

Developing a React Edge, Second
Edition

The JavaScript Library for User Interfaces

Richard Feldman, Frankie Bagnardi, Simon Hgjberg,
Jeremiah Hall

Developing a React Edge, Second Edition

Copyright (c) 2015 Bleeding Edge Press

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of the publisher.

This book expresses the authors views and opinions. The information contained in this book
is provided without any express, statutory, or implied warranties. Neither the authors,
Bleeding Edge Press, nor its resellers, or distributors will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

ISBN 9781939902290

Published by: Bleeding Edge Press, Santa Rosa, CA 95404

Title: Developing a React Edge, Second Edition

Authors:Richard Feldman, Frankie Bagnardi, Simon Hgjberg, Jeremiah Hall

Editor: Troy Mott

Copy Editor: Christina Rudloff

Typesetter: Bob Herbstman

Cover Designer: Ellie Volckhausen

Website: bleedingedgepress.com

Preface

What is React and why should you use it?

React is a JavaScript library developed internally at Facebook and
open sourced in 2013 for building interactive user interfaces for the
web. It introduces a new way to deal with the Browser’'s DOM. Gone
are the days of manually updating the DOM and laboriously keeping
track of each piece of state that makes scalability and new feature
development at best, a risky endeavor. Instead, React deals with the
DOM in a very novel way. You declaratively define your user
interface at any point in time. React removes the need to worry
about which part of the DOM needs to update when data changes,
and enables you to essentially re-render your entire application at
any point in time with minimal DOM changes.

How this book helps

React introduces new and exciting concepts that challenge current
practices. This book will enable you to navigate all of these concepts
and help you understand why they are beneficial and can help you
build scalable Single Page Applications (SPAs).

React focuses mainly on the “view” part of an application, and thus
does not prescribe server communication or code organization. In
this book we will cover the current best practices and complementary
tools to help you build a complete application with React.

What do you need to know prior to reading the
book?

To get the most out of this book you’ll need to be experienced with
JavaScript and HTML. It's beneficial if you have experience with
writing SPAs (regardless of which framework like Backbone.js,
AngularJS, or Ember.js), but it is not required.

Source code and sample application

Throughout this book we’ll be referencing bits of our example
application: reddit clone. You can read the full source code
at http://git.io/vicpa and view an online demo at http://git.io/vICUI
The writing process

This book was written as a focused virtual book sprint over the
course of a month or two. This process helps create fresh and

http://git.io/vlcpa
http://git.io/vlCUI

current content, whereas conventional books often lag behind the
coverage of cutting edge trends and technology.

In the second edition everything has been updated to React 0.14
and a new sample application has been created.

Authors

The book is written by a team of experienced and dedicated
JavaScript developers:

y

Richard Feldman is the lead Front-End Engineer at NoRedInk, an
education tech company in San Francisco. He is a functional
programming enthusiast, a conference speaker, and the author of
seamless-immutable, an open-source library that provides
immutable data structures that are backward-compatible with normal
JavaScript objects and arrays. He is @rtfeldman on both Twitter and
GitHub.

Frankie Bagnardi is a Senior Front-end Developer creating user
experiences for various clients. In his free time, he answers

questions on StackOverflow (FakeRainBrigand) and IRC
(Greendello), and enjoys small projects. You can reach him at
f.bagnardi@gmail.com.

Simon Hgjberg is a Senior Ul Engineer at Swipely in Providence,
RI. He is the co-organizer of the Providence JS Meetup group and
former JavaScript instructor at Startup Institute Boston. He spends
his time building functional User Interfaces with JavaScript, and
hacking on side projects like cssarrowplease.com. Simon tweets at

@shojberg.

Jeremiah Hall is a Senior Software Engineer/Architect currently at
OpenGov Inc. He is also the founder of Aspect Apps, building a
journaling application that uses React Native and JavaScript for the
Ul. He can be found on Twitter @jeremiahrhall.

mailto:f.bagnardi@gmail.com
https://twitter.com/shojberg
https://twitter.com/jeremiahrhall

Chapter 1. Introduction to React

Background

In the early days of Web development, front-end code bases were
small and JavaScript was underpowered. Thanks to years of
browsers one-upping each other to push the envelope on JavaScript
performance, today’s web apps can deliver user experiences on par
with those of native apps. As web apps continue to grow richer and
more ambitious, scaling JavaScript code bases while maintaining
strong performance is now a bigger challenge than ever.

Historically, many JavaScript libraries have prioritized performance
or code organization—by making it easier to do high-performance
DOM operations across browsers, or by offering organizational
patterns that make code easier to scale. React has soared in
popularity by making it easy to achieve both performance
improvements and code scaling at the same time. This potent
combination has made it one of the top ten most popular libraries
across all of GitHub.

React started as a port of a PHP framework by Facebook called
XHP. Being a PHP framework, XHP was designed to render your
entire page every time a request was made. React was born to bring
the PHP style work flow of re-rendering the entire page to client side
applications.

React is essentially a “state machine,” helping you manage the
complexity of state changing over time. It achieves this by having a
very narrow scope. It is concerned with only two things:

1. Updating the DOM

2. Responding to events

React has no opinions on AJAX, routing, storage, or how to
structure your data. It is not a Model-View-Controller framework; if
anything, it is the V in MVC. This narrow scope gives you the
freedom to incorporate React into a wide variety of systems. In fact,
it has been used to render views in several popular MVC
frameworks.

Rendering the entire page every time some state changes is
incredibly slow in JavaScript due to the performance penalty of
reading and updating the DOM. React has a very powerful rendering
system that uses a virtual DOM, resulting in React only needing to
update the DOM and not read from the DOM.

Like high-performance 3D game engines, React is built around
render functions that take the state of the world and translate it into a
virtual representation of the resulting page. Whenever React is
informed of a state change, it re-runs those functions to determine a
new virtual representation of the page, then automatically translates
that result into the necessary DOM changes to reflect the new
presentation.

At a glance, this sounds like it should be slower than the usual
JavaScript approach of updating each element on an as-needed
basis. Behind the scenes, however, React does just that: it has a
very efficient algorithm for determining the differences between the
current virtual page representation and the new one. From those
differences it makes the minimal set of updates necessary to the
DOM.

What makes this a win for performance is that it minimizes reflows
and unnecessary DOM mutations, both of which are common
culprits for poor performance.

The bigger your interface gets, the more likely it is to have one
interaction that triggers an update, which in turn triggers another
update, which in turn triggers another. When these cascading
updates are not batched properly, performance starts to degrade
substantially. Worse, sometimes DOM elements are updated multiple
times before arriving in their final state.

Not only does React’s virtual representation diffing minimize these
problems by performing the minimal set of updates in a single pass,
it also simplifies the maintenance of your application. When the state
of the world changes based on user input or external updates, you
simply notify React of the state change and it takes care of the rest
automatically. There’s no need to micromanage the process.

React uses a single event handler for the entire application and
delegates all events to this event handler. This also gives React a
performance boost, since having many event handlers can have
significant performance penalties.

You can read the full source code of our example application used throughout this book, at
http://git.io/vicpa.

http://git.io/vlcpa

Book overview

This book will take you through four main topic areas to help you
develop an edge with React.

Creating and composing components

The first seven chapters of the book are all about creating and
composing React components. These chapters will provide an
understanding of how to use React.

1) Introduction to React
This first chapter introduces React, covering the background and the
book overview.

2) Using JSX and basic React components
JSX (JavaScript XML) is a way of writing declarative XML style
syntax inside JavaScript. You will learn how to use JSX with React
and how to build basic React Components. While not required to be
used with React, most of the examples in this book, along with the
example app, use JSX, since it is the recommended way to use
React.

3) React component lifecycle
React is often creating and destroying components during the render
process. React provides many functions you can hook into during
the lifecycle of your components. You should gain an understanding
of how to manage the lifecycle of a component to ensure you don’t
create memory leaks in your applications.

4) Data flow in React
It is important to know how data is passed down through the
component tree and what data is safe to change. React has a very
clear separation of xrops and state. This chapter will teach you what

props and state are and how to use props and state correctly in your
React components.

5) Event handling
React implements event handling in a declarative manner. Event
handling is an important part of any dynamic Ul, and learning to
master this is essential. Fortunately React makes event handling
very simple.

6) Composing components
React encourages you to make small, precise components that do a
specific job. You then need to create orchestration layers in your
application to compose these components. This chapter will teach
you how to use your components in other components.

7) High order components and Mixins
This is a pattern that allows abstracting the ‘how’ of data
dependencies. High order components wrap other components to
provide data or functions via props. This chapter also covers mixins,
which are still useful to use in certain circumstances.

Advanced topics

Once you have mastered the basics of React you will move on to
some more advanced topics. These next six chapters will help you
hone your React skills and help you understand how to build great
React components.

8) DOM manipulation
Even with all of the power of the virtual DOM available in React,
sometimes you still need to access the raw DOM nodes in your
applications. This may be to enable you to use existing JavaScript
libraries or to get more control over your components. This chapter
will teach you where in the React component lifecycle you can safely

access the DOM, and when to release your control on the DOM to
avoid memory leaks.

9) Building forms with React
Using HTML form elements is one of the best ways of receiving input
from your users. However, HTML form elements are very stateful.
React provides a way to move most of the state from your form
elements into your React components. This gives you incredible
control over your form elements.

10) Animations
As web developers we are already blessed with a very declarative
way of defining high performance animations: CSS. React
encourages the use of CSS for your animations. This chapter shows
how React helps you leverage CSS for animating your React
components.

11) Performance tuning your components
The virtual DOM in React gives you great performance right out of
the box, but there is always room for improvement. React provides a
way to tell the render that it doesn’t need to re-render your
component if you know your component has not changed. Doing this
can greatly improve the speed of your applications.

12) Server-side rendering
Many applications need SEO, fortunately React can be rendered to
string in a non-browser environment like Node.js. Server-side
rendering can also improve first page load times of your applications.
Writing your application to support both server-side rendering and
client-side rendering, however, can be difficult. This chapter provides
you with some strategies for isomorphic rendering and highlights
some of the more challenging considerations you will encounter with
server-side rendering.

Tooling for React

React has some fantastic developer tools and test suits. Learning
to use them will help you write robust applications. This section is
broken into two chapters that cover tools and tests.

13) Development tools
As you write larger React applications you will start to require a way
to automate packaging your code for deployment, and debugging
your applications starts to get harder. In this chapter you will learn
what tools are available to help you build and package your React
applications and how to use the Google Chrome plugin available to
visualize your React components, allowing for easier debugging.

14) Writing tests for React
Writing tests is an important part of ensuring you don’t introduce
bugs into existing working code as your applications grow. Writing
tests also help you write better code as it encourages you to write
more modular code. This chapter will guide you through how to test
all aspects of your React components.

Working with React

The final chapters cover important aspects of working with React
and different use cases you may not have thought about.

15) Architectural patterns
React provides only the “V” in “MVC”, but it is very flexible in plugins
in with other frameworks and systems. This chapter will help guide
you in designing larger scale applications with React. We’'ll explore
how our sample React app is structured and how this structure helps
manage complexity as your project grows.

16) Immutability
React works well in conjunction with immutable data structures—that
is, data structures that never change and are instantiated. In this
chapter we cover the benefits and costs of immutability, and look at

three different libraries you can use to incorporate into your React
application.

17) Other React uses
React is a powerful interactive Ul rendering library, and it provides a
great way to handle data and user input. In this chapter we’ll look at
how to use React for Desktop apps, games, emails and for charting.

Chapter 2. JSX

In React, components are used to separate concerns, not
templates and display logic. When using React, you must embrace
the idea that markup, and the code that generates it, are inherently
tied together. This gives you all of the expressive power of
JavaScript when building your markup, without having to resort to
awkward or cumbersome templating languages.

React works well with an optional markup syntax, and is
remarkably similar to HTML. But before proceeding, let’s get one
thing out of the way—for those put-off by the apparent awkwardness
of markup in JavaScript, and for those not convinced of JSX’s
usefulness, consider the many benefits of this approach within
React:

It allows for familiar markup to define the element tree
Provides a more semantic, easier to understand markup

It is easier to visualize the structure of your application

It abstracts the creation of React Elements

It keeps markup and the code that generates it close at hand
 It’s plain JavaScript

In this chapter we’ll explore the many benefits of JSX, and how to
use it, along with some of the gotchas separating it from HTML.
Remember, JSX is optional. If you choose not to employ JSX, you
can skip to the end of the chapter for tips on using React without it.

In this book, the latest version of JavaScript, ES6 (or ES2015) will
be used. You can find a good introduction to it
here: https://babeljs.io/docs/learn-es2015/.

https://babeljs.io/docs/learn-es2015/

What is JSX?

JSX stands for JavaScript XML—an XML-like syntax for
constructing markup within React components. React works without
JSX, however embracing it can make your components more
readable, and so it is recommended.

For example, a function call in plain React to create a header
might look like this.

React.createElement ('hl', {className: 'question'}, 'Questions');

But with JSX it becomes much more familiar and a terse looking
markup.

<hl className="question">Questions</hl>

Compared to past attempts at embedding markup in JavaScript,
there are a few distinguishing characteristics that set JSX apart.

1. JSXis a syntactic transform—each JSX node maps to a
JavaScript function.

2. JSX neither provides nor requires a runtime library.

3. JSX doesn't alter or add to the semantics of JavaScript—it’s just
simple function calls.

The similarity of JSX to HTML is what gives it so much expressive
power within React. Here we’ll discuss the benefits of JSX and its
purpose within an application, as well as the key differences
between JSX and HTML.

Benefits of JSX

A question many ask when considering JSX is why? Why use it at
all when there are plenty of existing templating languages? Why not

use plain JavaScript instead? After all, JSX simply maps to
JavaScript functions.

There are many benefits to using JSX, and they become more
pertinent the larger your code base grows and the more complex
your components become. Let’s discuss some of these benefits now.

Familiarity

Many development teams include non-developers, from Ul and UX
designers who are familiar with HTML, to quality-assurance teams
responsible for thoroughly testing the product. These team members
can more easily read and contribute code to a JSX project. Anyone
with a familiarity with XML-based languages can easily adopt JSX.

In addition, because React components capture all possible
representations of your DOM (more about this later), JSX makes a
great way to represent and visualize this structure in a compact and
succinct way.

Semantics

Along with familiarity, JSX transforms your JavaScript code into
more semantic, meaningful markup. This offers you the benefit of
declaring your component structure and information flow using an
HTML-like syntax, knowing it will transform into plain JavaScript
later.

JSX allows you to use all of the predefined HTML5 tag names
alongside your own custom components within your application’s
markup. You'll read about defining custom components later, so here
you’ll simply see how JSX can make your JavaScript more readable.

As an example, let's consider a Divider element that renders a
header on the left and a horizontal-divider that stretches to fill the
right. The JSX for this divider looks like this:

<div className="divider">
<h2>Questions</h2><hr />
</div>

After wrapping this in a nivicer React component you can use it like
you would any other HTML element, with the added benefit of
markup with richer semantics.

<Divider>Questions</Divider>

Easy to visualize

JSX makes even small examples like these clearer and more
concise. In larger projects with hundreds of components and deep
markup trees, however, the benefit is magnified.

Here is the Divider component mentioned above. Notice that
within the context of a JavaScript function the markup’s intent is
more clear and readable than the plain JavaScript version.

Here is the plain JavaScript:

render: function () {
return React.createElement ('div', {className:"divider"},
"Label Text",
React.createElement ('hr'")
)
}

Here is the JSX markup:

render: function () {
return (
<div className="divider">
Label Text<hr />
</div>
)
}

Most agree that the JSX markup is easier to understand and
easier to debug.

Separation of concerns

Lastly, core to React, is the idea that markup and the code that
generates it are inherently tied together. In React you do not
separate the technologies of your application into a view and a
template file. Rather, React encourages you to create discrete
components, encapsulating all of the logic and the markup in one
definition.

JSX provides a clean and concise way of keeping the markup of
your component separate from the business logic. Not only does it
provide a clean visual language for describing a component tree, but
it makes your application easier to reason about.

Composite components

Now that you’ve discovered some of the benefits of JSX and seen
how it can be used to express a component in a compact markup
format, let’s look at how it helps assemble multiple components.

This section covers:

» Setting up a JavaScript file that contains JSX
» Walking you through the assembly of a component

» Discussing component ownership and the parent/child
relationship

Let’s look at each in turn.

Defining a custom component

Continuing with the aforementioned page divider, here again is the
HTML we desire as output.
<div class="divider">

<h2>Questions</h2><hr>
</div>

To express this HTML as a React component, just wrap it like the
following so that the renser function returns the markup (with some
minor changes explained below).

class Divider extends React.Component {
render () {
return (
<div className="divider">
<h2>Questions</h2><hr />
</div>
)

}
b

Of course this is currently a single-use component. To be truly
useful you need the ability to express the text within the 2 tag
dynamically.

Dynamic values

JSX renders dynamic values between curly brackets (..., . The
brackets signal a JavaScript context—anything you put between
them will be evaluated and the results rendered as nodes in the
markup.

For simple values, such as text or numbers, you can simply refer
to the variable. You can render a dynamic h2 tag like this:

var text = 'Questions';
<h2>{text}</h2>

// <h2>Questions</h2>

For more complex logic you may wish to offload the calculations
into a function. You can render the result of this function by calling it

within the brackets:

function dateToString(d) {
return |
d.getFullYear (),
d.getMonth () + 1,
d.getDate ()
J.join('-");
b
<h2>{dateToString (new Date()) }</h2>

// <h2>2014-10-18</h2>

React will automatically evaluate arrays by rendering each item in
the array as a node.

var text = ['hello', 'world'];
<h2>{text}</h2>

// <h2>helloworld</h2>

Often you may wish to render more than simple values. For
example, you may want to render an array of data as
<11~ elements. This brings us to the idea of child nodes.

Child nodes

In HTML you render a header using <n2>guestions</n2> , Where the
text “Questions” became a child text-node of the »> element. So the
goal here is to express the divider in JSX, like this:

<Divider>Questions</Divider>

React captures all child nodes between the open and close tags in
a special component prop, this.props.children. IN this
example, this.props.children —= "ouestions*. | € actual structure of the
children prop is undocumented, so don’t attempt to access its
contents. Just pass it around as-is.

Armed with this knowledge, you can swap out the hard-coded text
“Questions” with the variable tnis.props.cnitaren. React will now render

anything you place inside the <pivider- tags.

class Divider extends React.Component {
render () {
return (
<div className="divider'">
<h2>{this.props.children}</h2><hr />
</div>
) i
}
}i

Now you can use the <viviaer- component like you would any HTML
element.

<Divider>Questions</Divider>

When run through the JSX transformer the above declaration will
transform into this JavaScript (assuming the target is ESG6).

class Divider extends React.Component {
render () {
return (

React.createElement ("div", {className: "divider"},
React.createElement ("h2", null, this.props.children),
React.createElement ("hr", null)

)

)
}
b

The output will be exactly what you expect.

<div className="divider">
<h2>Questions</h2><hr />
</div>

How is JSX different than HTML?

JSX is HTML-like, but it is not a perfect replication of the HTML
syntax (for good reason). In fact the JSX spec states:

This specification does not attempt to comply with any XML or HTML specification.
JSX is designed as an ECMAScript feature and the similarity to XML is only for

familiarity.1

Here we explore some of the key differences between JSX and
the HTML syntax.

Attributes

In HTML you set the attributes of each node inline, like this:

<div id="some-id" class="some-class-name">...</div>

JSX implements attributes in the same manner, with the huge
advantage that you can set attributes to dynamic JavaScript
variables. You do this by wrapping a JavaScript variable in curly-
brackets instead of quotes.

var surveyQuestionId = this.props.id;
var classes = 'some-class-name';

<div id={surveyQuestionId} className={classes}>...</div>

For more complex situations you can set an attribute to the result
of a function call.

<div id={this.getSurveyId()} >...</div>

Now each time React chooses to render a component, the
variables and function calls will be evaluated and the resulting DOM
will reflect this new state.

You can read the full source code of our example application, a survey builder, at
http://git.io/vicpa.

Conditionals

In React, a component’s markup and the logic that generate it are
inherently tied together. This means that you have the full logical

http://git.io/vlcpa

power of JavaScript at your fingertips, such as with loops and
conditionals.

It can be tricky to add conditional logic to your components since
if/else logic is hard to express as markup. Adding i+ statements
directly to JSX will render invalid JavaScript:

<div className={if (isComplete) { 'is-complete' }}>...</div>

So the solution is to use one of the following:

e Use ternary logic

» Set a variable and refer to it in the attribute
o Offload the switching logic to a function

e Use the «: operator

Here is a quick example showing what each may look like.

Using the ternary operator

render () {
return (
<div
className={this.state.isComplete ? 'is-complete' : ''}
>
</div>
)
}

While the ternary operator works well for text, it can be
cumbersome and difficult to read when you want to use a React
component in either case. For these situations it is better to use the
following methods.

Using a variable

getIsComplete () {
return this.state.isComplete ? 'is-complete' : ''

}

render () {

var isComplete = this.getIsComplete();
return (
<div className={isComplete}>...</div>
);
}

Using a function call

getIsComplete () {

return this.state.isComplete ? 'is-complete' : '';
}
render () {

return (

<div className={this.getIsComplete () }>...</div>
)
}

Using the double-and (ss) operator

Because React does not output anything for null or false values
you can use a boolean value and follow it with the desired output

string. If the boolean evaluates to true then the following string will
be used.

render () {
return (
<div className={this.state.isComplete && 'is-complete'}>

</ai§>
)
}

Non-DOM attributes

The following special attribute names exist in JSX:

® Ley
® ref

® dangerouslySetInnerHTML

Here we will explore them in more detail.
Keys

key IS @n optional unique identifier. Iltems and lists can change
relative to their siblings, for example as the user performs a search
or items are added, removed, or reordered in a list. When this
happens, your component might be needlessly destroyed and
recreated React may perform naive updates.

By setting a unique key on a component that remains consistent
throughout render passes, you inform React so it more intelligently
decides when to reuse or destroy a component, thus improving
rendering performance. Then, when two items already in the DOM
switch positions, React can match the keys and move them without
completely re-rendering their DOM.

References

ret allows parent components to keep a reference to child
components available outside of the render function.

