-5 years 0.222530

1-2 years 0.047440

Less than 1 year 0.038054

Name: experience, dtype: float64

From this, we can see that the Stack Overflow respondents are much more
experienced than the Python survey respondents. As you may recall, we saw
that 75 percent of the Python survey respondents have been using Python for
up to five years, whereas in the Stack Overflow survey, the number of new
programmers is about 25 percent. Half of the Python survey respondents have
been using it for less than two years, whereas that’s true for less than 10
percent of the Stack Overflow group.

However, we need to think a bit before we say anything too sweeping when
comparing these surveys. After all, the Stack Overflow survey was asking
about all of the experience that the respondent had as a programmer—
whereas the Python survey asked how long the person had been programming
in Python. The same person, filling out both surveys, might have been
programming in Java for 20 years and Python for only two, and would thus
have answered the questions differently on each survey. Making such
comparisons, and integrating data from different sources, can be tricky, and
requires some thought; just joining two data frames together isn’t sufficient.
That said, it is interesting to see just how heavily the Python survey skewed
toward newcomers, and how heavily Stack Overflow skewed toward
experienced developers. The Python community survey might do well to
include an "overall programming experience" question in the future, to help
with such analysis, and to better understand how much Python plays a role in
the members of its community.

7.1.2 Solution

py_filename = '../data/2020_sharing_data_outside.csv'

py_df = pd.read_csv(py_filename, low_memory=False)

general_columns = ['age',

 'are.you.datascientist',

 'is.python.main',

 'company.size',

 'country.live',

 'employment.status',

 'first.learn.about.main.ide',

 'how.often.use.main.ide',

 'is.python.main',

 'main.purposes'

 'missing.features.main.ide'

 'nps.main.ide',

 'python.version.most',

 'python.years',

 'python2.version.most',

 'python3.version.most',

 'several.projects',

 'team.size',

 'use.python.most',

 'years.of.coding'

]

def column_multi_name(column_name):

 if column_name in general_columns:

 return ('general', column_name)

 else:

 first, rest = column_name.rsplit('.', 1)

 return (first, rest)

py_df.columns = pd.MultiIndex.from_tuples([column_multi_name(one_column_name)

 for one_column_name in py_df.columns])

py_df = py_df[sorted(py_df.columns)]

py_df[('ide', 'main')].value_counts().head(10)

py_df['ide'].value_counts().head(10)

py_df['other.lang'].count().sort_values(ascending=False).head(10)

py_df['general', 'country.live'].value_counts().head(10)

py_df[('general', 'python.years')].value_counts(normalize=True)

py_df['general'][py_df[('general','python.years')] == '11+ years'].groupby('country.live')['python.years'].count().sort_values(ascending=False).head(1)

country_experience = py_df['general'][['country.live', 'python.years']]

all_per_country = country_experience['country.live'].value_counts()

expert_per_country = country_experience.loc[country_experience['python.years'] == '11+ years', 'country.live'].value_counts()

(expert_per_country / all_per_country).sort_values(ascending=False).dropna().head(10)

so_filename = '../data/so_2021_survey_results.csv'

so_df = pd.read_csv(so_filename, low_memory=False)

so_df.pivot_table(index='Country', columns='EdLevel', values='ConvertedCompYearly')

oecd_filename = '../data/oecd_locations.csv'

oecd_df = pd.read_csv(oecd_filename, header=None, index_col=1, names=['abbrev', 'Country'])

oecd_df.join(so_df.set_index('Country')).pivot_table(index='Country',

 columns='EdLevel',

 values='ConvertedCompYearly')

oecd_df.join(so_df.set_index('Country')).pivot_table(index='Country',

 columns='EdLevel',

 values='ConvertedCompYearly')['Associate degree (A.A., A.S., etc.)'].sort_values(ascending=False)

oecd_df.join(so_df.set_index('Country')).pivot_table(index='Country',

 columns='EdLevel',

 values='ConvertedCompYearly')['Other doctoral degree (Ph.D., Ed.D., etc.)'].sort_values(ascending=False)

so_df = so_df[~so_df['LanguageHaveWorkedWith'].isna()]

so_df = so_df[so_df['LanguageHaveWorkedWith'].str.contains('Python')]

so_df.shape

so_df = so_df[~so_df['YearsCode'].isna()]

so_df.shape

so_df.loc[so_df['YearsCode'] == 'Less than 1 year', 'YearsCode'] = 0

so_df.loc[so_df['YearsCode'] == 'More than 50 years', 'YearsCode'] = 51

so_df['YearsCode'] = so_df['YearsCode'].astype(int)

so_df['experience'] = pd.cut(so_df['YearsCode'],

 bins=[-1, 1, 2, 5, 10, 100],

 labels=['Less than 1 year',

 '1-2 years',

 '3-5 years',

 '6-10 years',

 '11+ years'])

so_df['experience'].value_counts(normalize=True)

7.2 Summary

Whew! This was a big and long exercise, meant to help you integrate and use
many of the ideas and techniques we’ve discussed in this book so far. Of
course, there are many pieces of pandas that we didn’t use in this project—
but to be honest, it’s a rare project that uses all of the capabilities that pandas
has to offer. That said, we did a lot of things here—loading and cleaning data,
joining data frames together, analyzing the data, and even comparing
different data sets and thinking critically about how trustworthy they are. If
you felt comfortable with all of the techniques in this project, then I’d say
you’re well on your way to internalizing the way that pandas does things, and
to using it productively in your projects.

8 Strings
When most people think of pandas, or of data analysis in general, they think
of numbers. And indeed, much of the analysis work that people do with
pandas is with numbers. That’s why pandas is built on top of NumPy, which
takes advantage of C’s fast, efficient integers and floats. And that’s why so
many of the exercises in this book involve working with numbers.

However, we often have to work with textual data—usernames, product
names, sales regions, business units, ticker symbols, and company names are
just a few examples. Sometimes the text is central to the analysis you’re
doing—such as when you’re preparing data for a text-based machine-learning
model—and at other times, it’s secondary to the numbers, used as a
description or categorical data.

It turns out that pandas is also well equipped to handle text. It does this not
by storing string data in NumPy, but rather by using full-fledged string
objects, either those that come with Python or (more recently) a pandas-
specific string class that reduces both ambiguity and errors. (I’ll have more to
say about these two string types, and when to use each one, later in the
chapter.) In either case, we have access to a wide variety of methods that we
can apply to these strings, normally via the str accessor.

While a data frame might contain one or more textual columns, the str
accessor exists on Series objects. The result of invoking methods via the str
accessor is a new series, which can then replace the existing one, be assigned
to a new variable, or assigned as a new column alongside the original one.

In this chapter, you’ll work through exercises that will help you to identify
and understand how to work with textual data and the str accessor in pandas.
After going through these exercises, you’ll know which string methods are
available, feel more comfortable using using them, and even know how to
apply your own custom functions to string columns.

Text data types

For many years, pandas would use Python’s internal string type for storing
text. This was already a big improvement over NumPy, which stored
characters in C arrays—more efficient than Python strings, but with much
more limited functionality. In order to refer to such Python strings, pandas
would assign a dtype of object. The good news is that this worked fairly
well, giving us great string functionality within pandas. The bad news,
however, was that your series could contain any type of Python object, not
just strings. This could lead to bugs, because you could accidentally store a
list, dictionary, or None into such a column without noticing. After all, these
are all Python objects, so there was no way for pandas to stop you from
adding them.

pandas 1.0.0 added a new pd.StringDtype, which aims to solve such
problems. As the name indicates, it is meant to be used as a dtype on a series.
Moreover, because it’s specific to textual data, you cannot mix it up with
other types of objects. Further, the pandas documentation indicates that

ut wait—previously, a series with a dtype of object could be a string, and
could also be NaN. What happens now? After all, NaN isn’t an instance of
pd.StringDtype. The answer is that if you’re going to use pd.StringDtype,
then you should also use pd.NA instead of NaN. pd.NA is specifically designed
for this sort of thing, ensuring that you can have a null value that’s also a
valid string.

Should you use pd.StringDtype? As of this writing, the pandas
documentation is somewhat inconsistent: On the one hand, they list several
benefits of pd.StringDtype. On the other hand, they write, "`StringDType` is
considered experimental. The implementation and parts of the API may
change without warning."

In this chapter, I’m going to assume that you are using the old-fashioned (and
definitely stable) object type in your columns. However, you will likely
need (and want) to switch to pd.StringDType in the future. If all goes well,
then such a change will mean no changes to your programs, other than better
checking of your values and potentially even better performance.

8.1 Useful references

Table 8.1. What you need to know

Concept What is it? Example To learn more

s.explode

Returns a
new series
with each
element
on its own
line

s.explode() http://mng.bz/M5MQ

str.contains

Returns a
series of
booleans,
whether
the row
contains
the string
argument

s.str.contains('a') http://mng.bz/aJlj

str.get_dummies

Returns a
data frame
containing
1s and 0s
based on a
categorical
series

s['country'].get_dummies(sep=';') http://mng.bz/gwle

str.index

Returns a
series of
integers,
the first
occurrence
of the

s.str.index('a') http://mng.bz/5Qyq

argument
in each
row

str.len

Returns a
series of
integers,
the length
of each
element

s.str.len() http://mng.bz/6XM5

Table 8.2. What you need to know

Concept What is it? Example To learn more

str.replace

Returns a series
based on an
existing series,
replacing the
first argument
with the second

s.str.replace('a',

'e')
http://mng.bz/o2lj

str.split
Returns a series
of Python lists

s.str.split(';') http://mng.bz/nNd8

str.strip

Returns a series
of Python
strings without
the argument’s
characters on
either side

s.str.strip('.!?') http://mng.bz/v6Rq

The str accessor

Traditional Python strings support a large number of methods and operators,
ranging from search (str.index) to replacement (str.replace) to substrings
(slices) to checks of the string’s content (e.g., str.isdigit and
str.isspace). But if we have a series containing strings, how can we invoke
such a method on every element?

Experienced Python developers would normally expect to use a for loop, or
perhaps a list comprehension. But in pandas, we’ll do whatever we can to
avoid such loops. We do have the option of the apply method, which we can
use to apply a string method to every element. And indeed, apply is needed if
you want to use a custom function, rather than a method that comes with
pandas.

pandas encourages us to use the str accessor, which gives us access to a
variety of string methods—including, but not limited to, standard Python
string methods. The method will be applied to every element in the series,
and will return a new series of the same length and with the same index,
whose values are the results of invoking the method on each element. For
example, we can get the length of a string by invoking the len method on the
str accessor:

s = Series('this is a test 123 456'.split())

s.str.len()

The result is a new series, containing the lengths of the values in s:

0 4

1 2

2 1

3 4

4 3

5 3

dtype: int64

What if we want to find all of the values in s that can be turned into integers?

s.str.isdigit()

The result is a boolean series, indicating which values contain only the
character 0-9:

0 False

1 False

2 False

3 False

4 True

5 True

dtype: bool

Because it contains only booleans, and shares an index with s, it’s suitable
for use as a boolean (mask) index on s, in order to find numeric values.

The str accessor supports methods beyond those available in Python’s str
class. For example, you can search in a string using contains. However,
contains allows you to use a regular expression. I can thus find all of the
words with either a or e:

s.str.contains('[ae]')

The above query returns the following series:

0 False

1 False

2 True

3 True

4 False

5 False

dtype: bool

Applied to our original series s, we can find all words that contain either a or
e:

s[s.str.contains('[ae]')]

This results in:

2 a

3 test

dtype: object

Note that while str.contains currently (as of this writing) defaults to

treating its argument as a regular expression, there are plans for that default
value to change. It’s thus a good idea to be explicit about your intentions by
passing regex=True, so that the string isn’t taken literally:

s[s.str.contains('[ae]', regex=True)]

The str accessor makes it easy to use pandas to call string methods, and thus
work with textual data. However, you should spend some time reviewing the
list of string methods in the pandas documentation, to get a good sense of
what they are and what they can do.

8.2 Exercise 36: Analyzing Alice

In this exercise, we’re going to look at the famous book Alice in Wonderland,
the text of which is made freely available via Project Gutenberg, as well as
included along with the data files for this book. Here is what I’d like you to
do:

Open the file alice-in-wonderland.txt, and read it into a pandas
series or data frame, such that each word is a separate value. (If you
choose to read it as a data frame, that’s fine. I’ll refer to the "series" or
"column" when describing our data in this exercise.)
What are the 10 most common words in the book?
Does this change if we count the words without regard to case?
Does it change if we remove punctuation (as defined in
string.punctuation) from the beginning and end of each word?
How many capitalized words does the book contain?
If we ignore punctuation and quotes before the start of a word, how
many capitalized words does the book contain?
Count the number of vowels (a, e, i, o, and u) in each word. What is the
average number of vowels per word?

8.2.1 Discussion

In this exercise, we used the string functionality in pandas in a variety of
ways. To start off, I asked you to read the contents of Alice in Wonderland
into a series. Normally, we don’t read text files into pandas—although to be

honest, a library such as pandas has so many users and use cases that it’s
quite possible people do this on a regular basis. If you were to feed
open(filename) into Series, then the series would have contained the lines
from alice-in-wonderland.txt. Instead of that, I asked you to create a
series containing the separate words from the file. Doing so is easiest if we
use the read method on our Python file object, which returns a string from
the content. We can then invoke the str.split method, returning a list of
strings from that original string. We can then use that list to create a series:

filename = '../data/alice-in-wonderland.txt'

s = Series(open(filename).read().split())

 Note

The read method returns a string containing the contents of the file. What if
the file contains several terabytes of data? Then unless the IT department at
your company is unusually generous, you’ll find yourself running out of
memory. Normally, I suggest that people not read an entire file into memory
at once, instead iterating over its lines. In this particular case, I know that the
file is small, and that there won’t be any issues with reading it all at once.

With our series in place, we can start to perform analyze the text that it
contains. First, I asked you to find the most common words. As we’ve seen
countless times before, value_counts will help us here. Invoking it on our
series returns a new series whose index contains our words (i.e., the values
from s) and whose values (sorted in descending order) are integers,
describing how many times each word appeared in s:

s.value_counts()

Not surprisingly, the most common words are "the," "and," "a", and "to." But
what if these words appeared at the start of a sentence? Then they would be
capitalized, and wouldn’t be included in our count. How can we transform all
of the words to lowercase, and then find how common they are? We can use
the str accessor to run the lower method on our series. That’ll return a new
series of strings, on which we can then run value_counts:

s.str.lower().value_counts().head(10)

But wait a second—because of the way that we created our series, by using
whitespace characters to indicate the boundary between words, it’s possible
that the words have punctuation marks before or after their letters. I thus
asked you to repeat the query for the 10 most common words, but only after
removing/ignoring punctuation characters. This turns out to be easier than
you might imagine, using the str.strip method. This method is typically
used to remove whitespace from the start or end of a string:

s = ' abc '

s.strip() #1

But we can also pass a string argument to str.strip, removing any
characters from that argument which appear at the start or end of our string:

s = ':;:;abc:;:;'

s.strip(':;') #1

The string module includes a number of predefined strings, including
string.punctuation, which comes in handy on such occasions:

import string

s = ':;:;abc:;:;'

s.strip('string.punctuation') #1

Given a series containing strings, we can get a new series containing those
same strings, but without leading and trailing punctuation, by invoking split
via the str accessor:

s.strip(string.punctuation)

To find the 10 most common words in s, ignoring punctuation, we can thus
say:

s.str.strip(string.punctuation).value_counts().head(10)

And while I didn’t ask you to do this, we could get the 10 most common
words, ignoring both case and punctuation:

s.str.lower().str.strip(string.punctuation).value_counts().head(10)

Notice that we had to use str twice here—once to run lower on the original

series s, and then a second time to run strip on the series of strings returned
by str.lower. We’ll see more examples of this as we review the other parts
of this exercise.

Next, I asked you to count the number of capitalized words in the book. This
means finding all of the words that begin with a capital letter, from A through
Z. There are several ways to do this, but my favorite (as you might have
guessed by now) would be to use a regular expression. Given that the pandas
string method str.contains supports regular expressions, we can say the
following:

s.str.contains('^[A-Z]\w*$', regex=True)

This returns a boolean series with the same index as s. The value will be True
whenever the word starts with a capital letter (anchored to the start of the
string with ^) and contains zero or more alphanumeric characters (\w*)
through the end of the word. (We have to allow for zero-or-more characters,
because of single-letter capitalized words, such as A and I.)

With this in hand, we can apply the boolean series to s:

s[s.str.contains('^[A-Z]\w*$', regex=True)]

Then we can apply the count method, to find how many values the series
contains:

s[s.str.contains('^[A-Z]\w*$', regex=True)].count()

But wait: What if the word has a punctuation mark, such as quotes, before the
initial capital letter? To get an accurate count, we’ll need to remove
punctuation from the ends of the words, and then look for which are
capitalized. Here’s how we can do that:

s[s.str.strip(string.punctuation).str.contains('^[A-Z]\w*$', regex=True)].count()

Here, we first remove punctuation from the start and end of each word, then
feed the resulting series into str.contains with our regular expression. That
returns a boolean series, which we can apply back to s, thus finding the total
number of capitalized words.

Next, I asked you to calculate the mean number of vowels in each word. This
requires first finding a way to calculate the number of vowels in each word,
and then calculating the mean value. The easiest way to do this is with the
apply method, which lets us run a function of our choice on each element of
the series. So first, we’ll have to write a function that counts vowels. Here’s
my implementation:

def count_vowels(one_word):

 total = 0

 for one_letter in one_word.lower():

 if one_letter in 'aeiou':

 total += 1

 return total

This is a simple Python function that takes a string as an argument, counts the
vowels in it, and returns an integer. We can then apply this function to every
element of our series s, getting a new series back:

s.apply(count_vowels)

I asked for the mean number of vowels in each word. Since we now have a
series of integers, we can get that back with:

s.apply(count_vowels).mean()

8.2.2 Solution

filename = '../data/alice-in-wonderland.txt'

s = Series(open(filename).read().split()) #1

s.value_counts().head(10) #2

s.str.lower().value_counts().head(10) #3

s.str.strip(string.punctuation).value_counts().head(10) #4

s[s.str.contains('^[A-Z]\w*$', regex=True)].count() #5

s[s.str.strip(string.punctuation).str.contains('^[A-Z]\w*$', regex=True)].count() #6

def count_vowels(one_word): #7

 total = 0

 for one_letter in one_word.lower():

 if one_letter in 'aeiou':

 total += 1

 return total

s.apply(count_vowels).mean() #8

8.2.3 Beyond the exercise

One: What is the mean of all integers in Alice?
Two: What words in Alice don’t appear in the dictionary? Which are the
five most common such words?
Three: What are the min and max number of words per paragraph?

8.3 Exercise 37: Wine words

If you’re like me, then you might enjoy having a glass with your dinner. On
occasion, you might even read the wine’s description on the back of the
bottle, where the winemakers use flowery language to describe the
winemaking process, and the flavors that you might detect when drinking the
wine. I know that I’m not the only person who sometimes raises an eyebrow
at the words they use in these descriptions. I decided to use pandas to better
understand what words are used in describing wine, and whether we can find
any interesting insights from these words.

We’ve already looked at the wine-review database in exercise 35. In this
exercise, we’re going to look at the words that reviewers used to describe the
wines, and see if particular words are more likely to occur in specific
provinces and varieties. Along the way, we’ll find ways to use pandas to
analyze text in some new ways. Here’s what I want you to do:

Open the file winemag-150k-reviews.csv, and read it into a data frame.
We only need the columns "country," "province," "description," and
"variety."
What are the 10 most common words containing 5 or more letters in the
wine descriptions? Turn all words into lowercase, and remove all
punctuation and symbols at the start or end of each word, for easier
comparison. Also: remove the words flavors, aromas, finish, and drink.
What are the 10 most common words for California wines?
What are the 10 most common words for French wines?

What are the 10 most common words for white wines? For our purposes,
we’ll look for Chardonnay, Sauvignon Blanc, and Riesling.
What are the 10 most common words for red wines? For our purposes,
we’ll look for Pinot Noir, Cabernet Sauvignon, Syrah, Merlot, and
Zinfandel.
What are the 10 most common words for rosé wines?
Show the 10 most common words for the 5 most common wine
varieties.

8.3.1 Discussion

For starters, I asked you to create a data frame with the wine information.
We’re only going to need four columns, so we can load only those:

filename = '../data/winemag-150k-reviews.csv'

df = pd.read_csv(filename,

 usecols=['country','province','description', 'variety'])

Next, I wanted to start performing some analysis on the words. But because
I’m going to be running the same type of analysis on different subsets of the
data frame, I decided that I would benefit from writing a function. What
would this function have to do?

accept a series of text (i.e., wine descriptions)
turn the text into lowercase (for easier comparison)
turn that into a series of individual words
remove leading and trailing punctuation
remove words with fewer than five letters
remove common wine-related words
find the 10 most commonly occurring words

Fortunately, it’s not that hard to write such a function, which I called
top_10_words. The function expects to receive one argument, a pandas series
of strings, which we call s. Each of the strings in the series is assumed to
contain multiple words, separated by whitespace.

The first thing we want to do is turn all of the strings in the series to
lowercase, for easier counting. We can do that by using the str accessor and

the len method:

words = s.str.lower()

We next want to take our series of sentences, and turn it into a series of
words. That is, instead of having multiple words in each row, we want to
have a single word in each row. This means that we’re going to create a series
that’s larger—and potentially much larger—than the input series s.

If you’re familiar with Python string methods, then you won’t be surprised to
know that we’ll use the split method here, via the str accessor. (Note that
this means we’ll need to specify str a second time, so that we can run split
on each element of the series returned from str.lower().) split takes a
string, and breaks it apart wherever it cencounters a delimiter, such as : or ,.
In this case, we won’t specify a delimiter, which means that split will use
any whitespace—space, tab, newline, carriage return, and vertical tab—to
break them apart:

words = s.str.lower().str.split()

The good news is that we have now separated the words from one another.
The bad news is that our series still contains the same number of rows as it
did before. Now, each row contains a list of strings, rather than a single
string.

Fortunately, the explode method takes a series containing an iterable of
objects (e.g., a list of strings), and returns a new series, one in which each
object has its own row. We can thus get each word in its own row as follows:

words = s.str.lower().str.split().explode()

We could stop there, but I’d like to clean things up just a bit more: I want to
remove any punctuation characters that might be at the start or finish of any
word. That’ll avoid problems when counting words that come at the start or
end of a sentence; otherwise, we would include leading and trailing
punctuation. The easiest way to do that is with the Python str.strip method.
We normally think of strip as a method that removes whitespace at the start
or end of a string, but that’s just the default behavior. We can pass a string
containing characters we want gone from the start and finish of each string.

The result is a new series, one in which the strings don’t have any of these
characters at their start or end:

words = s.str.lower().str.split().explode().str.strip(',$.?!$%')

We now have, in words, a series containing individual, lowercase words
without any leading or trailing punctuation. Now we want to remove words
that have fewer than five letters. We can do that using a boolean index based
on the output from the len method on the str accessor:

words[(words.str.len()>=5)]

But that’s not the only filter we want to put on words. We also want to
remove a number of common words that’ll crop up in nearly any wine
description or review. We can use the isin method in a series, passing a list
of strings as an argument, to find out which rows are and aren’t in that list:

common_wine_words = ['flavors', 'aromas', 'finish', 'drink', 'palate']

~words.isin(common_wine_words)

We can then combine these two mask indexes to get only those words
containing at least 5 characters, and which don’t appear in
common_wine_words:

words[(words.str.len()>=5) & (~words.isin(common_wine_words))]

Note that we use ~, the boolean "not" operator in pandas, to flip the boolean
index that we get back from words.isin.

Our function is called top_10_words, because it’s supposed to return the ten
most common words found in the wine reviews. Given that words is now a
series of words, we can run value_counts, followed by head(10), and return
the ten words most commonly found:

return words[(words.str.len()>=5) & (~words.isin(common_wine_words))].value_counts().head(10)

With this, we now have a complete function, top_10_words, which we can
apply to any series of words:

def top_10_words(s):

 common_wine_words = ['flavors', 'aromas', 'finish', 'drink', 'palate']

 words = s.str.lower().str.split().explode().str.strip(',$.?!$%')

 return words[(words.str.len()>=5) & (~words.isin(common_wine_words))].value_counts().head(10)

Right away, we can try to apply our function to all of wines in the review
database:

top_10_words(df['description'])

Next, I asked you to find the 10 most common words used in French wine
reviews. We’ll need to extract the description column for wines made in
France:

df.loc[df['country'] == 'France', 'description']

We can then pass the resulting series to top_10_words:

top_10_words(df.loc[df['country'] == 'France', 'description'])

Next, I asked to find the words most commonly associated with wines made
outside of California. We’ll need to search on the province column, and then
apply the != operator to find those from outside of that state:

top_10_words(df.loc[df['province'] != 'California', 'description'])

Notice that in this data set, you have to pay attention to the province column,
which is distinct from the country column. Additional columns allow you to
zero in on a particular region within a country; as you might know, different
regions are known for producing not only different types of wines, but
distinctive flavors specific to those regions.

Next, I thought it would be interesting to compare the words used most often
for white, red, and rose wines. I gave a (very non-definitive) list of wines of
each type, and then asked you to find the top 10 words used in each of their
descriptions. The queries will be identical, except for the lists:

top_10_words(df.loc[df['variety'].isin(['Chardonnay', 'Sauvignon Blanc', 'Riesling']), 'description'])

top_10_words(df.loc[df['variety'].isin(['Pinot Noir', 'Cabernet Sauvignon', 'Syrah', 'Merlot', 'Zinfandel']), 'description'])

top_10_words(df.loc[df['variety'] == 'Rosé', 'description'])

Notice how the isin method allows us to perform an "or" search—one that

we could certainly do with pandas boolean operators and a mask index, but
which becomes shorter and more readable with isin.

Finally, I asked that you find the 10 most common words for the five most
commonly mentioned wine varieties. In order to do that, we’ll first need to
determine the three most mentioned varieties:

df['variety'].value_counts().head(5).index

Here, we run value_counts on the varieties, in order to find out how
common each variety is in the database. We then use head(5) to find the five
most common varieties. We can then find all reviews for one of these
varieties using isin:

df.loc[df['variety'].isin(df['variety'].value_counts().head(5).index), 'description']

Notice that we couldn’t just use isin on the values we got back from
value_counts, because those would be numbers. Instead, we needed to check
the index of the resulting series, which contained

Finally, we can find the top 10 words used in reviews for these varities by
again applying our function, top_10_words:

top_10_words(df.loc[df['variety'].isin(df['variety'].value_counts().head(5).index), 'description'])

8.3.2 Solution

filename = '../data/winemag-150k-reviews.csv'

df = pd.read_csv(filename,

 usecols=['country','province','description', 'variety'])

def top_10_words(s):

 common_wine_words = ['flavors', 'aromas', 'finish', 'drink', 'palate']

 words = s.str.lower().str.split().explode().str.strip(',$.?!$%')

 return words[(words.str.len()>=5) & (~words.isin(common_wine_words))].value_counts().head(10)

top_10_words(df['description'])

top_10_words(df.loc[df['country'] == 'France', 'description'])

top_10_words(df.loc[df['province'] != 'California', 'description'])

top_10_words(df.loc[df['variety'].isin(['Chardonnay', 'Sauvignon Blanc', 'Riesling']), 'description'])

top_10_words(df.loc[df['variety'].isin(['Pinot Noir', 'Cabernet Sauvignon', 'Syrah', 'Merlot', 'Zinfandel']), 'description'])

top_10_words(df.loc[df['variety'] == 'Rosé', 'description'])

top_10_words(df.loc[df['variety'].isin(df['variety'].value_counts().head(5).index), 'description'])

8.3.3 Beyond the exercise

Which country’s wines got the highest average score for all wines?
Create a pivot table in which the index contains countries, the columns
contain varieties, and the cells contain mean scores. Only include the top
10 varieties.
What is the correlation between the number of wines offered by a
country, and the mean score for that country? That is: If a country enters
more wines, does its average score in reviews go up?

8.4 Exercise 38: Values into columns (learning
goals: str.split, expand=True)

In the Stack Overflow survey, developers indicated which programming
languages they’re currently using. Unfortunately, the languages are in a
single text column, separated by semicolons. In this exercise, you’ll work
with that data, extracting and analyzing it in a variety of ways:

Open the file so_2021_survey_results.csv, and read it into a data
frame. We only need the columns LanguageHaveWorkedWith,
LanguageWantToWorkWith, Country, and CompTotal.
What are the different programming languages that developers currently
use?
What are the 10 programming languages most commonly used today?
What are the 10 programming languages people most want to use?
What languages are on both top-10 lists?
What languages in the top 10 have people worked with, but don’t want
to work with in the future?
What is the most popular (current) language used by people in each
country?
What is the mean number of languages used in the last year?
What is the greatest number of languages people listed as having used in
the last year?
How many people chose that largest number?

How many people in the survey claim salaries of $2m or above?
Remove rows in which salaries are below $2m
Turn the 'LanguageHaveWorkedWith' column into "dummy" columns in
df, such that each language is its own column.
If you want to maximize your salary, and have to choose two languages
from Python, JavaScript, and Java, then what combination would be
best?

8.4.1 Discussion

In this exercise, we looked at one of the most useful and interesting parts of
the Stack Overflow survey, namely the list of programming languages that
participants marked themselves as having used in the last year. The good
news is that we have rich data which can give us insights into developers
from around the world. The bad news is that these languages are all in a
single column of the original CSV, making it challenging to work with. This
exercise asked you to use a number of techniques that we can us when
working with such data.

To begin with, we had to load the Stack Overflow data, which I did by
reading it all into a data frame:

filename = '../data/so_2021_survey_results.csv'

df = pd.read_csv(filename, usecols=['LanguageHaveWorkedWith',

 'LanguageWantToWorkWith',

 'Country', 'CompTotal'])

In order to reduce memory usage, and thus allow pandas to correctly
determine what type of data should be in each column, I specified which
columns I wanted to load into the data frame.

