

Ansible for Kubernetes by
Example

Automate Your Kubernetes Cluster
with Ansible

Luca Berton

Ansible for Kubernetes by Example: Automate Your Kubernetes Cluster with Ansible

ISBN-13 (pbk): 978-1-4842-9284-6		 ISBN-13 (electronic): 978-1-4842-9285-3
https://doi.org/10.1007/978-1-4842-9285-3

Copyright © 2023 by Luca Berton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi
Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/Apress/Ansible-for-Kubernetes-by-Example-by-Luca-Berton). For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Luca Berton
BOURNEMOUTH, UK

https://doi.org/10.1007/978-1-4842-9285-3

For my son Filippo, the joy of my life.

v

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Table of Contents

Chapter 1: ��Modern IT Infrastructure and Hello App��� 1

Modern IT Infrastructure (DevOps and IaC)�� 1

The Move to Containers��� 4

Ansible by Red Hat��� 7

The Cloud Native Computing Foundation��� 8

Kubernetes Support�� 9

Kubernetes Distributions: OpenShift, Rancher, EKS, AKS, and GCP�� 9

Containers and Pods�� 11

Creating a Hello App��� 12

Linux Base Images��� 13

Enterprise Linux-Based Images�� 15

Container Security��� 17

The Hello Dockerfile��� 18

The Hello Application�� 19

Building the Hello App�� 22

Running Hello in Docker��� 22

Deploying Hello in Kubernetes��� 24

Deploying Hello in Operator��� 25

Key Takeaways��� 25

https://doi.org/10.1007/978-1-4842-9285-3_1
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec3
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec6
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec10
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec11
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec12
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec16
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec17
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec18
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec19
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec20
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec21
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec22
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec23
https://doi.org/10.1007/978-1-4842-9285-3_1#Sec24

vi

Chapter 2: ��Ansible Language Code�� 27

What Is Ansible?��� 27

Provisioning�� 28

Configuration Management�� 29

Application Deployment�� 29

Ansible Open-Source vs Commercial Options�� 29

Ansible’s Architecture�� 30

UNIX Target Node�� 31

Windows Target Node��� 32

Ansible Installation��� 34

Getting Started with Ansible�� 36

Running Your First Ansible Ad Hoc Command�� 36

Creating a Basic Inventory��� 37

Ansible Code Language��� 37

Ansible Inventory�� 38

Ansible Playbook�� 40

Ansible Roles�� 51

Ansible Collection��� 54

Ansible Execution Environment�� 55

Key Takeaways��� 61

Chapter 3: ��Ansible for Containers�� 63

Ansible for Containers�� 63

Install Docker on Linux and Windows�� 63

Install Docker in Debian Linux�� 65

Install Docker in Red Hat Linux�� 67

Install Docker on Windows��� 70

Flatpak in Linux�� 71

Snap in Linux��� 74

Deploy a Web Server in a Container��� 77

Apache with Docker for Debian-like Systems�� 78

Apache with Podman for Red Hat-like Systems��� 80

Table of Contents

https://doi.org/10.1007/978-1-4842-9285-3_2
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec3
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec6
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec7
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec8
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec9
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec10
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec11
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec12
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec13
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec14
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec17
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec28
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec29
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec30
https://doi.org/10.1007/978-1-4842-9285-3_2#Sec31
https://doi.org/10.1007/978-1-4842-9285-3_3
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec3
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec6
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec7
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec8
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec9
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec10

vii

Use Vagrant and Packer��� 82

Vagrant��� 83

Packer�� 84

Key Takeaways��� 85

Chapter 4: ��Ansible for K8s Tasks��� 87

Kubernetes Objects�� 90

Control Plane vs Data Plane��� 91

kubectl��� 92

GitOps Continuous Deployment�� 93

Jenkins�� 94

VMWare Tanzu Application Platform�� 95

Set Up Your Laboratory�� 95

Virtual Machines��� 96

Raspberry Pis��� 97

Kubespray��� 99

OpenShift Local�� 100

hetzner-ocp4�� 103

Create a Cluster with Minikube�� 104

Kubeadm�� 106

K3s Lightweight Kubernetes�� 107

Kubernetes Upgrade��� 107

Create a Cluster with kOps�� 109

Configure Ansible for Kubernetes�� 109

Ansible Troubleshooting��� 113

401 ���unauthorized�� 113

Kubernetes��� 114

OpenShift��� 116

x509 error��� 118

kubeconfig�� 118

Configure a Python Virtual Environment�� 120

Table of Contents

https://doi.org/10.1007/978-1-4842-9285-3_3#Sec11
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec12
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec13
https://doi.org/10.1007/978-1-4842-9285-3_3#Sec14
https://doi.org/10.1007/978-1-4842-9285-3_4
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec3
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec6
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec7
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec8
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec9
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec10
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec11
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec12
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec13
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec14
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec15
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec16
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec17
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec18
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec19
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec20
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec21
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec22
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec23
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec24
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec25

viii

Configure an Ansible Execution Environment�� 123

Create a Namespace�� 126

Report Namespaces��� 129

Report Deployments in Namespace��� 131

Create a Pod��� 136

Create a Secret�� 139

Use a Service to Expose Your App�� 141

Kubernetes Networking�� 143

Scale Your App��� 148

Auto-scaling��� 153

Update Your App��� 154

Assign Resources to Kubernetes K8s Pods��� 157

Metrics��� 158

CPU Resources��� 158

Memory Resources��� 161

Namespace Resources��� 162

GPU Resources��� 163

Configure a Pod to Use a Volume for Storage�� 163

Apply Multiple YAML Files at Once on Kubernetes��� 166

Key Takeaways��� 167

Chapter 5: ��Ansible for K8s Data Plane��� 169

Configuring a Java Microservice�� 171

The Demo Java Web Application�� 172

Stateless: Deploying PHP Guestbook Application with Redis��� 180

Kustomize: Do More with Less��� 184

Stateful: Deploying WordPress and MySQL with Persistent Volumes�� 186

Security Namespace (Pod Security Admission)��� 191

Security Pod Resources (AppArmor)�� 192

Security Pod Syscalls (seccomp)��� 193

Table of Contents

https://doi.org/10.1007/978-1-4842-9285-3_4#Sec26
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec27
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec28
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec29
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec30
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec31
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec32
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec33
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec34
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec35
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec36
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec37
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec38
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec39
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec40
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec41
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec42
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec43
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec44
https://doi.org/10.1007/978-1-4842-9285-3_4#Sec45
https://doi.org/10.1007/978-1-4842-9285-3_5
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec3
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec6
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec7
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec8

ix

Ansible Dynamic Inventory�� 194

Key Takeaways��� 199

Chapter 6: ��Ansible for K8s Management��� 201

The Helm Package Manager�� 202

Helm Repositories�� 204

Helm Packages��� 207

Helm Plugins�� 212

Deploy a Monitoring Tool�� 216

kube-prometheus��� 217

Ansible Collections��� 218

Helm Chart�� 219

Fetch Logs from Resources��� 220

Apply a JSON Patch Operation��� 222

Copy Files and Directories to and from a Pod�� 224

Manage Services on Kubernetes��� 225

Taint Nodes�� 227

Drain, Cordon, or Uncordon Nodes��� 229

Kubernetes Dynamic Inventory�� 232

Roll Back Deployments and DaemonSets�� 232

Set a New Size for a Deployment, ReplicaSet, Replication Controller, or Job���������������������������� 233

Security�� 233

AAA��� 235

OpenID Identity Provider��� 236

Calico�� 237

Key Takeaways��� 237

Chapter 7: ��Ansible for Kubernetes Cloud Providers�� 239

Cloud Architecture�� 241

Amazon Web Services (AWS)��� 244

Google Cloud Platform (GCP)�� 251

Table of Contents

https://doi.org/10.1007/978-1-4842-9285-3_5#Sec9
https://doi.org/10.1007/978-1-4842-9285-3_5#Sec10
https://doi.org/10.1007/978-1-4842-9285-3_6
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec9
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec13
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec14
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec15
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec16
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec17
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec18
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec19
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec20
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec21
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec22
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec23
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec24
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec25
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec26
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec27
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec28
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec29
https://doi.org/10.1007/978-1-4842-9285-3_6#Sec30
https://doi.org/10.1007/978-1-4842-9285-3_7
https://doi.org/10.1007/978-1-4842-9285-3_7#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_7#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_7#Sec3

x

Microsoft Azure Cloud Services��� 255

Other Vendors�� 259

Key Takeaways��� 260

Chapter 8: ��Ansible for Enterprise�� 261

The Ansible Automation Platform��� 261

Event-Driven Ansible�� 268

IT Trends��� 272

Ansible Trusted Code�� 273

What’s Next?�� 275

Thank You��� 276

Index�� 277

Table of Contents

https://doi.org/10.1007/978-1-4842-9285-3_7#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_7#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_7#Sec6
https://doi.org/10.1007/978-1-4842-9285-3_8
https://doi.org/10.1007/978-1-4842-9285-3_8#Sec1
https://doi.org/10.1007/978-1-4842-9285-3_8#Sec2
https://doi.org/10.1007/978-1-4842-9285-3_8#Sec3
https://doi.org/10.1007/978-1-4842-9285-3_8#Sec4
https://doi.org/10.1007/978-1-4842-9285-3_8#Sec5
https://doi.org/10.1007/978-1-4842-9285-3_8#Sec6

xi

About the Author

Luca Berton is an Ansible automation expert who works for

JPMorgan Chase & Co. and previously worked with the Red

Hat Ansible Engineer Team for three years. He is the creator

of the Ansible Pilot project. With more than 15 years of

experience as a system administrator, he has strong expertise

in infrastructure hardening and automation. An enthusiast

of open-source, Luca supports the community by sharing his

knowledge at different public access events. He is a geek by

nature, Linux by choice, and Fedora, of course.  

https://www.ansiblepilot.com/

xiii

About the Technical Reviewer

Nikhil Jain is an Ansible expert with over 12 years of DevOps

experience. He has been using Ansible and contributing to

it from its inception. He currently works closely with Ansible

engineering. 

He is an open-source enthusiast and is part of the

Ansible Pune Meetup Organizing team. He has presented

multiple Ansible sessions at various global and local events.

Apart from sitting in front of his computer automating things

using Ansible, he loves watching sports and is a regular part

of the local cricket team.

xv

Acknowledgments

To my son, family, and friends, who make life worth living and whose support and

encouragement make this work possible.

To all whom I’ve worked with over the years and shared any ideas for this book:

Thank you for the knowledge you’ve shared.

xvii

Introduction

This book guides you through the process of automating a Kubernetes cluster using the

Ansible open-source technology.

If you are an IT professional who wants a jargon-free explanation of the Ansible

technology, this book is for you. This includes Kubernetes, Linux, and Windows systems

administrators, DevOps professionals, thought leaders, and infrastructure-as-code

enthusiasts, as well as information technology team members providing leadership to

their businesses.

Infrastructure and operations (I&O) leaders look at the Ansible platform to

implement Infrastructure as Code (IaC), Configuration as a Code (CaC), Policy as a Code

(PaC), code pipelines, orchestration (K8s), DevSecOps, self-healing infrastructures, and

event-driven automation methodologies.

This book is a powerful resource for computer engineers and leaders who believe

that innovation, automation, and acceleration are the drivers of the booming business of

tomorrow.

A successful infrastructure is a matter of improvements that are made little by little

and good habits that you develop using automation during the journey.

In this book, you learn how to become more productive and effective using the

Ansible open-source automation technology to deploy world-scale, cloud-native

applications and services. Containers have revolutionized the IT industry, but it takes

more than container runtime engines like Docker and Podman to handle these modern,

huge workloads. This is where Kubernetes come in to play.

Kubernetes applications are designed as microservices, packaged in containers,

and deployed in a hybrid cloud in multiple cloud platforms worldwide to serve your

customers.

It’s also possible to upgrade applications and services without impacting user

performance in many ways: by rolling, canary, and blue/green environments.

The scriptable infrastructure of the cloud providers enables you to elastically meet

the demands of traffic with a virtually unlimited compute powerhouse. Engineers have a

great deal of power and responsibility for their business’s success.

xviii

�What Is In This Book?
This book provides in-depth content of the following topics:

•	 The Ansible code language for beginners and experienced users, with

examples

•	 Ansible installation on the latest releases of Ansible

•	 Ansible for container management (Docker and Podman)

•	 Ansible for Kubernetes infrastructure examples

•	 Troubleshooting common errors

�Development Environment
You do not need a specific IDE to benefit from this book. You simply need a base

environment consisting of the following:

•	 A text editor: Terminal-based (VIM, Emacs, Nano, Pico, and so on) or

GUI-based (VS Code, Atom, Geany, and so on)

•	 A workstation with the ansible or ansible-core packages installed

•	 Kubernetes or OpenShift cluster

�Conventions Used in the Book
This is a practical book, with a lot of examples and terminal commands. There are also

some Ansible language code samples.

The Ansible language code used in the Ansible Playbook examples mostly uses the

YAML and INI formats.

Commands and code samples throughout the book are either inline (for example,

ansible [command]) or in a code block (with or without line numbers), such as this:

YAML file example

The Ansible language is written in the YAML format, which is a human-readable,

data-serialization language that is extremely popular for configuration files. The code

Introduction

xix

follows the latest YAML 1.2.2 specification. It uses Python-style indentation and a more

compact format for lists and dictionary statements. It’s very close to JSON and can be

used as an XML alternative. The YAML code was validated using the YAMLlint popular

validator and tested in the most commonly used Ansible versions in the market.

The INI format used in Ansible inventories examples is a well-known format for

configuration files since the MS-DOS operating system and uses key-value pairs for

properties.

The terminal commands use the standard POSIX conventions and are ready for use

in UNIX-like systems such as Linux, macOS, or BSD. Each command is assumed to be

used by a standard user account when the prefix is the $ symbol (dollar) or by the root

user when the prefix is the # symbol (number sign).

You are going to find this code in installation, code execution, and troubleshooting

examples. The commands were tested in the most modern operating system versions

available.

The Ansible code included in this book was tested by the author and the technical

reviewer in a wide variety of modern systems and uses the Ansible best practices

regarding playbooks, roles, and collections. It was verified using the latest release of the

Ansible Linter.

Some code may intentionally break a specific Ansible best practice rule only to

demonstrate a troubleshooting session and reproduce a fatal error in a specific use case.

�Chapters at a Glance
This book aims to guide you through your journey of automating the Ansible platform

for the Kubernetes (K8s) infrastructure. There are eight chapters, and the book is full of

code samples and terminal commands to verify the results.

•	 Chapter 1 explores how modern IT infrastructure is organized inside

an organization and outside to its customers and partners. You are

going to learn about the history of Kubernetes, from the initial Google

project to CNCF. You also learn about its most famous flavor: Red

Hat OpenShift, Amazon EKS, and other public cloud providers. A

practical example of the Hello App written in Python language is

deployed as a container (Fedora, Ubuntu, Alpine Linux), built in

Docker and running in Kubernetes.

Introduction

https://doi.org/10.1007/978-1-4842-9285-3_1

xx

•	 Chapter 2 dives deep into the Ansible language code. It explains

the architecture, how to set up a target node, inventories, as well as

playbooks, variables, filters, conditionals, handlers, loops, magic

variables, vaults, templates, plugins, roles, and collections.

•	 Chapter 3 is all about containers—how to automate the installation of

Docker in your operating systems, how to use the Flatpack and Snap

technologies in Linux, and how to deploy the popular web server

Apache as a containerized application in Debian/Ubuntu. To do

that, you use Docker and Red Hat Enterprise Linux with the Podman

runtime engine.

•	 Chapter 4 goes deep into Kubernetes, explaining the difference

between the control plane and the data plane and how to use the

kubectl utility. You learn how to set up your laboratory using virtual

machines, Raspberry Pis, Minikube, Kubespray, Kubeadm, and

OpenShift Local. You configure Ansible to interact with Kubernetes,

and troubleshoot and fix the most popular errors. There is a

lot of Ansible playbook code to create and report namespaces,

deployments, pods, secrets, and persistent volumes. You'll apply

multiple YAML files at once to Kubernetes. You also explore how to

scale up and down your applications and run rolling updates.

•	 Chapter 5 explains how to build a web, RESTful Java microservice

application using Spring technology and deploy it as a containerized

image with the Tomcat web server. This chapter includes more use

cases that explain how to automate the deployment of two examples

of stateless (a PHP Guestbook application with Redis) and stateful

(WordPress and MySQL with persistent volumes) applications in

Kubernetes. You learn how to apply security to namespaces, pod

resources (AppArmor), and pod syscalls (seccomp). You also learn

how to save time using the Kustomize tool to generate Kubernetes

YAML resources. Ansible Dynamic Inventory is handy for listing all

the cluster resources that interact with Kubernetes API.

•	 Chapter 6 covers how to manage the control plane, which is a

more useful tool for cluster administrator use cases, and discusses

how to apply Ansible to the deployment of the DEV, SIT, UAT, and

Introduction

https://doi.org/10.1007/978-1-4842-9285-3_2
https://doi.org/10.1007/978-1-4842-9285-3_3
https://doi.org/10.1007/978-1-4842-9285-3_4
https://doi.org/10.1007/978-1-4842-9285-3_5
https://doi.org/10.1007/978-1-4842-9285-3_6

xxi

PROD infrastructures. You learn how to deploy a monitoring tool

(Prometheus) via the Helm package manager, fetch logs from

resources for troubleshooting, and copy files and directories to

and from a pod. The chapter also covers the processes of tainting,

draining, cordoning, and uncordoning nodes. It also discusses

rolling back deployments and DaemonSets and applying Security

Authentication, Authorization, and Accounting (AAA).

•	 Chapter 7 is dedicated to the public could providers, including how

you can take advantage of the hybrid/multi-cloud providers, what

the shared responsibility model is, and some specific infrastructure

implementations of Amazon Web Services (AWS), Google Cloud

Platform (GCP), and Microsoft Azure Cloud Services. It also covers how

the Certified Kubernetes Conformance Program by CNCF is helping

with portability of applications and services between different clusters.

•	 Chapter 8 is all about Ansible for enterprise, with the completed

container-oriented Shiny Ansible Automation Platform providing

the Web-UI RESTful API and Ansible Certified Collections. You

learn about the future information technology trends of event-

driven Ansible, Ansible Trusted Code, and Ansible Trusted Ansible

Collections and Signed Ansible Projects. You also learn how artificial

intelligence can propel your automation journey.

The sky is the limit with the OpenContainer standard, Kubernetes orchestration, and

Ansible automation; you can deploy the cloud-native applications of tomorrow, taking

advantage of unlimited infrastructure capacity and worldwide coverage.

�Source Code
All source code used in this book can be downloaded from github.com/Apress/

Ansible-for-Kubernetes-by-Example-by-Luca-Berton.

�Disclaimer
Any opinions or personal views I express in this book are my own and not those of Red

Hat Inc. or JPMorgan Chase & Co.

Introduction

https://doi.org/10.1007/978-1-4842-9285-3_7
https://doi.org/10.1007/978-1-4842-9285-3_8

xxii

This work is not a product of JPMorgan Chase & Co. or its affiliates. Neither

JPMorgan Chase & Co. nor any of its affiliates makes any explicit or implied

representation or warranty regarding the contents of this paper and neither JPMorgan

Chase & Co. nor any of its affiliates accepts any liability in connection with this work,

including, without limitation, with respect to the completeness, accuracy, or reliability

of the information contained herein, whether the contents of the paper violates or

misappropriates the intellectual property of another, and the potential legal, compliance,

tax, or accounting effects thereof.

Introduction

1

CHAPTER 1

Modern IT Infrastructure
and Hello App
Information technology infrastructure is evolving year after year, faster than ever.

Following Moore’s Law, servers have become more and more powerful and are able to

execute more operations in a fraction of a second. Similarly, network infrastructure is

evolving faster than ever.

The IT infrastructure is the backbone of a successful business. Companies

efficiently manage their IT real estate with powerful tools that save time. The secret to

success is a holistic cooperation between the IT Development and Operations teams.

Automate, accelerate, and innovate are the mantras of every corporation in the post-

pandemic world.

Kubernetes and Ansible are Infrastructure as Code (IaC) platforms that manage a

fleet of services and make crucial decisions promptly.

�Modern IT Infrastructure (DevOps and IaC)
All IT departments worldwide face challenges in efficiently delivering top-level customer

IT services. In the same vein, it’s important to obtain the most you can from your

infrastructure (your return on investment). Just to be clear, the IT infrastructure is the

whole data center: the servers, network devices, cabling, storage, and so on. Every good

system administrator knows how important every piece in the infrastructure puzzle is.

Traditionally, infrastructure teams in large organizations or system administrators in

small ones carried the burden of manually managing the IT infrastructure, in order to

deliver the best service for their internal and external stakeholders. A large organization

typically operates multiple on-premise data centers and cloud providers.

Deploying an application in this traditional infrastructure required a combination of

operating systems and underlying system libraries, as shown in Figure 1-1.

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_1

https://doi.org/10.1007/978-1-4842-9285-3_1#DOI

2

Operating System

Libraries

App App App

Hardware

Figure 1-1.  Traditional deployment

The main drawback of this architecture was that the applications were tightly

connected to the underlying operating system and the system libraries. It was sometimes

necessary to upgrade the underlying operating system just to update an application, or

it was impossible to do so, because another application used a different version of the

shared libraries.

The job of the infrastructure team included installing and updating the full lifecycle

of the software, changing configurations, and managing services on servers, virtual

machines, and nodes. The quality of the service provided could be measured using key

indicators.

Some of you are familiar with key indicators, which reveal the uptime of software

or hardware. Uptime measures the percentage of time the service is available to receive

interactions by users. An uptime of 100 percent means the service is always available.

Unfortunately, this was an unrealistic scenario because software and hardware failures

negatively affects this in real life. Customers then experience a lower quality of service.

You can apply this analysis to any web service, API service, website, web application,

hardware, server, network device, or cloud provider. Some businesses also have penalties

or insurance associated with poor uptime performance in their contracts.

For all those reasons, it’s crucial to boost the performance of your infrastructure to

accommodate business needs or to compete better in the marketplace.

Modern processor chips integrate virtualization technology, enabling resource

splitting to accommodate increased demand. Static resource partition technology, such

as VMware vSphere, allows many organizations to run multiple operating systems in

one hardware setup. The ability to run various operating systems using virtualization,

resource partition, Linux “cgroup” technologies, and Linux Containers (LXC) delivers

virtual machines as base components of resource allocation. See Figure 1-2.

Chapter 1 Modern IT Infrastructure and Hello App

3

Hardware

Operating System

Container Runtime

Virtual machine

App

Libraries

Virtual machine

App

Libraries

Virtual machine

App

Libraries

Operating
System

Operating
System

Operating
System

App

Figure 1-2.  Virtualized deployment

Business flourished for well-known companies like VMware vSphere, Xen, and so on.

Cloud providers such as Amazon Web Services (AWS), Azure Cloud, and Google Cloud

Platform (GCP) also benefitted from the rise of virtualization. Their popular products are

called Amazon EC2, Azure Virtual machines, and Google Compute Engine.

The most significant disadvantages of virtual machines are as follows:

•	 Static allocation of resources (CPU and RAM)

•	 More resources to manage by the IT infrastructure team

•	 Maintenance and overhead required of multiple operating systems

(host and guest)

•	 Single hardware point of failure (mitigated by cluster premium

features and the Veeam backup suite)

Chapter 1 Modern IT Infrastructure and Hello App

4

�The Move to Containers
Due to those disadvantages, more organizations began to adopt a multi-cloud (multiple

cloud vendors) or a hybrid-cloud (data center and one or more cloud vendors) strategy

to offer better service to their customers. They could avoid the failure of one single

vendor. Containers enable enterprises the flexibility to choose between on-premise,

private, and public cloud providers or a mix of all these infrastructure technologies

based on universal standards (SLA, quality of services, and cost). The portability of the

application is ensured by the microservices software architectural design pattern, where

applications are broken into their smallest components, independent from each other.

See Figure 1-3.

Hardware

Operating System

Container Runtime

Container

App

Libraries

Container

App

Libraries

Container

App

Libraries

Figure 1-3.  Container deployment

To deliver the best value in the least amount of time, IT engineers needed more

powerful tools than bare metal or virtual machines. Deploying an application in a

container is entirely independent of the underlying operating systems, as shown in

Figure 1-3.

The Docker company was founded in 2011 by Kamel Founadi, Solomon Hykes, and

Sebastien Pah, after the Y Combinator in the summer of 2010. Docker debuted to the

public in Santa Clara at PyCon in 2013. Docker specifies how a container image is built

and how the image is loaded and runs. Docker created a set of platform-as-a-service

(PaaS) products that use OS-level virtualization to deliver containers, for example, the

command-line Docker utility.

Chapter 1 Modern IT Infrastructure and Hello App

5

Podman is an open-source alternative to Docker (its full name is the POD MANager).

Its main advantage is that you don’t need a service to be running like Docker on your

machine; Podman is “daemonless.” The command syntax is very similar to Docker’s. If

you are concerned about security in your applications or planning to use Kubernetes,

Podman is a better alternative. This book uses Docker because it’s more well-known and

widespread in the IT industry. But for most of the commands with the Docker prefix, you

can substitute docker with podman and obtain the same result.

The template code of the container is called a Dockerfile, which allows you to build a

binary version of the container, called an image. A more technology-agnostic alternative

to Dockerfile is a Containerfile, by the Open Container Initiative (OCI), part of The Linux

Foundation. Both are configuration files that automate the steps of creating a container

image. The OCI promotes open industry standards around container formats and

runtimes. The OCI releases three specifications: the Runtime Specification (runtime-

spec), the Image Specification (image-spec), and the Distribution Specification

(distribution-spec). Dockerfiles and Containerfiles use a combination of system tools,

system libraries, code, runtimes, and settings to specify how an application runs. A single

image can be run as many times as you want in a local Docker or Kubernetes cluster.

Once built, the container image is stored in a Container Registry (see Figure 1-4).

The first Container Registry is Docker Hub, but many Container Registries are available

in the marketplace nowadays. The first alternative that comes to my mind is Quay from

Red Hat. Container Images are stored inside with metadata. That makes it easy for

Kubernetes clusters to search within them and find them.

Dockerfile
Containerfile

Container
Registry

Image

Image

build
container

run

Figure 1-4.  Container lifecycle

Chapter 1 Modern IT Infrastructure and Hello App

6

You can maintain multiple versions of your container in a Container Registry. You

can also organize images in tags and branches that match the DEV (Development), SIT

(System Integration Test), UAT (User Acceptance Test), and PROD (Production) DevOps

principles.

Tags simply add a marker to a specific version of the image and make it easy for the

users to find it.

If you need more than one container, you must move to a Docker Compose tool,

which defines and runs multi-container Docker applications.

Modern business applications require one or more of the following features:

•	 High availability

•	 Multi-cloud compatibility

•	 Multi-tier storage

•	 Elastic/auto-scaling

•	 Self-healing

•	 Security by design (DevSecOps)

Containers can be useful for the rescue administrator workflow. In general, it’s easier

to manage storage, network, and configurations; containers help make developers more

flexible and more productive.

First introduced by Docker, containers are a standard way to deliver applications and

required libraries without the underlying operating system. This way, you can quickly

relocate to another machine or promote the development to production.

These are the benefits of using containers:

•	 They are the standard way to package an application and library into

one single object (container).

•	 They are much faster to spin up rather than using a virtual machine.

•	 They are easy to scale.

•	 They are portable because you can host anywhere.

•	 They enable microservices.

Running a container in a virtual machine is possible, but requires extra work to

maintain the operating system of the running host and the guest container manually in a

virtual machine. It is possible, but a sub-optimal solution.

Chapter 1 Modern IT Infrastructure and Hello App

7

Orchestration tools such as Kubernetes allow you to easily manage containers

at scale.

Global trends of the DevOps and DevSecOps developer-centric methodologies

deliver application-as-service, microservices, and serverless applications. They are

ramping up faster and faster. In this scenario, containers created by the Continuous

Integration and Continuous Delivery (CI/CD) toolset are tested for quality assurance

and promoted to production faster than ever. Apache Mesos and Docker Swarm

technologies are also often involved.

�Ansible by Red Hat
Ansible is the leading open-source infrastructure automation technology. Infrastructure

teams and system administrators worldwide realized that they needed a better way to

scale their systems’ management scripts to keep up with business demands. The hosted

web applications increase the complexity, email flow, and new releases of the operating

system. Manual work becomes unsustainable when the number of target devices grows.

API-driven server management and configuration management tools like Ansible helped

make things manageable.

The main Ansible use case is as follows:

•	 Provision

•	 Config management

•	 Application deployment

Red Hat Inc. (part of IBM since 2019) is leading the development of the Ansible

project worldwide, guaranteeing the open-source quality of code.

The Ansible platform is available for a huge variety of modern operating systems

and requires only an OpenSSH connection and a Python interpreter on the Linux

target node. It supports a wide range of operating systems via different connection

technologies. For example, you can use WinRM for Windows target nodes and Network

API for network devices.

The learning curve is very rapid. You see this for yourself in Chapter 2, where you

learn all about the Ansible programming language.

Red Hat also organizes the yearly AnsibleFest worldwide, usually at the end of

October, to educate people about Ansible and share new features and success stories.

Chapter 1 Modern IT Infrastructure and Hello App

https://doi.org/10.1007/978-1-4842-9285-3_2

8

�The Cloud Native Computing Foundation
In the early stage of application containerization, runtime systems such as Docker and

Podman were extremely useful for manually deploying and testing applications.

However, when the workload became higher and managing failover was crucial, the

world needed a more automated way of doing this.

Kubernetes (also called K8s) is the best way to orchestrate and manage a container

workload. Kubernetes take care of deploying, scaling, and managing container

applications. It is open-source and completely automatic.

Kubernetes has many releases per year; at the moment, there are three

releases a year.

While Docker is focused on how a single container image is created, loaded, and run,

Kubernetes is a way to schedule and manage a large number of containers.

You can deploy your container in Kubernetes to produce applications at a scale.

You can seamlessly move containers and applications at scale. Similarly to Docker and

Podman, you can run your container in Kubernetes. Kubernetes run anywhere—on-

premise, in a private data center, in a public cloud, and even in embedded hardware

such as the latest tiny Raspberry Pi devices. Kubernetes supports multiple processor

architectures and modern operating systems.

Updating, upgrading, and managing in Kubernetes is relatively easy and guarantees

security for your organization.

The Cloud Native Computing Foundation (CNCF) leads the development of

the Kubernetes project, offering a vendor-neutral vision. CNCF is part of the Linux

Foundation. CNCF also organizes community events, including KubeCon and

CloudNativeCon, where you can meet experts and share stories.

The most inspiring customer stories are from innovation leaders such as BlackRock,

Netflix, Zalando, Uber, The New York Times, ING, Squarespace, BlaBlaCar, Huawei,

Amadeus, PNC Bank, Seagate, Verizon Media, and much more.

In Kubernetes, a cluster is made up of at least one Kubernetes master; many

Kubernetes worker machines are called nodes. A cluster is fundamental for Kubernetes:

all containerized workloads and services run within a cluster.

Chapter 1 Modern IT Infrastructure and Hello App

9

�Kubernetes Support
Kubernetes relies on a vibrant community, external experts, and consultant services.

Kubernetes is officially a self-support model, but more private organizations offer

support and customization services.

Canonical, the organization leading the Ubuntu project, offers support for Kubeadm,

MicroK8s, and Charmed Kubernetes on VMWare, OpenStack, bare metal, AWS, Azure,

Google, Oracle Cloud, IBM Cloud, and Rackspace.

�Kubernetes Distributions: OpenShift, Rancher, EKS,
AKS, and GCP
There are currently several Kubernetes distribution options. They all integrate the core

Kubernetes features, but they differ by the included modules and managing software.

Kubernetes is the main framework for developing commercial products and cloud

services.

Note T his book focuses on the generally available Kubernetes, while most of the
code also works in some cloud-native Kubernetes services.

�OpenShift by Red Hat

OpenShift Container Platform (OCP) is a key product of the Red Hat multi-cloud

strategy. It is getting traction in the market because it’s easy to set up and maintain.

Red Hat packages the core Kubernetes experience with a selection of valuable utilities

to simplify the new user onboarding process. OpenShift Container Platform requires

having a OpenShift subscription to use it, which includes Red Hat support. For this

reason, it supports only Red Hat operating systems underneath, which is Red Hat

Enterprise Linux (RHEL) and Red Hat CoreOS (discontinued).

Red Hat has a strong cloud-provider partnership for fully managed OpenShift

services with products like Red Hat OpenShift Service on AWS (ROSA), Azure Red Hat

OpenShift, and Red Hat OpenShift on Google Cloud Marketplace.

Chapter 1 Modern IT Infrastructure and Hello App

10

The main differences between OpenShift and Kubernetes are that OpenShift:

•	 Requires a paid subscription

•	 Has limited operating system support (Red Hat Enterprise Linux

(RHEL) and Red Hat CoreOS

•	 Uses the oc command-line tool instead of kubectl.

•	 Has stricter security policies than default Kubernetes

•	 Forbids running a container as root

•	 Uses Role Based Access Control (RBAC) security

•	 Routes object instead of Ingress of Kubernetes based on HAproxy

•	 Uses ImageStreams for managing container images

•	 Uses OpenShift projects vs Kubernetes namespaces

OpenShift uses Helm as a software package manager, which simplifies the packaging

and deployment of applications and services to OpenShift Container Platform clusters.

OpenShift mainly uses Kubernetes operators; however, Helm is very popular in many

Kubernetes applications. For Kubernetes-native applications, consider using Kubernetes

Operator instead, because Operator continuously checks the application’s status and

determines if the application is running according to the configuration defined by the

software developer.

Red Hat OpenShift Local (formerly Red Hat CodeReady Containers) is the fastest

way to spin up an OpenShift cluster on your desktop/laptop for development purposes.

This happens in minutes. It supports Linux (x86), Windows (x86), and macOS, even Intel

and Apple Silicon (M1 and M2 processors). It is a simplified version relying on a virtual

machine (~20GB) to set up, run, test, and emulate the cloud development environment

locally. It uses the crc command-line utility to spin up a complete lab with an API and

web interface. The requirements of the latest 2.10 release are four physical CPU cores,

9 GB of free memory, and 35 GB of storage space.

Red Hat also releases an open-source version of OpenShift called OKD. It’s free to

use and includes most of the features of its commercial product without support.

Chapter 1 Modern IT Infrastructure and Hello App

11

�Kubernetes in the Public Cloud

Many cloud provider vendors build their Container Orchestration and Management

products. The most popular cloud-native services are as follows:

•	 Amazon Elastic Container Service (Amazon ECS) by Amazon Web

Services (AWS)

•	 Google Container Engine (GKE) by Google Cloud Platform (GCP)

•	 Azure Container Service by Microsoft Azure

•	 IBM Bluemix Cloud Kubernetes Container Service by IBM Cloud

•	 Oracle Container Cloud Service (OCCS) by Oracle Cloud

•	 Alibaba Cloud Container Registry

More services are available in the IT industry, but I consider these the major actors

in the marketplace nowadays. See Chapter 7 for more details.

�Amazon EKS

Amazon Elastic Kubernetes Service (Amazon EKS) is a service of Amazon Web Services

(AWS). It adds the eksctl command-line tool for working with EKS clusters and uses the

kubectl command underneath.

Amazon also provides Amazon Elastic Container Registry (Amazon ECR), an AWS-

managed container image registry service that’s cross-region and completely integrated

within the AWS ecosystem. Specified users or Amazon EC2 instances defined in the IAM

policies can access the ECR container repositories and images. Amazon ECR manages

private image repositories consisting of Docker and Open Container Initiative (OCI)

images and artifacts. Amazon Linux container images are already available in ECR, built

with the same software components included in the Amazon Linux AMI for applications

in Amazon EC2. See Chapter 7 for more details.

�Containers and Pods
A container is a single unit for delivering software. But the real world is more complex;

sometimes you need more than one container to provide the complete solution.

Chapter 1 Modern IT Infrastructure and Hello App

https://doi.org/10.1007/978-1-4842-9285-3_7
https://doi.org/10.1007/978-1-4842-9285-3_7

12

A pod contains

•	 One group of one or more containers with shared storage and

network resources

•	 One specification for how to run the containers

The name comes from the fact that a group of whales is called a pod. Pods enable

microservice deployment. The advantage is that they are loosely coupled, and their

execution is autonomous and independent.

Pods are the smallest deployable objects in Kubernetes. The pod’s contents are

colocated, coscheduled, and run in a shared context. The best practice is to insert only

containers that are tightly coupled in a pod for an application-specific task or feature.

As well as a container, a pod might contain an init container that runs during the

pod’s startup.

Note F or debugging purposes, you can inject ephemeral contains if your
cluster has enabled this feature.

�Creating a Hello App
The “Hello” app is a simple implementation in a container of the “Hello world” message

that prints the text message "Hello world" onscreen and terminates its execution.

First of all, you need to define a Dockerfile. You can rename the Dockerfile as

Containerfile to be fully OCI-compliant. This simple task requires you to execute the

UNIX command echo into a Dockerfile. Before being able to execute the command,

you need to add some lines of code to instruct Docker (or Podman) about the system

requirements, some metadata, and finally, the command to execute.

The simple example in Listing 1-1 shows the full Dockerfile to print the Hello World

text on the screen using the shell echo command.

Listing 1-1.  A simple Dockerfile

#A simple Docker container image.

FROM busybox

LABEL org.opencontainers.image.title="Hello World image"

Chapter 1 Modern IT Infrastructure and Hello App

13

LABEL maintainer="Luca Berton"

#Run a command

CMD echo "Hello World"

Every line prefixed with a # (number/pound symbol/hashtag) is considered a

comment, so it’s ignored by the program. It is useful for documentation or sharing

developer information.

The FROM instruction tells Docker that you want to begin a new image using, in this

case, another image as your starting point. It is starting from the image called busybox.

BusyBox is a very popular tool in many embedded Linux systems. In a ~5 MB of on-

disk storage space, BusyBox delivers a tiny version of many common UNIX utilities into a

single small executable. It provides the base functionality for the UNIX most commonly

used utilities. The modern Linux distributions use the GNU full-feature alternative

tools packaged in GNU fileutils, shellutils, and so on. The utilities in BusyBox generally

have fewer options than their full-featured GNU alternatives. Despite the limited size,

the included options provide the expected functionality and behave very much like

their GNU counterparts. This is why BusyBox is so well known and used outside the

embedded domain.

The LABEL instruction adds metadata to the image. The metadata enables the

Container Registry to search and organize the images. The label instructions might be

multiple and follow a key=value format, where the key is the parameter’s name and the

value is the associated value.

The CMD instruction tells Docker that what follows is a shell command and is the

process to run upon the container start.

This is a very minimal Dockerfile; there are more instructions available but these are

the most basic.

�Linux Base Images
There are a huge amount of base images available in the Container Registries for your

application development that you can use in the FROM instruction. Deriving an image

from another is actually the best way to reuse code and obtain security updates from the

original image maintainer. You don’t need to reinvent the wheel!

Chapter 1 Modern IT Infrastructure and Hello App

14

�Fedora Linux

Imagine you want to use the Fedora or Ubuntu images as base images.

For the Fedora Linux distribution, you could specify the following:

FROM fedora:latest

In this way, you select the latest release of the Fedora Linux distribution. As I’m

writing this book, the latest release is Fedora 37. The latest release is typically updated

every six months, based on the current release cycle. This acts like a rolling-release

pointer.

FROM fedora:37

You select a specific Fedora version release, 37 in this case.

FROM fedora:rawhide

In this way, you have selected the rawhide release channel, which is suitable for

developers, is sometimes unstable, and updates very often. This should be selected only

by users who know what they are doing.

Ubuntu Linux

Many popular Linux distributions are available as containers. The Ubuntu Linux

distribution is also available in a container image.

The Ubuntu Linux distribution is available in Docker Registry:

FROM ubuntu:latest

In this way, you select the latest LTS release of the Ubuntu Linux distribution. When

I was writing this book, the latest release was Ubuntu 22.04.1 LTS Jammy Jellyfish,

released on August 10, 2022. It is an LTS release with long-term support, which means

five years of free security and maintenance updates, guaranteed until April 2027. Note

that the latest release always points to the latest release, so it’s updated every six months

considering the current release cycle. This acts like a rolling-release pointer.

FROM ubuntu:22.04 or FROM ubuntu:jammy

Chapter 1 Modern IT Infrastructure and Hello App

15

You can specify one Ubuntu-specific version using the release numbers or name.

In the specific, the version number is 22.04 and the name is jammy, which refers to the

Jammy Jellyfish release name.

FROM ubuntu:rolling

You can specify the “rolling release,” which is the latest release available, using the

rolling keyword. Currently, I’m writing this book referring to the 22.10 release, Kinetic

Kudu name, with a release date of October 21, 2022. Note the rolling release is supported

only for nine months until July 2023.

Alpine Linux

Another Linux distribution popular as a base for container images is Alpine Linux.

Alpine Linux is a security-oriented, lightweight Linux distribution based on a different

version of the system libc called musl against the usual GNU libc and BusyBox. It is

famous because of its very small footprint and reduced attack surface. The image is

~5 MB in size and has access to the Alpine package repository via the Alpine Package

Keeper (apk) package manager.

�Enterprise Linux-Based Images
Enterprise releases of Linux are available as containers as well. They are very powerful,

especially for partners and system integrators that develop their solutions on top

of them.

Red Hat was the first company to introduce the Red Hat Universal Base Image (UBI)

in May 2019 for Red Hat Enterprise Linux (RHEL) versions 7 and 8. RHEL 9, released on

May 2022, is also available as a Universal Base Image (UBI). UBIs are a lighter-weight

versions of the Linux operating system’s userland stripped down to the bare essentials

and distributed by the official release channels.

UBIs are designed to be a foundation of cloud and web application use cases. Images

are available via Red Hat Container Registry at https://catalog.redhat.com/.

UBIs are tested for Open Container Initiative (OCI) compliance, performance, and

security. UBIs are also freely redistributable and deployable on non-Red Hat platforms.

Many Red Hat partners distribute solutions on top of UBIs and distribute them as

new images.

Chapter 1 Modern IT Infrastructure and Hello App

https://catalog.redhat.com/

16

Red Hat Universal Base Images are available for each released operating system

version in four sizes: Standard, Minimal, Micro, and Multi-service for AMD64 and

Intel 64 (amd64), ARM (arm64), Power ppcle64, and IBM zSeries s390x processor

architectures.

•	 The standard ubi UBI images (compressed ~76 MB) are general

purpose and designed for every application that runs on RHEL,

including the standard YUM or DNF Package Manager, OpenSSL

crypto stack, and basic OS tools (tar, gzip, vi, and so on).

•	 The multi-service ubi-init UBI images (compressed ~80 MB) are on

top of the standard (ubi) UBI and contain the systemd initialization

system services, useful for building images to deploy services on top

of it. For example, a web application or a file server.

•	 The minimal ubi-minimal UBI images (compressed ~38 MB) are

very minimalistic images with a very small footprint; they use the

microdnf Package Manger (a basic package manager to install,

update, and remove packages extensible via modules).

•	 The micro ubi-micro UBI image (compressed ~11 MB) is the

smallest possible UBI image, without a package manager and all of

its dependencies, reducing the attack surface of container images

for highly regulated and security environments. UBI micro was

introduced in June, 2021.

Other useful Red Hat Universal Base Images include the following:

•	 Language runtime images (nodejs, ruby, python, php, perl,

and so on)

•	 A repository full of packages for the most common applications

There are other Enterprise Linux distributions available as container images.

Since August 2022, the SUSE Linux Enterprise Server Base Container Images (BCI)

via the SUSE Container Registry (https://registry.suse.com) images for AMD64 and

Intel 64 (x86_64), ARM (aarch64), Power (ppcle64), and IBM zSeries (s390x) processor

architectures.

Chapter 1 Modern IT Infrastructure and Hello App

https://registry.suse.com/

17

At the moment, the following five SUSE Enterprise Linux BCIs are available:

•	 Base bci-base (compressed ~47 MB): SUSE Linux Enterprise

general-purpose image with zypper and a minimal set of packages

•	 Init bci-init (compressed ~58MB): Similar to bci-base with a

systemd service manager for managing services

•	 Minimal bci-minimal (compressed ~15 MB): For deployment

container RPM-only with manual package dependencies resolution

•	 Micro bci-micro (compressed ~10 MB): For static-binary

deployment without a package manager

•	 BusyBox bci-busybox (compressed ~5 MB): The UNIX coreutils tools

provided by the BusyBox project instead of GNU coreutils for size

reduction

Other Enterprise Linux distribution images include these:

•	 Rocky Linux image rockylinux tags 8, 8-minimal, 9, 9-slim

•	 Oracle Linux image oraclelinux tags 7, 7-slim, 8, 8-slim, 9, 9-slim

�Container Security
Container images are created by software that might be affected by security flaws

that could harm your organization. The advantage of using maintained images is that

the creator constantly monitors the security of the images through the static analysis

of vulnerabilities and releases a new version when necessary. Some examples of

impactful security threats that pop up are Log4Shell (CVE-2021-44228), Heartbleed

(CVE-2014-0160), and Shellshock (CVE-2014-6271).

Once you create your container image, you can use a vulnerability analysis engine

to inspect the image layer-by-layer for known security flaws. Most Container Registries

integrate some container image static analysis tools.

•	 Docker Hub Vulnerability Scanning has been powered natively by

Docker, instead of a third party, since February 27, 2023.

•	 Red Hat Quay uses the open-source Clair security framework.

Chapter 1 Modern IT Infrastructure and Hello App

18

These tools scan each container image layer and notify you of vulnerabilities

that might be a threat. They use the popular Internet thread databases to search for

security patterns: NIST Common Vulnerabilities and Exposures database (CVE), Red

Hat Security Bulletins (RHSB), Ubuntu Security Notices (USN), and Debian Security

Advisories (DSA).

In the market, there are many open-source and commercially available products for

this task nowadays. Popular tools include Anchore, Datadog Cloud SIEM, Sophos Cloud

Native Security, Bitdefender GravityZone, Sysdig Secure, Red Hat Advanced Cluster

Security for Kubernetes, and Aqua Security. Integrating one or more of these products

into your DevSecOps process is a good way to address and mitigate security risks.

�The Hello Dockerfile
Now that you know more about the Dockerfile format, you can move forward with your

Hello App.

The Hello App is a Python 3 base on the Flask Restful framework. Flask is a popular

web application framework for Python, implemented on Werkzeug and Jinja2. Flask-

RESTful is a popular Flask extension for quickly building REST APIs. It’s a fast way to

integrate a web server into a few lines of code.

The two Hello App source files are shown in Listing 1-2.

Listing 1-2.  Hello Dockerfile

– Dockerfile

FROM python:3

LABEL org.opencontainers.image.title="Hello World image"

LABEL maintainer="Luca Berton"

ADD helloworld.py /

RUN pip install flask

RUN pip install flask_restful

EXPOSE 8080

CMD ["python", "./helloworld.py"]

The FROM instruction informs Docker that you want to derive from the python:3

image. At the moment of writing the book, tag 3 of the python image points to the latest

release of the Python image. The same result could be obtained using the tags 3.11.0,

3.11, 3, and latest. The Python image is the official distribution of the Python computer

Chapter 1 Modern IT Infrastructure and Hello App

19

programming language in a slim release. Docker Hub Container Registry is available

on top of the latest Debian 11.5 “bullseye” Linux distribution, released on September

10, 2022.

The ADD instruction adds files to the image from the current directory. You need to

specify the source filename and the destination.

The LABEL instruction adds metadata to the image—specifically an image title and

the maintainer’s name.

Line number 4 uses the LABEL instruction:

ADD helloworld.py /

This line copies the helloworld.py file into the destination directory / (root), which

is the base directory of every UNIX file system.

The RUN instruction executes some commands inside the image. Specifically, line

number 5 and line number 6 execute the pip command.

RUN pip install flask

RUN pip install flask_restful

The pip command is the Python Package manager that is used to install additional

content inside the container. The advantage of this approach, rather than using the

system packages, is that it fetches the latest release of the package and compiles it for

your system. The pip command also takes care of the dependencies and ensures that the

software is up-to-date on your system. In this example, it added the flask and flask_

restful programs.

The EXPOSE instruction specifies the network port of the service of your container. In

this case, port 8080 is required by the web application.

The CMD instruction tells Docker to execute the shell command and is the process to

run upon the container start. It runs the concatenation of the two strings of the list. So

the python system command and the ./helloworld.py application.

�The Hello Application
The Hello application is a simple Python program that you will execute inside a

container. Listing 1-3 details the contents of this helloworld.py application.

Chapter 1 Modern IT Infrastructure and Hello App

20

Listing 1-3.  helloworld.py

– helloworld.py

#!/usr/bin/env python3

from flask import Flask, request

from flask_restful import Resource, Api

app = Flask(__name__)

api = Api(app)

class Hello (Resource):

 def get(self):

 return 'Hello World'

api.add_resource(Hello, '/') # Route_1

if __name__ == '__main__':

 app.run('0.0.0.0','8080')

A few lines of this code run a web server on port 8080 and serve the default address /

with the Hello World message.