You define a ref in JSX by setting the attribute to the desired
reference name.

render () {
return <div>
<input ref="myInput" ... />
</div>;

}

And later you can access this ref by using tnis.refs.myrnpur @anywhere
in your component. For DOM components such as input, the ref is
the DOM node in question. For composite components, the ref is the
component instance. In practice, you will rarely use refs with React,
they serve as an escape hatch from React’s declarative nature.

For more detail see the discussion on parent/child relationships
versus ownership in Chapter 6.

Setting raw HTML

dangerouslyset Innerarmi—SOMetimes you need to set HTML content as
a string, especially when working with third party libraries that
manipulate DOM via strings. To improve React’s interoperability, this
attribute allows you to use HTML strings, but it's not recommended if
you can avoid it. To use this property set it to an object with key nem
set, like this:

render () {
var htmlString = {
__html: "an html string"
i
return <div dangerouslySetInnerHTML={htmlString} ></div>;

}

DANGEROUSLYSETINNERHTML

dangerouslySetInnerHTML may be changing soon, as described here:

https://github.com/facebook/react/issues/2134

https://github.com/facebook/react/pull/1515

Events

Event names are normalized across all browsers and are
represented in camelCase. For example, change beCOMES oncnange, and
c1ick becomes onciick. Capturing an event in JSX is as simple as
assigning the property to a method on the component.

handleClick(event) {...}
render () {
return (

https://github.com/facebook/react/issues/2134
https://github.com/facebook/react/pull/1515

<diwv
onClick={ (e) => this.handleClick (e)}
>

</ai§>
);
}

Note that you use an arrow function here because it preserves
this. Otherwise this would be undefined in nhanaieciick. It also gives you
easy control of which arguments are passed to the function.

For more details on the event system in React, reference Chapter
9.

Comments

JSX is JavaScript, so you can add plain JavaScript comments
within your JSX markup. Comments can be added in two places:

1. As a child node of an element
2. Inline with a node’s attributes

As a child node

Child-node comments are simply wrapped in curly brackets, and
they can span multiple lines.

<div>
{/* a comment about this input
with multiple lines */}

<input name="email" placeholder="Email Address" />
</div>

Inline with attributes

Inline comments can take two forms. First you can use a multi-line
comment:

<div>
<input
/*

a note about the input
*/
name="email"
placeholder="Email Address" />
</div>

Or you can use a single-line comment:

<div>
<input
name="email" // a single-line comment
placeholder="Email Address" />
</div>

Special attributes

Because JSX transforms to plain JavaScript function calls, there
are a few keywords you can’t use: ciass and sor.

To create a form label with the - attribute use ntmiror.

<label htmlFor="for-text" ... >

To render a custom ciass US€ ciassname. This might seem odd if
you're used to HTML, but it is more consistent with vanilla
JavaScript, where you can access the class of an element using

elem.className.

<div className={classes} ... >

Styles

Lastly, let’'s examine the inline style attribute. React normalizes all
styles to camelCased names, consistent with the DOM style
JavaScript property.

To define a custom style attribute, simply pass a JavaScript object
with camelCase property names and the desired CSS values.
var styles = {

borderColor: "#999",
borderThickness: "lpx"

i

React.renderComponent (<div style={styles}>...</div>, node);

React without JSX

All JSX markup is eventually transformed into plain JavaScript. So
JSX is not necessary for using React. However, JSX hides some
complexity. If you’re going to use React without it, you need to know
the three parts to creating an element in React:

1. Defining the component class

2. Creating a factory for producing instances of the component
class

3. Using the factory to create reactreienent instances

Creating React elements

Recall above how we defined a niviqser cOmponent class. Here it
has been renamed to piviaerciass to clarify its purpose.

class DividerClass extends React.Component
render () {
return (

React.createElement ("div", {className: "divider"},
React.createElement ("h2", null, this.props.children),
React.createElement ("hr", null)

)

)
}
)i

TO use th|S DividerClass WIthOUt JSX, Ca” React.createElement OF

React.createFactory.

To create the element directly simply call createriement.

var divider = React.createElement (DividerClass, null, 'Questions');

To create a factory, first use the createractory function.

var Divider = React.createFactory(DividerClass);

Now that you have a factory function you’re free to create a
ReactElement from |t

var divider = Divider (null, 'Questions');

Further reading and references

Even if you don't like the idea of markup in your JavaScript,
hopefully you can now appreciate how JSX offers a solution to the
intimate relationship between your JavaScript and the markup it
renders. Its growing popularity has earned JSX its own spec, offering
a deep technical definition. There are a few tools to help you
experiment with it if you’re still uncertain or confused about how it
works.

The official JSX spec

In September of 2014 Facebook released an official spec for JSX,
stating its rationale for creating JSX, along with technical details of
the syntax.

You can read more at http:/facebook.github.io/jsx/.

In-browser experimenting

There are also a number of tools for experimenting with JSX. The
React docs Getting_Started page links to JSFiddle playgrounds with
and without JSX.

http://facebook.github.io/react/docs/getting-started.html

For actual projects, the official tool is babel, which also provides
nearly full ES6 support.

http://facebook.github.io/jsx/
http://facebook.github.io/jsx/
http://facebook.github.io/react/docs/getting-started.html
http://facebook.github.io/react/docs/getting-started.html
http://facebook.github.io/react/docs/getting-started.html

https://babeljs.io/

In the next chapter we will explore the component lifecycle in
React.

1 Retrieved from http://facebook.github.io/jsx/

https://babeljs.io/

Chapter 3. Component lifecycle

Throughout a component’s lifecycle, as its props or state change,
its DOM representation might change too. A component is a state
machine; for a given input it will always return the same output.

React provides lifecycle hooks for a component to respond to
various moments—its creation, lifetime, and teardown. We'll cover
them here, in the order of their appearance—first through
instantiation, and then through the components life, and finally as the
component is torn-down.

Lifecycle methods

React components have a minimal lifecycle API, offering only
what you need without being overwhelming. Let’s take a look at
each method in the order they get called on your component.

Instantiation

The lifecycle methods that are called the first time an instance is created,
compared to each subsequent instance, varies slightly. For your first use of
a component class you’ll see these methods called, in order:

® constructor
® componentWillMount
® render

® componentDidMount

Lifetime

As the app state changes and your component is affected, you will
see the following methods called, in order:

® componentWillReceiveProps
® shouldComponentUpdate

® componentWillUpdate

® render

® componentDidUpdate

Teardown & cleanup

And lastly, when you are finished with the component, you will see
componentwillunmount Called, giving your instance the opportunity to clean-
up after itself.

Now, we’ll cover each of these three stages in turn: instantiation,
lifetime, and cleanup.

Instantiation

As each new component is created and first rendered, there are a
series of methods you can use to setup and prepare your
components. Each of these methods has a specific responsibility, as
described here.

constructor(props, context)

The constructor allows you to set up instance properties and state
for you component. A typical constructor looks like this:

class Foo extends React.Component {
constructor (props) {
super(); // call the parent constructor, required
this.state = {x: 'y'};
}
render () { ... }

}

componentWillMount

Invoked immediately before the initial render. This is the last
chance to affect the component state before the render method is
called. This is just mentioned for completeness; it'’s a relic of
createciass, Which is now replaced by the constructor.

render

Here you build the virtual DOM that represents your components
output. Render is the only required method for a component and has
specific rules. The requirements of the renser method are as follows:

e The only data it can access iS tnis.props @Nd this.state.
e You can return nu11, fa1se, Or any React element.

e There can only be one top-level element (you cannot return an
array of elements).

It must be pure, meaning it does not change the state or modify
the DOM output.

The result returned from render is not the actual DOM, but a virtual
representation that React will later diff with the real DOM to
determine if any changes must be made.

componentDidMount

After the render is successful and the actual DOM has been
rendered, you can access it inside of componentpiavount Via
act. findDOMNode (this), OF DY using a ref.

This is the lifecycle hook you will use to access the raw DOM. For
example, if you need to measure the height of the rendered output,
manipulate it using timers, or run a custom jQuery plugin, since this
is where you’'d hook into.

For example, say you want to use the jQuery Ul Autocomplete
plugin on a React rendered input element. You can attach the plugin
like this:

// A list of strings to autocomplete
var datasource = [...];

class MyComponent extends React.Component {
render () {
return (
<input ... />
)
t
componentDidMount () {
$ (React.findDOMNode (this)) .autocomplete ({
sources: datasource
1) :
}
)i

Note, the componentpianoun: method is not called when running on the
server.

Lifetime

At this point your component has been rendered to the user and
they can interact with it. Typically this involves one of the event
handlers getting triggered by a click, tap or key event. As the user
changes the state of a component, or the entire application, the new
state flows through the component tree and you get a chance to act
on it.

componentWillReceiveProps

The props of a component can change at any moment through the
parent component. When this happens componentwilireceiverrops IS Called
and you get the opportunity to change the new props object and
update the state.

For example, in the example application, when the user navigates
between different boards, you can react to the change by fetching
the relevant data from the server.

componentWillReceiveProps (nextProps) {
var boardId = nextProps.params.boardId;
if (boardId !== this.props.params.boardId) {
Actions.State.changeBoard({type: 'board', name: boardId});
}
}

You can read the full source code of our example application, a survey builder,
at http://git.io/vlcpa.

shouldComponentUpdate

React is fast. But you can make it even faster using
shouldcomponentupdate 10 OpPtimize exactly when a component renders.

If you are certain that the new props or state will not require your
component or any of its children to render, return faise.

This method is not called during the initial render or after using

forceUpdate.

By returning false, you are telling React to skip calling render, and
the before and aftel’ hOOkS componentWillUpdate and componentDidUpdate.

This method is not required and for most purposes you will not
need to use it during development. Premature use of this method
can lead to subtle bugs, so it's best to wait until you can properly
benchmark your bottlenecks before choosing where to optimize.

If you’re careful to treat state as immutable and only read from
props and state in your render method then feel free to override

http://git.io/vlcpa

shouldcomponentupdate tO COMpare the old props and state to their new
replacements.

Another performance-tuning option is the rurcrendermixin provided
with the React addons. If your component is pure, meaning it always
renders the same DOM for the same props & state, this mixin will
automatically use snouidacomponentupaate t0 Shallowly compare props and
state, returning false if they match. An example of using this will be
covered later in this book.

componentWillUpdate

Similar to componentwilivount, this method is triggered immediately
before rendering when new props or state have been received.

Note, you can’t update state or props in this method. You should
rely on componentwilireceiverrops fOr updating state during runtime.

componentDidUpdate

Similar to componentpiamount this method gives you an opportunity to
update the rendered DOM.
Teardown & cleanup

Once React is done with a component it must be unmounted from
the DOM and destroyed. You are provided with a single hook to
respond to this moment, performing any cleanup and teardown that
IS necessary.

componentWillUnmount

Lastly, we have the end of a components life as it's removed from
the component heirarchy. This method is called just prior to your
component being removed and gives you the chance to clean up.
Any custom work you might have done in componentpiavount, SUCHh @S
creating timers or adding event listeners, should be undone here.
Failure to do so results in errors (if you setstate ON @an unmounted
component) and various kinds of leaks (memory, listeners, etc.).

Anti pattern: Calculated values as state

Given the possibility of creating state from tnis.props in the
constructor, it's worth noting an anti-pattern here. You should be very
concerned with maintaining a single source of truth. React’s design
makes duplicating the source of truth more obvious, which is one of
React’s key strengths.

When considering calculated values derived from props it is
considered an anti-pattern to store these as state. For example, a
component might convert a date to a string representation, or
transform a string to uppercase before rendering it. These are not
state, and should simply be calculated at render-time.

You can identify this anti-pattern when it’s impossible to know inside of
your render function if your state value is out-of-sync with the prop it’s
based from.

class Day extends React.Component {
constructor (props) {
super () ;
// Anti-pattern. Calculated values should not be stored as state.
this.state = {day: props.date.getDay () };
}
render () {
return (
<div>Day: {this.state.day}</div>
)
}
}

The correct pattern is to calculate the values at render-time. This
guarantees the calculated value will never be out-of-sync with the
props it's derived from.

class Day extends React.Component {
render () {
return (
<div>Day: {this.props.date.getDay() }</div>
) i
}

Summary

React’s lifecycle methods provide well-designed hooks into the life
of your components. As state machines, each component is
designed to output stable, predictable markup throughout its life.

No component lives in isolation. As parent components push
props into their children, and as those children render their own child
components, you must carefully consider how your data flows
through the application. How much does each child really need to
know about? Who owns the application state? Which components, if
any, need local state? This is the subject of our next chapter on data
flow.

Chapter 4. Data flow

In React, data flows in one direction only—from the parent to the
child. This makes components really simple and predictable. They
take props from the parent and render them. If a prop is changed at
the top-level component, React will propagate that change all the
way down the component tree and re-render all of the components
that used that property.

Components can also have internal state, which should only be
modified within the component. React components are inherently
simple, and you can consider them as a function that take pops and
state @nd outputs a virtual DOM representation.

In this chapter we look will look at:

» What props are
o What state is
* When to use props and when to use state

Props

props, Short for “properties” are passed to a component and can
hold any data you'd like.

You can set props on a component during instantiation:

var comments = [{ author: 'Example', body: 'Hey' }];
<Comments comments={comments}/

You can read the full source code of our example application, a survey builder, at
http:/git.io/vicpa.

You can access props via is.props, but you should never write to
props that way. A component should never modify its own props.

When used with JSX, props can be set as a string:

<Link to="/user/example">Example</Link>

It can also be set with the (; syntax, which is a regular JavaScript
expression:

<Link to={'/user/' + comment.author}>{comment.author}

It's possible to use the JSX spread syntax to use an object for
props:

class Button extends React.Component {
render () {
// here we spread all of the props we're passed
// but assert our version of className 1is used
var className = ['Button', this.props.className].join("' ");
return <button {...this.props} className={className} />;

Props are useful for event handlers as well:

class SaveButton extends React.Component ({
render () {
return (
<Button
onClick={ () => this.handleClick ()}
>
Save
</Button>
)
}
handleClick () {
/).
}
b

http://git.io/vlcpa

Here we are passing the onClick prop to the Button component
with a function that calls this.nanaieciick. Whenever the user clicks on
the button, the nana1ec1:icx method gets called.

PropTypes

React provides a way to validate your props, through a config
object defined on your component. They also serve as a quick
reference documentation.

class Post extends React.Component
static propTypes = {
data: PropTypes.shape ({
id: PropTypes.string,
url: PropTypes.string,
author: PropTypes.string,
title: PropTypes.string,
createdAt: PropTypes.number,
}) .isRequired,
bi
VYA
bi

If the requirements of the propTypes are not met when the
component is instantiated, a consoic.<rror Will be logged.

For optional props, simple leave the .iszrequirea Off.

You are not required to use propTypes in your application, but they
provide a good way to describe the API of your component.

defaultProps

Provide the derauitrrops Object on your component to provide a
default set of properties. This should only be done for props that
aren’t required.

var Button = React.createClass ({
static propTypes = {
which: PropTypes.oneOf (['primary', 'secondary', 'normal'])

}i

static defaultProps = {
which: "normal'

b

/S

i

State

Each component in React can house state. State differs from
props in that it is internal to the component.

State is useful for deciding a view state on an element. Note that
this component includes the majority of what you need to know
about React, so xdon’t expect to understand it all right now.

class SimpleSelect extends React.Component {
static propTypes = {

options: PropTypes.arrayOf (PropTypes.shape ({
id: PropTypes.any,
name: PropTypes.string,

})) .isRequired,

value: PropTypes.any,

valueText: PropTypes.any,

onSelect: PropTypes.func,

b

constructor () {

super () ;

this.state = {open: false, };
}

toggleOpen () {
this.setState ({open: !this.state.open});

}

render () {
return (
<div>
<Button onClick={ () => this.toggleOpen() }>
{this.props.valueText || 'Select an option'}
</Button>
{this.renderItems () }
</div>
);
}

renderItems () {
if (!this.state.open) return null;
return (

{this.props.options.map((item, i) => {
return (
<1li key={i} onClick={ () => this.handleSelect (item) }>

https://atlas.oreilly.com/crudloff/reactjs-book/editor/master/04.data.flow.html

{item.name}
</1li>
)
1)}

}

handleSelect (item) {
this.props.onSelect (item) ;
this.setState ({open: false});
t
i

In the above example, state is used to track whether or not to
show the options in the dropdown.

We set the initial state in the constructor with open set to false.
When the dropdown button is clicked, you toggle the open state
(togg91e0pen). When an item is clicked, set the open state to false

(handleSelect).

We can skim the code for tnis.state.open @and see it's used in
renderttems. |f this.state.open IS false, the options aren’t rendered. Each
time you setstate Or get new props from the parent, cnaer (and
renderttens) WIll run again. Causing changes in React is accomplished
by impacting state or props rather than direct mutation.

Never update state directly via nis.state. Instead, always go
through the this.setstate method.

State will always make your component more complex, but if you
isolate your state to certain components, your application becomes
easier to debug.

What belongs in state and what belongs in props?

Don’t store computed values or components in state, but instead
focus on simple data that is directly required for the component to

function, like our open state for the dropdown. Without it you can’t
open or close the dropdown. This can also be the values of an input
field, the user’'s mouse position, or the result of an AJAX request.

Try not to duplicate prop data into state. When possible, consider
props the source of truth.

Stateless Functional Components

You can take this idea of a single source of truth and run with it to
simplify your components. Functional components, introduced in
React 0.14, are defined not classes with multiple methods, but rather
as one single function. This function accepts props as an argument
and returns the desired elements, much like a standalone render
function in a traditional component.

Here is what our Day component looks like as a functional
component:

function Day (props) {
return (
<div>Day: {props.day}</div>

)
}

This style differs from traditional components in several ways. It is
clearly more concise, but that is largely because several of a
traditional component’s features are no longer available. Specifically,
functional components do not support the following features:

» state (see previous sections)
* lifecycle methods (see Chapter 3)
 refs or findDOMNode (see Chapter 8)

Functional components are not mere functions, however. They still
support proprypes @nd derauitrrops, Which are used with the function’s

props argument.

Given this feature set, functional components are best suited as
drop-in replacements for components that have defined nothing
more than a renser method, with optional proprypes @nd desauitrrops @s
well. Since typical React user interfaces are primarily comprised of
components that fit that description, writing more components in this
style can make a code base more concise without sacrificing clarity.

Summary

In this chapter you learned the following concepts:

1. Use props to pass data and settings through the component
tree.

2. Never modify this.props inside of a component; consider props
immutable.

3. Use props to for event handlers to communicate with child
components.

4. Use state for storing simple view state like whether or not drop-
down options are visible.

5. Never modify this.state directly, use this.setState instead.

6. When no local state, refs, or lifecycle methods are

necessary, representing components as functional components
can reduce verbosity and complexity.

We touched briefly on event handling in this chapter, which you’ll
learn about in greater detail in the next chapter.

Chapter 5. Event handling

When it comes to user interfaces, presenting is only half the
equation. The other part is responding to user input, which in
JavaScript means handling user-generated events.

React’s approach to event handling is to attach event handlers to
components, and then to update those components’s internal states
when the handlers fire. Updating the component’s internal state causes
it to re-render, so all that is required for the user interface to reflect the
consequences of the event is to read from the internal state in the
component’s render function.

Although it is common to update state based solely on the type of
the event in question, it is often necessary to use additional information
from the event in order to determine how to update the state. In such a
case, the Event Object that is passed to the handler will provide extra
information about the event, which the handler can then use to update
the internal state.

Between these techniques and React’s highly efficient rendering, it
becomes easy to respond to user’s inputs and to update the user
interface based on the consequences of those inputs.

Attaching event handlers

At a basic level, React handles the same events you see in regular
JavaScript: mouservents for click handlers, cnange €vents when form
elements change, and so on. The events have the same names you
would see in regular JavaScript, and will trigger under the same
circumstances.

React’s syntax for attaching event handlers closely
resembles HTML’s syntax. For example, in our example
application, the following code attaches an onciicx handler to the Save
button.

<button className="btn btn-save" onClick={this.handleSaveClicked}>Save</button>

When the user clicks the button, the button’s nandiesaveciickea method
will run. That method will contain the logic necessary to resolve the
Save action.

You can read the full source code of our example application, a reddit clone,
at http://git.io/vlcpa.

Note that although this code resembles the widely-discouraged
practice of specifying event handlers in HTML using attributes such as
onclick, it does not actually use the HTML onc1icx attribute under the
hood. React uses this syntax only as a way to specify the handler, and
internally takes care of efficiently managing event listeners as
appropriate.

If you are not using JSX, you instead specify the handler as one of
the fields in the options object. For example:

React.DOM.button ({className: "btn btn-save", onClick: this.handleSaveClicked}, "Save");

React has first-class support for handling a wide variety of event
types, which it lists in the Event System page of its documentation.

Events and state

Suppose you have a markdown editor and you would like to display
a live preview of the markdown.

http://git.io/vlcpa
http://facebook.github.io/react/docs/events.html

In React this is done by listening to changes and updating state with
the latest value.

class CommentEditor extends React.Component {
constructor () {
super () ;
this.state = {text: ''};
}
render () {
return (
<div>
<input
value={this.state.text}
onChange={ (e) => this.setState({text: e.target.value})}
/>
</div>
)
}
}

Rendering based on state

This is a basic two-way binding implementation. Because our data’s
in state we can render the markdown preview easily.

render () {
return (
<div>
<input
value={this.state.text}
onChange={ (e) => this.setState({text: e.target.value})}
/>
<Markdown content={this.state.text} />
</div>
)
}

As with tnis.props, the render function can change as little or as much
as you like depending on the values of tnis.state. It can render the same
elements, but with slightly different attributes, or a completely different
set of elements altogether. Either way works just as well.

Updating state

Since updating a component’s internal s:a:- causes the component to
re-render, the markdown preview is always up to date. When we call
setstate render Will run again, but it will read from the current value

of tnis.state . The Markdown component will also update, and the new
content will be flushed to the DOM.

There are two ways to update a component’s state: the
component’s setstate method, and its
replacestate MEthod. repracestate OVeErwrites the entire state object with an
entirely new state object, which is useful if you are using an immutable
data structure to hold your state, but which is otherwise rarely what you
want. Much more often you will want to use sctstate, Which simply
merges the object you give it into the existing state object.

For example, suppose you have the following for your current state:

{
title: "My Title",
text: "Hello",

}

In this case, calling this.setstate((titie: "otner Tit1er}) ONly affects the
value Oftnis.state.title, l€AVING this.state.text UNAffected.