The first question I wanted to answer was what different programming
languages programmers currently use. The answers are all in
LanguageHaveWorkedWith, a text (string) column. However, people
answering the survey could provide more than one answer—which explains
why this field contains numerous sub-fields, separated by semicolons. For
example, here are five rows from the file:

0 C++;HTML/CSS;JavaScript;Objective-C;PHP;Swift

9 C++;Python

11 Bash/Shell;HTML/CSS;JavaScript;Node.js;SQL;Typ...

12 C;C++;Java;Perl;Ruby

16 C#;HTML/CSS;Java;JavaScript;Node.js

Notice that in the third row, the respondent indicated so many programming
languages that pandas doesn’t even display all of them by default, ending the
string with ….

If we are going to query the data frame based on which programming
language(s) people used, we’ll need to be able to treat these strings as
separate fields, not just as large strings. The best way to do that, as we saw
above, is to first run split on our string column (resulting in a series of
Python lists), and then run the explode method on the result:

df['LanguageHaveWorkedWith'].str.split(';').explode()

The result of this query is a series of strings—all of the different strings that
the LanguageHaveWorkedWith column had contained. But now, each of the
programming languages is in a separate row. This allows us to count them by
using value_counts:

df['LanguageHaveWorkedWith'].str.split(';').explode().value_counts()

In this way, we can see how many times each of the languages was
mentioned, sorted from the most popular (JavaScript) to the least popular
(APL). We’re only interested in the 10 most commonly found languages, so
we’ll cut it off after the top 10:

df['LanguageHaveWorkedWith'].str.split(';').explode().value_counts().head(10)

I’m actually less interested in the numbers than in the names of those
langauges. I can thus request the index from the returned series:

df['LanguageHaveWorkedWith'].str.split(';').explode().value_counts().head(10).index

Finally, I’ll assign that to a variable, have_worked_with, because I’ll be
needing these values in just a little bit, and it’s easier to work with them from
a variable than a long, repeated query.

have_worked_with = df['LanguageHaveWorkedWith'].str.split(';').explode().value_counts().head(10).index

Next, I performed the same query on the column LanguageWantToWorkWith,
containing the answers to the question: What language do you hope to work
with in the next year? Besides the name of the column and the variable to
which I assign the results, the query is the same:

want_to_work_with = df['LanguageWantToWorkWith'].str.split(';').explode().value_counts().head(10).index

Next, I asked what languages are on both top-10 lists. Because pandas index
objects are similar to series, I could run the isin method, asking which
elements of want_to_work_with are in have_worked_with—then using the
resulting boolean index on want_to_work_with:

want_to_work_with[want_to_work_with.isin(have_worked_with)]

But it turns out that pandas makes it easy to do this, with the "intersection"
method. Note that this method works on index objects, and not on series:

want_to_work_with.intersection(have_worked_with)

The next question asks: What languages in the top 10 have people worked
with, but don’t want to work with in the coming year? We can again use
isin to find which elements of have_worked_with are in
want_to_work_with:

have_worked_with.isin(want_to_work_with)

This returns a boolean index. We can reverse it, such that we find which
elements of have_worked_with are not in want_to_work_with:

~have_worked_with.isin(want_to_work_with)

Now we can apply the resulting boolean index to have_worked_with:

have_worked_with[~have_worked_with.isin(want_to_work_with)]

And we discover that despite their current popularity, people aren’t excited
about working with either shell scripts or C++ in the future. (I understand and
agree!)

Next, I wanted to find out which language is most popular in each country.
That is, we’ve already found that JavaScript is the most popular
programming language overall. Is this universally true? Our data frame has a
Country column, so it stands to reason that we could use groupby to find the
most popular language per country. But there’s a problem, namely that the
languages are all in the LanguageHaveWorkedWith column. If we use explode
to put each language on its own row, the resulting series will be a different
length than df, meaning that we cannot add it as a new column.

However, the series that we get back from explode has the same index as the
original series on which it was run. Meaning that if the original column had
an index of 0 and mentioned both Python and JavaScript, then the resulting
series will have two rows, both with an index of 0, one with Python and the
other with JavaScript.

This means that while we cannot assign the exploded series as a column, we
can use join to merge the series onto the data frame.

First, let’s create a new series, all_languages, containing the programming
languages. We don’t need to do this, but it’ll make the join easier to
understand:

all_languages = df['LanguageHaveWorkedWith'].str.split(';').explode()

Then, we can perform our join. Note that while join is a method on data
frames (not series), we can pass either a data frame or a series as the
argument to it. In other words, we can say:

df.join(all_languages)

Actually, the above code won’t work: We get an error, because the data
frame that results from this join will have two columns named
LanguageHaveWorkedWith. There are several ways to solve this problem; we
could set LanguageHaveWorkedWith.name to a different value. We could pass
a value to one or both of the lsuffix or rsuffix parameters, adding a suffix
to joined columns from the left or right, thus avoiding a clash. But I think that
the easiest thing is actually to realize that we really only care about the
Country column in the data frame, meaning that we can run join on it, and it

alone:

df[['Country']].join(all_languages)

Notice that we used double square brackets around 'Country', to ensure that
the result was a data frame (i.e., multiple columns) rather than a series (i.e.,
one column). Now that we’ve created this new data frame, we can use
groupby on it:

df[['Country']].join(all_languages).groupby('Country')

This gives us a groupby object, but now we have to apply a method. And
what aggregation method do we want to use? The normal choices are mean,
count, and std, but here we want the value that appears the most—often
known as the "mode." However, there isn’t any mode method that we can
apply—at least, no such method is provided directly. However, we can use
the method pd.Series.mode, applying it by passing it to the agg method on
our groupby object:

df[['Country']].join(all_languages).groupby('Country').agg(pd.Series.mode)

The result is a 1-column data frame whose index contains country names, and
whose values represent the most popular language in each country. We can
even find the relative popularity of different languages with value_counts:

df[['Country']].join(all_languages).groupby('Country').agg(pd.Series.mode).value_counts()

Next, I asked you to find the mean number of languages that developers used
in the last year. What we can do is break LanguageHaveWorkedWith into
pieces, and then run len on that list. That’ll give us a series of integers, on
which we can then run mean:

df['LanguageHaveWorkedWith'].str.split(';').str.len().mean()

Notice that we have to use the str accessor twice here: First, we use it to run
the split method, turning our series of strings into a series of lists. Then we
use str a second time, this time to run len on each element, giving us a series
of integers—on which we can then run mean. And yes, we’re using the str
accessor to run len on lists; the accessor will try to run the method on

whatever data it has, and since lists also support len, we’re just fine.

Next, I wanted to find out the greatest number of languages anyone had
indicated they used in the last year. I can do that by running max:

df['LanguageHaveWorkedWith'].str.split(';').str.len().max()

At least one person indicated they had worked with 38 different programming
languages in the last year… out of the 38 that were listed on the survey
questionnaire, leading me to wonder if they simply checked all of the boxes.
Maybe there were others who did the same thing? I asked you to determine
how many people had that same number of languages marked:

df['LanguageHaveWorkedWith'][df['LanguageHaveWorkedWith'].str.split(';').str.len() == 38].count()

Here, I used the length of the post-split list in a comparison, resulting in a
boolean index. I applied the boolean index to the column
LanguageHaveWorkedWith, and then applied count to find out how many
rows matched.

Next, I asked you to look at developer salaries, as reported in the survey.
First, how many developers are making more than $2 million/year?

df['CompTotal'][df['CompTotal'] >= 2_000_000].count()

Wow—2,360 people reported that kind of salary! Let’s remove them from
our data, since it’ll otherwise get rather skewed:

df = df[df['CompTotal'] < 2_000_000]

We’ll get back to salaries in a moment, but now I want to take the
LanguageHaveWorkedWith column, and turn it into multiple columns. That’ll
allow us to more easily analyze the individual languages. Doing this is known
as creating "dummy columns." Instead of a column containing the string
'JavaScript;Python', we’ll create one column called JavaScript and another
called Python, putting 1s where the person marked themselves as using
JavaScript, and 0s where they indicated they did not.

I can create a new data frame of dummy values based on

LanguageHaveWorkedWith using the str.get_dummies method:

df['LanguageHaveWorkedWith'].str.get_dummies(sep=';')

But how can I then integrate this new data frame into our existing one? The
answer is pd.concat, which we’ve used in the past. The difference is that we
want to join them horizontally (i.e., combining them left-and-right, rather
than top-and-bottom). To tell pd.concat this, we need to indicate
axis='columns', similar to what we’ve done with other methods in the past,
such as df.drop. We can then assign the result of the concatenation back to
df:

df = pd.concat([df, df['LanguageHaveWorkedWith'].str.get_dummies(sep=';')], axis='columns')

With these dummy columns in place, we can ask questions regarding salaries
and language knowledge. First, what was the average salary of someone who
knows Python and JavaScript, but not Java?

df['CompTotal'][(df['Python'] == 1) &

 (df['JavaScript'] == 1) &

 (df['Java'] == 0)].mean()

I got a result of $126,817.

What about someone who knows Python and Java, but not JavaScript?

df['CompTotal'][(df['Python'] == 1) &

 (df['JavaScript'] == 0) &

 (df['Java'] == 1)].mean()

Here, I got a result of $162,737.

Finally, what about someone who knows Java and JavaScript, but not
Python?

Java and Javascript, not Python

df['CompTotal'][(df['Python'] == 0) &

 (df['JavaScript'] == 1) &

 (df['Java'] == 1)].mean()

This resulted in $140,867.

8.4.2 Solution

filename = '../data/so_2021_survey_results.csv'

df = pd.read_csv(filename, usecols=['LanguageHaveWorkedWith',

 'LanguageWantToWorkWith',

 'Country', 'CompTotal'])

df['LanguageHaveWorkedWith'].str.split(';').explode().value_counts().index

have_worked_with = df['LanguageHaveWorkedWith'].str.split(';').explode().value_counts().head(10).index

want_to_work_with = df['LanguageWantToWorkWith'].str.split(';').explode().value_counts().head(10).index

want_to_work_with.intersection(have_worked_with)

have_worked_with[~have_worked_with.isin(want_to_work_with)]

all_languages = df['LanguageHaveWorkedWith'].str.split(';').explode()

df[['Country']].join(all_languages).groupby('Country').agg(pd.Series.mode)

df['LanguageHaveWorkedWith'].str.split(';').str.len().mean()

df['LanguageHaveWorkedWith'].str.split(';').str.len().max()

df['LanguageHaveWorkedWith'][df['LanguageHaveWorkedWith'].str.count(';') == 37].count()

df['CompTotal'][df['CompTotal'] >= 2_000_000].count()

df = df[df['CompTotal'] < 2_000_000]

df = pd.concat([df, df['LanguageHaveWorkedWith'].str.get_dummies(sep=';')], axis='columns')

df['CompTotal'][(df['Python'] == 1) &

 (df['JavaScript'] == 1) &

 (df['Java'] == 1)].mean()

df['CompTotal'][(df['Python'] == 1) & (df['JavaScript'] == 0) & (df['Java'] == 1)].mean()

df['CompTotal'][(df['Python'] == 0) & (df['JavaScript'] == 1) & (df['Java'] == 1)].mean()

8.4.3 Beyond the exercise

When developers are stuck (as indicated in the column NEWStuck), what
are the three thing they’re most likely to do?
What proportion of the survey respondents marked their gender as Man?
Does that proportion seem similar to your real-life experiences?
On average, what proportion of their years coding have been done
professionally?

8.5 Summary

In this chapter, we looked at various ways that pandas lets us work with
textual data, especially via the str accessor. The combination of Python’s
rich string methods along with the various ways that pandas lets us
manipulate series and data frames gives us a great deal of flexibility, and lets
us ask a wide variety of sophisticated questions that aren’t directly numerical.
Many data sets, such as the ones we looked at in this chapter, contain a mix
of numeric and textual data, and being able to work with the text alongside
the numbers is especially useful.

9 Dates and times
Programming languages' core data structures reflect the types of information
that we work with on a regular basis. It makes sense that we’ll have numbers,
because we use numbers a lot. We use lots of text, so strings make sense, as
well. And of course, we need collections of various sorts, so every language
provides some of those—in the case of Python, we have lists, tuples,
dictionaries, and sets, for starters.

Modern programming languages also support another type of data, one which
we (as people) use on a regular basis, but which weren’t part of the
programming canon when I started my career: Dates and times. It seems
obvious in retrospect that dates and times, which are such an essential part of
our lives, should be a main part of our programming languages. But it turns
out that dealing with dates and times is hard, with all sorts of tricky issues to
deal with—from leap years, to time zones, to the odd data structures we need
in order to computerize a calendar that wasn’t exactly designed with
computers in mind.

Both the Python language and pandas handle time data with two different
data structures: A "timestamp" data type (also known as a "datetime" in many
languages and systems) handles specific points in time, one that you can
point to using a calendar. A timestamp happens once, and only once—when
you were born, when your plane will be taking off, when you and your date
will meet at a restaurant, or when the meeting was scheduled to end. You can
describe a timestamp with a particular year, month, day, hour, minute, and
second.

A second, complementary data type is that of the "timedelta," known in some
systems as an "interval." A time delta represents a time stamp—the distance
between two timestamp objects. So the meeting’s scheduled start and end can
be represented as timestamps, but the time that the meeting takes is a
timedelta.

Not surprisingly, lots of the data that we want to analyze contains time and

date information. And thus, it’s good to know that pandas can handle dates
and times quite flexibly. We can read data in from files, turning columns into
timestamps. We can also convert existing values—both individual values and
series objects—into timestamps. We can perform calculations with
timedeltas, and perform comparisons with them.

But pandas goes further than that, allowing us to use date and time
information in our indexes. This makes it even easier to search for data that
took place during specific periods. Even better, we can perform "resampling,"
which is most easily described as "grouping by time periods."

This chapter’s exercises all take advantage of these capabilities in pandas to
explore information that has to do with dates and times. Along the way,
you’ll get experience working with a variety of date formats and input types,
as well as producing reports based on those types.

9.1 Useful references
Table 9.1. What you need to know

Concept What is it? Example To learn more

pd.to_datetime

If passed a
series of
strings,
returns a
series of
Timestamp

objects

pd.to_datetime(s['when'])
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.to_datetime.html

pd.to_timedelta

If passed a
series of
strings,
returns a
series of
Timedelta

pd.to_timedelta(s['how_long'])
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.to_timedelta.html

objects

pd.read_csv

Returns a
new data
frame
based on
CSV input

df = pd.read_csv('myfile.csv')
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.read_csv.html

time.strftime

Produce a
string,
based on a
time value

time.strftime(a_time,

a_format)
docs.python.org/3/library/time.html#time.strftime

time.strptime

Parses a
string into
a time
object

time.strptime(time_string) docs.python.org/3/library/time.html#time.strfpime

df.to_csv

Writes a
CSV file
based on a
data frame

df.to_csv('mydata.csv')
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.to_csv.html

df.resample

Performs a
time-based
groupby

operation,
on a
specified
period of
time

df.resample('1M')
pandas.pydata.org/pandas-
docs/stable/user_guide/timeseries.html#resampling

s.diff

returns a
new series
with the
same index
as s, but
whose
values
indicate the
difference
between
that value
and the
previous
value

s.diff()
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.diff.html

s.pct_change

returns a
new series
with the
same index
as s, but
whose
values
indicate the
percentage
difference
between
that value
and the
previous
value

s.pct_change()
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.pct_change.html

Creating datetime and timedelta objects

As we’ve repeatedly seen, pandas largely avoids built-in Python data
structures in favor of its own types, or those defined by NumPy. This is also

the case when it comes to dates and times: To represent a specific point in
time, we use the Timestamp class, instead of either the datetime.datetime
class that comes with Python or the np.datetime64 class that comes with
NumPy.

The standard way to create Timestamp objects is with the module-level
function to_timestamp, which takes a variety of argument types. If passed a
single argument, it returns one Timestamp. For example, we can get the
current date and time by passing the string it ’now’:

pd.to_datetime('now')

But it's far more common, and useful, for us to call `pd.to_timestamp` on an existing series of strings containing date-and-time information. For example:

s = Series(['1970-07-14', '1972-03-01', '2000-12-16', '2002-12-17', '2005-10-31'])

pd.to_datetime(s)

The above code returns a new series:

0 1970-07-14

1 1972-03-01

2 2000-12-16

3 2002-12-17

4 2005-10-31

dtype: datetime64[ns]

Don’t be confused by the indication that the dtype is datetime64, a type
from NumPy; the values are all of type Timestamp, a pandas type.

In this example, the strings that we fed to to_datetime were pretty
unambiguous, and easy to parse. But what if we have slightly different
strings, using month names instead of numbers?

s = Series(['1970-Jul-14', '1972-Mar-01', '2000-Dec-16', '2002-Dec-17', '2005-Oct-31'])

pd.to_datetime(s)

Actually, it’ll work just fine: That’s because pd.to_datetime is fairly smart
and flexible, and can parse a number of different date formats. So the above
format will work, as will this one:

s = Series(['14-Jul-1970', '01-Mar-1972', '16-Dec-2000', '17-Dec-2002', '31-Oct-2005'])

pd.to_datetime(s)

But what if we pass dates that are a bit more ambiguous? For example, what
if the months are all numbers:

s = Series(['14-07-1970', '01-03-1972', '16-12-2000', '17-12-2002', '31-10-2005'])

pd.to_datetime(s)

Once again, it works just fine. However, there are times when it’s less
obvious, and where human culture and tradition plays a role. For example,
take the following:

s = Series(['01/03/1972', '05/12/1995'])

pd.to_datetime(s)

Should pandas interpret these dates as the 1st of March, or the 3rd of January,
and as the 5th of December, or the 12th of May? By default, ambiguous date
formats are assumed to have the day first, as done in the United States.
However, you can override that by passing dayfirst=False to
pd.to_datetime:

s = Series(['01/03/1972', '05/12/1995'])

pd.to_datetime(s, dayfirst=False)

All of the above examples have only included dates, but we could include
time information, as well:

s = Series(['1970-07-14 8:00', '1972-03-01 10:00 pm', '2000-12-16 12:15:28', '2002-12-17 18:17', '2005-10-31 23:51'])

pd.to_datetime(s)

The above code returns:

0 1970-07-14 08:00:00

1 1972-03-01 22:00:00

2 2000-12-16 12:15:28

3 2002-12-17 18:17:00

4 2005-10-31 23:51:00

dtype: datetime64[ns]

Notice that I sometimes included seconds, and in one case indicated am/pm
rather than using a 24-hour clock. pandas tries hard to understand all of these
formats, and to interpret them as best as possible.

What if you have several series representing the year, month, and date? You

can use pd.to_datetime to get a new Timestamp series based on those
inputs. This is especially useful if you’re trying to create a Timestamp column
from a data frame:

df = DataFrame([s.split('-')

 for s in ['14-07-1970', '01-03-1971', '16-12-2000', '17-12-2002', '31-10-2005']],

 columns='day month year'.split())

pd.to_datetime(df[['year', 'month', 'day']])

This code results in:

0 1970-07-14

1 1971-03-01

2 2000-12-16

3 2002-12-17

4 2005-10-31

dtype: datetime64[ns]

All of this is fine, but it ignores a common use case: We are loading a CSV
file, and one or more columns in the file are datetime information. How can
we ensure that these columns are interpreted as Timestamp data, and not as
strings? We need to tell pandas to do this, using the parse_dates parameter
in the read_csv function. We can pass a list of columns, either as names
(strings) or as integers (indexes). For example:

pd.read_csv(filename, parse_dates=['birthday', 'anniversary'])

There are a variety of different parameters that you can pass to influence the
parsing process. One of them is dayfirst, which works just as we saw above
—to indicate that the dates being read start with days (as done in Europe)
rather than with months (as done in the United States).

Once we have a Timestamp series, we can use the dt accessor to retrieve a
variety of different parts of each object. For example:

s.dt.month # month number

s.dt.month_name # month name

s.dt.hour # hour

s.dt.day_of_week # day of week

s.dt.is_leap_year # is it a leap year?

Some of these attributes return numbers, whereas others return boolean

values. The full list of attributes you can retrieve via the dt accessor starts at
pandas.pydata.org/docs/reference/api/pandas.Series.dt.date.html.

Finally: I mentioned at the start of this chapter that when we work with dates
and times, we need two distinct data types. We’ve spent some time looking at
the first one, namely timestamps. But what about time deltas, also known as
intervals? We can generally say:

datetime - datetime = interval

datetime + interval = datetime

datetime - interval = datetime

In other words: Given two datetime objects, we can get an interval object
representing the time between them. For example, given a birth date and a
death date, we can calculate the length of someone’s life. And given a
datetime and an interval, we can get the datetime on the other side of that
interval. For example, given a meeting start time and its length, we can find
out when it ends—or similarly, if given a meeting end time and its length, we
can calculate when it started.

pandas allows us to perform precisely this type of calculation. For example,
if we have two timestamp series, subtracting one from the other gives us a
timedelta series. For example:

s = Series(['1970-07-14 8:00', '1972-03-01 10:00 pm', '2000-12-16 12:15:28', '2002-12-17 18:17', '2005-10-31 23:51'])

s = pd.to_datetime(s)

pd.to_datetime('2021-July-01') - s

The subtraction operation is broadcast to every element in s, returning a
series of timedelta64 objects:

0 18614 days 16:00:00

1 18018 days 02:00:00

2 7501 days 11:44:32

3 6770 days 05:43:00

4 5721 days 00:09:00

dtype: timedelta64[ns]

If you want to create a timedelta object or series, you can also call
pd.to_timelta, much as you can call pd.to_timestamp. The function’s
argument is typically going to be a string or series of strings, each describing

a time span, such as '1 hour' or '2 days'.

The pieces of a timedelta can be retrieved using the components attribute.
For example:

pd.to_timedelta('2 days 3:20:10').components

The above returns:

Components(days=2, hours=3, minutes=20, seconds=10, milliseconds=0, microseconds=0, nanoseconds=0)

If you have a series of timedelta objects, you can retrieve each individual
component, as well as the components attribute, via the dt accessor, much as
you can do with Timestamp objects.

Now that you’ve seen how you can create and retrieve from Timestamp and
timedelta objects, you’re all set to start working through the exercises in this
chapter, which use these skills to answer questions about a number of data
sets.

9.2 Exercise 39: Short, medium, and long taxi rides

We have already looked at taxi rides, and have even (in Exercise 30) looked
at short, medium, and long taxi rides. However, in that exercise, we
considered the distance traveled. In this exericse, we’ll look at the taxi rides
from the perspective of how much time the ride took. Specifically, I want you
to:

Load taxi data from January 2019 into a data frame, using only the
columns tpep_pickup_datetime, tpep_dropoff_datetime,
passenger_count, trip_distance, and total_amount, making sure to
load tpep_pickup_datetime and tpep_dropoff_datetime as datetime
columns.
Create a new column, trip_time, containing the amount of time each
taxi ride took as a timedelta.
What number and percentage of rides took less than 1 minute?
What was the average fare paid by people taking these short trips?
What number and percentage of rides took more than 10 hours?

Now create a new column, trip_time_group, in which the values will
be short (< 10 minutes), medium (>= between 10 minutes and 1 hour),
or long (> 1 hour).
What proportion of rides were in each group?
For each value in trip_time_group, what was the average number of
passengers?

9.2.1 Discussion

This exercise started similar to many others involving the taxi data. But
whereas we were previously willing to let pandas determine the dtype of
each column on its own, here we needed to tell it to parse two of the columns
as Timestamp objects. We could, of course, have imported them as text (i.e.,
the default) and then run pd.to_timestamp on them, but this makes the
process a bit easier and cleaner. We can say:

filename = '../data/nyc_taxi_2019-07.csv'

df = pd.read_csv(filename,

 usecols=['tpep_pickup_datetime',

 'tpep_dropoff_datetime',

 'trip_distance', 'passenger_count', 'total_amount'],

 parse_dates=['tpep_pickup_datetime', 'tpep_dropoff_datetime'])

Notice that I need to include the two timestamp columns,
tpep_pickup_datetime and tpep_dropoff_datetime, both in the usecols
list and also in the parse_dates list. In addition, this only works without any
additional hints or tuning because the taxi dates are all stored in an
unambiguous format of YYYY-MM-DD.

We can double check that the columns have been interpreted correctly by
invoking the dtypes method on our data frame:

df.dtypes

The result makes it clear that the parsing succeeded:

tpep_pickup_datetime datetime64[ns]

tpep_dropoff_datetime datetime64[ns]

passenger_count float64

trip_distance float64

total_amount float64

dtype: object

If we had not parsed the two timestamp columns, they would be listed as
object, which as we’ve seen indicates that pandas is leaving them as Python
objects—most often, as strings.

With these timestamp columns in place, we can create a new timedelta
column called trip_time by subtracting the pickup time from the dropoff
time:

df['trip_time'] = df['tpep_dropoff_datetime'] - df['tpep_pickup_datetime']

With this timedelta column in place, we can now start to ask questions
about our data. For example, how many of the taxi rides in July 2019 took
less than 1 minute?

In order to answer this, we’ll need to perform a comparison with our
trip_time column. Now, we could create a timestamp object with
pd.to_timestamp—but it turns out that pandas takes pity on us, and allows
us to compare a timestamp column with a string, by doing the conversion
behind the scenes:

df['trip_time'] < '1 minute'

The above returns a new boolean series, indicating where the trip took less
than 1 minute. We can (as always) apply the boolean series to df as a mask
index, getting only those short trips. Rather than get the entire data frame
back, though, I decided to apply the mask only to df['trip_time'], and then
run count on the resulting series:

df['trip_time'][df['trip_time'] < '1 minute'].count()

I found that 70,212 taxi rides were less than 1 minute long. This seems like a
large number of taxi rides to be taking so little time, but New York is a big
city. What percentage of rides does this represent? We can find out by
dividing this into the total number of rides in our data set:

df['trip_time'][df['trip_time'] < '1 minute'].count() / df['trip_time'].count() * 100

Turns out that just over 1 percent of taxi rides take less than a minute. That
seems high to me, but maybe people enjoy taking a taxi for one or two blocks
when they’re in New York.

How much, on average, did people pay for those super short taxi rides? In
order to calculate that, I applied the mask index to total_amount, and then
calculated the mean:

df['total_amount'][df['trip_time'] < '1 minute'].mean()

The result? More than $30! The only thing odder about so many people
taking 1-minute taxi rides is the fact that they then had to pay more than $30
for the privilege.

Next, I asked you to find taxi rides that took more than 10 hours. I cannot
imagine spending 10 hours in the back of a New York City taxi (or any other
taxi, for that matter), but I thought that it might be interesting to find out just
how many such rides existed in this data set. Once again, I compared the
trip_time column to a string:

df['trip_time'] > '10 hours'

I then applied the resulting boolean series as a mask index, and got all of the
long rides, which I then counted:

df['trip_time'][df['trip_time'] > '10 hours'].count()

I found that there were 16,698 rides than took more than 10 hours in our data
set. That seems rather high to me, but maybe it’s a reasonable percentage.
Let’s calculate that:

df['trip_time'][df['trip_time'] > '10 hours'].count() / df['trip_time'].count() * 100

Turns out, these consistuted only 0.2 percent of all taxi rides. Even so, that
means 2 out of every 1,000 taxi rides in New York takes more than 10 hours.

Next, I wanted to group taxi rides into three categories, namely "short,"
"medium," and "long." In order to do that, I wanted to use pd.cut, a method
we’ve already used to perform a similar task. But in order for this to work,

we need to pass a bins value to pd.cat, one consisting of values that can be
compared with our series.

Our intermediate cut points are going to be 10 minutes and 1 hour. Meaning,
we’ll call "short" trips those that are up to 10 minutes long, "medium" trips
between 10 minutes and 1 hour, and "long" trips as longer than 1 hour.
However, pd.cut won’t let us use strings in order to compare with our
timedelta column. We’ll thus need to create a Python list (or pandas series)
of timedelta objects. I decided to do this with a list comprehension, a
standard Python technique but one that might seem a bit odd if you’re mostly
a data analyst:

[pd.to_timedelta(arg)

 for arg in ['0 seconds', '10 minutes', '1 hour', '100 hours']]

In short, this list comprehension:

Iterates over a list of strings
Converts each string to a timedelta
Returns a list of four timedelta objects, based on the strings

We can then pass this list to pd.cut:

df['trip_time_group'] = pd.cut(df['trip_time'],

 bins=[pd.to_timedelta(arg)

 for arg in ['0 seconds', '10 minutes', '1 hour', '100 hours']],

 labels=['short', 'medium', 'long'])

Notice that in order to have three labels, we need to have four cut points, or
"bins" as they’re known here. And while we don’t need to provide labels, we
definitely want to do so. The result of invoking pd.cut is a new series, which
we then assign to df['trip_time_group'].

With those categories in place, we can then perform a groupby query, seeing
if there’s any substantial difference in the number of passengers between
short, medium, and long trips:

df.groupby('trip_time_group')['passenger_count'].mean()

While short and medium trips both have average passenger counts of 1.5,

there’s a slightly larger average (1.7) for longer trips. That might imply that
trips of more than 1 hour have more passengers—although it’s hard to say
just why.