You can test this code in a browser with the target address of localhost and the

local port 8080 by just typing localhost:8080 in your favorite browser. When the

helloworld.py application runs, it returns the Hello World text on the screen, as shown

in Figure 1-5.

Figure 1-5.  The hello app in a browser

In order to run the helloworld.py file, you must manually install all the necessary

dependencies. In this case, the installation of the packages flask and flask_restful.

This process is boring, repetitive, and error-prone; you need to automate it with a

container image. The best way to test the code is to create a Python virtual environment

using the Python venv module and then use the pip command to install the required

packages.

Chapter 1 Modern IT Infrastructure and Hello App

21

To install the required dependencies (all the commands listed in the Python

import), use:

pip install flask flask_restful

If you want to share the virtual environment with a friend, you could generate a

requirements.txt file with the full dependency tree that’s usable on every machine

with Python installed. Listing 1-4 shows the requirements file generated on my machine

at the moment of writing this book (versions of the dependencies might vary on your

system).

Listing 1-4.  requirements.txt

– requirements.txt

aniso8601==9.0.1

click==8.1.3

Flask==2.2.2

Flask-RESTful==0.3.9

itsdangerous==2.1.2

Jinja2==3.1.2

MarkupSafe==2.1.1

pytz==2022.6

six==1.16.0

Werkzeug==2.2.2

You could easily install all the required dependencies and run helloworld.py typing

these commands:

pip install -r requirements.txt

python helloworld.py

The first command installs all the necessary software dependencies and the

second runs your application. The expected output for successfully listening for a new

connection is the following:

* Serving Flask app 'helloworld'

* Running on http://127.0.0.1:8080

Chapter 1 Modern IT Infrastructure and Hello App

22

�Building the Hello App
Before being able to execute your container, you need to build the binary image, as

illustrated in Figure 1-6. The process requires some time but is completely automated.

Once you practice, it will become straightforward.

Dockerfile
Containerfile

Imagebuild

Figure 1-6.  The container build process

Using the build parameter of the docker command in the terminal, you request the

building of your container, specifying the image name using the -t parameter and the

name hello-world-python:

$ docker build -t hello-world-python .

Under the hood, Docker downloads the base image name Python and selects tag 3.

After that, Docker adds the helloworld.py file to the file system of the new container

and downloads the required Python dependencies.

The result is a container named hello-world-python in your workstation. In case

you’re wondering, it’s ~1GB on my workstation.

�Running Hello in Docker
Once the container image is successfully built, you can execute it as many times as you

want or upload it to a Container Registry (Docker Hub, Quay.io, Google’s Container

Registry, and so on). Figure 1-7 illustrates the container run process.

Chapter 1 Modern IT Infrastructure and Hello App

23

Image Container
run

Figure 1-7.  Container run process

You can run your containers by specifying the port mapping using the 8080 port of

the localhost mapped to the port 8080 on the container.

$ docker run -p 8080:8080 hello-world-python

You can check the status of the Docker execution using the ps parameter of the

docker command:

$ docker ps

CONTAINER ID IMAGE

2c66d0efcbd4 hello-world-python

The computer-generated string 2c66d0efcbd4 represents the container ID of the

running container in your workstation.

You can verify the execution using the command-line browser cURL:

$ curl http://localhost:8080

If you prefer to use your favorite browser software, just type localhost:8080 in the

title bar; Figure 1-8 shows the result.

Figure 1-8.  The hello app in a browser

Chapter 1 Modern IT Infrastructure and Hello App

24

As you can see, the result of the execution using Docker is the same as the manual

Python execution of the Hello App.

The main advantage is that you can execute the container as many times as you want

or share it with others via the Container Registry.

�Deploying Hello in Kubernetes
In order to deploy your image to Kubernetes, you need to create a manifest file called

hello.yml. Manifest files are written in YAML programming code and are very easy for

humans to understand. See Listing 1-5.

Listing 1-5.  The hello.yml Manifest File

- hello.yml

apiVersion: v1

kind: Pod

metadata:

 name: redis-pod

spec:

 containers:

 - name: hello-container01

 image: hello-world-python:latest

 ports:

 - containerPort: 8080

Once you create the hello.yml manifest file, you can deploy the Hello App to your

Kubernetes cluster. The cluster by itself fetches the image and starts running, waiting for

new connections:

$ kubectl create -f hello.yml

pod/hello-container01 created

You can then verify that the Kubernetes cluster has successfully initialized all the

Hello App resources using the following command:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

hello-world-python 1/1 Running 1 11h

Chapter 1 Modern IT Infrastructure and Hello App

25

�Deploying Hello in Operator
Operator enables you to verify and deploy new applications in your Kubernetes cluster

automatically. You need some coding skills, because the code is going to rely on the

Kubernetes Operator SDK, which is a Minikube environment for running Kubernetes

locally, as well as the Go language (Golang). At the moment, the app is so tiny that it

seems overdoing it to create an operator to display a text message, but it’s good practice.

The seven steps needed to generate a Kubernetes Operator are as follows:

	 1.	 Generate the boilerplate code using the Kubernetes Operator SDK

and Minikube:

$ minikube start init

$ operator-sdk init

	 2.	 Create the APIs and a custom resource:

$ operator-sdk create api --version=v1alpha1 --kind=Traveller

	 3.	 Download any dependencies.

	 4.	 Create a deployment.

	 5.	 Create a service.

	 6.	 Add a reference in the controller for the deployment and service.

	 7.	 Deploy the service, install the CRD, and deploy a CRD instance.

Operators extend Kubernetes APIs and create custom objects to customize the

cluster according to your needs.

�Key Takeaways
IT infrastructure is more critical than ever. It serves the business mission and delivers

the best possible service to stakeholders both inside your organization and outside, to

customers and partners.

The Kubernetes platform orchestrates your container fleet precisely and efficiently.

K8s, combined with Ansible, enables incredible powerful horsepower that allows you to

use DevSecOps, Infrastructure as Code, and self-healing infrastructures.

Chapter 1 Modern IT Infrastructure and Hello App

27

CHAPTER 2

Ansible Language Code
Ansible is an IT automation tool that enables Infrastructure as Code (IaC). Michael

DeHaan started the Ansible project. The first release of Ansible was made public on the

February 20, 2012. Michael took inspiration from several tools he had written, along

with some hands-on experience with the state of configuration management at the time.

Some of Ansible’s unique attributes, such as its module-based architecture and agentless

approach, quickly attracted attention in the open-source world. The logo is reminiscent

of the Start Trek Communicator device of instantaneous communications between

galaxies.

�What Is Ansible?
Ansible is classified as an infrastructure automation tool; it allows you to quickly

automate your system administrator tasks. Infrastructure as Code manages and provides

computer data centers through machine-readable definition files rather than physical

hardware configuration or interactive configuration tools. With Ansible, you can deploy

your Infrastructure as Code on-premises and on well-known public cloud providers.

Ansible is used to apply the DevOps principles in worldwide organizations. DevOps

is a set of practices that combines software development (Dev) and IT operations (Ops).

As DevOps is a cross-functional mode of working, those who practice the methodology

use different tools, referred to as “toolchains,” rather than a single tool. These toolchains

fit into one or more categories, reflective of key aspects of the development and delivery

process.

These are the six benefits to using Ansible and counting:

•	 Simple: The code is in the YAML language, a human-readable

data serialization language. It is well-known and easy to learn; it is

commonly used for configuration files and in applications where data

is being stored or transmitted.

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_2

https://doi.org/10.1007/978-1-4842-9285-3_2#DOI

28

•	 Powerful: Ansible is robust and battle-tested in configuration

management, workflow orchestration, and application deployment.

•	 Cross-platform: Ansible is agentless, which means that it supports

all major operating systems, as well as physical, virtual, cloud, and

network providers. Agentless support for all primary OS, physical,

virtual, cloud, and networks.

•	 Works with existing tools: Ansible can work with existing tools,

making it easy to homogenize the current environment.

•	 Batteries included: Ansible is bundled with many modules to

automate the most common tasks.

•	 Community-powered: Every month, Ansible has more than 250,000

downloads, an average of 3,500 contributors, and more than 1,200

users on IRC.

Ansible can be easily extended by using additional resources and plugins. The

most common way to distribute these is via an Ansible collection that comes with a

standardized format. The more than 750 modules include cloud modules for clustering,

executing commands, crypto, database, managing files and directories, identity

management, inventory, messaging, monitoring, net tools, network, notification,

packaging, remote management, source control and versioning, storage, system, utilities,

web infrastructures, and interacting with Windows operating systems.

Ansible’s three prominent use cases are provisioning, configuration management,

and application deployment. After using this technology, you may just invent more ways

to use it!

�Provisioning
Provisioning is the process of setting up the IT infrastructure: all system administrators

know how important it is to manage a uniform fleet of machines. Some people still rely

on software to create workstation images. But there is a drawback to that; with imaging

technology, you’re only taking a snapshot of the machine at a certain time. You have to

reinstall software every time because of modern critical activation systems or to update

the latest security patches. Ansible is very powerful in automating this process.

Chapter 2 Ansible Language Code

29

�Configuration Management
Configuration management is the process of maintaining systems and software in a

desired and consistent state. It maintains an up-to-date and consistent fleet, including

coordinating rolling updates and scheduling downtime. With Ansible, you can verify the

status of your managed hosts and take action in a small group of them. A wide variety

of modules is available for the most common use cases, not to mention the typical use

case of checking for the compliance of your fleet to international standards and apply

resolution plans.

�Application Deployment
Application deployment is the process of publishing software between testing, staging,

and production environment. For example, Ansible can automate your web application’s

continuous integration/delivery workflow pipeline. Your DevOps team will be delighted!

�Ansible Open-Source vs Commercial Options
Ansible is a community-driven project with fast-moving innovations. It’s open-source

with only command-line tools.

Ansible Inc., originally AnsibleWorks Inc., was the company set up to support and

sponsor the project commercially by Michael DeHaan, the founder of the Ansible

project. In October of 2015, Red Hat acquired Ansible Inc. and evaluated Ansible as a

“powerful IT automation solution” designed to help enterprises move toward frictionless

IT. Since 2016, AnsibleFest has been an annual conference of the Ansible community of

users and contributors; previous editions were hosted in Europe and the United States.

Since 2023, the event has been part of the Red Hat Summit main event planned in May

each year.

Red Hat Ansible Automation Platform is the commercial framework designed by

Red Hat. You can interact using a web user interface, an API, command-line interfaces,

and Ansible collections. It provides configuration management (CM), CM tools, a GUI,

Role-Based Access Control (RBAC), and third-party authentications and integrations to

manage your infrastructure. Red Hat Ansible Automation Controller was formerly known

as Ansible Tower. Red Hat Ansible Automation Platform has loads of products, including

Ansible Automation Controller, Automation Hub, Automation Analytics, and more.

Chapter 2 Ansible Language Code

30

Enterprise needs more services and some stable releases. For example, they need

an SLA for support. Red Hat offers this service to companies under the Ansible Tower

umbrella, now rebranded as Ansible Automation Controller.

Ansible Tower is a REST API, web service, and web-based console designed to make

Ansible more usable for IT teams with members of different technical proficiencies and

skill sets. It is a hub for automation tasks. The Tower is a commercial product supported

by Red Hat Inc. but derived from the AWX upstream project, which has been open-

source since September 2017.

Red Hat maintains Ansible Core (formerly Ansible Engine) with the explicit intent

of being used in the open-source community and as an enterprise IT platform. With

Ansible Core, organizations can access the tools and innovations available from the

underlying Ansible technology in a hardened, enterprise-grade manner.

�Ansible’s Architecture
Ansible typically requires two or more hosts—one that executes the automation, called

the Ansible Control Node, and one (or more) that receives the action, called the Target

Node. Figure 2-1 illustrates the architecture.

Ansible Control Node

web1.example.com

web2.example.com

web3.example.com

Figure 2-1.  Ansible Architecture

The Ansible Control Node directs the automation and effectively requires Ansible to

be fully installed inside. The Ansible Target Node requires only a valid login to connect.

The Ansible Control Node usually uses Ansible Playbook and Inventories (see

Figure 2-2) for the execution. The Ansible Playbook is the automation blueprint and has

a step-by-step list of tasks to execute against the target hosts.

Chapter 2 Ansible Language Code

31

Ansible Control Node

Ansible Playbook
—
- name: example

hosts: all
tasks:

- name: hello
ansible.builtin.debug:

msg: Hello
…

Ansible Inventory

web1.example.com
web2.example.com
web3.example.com

Figure 2-2.  Ansible Playbook and Inventory

Ansible Playbook is coded in the YAML language, so easy to write and human-

readable.

The Ansible Inventory is the list of target hosts in INI, YAML, or JSON format. For

simplicity, you can group the hosts using a common name. In this way, you can easily

specify the group name for the execution.

The next section reviews how to install and configure a control node for Ansible for

the most common operating systems.

�UNIX Target Node
You can configure Ansible in the following UNIX target node: Linux distributions,

macOS, and UNIX (FreeBSD, OpenBSD, etc.), as shown in Figure 2-3.

Chapter 2 Ansible Language Code

32

Ansible Control Node

Linux

macOS

FreeBSD, etc.

ss
h

Figure 2-3.  Ansible UNIX target nodes

The supported Target Node includes all the current releases of UNIX-compliant

desktops and servers.

Ansible requires only OpenSSH and Python to be installed. OpenSSH is used

for connection and one login user. Using SSH keys instead of passwords is strongly

encouraged. The local Python interpreter in the target node will execute the Ansible

commands.

�Windows Target Node
The supported Target Node includes all the modern Windows desktop and server

releases. The list includes Windows 7, 8.1, 10, and 11 and Windows Server 2008, 2008 R2,

2012, 2012 R2, 2016, 2019, and 2022 at the moment of writing this book, but Windows

support is future-proof. See Figure 2-4.

Ansible Control
Node

Windows

Windows
Server

Figure 2-4.  Ansible Windows target nodes

The Windows host requires PowerShell 3.0 or newer and at least .NET 4.0. You only

need to upgrade old Windows 7 and Windows Server 2008 nodes.

The WinRM listener receives and executes the commands between Ansible

Controller and the target node. Ansible 2.8 added an experimental SSH connection for

Windows-managed nodes for Windows 10+ clients and Windows Server 2019+.

Chapter 2 Ansible Language Code

33

The easier, more straightforward configuration is using the WinRM connection

method with the basic authentication.

You can specify more advanced authentication methods: Basic, Certificate, NTLM,

Kerberos, and CredSSP. You can do this for local user accounts, Active Directory

accounts, credential delegations, and HTTP encryption, as shown in Table 2-1.

Table 2-1.  WinRM Authentication Methods

Option Local Accounts Active Directory
Accounts

Credential
Delegation

HTTP
Encryption

Basic Yes No No No

Certificate Yes No No No

Kerberos No Yes Yes Yes

NTLM Yes Yes No Yes

CredSSP Yes Yes Yes Yes

Basic authentication is the simplest authentication option but also the most insecure

because it transmits the password encrypted with base64 encoding.

The following example shows the WinRM host variables configured for basic

authentication in the Ansible Inventory:

ansible_connection: winrm

ansible_winrm_transport: basic

ansible_user: LocalUsername

ansible_password: Password

WinRM Certificate authentication uses certificates as public/private key pairs in

PEM format. The following example shows how to configure WinRM host variables for

certificate authentication in the Ansible Inventory:

ansible_connection: winrm

ansible_winrm_transport: certificate

ansible_winrm_cert_pem: /path/to/certificate/public/key.pem

ansible_winrm_cert_key_pem: /path/to/certificate/private/key.pem

Chapter 2 Ansible Language Code

34

For all the other installation scenarios and comprehensive configuration details,

refer to the documentation on the official Ansible website: https://docs.

ansible.com/.

�Ansible Installation
The Ansible package must be installed only on the Ansible Control Node (see

Figure 2-5). Ansible is available for a large variety of modern operating systems. You can

configure the Ansible Control Node in a large variety of UNIX operating systems: Linux

distributions, macOS, UNIX (FreeBSD, OpenBSD, and so on).

Ansible Control Node

ansible package

Figure 2-5.  Ansible Control Node

The supported control node includes the current UNIX-compliant desktop and

server releases.

Ansible Engineering Team distributes a minimalist language and runtime called

ansible-core (it was called ansible-base in version 2.10), and the Ansible Community

Team has a community package called ansible.

Choose the Ansible style and version that matches your particular needs or is

available in your operating system.

Ansible Core (ansible-core package) focuses primarily on developers and users

who want to install only the basic Ansible language and runtime and add any additional

Ansible Collections. It contains only the ansible.builtin modules and plugins,

allowing other Ansible Collections to be installed. The Ansible Core is similar to Ansible

2.9 without any content; it has since moved into external Collections, resulting in a

smaller package on disk. The current release cycle at the moment of writing this book of

Ansible Core is two major releases per year.

Chapter 2 Ansible Language Code

https://docs.ansible.com/
https://docs.ansible.com/

35

The ansible Community package includes the Ansible Core plus 85+ community-

curated Collections that contain thousands of modules and plugins. It re-creates and

expands on the functionality included in Ansible 2.9 in a bigger package on disk. The

current release cycle of the Ansible Community package at the moment of writing this

book is two major versions per year, on a flexible release cycle that trails the release of

the ansible-core package.

The easiest way to install Ansible is to install the ansible or ansible-core in your

package manager or use the pip tool for Python.

Use the following command on Red Hat Enterprise Linux, Fedora, CentOS, Rocky

Linux, Alma Linux, Oracle Linux, or Amazon Linux systems with root privileges to install

Ansible:

yum install ansible

On Debian and Ubuntu Linux systems, use this command (root privileges required,

often sudo is used):

apt-get install ansible

The PyPI is the largest archive of Python modules, and you can interact with it

using the popular pip command-line utility. Using the pip command-line utility, you

can download and install the latest release available from the PyPI website on your

system. System administrators often configure a Python virtual environment in order to

separate the Ansible installation and the library that might be necessary for additional

components, such as roles and collection from the system libraries.

Using the Python pip tool, you can install Ansible using the following command

(root privileges may or may not be required, depending on your environment):

pip install ansible

The pip utility is available in many operating systems inside the python-pip or

python3-pip system package. Some variants are available for Python 3: pip3 or specific

versions of Python, for example, Python 3.10: pip3.10.

After successfully installing Ansible on your system, you can use the ansible --version

command to check the current version of Ansible on your system and, of course, also check if

the installation was successful.

Chapter 2 Ansible Language Code

36

The first line of the output of the ansible --version command shows the full

version of Ansible installed:

ansible [core 2.13.4]

In Ansible jargon, the full version reads 2.13.4 with 2 as a major, 13 as a minor, and 4

as the revision.

�Getting Started with Ansible
In this section, you learn how to execute a simple Ansible ad hoc command against a list

of hosts.

�Running Your First Ansible Ad Hoc Command
Every command is executed by the ansible command-line utility (installed with Ansible

on your system). Try running the Ansible ping command. A command is called a module

in Ansible jargon. The purpose is to test the connection between the controller and the

target node.

The expected result is printing the screen’s message "ping: pong." If you see this

message, the connection was successful, and the execution of the Ansible code went

fine. When the connection is unsuccessful, an error message is displayed onscreen.

The expected output after running the ping command is shown here:

 $ ansible localhost -m ping

 localhost | SUCCESS => {

 "changed": false,

 "ping": "pong"

 }

Sometimes, you’ll need to execute the command as a root or administrative user.

Ansible integrates a proper privilege escalation mechanism.

Adding additional parameters to the command line allows you to specify the

connection user devops and indicate that you need root privileges using the sudo

mechanism (default).

ansible localhost -m ping -u devops --become

Chapter 2 Ansible Language Code

37

This command executes under the root user’s permission, supplying the sudo

password. You must verify the configuration and the policies of your system in order

to be able to execute the sudo command via the current user. This is the result of the

execution. Some modules have different results for the normal user and the root user.

The ping module has the same result, but modules that install packages or perform

system-wide configurations have a different result.

�Creating a Basic Inventory
Every execution needs a list of target hosts. Ansible needs to know which nodes to

target the execution against. You can specify the list of target hosts in the command line

to an inventory file. The inventory is a simple list of target hosts in the default Ansible

inventory file. If no Ansible inventory is specified in the command line, Ansible relies on

the default /etc/ansible/hosts file. It’s simply a text file with a list of host names or IP

addresses. It follows the INI format.

The inventory file stores the list of target nodes. For example, you can specify only

one host named localhost and the content will look like the following:

localhost anisble_connection=local

web1.example.com ansible_connection=ssh ansible_user=devops ansible_ssh_

private_key_file=~/.ssh/id_rsa

There are two hosts in this inventory. The first is localhost, so you can execute the

automation against the control node and another host web1.example.com using the

username devops connecting via SSH using the key file ~/.ssh/id_rsa.

�Ansible Code Language
Ansible is a declarative language, which means that it is focused on the result of the

execution rather than the steps to achieve the results, like in traditional programming

languages. The code is organized into Ansible Playbook when you want to execute more

than one command, like in Ansible Ad Hoc.

Ansible is not a complete computer programming language but relies on multiple

common computer programming statements for each code segment. Every task is

executed in sequence when a condition is verified and in iteration and uses a module

construct. Think about a module like a Lego blueprint for your automation; they could

Chapter 2 Ansible Language Code

38

combine together as needed to achieve great results. One important property of some

modules is idempotency, which means the ability to perform some action on the target

host only if needed and to skip the execution whenever it is not necessary.

Ansible relies on Python language underneath, so it has a vast plethora of libraries

and tools. The Ansible language, called Playbook, is coded in YAML and uses many of

the Jinja2 functions and filters.

Ansible can be extended using plugins that extend and propel the integration to

many cloud providers and more functions, modules, and so on. Code reuse greatly

emphasizes Ansible, and the standard way to distribute and consume the Ansible code is

with Ansible Roles and Ansible Collections.

�Ansible Inventory
An Ansible Inventory is the list of managed hosts that target your Ansible automation.

You can also organize your inventory in groups or patterns to select the hosts or groups.

The ansible-inventory command-line tool is included in every Ansible installation,

and its purpose is to show the current Ansible inventory information. It’s advantageous

to verify the current status of your Ansible Inventory. It accepts Ansible Vault and Ansible

Inventory in INI, YAML, and JSON formats. You can get the complete lists of parameters

using --help. A handy feature is to display the hosts in a list using the --list parameter

or in a tree view using the --graph parameter.

The INI inventory is the simplest inventory type. You can insert all your target hosts

or IP addresses. The default location of the inventory is /etc/ansible/hosts, but most

command-line tools accept a customized path with the -i parameter.

Moreover, it’s possible to define multiple groups inside, specifying the group name

between brackets in INI format [group], or under the children node in YAML format.

Obviously, hosts might be present in multiple groups inside an inventory.

The particular keyword all includes all the hosts of the inventory. The only

exception is localhost, which you need to specify. The all keyword is important and

targets all your Ansible example inventory.

One particular host is localhost. You might sometimes want to execute your Ansible

code with the local machine as a target. You can achieve this result by specifying the

ansible_connection “local” property. By default, Ansible assumes it should use the

SSH connection for any target nodes; in this way, you force it to use the local connection

instead.

Chapter 2 Ansible Language Code

39

�INI Inventory

The most straightforward Ansible inventory format is INI. The INI format has been

around for years and is very popular for Windows and Linux configuration files. The INI

inventory file can have some name=value fields inside. Obviously, name is the name of

the property, and value is the property’s value. The example in Listing 2-1 shows one

ungrouped host called bastion.example.com and two hosts inside the [web] group

containing web1.example.com and web2.example.com.

Listing 2-1.  The example.ini File

bastion.example.com ansible_user=ansible

[web]

web[1:2].example.com

[web:vars]

ansible_user=devops

You can use your target host directly with the hostname or the additional [web]

group. Note that this example specifies some hostnames in a range between brackets,

specifying the first and last elements with an alternation of numbers and letters.

You can also specify some variables for each host. This example scenario is common

because it defines different connections with different hosts. For example, use the local

link for the localhost and ssh, the default, for all the other hosts. For each host, you can

customize the login user. This example uses the ansible user for bastion.example.com

and the devops user for web1.example.com and web2.example.com. You might like to

move the host variable to the host_vars/bastion.example.com file, which contains the

variables for the host bastion.example.com. In a similar way, you can store the group

variables in the group_vars/web file containing the variables for the web group.

�YAML Inventory

The YAML format is a simple human-readable format that is often used for Ansible

inventories instead of the INI format. In this format, the indentation of every single line

is essential. The list of hosts or IP addresses descends from the root all node. Each host

must be under the hosts field. You can specify the groups under the children keywords.

Chapter 2 Ansible Language Code

40

The same example-ini inventory could be expressed, as shown in Listing 2-2.

Listing 2-2.  The example.yaml File

all:

 hosts:

 bastion.example.com:

 vars:

 ansible_user: ansible

 children:

 web:

 hosts:

 web1.example.com

 web2.example.com

 vars:

 ansible_user: devops

The YAML inventory is entirely equivalent to the INI format. As you can see, you can

specify a group name, some hosts underneath, and some host and group variables.

�Ansible Playbook
An Ansible Playbook is a set of plays to be executed against an inventory. The code

is written in the YAML text syntax format, making the files easy to write and human-

readable. Each YAML file begins with three dashes (---) and ends with three dots (...).

The three dots (...) are often omitted. Be very careful about the indentation; most

of the time, improper indentation is the cause of malfunction. You can use the sharp/

hashtag symbol (#) for comments, as you can in many languages.

Ansible uses a lot of string variables; you can specify the value directly or with a

single or double quote. We recommend using a double quote as a general rule. Using

the pipe (|), you can define multi-line strings that keep newlines and a major (>) that

doesn’t.

Chapter 2 Ansible Language Code

41

The first Ansible Playbook in this book displays a simple "Hi" message on the screen.

Listing 2-3 shows the complete Ansible code.

Listing 2-3.  The hi.yml File

- name: Hi example

 hosts: all

 tasks:

 - name: Hi message

 ansible.builtin.debug:

 msg: "Hi!"

...

Here is a line-by-line explanation of the hi.yml Ansible Playbook:

	 1.	 Start of the YAML file (---)

	 2.	 Name of the play ("Hi example")

	 3.	 Target hosts of execution (all of the inventory)

	 4.	 Beginning of tasks

	 5.	 The first task is named Hi message

	 6.	 The ansible.builtin.debug module displays messages onscreen

	 7.	 The msg argument of the debug module is the message that you

want to display

	 8.	 End of file (...)

You can execute this code using the ansible-playbook command-line utility

included in every Ansible installation. The full command requires specifying the

playbook name after it, as shown in Figure 2-6.

$ ansible-playbook hi.yml

Chapter 2 Ansible Language Code

42

Ansible Controller

ansible-playbook

inventory

Guest operating
system play book

Hypervisor
target host

Type 1 native
connection

Figure 2-6.  The ansible-playbook process

The execution produces the “Hi” message on the screen and an OK status for the

execution. The Ansible playbook could contain multiple plays targeting different hosts,

for example, and executing different tasks.

A good security practice is to execute as much code as possible as standard user

permission. However, some operations are only possible at the root/administrative

permision level. Ansible has embedded the ability to switch between two users (usually

the normal and administrative users) and supports many of the most popular systems

for privilege escalation.

You can enable privilege escalation in Ansible Playbook using the following Ansible

statements:

•	 become specifies that privilege escalation is necessary

•	 become_method selects the escalation method

•	 become_user specifies the destination user (default root)

The Ansible playbook shown in Listing 2-4 installs the popular fail2ban program,

accessing the target host as a normal user then switching to root.

Listing 2-4.  The fail2ban.yml File

- name: install fail2ban

 hosts: all

 become: true

 become_method: sudo

 become_user: root

Chapter 2 Ansible Language Code

43

 tasks:

 - name: install fail2ban

 ansible.builtin.apt:

 name: fail2ban

 status: present

 update_cache: true

The --check parameter of the ansible-playbook command allows you to perform a

read-only operation on the target node, often used as a dry run for this playbook.

Ansible doesn’t have a proper debug system, but you can combine the Ansible debug

module with the verbosity parameter (1-4). The debug module allows you to print text on

the screen during the execution, and you can specify the verbosity parameter of each

message. The verbosity parameter of the ansible-playbook command is expressed

by the number -v for level one, -vv for level two, -vvv for level three, and -vvvv for

level four.

�Ansible Variables

Like in every language, variables allow you to make your code reusable in the future.

These are the variables available in the Ansible language:

•	 User-defined variables

•	 Extra variables

•	 Host and group variables (see the previous Ansible Inventory section)

•	 Registered variables

The user-defined variables are declared with the vars statement followed by the

list of each variable and value. Variable types are the same as in Python: string, number,

Boolean, list, dictionary, and so on. You can retrieve the variable value in any part of your

Ansible playbook by specifying the name between double brackets, like this: {{ name }}.

The extra variable is a way to pass value from the command line. It’s advantageous

when you’re trying to integrate Ansible into your current toolchain or simply want to

parameterize your playbook from the command line. It overrides any value in your

Ansible Playbook specific to the -e parameter of the ansible-playbook command.

Array variables are instrumental when you want to specify some properties that

apply to multiple objects. For example, Listing 2-5 contains some cars and properties.

Chapter 2 Ansible Language Code

44

Listing 2-5.  An Array of Variable Snippets

cars:

 bmw:

 model: M1

 fuel: petrol

 tesla:

 model: Model S

 fuel: electric

You can access each property using dot (.) or bracket notation [], like in Python. For

example, cars.bmw.fuel and cars[bmw][fuel] both refer to the value petrol.

The registered variables save the output of any commands inside registered

variables. It is very useful when you want to combine the output of a module with

another module.

�Ansible Filters

You can perform some alterations of Ansible variables using the Ansible filters. These

are native functions from the Jinja2 filters. They extend the functionality of the Ansible

language. Ansible filters manipulate data at a variable level. The most common filters are

as follows:

•	 Assign default mandatory values: {{ variable_name |

default(5) }}

•	 Make variables optional: {{ variable_name | default(omit) }}

•	 Assign ternary value: {{ status | ternary('restart',

'continue') }}

•	 Manage data types: {{ variable_name | items2dict }}

•	 Format data to JSON and YAML: {{ variable_name | to_json }}

or {{ variable_name | to_nice_yaml }}

•	 Work with regex: {{ "ansible" | regex_replace('^.', 'A') }}

Chapter 2 Ansible Language Code

45

�Conditionals

Like in every programming language, conditional statements give developers the ability

to check a condition and change the behavior of the program accordingly. The Ansible

form is the when statement.

The when statement defines when a task will be executed or not based on the

Boolean result of the following:

•	 Complex expression using parentheses ()

•	 Comparison operators ==, >=, <=, !=

•	 Ansible facts (ansible_facts['os_family'] == "Debian")

The example in Listing 2-6 reloads the ssh service when the variable reload_ssh

is true.

Listing 2-6.  The reload_ssh.yml File

- name: ssh reload

 hosts: all

 vars:

 reload_ssh: false

 tasks:

 - name: reload ssh

 ansible.builtin.service:

 name: nginx

 state: reloaded

 when: reload_ssh

Running the code produces one skipped status for the task where the statement is

false during the execution. When you switch the variable reload_ssh to true, the task

status is going to be executed.

Chapter 2 Ansible Language Code

46

�Handler

The Ansible handler is a special conditional statement that runs operations only when

the first task reports a change in status. Handlers execute only when the previous task

reports a changed status. If the previous task report has an ok status, the handler is not

executed.

In Listing 2-7, the handler code is executed only if a change is detected. Note that the

notify statement mentions the handler’s name to run. This playbook checks the latest

version of the HTTPD web server on all hosts; if an update is available, the yum module

executes the upgrade and displays the message on the screen. If an upgrade is not

necessary, the handler code is not executed.

Listing 2-7.  The httpd.yml File

- name: handler demo

 hosts: all

 become: true

 tasks:

 - name: latest package

 ansible.builtin.yum:

 name: httpd

 state: latest

 notify: httpd update

 handlers:

 - name: httpd update

 ansible.builtin.debug:

 msg: "Webserver updated!"

�Loop

Computers are great for repetitive tasks. Loop statements automate repetitive tasks in

Ansible Playbooks. The loop variable item is available during the iteration to express the

current value in each iteration.

Chapter 2 Ansible Language Code

47

These are the most popular Ansible loop statements:

•	 loop: The loop statement is added to the task and takes as a value

the list of items over which the task should be iterated.

•	 with_items statement: Like loop for simple lists, lists of strings, or a

list of hashes/dictionaries. Flatter to list if lists of lists are provided.

•	 with_file statement: This keyword requires a list of control node

filenames. The loop variable item holds the contents of the file.

•	 with_sequence statement: This keyword requires parameters to

generate a list of values based on a numeric sequence.

•	 with_fileglob statement: This statement lists files matching a

pattern. For example, you can specify the *.txt parameter to list

all the files with txt extensions on the target node, as shown in

Listing 2-8.

Listing 2-8.  The checkservices.yml File

- name: Check services

 hosts: all

 tasks:

 - name: services running

 ansible.builtin.service:

 name: "{{ item }}"

 state: started

 loop:

 - apache2

 - sshd

This example shows you how to iterate through a list of elements and pass as a single

item to the service module to process one at the time using the loop Ansible statement.

Chapter 2 Ansible Language Code

48

�Ansible Facts

Variables related to remote systems are called facts. They are powerful because you can

obtain a comprehensive vision of the current host, the operating system, the distribution

used, the IP address, the networking configuration, the storage configuration, and so on.

With Ansible facts, you can use the behavior or state of one system as a configuration on

other systems.

Note that this requires gather_facts be enabled in the Play section (see Listing 2-9).

The gather_facts variable is enabled by default and adds an extra “Fact Gathering” task

at the beginning of every Ansible playbook execution. You can disable using the gather_

facts: false statement when you don’t want to acquire any Ansible facts from target

machines and use them inside Ansible Playbook. It’s a good habit that explicitly declares

the gather_facts variable in your Ansible Playbooks.

Listing 2-9.  The facts.yml File

- name: print facts

 hosts: all

 gather_facts: true

 tasks:

 - name: print facts

 ansible.builtin.debug:

 var: ansible_facts

The facts.yml playbook prints all the Ansible facts of the target system. The

ansible_date_time fact, as an example, shows the current date and time on the screen.

�Ansible Magic Variables

Magic variables are Ansible’s internal variables that come in handy at times. These are

the five most common magic variables:

•	 hostvars: Accesses variables defined for any host

•	 groups: Lists all the groups in the inventory

•	 group_names: Lists which groups are the current host

Chapter 2 Ansible Language Code

49

•	 inventory_hostname: Hostname configured in the inventory

•	 ansible_version: Ansible version information

Refer to the Ansible manual for the full list and uses.

�Ansible Vault

Ansible Vault allows you to store encrypted variables and files and then use them,

specifying a password in Playbooks or Roles. The AES 256 cipher protects files with

strong encryption in the latest versions of Ansible. You can manage the Ansible vault

using the ansible-vault command in the terminal, which is included in all the Ansible

installations.

Creating a new Ansible Vault is very straightforward:

$ ansible-vault create secret.yml

You can use Ansible Vault in any Ansible Playbook by specifying the --vault-id

@prompt parameter in the command line.

�Ansible Templates

The Ansible templates are helpful for applying variable values to configuration files.

Ansible templates work by taking advantage of the Jinja2 programming language, the

Ansible built-in template module.

The example shown in Listing 2-10 populates the hi.txt.j2 template with the value

of the example variable and saves it in the /tmp/hi.txt file.

Listing 2-10.  The templates/hi.txt.j2 File

- name: template demo

 hosts: all

 vars:

 example: Hi

 tasks:

 - name: apply template

 ansible.builtin.template:

 src: templates/hi.txt.j2

 dest: /tmp/hi.txt

Chapter 2 Ansible Language Code

50

Listing 2-11.  The template.yml File

{{ example }}

The result is a file with the following contents:

 Hi

�Ansible Plugins

Plugins extend Ansible’s functionality to more services and application domains. Every

Ansible plugin executes on the Ansible Control Node. The full list of Ansible plugin types

include the following:

•	 action: Executes in the background before the module executes

•	 become: Extends privilege escalation systems

•	 cache: Buffers gathered facts or inventory source data

•	 callback: Extends behaviors when responding to events

•	 connection: Extends connection possibilities to the target hosts

•	 docs: Fragments to document common parameters of multiple

plugins or modules

•	 filter: data manipulation—extracts a value, transforms data

types and formats, performs mathematical calculus, splits and

concatenates strings, inserts dates and times, and so on

•	 httpapi: Interacts with a remote device’s HTTP-based API

•	 inventory: Data sources for Ansible target hosts

•	 lookup: Extension to the Jinja2 templating language

•	 module: The most common, basic Ansible plugin

•	 module_utils: Helper to write Ansible modules

•	 shell: Expands how Ansible executes tasks

•	 strategy: Controls the flow of play execution

Chapter 2 Ansible Language Code

51

•	 test: Evaluates expressions and return true or false

•	 vars: Adds variable data to Ansible

Some plugin types are specific for the Ansible for Network use case:

•	 cliconf: CLI interface for network devices

•	 netconf: Interface to network devices

•	 terminal: Initializes a network device’s SSH shell

Refer to the official “Ansible Working with Plugins” guide for more details. The most

commonly used are the lookup plugins that enable you to extend Jinja2 to access data

from outside sources within your playbooks.

Famous Ansible lookup plugins use cases are as follows:

•	 Reading from Windows INI style files (ini)

•	 Reading from CSV files (csvfile)

•	 Listening for files matching shell expressions (fileglob)

•	 Reading lines from stdout (lines)

•	 Generating a random password (password)

•	 Reading from a UNIX pipe (pipe)

•	 Returning content from an URL via HTTP or HTTPS (url)

�Ansible Roles
The Ansible Role enables code reuse to Ansible, creating a standard format to distribute

playbook code. The standard structure splits the Ansible Playbook statements of Ansible

into folders in the local file system.

You can manage Ansible’s roles using the ansible-galaxy command-line utility

that’s included in every Ansible installation.

First of all, create the role-example Ansible role using the ansible-galaxy

command and the following parameters:

•	 role, because you want to interact with an Ansible role

•	 init, because you want to initialize a new role

•	 role-example, the name of the new role

Chapter 2 Ansible Language Code

52

Here’s the full command to create role-example:

$ ansible-galaxy role init role-example

The following directories were created:

•	 defaults, the main.yml file in this directory, contains the default

values of role variables that can be overwritten by the user when the

role is used. These variables have low precedence and are intended

to be changed and customized in plays.

•	 files. This directory contains static files that are referenced by

role tasks.

•	 handlers. The main.yml file in this directory contains the role’s

handler definitions.

•	 meta. The main.yml file in this directory contains information about

the role, including author, license, platforms, and optional role

dependencies.

•	 tasks. The main.yml file in this directory contains the role’s task

definitions.

•	 templates. This directory contains Jinja2 templates that are

referenced by role tasks.

•	 tests. This directory can contain an inventory and test.yml

playbook that can be used to test the role.

•	 vars. The main.yml file in this directory defines the role’s variable

values. Often these variables are used for internal purposes within

the role. These variables have high precedence and are not intended

to be changed when used in a playbook.

Not every role will have all of these directories. The most important file is main.yml

in the tasks directory. The contents of this file is the contents of the tasks of one of the

Ansible playbooks.

In the most straightforward Ansible role, you can print text on the screen. You can

write the following code inside the main.yml file under the tasks directory in the role-

example role, as shown in Listing 2-12.

Chapter 2 Ansible Language Code

53

Listing 2-12.  The role.yml File

name: role-example demo

ansible.builtin.debug:

 msg: "role-example"

You can include your roles in an Ansible Playbook using the roles statement, as

shown in Listing 2-12.

Listing 2-13.  The Contents of the tasks/main.yml File

- name: role example

 hosts: all

 roles:

 - role-example

As you can see in Listing 2-12, you can take advantage of Ansible code reuse without

knowing the implementation details of the Ansible role.

This concept of sharing code with other developers is the stepstone behind the

Ansible Galaxy. It is a public directory where you can find available Ansible resources.

There is a search engine that quickly finds the proper Ansible role or collection. Every

resource shows the author, the download count, the supported operating systems, and

much more information about usage and internal variables.

You can easily download and use Ansible roles from Ansible Galaxy in two ways:

	 1.	 By installing roles manually.

The following command downloads and installs the latest version

of the geerlingguy.redis Ansible role from the Ansible Galaxy

website:

$ ansible-galaxy role install geerlingguy.redis

	 2.	 By installing roles via requirements.yml.

You can create a requirements.yml file when you want to install

more than one role or execute all the operations automatically.

See Listing 2-14.

Chapter 2 Ansible Language Code

https://galaxy.ansible.com/

54

Listing 2-14.  The requirements.yml File

roles:
 - src: geerlingguy.redis

You can execute your requirements.yml role file using this ansible-galaxy

command:

$ ansible-galaxy role install -r roles/requirements.yml

With the following parameters:

•	 role install parameter, which installs a role

•	 -r specifies the usage of the requirements.yml file under the roles

directory

Ansible roles are a good way to distribute Ansible code but the Ansible Collections

are more powerful. Each Ansible role might have a different license and support by the

author or organization that create it.

�Ansible Collection
An Ansible collection is the most modern and complete way to distribute Ansible code

between multiple platforms in a standard way: roles, modules, and plugins. An Ansible

collection can be stored in a private repository or a public archive such as the Ansible

Galaxy website.

The most comprehensive Ansible collection is community.general. It has a lot of

valuable Ansible resources. It is distributed on the Ansible Galaxy website, under the

Community license. At the time of writing this book, there are 500+ modules and 100+

plugins in the latest version 6.0.1.

You can easily download and use the Ansible collection using the ansible-galaxy

command in two ways:

	 1.	 By installing one collection manually.

The following command downloads and installs the latest version

of the community.general Ansible collection from the Ansible

Galaxy website:

$ ansible-galaxy collection install community.general

Chapter 2 Ansible Language Code

https://galaxy.ansible.com/

55

	 2.	 By installing a collection via requirements.yml.

You can create a requirements.yml file when you want to install

more than one role or execute all the operations automatically

(see Listing 2-15).

Listing 2-15.  The requirements.yml File

collections:

 - name: community.general

 source: https://galaxy.ansible.com

You can execute the requirements.yml collection file using the ansible-galaxy

command:

$ ansible-galaxy collection install -r collections/requirements.yml

Include the following parameters:

•	 collection install parameter installs the collection

•	 -r specify the use of the requirements.yml file in the collections

directory

�Ansible Execution Environment
The latest approach is to create a container for your Ansible code is called Ansible

Execution Environment. This is a solution to a growing problem. The more an

organization adopts Ansible, the more the dependency tree grows, and the more

dependency every piece of code has. Maintaining each piece of code becomes complex.

Moreover, the developer environment might be misaligned with the production

environment and lead to unexpected results.

The main advantage of the Ansible Execution Environment is that developers can

use the same container used locally in production with the same version and library

dependencies.

The ansible-builder and ansible-runner command-line tools help in the creation

and execution of the Ansible Execution Environments (EE).

Chapter 2 Ansible Language Code

56

The ansible-builder command-line tool was added in 2022 to simplify the creation

of Ansible Execution Environments (EE). It is available in the Ansible toolchain package

with the Red Hat Ansible Automation Subscription:

$ dnf install ansible-builder

The ansible-builder command-line tool is also available in the PyPI repository (via

the pip tool):

$ pip install ansible-builder

Imagine that you want to create a custom my_ee Ansible Execution Environment with

all the tools to use Ansible for Amazon Web Services (AWS).

The following code creates an Ansible Execution Environment to run Amazon

Web Services (AWS) collections and dependencies. A collection is a group of Ansible

resources that connect to Amazon Web Services. The Ansible collection to interact with

Amazon Web Services is community.aws and it requires the boto3 and botocore Python

libraries to be installed in the system.

The main file is the execution-environment.yml file and it provides the description

of the steps to build an Ansible Execution Environment using the ansible-builder

command-line tool, as shown in Figure 2-7 and Listing 2-16.

Chapter 2 Ansible Language Code

57

execution-
environment.yml

requirements.yml

bindep.txt

ansible-builder my_ee

Figure 2-7.  The ansible-builder process

Listing 2-16.  The execution-environment.yml File

version: 1

dependencies:

 galaxy: requirements.yml

 python: requirements.txt

 system: bindep.txt

additional_build_steps:

 prepend: |

 RUN pip3 install --upgrade pip setuptools

 append:

 - RUN ls -al /

Chapter 2 Ansible Language Code

58

The Ansible collection dependencies are specified in the requirements.yml file,

parsed by the internal pip command. See Listing 2-17.

Listing 2-17.  The requirements.yml File

collections:

 - name: community.aws

The Python library dependencies are specified in the requirements.txt file, parsed

by the internal pip command. See Listing 2-18.

Listing 2-18.  The requirements.txt File

botocore>=1.18.0

boto3>=1.15.0

boto>=2.49.0

Additional operating system dependencies can be specified inside the bindep.

txt file. Note that you can specify different package names for the RPM (Red Hat-like

systems) or DPKG (Debian-like systems). See Listing 2-19.

Listing 2-19.  The bindep.txt File

git [platform:rpm]

git [platform:dpkg]

The Ansible Execution Environment is created only when the ansible-builder

command is executed:

$ ansible-builder build -t my_ee -v 3

With these variables:

–– build, to specify the build operation

–– -t my_ee, to specify the desired Execution Environment name,

my_ee in this case

–– -v 3, to specify the verbosity level of the build, in this case, level 3 so

pretty verbose

Chapter 2 Ansible Language Code

59

This tool might require access to the Red Hat Container Registry when you use an

RHEL UBI8 base image with a Red Hat Ansible Automation subscription (username and

password for the Red Hat Portal).

$ podman login registry.redhat.io

Running the ansible-builder command confirms successful execution with the

name of the container:

Successfully tagged localhost/my_ee:latest

If a problem arises, the result shows the specific error.

Under the hood, the ansible-builder tool performs the following steps:

	 1.	 Generates a Containerfile (the generalized standard version of the

Dockerfile that works with different Container engines) inside the

context directory.

	 2.	 Runs the docker build or podman build in the context to build

the ansible-builder Container and build the final image.

	 3.	 Fetches the base image from registry.redhat.io (usually ee–

minimal-rhel8:latest).

	 4.	 Downloads the Ansible collection(s) and dependencies specified

in the requirements.yml file using the ansible-galaxy tool.

	 5.	 Installs the package(s) and the dependencies specified in the

bindep.txt file using the microdnf package manager in Red Hat

Enterprise Linux.

	 6.	 Installs the Python package(s) and the dependencies specified

in the requirements.txt file using the Python Package

Manager (PIP).

	 7.	 Builds the final image with only the necessary files.

After executing the ansible-builder tool, you obtain the context directory with all

the building instructions and the my_ee container to execute your Ansible code.

Once the container has been built, you can execute your Ansible Playbook inside the

Ansible Execution Environment using the ansible-runner command (see Figure 2-8).

Chapter 2 Ansible Language Code

60

ping.yml

inventory

ansible-
builder

my_ee

web1.example
.com

web2.example
.com

Figure 2-8.  The ansible-runner process

The ansible-runner command-line tool was added in 2022 to simplify the creation

of Ansible Execution Environments (EE). It is available in the Ansible toolchain package

with the Red Hat Ansible Automation Subscription:

$ dnf install ansible-runner

The ansible-builder command-line tool is also available in the PyPI repository (via

the pip tool):

$ pip install ansible-runner

The Ansible Runner enables you to run the Ansible Execution Environment as a

container in the current machine. Use the following command:

$ ansible-runner run -p ping.yml --inventory inventory --container-

image=my_ee .

With these variables:

–– run, to specify the run operation

–– -p ping.yml, to specify the Ansible Playbook to execute

–– --inventory inventory, to specify the inventory name, in this case,

the inventory file

Chapter 2 Ansible Language Code

61

–– --container-image=my_ee, to specify the name of the Ansible

Execution Environment

–– . (dot), to specify the directory of the base path, in this example, the

current directory

The ansible-runner tool mimics the behavior of the ansible-playbook command

and returns the Ansible output onscreen.

Under the hood, ansible-runner runs your Ansible Playbook inside the Ansible

Execution Environment in your favorite Container Engine (Docker or Podman).

The main advantage of using the Ansible Execution Environment is that you can

deploy to a Kubernetes Control Plane and scale the resources as needed.

�Key Takeaways
Ansible is a potent computer language for Infrastructure as Code (IaC). This chapter

started with a quick overview of the architecture and configuration for all the operating

systems (macOS, Windows, and Linux in bare metal), as well as virtual machines, private

and public cloud computing, and containers. Ansible includes the expected typed

variables, conditionals, and loops statements, plus some extra features for DevOps use

cases, such as the handlers, facts, host and group, and magic variables. In this chapter,

you about learned the foundation of the language; in the next chapter, you’ll apply your

knowledge to the Container and Kubernetes environments.

Chapter 2 Ansible Language Code

63

CHAPTER 3

Ansible for Containers
Managing containers in your organization might be a pretty daunting task. Especially

when you perform manually and deal with repetitive tasks. Sometimes you need to run a

container in your workstation or in your server fleet.