Calling this.replacestate ((title: "otner ritier}) Will instead replace the
entire state object with the new object (titie: "rantastic survey 2.0m3,
erasing tnis.state.text altogether. This will likely break the render
function, which would expect nis.state.tex: 0 be a string instead

Of undefined.

I's important never to alter the s:a:- Object by any other means than
calling setstate Olreplacestate. DOING sOMething like tnis.state.savernprogress -
true IS generally a bad idea, as it will not inform React that it might need
to re-render, and it might lead to surprising results the next time you

Ca“ setState.

State isn’t updating!

It's also worth noting that sctstate is async. So if your state is x: 1)
and you run this code, the console will show 1.

this.setState({x: 2})
console.log(this.state.x);

If you need to do something after state has been updated, render
has been called, and changes have been flushed to the DOM, you can
pass a callback as setstate’s second argument.

this.setState ({x: 2}, () => {
console.log(this.state.x); // 2
1)

This also means that multiple state updates in a single tick can
cause issues.

this.state.xs // []
this.setState({xs: this.state.xs.concat ([1l])

11)}
this.setState({xs: this.state.xs.concat ([2])}

Eventually the state will be (2; instead of the desired (1, 2.

You can avoid this problem by using the atomic setstate Variant,
Normally you’d use an expression arrow function, but let’s write it
verbosely for clarity.

this.state.xs // []
this.setState((state) => {

var xXs = state.xs.concat([1l]);

return {xs: xs};

1)

this.setState ((state) => {
var xs = state.xs.concat([2]);
return {xs: xs};

1)

Note, you wan to use the state argument rather than tnis.state. React
queues these functions and calls each with the updated state of the
previous. Often you know two updates won’t occur in a single tick, or
you may not care about the first one being hidden, so this feature is
rarely used in practice.

Event objects

Many handlers simply need to fire in order to serve their purposes,
but sometimes you need more information about the user’s input.

Take a look at the comentzaitor Class from the example application.

onChange={ (e) => {
this.props.onChange ({text: e.target.value, type: 'comment'})

b}

React’s event handler functions are always passed an event object,
much in the same way that a vanilla JavaScript event listener would
be. Here, the event handler takes an event object, from which it
extracts the current value of the input by accessing cvent.target.valuve.
Using event.target.vaiue iN @an event handler like this is a common way to
get the value from a form input, especially in an oncnange handler.

Rather than passing the original Event object from the browser
directly to the handler, React wraps the original event in
a syntheticevent INStANCE. A syntneticevent IS designed to look and function
the same way as the original event the browser created, except with
certain cross-browser inconsistencies smoothed over. You should be
able to use the syntneticrvent the same way you would a normal event,
but in case you need the original event that the browser sent, you can
access it via the syntneticevent’S nativervent field.

Summary

The steps to reflect changes from user input in the user interface are
simple:

1. Attach an event handler to a React component.

2. In that event handler, update the component’s internal state.
Updating the component’s state will cause it to re-render.

3. Modify the component’s rencer function to incorporate tnis.state @s
appropriate.

So far you have used a single component to respond to user
interactions. Next you will learn how to compose multiple components
together, to create an interface that is more than the sum of its parts.

Chapter 6. Composing components

In traditional HTML the basic building block of each page is an element. In
React you assemble a page from components. You can think of a React
component as an HTML element with all of the expressive power of
JavaScript mixed in. In fact, with React the only thing you do is build
components, just like an HTML document is built with only elements.

Since the entirety of a React application is built using components, this
whole book can be described as a book about React components. Therefore,
in this chapter we won’t cover everything to do with components. Rather, you
will be introduced to one specific aspect — their composability.

A component is basically a JavaScript function that takes in props and
state as its arguments, and outputs rendered HTML. They are typically
designed to represent and express a piece of data within your application, so
you can think of a React component as an extension of HTML.

In this chapter we’ll be using code not found in the reddit clone sample
application because a CRUD (create read update delete) application
illustrates it better.

Extending HTML

React + JSX are powerful and expressive tools, allowing you to create
custom elements that can be expressed using an HTML-like syntax. They go
far beyond plain HTML, allowing you to control their behavior throughout their
lifetime. This all starts with the inheriting from zeact.component .

React favors composition over inheritance, which means you combine
small, simple components and data objects into larger, more complex
components. With EcmaScript 6 you inherit from react.component, but it does not
encourage deeper levels of inheritance than that. Instead, building re-useable
components that can be composed is encouraged.

React embraces composability, allowing you to mix-and-match various
child components into an intricate and powerful new component. To
demonstrate this, let's consider how a user would answer a survey question.

You can read the full source code of our example application, a reddit clone, at http://git.io/vicpa.

Composition by example

Let’s consider the component representing a multiple-choice question. This
has a few requirements:

» Take a list of choices as input
* Render the choices to the user
* Only allow the user to select a single choice

We know HTML provides some basic elements to help, namely the radio
type inputs and input groups. Thinking of it from the top-down, the component
hierarchy looks something like this:

MultipleChoice — RadioInput — Input (type="radio")

You can think of these arrows as representing the phrase has a. The
MulitpleChoice COMPONENt has a radiornput. The ragiomnput h@s an input. This is an
identifying trait of the composition pattern.

Assembling the HTML

Let’s start by assembling the components from the bottom-up. The DOM
components (starting with a lowercase letter) are provided by React.
Therefore, the first thing you’ll do is wrap it in @ raaiomnpur cOmponent. This
component will be responsible for customizing the generic input, Narrowing its
scope to behave like a radio button. Let's name it ansverradiornput.

First, create the scaffolding, which will include the required render method
and the basic markup to describe the desired output. You can already begin

http://git.io/vlcpa

to see the composition pattern as the component becomes a specialized type
of input.

class AnswerRadioInput extends React.Component {
render () {
return (
<div className="radio">
<label>
<input type="radio" />
Label Text
</label>
</div>
) i
}
}

Add dynamic properties

Nothing about our input is dynamic yet, so you need to define the properties
the parent must pass into the radio input.

What value, or choice, does this input represent? (required)
What text do we use to describe it? (required)

What is the input’s name? (required)

We might want to customize the id.

We might want to override the default value.

Given this list you can now define the property types for our custom input.
Add these to the proprypes hash of the class definition.

class AnswerRadioInput extends React.Component {

}

AnswerRadioInput.propTypes = {
id: React.PropTypes.string,
name: React.PropTypes.string.isRequired,
label: React.PropTypes.string.isRequired,
value: React.PropTypes.string.isRequired,
checked: React.PropTypes.bool,

For each optional property you need to define the default value. Add these
to the «eranitrrops Static member. These values will be applied to each new
instance when the parent component does not provide their value.

class AnswerRadioInput extends React.Component {

}

AnswerRadioInput.PropTypes = {...};
AnswerRadioInput.defaultProps = {

id: null,
checked: false
}i

Track state

Our component needs to keep track of data that changes over time.
Specifically, the :a will be unique for each instance and the user can update
the cnecxea Value at any time. Therefore, let’s define the initial state.

This happens in the constructor Of the React component. We simply set
the nis.state hash with the default state.

Notice that we also call super vrops) t0 Use the default prop behavior.

class AnswerRadioInput extends React.Component {
constructor (props) {
super (props) ;
var id = props.id ? props.id : uniquelId('radio-");
this.state = {
checked: !!props.checked,
id: id,
name: id

}i

}

AnswerRadioInput.PropTypes = {...};
AnswerRadioInput.defaultProps = {...};

Now you can update the rendered markup to access the new dynamic
state and props.

class AnswerRadioInput = React.createClass ({
constructor (props) {...}

render () {
return (
<div className="radio">
<label htlmFor={this.props.id}>
<input type="radio"
name={this.props.name}
id={this.props.id}
value={this.props.value}
checked={this.state.checked} />
{this.props.label}
</label>
</div>
) i
}
}

AnswerRadioInput.PropTypes = {...};
AnswerRadioInput.defaultProps = {...};

Integrate into a parent component

At this point you have enough of a component to use it within a parent, so
you’re ready to build up the next layer, the ansvermuitipiechoiceouestion. The
primary responsibility here is to display a list of choices for the user to choose
from. Following the pattern introduced above, let’s lay down the basic HTML
and the default props for this component.

class AnswerMultipleChoiceQuestion extends React.Component {
constructor (props) {
super (props) ;
this.state = {
id: uniqueId('multiple-choice-"),
value:props.value
}i
}
render () {
return (
<div className="form-group">
<label className="survey-item-label" htmlFor={this.state.id}>{this.props.label}</label>
<div className="survey-item-content">
<AnswerRadioInput ... />

<AnswerRadioInput ... />
</div>
</div>
) i
}
}

AnswerMultipleChoiceQuestion.propTypes = {
value: React.PropTypes.string,

choices: React.PropTypes.array.isRequired,
onCompleted: React.PropTypes.func.isRequired

}i

In order to generate the list of child radio input components, you must map
over the choices array, transforming each into a component. This is easily
handled in a helper function as demonstrated here.

class AnswerMultipleChoiceQuestion = React.createClass ({

renderChoices () {
return this.props.choices.map ((choice, 1) => {
return (
<AnswerRadioInput
id={"choice-" + 1}
name={this.state.id}
label={choice}
value={choice}
checked={this.state.value === choice}
/>
);
}) i
}

render () {
return (

<div className="form-group">
<label className="survey-item-label" htmlFor={this.state.id}>{this.props.label}</label>

<div className="survey-item-content">
{this.renderChoices ()}
</div>
</div>

)i
}
}

Now the composability of React is becoming clearer. You started with a
generic input, customized it into a radio input, and finally wrapped it into a
multiple-choice component—a highly refined and specific version of a form
control. Now rendering a list of choices is as simple as this:

<AnswerMultipleChoiceQuestion choices={arrayOfChoices} ... />

The astute reader has probably noticed there is a missing piece—our radio
inputs have no way of communicating changes to their parent component.
You need to wire up the answerraaiomnput Children so the parent is aware of their
changes and can process them into a proper survey-result data payload. This
brings us to the parent/child relationship.

Parent / child relationship

At this point you should be able to render a form to the screen with our
example, but notice that you have yet to give the components the ability to
share user changes. The answerraaionpur COMponent does not yet have the
ability to communicate with its parent.

The easiest way for a child to communicate with its parent is via props. The
parent needs to pass in a callback via the props, which the child calls when
needed.

FII’S'[yOU need tO deﬁne What AnswerMultipleChoiceQuestion W|“ dO W|th the
changes from its children. Add a nana1ecnangea method and pass it into each

AnswerRadioInput.

When we use EcmaScript 6 classes, methods aren’t auto bound to the
instance by default. You can set up this wiring in the constructor like below, or
when you pass it in as the onchangea prop.

class AnswerMultipleChoiceQuestion extends React.Component {
constructor (props) {

this.handleChanged = this.handleChanged.bind (this) ;
}

handleChanged (value) {
this.setState ({value: value});
this.props.onCompleted (value) ;

}

renderChoices () {
return this.props.choices.map ((choice, i) => {

return (
<AnswerRadioInput
id={"choice-" + 1}
name={this.state.id}
label={choice}
value={choice}
checked={this.state.value === choice}
onChanged={this.handleChanged}
/>

Now, each radio input can watch for user changes, passing the value up to
the parent. This requires wiring up an event handler to the input’s onchange
event.

class AnswerRadioInput extends React.Component {
constructor (props) {

this.handleChanged = this.handleChanged.bind(this);
}

handleChanged(e) {
var checked = e.target.checked;
this.setState ({checked: checked});
if (checked) {
this.props.onChanged(this.props.value);
}
}

render () {
return (
<div className="radio">
<label htmlFor={this.state.id}>
<input type="radio"

onChange={this.handleChanged} />
{this.props.label}
</label>
</div>
) i

}
AnswerRadioInput.propTypes: {

onChanged: React.PropTypes.func.isRequired
}i

Wrap up

You’ve now seen how React uses the pattern of composability, allowing
you to wrap HTML elements or custom components and customize their
behavior for your needs. As you use components they become more specific
and semantically meaningful. Thus, React takes generic inputs:

<input type="radio" ... />

This transforms them into something a bit more meaningful:

<AnswerRadioInput ... />

You finally end up with a single component to transform an array of data
into a useful Ul for users to interact with.

<AnswerMultipleChoiceQuestion choices={arrayOfChoices} ... />

Composition is just one way React offers to customize and specialize your
components. Mixins offer another approach, allowing you to define methods
that can be shared across many components. Next, we show you how to
define a mixin and how they can be used to share common code.

Chapter 7. High Order
Components and Mixins

There are two special kinds of abstraction with React. High order
components are components that take a component as an argument
and return another component.

Previously, the role of high order components was solved with
mixins. A few things can still only be done with mixins, which we’ll
cover below.

Simple Example

Let’s write a high order function that passes a random number to
the child via props. Props are how high order components talk to
child components. You also need to make sure you pass any extra
props down using the (...tnis.props) SyNtax.

function providesRandomNumber (Component) {
return class RandomNumberProvider extends React.Component {
render () {
return <Component {...this.props} randomNumber={4} />;
}
}
}

We can then use this function to wrap a component.

var MyComponent = providesRandomNumber (
class MyComponent extends React.Component {
render () {
return (
<div>
The random number is {this.props.randomNumber}
</div>
)
}
}
)

This is a bit cleaner with the es/ decorators proposal.

@providesRandomNumber
class MyComponent extends React.Component {
render () {
return (
<div>
The random number is {this.props.randomNumber}
</div>
) i
}
}

Tips and Tricks

Often a high order component takes options. You can curry it,
Wh|Ch means |t can be Ca”ed I|ke hoc (Component), hoc({}, Component), or

hoc ({}) (Component).

function hoc (options, Component) {
if (typeof options === 'function') return hoc({}, options);
if (arguments.length < 2) return hoc.bind(null, options || {});

return class ...

}

If you have a mixin, you can create a high order component from
the mixin and pass things down as props.

import {History} from 'react-router';

function providesRouter (Component) {
return React.createClass ({
mixins: [History],

render () {
return <Component
{...this.props}
router={{
pushState: this.pushState,
H}
/>

As a general rule, static properties should be passed down to the
component you create.

https://medium.com/@goncalvesjoao/react-es7-decorators-how-to-inject-props-to-your-render-method-27a0a7973106#.aji1vmw3g

function providesFoo (Component) {
return Object.assign(class Foo extends React.Component {
render () {

}

}, Component) ;

}
Common Use Cases

High order components are typically used for global events,
binding to flux stores, timers, and any other imperative APIs that you
want to use declaratively.

Summary

High order components are one of the most powerful tools for
eliminating code repetition, and keeping your components focused
on what makes them special. They allow you to use powerful
abstractions, and some problems can’t be solved elegantly without
them.

Even if you only intend to use a high order component in a single
component, it allows you to describe a certain behavior or role, and
provide that to the component. They reduce the amount of code you
need to read before understanding a component, and allow you to
do ugly things (such as managing __intervals) without making your
component ugly.

When reading the next chapter about DOM, think about the
behaviors and roles you could pull out of the components, or even
try for yourself.

Chapter 8. DOM manipulation

For the most part, React’s virtual DOM is sufficient to create the user
experience you want without having to work directly with the actual
underlying DOM at all. By composing components together you can
weave complex interactions together into a cohesive whole for the user.

However, in some cases there is no avoiding working with the
underlying DOM to accomplish what you need. The most common use
cases for this are when you need to incorporate a third-party library that
does not use React, or when you need to perform an operation that
React does not natively support.

To facilitate this, React provides a system for working with DOM
nodes that are being managed by React. They are only accessible
during certain parts of the component lifecycle, but using them gives
you the power you need to handle these use cases.

Accessing managed DOM nodes

To access DOM nodes managed by React, you must first be able to
access the components responsible for managing them. Adding
a ror attribute to child components allows you to do this.

class DoodleArea extends React.Component
render () {
return <canvas ref="mainCanvas" />;

}
}

This will make the underlying <canvas> DOM node accessible
Via this.refs.maincanvas. AS YOU Can imagine, the ¢ that you give a child
component must be unique among all of the component’s children;
giving a different child a rct Of raincanvas does not work.

Note, you can’t reliably access the <canvas> node directly in
the render method, because the underlying DOM nodes may not be up-

to-date (or even created yet!) until renaer completes and React performs
its updates.

You can reliably access the <canvas> after your component has been
mounted, at which point the conponentpianount handler will run.

var DoodleArea = React.createClass ({
render: function() {
// We are unmounted inside render (), so this will not go well!
doSomethingWith (this.refs.mainCanvas) ;

return <canvas ref="mainCanvas" />

}l

componentDidMount: function() {
doSomethingWith (this.refs.mainCanvas) ;
// This will work! We now have access to the HTML5 Canvas node,
// and can invoke painting methods on it as desired.

}
1)

Note that componentniamount iS NOt the only place in which you can
use rets. Event handlers also fire after a component has mounted, so
you can use it just as easily inside them as you would in
a componentpidmount NANAIer.

var RichText = React.createClass ({
render: function() {

return <div ref="editableDiv" contentEditable="true" onKeyDown={this.handleKeyDown}>
}l

handleKeyDown: function() {
var editor = this.refs.editableDiv;
var html = editor.innerHTML;

// Now we can persist the HTML content the user has entered.
}
1)

The above example creates a «iv With contentraitanie €nabled, allowing
the user to enter rich text into it.

Although React does not natively provide a way to access a
component’s raw HTML contents, the xeyoown handler can accesses that
div’s underlying DOM node, which in turn can access the raw HTML.

From there, you can save a copy of what the user has entered so far,
compute a word count to display, and so on.

Finding DOM Nodes by Component

Although refs are the preferred way of accessing underlying DOM
nodes, sometimes you may want to write some DOM-altering logic that
works with any component regardless of its refs, or perhaps you need
to look one up the underlying DOM node for an imported third-party
component that does not set any refs.

In cases like these, ReactDOM.findDOMNode is the answer.

var RichText = React.createClass ({
render: function() {
return <div contentEditable="true" onKeyDown={this.handleKeyDown}>

}l

handleKeyDown: function() {
// NOTE: It would be preferable to use a ref here
// instead of using findDOMNode.
var editor = ReactDOM.findDOMNode (this) ;
var html = editor.innerHTML;

// Now we can persist the HTML content the user has entered.

}
1)

Note that the above is not the preferred way of doing this. It would be
better to use a ref for this as we did in the previous section, as in that
case the logic would not break if the renqer function were modified to
introduce something like a wrapper element. ¢inapomnode Should really
only be used when a ref either will not work or would be excessively
burdensome to introduce.

Keep in mind that although :c:s and sinanomnoce are powerful, they
should only be used when there is no other way to achieve the
functionality you need. Using them hinders React’s ability to optimize
performance and increases the complexity of your application, so you
should only reach for them when conventional techniques fall short of
the capabilities you need.

Incorporating non-React libraries

There are many useful JavaScript libraries that were not built with
React in mind. Some do not need DOM access (date and time
manipulation libraries for example), but for those that do, keeping their
states synchronized with React is critical for successful integration.

Suppose you want to use an autocomplete library that includes the
following example code:

autocomplete ({
target: document.getElementById("cities"),
data: [
"San Francisco",
"St. Louis",
"Amsterdam",
"Los Angeles"
]l
events: {
select: function(city) {
alert ("You have selected the city of " + city):;
}
}
1)

This autocompiete function needs a target DOM node, a list of strings to
use as data, and some event handlers. To reap the benefits of both
React and this library, you can start by building a React component that
provides each of these.

class AutocompleteCities extends React.Component {
render () {
return <div ref="autocompleteTarget" />

}

static defaultProps = {
data: [
"San Francisco",
"St. Louis",
"Amsterdam",
"Los Angeles"
1
}i

handleSelect: function(city) {
alert ("You have selected the city of " + city);
}
});

To finish wrapping this library in React, add a componentniavount handler
that connects the two implementations via the underlying DOM node of
the autocompleteTarget Ch||d Component.

class AutocompleteCities extends React.Component {
render () {
return <div id="cities" ref="autocompleteTarget" />

}
static defaultProps = {...};

handleSelect (city) {
alert ("You have selected the city of " + city);
}

componentDidMount () {
autocomplete ({
target: this.refs.autocompleteTarget,
data: this.props.data,
events: {
select: this.handleSelect

Note that componentpiamount Will Only be called once per DOM node. As
such, you do not need to worry whether calling autocompiete (in this
example) twice on the same node will have any undesired effects.

That said, remember that this component may be removed and re-
rendered later to a different DOM node, which can lead to memory
leaks or other problems if your componentniamount has effects that can
survive the DOM node’s removal. If this is a concern, make sure to
specify a componentwiliunmount handler to have the component clean up after
itself when its DOM node is going away.

Overreaching plugins

In our autocomplete example, we assume autocomplete is a well-
behaved plugin that only modifies its children. In reality, this is often not
the case.

To deal with these plugins, you need to hide them from React, to
avoid errors about the DOM being unexpectedly mutated. You may also

need to do additional cleanup.

In this example, we're dealing with a fictional jQuery plugin that emits
custom events, and modifies the element it's attached to. If you have a
very bad plugin that modifies parent elements, there’s nothing you can
do, and it's incompatible with React. The best course of action is to find
another plugin or modify its source.

The way to protect React from this overreaching plugin is to manage
its DOM node completely by yourself. React thinks the component
renders a single a:v with no children or props.

class SuperSelect extends React.Component {
render: function() {
return <div ref="holder"/>;
}
}i

Let’s do the dirty work of setting things up in componentniamount.

class SuperSelect extends React.Component {
render () {
return <div ref="holder" />;

}

componentDidMount () {
var el = document.createElement ('div');
this.refs.holder.appendChild(el);
$(el) .superSelect (this.props) ;
$(el).on('superSelect', this.handleSuperSelectChange) ;
}

handleSuperSelectChange () {
// Put handler logic in here as appropriate...
}
}i

Now you have a siv inside the component’s rendered div that you are
managing. This means that you need to be responsible and clean up.

componentWillUnmount () {
// remove superSelect's listeners and our own
S (this.refs.holder) .children() .off () ;

// remove the node from the DOM
$(this.refs.holder) .empty ()
}

In addition to the clean up, check the plugin’s docs for any additional
requirements to clean up the node. It may set global event listeners,
timers, or start AJAX requests, which need to be terminated.

There is one more step in this process. You need to handle updates.
This can happen in one of two ways: simulating an unmount and
remount, or using the plugin’s update API. The former is more reliable,
and the latter is more performant and clean.