9.2.2 Solution

filename = '../data/nyc_taxi_2019-07.csv'

df = pd.read_csv(filename,

 usecols=['tpep_pickup_datetime',

 'tpep_dropoff_datetime',

 'trip_distance', 'passenger_count', 'total_amount'],

 parse_dates=['tpep_pickup_datetime', 'tpep_dropoff_datetime'])

df['trip_time'] = df['tpep_dropoff_datetime'] - df['tpep_pickup_datetime']

df['trip_time'][df['trip_time'] < '1 minute'].count()#3

df['trip_time'][df['trip_time'] < '1 minute'].count() / df['trip_time'].count() * 100

df['total_amount'][df['trip_time'] < '1 minute'].mean()#5

df['trip_time'][df['trip_time'] > '10 hours'].count()#6

df['trip_time'][df['trip_time'] > '10 hours'].count() / df['trip_time'].count() * 100

df['trip_time_group'] = pd.cut(df['trip_time'],

 bins=[pd.to_timedelta(arg)

 for arg in ['0 seconds', '10 minutes', '1 hour', '100 hours']],

 labels=['short', 'medium', 'long'])#9

df.groupby('trip_time_group')['passenger_count'].mean()#10

9.2.3 Beyond the exercise

The data set that we loaded is supposed to be for July 2019. How many
trips are not from July 2019? That is, how many records are in the
wrong file?
What was the mean trip time for each number of passengers?
Load taxi data from July 2019 and 2020. For each year, and then for
each number of passengers, what was the mean amount paid?

9.3 Exercise 40: Writing dates, reading dates

In the previous exercise, we saw how easily we can read a CSV file into
pandas, even if it includes date and time information. Generally speaking, we
can pass values to the parse_dates keyword argument, indicating which
columns should be passed to pd.to_datetime, and we don’t have to think
about it any more. But in the real world, we’re often forced to deal with non-
standard formats for date and time information. We might be asked to write
data using a particular format, or (even more commonly) to read data that
doesn’t conform to a standard that pandas recognizes.

Fortunately, we can customize the ways in which datetime information is
written to disk, as well as how it is parsed when we read it into pandas. In
this exercise, we’ll practice doing exactly that:

Load taxi data from January 2019 into a data frame, using only the
columns tpep_pickup_datetime, passenger_count, trip_distance,
and total_amount, making sure to load tpep_pickup_datetime as
datetime.

Export this data frame to a tab-delimited CSV file. However, the
datetime information should be written in the format of day/month/year
HHh:MMm:SSs. That is:

The day should be a two-digit number
The month should be a two-digit number
The year should be a four-digit number
The hours should be a two-digit number, using a 24-hour clock,
followed by the letter h
The minutes should be a two-digit number, followed by the letter m
The seconds should be a two-digit number, followed by the letter s

Read the CSV file that we just created into a data frame. Make sure to
parse the datetime column appropriately.

9.3.1 Discussion

This exercise was meant to give you some practice exporting and importing
CSV files using alternative date formats. Most of the times that I’ve had to
read (or write) CSV files, dates have been in standard formats, ones that

pandas was able to parse without trouble. But are always those oddball
logfiles that need parsing, typically written by custom programs, that use
non-standard formats.

The good news is that we can use a custom date-parsing function to handle
these odd formats. We can also tell pandas to write datetime columns in a
format of our choosing, using the specifiers for time.strptime. And indeed,
these are the skills that I asked you to practice in this exercise.

I’ve had occasion to use this functionality in pandas just to translate files
from one datetime format to another. In other words, I didn’t use pandas for
data analysis, but instead as a very fancy date-translation service. That might
feel like using a sledgehammer to swat a fly, but it got the job done, while
writing almost no code.

We started the exercise by importing New York taxi data from July 2019,
including the tpep_pickup_datetime column. In order to ensure that
tpep_pickup_datetime is treated as a datetime column, we specify
parse_dates to read_csv:

filename = '../data/nyc_taxi_2019-07.csv'

df = pd.read_csv(filename,

 usecols=['tpep_pickup_datetime', 'trip_distance',

 'passenger_count', 'total_amount'],

 parse_dates=['tpep_pickup_datetime'])

With the data frame in place, we can export the data to CSV file containing
only these four columns, but with a slightly odd datetime format. In theory,
we could create a new column based on tpep_pickup_datetime, but with the
format we want, and then export that new column to the CSV file. But it turns
out that pandas is one step ahead of us here, allowing us to specify the format
in which datetime columns will be written by passing a value to the
date_format parameter.

The format is specified using % signs, using the format specifiers from
time.strftime, and described here:
docs.python.org/3/library/time.html#time.strftime. Our output can contain
any combination of hours, minutes, months, days, time zones, and other
elements that we might like. The format that I described wanting in the output

is a bit unusual, in that dates are specified as %d/%m/%Y, meaning two digits
for the day, two digits for the month, and four digits for the year, followed by
a space character, and then the time in 24-hour format, but with h after the
hours, m after the minutes, and s after the seconds. We can specify that as
follows:

'%d/%m/%Y %Hh:%Mm:%Ss'

We can, then, write to our CSV file as follows:

df.to_csv('ex40_taxi_07_2019.csv',

 sep='\t',

 columns=['tpep_pickup_datetime', 'passenger_count',

 'trip_distance', 'total_amount'],

 date_format='%d/%m/%Y %Hh:%Mm:%Ss')

In the above code, I wrote to the file named ex40_taxi_07_2019.csv, and
specified (with the sep keyword argument) that we will use tabs to separate
the fields. pandas uses the date_format parameter to indicate how all
datetime columns (only tpep_pickup_datetime, in our case) should be
written.

Given that we’re going to be using this special datetime format in a number
of places in our program, I thought that it might be wiser to define it as a
global string variable, dt_format. Then we can access that variable both
within our call to df.to_csv, and also later on, in our date-parsing function.
In such a case, the code will look like this:

dt_format='%d/%m/%Y %Hh:%Mm:%Ss'

df.to_csv('ex40_taxi_07_2019.csv',

 sep='\t',

 columns=['tpep_pickup_datetime', 'passenger_count', 'trip_distance', 'total_amount'],

 date_format=dt_format)

Once the file was written, I asked you to import it back into pandas, into a
new data frame, and then to check that the re-loaded tpep_pickup_datetime
column remains a datetime column. Given the odd format we used to write
the data, we cannot expect that pandas will interpret the column correctly.
For that reason, we’ll need to use a custom date parser. Such a function
should expect to get a single string value, and will be called once for each

row in the incoming data frame. The function should return a time.time (or
datetime.datetime, if you prefer) object, which pandas then puts into the
appropriate column of the data frame it creates. In this case, I wrote the
function as follows:

def parse_weird_format(s):

 return time.strptime(s, dt_format)

Finally, we call df.read_csv, specifying not only the filename, separator,
and columns, but also which column requires parsing as a date, and (most
importantly) the function we want to use to parse those dates:

df = pd.read_csv('ex40_taxi_07_2019.csv',

 sep='\t',

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance', 'total_amount'],

 parse_dates=['tpep_pickup_datetime'],

 date_parser=parse_weird_format)

Notice that the value we pass to date_parser is a function; we’re not
invoking parse_weird_format, but rather pd.read_csv is doing so on our
behalf, once for each row in the incoming file.

Alternatively, we could have read the value into a string column, and then run
to_timestamp, passing our string format. That would work just as well, but I
prefer to get the parsing done while we’re reading the file, rather than in a
separate step afterwards.

Another alternative approach would be to use lambda, which creates an
anonymous function. That would be particularly useful in this case, given that
our custom date-parsing function is itself a one-liner, invoking
time.stptime:

df = pd.read_csv('ex40_taxi_07_2019.csv',

 sep='\t',

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance', 'total_amount'],

 parse_dates=['tpep_pickup_datetime'],

 date_parser=lambda s: time.strptime(s, dt_format)

lambda is somewhat controversial in the general Python world; experienced
programmers like the fact that it’s short, in-place, and doesn’t create a new
function that we won’t be using again. However, lambda is hard for many

inexperienced developers to understand. Passing a function as an argument to
another function is hard enough for many to understand; making that function
argument anonymous is a lot for many to swallow. However, as you get more
experienced with pandas, you might also enjoy starting to use lambda in
these sorts of one-off situations.

9.3.2 Solution

filename = '../data/nyc_taxi_2019-07.csv'

df = pd.read_csv(filename, #1

 usecols=['tpep_pickup_datetime', 'trip_distance',

 'passenger_count', 'total_amount'],

 parse_dates=['tpep_pickup_datetime'])

dt_format='%d/%m/%Y %Hh:%Mm:%Ss'#2

df.to_csv('ex40_taxi_07_2019.csv',#3

 sep='\t',

 columns=['tpep_pickup_datetime', 'passenger_count',

 'trip_distance', 'total_amount'],

 date_format=dt_format)

import time

def parse_weird_format(s): #4

 return time.strptime(s, dt_format)

df = pd.read_csv('ex40_taxi_07_2019.csv', #5

 sep='\t',

 usecols=['tpep_pickup_datetime',

 'passenger_count', 'trip_distance', 'total_amount'],

 parse_dates=['tpep_pickup_datetime'],

 date_parser=parse_weird_format) #6

9.3.3 Beyond the exercise

Export the tpep_pickup_datetime date in Unix time—i.e., the number
of seconds since 1 January 1970. This will be an integer value.
Read the data frame from "Beyond 1" back into a data frame. Read the
tpep_pickup_datetime column into a string column, and use
pd.to_datetime to convert it into a datetime column.
Repeat "Beyond 2", but using date_format and lambda

Time series

We have already seen how a data frame’s index can be an integer or string.
But things get really exciting when you set a timestamp column to be your
index. In the pandas world, we call that a "time series." And when you create
a time series, you can take advantage of a number of useful pandas features.

First, let’s create a time series. I created a data frame with the dates and
designations of NASA’s Apollo program missions, grabbed from Wikipedia:

all_dfs = pd.read_html('https://en.wikipedia.org/wiki/Apollo_program')

df = all_dfs[2].copy()[['Date', 'Designation']]

I then removed the ending dates from those entries that had one, in order to
create a series of Apollo launch dates:

df['Date'] = pd.to_datetime(df['Date'].str.replace('(–.+)?,', '', regex=True))

I then set the Date column to be my data frame’s index:

df = df.set_index('Date')

From this point on, df is a "time series." We can see this by looking at
df.index:

DatetimeIndex(['1966-02-26', '1966-07-05', '1966-08-25', '1967-02-21',

 '1967-11-09', '1968-01-22', '1968-04-04', '1968-10-11',

 '1968-12-21', '1969-03-03', '1969-05-18', '1969-07-16',

 '1969-11-14', '1970-04-11', '1971-01-31', '1971-07-26',

 '1972-04-16', '1972-12-07'],

 dtype='datetime64[ns]', name='Date', freq=None)

As you can see, the index contains a number of datetime objects. With this
in place, I can retrieve a row on a particular date, just as I would with a
normal index:

df.loc['1970-04-11']

Better yet, I can specify the smaller (i.e., more specific) parts of a date. That
is, I can leave out the day, thus retrieving all values in a single month:

df.loc['1970-07']

Or I can specify just a year, thus getting all missions in that year:

df.loc['1971']

I can retrieve a set of rows with a slice, by specifying a starting and ending
date:

df.loc['1968-07-01':'1972-08-31']

Perhaps the most interesting and powerful feature of a time series is
"resampling." Resampling is similar to a "groupby" query, except that instead
of producing one result per value of a categorical column, we get one result
per chunk of time, starting at the earliest point in time and ending with the
latest one. For example, resampling allows us to retrieve the mean value for
every day, or every two weeks, or every six months, or every year of a data
frame. For example, I can find out how many missions there were in every
six-month period covered by our data set:

df.resample('6M').count()

If the data is numeric, then you can run other aggregation methods, such as
mean and std, as well.

9.4 Exercise 41: Oil prices

In this exercise, we’re going to work with a CSV file containing oil prices—
specifically, West Texas Intermediate oil prices. These prices have been
reported and updated daily, at least in our data set, starting on January 2nd
1986, and continue to the present day. (I constructed the CSV file using a
Python program downloaded from github.com/datasets/oil-prices, which
retrieves publicly available oil-price information from the US government.)
In this exercise, we’ll look at historical oil prices, using the datetime
functionality in pandas to make such queries easier. Specifically, I want you
to:

Import the wti-daily.csv file into a data frame, in which the Date

column is both treated as a datetime value, and is set to be the index.
What was the average price of a barrel of oil in June, 1992?
What was the average price of a barrel of oil in all of 1987?
What was the average price from September 2003 through July 2014?
Show the price of oil at the end of each quarter in the data set.
For each year in the data set, show the average price.
On which date were oil prices the highest? When were they the lowest?

9.4.1 Discussion

We’ve already seen that by using the dt accessor, we can retrieve various
parts of a datetime column. With that tool at our disposal, we can query our
data in all sorts of ways. But we’ve also seen that certain queries can be
easier to read and write when we change the index. This is particularly true
when we set the index to be a datetime value; pandas provides us with all
sorts of useful functionality. In this exercise, we explored a number of these
functions while looking at historical oil prices.

The first task, as always, was to load the data from a CSV file into a data
frame. In this case, the CSV file contained only two columns, named Date
and Price. In loading the CSV file into memory, I asked pandas to treat the
Date column as (not surprisingly) a datetime value. I also asked it to make
that column the index, via the index_col parameter:

filename = '../data/wti-daily.csv'

df = pd.read_csv(filename,

 parse_dates=['Date'],

 index_col=['Date'])

With that in place, I was able to start making some queries. For starters, I
wanted to find out the average price of oil during the month of June, 1992. As
usual, I can retrieve items from the data frame by using the loc accessor,
along with the index value that’s of interest to me. But because it’s a time
series, I can provide a subset of the date, removing more specific parts in
order to match a larger number of rows. I could thus say:

df.loc['1992-06-15']

and get back the row for June 15, 1992. (If there were more than one row,
then I would get all of them back. But we know that each date in this data set
is unique.) However, I’m interested in all days in June, 1992. I can thus say:

df.loc['1992-06']

By leaving off the day, pandas matches and retrieves all rows in which the
date is somewhere in June of 1992. To get the mean price during that period,
we can say:

df.loc['1992-06'].mean()

I get a result of just over 22.38.

I similarly asked you to find the mean price during 1987. Just as I can leave
off the day to find all rows from a particular year and month, I can leave off
the day and month to get all rows from a particular year:

df.loc['1987'].mean()

This retrieves all rows with a year of 1987. We then run mean on the Price
column, which returns a number just over $19.20.

Next, I asked you to find the average price from September 2003 through
July 2014. The easiest way to do this, when we have a time series, is to use a
slice. Normally, Python slices are specified as a starting value, and then one
past the final value. For example, if I have a sequence (string, list, or tuple)
named s and request s[10:20], that retrieves the values from the index 10 up
to (but not including) 20.

Slices with a time series are similar, but as with other non-numeric indexes in
pandas, we include the end of the slice. I can specify the date on which I
want to start, and also the date on which I want to end:

df.loc['2003-09':'2014-07']

The above retrieves all rows from df starting from September 1st, 2003, and
going through July 31st, 2014. We can then run mean on the values we get
back:

df.loc['2003-09':'2014-07'].mean()

This returns a value of just over 76.45.

Next, I asked you to find the price of oil at the end of each quarter in the data
set. Now, the end of a quarter would theoretically be the final days in March,
June, September, and December. But that’s often not the case because of
weekends and holidays. We could get around this by looking up each of these
days on a calendar, but that gets tricky, and is almost certainly error prone.

Fortunately, pandas makes this easy to do, with the is_quarter_end attribute
on the dt accessor for datetime series. But in our case, the datetime values
aren’t exactly in a series; they’re on our index. How can we invoke
is_quarter_end on our datetime index?

It turns out that we can invoke it directly on the index, getting a boolean
series back:

df.index.is_quarter_end

This boolean series can then be applied as a mask index to df:

df[df.index.is_quarter_end]

The result is a one-column data frame whose index values are the final days
of each quarter, regaredless of whether it’s the 30th or 31st of the month in
question.

Finally, I asked you to find the mean price of oil for each year in our data set.
This is most easily accomplished by using resample, which is a kind of
groupby but for time series: It lets run an aggregation method (e.g., mean) for
all of the values in a given time period. If the time period doesn’t exist in the
data frame, or is cut off, it’ll still show up, to ensure that we have all of the
periods from start to finish.

When we run resample, we tell it what time-period granularity we’ll want,
giving a number and a letter representing the measurement. For example, we
can run our aggregation method on a weekly basis with 1W, or on a bimonthly
basis with 2M. In this exercise, I asked to see annual average prices, which

meant specifying 1Y. The resulting query is thus:

df.resample('1Y').mean()

The result from a resample query will always be a data frame, in which the
index contains the values from the end of each period. The index in my result
thus starts at 1986-12-31, and goes through 2021-12-31. Note that even if we
only have partial values for a year, we’ll get the average amount for that year.

Finally, I asked you to determine on which dates we had the historically
highest and lowest oil prices. There are numerous ways to accomplish this,
but I thought it was easiest to sort the values in the Price column—and then
retrieve the first and last values from the resulting sorted series. Remember
that we can retrieve more than one value by passing a list of indexes to loc or
iloc, and that if we use iloc (which retrieves by position), we can ask for
index 0 (the first item) and -1 (the final item):

df['Price'].sort_values().iloc[[0, -1]]

You might be surprised that the lowest price of oil in this data set -36.98,
meaning that you could get paid to accept a barrel of oil. If this sounds a bit
odd, then you’re right; it was the result of a dramatic drop in oil demand at
the start of the covid-19 pandemic. There wasn’t enough storage space for the
oil that had already been extracted from the ground, resulting in this bizarre
situation. Look it up—it’s just one of the many economic oddities of the
pandemic.

9.4.2 Solution

filename = '../data/wti-daily.csv'

df = pd.read_csv(filename,

 parse_dates=['Date'],

 index_col=['Date'])

df.loc['1992-06'].mean()

df.loc['1987'].mean()

df.loc['2003-09':'2014-07'].mean()

df[df.index.is_quarter_end]

df.resample('1Y').mean()

df['Price'].sort_values().iloc[[0, -1]]

9.4.3 Beyond the exercise

Use resample to find, for each quarter, the mean and standard deviations
in price.
In which quarter did we see the biggest increase in mean price from the
previous quarter?
What was the biggest percentage increase in oil prices across quarters?

9.5 Exercise 42: Best tippers

We’ve looked at New York taxi data a number of times already, but now
we’ll use our time-related knowledge to look at them once more. This time,
we’ll try to understand when people tip their taxi drivers more generously. (If
you’re not from the United States, then you might not be familiar with the
custom of tipping, often 15 or 20%, in addition to whatever a taxi meter says
you officially need to pay. In many other countries, this practice is
unexpected, rare, or even illegal.) In particular, I’d like you to:

Import the taxi info from both January and July 2019. Include the
following columns: tpep_pickup_datetime, passenger_count,
trip_distance, fare_amount, extra, mta_tax, tip_amount,
tolls_amount, improvement_surcharge, total_amount, and
congestion_surcharge.
Create a new column, pre_tip_amount, with all of the payment columns
except for total_amount and tip_amount.
Create a new column, tip_percentage, showing the percent of
pre_tip_amount that the tip was.
How many times did people tip more than the pre-tip amount?
What was the overall tip percentage, across all trips in the data set?
On which day of the week do people tip the greatest percentage of the
fare, on average?
At which hour do people tip the greatest percentage?
Do people typically tip more in January or July?
What was the 1-day period in our data set when people tipped the
greatest percentage?

9.5.1 Discussion

In this exercise, we asked the same question—when do people tip taxi drivers
the most?—in a number of different ways. All of them made use of the
extensive support for dates and times that pandas offers.

For starters, we loaded the data from both January and July 2019. As I’ve
done before, I thought it would be best to use a list comprehension along with
pd.read_csv. This resulted in the creation of a list of data frames, one which
I was able to turn into a single data frame with pd.concat:

filenames = ['../data/nyc_taxi_2019-01.csv', '../data/nyc_taxi_2019-07.csv']

all_dfs = [pd.read_csv(one_filename,

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance',

 'fare_amount','extra','mta_tax','tip_amount','tolls_amount',

 'improvement_surcharge','total_amount','congestion_surcharge'],

 parse_dates=['tpep_pickup_datetime'])

 for one_filename in filenames]

df = pd.concat(all_dfs)

I asked you to include a large number of columns when creating the data
frame, so that we could calculate the tip percentage more accurately. I
considered not asking you to specify usecols, but rather to read all of the
data anyway—but as tempting as it might be to do that, it’s not a good habit
to get into. You really want to specify the columns you want in your data
frame, otherwise, you’ll find yourself running out of memory when you work
with large data sets.

With our data frame in place, I wanted to calculate the pre-tip amount—that
is, the amount on which the tip would be based—for each ride. It’s not
always obvious what should (and shouldn’t) be included in the tip. For
example, do we include tolls for bridges and tunnels in our calculation? How
about the surcharge that’s sometimes added because the streets of New York
are extra congested during those hours? For our purposes, I included all of
these fees and charges.

I thus asked you to create a new column, pre_tip_amount, which would be
the sum of six columns. How can we do that?

One possiblity is to explicitly name those columns, and add them together:

df['pre_tip_amount'] = df['fare_amount'] + df['extra'] + df['mta_tax'] + df['tolls_amount'] + df['improvement_surcharge'] + df['congestion_surcharge']

This will certainly work, but it seems a bit wordy. Perhaps there’s a way for
us to name the columns and sum them together? The sum method would seem
to be a perfect way to do this, except that it sums the rows, rather than the
columns. But wait! Many pandas methods allow us to specify the axis on
which they run—and sure enough, sum is one of them. We can thus sum our
selected columns by specifying axis='columns':

df['pre_tip_amount'] = df[['fare_amount', 'extra', 'mta_tax', 'tolls_amount',

 'improvement_surcharge', 'congestion_surcharge']].sum(axis='columns')

Notice that we select our six columns with a list of strings. We then run sum
on these columns, producing a new pandas series. We assign this series back
to df['pre_tip_amount'].

With that in hand, we’re now ready to create another column,
tip_percentage, which contains the percentage of the pre-tip charge that the
user added as a tip:

df['tip_percentage'] = df['tip_amount'] / df['pre_tip_amount']

Our data frame now has all of the information we need in order to start
answering the questions we’ll want to pose about tipping in New York taxis.
For starters, what was the mean tipping rate across all taxi rides in our data
set? We can find that out by running the mean method on our
tip_percentage column:

df['tip_percentage'].mean()

I found that it was 13%. That seems a bit low to me, so perhaps I’m
calculating the pre-tip base amount differently than others do. But maybe the
data set is a bit more complex than a straight percentage. For example, does
anyone tip more than 100%? We can find out:

(df['tip_percentage'] > 1).value_counts()

Here, I use value_counts to find how many people tipped more than 100%

of the pre-tip amount. By applying value_counts to a boolean series, I’m
able to find out how often the True value was returned, meaning how often
my condition was met.

The number of people giving above-and-beyond tips isn’t overwhelming—
7,831 out of 13,969,564 rides. But it’s not zero, either, which came as a bit of
a surprise to me. However, this number would skew the average tip upward.
Perhaps there are people who aren’t tipping at all, which would skew things
downward? Let’s take a look, calculating the percentage of riders who don’t
tip at all:

(df['tip_percentage'] == 0).value_counts(normalize=True)

Once again, I use value_counts—but this time, I pass it normalize=True, to
get a percentage answer. And the results were a bit surprising, at least to me
—about 32 percent of taxi riders in New York don’t tip at all! This almost
certainly has an effect on the mean tipping rate.

Next, I was curious to know whether people tip more on any particular day of
the week. In order to do this, we’ll combine groupby with the dt accessor’s
day_of_week attribute, which returns the integer for the day of the week, with
Monday being 0 and Sunday being 6. You might think that we need to define
a new day_of_week column in our data frame, so that we can run a groupby
on it. But no, the pandas developers make it possible to run a groupby on not
only a column, but on the result we get back from dt.day_of_week:

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week)

For each day of the week, we want to get the mean tip percentage. We thus
run the following query:

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week)['tip_percentage'].mean()

This gives us values, one for each day of the week. Just to make sure that I
get the right data, I then want to sort the resulting values, from highest to
lowest:

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week)['tip_percentage'].mean().sort_values(ascending=False)

Much to my surprise, the tipping percentages aren’t that different from one
another. I was sure, before analyzing this data, that people tip more on
weekends, but the data doesn’t support that. On the contrary, it shows that
people tip the least on Fridays and Saturdays, and the most on Tuesdays and
Wednesdays. However, the difference isn’t that great, so I’m not sure if we
can really draw significant conclusions. Certainly, if I were a taxi driver
deciding which shifts to take, the tip amount on a given day wouldn’t make
much difference. (And besides, one third of your passengers aren’t going to
tip anything, right?)

But maybe the hour of the day does make a difference? That is, perhaps
people tip better in the mornings, or in the afternoons. I thus asked you to
create such a query, to find out at which hour of the day people tip the most,
on average:

df.groupby(df['tpep_pickup_datetime'].dt.hour)['tip_percentage'].mean().sort_values(ascending=False)

The query in this case is quite similar to the previous one. Here, however, we
did get some more interesting results; people tip about 11 percent early in the
morning (between 3 and 6 a.m.), and nearly 14 percent at night (from 8-11
p.m.). You see similar, if slightly lower, rates from 7-9 a.m.—so if you’re
unsure whether to take the 5 a.m. or 9 a.m. slot as a taxi driver, I’d suggest,
on average tips alone, choosing the latter.

Let’s ask another question, one which our data set can help us answer: Do
people tip more during the winter or the summer? (Or is there no difference?)
We have data from both January and July, which should give us some useful
insights. We can say:

df.groupby(df['tpep_pickup_datetime'].dt.month)['tip_percentage'].mean().sort_values(ascending=False)

We see that the highest tips (of 20 percent, on average) were given in May,
followed by August, March, and September, respectively.

But wait a moment: Our data set is supposed to contain data from January
and July. How did other months get in there? The answer, of course, is that
no data set is completely clean. Whether the dates are wrong, were reported
late, or were otherwise scrambled along the way, our data contains

information from other months. If we only compare January with July from
this data set, we see a slight difference between the months, with tipping in
January at 13.7 percent, but in July at 12.1 percent. Whether that’s because of
summer tourists (who might, I’m just guessing, tip more), or just people
feeling a bit more open with their cash during the summer months, I’m not
sure.

Next, I asked what one-day period in our data set had the highest average
percentage of tipping. This is one of those problems that’s most easily solved
with a time series, meaning that we use a datetime value as the index:

df = df.set_index('tpep_pickup_datetime')

With that in place, we can now use resample with an argument of 1D (i.e.,
one day) to find the day on which people tipped the most. First, we find the
mean tipping percentage for each day in the time series:

df.resample('1D')['tip_percentage'].mean()

That works, but I’d like to sort these values, so that I can find the highest-
tipping day. I do this by running sort_values on our results, and then listing
only the top 10 dates:

df.resample('1D')['tip_percentage'].mean().sort_values(ascending=False).head(10)

The results include zero days from either January or July. I’m going to try
this again, but will first get rid of dates that aren’t in January or July:

df = pd.concat([df['2019-01-01':'2019-01-31'],

 df['2019-07-01':'2019-07-31']])

df.resample('1D')['tip_percentage'].mean().sort_values(ascending=False).head(10)

Having cleaned the data from non-January/July rows, we can see that all 10
of the highest-tipping days were all in January. Which means that at least in
our data sample, people are more likely to tip better in the winter than in the
summer. We can double-check that this is the case by resampling at a one-
month granularity:

df.resample('1M')['tip_percentage'].mean().dropna()

Because we only have two months of data, but they’re in January and July,
using resample means that we’ll get NaN values for February, March, April,
May, and June. I thus removed those with dropna. And we see that the
average tipping rate in January was 13.7 percent, whereas in July it was 12.1
percent—a finding that I hadn’t anticipated.

9.5.2 Solution

filenames = ['../data/nyc_taxi_2019-01.csv', '../data/nyc_taxi_2019-07.csv']

all_dfs = [pd.read_csv(one_filename, #1

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance',

 'fare_amount','extra','mta_tax','tip_amount','tolls_amount',

 'improvement_surcharge','total_amount','congestion_surcharge'],

 parse_dates=['tpep_pickup_datetime'])

 for one_filename in filenames] #2

df = pd.concat(all_dfs) #3

df['pre_tip_amount'] = df[['fare_amount', 'extra', 'mta_tax', 'tolls_amount',

 'improvement_surcharge', 'congestion_surcharge']].sum(axis='columns')#4

df['tip_percentage'] = df['tip_amount'] / df['pre_tip_amount'] #5

df['tip_percentage'].mean() #6

(df['tip_percentage'] > 1).value_counts() #7

(df['tip_percentage'] == 0).value_counts(normalize=True)#8

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week)['tip_percentage'].mean().sort_values(ascending=False) #9

df.groupby(df['tpep_pickup_datetime'].dt.hour)['tip_percentage'].mean().sort_values(ascending=False).head(5) #10

df.groupby(df['tpep_pickup_datetime'].dt.month)['tip_percentage'].mean().sort_values(ascending=False) #11

df = df.set_index('tpep_pickup_datetime')#12

df.resample('1D')['tip_percentage'].mean().sort_values(ascending=False).head(10) #13

df = pd.concat([df['2019-01-01':'2019-01-31'],

 df['2019-07-01':'2019-07-31']])#14

df.resample('1D')['tip_percentage'].mean().sort_values(ascending=False).head(10)>15>

9.5.3 Beyond the exercise

We saw that 32 percent of riders don’t tip at all. Of those who do, what
percentage do they tip, on average?
How many of the rides in our data set, supposedly from January and
July 2019, are from outside of those dates?
Looking only at dates in January and July, on what week did passengers
tip the greatest percentage?

9.6 Summary

In this chapter, we explored various ways that pandas lets us examine data
that includes a date-and-time component. We saw how to read datetime
information into a data frame, how to extract datetime information from an
existing column, how to break such a column apart, and even how to interpret
odd datetime formats. We also saw how to create and work with a "time
series," a data frame in which a datetime column serves as our index, and
how to query it in various ways—including resampling, letting us run
aggregation methods over particular time periods.