Ansible can simplify this workflow and automate the boring and daunting tasks. You

can also create some new ways to distribute your application in platform-independent

formats. Moreover, a common use case for security is to run your web server as a

container, so the content is secured from any tampering.

�Ansible for Containers
Ansible is a great ally to simplify your journey of running containers. In the following

pages, you are going to discover how to simplify the installation of the Docker Container

Engine and how to automate the flatpak and snap in your workstations.

As a Container Engine, Podman is the preferred way on Linux because it has several

advantages compared to Docker, especially because it can run rootless. However,

Podman on Mac requires an additional machine to run your code, and Windows

requires the virtualized Windows System for Linux (WSL).

�Install Docker on Linux and Windows
Docker is the preferred Container Engine for many platforms. You can start your Ansible

journey by automating the installation of Docker. This is very useful when you spin up a

new virtual machine. In the following sections of this book, I focus on the Docker Engine,

which is part of running a container.

For your reference, there is also a product called Docker Desktop that has a nice

GUI that runs on most operating systems. Table 3-1 lists the Docker Desktop-supported

platforms.

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_3

https://doi.org/10.1007/978-1-4842-9285-3_3#DOI

64

Table 3-1.  Docker Desktop Supported Platforms

Platform x86_64 / amd64 arm64 / aarch64

Debian Yes

Fedora Yes

Ubuntu Yes

Binaries Yes

Windows Yes

MacOS Yes Yes

This chapter focuses on the Container Engine, the Docker Engine, only the Docker

runtime, called docker-engine, and supported according to Table 3-2.

Table 3-2.  Docker Engine Supported Platforms

Platform x86_64 / amd64 arm64 / aarch64 arm32 s390x

CentOS Yes Yes

Debian Yes Yes Yes

Fedora Yes Yes

Raspbian Yes

RHEL (1) Yes

SLES (2) Yes

Ubuntu Yes Yes Yes Yes

Binaries Yes Yes Yes

(1) RHEL: Red Hat Enterprise Linux

(2) SLES: SUSE Linux Enterprise Linux

Most Linux distributions, especially the Enterprise Linux distributions (for example

Red Hat Enterprise Linux or SUSE Linux Enterprise Linux) prefer Podman as the

Container Engine. It usually is included in the system repository or out-of-the-box.

Chapter 3 Ansible for Containers

65

Tip T he community.docker.docker connection Ansible connection plugin
turns a Docker container into an Ansible target. Just use the container name as the
entry in the Ansible inventory. The Docker container must be running on the Ansible
controller, but connecting remotely to a Docker engine on another host is possible.
It requires the community.docker Ansible collection and the Docker Python
library be installed.

�Install Docker in Debian Linux
The following steps work in all the Debian and Ubuntu derived Linux distributions. You

are trying to automate the following three steps using Ansible:

–– Add a Docker GPG key

–– Add a Docker repository

–– Update apt cache and install Docker

The first step is to download the GPG signature key for the repository. Use the

ansible.builtin.apt_key Ansible module.

This encrypted key verifies the authenticity of the packages and the repository

and guarantees that the software is the same as the Docker releases. For the ansible.

builtin.apt_key Ansible module, you use two parameters: url and state. The

url parameter specifies the URL of the repository GPG signature key, and the state

parameter verifies that it is present in your system after the execution.

The second step is to add the Docker repository to the distribution. It’s an extra

website where apt, your distribution package manager, looks for software. You are going

to use the ansible.builtin.apt_repository Ansible module. For this Ansible module,

you use two parameters: repo and state. The repo parameter specifies the repository

parameters, and the state parameter verifies that it is present in your system after the

execution.

The third step is to update the apt cache for the available packages and install

Docker (docker-ce) using the ansible.builtin.apt Ansible module. For this Ansible

module, you use three parameters: name, state, and update_cache. The name parameter

specifies the package name (Docker in this use case), and the state parameter verifies

Chapter 3 Ansible for Containers

66

that it is present in your system after the execution. Before installing the package, the

update_cache parameter performs an update of the apt-cache to ensure that the latest

version of the package is downloaded.

Tip  You can use the Ansible Magic Variable ansible_distribution, which
automatically contains the most current operating system. Possible values are
Alpine, Altlinux, Amazon, Archlinux, ClearLinux, Coreos, Debian, Gentoo, Mandriva,
NA, OpenWrt, OracleLinux, Red Hat, Slackware, SMGL, SUSE, and VMwareESX.

Listing 3-1 shows the full Ansible Playbook code.

Listing 3-1.  install_docker_deb.yml

- name: install Docker

 hosts: all

 become: true

 tasks:

 - name: Install apt-transport-https

 ansible.builtin.apt:

 name:

 - apt-transport-https

 - ca-certificates

 - lsb-release

 - gnupg

 state: latest

 update_cache: true

 - name: Add signing key

 ansible.builtin.apt_key:

 �url: "https://download.docker.com/linux/{{ ansible_distribution |

lower }}/gpg"

 state: present

Chapter 3 Ansible for Containers

67

 - name: Add repository into sources list

 ansible.builtin.apt_repository:

 �repo: "deb [arch={{ ansible_architecture }}] https://download.

docker.com/linux/{{ ansible_distribution | lower }} {{ ansible_

distribution_release }} stable"

 state: present

 filename: docker

 - name: Install Docker

 ansible.builtin.apt:

 name:

 - docker-ce

 - docker-ce-cli

 - containerd.io

 - docker-compose-plugin

 state: latest

 update_cache: true

As usual, you can execute the code using the ansible-playbook command-line

utility included in every Ansible installation.

A common way to verify successful installation of Docker is by executing the

following command on the target host:

$ docker run hello-world

When the installation of Docker is successful, it downloads the hello-world image

from the library, downloads the latest tag of it, validates the sha256 digest file, and prints

the onscreen message: Hello from Docker!

�Install Docker in Red Hat Linux
The following steps work in all the Fedora or Red Hat derived Linux distributions.

The automation steps are very similar to Debian, but you use different Ansible

modules to handle rpm packages:

–– Add a Docker GPG key

–– Add a Docker repository

–– Update yum cache and install Docker

Chapter 3 Ansible for Containers

68

The first step is to download the GPG signature key for the repository. You are going

to use the ansible.builtin.rpm_key Ansible module. For this Ansible module, you use

two parameters: key and state. The key parameter specifies the URL or the key ID of the

repository GPG signature key, and the state parameter verifies that it is present in your

system after execution. This encrypted key guarantees that the code was not altered and

that it is the same as the Docker releases.

The second step is to add the Docker repository to the distribution. It’s an extra website

where YUM or DNF, your distribution package manager, looks for software. You are going to

use the ansible.builtin.yum_repository Ansible module. For this Ansible module, you

use four parameters: name, baseurl, gpgcheck, and gpgkey. The name parameter specifies

the repository parameters and the baseurl parameter is the URL of it. The gpgcheck

parameter enables the GPG verification with the URL specified in the gpgkey parameter.

The third step is to update the yum cache for the available packages and install

Docker using the ansible.builtin.yum Ansible module.

For this Ansible module, you use three parameters: name, state, and update_cache.

The name parameter specifies the package name (Docker in this use case), and the state

parameter verifies that it is present in your system after the Ansible execution. Before

installing the package, the update_cache updates the yum cache to ensure that the latest

version of the package will be downloaded.

The full Ansible Playbook is shown in Listing 3-2.

Listing 3-2.  install_docker_rpm.yml

- name: install Docker

 hosts: all

 become: true

 tasks:

 - name: set mydistribution

 ansible.builtin.set_fact:

 �mydistribution: "{{ 'rhel' if (ansible_distribution == 'Red Hat

Enterprise Linux') else (ansible_distribution | lower) }}"

 - name: Add signing key

 ansible.builtin.rpm_key:

 key: "https://download.docker.com/linux/{{ mydistribution }}/gpg"

 state: present

Chapter 3 Ansible for Containers

69

 - name: Add repository into repo.d list

 ansible.builtin.yum_repository:

 name: docker

 description: docker repository

 �baseurl: "https://download.docker.com/linux/{{ mydistribution

}}/$releasever/$basearch/stable"

 enabled: true

 gpgcheck: true

 �gpgkey: "https://download.docker.com/linux/{{

mydistribution }}/gpg"

 - name: Install Docker

 ansible.builtin.yum:

 name:

 - docker-ce

 - docker-ce-cli

 - containerd.io

 state: latest

 update_cache: true

 - name: Start Docker

 ansible.builtin.service:

 name: "docker"

 enabled: true

 state: started

In the same way as the previous code, you can execute the Ansible Playbook using

the ansible-playbook command-line utility included in every Ansible installation.

Run the command-line Docker on the target host:

$ docker run hello-world

This command is expected, as in the previous Debian code, to return the same

onscreen message: Hello from Docker!

Chapter 3 Ansible for Containers

70

�Install Docker on Windows
You can also automate the installation of the Docker Desktop in your Windows 10 and 11

systems with the Ansible Playbook and the Chocolatey Package Manager. Chocolatey is

the largest archive of packages for Windows; at the time of writing this book, it includes

9583 community maintained packages.

It also provides a package manager utility that uses the NuGet packaging

infrastructure and Windows PowerShell to simplify the process of downloading and

installing software.

This section focuses on the Ansible module called win_chocolatey to automate the

software installation process. Its full name is chocolatey.chocolatey.win_chocolatey,

which means that it is part of the collection distributed directly by chocolatey. The best

part is that if the target system doesn’t have chocolatey installed, it installs the package

manager and then performs the installation.

The parameter list of the win_chocolatey Ansible module is pretty comprehensive,

but these are the most important options for this use case:

•	 In the name parameter, you specify the package’s name or a list of

packages.

•	 If you want to install a specific version, you can specify it in the

version parameter.

•	 The state specifies the action that you want to perform. In this

case, installing is present or to have the latest version and upgrade

eventually with latest.

Listing 3-3 automates the installation of Docker in Windows-like systems with

Ansible Playbook.

Listing 3-3.  install_docker_win.yml

- name: install Docker

 hosts: all

 become: false

 gather_facts: false

 tasks:

 - name: Install Docker

Chapter 3 Ansible for Containers

71

 chocolatey.chocolatey.win_chocolatey:

 name: "docker-desktop"

 state: present

A successful Windows installation is shown in Figure 3-1.

Figure 3-1.  Docker Desktop on Windows installed via Ansible

You can now execute any Docker container in your Windows target host.

�Flatpak in Linux
The purpose of container technology is to simplify the development and maintenance of

applications in Linux, making it simple to deliver the application to every Linux user and

distribution. Traditionally, the different libraries between distributions make it difficult

to deliver applications to users, to control the update and the bug report process. Flathub

is the archive where you can find hundreds of applications available for any Linux

operating system.

Flatpak was developed in 2015 by Red Hat, Endless Computers, and Collabora.

At the moment of writing this book, Flatpak runs on 36 distributions, and there are

1889 applications available. The main target of the application is desktop-oriented

applications. Note that some flatpaks are available only for some architecture.

Chapter 3 Ansible for Containers

72

Here, you’ll set up the Podman Desktop Flatpak. The Flatpak installation in a target

system is effortless using the flatpak Ansible module, which manages Flatpaks in the

target system.

The full name is community.general.flatpak; it’s part of the community.general

Ansible collection maintained by the Ansible Community.

Before jumping to the flatpak Ansible module, you need to prepare your system for

managing Flatpak containers.

First of all, you need to ensure that the Flatpak binary is installed correctly in your

system. The flatpak command-line utility is available in all the major distributions in

the system repository. The easiest way to install a package with Ansible is by using the

package module with the name of the package in the name parameter (flatpak in this

case), the state set to present for installation, and latest set to an upgrade to get the

latest version.

Secondly, you need to configure the source of the software, Flathub. This archive is

seen by an additional repository using the flatpak command-line utility.

The Ansible module community.general.flatpak_remote takes care of this

boring task, verifying that the flathub repository is successfully configured for your

workstation.

Thirdly, you can use community.general.flatpak to install your application.

The only required parameter is name, where you specify the Flatpak name. In the

example, io.podman_desktop.PodmanDesktop was obtained from the Flathub website.

The state parameter specifies the action to perform: whether you want to perform

the installation action (the present option) or the remove an action (the absent option).

The method parameter specifies whether you want to install Flatpak system-wide

(system value) or only for the current user (user value).

More advanced parameters are available:

–– remote, which specifies the name of the source of the software; the

default is flathub

–– no_dependencies, which ignores the dependency installation (needs

to be solved manually)

–– executable, the flatpak executable path, which is by default the

Flatpak program

The full Ansible Playbook is shown in Listing 3-4 and Figure 3-2.

Chapter 3 Ansible for Containers

73

Listing 3-4.  flatpak.yml

- name: flatpak module demo

 hosts: all

 become: true

 tasks:

 - name: flatpak present

 ansible.builtin.package:

 name: flatpak

 state: present

 - name: flathub repo

 community.general.flatpak_remote:

 name: flathub

 state: present

 flatpakrepo_url: https://flathub.org/repo/flathub.flatpakrepo

 method: system

 - name: install Podman Desktop via flatpak

 community.general.flatpak:

 name: io.podman_desktop.PodmanDesktop

 state: present

 method: system

Figure 3-2.  Podman Desktop Flatpak on the latest Fedora Desktop

Chapter 3 Ansible for Containers

74

Once a Flatpak is successfully installed in your system, you are going to continue

using the same version. Flatpak doesn’t have an auto-update mechanism.

You can automate the update process of all your Flatpaks in the system using the

Ansible command module. The Ansible command module is used when there is no native

module available; it literally executes your command to the target host. As you might

understand, this is possibly dangerous because you are exiting somehow from the

Ansible sandbox mechanism. Actually, the shell module also executes the command

via a full shell. The difference is that the shell Ansible module supports the full variables

like $HOME and operations like <, >, |, ; and &, whereas the command Ansible module does

not. The Ansible Playbook to update your Flatpak is shown in Listing 3-5.

Listing 3-5.  flatpak_update.yml

- name: flatpak update demo

 hosts: all

 become: true

 tasks:

 - name: update flatpak(s)

 ansible.builtin.command: "flatpak update --noninteractive"

�Snap in Linux
Snap is another Linux distribution format that distributes applications in a container

promoted by Canonical, the company behind Ubuntu. The amount of documentation is

pervasive, so it’s fairly easy to on board your application in a snap.

An exciting feature is the ability to publish your application for Internet of Things

(IoT) use cases. In fact, it supports any class of Linux application, such as desktop

applications, server tools, IoT apps, system services, and printer drivers. The snaps

auto-update automatically. Under the hood, the snapd daemon checks for updates four

times a day using a so-called over-the-air (OTA) refresh mechanism. The significant

advantage is that the old snap is not replaced until the new snap is successfully installed.

The file is distributed using the SquashFS compressed file system, so it has a pretty small

footprint. Snapcraft is a tool for developers to package their applications.

Chapter 3 Ansible for Containers

75

Snap is supported by 41 Linux distributions. One of the biggest benefits is the

adoption of an application sandbox, so applications run isolated, minimizing

security risks.

Applications are available in a global Snap Store, and the application archive is

hosted and managed by Canonical, but it’s free to download. At the moment of writing

this book, there are 7885 snaps currently in the Snap Store, but around 800 appear to be

test or hello-world snaps.

Snap confinement allows setting the degree of isolation from the system. There are

three options—Strict, Classic, and Devmode. Strict is the most restrictive and runs in

complete isolation. Classic is the middle way and allows accessing the system resources

like your operating system. Devmode is intended only for developers.

The community.general.snap Ansible module enables smooth installation of any

Snap application. For example, you can install microk8s, a small, fast, secure, certified

Kubernetes distribution for workstations and appliances.

In Listing 3-6, the Ansible Playbook installs a snap in the Ubuntu distribution.

Listing 3-6.  snap_ubuntu.yml

- name: snap module demo

 hosts: all

 become: true

 tasks:

 - name: snapd present

 ansible.builtin.apt:

 name: snapd

 state: present

 - name: install microk8s via snap

 community.general.snap:

 name: microk8s

 state: present

 classic: true

You can execute the Ansible Playbook using the ansible-playbook command

included in every Ansible installation.

Chapter 3 Ansible for Containers

76

Installing snap in the Fedora-like Linux operating system requires a bit more effort

because you need to take care of the SquashFS dependency and create the symlink

for the /snap directory. The other part of the code is exactly like in the Ubuntu Ansible

Playbook shown in Listing 3-7.

Listing 3-7.  snap_fedora.yml

- name: snap module demo

 hosts: all

 become: true

 tasks:

 - name: snapd present

 ansible.builtin.yum:

 name:

 - snapd

 - fuse

 - squashfs-tools

 - squashfuse

 - kernel-modules

 state: present

 - name: symlink /snap

 ansible.builtin.file:

 src: "/var/lib/snapd/snap"

 dest: "/snap"

 state: link

 - name: load squashfs module

 community.general.modprobe:

 name: "squashfs"

 state: present

 - name: install microk8s via snap

 community.general.snap:

 name: microk8s

 state: present

The result of the execution is a full microk8s ready to be used in your Fedora

machine (see Figure 3-3).

Chapter 3 Ansible for Containers

77

Figure 3-3.  microk8s in Fedora Desktop

As mentioned, the snap has the auto-update feature so the snapd daemon takes care

of the update and the install mechanism behind the scenes.

�Deploy a Web Server in a Container
One of the best characteristics of containers is their ability to separate the application

from the data. Let’s apply this isolation principle to your services. Running, for example,

your webserver in a container lowers the attack surface and enables the service to be

updated smoothly, keeping the data in the file system.

The good news is that Apache is available as a container named httpd in the most

famous Container Registry. It supports all the architectures: amd64, arm32v5, arm32v6,

arm32v7, arm64v8, i386, mips64le, ppc64le, and s390x. At the moment of writing this

book, the standard image is based on Debian Linux 11 “bullseye” (latest or bullseye

tags) or alpine Linux (alpine tag).

If your team prefers to use the web server, Nginx, you can simply switch to the nginx

container image.

Let’s suppose you want to serve files from the /webroot directory.

Chapter 3 Ansible for Containers

78

�Apache with Docker for Debian-like Systems
The full process of running the Apache webserver container requires six steps that you

can automate with different Ansible modules:

	 1.	 First, you need to install some Python packages and dependencies

using the ansible.builtin.apt Ansible module.

	 2.	 Then you need to install the Docker module for Python using the

ansible.builtin.pip Ansible module.

	 3.	 Then you need to pull the image for the Docker hub registry using

the community.docker.docker_image Ansible module.

	 4.	 Now create the document root with the right permission using the

ansible.builtin.file module.

	 5.	 Then create the custom index.html file using the ansible.

builtin.copy Ansible module. You can upgrade this step using

the template module.

	 6.	 Finally, you can run the webserver container, setting the right

port and volume settings with the community.docker.docker_

container Ansible module.

This Ansible module requires the community.docker Ansible Collection to be

installed on the system. If it’s not present, you can install it using this command:

$ ansible-galaxy collection install community.docker

The full Ansible Playbook is shown in Listing 3-8.

Listing 3-8.  httpd_debian.yml

- name: deploy httpd on container

 hosts: all

 become: true

 vars:

 webroot: "/webroot/"

 tasks:

 - name: system packages present

Chapter 3 Ansible for Containers

79

 ansible.builtin.apt:

 name:

 - python3-pip

 - virtualenv

 - python3-setuptools

 state: latest

 update_cache: true

 - name: Docker Module for Python

 ansible.builtin.pip:

 name: docker

 - name: pull image

 community.docker.docker_image:

 name: httpd

 source: pull

 tag: latest

 - name: webroot present

 ansible.builtin.file:

 path: "{{ webroot }}"

 state: directory

 - name: custom index.html

 ansible.builtin.copy:

 dest: "{{ webroot }}index.html"

 content: |

 Custom Web Page

 - name: run httpd container

 community.docker.docker_container:

 name: webserver

 image: httpd

 state: started

 detach: true

 exposed_ports:

 - 80

 ports:

 - 8080:80

 volumes: "{{ webroot }}:/usr/local/apache2/htdocs/"

Chapter 3 Ansible for Containers

80

�Apache with Podman for Red Hat-like Systems
You can obtain the same result as the previous scenario using the Podman Container

Engine in Red Hat systems. The full process requires four steps that you can automate

with different Ansible modules:

	 1.	 First, you need to verify that podman and its dependencies are

successfully installed on the target system using the ansible.

builtin.yum Ansible module.

	 2.	 Second, you need to create the custom index.html file with

the ansible.builtin.copy Ansible module. You can upgrade

this step using the template module. Note that modern Red

Hat systems come with SELinux enabled, so you need to set the

container_share_t SELinux Context; otherwise, the files aren’t

shared between the host and the guest.

	 3.	 Thirdly, you need to pull the image for the container hub registry

using the containers.podman.podman_image Ansible module.

	 4.	 Finally, you can run the webserver container, setting the right port

and settings using the containers.podman.podman_container

Ansible module.

This module requires additional containers.podman Ansible Collections that you

can install using this command:

$ ansible-galaxy collection install containers.podman

The full Ansible Playbook is shown in Listing 3-9.

Listing 3-9.  httpd_redhat.yml

- name: deploy httpd container

 hosts: all

 become: true

 gather_facts: false

 vars:

 webroot: "/webroot"

Chapter 3 Ansible for Containers

81

 tasks:

 - name: podman installed

 ansible.builtin.yum:

 name: podman

 state: latest

 - name: pull image

 containers.podman.podman_image:

 name: docker.io/library/httpd

 pull: true

 tag: latest

 - name: webroot present

 ansible.builtin.file:

 path: "{{ webroot }}"

 state: directory

 owner: "root"

 group: "root"

 mode: '0777'

 setype: "container_share_t"

 - name: custom index.html

 ansible.builtin.copy:

 dest: "{{ webroot }}/index.html"

 content: |

 Custom Web Page

 setype: "container_share_t"

 - name: run httpd container

 containers.podman.podman_container:

 name: webserver

 image: httpd

 state: started

 detach: true

 expose:

 - 80

Chapter 3 Ansible for Containers

82

 ports:

 - 8080:80

 volume:

 - "{{ webroot }}:/usr/local/apache2/htdocs/:exec"

You can execute your Ansible Playbook using the ansible-playbook command line

included in every Ansible installation. See Figure 3-4.

Figure 3-4.  Webserver in a container in Fedora Linux

Tip T he containers.podman.podman Ansible connection plugin turns a
Podman container into an Ansible target. Just use the container name as the entry
in the Ansible inventory. The Podman container must be running on the Ansible
Controller. It requires the containers.podman Ansible collection be installed.

�Use Vagrant and Packer
Vagrant and Packer are two tools developed by HashiCorp and distributed open-source.

They are designed to simplify your journey with virtual machine images when creating

a complex environment for the development of integration tests. HashiCorp also

developed the container management software called Nomad, which is open-source in

the Cloud Native Computing Foundation (CNCF). The Nomad project is very simple to

install and it’s portable because it has a lightweight server-client design.

Chapter 3 Ansible for Containers

83

�Vagrant
Vagrant is a tool for creating environments for quick use, reuse, and cleanup. It interacts

with a hypervisor (VirtualBox, KVM, Hyper-V, libvirt, Docker containers, VMware,

Parallels, and AWS) to quickly create temporary virtual machines from an image.

Vagrant uses a “box” template image to spin up your virtual machine. You can search

for common boxes on the public Vagrant Cloud website. The Vagrant box usually starts

with the minimal software installed. You can define a Vagrantfile to tell Vagrant what

box to use, including CPU, memory, networks, forwarded ports, and shared directories.

Vagrant supports defining multiple machines in the same Vagrantfile, coded in the Ruby

programming language. In a Vagrantfile, you can also execute Ansible as a provisioner

to execute an automation script automatically at the first boot. Vagrant generates

Ansible inventory automatically for all of the defined machines. You can also define

Ansible groups. This allows you to create a realistic integration test environment on your

workstation machine. The Vagrantfile shown in Listing 3-10 creates two virtual machines

(host01 in the group database and host02 in the group web) using the VirtualBox

hypervisor with different CPU and memory resources and provisions them using the

playbook.yaml Ansible Playbook.

Listing 3-10.  Vagrantfile

-*- mode: ruby -*-

vi: set ft=ruby :

cluster = {

 "host01" => { :ip => "192.168.0.10", :cpus => 2, :mem => 2048 },

 "host02" => { :ip => "192.168.0.11", :cpus => 4, :mem => 1024 }

}

groups = {

 "database" => ["host01"],

 "web" => ["host02"],

}

Vagrant.configure("2") do |config|

 config.vm.box = "ubuntu/jammy64"

 cluster.each do |name, data|

 config.vm.define name do |host|

 host.vm.hostname = name

 host.vm.network "private_network", ip: "#{data[:ip]}"

Chapter 3 Ansible for Containers

84

 host.vm.provider :virtualbox do |vb, override|

 vb.cpus = data[:cpus]

 vb.memory = data[:mem]

 end

 host.vm.provision :ansible do |ansible|

 ansible.playbook = "playbook.yaml"

 ansible.groups = groups

 end

 end

 end

end

You can execute the Vagrantfile using the vagrand up command, which interacts

with VirtualBox to create the virtual machine and provision with the Ansible Playbook.

�Packer
Packer is a tool for building your virtual machine “box” image from physical or virtual

machines. Packer uses a configuration language called HCL to connect to a provider via

SSH, run a provisioned Ansible, and capture the virtual machine’s state in an Amazon

Machine Image (AMI) or in the Vagrant box image format. It’s useful to build an image

as part of the continuous integration process and deploy your application to a test

environment.

Packer has a Docker builder that can manage Docker Containers and create

container images. It creates a container, runs provisioners, and saves the result as a new

image. You can use Ansible as a provisioner to build a Docker image, as illustrated in

Listing 3-11.

Listing 3-11.  example.pkr.hcl

variable "ansible_connection" {

 default = "docker"

}

source "docker" "example" {

 image = "ubuntu:latest"

 commit = true

}

Chapter 3 Ansible for Containers

85

build {

 sources = ["source.docker.example"]

 provisioner "ansible" {

 playbook_file = "playbook.yaml"

 }

}

After you create the Packer HCL configuration file, you need to use the initialize

parameter to read the file and the build parameter to create and push your Docker

image to the registry. The full commands are similar to these:

$ packer init .

$ packer build .

�Key Takeaways
Ansible is a great tool for automating any container workload. You can apply automation

to the container and distribute your application in a more secure way. In this chapter,

you saw how to apply automation to a web server using the popular distribution-

independent formats Flatpak and Snap. In the following chapter, you’re going to dive

deep into the Kubernetes world and learn how to automate it with Ansible.

Chapter 3 Ansible for Containers

87

CHAPTER 4

Ansible for K8s Tasks
Kubernetes (also known as “K8s”) is an orchestration platform that automates container

management. Deploying, scaling, and rolling service and application updates is

easy. There is a vibrant community around Kubernetes because it’s an open-source

project. Kubernetes was originally developed by Google and is now maintained by the

Cloud Native Computing Foundation (CNCF). The platform enables an ecosystem for

microservices deployment and cloud-native applications and services, a system design

methodology that embraces rapid change, large scale, and resilience. Containers,

microservices, immutable infrastructure, and declarative APIs exemplify this

methodology.

Kubernetes provides a way to deploy and manage containerized applications at scale

across a cluster of servers. It does this by providing a set of APIs and tools that enable

users to define the desired state of their applications (for example, how many replicas

of a container should be running) and then automatically deploy and manage the

containers to meet that desired state.

Kubernetes is designed to be highly available and to provide self-healing capabilities,

meaning that it can automatically recover from failures and ensure that applications are

running as intended. It also provides load balancing, auto-scaling, and rolling updates,

enabling users to easily manage and scale their applications and services.

Kubernetes is commonly used in cloud-native environments and is supported by

a wide range of cloud providers. The major players are Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform (GCP). Kubernetes is also widely used in

on-premises environments and hybrid cloud deployments, as shown in Figure 4-1.

2014
Google

2015:
CNCF

2016:
Mainstream

2017:
Enterprise

2018:
KubeCon

Figure 4-1.  Timeline of the Kubernetes project

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_4

https://doi.org/10.1007/978-1-4842-9285-3_4#DOI

88

Kubernetes was started by Google in 2014. The predecessor was called Borg, a

distributed cluster manager created by Google to manage its fleet automatically. With

the advent of cloud computing, managing the workload manually became nearly

impossible, and applying normal paradigms was also nearly impossible. Docker

Corporation came up with a solution that allowed it to scale up and down very easily

with immediate benefits. The main advantage of Docker is to create a bundle that can be

executed locally, in a remote machine, or in the cloud in the same manner.

Docker has successfully bridged the gap between developers and operators. Docker

solved the problem of packaging the software and making it accessible on different

platforms. Containers can support any programming language: Ruby, Python, Java, C,

C++, and so on.

A lot more was required to manage the workloads, and that was why Kubernetes

was created. It was a disruptive approach at the time that Google innovated the whole

industry. The official project was announced publicly on June 10th, 2014, and it had a

great following and was released on the same day as DockerCon, the biggest event about

containers worldwide. The 1.0 version was for web app-style stateless low-scale systems.

The initial Google development team was pretty small: Tim Hockin, Kelsey Hightower,

Craig McLuckie, Joe Breda, Brian Grant, Xiaohui Chen, and the original manager, Chen

Goldberg.

Mesos had a better scheduling feature, so, at the time, companies like Netflix,

Airbnb, and Apple were looking for a more mature solution with scaling capabilities up

to 10,000 instances. A lot changed from that release and the project grew up to where it

is today. In retrospect, the correlation between Docker and Kubernetes looks inevitable,

but it wasn’t so clear at the time.

The best thing was that Google created the Kubernetes container orchestration

platform and published it as open-source. More companies contributed to the project

than ever before. They created the open-source community behind and established a de

facto standard. The core part is written in the GO programming language.

Kubernetes was built in a way called Promise Theory that ensures that you can

run the container and don’t need to worry about the underlying complexity. Still, it is

completely abstract by the hardware and any possible failure that might happen during

the lifecycle. This means that when a Kubernetes cluster is alive, it can be broken at

any time, but Kubernetes’ job is to make sure that the application is always running

and serving your traffic. Another important technology is the declarative layer on top

of Docker.

Chapter 4 Ansible for K8s Tasks

89

OpenShift was started in 2010 as a platform-as-a-service (PaaS) to run containers.

Google and Red Hat worked together on the open-source project. Clayton Coleman

was the first contributor at the time from Red Hat. The key advantage of Kubernetes

compared to other orchestration technologies (Dockeswarm and Mesos) was that it

came out with a new project built from scratch, with the vision of a platform built for

enterprise users and with plenty of extension possibilities. This vision quickly excited the

engineers, who immediately recognized their workflows’ value.

The most appreciated feature of Kubernetes is a clean API that manages container

workload and works across multiple computers. Once you introduce the network, partial

failure modes and different scheduling constraints are available across the capacity.

The killer application for Kubernetes was Pokémon Go, the popular augmented

reality game developed by Niantic and running on the Google Kubernetes Engine (GKE).

Once they launched in July 2016, they experienced 50 times the amount of load that they

expected. Kubernetes was able to meet the demand even if it was challenging at the time,

pushing the limits of the infrastructure.

At DockerCon 2017, Docker announced the official support of Kubernetes, which

was the beginning of a successful partnership between the two products. After this

announcement, many competitors embraced Kubernetes: Mesos, Docker, and Pivotal.

By the end of 2017, Amazon Web Server launched a Kubernetes product.

That was the official signal that Kubernetes was here to stay in the market. The

major force was probably the vibrant community supporting Kubernetes. The developer

experience of using containers and Docker being very easy attracted new people. It was a

product that went above and beyond the expectations of the user cases.

Increasing velocity, efficiency, portability, scaling, and reducing latency are some

of the great success stories of adopting Kubernetes in your organization. Benefits

include a decline in an increase in production load, increase in traffic without issues,

SLA achievements, MTTR improvements, cost savings, reduction of load times, better

hardware utilization, integration of local data centers and hybrid cloud environments,

huge active customers, a high number of transactions per second, smooth production

releases per day, more COVID-19 tests scheduled, redesign and standardize CI/CD

pipeline, and decreased software development time.

Chapter 4 Ansible for K8s Tasks

90

�Kubernetes Objects
The atomic unit to deploy any Kubernetes object is the pod. The pod contains one or

more containers. It is easy to scale pods to scale your application. The pod is executed

in a worker node of Kubernetes. The complete number of worker nodes is called a data

plane because they run your applications.

A Service is a logical way to expose your application and connect a pod without

worrying about the internal IP addresses of pods.

To deploy a pod, you use PodSpec in Kubernetes, a simple YAML text document

(also called YAML manifest) that is a blueprint for Kubernetes to deploy your pod. The

most important instruction is the image specified in the spec area, which defines the

image to use. DockerHub is often the default Container Registry, so you can just specify

ubuntu:22:10. To specify another Container Registry, you need to specify the full URI

and the image name.

The pod is ephemeral, meaning you lose data when the pod is terminated or

destroyed.

Volumes persistently store the data of the pod. Volumes are available to be

connected for any other pod. You specify the volume in the spec area of the PodSpec.

You can mount all the many network storage protocols, for example, NFS, SMB,

CephFS, Lustre, GlusterFS, JuiceFS, and OpenEBS. This is supported by the Container

Storage Interface (CSI) driver for Kubernetes. CSI drivers are available for popular

storage devices (NetApp, Synology, HP, Cisco HyperFlex, Datatom-Infinity, Datera, Dell

EMC (PowerMax, PowerScale, PowerStore, Unity, and VxFlexOS), HPE, HPE Ezmeral,

Huawei Storage, IBM Block Storage, IBM Spectrum Scale, IBM Cloud Block Storage VPC,

Intel PMEM-CSI, HP TrueNAS, and many cloud storage services (AWS Elastic Block

Storage, AWS Elastic File System, AWS FSx for Lustre, Azure Blob, Azure Disk, Azure

File, cloudscale.ch, GCE Persistent Disk, Google Cloud Filestore, Google Cloud Storage,

Hetzner Cloud Volumes, HyperV, oVirt, Tencent Cloud Block Storage, Tencent Cloud File

Storage, Tencent Cloud Object Storage, vSphere, and so on).

The ConfigMap file keeps the configuration in a key-value database.

A Secret is a way to store sensitive information such as usernames, passwords, SSH

keys, and keypairs. Note that Secrets are base64 encoded but not encrypted.

Namespaces within a cluster allow for logical groups of the common resources of an

application and set user role permissions for access resources and set limits. If they’re

not specified, your resources are created under the default namespace.

Chapter 4 Ansible for K8s Tasks

91

Deployment is commonly used to deploy pods without dealing with pods. Inside a

Deployment, you can add a ReplicaSets to specify the expected pod count and ensure

that the amount of pods matches the desired count for deploying your application

or service. You can also set a label for pods to make them easily recognizable. If a

pod terminates for whatever reason, the Deployment spins up another pod replica to

maintain the desired pod count of the ReplicaSets.

ResourceQuota sets the hard requests and limits for CPU or memory resources per

namespace. Each pod resource request and limit is validated against these hard limits.

You can set some special settings using taints, which are settings of the worker node.

Tolerations are on the pod and should match the settings on the worker node.

Affinities specify properties for node scheduling and execution to the control plane.

For example, instance types or availability zones for Amazon Web Services.

The DaemonSet is very similar to Deployment without a ReplicaSet. Log collector is a

popular use case of the DaemonSet.

�Control Plane vs Data Plane
Kubernetes nodes is divided into two types: a control plane and a data plane (see

Figure 4-2). The difference is in the nodes used to manage your Kubernetes cluster

(control plane) and the ones used to execute the user requests (data plane).

User
Interface

CLI

Control Plane

API server

Scheduler

Controller-Manager

etcd

Worker Node 1

Pod 1 Pod 2 Pod 3

Container Engine

kubelet kube-proxy

Worker Node 2

Pod 1 Pod 2 Pod 3

Container Engine

kubelet kube-proxy

Figure 4-2.  Control plane vs data plane

Chapter 4 Ansible for K8s Tasks

92

The Kubernetes Control Plane has at least two API server nodes and three etcd

nodes. Kubernetes automatically detects and repairs unhealthy control plane nodes in

order to guarantee the continuity of the service. The data plane is a fleet of worker nodes

where you can allocate your Kubernetes resources. The worker nodes are often called

only nodes.

The Controller Manager (running inside the control plane) runs all the time in the

Kubernetes cluster because it maintains the cluster in the desired status. Every time

you send a command to Kubernetes, you express an intent or a wish to the Controller

Manager and check if you are allowed and if there are enough resources to perform the

action. The Cloud Controller translates your wish into a request for each cloud provider.

The scheduler specifies where to allocate resources for your Kubernetes resources. The

commands are performed via restful API.

The cluster can execute your container using a large variety of container runtime

engines. The most commonly used are Docker and Podman, but your setup might vary

according to your use cases.

The kubelet is a vital process that connects directly to the API server of the control

plane nodes in the worker node.

Kubernetes operators enable you to specify custom resource manifests for your

cluster.

�kubectl
The kubectl command-line utility interacts with the Kubernetes cluster and Kubernetes

objects. By default, it interacts with the default namespace.

In the following sections, you are going to create a simple nginx deployment and

service to deploy an Nginx web server in your Kubernetes cluster.

The kubeconfig configuration file is the default authentication method to read the

parameters to connect to the Kubernetes cluster. The file is called config and is stored

in the .kube directory under your home directory. The file is a YAML document with

the Kubernetes hostname, endpoint of the Kubernetes API server, certificate authority

data, username, and authentication method. Your Kubernetes administrator team

usually provides this configuration file. More details are in the “Ansible Troubleshooting”

section.

Chapter 4 Ansible for K8s Tasks

93

Note  You can also investigate inside your pod running the shell (usually bash for
Linux) using this command:

$ kubectl exec -it nginx-pod -n ansible-examples -- /bin/bash

Where nginx-pod is the pod name and ansible-examples is the namespace
name. After running the command, you obtain a root shell inside the contained
confirmed by the # of the command-line output, similar to this: bash-5.0#

�GitOps Continuous Deployment
Developers worldwide recognize the advantage of testing the codebase early as a

DevOps principle. It’s a common practice to launch a test suite to test your code each

time it is sent to the server. Behind the scenes, a pipeline of code is created to launch the

testing at every submission of code (commit) in the SCN repository, usually Git.

A more modern approach uses Pipeline as Code to define deployment pipelines

through source code.

The Pipelines as Code model, like all the “as code” models, has a lot of benefits:

•	 Version tracking: Changes are tracked and teams can use the current

version or roll back to previous configurations versions

•	 Audit trails: Transparency is the key advantage for all the

stakeholders, external auditors, and developers; it shows every

change made to the code and by whom.

•	 Ease of collaboration: The code is the source of truth, all the

stakeholders can suggest changes, improvements, updates, or

deletes.

•	 Knowledge sharing: Stakeholders share best practices, using

templates and popular design patterns, and share code snippets so

teams can learn from each other.

Continuous Integration (CI) enables the testing of the application in every change

(every commit in Git). It’s a common best practice enabled by using automatic

pipelines triggered by hooks. Errors are detected and corrected as soon as possible, and

increments are small and gradual.

Chapter 4 Ansible for K8s Tasks

94

Organizations can speed up the release process when any new code update or

change is made through the rigorous automated test process.

After a successful Continuous Integration (CI) build, a test suite with a bunch of

integration tests is executed. The next stage of software automation is Continuous

Delivery (CD).

Continuous Delivery (CD) takes care of the release and deployment process. A fully

automated CI/CD workflow enables a more frequent and reliable release process in your

organization by taking advantage of the DevOps methodologies.

The conjunction with the Git repository, Kubernetes enables the GitOps use case. You

can manage Kubernetes manifest files stored inside it. The main use case of the GitOps

approach is to allow systems convergence when updating or installing new applications.

�Jenkins
Jenkins Pipeline is the most commonly used open-source option to integrate CI/CD

and GitOps.

Jenkins Pipeline is a suite of plugins that allows a Jenkins user to define a Jenkins job

in a Jenkinsfile. A Jenkinsfile is a text file that defines a Jenkins Pipeline and is checked

into source control. In a Jenkins Pipeline, you can define a series of tasks, called stages,

that are executed in a specific order. For example, you might have a stage that checks

out code from a version control system, another stage that builds the code, and another

stage that runs tests. Each stage consists of one or more steps, which are individual tasks

that are executed in the context of the stage. One of the main advantages of a Jenkins

Pipeline is that it is built for the Jenkins software in the Groovy programming language

with declarative syntax in a Jenkinsfile. The declarative syntax is easier to read and write,

but the scripted syntax provides more flexibility.

You can define the entire build process in a single Jenkinsfile, which can be version-

controlled and shared among team members. This makes it easy to manage and track

changes to the build process over time, and it allows you to automate the entire build

and deployment process.

Developers and system administrators worldwide create Jenkinsfiles to automate their

tasks every day, store them in a source control management system (SCM), and execute

them via a Jenkins server. The Jenkinsfile is the single source of truth (SSOT) about how a

deployment executes. The advantage of using a Jenkins Pipeline is the predictability of the

workflow and the opportunity to share the result with all the relevant stakeholders.

Chapter 4 Ansible for K8s Tasks

95

�VMWare Tanzu Application Platform
The VMWare Tanzu Application Platform is a platform-as-a-service (PaaS) solution

that enables organizations to develop, deploy, and manage applications on top of

Kubernetes. It provides a set of tools and services that allow developers to focus on

building their applications rather than worrying about the underlying infrastructure.

Here are some key features of the VMWare Tanzu Application Platform:

•	 It is created on the Kubernetes open-source platform, which makes

it easy to manage and scale applications in a consistent way across

environments.

•	 It provides a range of pre-built services and tools, such as databases,

message queues, and monitoring, which can be easily integrated into

applications.

•	 It includes a range of tools for developing, testing, and deploying

applications, including an integrated development environment

(IDE), a continuous integration/continuous delivery (CI/CD)

platform, and a registry for storing and sharing Docker images.

•	 It provides a range of security and compliance features, encryption of

data at rest and in transit, and the ability to enforce policies for access

to resources.

Overall, the VMWare Tanzu Application Platform is designed for organizations to

easily build, manage, and deploy applications in a cloud-native environment. Some

organizations use the VMWare Tanzu Application Platform instead of Jenkins for their

deployment.

�Set Up Your Laboratory
Creating a laboratory to experiment with the Kubernetes cluster is handy for testing

code, creating a new configuration, or experimenting with an upgrade of the Kubernetes

platform. The control plane coordinates all the activities of your cluster. A minimum of

three nodes is generally recommended for a production Kubernetes cluster. If one goes

down, the redundancy is compromised because the etcd and the control plane instance

are lost. Developers usually add more control plane nodes to mitigate this risk.

Chapter 4 Ansible for K8s Tasks

96

Creating a Kubernetes cluster from scratch, even if possible, is a daunting task, and

there are better ways to save time than reinventing the wheel. Minikube and Kubespray

are convenient software ways to deploy Kubernetes clusters. The Minikube software is

popular for non-production clusters for the laboratory, whereas Kubespray is focused

more on deploying Kubernetes on cloud providers.

You can deploy your Kubernetes cluster on physical or virtual machines. If none of

these is available, cloud providers have plenty of resources available at their fingertips,

often for a free testing trial.

�Virtual Machines
In a home laboratory, you can use an old laptop of bare metal or some virtual machines.

For managing virtual machines, there are many alternatives for the hypervisor software

(also known as a virtual machine monitor, VMM, or virtualizer). This platform assigns

physical resources to virtual machines (see Figure 4-3).

Guest operating
system

Hypervisor

Hardware

Type 1 native

Guest operating
system

Hypervisor

Hardware

Type 2 hosted

Operating system

Figure 4-3.  Type 1 vs type 2 hypervisors

A long list of hypervisor software is available in modern operating systems. The

following names are likely familiar: Microsoft Hyper-V, Oracle Virtualbox, VMWare

ESX(i), KVM, Xen, QEMU, LXC, Proxmox, and Parallels Desktop for Mac.

The procedure varies from software to software but involves the decision of how

many physical resources are assigned to the virtual machine, creating a virtual machine

(“guest” system), and running like a virtual computer. Once the operating system is

installed, you can install all the Kubernetes components. This might be a long process

because you need to manually download and install all the different open-source

components from scratch and match the different versions. This task might be fun for

Chapter 4 Ansible for K8s Tasks

97

some, but difficult for most. The following sections discuss some solutions that help you

spin up a Kubernetes cluster in your laboratory or production without having to spend

months building everything from scratch.

�Raspberry Pis
Raspberry Pi is a popular small single-board computer (SBCs) series. Raspberry Pi 4

Model B (see Figure 4-4) is the latest at the time of writing this book.

Figure 4-4.  Raspberry Pi 4 Model B Attribution: Michael H. (Laserlicht) /
Wikimedia Commons / CC BY-SA 4.01

It was developed by the Raspberry Pi Foundation in the United Kingdom in

association with Broadcom. The original aim of the project was to teach computer

science in schools and developing countries. The low cost (from $35) boosted the

popularity of the original model. The key advantages are a modular, open design

combined with the low energy consumption of the ARM processor. Some cutting-

edge technologies are available as well: a fast ARM processor, memory from 1 GiB to

4 GiB, fast data transfer by USB 3.0 and Gigabit Ethernet, onboard wireless network

connectivity, and Bluetooth 5.0, with support for two 4K HDMI displays. It is used for

applications such as smart home hubs, game consoles, robot brains, media servers, VPN

servers, home computers, and more.

It’s possible and relatively affordable to buy a bunch of Raspberry Pi minicomputers

and use them to create a home laboratory for experimentation. Nowadays, they are

available in many variants (RAM, eMMC, wireless) that are shipped worldwide. It is

very interesting to use the latest Raspberry Pi Compute Module 4 cluster board for the

clustering experimentation, a stripped-down edition without any connectors available

from $25. Recent years saw a rise in the popularity of some interesting motherboards

1 https://commons.wikimedia.org/wiki/File:Raspberry_Pi_4_Model_B_-_Side.jpg

Chapter 4 Ansible for K8s Tasks

https://commons.wikimedia.org/wiki/File:Raspberry_Pi_4_Model_B_-_Side.jpg

98

that plug in and use the Raspberry Pi Compute Module as a cluster or a server farm.

Jeff Geerling has become popular on YouTube for testing and crowdsourcing cluster

board projects. Installing Kubernetes software on the Raspberry Pi is usually via the SSH

terminal interface. Remember that the Raspberry Pi processor uses the ARM processor

architecture, which might differ from the one use in your main computer. There are

many alternative ways to install Kubernetes on a single Raspberry Pi or a cluster of

Raspberry Pis. It depends on your experience with Kubernetes; among all, the easiest

is MicroK8s. It simply deploys using the microk8s snap with classic confinement and

interacts using the microk8s command-line tool. You can start and stop the cluster,

save batteries, and use the microk8s start and microk8s stop command-line. You

can verify the status using the microk8s status command: running or not running.

You can enable some Kubernetes features, for example, the Kubernetes Dashboard (see

Figure 4-5), using the microk8s enable dashboard command. More features are also

available: rbac, dns, registry, istio, helm, ingress, prometheus, hostpath-storage,

and so on. Once enabled, the Kubernetes Dashboard is available using the microk8s

dashboard-proxy command. Just remember to add the following line to the /boot/

firmware/cmdline.txt file to enable the cgroup on kernel bootstrap, because it is

disabled by default on the ARM platform:

cgroup_enable=memory cgroup_memory=1

Figure 4-5.  microk8s Kubernetes Dashboard

Chapter 4 Ansible for K8s Tasks

99

�Kubespray
The Kubespray project focuses on deploying the Kubernetes platform on cloud

providers: Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform

(GCP), OpenStack, VMWare vSphere, Equinix Metal, Oracle Cloud Infrastructure

(experimental), and bare metal. Kubespray is the preferred choice when you want to

deploy a cluster and don’t want to manually compile the entire Kubernetes ecosystem.

Kubespray enables the deployment of a Kubernetes cluster using simple configuration

management powered by Ansible (Playbooks and Inventory), provisioning tools, and

platform knowledge.

The result is the following:

•	 Cluster high availability

•	 Modularity (choices between network plugins)

•	 Support for most popular Linux distributions, including Flatcar

Container Linux by Kinvolk, Debian, Ubuntu LTS (16.04, 18.04, 20.04,

22.04), RHEL/CentOS/Oracle Linux (7, 8, 9), Fedora (CoreOS, 35, 36),

openSUSE (Leap 15/Tumbleweed), Alma Linux/Rocky Linux (8, 9),

Kylin Linux Advanced Server V10, and Amazon Linux 2

•	 Tested by CI/CD

•	 Kubernetes version 1.22+, Ansible v2.11+, Jinja 2.11+ and

python-netaddr

The first step of the installation process is to set up the cluster IPs inside the

inventory/mycluster file, as shown in Listing 4-1.

Listing 4-1.  Kubespray inventory/mycluster File

node1 ip=10.3.0.1

node2 ip=10.3.0.2

node3 ip=10.3.0.3

[kube_control_plane]

node1

node2

[etcd]

Chapter 4 Ansible for K8s Tasks

100

node1

node2

[kube_node]

node2

node3

[k8s_cluster:children]

kube_node

kube_control_plane

You can customize the variables for the Ansible groups all and k8s_cluster using

these files:

•	 inventory/mycluster/group_vars/all/all.yml

•	 inventory/mycluster/group_vars/k8s_cluster/k8s-cluster.yml

Once everything is configured, you can execute your playbook to set up your nodes:

$ ansible-playbook -i inventory/mycluster --become --become-user=root

cluster.yml

The output is long and the execution time depends on the performance of your

hardware. A successful execution ends in a Kubernetes cluster that’s ready to use.