This is the unmount/remount solution.

componentDidUpdate () {
this.componentWillUnmount () ;
this.componentDidMount () ;

}

And this is a hypothetical alternative.

componentWillReceiveProps (nextProps) {
$(this.refs.holder) .children () .superSelect ('update', nextProps);
}
}i

Wrapping other libraries and plugins ranges in difficulty depending
upon how many variables there are. Sometimes it's a simple jQuery
plugin, and sometimes it’s a rich text editor with its own plugins. For
some of the simpler plugins, the best answer is to rewrite it as a React

component in the same time it'd take to wrap it, and for others that is
completely unfeasible.

Summary

When using the virtual DOM alone is not sufficient, the ..+ attribute
allows you to access specific elements and modify their underlying
DOM nodes using sindnomiode ONCE componentdidmount hAS run.

This allows you to make use of functionality that React does not
natively support, or to incorporate third-party libraries that were not
designed to interoperate with React.

Next, it's time to look at how to create and manage forms using
React.

Chapter 9. Forms

Forms are an essential part of any application that requires even
modest input from users. Traditionally, in Single Page Applications,
forms are hard to get “right,” since they are littered with changing
state from the user. Managing this state is complex and often buggy.
React helps you manage state in your applications, and this also
extends to your forms.

By now you will have realized that predictability and testability are
central aspects of React components. Given the same props and
state, any React component should render exactly the same every
time. Forms are no exception.

There are two types of form components in React: Controlled and
Uncontrolled. In this chapter you will learn what the differences
between Controlled and Uncontrolled are, and under what
circumstances you will want one over the other.

This chapter also covers:

» How to use form events with React.

e Controlling data input with Controlled form components.
 How React changes the interface of some form components.
» The importance of naming your form components in React.

e Dealing with multiple Controlled form components.

e Creating custom reusable form components.

e Using AutoFocus with React.

» Tips for building usable applications.

In the last chapter you learned how to access the DOM of your
React components. React helps you move the state out of the DOM

into your components. Even with this help, you will still need to
access the DOM for some complex form components.

You can read the full source code of our example application, at http://git.io/vicpa.

Uncontrolled components

In most non-trivial forms, you will not want to use Uncontrolled
components. They are however very useful to help understand
Controlled components. Uncontrolled are an anti-pattern for how
most other components are constructed in React.

In HTML, forms work differently to React components. When an
HTML <input/> IS given a value, the <input/> can then mutate the value
of the <input/>. This is where the name comes from, since the form
component’s value is Uncontrolled by your React component.

In React, this behavior is like setting the aefauitvaiue Of the <input/s.

To set the default value of an <input/> in React you use the
defaultvalue Property.

//http://jsfiddle.net/pmsy5y2u/
class MyForm extends React.Component {
render () {
return (
<input
type="text"
defaultvValue="Hello World!"
/>
)
}
}i

The example above is referred to as an Uncontrolled component.
The va1ue is NOt being set by the parent component, allowing the
<input/> 10 control its own value.

http://git.io/vlcpa

An Uncontrolled component is not very useful unless you can
access the value. In order to access the value, you need to add a ret
to your <input/> then access the DOM node’s value.

As you saw in Chapter 8, - is a special non DOM attribute used
to identify a component from within «n:is context. All refs in a
component are added to tnis.refs fOr easy access.

Let’s also add the <irput/> to @ form and read the value on suomit.

//http://jsfiddle.net/opfktus4/
class MyForm extends React.Component ({
submitHandler (event) {
event.preventDefault () ;
//access the input by it's ref
var helloTo = this.refs.helloTo.value;
alert (helloTo) ;
}
render () {
return (
<form onSubmit={(e) => this.submitHandler (e) }>
<input
ref="helloTo"
type="text"
defaultValue="Hello World!" />

<button type="submit">Speak</button>
</form>
)
}
b

Uncontrolled components are rarely good to use. They don’t allow
you to render based on the current value of inputs, and your code is
written in a DOM-centric way rather than in a data-centric way. They
also make composition more difficult because there’s no standard
way to get the value of an input in a composite component.

Controlled components

Controlled components follow the same pattern for other React
components. The state of the form component is Controlled by your

React component, with it's value being stored in your React
component’s state.

If you want more control over your form components, you will want
to use a Controlled component.

A Controlled component is where the parent component set’s the
value of the input.

Let's convert the example above to use a Controlled component.

//http://jsfiddle.net/la8xr2z6/
class MyForm extends React.Component {
constructor () {
super () ;
this.state = {
helloTo: "Hello World!"
b
}
handleChange (value) {
this.setState ({
helloTo: value
}) i
t

submitHandler (event) ({
event.preventDefault () ;
alert (this.state.helloTo);
t
render () {
return (
<form onSubmit={(e) => this.submitHandler (e) }>
<input
type="text"
value={this.state.helloTo}
onChange={ (e) => this.handleChange (e.target.value)} />

<button type="submit">Speak</button>
</form>
)
t
b

The major change here is that the value of the <input/> is NOW being
stored in the state of the parent component. As a result, the data
flow is now clearly defined.

® constructor NOW SetS the defaultvValue
e <input/> Value is set during render

* onchange Of the <input/> Value the change handler is invoked
» change handler updates the state
e <input/> Value is updated during render

This is a lot more code than the Uncontrolled version. However,
this allows you to control the data flow and alter the state as the data
is being entered.

Example: You may want to convert all characters to uppercase as
they are being entered.
handleChange (value) {
this.setState ({
helloTo: value.toUpperCase ()

1)
}

You will notice when entering data that there is no flicker of the
lowercase character before the uppercase character is added to the
input. This is because React is intercepting the native browser
change event. Then this component re-renders the input after sctstate
has been called. React then does the DOM diff and updates the
value of the input.

You can use this same pattern to limit what characters can be
entered, or not allow illegal characters to be entered into an email
address.

You may also want to use the value in other components as the
data is being entered.

Example:

Show how many characters are left in a size limited input.
Display the color of a HEX value being entered.

Display auto complete options.

Update other Ul elements with the input value.

Form events

Accessing form events is a crucial aspect to controlling different
aspects of your forms.

All of the events produced by HTML are supported in React. They
follow camel case naming conventions and are converted to
synthetic events. They are standardized, with a common interface
cross browser.

All synthetic events give you access to the DOMNode that emitted
the event Via event.target.
handleEvent: function (syntheticEvent) {
var node = syntheticEvent.target;

var newValue = node.value;

}

This is one of the easiest ways to access the value of Controlled
components.

For elements that have children you need to use cvent.currentrarget.

Label

Labels on form elements are important for clearly communicating
your requirements of your users, and provide accessibility for radios
and checkboxes.

There is a conflict with the :.: attribute. When using JSX, the
attributes are converted to a JavaScript object and passed to the
component constructor as the first argument. For compatibility with
ES3 (IE8) reserved words aren’t used as properties.

In React, just as ci1ass becomes ciassyame, SO t00 dOES for
become ntmiror.

//JSX
<label htmlFor="name">Name:</label>

//after render
<label for="name">Name:</label>

Textarea and Select

React makes some changes to the interface of <textarea/> and
<select/> tO iNCrease consistency and make it easier to manipulate.

<textarea/> IS Changed to be closer to <input/> allowing you to specify

value and defaultValue.

//Uncontrolled
<textarea defaultValue="Hello World" />

//Controlled

<textarea
value={this.state.helloTo}
onChange={this.handleChange} />

<select/> NOW ACCEPLS vaive aNd cerauitvaiue tO S€t Which option is
selected. This allows easier manipulation of the value.

//Uncontrolled

<select defaultValue="B">
<option value="A">First Option</option>
<option value="B">Second Option</option>
<option value="C">Third Option</option>

</select>

//Controlled

<select value={this.state.helloTo} onChange={this.handleChange}>
<option value="A">First Option</option>
<option value="B">Second Option</option>
<option value="C">Third Option</option>

</select>

React supports multi select. In order to use multi select you must
paSS an array tO value and defaultValue.

//Uncontrolled

<select multiple="true" defaultValue={["A","B"]}>
<option value="A">First Option</option>
<option value="B">Second Option</option>
<option value="C">Third Option</option>

</select>

When using multi select, the value of the select component is not
updated when the options are selected. Only the sciectea property of
the option is changed. Using a given ref OF syntheticevent.target YOU CaN
access the options and check if they are selected.

In the following example nanaiechange is looping over the DOM to find
out what option is currently selected.

//http://jsfiddle.net/yddy2ep0/
class MyForm extends React.Component {
constructor () {
super () ;
this.state = {
options: ["B"]
b
}
handleChange (event) {
var checked = [];
var sel = event.target;
for(var i=0; 1 < sel.length; i++){
var option = sel.options[i];
if (option.selected) {
checked.push (option.value) ;
}
}
this.setState ({
options: checked
1) :
}
submitHandler (event) ({
event.preventDefault () ;
alert (this.state.options);
b
render: function () {
return (
<form onSubmit={(e) => this.submitHandler (e) }>
<select multiple="true"
value={this.state.options}
onChange={ (e) => this.handleChange (e) }
>
<option value="A">First Option</option>
<option value="B">Second Option</option>
<option value="C">Third Option</option>
</select>

<button type="submit">Speak</button>
</form>
)
}
}i

Checkbox and radio

Checkboxes and radios have a different mechanism for controlling
them.

Just as in HTML, an <input/> With type checxrox OF raaio behave quite
differently to an <input/> With type tex:. Generally, the value of a
checkbox or radio does not change. Only the cnecxea State changes.
To control a checkbox or radio input, you need to control the checkea
attribute. You can also use aerauitcneckea in @an uncontrolled checkbox

or radio input.

// Uncontrolled
class MyForm extends React.Component {
submitHandler (event) ({
event.preventDefault () ;
alert (this.refs.mycheckbox.checked) ;
}
render () {
return (
<form onSubmit={ (e) => this.submitHandler (e) }>
<input
ref="mycheckbox"
type="checkbox"

value="A"
defaultChecked="true" />

<button type="submit">Speak</button>
</form>

);
}
}i

// Controlled
var MyForm = React.createClass ({
constructor () {
super () ;
this.state = {
checked: true
b
}
handleChange (event) {
this.setState ({
checked: event.target.checked
1) :
}
submitHandler (event) ({
event.preventDefault () ;
alert (this.state.checked);
}
render () {
return (
<form onSubmit={(e) => this.submitHandler (e) }>
<input
type="checkbox"
value="A"

}

i

checked={this.state.checked}
onChange={this.handleChange}
/>

<button type="submit">Speak</button>
</form>
)

In both of these examples, the value of the <input/> will always be a,
since only the checked state changes.

Names on form elements

Names carry less importance on from elements in React when
controlled form elements have values that are stored in state and the
form submit event is being intercepted. Names aren’t required to
access the form values. For uncontrolled form elements, you can
use refs for direct access to the form element.

However, names are a crucial aspect of form components.

Names allow third party form serializers to still work within
React.

Names are also required if the form is going to be natively
submitted.

Names are used by your clients browser for auto filling common
information like the users address.

Names are crucial to uncontrolled radio inputs, as that is how
they are grouped to ensure that only one radio with the same
name in a form can be checked at once. The same behavior can
be replicated without names using controlled radio inputs.

The following example replicates the functionality of an
uncontrolled radio group by storing the state in the wyrorn cOmponent.
You will notice that name is not being used.

class MyForm extends React.Component {
constructor () {
super () ;
this.state = {
radio: "B"
i
}
handleChange (event) {
this.setState ({
radio: event.target.value
)i
}
submitHandler (event) {
event.preventDefault () ;
alert (this.state.radio);
}
render () {
return (
<form onSubmit={(e) => this.submitHandler (e) }>
<input
type="radio"
value="A"
checked={this.state.radio == "A"}
onChange={ (e) => this.handleChange(e)} /> A

<input
type="radio"
value="B"
checked={this.state.radio == "B"}
onChange={ (e) => this.handleChange(e)} /> B

<input
type="radio"
value="C"
checked={this.state.radio == "C"}
onChange={ (e) => this.handleChange(e)} /> C

<button type="submit">Speak</button>
</form>
);
}
i

Multiple form elements and change handlers

When using Controlled form elements, you don’t want to be writing
a change handler for every form element. Fortunately, here are a few
different ways of re-using a change handler with React.

An example: arrow functions.

class MyForm extends React.Component {
constructor () {
super () ;

this.state {
given name: "",
family name: ""
b
}
handleChange (name, event) {
var newState = {};
newState[name] = event.target.value;
this.setState (newState) ;

// or the es6 version
this.setState ({
[name] : event.target.value,
}) i
}
submitHandler (event) {
event.preventDefault () ;
var words = [
"HiM,
this.state.given name,
this.state.family name
1
alert (words.join (" "))
}
render () {
return (
<form onSubmit={this.submitHandler}>
<label htmlFor="given name">Given Name:</label>

<input
type="text"
name="given name"
value={this.state.given name}

onChange={ (e) => this.handleChange('given name', e)}/>

<label htmlFor="family name">Family Name:</label>

<input
type="text"

name="family name"
value={this.state.family name}
onChange={ (e) => this.handleChange('family name', e)}/>

<button type="submit">Speak</button>

</form>
);
}
b

An Example: use DOMNode name to identify what state to
change.

//http://jsfiddle.net/q3g0sk84/
class MyForm extends React.Component {
constructor () {
super () ;
this.state = {
givenName: "',
familyName: "'",

i
}
handleChange (event) {
this.setState ({
[event.target.name] : event.target.value
1) :
}
submitHandler (event) {
event.preventDefault () ;
var words = [
"Hi",
this.state.givenName,
this.state.familyName,
1
alert (words.join (" "))
}
render () {
return (
<form onSubmit={this.submitHandler}>
<label htmlFor="givenName">Given Name:</label>

<input
type="text"
name="givenName"
value={this.state.givenName}
onChange={ (e) => this.handleChange (e) }/>

<label htmlFor="familyName">Family Name:</label>

<input
type="text"

name="familyName"
value={this.state.familyName}
onChange={this.handleChange} />

<button type="submit">Speak</button>
</form>
)
}
b

Custom form components

Creating custom form components is an excellent way to reuse
common functionality in your applications. It can also be a great way
to improve the interface to other more complex form components like
checkboxes and radios.

When writing custom form components you should try to create
the same interface as other form components. This will increase the

predictability of your code, making it much easier to understand how
your component works, without having to look at it's implementation.

Let’s create a custom radio component that has the same
interface as the React select component. We won’t implement multi
select functionality, since radio components don’t support multi
select.

class Radio extends React.Component {
static propTypes = {
onChange: React.PropTypes.func
i

constructor () {
super () ;
this.state = {
value: this.props.defaultValue
}i
}
handleChange (event) {
if (this.props.onChange) {
this.props.onChange (event) ;
}
this.setState ({
value: event.target.value
})
}
render () {
var value = this.props.value || this.state.value;

var children = React.Children
.map (this.props.children, (child, 1) => {
return (
<label key={i}>
<input
type="radio"
name={this.props.name}
value={child.props.value}
checked={child.props.value == value}
onChange={this.handleChange} />
{child.props.children}

</label>
)
1) :

return this.transferPropsTo ({children});
t
i

Essentially we are creating a Controlled component that supports
the Controlled and Uncontrolled interface.

The first thing you do is make sure that if oncnange is supplied that it
is always a function. Then store the serauitvaiue in state.

Each time the component renders, it creates new labels and
radios based on the options that were supplied as children to the
component. Be sure that the dynamic children have consistent keys
rendered. This ensures that React will keep your <input/>’s in the
DOM and maintain current focus when using keyboard controls.

Then set the value, the name, and the checked state. Attach your
onchange NA@Ndler, then render the new children.

//Uncontrolled
//http://jsfiddle.net/moyfLkfv/
var MyForm = React.createClass ({
submitHandler: function (event) ({
event.preventDefault () ;
alert (this.refs.radio.state.value);
by
render: function () {
return <form onSubmit={this.submitHandler}>
<Radio ref="radio" name="my radio" defaultValue="B">
<option value="A">First Option</option>
<option value="B">Second Option</option>
<option value="C">Third Option</option>
</Radio>
<button type="submit">Speak</button>
</form>;
}
)i

When storing the value in the state of your component, you don’t
need to access the DOMNode to know what the current value is. You
can access the state directly.

//Controlled
//http://jsfiddle.net/cwabLksg/
var MyForm = React.createClass ({
getInitialState: function () {
return {my radio: "B"};
Yo
handleChange: function (event) {
this.setState ({
my radio: event.target.value
)
o
submitHandler: function (event) {
event.preventDefault () ;
alert (this.state.my radio);

by

render: function () {
return <form onSubmit={this.submitHandler}>
<Radio name="my radio"
value={this.state.my radio}
onChange={this.handleChange}>
<option value="A">First Option</option>
<option value="B">Second Option</option>
<option value="C">Third Option</option>
</Radio>
<button type="submit">Speak</button>
</form>;
}
1)

As a Controlled component, this operates exactly the same as a
select box. The event passed to oncnange is the event from the active
<input/>, SO YOU can use it to read the current value.

As an exercise, you may want to try and implement support for a
valueLink Property so you can use this component with

React.addons.LinkedStateMixin.

Focus

Leveraging control of focus on form components is an excellent
way to guide your users as to what the next logical step is in your
forms. It also helps cut down on user interaction, increasing usability.
The merits of this are discussed more in the following section.

Since React forms are not always rendered at browser load, the
auto focus for form inputs needs to operate a little differently. React
has implemented autorocus SO When the component is first mounted, if
no other form input has focus, React will place focus on the input.
This is how you would expect a simple HTML form with autorocus tO
operate.

//jsx
<input type="text" name="given name" autoFocus="true" />

You can also manually set the focus of form fields by calling ocus ()
on the DOMNode.

Usability

React is awesome for productivity for developers, however, this
can have down sides.

It is really easy to make components that lack usability. For
example, you may have forms with little keyboard support where
only onc1icx Of @ hyperlink can submit the form. This stops a user from
pressing enter ON their keyboard to submit the form, which is the
default behavior of HTML forms.

It is also really easy to make fantastic components that are highly
usable. Time and consideration are required when building your
components. It is all the little things that help make a component be
highly usable and feel right.

This following is a collection of best practice for creating usable
forms. They are not specific to React.

Communicate your requirements clearly

Good communication is important with all aspects of your
application, especially in forms.

Use of HTML labels is a great way to communicate to your users
what the form element is expecting. These also give the user an
extra way to interact with your form element for some input types like
radios and checkboxes.

Placeholders are designed to show example input or a default
value if no data is entered. There has been a fad to place validation
hints in the placeholder. This can be quite problematic as when the
user starts to type, their validation hints disappear. It is generally

better to show your validation hints along side your inputs or as a
popover when your validation requirements are not met.

Give feedback constantly

This follows on from communicating your requirements clearly. It is
very important to give feedback to your users as quickly as possible.

Validation errors are a perfect example of giving feedback
constantly. It is well known that showing validation errors as they
occur increase the usability of your forms. Back in the early days of
the web applications, all users had to wait till they finished
completing their form to find out if they entered everything correctly.
Validation in the browser was a massive leap forward in usability.
The ideal time to give feedback for validation errors is on »1ur Of the
input.

It's also important to show your users that you are working on their
request. This is especially true for actions that can take some time to
complete. Showing spinners, progress bars, notification messages,
etc. are a great way to inform your users that your application has
not frozen. Users are very impatient at times, however, they can be
patient if they know your application is processing their request.

Transitions and animations are another great way of informing
your users what is happening in your application. They are another
visual prompt that something in your application has changed. See
Chapter 10 to learn how to leverage this in React.

Be fast

React has a very powerful rendering engine. It helps your
application to be quite fast right out of the box. However, there are

times when the speed of updating the DOM is not what is slowing
down your application.

Transitions are a perfect example. Long running transitions may
frustrate your users as they are forced to wait for the transition to
complete before continuing to use your application.

Other factors outside your application can also alter how fast your
application performs, like long running AJAX calls and poor network
performance. How to solve these kinds of issues can be very specific
to your application and may be outside of your control, like third party
services. In these cases it is more important to give feedback to your
users about the state of their request.

It is important to remember that speed is relative. It is a perception
of the user. It is more important to appear fast than to be fast. For
example, when a user clicks “like” in your application, you can
increment the like count before you send your AJAX call to the
server. This way if the AJAX call takes a long time, your users won't
see the delay. This can, however, lead into other issues with
handling errors.

Be predictable

Users have a predetermined idea of how things work. This is
based on their prior experience. In most cases their prior experience
is not from using your application.

If your application resembles the platform your user is on, your
user will expect that your application conforms to the default
behaviors for the platform you are on.

With this in mind, you are left with two options. You can either
conform to the default behaviors of the platform, or you can radically
change your user interface so it no longer resembles the platform.

Consistency is another form of predictability. If your interactions
are always the same in different parts of your application, your users
will learn to predict the interaction in new parts of your application.
This ties into conforming with platform that your application runs on.

Be accessible

Accessibility is often overlooked by developers and designers
when creating user interfaces. It is important to keep your users in
mind when considering all aspects of your user interfaces. As
already covered, your users have a predefined expectation of how
things work, which is based on their past experience.

Their past experience also governs their preference for different
input types. In some cases your users may have physical issues with
using a particular input device like a keyboard or mouse. They may
also have issues with using an output device like a display or
speakers.

Building support for all the different types of input and output
devices may not be viable for every aspect of your application. It is
important to understand your users requirements and preferences,
then work on those areas first.

A great way to test how accessible your application is to try and
navigate your application exclusively via one input device
keyboard/mouse/touch screen. This will highlight usability issues
with that device.

You may also want to consider how to interact with your
application if you are visually impaired. Screen readers are the eyes
for visually impaired people.

HTML5 has an Accessible Rich Internet Applications (ARIA)
specification that provides a way to add the missing semantics

needed by assistive technologies such as screen readers. This
allows you to hint on the .1 of your Ul components, and hide or
show elements if a screen reader is active and much more.

There are some great tools to help with accessibility in your
applications like the Accessibility Developer Tools for Google
Chrome.

Reduce user input

Reducing how much data your users need to enter is a great way
to improve usability for your applications. The less information your
users need to enter, the less chance they have of making mistakes
and the less they need to think about.

As with Be fast, user perception is important. Users feel daunted
by large forms with many input fields, so their mind struggles to
cope. Breaking your forms into smaller more manageable chunks
gives the impression of less user input. This in turn enables the user
to be more focused on their data input.