10 Visualization
Data analysis, as you’ve seen throughout this book, is largely about numbers.
A typical pandas data frame contains columns and rows full of numbers, and
data analysis involves lots of mathematical methods and statistical
techniques. That’s fine, except that we humans are typically bad at
understand large collections of numbers. We’re generally much better at
understanding visual depictions of numbers, especially if we’re trying to
understand relationships among our data. So while we often think of
visualization as a way to explain technical ideas in simple terms to non-
experts, the fact is that visualization can also be helpful for the experts
working on a problem. Seeing a chart or graph can help us to put the numbers
in perspective, improve our understanding of a problem we’re working on,
and thus inform the very analysis that created the visualization.

The 900-pound gorilla in the world of Python data visualization is Matplotlib.
There’s no doubt that Matplotlib is powerful—but it’s also overwhelming to
many people. Fortunately, pandas provides a visualization API that allows us
to create plots from our data without having to use Matplotlib explicitly. We
thus get the best of both worlds—the ability to plot information in our data
frame, without having to learn too much about Matplotlib’s API. However, if
and when you need more power, Matplotlib is there, under the hood,
available to anyone who wants to use it.

At the end of this chapter, we’ll also spend some time looking at Seaborn, an
alternative to Matplotlib that you might want to explore. There are a number
of alternatives to Matplotlib, with some (like Seaborn) built on top of it,
providing a better, cleaner, and more modern API. Others are full-blown
alternatives to Matplotlib. It’s worth learning what your options are, to find a
system with which you feel comfortable. I’ve grown not only to like
Seaborn’s API, but also its ability to create attractive plots with little or not
customization.

This chapter will also provide you with the opportunity to explore one of the
nicest features of the Jupyter notebook, the fact that it keps images inline.

Whether it’s on your own or by exploring the notebooks that I’ve prepared
while writing this book, I strongly encourage you to experiment with
Jupyter’s plotting capabilities. The ability to have data, code, and plots in the
same document is a game changer for many projects, making it possible for
data scientists to both share information and get input from less technical
colleagues.

10.1 Useful references
Table 10.1. What you need to know

Concept What is it? Example

pd.read_csv

Returns a
new data
frame
based on
CSV input

df = df.read_csv('myfile.csv')

df.groupby

Allows us
to invoke
one or
more
aggregate
methods
for each
value in a
particular
column.

df.groupby('year')

df.loc

Retrieve
selected
rows and
columns

df.loc[:, 'passenger_count'] =

df['passenger_count']

df.plot

Entry to
the
plotting
system

df.plot.box()

s.quantile

Get the
value at a
particular
percentage
of the
values

s.quantile(0.25)

df.join

Join two
data
frames
together
based on
their
indexes

df.join(other_df)

pandas.plotting.scatter_matrix

Create
scatter
plots
comparing
every pair
of
numeric
columns

pandas.plotting.scatter_matrix

Matplotlib

Python
library for
plotting

import matplotlib.pyplot as

plt

data

Seaborn

Python
library for
plotting
data

import seaborn as sns

df.reset_index

Get a data
frame
identical
to our
current
one, but
with a
new
numeric
index
starting at
0

df.reset_index(drop=True)

pd.concat

Return a
list of data
frames,
combined,
as a
single,
new data
frame

df = pd.concat(df1, df2)

10.2 Exercise 43: Cities

We’ve already worked with the JSON file describing the 1,000 largest cities
in the United States, back in Exercise 20. In this exercise, we’ll look at the

same file—but instead of printing the analysis as a bunch of numbers, we’ll
visualize some of the most interesting numbers and trends in the file.
Specifically, I want you to:

Load data from cities.json into a data frame,
Create a bar plot showing how many of the top 1,000 cities are in each
state. Order the plot from smallest (on the left) to greatest.
Create a bar plot showing growth in Pennsylvania cities, sorted from
lowest (on the left) to highest.
Create a pie plot from all Massachusetts cities, so that we can see the
proportion that each city contributes to the overall population.
Create a scatter plot of the cities, with x being longitude and y latitude.
What does the resulting plot look like?

10.2.1 Discussion

In this exercise, we again loaded data from cities.json into a data frame.
But this time, the results of our analysis were visual and grahic. Matplotlib
offers a wide variety of plotting formats, and I used this exercise as a way to
explore a number of them, using different techniques to understand our data
in a variety of ways. As you saw, visualization isn’t just about choosing a
type of plot; you often need to clean, arrange, and modify the data before you
can do so.

First, I asked you to create a bar plot showing how many of the top 1,000
cities in the United States are in each state. The data frame that we created
from the JSON has several columns, one of which is state. We’ll use that
column, along with a call to groupby, to find the number of cities per state:

df.groupby('state').count()

This works, but it gives me a result for every column in the data frame. Since
I’m only interested in the number of cities, I can choose a single column—in
this case, the city column:

df.groupby('state')['city'].count()

With that in place, I can create a bar plot. But wait: The question asked for

the bar to be sorted from the smallest value to the largest. This means that
before producing the plot, I’ll need to sort the values in the series that was
returned by my groupby call. Fortunately, sorting a series is easily done with
sort_values:

df.groupby('state')['city'].count().sort_values()

With that in place, I can now produce my bar plot:

df.groupby('state')['city'].count().sort_values().plot.bar()

 Note

Another way to invoke this plot would be to invoke plot as a function,
passing kind='bar' as a keyword argument. I prefer the other syntax, but
either is considered standard and acceptable.

This works, but with 50 states (plus Washington, DC), we end up with a plot
that’s a bit small. I thus pass the figsize keyword argument to bar, which is
in turn passed along to the Matplotlib backend. By giving figsize a value of
(10, 10), we can set it to be a 10-inch by 10-inch square. It’s probably not
particularly surprising that California has the greatest number of large cities,
but the sheer number (and thus very tall bar in our plot) was still striking to
me when producing this plot.

Next, I asked you to create a bar plot showing growth in Pennsylvania cities,
sorted from lowest to highest. For this task, we needed to take data from the
growth_from_2000_to_2013 column, along with the city column, all from
rows in which state was equal to 'Pennsylvania'. I decided that it would
be easiest to turn these rows and columns into a separate, smaller data frame,
using df.loc:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']]

As we’ve seen on many occasions, I selected rows in which the state was
equal to 'Pennsylvania', and then the two columns that were of interest. I
then decided that since I’ll want to show the city names in my plot’s x index,
I should make it the index of the data frame:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']].set_index('city')

At this point, it would be nice to produce the plot. But there’s a problem: The
growth is a string, ending with a '%' sign. If we want to plot it, we’ll need to
turn it into a number. How can we do that?

We could use the str accessor to run a method on our string. But before we
can do that, we need to turn our data frame into a series. That’s because str
only works on a series. Fortunately, the index from a data frame remains
when we extract one column as a series:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']].set_index('city')['growth_from_2000_to_2013']

With our data now in a series, we can remove the '%' in a variety of ways. I
decided to use str.replace, turning all occurrences of '%' into the empty
string, ''. But we could also have used a slice to keep all but the final
character, or str.rstrip to remove '%' from the right side. Using
str.replace, we end up with the following code:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']].set_index('city')['growth_from_2000_to_2013'].str.replace('%', '')

The result is still a series of strings. However, these strings can all be turned
into floating-point values using astype:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']].set_index('city')['growth_from_2000_to_2013'].str.replace('%', '').astype(np.float16)

We now have every city in Pennsylvania, along with its growth percentage.
We could plot it, but before doing so, I asked you to sort the values from
lowest to highest. Once again, we invoke sort_values:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']].set_index('city')['growth_from_2000_to_2013'].str.replace('%', '').astype(np.float16).sort_values()

And with that in place, I once again create a bar plot, setting a size of (10,
10) to see it more easily in my notebook:

df.loc[df['state']=='Pennsylvania', ['city','growth_from_2000_to_2013']].set_index('city')['growth_from_2000_to_2013'].str.replace('%', '').astype(np.float16).sort_values().plot.bar(figsize=(10,10))

Next, I asked you to find all of the cities in Massachusetts, and to create a pie
plot with all of these cities. This will allow us to see what proportion of the
urban population of Massachusetts lives in each city. Remember that a pie

plot takes all of the values, sums them together, and then produces a pie
"slice" of the proportion that item has of the total.

We’ll first need to get names and populations of cities in Massachusetts. We
can do that using the following query:

df.loc[df['state'] == 'Massachusetts', ['city','population']].set_index('city')['population']

This is quite similar to what we did for Pennsylvania: We retrieved only two
columns (city and population) from the data frame, and only for those rows
in which the state was Massachusetts. We then set the index of our data frame
to be city, and then retrieved the only remaining column, population, as a
series.

Next, we drew a pie plot based on this data, giving it a size of 10 inches by
10 inches:

df.loc[df['state'] == 'Massachusetts', ['city','population']].set_index('city')['population'].plot.pie(figsize=(10,10))

Sure enough, we see that Massachusetts has many different cities—but of the
urban population in the state, Boston clearly dominates, followed distantly by
Worcester and Springfield.

Finally, I asked you to create a scatter plot with the longitude and latitude of
the 1,000 cities in the data frame. We can do that by invoking plot.scatter
on the data frame, indicating which column should be used for the x axis, and
which should be used for the y axis:

df.plot.scatter(x='longitude', y='latitude')

What does the scatter plot look like? Well, we’re plotting the 1,000 most
populous cities in the United States, which means that the plot will look
like… a map of the United States, at least the most densely populated areas.

10.2.2 Solution

filename = '../data/cities.json'

df = pd.read_json(filename)#1

df.groupby('state')['city'].count().sort_values().plot.bar(figsize=(10,10))#2

df.loc[df['state']=='Pennsylvania',#3

 ['city','growth_from_2000_to_2013']].#4

 set_index('city')['growth_from_2000_to_2013'].str.replace('%', '').#5

 astype(np.float16).sort_values().plot.bar(figsize=(10,10))#6

df.loc[df['state'] == 'Massachusetts', ['city','population']].#7

 set_index('city')['population'].plot.pie(figsize=(10,10))#8

df.plot.scatter(x='longitude', y='latitude')#9

10.2.3 Beyond the exercise

Now that you’ve gotten your feet wet with visualization, let’s create some
more plots:

Create a histogram of the growth rates among cities in both Texas and
Michigan.
Create a histogram of the growth rates among cities in both Texas and
California.
Create a bar plot from the average growth per state.

Box-and-whisker plots

When I took introductory statistics in graduate school, the professor started to
tell us about plots. I was wondering why he felt the need to explain plots that
we had seen since middle school—line plots, bar plots, and even pie plots.
But then he got to box plots, more formally known as "box and whisker
plots," and I was intrigued.

We frequently use the describe method to describe our data. The describe
method includes the "Tukey five-number summary"—minimum, 0.25
quartile, median, 0.75 quartile, and maximum—along with the mean and
standard deviation, which together help us to understand our data.

The "Tukey" in this name refers to John Tukey, a famous mathematician and
statistician. It turns out that Tukey didn’t only develop the five-number
summary, but also a graphical depiction of that summary—the boxplot. (He
also invented the words "bit," for "binary digit," and "software," which …
well, if you’re reading this book, then you probably know what software is.)

A boxplot shows us this five-figure summary, but in graphical form:

(And yes, I’ll have an image and label it!)

The central "box" in the boxplot has three parts:

The top of the box indicates the 75% value
The middle line, often highlighted in a different color, indicates the
median, the 50% value
The bottom of the box indicates the 25% value

Extending above and below the box are two lines, sometimes known as
"whiskers." The top whisker ends at the maximum value, and the bottom
whisker ends at the minimum value.

Thus, at a glance, we get a graphical depiction of the five-figure summary.

However, a boxplot will often have circles above and below the whiskers.
These represent the outliers, defined in the case of our boxplots to be 1.5 *
IQR below the first quartile (25% mark) or 1.5 * IQR above the third quartile
(75% mark).

Boxplots allow us, at a glance, to better understand our data. They can be
especially useful when it comes to comparing data sets; we can quickly see if
they’re on the same scale, and whether (and where) they overlap.

We can create boxplots in pandas using plot.box on a data frame. In the
simplest case, we can say:

df.plot.box()

This will create a separate plot for each of the columns in the data frame df.
This can be particularly useful when creating machine-learning models, when
having all of the data in the same range increases the model’s accuracy.

Note that nowhere in the boxplot do we see the mean value. I personally
think that’s a bit of a shame, because the mean can also be a useful measure,
imperfect though it might be.

10.3 Exercise 44: Boxplotting Weather

One of the phrases I often use when teach data analytics is that you need to
"know your data." And one of the best ways to know your data is with a box
plot. In this exercise, we’ll use box plots to understand the weather during the
winter of 2018-2019, using data in three different US cities. We’ll start with
Chicago, and then add Los Angeles and Boston to emphasize the differences
between these locations. (And to assure Chicago residents that yes, their
winters really are that cold.)

Load the weather data for Chicago. We only care about three columns:
date_time, min temp, and max temp. Make date_time the index, and set
the names of the min and max temp columns to "mintemp" and
"maxtemp".
Create a boxplot of Chicago’s minimum temperatures during this period.
Find the values that are represented as dots on that boxplot
Create a boxplot of Chicago’s minimum temperatures in February.
Create a side-by-side boxplot of Chicago’s minimum and temperatures
in February and March
Now read data from Los Angeles and Boston in, as well. Create a single
data frame with data from all three cities, along with a new "city"
column containing the name of the city. # Get descriptive statistics for
mintemp and maxtemp, grouped by city
Create side-by-side boxplots, showing minimum and maximum
temperatures for each three cities

10.3.1 Discussion

In this exercise, we combined techniques we’ve previously seen—
specifically, using read_csv with a variety of parameters, combining several
CSV files into a single data frame, and the use of a datetime column as an
index. But the main point of this exercise was to create a number of different
boxplots, and in so doing to better understand the shape and nature of our
data.

First, I asked you to load Chicago weather into a data frame, using the
date_time column as both the index and as of type datetime. I also asked

you to load the columns with the minimum and maximum temperatures
found on each day. I did that using the following code:

filename = '../data/chicago,il.csv'

df = pd.read_csv(filename,

 usecols=[0, 1,2],

 header=0,

 names=['date_time','mintemp', 'maxtemp'],

 parse_dates=['date_time'],

 index_col=['date_time'])

We’ve used each of these options to read_csv in the past, but here I used
many all at once. For starters, I indicated that I was interested in only the first
three columns. In previous exercises, I’ve often referred to these columns by
name, using the names provided by the index. But here, I referred to the
columns by number. That’s because I wanted to give them names of my own,
specified in the names parameter. I thus chose them by number, and renamed
them in names. I also indicated that date_time should be parsed as a
datetime column, and that it should furthermore be used as the index of the
data frame. Finally, just to be on the safe side, I passed header=0, to indicate
that the first row of the file contains headers, and thus shouldn’t be treated as
data.

At the conclusion of this process, I ended up with a data frame with 728 rows
and two columns. The values started at midnight on December 12th, 2018,
and ended at 9 p.m. on March 11th, 2019, with new measures taken every
three hours.

I then asked you to create a boxplot for the minimum temperatures found in
Chicago throughout the period in the data frame. We can do this by running
the following code:

df['mintemp'].plot.box()

A boxplot is supposed to visualize the "five-number summary": minimum,
0.25, median, 0.75, and maximum. The result shows us that most of the
temperatures were between -20 and 5 degrees Celsius. However, we also see
a number of circles at the bottom of the plot, indicating outlier values. In the
pandas implementation of boxplots, outliers are defined as those 2.5 standard
deviations above or below the mean. (NOTE: I have to double-check whether

it’s 2.5*std or 1.5*IQR below/above 1Q/3Q.) Just to double check that the
plot is showing them correctly, I asked you to find those values:

df.loc[df['mintemp'] < df['mintemp'].mean() - (df['mintemp'].std() * 2.5), 'mintemp']

Sure enough, we see a number of temperature readings (on January 30th and
31st) in which the temperature was -27 and -28 degrees Celsius—not only
cold, but unusually cold, even for a Chicago winter. Our boxplot was thus
right to show them as outliers.

Next, I asked you to create a boxplot for Chicago’s minimum temperatures in
February. I solved this as follows:

df.loc['01-Feb-2019':'28-Feb-2019', 'mintemp'].plot.box()

My row selector was the slice from February 1st through February 28th.
Here, I took advantage of the fact that our data frame’s index contains date
and time values, and that we can always use a slice to retrieve rows. I chose
the mintemp column, and then fed the resulting 1-column data frame to
plot.box. We can see that the median temperature during February 2019 was
-5 degrees Celsius, which does indeed sound right for a Chicago winter.

Next, I asked you to create boxplots for both minimum and maximum
temperatures in both February and March. Here, I again used a slice to select
the appropriate rows, stretching from February 1st through March 30th:

df.loc['01-Feb-2019':'30-Mar-2019', ['mintemp','maxtemp']].plot.box()

Once again, I selected rows using a slice. But the column selector needed to
be a list of strings, the names of the columns that I wanted to plot. I then
passed these to plot.box, and got two boxplots—displayed on the same
scale, next to one another.

Having experienced, if only on paper, the cold Chicago winter, I thought that
it would be nice to add data from two other cities. I thus asked you to read
data from Los Angeles and Boston as well, creating a single data frame from
all three of the CSV files. In order to distinguish data from the various cities,
I asked you to add a "city" column with the city’s name as you read them in.
Since df already contains information for Chicago, I had to set that value

right away:

df['city'] = 'Chicago'

To load the other data, I decided to use a for loop—typical in day-to-day
Python programming, but unusual in pandas. Here, the loop wasn’t running
over a series or data frame, but rather over a list of filenames containing city
data:

for city_stem in ['los+angeles,ca', 'boston,ma']:

 new_df = pd.read_csv(f'../data/{city_stem}.csv',

 usecols=[0, 1,2],

 header=0,

 names=['date_time','maxtemp', 'mintemp'],

 parse_dates=['date_time'],

 index_col=['date_time'])

 new_df['city'] = city_stem.split(',')[0].replace('+', ' ').title()

 df = pd.concat([df, new_df])

Let’s break down what I did here:

First, I set up a list with the filenames (minus the 'csv' suffix) over
which I wanted to run
I used a for loop to iterate over those filenames.
I re-used the read_csv call that we used earlier, passing the complete
filename.
As before, I selected specific columns, indicated that date_time should
be parsed as a datetime, and should be set to the index.

I then added a value to city for each of the loaded cities, using a bunch
of string methods to convert city_stem into a useful string:

I used str.split on city_stem, getting a list—from which I took
the initial part
I replaced the character '+' with a space, ' '
I invoked str.title, capitalizing each word

Finally, I used pd.concat to add the new data frame to the existing one. The
end result is a single data frame with weather data from all three cities, and
with the city column indicating the source of the data.

With this data loaded, I then asked you to get descriptive statistics for
mintemp and maxtemp, grouped by city:

df.groupby('city')[['mintemp', 'maxtemp']].describe()

The data frame we get back has three rows, one for each city. The columns
are in a multi-index, with all of the measurements for mintemp and then all of
the measurements for maxtemp. But while these details might all be
interesting and useful, they’re not quite as compelling as a boxplot. I thus
asked you to create a boxplot showing minimum and maximum temperatures
for all three cities, grouped together. I solved it as follows:

df.plot.box(column=['mintemp', 'maxtemp'], by='city')

This produced two side-by-side boxplots, one for mintemp and the second for
maxtemp. In each plot, we saw the five-number summary for each city, side
by side. It wasn’t a surprise to find that while Boston’s winter months are a
bit warmer than Chicago, Los Angeles is far warmer than either of them.

10.3.2 Solution

filename = '../data/chicago,il.csv'

df = pd.read_csv(filename,

 usecols=[0, 1,2],#1

 header=0,#2

 names=['date_time','maxtemp', 'mintemp'],#3

 parse_dates=['date_time'],#4

 index_col=['date_time'])#5

df['mintemp'].plot.box()#6

df.loc[df['mintemp'] < df['mintemp'].mean() - (df['mintemp'].std() * 2.5), 'mintemp']

df.loc['01-Feb-2019':'28-Feb-2019', 'mintemp'].plot.box()#8

df.loc['01-Feb-2019':'30-Mar-2019', ['mintemp','maxtemp']].plot.box()

df['city'] = 'Chicago'#10

for city_stem in ['los+angeles,ca', 'boston,ma']:#11

 new_df = pd.read_csv(f'../data/{city_stem}.csv',#12

 usecols=[0, 1,2],

 header=0,

 names=['date_time','mintemp', 'maxtemp'],

 parse_dates=['date_time'],

 index_col=['date_time'])

 new_df['city'] = city_stem.split(',')[0].replace('+', ' ').title()

 df = pd.concat([df, new_df])#14

df.groupby('city')[['mintemp', 'maxtemp']].describe()#15

df.plot.box(column=['mintemp', 'maxtemp'], by='city')#16

10.3.3 Beyond the exercise

Rather than starting with data from Chicago, start with an empty data
frame, and use a for loop to load data from all three cities.
For each city, calculate the mean and median for mintemp and maxtemp.
Are they the same (or even close)? If they’re different, in which
direction were they pulled?
Create a line plot showing the minimum temperatures in each city. The x
axis should show dates, the y axis should show temperatures, and each
line should represent a different city.

10.4 Exercise 45: Taxi fare breakdown

We’ve looked at New York City taxi fares a number of times in this book.
This time, we’re going to look at this data set visually, plotting the data from
a variety of perspectives. It’s hard to exaggerate not just how much of an
impact a good plot can have when presenting it to others, but also to better
understand the data set yourself. You’ll see new relationships in the data, and
know not only how to answer questions you already asked, but what new
questions you should be asking.

I’d like you to do the following:

Load data from all four NYC taxi files into a single data frame. We’ll
need a bunch of different columns: 'tpep_pickup_datetime',
'passenger_count', 'trip_distance',
'fare_amount','extra','mta_tax','tip_amount','tolls_amount',
'improvement_surcharge','total_amount', and 'congestion_surcharge'.
Create a bar plot showing how many rides took place during each month

and year of our data set. (It’s fine if there are "holes" in the bar plot.)
Create a bar plot showing the total amount paid in taxi rides for every
year and month of our data set.
Create a bar plot showing fare_amount, extra, mta_tax, tip_amount, and
tolls_amount paid in taxi rides, per month + year—with the various
components stacked in a single bar per year/month.
Create a bar plot showing fare_amount, extra, mta_tax, tip_amount, and
tolls_amount paid in taxi rides, per number of passengers, stacked in a
single bar per number of passengers.
Create a histogram showing the frequency of each tipping percentage
between (and including) 0% and 50%

10.4.1 Discussion

This exercise was all about visualizing our taxi data, and in order to make the
data more interesting and varied, I asked you to load all four of the CSV files
I’ve made available—from January 2019, July 2019, January 2020, and then
July 2020. I loaded them, as I’ve done before, most recently in Exercise 42,
via a list comprehension:

filenames = ['../data/nyc_taxi_2019-01.csv', '../data/nyc_taxi_2019-07.csv',

 '../data/nyc_taxi_2020-01.csv', '../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance',

 'fare_amount','extra','mta_tax','tip_amount','tolls_amount',

 'improvement_surcharge','total_amount','congestion_surcharge'],

 parse_dates=['tpep_pickup_datetime'])

 for one_filename in filenames]

In this case, I passed usecols the list of columns that I had asked for in the
question. I also passed parse_dates a single value, the column
tpep_pickup_datetime. (In this exercise, I didn’t see a need for us to have
the dropoff datetime.) This created a list of data frames, which I was then
able to concatenate into a single data frame using pd.concat:

df = pd.concat(all_dfs)

With our data frame in place, we can now begin to perform our analysis. I
first asked you to create a bar plot showing how many rides there were in

each year and month of our data set. In order to do this, we’ll run a groupby,
grouping by two columns—first by year, and then by month:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])

This, of course, gives us a groupby object on which we can perform the
query. For this part of the exercise, I asked you to find the total amount paid
in each year-month period of our data set. I ran the query as follows:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])['total_amount'].sum()

This produces a numeric result, showing the total amount paid for each year-
month combination of our data set. Given that we only loaded four months of
data, it might seem strange that we have data from other months and years.
Some of that data might not have been loaded when it was first created,
leading to a delay. Or the data might be corrupt. Likely, it’s a combination of
both of these factors; even in a fully automated system, you shouldn’t be
surprised to have some bad data.

I then asked you to create a bar plot from this data:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])['total_amount'].sum().plot.bar(figsize=(10,10))

The call to plot.bar creates the bar plot based on the data frame that we got
from the groupby. That data frame’s index serves as the plot’s x axis, while
the values determine the axis, which I allowed to be generated automatically.

Next, I asked you to create a bar plot showing, again for every year-month
combination, the number of taxi rides per month. Once again, we start with a
groupby query:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])

Here, we’re not interested in totalling the receipts, but rather in just counting
the rows. While we could run count, the aggregation method that counts
rows, on the entire data frame, that’ll give us an annoying and repeated count,

once per column. We don’t really need that. So I chose to select a single
column, passenger_count—although we really could have chosen any of
them:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])['passenger_count'].count()

Finally, I took this data frame and turned it into a bar plot. As before, I called
plot.bar with a keyword argument of figsize=(10, 10), ensuring the
image would be a 10-inch (25 cm) square:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])['passenger_count'].count().plot.bar(figsize=(10,10))

While the x axis in both this plot and the previous one are the same, and
while we see bars in the same places, the values are obviously different.
Moreover, we can see that while July 2019 was the month with the greatest
amount of revenue, it had the third-greatest number of rides. We can also see
(as we’ve discussed in previous exercises) that in July, 2020—at the height of
the pandemic—there were significantly fewer rides, and also significantly
less taxi revenue.

Next: We’ve generally talked about the total_amount column when it comes
to taxi revenue. But total_amount is the final dollar figure that a taxi
passenger has to pay at the end of the ride. While passengers don’t often
think about this, that fare can be broken down into a number of different
pieces. In this question, I asked you to create plot not only the amount of
revenue that we got each month in the data set, but to break that bar down
into segments, thus allowing us to see how much of each month’s revenue
came from each source.

Once again, I used groupby on the year and month columns:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])

Because I wanted to produce the plot with input from five columns
—fare_amount, extra, mta_tax, tip_amount, and tolls_amount—I then
named them in a list of column names after the groupby:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])[['fare_amount','extra','mta_tax','tip_amount','tolls_amount']]

I then ran the sum method, which gives me a separate sum for each of these
five columns, in each of the months for which we have data:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])[['fare_amount','extra','mta_tax','tip_amount','tolls_amount']].sum()

Finally, I asked pandas to create a bar plot:

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])[['fare_amount',

 'extra','mta_tax',

 'tip_amount','tolls_amount']].sum().plot.bar(stacked=True,

 figsize=(10, 10))

However, there’s a difference between my previous calls to plot.bar and
this one: Normally, I would get a separate plot for each column, for each
month. But because I specified stacked=True, I got all of the bars for a given
month stacked on top of one another. Moreover, each portion of the bar was
in a different color, and pandas provided a legend, as well. In this was, I was
able to see, visually, not just how much revenue taxis brought in each month,
but also how much of that revenue came from the fare itself, as opposed to
taxes, tips, and tolls. We can see that while the fare is by far the greatest
proportion of the total taxi revenue, tips constitute a fairly large proportion,
as well, followed by extra charges, taxes, and tolls.

Next, I asked for a similar stacked bar plot, with the same five columns as
components in each bar. However, rather than grouping by the year and
month, I asked you to group by the passenger_count column. We can do
that with a similar query to the previous one, grouping on passenger_count
rather than by year-month combination:

df.groupby(df['passenger_count'])[['fare_amount','extra',

 'mta_tax','tip_amount','tolls_amount']].sum().plot.bar(stacked=True,

 figsize=(10,10))

Finally, I asked you to create a histogram showing the frequency of each
tipping percentage between (and including) 0 and 50. In order to do this, I
needed to find the tipping percentage for each ride, and then keep only those

between 0 and 50. I decided that the easiest thing would be to create a new
column, tip_percentage, from dividing tip_amount by fare_amount. But
the real world includes all sorts of surprises, not only including NaN values,
but also records in which the fare_amount was equal to zero—thus giving us
an infinite (known as np.inf) value.

To avoid this, I first got rid of any ride in which the fare was less than or
equal to 0:

df = df[df['fare_amount'] > 0]

Then I created a new column, tip_percentage, knowing that I won’t get any
np.inf values:

df['tip_percentage'] = df['tip_amount'] / df['fare_amount']

Finally, I plotted all of the values than than or equal to 50%:

df.loc[df['tip_percentage'] <= .50, 'tip_percentage'].plot.hist()

The resulting histogram has a huge bar—the largest—for 0% tips, indicating
that a plurality of New York taxi riders don’t tip at all. But other than that
bar, we see a fairly normal distribution, centered around 20 or 25%.

10.4.2 Solution

filenames = ['../data/nyc_taxi_2019-01.csv', '../data/nyc_taxi_2019-07.csv',

 '../data/nyc_taxi_2020-01.csv', '../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance',

 'fare_amount','extra','mta_tax','tip_amount','tolls_amount',

 'improvement_surcharge','total_amount','congestion_surcharge'],

 parse_dates=['tpep_pickup_datetime'])

 for one_filename in filenames]

df = pd.concat(all_dfs)

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])['passenger_count'].count().plot.bar(figsize=(10,10))

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])['total_amount'].sum().plot.bar(figsize=(10,10))

df.groupby([df['tpep_pickup_datetime'].dt.year,

 df['tpep_pickup_datetime'].dt.month])[['fare_amount','extra',

 'mta_tax','tip_amount','tolls_amount']].sum().plot.bar(stacked=True, figsize=(10, 10))

df.groupby(['passenger_count'])[['fare_amount','extra','mta_tax','tip_amount','tolls_amount']].sum().plot.bar(stacked=True, figsize=(10,10))

df = df[df['fare_amount'] > 0]

df['tip_percentage'] = df['tip_amount'] / df['fare_amount']

df.loc[df['tip_percentage'] <= .50, 'tip_percentage'].plot.hist()

10.4.3 Beyond the exercise

Create a bar plot, showing the average distance traveled per day of the
week in July 2020. The x axis should show the name of each day.
Create a scatter plot with the taxi data from July 2020, comparing
trip_distance with total_amount. Ignore all rides in which either
value was less than or equal to 0, or greater than 500.
Create a scatter plot with the taxi data from July 2020, comparing
trip_distance with passenger_count. Ignore all rides in which
trip_distance was less than or equal to 0, or greater than 500.