�OpenShift Local
OpenShift Local (formerly CodeReady Containers) is an easy and fast way to deploy an

OpenShift cluster for the laboratory in a virtual machine in minutes.

The purpose of the deployment is only local and for a laboratory, for testing

purposes, because it’s meant to be ephemeral. A control plane and the worker node are

embedded in a single-node virtual machine. It supports many operating systems—Red

Hat Enterprise Linux/CentOS x86_64 (7, 8, and 9) and two latest stable Fedora releases,

Windows 10 x86_64 Fall Creators Update (version 1709+), and macOS (BigSug 11+ Intel

Chip x86_64 or Apple Silicon arm64). The minimum resources required are four vCPU,

8 GiB memory, and 35 GiB of storage. A special edition base on Podman container

runtime is designed for Apple Silicon arm64 SoC processors (M1, M1 Pro, M1 Max, M1

Ultra, M2, and so on) and requires two physical CPU cores, 2 GiB of available physical

memory, and 35 GiB of storage space.

Chapter 4 Ansible for K8s Tasks

101

At the moment of writing this book, the latest release is version 2.12, based on using

Red Hat OpenShift Container Platform 4. You should use the full OpenShift installer for

other OpenShift Container Platform use cases, such as cloud, data center, headless, or

multi-developer setups.

It is a stripped-down release of OpenShift with the following current limitations:

•	 Single node: Control plane and worker node

•	 Runs in a virtual machine: Different from external networking

•	 Upgrade path: It doesn’t support an upgrade path other than

downloading an updated, newer virtual machine

•	 Cluster monitoring operator: It is non-functional and disabled

You can start downloading the crc command-line tool via the official Red Hat

website (https://console.redhat.com/openshift/create/local). On Windows and

macOS, a guided installer is provided with an easy and straightforward process; just

following the workflow, as shown in Figure 4-6.

Figure 4-6.  OpenShift Local guided install on macOS

Chapter 4 Ansible for K8s Tasks

https://console.redhat.com/openshift/create/local

102

A successful installation allows you to run the crc command-line utility from your

terminal and move forward with the OpenShift Local setup. You can download the latest

version of the OpenShift Local virtual machine and store it under the current user’s .crc

directory. Then bootstrap with the following command:

$ crc setup

At the moment, the downloaded virtual machine is 3.09 GiB and requires 31

GiB storage once decompressed. After the successful download, you can start your

environment. It creates the local-only *.crc.testing domain to provide an environment

to test your containers using the local IPv4 address range starting with 172.x.y.z.

$ crc start

The first start requires more time because all the initialization utilities need to run

as well as the Kubernetes Operators. You can verify the running status of the OpenShift

Local cluster anytime using the status parameter:

$ crc status

You can access your OpenShift Local cluster via the command line using the oc

command-line utility (similar to kubectl) and using the API endpoint https://api.

crc.testing:6443 or via the web console at https://console-openshift-console.

apps-crc.testing.

Using the oc-env parameter of the oc command with a running cluster, you can

configure the needed variable to interact with the OpenShift Local cluster and the path

of the oc command-line utility. It’s common practice to combine this with the eval

terminal expression:

$ eval $(crc oc-env)

Two users were automatically created during the setup process with different

capabilities:

–– Administrator: username: kubeadmin with an auto-generated

password. For example, zc3Qx-ejEii-KALgK-5pbYU

–– Standard user: username: developer with simple password:

developer

Chapter 4 Ansible for K8s Tasks

https://api.crc.testing:6443
https://api.crc.testing:6443
https://console-openshift-console.apps-crc.testing
https://console-openshift-console.apps-crc.testing

103

To log in to your OpenShift Local cluster, just provide the desired username

(-u parameter) and password (-p parameter):

$ oc login -u developer -p developer https://api.crc.testing:6443

Otherwise, you can use the token retrieved from the OpenShift console:

$ oc login --token=sha256~xxxxxx --server=https://api.crc.testing:6443

You can check which user you’re logged in as using this command:

$ oc whoami

The OpenShift Local cluster has also a container image registry inside. With the same

users, you can access the OpenShift Local Dashboard via the web address (shown in

Figure 4-7). It’s at https://console-openshift-console.apps-crc.testing.

Figure 4-7.  OpenShift Local console

�hetzner-ocp4
When your target cloud provider is Hetzner, you can use the hetzner-ocp4 project

by RedHat-EMEA-SSA-Team (https://github.com/RedHat-EMEA-SSA-Team/

hetzner-ocp4). It deploys and consumes the Red Hat OpenShift Container Platform 4

environment as a sandpit in the CentOS Root Server bare metal servers from Hetzner.

Currently, it supports CentOS Stream 8 and Red Hat Enterprise Linux 8 and 9.

Chapter 4 Ansible for K8s Tasks

https://console-openshift-console.apps-crc.testing
https://github.com/RedHat-EMEA-SSA-Team/hetzner-ocp4
https://github.com/RedHat-EMEA-SSA-Team/hetzner-ocp4

104

The tool relies on Ansible to provision, install, start, stop, and delete the Red Hat

OpenShift Container Platform 4 cluster, renew the SSL certificates using the “Let’s

Encrypt” project, and set up the public DNS records. Current tools allow the use of three

out-of-the-box DNS providers (AWS Route53, Cloudflare, DigitalOcean, and GCP DNS)

or setting a few environment variables (Azure, CloudFlare, Gandi, and TransIP).

�Create a Cluster with Minikube
The easiest and smallest Kubernetes cluster comprises only one node. Obviously, this

setup is good enough for a workstation laboratory, but not for a production environment,

which requires more nodes to guarantee high availability.

Minikube is a Go implementation of Kubernetes lightweight that creates one virtual

machine on your local machine and deploys a one-node simple cluster. Minikube is

available for the most recent operating systems—Linux, macOS, and Windows.

First of all, you need a fresh install of a modern operating system, for example,

Ubuntu 22.04 LTS, for the official repository. During the setup, the configuration enables

the additional packages openssh and docker. Make sure to enable the Allow Password

Authentication over SSH command in the SSH Setup options. This simplifies the initial

configuration, but feel free to move to the PKI authentication anytime.

You need to install the minikube command-line tool. Once it’s successfully installed,

you can start the minikube by typing the following:

$ minikube start

Underneath the tool, download the latest Kubernetes images and set up a virtual

machine; for example, using VirtualBox with 2 CPUs, 2GiB of memory, and 20 GiB of

storage. Inside the virtual machine, the tool downloads the Minikube ISO, sets up a

virtual IP address, configures the Docker container runtime, downloads the kubelet and

kubeadm, launches the Kubernetes cluster, configures the cluster permission, and verifies

the component health.

You can also start the minikube with more or fewer resources by specifying the

memory parameter with the desired amount of RAM in MiB and the amount of CPUs:

$ minikube start --memory=8192 --cpus 2

Chapter 4 Ansible for K8s Tasks

105

This will yield the output shown in Figure 4-8.

Assigning more resources usually results in a faster environment and more space to

experiment as a data plane. Still, you should compromise within the available physical

resources. At least 1 GiB of RAM is recommended to handle operating system/virtual

machine overhead. The minimum amount of memory required by Kubernetes is at least

2048 MiB of memory. Recommended setup requires four CPUs, 10 GiB of memory, and

as much storage as needed.

Alternatively, you can set the memory and CPUs settings as a configuration as

follows:

$ minikube stop

$ minikube config set memory 8192

$ minikube config set cpus 4

$ minikube start

Once started, you can start sending commands via the kubectl command to execute

your Kubernetes Pods, Services, Deployment, and so on.

As you can see, all control planes and workers are running on the same machine.

You can verify using the kubectl command and the get nodes parameter. The output

shows only one node, called minikube, has a Ready status with control-plane,master

roles and the Kubernetes running version.

Moreover, the minikube dashboard command enables the Kubernetes Dashboard

and proxy and returns the URL for the connections.

Figure 4-8.  minikube start command-line output

Chapter 4 Ansible for K8s Tasks

106

The result is a dashboard opened in the current browser, as shown in Figure 4-9.

�Kubeadm
Kubeadm is a tool to build a Kubernetes cluster following the best-practice “fast paths”

for creating domain knowledge of the clusters’ lifecycle management, self-hosted

layouts, dynamic discovery services, and so on.

It provides a simple kubeadm command-line utility with the following options:

•	 init, sets up the initial Kubernetes control-plane node.

•	 join, sets up a Kubernetes additional control plane node and joins it

to the cluster or a worker node.

•	 upgrade, upgrades the Kubernetes cluster to a newer version.

•	 reset, reverts any changes by init or join made to the current host.

Figure 4-9.  minikube Kubernetes Dashboard

Chapter 4 Ansible for K8s Tasks

107

�K3s Lightweight Kubernetes
K3s is a CNCF sandbox project created in 2020 that was originally developed by Rancher

Labs and packaged as a single binary with a very small footprint (<100 MB). It creates a

Kubernetes cluster that’s simple to install, run, and auto-update from Raspberry Pi to

AWS a1.4x large 32 GB server. It is a good fit for Internet of Things (IoT), edge computing,

and ARM processors. The lightweight storage backend is based on sqlite3 and extensible

with etcd3, MySQL, and PostgreSQL. K3s can run in a container or as a native Linux

service. With Rancher and K3s, you can manage more than 1,000 edge clusters using a

GitOps Continuous Delivery pipeline.

When the cluster is up and running, you can interact with it using simple commands.

$ export KUBECONFIG=/etc/rancher/k3s/k3s.yaml

As usual, you can interact with the cluster using the kubectl command-line utility.

For example, the following command displays all the pods in all the namespaces of the

cluster:

$ kubectl get pods --all-namespaces

�Kubernetes Upgrade
Kubernetes has a vibrant community with four releases per year, so expect a new version

every three months. At the moment of writing this book, the latest Kubernetes version is

1.26.1. In Kubernetes jargon, the values are Major 1, Minor 26 Patch 1. Major are versions

with huge, with impacts that break compatibility with past releases. Minor versions

introduce new features and deprecate some APIs. Patch versions are usually just bug-

fixing releases and are automatically applied by the control plane every month. The

Kubernetes lifecycle of version 1.26 was generally available and released on December 9,

2022, entered maintenance mode on December 28, 2023, and will enter its official end-

of-life phase on February 24, 2024. See Figure 4-10.

generally
available

maintenance end-of-lifedevelopment

Figure 4-10.  Kubernetes releases lifecycle

Chapter 4 Ansible for K8s Tasks

108

These constant upgrades guarantee bug fixing and the latest codebase and features

on your cluster. You must proceed one minor version at a time. You can’t jump by two

versions. Note that you can’t revert the upgrade process either.

Always plan for an upgrade. Read the documentation, the changelog, and the release

notes carefully to understand if some API items are going to be deprecated. It’s a best

practice to create a checklist and identify which team performs the upgrade. Usually,

security, operation, and infrastructure are involved in this operation. Define, test, and

document upgrade procedures. Have a rollback/fallback plan in place and know how to

process it. You need to assess the impact on your environment and test in Dev and UAT

before promoting to production. Possible minor service interruptions might happen, so

it’s a good idea to notify your organization or your business continuity officer.

If an upgrade is unsatisfactory for your organization and you need the previous

release, you need to start a new version and restore your data. Define what to do if there

are some conflicts between versions of Kubernetes.

You should always begin the upgrade with the control plane, and only when it works

fine, upgrade the data plane (when using managed workgroup). Nodes and add-ons can

be upgraded after a successful upgrade of the control plane. A robust upgrade procedure

identifies which team is responsible and which is tested in the test environment. Have a

Plan B if something is not working as expected. A step-by-step documentation procedure

is a good upgrade strategy to share with colleagues in your organization. A test of the

main API used in your organization is always good for strategies. Identify downstream

dependencies of the operators, services, and addons used in your Kubernetes cluster,

determine the correct order to upgrade components (control plane first, data place

second), and plan for API changes.

The following upgrade process is for a cluster installed using the kubeadm command-

line tool. For Kubernetes clusters installed with other tools, the procedure is similar.

The plan begins with upgrading the control plane nodes. You need to set the cordon

and drain node offline settings one by one, thus preventing scheduling and evicting any

workloads, upgrade the kubelet and kubectl packages, restart the kubelet service, and

bring the uncordon node back online.

After upgrading the control plane nodes, you can upgrade worker nodes. Begin by

upgrading the kubeadm tool, executing the kubeadm upgrade node command, setting

the node in drain mode, upgrading kubelet and kubectl, and restarting the kubectl

process, then you uncordon the node.

Chapter 4 Ansible for K8s Tasks

109

�Create a Cluster with kOps
Kubernetes Operations (kOps) deploys a production-grade Kubernetes cluster. It

provides installation, upgrades, and management, and enables you to be specific with

your favorite cloud provider. kOps is tightly integrated with the unique features that your

cloud provider supports, so it can be a better choice if you know that you will only be

using one cloud provider platform in the foreseeable future.

kOps officially supports AWS (Amazon Web Services) and GCE (Google Cloud

Platform); beta support is available for DigitalOcean, Hetzner, and OpenStack, and alpha

support is available for Azure. The initial kOps command-line utility supports Linux,

macOS, and Windows operating systems.

Its significant advantages are as follows:

•	 Supports dry-runs and automatic idempotency

•	 YAML manifest-based configuration

•	 Multi-architecture with ARM64 support

The installation procedure changes based on the target cloud provider platform,

but involves the use of the kops command-line tool with some parameters. The create

cluster parameter actually creates the Kubernetes cluster when the relevant variables are

set for your environment. Some cloud providers require that you set permission to a service

account beforehand. You can customize and update the cluster configuration as well as

validate the configuration of the cluster to ensure your cluster is working as expected.

�Configure Ansible for Kubernetes
The good news is that an Ansible collection is designed to interact with any Kubernetes

cluster. Under the hood, all these resources interact with the Kubernetes API and create

Ansible resources through the Python programming language.

You can interact with the Kubernetes cluster using the kubernetes.core Ansible

collection. At the moment of writing this book, these resources are available:

•	 helm: Add, update, and delete Kubernetes packages using the

package manager Helm

•	 helm_info: Obtain information about a Helm package deployed into

the Kubernetes cluster

Chapter 4 Ansible for K8s Tasks

110

•	 helm_plugin: Add, update, and delete Helm plugins

•	 helm_plugin_info: Obtain information about your Helm plugins

•	 helm_repository: Add, update, and delete Helm repositories

•	 helm_template: Render Helm chart templates

•	 k8s: Interact with the Kubernetes (K8s) objects

•	 k8s_cluster_info: Obtain Kubernetes clusters, any APIs available,

and their respective versions

•	 k8s_cp: Copy files and directories to and from a pod

•	 k8s_drain: Set drain, cordon, or uncordon for a node in the

Kubernetes cluster

•	 k8s_exec: Execute a command in a pod

•	 k8s_info: Obtain information about Kubernetes objects

•	 k8s_json_patch: Apply JSON patch operations to existing

Kubernetes objects

•	 k8s_log: Fetch logs from a Kubernetes resource

•	 K8s_rollback: Roll back Kubernetes object deployments and

DaemonSets

•	 k8s_scale: Set the scale parameter for a deployment, ReplicaSet,

replication controller, or job

•	 k8s_service: Add, update, and delete services on Kubernetes

•	 k8s_taint: Set the taint attribute for a node in a Kubernetes cluster

•	 kubectl: Execute commands in Pods on a Kubernetes cluster

(connection plugin)

•	 k8s_config_resource_namer: Generate resource names for the given

resource of type ConfigMap, Secret (filter plugin)

•	 k8s: Fetch containers and services for one or more Kubernetes

clusters and group by cluster name, namespace, namespace_

services, namespace_pods, and labels (inventory plugin)

Chapter 4 Ansible for K8s Tasks

111

•	 k8s: Provide access to the full range of Kubernetes APIs

(lookup plugin)

•	 kustomize: Use the kustomization.yaml file to build a set of

Kubernetes resources (lookup plugin)

Let me highlight the kubernetes.core.k8s module, as it is probably the most

important of the Ansible collection.

The kubernetes.core collection is not included in the Ansible Core, which includes

only the ansible.builtin collection. When you try to use a module that’s not present in

your system, you might end up with the following Ansible error:

ERROR! couldn't resolve module/action 'kubernetes.core.k8s'.

You can verify the presence of the kubernetes.core Ansible collection using the

following ansible-galaxy command:

$ ansible-galaxy collection list

This command shows all the Ansible collections in your system with the relative

version. The latest version of the kubernetes.core Ansible collection is 2.3.2 at the

moment of writing this book.

The collection requires Python 3 installed in your system and the kubernetes Python

library. If they are not present, you can install them manually using the PIP Python

package manager. The pip utility is available for the most recent version of Linux, by

installing the package python3-pip. The command for installing the PyYAML jsonpatch

kubernetes Python libraries dependencies is as follows:

$ pip3 install PyYAML jsonpatch kubernetes

When you want to interact with the Helm package manager, you also need the

helm Python library. However, it uses the legacy setup.py install method, which is

discouraged by pip 23.1 and later. You can read more at https://github.com/pypa/pip/

issues/8559; the workaround at the moment for the Helm package is to use the extra

 --use-pep517 parameter.

$ pip3 install --use-pep517 helm

When the Python dependencies are satisfied, you can install the Ansible collection

manually or automatically using the ansible-galaxy command-line utility included in

every Ansible installation.

Chapter 4 Ansible for K8s Tasks

https://github.com/pypa/pip/issues/8559
https://github.com/pypa/pip/issues/8559

112

–– manual: Just type the action (collection install) followed by the

collection name. The full command looks like this:

 $ ansible-galaxy collection install kubernetes.core

–– automatic: Require creating a requirements.yml file, a particular

YAML file with the list of all the Ansible collections to install in the

target system. See Listing 4-2.

Listing 4-2.  The requirements.yml File

collections:

 - name: cloud.common

 - name: kubernetes.core

You can execute the requirements.yml file by specifying the -r parameter using the

ansible-galaxy command-line tool:

 $ ansible-galaxy install -r collections/requirements.yml

After the manual or automatic Ansible collection installation process, your system is

configured to interact with the kubernetes.core Ansible collection.

Tip T he kubernetes.core Ansible collection supports the Ansible Turbo
mode. By default, this feature is disabled. It requires an additional cloud.common
Ansible collection installed.

The AnsibleTurboModule class is inherited from the standard AnsibleModule
class, which spawns a little Python daemon, and the module logic runs inside
this Python daemon. The result is a drastic improvement in performance
because Python modules are loaded one time, and Ansible can reuse an existing
authenticated session. The daemon run in a single process exposes a local
UNIX socket for communication and kills itself after 15 seconds. You can set the
ENABLE_TURBO_MODE variable to true or 1 using the environment statement in
the Play section of the Ansible Playbooks.

Chapter 4 Ansible for K8s Tasks

113

Once you have successfully installed the Python and Ansible dependencies, you

need to execute the authentication to your cluster in order to execute API requests via

the command-line tool.

For the Kubernetes cluster, you need the kubectl command-line utility. Many

options are available as binary or by using your favorite package managers. For example,

in macOS, you can download it as a binary, use Macports, or use Homebrew (https://

brew.sh/):

$ brew install kubernetes-cli

The kubectl Linux package is available in the DEB and RPM packages format or as a

binary. In Windows, you can download and install the kubectl binary from the website

or use the Chocolatey, Scoop, or “winget” package manager.

For the OpenShift cluster, the oc command-line utility is needed instead. In macOS

with Homebrew, you can find in the package:

$ brew install openshift-cli

You don’t need any modifications in the Ansible configuration file ansible.cfg to

use Ansible with Kubernetes. This file allows you to fine-tune some settings and enables

custom Ansible plugins. You can also customize directory paths in your system.

�Ansible Troubleshooting
Ansible troubleshooting can be difficult because more often than not, the fatal error root

cause is related to a Kubernetes or Ansible configuration. The following errors might

appear when you try to configure your environment to interact with a Kubernetes or

OpenShift cluster.

�401 unauthorized
Kubernetes authenticates the API requests using bearer tokens, client certificates, or an

authentication proxy through authentication plugins.

You might obtain the Kubernetes 401 unauthorized fatal error message when you try

to access your cluster when trying to execute some code without an authorization token

or using an invalid token.

Chapter 4 Ansible for K8s Tasks

https://brew.sh/
https://brew.sh/

114

The root cause is related to Kubernetes authentication and not to Ansible Playbook

or Ansible configuration. It could be because you are not authorized to access the

namespace or resource or simply because you are not authenticated. Bear in mind

that the authentication token expires after a specified amount of time, so you need to

authenticate again in your Kubernetes cluster.

The full fatal error message looks similar to the following:

fatal: [localhost]: FAILED! => {"changed": false, "error": 401, "msg":

"Namespace example: Failed to retrieve requested object: b'{\"kind\":\"St

atus\",\"apiVersion\":\"v1\",\"metadata\":{},\"status\":\"Failure\",\"me

ssage\":\"Unauthorized\",\"reason\":\"Unauthorized\",\"code\":401}\\n'",

"reason": "Unauthorized", "status": 401}

�Kubernetes
In a Kubernetes cluster, obtaining a valid authentication token requires the setup of a

context for your cluster with the kubectrl command-line utility.

You can obtain a valid Kubernetes authentication token by first entering the

username and password and saving them as credentials using the following command:

$ kubectrl config set-credentials developer/foo.example.com

 –-username=developer --password=developer

With:

•	 kubectrl: Specifies the command-line tool to connect to the

Kubernetes cluster

•	 config: Specifies the action to configure the cluster

•	 set-credentials developer/foo.example.com Creates a new

credential named developer/foo.example.com (I prefer to use the

same cluster name, but you can specify any name)

•	 –-username=developer: Specifies the username for the login

•	 --password=developer: Specifies the password for the login

Chapter 4 Ansible for K8s Tasks

115

Then you need to configure the cluster connection server:

$ kubectl config set-cluster foo.example.com –-insecure-skip-tls-

verify=true –-server=https://foo.example.com

With:

•	 kubectrl: Specifies the command-line tool to connect to the

Kubernetes cluster

•	 config: Specifies the action to configure the cluster

•	 set-cluster foo.example.com: Creates a new cluster named foo.

example.com (you can specify any name)

•	 –-insecure-skip-tls-verify=true: Skips TLS certificates validation

•	 –-server=https://foo.example.com: Specifies the cluster URI

Then you can join in a context the cluster and credentials information:

$ kubectl config set-context default/foo.example.com/developer

 –-user=developer/foo.example.com –-namespace=default –-cluster=foo.example.com

With:

•	 kubectrl: Specifies the command-line tool to connect to the

Kubernetes cluster

•	 config: Specifies the action to configure the cluster

•	 set-context default/foo.example.com/developer: Creates a new

context named default/foo.example.com/developer (you can

specify any name)

•	 –-user=developer/foo.example.com: Skips TLS certificates

validation

•	 ––-namespace=default: Specifies the default namespace (in this

case, default)

•	 –-cluster=foo.example.com: Specifies the cluster configuration name

Than you can finally use this context and obtain the authentication token:

$ kubectl config use-context default/foo.example.com/developer

Chapter 4 Ansible for K8s Tasks

https://foo.example.com

116

From now on, all the commands are sent from within this context to the Kubernetes

cluster that you configured.

�OpenShift
You can obtain the OpenShift cluster using the oc command and specifying the

username and password:

$ oc login -u developer -p developer https://api.openshift.example.com:6443

With:

•	 oc: Specifies the command-line tool to interact with OpenShift cluster

•	 login: Specifies the action to authenticate in the cluster

•	 -u developer: Specifies the username for the login

•	 -p developer: Specifies the password for the login

•	 https://api.openshift.example.com:6443: Specifies the cluster

URI and the port

As an alternative to a username and password, you can authenticate using a token

obtained via the OpenShift console. After successfully logging in to the web user

interface, just choose Copy Login Command under your username in the top-right

menu area, as shown in Figure 4-11.

Figure 4-11.  OpenShift console token generation

The token is a SHA256 series of alphanumeric characters displayed in a new window

on the screen, as shown in Figure 4-12.

Chapter 4 Ansible for K8s Tasks

117

Figure 4-12.  OpenShift console token example

Once generated, the token is usable via the command-line oc command like the

following:

$ oc login --token=sha256~xxxxxx --server=https://api.openshift.example.

com:6443

With:

•	 oc: Specifies the command-line tool to interact with OpenShift cluster

•	 login: Specifies the action to authenticate in the cluster

•	 --token=sha256~xxxxxx: Specifies the usage of the access token

•	 https://api.openshift.example.com:6443: Specifies the cluster

URI and the port

After successfully authenticating, an authentication token is stored in the .kube

directory under the config file on the local machine. You can customize the filename

and path using the KUBECONFIG environment variable in the terminal.

$ export KUBECONFIG=/home/devops/.kube/config-developer

In the same way, you should instruct Ansible to read the environment variable by

adding the following environment lines in the Play area of your Ansible Playbook:

[...]

environment:

 KUBECONFIG: "/home/devops/.kube/config-developer"

[...]

Chapter 4 Ansible for K8s Tasks

118

It is not possible to use the ~ character to refer to the UNIX user’s home directory as

is treated as a plain character and looking for a directory named ~ instead.

�x509 error
Another common error is when the certification authority is not shared between the

client and the server. You will receive the following onscreen error when executing the

following command:

$ oc login -u developer -p developer --server=https://api.openshift.

example.com:6443

The parameters were discussed in the previous section. The fatal error on the screen

is as follows:

error: x509: "kube-apiserver-service-network-signer" certificate is

not trusted

You can solve adding the additional certification authority file with the

 --certificate-authority parameter followed by the path on disk of the certificate.

You can acquire more information by increasing the verbosity level to six, the highest

available, with the --loglevel 6 parameter.

A successful login procedure can be verified using this OpenShift command:

$ oc whoami

developer

�kubeconfig
The kubectl command-line utility and the kubernetes.core Ansible collection both

require a valid kubeconfig file with the authentication information to connect to the

Kubernetes cluster. This book assumes that you have a valid kubeconfig file to connect

to your Kubernetes cluster. The file contains the following key information:

•	 cluster-ca-cert: The Kubernetes cluster certification authority

•	 endpoint: Kubernetes cluster endpoint (IP or DNS of the

master node)

•	 cluster-name: K8s cluster name

Chapter 4 Ansible for K8s Tasks

119

•	 cluster-username: Username or service account

•	 secret-token: A secret token of the username of the service account

This is a schematic of a typical kubeconfig file:

apiVersion: v1

kind: Config

current-context: <cluster-name>

clusters:

- name: <cluster-name>

 cluster:

 certificate-authority-data: <cluster-ca-cert>

 server: <endpoint>

contexts:

- name: <cluster-name>

 context:

 cluster: <cluster-name>

 user: <cluster-username>

preferences: {}

users:

- name: <cluster-username>

 user:

 token: <secret-token>

The default path of this file is in the .kube user directory and is named config.

You can customize the path of the kubectl command-line utility using the

KUBECONFIG environment variable as follows:

$ export KUBECONFIG=$HOME/.kube/config

For Ansible code, you can specify a custom path by specifying the kubeconfig

module parameter or via the K8S_AUTH_KUBECONFIG environment variable. The code in

this book assumes that your kubeconfig file is stored under the ~/.kube/config path

Chapter 4 Ansible for K8s Tasks

120

(the default path), where the ~ (tilde symbol) indicates the home of your user. You can

customize this path using the kubeconfig parameter for each Ansible module. The most

common usage with the k8s Ansible module is as follows:

kubernetes.core.k8s:

 kubeconfig: '~/.kube/config'

�Configure a Python Virtual Environment
A Python Virtual Environment is a tool to keep your application environment separate

from the system-wide environment. Ansible, like all Python applications, requires some

Python libraries as dependencies. Maintaining up-to-date all the Python dependencies

of Ansible and of the Ansible collection without interfering with your Linux system can

be challenging without a Python Virtual Environment.

The first step is to create the virtual environment using the Python venv module,

preceded by the -m parameter. In the following example, the virtual environment is

named venv; feel free to customize it according to your needs:

$ python3 -m venv venv

After creating the venv virtual environment, you need to activate it using the script

for your operating system activate for Linux/macOS e activate.bat for Windows. You

can find the script in the directory named like your virtual environment (venv). You can

return every time to this state using the activate script.

$ source venv/bin/activate

Once inside the venv virtual environment, prepend the prompt to the name (venv).

It’s a best practice to upgrade the package manager pip and setuptools to the latest

versions:

(venv) $ pip3 install --upgrade pip setuptools

On some systems, the pip/pip3 command tool is not available out of the box.

It might be necessary to install the python3-pip package or use following a manual

installation process.

$ python -m ensurepip --upgrade

Chapter 4 Ansible for K8s Tasks

121

After upgrading the pip installed, you can install the Python PyYAML, jsonpatch and

kubernetes dependency:

(venv) $ pip3 install PyYAML jsonpatch kubernetes

For Ansible modules that interact with the Helm package manager, the extra helm

Python library is required with the --use-pep517 parameter workaround:

(venv) $ pip3 install --use-pep517 helm

You can save all the Python libraries and their dependencies using the pip3 freeze

command and save the result to requirements.txt. Sharing this file with someone else

or another system will result in the same configuration of this virtual environment.

(venv) $ pip3 freeze > requirements.txt

Listing 4-3 shows the contents of the requirements.txt at the time of writing this

book; it includes the ansible-builder and ansible-runner utilities.

Listing 4-3.  The requirements.txt File

ansible-builder==1.2.0

ansible-runner==2.3.1

bindep==2.11.0

cachetools==5.2.0

certifi==2022.12.7

charset-normalizer==2.1.1

distro==1.8.0

docutils==0.19

google-auth==2.15.0

helm==0.4

idna==3.4

kubernetes==25.3.0

lockfile==0.12.2

oauthlib==3.2.2

packaging==22.0

Parsley==1.3

pbr==5.11.0

pexpect==4.8.0

Chapter 4 Ansible for K8s Tasks

122

ptyprocess==0.7.0

pyasn1==0.4.8

pyasn1-modules==0.2.8

python-daemon==2.3.2

python-dateutil==2.8.2

PyYAML==6.0

requests==2.28.1

requests-oauthlib==1.3.1

requirements-parser==0.5.0

rsa==4.9

six==1.16.0

types-setuptools==65.6.0.2

urllib3==1.26.13

websocket-client==1.4.2

If you want to use the Ansible Turbo feature, you must install the cloud.common

Ansible collection using the ansible-galaxy command-line utility:

(venv) $ ansible-galaxy collection install cloud.common

The kubernetes.core Ansible collection is a must-have in your system to execute

Kubernetes automation:

(venv) $ ansible-galaxy collection install kubernetes.core

You can deactivate your virtual environment at any time and return to your system

console. You should activate the virtual environment every time you want to use it. The

virtual environment preserves all installed libraries and collections.

$ deactivate

When you want to use your virtual environment, just execute the activate

script again.

When the complexity of the Python Virtual Environment grows too much, it can

become challenging to manage the Python library dependencies and Ansible module

dependencies. You can use the Ansible Execution Environment instead.

Chapter 4 Ansible for K8s Tasks

123

�Configure an Ansible Execution Environment
The Ansible Execution Environment is a way to containerize the execution of the Ansible

invented by Red Hat. It maintains archives of the separation of the operating system

dependencies, Python dependencies, and Ansible collections without interfering with

your Linux system. It’s the evolution of Python Virtual Environment and can be executed

natively in a Kubernetes cluster. It supersedes manual Python Virtual Environments,

Ansible module dependencies, and Ansible Tower bubblewrap.

Ansible Execution Environment relies on the Ansible Builder, the ansible-builder

command, to create an Ansible Execution Environment. Ansible Builder produces a

directory with the build context for the container image. It contains the Containerfile,

along with any other files that need to be added to the image.

The Ansible Runner, the ansible-runner command utility, executes the Ansible

Playbook in an Ansible Execution Environment. The Ansible Runner enables you to run

the Ansible Execution Environment as a container in the current machine.

You can install the ansible-builder, and ansible-runner command-line utilities

via the DNF package manager (Fedora, CentOS, and Red Hat Enterprise Linux) or via the

pip package manager:

$ pip3 install ansible-builder

$ pip3 install ansible-runner

Listing 4-4 creates a custom Ansible Execution Environment for Kubernetes called

my_kube. The execution-environment.yml file contains the blueprint of the newest

Execution Environment, specifying that you want to customize the operating system

packages (system: bindep.txt), the Python libraries (python: requirements.txt),

and the Ansible collections (galaxy: requirements.yml). See Listing 4-4. You’re going

to see these files one by one. Before the build step, you install and upgrade the pip and

setuptools, and afterwards, you list the file in the root directory. The building process

will not work in disconnected or “air-gapped” environments. Ensure that your systems

are connected to the Internet because the process must download some resources in

order to build the Ansible Execution Environment.

Chapter 4 Ansible for K8s Tasks

124

Listing 4-4.  The execution-environment.yml File

version: 1

dependencies:

 galaxy: requirements.yml

 python: requirements.txt

 system: bindep.txt

additional_build_steps:

 prepend: |

 RUN pip3 install --upgrade pip setuptools

 append:

 - RUN ls -al /

The append part is an optional additional step that demonstrates that you can run

commands after building your Ansible Execution Environment.

As demonstrated in Listing 4-5, the requirements.yml file specifies the list of Ansible

collections to download. In this case, cloud.common for Ansible Turbo and kubernetes.

core for the Ansible resources for Kubernetes.

Listing 4-5.  The requirements.yml File

collections:

 - name: cloud.common

 - name: kubernetes.core

The requirements.txt file specifies the Python library dependencies, in that case,

the JSONpatch, kubernetes, and PyYAML Python libraries, as shown in Listing 4-6.

Listing 4-6.  The requirements.txt File

kubernetes>=12.0.0

PyYAML>=3.11

jsonpatch

You can also specify some operating system package files, in this case, the git Source

Code Management package for using the rpm and dpkg package installation methods, as

shown in Listing 4-7.

Chapter 4 Ansible for K8s Tasks

125

Listing 4-7.  The bindep.txt File

git [platform:rpm]

git [platform:dpkg]

You can start building the my_kube Ansible Execution Environment using the

ansible-builder command and specifying the build parameter with the name of the

newest Ansible Execution Environment after the -t parameter. Optionally, you can

obtain the output in verbose mode using the -v 3 parameter. The full command is like

the following:

$ ansible-builder build -t my_kube -v 3

The command requires connecting to the Container Registry to download the base

image and the Ansible Builder image. When you use it in an enterprise environment,

type the following command to authenticate to the Red Hat Container Registry with your

Red Hat Portal username and password:

$ podman login registry.redhat.io

Once the Ansible Builder has completed the execution successfully, a context/

Containerfile file is created. You can build your image using this command:

$ podman build -f context/Containerfile -t my_kube context

The Ansible Runner enables you to run the Ansible Execution Environment as

a container in the current machine. The syntax resembles the ansible-playbook

command-line utility, specifying the name of the Ansible Execution Environment:

$ ansible-runner run -p ping.yml --inventory inventory --container-

image=my_kube .

This uses the simplest Ansible INI inventory file against the localhost and using

the local connection (instead of the SSH connection):

localhost ansible_connection=local

The Ansible Playbook shown in Listing 4-8 uses the popular ansible.builtin.ping

Ansible module to test the successful connection to the target node. The ping module

executes a connection to the target node and executes some sample Python code. In this

way, you can test the connection and the ability of the Python interpreter to listen and

execute code on the target node.

Chapter 4 Ansible for K8s Tasks

126

Listing 4-8.  The ping.yml Ansible Playbook File

- name: test

 hosts: all

 tasks:

 - name: test connection

 ansible.builtin.ping:

In this section, you learned how to create a custom my_kube Ansible Execution

Environment with the Ansible Builder and how to execute an Ansible Paybook inside of

it using the Ansible Runner command-line tools. Since it’s a container, you can deploy

your Ansible Environment in your Container Registry. You can execute your Ansible

Playbook scripts in the local machine or in a Kubernetes cluster.

Tip T he Ansible Automation Platform easily manages the Ansible Execution
Environments and the execution against any Kubernetes and OpenShift cluster.
Under the Ansible Controller, you can create a container group specifying a
namespace, a service account with roles that allow to launch and manage
pods in the namespace, the OpenShift or Kubernetes bearer token, and the SSL
certification authority certificate associated with the cluster.

�Create a Namespace
You can automate the creation of the ansible-examples namespace in Kubernetes

or project in OpenShift. You just need a few parameters for the kubernetes.core.k8s

Ansible module. The k8s Ansible module is part of the kubernetes.core collection; it’s

very powerful and allows you to interact with the Kubernetes API like the kubectl or

oc command-line utilities. The name parameter specifies the namespace that you want

to create or verify if present. The api_version parameter specifies the Kubernetes API

version; the default is v1 for version 1. The kind parameter specifies an object model,

which is namespace for this use case. As with other modules, the state parameter

determines if an object should be created (the - present option), updated (the - patched

option), or deleted (the - absent option). You can customize the myproject variable with

your namespace in the code or via an Ansible extra variable.

Chapter 4 Ansible for K8s Tasks

127

The full Ansible Playbook is shown in Listing 4-9.

Listing 4-9.  The ns_create.yml Ansible Playbook File

- name: k8s ns

 hosts: all

 vars:

 myproject: "ansible-examples"

 tasks:

 - name: namespace present

 kubernetes.core.k8s:

 api_version: v1

 kind: Namespace

 name: "{{ myproject }}"

 state: present

You are going to execute the playbook in the current Ansible Controller so you can

use the localhost in the inventory with a local connection, as shown in Listing 4-10.

Listing 4-10.  The Inventory File

localhost ansible_connection=local

The code executes the ansible-playbook command. The full command is as

follows:

$ ansible-playbook -i inventory ns_create.yml

A successful execution output includes the following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=1

•	 Task status:

TASK [namespace ansible-examples present]

changed: [localhost]

Chapter 4 Ansible for K8s Tasks

128

You receive the changed status when the namespace is successfully created in the

Kubernetes cluster, whereas you receive the ok status when the namespace was already

present in the cluster (Ansible idempotency property).

You can verify that the namespace list uses the kubectl command-line utility:

$ kubectl get namespace | grep ansible-examples

ansible-examples Active 10m

Instead, OpenShift calls namespace as a project but the result is similar to the

previous:

$ oc projects | grep ansible-examples

 ansible-examples

The previous Ansible Playbook supposes that you perform the authentication in the

Ansible Controller outside the Ansible Playbook using the kubectl for Kubernetes or

oc for OpenShift command. It’s also possible to perform the authentication step in the

Ansible Playbook using the k8s_auth Ansible module, which is part of the kubernetes.

core Ansible collection. If you want to execute the authentication directly in the Ansible

Playbook, you need to add a task before executing any command to the cluster. The

get access token task connects to the host address with the specified username and

password credentials and saves the result in the k8s_auth_results runtime variable.

The variable contains the token under the k8s_auth.api_key variable. Every time you

use the k8s module, the extra parameter api_key is specified with the value of the token

registered from the previous task. Listing 4-11 shows the full Ansible Playbook.

Listing 4-11.  The ns_create_auth.yml Ansible Playbook File

- name: k8s ns

 hosts: all

 vars:

 myproject: "ansible-examples"

 k8s_username: "kubeadmin"

 k8s_password: "password"

 k8s_host: "https://api.k8s:6443"

 k8s_validate: true

Chapter 4 Ansible for K8s Tasks

129

 tasks:

 - name: get access token

 kubernetes.core.k8s_auth:

 username: "{{ k8s_username }}"

 password: "{{ k8s_password }}"

 host: "{{ k8s_host }}"

 validate_certs: "{{ k8s_validate }}"

 register: k8s_auth_results

 - name: namespace present

 kubernetes.core.k8s:

 api_key: "{{ k8s_auth_results.k8s_auth.api_key }}"

 api_version: v1

 kind: Namespace

 name: "{{ myproject }}"

 state: present

In the real world, it’s better to store any variables with sensitive data (beginning

with k8s_ of the previous Ansible Playbook) in an Ansible vault that’s encrypted and

protected. For OpenShift authentication, use the community.okd.openshift_auth

Ansible module in the first task.

�Report Namespaces
Kubernetes cluster administrators often need to list all the namespaces (projects

in OpenShift jargon). Reporting is a simple, repetitive, and boring task that can be

automated with Ansible. This can be easily achieved using Ansible Playbook with

two tasks. The first task uses the Ansible query lookup plugin and invokes the Ansible

kubernetes.core.k8s module to interact with the Kubernetes API and return a list of

all the namespaces in the cluster. The result of the Ansible lookup plugin is saved in the

projects runtime variable using the ansible.builtin.set_fact Ansible module. You

can use this variable to perform further tasks, such as print the result onscreen using

the ansible.builtin.debug Ansible module. Listing 4-12 shows the full ns_list.yml

Ansible Playbook file.

Chapter 4 Ansible for K8s Tasks

130

Listing 4-12.  The ns_list.yml Ansible Playbook File

- name: k8s ns

 hosts: all

 tasks:

 - name: list all namespaces

 ansible.builtin.set_fact:

 �projects: "{{ query('kubernetes.core.k8s', api_version='v1',

kind='Namespace') }}"

 - name: display the result

 ansible.builtin.debug:

 msg: "{{ projects }}"

The easier execution is locally in the Ansible Controller, specifying the localhost in

the inventory, as shown in Listing 4-13.

Listing 4-13.  The Inventory File

localhost ansible_connection=local

The Ansible code can be executed using the ansible-playbook command included

in every Ansible installation. A successful execution output includes the following:

•	 Managed host: localhost

•	 Play recap status: ok=3 changed=0

•	 Task status:

TASK [print]

ok: [localhost] => {

 "msg": [

 {

 "apiVersion": "v1",

 "kind": "Namespace",

[...]

Chapter 4 Ansible for K8s Tasks

131

You receive the ok statuses for the two tasks and a long JSON file containing the list of

all the namespaces in the Kubernetes cluster. To filter the output in a more synthetic and

useful way, see the next section about using the community.general.json_query filter

plugin and JMESPath.

�Report Deployments in Namespace
Reporting deployments in namespaces is another repetitive and useful task for a

Kubernetes user or administrator. First of all, you need to create a deployment in order to

list them in the Kubernetes/OpenShift cluster.

The Kubernetes Deployment is a central object that allows you to specify the number

of replicas of your pods. The pod definition is inside the Deployment YAML manifest

document in the following example. The deployment.yaml document is a simple

Deployment YAML file that deploys the latest tag of the container named nginx with two

replicas listening on port TCP 3000 under the ansible-examples namespace, as shown

in Listing 4-14.

Listing 4-14.  The deployment.yaml Kubernetes File

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 namespace: ansible-examples

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

Chapter 4 Ansible for K8s Tasks

132

 - name: nginx

 image: nginx:1.22

 imagePullPolicy: Always

 ports:

 - containerPort: 3000

You can apply your deployment to the Kubernetes cluster manually using the

kubectl command-line utility or via the kubernetes.core.k8s Ansible module:

$ kubectl apply -f deployment.yaml

A successful execution of the kubectl command returns the following message:

deployment.apps/nginx created

You can check the status of the nginx deployment using the following command:

$ kubectl get deployment nginx

The output confirms that your nginx deployment has been running for three

minutes (under the AGE column):

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 2/2 1 1 3m

You can also check your Kubernetes resources such as the pods allocated by your

deployment using this command:

$ kubectl get pods

If you don’t specify the kubectl namespace, try to list the resources of the default

namespace. You should always specify the namespace (the -n ansible-examples

parameter) in order to obtain the full list of pods. If you see the following message on the

screen, it means you forgot to specify your namespace:

No resources found in the default namespace.

$ kubectl get pods -n ansible-examples

The output confirms your nginx pod, plus a random identifier inside the ansible-

examples namespace:

NAME READY STATUS RESTARTS AGE

nginx-98fabf9-pvw89 2/2 Running 0 5m

Chapter 4 Ansible for K8s Tasks

133

As you can see, the pod had 2 replicas and the status is Running for 5 minutes.

Note  When Kubernetes cannot download the Container Image from the Container
Registry; it reports the statuses ImagePullBackOff and CrashLoopBackOff.
These two statuses are connected, meaning that the Kubernetes cluster tried to
download the image from the registry but without success. The full workflow is
from ErrImagePull, then ImagePullBackOff, and then keep trying. The root
cause could be a misspelled image name or tag, a registry issue, a rate limit in
the registry (see Free vs. Pro accounts in Docker Hub), a private registry without
specifying the Secret for the Pod, or simply a bit of bad luck about connectivity.

You can automate the application of your Kubernetes deployment.yaml file using the

following Ansible Playbook and the k8s module, as demonstrated in Listing 4-15.

Listing 4-15.  The deployment.yml Ansible Playbook File

- name: k8s deployment

 hosts: all

 vars:

 myproject: "ansible-examples"

 tasks:

 - name: namespace present

 kubernetes.core.k8s:

 api_version: v1

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 - name: deployment present

 kubernetes.core.k8s:

 src: deployment.yaml

 namespace: "{{ myproject }}"

 state: present

Chapter 4 Ansible for K8s Tasks

134

Now execute your code in the Ansible Controller machine using the inventory, as

shown in Listing 4-16.

Listing 4-16.  The Inventory File

localhost ansible_connection=local

A successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=3 changed=2

•	 Task status:

TASK [namespace ansible-examples present]

changed: [localhost]

TASK [deployment present]

changed: [localhost]

You receive the two changed statuses for the two tasks, which means the deployment

request was successfully sent to the Kubernetes cluster API and executed. The two

changed statuses mean that the namespace and the deployment were created. If one of

the two is already present, you receive an ok status.

TASK [deployment present]

ok: [localhost]

Note  You’ll receive a Kubernetes return code 404 error when the namespace is
not present and a 403 error when the namespace is terminated.

The following code lists all the deployments in the specified namespace. As

you explored in the previous section, the Ansible query lookup plugin invokes the

kubernetes.core.k8s module to interact with the Kubernetes API and return a list

of all the deployments in the cluster. The query lookup plugin (sometimes shortened

as q) invokes the kubernetes.core.k8s module, specifying the deployment as the

kind parameter and ansible-examples as a namespace parameter. You can list other

Chapter 4 Ansible for K8s Tasks

135

Kubernetes objects by changing the kind parameter value or other namespaces by

changing the namespace parameter value. The lookup plug returns the full JSON received

from the Kubernetes cluster.

You need to filter the output to extract a single element: the name of the deployment

in the namespace. The most useful Ansible filter plugin to extract a single element is the

Ansible json_query filter plugin. It’s specifically designed to select a single element or

a data structure from a JSON output. Its full name is community.general.json_query,

which means that you need the additional community.general Ansible collection

installed in your system. The community.general.json_query.

You can install the collection using the ansible-galaxy command-line tool:

$ ansible-galaxy collection install community.general

See Chapter 2 when you want to automate this process using a requirements.

yml file. The Ansible module requires the Python jmespath library to be installed in

the system:

$ pip3 install jmespath

Follow the guidance of the previous section about how to install these dependency

resources manually or automatically. With the Ansible json_query filter plugin, you can

use the JMESPath popular query language for JSON. Considering the Kubernetes output,

you apply the [*].metadata.name filter pattern which means extracting for each element

of the list (the star between brackets [*]) the key metadata, and displaying the subkey

name specified using the dot notation. The result of the Ansible lookup plugin and the

Ansible filter is saved in the deployments runtime variable using the ansible.builtin.

set_fact Ansible module. It’s displayed onscreen using the Ansible debug module.

Listing 4-17 shows the full Ansible Playbook code.

Listing 4-17.  The deployment_list.yml File

- name: k8s deployments

 hosts: all

 tasks:

 - name: list all deployments

 ansible.builtin.set_fact:

Chapter 4 Ansible for K8s Tasks

https://doi.org/10.1007/978-1-4842-9285-3_2

136

 �deployments: "{{ query('kubernetes.core.k8s', kind='Deployment',

namespace='ansible-examples') | community.general.json_query('[*].

metadata.name') }}"

 - name: display the result

 ansible.builtin.debug:

 msg: "{{ deployments }}"

You can execute the ansible-playbook command on the Ansible Controller

machine using the inventory, as shown in Listing 4-18.

Listing 4-18.  The Inventory File

localhost ansible_connection=local

A successful execution output includes the following:

•	 Managed host: localhost

•	 Play recap status: ok=3

•	 Task status:

TASK [display the result]

ok: [localhost] => {

 "msg": [

 "nginx"

]

}

�Create a Pod
A pod is an atomic unit that deploys one or more containers in a Kubernetes cluster. You

can automate the creation of the nginx pod in the ansible-example namespace with

Ansible module k8s in your Kubernetes/OpenShift cluster. The k8s Ansible module is

part of the kubernetes.core collection and manages Kubernetes objects by applying

a YAML object manifest to the src parameter. You also specify the namespace in the

namespace parameter; it refers to the Ansible variable myproject defined in the Play area

Chapter 4 Ansible for K8s Tasks

137

of the Playbook. The present state indicates the final result of the execution to create

the object if not present or to verify its existence if it’s already present in the Kubernetes

cluster.