Autofill is another great way to reduce data input. Leveraging the
users’ browser autofill data can save the user from re-entering
common information like their address or payment details. This is
achieved by using standard names on your inputs.

Autocomplete can help guide your users as they are entering
information, this ties in with giving constant feedback. When
searching for a movie, for example, autocomplete can help alleviate
issues with bad spelling of the movie title.

Another useful way to reduce input is to derive information from
previously entered data. For example, if a user is entering credit card

details, you can look at the first 4 numbers and determine what type

of card it is, and then select the card type for your user. This both
reduces input and provides validation feedback to the user that they
are typing their card number correctly.

Autofocus is a small, but very effective way to increase usability of
your forms. Autofocus helps to guide your user to a starting point for
their data entry. This saves them from trying to work that out on their
own. This small tool can really have a large impact on how quickly
your users can start entering data.

Summary

React helps you manage the state of your forms by bringing the
state management out of the DOM into your components. This
allows you to have tighter control over how the form elements
operate and create complex components to use in your applications.

Forms are one of the most complex interactions your users will
encounter in your applications. It is important to keep the usability of
your forms in mind when creating and composing your form
components.

Next up you will learn how to animate your React components to
create more engaging applications.

Chapter 10. Animations

Now that you can compose a complex set of React components, it’s
time to add some polish. Animation can make user experiences feel
more fluid and natural, and React’s Transition Groups addon, in
conjunction with CSS3, make incorporating animated transitions into
your React project easy to do.

Historically, animation in browsers has had a very imperative API.
You would take an element and actively move it around or alter its
styles in order to animate it. This approach is at odds with React’s
rendering and re-rendering of components, so instead React takes a
more declarative approach.

CSS Transition Groups facilitate applying CSS animations to
transitions, by strategically adding and removing classes during
appropriately timed renders and re-renders. This means the only task
you are left with is to specify the appropriate CSS styles for those
classes.

Interval Rendering gives you more flexibility and control, at a cost to
performance. It requires many more re-renderings, but allows you to
animate more than just CSS, such as scroll position and Canvas
drawing.

CSS Transition Groups

In this example we’ll animate our example app comment editing
pane in and out. <aitingrane WIll €ither be a react element or null.

<ReactCSSTransitionGroup
transitionName='EditingPaneTransition'
transitionEnterTimeout={ }
transitionLeaveTimeout={ }

>

{editingPane}
</ReactCSSTransitionGroup>

ThiS reactcsstransitioncroup COMpPonent comes from an addon, which is
included near the top of the file with var reactcssrransitioncroup -

require ('react-addons-css-transition-group').

This automatically takes care of re-rendering the component at
appropriate times, and altering the transition group’s class in order to
facilitate styling it situationally based on where it is in the transition.

You can read the full source code of our example application at: http://git.io/vicpa.

Styling transition classes

By convention, the transitionvame-'gaitingranetransition' attribute connects
this element to four CSS classes: raitingpaneTransition-

enter, EditingPaneTransition-enter-active, EditingPaneTransition-leave,

and EditingPaneTransition-leave-active. The CSSTransitionGroup addon will
automatically add and remove these classes as child components to
enter or leave the reactcssrransitioncroup COMpoONENt.

Here’s an example of the CSS.

.EditingPaneTransition-enter {
transform: scale(l.2);
transition: transform 0.3s cubic-bezier(.97,.84,.5,1.21);

}

.EditingPaneTransition-enter-active {
transform: scale(l);

}

.EditingPaneTransition-leave {
transform: translateY (0);
opacity: 0;
transition: opacity 1.2s, transform 1s cubic-bezier(.52,-0.25,.52,.95);

}

.EditingPaneTransition-leave-active {
opacity: 0;
transform: translateY (-100%);

}

http://git.io/vlcpa

The transition lifecycle

The difference between za:tingranerransition-
enter AN EditingpaneTransition-enter-active IS that the raitingpanerransition-
enter Class is applied as soon as the component is added to the group,
and the raitingranerransition-enter-active Class is applied on the next tick.
This allows you to easily specify the beginning style of the transition,
the end style of the transition, and how to perform the transition.

By default, the transition groups enable both the enter and leave
animations, but you can disable either or both by adding
the transitionEnter=ifalse) OF transitionieave={false) attributes to the
component. In addition to giving you control over which of the two you
want, you can also use them to situationally disable animations
altogether based on a configurable value, like so:

<ReactCSSTransitionGroup
transitionName='EditingPaneTransition'
transitionEnter={this.props.enableAnimations}
transitionLeave={this.props.enableAnimations}

VYA
>

{questions}
</ReactCSSTransitionGroup>

Transition Group pitfalls

There are two important pitfalls to watch out for when using
transition groups.

First, the transition group will defer removing child components until
animations complete. This means that if you wrap a list of components
in a transition group, but do not specify any CSS for
the transitionvame Classes, those components can no longer be
removed, even if you try stop rendering them!

Second, transition group children must each have a
unique xey attribute set. The transition group uses these values to

determine when components are entering or leaving the group, so
animations can fail to run and components could become impossible to
remove if they are missing their x.y attributes.

Note that even if the transition group only has a single child, it must
still have a .y attribute.

Interval rendering

You can get great performance and concise code out of CSS3
animations, but they are not always the right tool for the job.
Sometimes you have to target older browsers, which do not support
them. Other times you want to animate something other than a CSS
property, such as scroll position or a Canvas drawing. In these cases
Interval Rendering will accommodate your needs, but at a cost to
performance compared to CSS3 animations.

The basic idea behind Interval Rendering is to periodically trigger a
component state update that specifies how far the animation has
progressed across its total running time. By incorporating this state
value into a component’s render function, the component can
represent the appropriate stage of the animation each time the state
change causes it to re-render.

Since this approach involves many re-renderings, it’s typically best
to use it in conjunction with requestanimationrrane iN Order to avoid
unnecessary renders. However, in environments where
requestanimationrrame IS UNAvailable or otherwise undesirable, falling back
on the less-predictable setrineout Can be the only alternative.

Interval rendering with requestAnimationFrame

Suppose you want to move a 4iv across the screen using interval
rendering. You could accomplish this by giving it position: avsoiute and
then updating its 1es: Or wop Style attributes as time progressed. Doing

this ON requestanimationrrane, @and basing the amount of the change on how
much time has elapsed, should result in a smooth animation.

Here is an example implementation.

class Positioner extends React.Component {

constructor () { super(); this.state = {position: 0} }
resolveAnimationFrame () {
var timestamp = new Date () ;
var timeRemaining = Math.max (0, this.props.animationCompleteTimestamp - timestamp) ;

if (timeRemaining > 0) {
this.setState ({position: timeRemaining});
}
}

componentWillUpdate: function() {
if (this.props.animationCompleteTimestamp) {
requestAnimationFrame (() => this.resolveAnimationFrame ()) ;
}
}

render () {
var divStyle = {left: this.state.position};

return <div style={divStyle}>This will animate!</div>
}
1)

In this example, the component has an animationcompieterimestamp Value
set in its props, Which it uses in conjunction with the timestamp returned
bY requestanimationrrame’S Callback to compute how much movement
remains. The resulting value is stored as tnis.state.position, Which the
render Method then uses to position the aiv.

SiNCe requestanimationrrame IS INVOKEd by the componentwiiivpaate handler, it
will be kicked off by any change to the component’s props (such as a
change 10 animationcompleterimestanp), Which includes the call to this.setstate
INSide resoiveanimationrrame. 1NiS Means that once animationcompieterimestamp IS
set, the component will automatically continue firing successive
requestAnimationFrame invocations until the current time exceeds the

Val ue Of animationCompleteTimestamp.

Notice that this logic revolves around timestamps only. A change to
animationCompleteTimestamp kiCkS |t Oﬂ:, and the Value Of this.state.position
depends entirely on the difference between the current time and

animationcompleteTimestamp. AS SUCh, the render method is free to use
this.state.position fOF @ny sort of animation, from setting scroll position to
drawing on a canvas, and anything in between.

Interval rendering with setTimeout

Although requestanimationrrane IS likely to get you the smoothest
animation with the least overhead, it is not available in older browsers
and may fire more often (or less predictably) than you want it to. In
those cases you can use setrineout iNstead.

var Positioner = React.createClass ({

getInitialState: function() { return {position: 0}; 1},
resolveSetTimeout: function () {
var timestamp = new Date () ;
var timeRemaining = Math.max (0, this.props.animationCompleteTimestamp - timestamp) ;

if (timeRemaining > 0) {
this.setState ({position: timeRemaining}) ;
}
o

componentWillUpdate: function() {
if (this.props.animationCompleteTimestamp) {
setTimeout (this.resolveSetTimeout, this.props.timeoutMs) ;
}
b

render: function() {
var divStyle = {left: this.state.position};

return <div style={divStyle}>This will animate!</div>
}
1)

Since setrineout takes an explicit time interval, whereas
requestanimationrrame d€te€rmines that interval on its own, this component
has the additional dependency of this.props. timeoutus, Which specifies the
interval to use.

The open source React Tween State library provides a convenient
layer of abstraction over this style of animation.

Spring Animation

https://github.com/chenglou/react-tween-state

CSS transitions are simple to use and sometimes good enough.
They have many limitations from only supporting bezier curves to
being unable to halt or transition to a new value mid-animation. The
web has fallen behind the trend by not supporting spring animations as
seen on mobile and other native applications.

This is where a tool like react-motion
(https://github.com/chenglou/react-motion) comes in. We're using
react-motion 0.3.1 here, so be sure to check the docs for your version.

First, we need to import react-motion’s take on transition groups:

import {TransitionMotion, spring} from 'react-motion';

Then we can use it in render. It has an odd API, where we pass a
function as children instead of the elements directly. It then passes the
current progress of the style values to that function and render based
on it.

<TransitionMotion

willEnter={() => ({ opacity: spring(0) })}
willLeave={ () => ({ opacity: spring(0) })}
styles={this.state.show ? {x: {opacity: spring(1l)}} : {}}
>
{0 =>{
var {x} = styles;
if (!x) return null;

return <div styles={x}>Hello world</div>;
}}

</TransitionMotion>

When this.state.snow becomes true it'll animate in with a nice physics
based transition, and animate out in the same way. If the transition isn’t
complete it'll smoothly animate to the new value.

You can completely replace CSS transitions with spring physics to
improve user experience.

Summary

Using these animation techniques, you can now:

https://github.com/chenglou/react-motion

1. Efficiently animate transitions between states using CSS3 and
Transition Groups.

2. Animate outside CSS, such as scroll position and Canvas
draW|ng, US|ng requestAnimationFrame.

3. Fa” baCk ON setTimeout in cases Where requestAnimationFrame iS nOt a
viable option.

4. Deliver spring animations.

Next, you’ll be learning how to fine-tune your React performance!

Chapter 11. Performance tuning

React’'s DOM diffing allows you to effectively discard your entire Ul
at any point in time with minimal impact on the DOM. There are,
however, cases where the delicate tuning of a component should
render a new virtual DOM representation that can help make your
application faster. For instance, this is useful if you have a very
deeply nested component tree. In this chapter we will cover a simple
configuration you can provide to your component to help speed up
your application.

shouldComponentUpdate

When a component is updated, either by receiving new props or
setstate D€INQG called, React will invoke the :enser method on each child
component of that component. In most cases this performs without a
hitch, but on pages with deeply nested component trees or a
complex render method, you can experience some sluggishness.

Sometimes a component’s render method is invoked when it
doesn’t need to be. This can happen when your component doesn’t
use state or props, or if the props or state don’t change when the
parent re-rendered. So, rendering the component again would yield
the same exact virtual DOM representation that’s already present,
which would be unnecessary.

React provides the component lifecycle method snouidcomponentupdate,
which gives you a way to help React make the right decision of
whether or not to invoke specific component’s render method.

shouldcomponentupdate SNOUIlD return a boolean. :a1se tells React to not
invoke the component’s render method and use the previously

rendered virtual DOM. Returning :-ue will tell React to invoke the
render method on the component to get a new virtual DOM
representation. By default shoutacomponentupaate returns true and
components will thus always re-render.

Note that shouidcomponentupaate iS NOt called on the initial render of a
component.

shouldcomponentUpdate F€CeIVES the new props and state as arguments
to help your make a decision of whether or not to re-render. For
example a component with one prop and no state can look like this:
shouldComponentUpdate (nextProps, nextState) {
if (this.props.data !== nextProps.data) {

return true;

}

return false;

}

For pure components that always render the same given the same
props and state, you can add the recact-addons-pure-render-nixin. B€Cause
we’re using ES6 classes, we need a library called react-mixin
(https://github.com/brigand/react-mixin) that allows you to use the
mixin. This is one of the few cases where mixins should be used
instead of high order components.

You can read the full source code of our example application, a reddit clone,
at http://git.io/vlcpa

The mixin will overwrite shouidconponentupdate t0 cOMpare the new
props and state with the old, and return false if they are equal like in
the above example.

A few of the components are this simple, like eaitessayouestion, Which
YOU CaN USE react.addons. PureRenderMixin WIth:

import reactMixin from 'react-mixin';
import PureRenderMixin from 'react-addons-pure-render-mixin';

https://github.com/brigand/react-mixin
http://git.io/vlcpa

class Foo extends React.Component {
render () {

}
}

reactMixin.onClass (Foo, PureRenderMixin);

In cases where you have deep complex props or state, the
comparison can be slow. To help mitigate this, consider using
immutable data structures like those discussed in Chapter 16.

Key

Most often you'll find the key prop used in lists. Its purpose is to
identify a component to React by more than the component class.
For example, if you have a div with key="foo,” which later changes to
“bar," React will skip the diffing and throw out the children
completely, rendering from scratch.

This can be useful when rendering large subtrees to avoid a diff,
which you know is a waste of time. In addition to telling it when to
throw out a node, in many cases it can be used when the order of
elements changes. For example, consider the following render that
shows items based on a sorting function.

var items = sortBy(this.state.sortingAlgorithm, this.props.items);
return items.map (function (item) {
return ;

1)

If the order changes, React will diff these and determine the most
efficient operation is to change the s:c attribute on some ing
elements. This is very inefficient and will cause the browser to
consult its cache, possibly causing new network requests.

To remedy this, you can simply use some string (or number) you
know is unique to each item, and use it as a key.

return ;

Now React will look at this and instead of changing s:c attributes, it
will realize the minimum insertzerore Operations to perform, which is
the most efficient way to move DOM nodes.

Single level constraint

Key props must be unique to a given parent. This also means that no moves from one parent to
another will be considered.

In addition to the order changing, insertions that aren’t at the end
also apply. Without correct key attributes, prepending an item to the
array causes the s:c attribute of all following <inq> tags.

It's also valuable to note that while you seemingly pass the key in
as a prop, it is not accessible in anyway from within a component.

Summary

In this chapter you learned how to:

1. Modify shoutdacomponentupaate 10 return true/false for added
performance.

2. Using xey to help inform React of the minimum changes to a list
of child components.

So far we've focused on using React in the browser, next you'll
learn about universal (also know as
isomorphic) applications: JavaScript with React on the server.

Chapter 12. Server side rendering

Server side rendering is vital if you want search engines to crawl
your site. It also provides a performance boost as the browser can
start displaying your site while your JavaScript is still loading.

The virtual DOM in React is central to why React can be used for
server side rendering. Each React component is first rendered to the
virtual DOM, then React takes the virtual DOM and updates the real
DOM with any changes. The virtual DOM, being an in memory
representation of the DOM, is what allows React to work in non
browser environments like Node.js. Instead of updating the real
DOM, React can generate a string from the virtual DOM. This allows
you to use the same React components on the client and the server.

React provides two functions that can be used to render your
components on the server side, react.renderrostring and

React.renderToStaticMarkup.

Server side rendering of your components requires foresight when
designing your components. You need to consider:

» What render function is best to use.

» How to support Asynchronous state of your components.
* How to pass your applications initial state to the client.

» What lifecycle functions are available on the server side.
» How to support Isomorphic routing for your application.

e Your usage of Singletons, Instances, and Context.

Render functions

When rendering your React components on the server side, you
can’t use the standard react.renaer method, since on the server side
there is no DOM. React enables server side rendering by providing
two render functions that support a subset of the standard React
component lifecycle methods.

React.renderToString

The first of the two render functions that can be used on the server
S|de |S React.renderToString. Th'S |S funCtlon yOU W|” mOStIy use.

Unlike react.rencer, this function does not take an argument of
where to render, instead it returns a string. This is a synchronous
(blocking) function that is very fast.

var MyComponent = React.createClass({
render: function () {
return <div>Hello World!</div>;
}
)

var world = React.renderToString (<MyComponent/>);

//single line output - formatted for this example
<diwv
data-reactid=".fgvrzhg2yo"
data-react-checksum="-1663559667"
>Hello World!</div>

You will notice that React has added two data attributes to the

<div>.

data-reactid IS US€d by React to identify the DOM node in the
browser environment. This is how it knows what DOM node to
update when state and props change.

data-react-checksum IS ONly added on the server side. As the name
suggest it is a checksum of the DOM that is created. This allows
React to reuse the DOM from the server when rendering the same
component on the client. This is only added to the root element.

React.renderToStaticMarkup

react . renderTostaticMarkup IS the second render function you can use
on the server side.

This is the same as react.rendertostring, €XCEPL it doesn’t include the
React data attributes.
var MyComponent = React.createClass ({
render: function () {
return <div>Hello World!</div>;

}
1)

var world = React.renderToStaticMarkup (<MyComponent/>) ;

//single line output
<div>Hello World!</div>

String or StaticMarkup

Each render function has it purposes, so you need to look at what
your requirements are to decide that render function to use.

Only USE€ react . rendertostaticMarkup WheN you are not going to render
the same React component on the client.

Here are some examples:

e Generating HTML emails.
e Generating PDFs by HTML to PDF conversion.
e Testing components.

In most cases you will want to uSe react.renderrostring. This will allow
React to use the data-react-cnecksun to make the initialization of the
same React component on the client much faster. As React can
reuse the DOM supplied from the server, it can skip the expensive
process of generating DOM nodes and attaching them to the

document. For a complex site, this can significantly reduce the load
SO your users can start interacting with your site faster.

It is very important that your React components render exactly the
same on the server and on the client. If the data-react-checksun doesn’t
match, React will destroy the DOM supplied by the server and
generate new DOM nodes and attach them to the document. In this
case you will lose much of the performance gain of server side
rendering.

Server side component lifecycle

When rendering to string, only lifecycle methods before render are
Ca”ed CFUCIa”y componentDidMount and componentWillUnmount are nOt Ca”ed
during the render process and componentwilivount IS called from both.

You will need to keep this in mind when creating components that
will be rendered on the server and the client. This is true especially
when creating event listeners, since there is no component lifecycle
method to let you know when the React component is finished.

Any event listeners or timers started in conponentwilivount have the
potential to cause memory leaks on the server.

The best practice is to only create event listeners and timers from
componentpiaMount @Nd Stop the event listeners and timers in

componentWillUnmount.

Designing components

When rendering on the server side, you need to take special
consideration to how your state will be passed to the client to
leverage the performance benefits of server side rendering. This

means designing your components with server sider rendering in
mind.

You should always design your React components so that when
you pass the same props to the component you will always get the
same initial render. If you always do this, you will increase testability
of your components and when you render on the server and the
client you can be guaranteed they will render the same. This is very
important to ensure you will get the performance benefit of server
side rendering.

Let’s say that you want to have a component that prints a random
number. This is an issue as the result will almost always be different.
If this component were to render on the server then render on the
client, the checksum would fail.

var MyComponent = React.createClass({
render: function () {
return <div>{Math.random() }</div>;
}
1)

var result = React.renderToStaticMarkup (<MyComponent/>) ;
var result2 = React.renderToStaticMarkup (<MyComponent/>) ;

//result
<div>0.5820949131157249</div>
//result2
<div>0.420401572631672</div>

If you were to change your component it would receive the random
number by way of props. You can then pass the props to the client to
be used for the rendering.

var MyComponent = React.createClass ({
render: function () {
return <div>{this.props.number}</div>;
}
}) i

var num = Math.random() ;

//server side
React.renderToString (<MyComponent number={num}/>) ;

//pass num to client side
React.render (<MyComponent number={num}/>, document.body) ;

There are number of different ways to send the props used on the
server to the client.

One of the easiest ways is to pass the initial props to the client by
way of a JavaScript object.

<!DOCTYPE html>

<html>

<head>

<title>Example</title>

<!-- bundle contains MyComponent, React, etc -->

<script type="text/javascript" src="bundle.]js"></script>
</head>

<body>

<!-- result of MyComponent server side render -->

<div data-reactid=".fgvrzhg2yo" data-react-checksum="-1663559667">
0.5820949131157249</div>

<!-- inject initial props used on the server side -->
<script type="text/javascript">

var initialProps = {"num": 0.5820949131157249};
</script>

<!-- use initial prop from server -->
<script type="text/javascript">
var num = initialProps.num;
React.render (<MyComponent number={num}/>, document.body) ;
</script>
</body>
</html>

Asynchronous state

Many applications require data from a remote data source like a
database or web service. On the client, this is not an issue. The
React component can show a loading view while waiting for the
asynchronous data to return. On the server side, this behavior can’t
be directly replicated with React since the render function is a
synchronous function. In order to use asynchronous data, you need
to fetch the data first then pass the data to the component at render
time.

Example:

You may want to fetch the user record from an asynchronous store
for use in the component.

AND

You want the state of the component after the user record has
been fetched to be rendered on the server side for SEO and
performance reasons.

AND

You want the component to listen to changes on the client and re-
render.

Problem: You can’t use any of the component lifecycle methods to
fetch the asynchronous data since react.rengertostring IS Synchronous.