Correlation isn’t causation. But what is it?

No matter where you are in your data-analysis career, you’re bound to hear
someone say "correlation isn’t causation." What does that mean? Moreover,
what is correlation?

Loosely speaking, two measurements are correlated when movement in one
is generally accompanied by movement in another. If the measurements rise
and fall together, then they’re considered "positively correlated." If one goes
up when the other goes down (and vice versa), then they’re said to be
negatively correlated.

In addition to be positive or negative, correlation can be weak or strong.
There’s probably a strong correlation between your annual income and the
size of your house. There’s probably a weak correlation between your annual

income and your shoe size. (Although to be fair, higher income correlates
with better nutrition and better health, so the correlation might be stronger
than you’d expect.)

Let’s take a simple example: The more electric power you use, the higher
your electric bill will be. If you use more electricity, your bill goes up. If you
use less electricity, your bill goes down. We can thus say that your electric
consumption and your electric bill are positively correlated.

Here’s another example: The wealthier you are, the more likely you are to
own a private jet. If you’re a multi-billionaire, then you probably have a jet,
and probably several. (At least, that’s what I’ve learned from watching
"Succession.") So we can say that as your income goes up, the number of
private jets you own goes up. And as your income goes down, the number of
private jets you can afford to keep on hand will probably go down, as well.

It’s very tempting, when we see data that is correlated, to say that one causes
another. And in some cases, that’s certainly true: We can safely say that your
higher electric bill was caused by greater consumption.

But just because two data points are correlated doesn’t mean that one causes
the other. And even if one does, you have to be careful to determine just what
causes what. For example, if there is a causal relationship between private-jet
ownership and billionaire status, then perhaps I should buy a private jet.
That’ll raise the likelihood of my becoming a billionaire, right?

There are numerous examples of correlations without causation. For some
terrific examples, check out the "Spurious Correlations" web site by Tyler
Vigen: https://tylervigen.com/spurious-correlations

This difference between correlation and causation was most famously used
by the tobacco industry. True, they said, people who smoke cigarettes are
more likely to have cancer. But just because there’s a correlation there
doesn’t mean that it’s a causal effect. Can we really know whether cigarettes
cause cancer? After many studies, and many years, it became clear that the
answer is "yes": We can know, and the effect is causal.

Finding a causal relationship is hard, and generally requires doing an

experiment. You divide the population into two parts, giving one half the
treatment and the other half no treatment (or a placebo). Then you measure
the difference in effects on the two populations.

Fortunately, in the world of data analytics, we’re often less interested in
causation than in finding correlations. If I find that my online store gets more
sales between 12 noon and 1 p.m., I don’t really care what’s causing it—but I
do want to know about it, and take advantage of it.

This raises the question, though: What exactly does it mean for two sets of
numbers values to be correlated?

Let’s take two sets of numbers, the high and low temperatures for my city of
Modi’in over the coming week:

df = DataFrame({'high':[19,21,24,17,14,16,16,19,16,16,15,16,18,18],

 'low':[12,9,11,12,11,11,10,8,10,8,8,6,6,7]})

What would correlation mean?

If the columns are positively correlated, then days with the highest high
temperatures would also have the highest low temperatures. And the
days with the lowest high temperatures would have the lowest low
temperatures.
If the columns are negatively correlated, then days with the highest high
temperatures would have the lowest low temperatures. And the days
with the lowest high temperatures would have the highest low
temperatures.

If the two are strongly correlated, then a large change in one will be
accompanied by a large change in the other. If they’re weakly correlated, then
a large change in one will by accompanied by a small change in the other.

The most common measurement for correlation, and what we’ll use in this
book, is called "Pearson’s correlation coefficient," and is often abbreviated as
"r". It’s a number between -1 (indicating the strongest possible negative
correlation) and 1 (indicating the strongest possible positive correlation), with
0 indicating no correlation. A correlation is always calculated between two
data sets, which in the case of pandas, means two different columns.

We can find the correlation for the expected high and low temperatures with
the corr method:

df.corr()

The result is a data frame in which each of our original column names
appears both as a column and a row. Along the diagonal, where columns
meet themselves, there will always be a value of 1.0, indicating (not very
usefully) that a column has a perfect positive correlation with itself. More
interesting is the intersection between different column names, showing the
correlation between each of those pairs of columns. In this case, our data
frame only has two columns, so the result will be a bit underwhelming:

 high low

high 1.000000 0.105603

low 0.105603 1.000000

We see that there is a correlation of 0.105603 between our high and low
temperatures. Meaning that there’s a positive correlation between the two, but
a very weak one. With more data over a longer period of time, we would
probably find a higher correlation. In fact, we can do that by loading the
weather data for New York City, with 728 weather measurements:

filename = '../data/new+york,ny.csv'

df = pd.read_csv(filename, usecols=[1, 2],

 header=0,

 names=['high', 'low'])

If I run df.corr() on this data frame, we see a different type of result:

 high low

high 1.000000 0.874205

low 0.874205 1.000000

Here, we see a very strong positive correlation. This raises the question: How
can it be that in one data set, the correlation is very strong, whereas in another
one, it’s very weak?

There are numerous possible answers: Perhaps Modi’in’s temperatures are
harder to predict. Perhaps the data that I input was from a particularly

turbulent time, with a high degree of variance. But I think that the real reason
is that the sample from Modi’in was extremely small, with only 13 data
points. It was hard to establish any correlations based on such a small sample.

Why are we interested in correlations? First and foremost, because it can
inform our understanding, and thus our behavior. If we know that our store
gets a huge number of requests at lunchtime each day, then perhaps we’ll
provision additional servers during that time. Or perhaps we’ll offer discounts
outside of that window, so as to encourage sales during otherwise dead times.

We can also use correlations to hint at underlying similarities and
relationships in our data. If two things are correlated, then perhaps there’s
some behavior that explains the connection between the two. If that behavior
or relationship isn’t obvious, then it can point to a topic worth investigating
or understanding better.

While correlations are normally measured mathematically, it’s often possible
to see correlations via a scatter plot. In such a plot, we choose one column as
the "x" axis and a second column as the "y" axis. We then plot each of the
points. We cannot expect to see a perfect diagonal line, but such a line
starting at (0,0) and moving up and to the right points to a strong positive
correlation in the columns. One that starts high up on the y axis and moves
down to the right indicates a strong negative correlation. Using a scatter plot
is a great way to better understand the data. In pandas, we can create such a
plot based on a data frame with the plot.scatter method:

df.plot.scatter(x='high', y='low')

In this case, we’ll indeed see a strong positive correlation, matching the
numeric calculations that we performed earlier.

10.5 Exercise 46: Cars, Oil, and ice cream

In this exercise, we’re going to try to answer a question that has probably
occurred to you on many occasions: When the price of oil goes up, do people
drive more or less in their cars? And while we’re at it, we’ll also try to
answer another question, namely whether the price of ice cream is correlated

with the price of oil.

This exercise will not only try to identify these correlations, but will also use
many of the techniques we’ve discussed in the book so far, including parsing
dates, selecting appropriate rows and columns, removing bad data, and
joining data frames together. Specifically, I want you to:

Load the oil data (from Exercise 41) into a data frame. Set the names of
the columns to be "date" and "oil", with the "date" column parsed as s a
date and set to be the index.
Load historical ice-cream prices in the United States (for a half gallon,
aka 1.9 liters) into a separate data frame, from the file ice-cream.csv.
Set the column names to be "date" and "icecream". The "date" column
should be parsed as a date and set to be the index.
Set the icecream column to be a floating-point value, removing any
rows that stop you from accomplishing that.
Load historical US "miles traveled per month" data into a separate data
frame. Name the columns date and miles, parsing date as a date, and
setting it to be the index.
Create a single data frame from these three data frames. The index
should be the date, and the new data frame should have three columns
—oil, icecream, and miles. Only dates that are common to all three
should be included.

10.5.1 Discussion

In this exercise, we took three distinct data sets, merged them together to
make a new data frame, and then found correlations among the various
columns. And the results were… not what I was expecting, to say the least.

Before we can calculate the correlations, we first have to load the data. I
always like to create separate data frames, and then join them together. This
not only lets me do things step by step, but also ensures that I can debug,
improve, and rerun my steps more easily.

The first data frame I asked you to create was similar to one we already
looked at in Exercise 41. In order to make our join operation run more

smoothly later, I asked you to standardize some parts of the naming. For
example, I wanted to parse the date column as a datetime, and also to set it to
be the index. I also renamed the columns, calling them date and oil.

Most of the time, and especially when a CSV file has headers indicating the
column names, I like to use those names in my call to read_csv. That makes
the function call easier to read and debug. But when you want to rename the
columns with the names parameter, you need to describe them numerically.
Moreover, in order to avoid having the header row read as data, we need to
indicate which row contains the header (0, in our case), effectively causing it
to be ignored.

In the end, I loaded the oil data as follows:

oil_filename = '../data/wti-daily.csv'

oil_df = pd.read_csv(oil_filename,

 parse_dates=[0],

 header=0,

 index_col=0,

 names=['date', 'oil'])

A brief check (with oil_df.head() and oil_df.dtypes showed that we had
successfully created the data frame, with the correct dtype. With the oil data
in hand, it was time to create the next data frame, based on the monthly ice-
cream price data that I got from the US government.

This file is in a very similar format to the oil data, in a CSV file containing
two columns. The first column is a date—the final date of each month, when
the ice-cream pricing data is recorded. We can thus load it with our usual
combination of keyword arguments:

ice_cream_filename = '../data/ice-cream.csv'

ice_cream_df = pd.read_csv(ice_cream_filename,

 parse_dates=[0],

 index_col=0,

 header=0,

 names=['date','icecream'])

However, running ice_cream_df.dtypes shows that the icecream column
didn’t load as a floating-point value. Rather, it loaded as object. That’s
usually a good sign that one or more values tripped up the system that pandas

uses to identify and assign dtypes on our CSV files. I decided to see where
the problem was by trying to turn the column into an np.float64 value:

ice_cream_df['icecream'].astype(np.float64)

Sure enough, it failed, telling me that it choked on a line containing nothing
more than ., instead of a price. I decided to gamble that any oproblematic
lines would be like this, meaning that if I were only to keep lines containing
digits, then I’d be able to convert the column into float values. I decided to
use a regular expression for this, looking for '\d', meaning "any digit,"
removing those rows that lack even a single digit:

ice_cream_df = ice_cream_df[ice_cream_df['icecream'].str.contains(r'\d')]

Notice that I used a raw string (i.e., a string with an r before the opening
quote). Raw strings are Python’s way of automatically doubling backslashes,
thus ensuring that Python doesn’t pre-digest our backslashes before they get
to the regular expression engine. I used str.contains, a method that we
encountered earlier in this book, to find all rows that do indeed contain at
least one digit; that returned a boolean series, which I used as a mask index
and then assigned back to ice_cream_df.

With the bad row—in the end, only one lacked any digits—excluded, I was
able to then convert the column to a float value:

ice_cream_df['icecream'] = ice_cream_df['icecream'].astype(np.float64)

Next, I asked you to create a data frame containing the US government’s
report on total miles traveled during each calendar month. My naive
assumtion was that when oil prices are high, people will drive less, but that
when they’re low, they’ll drive more. I created the new data frame using
similar arguments as what we’ve already seen:

miles_filename = '../data/miles-traveled.csv'

miles_df = pd.read_csv(miles_filename, parse_dates=[0],

 index_col=0,

 header=0,

 names=['date', 'miles'])

With these three data frames in place, it was time to join them together.

We’ve already seen how we can join two data frames together using the join
method. But here, I asked you to join three data frames together. How can we
do that?

The answer, once you see it, is straightforward: We join two data frames
together, getting a new one. We then join this new data frame together with
the third, to get a final, new one. So long as all of the data frames share an
index, we should be fine:

df = oil_df.join(ice_cream_df).join(miles_df)

But if we do things this way, we’ll discover that there’s a bit of a hitch: Oil
price data was recorded once per day, as opposed to the ice-cream and travel
data, which were recorded once per month. Joining our data frames in this
way will result in a new row for each index value in oil_df, and NaN values
in all but one row per month.

There are a few ways to solve this problem. One is to perform the join as I
did above, and then use dropna to remove all of the NaN-containing rows:

df = oil_df.join(ice_cream_df).join(miles_df).dropna()

A second method would be to perfrom the join on ice_cream_df, thus
constraining the index values:

df = ice_cream_df.join(oil_df).join(miles_df)

But my preferred solution is to use an "inner" join, meaning that our index
will only contain values that existed in all three data frames. I can do this by
passing the keyword argument how='inner' to each call to join:

df = oil_df.join(ice_cream_df, how='inner').join(miles_df, how='inner')

The result is a data frame whose index contains 275 distinct values, from
April 1986 through December 2021. With all of these values in place, we can
(finally) start to look for correlations in our data. First, we can run corr on
our data frame to find the correlations across all columns:

df.corr()

The resulting data frame has three columns (oil, icecream, and miles) and
identical rows. The intersection of the column names give us the correlation,
ranging from -1 to 1. We can see that oil prices and the number of miles
traveled per month are positively correlated, with a value of 0.64. The
correlation between gas prices and ice-cream prices is not only positive, but
much larger, at 0.77.

But the biggest correlation of all is between the price of ice cream and the
number of miles driven per month, with a value of 0.818. That’s quite a large
correlation factor, indicating that whenever ice-cream prices decline, people
drive less, and vice versa.

Can we realistically say that there is a causal relationship here? I highly doubt
it; I don’t think that you are likely to drive more because you ate more ice
cream, or that you eat more ice cream because you drove more. A more likely
explanation, at least to me, is that people both drive more and eat more ice
cream in the summer months, and that ice-cream prices rise when there’s
more demand. I haven’t done any serious analysis to see if this is the case,
but it seems more likely than either random chance or a causal effect.

Next, I asked you to produce two scatter plots, first between oil and
icecream:

df.plot.scatter(x='oil', y='icecream')

The second scatter plot I asked you to make was between oil and miles:

df.plot.scatter(x='oil', y='miles')

While you might be able to identify, from these scatter plots, whether there is
a positive correlation here, I think that the numbers give us a much clearer
indication of the strength of that correlation.

Finally, I asked you to create a single "scatter matrix" plot, showing all of the
numeric columns plotting against one another:

from pandas.plotting import scatter_matrix

scatter_matrix(df)

The scatter matrix is a great way to get a quick look at all of the correlations
in your data set. The diagonal, which always contains 1.00 values in the call
to df.corr(), is a histogram in the scatter matrix, indicating the distribution
of values in each column.

10.5.2 Solution

oil_filename = '../data/wti-daily.csv'

oil_df = pd.read_csv(oil_filename,

 parse_dates=[0],

 header=0, #1

 index_col=0, #2

 names=['date', 'oil']) #3

ice_cream_filename = '../data/ice-cream.csv'

ice_cream_df = pd.read_csv(ice_cream_filename,

 parse_dates=[0],

 index_col=0,

 header=0,

 names=['date','icecream'])

ice_cream_df = ice_cream_df[ice_cream_df['icecream'].str.contains(r'\d')] #4

ice_cream_df['icecream'] = ice_cream_df['icecream'].astype(np.float64) #5

miles_filename = '../data/miles-traveled.csv'

miles_df = pd.read_csv(miles_filename, parse_dates=[0],

 index_col=0,

 header=0,

 names=['date', 'miles'])

df = oil_df.join(ice_cream_df, how='inner').join(miles_df, how='inner') #6

df.corr() #7

df.plot.scatter(x='oil', y='icecream') #8

df.plot.scatter(x='oil', y='miles')

from pandas.plotting import scatter_matrix

scatter_matrix(df) #9

10.5.3 Beyond the exercise

Is the month correlated with them at all?
Create a scatter plot of icecream vs. miles, adding color using the

month the "Spectral" colormap.
Instead of using an inner join, we could have removed all of the rows
from oil_df that weren’t on the final day of the month. How could we
do that?

Seaborn

Matplotlib is, without a doubt, the leading plotting system for Python. Many
people have found it hard to learn and use, however, which has led to the
creation of several alternatives to Matplotlib. One of the best-known
alternatives, Seaborn (seaborn.pydata.org/), was written by data scientist
Michael Waskom, and acts as an API on top of Matplotlib.

So far, this book has focused on the pandas plotting API, which (like
Seaborn) uses Matplotlib to produce its plots. But the pandas API tries to
simplify things, papering over much of the configuration that needs to happen
in order to create a plot, but otherwise keeping Matplotlib’s approach and
API intact. By contrast, Seaborn rethinks how plotting should be done,
replacing the original Matplotlib and pandas calls with a distinct set of
functions and parameters.

Just as we typically import numpy as np and import pandas as pd, we
also import Seaborn with an alias:

import seaborn as sns

Whereas pandas visualization is all done via the plot attribute, followed by
the type of plot we want to create, Seaborn is organized more conceptually,
around the different types of insights we might be trying to draw from our
plots. We can choose from four different functions defined within sns:

To visualize relationships among numeric columns, use sns.relplot.
To visualize relationships that include categorical columns, use
sns.catplot.
To understand the distribution of data, use sns.displot.
To visualize regression models, use sns.regplot.

In order to explore this more fully, let’s load up our temperature and

precipitation data from our weather CSV files:

import glob

all_dfs = []

all_filenames = glob.glob('../data/*,*.csv')

all_filenames = ['../data/chicago,il.csv']

for one_filename in all_filenames:

 print(f'Loading {one_filename}...')

 city, state = one_filename.removeprefix('../data/').removesuffix('.csv').split(',')

 one_df = pd.read_csv(one_filename,

 usecols=[1, 2, 19],

 names=['max_temp', 'min_temp', 'precipMM'],

 header=0)

 one_df['city'] = city.replace('+', ' ').title()

 one_df['state'] = state.upper()

 all_dfs.append(one_df)

df = pd.concat(all_dfs)

We’ve already seen how line and scatter plots can give us insights into the
relationship between two numeric columns. Seaborn puts both of them in its
relplot function. Let’s first look at how we can create a scatter plot for min
vs. max temperatures in Chicago:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df.loc[df['city'] == 'Chicago'])

Our call to sns.relplot includes three mandatory keyword arguments:

x indicates which column from our data frame will be used for the x axis
y indicates which column from our data frame will be used for the y axis
data is a data frame containing both of those columns

In this case, I decided to provide only a subset of the data from df, so that we
would only see Chicago weather. But what if I want to see all of the data,
from all of the cities?

sns.relplot(x='max_temp',

 y='min_temp',

 data=df)

The good news is that this is much easier to write. But the bad news is that
it’s not nearly as useful. Now we’ve mixed together all of the weather reports
from all of the cities! Fortunately, Seaborn provides us with a number of
different ways to make the data more useful and interesting.

For example, we can ask Seaborn to use a different color for each city by
passing a column name to the hue keyword argument:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='city')

We can have each city’s dots use a different marker, as well, by giving the
same city argument to the style parameter:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='city', style='city')

We don’t have to use the same categorical data for hue and style. For
example, we can set the hue per state:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='state', style='city')

However, it’s a bit messy to see all of these plots on the same axes. We can
ask Seaborn to do the visual equivalent of a groupby, with one plot per value
of city. There are two different ways to do this, actually, by setting row (i.e.,
each row is a different value for the named column) or col (i.e., each column
is a different value for the named column). For example:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='state',

 row='city')

While scatter plots are extremely useful, we can also see the relationship
between two numeric columns with line plots. The most obvious difference
between the two kinds of plots is that Seaborn draws a line between the dots.
For example:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='state', kind='line')

The above call is fine, except that it won’t work. In my case, I got both a
warning from pandas and an error message from Seaborn. Both of them told
me that they cannot handle my data frame as it stands, because its index
contains non-unique values.

I can fix this easily with reset_index:

df.reset_index(drop=True)

Note that I passed drop=True to avoid having the old index added as a
column to the data frame. I’m happy to throw out the old index and replace it
with a new one, so I pass drop=True.

With a new index in place, we can again ask Seaborn to create our line plot:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='state', kind='line')

The good news is that we see all of the values, and (thanks to our value for
hue, we have a different-colored line for each state. The bad news is that two
of the cities in our data set are from the same state. And besides, it’s a bit
hard to read this plot, with all of the data squashed together.

We can once again ask Seaborn to put each city in a separate row:

sns.relplot(x='max_temp',

 y='min_temp',

 data=df,

 hue='state',

 kind='line',

 row='city')

Seaborn supports a wide variety of other plots, as well. For example, what if
we want to see all of the values of max_temp for a given city? You can think
of this as a set of one-dimensional scatter plot, and we can see it as follows:

sns.catplot(x='city', y='max_temp', data=df)

Notice how the x axis is for the categories, while the y axis describes which
value we’ll be seeing. This plots each of the values in the data set. If we
instead want to summarize our data, we can ask to have a box plot, instead:

sns.catplot(x='city', y='max_temp', data=df, kind='box')

This shows a box plot for each of the cities' values of max_temp, all side-by-
side on the same y axis.

Finally, Seaborn also offers us the chance to create histograms. Because
histograms allow us to understand the distribution of our data, we use the
sns.displot function. For example, we can get a histogram of all maximum
temperatures:

sns.displot(x='max_temp', data=df)

This, of course, shows the distribution of all values of max_temp. We can,
once again, give each city its own colored bars by setting hue:

sns.displot(x='max_temp', data=df, hue='city')

And we can see them in a single column, with only one city per row, by
saying:

sns.displot(x='max_temp', data=df, hue='city', row='city')

These are just some of Seaborn’s many capabilities. If you’re interested in
seeing everything that Seaborn can do, I strongly recommend you check out
the documentation at seaborn.pydata.org/. I’ve grown to really like the
Seaborn approach to visualization—not only does it produce very nice-
looking plots, but I find the API easier to understand and work with than

many others.

10.6 Exercise 47: Seaborn taxi plots

In this exercise, we’re going to revisit our New York City taxi data from
2020, creating some visualizations with Seaborn, rather than with the built-in
pandas plotting system. Specifically, I want you to:

Load data from NYC taxis in 2020, only loading columns
tpep_pickup_datetime, passenger_count, trip_distance, and
total_amount.
Add columns "month" and "year", from tpep_pickup_datetime. Keep
only those data points in which the year is 2020 and the month is either
January or July.
Set a new numeric range index, numbered starting at 0
Assign df to a random sample of 1% of the elements in the original df
Using Seaborn, create a scatter plot in which the x axis shows
trip_distance and the y axis shows total_amount, with the plot colors
set by passenger_count. Use the 1% sample of the data.
Why do we have colors for passenger_count of 1.5, 4.5, and 7.5?
Create a line plot showing the distance traveled on each day of January
and July. The x axis should be the day of the month, and the y axis will
be the average trip distance. There should be two lines, one for each
month.
Using Seaborn, show the number of trips taken on each day (1-31) of
both months (January and July). The x axis should refer to the day of the
month, and the y axis should show the number of trips taken.
Using Seaborn, create a box plot of total_amount, with one plot for each
month.

10.6.1 Discussion

In this exercise, I asked you to create plots of 2020 New York City taxi data,
from January and July, and then to use Seaborn to plot that data. We started
off by creating a data frame based on the 2020 taxi files, loading four of our
favorite columns:

filenames = ['../data/nyc_taxi_2020-01.csv', '../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance',

 'total_amount'],

 parse_dates=['tpep_pickup_datetime'])

 for one_filename in filenames]

df = pd.concat(all_dfs)

Notice that I once again used parse_dates to turn the
tpep_pickup_datetime column into a datetime column, leaving the three
others to be detected as floating-point values. This code again creates a list of
data frames using a list comprehension. The list is then passed to pd.concat,
which returns a new data frame that combines all of the input data frames.

I then asked you to create three new columns from various parts of each
row’s date:

df['year'] = df['tpep_pickup_datetime'].dt.year

df['month'] = df['tpep_pickup_datetime'].dt.month

df['day'] = df['tpep_pickup_datetime'].dt.day

I then asked you to ensure that all of the data we look at is from January or
July of 2020. As we’ve seen, the taxi data is a bit "dirty," including a number
of rows from other years and months. To avoid having our plots come out
odd looking, I thought it would be wise to remove rows that aren’t from
January and July of 2020. We can do that by using a combination of mask
indexes:

df = df.loc[(df['month'].isin([1, 7])) & (df['year'] == 2020)]

Next, I asked you to ensure that the new data frame’s index doesn’t contain
duplicate values—something that is almost certainly the case at this point,
given that we created df from two previous data frames. You can actually
check to see if a data frame’s index contains repeated values with the code

df.index.is_unique

If this returns True, then the values are already unique. If not, then some
Seaborn plots will give you errors. We could renumber the index on our own,

but why work so hard, when pandas includes this functionality? We can just
say:

df = df.reset_index(drop=True)

Yes, this is the same reset_index that we’ve used before to get rid of a
"special" index that we’ve created, such as from a data column. By passing
drop=True, we tell reset_index not to make the just-ousted index column a
regular column in the data frame, but rather to drop it entirely.

We could then start to plot our data. But the data set is rather large, with
many millions of data points. To speed up our plotting, albeit at the cost of
some accuracy, I asked you to keep a random 1 percent of the original df’s
values, and then to assign it to `df:

df = df.sample(frac=0.01)

We’re now finally ready to plot our data with Seaborn. First, I asked you to
create a scatter plot comparing trip_distance (x axis) with total_amount (y
axis) on the df containing 1 percent of our original data:

sns.relplot(x='trip_distance', y='total_amount', data=df,

 hue='passenger_count')

The relplot function is there to show us relationships among numeric
columns, and the default way to do that is with a scatter plot. Here, we tell
relplot:

The x axis should use values from the trip_distance column
The y axis should use values from the total_amount column
We should use df as our data frame
We’ll use passenger_count as the basis for coloring the lines and dots

Sure enough, this works, giving us a nice scatter plot.

Next, I asked you to show a line plot in which the x axis indicates days of the
month (1-31), and the y axis shows the value of trip_distance on that date.
Once again, we’ll use relplot to get that plot:

The x axis will be from the day column
The y axis will be from the trip_distance column
We have to indicate that kind='line', to get the line plot
We say that data comes from the df data frame
We color each of the lines by month

sns.relplot(x='day', y='trip_distance', kind='line',

 data=df, hue='month')

By asking Seaborn to have separate colors for each value of month, we were
able to get two different lines plotted on the same chart.

Notice, though, that there are some gray lines around each of our plots. Those
indicate the "confidence interval" for each calculation. Confidence intervals
are a statistical tool to indicate how likely a value is to fall within a certain
range. We can disable the confidence intervals by passing ci='None' on a
relplot:

sns.relplot(x='day', y='trip_distance', kind='line',

 data=df, hue='month', ci=None)

Next, I asked you to show the number of trips taken on each day of these
months. This will require another line plot:

The x axis will be the day of each month
The y axis will reflect how many trips were taken on that day
We have to indicate that kind='line' to get a line plot

But wait a second: How will we get the number of trips taken each day? In
order to do that, we’ll need to use the count aggregation method. And indeed,
here I suggest not getting data back from df, but rather from the result of a
groupby on df. If we count by both month and day, and count in the year
column, we’ll have access to month and day, but also to the number of rides
there were per day. (Using year is a bit weird, since we aren’t counting the
year at all—but we need to pick some column.) After performing this
groupby, I’ll then reset the index, making month and day back into regular
columns, from which they can be retrieved:

sns.relplot(x='day', y='year', hue='month', kind='line',

 data=df.groupby(['month', 'day'])[['year']].count().reset_index(), ci=None)

This is a complex query, and it’s then used in a complex plot. So let’s walk
through this once again, a step at a time:

We want to know how many rides there on each day of each month.
That requires groupby(['month', 'day']).
We then run the count aggregation method on the groupby object
The result gives us a count for each remaining column in the data frame.
We only need one, and I choose year.
I then run reset_index to take month and day, which are part of the
index of the aggregation data frame, and put them back into the main
data frame.
I then pass the result from reset_index as the argument to data, in my
call to relplot
I tell replot that the x axis should be based on day and the y axis should
be based on year, the count of rides
I tell replot to distinguish between months by color
I ask for a line plot
Finally, I ask for ci='None' to avoid any confidence intervals from
being shown

We then see, rather dramatically, that there were fewer rides per day in July
(in the middle of the pandemic) than there were in January (before it started).

Finally, I ask to see a box plot of the total_amount column, separated by
month.