The Ansible Playbook shown in Listing 4-19 executes the Kubernetes pod.yaml

manifest file to create the pod in the desired namespace.

Listing 4-19.  The pod.yml Ansible Playbook File

- name: k8s pod

 hosts: all

 vars:

 myproject: "ansible-examples"

 tasks:

 - name: namespace present

 kubernetes.core.k8s:

 api_version: v1

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 - name: pod present

 kubernetes.core.k8s:

 src: pod.yaml

 namespace: "{{ myproject }}"

 state: present

The full Kubernetes YAML manifest file is shown in Listing 4-20.

Listing 4-20.  The pod.yaml Kubernetes File

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

Chapter 4 Ansible for K8s Tasks

138

 containers:

 - name: nginx

 image: nginx:latest

 ports:

 - containerPort: 80

As usual, execute the playbook code in your Ansible Controller with the localhost in

the inventory, as demonstrated in Listing 4-21.

Listing 4-21.  The Inventory

localhost ansible_connection=local

A successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=1

•	 Task status:

TASK [pod present]

changed: [localhost]

You can check the nginx pod running as a result of the operation using the

Kubernetes kubectl command-line utility for a Kubernetes cluster:

$ kubectl get pods -n ansible-examples

In a similar way, you can list the pods in a namespace in an OpenShift cluster with

the oc command line:

$ oc get pods -n ansible-examples

The output displays the pod name, the number of pods (also called the replica count

1/1), the current status (Running), and the number of restarts:

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 2m

Chapter 4 Ansible for K8s Tasks

139

�Create a Secret
Secrets are not encrypted; they are encoded in base64 and stored in etcd on an

encrypted volume. Note that when you decide to encrypt your data, you can’t return to

the non-encrypted status.

Listing 4-22 shows you how to automate the creation of the mysecret Kubernetes

secret in the ansible-examples namespace in the Kubernetes/OpenShift cluster using

the Ansible module k8s.

Listing 4-22.  The secret.yml Ansible Playbook File

- name: k8s secret

 hosts: all

 tasks:

 - name: namespace present

 kubernetes.core.k8s:

 api_version: v1

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 - name: secret present

 kubernetes.core.k8s:

 src: secret.yaml

 state: present

You can create two data fields: username and password, with the value. The

value must be encoded as base64. Many encoders and decoders exist for the base64

encodings. In Listing 4-23, the following key and values are used:

•	 username = admin

•	 password = mysupersecretpassword

Chapter 4 Ansible for K8s Tasks

140

Listing 4-23.  The secret.yaml Kubernetes File

apiVersion: v1

kind: Secret

metadata:

 name: mysecret

 namespace: ansible-examples

type: Opaque

data:

 username: YWRtaW4=

 password: bXlzdXBlcnNlY3JldHBhc3N3b3Jk

You can execute this code locally in your Ansible Controller machine using the

inventory, as shown in Listing 4-24.

Listing 4-24.  The Inventory File

localhost ansible_connection=local

A successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=1

•	 Task status:

TASK [secret present]

changed: [localhost]

After execution, you can list the secrets in the ansible-examples namespace using

the kubectl command-line utility for a Kubernetes cluster:

$ kubectl get secrets -n ansible-examples

You get the same command and output for the OpenShift cluster using the oc

command-line utility:

$ oc get secrets -n ansible-examples

Chapter 4 Ansible for K8s Tasks

141

The output displays the secret name, the secret type (Opaque), the amount of fields

(2), and the age of creation (2m54s):

NAME TYPE DATA AGE

mysecret Opaque 2 2m54s

�Use a Service to Expose Your App
The Kubernetes Service exposes your application to stakeholders without worrying

about the internal IP addresses of pods. Your customers need to be able to connect

to your Kubernetes pods in order to access a service or application. Now that you

understand that pods can be ephemeral, it makes no sense to rely on the pod IP address

for your services.

Instead, the best way is to use a Kubernetes Service that is designed to take care of

this use case. The Kubernetes Service is continuously updated by the pod statuses with

of healthy pods. The Kubernetes Service provides a constant IP address and port that act

as an entry point to a group of pods. This information doesn’t change for as long as the

service exists. Internal and external clients can reach your application running in a group

of pods by connecting to the service IP and ports. These connections are routed to one of

the pods behind the Kubernetes Service.

The service.yaml document is a simple Deployment YAML file that deploys your

service, exposing the internal port TCP 3000 of your application named nginx-example

to the external TCP 80 (HTTP protocol), as shown in Listing 4-25.

Listing 4-25.  The service.yaml Kubernetes File

apiVersion: v1

kind: Service

metadata:

 name: nginx-example

spec:

 selector:

 app: nginx-example

 ports:

Chapter 4 Ansible for K8s Tasks

142

 - protocol: TCP

 port: 80

 targetPort: 3000

You can create your nginx-example service by applying the service.yaml Service

YAML file to the Kubernetes cluster with the kubectl command or via the kubernetes.

core.k8s Ansible module:

$ kubectl apply -f service.yaml

Successful execution of the kubectl command returns the following message:

service/nginx-example created

You can also list the service nginx-example in your cluster with the following

kubectl command:

$ kubectl get service nginx-example -n ansible-examples

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nginx-service ClusterIP 172.30.112.45 <none> 80/TCP 4m

The output confirms that your nginx-example service has been running for four

minutes; it listens on port 80/TCP at the 172.30.112.45 Cluster IP and has no external

IP associated with it.

For reference, the following command operates in the OpenShift cluster:

$ oc get services -n ansible-examples

The Ansible Playbook shown in Listing 4-26 automates the execution of the service.

yaml Kubernetes YAML manifest file using the k8s module.

Listing 4-26.  The service.yml Ansible Playbook File

- name: k8s service

 hosts: all

 vars:

 myproject: "ansible-examples"

 tasks:

 - name: k8s service

 kubernetes.core.k8s:

Chapter 4 Ansible for K8s Tasks

143

 src: service.yaml

 namespace: "{{ myproject }}"

 state: present

Execute your code using the ansible-playbook command on your Ansible

Controller machine using the inventory file, as shown in Listing 4-27.

Listing 4-27.  The Inventory File

localhost ansible_connection=local

Successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=1

•	 Task status:

TASK [k8s service]

changed: [localhost]

You can verify the result using the kubectl command-line utility for a Kubernetes

cluster and the oc command-line utility for the OpenShift cluster.

�Kubernetes Networking
Kubernetes uses five techniques to track pod status and direct traffic to the

appropriate pods:

–– ClusterIP: Accessible only internally within the cluster.

–– NodePort: Exposes a static port (the NodePort) on each node’s IP

that can be accessed from outside the cluster by the address

NodeIP:NodePort. The NodePort service connects to a ClusterIP

service that is created automatically for your NodePort.

–– LoadBalancer: Exposes a load balancer externally. The

LoadBalancer service connects to the NodePort and ClusterIP,

automatically created.

Chapter 4 Ansible for K8s Tasks

144

–– Ingress: Reduces the amount of load balancer for HTTP and HTTPS

defining traffic routes.

–– ExternalName: Maps to a DNS name. It returns a CNAME record with

its value.

The simplest network configuration is the ClusterIP service type. This is accessible

from within the cluster only. A ClusterIP service IP address is assigned from the cluster

range. The ClusterIP service routes the traffic to the nodes. Behind the scene, each

node runs a kube-proxy container for this task. The kube-proxy container creates the

appropriate IPtables firewall rules to redirect the ClusterIP traffic to the appropriate Pod

IP address. This type of service is used by frontend pods to redirect traffic to the backend

pods or to act like load balancers.

In the Kubernetes YAML for ClusterIP service, the most important field is the

selector. It determines which pods serve as endpoints for this service (see Listing 4-28).

Listing 4-28.  The ClusterIP.yaml Kubernetes File

apiVersion: v1

kind: Service

metadata:

 name: "nginx-example"

 namespace: "mynamespace"

spec:

 type: ClusterIP

 selector:

 app: "nginx"

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 9376

The NodePortservice type is similar to a ClusterIP service, but it also opens a port

on each node. Opening a port allows access to the service from inside the cluster (using

the ClusterIP). External users can connect directly to the node on the NodePort.

Chapter 4 Ansible for K8s Tasks

145

A random port is opened on the local node for each service unless the nodeport

property specifies a specific port (see Listing 4-29). The kube-proxy container forwards

traffic from the port to the service’s cluster IP and then to the pod that’s updating the

IPtable rules.

Listing 4-29.  The NodePort.yaml Kubernetes File

apiVersion: v1

kind: Service

metadata:

 name: "nginx-example"

 namespace: "mynamespace"

spec:

 type: NodePort

 selector:

 app: "nginx"

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 9376

 nodeport: 25000

The LoadBalancer service type extends the NodePort service type by adding a load

balancer in front of all nodes. This means Kubernetes requests a load balancer and

registers all the nodes. The load balancer doesn’t detect where the pods for a specific

service are running. Consequently, the load balancer adds all worker nodes as backend

instances. The Load Balancer service type uses the classic load balancers by default. This

means there is a classic load balancer in front of all instances listening to your requests.

The load balancer routes the requests to the nodes through an exposed port. You can

also use the network load balancer instead of the classic load balancer.

The classic load balancer processes the requests one by one when they arrive from

the Internet. It then forwards the request to one of the Kubernetes instances on a specific

port. When there is a service listening to a specific port, it acts like a second-layer load

balancer for the backend pods that handle the requests. Listing 4-30 illustrates this.

Chapter 4 Ansible for K8s Tasks

146

Listing 4-30.  The LoadBalancer.yaml Kubernetes File

apiVersion: v1

kind: Service

metadata:

 name: "nginx-example"

 namespace: "mynamespace"

spec:

 type: LoadBalancer

 selector:

 app: "nginx"

 ports:

 - name: http

 port: 80

 targetPort: 9376

You can reduce the number of load balancers using the Kubernetes ingress object.

An ingress object exposes HTTP and HTTPS routes outside the cluster and routes traffic

to your services according to defined traffic rules. Ingress objects use ingress controllers,

which fulfill the ingress rules and requests (usually using a load balancer). Using the

ingress objects and controllers, you can transition from one load balancing per service

to one load balancer per ingress and route to multiple services. Traffic can be routed to

the proper service using path-based routing. When using Kubernetes, you have many

ingress controller options, for example, Envoy Controllers and NIGNX controllers.

The load balancer picks the proper target group based on the path. The load

balancer then forwards the request to one of the Kubernetes instances on the application

ports. The service listens at a specific port and balances the requests to one of the pods

of the application or service, as demonstrated in Listing 4-31.

Listing 4-31.  The Ingress.yaml Kubernetes File

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: "nginx-example"

Chapter 4 Ansible for K8s Tasks

147

 namespace: "mynamespace"

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 ingressClassName: nginx-example

 rules:

 - http:

 paths:

 - path: /webapp

 backend:

 service:

 serviceName: webapp

 servicePort: 9376

The ExternalName service type is used to connect to a resource outside of the cluster.

For example, this could be a database or file system resource that is in the network

outside the cluster. The pods that require access to the external resource service require

access to the resource to connect to the resource service, which returns the external

resource endpoints. This type of service is helpful when you decide to migrate the

external resource to the Kubernetes cluster.

When the resource is deployed in the cluster, you can update the service type to

ClusterIP. The application can continue to use the same resource endpoint.

The most important property in the YAML manifest is the externalName field, which

specifies where the service maps to (see Listing 4-32).

Listing 4-32.  The ExternalName.yaml Kubernetes File

apiVersion: v1

kind: Service

metadata:

 name: "nginx-example"

 namespace: "mynamespace"

spec:

 type: ExternalName

 externalName: mydb.example.com

Chapter 4 Ansible for K8s Tasks

148

You can apply all your network YAML files in this section to the Kubernetes

cluster using the kubectl command-line utility or via the kubernetes.core.k8s

Ansible module:

$ kubectl apply -f ClusterIP.yaml

Substitute the name of the YAML file with the relevant code in this section:

ClusterIP.yaml, NodePort.yaml, LoadBalancer.yaml, Ingress.yaml, or

ExternalName.yaml.

�Scale Your App
Resilience is an important property that you want to achieve from your services or

applications. Containers enable you to achieve this property by running multiple

replicas of the same pod. Cost optimization involves running the minimum available

pods (a minimum of two) when there is low traffic and being able to scale up or down

following the traffic needs.

Some business-critical services must be designed with high availability and fault

tolerance. Your application must be created to be cloud-ready or, even better, cloud-

native in order to unlock the full potential of cloud computing.

Imagine a service scenario created by two pods. If there is a failure of one container

or the infrastructure under the container, the service can survive one container failure.

In high availability (HA), the application survives the failure, but the traffic is

impacted by poor performance. Even if the service survived failure, it withstands failure.

To be fault tolerant (FT), your application needs two instances in order to operate

at its full potential. The service needs to be designed in order to recover at least the

minimum amount of pods.

Since Kubernetes version 1.21, PodDisruptionBudget (PDB) is a way to limit the

number of concurrent disruptions that your application experiences, thus allowing for

high availability. Meanwhile, it allows the cluster administrator to manage the nodes of

the cluster by manually draining a node or preventing an upgrade from taking too many

copies of the application offline. PDB allows you to specify and overprovision in order

to guarantee the high availability of your service. PDB is different from auto-scaling

because it overprovisions the application on purpose. For full disclosure, if there is a

failure in the production infrastructure and you need to have a Disaster Recovery (DR)

infrastructure.

Chapter 4 Ansible for K8s Tasks

149

Scaling is the best feature of the Kubernetes platform and allows you to match

customer demands with resources. You can scale up (increase) your deployment using

the scale parameter of the kubectl command or using the kubernetes.core.k8s_scale

Ansible module in order to change the number of replicas from the current number to

three of your nginx deployment:

$ kubectl scale deployment nginx --replicas=3

The output confirms your nginx deployment was successfully scaled:

deployment.apps/nginx scaled

To check the number of replicas, you need to use the get parameter of the kubectl

command:

$ kubectl get deployments

As you can see in the output, the nginx is now running on three replicas confirmed

by the 3/3 in the READY column:

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 125m

In the same way, you can scale down (reduce) your deployment using the scale

parameter of the kubectl command. You do this in order to change the number or

replicas of your deployment from the current number to one of your deployment:

$ kubectl scale deployment nginx --replicas=1

The output confirms your nginx deployment was successfully scaled:

deployment.apps/nginx scaled

To check the number of replicas, you need to use the get parameter of the kubectl

command:

$ kubectl get deployments

Chapter 4 Ansible for K8s Tasks

150

As you can see in the output, the nginx is now running on one replica confirmed by

the 1/1 in the READY column:

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 1/1 1 1 31m

With Ansible, you can scale a deployment, ReplicaSet, replication controller, and job

using the kubernetes.core.k8s_scale Ansible module. The k8s_scale Ansible module

is part of the kubernetes.core collection and it interacts with the Kubernetes API like

the kubectl or oc command-line utilities.

For example, let’s suppose you want to increase the pod count for your nginx

deployment inside the ansible-examples namespace. Figure 4-13 gives a clear overview

of the result of the scale-up operation in your Kubernetes cluster dashboard. Note the

pod count from two to ten. Consequently, all the other resources are increased as well.

Figure 4-13.  Kubernetes pod resource utilization

The Ansible Playbook shown in Listing 4-33 changes the replica count to ten of the

deployment nginx in the namespace ansible-examples. The Ansible Playbook waits for

a timeout maximum of 120 seconds (two minutes) for the operation to complete.

Chapter 4 Ansible for K8s Tasks

151

Listing 4-33.  The scale_up.yml Ansible Playbook File

- name: k8s scale

 hosts: all

 vars:

 myproject: "ansible-examples"

 mydeployment: "nginx"

 myreplica: 10

 mytimeout: 120

 tasks:

 - name: scale Deployment

 kubernetes.core.k8s_scale:

 api_version: v1

 kind: Deployment

 name: "{{ mydeployment }}"

 namespace: "{{ myproject }}"

 replicas: "{{ myreplica }}"

 wait_timeout: "{{ mytimeout }}"

Execute your code in the Ansible Controller machine using the inventory, as shown

in Listing 4-34.

Listing 4-34.  The Inventory File

localhost ansible_connection=local

Successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=1

•	 Task status:

TASK [scale up]

changed: [localhost]

Chapter 4 Ansible for K8s Tasks

152

The changed status means the deployment changed the replica count from the

Kubernetes cluster API. If the replica count already matches the current pod count, you

would obtain the ok status.

When the pod count is changed by a big number and the time is not sufficient,

you might receive a failed status with the following message on the screen: Resource

scaling timed out. This simply means that the Kubernetes cluster is taking longer than

expected to execute the operation; it’s not a failure message. A more deep analysis of the

fatal error message, for example, reveals the operation in progress:

"message": "ReplicaSet \"nginx-689b466988\" is progressing."

Ansible allows you to scale your replica count when you reach a specific number of

pods. The Ansible Playbook shown in Listing 4-35 reduces the pod count from 10 to 5 of

the deployment nginx in the namespace ansible-examples.

Listing 4-35.  The scale_down.yml Ansible Playbook File

- name: k8s scale

 hosts: all

 vars:

 myproject: "ansible-examples"

 mydeployment: "nginx"

 curr_replica: 10

 myreplica: 5

 tasks:

 - name: scale down

 kubernetes.core.k8s_scale:

 api_version: v1

 kind: Deployment

 name: "{{ mydeployment }}"

 namespace: "{{ myproject }}"

 current_replicas: "{{ curr_replica }}"

 replicas: "{{ myreplica }}"

Chapter 4 Ansible for K8s Tasks

153

The outcome is similar to the previous Ansible Playbook, except that Kubernetes

is going to reduce the replica count from 10 to 5 pods when the current_replicas

parameter is reached. This playbook is helpful for performing the scale operation when

the threshold is reached.

�Auto-scaling
The next level is to use metrics to automatically scale your cluster.

•	 Horizontal scaling adds/remove pods of the same size capacity.

•	 Vertical scaling keeps the same number of pods, but you change the

size of capacity.

Kubernetes Cluster Autoscaler (CA) allocates the right amount of resources to

guarantee that your application meets the demands of the traffic. The change is

performed for your pods in the auto-scale group in your cluster in order to enable

Horizontal Pod Autoscaler (HPA) or Vertical Pod Autoscaler (VPA).

Kubernetes Cluster Autoscaler can be deployed, but it requires permission to

interact with your cluster. The Kubernetes Cluster Autoscaler needs a service account to

interact with the auto-scaling group.

Table 4-1 lists the necessary configuration parameters in your Kubernetes cluster.

Table 4-1.  Auto-Scaling API Endpoints

Key Value

k8s.io/cluster-autoscaler/my-cluster Owned

k8s.io/cluster-autoscaler/enabled True

You can download the Cluster Autoscaler via the kubernetes/autoscaler GitHub

repository. The installation process might vary, but it’s relatively simple and usually

involves a YAML manifest file, according to the Kubernetes release version or cloud

provider. For the Amazon Web Services (AWS) provider, you just need to download and

install the cluster-autoscaler-autodiscover.yaml YAML manifest file.

After a successful download, you can apply it to your Kubernetes cluster:

$ kubectl apply -f cluster-autoscaler-autodiscover.yaml

Chapter 4 Ansible for K8s Tasks

154

You can also tune some parameters in the kube-system namespace:

$ kubectl -n kube-system edit deployment.apps/cluster-autoscaler

Set the appropriate Kubernetes version to the Cluster Autoscaler image tag with the

following command. Replace 1.21 with your Kubernetes version value.

$ kubectl set image deployment cluster-autoscaler \

 -n kube-system \

 cluster-autoscaler=k8s.gcr.io/autoscaling/cluster-autoscaler:v1.21

Pods status pile up in a Pending status and they transition to Ready when they can

handle the traffic.

The Vertical Pod Autoscaler has three working modes:

•	 Off: Recommended only for simulations

•	 Initial: Initialization only

•	 Auto: Performing the action on your cluster

It’s always a good practice to start with the Off mode and increase the more you have

data about your traffic and usage. The wrong combination of horizontal and vertical

Autoscaler can be difficult to troubleshoot and not obtain the desired result.

Tip T he k8s.gcr.io registry is frozen and considered an “old” registry since
April, 2023; no further images for Kubernetes and related subprojects are pushed
in it. The registry.k8s.io is the community-owned image onward.

�Update Your App
This is the most controversial topic because users expect to access the application or

service all the time. Instead, the development team wants to deploy new versions as fast

as possible. Sometimes the release process happens several times a day, with continuous

delivery. The rolling update is the solution in the Kubernetes world, as shown in

Figure 4-14.

Chapter 4 Ansible for K8s Tasks

155

Deployment

Image v1

Image v1

Image v1

Deployment

Image v2

Image v2

Image v2

Rolling update

Figure 4-14.  Kubernetes rolling update

The Kubernetes rolling update enables you to update an application while the

users are connected to it. Under the hood, Kubernetes updates pod instances with

a new one performing a zero downtime deployment update on nodes with enough

available resources. The mechanism behind it is similar to the scale mechanism. Like in

application scaling, when a deployment is publicly exposed, the service load balances

the traffic on the available pods during the update. Having more than one copy of the

pods ensures the high availability of the application while the update is in progress. The

rolling update mechanism also offers a rollback option if something goes wrong during

the update process; you can simply return to the previous version of the pod anytime.

Note  Using the latest tag is discouraged because it fails when rolling an
update from image:latest to a new image:latest, even when the image tag
has been updated. The latest tag is identical from the Kubernetes point of view
to the current value.

Suppose you are currently running a Nginx web server using the nginx:1.22 (image

nginx tag 1.22) in the nginx deployment. The following command changes the image

of the nginx deployment to the nginx:1.23 (image nginx tag 1.23). Manually, you can

specify the set image parameter for deployment to set a new image or a new image tag

to deploy.

$ kubectl set image deployments/nginx=nginx:1.23

The command tells the Kubernetes nginx deployment to use a different image and

initialize a rolling update process to deploy the image nginx with tag 1.23.

Chapter 4 Ansible for K8s Tasks

156

You can verify the status by running the following command for the nginx deployment:

$ kubectl rollout status deployment nginx

You can perform a rollback in the nginx deployment using this command:

$ kubectl rollout undo deployments nginx

Logs are recorded in the Kubernetes cluster and you can review them using this

command:

$ kubectl rollout history deployment nginx

You can automate the rolling update of the deployment using the Ansible k8s

module and specifying a new deployment YAML manifest file.

The Kubernetes nginx deployment manifest file uses the following image definition

image: nginx:1.22. The updated nginx deployment manifest file reports the new image

and tag image: nginx:1.23.

The full Kubernetes updated YAML deployment manifest file is shown in

Listing 4-36.

Listing 4-36.  The deployment2.yml Kubernetes Manifest File

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 namespace: ansible-examples

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

Chapter 4 Ansible for K8s Tasks

157

 - name: nginx

 image: nginx:1.23

 imagePullPolicy: Always

 ports:

 - containerPort: 3000

You can automate the application of your Kubernetes deployment.yaml file using the

deployment.yml—the same Ansible Playbook that you used in the “Report Deployments

in Namespace” section. You just need to change the value of the src parameters for the

module, specifying the newest deployment manifest filename. Line 16 changes from

src: deployment.yaml to src: deployment2.yaml.

Successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=3 changed=1

•	 Task status:

TASK [namespace ansible-examples present]

ok: [localhost]

TASK [deployment present]

changed: [localhost]

You received the changed statuses for the two tasks, which means the deployment

request was sent to the Kubernetes cluster API and the rolling update process is ongoing.

�Assign Resources to Kubernetes K8s Pods
Out of the box, a Kubernetes cluster is configured to allow the usage of as many

resources as available in the nodes. This behavior is understandable and potentially

allows a Kubernetes service to serve many customers using all the cluster resources.

On the other end, excessive resource consumption from a resource leak or an unstable

or rogue pod could consume all the resources and not allow other pods to use them.

Imagine how dangerous it could be if a program gets out of control and consumes all the

available CPU. The root cause may a bad developer, bad code, or simply bad luck—the

Chapter 4 Ansible for K8s Tasks

158

most important thing is being in control of your Kubernetes clusters. You can apply CPU

and memory resource limitations to your Kubernetes cluster to prevent this possible

harmful scenario.

Observability is the pillar of every successful service. Predicting trends and obtaining

meaningful information from the data is more important than ever.

�Metrics
In order to guarantee a healthy Kubernetes cluster, the Cluster Administrator Team and

the Service Reliability Team must acquire some data and perform some predictions.

Managing metrics and logs in your Kubernetes cluster is the way to guarantee the

business continuity of your application. The OpenTelemetry (https://opentelemetry.

io/) project is trying to standardize metrics all over the world. The project delivers tools,

a Software Development Kit, and an API to be instrumental in the generation, collection,

and export of telemetry data (logs, metrics, and traces). They help you analyze the

performance and behavior of your software. Prometheus metrics store the data inside

Prometheus. PromQL is the query language to search across the data.

Control planes and data planes create metrics in the Prometheus format. You can see

them in the RAW format (JSON) via the command-line command:

$ kubectrl get –raw /metrics

You can represent them in a graphical way from a Grafana dashboard. Performance

monitoring, setting alarms, and acquiring insights from the logs and metrics are all of

great value for making decisions in your organization.

�CPU Resources
Kubernetes CPU resources are defined in millicores. You can specify any integer value by

adding the letter m to the end. Each virtual CPU core has a value of 1000m. If you want to

specify 50 percent of a CPU core, you use the value 500m, whereas for two full CPU cores,

you use the value 2000m.

Set a limitation on the usage of the CPU for your containers. A container is

guaranteed to be allocated as much CPU as it requests when the cluster has enough

capacity available. To specify a soft limitation, use the CPU request for a container using

the resources:requests field in the container resource manifest. To specify a hard

limitation, use the CPU limit, also including the resources:limits.

Chapter 4 Ansible for K8s Tasks

https://opentelemetry.io/
https://opentelemetry.io/

159

The vish/stress container image is a famous CPU stress test that allows you to test

your cluster, set some limits and requests, and then see the results. You can find it in

many Container Registries, such as Docker Hub (https://hub.docker.com/r/vish/

stress).

Listing 4-37’s Playbook executes the CPU stress test cpu-demo-pod in the cpu-

example namespace, setting some CPU limits and requests.

Listing 4-37.  The cpu.yml Ansible Playbook File

- name: k8s cpu

 hosts: all

 vars:

 myproject: "cpu-example"

 tasks:

 - name: namespace present

 kubernetes.core.k8s:

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 api_version: v1

 - name: cpu pod

 kubernetes.core.k8s:

 state: present

 definition:

 apiVersion: v1

 kind: Pod

 metadata:

 name: cpu-demo

 namespace: "{{ myproject }}"

 spec:

 containers:

 - name: cpu-demo-pod

 image: vish/stress

 resources:

Chapter 4 Ansible for K8s Tasks

https://hub.docker.com/r/vish/stress
https://hub.docker.com/r/vish/stress

160

 limits:

 cpu: "1"

 requests:

 cpu: "0.5"

 args:

 - -cpus

 - "2"

As usual, you execute the code in your Ansible Controller with the localhost in the

inventory, as shown in Listing 4-38.

Listing 4-38.  The Inventory File

localhost ansible_connection=local

You can execute the cpu.yml playbook using the ansible-playbook command-

line tool:

$ ansible-playbook -i inventory cpu.yml

Note that the Kubernetes cluster in this stress test respects the 0.5 CPU request (soft

limitation) with a maximum of 1.0 CPU request (hard limitation), despite the process

asking for more resources and 2.0 CPUs. You can verify this behavior using the kubect

command line and specifying the cpu-example namespace and the cpu-demo pod name:

$ kubect get pod cpu-demo --namespace=cpu-example --output=yaml

[...]

 resources:

 limits:

 cpu: "1"

 requests:

 cpu: 500m

[...]

You can use the cpu.yaml playbook, changing the pod name to set CPU limits and

requests to any pod in your Kubernetes cluster.

Chapter 4 Ansible for K8s Tasks

161

�Memory Resources
Kubernetes memory resources are defined in bytes and multiples. A mebibyte value for

memory is commonly used, following the two powers 1024 KiB instead of the thousands

1000 kB.

You can limit the memory usage for pods to prevent dangerous memory leaks. The

Kubernetes cluster honors the limits and requests specified by the user. To specify a

memory request for a container, include the resources:requests field in the container

resource manifest. To specify a memory limit, specify resources:limits.

The polinux/stress container image is a famous memory stress test that allows you

to test your cluster and set some limits and requests about RAM usage. You can find the

image on the most popular Container Registry, for example, Docker Hub (https://hub.

docker.com/r/polinux/stress).

The playbook in Listing 4-39 executes the memory demo application memory-demo-

pod in the mem-example namespace, thus setting some memory limits and requests.

Listing 4-39.  The ram.yml Ansible Playbook File

- name: k8s memory

 hosts: all

 vars:

 myproject: "mem-example"

 tasks:

 - name: namespace present

 kubernetes.core.k8s:

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 api_version: v1

 - name: memory pod

 kubernetes.core.k8s:

 state: present

 definition:

 apiVersion: v1

Chapter 4 Ansible for K8s Tasks

https://hub.docker.com/r/polinux/stress
https://hub.docker.com/r/polinux/stress

162

 kind: Pod

 metadata:

 name: memory-demo

 namespace: "{{ myproject }}"

 spec:

 containers:

 - name: memory-demo-pod

 image: polinux/stress

 resources:

 requests:

 memory: "100Mi"

 limits:

 memory: "200Mi"

 command: ["stress"]

 args: ["--vm", "1", "--vm-bytes", "500M", "--vm-hang", "1"]

As you can see, the pod has set a memory request of 100 MiB and a memory limit of

200 MiB. During execution, the pod attempts to allocate 500 MiB of memory, which is

not allowed.

You can verify the successful application of a pod limitation using the following

command:

$ kubect get pod memory-demo --namespace=mem-example --output=yaml

[...]

 resources:

 limits:

 memory: 200Mi

 requests:

 memory: 100Mi

[...]

�Namespace Resources
Assigning resources per pod is very granular but might be daunting. A more durable

approach is to define resource needs at a namespace level.

Chapter 4 Ansible for K8s Tasks

163

After creating a namespace, you can add a ResourceQuotas Kubernetes object that

defines the CPU and memory limits and requests for each namespace. A more powerful

Kubernetes object is LimitRange. Unlike the ResourceQuotas Kubernetes object, which

looks at the namespace as a whole, a LimitRange Kubernetes object applies to an

individual pod.

�GPU Resources
At the moment, Kubernetes doesn’t provide a native tool to manage the Graphics

Processing Units (GPU) resources of the cluster. The GPUs are a critical component in

order to build and train deep learning (DL) and machine learning (ML) algorithms and

bring artificial intelligence (AI) initiatives to production. At the moment, it’s possible to

allocate the GPU resources in a static way and only on the worker node of your pod. The

Run:AI startup from Tel Aviv, Israel created the Atlas AI Orchestration Platform to pool

the available GPU resources, efficiently optimize the scheduling, distribute the workload,

and set a prioritization schedule in your cluster. More details are available on the official

website at https://www.run.ai.

�Configure a Pod to Use a Volume for Storage
A pod is ephemeral; the file system of a pod lives only as long as the pod does. Therefore,

when a pod terminates or restarts, any file system changes are lost. Volumes allow you to

assign more consistent storage, independent from the pod’s lifecycle. This is especially

important for stateful applications, data lakes (structured, semi-structured, and

unstructured data), and databases.

For example, let’s suppose you want to execute a Redis server. Redis is a popular BSD

open-source license, in-memory data structure store used as a NoSQL database, cache,

and message broker. The Ansible Playbook shown in Listing 4-40 creates the volume-

example namespace with a pod from the redis container image. It also has a redis-

storage storage that stores the data created in your application.

Chapter 4 Ansible for K8s Tasks

https://www.run.ai

164

Listing 4-40.  The storage.yml Ansible Playbook File

- name: k8s volume

 hosts: localhost

 gather_facts: false

 connection: local

 vars:

 myproject: "volume-example"

 tasks:

 - name: create namespace

 kubernetes.core.k8s:

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 api_version: v1

 - name: pod with storage

 kubernetes.core.k8s:

 state: present

 namespace: "{{ myproject }}"

 definition:

 apiVersion: v1

 kind: Pod

 metadata:

 name: redis

 spec:

 containers:

 - name: redis

 image: redis

 volumeMounts:

 - name: redis-storage

 mountPath: /data/redis

 volumes:

 - name: redis-storage

 emptyDir: {}

Chapter 4 Ansible for K8s Tasks

165

The inventory file in Listing 4-41 executes the Ansible Playbook in the current

Ansible Controller with a local connection.

Listing 4-41.  The Inventory File

localhost ansible_connection=local

Successful execution using the ansible-playbook command output includes the

following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=2

•	 Task status:

TASK [create volume-example namespace]

changed: [localhost]

TASK [pod with storage]

changed: [localhost]

You receive the changed status when the namespace was successfully created in the

Kubernetes cluster and the pod was successfully created. Otherwise, you’ll receive the

ok status when the namespace or the pod was already present in the cluster (Ansible

idempotency property). You can verify the successful operation via the command line or

via the dashboard, like the one shown in Figure 4-15.

Figure 4-15.  Storage pod in the OpenShift console

Chapter 4 Ansible for K8s Tasks

166

�Apply Multiple YAML Files at Once on Kubernetes
Deploying complex applications or services with Kubernetes requires many objects

(namespaces, pods, services, deployments, and so on) in a precise order. Especially with

the fast deploying applications, this task might need to be repeated often. If you perform

manually or in a deployment pipeline, the following code is beneficial.

Ansible module k8s and the Ansible lookup plugin fileglob (both included in all

the installations) enable you to list files to match a pattern. The fileglob lookup plugin

is distributed as ansible.builtin.fileglob. You can specify the following parameter:

 - "./defs/*.yaml"

The *.yaml command list all the files with the yaml extension under the defs

directory on the target node. Obviously, the *.yaml YAML text files are assumed to be

Kubernetes object manifest files. Ansible will process them in alphabetical order. Some

services require a precise order, and a list of files becomes handy in this use case. The

following Ansible list deploys a namespace, a pod, and a service, in this order:

 - "./defs/namespace.yaml"

 - "./defs/pod.yaml"

 - "./defs/service.yaml"

Ansible processes each manifest file using the k8s module (full name kubernetes.

core.k8s), which you read about in previous sections. You are going to use the template

lookup plugin to read the contents of each manifest file. The plugin is very powerful

because it enables retrieval of the contents of the file and template with the Jinja2

programming language. Jinja is a web template engine for the Python programming

language.

The full Ansible Playbook is shown in Listing 4-42.

Listing 4-42.  The multiple.yml Ansible Playbook File

- name: k8s multiple

 hosts: all

 tasks:

 - name: k8s resources

 kubernetes.core.k8s:

Chapter 4 Ansible for K8s Tasks

167

 definition: "{{ lookup('template', '{{ item }}') | from_yaml }}"

 with_fileglob:

 - "./defs/namespace.yaml"

 - "./defs/pod.yaml"

 - "./defs/service.yaml"

The following inventory file executes the Ansible Playbook in the current Ansible

Controller with a local connection. See Listing 4-43.

Listing 4-43.  The Inventory File

localhost ansible_connection=local

The YAML manifest files are already included in the book in the previous sections.

Make sure that the YAML manifest files exist in the target node before launching

the code. If a YAML manifest file is not found, Ansible proceeds to the next file without

performing the Kubernetes requests. Successful execution using the ansible-playbook

command output includes the following:

•	 Managed host: localhost

•	 Play recap status: ok=2 changed=1

•	 Task status:

TASK [k8s resources]

changed: [localhost] => (item=./defs/namespace.yaml)

changed: [localhost] => (item=./defs/pod.yaml)

changed: [localhost] => (item=./defs/service.yaml)

When the objects are already present in the Kubernetes cluster, you obtain an ok:

[localhost] status.

�Key Takeaways
In this chapter, you learned how to install a Kubernetes cluster and how to create the

objects inside of it. Kubernetes is an amazing technology that enables and simplifies the

execution of world-scale applications and services with many features. Under the hood,

it uses a lot of objects for services, deployment, and networking. This chapter explored

Chapter 4 Ansible for K8s Tasks

168

the main components and explained how to deploy your Hello application and service.

You can take advantage of the combination of Kubernetes for orchestration with Ansible

automation to simplify the software lifecycle of your cluster and the application running

inside of it. From installation to the deployment of applications, Ansible is the Swiss

Army Knife kit. In the next chapters, you are going to dip your toes into the use cases

of software deployment and cluster management, and you’ll explore the most popular

Kubernetes cloud providers.

Chapter 4 Ansible for K8s Tasks

169

CHAPTER 5

Ansible for K8s Data
Plane
Ansible is a valuable tool for all IT professionals, DevOps personnel, application

developers, site reliability engineers (SREs), and IT operations teams worldwide.

This chapter explores some exciting use cases for the modern development team.

Applying Agile methodologies and continuous integration, as well as quickly deploying

applications to customers, is critical in today’s fast-paced world. Software development

teams in many organizations have embraced the software development lifecycle (SDLC)

methodology (see Figure 5-1).

Requirements analysis

Architectural design

Software development

Testing

PlanningDeployment

Figure 5-1.  The SDLC model

The following stages apply to the SDLC methodology:

	 1.	 Requirements analysis: Identify the problems and use cases.

	 2.	 Planning: Define the costs and resources needed.

	 3.	 Architecture design: Determine the design specification

requirements.

	 4.	 Software development: Build the software.

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_5

https://doi.org/10.1007/978-1-4842-9285-3_5#DOI

170

	 5.	 Testing: Test for defects and deficiencies and verify the meeting of

the specifications.

	 6.	 Deployment: Launch the product to the customer and get feedback.

As you can notice, the SDLC methodology is a cyclical process that uses the Agile

methodology. For example, in a sprint timeframe, you must release a minimum viable

product (MVP) and enrich its features. Other methodologies that can be used are the

waterfall model, the spiral model, extreme programming (XP), and so on.

The twelve-factor application1 is an important methodology for building software-

as-a-service (SaaS) applications that can be applied to any programming language with

any combination of backing services (database, queue, memory cache, and so on). The

twelve factors are based on the experience of development, operation, and scaling of

hundreds of thousands of applications on the Heroku platform:

	 1.	 Codebase: Create one codebase tracked in revision control, many

deploys.

	 2.	 Dependencies: Explicitly declare and isolate dependencies.

	 3.	 Config: Store the config in the environment.

	 4.	 Backing services: Treat backing services as attached resources.

	 5.	 Build, release, run: Strictly separate build and run stages.

	 6.	 Processes: Execute the app as one or more stateless processes.

	 7.	 Port binding: Export services via port binding.

	 8.	 Concurrency: Scale out via the process model.

	 9.	 Disposability: Maximize robustness with fast startup and graceful

shutdown processes.

	 10.	 Dev/prod parity: Keep development, staging, and production as

similar as possible.

	 11.	 Logs: Treat logs as event streams.

	 12.	 Admin processes: Run admin/management tasks as one-off

processes.

1 https://12factor.net/

Chapter 5 Ansible for K8s Data Plane

https://12factor.net/

171

The twelve-factor application principles lay the groundwork for developing scalable,

resilient, and maintainable applications that can operate on any cloud platform. A

good understanding of the twelve-factor application methodology is an indispensable

requirement for constructing cloud-native applications that capitalize on the advanced

functionalities of Kubernetes.

The Kubernetes data plane is populated by the cloud-native applications that

your development team creates to satisfy the needs of your target customers and

stakeholders. You can take advantage of Ansible in order to increase the velocity of

deploying your software.

�Configuring a Java Microservice
Configuring a Java microservice consists of several steps. First, a cloud-native application

follows the architecture design pattern and the structure of a set of loosely coupled,

collaborating microservices. This will enable continuous integration and continuous

delivery, as well as make the application easier to scale.

Next, you need to create three classes: configuration, application, and main. The

configuration class defines the beans and their dependencies, while the application

class sets up the application context, and the main class is used to run the application.

You should also create a build file to specify how the application should be built and

configured (often a Jenkinsfile).

Finally, you need to configure the external services, such as databases and messaging

systems, that the microservice might use to store or process data. This involves setting up

the appropriate connection parameters and security protocols. Once all of this is done,

you can deploy the microservice and start using it.

To configure a Java microservice with Kubernetes, you first need to set up the

Kubernetes cluster and create the necessary resources, such as deployments and

services. After the cluster is set up, you create the configuration file that defines the

application components and their dependencies, such as databases and messaging

systems. This configuration file will be used by Kubernetes to create the application pods

and services. After this is done, you need to deploy the application to the cluster using a

deployment tool such as Kubernetes or Docker. Once the application runs, you need to

configure the Kubernetes resources to ensure that the application is secure and performs

optimally. Finally, you need to monitor the application to ensure it runs correctly and is

not wasting your resources (memory leaks, CPU throttling, and so on).

Chapter 5 Ansible for K8s Data Plane

172

As an example, evaluate the Quarkus project, a Java framework distributed under

the open-source Apache License 2.0 by Red Hat, as a runtime environment. Its popular

Kubernetes Native Java stack is perfectly tailored for OpenJDK HotSpot and GraalVM,

with a small footprint. It’s compatible with the most famous Java libraries and standards.

The major benefits are a millisecond startup, low memory utilization, and a smaller

container image compared to the traditional JVM execution stack.

A popular framework for creating Java microservices applications is Spring Boot. At

the moment of writing this book, Spring Boot is the world’s most popular Java framework

and is supported by a great community of developers worldwide. The Spring Initializr

enables you to start your projects and quickly package then as JARs.

There are multiple options for containerizing a Spring Boot application. Since you

are already building a Spring Boot JAR file, you only need to call the plugin directly. The

most common build automation tools are Maven and Gradle command-line utilities:

•	 Apache Maven: $ mvn spring-boot:build-image

•	 Gradle: $ gradle bootBuildImage

For the Windows platform, use the gladlew and mvnw commands instead.

�The Demo Java Web Application
The following example shows how you can build web and RESTful applications using

Spring Web integrated on Spring MVC and distribute them as an embedded containers

powered by Apache Tomcat. This is a pure Java application that creates a simple RESTful

API interface.

The first step is to start with Spring Initializr from the website at https://start.

spring.io/. Then select either Gradle or Maven and the Java language that you want

to use. Then specify in the Dependencies Spring Web. When you’re ready, choose the

Generate button to download the sample ZIP file archive with the web application

already configured. The final selection with Gradle build tool, Java language, and Spring

Boot with Spring Web is shown in Figure 5-2.

Chapter 5 Ansible for K8s Data Plane

https://start.spring.io/
https://start.spring.io/

173

Figure 5-2.  Spring Initializr for the Spring Web project

The web-generated ZIP file archive contains the boilerplate for your web application

using the Spring framework. Once it’s downloaded and extracted from the ZIP file

archive, remove the sample file called Application.java from the src/main/java/com/

example/demo directory and create the HelloController.java file in the same directory

with the code shown in Listing 5-1.

Listing 5-1.  The HelloController.java File

package com.example.demo;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

public class HelloController {

 @GetMapping("/")

Chapter 5 Ansible for K8s Data Plane

174

 public String index() {

 return "Ansible For Kubernetes By Examples";

 }

}

The code uses the Spring MVC. The HelloController class is flagged as a

@RestController to handle web requests. @GetMapping maps / to the index() method.

When invoked from a browser or by using curl on the command line, the method

returns the text message specified. That is because @RestController combines

@Controller and @ResponseBody, two annotations that result in web requests returning

data rather than a view.

You need to customize the Spring Initializr simple application class file

Application.java in the src/main/java/com/example/demo directory, as shown in

Listing 5-2.

Listing 5-2.  The Application.java File

package com.example.demo;

import java.util.Arrays;

import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.Bean;

@SpringBootApplication

public class Application {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, args);

 }

 @Bean

 �public CommandLineRunner commandLineRunner(ApplicationCont

ext ctx) {

 return args -> {

 String[] beanNames = ctx.getBeanDefinitionNames();

 Arrays.sort(beanNames);

 for (String beanName : beanNames) {

Chapter 5 Ansible for K8s Data Plane

175

 System.out.println(beanName);

 }

 };

 }

}

Note that the main() method, the first method invoked by the Java interpreter,

launches the application using Spring Boot. You can run your application using the

following command in your favorite terminal:

$ gradle bootRun

If you use Maven, run the following command in a terminal window (in the

complete) directory:

$ mvn spring-boot:run

The results are shown in Figure 5-3.

Figure 5-3.  Executing the Gradle build tool

You can easily test your application running locally in your workstation and

accessing your API interface connecting via the localhost:8080 interface, as shown in

Figure 5-4.

Chapter 5 Ansible for K8s Data Plane

176

Figure 5-4.  Output of the Hello application

When your application is packaged as a JAR file, you can use the Containerfile shown

in Listing 5-3 to deploy as a container image copying all the content of the target/*.jar

directory in the image.

Listing 5-3.  The Containerfile

FROM openjdk:21

VOLUME /tmp

ARG JAR_FILE

COPY target/*.jar app.jar

ENTRYPOINT ["java","-jar","/app.jar"]

You can now compile your application as a container using the Maven or Gradle

build tool:

•	 Maven: $ mvn spring-boot:build-image

•	 Gradle: $ gradle bootBuildImage

The output of the container build process looks similar to the output shown in

Figure 5-5 provided by the Gradle build tool.

Chapter 5 Ansible for K8s Data Plane

177

Figure 5-5.  Output of the Hello application

At the end of the process, the demo image with 0.0.1-SNAPSHOT tag is available in

your workstation. You can analyze the resulting image with Docker Desktop, as shown in

Figure 5-6.

Figure 5-6.  Hello container with your application

Chapter 5 Ansible for K8s Data Plane

178

Once the container image is built, you can execute locally using the Docker

command (similar to the command for Podman):

$ docker run --name=demo demo:0.0.1-SNAPSHOT

The execution starts the container with the JVM and the Tomcat web server inside

and produces the output shown in Figure 5-7.

Figure 5-7.  Running the containerized Java application

Now you are ready to upload your image to a Container Registry. When your

Container Registry requires authentication, you need to execute the following command:

$ docker login

Now you can rename the image to match the format of your Container Registry

(Docker suggests the default Docker Hub) and perform an upload (push operation) of

your image:

$ docker tag demo:0.0.1-SNAPSHOT lucab85/demo

$ docker push lucab85/demo

A successful operation looks like Figure 5-8. It reports the image digest information

on the screen:

latest: digest: sha256:2b07da21327fc17f9a93f789d4dd1e0b859bab126c91b5b044

af97356772e816 size: 5325

Chapter 5 Ansible for K8s Data Plane

179

Figure 5-8.  Upload the container image to Container Registry

After successfully uploading to the Container Registry, you can execute a Kubernetes

deployment of this application. The Kubernetes deployment shown in Listing 5-4

is needed.

Listing 5-4.  The hello-deployment.yaml Manifest

apiVersion: apps/v1

kind: Deployment

metadata:

 name: ansiblebyexamples

spec:

 replicas: 2

 selector:

 matchLabels:

 app: ansiblebyexamples

 template:

 metadata:

 labels:

 app: ansiblebyexamples

 spec:

 containers:

Chapter 5 Ansible for K8s Data Plane

180

 - name: ansiblebyexamples

 image: demo:0.0.1-SNAPSHOT

 ports:

 - containerPort: 8080

 imagePullPolicy: Always

Listing 5-5.  The hello-service.yaml Manifest

apiVersion: v1

kind: Service

metadata:

 name: ansiblebyexamples

spec:

 selector:

 app: ansiblebyexamples

 ports:

 - port: 80

 targetPort: 8080

 type: LoadBalancer

You can execute the Kubernetes YAML manifest file manually via the Ansible

Playbook.

$ kubectl apply -f hello-deployment.yaml

�Stateless: Deploying PHP Guestbook Application
with Redis
Every stateless application is perfectly scalable in Kubernetes. Stateless means that

an instance can be stopped, restarted, or duplicated at any time without any data loss

or inconsistent behavior. You can use the Redis database to store your data structure.

Redis is a well-known key-value database, with in-memory cache and a message broker.

The data durability is optional. Figure 5-9 illustrates the architecture of the Guestbook

application you’ll be deploying using Redis.

Chapter 5 Ansible for K8s Data Plane

181

Redis

Guestbook

Guestbook

Guestbook

Figure 5-9.  Architecture of the Guestbook application

To deploy a PHP Guestbook application with Redis, you first need to set up a Redis

database server to store the application data. After this is done, you can deploy three

replicas of the frontend Guestbook application in the Kubernetes cluster. Once the

application has been deployed, it can be tested and used by your users.

First of all, you need a Redis leader deployment to store your data using the latest

version (7.0.8) of the official redis image from the Docker Hub Container Registry. This

should run with one replica and listen on the network port 6379.

Listing 5-6.  The redis-deployment.yaml Manifest File

apiVersion: apps/v1

kind: Deployment

metadata:

 name: redis-db

 labels:

 app: redis

 role: db

 tier: backend

spec:

 replicas: 1

 selector:

 matchLabels:

 app: redis

 template:

 metadata:

 labels:

Chapter 5 Ansible for K8s Data Plane

182

 app: redis

 role: db

 tier: backend

 spec:

 containers:

 - name: leader

 image: "docker.io/redis:7.0.8"

 resources:

 requests:

 cpu: 100m

 memory: 100Mi

 ports:

 - containerPort: 6379

The Redis Service YAML file is shown in Listing 5-7.