Solution: Use a statics function to fetch your asynchronous data,
and then pass it to the component to render. Pass the :nitiaistate tO
the client as props. Use component lifecycle methods to listen to
changes and update the state, using the same s:atics function.

var Username = React.createClass ({
statics: {
getAsyncState: function (props, setState) {
User.findById (props.userId)
.then (function (user) {
setState ({user:user});
1)
.catch (function (error) {
setState ({error: error});
1)
t
bo
//client and server
componentWillMount: function () {
if (this.props.initialState) {
this.setState(this.props.initialState);
}
by
//client side only
componentDidMount: function () {
//get async state if not in props
if (!this.props.initialState) {
this.updateAsyncState (),
}

//listen to changes
User.on ('change', this.updateAsyncState);

}
//client side only
componentWillUnmount: function () {
//stop listening to changes
User.off ('change', this.updateAsyncState);

by

updateAsyncState: function () {
//access static function from within the instance
this.constructor.getAsyncState (this.props, this.setState);

b
render: function () {
if (this.state.error) {
return <div>{this.state.error.message}</div>;

}
if (!'this.state.user) {
return <div>Loading...</div>;

}

return <div>{this.state.user.username}</div>;

}
1)

//Render on the server

var props = {
userId: 123 //could also be derived from route
b
Username.getAsyncState (props, function(initialState) {

props[initialState] = initialState;
var result = React.renderToString (Username (props));

//send result to client along with initialState

)i

Using the solution above, the pre-fetching of asynchronous data is
only required on the server. On the client, just the initial render needs
to look for initiaistate passed from the server. Subsequent route
changes on the client (such as HTMLS, pushState or fragment
change) should ignore any initiaistate from the server. You will also
want to display loading messages as the data is fetched.

Isomorphic routing

Routing is an essential part of any non trivial application. To render
a React application with a router on the server side, you need to
ensure the router supports rendering without the DOM.

The fetching of asynchronous data is the job of a router and its
route controllers. Let’'s say a deeply nested component needs some
asynchronous data. If the data is needed for SEO purposes, then the
responsibility for fetching the data should be moved higher up to the
route controller, and the data should be passed down to the deeply
nested component. If it is not needed for SEO then it is okay to just
fetch the data from within componentpiavount ON the client. This is akin to
classical AJAX loaded data.

When looking at an isomorphic routing solution for React, make
sure it either has asynchronous state supported or can be easily
modified to support asynchronous state. Ideally you would also like
the router to handle passing the initiaistate down to the client.

Singletons, instances, and context

In the browser, your application is wrapped in an isolation bubble.
Each instance of your application can’t mix state with other
instances, since each instance is usually on different computers or
sandboxed on the same computer. This allows you to easily use
singletons in your application architecture.

When you start moving your code to operate on the server, you
need to be careful, since you may be having multiple instances of
your application running at the same time, in the same scope. This
has the potential that two instances of your application may mutate
the state of a singleton, resulting in unwanted behavior.

React render is synchronous, so you can reset all singletons used
prior to rendering your application on the server side. You will have
issues if asynchronous state requires use of the singletons. Also,
you will need to account for this when fetching the asynchronous
state for use in render.

Even with resetting singletons, prior to render, running your
application in isolation will always be better. Packages like Contextify
allow you to run your code in isolation from one another on the
server. It is similar to using webworkers on the client. Contextify
works by taking your application code and running it in a separate
Node.js V8 instance. Once the code is loaded you can invoke
functions in the context. This approach will give you the freedom to
use singletons but does come at a performance cost since a new
Node.js V8 instance will need to be started for every request.

The core development team of React discourage the use of
passing context and instances down your component tree. This
makes your components less portable and changes to the
dependencies of one component deep in your application have a
flow on effects with all of the components up the component
hierarchy. This in turn increases the complexity of your application,
reducing maintainability as your application grows.

There are trade-offs with each approach when deciding to use
singletons or instances to control your context. You will need to
assess your specific requirements before deciding what approach
you will want to take. You will also need to consider how the third
party libraries you use are architected.

Summary

Server side rendering is an important part of building search
engine optimized web sites and web applications. React supports
the rendering of the same React components on the server and the
client browser. To do this effectively, you will need to ensure your
entire application is architected in such a manner to support server
side rendering.

Next up you will you learn about development and build tools in
the React family.

Chapter 13. Development tools

React leverages a few layers of abstraction to help ease development
of your components and reason about the state of your applications.
These abstractions have a down side when it comes to debugging,
building and shipping your applications.

Fortunately, there are some fantastic development tools available to
help in the process of debugging and building your applications. In this
chapter we will explore the build tools and the debugging tools that you
can use effectively with React.

Build tools

Build tools help you streamline repetitive tasks to make the process of
running your code much easier. One of the most repetitive tasks in
React development is running the JSX parser over all of your React
components. The other big task is bundling all of your modules into one
or more bundles for shipping to the browser.

Let's examine how to use two popular JavaScript build tools,
Browserify and Webpack, with React.

Browserify

Browserify is a JavaScript packaging tool that allows for Node.js style
require () Calls in the browser. Without getting into too much detail and
getting lost in the woods, Browserify packages all of the requires into a
bundled JavaScript file suitable for running in the browser environment.
Running Browserify on any JavaScript file with require Statements will
automatically bundle the necessary JavaScript.

While powerful, Browserify is only for JavaScript, unlike Bower,
Webpack, or other bundling solutions.

Setup a Browserify project

To get Browserify up and running, you must initialize a node project.
Assuming you already have both node and npm installed, you can
initialize a new project using the following command in your terminal.
This will create a package.son file with the necessary assets.

npm init
... answer questions as necessary to complete init
npm install --save-dev browserify babelify \

babel-preset-es2015 babel-preset-react \
babel-preset-stage-1 \
react uglify-js

Add the following build script to the bottom of your package. son file so it
will look similar to this:

"devDependencies": {

"browserify": "~5.11.2",
"pbabelify": ""6",
"react": "~0.11.1",
"uglify-js": ""2.4.15",
}I
"scripts": {
"build": "browserify --debug index.js > bundle.js",
"build-dist": "NODE ENV=production browserify index.js | uglifyjs -m > bundle.min.js"
}I
"browserify": {
"transform": ["babelify"]

}
}

Also create a file called .babelrc that tells babel which transforms to
use.
{

"presets": ["es2015", "react", "stage-1"]

}

The default build task can be run with npn run vuiia, and will create a
bundle with source maps. This lets you inspect error messages and
place breakpoints as if each file was included individually. You'll also
see the original code with JSX rather than the compiled output.

For production builds you need to specify that the environment is
production. React uses a transform called envify, which when combined
with a minifier like uglify, allows debug code and detailed error messages
to be removed for better performance and smaller file sizes.

Now you’re ready to write some React and package it.

Add some React content

Create the following React + JSX JavaScript file as inaex. ss.

var React = require('react');
var ReactDOM = require('react-dom');

var root = document.getElementById('root');
ReactDOM. render (<hl>Hello World</hl>, root);

And add a basic ingex.nem file:

<html>
<head>
<title>React + Browserify Demo</title>
</head>
<body>

<div id="root"></div>
<script src="bundle.js"></script>

</body>
</html>

Now your project will have the following files and folders inside its root
directory:

e index.html

e index.js

e node_modules/
e package.json

If you try to load the index.html file now, it will fail to render the
JavaScript since you have yet to build the final package. Run npm run buila
and reload the page to see your hello world example.

Watchify

You may choose to add a watch task, which is good for development.
Watchify is a wrapper around Browserify, which rebuilds your bundle
when you change a file. It uses caching to speed up the rebuilds.

npm install --save-dev watchify

Add this to your scripts object in package.json:

"watch": "watchify --debug index.js -o bundle.js"

Now instead of npm run build, YOU CaN npn run watch fOr @ smoother
development experience.

Build

Now, simply run the build script to package your React + JSX file as a
bundled script for the browser.

npm run-script build

You should see a new bundle.js file appear. If you open bundle.js
you’ll notice some minified JavaScript at the top, followed by your
transformed React + JSX code. This file now contains all of the
supporting code along with your index.js file, ready to run in the browser,
and loading index.html will now succeed.

Webpack

Webpack is like Browserify, it bundles up your JavaScript into a single
package. It isn’t quite fair, however, to compare Browserify and
Webpack, because Weback has many more features, and Browserify is
not often used on its own.

Webpack can also:

» Bundle CSS, images and other assets into the same package.

Pre-process files before bundling (less, coffee, jsx, etc).
Split your bundle into multiple files based on entry locations.
Support feature flags for development.

Perform “hot” module replacement.

Support asynchronous loading.

As a result, Webpack can do the job of Browserify mixed with other
build tools like grunt or gulp.

Webpack is a module system, and is supported by adding and
replacing plugins. By default it comes with a commonjs parser plugin
enabled.

We won’t detail every aspect of Webpack here, but will cover the
basics and what you need to get Webpack to work with React.

Webpack and React

React helps you to create components for your application. Webpack
helps you bundle not only JavaScript, but all of your other assets
required for your application. This allows you to create components that
include all of their asset dependencies. This then makes your
components more portable, given that they can bring their own
dependencies along with them. As an added advantage, as your
application grows and changes and when you remove components, their
asset dependencies are also removed. This means no more dead CSS
or orphaned images.

Let’s have a look at what a what a React component looks like when it
is requiring it's own asset dependencies.

//logo.js
require('./logo.css');
var React = require('react');

var Logo = React.createClass ({
render: function () {
return
}
})

module.exports = Logo;

To bundle this component up you need to have any entry point for
your application.

//app.js

var React = require('react');

var ReactDOM = require ('react-dom');

var Logo = require('./logo.]js');

var root = document.getElementById('root');

React.render (<Logo/>, root);

You will now create a Webpack config file to tell Webpack what
loaders to use for the different file types. And, we will show what your
applications entry point is and where to place all of the bundled files.

//webpack.config.js
module.exports = {
//starting point of your application
entry: './app.js',
output: {

//location for all bundled assets
path: './public/build',

//prefix for all url-loader assets
publicPath: './build/",

//resulting name of bundled application
filename: 'bundle.]js'

by
module: {
loaders: [

{

//regex for file type supported by the loader
test: /\.(js)S/,
loader: 'babel-loader'

I

{

test: /\. (css)$/,

mypom.
e

//multiple loaders are chained together with an

loader: 'style-loader!css-loader'

by

test: /\. (pngljpg) S/,

//url-loader supports base64 encoding for inline assets

loader: 'url-loader?size=8192"

You now want to install Webpack and all of the loaders. You can either
use npm via the command line, or package.json.

Make sure you install the loaders locally, not globally (-g).

npm install webpack react
npm install url-loader jsx-loader style-loader css-loader

Once everything is installed, you can run Webpack:

//build once for development
webpack

//build with source maps
webpack -d

//build for production, minified, uglify dead-code removal
webpack -p

//fast incremental building, can be use with other options
webpack --watch

Debugging tools

No matter how careful you are, mistakes will be made. We won'’t cover
how to debug JavaScript, but we will talk about some tools to make
debugging React applications easier.

Starting out

For this chapter, open Chrome and install the React Developer Tools
addon.

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Right-click on an element, and choose Inspect Element. You get the
familiar view of the DOM structure, which is the elements tab.

You’re not here to look at the DOM, though. You want to see the
components, their props, and their state. If completed, to take the next
steps, you should see a tab on the far right named React.

) Yes
) No
Q, [] Elements Network Sources Timeline Profiles Resources Audits Consaole |React| -) o, x
\E o;. Levels ¥ Props
¥ <Routes location="history" nreser eScrollPositi on= "fa Le
¥ <App :;tl =! Builder” initialAsyncState="mull" ref="__activeRoute__" i;cckeﬁo E:Lde
params=

v <div cla sNam

b <NHainHeader nHeaders ;I;Cfl:]ﬁ cdlg fu }\cnos' cf] i
¥ <div ¢ ame="main-content container"s alue: "Yes
v <Take eyCtrl name= takc ini tialAsyncState="null" ref="__activeRoute__" L : Opject
r q ery survey_id="null"= =
vey i -’|_|5 title= H rry Patte Character U iz" description= v Statf
rry Potter character are you? Finally put this burning question checked: false
" reatennt nda edAt=' items="."=> > oto_ : Object
classMame="survey
Harry Potter tnaratter Quiz</hl= L Inslan(e
¥ Event Listeners Wi
¥ onChanged
» AnswerRadiolnput#choice-@ (anonymous function)

Spel hoices=
¥ div lassra e= =
<label className="surv Ey iten-label” himlFor="multiple-
choice-2"=Do Y ave a Favorite Spell?</label>
v <div className="survey-item-content">

abe es" value="Yes scked
v <div className="radio">
_Routes App TakeSurveyCtrl TakeSurvey TakeSurveyltem AnswervesNoQuestion

The hierarchy of components is on the left, and the information about
the selected instance is on the right.

Viewing just this information can tell you a lot about the state, props,
and event listeners attached to your components in React. The
developer tools allow you to do even more than this.

SurveyTable. table.survey-table 94@px x 88px

September 22, 2014 September 22, 2014 765

Q, [] Elements Network Sources Timeline Profiles Resources Audits Console |React 2)= # []J X

¥ Props
="history" preserveScrollPosition="false'"> surveys: Array[l
rveyBuilder” initialAsyncState="null" ref="__activeRoute__ " v u.',' = t vl
iy ty: Arrayl(s]
"ad123"
o

n-content container”>

: :54:26 GMT-9708 (MST)
ist" initialAsyncState="null" ref="__activeRoute__" te: Mon Sep 22 2014 4:54:26 GNT-708 (MST)

Date: Mon Sep 22 2014 B4:54:26 GMT-8700 (MST)
me= t-surveys's perhero mashup®
<h1=ACtive Surveys</hl=
¥ <SurveyTable surveys="_">

wv<table classMame="table survey-table">

23"
Object

- > roto_: Array(e]
::Erca.t..«/tncac: > D Oajg(ty
rveyTableRow survey="_"">.</SurveyTablefows ¥ State
</ thody>
/table>
</SurveyTables » Instance
</div= -
</ListSurveyss ¥ Event Listeners i
</div= No Event Listeners
</div=
JApD>
Routes>

Routes App ListSurveys JTLUUFTTE SurveyTableRow

You can see your SurveyTable component get passed an array of
surveys that contains timestamps. In the actual view, they’re presented
in a human readable format. Double-click one of the timestamps and
type in a new value. This causes the component to update with the new
value.

The developer tools help you narrow down problems, and helps new
people on your team find the components they need to edit and
complete tasks.

JSBIN AND JSFIDDLE

While debugging, or just brainstorming, online demo sites like JSFiddle and JSBin are great
assets. Use them to create test cases when asking for help, or to share prototypes with others.

Here is a jsbin set up with Babel and React, ready for you to create
things: http://jsbin.com/ledagefuya/l/edit?js,output.

Summary

You should now see the benefits that debugging and building tools can
provide you with when developing with React. In the next chapter you

http://jsbin.com/ledaqefuya/1/edit?js,output

will find details on how to use automated testing in React.

Chapter 14. Testing

Now that you’ve learned the ins and outs of how to build a web application using React, let’s take a
step back before learning about architectural patterns (that will happen in Chapter 15). When you are
starting a new application, productivity is very simple because you just crank out more code. But as
your application evolves, if you aren’t careful, you can find yourself with a code base that is a twisted
mess, which is very hard to change. That is why it is very important to have a powerful tool in your
toolbox: automated testing. Automated testing, usually employed through a Test Driven Development
(TDD) workflow, can help you achieve code that is simpler, more modular, is less brittle to change, and
can be changed with more confidence.

BUT I'VE NEVER TESTED MY JAVASCRIPT BEFORE?

That’s ok! If you’ve never done it before, automated testing can seem like a foreign concept that is always slightly out of reach. This chapter
won’t serve as an exhaustive resource for JavaScript testing because that deserves it’s own book, but we’ll try to provide enough context so you
can follow along and research specific topics on your own when needed.

Getting started

You may be asking, “But | have an amazing QA team focused on testing. Why should | care about
testing? Can’t | just skip this chapter?" Great questions! The main reason automated testing will help
you is not related to bugs or catching regressions, but that is a helpful side effect of testing. The real
goal of automated testing is that it helps you write better code. More often than not, code that is poorly
written is hard to test. So if you start writing your tests as you write your code, your tests will encourage
you not to write sloppy code. You will be naturally pushed to follow the single responsibility principle 1,
the law of demeter 2, and keeping code in a modular way.

When we refer to Test Driven Development, or TDD, we are referring to a style of testing that uses a
“Red, Green, Refactor” process. First, you write a test that fails (the test is red), then you write the
application code to make the test pass (the test is green), and then you refactor the application code to
make it cleaner while keeping the test green. It is a process that allows you to work in small batches
and each iteration gives a positive feeling when the test turns green.

Types of testing

Now that you've been convinced that automated testing is important, let’s go over the type of testing:
unit testing. There are many other types of automated testing (integration testing, functional testing,
performance testing, security testing, and visual testing 2), but those are outside the scope of this book.

« Unit Test: a test that exercises the smallest piece of functionality in your application. Often this will
be calling a function directly with specific inputs and validating the outputs or the side effects.

This sounds like a lot, but when you dive into it you will find out that it is not only manageable, but
very fun to see your tests passing for the first time.

Tools

Fortunately, the JavaScript community has a healthy ecosystem of testing tools, so we can leverage
them to get our test suites off the ground quickly. The tests for this book use Jest and Enzyme. Jest runs
tests using Jasmine so, if you are familiar with Jasmine, you may find these tests familiar. Listed below
are some popular alternatives.

« Karma

¢ Mocha

¢ Chai

e Sinon

+ Casper.js
e Qunit

So let’s start coding!

Unit Testing React Components with Jest and Enzyme

When writing a React component, the only requirement is that you define a render function. Let’s
begin writing a test for a new <coment /> cOmponent that verifies that a component renders the desired
output.

Jest automatically scans for test files inside of directories named tes:s . Conventionally, these test
directories are placed in the folder with the file being tested.

Making Assertions About the Content of Components

In keeping with that convention, create a new file for your test at /src/motecuies/ tests /comment.test.ss iN
the sample project.

We begin by importing React, a few helper functions from enzyme that we’ll review as the test grows,
and the Comment module itself.

import React from 'react';

import {shallow, mount, render} from 'enzyme';
import Comment from '../Comment';
jest.unmock ('../Comment'") ;

After importing Comment, we tell Jest to umock it because we want to test it. This is part of what makes
Jest unique. Jest automatically mocks all of the JavaScript modules your code depends on. This makes
it simple to test the behavior of a single module or collection of modules without creating mock
implementations manually.

CONFIGURING JEST

Jest is configured in the project’s package. json file. It is configured to not mock a number of important libraries that support the app so those
libraries still function as expected in your tests and to preprocess your source code to support new ES6 syntax.

Now, let’'s add the actual test.

describe ('molecules/Comment', () => {
it ('<Comment />', () => {
expect (render (<Comment />)) .toBeDefined();

b
b

This test asserts that rendering the coment actually returns a value. Let’s see if it works. Save the file
and run your tests by typing the following in your terminal at the root of the project:

npm test

When you run this command you should see output like the following:

Using Jest CLI v0.9.2, jasmine2
PASS src/utils/__tests__/shallowCompareWithChildrenId.test.js (0.347s)
Warning: React.createElement: type should not be null, undefined, boolean, or number. It should be a string (for DOM elements) c
FAIL src/molecules/__ tests_ /Comment.test.js
® Runtime Error
Error: Cannot find module '../Comment' from 'Comment.test.js'

at Loader._resolveNodeModule (/Users/youruser/bleeding-edge-react-sample-app.github.io/node _modules/jest-cli/src/HasteModuleLc
at Object.<anonymous> (/Users/youruser/bleeding-edge-react-sample-app.github.io/src/molecules/__ tests_ /Comment.test.js:5:6)
PASS src/atoms/__tests_ /Box.test.js (1.058s)

test failed, tests passed (8 total in test suites, run time 2. s)

The test failed because we still haven’t implemented our commen: cOmponent. Before we move on to
fixing this, run the following in your terminal to run Jest in «a:cn mode. It will watch for changes in your
project and re-run your tests automatically, giving you quick feedback as you code!

npm test -- --watch

Now let’s create a new file at /src/mo1ecules/comment .55 and add the following implementation to start:

import React, {PropTypes} from 'react';
import Box from '../atoms/Box';

export default
class Comment extends React.Component {
static propTypes = {

}i

render () {
return (
<Box>
A Comment!
</Box>
)i
}
}

This incomplete implementation simply renders a Box with static text. After saving your new Comment
component, return to your terminal, where you should see:

PASS src/utils/__ tests_ /shallowCompareWithChildrenId.test.js (0.343s
PASS src/atoms/__tests_ /Box.test.js (0.987s)

PASS src/molecules/_ tests_ /Comment.test.js (1.092s)

tests passed (8 total in 3 test suites, run time 2.228s

Your test passes! But our Comment component is not complete yet. The objective with the Comment
component is to extract the logic inside of the map function in comments.3s and create a component out of
it. The map function currently provides a coment Object so our Comment component should take that as a
required property. Let's modify our existing test so that it renders a Comment component with an
example comment prop and verify that it contains some of the comment prop’s content:

describe ('molecules/Comment', () => {
let comment {

id: ’
replies: [],
score: 1,
score_hidden: ,
body: "Test Driven Development, yeah!",
author: "Jeremiah Hall"

}i

it ('<Comment comment={comment}/>"', () => {
let renderedComment = render (<Comment comment={comment} targetScore={1} />);
expect (renderedComment.text ()) .toContain (comment.body) ;
expect (renderedComment.text ()) .toContain (comment.author) ;
b
b

Let’s examine the new test:

1. First, an example comrent Object is defined.

2. Then a Comment component with some example props is rendered using Enzyme’s render
function.

3. You then assert that the text of the rendered comment contains the body and author of the
comment.

The object returned by Enzyme’s render function is a wrapper object with a number of helpful
methods. You'll use the other two functions in later tests.

After saving the file you should see that the test failed:

PASS src/utils/__tests_ /shallowCompareWithChildrenId.test.js (0.342s)
PASS src/atoms/__tests__ /Box.test.js (0.99s
FAIL src/molecules/_tests_ /Comment.test.js (1.112s)
® molecules/Comment > it <Comment comment={comment}/>
- Expected 'A >nt!' to contain 'Test Driven De
at Object.eval (src/molecules/_ tests_ /Comment.test.js:23:36
at handle (node_modules/worker-farm/lib/child/index.js:41:8)
at process.<anonymous> (node modules/worker-farm/lib/child/index.js:47:3)
at emitTwo (events.js:87:13)
at process.emit (events.js:172:7
at handleMessage (internal/child_process.js:686:10
at Pipe.channel.onread (internal/child process.js:440:11)
- Expected 'A Comment!' to contain 'Jeremiah Hall'.
at Object.eval (src/molecules/_ tests_ /Comment.test.js:24:36
at handle (node_modules/worker-farm/lib/child/index.js:41:8)
at process.<anonymous> (node_modules/worker-farm/lib/child/index.js:47:3)
at emitTwo (events.js:87:13
at process.emit (events.js:172:7)
at handleMessage (internal/child_process.js:686:10)
at Pipe.channel.onread (internal/child process.js:440:11)
1 test failed, tests passed (8 total in 3 test suites, run time 2.192s

yeah!"'.

lopment,

Let's complete the Comment component. You'll need to add a few imports and implement the render
method:

import React, {PropTypes} from 'react';
import Box from '..
import Heading from '../atoms/Heading';
import Markdown from '..
import Link from '../at
import {State} from '..