Box plots are, in the world of Seaborn, categorical plots, because they allow
us to compare the distribution of values across multiple categories. We thus
need to use the catplot function:

The x axis will be the categories we’re comparing, thus month
The y axis will be the values we want to see graphically, thus
total_amount

We’re looking at data from df
We want to see a box plot, and thus specify kind='box'

The code is thus:

sns.catplot(x='month', y='total_amount', data=df, kind='box')

We see that the mean values for total_amount weren’t that different in
January and July of 2020. And sure enough, we can see this numerically:

df.groupby('month')['total_amount'].mean()

10.6.2 Solution

filenames = ['../data/nyc_taxi_2020-01.csv', '../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,

 usecols=['tpep_pickup_datetime', 'passenger_count', 'trip_distance',

 'total_amount'],

 parse_dates=['tpep_pickup_datetime'])

 for one_filename in filenames]

df = pd.concat(all_dfs)

df['year'] = df['tpep_pickup_datetime'].dt.year

df['month'] = df['tpep_pickup_datetime'].dt.month

df['day'] = df['tpep_pickup_datetime'].dt.day

df = df.loc[(df['month'].isin([1, 7])) & (df['year'] == 2020)]

df = df.reset_index(drop=True)

df = df.sample(frac=0.01)

sns.relplot(x='trip_distance', y='total_amount', data=df,

 hue='passenger_count')

sns.relplot(x='day', y='trip_distance', kind='line',

 data=df, hue='month', ci=None)

sns.relplot(x='day', y='year', hue='month', kind='line',

 data=df.groupby(['month', 'day'])[['year']].count().reset_index(), ci=None)

sns.catplot(x='month', y='total_amount', data=df, kind='box')

10.6.3 Beyond the exercise

Load NYC taxi data from both 2019 and 2020, January and July.
Remove data from outside of those years and months. Now display the
number of trips on each day of the month in four separate graphs—the
top row in 2019, and the bottom row in 2020, the left column for
January and the right column for July.
Create a histogram, showing how many rides took place per day of each
month (January and July). Each month should appear in a different
color, and they should appear side-by-side, with January on the left and
July on the right.
Create a bar plot, showing how many rides took place in each hour (0-
24) in each month (January and July). Each month should appear in a
different color, and they should appear side-by-side, with January on the
left and July on the right.

10.7 Summary

Visualization is a key part of data science. We often think of it as a way to
help non-experts to better understand our data, but it’s also a powerful way to
better understand our own data, getting insights from a new perspective. In
this chapter, we not only saw a number of the ways that pandas can itself
perform visualizations, using a simplified API to Matplotlib. We also saw, in
the final exercise, how the Seaborn package can create attractive plots using
our data frames, using its own, separate API on top of Matplotlib.

11 Performance
11.1 Useful references
Table 11.1. What you need to know

Concept What is it? Example To learn more

df.info

Get
information
about a data
frame,
including its
memory usage

df.info()
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.info.html

df.memory_usage

Get
information
about a data
frame’s
memory usage

df.memory_usage(deep=True)
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.memory_usage.html

Categorical data

pandas

documentation
for categorical
data

df['a'].astype('categorical') pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

df.to_feather

Write a data
frame to
feather format

df.to_feather('mydata.feather') pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_feather.html

pd.read_feather

Create a data
frame, based
on a feather-
formatted file
on disk

df =

pd.read_feather('mydata.feather') pandas.pydata.org/docs/reference/api/pandas.read_feather.html

pd.read_csv

returns a new
data frame
based on CSV
input

df = df.read_csv('myfile.csv')
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.read_csv.html

pd.read_json

returns a new
data frame
based on
JSON input

df = df.read_json('myfile.json')
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.read_json.html

time.perf_counter

Get the
number of
seconds,
useful for
timing
programs

time.perf_counter() docs.python.org/3/library/time.html?#time.perf_counter

df.query
Write an SQL-
like query

df.query('v > 300')
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.query.html

df.eval

Perform
actions and
queries on a
data frame

df.eval('v + 300')
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.eval.html

pd.eval

Perform a
variety of
pandas

actions in an
evaluated
string

pd.eval('df.v > 300') pandas.pydata.org/docs/reference/api/pandas.eval.html#pandas.eval

timeit

Python
module for
benchmarking
code speed,
and a Jupyter
"magic
command" for
invoking it

%timeit 3+2 docs.python.org/3/library/timeit.html

isin

Method to
check if a
value is in a
Python
sequence.

df['a'].isin([10, 20, 30])
pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.isin.html

Saving memory with categories

Let’s say that I want to work with data from our Olympics CSV file:

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename)

How much memory does this data set consume? That’s an important question
when working with pandas, because all of our data needs to fit into memory.
We can find out by running the memory_usage method on our data frame:

df.memory_usage()

This returns a series telling us how many bytes are consumed by each
column. (The column names from df constitute the index of the returned
series.) We can get the total memory usage by summing the values:

df.memory_usage().sum()

On my computer, this comes up as 32,534,048 bytes, or just over 31 MB of
RAM.

But you know what? This number is completely wrong. That’s because
pandas, by default, ignores the size of any Python objects contained in our
data frame. Given that these objects are generally strings, and that they can be
of any length, the difference between the actual memory usage and what is
reported here can be quite big.

We can tell pandas to include all of the objects in its size calculation by
passing the deep=True keyword argument:

df.memory_usage(deep=True).sum()

On my computer, the same data frame gives me a result of 186,408,012
bytes, or about 182 MB of RAM—five times the originally calculated
amount.

But wait: This is a lot of memory, and the data set is relatively small. A much
larger data set will obviously consume much more memory, potentially more
than I can fit into my computer. How can I cut down the size of the data set,
thus allowing me to potentially work with more data? We’ve already talked
about several of them in past chapters:

Limit which columns are imported, by passing a value to usecols
Explicitly specify the dtype for each column, allowing you to choose
types with fewer bits while simultaneously speeding up the loading of
data

But as we saw in our calculations, the majority of the memory is being used
by strings. This means that we need to somehow reduce the size or number of
the text strings in our data frame.

One way to do this is with a special pandas data type known as a "category."
In the case of a category, each distinct string value is stored a single time, and
then referred to multiple times. However, this replacement is completely
transparent to us, as users of the data frame: We can continue to pretend that
the column contains strings, including use of the str accessor to apply string
methods to every element of the column.

We’ve often used astype to create a new series based on an existing one. We
can do the same thing to create a new categorical column based on one
containing text strings:

df['Games'].astype('category')

However, this doesn’t do anything useful, because it doesn’t store our new
series anywhere. It’s often easiest to just assign the newly created, categorical
series, back to the original column, replacing it with an equivalent-but-
slimmer version:

df['Games'] = df['Games'].astype('category')

How much memory does that action save us? We can find out by running
memory_usage once again:

df.memory_usage(deep=True).sum()

Sure enough, memory usage has gone down to 168,248,812 bytes, or a bit
more than 160 MB. In other words: We’ve trimmed 15 MB of storage from
our data frame, simply by turning the Games column from a string to a
category.

Which columns should we attack first? Well, we want those in which the
same strings are often repeated. Consider this code:

(df.count() / df.nunique()).sort_values(ascending=False)

Here, we divide the number of non-null rows in each column by the number
of distinct values in that column. The higher the number, the more times the
same string is repeated, and thus the greater the memory savings we can
achieve by switching the column to a category. I then used

sort_values(ascending=false) to sort them in order of priority.

I decided to choose all categories with a dtype of object, in which a value
was repeated at least 100 times. This led me to the following code:

for column_name in ['Sex', 'Season', 'Medal', 'City', 'Games', 'Sport', 'NOC', 'Event', 'Team']:

 print(column_name)

 df[column_name] = df[column_name].astype('category')

The result? A data frame that’s just over 33 MB in size. Which means that
after only a handful of lines of code that took several seconds to execute,
I’vecut the memory requirement to about 20% of its original value. That
seems like an extremely worthwhile use of my time.

But wait a second: This method creates the category based on the data that’s
already in the series. What if I know that the series might include other values
in the future, even if they’re not in the orignal data set? Here’s a simple
example:

s = Series(['a', 'b', 'c', 'a', 'b', 'c', 'c', 'c']).astype('category')

I’ll now try to set one of the values to 'd':

s.loc[7] = 'd'

This fails with a TypeError exception, telling me that we cannot set a value
that wasn’t included in the category.

We can solve this problem by creating the category before creating the series
(or column of the data frame), including all of the possible values it might
contain. Then we can ask pandas not to create the category with astype, but
rather to assign the specific category type that we’ve defined, with all of its
values. Let’s first see how this might work with our above series:

abcd_category = pd.CategoricalDtype(['a', 'b', 'c', 'd'])

s = Series(['a', 'b', 'c', 'a', 'b', 'c', 'c', 'c']).astype(abcd_category)

s.loc[7] = 'd' # Success!

In the above code, we created a new category, with all of its values, by
calling pd.CategoricalDtype. Then, when we called astype, we passed the

category that we had created, rather than asking pandas to create a new,
anonymous category. We can do the same in our Olympics data frame:

medals_category = pd.CategoricalDtype(['Gold', 'Bronze', 'Silver'])

df['Medal'] = df['Medal'].astype(medals_category)

Another potential benefit of creating this category type is that if we need the
same category for multiple columns, we can save even more memory by
sharing the category.

11.2 Exercise 48: Categories

We’ve explored New York City’s parking tickets on several previous
occasions in this book, but we were always concerned by how much memory
the full data set would require. Indeed, if I load the entire data set onto my
computer, it uses a lot of memory—about 18 GB. I’d like to crunch that
down to a much smaller number by turning many of the coulmns into
categories.

 Note

Because I realize that not everyone reading this book has many gigabytes of
RAM to spare, I’m asking you to limit the number of columns you load for
this exercise. If you are fortunate enough to have such a computer, though, I
encourage you to load the entire data set into memory, and to pare the
columns down using the same techniques. If you’re like me, you’ll be
amazed by how much memory categories can save you.

Similarly, if your computer cannot load the columns that I have specified for
this exercise, feel free to cut them down, so that things will fit into memory.

Read the NYC parking violations data into a data frame. Only load the
following columns:'Plate ID', 'Registration State', 'Vehicle Make',
'Vehicle Color', 'Vehicle Make', Violation Time', 'Street Name', and
'Violation Legal Code'.
How much memory is being used by the data frame you’ve created?
Turn each column into a category.

What types are your columns now?
How much memory does your data consume now?
How much memory have you saved thanks to using categories?

11.2.1 Discussion

This exercise has fewer steps than many of the recent ones we’ve done, for
two reasons: First, I wanted to show you how easily we can create and work
with categories. Second, when we’re dealing with large amounts of memory,
even the fastest and most tricked-out computers can take a while to calculate
things.

With that in mind, let’s go through the code, and see what we can do. First,
we’ll load the data set, limiting ourselves to the eight columns that I asked
for:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename, usecols=['Plate ID', 'Registration State',

 'Vehicle Make', 'Vehicle Color', 'Vehicle Body Type',

 'Violation Time', 'Street Name',

 'Violation Legal Code'])

You’ll likely get a DtypeWarning from pandas, indicating that because a
column has mixed types, something that we’ve seen before. That’s fine; we’ll
soon be turning it into a category, in any event.

Next, I asked you to calculate how much memory the data frame is using,
total. There are actually two ways to do this. The first is to run the method
that I showed to you, memory_usage, passing the keyword argument
deep=True. Running this method gives us a series, in which the index
contains the data frame’s column names, and the values show how much
memory is being used by each column:

df.memory_usage(deep=True)

On my computer, I get the following result:

Index 128

Plate ID 798282162

Registration State 737248306

Vehicle Body Type 758166224

Vehicle Make 768611575

Violation Time 774726961

Street Name 879156216

Violation Legal Code 515644296

Vehicle Color 735089399

dtype: int64

According to this report, each of the columns in my data frame requires more
than half a gigabyte of RAM. Even in our modern era of cheap, plentiful
RAM, this is still a large data set—and given the alternative, there’s no
reason for us to use all of this memory.

I want to remind you that it’s important to always use deep=True if you truly
want to know the size of your data frame. If we hadn’t passed deep=True,
then we would have gotten something like this:

Index 128

Plate ID 99965872

Registration State 99965872

Vehicle Body Type 99965872

Vehicle Make 99965872

Violation Time 99965872

Street Name 99965872

Violation Legal Code 99965872

Vehicle Color 99965872

dtype: int64

Notice how all of the columns, aside from the index, have the same size,
namely 99,965,872 bytes—basically 100 MB. Not a small amount of
memory, but it’s far less than the actual size of our data in memory, whose
size we calculated using deep=True.

Why does pandas not run deep=True all of the time? Because it takes
substantially laonger

Of course, this just gives us the size of each individual column. But since we
got the results back as a series, we can add the values together using sum:

df.memory_usage(deep=True).sum()

On my computer, the result is 5,966,925,267, or about 6 GB.

Next, I asked you to turn each of these columns into a category. Remember
that given a column named colname, you can turn it into a category with:

df['colname'] = df['colname'].astype('category')

When you do this, pandas removes NaN values in the column, looks at the
remaining unique values, builds a new category object from it, and then uses
that category to assign values. While it still appears as though the values are
there, as before, pandas has actually replaced them with much-smaller
integers, storing each of the strings a single time.

How can I perform this transformation on each column? My suggestion is to
use a for loop. You might be surprised to see this suggestion, given that I
often point out that if you’re using a for loop in pandas, you’re almost
certainly doing something wrong. But that’s if you’re trying to perform a
calculation on each row; for such purposes, pandas has a lot of functionality
that’ll generally be faster than any loop you run. Because so much of the
back-end data uses NumPy, pulling the data into Python data structures will
use significantly more memory than taking advantage of its vectorized,
compiled, and optimized systems.

But this case is quite different: Here, I’m interested in performing one
vectorized operation per column. There isn’t any vectorizing to be done
across the columns. For this reason, a for loop is perfectly reasonable. The
index object that we get back from df.columns is iterable, allowing us to get
each column name, one at a time. I thus wrote:

for one_colname in df.columns:

 print(f'Categorizing {one_colname}...')

 df[one_colname] = df[one_colname].astype('category')

 print('\tDone.')

Notice that I put two calls to print inside of the for loop, once before
starting the transformation and once after. This is because the creation of a
category can take some time, and I thought it would be useful to know when
pandas was starting to work on a column, and when it had finished with it. In
addition, if something goes wrong while creating the columns, I’ll know

exactly where we were when the problem took place.

After performing this transformation, I wanted to get confirmation that things
had changed. By running dtypes on our data frame, we can see precisely
what type each column has:

df.dtypes()

Sure enough, pandas showed me that all of the columns had been changed to
have category types. But what impact did that have on the memory usage?
We can check, once again, by asking for a deep memory check:

orig_mem = df.memory_usage(deep=True).sum()

This time, on my computer, I get the value 574,455,678—still half a gigabyte
of RAM, but that’s a far cry from the original value we got, namely 6GB. In
other words, it would seem that we have cut down our memory usage by
about 90 percent! And indeed, if we perform a quick calculation:

new_mem / orig_mem

We get a result of 0.096, meaning that we are indeed using approximately 10
percent of the original data frame’s memory, while still using the same data
and enjoying the same benefits from it.

 Note

The df.info method returns a summary of information about the data frame,
including the total memory usage. By default, it doesn’t do a "deep" memory
check; in such cases, and if there are object columns, the memory will be
returned with a + sign following the number. You can avoid the +, and get a
precise calculation, by passing memory_usage='deep' as a keyword argument
to info:

df.info(memory_usage='deep')

This will give you a summary of the total memory used.

11.2.2 Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Plate ID', 'Registration State',

 'Vehicle Make', 'Vehicle Color',

 'Vehicle Body Type', 'Violation Time',

 'Street Name', 'Violation Legal Code'])

orig_mem = df.memory_usage(deep=True).sum() #1

for one_colname in df.columns: #2

 print(f'Categorizing {one_colname}...')

 df[one_colname] = df[one_colname].astype('category') #3

 print('\tDone.')

df.dtypes() #4

new_mem = df.memory_usage(deep=True).sum() #5

print(new_mem / orig_mem) #6

11.2.3 Beyond the exercise

Without calculating: Of the columns we loaded, which would make less
sense to turn into categories? Once you’ve thought about it, calculate
how many repeated values there are in each column, and determine
(more formally) which would give the biggest ROI in using categories.
In Exercise 25, we saw that the vehicle makes and colors were far from
standardized, with numerous misspellings and variations. If we were to
standardize the spellings before creating categories, would that make
any effect on the memory savings we gain from categorization? Why or
why not?
Read only the first 10,000 lines from the CSV file, but all columns.
Show the 10 columns that will most likely benefit greatest from using
categories?

Apache Arrow

There’s no doubt that CSV files are convenient to work with. Not only does

every programming language and data-analysis system knows how to read
from and write to them, but they’re readable by people, too. Heck, we can
even go in and edit CSV files by hand, when we need to. The same could be
said for JSON, which has also become popular in the last few years. JSON
can handle more complex data structures than CSV, but is still a text-based
format.

The fact that CSV and JSON are human readable almost inherently makes
them less efficient for computers: They take up more space on disk than
binary formats, and also take longer to read and write. A number of binary
formats exist, but none has pushed out the others as a standard.

Fortunately, we have an increasingly viable binary option—Apache Arrow,
along with its file format, known as Feather. Apache Arrow is meant to be a
new backend in-memory storage system not just for pandas, but also for
other data-analysis libraries and languages, including the popular R language
and the Spark distributed library. Arrow is designed to handle the data types,
and data-storage needs, associated with data analysis. It can handle the data
types that we’re used to, from integers and floats to strings and dictionaries. It
can even handle categories, of the sort that we saw in Exercise 48. It uses a
number of tricks to use less memory than the standard NumPy back end.

Beyond the work being done to make Apache Arrow a fast and useful in-
memory database, there is also an on-disk serialization format for that
database, known as "feather." Feather files take advantage of the data types in
Arrow, along with compression and binary storage. They are thus smaller in
size, and faster to both read and write, than either CSV or JSON.

To write a pandas data frame to a feather-formatted file, you can use the
to_feather method, which works similarly to to_csv and to_json:

df.to_feather('mydata.feather')

You can similarly read from a feather-formatted file into a data frame using
the pd.from_feather method, which works similarly to from_csv and
from_json:

df = pd.from_feather('mydata.feather')

Because pandas can read from and write to feather files faster than CSV or
JSON, your projects would likely benefit from turning files from CSV and
JSON into feather at the first opportunity. The larger the data set, the greater
the benefit you’ll have from working in this way.

Feather provides another potential way to speed up your work in pandas,
even if you don’t use Arrow or the feather format directly: When reading
from a CSV file, you can traditionally choose from two different parsing
engines, one written in Python and the other written in C. The Python engine
is more flexible and offers more features, but it slower than the C-language
parser. By default, pandas tries to use the C parser, unless you specify an
option that it cannot handle, in which case it switches to C. You can
explicitly specify the engine you want when reading the CSV file:

df = pd.read_csv('mydata.csv', engine='python')

While it is still considered experimental as of this writing, you can now pass
a third value to the engine keyword argument, namely the string 'pyarrow'.
If you do that, then pandas will use the Arrow architecture and library to read
the CSV file, potentially speeding up its reading into memory. If you find that
the data is loading slowly, you might want to try this option. In my
experience, this can significantly improve the rate at which CSV data is read
into a data frame.

Over the coming years, I expect that the Arrow backend, as well as the
feather format, will become increasingly common among users of pandas and
other open-source data analysis tools. CSV and JSON aren’t going away, but
as data sets grow in size, feather’s faster speed and cross-platform
compatibility will become more dominant, and should assume a greater role
in your arsenal.

11.3 Exercise 49: How much faster?

Each file format has its own advantages and disadvantages, among them
being the speed with which you can read and write data. Given a data frame,
is it faster to write it as a CSV, JSON, or feather file? (If you read the above
sidebar on Apache Arrow and feather, you might have a good sense of the

answer.) How much of a difference is there? And is there a significant
difference in speed when reading CSV, JSON, and feather files into a data
frame?

In order to understand that, I’m asking you to do the following:

Load the New York parking data CSV file into a data frame.
Write that data frame out to the filesystem, in each of three different
formats—CSV, JSON, and feather. Time the writing of each format, and
print the format along with the number of seconds it took to write to it.
How big are the files you’ve created?
Then, go through each file you just created, reading it into a data frame.
Once again, time how long the loading takes, and print that timing
alongside the format name.

 Note

The New York parking data set is quite large, and might overwhelm
computers with less than 32 GB of free memory. If you’re working on such a
computer, then I encourage you to use the usecols keyword parameter to
reduce the number of columns read into the data frame at the start of the
exercise. You might see less of a difference between writing to, and then
reading from, the various formats—but at least you’ll be able to finish the
exercise.

11.3.1 Discussion

The first thing I asked you to do was load the New York parking violations
data set for 2020. I’m going to assume that your computer has enough
memory to load the entire thing, which I did as follows:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename, low_memory=False)

Notice that I passed the low_memory=False keyword argument. This told
pandas that I had enough RAM on my computer that it could look through all
of the rows in the data set, when trying to determine what dtype to assign to

each column.

With my data frame in place, I can thus begin writing to different formats,
timing how long each takes.

But of course, that means we’ll need some way to keep track of time.
Python’s time module, part of the standard library, provides a number of
different methods that could theoretically be used, but it’s generally
considered best to use time.perf_counter(). This function uses the highest-
resolution clock available, and returns a float indicating a number of seconds.
The number returned by perf_counter should not be relied upon for
calculating the current date and time—but if used within the same program, it
can be used to measure the passage of time, which is precisely what we’ll
want to do.

 Note

Python’s standard library also includes the timeit module
(docs.python.org/3/library/timeit.html?#module-timeit), which includes a
number of utilities for benchmarking. I decided not to use timeit, in no small
part because that module runs code several times. Each of our runs will take
long enough that this didn’t seem like a good fit. But timeit is a good tool to
know about for benchmarking your code, and we’ll use it in Exercise 50.

I wanted to try writing to CSV, JSON, and feather formats. In theory, I could
have written code that looked like this:

df.write_json('parking-violations.json')

df.write_csv('parking-violations.csv')

df.write_feather('parking-violations.feather')

But of course, I wanted to find out how long each one took. So I could add
some benchmarking code above and below each of our formats:

start_time = time.perf_counter() #1

df.write_json('parking-violations.json')

end_time = time.perf_counter()

total_time = end_time - start_time

print(f'\tWriting JSON: {total_time=}')

start_time = time.perf_counter() #2

df.write_csv('parking-violations.csv')

end_time = time.perf_counter()

total_time = end_time - start_time

print(f'\tWriting CSV: {total_time=}')

start_time = time.perf_counter() #3

df.write_feather('parking-violations.feather')

end_time = time.perf_counter()

total_time = end_time - start_time

print(f'\tWriting feather: {total_time=}')

The above code will work, and will do the job. But it also violates an
important rule of programming: "Don’t Repeat Yourself," often abbreviated
as "DRY." We’re basically doing the same thing three times. If we can
consolidate that code into a loop, our code will be cleaner, easier to read,
easier to debug, and easier to extend. But how can we do that? After all,
we’re calling three different methods.

This is where some knowledge and understanding of Python, and not just
pandas, comes in handy: We can create a dictionary in which the keys are the
file formats, and the values are the methods we want to use to write the data
frame. That’s right—you can store any Python object, including a function or
method—as the value in a dict. I can thus say:

root = 'parking-violations'

write_methods = {'JSON': df.to_json,

 'CSV': df.to_csv,

 'feather': df.to_feather

 }

for one_format, method in write_methods.items():

 print(f'Saving in {one_format}')

 start_time = time.perf_counter()

 write_methods[one_format](f'parking-violations.{one_format.lower()}')

 end_time = time.perf_counter()

 total_time = end_time - start_time

 print(f'\tWriting {one_format}: {total_time=}')

My for loop here iterated over the dict, getting each key (a string, stored in
one_format) and value (method, containing the method to be run) from the

write_methods dict. I printed the current format, just for debugging
purposes, and then ran time.perf_counter(), getting back the current time
(more or less) in seconds.

I then retrieved the write method with write_methods[one_format],
invoking it on the filename, via an f-string.

After writing the file to disk, I then called time.perf_counter() again,
storing the difference in total_time, which I then printed.

On my computer, I got the following results from running the above code:

Saving in JSON

 Writing JSON: total_time=46.29149689315818

Saving in CSV

 Writing CSV: total_time=114.35314526595175

Saving in feather

 Writing feather: total_time=7.929971480043605

In other words, it took about 114 seconds (nearly two minutes) to write our
data frame to a CSV file. It took 46 seconds to write the same data to JSON.
But it took just under 8 seconds—or about 14 times faster!—to write the
same data to feather. If that doesn’t convince you to consider using feather,
I’m not sure what will.

Notice that in order for this code to work, I had to define df, the data frame,
before the write_methods dictionary was defined. I also used
one_format.lower() to take the format name and ensure that it was only in
lowercase letters.

How big were the files that I created? Here, I again decided to rely on
Python’s standard library. We’ve already seen the glob.glob function in
previous exercises; here I use it to retrieve all of the filenames that start with
the value of our root variable. But I then want to get the size of each file,
something I can do easily with os.stat. This function returns a special data
structure that’s modeled on Unix’s stat functionality. In Python, we can get
the size of the file, in bytes, by retrieving the st_size attribute from the value
we get back from os.stat:

for one_filename in glob.glob(f'{root}*'):

 print(f'{one_filename:27}: {os.stat(one_filename).st_size:,}')

Inside of the f-string, I used two tricks to adjust the way in which the values
were formatted:

I told the f-string to pad one_filename with spaces, such that each
filename would use 27 characters. This helped to ensure that the results
would line up.
I told the f-string to add commas before every three digits in the integer
it was displaying, thus making them more readable.

The result, on my computer, was:

parking-violations.json : 8,820,247,015

parking-violations.csv : 2,440,860,181

parking-violations.feather : 1,466,535,674

We can see here that the CSV file was about 2 GB in size, the JSON file was
about 8 GB (!) in size, and Apache Arrow’s feather format was just over 1
GB in size. This isn’t the only reason why writing feather files is faster, but
it’s certainly one of them; at the end of the day, pandas had to write one
eighth as much data to disk.

However, I also wanted you to benchmark reading these files back from the
filesystem. I decided to use the same technique as before, namely creating a
dictionary (this time, called read_methods), containing the file extensions
and the methods I’d want to run. The code then was as follows:

read_methods = {'JSON': 'read_json',

 'CSV': 'read_csv',

 'feather': 'read_feather' }

for one_format, method in read_methods.items():#1

 print(f'Reading from {one_format}')

 start_time = time.perf_counter()

 df = read_methods[one_format](

 f'parking-violations.{one_format.lower()}') #2

 end_time = time.perf_counter()

 total_time = end_time - start_time

 print(f'\tReading {one_format}: {total_time=}')

Once again, I iterated over a dictionary, getting each key (a string, stored in
one_format) and value (method) from the read_methods dict. I printed the
current format, and then ran time.perf_counter(). I then retrieved the
appropriate read method with read_methods[one_format], and invoked the
method that I got on the appropriate filename. After reading the file into a
data frame, I then called time.perf_counter() again, storing the difference
in total_time, which I then printed.

If you’re like me, then you’ll likely get the DtypeWarning we’ve previously
discussed. For our purposes, I decided to ignore it, in no small part so that I
could avoid having to worry about which method, and which format, was
being read. But the benchmarking results were as follows:

Reading from JSON

 Reading JSON: total_time=469.92014819500037

Reading from CSV

 Reading CSV: total_time=35.20077076088637

Reading from feather

 Reading feather: total_time=9.132312984904274

This time, the JSON file took the longest to read into memory, at a hefty 469
seconds, or nearly 8 minutes. In second place, and taking less than 10% of the
time, was CSV, at 35 seconds. But the speed champion remained feather,
taking just over 9 seconds.

From this simple demonstration, it seems pretty clear that Apache Arrow, and
its feather format, are significantly faster for reading and writing than both
CSV and JSON. Which doesn’t mean that you can or should move everything
to feather—but that it has a number of clear advantages, both in terms of
speed and in its footprint on the filesystem.

11.3.2 Solution

import glob

import os

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename, low_memory=False)

root = 'parking-violations'

write_methods = {'JSON': 'to_json', #1

 'CSV': 'to_csv',

 'feather': 'to_feather' }

for one_format, method in write_methods.items(): #2

 print(f'Saving in {one_format}')

 start_time = time.perf_counter()

 write_methods[one_format](#3

 f'parking-violations.{one_format.lower()}') #4

 end_time = time.perf_counter()

 total_time = end_time - start_time

 print(f'\tWriting {one_format}: {total_time=}')

for one_filename in glob.glob(f'{root}*'): #5

 print(f'{one_filename:27}: {os.stat(one_filename).st_size:,}') #6

read_methods = {'JSON': 'read_json',

 'CSV': 'read_csv',

 'feather': 'read_feather' }

for one_format, method in read_methods.items():#7

 print(f'Reading from {one_format}')

 start_time = time.perf_counter()

 df = read_methods[one_format](

 f'parking-violations.{one_format.lower()}') #8

 end_time = time.perf_counter()

 total_time = end_time - start_time

 print(f'\tReading {one_format}: {total_time=}')

11.3.3 Beyond the exercise

If we read the CSV file using the "pyarrow" engine, do we see any
speedup? That is, can we read CSV files into memory any faster if we
use a different engine?
If we specify the dtypes to read_csv, does it take more time, or less,
than without doing so?
How much memory does our data frame take in as a pandas data frame?
How much memory does it require as an Arrow table?

Speeding things up with eval and query

Over the course of this book, I’ve emphasized a number of techniques that

you should use to speed up your pandas performance:

Never use standard Python iterations (for loops and comprehensions) on
a series or data frame
Take advantage of broadcasting
Use the str accessor for anything string related
Use the smallest dtype you can, without sacrificing accuracy
Avoid double square brackets when setting and retrieving values
Load only those columns that you really need for your analysis
Columns with repeated values should be turned into categories
Use a binary format, such as feather, for data you’ll repeatedly save or
load

Even after using all of these techniques, you might find that your queries are
still running slowly, or using lots of memory. This often occurs when
performing an arithmetic operation on two columns, each of which contains
many rows. A related problem is when you’re broadcasting an operation on a
scalar and a series. While pandas takes advantage of the high-speed
calculations in NumPy, much of the work is still being done within the
Python language, which is slower to execute than C.

Another problem occurs when you’re creating a boolean series, for use as a
mask index, based on several conditions. It’s certainly convenient to use &
and | to combine your conditions with logical "and" and "or", but behind the
scenes, pandas has to create multiple boolean series, which are then
combined. If you have 1 million rows in your original column, then
combining three conditions will end up creating at least 3 million rows in
temporary series, before combining and applying them together.