Listing 5-7.  The redis-service.yaml Manifest File

apiVersion: v1

kind: Service

metadata:

 name: redis-db

 labels:

 app: redis

 role: db

 tier: backend

spec:

 ports:

 - port: 6379

 targetPort: 6379

 selector:

 app: redis

 role: db

 tier: backend

Chapter 5 Ansible for K8s Data Plane

183

You also need to create a configuration file that defines the application components

and their dependencies, such as databases and messaging systems. Kubernetes will

use this configuration file to create the application pods and services. Once the cluster

is set up and the configuration file is created, you can deploy the application using a

deployment tool such as Kubernetes or Docker. See Listing 5-8.

Listing 5-8.  The frontend-deployment.yaml Manifest File

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend

spec:

 replicas: 3

 selector:

 matchLabels:

 app: guestbook

 tier: frontend

 template:

 metadata:

 labels:

 app: guestbook

 tier: frontend

 spec:

 containers:

 - name: php-redis

 image: gcr.io/google_samples/gb-frontend:v5

 env:

 - name: GET_HOSTS_FROM

 value: "dns"

 resources:

 requests:

 cpu: 100m

 memory: 100Mi

 ports:

 - containerPort: 80

Chapter 5 Ansible for K8s Data Plane

184

The Guestbook application service looks like Listing 5-9.

Listing 5-9.  The frontend-service.yaml Manifest File

apiVersion: v1

kind: Service

metadata:

 name: frontend

 labels:

 app: guestbook

 tier: frontend

spec:

 type: LoadBalancer

 ports:

 - port: 80

 selector:

 app: guestbook

 tier: frontend

Once the application has been deployed, you can test and use it. Finally, you need to

configure the Kubernetes resources to ensure that the application is secure and performs

optimally. One improvement to the architecture is to use some Redis “followers” nodes

between the Redis database and the frontend. With the “followers” improvement, you

can implement the high availability for the single replica Redis database (also called the

“leader”).

You can easily deploy your stateless Guestbook application using the “Apply Multiple

YAML Files at Once on Kubernetes” Ansible Playbook; for more details, see Chapter 4.

�Kustomize: Do More with Less
Kustomize is a fantastic tool for generating Kubernetes YAML resources. It saves time

creating usable resource artifacts for your use cases. It creates Kubernetes objects from

a special “kustomization” file. It provides a way to define multiple objects in a single

manifest file, as well as options to customize and override settings on existing objects.

Kustomize also allows you to leverage the power of templating and variables, making it

easier to customize and deploy objects to Kubernetes clusters. Kustomize can be used

Chapter 5 Ansible for K8s Data Plane

https://doi.org/10.1007/978-1-4842-9285-3_4

185

to manage multiple environments, create complex deployments, and manage resources

across multiple namespaces. You are going to use Kustomize in the following section.

The Kustomize tool has been supported since Kubernetes version 1.14 (kustomize build

flow version 2.0.3).

You can view the resources found in a directory containing a kustomization file by

running the following command:

$ kubectl kustomize <directory>

To apply the resources in your Kubernetes cluster, use the --kustomize or -k

parameter of the kubectl command:

$ kubectl apply –kustomize <directory>

Ansible supports the kubernetes.core.kustomize lookup plugin to execute the

Kustomization directory. The Ansible Playbook shown in Listing 5-10 executes the

customization in the kustomization directory, in the namespace specified in the

myproject variable.

Listing 5-10.  The kustomization.yml File

- name: k8s ns

 hosts: all

 vars:

 myproject: "ansible-examples"

 kustomize_dir: "kustomization"

 tasks:

 - name: namespace {{ myproject }} present

 kubernetes.core.k8s:

 api_version: v1

 kind: Namespace

 name: "{{ myproject }}"

 state: present

 - name: create kubernetes resource using lookup plugin

 kubernetes.core.k8s:

 namespace: "{{ myproject }}"

 �definition: "{{ lookup('kubernetes.core.kustomize',

dir=kustomize_dir) }}"

Chapter 5 Ansible for K8s Data Plane

186

�Stateful: Deploying WordPress and MySQL
with Persistent Volumes
A stateful application requires the persistence of data, contrary to stateless, which

doesn’t. A simple example is the common application based on the web framework

WordPress deployed on top of a MySQL database. To deploy WordPress and MySQL with

Kubernetes, you need persistent volumes to store the database and the application data.

First, you have to create a Kubernetes cluster and configure the necessary resources.

This will enable you to deploy WordPress and MySQL as two separate services. You

need a PersistentVolume to store data with PersistentVolumeClaims declared at the

deployment level. Figure 5-10 illustrates this architecture.

WordPress MySQL

PersistentVolumePersistentVolume

Figure 5-10.  Architecture of WordPress with the MySQL application

Next, you create the configuration file for each service. They define the components

of the application and their dependencies, such as databases and messaging systems.

Once the configuration files are created, you can deploy the application to Kubernetes

using a customization file (see Listing 5-11) that links to the Deployment, Service, and

PersistentVolume Kubernetes resources needed by your application (see Listings 5-12

and 5-13).

Listing 5-11.  The kustomization.yaml File

secretGenerator:

 - name: mysql-pass

 literals:

 - password=YOUR_PASSWORD

resources:

 - mysql.yaml

 - wordpress.yaml

Chapter 5 Ansible for K8s Data Plane

187

Listing 5-12.  The mysql.yaml File

apiVersion: v1

kind: Service

metadata:

 name: wordpress-mysql

 labels:

 app: wordpress

spec:

 ports:

 - port: 3306

 selector:

 app: wordpress

 tier: mysql

 clusterIP: None

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mysql-pv-claim

 labels:

 app: wordpress

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Gi

apiVersion: apps/v1

kind: Deployment

metadata:

 name: wordpress-mysql

 labels:

 app: wordpress

Chapter 5 Ansible for K8s Data Plane

188

spec:

 selector:

 matchLabels:

 app: wordpress

 tier: mysql

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 app: wordpress

 tier: mysql

 spec:

 containers:

 - image: mysql:5.7.41

 name: mysql

 env:

 - name: MYSQL_ROOT_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mysql-pass

 key: password

 ports:

 - containerPort: 3306

 name: mysql

 volumeMounts:

 - name: mysql-persistent-storage

 mountPath: /var/lib/mysql

 volumes:

 - name: mysql-persistent-storage

 persistentVolumeClaim:

 claimName: mysql-pv-claim

Chapter 5 Ansible for K8s Data Plane

189

Listing 5-13.  The wordpress.yaml File

apiVersion: v1

kind: Service

metadata:

 name: wordpress

 labels:

 app: wordpress

spec:

 ports:

 - port: 80

 selector:

 app: wordpress

 tier: frontend

 type: LoadBalancer

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: wp-pv-claim

 labels:

 app: wordpress

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Gi

apiVersion: apps/v1

kind: Deployment

metadata:

 name: wordpress

 labels:

 app: wordpress

Chapter 5 Ansible for K8s Data Plane

190

spec:

 selector:

 matchLabels:

 app: wordpress

 tier: frontend

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 app: wordpress

 tier: frontend

 spec:

 containers:

 - image: wordpress:6.1.1-apache

 name: wordpress

 env:

 - name: WORDPRESS_DB_HOST

 value: wordpress-mysql

 - name: WORDPRESS_DB_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mysql-pass

 key: password

 ports:

 - containerPort: 80

 name: wordpress

 volumeMounts:

 - name: wordpress-persistent-storage

 mountPath: /var/www/html

 volumes:

 - name: wordpress-persistent-storage

 persistentVolumeClaim:

 claimName: wp-pv-claim

Chapter 5 Ansible for K8s Data Plane

191

You can apply the resources in your Kubernetes cluster by manually executing this

command:

$ kubectl apply -k ./

Or you can automate with Ansible using the kubernetes.core.kustomize lookup

plugin to execute the Kustomization directory described in the previous section.

Kubernetes operators often manage complex stateful applications on Kubernetes.

Writing an operator is often a full-fledged software project, using low-level APIs and

writing boilerplate code. The Operator SDK uses the Kubernetes controller-runtime

library to make writing operators easier by providing a high-level API, tools for

scaffolding and code generation, and extensions for use cases. The Operator SDK can

generate the boilerplate for an Ansible Operator but also for Golang and Helm.

�Security Namespace (Pod Security Admission)
Enforcing proper Kubernetes security can save you time and protect your organization

from unexpected behavior. The best practice of pod security is useful to apply pod

security standards (pod security policy) at the namespace level. This can be a simple

warning message, or you can’t deny the deployment when the containers don’t

meet the acceptance criteria. You implement the policy at the namespace level. This

policy defines the security rules for the namespace, including who can access what

resources and the types of traffic that are allowed. Previously, the Pod Security Policy

was configured to ensure that the security rules are enforced for the pods within the

namespace. PodSecurityPolicy was previously deprecated in Kubernetes version 1.21

and removed from Kubernetes in version 1.25. Kubernetes implements role-based

access control (RBAC). You can configure RBAC to ensure that only authorized users can

access the resources in the namespace. Once this is done, the Pod Security Standards

will be applied at the Namespace Level. Since Kubernetes version 1.23, Pod Security

Admission (PSA) has been enabled in Kubernetes per cluster and namespace lever by

default. It enables you to use these built-in Pod Security Standards modes:

•	 enforce (baseline)

•	 audit (restricted)

•	 warn (restricted)

Chapter 5 Ansible for K8s Data Plane

192

Using Kubernetes labels of the built-in Pod Security Admission, it is possible to

enable pod security standards at the namespace level. You can use the following label to

set the pod security standard policy:

pod-security.kubernetes.io/<MODE>: <LEVEL>

•	 MODE sets the pod security standard modes: enforce,

audit, warn

•	 LEVEL sets the pod security standard levels: privileged,

baseline, or restricted

The following command enables the “warn” pod security standard on the baseline

each time you try to retrieve the “latest” tag:

$ kubectl label --overwrite ns example pod-security.kubernetes.io/

warn=baseline pod-security.kubernetes.io/warn-version=latest

From now on, whenever you try to retrieve a “latest” tag for a pod, you will receive

a warning on output that warns you about the policy violation:

violate PodSecurity "restricted:latest"

The warning message reminds you about the best practices of Kubernetes to specify

a specific tag instead of using the “latest” tag.

�Security Pod Resources (AppArmor)
AppArmor is a Linux security tool that works by granting access first rather than applying

restrictions. Sometimes AppArmor is confused with SELinux; the main differences are

listed in Table 5-1.

Table 5-1.  AppArmor vs SELinux

Feature AppArmor SELinux

Access control Security profiles based on paths Security policies based on file labels

Linux distributions Mainly used on SUSE and Ubuntu Primarily used on RHEL/Fedora

systems

Level of control Medium High

Chapter 5 Ansible for K8s Data Plane

193

Kubernetes has supported AppArmor since version 1.4. At the moment of writing

this book, Kubernetes’ annotation is the way to use the feature. When promoted to

General Availability (GA), each annotation will be a Kubernetes Object field. AppArmor

is used to restrict a container’s access to resources; you need to create an AppArmor

profile for the container. This profile will define the security rules for the containers, such

as which files and directories it can access, which system calls it can make, and which

other containers or processes it can interact with. Additionally, you need to configure the

container runtime to ensure that the AppArmor profile is applied when the container is

started. Kubernetes-supported container runtimes that support AppArmor technology

are Docker, CRI-O, and containerd. Once this is done, the container will be restricted to

the access rules defined in the AppArmor profile.

AppArmor profiles are specified per pod by adding the following annotation:

container.apparmor.security.beta.kubernetes.io/<container_name>:

<profile_ref>

You can deploy an application protected with AppArmor using the kubectl or

Ansible kubernetes.core.k8s module. There is no native Kubernetes way to load

AppArmor profiles onto nodes. However, you can use Ansible as an initialization script

to enable it.

�Security Pod Syscalls (seccomp)
A system call, or syscall, is a direct request from your application to the operating system

where it is executed. The typical use case is accessing hardware resources, launching

threads, communicating with other processes, and interacting with internal kernel

services.

You can use the Linux secure computing mode, called seccomp, to enable a "secure"

state one-way transition, where it is possible to use only exit, sigreturn, read, and

write on an already-open file descriptor system call. Of course, you can restrict the

syscalls of the container creating a seccomp profile for the container. A profile defines

a sandbox of the privileges of a process, restricting the call from the userspace to the

kernel. This profile will define the syscalls that the container can make, as well as the

parameters and arguments that can be used when making the syscalls.

Chapter 5 Ansible for K8s Data Plane

194

Additionally, you need to configure the container runtime at bootstrap to ensure that

the seccomp profile is applied. Once you do this, the container will be restricted to the

syscalls defined in the seccomp profile. Seccomp requires at least Linux kernel 2.6 and

Kubernetes version 1.19. The SCMP_ACT_LOG seccomp profile logs all system calls.

The snippet of a Kubernetes spec YAML manifest shown in Listing 5-14 enables the

seccomp profile audit.json file defined in the localhost node.

Listing 5-14.  The seccomp.yaml Manifest File

[...]

 securityContext:

 seccompProfile:

 type: localhost

 localhostProfile: profiles/audit.json

[...]

Listing 5-15.  The audit.json seccomp Profile File

{

 "defaultAction": "SCMP_ACT_LOG"

}

�Ansible Dynamic Inventory
Ansible Dynamic Inventory enables you to generate Ansible Inventories automatically.

The information is read from external sources such as cloud providers, CMDBs,

and inventory management systems. This allows users to deploy infrastructure and

applications dynamically and automate them quickly. The inventory is stored in a YAML

file, which is then used by Ansible to determine which hosts to target for tasks. Ansible

Dynamic Inventory can be used for several different use cases, such as dynamic scaling,

provisioning, and application deployment.

Tip A nsible can also use multiple inventory sources at the same time. You can
mix and match dynamic and statically managed inventory sources in the same
Ansible run.

Chapter 5 Ansible for K8s Data Plane

195

Additionally, Ansible Dynamic Inventory can be used to manage multiple environments

and ensure that the right resources are allocated for each environment. See Listing 5-16.

Listing 5-16.  The ansible.cfg File

[inventory]

enable_plugins = kubernetes.core.k8s

The Ansible plugin kubernetes.core.k8s searches for all files with the .k8s.yml or

.k8s.yaml suffixes in the current working directory, as demonstrated in Listing 5-17.

Listing 5-17.  The inventory.k8s.yml File

plugin: kubernetes.core.k8s

connections:

 - namespaces:

 - ansible-examples

You can list all the containers in the namespace ansible-examples using the

inventory.k8s.yml file and the ansible-inventory command:

$ ansible-inventory -i inventory.k8s.yml --list

If the location is given to the -i parameter in Ansible, it’s a directory (or as so

configured in the ansible.cfg file).

The output of the ansible-inventory command displays a JSON file with all the

pods in the specified namespace (or projects when run in OpenShift).

•	 Namespace: ansible-examples

•	 list view

 "nginx-689b466988-4z9qq_nginx": {

[...]

 "ansible_kubectl_namespace": "ansible-examples",

 "ansible_kubectl_pod": "nginx-689b466988-4z9qq",

 "container_image": "nginx",

 "container_name": "nginx",

 "container_ready": false,

 "container_state": "Waiting",

Chapter 5 Ansible for K8s Data Plane

196

 "labels": {

 "app": "nginx",

 "pod-template-hash": "689b466988"

 },

 "object_type": "pod",

 "pod_host_ip": "192.168.50.15",

 "pod_ip": "10.131.0.3",

 "pod_name": null,

 "pod_node_name": "compute-2",

 "pod_phase": "Running",

 "pod_resource_version": "15542143",

 "pod_uid": "2994bacc-28b0-47fa-b44e-4b28f9ea7d5b"

[...]

The graph view is helpful for displaying in a graph style the pod in the selected

namespaces (or projects when in OpenShift):

$ ansible-inventory -i inventory.k8s.yml --graph

The output of the execution of the ansible-inventory command with the graph

parameter displays a tree style output with all the pods in the specified namespace (or

projects when run in OpenShift).

•	 Namespace: ansible-examples

•	 graph view

@all:

 |--@console-openshift-ansiblepilot-com_6443:

 | |--@namespace_ansible-examples:

 | | |--@namespace_ansible-examples_pods:

 | | | |--nginx-689b466988-4z9qq_nginx

 | | | |--nginx-689b466988-55jnd_nginx

 | | | |--nginx_nginx

 | | |--@namespace_ansible-examples_services:

 | | | |--nginx-service

[...]

Chapter 5 Ansible for K8s Data Plane

197

You can execute an Ansible Playbook, for example for remediation in the inventory,

that’s dynamically generated by Ansible Dynamic Inventory.

The easiest Ansible Playbook is ping.yml (see Listing 5-18), which tests the

connection between the Ansible controller and the target nodes.

Listing 5-18.  The ping.yml File

- name: test

 hosts: all

 gather_facts: false

 tasks:

 - name: test connection

 ansible.builtin.ping:

You can execute the code using the ansible-playbook command combined with the

Ansible Dynamic Inventory configuration file for the ansible-examples namespace:

$ ansible-playbook -i inventory.k8s.yml ping.yml

Successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=1 changed=0

•	 Task status:

TASK [test connection]

ok: [nginx-689b466988-4z9qq_nginx]

ok: [nginx-689b466988-55jnd_nginx]

You might incur the “Failed to create temporary directory” error message

when you try to connect to the remote pods. It is a permission error: “In some cases,

you may have been able to authenticate and did not have permissions on the

target directory”. The message is trying to point out a possible solution: Consider

changing the remote tmp path in ansible.cfg to a path rooted in "/tmp".

The root cause could be in the authentication phase or could be a lack of permission to

create temporary files by the connection user. See Figure 5-11.

Chapter 5 Ansible for K8s Data Plane

198

Ansible controller

Ansible target host

1. authentication

2. create temporary directory

3. copy task generated files

4. execute task generated files

Figure 5-11.  Architecture of the Ansible connection

The default behavior for Ansible to connect to any target hosts is to execute the

authentication phase and then copy a file generated by every single task of your

Ansible Playbook. Ansible connects to remote servers and executes code with the same

username. You can specify the connection username with the ansible_user variable

on the inventory. You can change the running user by specifying remote_user in the

playbook or globally in the ansible.cfg file. After a successful connection, Ansible

tries to create a temporary directory in the home of the user of the connection, where

it copies the task files if they doesn’t already exist. If Ansible is unable to create the

temporary directory, if that user does not have a home directory, or if their home

directory permissions do not allow them to write access, you can customize the path of

the temporary directory via the ansible.cfg file. For example, you can use the following

path in the /tmp directory:

remote_tmp = /tmp/.ansible-${USER}/tmp

Ansible pipelining executes the Ansible modules on the target directly without the

prior file transfer, consequently reducing the network operations. Another pleasant

side-effect is the increase in performance when enabled. By default, Ansible pipelining

is disabled. You can enable it using the ANSIBLE_PIPELINING=True environment variable

or setting the pipelining=true key in the [connection] and [defaults] sections of the

ansible.cfg file.

Chapter 5 Ansible for K8s Data Plane

199

�Key Takeaways
You can develop the application of tomorrow by applying Agile methodologies. Similarly,

you can deploy modern cloud-native applications in the Kubernetes cluster to obtain a

faster workflow and more reliable applications or services for your customers. You can

also mix and match stateless and stateful applications and apply security policies to the

pod as desired. Some applications require a simple microservice architecture, whereas

others require a more complex design. Using Kubernetes, you can focus on the high

availability, scale your workflow, and increase the velocity with Ansible.

Chapter 5 Ansible for K8s Data Plane

201

CHAPTER 6

Ansible for K8s
Management
Ansible for Kubernetes helps organizations reduce operational costs by automating

many manual processes associated with deploying and managing large-scale distributed

systems like those used in modern production environments. This includes tasks such

as provisioning nodes, configuring network settings, and setting up storage volumes for

persistent data stores across multiple nodes in a cluster environment.

All this can be accomplished quickly using Ansible’s easy-to-use playbooks written

in the YAML format. Overall, Ansible provides great advantages when implementing

Kubernetes in an organization’s IT architecture, due to its ease of use combined

with advanced capabilities. It allows developers and system administrators alike to

create complex configurations quickly while ensuring consistency across different

infrastructures regardless of whether they are located locally or remotely hosted in

public clouds providers such Amazon Web Services (AWS) EC2 instances or other cloud

providers running Linux operating system distributions like Ubuntu LTS Server Edition.

Modern cloud-native applications embrace the workflow shown in Figure 6-1.

DEV SIT UAT PROD

Figure 6-1.  The DEV, SIT, UAT, and PROD workflow

•	 DEV: Development (software development team)

•	 SIT: System Integration Test (software developer and QA engineer)

•	 UAT: User Acceptance Test (selected clients)

•	 PROD: Production (public users)

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_6

https://doi.org/10.1007/978-1-4842-9285-3_6#DOI

202

Organizations embrace the DEV, SIT, UAT, and PROD workflow in order to take

advantage of automating tasks using the Ansible technology and to have a consistent

environment at every stage of the execution and save time.

Managing multiple Kubernetes clusters to create the four environments needed for

DEV, SIT, UAT, and PROD workflow can be a daunting process that burns IT resources

in your IT department. Automating the process with Ansible enables you to have a

consistent environment between the four stages and focus on the distribution of cloud-

native applications to your target audience and stakeholders.

�The Helm Package Manager
The Helm Package Manager, originally created by Microsoft and written in the GO

language, is available as an open-source project and has become the most convenient

way to package and distribute applications for Kubernetes. A package includes all the

necessary objects for a Kubernetes application to run. Helm is a graduate project of the

Cloud Native Computing Foundation.

Helm is constantly used for installing, upgrading, and publishing packages in the

Kubernetes cluster. The major advantages of the Helm software are as follows:

•	 Create standard and reusable templates

•	 Eliminate deploy errors

You can easily search for all the available Helm packages using the directory called

Artifact Hub https://artifactshub.io/ (there are 9161 results at the moment of

writing this book). Helm retrieves software from packages called “charts” in Helm slang.

The packages are distributed in repositories.

To use Helm, you must install the helm command-line tool in your workstation. You

can find that tool on the official website https://helm.sh/. Helm is available for most

modern operating systems: Linux (i386, amd64, arm, arm64,ppc64le, and s390x), macOS

(Intel and Apple Silicon), and Windows (amd64). It’s also possible to install Helm using

the most common package managers: Homebrew, Chocolatey, Scoop, GoFish, and Snap.

To report the Helm packages deployed inside the cluster, you can use the manual

helm list command. This command displays all the Helm packages installed in the

current namespace, as well as their versions and other information.

Chapter 6 Ansible for K8s Management

https://artifactshub.io/
https://helm.sh/

203

You can also use the helm status command to get detailed information about a

specific package, such as its deployed version, release history, and a list of resources that

were created when the package was deployed.

Additionally, you can use the helm history command to view a list of the releases

that were installed or deleted in the current namespace. Additionally, the helm search

command can be used to search for packages in the repositories that are currently

configured.

The kubernetes.core Ansible collection enables you to automate the execution

of tasks in Helm and obtain the same information in the Ansible way. The following

modules are specific to Helm-related tasks:

•	 helm: Add, update, and delete Kubernetes packages using the

package manager Helm

•	 helm_info: Obtain information about a Helm package deployed into

the Kubernetes cluster

•	 helm_plugin: Add, update, and delete Helm plugins

•	 helm_plugin_info: Obtain information about your Helm plugins

•	 helm_repository: Add, update and delete Helm repositories

•	 helm_template: Render Helm chart templates

In the following section, you are going to apply the Ansible modules to some

practical examples.

Ansible Helm modules rely on the helm command-line utility that should be

installed in your system. When Ansible is unable to use the helm utility, the execution of

the code terminates with the following fatal runtime error:

"msg": "Failure when executing Helm command. Exited 1

In most cases, it’s simply necessary to install the helm utility. When some

dependencies are missing, the message on the screen shows the exact library missing:

/bin/helm\", line 24, in <module>\n import glib\nModuleNotFoundError: No

module named 'glib'\n"

The message points out that the glib Python library is missing on your system. You

could install the following:

$ pip install glib

Chapter 6 Ansible for K8s Management

204

�Helm Repositories
A Helm repository enables you to simply install packages (“charts” in Helm slang) just

as a package manager does in an operating system. The repository is a web server that

houses an index.yaml file and some packaged charts. To manage Helm repositories,

you can use the manual helm repo command or the Ansible kubernetes.core.helm_

repository module. This command and the Ansible module allow you to add, remove,

and list Helm repositories.

The most famous and widely used repository is the Bitnami repository. Bitnami

is famous for the library of installers and software packages for web applications and

software stacks, as well as virtual appliances, acquired by VMWare in May, 2019. The

Bitnami repository hosts packages like Redis, PostgreSQL, MySQL, ExternalDNS,

RabbitMQ, Apache Kafka, Keycloak, MongoDB, MiniO, Metrics Server, WordPress,

Thanos, MariaDB, NGINX, ElasticSearch, MetailLB, InfluxDB, Apache ZooKeeper,

Fluentd, Prometheus, Cassandra, Grafana, Harbor, Apache Spark, MariaDB Galera,

Kibana, Odoo, Drupal, Contour, Memcached, Apache Tomcat, Apache AirFlow, Jenkins,

Redmine, JupyterHub, Apache, Argo CD, HashiCorp Consul, MediaWiki, Moodle,

Logstash, PyTorch, DokuWiki, Magento, Matomo, Prestashop, Apache Solr, ASP .NET

Core, Kong, Apache MXNet, Parse, SonarQube, Joomla, EJBCA, HAProxy, OpenCart,

phpBB, TensorFlow, Appsmith, Jaeger, Gitea, Pinniped, and more.

�Add Helm Repository

You can add a new Helm repository manually by using the helm repo command:

$ helm repo add <repo-name> <repo-url>

You can automate the Helm repository management using the kubernetes.core.

helm_repository Ansible module.

The following helm_repo_present.yml Ansible Playbook adds the Bitnami

repository to your cluster or verifies that it is already present. When you are dealing

with a private repository, you can also specify the path of a Certification Authority

certificate (ca_cert parameter) and the API key (api_key parameter), enable the

domain credentials (pass_credentials parameter), and specify basic authentication

(repo_username and repo_password parameters) or a specific path for the Helm binary

Chapter 6 Ansible for K8s Management

205

(binary_path parameter). The full Ansible Playbook looks like the following for the

bitnami public Helm repository. Simply customize the helm_chart_name and helm_

chart_url variables for another Helm repository, as demonstrated in Listing 6-1.

Listing 6-1.  The helm_repo_present.yml File

- name: k8s helm repo

 hosts: all

 vars:

 helm_chart_name: "bitnami"

 helm_chart_url: "https://charts.bitnami.com/bitnami"

 tasks:

 - name: helm repo present

 kubernetes.core.helm_repository:

 name: "{{ helm_chart_name }}"

 repo_url: "{{ helm_chart_url }}"

 repo_state: present

You can execute the code using the ansible-playbook command and specifying the

inventory file and the playbook filename:

$ ansible-playbook -i inventory helm_repo_present.yml

When you want to execute the Playbook code in your Ansible Controller, you specify

the localhost in the inventory, as shown in Listing 6-2.

Listing 6-2.  Inventory

localhost ansible_connection=local

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [helm repo present]

 changed: [localhost]

Chapter 6 Ansible for K8s Management

206

After executing the Ansible Playbook, your Kubernetes cluster has the bitnami

repository in place. You can confirm this using the manual helm command:

$ helm repo list

The report shows you the name and URL of the installed Helm repository in the

Kubernetes cluster.

�Remove Helm Repository

To remove a repository, you can use the manual helm repo command:

$ helm repo remove <repo-name>

Otherwise, you can automate this process using the Ansible Playbook in your

Kubernetes cluster. The helm_repo_absent.yml Ansible Playbook shown in Listing 6-3

removes the bitnami Helm repository from the Kubernetes cluster.

Listing 6-3.  The helm_repo_absent.yml File

- name: k8s helm repo

 hosts: all

 vars:

 helm_chart_name: "bitnami"

 tasks:

 - name: helm repo removed

 kubernetes.core.helm_repository:

 name: "{{ helm_chart_name }}"

 repo_state: absent

You can execute this in your Ansible Controller, specifying the localhost in the

inventory (see Listing 6-4).

Listing 6-4.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying

the -i parameter for the inventory file and the playbook filename:

$ ansible-playbook -i inventory helm_repo_absent.yml

Chapter 6 Ansible for K8s Management

207

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [helm repo removed]

 changed: [localhost]

After successful execution of the Ansible Playbook, your Kubernetes cluster has

removed the bitnami repository. You can confirm this using the manual helm command:

$ helm repo list

The output of the command shows the name and URL of the installed Helm

repositories in your Kubernetes cluster.

�Helm Packages
When a Helm repository is configured in your Kubernetes cluster, you can install

any Helm packages you need. Many Helm charts are available worldwide. The Helm

packages are also called “charts”. You can use the manual helm command or the Ansible

kubernetes.core.helm module.

�Install Helm Package

The following Ansible Playbook installs the popular NGINX web server using the nginx

charts from the Bitnami repository. You can enable this repository using the code in the

previous section. Feel free to customize the variable with the one in your Kubernetes

cluster:

•	 chart_name: The name of the chart to install (nginx-server)

•	 chart_ref: The name of the repository to retrieve the chart

(bitnami/nginx)

•	 myproject: The name of the target Kubernetes namespace/

OpenShift Project (ansible-examples)

Chapter 6 Ansible for K8s Management

208

The full Ansible Playbook is shown in Listing 6-5.

Listing 6-5.  The helm_present.yml File

- name: k8s helm

 hosts: all

 vars:

 chart_name: "nginx-server"

 chart_ref: "bitnami/nginx"

 myproject: "ansible-examples"

 tasks:

 - name: helm chart present

 kubernetes.core.helm:

 name: "{{ chart_name }}"

 namespace: "{{ myproject }}"

 chart_ref: "{{ chart_ref }}"

 release_state: present

You can execute the code in your Ansible Controller using the localhost inventory,

as demonstrated in Listing 6-6.

Listing 6-6.  Inventory

localhost ansible_connection=local

You can execute your helm_present.yml Ansible Playbook using the ansible-

playbook command and specifying the -i parameter for the inventory file and the

playbook filename:

$ ansible-playbook -i inventory helm_present.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

Chapter 6 Ansible for K8s Management

209

 TASK [helm chart present]

 changed: [localhost]

Taking advantage of the Ansible idempotency property when you execute your

code with the desired state already present, the code returns only an ok status. You can

verify the installed status of the Helm “chart” package in your Kubernetes cluster in the

following section (see the Report Helm Package section).

�Remove Helm Package

In the same way as you install a Helm “chart” package, you can automate its removal

using the Ansible Playbook in your Kubernetes cluster. Feel free to customize the

variable with the one in your Kubernetes cluster:

•	 chart_name: The name of the chart to install (nginx-server)

•	 myproject: The name of the target Kubernetes namespace/

OpenShift Project (ansible-examples)

The full Ansible Playbook is shown in Listing 6-7.

Listing 6-7.  The helm_absent.yml File

- name: k8s helm

 hosts: all

 vars:

 chart_name: "nginx-server"

 myproject: "ansible-examples"

 tasks:

 - name: helm chart absent

 kubernetes.core.helm:

 name: "{{ chart_name }}"

 namespace: "{{ myproject }}"

 release_state: absent

When you execute the code in your Ansible Controller, you use the localhost

inventory (see Listing 6-8).

Chapter 6 Ansible for K8s Management

210

Listing 6-8.  Inventory

localhost ansible_connection=local

The ansible-playbook command executes your code and specifies the -i parameter

for the inventory file and the helm_absent.yml filename:

$ ansible-playbook -i inventory helm_absent.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [helm chart absent]

 changed: [localhost]

You can verify the removed status of the Helm “chart” package in your Kubernetes

cluster in the following section (see Report Helm Package).

�Report Helm Package

You can verify the status of the installed Helm “chart” packages using the manual helm

command or the Ansible kubernetes.core.helm_info module. It might be useful to the

release_state parameter (default to deployed and failed):

•	 all: Show all releases

•	 deployed: Show only deployed releases

•	 failed: Show only failed releases

•	 pending: Show only pending releases

•	 superseded: Show only superseded releases

•	 uninstalled: Show only uninstalled releases

•	 uninstalling: Show only releases that are currently being

uninstalled

Chapter 6 Ansible for K8s Management

211

Feel free to customize the variable of the following code:

•	 chart_name: The name of the chart to install (nginx-server)

•	 myproject: The name of the target Kubernetes namespace/

OpenShift Project (ansible-examples)

The full code of the Ansible Playbook shown in Listing 6-9 displays the Helm charts.

Listing 6-9.  The helm_info.yml File

- name: k8s helm

 hosts: all

 vars:

 chart_name: "nginx-server"

 myproject: "ansible-examples"

 tasks:

 - name: gather chart information

 kubernetes.core.helm_info:

 name: "{{ chart_name }}"

 release_namespace: "{{ myproject }}"

The localhost inventory shown in Listing 6-10 executes the code in the Ansible

Controller.

Listing 6-10.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying the

inventory file and the playbook filename:

$ ansible-playbook -i inventory helm_info.yml

Chapter 6 Ansible for K8s Management

212

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [gather chart information]

 changed: [localhost]

The output of the helm_info.yml playbook shows information about the installed

“chart” packages: application version, chart version, revision, status, and updated

date time.

�Helm Plugins
The Helm plugins are software add-ons that expand Helm’s functionalities.

To report the Helm plugins deployed inside the cluster manually, you can use the

helm plugin list command. This command will list all the plugins installed in the

current namespace, as well as their versions and other information.

Additionally, you can use the helm plugin install command to install a plugin and

the helm plugin update command to update a plugin. The helm plugin uninstall

command can be used to uninstall a plugin. Finally, the helm plugin status command

can be used to get detailed information about a specific plugin. You can automate Helm

plugin management using the kubernetes.core.helm_plugin Ansible module.

�Install Helm Plugin

Many Helm plugins expand Helm functionality with new pieces of software. For

example, the Helm plugin called helm env allows users to view the environment

variables. The following Ansible Playbook downloads the latest release of the helm env

plugin and installs it in your Kubernetes cluster. Feel free to customize the plugin path

and the Kubernetes namespace/OpenShift project variables:

•	 myplugin_name: The name of the plugin to install (env)

•	 myplugin_path: The name of the repository to retrieve the plugin

(https://github.com/adamreese/helm-env)

Chapter 6 Ansible for K8s Management

https://github.com/adamreese/helm-env

213

The full Ansible Playbook is shown in Listing 6-11.

Listing 6-11.  The helm_plugin_present.yml file

- name: k8s helm plugin

 hosts: all

 vars:

 myplugin_name: "env"

 myplugin_path: "https://github.com/adamreese/helm-env"

 tasks:

 - name: helm plugin present

 kubernetes.core.helm_plugin:

 plugin_name: "{{ myplugin_name }}"

 plugin_path: "{{ myplugin_path }}"

 state: present

The localhost inventory executes your code in the Ansible Controller

(see Listing 6-12).

Listing 6-12.  Inventory

localhost ansible_connection=local

You can execute the code with the ansible-playbook command:

$ ansible-playbook -i inventory helm_present.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [helm plugin present]

 changed: [localhost]

Chapter 6 Ansible for K8s Management

214

You can verify the installed Helm plugin in the following section (see Report Helm

Plugin).

A possible improvement to the code is to use a list of namespaces and loop them

with the Ansible Playbook.

�Remove Helm Plugin

When a plugin is not needed anymore in your Kubernetes cluster, you can automate

the removal process using the kubernetes.core.helm_plugin Ansible module. The full

Ansible Playbook is shown in Listing 6-13.

Listing 6-13.  The helm_plugin_absent.yml File

- name: k8s helm plugin

 hosts: all

 vars:

 myplugin_name: "env"

 tasks:

 - name: helm plugin absent

 kubernetes.core.helm_plugin:

 plugin_name: "{{ myplugin_name }}"

 state: absent

The localhost inventory executes your code in the Ansible Controller, as shown in

Listing 6-14.

Listing 6-14.  Inventory

localhost ansible_connection=local

You can execute this code with the ansible-playbook command:

$ ansible-playbook -i inventory helm_absent.yml

Chapter 6 Ansible for K8s Management

215

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [helm plugin absent]

 changed: [localhost]

You can verify the installed Helm plugin in the following section (see Report Helm

Plugin).

�Report Helm Plugin

You can use the helm plugin list manual command to report the Helm plugins

deployed inside the cluster. This command lists all the plugins installed in the current

namespace, as well as their versions and other information. You can automate this

process using the kubernetes.core.helm_plugin_info Ansible module.

The Ansible Playbook shown in Listing 6-15 displays the version of the env plugin

installed in the ansible-examples namespace.

Listing 6-15.  The helm_plugin_info.yml File

- name: k8s helm plugin

 hosts: all

 vars:

 myplugin_name: "env"

 tasks:

 - name: helm plugin info

 kubernetes.core.helm_plugin_info:

 register: output

 - name: print plugin version

 ansible.builtin.debug:

 �msg: "{{ (output.plugin_list | selectattr('name', 'equalto',

myplugin_name) | list)[0].version }}"

Chapter 6 Ansible for K8s Management

216

You can execute the code in your Ansible Controller using the localhost inventory,

as shown in Listing 6-16.

Listing 6-16.  Inventory

localhost ansible_connection=local

You can execute your helm_present.yml Ansible Playbook using the ansible-

playbook command and specifying the -i parameter for the inventory file and the

playbook filename:

$ ansible-playbook -i inventory helm_plugin_info.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=3 changed=0

•	 Task status:

 TASK [helm plugin info]

 ok: [localhost]

 TASK [print plugin version]

 ok: [localhost]

�Deploy a Monitoring Tool
Prometheus is a popular monitoring tool based on time series data. Under the hood, it

streams timestamped values belonging to the same metric and the same set of labeled

dimensions. One of the strengths of Prometheus is its deep integration with Kubernetes.

You can choose between several different ways to deploy a monitoring tool inside

your Kubernetes clusters:

•	 Prometheus Operator and kube-prometheus

•	 Ansible role cloudalchemy.prometheus

•	 Helm chart

Chapter 6 Ansible for K8s Management

217

The Prometheus Operator is the Kubernetes-native solution that allows you to

deploy and manage Prometheus and its components, such as Alertmanager and

Grafana. It provides a declarative configuration that allows you to specify the desired

state of your monitoring stack, and the operator will ensure that it is always kept up-

to-date. In addition to deploying Prometheus, the operator can be used to configure

monitoring rules, manage alerting rules, and set up dashboards. To deploy the

Prometheus Operator, you can use different options, discussed next.

�kube-prometheus
The kube-prometheus project is the easiest way to install end-to-end Kubernetes cluster

monitoring with Prometheus using the Prometheus Operator. It deploys the Prometheus

Operator by deploying it as part of kube-prometheus. The kube-prometheus project

deploys the Prometheus Operator and schedules a Prometheus job called prometheus-

k8s with alerts and rules by default. The default deployment includes multiple

Prometheus and Alertmanager instances, metric exporters such as node_exporter for

gathering node metrics, scrape target configurations linking Prometheus to various

metric endpoints, and example alerting rules for notification of potential issues in the

cluster. The setup is performed in three manual steps:

	 1.	 Download the kube-prometheus project:

�$ git clone https://github.com/prometheus-operator/

kube-prometheus.git

	 2.	 Deploy kube-prometheus:

$ kubectl create -f manifests/setup

$ kubectl create -f manifests/

	 3.	 Forward the ports for Prometheus, Alertmanager, and Grafana:

�$ kubectl --namespace monitoring port-forward svc/

prometheus-k8s 9090

�$ kubectl --namespace monitoring port-forward svc/

prometheus-k8s 9090

�$ kubectl --namespace monitoring port-forward svc/

alertmanager-main 9093

$ kubectl --namespace monitoring port-forward svc/grafana 3000

Chapter 6 Ansible for K8s Management

218

�Ansible Collections
When you want to automate the installation of Prometheus, you can deploy it using

Ansible. You need to acquire the Ansible Collection called prometheus.prometheus from

the Ansible Galaxy repository. The collection requires the community.crypto collection

to be installed (resolved by the ansible-galaxy tool). The Prometheus role inside the

collection substitutes the previous cloudalchemy.prometheus Ansible role, which has

been deprecated in Ansible Galaxy.

	 1.	 Install the collection manually:

$ ansible-galaxy collection install prometheus.prometheus

	 2.	 Install the collection via requirements.yml, as shown in

Listing 6-17.

Listing 6-17.  The requirements.yml File

collections:

 - name: prometheus.prometheus

The role requires the jmespath Python library and gnu-tar when run on an Ansible

Controller, as demonstrated in Listing 6-18.

Listing 6-18.  The prometheus.yml File

- name: install prometheus

 hosts: all

 roles:

 - prometheus.prometheus.prometheus

 vars:

 prometheus_targets:

 node:

 - targets:

 - k8s.ansiblepilot.com:9100

 labels:

 env: ansible-examples

Chapter 6 Ansible for K8s Management

219

The localhost inventory executes your code in the Ansible Controller

(see Listing 6-19).

Listing 6-19.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying the

inventory file and the playbook filename:

$ ansible-playbook -i inventory prometheus.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Many messages according to the prometheus.prometheus.

prometheus role

�Helm Chart
Another way to install the Prometheus Operator is via a Helm Chart. You can reuse the

Ansible Playbook seen in the previous section (see The Helm Package Manager) with

different Ansible variables. You can specify the extra variables via the command line

using the -e parameter of the ansible-playbook command. The extra variables override

the values of the Ansible Playbooks.

Enable the Helm repository called prometheus-community by specifying the URL:

$ ansible-playbook -i inventory -e "helm_chart_name=prometheus-community"

 -e "helm_chart_url=https://prometheus-community.github.io/helm-charts"

helm_repo_present.yml

Install the Helm chart package named kube-prometheus-stack from the

prometheus-community Helm repository as follows:

$ ansible-playbook -i inventory -e "chart_name=kube-prometheus-stack" -e

"chart_ref=prometheus-community/kube-prometheus-stack" helm_present.yml

Chapter 6 Ansible for K8s Management

220

�Fetch Logs from Resources
To fetch logs manually from Kubernetes resources, you can use the kubectl logs

command. This command allows you to view the logs of a container in a pod or to

retrieve the logs of a resource such as a Deployment, StatefulSet, or CronJob. The syntax

for the command is as follows:

$ kubectl logs <resource-name> [<container-name>]

If a container name is not provided, the logs of the first container in the pod will be

fetched. For example, to view the logs of a Deployment, you can use the kubectl logs

my-deployment command. This will show the logs for all of the pods in the Deployment.

To view the logs of a specific container in a pod, you can use the $ kubectl logs

my-pod -c my-container command.

The Ansible Playbook shown in Listing 6-20 obtains the log from the ansible-

examples pod in the ansible-examples namespace.

Listing 6-20.  The log_pod.yml File

- name: k8s log

 hosts: all

 vars:

 myproject: "ansible-examples"

 pod_name: "nginx-server"

 tasks:

 - name: get log from pod

 kubernetes.core.k8s_log:

 name: "{{ pod_name }}"

 namespace: "{{ myproject }}"

 register: log

 - name: display log

 ansible.builtin.debug:

 var: log

Chapter 6 Ansible for K8s Management

221

Instead, the Ansible Playbook in Listing 6-21 can obtain logs from different

resources: Deployment, DeploymentConfig, StatefulSet, and CronJob.

Listing 6-21.  The log_resource.yml File

- name: k8s log

 hosts: all

 vars:

 myproject: "ansible-examples"

 myname: "nginx-server"

 mykind: "Deployment"

 tasks:

 - name: get log from resource

 kubernetes.core.k8s_log:

 api_version: apps/v1

 kind: "{{ mykind }}"

 namespace: "{{ myproject }}"

 name: "{{ myname }}"

 register: log

 - name: display log

 ansible.builtin.debug:

 var: log

The localhost inventory executes your code in the Ansible Controller, as shown in

Listing 6-22.

Listing 6-22.  The Inventory File

localhost ansible_connection=local

You can execute your code with the ansible-playbook command (specifying the

log_pod.yml or log_resource.yml file):

$ ansible-playbook -i inventory log_pod.yml

Chapter 6 Ansible for K8s Management

222

Successful execution using the ansible-playbook command includes the following:

•	 Play recap status: ok=2 changed=1

•	 Log messages displayed onscreen

�Apply a JSON Patch Operation
JSON Patch is a format for describing changes to a JSON document. To apply JSON patch

operations to existing Kubernetes objects manually, you can use the kubectl patch

command. This command takes two arguments—the object name and a JSON patch file.

The patch file should contain one or more operations, in either JSON or YAML format,

that you want to apply to the object. For example, to add a new label to an existing pod,

you can create a patch file containing the YAML shown in Listing 6-23.

Listing 6-23.  The patch-file.yaml File

- op: add

 path: /metadata/labels/new-label

 value: new-value

Then, you can apply this patch to the nginx-server pod object using the following

command:

$ kubectl patch pod nginx-server --patch "$(cat patch-file.yaml)"

This will add the new label to the pod. You can use the same command with different

patch files to make changes to other objects in the cluster.

You can also automate the previous operation using the Ansible Playbook shown in

Listing 6-24.

Listing 6-24.  The patch.yml File

- name: k8s patch

 hosts: all

 vars:

 mypod: "nginx-server"

 myproject: "ansible-examples"

Chapter 6 Ansible for K8s Management

223

 tasks:

 - name: patch a Pod

 kubernetes.core.k8s_json_patch:

 kind: Pod

 namespace: "{{ myproject }}"

 name: "{{ mypod }}"

 patch:

 - op: add

 path: /metadata/labels/new-label

 value: new-value

The localhost inventory executes this code in the Ansible Controller, as shown in

Listing 6-25.

Listing 6-25.  The Inventory File

localhost ansible_connection=local

You can execute the patch.yml Ansible Playbook with the ansible-playbook

command:

$ ansible-playbook -i inventory patch.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [patch a Pod]

 changed: [localhost]

Chapter 6 Ansible for K8s Management

224

�Copy Files and Directories to and from a Pod
It’s helpful to copy files and directories to and from a pod in Kubernetes, especially in

the early stage of the development or for some investigations. For manual operations,

you can use the kubectl cp command. This command allows you to copy files and

directories between a pod and the local file system. The syntax for the command is

kubectl cp <source> <destination>, where the source can be either a pod or the

local file system, and the destination can be either a pod or the local file system. For

example, to copy a file from a pod to the local file system, you can use this command:

$ kubectl cp <pod-name>:/path/to/file /local/destination/path

Similarly, to copy a file from the local file system to a pod, you can use this

command:

$ kubectl cp /local/source/path <pod-name>:/path/to/destination

You can automate the operation using the kubernetes.core.k8s_cp Ansible

module. The parameter state defines whether you want the default operation to copy

data from local to pod (the to_pod option) or from pod to local (the from_pod option).

The Ansible Playbook in Listing 6-26 copies data from the /data directory of the pod

named nginx-server in the ansible-examples namespace to the local folder called

/tmp/data.

Listing 6-26.  The cp.yml File

- name: k8s copy

 hosts: all

 vars:

 mypod: "nginx-server"

 myproject: "ansible-examples"

 remote_path: "/data"

 local_path: "/tmp/data"

 direction: "from_pod"

 tasks:

 - name: copy data

 kubernetes.core.k8s_cp:

Chapter 6 Ansible for K8s Management

225

 namespace: "{{ myproject }}"

 pod: "{{ mypod }}"

 remote_path: "{{ remote_path }}"

 local_path: "{{ local_path }}"

 state: "{{ direction }}"

You can execute the code in your Ansible Controller using the localhost inventory,

as shown in Listing 6-27.

Listing 6-27.  Inventory

localhost ansible_connection=local

You can execute your cp.yml Ansible Playbook by using the ansible-playbook

command and specifying the -i parameter for the inventory file and the playbook

filename:

$ ansible-playbook -i inventory cp.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [copy data]

 changed: [localhost]

�Manage Services on Kubernetes
To manage services on Kubernetes, you can use the kubectl command-line tool. This

tool lets you create, edit, delete, and view services in your Kubernetes cluster.

To create a service, you can use the kubectl expose command, which takes a

deployment or a pod as an argument.

To edit a service, you can use the kubectl edit command, which will open the

service definition in an editor.

Chapter 6 Ansible for K8s Management

226

To delete a service, you can use the kubectl delete command, which takes the

service name and namespace as arguments.

To view a service, you can use the kubectl get command, which takes the service

name and namespace as arguments.

You can also use the kubectl describe command to view detailed information

about a service.

You can automate the managing of services on the Kubernetes cluster using the

following Ansible Playbook (see Listing 6-28).

Listing 6-28.  The service.yml File

- name: k8s service

 hosts: all

 tasks:

 - name: expose https port with ClusterIP

 kubernetes.core.k8s_service:

 state: present

 name: port-https

 namespace: default

 ports:

 - port: 443

 protocol: TCP

 selector:

 key: special

You can execute the code in your Ansible Controller by specifying the localhost in

the inventory, as shown in Listing 6-29.