1s/Box';

Link';
utils/actions';

export default
class Comment extends React.Component {
static propTypes = {
comment: PropTypes.object.isRequired,
targetScore: PropTypes.number.isRequired

}i

render () {
let comment = this.props.comment;
let targetScore = this.props.targetScore;

let replies = comment.replies [1:
return (
<Box
key={comment.id}
padding="0.5em"
margin="0.5em"
style={{
background: comment.score >= targetScore ? '#ffffaa' : '#efefef'
b}
<Box direction="row">
<Heading level="title">{comment.score_hidden ? '?' : comment.score}</Heading>
<Box margin={{right: "lem"}} />
<Box style={{maxWidth: '80em', lineHeight: '1.5"}}>
<Markdown content={comment.body} />
</Box>
</Box>
<Box margin={{top: '0O.5em'}} direction="row">

by <Link to={ /user/${comment.author} }>{comment.author}</Link>

<Box

id="replyBox"

margin="0 lem"

onClick={() => {
State.setEditing ({

type: 'comment',
id: comment.id,
b
+}
style={{cursor: 'pointer'}}
>
Reply
</Box>
</Box>
{replies.map((reply) => <Comment comment={reply} targetScore={targetScore} />)}
</Box>
)i

The render method of coment is very similar to the function passed to the map call in the comnents
component. When you return to your terminal after saving Comment.js, Jest should show that your test
now passes:

PASS src/utils/__tests_ /shallowCompareWithChildrenId.test.js (0.366s
PASS src/atoms/__tests_ /Box.test.js (1.079s

PASS src/molecules/_ tests_ /Comment.test.js (1.307s
tests passed (8 total in test suites, run time 2.335s

Making Assertions About Functions and DOM Events

Let's add a new test to coment.test. 35 that asserts that when the reply button is clicked, the state of the
application is updated. This test should pass the first time without modification.

describe ('molecules/Comment', () => {

it ('should should call State.setEditing when the reply button is clicked', () => {

let wrapper = mount (<Comment comment={comment} targetScore={1} />);

let replyBox = wrapper.find('#replyBox"');

State.setEditing = jest.fn();

replyBox.simulate ('click"');

expect (State.setEditing) .toBeCalledWith ({

type: '

id: comment.id,
b

1N
b

~omment '
comment',

There’s a few new things in this test so, let's examine it:

1. First a Comment component is rendered to DOM using Enzyme’s wount.

2. Using the returned Enzyme wrapper’s rina method, the element with id rep1yz0x is selected.
3. A mock function is created with ;est.en() and assigned to state.setrdaiting.

4. Using the wrapper a c1icx event is simulated on the rep1ys0x €lement.

5. Finally, you assert that statc.setzaiting Should have been called with the provided object.

It is common for a React component to execute a function in response to user interaction or other
lifecycle events. Jest and Enzyme make it simple to test that your component behaves as expected.

Making Assertions About Child Components

Now that we’'ve implemented our new coment COMponent, let’s write a test to verify that the coments
component renders a comment cOMponent for each object in its comments prop.
import React from 'react';
import {shallow, mount, render} from 'enzyme';

import Comments from '..
import Comment from '..

jest.unmock ('.
jest.unmock ('.

describe ('molecu
it ('<Comments
let comments

mments', () => {
s={comments}/>", () => {

id: ,
replies: [],
score: 1,
score_hidden: 0,
body: "Test Driven Development, yeah!",
author: "Jeremiah Hall"

e A
id: 2,
score: 0.5,
score_hidden: ¢
body: "React

I

let wrapper shallow (<Comments comments={comments} />);
let childComments = wrapper.find(Comment) ;

expect (childComments.length) .toEqual (comments.length) ;

b
b

This test defines an array of two comment objects, and shallow renders a coments cOmponent with this
array as a prop. It then uses the returned wrapper’s :ina method to search for the child components of
type Comment. You can search for any kind of React component this way. Enzyme supports supports
searching with CSS selectors such as .ciass-nane OF #rep1ysox, USING cOmponent constructors as shown in
the above example, by the component’s display name, or by component props.

You can review Enzyme’s APl documentation on GitHub:

https://github.com/airbnb/enzyme

SHALLOW, MOUNT, AND RENDER IN ENZYME

Enzyme’s shallow function treats the component it is rendering as a single unit, so that your test is not affected by child components. The
mount function renders to DOM and ensures that component lifecycle methods like componentDidupdate and others are called when
appropriate. The render function goes a step further to static HTML, which you can then analyze.

This Comments test will initially fail since we need to modify the component to use our new Comment:

import Comment from './Comment';

export default
class Comments extends React.Component {
render () {
// find the average comment score

var targetScore = this.getGoodScoreThreshold();

return (
<Box>
{this.props.comments.map ((comment)
</Box>
)i
}
}

=> <Comment key={comment.id} comment={comment} targetScore={targetScore} />)}

An import statement for comnent is added to the top of the file and the map function is modified to return
a coment cOMponent for each comment in the props.

Let's expand our test to verify that the child coment cOmponents received the right comment prop.

0 = {

{comments}/>"', () => {

describe ('molecul
it ('<Comments com

Q
»

expect (childComments.length) .toEqual (comments.length) ;
expect (childComments.at (0) .prop('comment')) .toEqual (comments[0]) ;
expect (childComments.at (1) .prop('comment')) .toEqual (comments[1]) ;

b
b

https://github.com/airbnb/enzyme

The two new assertions retrieve the coment prop from each child component and assert that they are
equal to the comment at the same index in the example comments array.

Summary
This chapter was a whirl-wind of testing concepts: rendering, auto-mocking, unmocking, wrappers,
simulating events, element finders, and test driven development! You are now prepared to start testing

your React components in your real world applications.

Now that we’'ve covered how to unit test our React applications, let’s learn about some architectural
patterns we can use to structure our React applications.

1 http://blog.8thlight.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
2 http://www.ccs.neu.edu/research/demeter/demeter-method/LawOfDemeter/paper-boy/demeter.pdf

3 https://www.youtube.com/watch?v=1wHr-O6gEfc

Chapter 15. Architectural patterns

There are a good number of architectural patterns that can be used
with React. From a standard Flux pattern, to Flux variants like Reflux,
to an entirely different language and ecosystem like Om and
ClojureScript, React has proven to be quite adaptable. In this chapter
we’ll explore how our sample React app is structured and how this
structure helps manage complexity as your project grows. We'll also
explore some popular alternatives.

It is commonly said that you can consider React to be the V in
MVC. It could be used with inline AJAX requests as shown below but,
this quickly becomes hard to reason about:

export default
class Reply extends React.Component {
getInitialState() {
return ({
text: ""
}i
}
submitReply () {
$.ajax({ url: '/replies', type: 'POST',
contentType: 'application/json',
dataType: 'Jjson',
data: JSON.stringify(this.state.text)}, (json) => {
this.setState ({ text: "" });
1)
}

render () {
return (
<div>
<textarea
value={this.state.text}
onChange={ (e) => this.setState({text:e.target.value})}
/>
<input value="Submit" type="button" onClick={ () => this.submitReply()} />
</div>

) ;
}
}

For example, how do you handle updating other components that
may need to know about this new reply?

React is flexible enough to work well with many MVC frameworks.
Let's begin by examining react-router.

Routing

Routing is an intuitive way to link the URL to the application’s view
hierarchy.

Routers direct URLs in a Single Page Application to specific views,
or components.

You can imagine that for the URL/items you’d want to run a function
that loads the items from the server and renders a <rtenstist />
component.

There are many different kinds of Routers. They exist on the server
as well. Some routers work both on the client and on the server.

React is simply a rendering library and does not provide a router.
The explosive growth of the React community has supported the
creation of a number of routing solutions. In this section we’ll react-
router, the routing solution used in the sample app.

react-router

The sample app for this book uses react-router. It differs from other
routers in that the router is composed of JSX elements.

The routes are defined as r-ute cOmponents and each route has a
component Prop that is a React component.

This is the router in the sample app:

export default (
<Route component={App}>
<Route component={MainLayout}>
<Route path="/" component={require ('./pages/HomePage/HomePage')} />
<Route path="/user/:id" component={require('./pages/UserPage/UserPage')} />

<Route path="/r/:id" component={require ('./pages/BoardPage/BoardPage')} />
<Route path="/item/:1d" component={require('./pages/DetailsPage/DetailsPage')} />
</Route>
</Route>
);

To get the router to run you render it as your top level component:

var root = document.getElementById('app-root');
ReactDOM. render (

<Router history={createBrowserHistory() }>{routes}</Router>
, root);

Like the other Routers, react-router has a similar concept of params.
For instance the route ' /user/:1a" Will pass in the ia property to
the userrage COMponent.

One of the cool features of react-router is that it provides a Link
component that you can use for navigation and it will map it to the
routes. In the sample app, the react-router Link component has been
encapsulated in the file src/atom/rink. 5. but, the props are essentially just
passed to the react-router component.

Here’s how our <uainvavigation/> cOmponent looks with the Link
component:

export default
class MainNavigation extends React.Component {
render () {
return (
<Box>
<Box direction="row">
{tabs.map ((tab) => {
return (
<Box margin={{left: "0O.lem"}} key={tab.name}>
<Link unstyled to={tab.to}>
<Button which={tab.which}>{tab.name}</Button>
</Link>
</Box>
);
1)}
</Box>
</Box>
)
}
}

Read more about and download react-router
here: https://github.com/reactjs/react-router.

https://github.com/reactjs/react-router

Flux

Flux is an architectural pattern for client-side applications introduced
by Facebook. It complements React with a uni-directional data-flow
that’s easy to reason about and requires very little scaffolding to get up
and running.

Flux is made of four main parts: the store, the dispatcher, the action
creators, and the views (React components.) Action creators are
helper methods to create a semantic interface to the dispatcher.

You can think of your top-most React component as a View-
Controller. The View-Controller component interfaces with the store
and facilitates communication with its child components. This is not
unlike a ViewController in the world of iOS.

Each node in the Flux pattern is independent, enforcing strict
separation of concerns and keeping each easily testable in isolation.

Data Flow

A key aspect of Flux is the one-way flow of information. Compared to
other approaches with less structured event handling or complicated
two-way data binding this may seem very different.

Flux has a well defined flow between its components.

1. When your application starts your Stores will register callbacks or
event listeners with the Dispatcher.

2. When React components in your application are rendered, they’ll
register their own callbacks or event listeners with the Stores.

3. When a user interacts with a View and clicks on something that
may trigger an Action Creator.

4. The Action Creator might perform an AJAX request and then
dispatch an Action with the Dispatcher.

5. The Dispatcher will then deliver that Action to all of the Stores that
registered callbacks with it.

6. The Stores will update their state as necessary, depending on the
content of the Action, and if their state changed they’ll notify all the
components that are listening for change events.

7. The notified Views will then request the updated state from the
stores and re-render if necessary, bringing the application to a
new, updated state.

This uni-directional flow and well defined separation of
responsibilities among the components makes it much easier to reason
about state changes within your application.

mfwkj

Web |gmmal Web |[mmmal Action
API emmml AP| Utils Rammal Creators
y) T/ T/
Change

User React Events +
Interactions Vi ews Store

Queries

/4

Image credit: Facebook

Flux parts

Flux is comprised of distinct parts with specific responsibilities.
Within the uni-directional flow of information each Flux part takes the
input from downstream, processes it, and sends it's output upstream.

e Dispatcher—a central hub within your app.

https://github.com/facebook/flux/

» Actions—the domain-specific-language of your app.
» Store—business-logic and data-interactions.
» Views—the component tree for rendering the app.

Let’s discuss each part, what it's responsible for, and how to use it
effectively within your React apps.

Dispatcher

We’'ve chosen to start with the dispatcher because it is the central
hub through which all user interaction and data flows. The dispatcher is
a singleton within the Flux pattern.

The dispatcher is responsible for registering callbacks on the stores
and managing the dependencies between them. Actions flow through
the dispatcher and out into the stores that have registered for it.

Our sample application contains multiple stores. As you grow your
application, you’ll inevitably run into situations where you need to
manage multiple stores and their dependencies upon each other. We'll
discuss this case below.

Actions

From your user’s perspective this is where Flux starts. Every action
they take through the Ul creates an action that is sent to the
dispatcher.

While actions are not a formal part of the Flux pattern, they
constitute the domain-specific-language of your application. Action
Creators translate user interaction into meaningful dispatcher Actions
—statements that a store can act on.

Store

The store is responsible for encapsulating business logic and
interactions with your application’s data. The store chooses which
actions to respond to from the dispatcher by registering for them.
Stores send their data into the React component hierarchy through
their change event.

I's important to keep strict separation of concerns with the store.

» Stores hold all your application’s data.
» No other part of your application should know how to interact with

the data — stores are the only place in your application where
data mutation occurs.

» Stores don’t have setters—all updates flow through the dispatcher
into the store. Fresh data flows back into the application through
the store’s change event.

Below is an example of a store registering with the Dispatcher to
receive comments for a post.

Dispatcher.register (function (payload) {
switch (payload.actionType) {

case CommentConstants.RECEIVE COMMENTS:
CommentStore.setComments (payload.comments, payload.parentPostId);
break;
}
1) ;

The store receives the action, performs the work of saving the
comments, and when done emits the change event.
CommentStore.prototype.setComments = function (comments, parentPostId) {
// handle saving the results here

this.emitChange () ;
}

This change event is then handled by your React Views. The new
state will flow through your React component hierarchy and the
components will re-render as needed.

View-Controller

Your application’s component hierarchy will commonly have a high-
level component responsible for interacting with stores. Simple
applications may only have one. More complex applications might
have many.

The process of wiring up a store is straightforward.

1. When the component mounts, add the change listener.

2. As the store changes, request the new data and process
accordingly.
3. When the component unmounts, clean up the change listener.

Here is an example of handling store interactions.

export default
class App extends React.Component {
handleChange () {

PostStore.getPosts ((posts) => {
this.setState ({ posts: posts });
)i
}
componentDidMount () {

PostStore.addChangelListener (this.handleChange) ;

}
componentWillUnmount () {
PostStore.removeChangeListener (this.handleChange) ;

}

Managing multiple stores

Inevitably, applications grow to need multiple stores. This becomes
tricky when one store depends upon another, requiring the second
store to complete its actions before the first can perform its own
actions.

For example, maybe we create a separate store to maintain a
survey-results summary, tallying the results of all survey respondents.
This summary store requires the main store to complete its record
action before we can safely update the summary store.

The standard Flux implementation from Facebook includes a method
named w2itror, Which will help us instruct stores to wait for other stores

to finish processing an event before proceeding.

Registering for dependent actions
Suppose we have two stores concerned about a creare comenr action.

e The commentstore Needs to store the comment.
e The roststore Needs to know re-tally the total comments for the
post.

This means that roststore IS dependent upon
the commentstore cOMpleting the create_comvent action before it can complete

its work.

When we register the comentstore at the top of our App, we store a
reference to the dispatcher token.

// Wire up the CommentStore with the action dispatcher
CommentStore.dispatchToken = Dispatcher.register (function (payload) {

switch (payload.actionType) {

case CommentConstants.CREATE COMMENT:
CommentStore.saveComment (payload.comment,

break;

payload.parentPostId);

}
1)

Then we register our Nnew roststore, placing the call to waicror before
we access the commentstore data.

PostStore.dispatchToken = Dispatcher.register (function (payload) {
switch (payload.actionType) {
case CommentConstants.CREATE COMMENT:

Dispatcher.waitFor (CommentStore.dispatchToken) ;
// At this point it's guaranteed the "~CommentStore’
// and we can safely access its data to summarize it.
var commentCount = CommentStore.getCommentsFor (payload.parentPostId);
PostStore.setCommentCount (commentCount, payload.parentPostId);

callback has been run

break;

Reflux

The sample app uses a popular Flux-inspired library called Reflux.
Reflux differs from Flux in that Stores subscribe directly to Actions.
This eliminates the need for large switch statements that check an
Action’s type. Stores may similarly listen to other stores, eliminating the
need for the w.itror call described in the Flux section. Action Creators
are eliminated because Reflux Actions are simply functions that pass
the payload the receive to listeners.

The sample app defines a number of stores in the directory src/stores.
All of the actions for the app are defined in src/utils/actions.is.

You can find learn more about Reflux
here: https://github.com/reflux/refluxjs.

Redux

Influenced by ClojureScript's Om and functional reactive
programming, Redux is another Flux-inspired library for React
applications. Redux is designed to help you write applications that are
easy to reason about and to provide an excellent developer
experience.

Similar to Om, Redux collects the entire application’s state into a
single object as a large tree of data. Redux is designed so that all of
your code, including Stores, can be hot-loaded, or updated while your
app is running.

Redux has a single Store that is updated by Reducers that respond
to Actions. Redux Reducers are pure functions that return an updated
piece of the state tree. Reducers are often very similar to the function
registered with the Dispatcher by a Store. Instead of using getter
methods on a Store as in Flux, Redux has a concept of Selectors.
Selectors are functions that retrieve a piece of data from the state tree.
Components then use a function called connect to register for updates

https://github.com/reflux/refluxjs

from the Store and use Selectors to retrieve the desired data. These
selected pieces of data are given to the connected component as
props. Action Creators in Redux are similar to those in Flux but, may
be enhanced with Middleware.

You can learn more about Redux here: http://redux.js.org.

Relay

Relay is a data-driven framework for React applications created by
Facebook. Relay makes it possible to specify the data a component
needs as a GraphQL fragment, or query, within the component itself.
When Relay renders your React app it builds a large composite query
from all of the GraphQL fragments on components to be rendered and
then makes one request to the server. Co-locating the data
requirements and the component make keeping up with shifting data
requirements simple, and batching network requests improves
performance. Using Relay requires that you have a server that
supports responding to GraphQL queries but, for applications with
complex data requirements or view hierarchies it can be a great fit.

You can learn more about Relay
here: https://facebook.github.io/relay/.

Om and Om Next (ClojureScript)

Om, and it’s successor Om Next, are very popular ClojureScript
interfaces to React. ClojureScript’s persistent data structures make
implementing otherwise complex features like undo very simple. Om
Next incorporates what the Om community has learned to provide an
even better experience. Similar to Relay, Om Next allows you to
specify a component’s data requirements directly on the component. In
Om Next, these queries are specified using Datomic Pull Syntax which
is a query syntax for Datomic, a database commonly used with
ClojureScript projects.

http://redux.js.org/
https://facebook.github.io/relay/

Below is an entire Om Next app!

(ns om-tutorial.core
(:require [goog.dom :as gdom]
[om.next :as om :refer-macros [defui]]
[om.dom :as dom]
[datascript.core :as d]))

(def app-state

(atom
{:app/title "Animals"
:animals/list
[[1 "Crow"] [2 "Antelope"] [3 "Bird"] [4 "Cat"] [5 "Dog"]
[6 "Lion"] [7 "Mouse"] [8 "Monkey"] [9 "Snake"] [10 "Zebra"l1l}))

(defmulti read (fn [env key params] key))

(defmethod read :default
[{:keys [state] :as env} key params]
(let [st @state]
(if-let [[_ wvalue] (find st key)]
{:value value}
{:value :not-found})))

(defmethod read :animals/list
[{:keys [state] :as env} key {:keys [start end]}]
{:value (subvec (:animals/list @state) start end)})

(defuili AnimalsList
static om/IQueryParams
(params [this]
{:start 0 :end 10})
static om/IQuery
(query [this]
'[:app/title (:animals/list {:start ?start :end ?end})])
Object
(render [this]
(let [{:keys [app/title animals/list]} (om/props this)]
(dom/div nil
(dom/h2 nil title)
(apply dom/ul nil

(map
(fn [[1i name]]
(dom/1i nil (str i ". " name)))
list))))))

(def reconciler
(om/reconciler
{:state app-state
:parser (om/parser {:read read})}))

(om/add-root! reconciler
AnimalsList (gdom/getElement "app"))

This renders an unordered list of the animal names defined as the
app-state near the tOp Of the f||e

You can learn more about Om and ClojureScript
here: https://github.com/omcljs/om.

Summary

By now you've seen a number of architectural patterns that can be
used with React. From a standard Flux pattern, to Flux variants like
Reflux, to an entirely different language and ecosystem like Om and
ClojureScript, React has proven to be quite adaptable.

Up next you can read about using Immutability in your React apps, a
concept central to both Redux and Om.

https://github.com/omcljs/om

Chapter 16. Immutability

An increasingly popular way to use React is in conjunction with immutable data
structures—that is, data structures that never change after they are instantiated.

Whether immutability is right for your application, and if so, which immutability
library to adopt, depends on the specifics of your use case. In this chapter we will
cover the benefits and costs of immutability, and look at three different libraries
you can use to incorporate it into your React application.

Performance Benefits

The most clear-cut benefit of immutability in a React application is what it does
for shoulacomponentupdate. AlthOugh shoutdcomponentupaate €an provide great performance
improvements, those improvements are often eroded or even erased as
the shouldcomponentupaate handler itself increases in complexity.

Suppose you have a shouldcomponentupdate, Which only needs to check one field
in props to determine whether it will return true Or fa1se. That’'s going to run quickly!
Now suppose instead it needs to check a dozen fields instead, and some of those
fields contain object which each require multiple comparisons, since all that
checking can add up fast.

The root of the problem here is that it is time-consuming to determine whether
two mutable objects represent equivalent values. But what if instead that were a
quick check?

With immutable »:ops and s:ate, there is indeed a quick check you can use. When
your props are represented as an immutable object, then they can no longer be
updated in place; to get new props, you must instantiate a new immutable object
and replace the old object with the new. As such, using o1drrops == newprops @S
YOUr shouldcomponentupdate ChECK Will very quickly tell you if you definitely need to
update.