We can avoid these problems, as well as make our queries more readable,
using the query method that I introduced back in chapter 2, as well as two
versions of the more general eval method. These reduce the memory needed
in queries using | and &, and can often execute expressions in a library known
as numexpr. The combination of reduced memory and increased speed can
sometimes give dramatically faster results, while also using fewer resources.

However, it’s important to understand that these methods are not cure-alls for
your performance problems:

Using them on small data frames, with fewer than 10,000 rows, will
often result in slower performance, not in faster performance.
Often, the bottleneck in your performance is in assignment or retrieval
of elements, not in the calculation. Which means that there won’t be a
speed boost in such cases.
You’ll need to install the numexpr package from PyPI, and then
explicitly tell pandas to use it. If you don’t make this explicit, then
pandas will use its default Python-based engine for parsing the query
string, resulting in no speedup.
Anything which doesn’t involve calculations, comparisons, and boolean
operators will either raise an exception or run at the standard (non-
enhanced) speed.

Let’s start by looking at the query for data frames. We’ll then talk about two
versions of eval, which are part of the same family.

Given a data frame df, the method df.query allows you to describe which
rows you want to get back from df. The description is passed as an SQL-like
string in which the columns can be named as if they were variables. The
result of the query will be a data frame, a subset of df, with all of the columns
from df and those rows for which the comparison returned a True value. For
example, given a data frame df with numeric columns a and b, in which we
want all rows where a is greater than 100 and b is equal to 50, we would
normally say:

np.random.seed(0)

df = DataFrame(np.random.randint(0, 1000, [5,5]),

 index=list('vwxyz'),

 columns=list('abcde'))

df.loc[((df['a'] > 100) &

 (df['b'] < 700))]

But using df.query, we can instead write:

df.query('a > 100 & b < 700')

The version using query might run faster. But in almost all cases, it’ll use
less memory, because it won’t have to create two separate, temporary
boolean series: One for a > 100 and another for b == 50. We might not see

these boolean series when running a traditional query, but they’re there, and
can use a great deal of memory without you realizing it.

I should add that some people prefer to use df.query for all of their pandas
work, because of its readability and reduced memory use.

A related data frame method is df.eval, which allows us not only to retrieve
from a data frame (as in df.query), but also to perform other actions,
including broadcasting and assigning. For example:

df.eval('(a + b) * 3')

The above code adds columns a and b together, then multiplies the new series
by 3, via broadcasting. The returned value is a series. What if we were to pass
the same code as we used before, with df.query?

df.eval('a > 100 & b < 700')

The above returns a boolean series. Whereas df.query applies that boolean
series to df, df.eval returns the boolean series itself, and allows us to apply
it if and when we want to do so.We can even add a new column (or update an
existing one) by assigning to a column name:

df.eval('f = d + e - c')

Using a triple-quoted string, you can perform multiple assignments (not
conditions) df.eval:

df.eval('''

f = d + e - c

g = a * 2

h = a * b

''')

The third, and final method that allows you to use less memory, speed up
computation, and write more readable queries is pd.eval. Notice that this is a
top-level function in the pd namespace, rather than a method we run on a
specific data frame. We can use pd.eval instead of df.eval, although we’ll
need to explicitly state the name of the data frame we’re working on. For
example, we can say:

pd.eval('df[df.a > 100 & df.b < 700]')

Notice that when using pd.eval, you’ll almost certainly need to use the dot
syntax with columns, rather than the square-bracket syntax that I have
generally used in this book—so to retrieve column a from data frame df,
you’ll need to say df.a, rather than df['a']. As a result, this also means that
your column names cannot contain spaces in them.

The above code will return all of the rows of df in which a is greater than 100
and b is less than 700, as before. However, we have written the query as a
string, which is passed to numexpr. That package will, as we’ve seen, use less
memory and (usually) result in better performance. Note that a call to
df.eval is translated into a call to pd.eval, which means that you can
probably get better performance if you just call pd.eval. That said, the
convenience of the syntax in df.eval is hard to beat.

As with df.eval, you can assign to one or more columns in the string you
pass to pd.eval. But because we’re invoking pd.eval, the data frame on
which the assignment should take place isn’t known to the system. You must
set it by passing the target keyword argument. The assignment is reflected
in the data frame that is returned:

pd.eval('f = df.d + df.e - df.c', target=df)

So, when should you use each of these? Again, the biggest wins are likely to
be with compound queries (using & and |), on large data frames. The larger
the data frame and the more complex the query, the bigger the speed boost
that you might see—but even if you don’t, you’ll almost certainly be using
less memory.

Meanwhile, here’s a quick recap on each of these three functions:

To retrieve selected rows from a data frame, use df.query
To assign multiple columns, or to perform either queries or assignments
on a data frame, use df.eval.
To work on multiple data frames, use pd.eval. It doesn’t handle
multiline assignments, and the syntax makes it a bit uglier, though.

11.4 Exercise 50: query and eval

In this exercise, we’ll look through New York parking tickets one final time,
running queries using the traditional df.loc accessor, and then also using
df.query and df.eval. For each of these questions, I’d like you to run the
query via timeit, allowing us to compare the executing time needed for the
various types of queries. Specifically, I’d like you to:

Load the New York parking data CSV file into a data frame. We’ll only
need the following columns: Plate ID, Registration State, Plate
Type, Feet From Curb, Vehicle Make, and Vehicle Color.
Rename the columns to pid, state, ptype, make, color, and feet. (This
will make it easier to use df.eval.)
Find all of the cars whose registration state is from New York, New
Jersey, or Connecticut, using .loc.
Find all of the cars whose registration state is from New York, New
Jersey, or Connecticut, using df.query.
How much faster was it to use query? # Use isin to search for the
states. How does this technique compare?

Perform each of the following queries using df.loc, df.query, and
df.eval, all within timeit. In each case, which type of query ran the
fastest?

Find cars from New York.
Find cars from New York with passenger (PAS) plates.
Find white cars from New York with passenger (PAS) plates.
Find white cars from New York with passenger (PAS) plates that
were parked > 1 foot from the curb.
Find white Toyota-brand cars from New York with passenger (PAS)
plates that were parked > 1 foot from the curb.

Which type(s) of query would appear to run the fastest?

11.4.1 Discussion

In this exercise, I wanted you to learn severll things: * How to formulate the
same query using .loc, df.query, and df.eval * How to use timeit to time

your queries, and thus compare their relative speeds * What might lead a
query to be slower * Some of the syntactic issues associated with alternative
query mechanisms

The first thing I asked you to do was load a number of columns from the New
York parking-ticket dataset, much as we’ve often done in this book:

df = pd.read_csv(filename,

 usecols=['Plate ID', 'Registration State',

 'Plate Type', 'Feet From Curb',

 'Vehicle Make', 'Vehicle Color'])

There is nothing inherently wrong with loading the data in this way.
However, when we use pd.query and pd.eval, it’s often annoying to have
column names that includes spaces in them. Yes, we can use backticks, but
it’s more convenient to give them names that’ll allow us to treat them as
variables inside of the query string. So while there’s nothing technically
wrong with loading the data as I’ve done here, I’ll then want to set the
headers to be single-word names. I can do that by assigning a list of strings to
df.columns:

df.columns = ['pid', 'state', 'ptype', 'make', 'color', 'feet']

Now, you might be thinking that it would be more effective to set these
names as part of the call to read_csv. After all, read_csv has a names
parameter, which takes a list of strings that are assigned to the newly created
data frame. However, things get tricky if we want to rename the columns
(with names) and also load a subset of the columns (with usecols). That’s
because passing a value to names means that you need to use those names,
rather than the original ones from the file, when choosing columns in
usecols. And you can only do that if you name all of the columns, which is
rather annoying.

Actually, there is another way to do it: You can specify which columns you
want by passing a list of integers to usecols. pandas will select the columns
at those indexes. You can then assign them names by passing a value to the
names parameter. Here’s how I would do that:

df = pd.read_csv(filename,

 usecols=[1, 2, 3, 7, 33, 37],

 names=['pid', 'state', 'ptype', 'make', 'color', 'feet'])

Will this work? Yes, it will, and in many cases, it might be the preferred way
to go. However, I have two problems with it: First, I find it somewhat
annoying to find the integer positions for the columns we want to load. And
secondly, when I ran this code on my computer, I got the "low memory"
warning that we’ve sometimes seen in previous examples. I thus decided to
avoid the annoyance of finding the desired columns' numeric locations and
the low-memory warning, and to use the two-step column renaming that
appears in the solution.

With our data frame in place, we can start to perform some queries. One of
the main points of this exercise is to get comfortable timing queries, in order
to find out how quickly they run. Python provides the timeit module, which
you can use in standard programs, but Jupyter provides a special %timeit
magic method that can be used inline, inside of Jupyter cells. You can say:

%timeit myfunc(2, 3, 4)

In this example, timeit will run myfunc(2,3,4) a number of times, reporting
the mean execution time along with the variation that it detected. Just how
many loops timeit runs is determined by the code speed; something that
takes a fraction of a second might run hundreds or even thousands of times,
whereas something that takes more than a few seconds might be run only a
handful of times.

 Note

When using the %timeit magic command in Jupyter, don’t forget:

Your code must be written on a single line, just after the %timeit magic
command. If you have more than one line, then wrap it into a function,
and invoke that function.
If you’re timing a function, don’t forget to put () after the function’s
name.

For the first task, I asked you to find all of the rows in df that were for
parking tickets issued in New York ('NY'), New Jersey ('NJ'), or

Connecticut ('CT'), using both the traditional loc accessor and using the
query method. I also asked you to time each of these, for comparison.

I started with the traditional .loc accessor, combining three separate queries:

%timeit df.loc[(df['state'] == 'NY') | (df['state'] == 'NJ') | (df['state'] == 'CT')]

On my computer, this query took 1.84 seconds.

Consider everything that pandas had to do for this query:

Compare each element in df['state'] with 'NY'
Compare each element in df['state'] with 'NJ'
Compare each element in df['state'] with 'CT'
Perform an "or" operation on the first two (New York and New Jersey)
boolean series
Perform an "or" operation on the result of the above "or" and the
Connecticut series
Apply that final boolean series to df.loc as a mask index

There’s no doubt that with so many rows, each of these comparisons will take
some time. Moreover, the "or" operations, resulting in a single boolean series,
will also take quite a while. Using the query method won’t help with the first
part; we’ll still need to perform the comparisons. However, by using query,
we can dramatically reduce the number of "or" operations involved. That’s
because query uses the numexpr backend to perform such operations, which
does them far more efficiently. How much more? Here’s how I rewrote
things to use query:

%timeit df.query("state == 'NY' or state == 'NJ' or state == 'CT'")

On my computer, using query took only 1.03 seconds, about 0.8 seconds (or
45%) less than the original query. That’s a pretty dramatic speed
improvement, and points to how much query can improve our performance
for certain queries.

However, the comparisons with each of the three state abbreviations also
takes quite some time. Can we cut down on the number of comparisons? Yes,
if we use the isin method on our column to search for a match within a

Python list:

%timeit df.loc[df['state'].isin(['NY', 'NJ', 'CT'])]

This query took even less time than the previous one, clocking in at 0.77
seconds on my computer. That represents a 58% speedup from the original
query.

But wait: Maybe we can enjoy an even greater speedup if we use query and
isin together. Let’s give it a try:

%timeit df.query('state.isin(["NY", "NJ", "CT"])')

Unfortunately, this didn’t seem to improve things; it took 0.80 ms on my
computer—still better than the original queries, but not as good as simply
using isin.

From this small comparison, we see that optimiziation of queries is rarely a
matter of always using one particular technique. It requires a bit of thinking
about what you’re doing, considering what pandas is doing behind the
scenes, and then performing some tests to check your assumptions. That said,
we can conclude at least two things from these queries: First, that if you’re
combining queries with | or &, you’ll likely get a decent improvement by
using query rather than loc, thanks to the speedups provided by numexpr.
Second, using isin will almost always be faster than combining multiple
queries, because we’re making a single comparison per row, rather than three.

Following this first set of queries, I asked you to perform a number of
increasingly complex queries, each in three different ways: First using the
traditional loc accessor, then by using df.query, and finally by using
df.eval. I did this not only to give you some practice building queries in
different ways, and in comparing the time that each takes, but also to see that
the improvements you see using query and eval become more pronounced as
the query becomes more complex.

For starters, I asked you to find all of the parking tickets given to cars with
New York license plates. Here are the three queries, all together:

%timeit df.loc[(df['state'] == 'NY')]

%timeit df.query('state == "NY"')

%timeit df[df.eval('state == "NY"')]

On my computer, these gave me timings of 903 ms, 733 ms (19% faster), and
758 ms (17% faster), respectively. We thus already see that loc is the slowest
of the three, with the use of df.query and df.eval coming in at almost the
same.

But wait—the result of df.eval is a boolean series, one which we then apply
to df. Perhaps, instead of using a mask index on df, I should do so on
df.loc? Using %timeit, I can find out pretty quickly:

%timeit df.loc[df.eval('state == "NY"')]

Sure enough, I got the fastest result, albeit by just a hair, when using df.loc
here, at 729 ms. In other words, it would seem that selecting via df.loc and a
mask index will have better performance than just df and a mask index—
something that I’ve seen elsewhere, too. The rest of my solutions in this
exercise will all use df.loc, for a fairer comparison.

Next, I asked you to find passenger cars (i.e., with ptype equal to 'PAS')
from New York. Here are my three solutions:

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS'))]

%timeit df.query('state == "NY" & ptype == "PAS"')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS"')]

Here, I got timings of 1.27 seconds for the traditional use of df.loc, vs. 965
ms for df.query (24% faster) and 924 ms for df.eval (27% faster). Here, we
used & to combine the two boolean series that we got back from each
comparison. Whereas we were able to speed up our "or" query above by
using isin, there isn’t an exact equivalent for "and" queries.

Next I asked you to expand the query further, thus narrowing the potential
results, looking for white passenger cars from New York that had been
ticketed. Again, we can compare my queries:

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') & (df['color'] == 'WHITE'))]

%timeit df.query('state == "NY" & ptype == "PAS" & color == "WHITE"')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" & color == "WHITE"')]

This time, I got timings of 1.34 seconds, 728 ms for df.query (45% faster),
and 727 ms for df.eval (also 45% faster). We can see that adding another
condition slows down the traditional query a bit, but actually results in faster
queries when using the numexpr backend.

Next, I asked to find tickets for white passengers cars from New York that
were parked more than 1 foot away from the curb. Here are my queries:

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') &

 (df['color'] == 'WHITE') & (df['feet'] > 1))]

%timeit df.query('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1')]

In this case, I got timings of 1.31 seconds for the traditional query, 712 ms
for df.query (45% faster), and 706 ms for df.eval (46% faster). Again, we
can see that when the queries are complex, using the numexpr backend gives
us a big speed advantage.

Finally, I asked you to find tickets given to white Toyota passenger cars, with
license plates from New York state, that were parked more than 1 foot away
from the curb. Here is how I wrote those queries:

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') &

 (df['color'] == 'WHITE') & (df['feet'] > 1) &

 (df['make'] == 'TOYOT'))]

%timeit df.query('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1 &

 make == "TOYOT"')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1 &

 make == "TOYOT"')]

Here, I got timings of 1.75 seconds for the traditional query, 896 ms for
df.query (49% faster), and 899 ms for df.eval (48% faster) for df.eval.
The added condition slowed down all of the queries, but our numexpr
backend continued to prove its worth, giving us the same answer at nearly
twice the speed.

Does this mean that it’s always worth using df.query or df.eval? I know

that there are pandas users who would say "yes," given that even in the
simplest of cases, we saw a speedup. And in the most complex cases, the
speedup was quite dramatic. So you could argue that since it doesn’t matter
much for simple queries on a short data set, but it matters a lot for complex
queries on large ones, you should always use these techniques.

However, focusing on speed before you’ve really thought hard about the
problem, and where the bottlenecks are, can be misleading. Remember that
df.query returns all of the columns from a data frame—so if your data frame
contains more columns than you’ll want to get back, it might end up using
lots of memory unnecessarily. By contrast, df.loc provides you not only
with a row selector, but also with a column selector, for more flexibility. I
thus tend to use df.loc for my queries while I’m still putting them together.
When I’m done, I can then experiment with these techniques to see how to
reduce memory and speed things up.

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,

 usecols=['Plate ID', 'Registration State', 'Plate Type', 'Feet From Curb',

 'Vehicle Make', 'Vehicle Color'])

df.columns = ['pid', 'state', 'ptype', 'make', 'color', 'feet']

%timeit df.loc[(df['state'] == 'NY') | (df['state'] == 'NJ') | (df['state'] == 'CT')]

%timeit df.query("state == 'NY' or state == 'NJ' or state == 'CT'")

%timeit df.loc[df['state'].isin(['NY', 'NJ', 'CT'])]

%timeit df.loc[(df['state'] == 'NY')]

%timeit df.query('state == "NY"')

%timeit df.loc[df.eval('state == "NY"')]

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS'))]

%timeit df.query('state == "NY" & ptype == "PAS"')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS"')]

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') &

 (df['color'] == 'WHITE'))]

%timeit df.query('state == "NY" & ptype == "PAS" &

 color == "WHITE"')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" &

 color == "WHITE"')]

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') &

 (df['color'] == 'WHITE') & (df['feet'] > 1))]

%timeit df.query('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1')]

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') &

 (df['color'] == 'WHITE') & (df['feet'] > 1) &

 (df['make'] == 'TOYOT'))]

%timeit df.query('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1 &

 make == "TOYOT"')

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" &

 color == "WHITE" & feet > 1 &

 make == "TOYOT"')]

11.4.2 Beyond the exercise

In this exercise, we

In df.query, we can use the words and and or, rather than the symbols &
and |, thanks to the numexpr library. Rewrite our final query using the
words. Does this change the speed at all?
I prefer measuring distance in meters, rather than in feet. I thus want to
find all of the cars that were ticketed when they were more than 1 meter
from the curb. Perform this query using the traditional df.loc and also
using df.query. Which one runs faster?
What if we modify our query, such that we look for cars that are > 1
meter from the curb and the state is New York? Which query runs faster,
and by how much?

11.5 Summary

Calculations and analysis with pandas are much faster than they would be in
pure Python. Even so, when you’re working with a large data set, you’ll often
want or need to reduce the memory footprint of your data frame, and use
techniques that can improve the performance. In this chapter, we reviewed a
number of techniques that you can use to speed up your queries and also use
fewer resources, including:

Choosing columns carefully

Reducing memory usage with categories
Reading data from feather format, rather than CSV
Speeding complex queries with df.query and df.eval

If you’ve reached this part of the book, congratulations! You’ve successfully
gone through all 50 exercises! I have no doubt that if you’ve made it this far,
you have a much better, deeper understanding of pandas, what it can do, and
how you can use it in a variety of situations. You should feel good about
yourself, and confident about your ability to use pandas at work.

But wait, before you close the book forever: The next chapter contains a large
project, in which I’ll ask you to use all of the techniques from this book to
analyze a large, real-world data set. I hope that you’ll take the time to do the
project, which will help to cement the lessons that you’ve learned, and help
you to use pandas even more effectively in the future.

12 Final project
Congratulations! You’ve finished all of the exercises in this book. If you’ve
gone through each one—and especially if you’ve gone through the "beyond
the exercise" questions, as well—then I’m sure you have improved your
Pandas skills quite a lot.

But before you go, I want to give you a final project. We’ll explore the
"college scorecard," a data set assembled by the US Department of Education
about post-secondary (i.e., after high school) educational programs. The
college scorecard allows us to see what programs schools offer, how many
students they admit, what those students pay in tuition and fees, how many
students graduate, and how much they can expect to earn after graduation.
From looking at this data, we can better understand many different aspects of
university education in the United States. I should add that with a data set this
large and rich, there are many different questions that you could ask. After
you finish answering the questions that I pose here, I strongly suggest that
you try to explore the data set on your own, as well, asking (and answering)
questions that you think are interesting and relevant.

12.1 Problem

Here is what I’d like you to do:

Create a data frame (institutions_df) from the college scorecard
cohorts-institutions CSV file. You`ll only need to load the following
columns: OPEID6, INSTNM, CITY, STABBR, FTFTPCTPELL, TUITIONFEE_IN,
TUITIONFEE_OUT, ADM_RATE, NPT4_PUB, NPT4_PRIV, NPT41_PUB,
NPT41_PRIV, NPT45_PUB, NPT45_PRIV, MD_EARN_WNE_P10, and C100_4.
Load the CSV file for fields of study into another data frame
(fields_of_study_df). Here, load the columns OPEID6, INSTNM,
CREDDESC, CIPDESC, and CONTROL.
What state has the greatest number of universities in this database?
What city, in which state, has the greatest number of universities in this

database?
How much memory can we save if we set the CITY and STABBR
columns in institutions_df to be categories?
Create a histogram showing how many bachelor programs universities
offer.
Which university offers the greatest number of bachelor programs?
Create a histogram showing how many graudate (master’s and doctoral)
programs universities offer.
Which university offers the greatest number of different graduate
(master + doctoral) programs?
How many universities offer bachelor’s degrees, but not master’s or
doctorates?
How many universities offer master’s and doctoral degrees, but not
bachelors?
How many institutions offer bachelor’s degrees whose name contains
the term "Computer Science"?
The CONTROL field describes the types of institutions in the database.
How many of each type offer a computer-science program?
Create a pie chart showing the different types of institutions that offer
CS degrees
What are the minimum, median, mean, and maximum tuitions for an
undergrad CS degree? (We’ll define this as a bachelor’s program with
the phrase "Computer Science" in the name.) When comparing tuition,
use TUITIONFEE_OUT for all schools.
Describe the tuition again, but grouped by the different types of
universities ("CONTROL")
What is the correlation between admission rate and tuition cost? How
would you interpret this?
Create a scatter plot in which tuition is on the x axis, and admission rate
is on the y axis, the median earnings after 10 years are used for
colorizing, and we use the "Spectral" colormap. Where do the lowest-
paid graduates show up on the graph?
Which universities are in the top 25% of tuition, and also the top 25% of
percentage with Pell grants? Print only the institution name, city, and
state, ordered by institution name.
NPT4_PUB indicates the average net price for public institutions (in-
state tuition) and NPT4_PRIV for private institutions. NPT41_PUB and

NPT45_PUB show the average price paid by people in the lowest
income bracket (1) vs. the highest income bracket (5) at public
institutions. NPT41_PRIV and NPT45_PRIV show the average price
paid by people in the lowest income bracket (1) vs. the highest income
bracket (5) at private institutions. In how many institutions does the
bottom quintile receive money (i.e., is the value negative)?
What is the average proportion that the bottom quintile pays vs. the top
quintile, in public universities?
What is the average proportion that the bottom quintile pays vs. the top
quintile, in private universities?
Let’s try to figure out which universities offer the best overall ROI
(across all disciplines). What schools are in the cheapest 25%, but 10
years after graduation, students have the top 25% of salaries?
How about private institutions?
Is there a correlation between admission rates and completion rates? If a
school is highly selective, are students more likely to graduate?
Ten years after graduating, from what kinds of schools (private, for-
profit, private non-profit, or public) do people earn, on average, the
greatest amount?
Do people who graduate from "Ivy Plus" schools earn more than the
average private-school university graduate? If so, then how much more?
Do people studying at universities in particular states earn, on average,
more after 10 years?
Create a bar plot for the average amount earned, per state, sorted by
ascending pay
Create a boxplot for the earnings by state.

12.1.1 Discussion

As I wrote above, the college scorecard data set includes a large number of
facts and figures about American higher education, describing both the
institutions and the students who learn there. To answer this set of questions,
we’ll only need to look at two CSV files: Information about the most recent
cohorts of students who enrolled at and graduated from these institutions, as
well as the fields of study that each institution offers. Some of our questions
will require just one of these data sources, but others will require that we
combine them into a single data frame.

To start, I asked you to load each of the CSV files into a data frame. You
might have noticed that the files I’ve provided both have a .csv.gz suffix.
This means that they are compressed with "gzip"—but you don’t need to
uncompress them before loading, because Pandas is smart enough to
automatically do so when we run read_csv. I loaded the first data frame as
follows, defining institutions_df:

institutions_filename = '../data/Most-Recent-Cohorts-Institution.csv.gz'

institutions_df = pd.read_csv(institutions_filename,

 usecols=['OPEID6',

 'INSTNM', 'CITY', 'STABBR',

 'FTFTPCTPELL', 'TUITIONFEE_IN',

 'TUITIONFEE_OUT', 'ADM_RATE',

 'NPT4_PUB', 'NPT4_PRIV',

 'NPT41_PUB', 'NPT41_PRIV',

 'NPT45_PUB', 'NPT45_PRIV',

 'MD_EARN_WNE_P10', 'C100_4'])

I then loaded the other CSV file, with information about fields of study for
the last few years, as follows, assigning it to fields_df:

fields_filename = '../data/FieldOfStudyData1718_1819_PP.csv.gz'

fields_of_study_df = pd.read_csv(fields_filename,

 usecols=['OPEID6', 'INSTNM',

 'CREDDESC', 'CIPDESC', 'CONTROL'])

With these two data frames defined and in memory, I decided to start
performing some queries. First, I wanted to know which state has the greatest
number of universities in this database. This is a classic example of when to
use grouping. We can group on the STABBR ("state abbreviation") column,
running the count method. This will tell us how often each state appears in
the data set. We also have to provide a second column, which is where the
count will be reported. The choice doesn’t matter, so I decided to go with
OPEID6, the unique ID used for each institution:

institutions_df.groupby('STABBR')['OPEID6'].count()

The above query will tell me how often each state appears in the data set. But
I was interested in finding which of the states had the greatest number of
universities. To find that, I sorted the series by the values we got back, in
descending order. The first row in this series was, by definition, the state with

the largest number—which I retrieved using head(1):

institutions_df.groupby('STABBR')[

 'OPEID6'].count().sort_values(

 ascending=False).head(1)

According to this data, California has the greatest number of universities—
quite a large number at 705. But then I decided to ask a slightly different
question: Which city has the greatest number of universities?

It might seem, at first glance, that this query will be identical to the previous
one, grouping by the CITY column rather than STABBR. But that would
combine cities of the same name in different states. The solution requires that
we group by two columns—first STABBR and then CITY. The combination will
allow us to find which city, in which state, has the greatest number of
universities:

institutions_df.groupby(['STABBR', 'CITY'])[

 'OPEID6'].count().sort_values(

 ascending=False).head(1)

Once again, we ask for the count method to be run on OPEID6, because we
need to count on a non-grouping column. Also once again, we’ll sort in
descending order, and grab the top value. The answer is New York City, with
81 institutions of higher learning.

Considering that both state and city names are text data, and that they repeat
so often, it makes sense to consider how much memory we might save by
turning the STABBR and CITY columns into categories. But as always when
trying to optimize, we should measure our results, to know whether our
efforts were worthwhile.

I thus asked you to find out how much memory our data frame was already
using. The easiest way to find this is to by running memory_usage on a data
frame. Don’t forget to pass the deep=True keyword argument. This will
return the total memory usage of each column, including the objects to which
it refers. (As we saw in Chapter 11, that argument can make a huge
difference!) Here’s how I can calculate that, and then print it:

pre_category_memory = institutions_df.memory_usage(deep=True).sum()

print(f'{pre_category_memory:,}')

First, I calculate the total memory usage, and assign it to
pre_category_memory. Then, in order to print the number with commas
between the digits—and yes, I’m showing off a bit here—I print it within an
f-string, using a single comma (,) as the format specifier, after the colon (:).

I then turn both the STABBR and CITY columns into categories:

institutions_df['CITY'] = institutions_df[

 'CITY'].astype('category')

institutions_df['STABBR'] = institutions_df[

 'STABBR'].astype('category')

Now that this has been done, how much memory did we save?

post_category_memory = institutions_df.memory_usage(

 deep=True).sum()

savings = pre_category_memory - post_category_memory

print(f'{savings:,}')

On my computer, the savings is calculated as 579,371 bytes—meaning, we
managed to reduce memory usage by approximately one third by turning
these two columns into categories. Not a bad gain for a few seconds of
coding, I’d say.

Next, I asked you to create a histogram indicating how many programs are
offered by each university. That is, I’d like to know how many universities
offer 10 programs, how many offer 20, how many offer 30, and so forth.

In order to create such a histogram, we first need to count the number of
different programs that each university offers. We start by looking at
fields_of_study_df, and retrieving only those rows for which the CREDDESC
value is 'Bachelors Degree':

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree']

With that in hand, we can then run groupby on the INSTNM (institution name)
column. This means that our aggregation method (count, in this case) will

run once for each distinct value of INSTNM. In order to avoid getting a result
for each column, I restrict our output to the CIPDESC column:

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'].groupby('INSTNM')[

 'CIPDESC'].count()

This returns a series in which the index contains the institution name, and the
value contains the numbrer of bachelor-level degrees offered by each
institution. Finally, we can feed that into the histogram-plotting method:

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'].groupby('INSTNM')[

 'CIPDESC'].count().plot.hist()

The result shows us that a very large number of institutions (more than
1400!) offer fewer than 20 bachelor-level programs, fewer than 600
institutions offer between 20 and 50 programs, and 200 or fewer institutions
offer more than 50 programs.

Now that we’ve counted the number of programs offered by each institution
in this data set, we can ask which universities offer the greatest number of
programs. We already have their counts, thanks to the groupby we ran before.
We can thus rerun that query, sorting the resulting values in descending
order, and keeping only the top 10 results:

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'].groupby('INSTNM')[

 'CIPDESC'].count().sort_values(ascending=False).head(10)

When I ran this, I found that the institution with the greatest number of
programs was Westminster College (with 165 bachelor-level programs),
followed by Pennsylvania State University’s main campus (141) and the
University of Washington’s Seattle campus (137).

Now that we’ve counted bachelor’s programs, how about graduate programs,
offering either a master’s or doctoral degree? That query is a bit trickier,
because we can no longer compare CREDDESC with a single string. Rather, we
need to check if the value is one of two different strings. For that, I decided to
use the isin method, which takes a list of strings and returns True if the

value in that row matches one or more of the values in the list.