Listing 6-29.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying

the -i parameter for the inventory file and the playbook filename:

$ ansible-playbook -i inventory service.yml

Chapter 6 Ansible for K8s Management

227

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [expose https port with ClusterIP]

 changed: [localhost]

�Taint Nodes
Taints and tolerations are a flexible way to steer pods away from nodes or evict pods

that shouldn’t be running. A typical use case of the taint node is to take advantage of

particular nodes with special hardware (such as GPUs) to run only pods that require the

use of the specialized hardware and keep out the pods that don’t require it. Moreover,

you can use this tool when you need to execute maintenance in your Kubernetes cluster.

Kubernetes Taint is used to mark a node as unable to schedule any pods that do not

tolerate the taint. This is useful when you need to perform maintenance on a node, as

it ensures that any existing pods running on the node will remain running and any new

pods will be rescheduled onto other nodes in the cluster. The taint command works

by adding a label to the node, which is then used to identify which pods should not be

scheduled onto the node. This label can be removed when the maintenance is complete,

allowing the node to start accepting new pods again.

The Ansible Playbook in Listing 6-30 taints the node defined in the mynode variable

and sets the NoExecute and NoSchedule attributes’ keys and values. The playbook uses

the kubernetes.core.k8s_taint Ansible module, introduced in version 2.3 of the

kubernetes.core Ansible collection in March, 2022.

Listing 6-30.  The taint.yml File

- name: k8s taint

 hosts: all

 vars:

 mynode: "k8s.ansiblepilot.com"

Chapter 6 Ansible for K8s Management

228

 tasks:

 - name: taint node

 kubernetes.core.k8s_taint:

 state: present

 name: "{{ mynode }}"

 taints:

 - effect: NoExecute

 key: "key1"

 value: "value1"

 - effect: NoSchedule

 key: "key1"

 value: "value1"

You can execute your Ansible Controller by specifying the localhost in the

inventory, as shown in Listing 6-31.

Listing 6-31.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying the -i

parameter for the inventory file and the playbook filename:

$ ansible-playbook -i inventory taint.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [taint node]

 changed: [localhost]

Chapter 6 Ansible for K8s Management

229

�Drain, Cordon, or Uncordon Nodes
Kubernetes Drain is a tool used to safely evict all of the pods from a node before

performing maintenance on the node. Note that it’s always a good practice to have a

planned maintenance window. The Drain operation is often combined with the Taint

operation.

When you run the drain command, Kubernetes will attempt to delete all of the pods

on the node except for mirror pods, which are created by replication controllers, jobs, or

daemon sets. The drain command also allows you to specify a PodDisruptionBudget,

which will ensure that the number of pods running on the node does not drop below the

specified minimum during the eviction process. Once the eviction process is complete,

you can then safely perform maintenance on the node, knowing that the pods will be

safely relocated to other nodes in the cluster.

Kubernetes Cordon marks a node as “unschedulable,” meaning that no new pods

will be scheduled onto the node. This is useful when you need to perform maintenance

on a node, as it ensures that any existing pods running on the node will remain running

and any new pods will be rescheduled onto other nodes in the cluster. The cordon

command works by setting the node’s unschedulable flag to true, which will prevent the

Kubernetes scheduler from placing any new pods on the node. Once the maintenance

is complete, the unschedulable flag can be reset back to false, allowing the node to start

accepting new pods again.

Kubernetes Uncordon is used to mark a node as schedulable, meaning that new

pods can be scheduled onto the node. This is the opposite of the kubectl cordon

command, which marks a node as unschedulable, thus preventing new pods from

being scheduled onto that node. The uncordon command works by setting the node’s

unschedulable flag to false, allowing the Kubernetes scheduler to place new pods on

the node. This is useful when maintenance has been completed on a node, and you want

to allow new pods to start running on the node again.

The Ansible Playbook shown in Listing 6-32 sets a node in the drain state but

aborts the operation if there are pods not managed by a ReplicationController, Job, or

DaemonSet. It uses a grace period of ten minutes.

Chapter 6 Ansible for K8s Management

230

Listing 6-32.  The drain.yml File

- name: k8s drain

 hosts: all

 vars:

 mynode: "k8s.ansiblepilot.com"

 grace_period: 600

 tasks:

 - name: drain node

 kubernetes.core.k8s_drain:

 state: drain

 name: "{{ mynode }}"

 delete_options:

 terminate_grace_period: "{{ grace_period }}"

The Ansible Playbook in Listing 6-33 marks the specified node as unschedulable as

part of the Cordon status.

Listing 6-33.  The cordon.yml File

- name: k8s cordon

 hosts: all

 vars:

 mynode: "k8s.ansiblepilot.com"

 tasks:

 - name: cordon node

 kubernetes.core.k8s_drain:

 state: cordon

 name: "{{ mynode }}"

In the same way, you can perform the uncordon operation to mark the selected node

as schedulable in the Kubernetes cluster. The Ansible Playbook is shown in Listing 6-34.

Chapter 6 Ansible for K8s Management

231

Listing 6-34.  The uncordon.yml File

- name: k8s uncordon

 hosts: all

 vars:

 mynode: "k8s.ansiblepilot.com"

 tasks:

 - name: uncordon node

 kubernetes.core.k8s_drain:

 state: uncordon

 name: "{{ mynode }}"

The localhost inventory shown in Listing 6-35 executes the code in the Ansible

Controller.

Listing 6-35.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying the

inventory file and the playbook filename (drain.yml, cordon.yml, uncordon.yml):

$ ansible-playbook -i inventory drain.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [drain node]

 changed: [localhost]

Many IT professionals chain the three Ansible Playbooks when they upgrade a new

version of Kubernetes in their clusters or expand with a list of hostnames and loops

between them.

Chapter 6 Ansible for K8s Management

232

�Kubernetes Dynamic Inventory
Ansible Dynamic Inventory is a feature of Ansible that allows you to automatically generate

and update inventory information from external sources such as cloud providers, CMDBs,

and inventory management systems. This allows users to deploy infrastructure and

applications dynamically and automate them quickly. The inventory is stored in a YAML

file, which is then used by Ansible to determine which hosts to target for tasks. Ansible

Dynamic Inventory can be used for several different use cases, such as dynamic scaling,

provisioning, and application deployment. It can be used to manage hybrid data center

environments and ensure that the right resources are allocated for each environment. See

the “Ansible Dynamic Inventory” section in Chapter 5 for a practical example.

�Roll Back Deployments and DaemonSets
Deployments can fail to deploy for a number of reasons. Your Plan B should be to

execute a rollback of the previous working version of the application or service. You can

execute this operation, thus triggering the rollback operation to the deployments and

DaemonSets. The Ansible Playbook in Listing 6-36 starts a rollback on the nginx-server

deployment in the ansible-examples namespace.

Listing 6-36.  The rollback.yml File

- name: k8s rollback

 hosts: all

 vars:

 myproject: "ansible-examples"

 kind: "Deployment"

 name: "nginx-server"

 tasks:

 - name: rollback

 kubernetes.core.k8s_rollback:

 api_version: apps/v1

 kind: "{{ kind }}"

 name: "{{ name }}"

 namespace: "{{ myproject }}"

Chapter 6 Ansible for K8s Management

https://doi.org/10.1007/978-1-4842-9285-3_5

233

The localhost inventory shown in Listing 6-37 executes the code in the Ansible

Controller.

Listing 6-37.  Inventory

localhost ansible_connection=local

You can execute the code using the ansible-playbook command and specifying the

inventory file and the playbook filename:

$ ansible-playbook -i inventory rollback.yml

A successful execution using the ansible-playbook command output includes the

following:

•	 Play recap status: ok=2 changed=1

•	 Task status:

 TASK [rollback]

 changed: [localhost]

�Set a New Size for a Deployment, ReplicaSet,
Replication Controller, or Job
You can automate the setting of the number of replicas for a Deployment, ReplicaSet, or

Replication Controller, or the parallelism attribute of a Job using the kubernetes.core.

k8s_scale Ansible module. See the “Scale Your App” section in Chapter 4.

�Security
Security is a broad concept, especially when many components are interconnected,

like in a Kubernetes cluster. The Linux kernel has a number of overlapping security

extensions (capabilities, SELinux, AppArmor, and seccomp-bpf) that can be configured

to provide the least privilege to programs.

Chapter 6 Ansible for K8s Management

https://doi.org/10.1007/978-1-4842-9285-3_4

234

The reference for Kubernetes in this field are the four Cs of cloud-native security:

•	 Cloud

•	 Cluster

•	 Container

•	 Code

To begin with, the cloud infrastructure that hosts your cluster needs to be adequately

secured and enable access to ports on the cluster only by trusted networks. By default,

Container Engines are open from anywhere. A network firewall could be helpful in

mitigating this behavior. This prevents a potential attacker from running port scans to

detect potential open ports in your systems and connect to them. This is the first “C”

in cloud-native and it impacts the security of the entire infrastructure, even when the

cluster is in a private or public cloud data center.

The next is cluster security, which involves the ability of a potential attacker to

execute commands in your cluster. A potential attacker could have the ability to access

running Container Engines such as Docker Daemons, exposed publicly, as well as the

Kubernetes Dashboard without the proper authentication or authorization mechanism.

This can be prevented by using network policies and security in ingress.

The next “C” is containers. A potential attacker can run any container of choice

without restriction, even in privileged mode, no matter what repository it came from or

what tag is used.

Moreover, the attacker can install any application when it can run a malicious

container in your cluster without restriction. A few years ago, the Dirty Cow

CVE-2016-5195 exploited a bug in the Linux kernel’s memory subsystem copy-on-

write (COW) to gain write access from the container to the host system, increasing the

privileges.

You can prevent this behavior by enabling only running containers from a secure

internal registry, disallowing running in privileged mode, and sandboxing isolating

each other.

The best way to prevent supply chain attacks and minimize microservice

vulnerability is acting in the code. Avoid hard-coding database credentials, thereby

passing critical pieces of information through environment variables or exposing

applications without TLS/SSL. These are bad coding practices.

The DevSecOps movement applies security as soon as possible in the code design

phase of your development.

Chapter 6 Ansible for K8s Management

235

Another important tool is to scan for vulnerabilities as soon you create your

container image, when you push to the container image. You must apply this

methodology as soon as possible during the development process.

You can also reduce the attack surface of container images using the smallest images

possible, removing all unnecessary binaries. Reducing the attack surface should be

your mantra.

A good security practice is to build your images using scratch. Add a USER directive to

run as a non-root user inside a container. You can sign your images in order to run only

trusted containers. Most of the time, you derive your containers using the FROM directive.

The most secure way is to combine the scratch with a multi-stage build. In this way,

you obtain a shirked image with only your application. This approach is demonstrated in

Listing 6-38.

Listing 6-38.  The Containerfile File

FROM fedora:latest as build

COPY hello.go /app

WORKDIR /app/

RUN go build -o hello

FROM scratch

COPY –from=build /app/hello /app/

ENTRYPOINT ["/app/hello"]

The resulting container has only the executable /app/hello. Hence, it’s super

compact and very secure because it doesn’t have unnecessary binaries and doesn’t

require all the unused libraries of the operating system.

�AAA
Every time you make a request, Kubernetes determines if it is allowed or denied using

Authentication, Authorization, and Accounting (AAA). This is how your Kubernetes

cluster verifies who you are and what you are authorized to execute. Policies define

permissions according to role-based access control (RBAC) or attribute-based access

Chapter 6 Ansible for K8s Management

236

control (ABAC). Associated policies define Kubernetes resources. Kubernetes RBAC is

the most commonly used method to perform AAA tasks. Policies are in place to make

decisions to allow or deny an action. The following acronyms are used in the AAA context:

•	 authn: Authentication (who are you?)

•	 authz: Authorization (what are you authorized to do?)

•	 auth: Accounting (what area are you authorized to access?)

You can use Kubernetes RBAC to provide authorization to resources in your

Kubernetes cluster.

�OpenID Identity Provider
An identity provider stores and authenticates the identities of users, ensuring the

validity of their login credentials across multiple platforms. In the past, Kerberos was

the preferred authentication system, but it’s sometimes complicated, so nowadays,

especially for API authentication, other solutions are preferred.

OpenID Connector (OIDC) is an authentication layer on top of OAuth 2.0. It is a

secure mechanism allowing an application to contact an identity service, retrieve user-

specific data, and return some information to the application in a secure way. You can

see this with Facebook and Google login buttons in many mobile apps and websites.

They use the authentication information stored in your account, so you don’t have to

retype information into every service. GitHub, Microsoft, and Azure ID are other popular

identity providers.

Kubernetes hosts a per-cluster, public OpenID Connect (OIDC) endpoint that

contains signing keys for JSON web tokens allowing external systems, like Amazon

IAM, to validate and accept the Kubernetes-issued OIDC tokens. OIDC federation

access allows you to assume RBAC roles via the Secure Token Service (STS), enabling

authentication with an OIDC provider and receiving a JSON Web Token (JWT), which is

used to assume a role. OpenID Connect allows single sign-on (SSO) for logging into your

Kubernetes cluster. You can use an existing public OpenID Connect Identity Provider

(such as Google, GitHub, Microsoft, Amazon, and so on), or you can run your own

identity providers, such as dex, Keycloak, CloudFoundry UAA, or Tremolo Security’s

OpenUnison.

Chapter 6 Ansible for K8s Management

237

�Calico
You can secure your network communications using Calico around your pod. Calico

acts like a firewall in your pod. It enables you to use network policies within a pod and

apply the zero-trust security model. This means that it considers all the traffic dangerous

by default, and you need to manually set an allow list. The easiest way to install Calico

is via the Tigera operator. The Tigera operator provides lifecycle management for Calico

exposed via the Kubernetes API, defined as a custom resource definition.

�Key Takeaways
Automating the management of your Kubernetes clusters using Ansible technology

enables a faster maintenance window and fewer human errors. You can apply the

automation to small and large clusters and many use cases. Managing software with

the Helm package manager simplifies the adoption of the standard software lifecycle

maintenance process. Ansible reduces the cluster administration toil, automating every

operation of cluster maintenance and software lifecycle management. Creating another

cluster is becoming easy and very affordable nowadays, especially for Cloud providers

(Amazon, Google, Azure, and so on). You explore Kubernetes and its cloud computing

opportunities in the next chapter.

Chapter 6 Ansible for K8s Management

239

CHAPTER 7

Ansible for Kubernetes
Cloud Providers
Cloud providers are a great resource for propelling your business to a new level. The

need for more resources is just a few clicks away. Cloud computing is a commercial

offer from a vendor that offers a pool of on-demand computing, storage, database, and

network shared resources sold as a service that you can rapidly deploy at scale. In recent

times also, Machine Learning and Artificial Intelligence resources are becoming popular.

Worldwide analysts see growth in the adoption of cloud provider services year

after year. Forrester report predicts1 that in 2023 cloud-native adoption will rise to 50

percent of worldwide enterprise organizations. The previous adoption rate was 42

percent in 2021 and 33 percent in 2020. Gartner forecasts2 end-user spending on public

cloud services of $591.8 Billion in 2023. The reason behind this is that maintaining

on-premise infrastructure might drain a lot of resources from your IT department.

An affordable Total Cost of Ownership (TCO) and the possibility of obtaining a fully

managed service have attracted organizations in recent years to move their applications

to cloud providers. From the application point of view, it changes nothing, as they

perceive the underlying layer as platform-independent because they rely on container

technology. You have the ability to run your pods in the Kubernetes cluster on-premise,

via cloud computing, or via a hybrid infrastructure without any changes. Ansible

Dynamic Inventories are very useful in conjunction with the cloud provider because the

environment can be fast-paced. As the number of machines and systems under your

control increases, you need a powerful tool to comply with regulations. Ansible Dynamic

Inventories interact with the cloud provider API and retrieve identifiers and IP addresses

1 https://www.forrester.com/report/predictions-2023-cloud-computing/RES178164
2 https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-
worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_7

https://www.forrester.com/report/predictions-2023-cloud-computing/RES178164
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://doi.org/10.1007/978-1-4842-9285-3_7#DOI

240

of the machines in the IT real estate. Ansible Dynamic Inventories are heavily used to

query cloud providers or Kubernetes cluster infrastructures (see the “Ansible Dynamic

Inventory” section in Chapter 5).

One of the main benefits of adopting cloud computing in your organization is that

you are outsourcing the management of the Kubernetes control plane because the

vendor manages it. Adopting the shared responsibility model displayed in Table 7-1,

this complies with the most up-to-date international security and process management

standards. Usually, you need to set up the network configuration for your applications

or services. After the initial configuration, you can spin up global-scale cloud-native

applications in minutes.

Table 7-1.  Cloud Computing Shared Responsibility Model

Responsibility On-premise IaaS PaaS SaaS

Application configuration Customer Customer Customer Customer

Identity and access control Customer Customer Shared Shared

Application data storage Customer Customer Shared Vendor

Application Customer Customer Customer Vendor

Operating system Customer Customer Vendor Vendor

Network flow control Customer Shared Vendor Vendor

Host infrastructure Customer Vendor Vendor Vendor

Physical security Customer Vendor Vendor Vendor

Like everything in life, you can’t apply a “one size fits all” approach. Cloud

computing is a great tool that you can apply to your IT infrastructure when the on-

premises resources are not enough, your stakeholders are located worldwide, or

you need to handle a temporary spike of traffic. In this context, a hybrid deployment

makes much more sense. On the other hand, complexity arises because you need

to interconnect your local on-premise infrastructure with infrastructure, machines,

applications, and cloud-based resources. This context is where the Ansible automation

tool shines!

Chapter 7 Ansible for Kubernetes Cloud Providers

https://doi.org/10.1007/978-1-4842-9285-3_5

241

�Cloud Architecture
Cloud providers organize their data center architecture in regions and availability zones.

Figure 7-1 shows the Amazon Web Services (AWS) global infrastructure map, currently

divided into 99 availability zones within 31 geographic regions worldwide at the moment

of writing this book. A region directly impacts the performance and services of the

final users. When your users are in only one part of the world, reducing the latency for

the final user deploying compute and storing the data as closely as possible is more

convenient. A region is a set of data centers connected to a low-latency network. Each

region has more than a data center. An availability zone is a data center independent

in the region. You need to distribute between more availability zones to implement a

high availability and redundant application. Implementing this application architecture

makes the service more reliable and tolerant of some resources or availability zone

failures.

Figure 7-1.  The Amazon Web Services (AWS) global infrastructure map

The availability zone is a totally independent data center within the region, with

its electric system, cooling system, and network devices. Each region has at least two

availability zones. Multiple availability zones protect from data center failures. Services

for redundant zone storage automatically replicate your data and services across zones.

Note that some features might not be available in all regions. Review your cloud

provider documentation when you need a specific feature. You need the least amount of

latency as possible, so the data will be sent as fast as possible to your final users. Usually,

the price of services varies from region to region.

Chapter 7 Ansible for Kubernetes Cloud Providers

242

Most providers provide a paired region in the same country. For example, us-west-1

and us-west-2. This guarantees that if your primary choice region fails because of

an outage, the second region will fail over the workload. If the outage affects multiple

regions, the vendor will prioritize at least one region per area for repair. Planned

maintenance is always scheduled in one region at a time. Service replication is often

provided in the paired region as well.

There are three architectural approaches in the cloud providers:

•	 Infrastructure as a Service (IaaS)

•	 Platform as a Service (PaaS)

•	 Software as a Service (SaaS)

Virtual machines are the building blocks inside cloud providers. They have

different names, but the concept is the same and sometimes hidden behind totally

managed services by the vendors. The virtual machine was the first service offered by

cloud providers, sharing resources of common hardware. They are often referred to

by Infrastructure as a Service (IaaS). You take care of managing everything except the

hardware and the networking for the virtual machines. Nowadays, all the cloud providers

offer a marketplace of virtual machine images with different operating systems on them.

Many organizations calculate the Total Cost of Ownership (TCO) of managing the

hardware and plan some migration when it is convenient or efficient. Cloud providers

provide portals and tools to spin up, monitor, and manage a large number of virtual

machines and even hybrid clouds. They also provide blueprints to comply with company

guidelines and offer recommendations to optimize your environment for security,

high availability, and great performance. Pricing might be complicated because it is

calculated hourly, but is also flexible enough to spin up the testing machine for a limited

amount of time. The maintenance of virtual machines (operating system updates,

patches, security, storage, and so on) might impact your IT department and you might

decide to move to a completely managed service offered by the cloud providers. These

types of services are called Platform as a Services (PaaS) because you delegate the

management of the resources to the vendor and take care only of the application to

deliver to your audience. This model is also sometimes called a fully managed platform.

Containers are an important part of modern cloud computing. The major benefits

of containers are their self-contained dependency, which increases portability between

operating systems and hardware platforms and increases efficiency. Containers reduce

the overhead related to maintenance.

Chapter 7 Ansible for Kubernetes Cloud Providers

243

Most of the vendors offer a PaaS service to spin up a limited amount of containers via

the Portal, API, and CLI via client SDK. When the number of containers increases, you

need Kubernetes.

Kubernetes is the common ground for deploying containers in the cloud because

it is widely deployed and adopted by all modern vendors. Containers standardized

the experience between different suppliers, enabled hybrid cloud IT data centers, and

enabled a consistent user experience between vendors. When the number of containers

increases, you need a system to keep track of the moving parts, as well as to make

sure that containers are configured correctly, the file system is consistent, and works

together. As you learned in the previous chapters, Kubernetes takes care of the automatic

application deployment and automatic scaling to meet the load and the customer traffic

demand. It’s battle-tested by Google and many worldwide organizations.

The third architectural design is called Software as a Service (SaaS). Some vendors

also refer to this category as “serverless” or “functions.” It’s the smallest computing

service and can be triggered via a standard web address (URL). It executes once and then

stops. It’s a serverless computing service because you don’t need to worry about virtual

machine toil, maintenance, or processes to manage; you just focus on the functionality.

The most famous serverless services are Amazon Lambda and Azure Function. This

architectural design enables great growth and great flexibility and saves money because

it reduces wasted resources when nobody is using them.

Storing secrets is another important task in a modern IT infrastructure. The most

convenient way is to use external services such as AWS Key Management Service (AWS

KMS), Google Cloud Key Management Service (Cloud KMS), Azure Key Vault, or Vault

by Hashicorp. These types of services help store and retrieve Kubernetes secrets. Keys

are stored in a customer-owned key vault customer-managed key (CMK) or a hardware

security module (HSM).

The Envelope Encryption technique (or Digital Envelope) allows you to store keys

inside an external service and use them using a double encryption mechanism. Using

this method, only the provider can read the envelope, and only the customer can read

the content of the message. You need to encrypt the encryption key with the key stored

in the Key Management Service. Key rotation is also good advice in order to maintain a

high-security level.

You can grant temporary access to keys; this feature is helpful for audit account

use cases.

Chapter 7 Ansible for Kubernetes Cloud Providers

244

�Amazon Web Services (AWS)
Amazon Web Services is probably the biggest cloud provider on the market at the

moment, according to international analysts. Amazon Web Services spans 31 regions

with 99 availability zones and is available for users of 245 countries and territories.

Amazon Elastic Compute Cloud (EC2) provides Infrastructure as a Service (IaaS),

many options for Platform as a Service (PaaS), and serverless options with the Amazon

Lambda service.

The network is managed by Virtual Private Clouds (VPC) that you can configure

as public and private segments, and traffic between is regulated by gateways. There

are multiple storage services (detailed in Table 7-2). The most famous is Elastic Block

Storage (EBS), which offers persistent block-level storage and the flexibility to attach

from one instance of EC2 to another. Amazon Simple Storage Service (S3) instead is

an object storage service designed to provide 99.999999999 percent durability, 99.99

percent availability, and incredible scalability and security.

Table 7-2.  Amazon Web Services IaaS, PaaS, SaaS Services

IaaS PaaS SaaS

Amazon Elastic Compute Cloud (AWS EC2) Amazon Elastic Kubernetes Service (EKS)

Amazon Elastic Container Service (ECS)

AWS Fargate

You can try the Amazon Web Services with a one-year trial, which includes some

resources for the most popular products, like 750 hours per month of Linux, Red Hat

Enterprise Linux (RHEL), or SUSE Linux Enterprise Server (SLES), t2.micro or t3.micro

EC2, and RDS instances (managed Relational Database Service for MySQL, PostgreSQL,

MariaDB, or SQL Server).

You can generate an Ansible Dynamic Inventory of the resources in your Amazon

Web Services infrastructure. The aws_ec2 inventory plugin is included in the amazon.aws

collection. You can also interact with Amazon Web Services and create inventory groups

automatically with your machines inside based on Amazon EC2 instance metadata (see

the section in Chapter 5 titled “Ansible Dynamic Inventory”). First of all, you need to install

the amazon.aws collection in your Ansible Controller. If it’s not already installed, you can

proceed using the ansible-galaxy command included in all the Ansible installations:

$ ansible-galaxy collection install amazon.aws

Chapter 7 Ansible for Kubernetes Cloud Providers

https://doi.org/10.1007/978-1-4842-9285-3_5

245

You can verify the successful installation of the amazon.aws collection using the same

command with the list option:

$ ansible-galaxy collection list amazon.aws

The amazon.aws collection requires the botocore and boto3 Python libraries to be

installed:

$ pip3 install botocore boto3

The minimal parameter of the aws_ec2 inventory plugin is the “regions” that

specify which regions to query in AWS. The most powerful feature is the ability to create

dynamic groups. This feature reads the host variables according to the keyed_groups

option. The keyed_groups option also defines the prefix and a key format. The full

inventory configuration file of the plugin is shown in Listing 7-1.

Listing 7-1.  The inventory.aws_ec2.yml File

plugin: amazon.aws.aws_ec2

regions:

 - us-east-1

filters:

 tag:env: ansible-examples

keyed_groups:

 - key: 'architecture'

 prefix: arch

 - key: instance_type

 prefix: instance_type

 - key: tags.type

 prefix: tag_type

hostnames:

 - ip-address

You need to enable the aws_ec2 Ansible inventory plugin in your Ansible

configuration file, as shown in Listing 7-2.

Listing 7-2.  The ansible.cfg File

[inventory]

enable_plugins = amazon.aws.aws_ec2

Chapter 7 Ansible for Kubernetes Cloud Providers

246

It is important to verify that the following environment variables are defined

containing the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY:

export AWS_ACCESS_KEY_ID='AK123'

export AWS_SECRET_ACCESS_KEY='abc123'

You can interact with the Ansible Dynamic Inventory plugin using the ansible-

inventory or ansible-playbook command line:

$ ansible-inventory -i inventory.aws_ec2.yml --graph

This ansible-inventory command generates a graph-style output with all the

resources in the cloud provider.

•	 Tag: ansible-examples

•	 graph view

@all:

 |--@aws_ec2:

 | |--ip-10-126-56-132.ec2.internal

 | |--ip-10-125-56-129.ec2.internal

You can execute the code using the ansible-playbook command combined with the

Ansible Dynamic Inventory for the ansible-examples tag:

$ ansible-playbook -i inventory.aws_ec2.yml ping.yml

Amazon Elastic Kubernetes Service (Amazon EKS) offers many options to run

a Kubernetes cluster based on the amount of control that you want to have and the

Kubernetes experience of your teams:

•	 AWS fully managed nodes: AWS Fargate is fully managed by Amazon

Web Service if you want only to focus on the data plane and quickly

spin up the pods, services, and so on.

•	 Managed nodes: You can manually add under Amazon Elastic

Compute Cloud (Amazon EC2) instances in Amazon VPC if you need

some special customization nodes.

•	 Self-managed nodes: For maximum customization, you can also

add customer-managed nodes using Amazon Elastic Compute Cloud

(Amazon EC2) instances in Amazon VPC.

Chapter 7 Ansible for Kubernetes Cloud Providers

247

Amazon provides a shared responsibility model, providing tools and infrastructure

for creating the infrastructure. Choosing the fully managed service (AWS Fargate), AWS

takes direct accountability for any failure of the Kubernetes data plane. In another type

of service, the responsibility might be wary only if there is a failure on the underlying

cloud infrastructure instances. You can focus on developing an application, data, and

support.

AWS Fargate is powered by microVM (Firecracker) technology, a secure and fast

microVM for serverless computing. Amazon EKS-optimized Linux AMI is the default

AMI for Amazon EKS workloads. The AWS Build Specifications are available on GitHub

for creating custom Linux AMI. For example, you could use Bottlerocket, a popular

open-source lightweight Linux-based OS designed to run containers.

AWS Identity and Access Management (Amazon IAM) manages Authentication

Authorization Accounting (AAA) permissions. RBAC roles allow mapping using

ConfigMap to map roles within Kubernetes and IAM, specifying the mapRoles attribute.

You can map the IAM role to a Kubernetes RBAC for authentication.

For example, you can create an aws-auth ConfigMap currently configured to map

the EksNodeRole IAM role to the system:bootstrappers and system:nodes groups. The

EksNodeRole IAM role is applied to the control plane that serves the Kubernetes cluster.

The username in RBAC for one of the nodes would be similar to system:node:ip-node1.

example.com. If a node does not have the EksNodeRole IAM role attached to it, it does not

have the correct permissions in RBAC to be included as a cluster node.

Amazon EKS requires an Amazon VPC network in order to operate. The Kubernetes

cluster node hosts (in an auto-scaling group) are deployed in the private subnet.

Traffic is granularly enabled to the public subnet via a NAT gateway that interconnects

the private subnet with the public subnet. The public subnet inside the AWS cloud is

connected to the Internet via the Internet gateway. Some use cases require a Bastion

host (in an auto-scaling group) configured in the public subnet. You can control inbound

(ingress) and outbound (egress) traffic to and from nodes in a security group and/or

network security group.

Amazon also created an Amazon EKS API that you can use to interact with the

control plane of your Kubernetes cluster. Table 7-3 shows a comparison between the

Kubernetes API and the Amazon EKS API.

Chapter 7 Ansible for Kubernetes Cloud Providers

248

Table 7-3.  Kubernetes API vs Amazon EKS API

Kubernetes API •  kubectl command-line utility

•  Kubernetes objects: Pods, deployment, namespace

• L abelling

Amazon EKS API •  eksctl command-line utility

•  Cluster management

•  Managed node groups

• F argate

• T agging

eksctl is an additional command-line tool created by Amazon to interact with

Amazon EKS API. It requires Amazon command-line tools (AWS CLI), kubectl

command-line tools, and IAM permission for Kubernetes (eksClusterRole). Check out

the AWS Prescriptive Guidance for more details about AWS security best practices.

The following eksctl command deploys a small Amazon EKS cluster of two nodes in

the eu-west-1 region as a control plane:

$ eksctl create cluster --name test-cluster --nodegroup-name test-nodes

 --node-type t3.small --nodes 2 --nodes-min 1 --nodes-max 5 --managed

 --version 1.21 --region eu-west-1 -–zones eu-west-1a,eu-west-1b --role-arn

arn:aws:iam:1234567890:role/eksClusterRole

Each parameter of the eksctl command uses the following:

•	 name: The name of the Kubernetes cluster, test-cluster, in

this example

•	 nodegroup-name: The Amazon EKS node group name,

test-cluster, in this example

•	 node-type: The size of the EC2 instances for the nodes

•	 nodes: The number of nodes, 2 in this example

•	 nodes-min: The minimum number of nodes in the Amazon EC2

auto-scaling configuration node group, 1 in this example

•	 nodes-max: The minimum number of nodes in the Amazon EC2

auto-scaling configuration node group, 5 in this example

Chapter 7 Ansible for Kubernetes Cloud Providers

249

•	 managed: Create an Amazon EKS managed node group; it is an AWS

managed node group in this example

•	 version: The version of Kubernetes of your Amazon EKS cluster, 1.21

in this example

•	 region: The AWS region of the deployment of Amazon EKS cluster

and node group, eu-west-1 in this example

•	 zones: (optional): Limit the AWS availability zones of the deployment

of Amazon EKS cluster and node group, eu-west-1a and eu-west-1b

in this example

•	 role-arn: (optional) The Amazon IAM role ARN identifier using the

eksClusterRole or eksNodeRole

You can verify that the successful cluster was generated using the kubectl

command:

$ kubectl get nodes

For each Kubernetes node, you obtain the release version:

NAME STATUS ROLES AGE

 VERSION

ip-172-16-11-31.eu-west-1.compute.internal Ready <none> 2m

 v1.24.1-eks-fb459a0

ip-172-16-53-234.eu-west-1.compute.internal Ready <none> 2m

 v1.24.1-eks-fb459a0

ip-172-16-82-159.eu-west-1.compute.internal Ready <none> 2m

 v1.24.1-eks-fb459a0

As expected, there are three instances: (ip-172-16-11-31.eu-west-1.compute.

internal, ip-172-16-53-234.eu-west-1.compute.internal, and ip-172-16-82-159.

eu-west-1.compute.internal) in a Ready status from two minutes on the version 1.24,

specifically Kubernetes version v1.24.1-eks-fb459a0.

When you request a large number of resources and nodes in Amazon, your

cluster might fail to build because the current Amazon availability zone (AZ) doesn’t

have sufficient resources to serve your request. You will receive a ROLLBACK_FAILED

error message. You can perform a more detailed root cause investigation from the

CloudFormation Console under the Events tab.

Chapter 7 Ansible for Kubernetes Cloud Providers

250

Note  Amazon Web Services Cloud9 (AWS Cloud 9) is a full online IDE that makes
it easy to create AWS cloud resources to create, execute, and troubleshoot code
using only your favorite browser and CloudFormation stacks.

Another interesting service is Amazon Elastic Container Registry (Amazon ECR),

which provides a fully managed registry for Docker containers and Open Container

Initiative (OCI) artifacts. Major advantages are 99,99 percent SLA, high availability

and scalability, encryption at rest (requires an AWS Key Management Service [KMS]

key), vulnerability scanners, and IAM integration. You can publish publicly or privately

visible images and manage permissions using the IAM repository policy. Do not confuse

Amazon Elastic Container Registry (ECR) with Amazon Elastic Container Service

(ECS). Amazon Elastic Container Service is usually more affordable than the Amazon

Elastic Kubernetes Service (EKS). Moreover, it can run images using the three launch

type models:

•	 AWS Fargate

•	 Amazon EC2

•	 Amazon ECS on AWS Outposts

With the AWS Fargate launch type model, you pay for the resources that your

containerized application utilizes. The amount of vCPU and memory is provided in

sizes—from the tiniest of a minimum of 0.25 vCPU and memory of a minimum of

512 MB to a maximum of 2 GB to the biggest of 16 vCPU with memory from 32 GB and a

maximum of 120 GB. This is in 8 GB increments.

Using the standard UNIX toolchain, you can create and publish files to the private

SCM repository (git), generate a Docker image (docker build), and push (docker

push) to the Container Registry, in this case, Amazon ECR.

AWS CodeCommit is a managed source control repository compatible with Git. It

enables secure coding team collaboration and integrates all the popular features of its

competitors (GitHub, GitLab, and so on).

Amazon provides the service CodePipeline to release software via Continuous

Integration via an intuitive workflow-style step-by-step user interface. Through this

service, you can create a CI/CD pipeline, a set of automated processes and tools that

allow your organization’s developers and operations teams to work cohesively to build

and deploy code to a production environment.

Chapter 7 Ansible for Kubernetes Cloud Providers

251

You can define a pipeline in AWS CodePipeline that stores code in the AWS

CodeCommit, triggering an image build that populates the AWS Elastic Container

Registry. For example, the popular delivery pipeline in AWS uses AWS CodePipeline,

Wave, and Flux.

AWS CloudWatch is the Amazon way to use meaningful metrics data in your cluster.

AWS CloudWatch Container Insights is specialized for container data collection. It

collects metrics and logs, aggregates at the cluster, node, pod, task, and service level,

and visualizes metrics in a dashboard (CPU, memory, disk, network, container data).

The EKS Control Plane can be configured to send logs to CloudWatch and the Data

Plane Fluentd service. The Fluentbit is more lightweight than the Fluentd service,

so most of the time it is preferred. Note that you need to enable the AIM policy

CloudWatchAgentServerPolicy in order to be able to push the log from your EKS cluster

to the CloudWatch.

Each API metric is collected in the dashboard inside a log group. This is a way to

acquire data inside your cluster. Moreover, you can enable AWS X-Ray for tracing the

service from the backend to the frontend in order to debug and analyze any latency in

your system. The traditional debug process is difficult to troubleshoot and involves a

combination of different components.

AWS X-Ray analyzes the traffic requests and organizes them into segments and

subsegments to pinpoint bottlenecks and perform the service graph. It then drills down

on the response code of your API, database, and so on, to understand what exactly

is happening. Usually, you keep track of utilization, latency, duration acquiring raw

metrics, performance metrics, and error metrics and combine them during every

investigation and resolution.

It might be useful to consult the Amazon Well-Architected Framework in order to

review the set of architectural best practices for delivering operational excellence for

better ROI. This will allow you to secure your data and networks, deliver reliability, and

recover after an incidents.

�Google Cloud Platform (GCP)
The most successful Google services, such as Google Maps, Google Photos, YouTube,

and Gmail, run on containers. Some statistics estimate a real estate of 4 billion

containers in their infrastructure.

Chapter 7 Ansible for Kubernetes Cloud Providers

252

Google Cloud spans 35 regions with 106 availability zones and is available for users

of more than 200 countries and territories, as shown in Figure 7-2. You can try Google

Cloud Platform using the $300 trial, which is enough to start a laboratory and try the

basic tools.

Figure 7-2.  The Google Cloud Platform (GCP) global infrastructure map

As shown in Table 7-4, Google offers the Infrastructure as a Service (IaaS) called

Google Compute Engine (GCE), which allows you as a customer to access powerful

virtual machines. GCP Cloud Storage might be handy for organizing the entire database,

raw video streams, and even a matrix for machine learning models. GCP Networking

is grouped into one easy-to-use dashboard. The Google Cloud Identity and Access

Management (IAM) manages access control by defining who has what access to which

cloud resources.

Google Containers Registry (GCR) is the container registry in the GCP. You can

interact with it by specifying gcr.io in your Kubernetes manifest files as a source of

containers.

Table 7-4.  Google Cloud Platform IaaS, PaaS, SaaS Services

IaaS PaaS SaaS

Google Compute Engine (GCE) Google Kubernetes Engine (GKE) Google Cloud Run

Chapter 7 Ansible for Kubernetes Cloud Providers

253

You can interact with GCP via the Google Cloud Shell directly or via the Google

Cloud Console. The Shell appears at the bottom of your Console window when you

choose the Console button on the dashboard. When creating your account, the first

step is to enable the API of the services that you want to use—in this case, the Google

Container API. This API enables the GCP service. In the dashboard, simply search for

API & Services and search for the relevant API to enable.

Google Kubernetes Engine (GKE) is the Google-managed offer of Kubernetes for

managing your deployments and scaling your containerized applications using the

Google infrastructure. It integrates the latest release of Kubernetes plus all the specific

patches for the Google infrastructure. The service is fully compatible with the Kubernetes

API, four-way autoscaling, official release channels, multi-cluster support, and scales up

to 15,000 nodes. The major advantage of using Google Kubernetes Engine (GKE)

is that it closely follows the latest changes in the Kubernetes open-source project.

Google Kubernetes clusters are formed by a virtual machine running on the

Google Compute Engine. At the moment of writing this book, there are two differences

between AKS and GKE services. GKE supports only a few operating systems, and

the SLA is different in the zonal clusters. The first weakness is that there are only two

available operating systems for the server nodes: Container-Optimized OS and Ubuntu.

Container-Optimized OS is an operating system image for the Google Compute Engine

virtual machines optimized for running Docker containers. It is maintained by Google

and based on the open-source Chromium OS project.

Note the Service-Level Agreement (SLA). Amazon Elastic Kubernetes Service (EKS)

offers an SLA of 99.95 percent, whereas GKE offers 99.95 percent only for its regional

clusters. The GKE for its zonal clusters has a 99.5 percent SLA. GKE has a lot of flexibility

based on your workload and budget requirements. The smallest is the single control

plane in a single zone “zonal cluster,” but you can increase to multi-zonal and regional

options.

One of the benefits of running in GCP is that it is fully integrated with Cloud

Controller Manager to manage accesses on the cluster. As a managed service, it

outsources the data plane that is managed by Google,. You can then focus on deploying

your application or service. A cluster is the foundation of the GKE service. A cluster

consists of at least one control pane and multiple nodes. The cluster uses some

connected GCP services such as VPC networking, persistent disk, load balances, and

cloud operations. Each node is managed by the control plane and runs your Pods (aka

user pods). A typical workload completely in Google Cloud could use services like Cloud

Chapter 7 Ansible for Kubernetes Cloud Providers

254

Code as IDE, Code Repository ad SCM, and Cloud Build to create container images

to store in Google Container Registry before being deployed in GKE. You can interact

with your cluster using Cloud Console UI, the gcloud command-line interface, or

Google APIs. One of the main benefits of GKE is the native integration between cloud

monitoring and cloud logging Google services. These services are performed via cloud

operations for GKE, are enabled by default, and provide a monitor dashboard specifically

tailored for Kubernetes. You can also collect application logs for easy troubleshooting

and further analysis.

Another option for running your cloud-native application is using the Google Cloud

Run service. It is the Google serverless offer used by companies like MailChimp, Airbus,

and MediaMarktSaturn. It supports the most popular computer languages (GO, Python,

Java, Node.js, .NET, and Ruby) on a fully managed platform to create containerized and

scalable applications.

You can retrieve the Google Cloud Compute Engine list of resources using the gcp_

compute Ansible inventory plugin included in the google.cloud collection.

You can install the google.cloud Ansible collection using the ansible-galaxy

command included in all Ansible installations:

$ ansible-galaxy collection install google.cloud

The following command verifies a successful installation of the google.cloud

collection:

$ ansible-galaxy collection list google.cloud

The google.cloud collection requires the requests and google-auth Python

libraries installed in your Ansible Controller:

$ pip3 install requests google-auth

The configuration file in Listing 7-3 returns the list of resources in an Ansible

Dynamic Inventory format.

Listing 7-3.  The ansible.cfg File

[inventory]

enable_plugins = google.cloud.gcp_compute

Meanwhile, Listing 7-4’s inventory.gcp.yml lists the resources in the ansible-

examples project.

Chapter 7 Ansible for Kubernetes Cloud Providers

255

Listing 7-4.  The inventory.gcp.yml File

plugin: gcp_compute

projects:

 - ansible-examples

auth_kind: serviceaccount

service_account_file: /home/ansible/credentials.json

The credentials.json file is the service account credential file that contains the

access token downloaded via the Google Cloud Console.

Google, like with the other competitors, has plenty of services to simplify your

workload in cloud computing.

�Microsoft Azure Cloud Services
Microsoft Azure provides similar building blocks as Amazon Web Services and Google

Cloud Platform, plus some specific services that might be useful for IT professionals.

Azure spans more than 60 regions with more than 90 availability zones and is available to

users of more than 200 countries and territories. Azure offers some free services the first

year, and a selection of more than 55 services is always free. The free trial at the moment

of writing this book includes 750 hours of B1s burstable virtual machines, 100 GB storage

in one standard tier registry, and 10 webhooks in the Azure Container Registry.

Azure Compute is their Infrastructure as a Service (IaaS). There are many options

for Platform as a Service (PaaS) and serverless with the Azure Functions service. See

Table 7-5.

Table 7-5.  Google Cloud Platform IaaS, PaaS, SaaS Services

IaaS PaaS SaaS

Azure Compute Azure Kubernetes Service (AKS) Azure Containers

Azure Compute deploys Windows and Linux virtual machines (VMs) using the

powerful Microsoft Hyper-V hypervisor technology. Azure Hybrid Benefit is the licensing

model that enables you to use software assurance-enabled Windows Server and SQL

Server licenses and Red Hat and SUSE Linux subscriptions on virtual machines in Azure.

Azure Spot Virtual Machines is an option to use heavily discounted, unused computing

Chapter 7 Ansible for Kubernetes Cloud Providers

256

capacity to run your workloads. Azure uses Azure Virtual Network (VNet) to connect

virtual machines to public and private segments. Routing and access control lists can

also be configured dynamically for enhanced security control. When you’re embarking

on your journey to the cloud, you might find Azure Migrate useful. It helps migrate Linux

and Windows, including Virtual Desktop Infrastructure (VDI) resources. It enables a

comprehensive security and compliance overview of your hybrid infrastructure. Azure

Compute Virtual Machines also supports the latest Ampere Altra ARM–based processors

(a complete multi-core server processors system on chip solution built for cloud-native

workloads) since 2022.

The first specific Azure service is a resource group. Resources groups are essential

to every architecture on Azure. They are logical buckets where you include all the

resources needed by your application or project, and you can manage them as a group.

Each resource exists in only one resource group, can be moved to another one, and

can be from different regions. You can apply a common access control policy to all the

resource groups.

Azure Resource Manager (ARM) is the deploying manager on Azure when it comes

to creating, updating, and deleting resources. You can interact with Portal, PowerShell,

Azure CLI, REST APIs, and client SDKs using the Azure Resource Manager API. The best

practice is to deploy, monitor, and manage your resources through the Azure Resource

Manager as a group rather than manually start one after another, individually. The major

advantages are as follows:

–– Consistency: Each deployment triggers the same workflow on each

deployment

–– Dependency: Ensures that all the necessary resources are in place at

the right time

–– Access control: Applies a common policy

–– Tagging: Easily identifies and applies a label

–– Billing: Simplifies audit and understanding

Virtual machines in an Azure cloud provider are called Azure compute and are

widely used all over the platform.

Azure calls a group of identical, load-balanced virtual machines a scale set. The

baseline is a single image that is deployed by the scale set. If one virtual machine in the

scale set stops or fails, the others continue working and take over the load. The scale set

Chapter 7 Ansible for Kubernetes Cloud Providers

257

enables automatic matching of the workload and adding or removing virtual machines

to try to match the needs. The service is free, but you pay for the virtual machines. It can

manage thousands of resources. Azure Service Bus is a message bus interface that you

can use as a source event with Event Driven Ansible (see Chapter 8).

As the previous cloud providers, you can retrieve the list of resources using an

Ansible Inventory plugin. First of all, you need the azure.azcollection Ansible

collection in your Ansible Controller. The installation can be performed using the

ansible-galaxy command included in all Ansible installations:

$ ansible-galaxy collection install azure.azcollection

You can obtain the full list of the installed Ansible collections using the same

command with the list option:

$ ansible-galaxy collection list azure.azcollection

The azure.azcollection collection requires the Python plugins listed in the

requirements-azure.txt file, which you can retrieve from the GitHub repository of the

project3 installed:

$ pip3 install -r requirements-azure.txt

The azure_rm Ansible inventory plugin of the azure.azcollection collection

retrieves the resources included in the ansible-examples Azure Resource Manager, as

demonstrated in Listing 7-5.

Listing 7-5.  The inventory.azure.yml File

plugin: azure_rm

include_vm_resource_groups:

 - ansible-examples

auth_source: auto

You need to enable the dynamic inventory in your Ansible project with the ansible.cfg

Ansible configuration file, as shown in Listing 7-6.

3 https://github.com/ansible-collections/azure

Chapter 7 Ansible for Kubernetes Cloud Providers

https://doi.org/10.1007/978-1-4842-9285-3_8
https://github.com/ansible-collections/azure

258

Listing 7-6.  The ansible.cfg File

[inventory]

enable_plugins = azure.azcollection.azure_rm inventory

As with other Ansible Dynamic Inventory plugins, you can interact with it using the

ansible-inventory or ansible-playbook command line:

$ ansible-inventory -i inventory.azure.yml --list

The output of the ansible-inventory command is a JSON file with all the resources

of the cloud provider:

•	 Namespace: ansible-examples

•	 list view

You can execute the code using the ansible-playbook command combined with the

Ansible Dynamic Inventory for the ansible-examples resource group:

$ ansible-playbook -i inventory.azure.yml ping.yml

On the PaaS offering, the easiest way to deploy containers is via the Web App

for Containers. Web App is a managed platform of Azure. It can host your existing

container images. The container supports web applications written in popular computer

programming languages (Python, Node.js, .NET, Java, PHP, and Ruby). There are also

API apps that host and simplify the data backend services.

Azure Container Instances (ACI) is the primary service of Azure for managing and

deploying your applications in a container. The service takes care of managing your

workload on containers without the complexity of virtual machines. On batch workload,

for example, you can spin up the container on demand, process the data, and turn off

the containerized application. Using this workflow, you reduce costs and resources. ACI

supports Azure Portal, CLI, and PowerShell.

When the workload becomes bigger, you can use the Azure Kubernetes Service (AKS)

to orchestrate it. The setup is quick as the service already includes the standard Azure

services, identity and access management, elastic provisioning, integration with

Microsoft coding tools, and global reach using Azure Stack.

Azure Container Registry (ACR) is the Google-managed Container Registry that

manages container image files and artifacts.

Chapter 7 Ansible for Kubernetes Cloud Providers

259

The major advance of using Azure Kubernetes Service (AKS) is its rich integration

with other Azure services, for example, Azure Active Directory (Azure AD).

Azure Kubernetes Service (AKS) is an Azure-managed Kubernetes service with

hardened security and fast delivery. Microsoft handles the control plane, so you

can focus on deploying your applications. AKS also supports NVIDIA GPU-enabled

node pools.