It's worth noting that although this check is very fast, it can generate false
positives. For example, if your old state were | usernane: "pon gacko", active: true ; and
you invoked :repiacestate passing a freshly-instantiated object ¢ username: "pon sackor,
active: true }, the old state Would clearly be identical to the new s:.:e, , but a

shouldComponentUpdate funCt|On US|ng oldState !== newState A4S |tS teSt WOUld St'” CO”S'der
them different, and would re-render unnecessarily.

In practice, this rarely seems to come up, and if it does, the only cost would be
an unnecessary re-render. False negatives (in which a component actually needed
to re-render but determined that it did not) would be a much greater concern, but
fortunately that problem does not manifest with this approach.

Performance Costs

Although immutable data structures can get you dead-simple and lightning-
fast snoutacomponentupaate implementations, which save considerable rendering
performance, they are not without their performance costs. Whereas, mutable
objects are quick to update but slower to compare, immutable objects are quick to
compare but slower to update.

Instead of making the change in place, the immutability library you’re using must
instantiate at least one new object, and modify it as necessary until it matches the
old object in every way except for the one changed field. This costs time both
during the update process and during garbage collection, when the additional
objects are inevitably cleaned up.

For the vast majority of React applications, this is an excellent tradeoff to make.
Remember that a single update typically results in a call to many render functions,
and that render functions instantiate quite a few objects themselves in the course
of building up their return values. Sacrificing a bit of update speed to save
numerous render function calls is almost always going to be a performance win.

Separate from performance, another cost to consider is that you lose the
convenience of setstate and secerop. Since both of these rely on being able to mutate
your state @and props Objects, respectively, when you switch those to immutable
objects, your only options become :repiacestate @Nd repraceprops.

Architectural Benefits
Besides performance benefits, there are additional architectural benefits that

come from using immutable data more. These benefits extend beyond ;:ops and
state, @and apply more broadly to your application as a whole.

Immutable data is generally less error-prone to work with than mutable data.
When passing mutable data from one function to another, and expecting that it will
come back unchanged, you have two options: one is to clone the object ahead of
time and pass the clone, and the other is to cross your fingers and hope the other
function doesn’t modify it. (Because if it does, you're in for some bug hunting!)

Defensive cloning is effective in situations like these, but generally less efficient
than what an immutable library would do in the same spot. Knowing that your
initial data is already assumed to be immutable can allow for faster cloning, than
when it's mutable the whole way through.

Embracing immutability means you do not have to remember to defensively
clone on a case-by-case basis; instead, you will get the same safe-to-pass
characteristics by virtue of using immutable data in the usual way. This makes
immutable data less error-prone to work with.

Using the Immutability Helpers Addon

The easiest way to introduce immutability to your React application is to use the
Immutability Helpers Addon. It lets you continue using your existing mutable data
structures as though they were immutable, by making it easy to create new (also
mutable) objects instead of performing in-place updates.

While this does not actually give you any new guarantees, it does allow you to
Wl‘lte a qU|Ck shouldComponentUpdate funct|0n as deSCFIbed above

Let’s update our example to use the Immutability Helpers Addon:

var update = React.addons.update;

var SurveyEditor = React.createClass ({

/S

handleDrop: function (ev) {
var questionType = ev.dataTransfer.getData ('questionType');
var questions = update(this.state.questions, {
$push: [{ type: questionType }]
I

this.setState ({

questions: questions,
dropZoneEntered: false
)i
by

handleQuestionChange: function (key, newQuestion) {
var questions = update(this.state.questions, {
$splice: [[key, 1, newQuestion]]
})

this.setState ({ questions: questions });

br

handleQuestionRemove: function (key) {
var questions = update(this.state.questions, {
$splice: [[key, 1]]
I

this.setState ({ questions: questions });

}

VI
}) i

Next we’ll try a different library, one which actually does make guarantees about
immutability.

Using seamless-immutable

The seamless-immutable library is not part of the official React family of
libraries, but was designed to be used with React. It creates immutable versions of
regular Objects and Arrays, which can be passed around, accessed, and iterated
over just like their mutable counterparts, but which block any operations that would
mutate them.

Like the Immutability Helpers Addon, seamless-immutable provides
convenience functions for working with immutable data. In the case of seamless-
immutable, however, these are implemented as methods on the objects
themselves. For example, seamless-immutable objects gain a .«erge 0 method
which works like the snerqe Option in the Immutable Helpers Addon.

var update = React.addons.update;

var SurveyEditor = React.createClass ({
/).

handleDrop: function (ev) {
var questionType = ev.dataTransfer.getData ('questionType');
var questions = this.state.questions.concat(

[{ type: questionType }]

)i

this.replaceState (this.state.merge ({
questions: questions,
dropZoneEntered: false
1)
)!

handleQuestionChange: function (key, newQuestion) {
var questions = this.state.questions.map (
function (question, index) {
return index === key ? newQuestion : question;
}
)i

this.setState ({ questions: questions });

be

handleQuestionRemove: function (key) {
var questions = this.state.questions.filter(
function (question, index) {

return index '== key;
)i

this.setState ({ questions: questions });

}
/o

});

Using Immutable.js

Whereas the previous two libraries provided tools around normal JavaScript
objects and arrays, Immutable.js takes a different approach: it provides alternative
data structures to objects and arrays.

The most commonly-used of these data structures are runutavie.map (@nalogous to
Object) and rmmutabie.vector (@nalogous to Array). Neither of these can be freely
substituted for JavaScript objects or arrays in the general case, although you can
easily convert to and from the Immutable.js data structures and their mutable
JavaScript counterparts.

Immutable.Map

mmutable.Map CAN b used as a substitute for regular JavaScript objects:

var question = Immutable.Map ({description: 'who is your favorite superhero?'});
// get values from the Map with .get
question.get ('description');

// updating values with .set returns a new object.
// The original object remains intact.
question2 = question.set('description', 'Who is your favorite comicbook hero?');

// merge 2 objects with .merge to get a third object.
// Once again none of the original objects are mutated.

var title = { title: 'Question #1' };

var question3 = question.merge (question2, title);

question3.toObject(); // { title: 'Question #1', description: 'who is your favorite comicbook hero' }
Immutable.Vector

Use Immutable.Vector fOI’ arrays:

var options = Immutable.Vector ('Superman' , 'Batman');
var options2 = options.push('Spiderman');
options2.toArray(); // ['Superman', 'Batman', 'Spiderman']

You can also nest the data structures:

var options = Immutable.Vector ('Superman' , 'Batman');
var question = Immutable.Map ({
description: 'who is your favorite superhero?',

options: options
1)

Immutable.js has many more facets. For more information on Immutable.js go
to https://github.com/facebook/immutable-js.

Summary

In this chapter we learned about the benefits and costs of using immutability in a
React application. We covered its impact on shouidcomponentupdate, ON What it means
for update times, and three different ways to introduce immutability into a React
code base.

Next we’ll look into other uses of React beyond traditional web applications.

https://github.com/facebook/immutable-js

Chapter 17. Other uses

React is a powerful interactive Ul rendering library, but it provides
a great way to handle data and user input. It encourages small
components that are reusable and easy to unit test. These are all
great features that you can apply to other technologies than just the
web.

In this chapter we’ll look at how to use React for:

e Desktop applications
» Games

e Emails

e Charting

Desktop

With projects like Electron or node-webkit you can run a web
application on the desktop. The Atom Editor from Github is built with
Electron, which you can also use with React.

The sample app already includes Electron, and to launch it, run
this command in the root of the sample app:

./node_modules/.bin/electron desktop.html

Running Electron with gesxtop.ntm1 Opens up the application in a
window.

React Edge Sample App

e || e

Bleeding Edge Sample App
This is a sample application for the React Edge 2nd Edition.

It's a reddit clone built with React, React-Router, Reflux and other libraries.

You can read more about Electron at http://electron.atom.io.

With projects like Electron and node-webkit, you can build desktop
applications using the same technologies you use for the web. Just
like for the web, React can help you build powerful interactive
applications for the desktop.

Games

Games generally require a high level of user interaction, where the
user is responding to the changing state of the game. This is in
contrast to most web applications where the user is either
consuming content or producing content. Games are essentially a
state machine, having two basic roles:

1. Updating the View

http://electron.atom.io/

2. Responding to events

In the introduction to this book, you read that React has a very
narrow scope that is concerned with only two things:

1. Updating the DOM
2. Responding to events

The similarities between React and Games don't just stop at
this. React owes much of its Virtual DOM architecture to high
performance 3D gaming engines, where given the intended view
state, the rendering engine ensures an efficient update of view/DOM.

As an example of using React with gaming, let’s take a look at an
implementation of the game 2048. The object of this game is to
combine matching numbers on the board until you reach 2048.

Score: 160

o o] o -

New Game

Let’s dive in and take a look at the implementation
(https://jsfiddle.net/jeremiahrhall/6wa8djju/).

The source is divided into two parts. The first section is the game
logic implemented as functions in the global namespace, and the
second section is the React components. The first thing you will see
is the initial data structure of the board.

https://jsfiddle.net/jeremiahrhall/6wa8djju/
https://jsfiddle.net/jeremiahrhall/6wa8djju/

var initial board = {
al:null, a2:null, a3:null, a4:null,
bl:null, b2:null, b3:null, b4:null,
cl:null, c2:null, c3:null, c4:null,
dl:null, d2:null, d3:null, d4:null

The data structure of the board is an object where the «eys directly
relate to a visual grid position defined in CSS. Following the initial
data structure, you will see a series of functions that operate on this
given data structure. All of these functions operate in an immutable
way, thus returning a new board and not mutating the input. This
gives the game logic some leverage, since it will be able to compare
boards before and after moves are performed, and speculatively
perform moves without changing the game state.

Another interesting property about the data structure is the
structural sharing of boards. All boards share reference to
unchanged tiles on the boards. This makes creating a new board
very fast and allows the comparison of boards to use reference
equality.

The game is comprised of two React components: ri1.s and

GameBoard.

riles IS @ basic React component. When given a board as props it
will consistently render all tiles. This allows you to leverage CSS3
transitions for animation.

class Tiles extends React.Component {
render () {
var board = this.props.board;
//sort board keys first to stop re-ordering of DOM elements
var tiles = used spaces (board).sort((a, b) => {
return board[a].id - board[b].id;
1) :
return <div className="board">{
tiles.map ((key) => {
var tile = boardl[key];

var val = tile value(tile);

return
{val}

;

1)}

</div>

}

<!-- Example output from render of Tiles -->

<div class="board" data-reactid=".0.1">
64
8
8
8

</div>

/* CSS transistion applied to animate tiles */
.board span{
VA 4

transition: all 100ms linear;

cameBoard IS the state machine, responding to user events arrow keys
and sutton press, and interacting with game logic functions to then
update the state with a new board.

class GameBoard extends React.Component {
constructor (props) {
super (props) ;
this.state = this.addTile(this.addTile(initial board)) ;
}

keyHandler (e) {

var directions = {
37: left,
38: up,
39: right,
40: down

b

if (directions[e.keyCode]

&& this.setBoard(fold board(this.state, directions[e.keyCode]))
&& Math.floor (Math.random() * 30, 0) > 0){

setTimeout (() => {
this.setBoard(this.addTile (this.state));
b, 100);

}

setBoard (new board) {
if (!same board(this.state, new board)) {
this.setState (new board);
return true;
}
return false;

}

addTile (board) {

var location = available spaces(board) .sort(() => {
return .5 - Math.random() ;
}) .pop () ;
if (location) {
var two or four = Math.floor (Math.random() * 2, 0) ? 2 : 4;

return set tile(board, location, new tile(two or four));

return board;

}

newGame () {
this.setState(this.addTile(this.addTile(initial board)));

}

componentDidMount () {
window.addEventListener ("keydown", this.keyHandler.bind(this),
false);
}
render () {
var status = !can move (this.state)?" - Game Over!":""

return <div className="app">

Score: {score board(this.state)}{status}

<Tiles board={this.state}/>
<pbutton onClick={this.newGame.bind (this) }>New Game</button>
</div>

In the canezoara cOMmponent we setup the keyboard handlers for
interacting with the board. Every time an arrow key is pressed we
call setzoara With the newly created board from the game logic. If the
new board is different than the old, we update the state of the
cameroara COMpPoNent. This avoids unnecessary cycles and improves
performance.

In the render function you render the Tiles component given the
current board, and render the score, calculated by the current board
in the game logic.

The aaariie function keeps adding new tiles to the board when you
use the arrow keys to keep the game going until the game is over
when the board is full and no numbers can be combined.

Given the above implementation, it is trivial to extend the game
with undo functionality. You can keep a history of all board changes
in state within the carescara cOmponent and with an undo button
change the current board: https://jsfiddle.net/jeremiahrhall/9fbjgnt6/.

https://jsfiddle.net/jeremiahrhall/9fbjgnt6/

The implementation of this game is quite simple, since React
allows you to concentrate on the game logic and user interactions
without having to worry about keeping the view in sync.

Email

Though React is optimized for building interactive Uls for the web,
at it’s core it renders HTML. This means you can get a lot of the
same benefits you'd normally get from writing a React application for
something as terrible as writing HTML emails.

Building HTML emails requires a series of tables to render
correctly in each email client. To write emails you need to turn back
the clock a few years and write HTML as if it were 1999.

Successfully rendering emails in a range of email clients is no
small feat. To build our design with React we will only touch on a
number of challenges you will encounter when building emails,
whether they are rendered using React or not.

The core principle of rendering HTML for emails with React is
React.renderTostaticMarkup. 1 NIS function returns an HTML string
containing the full component tree, given 1 top level component. The
only difference between zeact.rendertostaticMarkup @Nd react . rendertostring
iS that react.rendertostaticmarkup doesn’t create extra DOM attributes like
sata-react-id that React uses client side to keep track of the DOM.
Since the email doesn’t run client side in the browser; we have no
need for those attributes.

Lets build an email with React given this design for desktop and
mobile:

Who is your favorite superhero?

3123 14

Completions Days running

3123

Completions

14

Days running

To render the email we have made a small script that outputs
HTML that can be used to send an email:

// render email.js

var ReactDOMServer = require('react-dom/server');
var SurveyEmail = require('survey email');
var survey = {};

console.log(
ReactDOMServer.renderToStaticMarkup (<SurveyEmail survey={survey}/>)

);

Let’s get the core structure of surveyenaii going. First, let’s build an
Email COMponent:

class Email extends React.Component {
render () {

return (
<html>
<body>
{this.prop.children}
</body>
</html>
)
}
t

The <surveyzmail/> cOmponent USeS <email/>:

class SurveyEmail extends React.Component {

render () {
var survey = this.props.survey;
return (
<Email>
<h2>{survey.title}</h2>
</Email>

)
}
}

SurveyEmail .propTypes = {
survey: React.PropTypes.object.isRequired

b

Next, per the design, render two KPIs next to each other on
desktop clients and stacked on a mobile device. Each KPI looks
similar in structure so they can share the same component:

class SurveyEmail extends React.Component {
render () {
return (
<table className='kpi'>
<tr>
<td>{this.props.kpi}</td>
</tr>
<tr>
<td>{this.props.label}</td>
</tr>
</table>
) i
}
}

Let’'s add them to the <surveysnaii/> COmMponent:

class SurveyEmail extends React.Component ({

render () {
var survey = this.props.survey;
var completions = survey.activity.reduce ((memo, ac) => {

return memo + ac;
boo o 0)s

var daysRunning = survey.activity.length;

return (
<Email>
<h2>{survey.title}</h2>
<KPI kpi={completions} label='Completions'/>
<KPI kpi={daysRunning} label='Days running'/>
</Email>
)
}
}

SurveyEmail .propTypes = {

survey: React.PropTypes.object.isRequired
bi

This stacks our KPls, but the design had them next to each other
for the desktop. The challenge now is to have this work for both
desktop and mobile. To solve this there are a few gotchas we have

to cover first.

Lets augment <=rai1/> With @ way of adding a CSS file:

var fs = require(‘fs’);
class Email extends React.Component {
render () {
var responsiveCSSFile = this.props.responsiveCSSFile;

var styles;
if (responsiveCSSFile) ({
styles = <style>{fs.readFileSync (responsiveCSSFile) }</style>;
}
return (
<html>
<body>
{styles}
{this.prop.children}
</body>
</html>
) i
}
}

Email.propTypes = {
responsiveCSSFile: React.PropTypes.string

}i
The complete <surveyemaii/> l0OKS like this:

class SurveyEmail extends React.Component {

render () {
var survey = this.props.survey;
var completions = survey.activity.reduce ((memo, ac) => {

return memo + ac;

Yoo 0)

var daysRunning = survey.activity.length;

return (
<Email responsiveCSS='path/to/mobile.css'>
<h2>{survey.title}</h2>
<table className='for-desktop'>
<tr>
<td>
<KPI kpi={completions} label='Completions'/>
</td>
<td>
<KPI kpi={daysRunning} label='Days running'/>
</td>
</tr>
</table>
<div className='for-mobile'>
<KPI kpi={completions} label='Completions'/>
<KPI kpi={daysRunning} label='Days running'/>
</div>
</Email>
) i
}
}

SurveyEmail.propTypes: {
survey: React.PropTypes.object.isRequired

b

We grouped the Email into for-desktop and for-mobile. Sadly you
can’t use something like ricat: 12t in emails since that isn’t supported
by most browsers. And The HTML spec calls out the align and valign
properties as being obsolete and therefore React doesn’t support
those properties. They could have, however, provided a similar
implementation to floating two «ivs. Instead we are left with two
groups to target with responsive style sheets to hide or show
depending on the screen size.

Even though you have to use tables, it's clear that using React for
rendering emails gives you a lot of the same benefits from writing
interactive Uls for a browser’s Reusable, composable, and testable
components.

Charting

React has support for SVG tags and thus making a simple SVG
becomes ftrivial.

To render a Sparkline (that we’ll use as an example), you need
only a <eatn/> With a set of instructions.

The complete example looks like this:

class Sparkline extends React.Component ({
render () {

var width = 200;
var height = 20;

var path = this.generatePath (width, height, this.props.points);

return (
<svg width={width} height={height}>
<path d={path} stroke='#7ED321' strokeWidth='2' fill="none'/>
</svg>
)
I

generatePath (width, height, points) {
var maxHeight = arrMax (points);
var maxWidth = points.length;

return points.map((p, i) => {
var xPct = 1 / maxWidth * 100;
var x = (width / 100) * xPct;
var yPct = 100 - (p / maxHeight * 100);
var y = (height / 100) * yPct;
if (i === 0) {

return 'MO,' + y;

}

else {
return 'L' + x + '," + y;

}

}).join(" ");
t
}

Sparkline.propTypes = {
points:

React.PropTypes.arrayOf (React.PropTypes.number) .isRequired
}i

The Sparkline component above requires an array of numbers that
represents the points. It then builds a simple SVG with a path.

The interesting part is in the generaterarn function that computes,

where each point should be rendered and returns an SVG path
description.

It returns a string like so: “M0,30 L10,20 L20,50”. SVG paths
translate this into drawing commands. Each command is separated

by a blank space. “M0,30” means Move cursor to x0 and y30. Then
“L10,20” means draw a line from the current cursor to x10 and y20
and so on.

It can be tedious to writing scale functions like this for larger
charts, but its quite simple to drop in libraries like D3, and use the
scale functions D3 provides instead of manual creating the path like
SO:

class Sparkline extends React.Component {
render () {
var width = 200;
var height
var points

20;
this.props.points.map ((p, 1) => {

I (|

return { :p, x: 1 };
)i
var xScale = d3.scale.linear|()
.domain ([0, points.length])
.range ([0, width]);
var yScale = d3.scale.linear ()
.domain ([0, arrMax (this.props.points)])

.range ([height, 0]);

var line = d3.svg.line()
.X (function (d) { return xScale(d.x) })
.y (function (d) { return yScale(d.y) })
.interpolate('linear');

return (
<svg width={width} height={height}>
<path d={line(points)} stroke='#7ED321' strokeWidth='2' fill='none'/>
</svg>
)
}
}

Sparkline.propTypes = {
points: React.PropTypes.arrayOf (React.PropTypes.number) .isRequired
}i

Summary

In this chapter we learned:

1. React isn’t just about the browser, and it can be used to build
desktop applications and emails.

2. How to use React to aid in game development.

3. React is a great choice for charting and works very well with
libraries like D3.

You have now completed this book, and should be able to use
React to create all types of interesting applications.

	Preface
	What is React and why should you use it?
	How this book helps
	What do you need to know prior to reading the book?
	Source code and sample application
	The writing process
	Authors

	1. Introduction to React
	Background
	Book overview

	2. JSX
	What is JSX?
	Benefits of JSX
	Composite components
	How is JSX different than HTML?
	Non-DOM attributes
	React without JSX
	The official JSX spec

	3. Component lifecycle
	Lifecycle methods
	Instantiation
	Lifetime
	Teardown & cleanup
	Anti pattern: Calculated values as state
	Summary

	4. Data flow
	Props
	PropTypes
	defaultProps
	State
	What belongs in state and what belongs in props?
	Stateless Functional Components
	Summary

	5. Event handling
	Attaching event handlers
	Events and state
	State isn’t updating!

	Event objects
	Summary

	6. Composing components
	Extending HTML
	Composition by example
	Parent / child relationship
	Wrap up

	7. High Order Components and Mixins
	Simple Example
	Tips and Tricks
	Summary

	8. DOM manipulation
	Accessing managed DOM nodes
	Finding DOM Nodes by Component
	Incorporating non-React libraries
	Overreaching plugins
	Summary

	9. Forms
	Uncontrolled components
	Controlled components
	Form events
	Label
	Textarea and Select
	Checkbox and radio
	Multiple form elements and change handlers
	Custom form components
	Focus
	Usability
	Summary

	10. Animations
	CSS Transition Groups
	Transition Group pitfalls
	Interval rendering
	Summary
	Spring Animation

	11. Performance tuning
	shouldComponentUpdate
	Key
	Summary

	12. Server side rendering
	Render functions
	Summary

	13. Development tools
	Build tools
	Browserify
	Add some React content
	Webpack
	Debugging tools
	Starting out
	Summary

	14. Testing
	Getting started
	Unit Testing React Components with Jest and Enzyme
	Summary

	15. Architectural patterns
	Routing
	Flux
	Reflux
	Redux
	Relay
	Om and Om Next (ClojureScript)

	Summary

	16. Immutability
	Performance Benefits
	Performance Costs
	Architectural Benefits
	Using the Immutability Helpers Addon
	Using seamless-immutable
	Using Immutable.js
	Summary

	17. Other uses
	Desktop
	Games
	Email
	Charting
	Summary