To start, we can get all of the schools that offer master’s and doctoral
degrees:

fields_of_study_df.loc[fields_of_study_df['CREDDESC'].isin(

 ["Master's Degree", "Doctoral Degree"])]

With that in hand, we can then repeat our groupby query, using count as our
aggregation method:

fields_of_study_df.loc[fields_of_study_df['CREDDESC'].isin(

 ["Master's Degree", "Doctoral Degree"])].groupby('INSTNM')[

 'CIPDESC'].count()

Finally, having grouped by INSTNM using count, and knowing how many
programs each institution offers, we can create the histogram:

fields_of_study_df.loc[fields_of_study_df['CREDDESC'].isin(

 ["Master's Degree", "Doctoral Degree"])].groupby('INSTNM')[

 'CIPDESC'].count().plot.hist()

Here, we see that the vast majority of schools offer fewer than 25 different
graduate programs, with more offering fewer than 50. The number of schools
offer more than 50 master’s and doctoral degrees declines even more
precipitously, although a handful offer more than 200.

I then asked you to find just which schools offer the greatest number of
different graduate programs. Once again, this meant sorting the results from
our groupby and count:

fields_of_study_df.loc[fields_of_study_df['CREDDESC'].isin(

 ["Master's Degree", "Doctoral Degree"])

].groupby('INSTNM')['CIPDESC'].count(

).sort_values(ascending=False).head(10)

We see that the University of Washington’s Seattle campus has the most
programs (237), followed by Penn State’s main campus (230), and New York
University (226).

I should note that the number of programs that a university offers at any level

shouldn’t be taken as an indication of how good the university is, or whether
the program is appropriate for you. Especially when it comes to graduate
studies, the important thing is whether the specific program is good for you,
and (perhaps even more importantly) whether your advisor is someone you
can trust to help you through the program. So don’t take these questions as
anything other than a numeric exercise; I’m certainly not trying to imply that
the more programs a university offers, the better it is.

While the universities I attended all offered degree programs at all levels,
some focus exclusively on either undergraduate or graduate education. I
asked you to find how many universities offer bachelor’s degrees, but not
master’s or doctorates, followed by the reverse—how many offer master’s or
doctoral degrees, but not bachelor’s.

To answer these questions, I first wanted to find all of the schools offering
bachelor’s programs, and those offering master’s and doctoral programs.
These queries were identical to what we did before. However, here I stored
them in two separate variables, so that we could then make calculations based
on them:

ug_schools = fields_of_study_df.loc[

 fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree', 'INSTNM']

grad_schools = fields_of_study_df.loc[

 fields_of_study_df['CREDDESC'].isin(

 ["Master's Degree", "Doctoral Degree"]), 'INSTNM']

Both ug_schools and grad_schools are Pandas series, with the values
containing the names of the universities. However, because we retrieved the
university names from fields_of_study_df, there will be plenty of repeats,
with one row for each program offered by the institution. I decided to leave
things as they are, rather than apply the unique method here, because apply
returns a NumPy array, and I wanted to make use of some additional Pandas
functionality.

Now that I have defined these two series, how can I determine which schools
offer bachelor’s degrees, but not master’s or doctoral degrees? We can once
again rely on isin. That is, to find all of the undergraduate institutions that
are also graduate schools, I can say:

ug_schools.isin(grad_schools)

The above code will return a boolean series. But I want the opposite of this,
namely the undergraduate schools that are not graduate schools, so I use ~ to
flip the logic:

~ug_schools.isin(grad_schools)

This gives me the opposite boolean series of what I had before. If I apply that
boolean series to ug_schools, I get the rows corresponding to undergraduate
schools which aren’t graduate schools:

ug_schools[~ug_schools.isin(grad_schools)]

However, there is a problem with this result, namely that the school names
are repeated. This is where we can use the unique method, getting distinct
values back:

ug_schools[~ug_schools.isin(grad_schools)].unique()

drop_duplicates is better!

The result is a NumPy array, from which we can retrieve the size attribute:

ug_schools[~ug_schools.isin(grad_schools)].unique().size

The database has 923 undergraduate schools that don’t offer graduate
degrees. We can apply similar logic to flip the question around:

grad_schools[~grad_schools.isin(ug_schools)].unique().size

The result is 404 institutions that offer master’s and doctoral degrees, but
which don’t offer bachelor’s degrees.

Next, I thought that it would be interesting to find out how many institutions
offer bachelor’s degrees in computer science. Now, every institution calls its
department and degree something slightly different, which means that we’ll
likely miss many possibilities. But if we look for programs containing the
term 'Computer Science', how many will we find?

First, we’ll need to find all of those rows in which CIPDESC contains the
string 'Computer Science':

fields_of_study_df['CIPDESC'].str.contains('Computer Science')

But that won’t be enough, because we’re specifically looking for bachelor’s
programs in computer science. We thus need to have two conditions, joined
together with &:

fields_of_study_df['CIPDESC'].str.contains('Computer Science') &

 fields_of_study_df['CREDDESC'] == 'Bachelors Degree'

This combined query will return a boolean series. We can then apply that
boolean series to fields_of_study_df with .loc:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) & (fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree')]

The thing is, we’re not interested in all of the columns. Rather, we just want
to see the institution names, so that we can count them. We can do this by
adding a column selector to .loc, indicating that we want to see INSTNM:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) & (fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'), 'INSTNM']

This returns a series of 824 institution names. But as before, the names aren’t
necessarily unique, given that there might be more than one degree program
with "Computer Science" in its name. For this reason, we’ll take the results,
invoke unique() on them, and then get the size of the resulting array:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'), 'INSTNM'].unique().size

The result, on my system, is 762.

The college scorecard data set puts each university into one of four
categories, listed in the CONTROL column: Public, private and non-profit,

private and for-profit, or foreign. In my next question, I asked you to show
how many institutions of each type offer computer science as a bachelor’s-
level degree.

I started with our previous query, before the call to unique:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'), 'INSTNM']

I then decided to run a groupby on CONTROL, since we want to know how
many institutions of each type offer undergraduate CS programs. In order for
this to work, our column selector will need to include not just INSTNM as
before, but also CONTROL:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'), ['CONTROL', 'INSTNM']].groupby('CONTROL')

The above query will give us a groupby object, on which we can then invoke
count:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'),

 ['CONTROL', 'INSTNM']].groupby('CONTROL').count()

I find, with this query, that there are 32 foreign universities, 18 private for-
profit universities, 501 private non-profit universities, and 273 public
universities, all offering undergraduate CS programs.

Seeing this information in a table, however accurate, isn’t quite as striking as
a graphical display would be. I thus asked you to take these results and put
them into a pie chart. Fortunately, that’s quite easy. We start with the above
query, and then retrieve only the INSTNM column:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'),

 ['CONTROL', 'INSTNM']].groupby('CONTROL').count()['INSTNM']

That returns a single series of values, along with the index (i.e., the different
institution categories). We can then turn that into a pie chart by invoking
.plot.pie() to the end:

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'),

 ['CONTROL', 'INSTNM']].groupby(

 'CONTROL').count()['INSTNM'].plot.pie()

Next, I wanted to start looking at the cost of getting a computer science
degree from an American university. In order to do this, I first needed to find
all of the universities at which computer science is taught at the
undergraduate level. This query will be identical to one we’ve already seen,
except that I’m going to look for three different columns—OPEID6 (a unique
ID number for each university in the system), CONTROL (the category of
institution we’ve already seen) and INSTNM (the name of the institution):

comp_sci_universities = fields_of_study_df.loc[

 (fields_of_study_df['CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

 ['OPEID6','CONTROL','INSTNM']]

The good news is that we now have these rows, and have put them into a new
data frame, comp_sci_universities. However, the index contains the same
values as we had in fields_of_study_df. This isn’t inherently bad, except
that in order to answer our questions, we’re going to need to join this data
frame with institutions_df. Joining requires that the indexes match up. For
that reason, I’ll modify our creation of comp_sci_universities, such that it
sets the index to be OPEID6:

comp_sci_universities = fields_of_study_df.loc[

 (fields_of_study_df['CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

 ['OPEID6','CONTROL','INSTNM']].set_index('OPEID6')

Now let’s make sure that institutions_df has the index we’ll need in order

to join them:

institutions_df[['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')

Note that this doesn’t change institutions_df, but rather returns a new data
frame with OPEID6 as its index.

Now that we have two data frames with a common index, we can join them
together:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6'))

But the above query gives us the entire new data frame. We don’t really want
that; rather, we only want the TUITIONFEE_OUT column:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6'))['TUITIONFEE_OUT']

The result of this query, short as it is, packs a real punch: We have retrieved
the tuition at each university with an undergraduate CS program in the data
set.

I asked you to find the minimum, median, mean, and maximum tuitions for
the tuition. We could, of course, calculate each of these individually. But
when you want to perform a number of aggregate calculations, the easiest
thing to do is invoke describe, which gives them all to you:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index(

 'OPEID6'))['TUITIONFEE_OUT'].describe()

Next, I asked you to describe the tuition again, but grouped by the different
types of universities (i.e., the CONTROL column). We can accomplish this by
invoking groupby('CONTROL') on the result of the join, the retrieving
TUITIONFEE_OUT, and then invoking describe on the result:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')).groupby(

 'CONTROL')['TUITIONFEE_OUT'].describe()

However, I found two problems with this result: First, foreign-owned
universities gave us results of 0 or NaN for each of the columns. Second, it
was a bit weird to have the university types in the index, and the results from
describe in the columns. Both of these are issues of aesthetics, but if we’re
already playing with the data, let’s see how we can clean it up.

First, I can use dropna to remove the Foreign row, the only one in which we
have any NaN values:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')).groupby(

 'CONTROL')['TUITIONFEE_OUT'].describe().dropna()

What about my preference that the values of describe be in the rows, rather
than the columns? We can transpose rows and columns in a Pandas data
frame with the transpose method:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')).groupby(

 'CONTROL')['TUITIONFEE_OUT'].describe().dropna().transpose()

However, because this is used so often, you can instead invoke it with T:

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')

).groupby('CONTROL')['TUITIONFEE_OUT'].describe().dropna().T

 Note

Whereas transpose is a method, and needs to be invoked with parentheses
after its name, T is a Python property, and should not have parentheses. Using
T() will result in an error.

We often hear that the most expensive universities are also the hardest to get
into. Is this true? Do we see a correlation in the data? To find out, we can
invoke corr on institutions_df, looking at the ADM_RATE and
TUITIONFEE_OUT columns.

institutions_df[['ADM_RATE', 'TUITIONFEE_OUT']].corr()

As always, a correlation of 0 means that there’s no correlation between the
two values, whereas 1 means that they’re perfectly aligned and -1 means that
they’re completely opposite. In this case, we see a correlation of -0.3, slightly
negative. This means that as the tuition goes up, the admission rate goes
(slightly) down—something that does indeed describe many American
universities. Another way to say state this is that the universities that are
hardest to get into are, in general, also momore expensive.

We can see this graphically using a scatter plot. I asked you to create such a
scatter plot, with the admission rate on the y axis and the tuition fee on the x
axis:

institutions_df.plot.scatter(x='TUITIONFEE_OUT', y='ADM_RATE')

We can see that the plot (overall) starts in the top left, and moves toward the
bottom right. This aligns with our numeric correlation finding, that higher
admission rates are associated with lower tuitions, and vice versa.

However, I was intrigued by the fact that the college scorecard includes a
column MD_EARN_WNE_P10, which shows the median income for graduates
from each school, 10 years following graduation. This allows us to ask, and
answer, a number of different questions. For example, we have now seen that
more-expensive schools are also harder to get into. However, is there a
tangible benefit for that additional cost? Specifically, if you attend a more
exclusive school, can you expect to earn more after graduation?

I thus asked you to modify this scatter plot, colorizing it using the "Spectral"
colormap, drawing upon the values in the MD_EARN_WNE_P10 column:

institutions_df.plot.scatter(x='TUITIONFEE_OUT', y='ADM_RATE',

 c='MD_EARN_WNE_P10',

 colormap='Spectral')

The "Spectral" colormap put earnings of $20,000/year in red, $120,000/year
in blue, and everything else in between. The closer to blue the dots are
colored, the higher the income. It’s not a huge surprise that we see a great
deal of red in the top-left corner (i.e., less expensive, lower-admission
schools with lower earnings), whereas yellows, greens, and blues are in the
lower-right corner (i.e., more expensive, higher-admission schools with

higher earnings). On average, it would seem, graduates from more exclusive
schools do earn more.

I decided to probe expensive, exclusive schools a bit further. First, I asked
you to find schools that charge in the top 25% of tuition (i.e., the most
expensive universities) that are also in the top 25% of schools offering Pell
grants. Pell grants are awarded to students on the basis of financial need, and
provide us with a rough estimate of how many less-wealthy students are
studying somewhere. I’m thus looking to find, in simple terms, expensive
schools that have a relatively high proportion of non-wealthy students.

In order to do that, we’ll need to use quantile(0.75) on the TUITIONFEE_OUT
column, to find what the top quartile of tuition is. We’ll similarly need to run
quantile(0.75) on the FTFTPCTPELL column, which contains the percentage
of Pell-grant receipients at each school. We can then compare each
institution’s value for TUITIONFEE_OUT and FTFTPCTPELL against that 0.75
quantile, retrieving institutions that are above those thresholds in both:

institutions_df.loc[(institutions_df['TUITIONFEE_OUT'] >

 institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &

 (institutions_df['FTFTPCTPELL'] >

 institutions_df['FTFTPCTPELL'].quantile(0.75))]

This returns all of the rows in institutions_df where both TUITIONFEE_OUT
and FTFTPCTPELL are above the 75th percentile. But we aren’t really
interested in all of the columns; I asked you to show the institution name,
along with its city and state. For that, we’ll need to include a column selector
in our call to .loc:

institutions_df.loc[(institutions_df['TUITIONFEE_OUT'] >

 institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &

 (institutions_df['FTFTPCTPELL'] >

 institutions_df['FTFTPCTPELL'].quantile(0.75)),

 ['INSTNM', 'CITY', 'STABBR']]

Finally, I asked you to sort the output by institution name, which we can do
by calling sort_values and specifying the INSTNM column:

institutions_df.loc[(institutions_df['TUITIONFEE_OUT'] >

 institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &

 (institutions_df['FTFTPCTPELL'] >

 institutions_df['FTFTPCTPELL'].quantile(0.75)),

 ['INSTNM', 'CITY', 'STABBR']].sort_values(by='INSTNM')

Now let’s look at university tuition from another perspective: The college
scorecard tracks the net price for four-year public and private institutions
(NPT4_PUB and NPT4_PRIV, respectively). It then breaks the tuition payments
down even further in additional columns, showing (for example) the average
price paid by people in the lowest income bracket at public (NPT41_PUB) and
private (NPT41_PRIV) universities.

At how many institutions, both public and private, does the average lowest-
income-bracket student receive money, rather than spend money?

If we were merely interested in public institutions, we could find all of those
where the value of NPT41_PUB is less than 0, and then show their names:

institutions_df.loc[institutions_df['NPT41_PUB'] < 0,

 'INSTNM'].count()

Or if we’re interested in private institutions, we would have to do the same
for NPT41_PRIV:

institutions_df.loc[institutions_df['NPT41_PRIV'] < 0,

 'INSTNM'].count()

We could use | for an "or" condition, thus getting the values where either of
these is less than 0.

institutions_df.loc[((institutions_df['NPT41_PUB'] < 0) |

 (institutions_df['NPT41_PRIV'] < 0)),

 'INSTNM'].count()

This gave me an answer of 12. However, there’s another way to do this: We
can add the values in NPT41_PRIV to those in NPT41_PUB, with a fill_value
of 0. Then we can simply check to see where NPT41_PUB is < 0:

institutions_df.loc[institutions_df['NPT41_PUB'].add(

 institutions_df['NPT41_PRIV'], fill_value=0) < 0,

 'INSTNM'].count()

This gives the same answer, and while I’m not convinced it’s a better way to

solve the problem, it shows that in Pandas, there’s always more than one
option, and they often look quite different from one another.

I then asked you to show, for public universities, the average proportion that
the bottom quintile pays vs. the top quintile. To calculate this, we’ll divide
NPT41_PUB (the bottom quintile) into NPT45_PUB (the top quintile), and then
take the mean:

(institutions_df['NPT41_PUB'] / institutions_df['NPT45_PUB']).mean()

I get a result of about 52 percent. We can then repeat this for private
universities:

(institutions_df['NPT41_PRIV'] / institutions_df['NPT45_PRIV']).mean()

It turns out that people in the bottom quintile at private universities pay about
71 percent of what the top quintile do. So not only is tuition higher at private
universities, but the poorest students also end up paying the greatest
proportion of their tuition!.

In looking at this data, we’ve seen that, overall, the schools with the highest-
paid alumni are also the most expensive and the hardest to get into. But of
course, that’s only overall, in the aggregate. I thus asked you to find the
schools that offer the greatest return on investment—whose tuitions are in the
lowest 25%, but whose 10-year alumni are in the highest 25% of salaries.

First, let’s look at public institutions:

institutions_df.loc[(institutions_df['NPT4_PUB'] <=

 institutions_df['NPT4_PUB'].quantile(0.25)) &

 (institutions_df['MD_EARN_WNE_P10'] >=

 institutions_df['MD_EARN_WNE_P10'].quantile(0.75)),

 ['INSTNM', 'STABBR', 'CITY']].sort_values(by=['STABBR', 'CITY'])

The above query is a variation on what we’ve already done, looking for those
public universities whose tuition is in the lowest quartile, but whose 10-year
alumni are earning in the highest quartile. In our column selector, we ask for
only three columns, namely institution name, state, and city. That allows us
to then sort the results, first by state and then by city. The result is a data
frame with 22 rows, whose universities are in California, Florida, New York,

and (in one case) New Mexico.

What about private universities? We can run a similar query, but using
NPT4_PRIV rather than NPT4_PUB:

institutions_df.loc[(institutions_df['NPT4_PRIV'] <=

 institutions_df['NPT4_PRIV'].quantile(0.25)) &

 (institutions_df['MD_EARN_WNE_P10'] >=

 institutions_df['MD_EARN_WNE_P10'].quantile(0.75)),

 ['INSTNM', 'STABBR', 'CITY']].sort_values(by=['STABBR', 'CITY'])

This query returned 30 universities, spread out across a variety of states.
Some well-known universities (e.g., Harvard, Stanford, and Princeton) were
in there, along with some smaller and lesser-known ones.

Next, I wanted to know if we could find any correlation between admission
rates and completion rates. That is, if a school is highly selective, then are its
students more likely to graduate? I ran the following query:

institutions_df[['C100_4', 'ADM_RATE']].corr()

Sure enough, we see a moderate negative correlation. That is: A school which
accepts more people has a lower graduation rate. That shouldn’t hugely
surprise us; after all, for a school to accept more people, it likely has to take
people who are bigger risks in terms of not finishing.

Next, I asked whether, on average, people earn more after graduating from a
public or private university. That is, on average, how much do people earn
for each value of the CONTROL column? Once again, we find ourselves joining
institutions_df with fields_of_study_df—but only after doing a
groupby on fields_of_study_df:

institutions_df[['OPEID6', 'MD_EARN_WNE_P10']].set_index(

 'OPEID6').join(

 fields_of_study_df.groupby('OPEID6')['CONTROL'].min()

).groupby('CONTROL').mean()

The result aligned with my expectations, namely that people who attend
private-for profit universities end up earning less than those who attend
public universities, who in turn end up earning less than those who attend

private universities. Obviously, this is an aggregate measure—and I definitely
know high earners who attended public universities, and low earners who
attended private ones. But data analytics is all about making generalizations,
drawing conclusions that are incorrect for any individual, but correct for the
overall population.

Let’s take this question of private universities to an extreme: People often
want to get into the best-known universities, on the assumption that they’ll be
able to earn more later on in life. Is this true? Does going to a famous,
exclusive university mean you’ll have a more lucrative career? I asked you to
check the mean salary for graduates from what are sometimes known as "Ivy
Plus" schools—the Ivy League, as well as MIT, Stanford, and the University
of Chicago.

To do this, I used isin in my column selector. Note that the universities'
formal names were a bit tricky to figure out, especially for "Columbia
University in the City of New York." But here’s the query that I ended up
writing:

institutions_df.loc[institutions_df[

 'INSTNM'].isin(

 ['Harvard University',

 'Massachusetts Institute of Technology',

 'Yale University',

 'Columbia University in the City of New York',

 'Brown University',

 'Stanford University',

 'University of Chicago',

 'Dartmouth College',

 'University of Pennsylvania',

 'Cornell University',

 'Princeton University']),

 'MD_EARN_WNE_P10'].mean()

The answer to this query was just over $91,806/year, more than twice the
average salary earned by all graduates of private universities. Which was, as
we saw, greater still than the amount earned by graduates of public or for-
profit institutions.

Finally, I wanted to compare post-graduation salaries, 10 years out, by state.
That is: Will your future earnings depend, in part, on the state in which you

studied? For starters, I performed a groupby on the states (STABBR), looking at
the mean salary of 10-year graduates:

institutions_df.groupby('STABBR')['MD_EARN_WNE_P10'].mean()

This gave me the overall answer I wanted, but understanding such data is
always easier when the data is sorted. I thus asked you to sort the values, in
descending order:

institutions_df.groupby('STABBR')[

 'MD_EARN_WNE_P10'].mean().sort_values(ascending=False)

Following this, I asked you to create a bar plot from the per-state salary
averages:

institutions_df.groupby('STABBR')[

 'MD_EARN_WNE_P10'].mean().sort_values().plot.bar(figsize=(20,10))

By sorting the values, we got (I believe) a more aesthetically pleasing, easy to
read, plot than would otherwise have been the case. We can easily see that
there is a big difference between how much people earn after graduating from
schools in Massachusetts and Rhode Island, as opposed to Arkansas and
Mississipi. However, before we make a claim regarding the quality of
universities in these respective states, we have to find out how many people
still live in the states where they studied. After all, the cost of living in New
England is significantly higher than Arkansas and Mississipi, so it stands to
reason that people living there will earn more—regardless of what university
they attended.

Finally, I asked you to create a box plot based on the per-state salary data, so
that we can easily see the spread in visual form:

institutions_df.groupby('STABBR')['MD_EARN_WNE_P10'].mean().plot.box()

The plot shows us that most annual salaries are between $25,000 and
$50,000, with the median being just under $40,000.

12.1.2 Solution

institutions_filename = '../data/Most-Recent-Cohorts-Institution.csv.gz'

institutions_df = pd.read_csv(institutions_filename,

 usecols=['OPEID6',

 'INSTNM', 'CITY', 'STABBR',

 'FTFTPCTPELL', 'TUITIONFEE_IN',

 'TUITIONFEE_OUT', 'ADM_RATE',

 'NPT4_PUB', 'NPT4_PRIV',

 'NPT41_PUB', 'NPT41_PRIV',

 'NPT45_PUB', 'NPT45_PRIV',

 'MD_EARN_WNE_P10', 'C100_4'])

fields_filename = '../data/FieldOfStudyData1718_1819_PP.csv.gz'

fields_of_study_df = pd.read_csv(fields_filename,

 usecols=['OPEID6', 'INSTNM',

 'CREDDESC', 'CIPDESC', 'CONTROL'])

institutions_df.groupby('STABBR')[

 'OPEID6'].count().sort_values(

 ascending=False).head(1)

institutions_df.groupby(['STABBR', 'CITY'])[

 'OPEID6'].count().sort_values(

 ascending=False).head(1)

pre_category_memory = institutions_df.memory_usage(deep=True).sum()

print(f'{pre_category_memory:,}')

institutions_df['CITY'] = institutions_df[

 'CITY'].astype('category')

institutions_df['STABBR'] = institutions_df[

 'STABBR'].astype('category')

post_category_memory = institutions_df.memory_usage(

 deep=True).sum()

savings = pre_category_memory - post_category_memory

print(f'{savings:,}')

Next, we look at institutions and the degrees they offer:

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'].groupby('INSTNM')[

 'CIPDESC'].count().plot.hist()

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'].groupby('INSTNM')[

 'CIPDESC'].count().sort_values(ascending=False).head(10)

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'].isin(["Master's Degree", "Doctoral Degree"])].groupby(

 'INSTNM')['CIPDESC'].count().plot.hist()

fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'].isin(["Master's Degree", "Doctoral Degree"])].groupby(

 'INSTNM')['CIPDESC'].count().sort_values(ascending=False).head(10)

ug_schools = fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree', 'INSTNM']

grad_schools = fields_of_study_df.loc[fields_of_study_df[

 'CREDDESC'].isin(["Master's Degree", "Doctoral Degree"]), 'INSTNM']

ug_schools[~ug_schools.isin(grad_schools)].unique().size

grad_schools[~grad_schools.isin(ug_schools)].unique().size

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) & (fields_of_study_df[

 'CREDDESC'] == 'Bachelors Degree'), 'INSTNM'].unique().size

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'), ['CONTROL',

 'INSTNM']].groupby('CONTROL').count()

fields_of_study_df.loc[(fields_of_study_df[

 'CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] ==

 'Bachelors Degree'), ['CONTROL','INSTNM']

].groupby('CONTROL').count()['INSTNM'].plot.pie()

comp_sci_universities = fields_of_study_df.loc[

 (fields_of_study_df['CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

 ['OPEID6','CONTROL','INSTNM']].set_index('OPEID6')

comp_sci_universities.join(

 institutions_df[['OPEID6', 'TUITIONFEE_OUT']

].set_index('OPEID6'))['TUITIONFEE_OUT'].describe()

comp_sci_universities = fields_of_study_df.loc[

 (fields_of_study_df['CIPDESC'].str.contains('Computer Science')) &

 (fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

 ['OPEID6','CONTROL','INSTNM']].set_index('OPEID6')

comp_sci_universities.join(institutions_df[

 ['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')

).groupby('CONTROL')['TUITIONFEE_OUT'].describe().dropna().T

Next, let’s look at admission rates, tuition, financial aid, and after-graduation
earnings:

institutions_df[['ADM_RATE', 'TUITIONFEE_OUT']].corr()

institutions_df.plot.scatter(x='TUITIONFEE_OUT', y='ADM_RATE',

 c='MD_EARN_WNE_P10',

 colormap='Spectral')

institutions_df.loc[(institutions_df['TUITIONFEE_OUT'] >

 institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &

 (institutions_df['FTFTPCTPELL'] >

 institutions_df['FTFTPCTPELL'].quantile(0.75)),

 ['INSTNM', 'CITY', 'STABBR']].sort_values(by='INSTNM')

institutions_df.loc[institutions_df['NPT41_PUB'].add(

 institutions_df['NPT41_PRIV'], fill_value=0) < 0,

 'INSTNM'].count()

(institutions_df['NPT41_PUB'] / institutions_df['NPT45_PUB']).mean()

(institutions_df['NPT41_PRIV'] / institutions_df['NPT45_PRIV']).mean()

institutions_df.loc[(institutions_df['NPT4_PUB'] <=

 institutions_df['NPT4_PUB'].quantile(0.25)) &

 (institutions_df['MD_EARN_WNE_P10'] >=

 institutions_df['MD_EARN_WNE_P10'].quantile(0.75)),

 ['INSTNM', 'STABBR', 'CITY']].sort_values(by=['STABBR', 'CITY'])

institutions_df.loc[(institutions_df['NPT4_PRIV'] <=

 institutions_df['NPT4_PRIV'].quantile(0.25)) &

 (institutions_df['MD_EARN_WNE_P10'] >= institutions_df[

 'MD_EARN_WNE_P10'].quantile(0.75)),

 ['INSTNM', 'STABBR', 'CITY']].sort_values(by=['STABBR', 'CITY'])

institutions_df[['C100_4', 'ADM_RATE']].corr()

institutions_df[['OPEID6',

 'MD_EARN_WNE_P10']].set_index('OPEID6').join(

 fields_of_study_df.groupby('OPEID6')['CONTROL'].min()

).groupby('CONTROL').mean()

institutions_df.loc[institutions_df['INSTNM'].isin(

 ['Harvard University',

 'Massachusetts Institute of Technology',

 'Yale University',

 'Columbia University in the City of New York',

 'Brown University',

 'Stanford University',

 'University of Chicago',

 'Dartmouth College',

 'University of Pennsylvania',

 'Cornell University',

 'Princeton University']), 'MD_EARN_WNE_P10'].mean()

institutions_df.groupby('STABBR')['MD_EARN_WNE_P10'

].mean().sort_values(ascending=False)

institutions_df.groupby('STABBR')['MD_EARN_WNE_P10'

].mean().sort_values().plot.bar(figsize=(20,10))

institutions_df.groupby('STABBR')['MD_EARN_WNE_P10'

].mean().plot.box()

12.2 Summary

You’ve now come to the true and actual end of the book.

Thanks for joining me on this journey. I hope that the exercises in this book,
including all of the extra "beyond the exercise" questions, helped you to
improve your understanding of Pandas and how to load, clean, and analyze
data in a variety of ways.

Beyond the specific techniques that I covered in this book, I hope that you
also started to internalize the Pandas perspective on data analysis. Pandas is a
huge (and constantly growing) library, and there’s no way for someone to
know all of it. Understanding how Pandas works means that when you’re
faced with a new problem, you can guess how to solve it, even predicting
what methods Pandas will provide in order to do so.

I wish you the best of success in your use of Pandas to analyze data, in
whatever you’re doing. And I hope that this book helped you to advance your
skills in that area.

	MEAP_VERSION_13
	Welcome
	1_Series
	2_Data_frames
	3_Importing_and_exporting_data
	4_Indexes
	5_Cleaning_data
	6_Grouping,_joining,_and_sorting
	7_Midway_project
	8_Strings
	9_Dates_and_times
	10_Visualization
	11_Performance
	12_Final_project