You can interact with the AKS cluster using Azure CLI, Azure PowerShell, Azure

Portal, and template-driven deployment (Terraform, Azure Resource Manager

templates, and Bicep).

�Other Vendors
With many vendors offering Kubernetes as part of their offer of cloud services, you

need a way to compare the main features among them. The Certified Kubernetes

Conformance Program, by CNCF, enables multiple Kubernetes cluster interoperability.

At the moment, 90 certified Kubernetes offerings passed the Certified Kubernetes

Software Conformance by CNCF (Sonobuoy). Software conformance certifies that every

vendor’s version of Kubernetes supports at least the community APIs of the open-source

edition.

The benefits of the Certified Kubernetes Conformance Program are as follows:

•	 Consistency: Works with any installation of Kubernetes

•	 Timely updates: Updates at least once per year to the latest version

•	 Confirmability: All end users can run the certification conformance

application (Sonobuoy)

According to IDC, Forrester, and Gartner international analysis, the current

Kubernetes in the cloud computing marketplace is divided between Akamai, Alibaba,

Amazon Web Services, DigitalOcean, Google, Huawei, IBM, Microsoft, Oracle,

OVHcloud, Tencent, Vultr, Zadara, and Linode.

•	 Rancher, acquired by SUSE in July 2020, is an enterprise-grade and

user-friendly Kubernetes management platform with more than

37,000 active users. SUSE is the company behind the SUSE Enterprise

Linux operating system.

Chapter 7 Ansible for Kubernetes Cloud Providers

260

•	 Alibaba Cloud Container Service for Kubernetes (ACK) was one of

the first certified platforms and integrates virtualization, security,

storage, and networking capabilities.

•	 DigitalOcean Kubernetes (DOKS) from DigitalOcean Cloud is a

managed control plane like in PaaS services such as Amazon Elastic

Kubernetes Service (EKS). It includes the DigitalOcean CSI plugin

and the Container Storage Interface (CSI) Driver for DigitalOcean

Block Storage.

•	 IBM Cloud Kubernetes was one of the first fully-managed Kubernetes

in the cloud, since May 2017 (formerly known as IBM Cloud

Container Service). It runs on the IBM Cloud.

•	 Linode Kubernetes Engine (LKE) is a service known for its simple

pricing model and ease of use based on the Linode infrastructure.

•	 Oracle Container Engine for Kubernetes (OKE) offers the same

service in the Oracle Cloud Infrastructure (OCI).

With such a multitude of offerings, it can be difficult to make the right decision.

Competition, in this case, is a good driver for the final user because companies are

competing with each other to offer better services, at a better price, a better SLA, and

a better infrastructure. Before making your decision, consider the alternatives. The

Certified Kubernetes Conformance Program guarantees that you can always move your

application between providers, thus avoiding vendor lock-in mechanisms.

�Key Takeaways
Ansible, Kubernetes, and cloud providers are an incredible combination of powerful

tools, technologies, and cost-efficient ways to deploy applications or services at a world

scale. Organizations all over the world are considering hybrid clouds and learning

how to deploy container images faster and scale as needed. You learned how to easily

maintain a remote data center in a cloud environment with Ansible and the right tools

You already know to manage your local laboratory or on-premise data center. Ansible

Dynamic Inventory is the critical tool for homogenizing, scaling, and maintaining your

fleet of machines when the scale is simply too much. In the next chapter, you learn about

Ansible for Enterprise.

Chapter 7 Ansible for Kubernetes Cloud Providers

261

CHAPTER 8

Ansible for Enterprise
One of the main benefits of Ansible is that it standardizes infrastructure automation

among different technologies and programming styles (Perl, bash, Puppet, Chef, and

so on). It is the Swiss Army Knife tool of modern operations engineers and can easily be

used in Infrastructure as Code (IaC), Configuration as a Code (CaC), Policy as a Code,

Code pipelines, orchestration (K8s), and event-driven automation.

Ansible runs literally everywhere. It enables organizations to speed up processes

and become more efficient and productive. It is the rise of platform engineering tools:

user-driven, self-service infrastructure and deployments that extend the principle of

continuous integration and delivery, furthering infrastructure and operations (I&O)

agility, faster, more efficient, safe, and compliant with international standards.

When you are part of an enterprise organization, you use Ansible in a slightly

different way. Many organizations use Ansible because the amount of resources

to manage is simply too big to handle manually. You can also use tools that make

collaboration within your team more effective and dynamic. You can manage resources

and relationships at a planetary scale nowadays. Also, organizations embrace the change

of internal processes for fast-pacing decision-making. One of the main advantages of

Ansible automation is that it produces code that you can store in a common source

control repository and can be shared between your teams. The Red Hat Ansible

Automation Platform grew up around the idea of creating a web service API and

web user interface that teams can use every day. Some colleagues advantage of the

uncomplicated web interface to trigger the automation, whereas all the operations can

be performed via the RESTful API.

�The Ansible Automation Platform
The Ansible Automation Platform (AAP) is the commercial offering from Red Hat, the

company leading the Ansible project. The Ansible Automation Platform subscription

includes the latest software and official support, documentation, and additional

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3_8

https://doi.org/10.1007/978-1-4842-9285-3_8#DOI

262

resources from Red Hat. The AAP is a platform of Ansible-based IT automation products,

including Ansible Controller (formerly Ansible Tower), Ansible Core (formerly Ansible

Engine), Automation Hub, and other enterprise features, including:

•	 Ansible Certified Collections

•	 Single sign-on

•	 Role-based access control

•	 Multi-cloud support

•	 Red Hat support and subscription

It allows organizations to automate IT operations, deploy and scale applications,

and manage Infrastructure as Code (IaC) across multiple environments, such as on-

premises, cloud, and hybrid.

Ansible Automation Platform includes Ansible Automation Controller (formerly

Ansible Tower). This web-based management console provides a graphical user

interface, role-based access control, and other features to make it easier to manage and

scale Ansible automation across an organization.

It includes a RESTful API and enterprise Ansible collection to interact with it. It

also includes Ansible Core (formerly Ansible Engine), which is the core of the platform.

The release of the Ansible language provides the ability to automate provisioning,

configuration management, application deployment, and many other IT needs. It

includes enterprise-grade support in the subscription services. The platform includes

more products that interact with the Ansible Automation Controller. The most important

is the Ansible Automation Hub. In the same way that the Ansible Galaxy registry

downloads community content, the corporate world relies on the Ansible Automation

Hub to provide Ansible resources and content that they download from it. The Ansible

Automation Hub manages resources from Red Hat product teams, ISV partners, and

community and private contributors.

The partner list in Ansible Automation Hub is getting lengthier day by day and

includes, at the moment, the following: Amazon, Arista, Aruba Networks, Check Point,

Cisco, Citrix, CyberArk, Dell EMC, Dynatrace, F5 Networks, Fortinet, HPE, IBM, Juniper

Networks, Kubernetes, Microsoft, NetApp, NVIDIA, 1Password, SAP, ServiceNow,

Splunk, TrendMicro, and VMWare.

Chapter 8 Ansible for Enterprise

263

The Ansible Automation Platform provides centralized management, visibility,

and scalability to the IT organization and improved collaboration among teams and

departments.

The Ansible Automation Platform has a bi-yearly software release cycle, usually

in May and November. The release 2.x+ fully embraces the Container software design

paradigm with the full support of Kubernetes as an execution environment and

operating system.

The latest release at the time of writing this book is version 2.3. Its main features are

as follows:

•	 Automation Execution Environments

•	 Automation Mesh

•	 Automation Services Catalog

Currently, the Red Hat Ansible Automation Platform is supported on Red Hat

Enterprise Linux versions 8 and 9 and Red Hat OpenShift. The Ansible Automation

Platform Operator provides cloud-native, easy-to-install deployment of Ansible

Automation Platform instances in your OpenShift environment. The Ansible Automation

Platform Operator deploys and manage instances of the Automation controller and

Private Automation hub in your OpenShift cluster. At the moment of writing this book,

the Ansible Automation Platform Operator for installing Ansible Automation Platform

2.3 is available on OpenShift Container Platform 4.9+. It deploys Ansible Automation

Platform instances with a Kubernetes native operator. The two types of instances are

Ansible Controller and Private Automation Hub.

The easiest way to install the Ansible Automation Platform Operator is via the

OperatorHub in the web console. Just search for the Ansible Automation Platform

provided by Red Hat. The latest release is 2.3.0+0.1674778407, as shown in Figure 8-1.

The Operator takes care of all the necessary dependencies, such as PostgreSQL 13.

Chapter 8 Ansible for Enterprise

264

Figure 8-1.  The Ansible Automation Platform Operator

You can specify some installation parameters, as shown in Figure 8-2.

Figure 8-2.  AAP operator installation parameters

Chapter 8 Ansible for Enterprise

265

Here is a full list of Ansible Automation Platform Operator parameters:

•	 Update Channel: The exact version to install

•	 Installation mode: Install the operator cluster-wise or only in a

specific namespace

•	 Installed namespace: Customize the default “aap” namespace

•	 Update approval: Manual or automatic

Once it’s successfully installed, you receive a confirmation like the one shown in

Figure 8-3.

Figure 8-3.  AAP operator was installed

You can see the Operator Dashboard in Figure 8-4, which enables you to:

•	 Automation Controller (AC): Deploy a new instance of

AutomationController.

•	 Automation Controller Backup (ACB): Back up deployment of the

controller, including jobs, inventories, and credentials.

Chapter 8 Ansible for Enterprise

266

•	 Automation Controller Restore (ACR): Restore a previous controller

deployment from an AutomationControllerBackup. The deployment

name you provide will be the name of the new AutomationController

CR that will be created.

•	 Automation Controller job template (JT): Define a new job template

in the controller.

•	 Automation Controller job (AJ): Launch a new job via Controller.

•	 Automation Hub (AH): Deploy a new instance of Automation Hub.

•	 Automation Hub Backup (AHB): Back up deployment of the hub,

including all hosted Ansible content, secrets, and the database. By

default, a persistent volume claim will be created using the default

StorageClass on your cluster to store the backup.

•	 Automation Hub Restore (AHR): Restore a previous hub deployment

into the namespace.

Figure 8-4.  The AAP Operator Dashboard

Chapter 8 Ansible for Enterprise

267

Figure 8-5.  AAP Operator running instances

When all your instances are fully running, you can access the Ansible Automation

Platform Dashboard (see Figure 8-6), and your automation journey begins. Inside

the interactive web dashboard, you can create users applying RBAC access criteria,

fetch Ansible projects from the most common SCM, and run your automation using

the Job Templates. Every execution of an Ansible Playbook is called a job execution.

A job execution can incorporate Credentials and Vaults and can be executed against

Inventories or Hosts. One of the biggest benefits is that the dashboard centralizes your

experience. You can store credentials, Ansible vaults, keys, and security tokens between

the IT department team, customizing accesses using RBAC and integrating AAP with the

most common enterprise-grade authentication systems.

Chapter 8 Ansible for Enterprise

268

Figure 8-6.  AAP Controller Job Dashboard

Ansible Controller executes your automation via Container Groups and Instance

Groups. The Ansible Controller allows you to execute jobs directly on an instance

member, in a virtual environment, in a Kubernetes namespace, or a in a project in an

OpenShift cluster.

When implementing your Infrastructure as Code (IaC), creating an IaC Ansible

pipeline can be handy. It is a Git-centric continuous deployment pipeline using Ansible.

DevOps teams create the Ansible resources and store them in a Git repository. Those

commits are picked up by a CI/CD tool, typically Jenkins, or trigger an Ansible Controller

WebHook to launch associated jobs (playbooks) or workflow.

All the book’s code can be used in the Ansible Automation Platform for easy

interaction between your IT department team.

�Event-Driven Ansible
Modern businesses use many different IT systems and services, with the consequence

of increased complexity in managing integration and mode API interfaces. This often

results in a “spaghetti infrastructure.” Accessing a centralized event streaming service

that acts as a message bus with event-driven architecture can achieve easier integration

between different systems and services. The result is a more flexible system that can

adapt to changes in the business environment.

Chapter 8 Ansible for Enterprise

269

An exciting evolution of automation is Event-Driven Ansible (EDA). It’s highly

scalable with a flexible automation capability. At the moment of writing this book,

the EDA was released in October 2022 as a technological preview by Red Hat. Event-

Driven Ansible contains a decision framework that is built using Drools. In a nutshell, it

implements the ability to react to a system event and trigger automation. In this way, you

can work smarter by applying Event-Drive Ansible and Ansible Rulebooks.

Think about the ability to apply “If-This-Than-That” logic or to minimize the Mean-

Time-To-Resolution (MTTR) for outages in your systems. This is the latest evolution of

smart automation, an understanding of how to execute automated scripts to mitigate

and quickly remediate any event in your IT infrastructure. The key component is the

Event-Driven Ansible Server, which runs in the system as a service and listens for events.

The Ansible Rulebook (see Figure 8-7), similar to the Ansible Playbook, explains to the

EDA Server what the playbook executes, specifying the relevant parameters.

rule conditio
nal

actionevent

source

Figure 8-7.  Workflow of an EDA rulebook

The building blocks of Event-Driven Ansible automation are as follows:

•	 Event: Any changes from the source

•	 Rule: Evaluated for every event

•	 Conditional: The event expression that triggers the action

•	 Action: What to execute (playbook, modules, tasks)

In the rulebook, you can define the sources of events: hooks, alert managers,

URLs, and files to listen to. For each of them, you can define and perform some action

according to the rule that you write. Each rule defines the condition that triggers the

action. Each rule has some conditionals. Conditionals evaluate some event status

logically and define when to trigger an action. For example, it could be an event from the

alert manager or when a specific HTTP status code is obtained, a newly created file, or

a message from the webhook. When a condition is reached, one or more actions can be

Chapter 8 Ansible for Enterprise

270

triggered. The most common action is run_playbook. Each source of event determines

the type of event in the rulebook. A very interesting source of events is Apakce Kafa as a

“message bus” or webhook.

At the moment of writing this book, the following source plugins are available:

•	 alertmanager: Receives webhook events from alertmanager

•	 Azure_Service_Bus: Receives Azure Service Bus events

•	 kafka: Receives Apache Kafka topic messages

•	 url_check: Polls URLs and sends events based on their statuses

•	 watchdog: Sends events when a file status changes

•	 webhook: Receives events from a webhook

•	 file: Loads facts from YAML files and reloads them when a

file changes

•	 tick: Generates events with an increasing index

•	 range: Generates events with an increasing range

The installation of Ansible Event-Driven requires two components:

•	 The Ansible ansible.eda collection

•	 The Python ansible-rulebook command-line utility

You can manually install these using the ansible-galaxy

command or using a requirements.yml file:

 $ ansible-galaxy collection install ansible.eda

 $ pip3 install ansible-rulebook

The utility requires the Java 11+ runtime environment (Oracle, OpenJDK, GraalVM,

and so on) and the JAVA_HOME environment variable, set accordingly. You can verify

a successful installation using the --version parameter of the ansible-rulebook

command to verify the current version of the software:

$ ansible-rulebook --version

The rulebook in Listing 8-1 exposes a webhook on port 8000 that is listening for

messages. Each time you receive a non-empty message (a condition), it triggers the

execution of the playbook.yml playbook, shown in Listing 8-2.

Chapter 8 Ansible for Enterprise

271

Listing 8-1.  The eda.yml File

- name: Listen for webhook events

 hosts: all

 sources:

 - ansible.eda.webhook:

 host: 0.0.0.0

 port: 8000

 rules:

 - name: webhook

 condition: event.payload.message != ""

 action:

 run_playbook:

 name: playbook.yml

Listing 8-2.  The playbook.yml File

- name: eda demo

 hosts: localhost

 tasks:

 - name: print a message

 ansible.builtin.debug:

 msg: "Event Driven Ansible"

Listing 8-3.  The inventory File

localhost ansible_connection=local

You can execute your rulebook using the following command:

$ ansible-rulebook --rulebook eda.yml -i inventory --verbose

You can add the optional parameter --verbose when you want more debug

information.

You can also create a container image with the Ansible rulebook and deploy it in a

pod to implement a scalable Event-Driven Ansible on Kubernetes.

The latest release of Ansible Automation Platform 2.3 integrated Event-Driven

Ansible as a Developer Preview release.

Chapter 8 Ansible for Enterprise

272

�IT Trends
More and more applications are moving from monolith devices to microservices

software design patterns. This is one of the reasons for the increased use of containers

and the adoption of the Kubernetes container orchestration tool. An orchestrator helps

you deploy high-availability applications with no downtime. They scale up or down

when the traffic demands more resources, making applications more flexible. Latency

is becoming the key metric to evaluate the quality of your applications. Kubernetes also

has the ability to self-heal infrastructure to run your application when an event happens,

such as a failure in the underlying server, storage, or network. The lowest metrics for

Recovery Point Objective (RPO) and Recovery Time Objective (RTO) are available for a

disaster recovery or data protection plan.

IT infrastructure is becoming the heart of organizations. International analyst

agencies predict that the complexity and type of threats to rise yearly. The container

and Kubernetes Security Market is in expansion. We often hear on the news about

ransomware or supply chain attacks. The most impactful event on this side was

the SolarWinds hacking in June, 2022. The hackers breached the Onion network in

September 2019, malicious code had been injected into Orion for seven months. FireEye,

the detection and response Cyber Security Experts and Solution Provider, was the first

firm to publicly report the attack, called the SolarWinds hack “UNC2452.” The attack

was performed via a “Sunburst” backdoor, which connects to an external command-

and-control server. The Orion software was turned into a weapon, thus gaining access to

several global IT infrastructures.

According to the reports, the malware affected 18,000 SolarWinds customers and

impacted many public and private companies. Famous organizations such as FireEye,

Microsoft, Intel, Cisco, and Deloitte were impacted by this attack, as were government

departments such as the U.S. Homeland Security, State, Commerce, and Treasury. It also

significantly damaged SolarWinds’ reputation, probably taking them years to heal and

recover.

This event raised public opinion and consensus that companies needed to pay more

attention to privacy issues. Corporations are obliged by law to report data breaches, and

in the upcoming years, we are going to see a rise in data breach compensation claims.

Starting in 2018, with the implementation of the European General Data Protection

Regulation (GDPR), many data protection frameworks were created to protect data as an

Chapter 8 Ansible for Enterprise

273

asset. For example, there is the EU–US Privacy Shield, California’s Consumer Privacy

Act (CCPA), Brazil’s General Personal Data Protection Law/Lei Geral de Proteção de

Dados (LGPD), and South Africa’s Protection of Personal Information Act (PoPIA).

�Ansible Trusted Code
To minimize the risk of supply chain attacks, it’s important to use only trusted code in

your organization. In November 2022, Red Hat released the following:

•	 Ansible Trusted Ansible Collections

•	 Signed Ansible Projects

Ansible Trusted Ansible Collections is a feature available in the Ansible Automation

Platform, Automation Hub, that enables the download of only digitally certified content

signed via a GPG key. GNU Pretty Good Privacy, or GPG, is a popular program that

authenticates contents with digital signatures of stored files.

In the same way that Ansible Certified Contents are digitally signed, you can use

the same technology for in-house content. The ansible-sign command-line utility is

designed precisely for project signing and verification. You can install the utility via the

popular operating system package manager or the Python pip installer.

As general habits, we store our project in an SCM repository, usually Git. The

list of files for signature is specified in the MANIFEST.in file, where we can specify

which files to include or exclude. This is a famous format used in many open-source

projects nowadays. You can include or exclude single files or recursive-include or

recursive-exclude directories or only match some criteria with global-include and

global-exclude.

Listing 8-4 is an example of a MANIFEST.in file for this project that excludes the .git

directory, includes the inventory file, and includes all the files with the yml extension

under the playbooks directory.

Listing 8-4.  The MANIFEST.in File

recursive-exclude .git *

include inventory

recursive-include playbooks *.yml

Chapter 8 Ansible for Enterprise

274

The full command to sign this project is as follows:

$ ansible-sign project gpg-sign PROJECT_ROOT

In the same way, you can verify the project using this command:

$ ansible-sign project gpg-verify PROJECT_ROOT

A signed project has an additional .ansible-sign directory with two files inside.

The first is the sha256sum.txt file, which contains the SHA256 hash of each file. This

is already an industry standard. The second file is sha256sum.txt.sig, which contains

the GPG signature of the previous file. With the contents signature and verification, you

obtain a success when the signature verification is valid. Two files exist, the checksum is

valid and the signature is valid.

Here are the possible scenarios when something is not correct:

•	 The checksum is invalid when files are tampered with or are invalid

•	 The signature is invalid when the signature is tampered with

or invalid

•	 There is a signature mismatch when the signature is wrong, expired,

or inaccessible

The benefits of the feature outweigh the extra overhead in the effort. I’m happy

with the outcome. Now you know how to use the ansible-sign utility for your projects.

Taking a closer look at the utility by design, it already supports the expansion with more

options and more hashing technologies in the future. Sigstore is a new standard for

signing, verifying, and protecting software that might be embraced in the future.

Ansible enterprise customers can use the Signed Ansible Projects features every day

as part of the Ansible Automation Platform 2.3 (November 2022) or the open-source

AWX 21.7.0 with AWX Operator v0.30.0 (October 2022). The Signed Ansible Projects

feature is implemented in AWX and Ansible Automation Controller. You can enable the

feature of creating a credential using the GPG Public Key type and selecting it in your

projects. Content verification will automatically occur upon future project sync. Every

time your project syncs, the signature will be evaluated, and if it doesn’t match, the

execution will be forbidden. Under the hood, it uses the ansible-sign utility to validate

the project.

Chapter 8 Ansible for Enterprise

275

�What’s Next?
Ansible and Kubernetes are two open-source products that benefit from a vibrant

community of people worldwide. Somehow, the holistic view is more powerful than

each part of it. Kubernetes has more than 18,000 GitHub contributors, whereas Ansible

has 5,100 contributors.

New trends emerge every day in this fast-paced IT world. Artificial intelligence-

powered automation is already on the rise, and automated machines are expected to

take over a growing portion of professions in the coming years. Sometimes machines

can execute a task better, faster, and cheaper than humans. Other times, machines create

big mistakes. Applying artificial intelligence to infrastructure could be a great boost in

efficiency for the Infrastructure and Operations (I&O) of projects.

Since the OpenAI ChatGPT release announcement on November 30, 2022, the

ChatGPT tool has seen great hype on the Internet. People around the globe tested

in the most variant situations. The application of the GPT-3 (Generative Pre-trained

Transformer) large language model is impressive with a massive amount of data.

Applying this type of technology to your daily workflow could be interesting. At the

moment of writing this book, you can interact with the tool in a chatbox user interface.

The tool can generate some Ansible code that you need to revisit before running it.

Announced at AnsibleFest 2022, Project Wisdom will be released later in 2023 as

the result of a close collaboration between the Ansible Engineering Team and IBM

Research. The goal was to create an Ansible AI (Ansible Lightspeed with IBM Watson

Code Assistant) integrated into the VSCode editor to create code based on the Ansible

task text.

This type of technology scenario creates opportunities for IT professionals to step

up, upskill themselves, and be part of the machine evolution. The unique ability to

connect data, be creative, and imagine the future is a game changer for humans. “We are

the master of our fate: We are the captain of our souls,” as William Ernest Henley said in

Invictus.

Intuition is the unarticulated, almost imperceptible gist that you get in a situation.

That feeling that sometimes it’s quite right, or that sometimes it is about to happen,

that we can’t explain, but know to be true. It seems like magic, but it is humans’ unique

ability that differentiates us from machines. Gut instinct is a valuable tool that we can

use for the present to identify what to improve in our life without really thinking about it.

It’s the human essence.

Chapter 8 Ansible for Enterprise

276

�Thank You
Kubernetes is a very powerful but also complex technology for container orchestration.

It solves the problem of managing many containers to deploy microservices of cloud-

native applications and services. You learned how to automate and simplify many

day-to-day operations using Ansible automation technology. These applications and

services are used by people around the world—they interact every day with websites,

bank accounts, and e-commerce, they reserve a table at a restaurant, order a delivery/

pickup, a taxi, or a flight, and many other examples. The microservice application design

has become very pervasive in just a few years at a world scale.

Briefly, Ansible and Kubernetes are evolving open-source products. Check out the

official websites for the latest news and updates.

I’m so grateful to live in the information age, where ideas become businesses

overnight, and as individuals, we have equal opportunities for success.

Using Ansible automation with Kubernetes for container orchestration with cloud

providers opens up unlimited computing resources. The use of artificial intelligence and

deep learning models is growing faster and faster. Altogether, this world enables a new

class of cloud-native applications of tomorrow that is going to change our lives.

The future is uncharted territory, and the sky is the limit. I look forward to hearing

your success automation story.

“Simplicity is the ultimate sophistication.” —Leonardo da Vinci

Please be nice. Life is sweeter that way.

Chapter 8 Ansible for Enterprise

277

Index

A
AppArmor profiles, 193
AAP Operator, 263
AAP Operator parameters, 265
Alpine Linux distribution, 15
Amazon availability zone (AZ), 249
Amazon command-line tools (AWS

CLI), 248
Amazon EKS API, 247, 248
Amazon Elastic Container Registry

(Amazon ECR), 11, 250
Amazon Elastic Container Service

(Amazon ECS), 11, 250
Amazon Elastic Kubernetes Service

(Amazon EKS), 11, 246, 250, 260
Amazon Machine Image (AMI),

11, 84, 247
Amazon Web Services (AWS), 3, 11, 56, 87,

99, 109, 153, 201, 244
Ansible, 7, 169

benefits, 27
builder process, 57, 58
code language, 37
collection, 54, 55
configuration file, 245
configuration management, 29
control node, 34
DevOps, 27
Execution Environment, 55, 56, 59
Galaxy, 53, 54
INI format, 39
installation, 34

inventory, 33, 37
localhost, 38
open-source vs. commercial

options, 29
Playbook, 40–42

conditional statements, 45
facts, 48
filters, 44
handler, 46
loop, 46, 47
magic variables, 48, 49
plugins, 50, 51
templates, 49, 50
variables, 43
Vault, 49

Playbook/Inventory, 31
plugins, 28
provisioning, 28
Role, 51, 52
runner process, 60
Ubuntu Linux systems, 35
UNIX target node, 31, 32
Windows target node, 32
YAML format, 39, 40

Ansible Automation Controller, 262
Ansible Automation Hub, 262
Ansible Automation Platform (AAP), 126,

261, 263
ansible-builder command, 59
ansible-builder command-line tool, 60
ansible-builder tool, 59
ansible.cfg file, 198

© Luca Berton 2023
L. Berton, Ansible for Kubernetes by Example, https://doi.org/10.1007/978-1-4842-9285-3

https://doi.org/10.1007/978-1-4842-9285-3#DOI

278

Ansible Community package, 35
Ansible configuraion

error, 111
installation, 111, 112
kubectl, 113
kubernetes.core collection, 109,

111, 112
kubernetes.core.k8s module, 111
OpenShift cluster, 113
PyYAML jsonpatch

kubernetes, 111
requirements.yml file, 112
resources, 109, 110
setup.py install method, 111

Ansible Controller, 82, 126–128, 130, 134,
136, 160, 197, 205, 244

Ansible Dynamic Inventory, 194, 195,
197, 232

Ansible Execution Environment, 123
ansible builder, 123, 125
Ansible Playbook, 125
Ansible Runner, 123, 125
bindep.txt file, 124
context/Containerfile file, 125
execution-environment.yml file,

123, 124
localhost connection, 125
my_kube, 123
pip package manager, 123
Red Hat, 125
requirements.txt file, 124
requirements.yml file, 124

ansible-galaxy command, 270
ansible-inventory command,

38, 246, 258
Ansible modules, 198
Ansible Playbook, 30, 31, 37, 40–43, 49, 52,

185, 197, 198

ansible-playbook command, 69, 82,
231, 246

ansible-rulebook command, 270
ansible-runner tool, 61
ansible-sign command, 273, 274
Ansible troubleshooting

kubeconfig file, 118, 119
401 unauthorized

fatal error message, 114
Kubernetes, 114–116
Kubernetes authentication, 114
OpenShift, 116, 117
tokens, 113

x509 error, 118
Ansible Trusted Ansible Collections, 273
AnsibleTurboModule class, 112
Apache webserver container, 78
AppArmor

Linux security tool, 192
vs. SELinux, 192

Application deployment, 29
Application.java, 173, 174
Applications

containerized, 87
Kubernetes networking

ClusterIP service, 144
ExternalName service, 147
ingress object, 146, 147
LoadBalancer service, 145
nodeport property, 145
NodePortservice service, 144
pod status, 143
YAML files, 148

Kubernetes Service
Ansible Playbook, 142
inventory file, 143
kubectl command, 142
nginx-example service, 142

INDEX

279

OpenShift cluster, 142
pod statuses, 141
service.yaml document, 141
stakeholders, 141

resilience, 148
scaling, 149

Ansible, 150
Ansible Playbook, 150–152
auto-scaling, 153, 154
changed status, 152
get parameter, 149
inventory file, 151
k8s.gcr.io registry, 154
kubectl command, 149
nginx deployment, 149
pod count, 152
READY column, 149, 150
scale parameter, 149

updation
ansible-playbook command, 157
automation, 156, 157
Kubernetes, 156
latest tag, 155
logs, 156
nginx deployment, 155
pod instances, 155
rollback option, 155
rolling updation, 154, 155
scaling, 155

Array variables, 43
Artificial intelligence (AI), 163, 239,

275, 276
Attribute-based access control

(ABAC), 235
Authentication, Authorization, and

Accounting (AAA), 235, 247
Automation Controller (AC), 29, 30, 262,

263, 265, 266, 274

Automation Controller Backup (ACB), 265
Automation Controller job (AJ), 266
Automation Controller Restore

(ACR), 266
Automation Hub (AH), 29, 262, 263,

266, 273
Automation Hub Backup (AHB), 266
Automation Hub Restore (AHR), 266
AWS fully managed nodes, 246
AWS Identity and Access Management

(Amazon IAM), 247
AWS Key Management Service (AWS

KMS), 243
AWS X-Ray, 251
Azure Active Directory (Azure AD), 259
Azure compute, 255, 256
Azure Container Instances (ACI), 258
Azure Container Registry (ACR), 255, 258
Azure Kubernetes Service (AKS), 258, 259
Azure Resource Manager (ARM), 257

advantages, 256
azure_rm Ansible inventory plugin, 257

B
Base Container Images (BCI), 16
Bitnami, 204–207
Borg, 88
Business-critical services, 148

C
Calico, 237
California’s Consumer Privacy Act

(CCPA), 273
Certified Kubernetes Conformance

Program, 259, 260
Charts, 202, 204, 207, 211

INDEX

280

Cloud computing, 61, 88, 148, 237, 239,
240, 242, 255, 259

Cloud Key Management Service (Cloud
KMS), 243

Cloud-native applications, 87, 171, 199,
201, 202, 240, 254, 276

Cloud Native Computing Foundation
(CNCF), 82, 87

Kubernetes, 9
Kubernetes distribution

Amazon EKS, 11
OCP, 9, 10
public cloud, 11

Cloud-native environments, 87, 95
Cloud providers, 87, 96, 99, 109, 239

architecture, 241, 242
Cloud storage services, 90
CloudWatch, 251
Cluster Autoscaler (CA), 153, 154
CMD instruction, 13, 19
CodePipeline, 250, 251
Common Vulnerabilities and Exposures

database (CVE), 18
Conditionals, 269
Configuration as a Code (CaC), 261
Configuration class, 171
Configuration files, 5, 27, 39, 49, 82, 92,

113, 183, 186, 197, 245, 254, 257
Configuration management (CM), 7,

27–29, 99, 262
Containerfile, 5, 12, 123, 176, 235
Container Registry, 5, 6, 13, 22, 77, 178, 179
Containers, 4

analysis tools, 17
benefits, 6
business applications, 6
definition, 11
deployment, 4

lifecycle, 5
Container Storage Interface (CSI), 90, 260
Content verification, 274
Continuous Delivery (CD), 94
Continuous Integration and Continuous

Delivery (CI/CD), 7
Continuous Integration (CI), 93, 94
Cordon, 229, 230
credentials.json file, 255
Customer-managed key (CMK), 243

D
DaemonSets, 91, 232, 233
Debian Security Advisories (DSA), 18
Deep learning (DL), 163, 276
Deployment, 232, 233

container, 4
traditional, 2
virtualized, 3

Developers, 93–95
Devmode, 75
Digital Envelope, 243
Disaster Recovery (DR), 148, 272
Distribution Specification, 5
Docker, 63, 88

Debian Linux, 65, 67
Fedora/Red Hat Linux, 67, 68
platforms, 64
Windows, 70, 71

DockerCon, 88, 89
Dockerfile, 5, 12, 13, 18–19, 59
Drain, 229, 230

E
echo command, 12
eksctl command, 248

INDEX

281

Elastic Block Storage (EBS), 90, 244
Elastic Compute Cloud (EC2), 244, 246
Elastic Container Registry (ECR), 250, 251
Elastic Kubernetes Service (EKS), 11, 244,

246, 250, 253, 260
Enterprise customers, 274
Enterprise Linux distribution, 16, 17, 64
Envelope Encryption technique, 243
Event-Driven Ansible (EDA), 268–271
Extra variable, 43, 126, 219

F
Fault tolerant (FT), 148
Fedora-like Linux operating system, 76
Fedora Linux, 14, 82
Fetch logs, resources, 220, 221
Flatpak, 63, 71–74, 85
Fluentbit, 251
FROM instruction, 13
Full command, 41, 52, 85, 112, 125, 127, 274

G
gather_facts variable, 48
General Data Protection Regulation

(GDPR), 272
General Personal Data Protection

Law, 273
Generative Pre-trained Transformer

(GPT-3), 275
GitOps continuous deployment, 93–94
Google, 87–89
Google Cloud Platform (GCP), 3, 11, 87,

99, 109, 251, 252
Google Compute Engine (GCE), 3,

252, 253
Google Container Engine (GKE), 11

Google Containers Registry (GCR), 252
Google Kubernetes Engine (GKE), 89, 253
Gradle build tool, 172, 175, 176
Graphics Processing Units (GPU), 163
Guestbook application, 180–184

H
Hardware, 2, 88
Hardware security module (HSM), 243
HashiCorp, 82, 243
Hello App, 12

Alpine Linux, 15
application, 19–21
browser, 20
building, 22
deploy in Kubernetes, 24
deploy in Operator, 25
Docker, 22, 23
Dockerfile, 18

ADD instruction, 19
CMD instruction, 19
EXPOSE instruction, 19
FROM instruction, 18
LABEL instruction, 19
pip command, 19
RUN instruction, 19

Enterprise Linux distribution, 17
Fedora Linux, 14
Linux base images, 13
RHEL, 15, 16
source files, 18
SUSE, 17
Ubuntu Linux, 14, 15

Hello application, 19–22, 176, 177
Hello container, 177
HelloController class, 174
HelloController.java file, 173

INDEX

282

Hello-deployment.yaml Manifest, 179
Hello-service.yaml Manifest, 180
Helm, 10, 109
Helm Chart, 207, 211, 219
Helm package manager, 111

advantages, 202
charts, 202
commands, 202, 203
directory, 202
glib Python library, 203
helm command-line tool, 202
helm utility, 203
kubernetes.core Ansible collection, 203
Microsoft, 202
modules, 203
tasks, 203
uses, 202

Helm packages
installation, 207, 209
removal process, 209, 210
reporting, 210–212

Helm plugins
commands, 212
installation, 212–214
removal process, 214, 215
reporting, 215, 216

Helm repositories
addition, 204, 206
Bitnami, 204
helm repo command, 204
removal process, 206

Heroku platform, 170
Hetzner-ocp4, 103
High availability (HA), 6, 99, 104, 148, 155,

184, 241, 242, 250, 272
Horizontal Pod Autoscaler (HPA), 153
Hybrid-cloud, 4
Hypervisor software, 96

I
Idempotency, 38
Identity and Access Management (IAM),

247, 252, 258
Image Specification, 5
Infrastructure and operations (I&O),

261, 275
Infrastructure as a Service (IaaS), 242, 244,

252, 255
Infrastructure as Code (IaC), 1, 25, 27, 61,

261, 262, 268
Integrated development environment

(IDE), 95
Internet of Things (IoT), 74, 107
IT infrastructure, 1, 25, 28, 243, 246,

269, 272

J
Java microservice

configure, 171, 172
Demo Java web application, 172

Jenkins Pipeline, 94
Job, 233
Job execution, 267
Job template (JT), 266, 267
JSON Patch operation, 222, 223
JSON Web Token (JWT), 236

K
keyed_groups option, 245
Key Management Service (KMS), 243, 250
Kubeadm, 9, 102, 104, 106–108
kubectl, 92
kubectl command, 249
Kubernetes

manage services, 225, 227

INDEX

283

Kubernetes’ annotation, 193
kubernetes.core.kustomize, 185
Kubernetes data plane, 171
Kubernetes (K8), 8

advantage, 89
Ansible, 201
benefits, 89
Container Image, 133
control plane vs. data plane, 91, 92
definition, 87
feature, 89
Google, 87, 88
K3s, 107
objects, 90, 91
self-healing capabilities, 87
timeline, 87
upgrades, 107, 108
uses, 87
YAML files, 166, 167

Kubernetes Operations (kOps), 109
Kubespray, 96, 99–100
Kustomization directory, 185, 191
Kustomization file, 184, 185
kustomization.yaml file, 111, 186
kustomization.yml file, 185
Kustomize tool, 184, 185

L
LABEL instruction, 13, 19
Laboratory

creation, 95
hetzner-ocp4, 103
Kubespray, 99, 100
OpenShift Local, 100, 102, 103
Raspberry Pi, 97, 98
virtual machines, 96, 97

Lei Geral de Proteção de Dados (LGPD), 273

Linux Containers (LXC), 2, 11
localhost inventory, 209, 211, 213, 214,

216, 221, 223, 225, 231, 233

M
Machine learning (ML), 163, 239, 252
Magic variables, 48, 49, 61, 66
main() method, 175
Managed nodes, 246
Manual work, 7
Maven or Gradle build tool, 176
Mean-Time-To-Resolution

(MTTR), 269
Mesos, 88, 89
Message bus, 257, 258, 270
method parameter, 72
Microservices, 4, 6, 7, 87, 171, 172,

272, 276
Microservices software design

patterns, 272
microVM, 247
Minikube, 96, 104

kubectl command, 105
memory/CPUs settings, 105
memory parameter, 104
minikube command-line tool, 104
minikube dashboard command,

105, 106
node, 105
output, 105
packages, 104
resources, 105
Ubuntu 22.04 LTS, 104
virtual machine, 104

Modern operating systems, 7, 8, 34, 96,
104, 202

Modern processor chips, 2

INDEX

284

Monitoring tool deployment, 216
Ansible Collections, 218, 219
Helm Chart, 219
kube-prometheus project, 217

Multi-cloud, 4, 9, 262
mysql.yaml file, 186, 187

N
Namespaces

creation, 126, 128, 129
reporting, 129–131
reporting deployments

ansible-galaxy, 135
Ansible Playbook, 133, 134
applying deployment, 132
changed statuses, 134
deployment_list.yml file, 135, 136
deployment.yaml file, 131
inventory file, 134, 136
jmespath library, 135
json_query filter plugin, 135
kubectl namespace, 132
Kubernetes deployment, 131
message, 132
metadata, 135
nginx deployment, 132
output, 132
pods, 132
query lookup plugin, 134

Network storage protocols, 90
nginx container, 77
Nginx web server, 92, 155, 207

O
Open Container Initiative

(OCI), 5, 11, 15, 250

OpenID Connect (OIDC), 236
OpenID identity provider, 236
OpenShift, 10, 89, 101, 113
OpenShift Container Platform (OCP), 9,

10, 101, 103, 104, 263
Operator SDK, 25, 191
Oracle Container Cloud Service

(OCCS), 11
Orchestration technologies, 89
Orchestration tools, 7, 272
Organizations, 1, 2, 4, 30, 89, 202
Over-the-air (OTA), 74

P, Q
Packer, 82, 84, 85
PersistentVolume, 186
PersistentVolumeClaims, 186
PHP Guestbook application, 180, 181
ping.yml file, 197
pip utility, 35, 111
Platform-as-a-service (PaaS), 4, 89, 95,

242, 244, 255
Playbook, 38
PodDisruptionBudget (PDB), 148, 229
Podman, 5, 63
Podman Container Engine, 80
Pods, 12, 253

Ansible Playbook, 137
configuration, volumes, 163–165
copying files/directories, 224, 225
definition, 136
inventory file, 138
kubectl, 138
Kubernetes file, 137, 138
OpenShift cluster, 138
output, 138
resources

INDEX

285

CPU, 158, 160
GPU, 163
memory, 161, 162
metrics, 158
namespace, 163

resource utilization, 150
service scenario, 148

Pod security, 191, 192
Pod Security Admission (PSA), 191–192
PodSecurityPolicy, 191
Pod security standard policy, 192
Pokémon Go, 89
Prometheus, 216
Prometheus Operator, 217
Promise Theory, 88
Provisioning, 28
Python

daemon, 112
dependencies, 111, 113
library, 111, 121–124
package manager, 111
virtual Environment, 120–122

R
Raspberry Pi, 8, 97–98
Recovery Point Objective (RPO), 272
Recovery Time Objective (RTO), 272
Red Hat Ansible Automation Platform,

29, 261, 263
Red Hat Enterprise Linux (RHEL), 9, 15,

16, 35, 64, 68, 123, 244, 263
Red Hat OpenShift, 263
Red Hat OpenShift Local, 10
Red Hat OpenShift Service on AWS

(ROSA), 9
Red Hat Security Bulletins (RHSB), 18
Redis leader deployment, 181

Redis Service YAML file, 182
Registered variables, 43, 44
ReplicaSet, 91, 150, 233
Replication Controller, 150, 229, 233
Role-based access control (RBAC),

29, 191, 235
Runtime Specification, 5

S
Scratch, 89, 96, 97, 235
Seccomp, 193, 194
seccomp profile audit.json file, 194
Secrets, 139, 141
Secure Token Service (STS), 236
Security, 233

AAA, 235
Calico, 237
cloud infrastructure, 234
cluster security, 234
code, 234
container images, 235
containers, 234, 235
directives, 235
OpenID identity provider, 236

Security pod resources, 192, 193
Self-managed nodes, 246
Service-Level Agreement (SLA), 253
Simple Storage Service (S3), 244
Single-board computer (SBCs), 97
Single sign-on (SSO), 236, 262
Single source of truth (SSOT), 94
Snap, 74, 75, 77
Snapcraft, 74
snapd daemon, 74, 77
Software as a Service (SaaS), 170, 242, 243
Software development lifecycle (SDLC)

methodology, 169, 170

INDEX

286

Source control management system
(SCM), 94

Spring Boot, 172, 175
state parameter, 72
Stateful applications, 163, 186, 191
Storage devices, 90
SUSE Linux Enterprise Server (SLES), 244
Syscalls, 193, 194
System Integration Test (SIT), 6, 201

T
Taint nodes, 227, 228
Technology, 193
Total Cost of Ownership (TCO), 239, 242
Traditional deployment, 2
Traditional infrastructure, 1
Twelve-factor application, 170, 171

U
Standard ubi UBI images, 16
Multi-service ubi-init UBI images, 16
Micro ubi-micro UBI image, 16
Minimal ubi-minimal UBI images, 16
Ubuntu Linux distribution, 14, 15
Ubuntu Security Notices (USN), 18

Uncordon, 108, 229–231
Universal Base Image (UBI), 15, 16
UNIX toolchain, 250
Uptime, 2
User-defined variables, 43

V
Vagrant, 82, 83
Vagrantfile, 83, 84
Vendors, 4, 11, 242, 243, 259–260
Vertical Pod Autoscaler (VPA), 153, 154
Vibrant community, 9, 87, 89, 107, 275
Virtual Desktop Infrastructure (VDI), 256
Virtualized deployment, 3
Virtual machines (VMs), 2–4, 83, 84,

96–97, 255
Virtual Network (VNet), 256
Virtual Private Clouds (VPC), 244, 253
VMWare Tanzu Application

Platform, 95

W, X, Y, Z
Web-generated ZIP file archive, 173
Webhook, 255, 268–270
wordpress.yaml file, 189

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Modern IT Infrastructure and Hello App
	Modern IT Infrastructure (DevOps and IaC)
	The Move to Containers
	Ansible by Red Hat
	The Cloud Native Computing Foundation
	Kubernetes Support
	Kubernetes Distributions: OpenShift, Rancher, EKS, AKS, and GCP
	OpenShift by Red Hat
	Kubernetes in the Public Cloud
	Amazon EKS

	Containers and Pods
	Creating a Hello App
	Linux Base Images
	Fedora Linux
	Ubuntu Linux
	Alpine Linux

	Enterprise Linux-Based Images

	Container Security
	The Hello Dockerfile
	The Hello Application

	Building the Hello App
	Running Hello in Docker
	Deploying Hello in Kubernetes
	Deploying Hello in Operator
	Key Takeaways

	Chapter 2: Ansible Language Code
	What Is Ansible?
	Provisioning
	Configuration Management
	Application Deployment
	Ansible Open-Source vs Commercial Options

	Ansible’s Architecture
	UNIX Target Node
	Windows Target Node

	Ansible Installation
	Getting Started with Ansible
	Running Your First Ansible Ad Hoc Command
	Creating a Basic Inventory

	Ansible Code Language
	Ansible Inventory
	INI Inventory
	YAML Inventory

	Ansible Playbook
	Ansible Variables
	Ansible Filters
	Conditionals
	Handler
	Loop
	Ansible Facts
	Ansible Magic Variables
	Ansible Vault
	Ansible Templates
	Ansible Plugins

	Ansible Roles
	Ansible Collection
	Ansible Execution Environment

	Key Takeaways

	Chapter 3: Ansible for Containers
	Ansible for Containers
	Install Docker on Linux and Windows
	Install Docker in Debian Linux
	Install Docker in Red Hat Linux
	Install Docker on Windows

	Flatpak in Linux
	Snap in Linux
	Deploy a Web Server in a Container
	Apache with Docker for Debian-like Systems
	Apache with Podman for Red Hat-like Systems

	Use Vagrant and Packer
	Vagrant
	Packer

	Key Takeaways

	Chapter 4: Ansible for K8s Tasks
	Kubernetes Objects
	Control Plane vs Data Plane
	kubectl
	GitOps Continuous Deployment

	Jenkins
	VMWare Tanzu Application Platform
	Set Up Your Laboratory
	Virtual Machines
	Raspberry Pis
	Kubespray
	OpenShift Local
	hetzner-ocp4

	Create a Cluster with Minikube
	Kubeadm
	K3s Lightweight Kubernetes
	Kubernetes Upgrade

	Create a Cluster with kOps
	Configure Ansible for Kubernetes
	Ansible Troubleshooting
	401 unauthorized

	Kubernetes
	OpenShift
	x509 error
	kubeconfig

	Configure a Python Virtual Environment
	Configure an Ansible Execution Environment
	Create a Namespace
	Report Namespaces
	Report Deployments in Namespace
	Create a Pod
	Create a Secret
	Use a Service to Expose Your App
	Kubernetes Networking

	Scale Your App
	Auto-scaling
	Update Your App
	Assign Resources to Kubernetes K8s Pods
	Metrics
	CPU Resources
	Memory Resources
	Namespace Resources
	GPU Resources

	Configure a Pod to Use a Volume for Storage
	Apply Multiple YAML Files at Once on Kubernetes
	Key Takeaways

	Chapter 5: Ansible for K8s Data Plane
	Configuring a Java Microservice
	The Demo Java Web Application

	Stateless: Deploying PHP Guestbook Application with Redis
	Kustomize: Do More with Less
	Stateful: Deploying WordPress and MySQL with Persistent Volumes
	Security Namespace (Pod Security Admission)
	Security Pod Resources (AppArmor)
	Security Pod Syscalls (seccomp)
	Ansible Dynamic Inventory
	Key Takeaways

	Chapter 6: Ansible for K8s Management
	The Helm Package Manager
	Helm Repositories
	Add Helm Repository
	Remove Helm Repository

	Helm Packages
	Install Helm Package
	Remove Helm Package
	Report Helm Package

	Helm Plugins
	Install Helm Plugin
	Remove Helm Plugin
	Report Helm Plugin

	Deploy a Monitoring Tool
	kube-prometheus
	Ansible Collections
	Helm Chart

	Fetch Logs from Resources
	Apply a JSON Patch Operation
	Copy Files and Directories to and from a Pod
	Manage Services on Kubernetes
	Taint Nodes
	Drain, Cordon, or Uncordon Nodes
	Kubernetes Dynamic Inventory
	Roll Back Deployments and DaemonSets
	Set a New Size for a Deployment, ReplicaSet, Replication Controller, or Job
	Security
	AAA
	OpenID Identity Provider
	Calico

	Key Takeaways

	Chapter 7: Ansible for Kubernetes Cloud Providers
	Cloud Architecture
	Amazon Web Services (AWS)
	Google Cloud Platform (GCP)
	Microsoft Azure Cloud Services
	Other Vendors
	Key Takeaways

	Chapter 8: Ansible for Enterprise
	The Ansible Automation Platform
	Event-Driven Ansible
	IT Trends
	Ansible Trusted Code
	What’s Next?
	Thank You

	Index
	Capture.PNG
	Capture - Copy.PNG
	Capture - Copy.PNG
	Capture - Copy.PNG

